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Abstract

This dissertation describes the phenotypic characterization of a BACE knockout

(KO) x PDAPP transgenic mouse line, utilizing behavioral, histochemical, and

pharmacologic methods. Overproduction and accumulation of the amyloid-|3 (A|3)

peptide in the brain has been implicated as one of the causal factors in the

development of Alzheimer's Disease (AD). Based on this concept, several

transgenic mouse models have been created that overexpress human mutant

Amyloid Precursor Protein (hAPP) that reproduces many of the cognitive and

histopathological features of AD. Recently, the (3-site cleaving enzyme (BACE)

responsible for the first proteolytic cleavage of APP has been characterized, and

subsequent research has led to the propagation of BACE inhibition as a prime

experimental strategy for AD therapy.

Currently, there are many academic and pharmaceutical company laboratories

actively engaged in developing therapeutic inhibitors of BACE for AD. However,
the theoretical repercussions of BACE activity reduction have not yet been fully
addressed in an in vivo model. Indeed, although overproduction of A|3 leads to

neuroanatomical and cognitive pathology in human patients and animal models, lack
of A|3 may also result in deleterious cognitive effects. Examining the behavioral and

histological phenotypes of BACE KO animals on normal and hAPP overexpressing

backgrounds is an effective way to assess whether the inhibition of BACE is a

reasonable strategy for the treatment ofAD.

To examine this issue a series of behavioral studies were conducted using

homozygous and hemizygous BACE KO mice, PDAPP mice, and BACE KO;
PDAPP lines together with relevant controls. The studies included various protocols
in a cued and spatial watermaze task and detailed analysis of the occurrence of

epileptiform seizures. Objective methods were used to analyse the changes in

learning ability and the frequency of seizures.

The results from the characterization of the BACE KO x PDAPP mouse line

indicate that the absolute loss of BACE and A|3 caused profound spatial memory
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deficits, sometimes greater even than that of hAPP mice alone. In addition, absolute

BACE KO was associated with spontaneous seizures as well as greater seizure

activity in drug-induced seizure experiments. However, the partial hemizygous
deletion of the BACE gene on a hAPP background appeared to improve spatial

memory performance on certain measures and protect against drug-induced seizure

responses relative to hAPP mice. The research described in this dissertation is

consistent with the notion that, under certain circumstances, therapeutic inhibition of
BACE may prove to be a valuable strategy for treatment of AD. In addition, these
studies also support an important role for the [3-amyloid processing pathway in
"normal" learning and memory processes, possibly by regulating neuronal activity
levels.
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Chapter 1 Introduction

In the past 50 years advances in medicine have helped to contribute 10 years to the

average lifespan of citizens in industrialized countries, and 20 years to the average

world citizen (Goulding et al., 2003). Worldwide there is a boom in the 50-80 year

range, as people are now more likely to survive childhood diseases and accidental

trauma, and receive effective treatments for previously terminal conditions. While
the rapidly expanding elderly population is a testament to the success of
conventional medicine, it also underscores the need for accelerated progress in

geriatric medicine to maintain a high quality of life for this burgeoning age group.

Among the diseases that often await those who reach their golden years,

Alzheimer's Disease (AD) is prominent as a severely debilitating and terminal

disease, characterized by progressive neuronal loss in regions of the brain involved
in cognition. Patients with AD generally present with memory loss and confusion,
which deteriorates to dementia, complete loss of day-to-day function and death

(Rogan and Lippa, 2002).While AD is a terrible disease clinically, it also inflicts a

severe emotional and financial toll on the caregivers of the afflicted. They must not

only provide constant professional care for the patient, but also watch them as they

mentally lose themselves and everyone else in their lives. It is estimated that the
economic costs of AD patients in the United States receiving federal medical
benefits currently exceed $50B per year (Brookmeyer et al., 1998). The economic
burden ofAD is expected to expand to $80B by year 2010 when the United States'
AD population is projected to swell from 4M to 14M patients (Sloane et al., 2002).
In comparison, worldwide populations of diagnosed AD are conservatively

projected to triple to 34M by 2025, a number which does not reflect the evolution of
the disease (Corporation, 2001; Kalaria, 2003).

The basic biology ofAD has grown immensely over the past three decades, and one

hypothesis to explain the neuronal and cognitive pathologies present in AD is the

Amyloid Cascade Hypothesis. In this hypothesis, accumulations of pathogenic
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amyloid-|3 peptide trigger a disease pathway in which cognitive impairments are the

clinical sequelae of a complex neurodegenerative process (Glenner and Wong,

1984a, b; Selkoe, 1991; Hardy and Higgins, 1992). Among the many putative

targets aimed at modifying deleterious amyloid levels in the AD patient, one stands
out as a singularly hopeful candidate for effective AD therapy — the Beta-site

Amyloid Precursor Protein Cleaving Enzyme (BACE), linchpin of the catalytic

process that produces the pathogenic amyloid-|3 peptides (Citron, 2002).

This dissertation is devoted to presenting a working background of the pathogenesis
ofAD, particularly in reference to the amyloid cascade hypothesis, describing what
is currently known about BACE with regard to AD, and framing this information
relative to a BACE-centered AD therapeutic concept. The behavioral and
histochemical experiments presented here will characterize novel genetically
modified BACE knockout mouse lines that overexpresses human mutant amyloid.
This phenotypic information about the BACE knockout x PDAPP mouse will
examine the theoretical risks and values of therapeutic BACE inhibition strategy for

AD, as well as illuminate the role of the amyloid processing pathway in normal

cognition.

1.1 History of the Alzheimer's Disease

The origins ofAlzheimer's Disease as a strictly defined medical disorder lie in early
20th century Europe. Throughout the western world medical thinking was entering a

new era, aided by the widespread use of the microscope, cell theory and classical

anatomy, in which the pathology of disease was being investigated in terms of

histological findings. Alois Alzheimer, and Franz Nissl were respected medical
doctors practicing at the Municipal Hospital for Lunatic and Epileptics in Frankfurt

(Stadtische Irrenanstalt), and were two of the founding fathers of neuropathology

(Kreutzberg and Gudden, 1988). Alzheimer was a histologist with a gift for

pathological description, whose earlier independent work consisted of examinations
of ceruminary glands. In partnership with Nissl, Alzheimer focused on the anatomy

of the cerebral cortex, and when Nissl left Irrenanstalt in 1895, Alzheimer became
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the Institute's Director. With the vacuum left by Nissl's departure, Alzheimer

expanded his medical research to schizophrenic and manic-depressive patients,
which would eventually bring him into contact with one of the most famous patients
in the history of clinical neuroscience, Auguste D (Graeber et al., 1998).

In 1903 Alzheimer left Irrenanstalt to rejoin Nissl in the Heidelberg laboratory of
Emil Kraepelin, the preeminent psychiatrist of the time. The following year in 1904,

they moved to the University of Munich, and began working with the patients of the
Munich asylum as well as the University Psychiatric Institute. In 1905 Auguste D.
entered the Psychiatric Institute at the University ofMunich, at the age of 56 after

experiencing a 5-year period of progressive confusion and memory loss,

pronouncing herself lost mentally. Auguste D.'s condition deteriorated rapidly to

dementia, and died in the Frankfurt asylum in 1906. Upon examination of her brain
tissue using Bodian's silver staining technique, Alzheimer noticed several "tangle¬
like baskets" in Auguste D.'s cortex, as well as a smaller overall cortical volume

compared to normal brains.

In late 1906 Alzheimer reported his findings from Auguste D.'s brain at a meeting
of the South-West German Society of Alienists, and in 1907 provided a deeper
account of pre-senile dementia and cortical tangles. Over the next decade Alzheimer
treated several more patients who presented with similar symptoms and shared this
aberrant cortical pathology. By 1911 other pathologists were reporting similar

findings, and impressed with his original descriptive work, Alzheimer's colleagues
moved to name the disease after him (Graeber et al., 1997).

1.1.1 Alzheimer's Disease Diagnosis, Early Therapies, and the

Development of the Amyloid Cascade Hypothesis

AD today is diagnosed and pathologically confirmed today much as it was in Alois
Alzheimer's day, with a few technical improvements. Patients presenting with

senility and disorientation are tested with a battery of examinations, like the
Alzheimer's Disease Assessment Scale - Cognitive Subscale (ADAS-COG, driven
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by verbal and memory tasks), Mini Mental State Examination (MMSE, a quick

portable examination with a functional bent). These tests as well as others are used

to assess the specific cognitive and daily functional deficits to form a differential

diagnosis of AD (Folstein et al., 1975; Rosen et ah, 1984; Mega, 2002). Disease

severity and progression is scored typically with longitudinal ADAS-COG scores

and purely functional Clinical Dementia Rating (CDR) tests (Price et ah, 1991). As
there is no definitive diagnostic test yet for AD, confirmation of the disease

ultimately comes with positive histological staining of amyloid plaques upon the

patient's death. Aside from the original neuronal plaques and fibrillary tangles,

dystrophic neurites and gliosis of areas surrounding neuritic plaques are now

considered to be consistent neuropathological features ofAD (Figure 1.1). Research
with advanced neuroimaging techniques like MRI and SPECT, finer clinical

cognitive assessments, as well as investigation of meaningful disease biomarkers
from the periphery like CSF measurements of amyloid and tau proteins continues to
evolve, in hopes of providing earlier and more accurate diagnoses of AD (Boss,

2000; Teunissen et ah, 2002; Sunderland et ah, 2003; Zakzanis et ah, 2003).

Compact Plaque Diffuse Plaque NeurofibrillaryTangles

Figure 1.1 Histological Features of Alzheimer's Disease. All tissues are
human cortical tissues stained with Bodian's Silver stain unless
otherwise stated. Left panel: Silver stain ("quenched" with
Haematoxylin & Eosin pre-stain), red arrow pointing to compact senile
amyloid plaque formation; there are several in the image. Middle panel:
Red arrow pointing to a single diffuse amyloid plaque, which unlike
compact plaques lacks an amyloid core and swollen neurites. Right
panel: Several neurofibrillary tangles are shown; the red arrow points
to a globoid neuron rich in intracellular accumulations of the
microtubule protein tau.
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Despite these many theoretical advancements in the field of AD, the major care

regimen for AD patients remains institutionalization (Manton, 2003). As more

became known about the brains of AD patients, it was noted that aside from the

hallmark neurofibril tangles and neuronal plaques, AD brains show a marked
neuronal loss in the hippocampus, cortex, and other regions of the forebrain

(Jellinger and Bancher, 1998). In addition to what was first pharmacologically
viewed as essentially a cholinergic loss, AD brains display a broad decrease in
neurotransmission (Sirvio, 1999; Arendt, 2001). From this information came the
first attempts at treatment aimed at neurochemical modulation in AD.

Between 1950 and the present day several classes of palliative AD therapies were

tested that shared a common neurobiological premise: to increase neurotransmission
in hopes of generating large enough signals to overcome effects of neuronal loss in
the regions of the brain involved with cognition (Davies and Maloney, 1976; Perry
et ah, 1978a; Perry et ah, 1978b; Smith and Swash, 1978; Smith et ah, 1978; Davies,

1979a, b; Perry et ah, 1980; Atack et ah, 1983; Davies, 1985). Acetylcholine (ACh)

agonists and AChEsterase inhibitors (Tacrine, Donepezil, Rivastigmine,

Galantamine), GABA antagonists, Ca ++ modulators and metal ion chelators have all

played upon boosting neurotransmission, with varied results (Knopman, 2003;
Werber et ah, 2003). More recently drug companies have antagonistically targeted
the N-Methyl D-Aspartate (NMDA) receptor, which is intimately involved in

memory processes, resulting in the drug Memantine for moderate to severe AD,
which proffers modest cognitive improvements over a time period which has yet to
be determined (Ferris, 2003).

Other therapeutic approaches like non-steroidal anti-inflammatories (Ibuprofen) and
antioxidants (Vitamin E) have been empirically found to reduce amyloid production
and have been used in combination with AChEsterase inhibitor drugs to treat AD

(Doraiswamy, 2002; Helmuth, 2002). In contrast to AD treatments based in the

premise of increasing neurotransmission, some developing AD research efforts is

currently focused on direct neurodegeneration caused by accumulated

dyshomeostasis of metal ions, traumatic brain injury or neurological viral infections
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(Itzhaki, 1994). Other drugs are given to treat the other symptoms ofAD, including

depression, anxiety, and/or psychosis, which are generally more responsive to

therapy than memory and basic functional impairments (Devanand, 1997).

All clinical trials for potential AD treatments are challenging and extremely costly
as they involve elderly patients who may be on a number of other medications, and
have a range ofmental impairments that affect regimen compliance. In addition, AD
clinical trials typically must have study durations of 12 months or longer for
reasonable measurement of changes in disease progression (Fillit et al., 2002;
Karlawish and Clark, 2002). Unfortunately, the many difficult clinical trials for AD
treatments have produced too few drugs. Currently, AChEsterase inhibitors are the
most successful and widely-used AD palliatives improving cognition in a limited

population ofAD patients for short period of time, but leaving the growing need for

robustly efficacious AD treatment largely unmitigated (Trinh et al., 2003). Fueled in

part by this unmet medical need and also by the revolution in molecular biology,
AD researchers had breakthrough discoveries in AD biology in the late 1980s.

The classic plaques and tangles described nearly a century before were now gaining
new definition through biochemistry. The neuronal plaques found throughout the

hippocampus, frontal cortex, and entorhinal cortex are largely comprised of
extracellular deposits of amyloid-beta peptide (A|3) (Glenner and Wong, 1984b;
Masters et al., 1985). A|3 is the 40-42 amino acid product of complex proteolysis of

the Amyloid Precursor Protein, APP, with three predominant isoforms in the brain,

APP695, APP751, and APP770 (Tanaka et al., 1988). A(3 is a 4 kDa protein

ubiquitously expressed and is normally generated by neurons, glia, lymphocytes,
and endothelial cells throughout the body (Selkoe et al., 1988). While A|3 is the

major component of plaques, the classic neurofibrillary tangles (NFTs) were in turn

found to be majorly comprised of intracellular assemblies of a microtubule-
associated protein call tau (Goedert et al., 1988).
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1.1.2 The Amyloid Cascade hypothesis

The discovery of these defining molecular components in AD brains caused much
excitement within the scientific and medical communities, and in time ignited a

debate over the role of each protein and histological feature in the progression of
AD from primary and secondary disease to end-state pathology. While the amyloid
versus tau controversy raged hotly for years, two vital pieces of evidence led to the
rise of the amyloid cascade hypothesis as the central framework upon which many

therapeutic drug efforts are now based.

The first finding was related to the levels of amyloid plaques and tau-positive NFTs
in normal and aged brains. Neurologists at Washington University reported that
while all aged brains accumulated NFTs and tau proteins over time, the numbers of
NFTs did not correlate to Clinical Dementia Rating (CDR) scores in AD patients
and their brains upon autopsy. While this result argues that tau-positive NFTs may

be a consistent feature of normal aged brains, there is a modest positive correlation
between plaque counts and CDR in AD patients (Price et al., 1991). Later research

expanded on the basis of this modest initial finding, showing that presynaptic
terminal loss is itself coincident with neuritic plaques and that this loss is tightly
associated with cognitive decline (Lassmann et al., 1993; Masliah et al., 1994;
Masliah et al., 2001b). The relationship between amyloid burdens in the brain and
clinical staging ofAD has been controversial, as various groups have both claimed
and refuted any direct correlation between staging of cognitive deficits in AD and

amyloid burden (Price et.al. 1991; Nagy et al., 1995; Nagy et al., 1996). However,
these once tenuous and sporadic correlations have been bolstered recently by

improvements on MRI methods and stereologic measurements of amyloid

histopathology (Nagy et al., 1995; Nagy et al., 1996; Naslund et al., 2000; Bussiere
et al., 2002). The further discovery that specific forms of amyloid, like soluble and

oligomeric amyloid peptides (including A|3-derived diffusible ligands or ADDLs),
are strongly correlated to clinically diagnosed AD further strengthened the case for
the functional amyloid cascade hypothesis (Lue et al., 1999; Gong et al., 2003).
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The second major piece of evidence in support of the amyloid cascade hypothesis
was the discovery that monogenetic mutations in the amyloid precursor protein gene

(APP) are robustly associated with AD. Down's Syndrome is a genetic disease in
which Chromosome 21 is triplicated, and the afflicted have mental retardation and

invariably develop AD at an early age. In 1985 APP was found to be the major
neuronal plaque constituent in both AD and Down's Syndrome (Masters et al.,

1985; Robakis et al., 1987). After a series of scientific forays examining
Chromosome 21, several mutations were found in the three isoforms of APP in the

plaques of patients with familial AD (Levy et al., 1990; Goate et al., 1991; Murrell
et al., 1991; Hendriks et al., 1992; Mullan et al., 1992). Eventually these familial
AD (FAD) mutations of the APP gene would gain more familiar monikers, Swedish
mutation (K670N, M671L), Flemish mutation (A692K), Fondon mutation (V717I),
Indiana mutation (V717F), and the original characterized Dutch mutation (Q692E)
all ofwhich cause presenile deposition of amyloid in the brain (Figure 1.2).

1.1.3 Biology and processing of the Amyloid Precursor Protein

Upon identification of FAD mutations, it was apparent that there are genetic

hotspots of mutation (codons 670, 692, and 717), resulting in FAD patients with

symptoms in their mid-30s (Van Broeckhoven et al., 1987; Van Broeckhoven C,

1987; Siman et al., 1993). APP is broadly expressed across the tissues of the human

body, and exists as a large type 1 transmembrane protein of about 110-130kDa with
much of the protein located within the extracellular regions of the protein (Masters
et al., 1985; Robakis et al., 1987; Siman et al., 1993). Immunochemical analysis
with AD brain tissues provided evidence that APP is highly processed, undergoing a

series of endoproteolytic cleavages leading to amyloid-(3 fragments varying from
38-43 amino acids in length (Sisodia et al., 1990) (Figure 1.3). The previously
discovered APP mutations were clustered around regions of APP that are cleavage
sites of the processing enzymes. In the presence of the various APP mutations,
metabolic processing becomes altered, shifting the ratios of the various metabolite

fragments, with more A(31 -42 than A(31 -40 production (Suzuki et al., 1994).
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Figure 1.2 APP sequence and processing sites. This schematic of the
human wiidtype APP amino acid sequence shows the processing sites
for a-, p- and y-secretase (heterogeneous intramembrane cleavage).
Individual amino acid residues outlined in red, blue (A|31 -42/43
cleavage site itself) and purple (also linked to vascular amyloidosis)
indicate sites that have been identified as mutational hotspots that
result in accumulations of pathogenic amyloid A|31-42.
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Figure 1.3 The Amyloid Precursor Protein sequence. The amino acid
sequence of the human APP is displayed at the top of the figure,
ranging from residue 1 to 800. Red, blue and yellow circles delineate
sites undergoing post-translational modifications for carbohydrate
linkage or sulfonation. The yellow box indicates the region of the
signal sequence which directs the protein to various organelles for
processing. The green box indicates a putative Kunitz Inhibitor region,
which may protect the protein precursor from proteolysis by serine
proteases like trypsin. The aqua box indicates the 40 or 42 amino acid
sequence containing the amyloid peptide itself. The specific sequence
of the amyloid peptide is expanded, with the A01-42 sequence shown
in blue text, with arrows pointing to processing sites for a-, p, and y-
secretase cleavage shown below.
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A|31-42 is more abundant in plaques as opposed to normal aged brain tissues, and

was thus pronounced the anryloidogenic fragment. Later in vitro experiments with
human AD cortical tissue confirmed that Ap 1 -42 is indeed the APP metabolite

responsible for the formation of plaques, as it was also found to have the ability to

form fibrils and oligomers, the structural basis for promotion of amyloid deposits

(Mattson, 1997; Lambert et al., 1998; Kirkitadze et al., 2002). Additionally it was
found that the A|31-42 peptide is neurotoxic to neuronal cells in certain cell culturing

conditions, promoting cell death through activation of apoptotic pathways (Estus et

al., 1997; Troy et al., 2000; Allen et al., 2001; Kienlen-Campard et al., 2002).

While accumulations of A(31 -42 can theoretically be viewed as a causal factor in the

etiology of FAD disease, which currently represents only ~5% of all AD cases, the

peptide also accumulates in the brains of patients with non-genetic AD, making it a

likely player in the early etiology of sporadic AD (AD Education and Referral
Center, 2004). The number of total AD cases linked to FAD has slowly increased
over the past 20 years, as more mutations and genetic polymorphisms have been

found, with the preponderance of cases affecting A(31 -42 levels in some manner.

While the neurotoxic properties of A(31-42 can possibly explain the dramatic
neuronal loss seen in AD brains, this is a pathological feature that appears late in the
disease long after the first signs of cognitive decline. It is possible that A(31 -42 is
still directly responsible for pre-apoptotic cognitive dysfunction. However,
confirmation of this hypothesis requires the development of more sophisticated

experimental models of AD and deeper understanding of the processing enzymes

that create A|3 as well as the normal cellular role ofAPP and its metabolites.

1.1.4 Modulation and mechanistic regulation of Ap

Although the metabolic processing of APP is a normal highly regulated process for
the majority of people, disruptions to this processing can lead to deleterious
accumulation of pathological amyloidogenic peptides. APP is a large integral
membrane protein trafficked through the constitutive secretory pathway, and from
fractionation experiments distinct sets of amyloid peptide can be recovered from
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different subcellular locations, indicating that multiple enzymes in diverse

organelles processed the peptide. Also, it is clear that from experiments using

homogenized and cultured human AD brain tissue that there are soluble metabolized

fragments of APP that are not the major A(31 -40 or amyloidogenic A(31-42 peptides

(Sisodia et al., 1990; Haass et al., 1992; Seubert et al., 1992; Iwatsubo et al., 1994).
After a number of biochemical experiments, the processing ofAPP is found to occur

in two ways, producing longer fragments in one mechanistic pathway (38-43 amino
acids in length, which includes the amyloidogenic fragment A|31-42) and truncated

peptides in another (19-22 amino acids in length) (Figure 1.4).

In the 1990s considerable AD research was focused on identifying the proteolytic
activities that cleave the amyloidogenic A(31 -42 fragment. At the same time, more
information about A(31 -42 itselfwas becoming available, shedding light on a protein

lifecycle that is constantly growing in complexity. Investigation has revealed the
existence ofdistinct pools of extracellular or secreted A(31 -42 and intracellular A|31-

42, which are either destined for secretion or intracellular localization (Koo and

Squazzo, 1994; Cook et ah, 1997; Wild-Bode et ah, 1997; Greenfield et ah, 1999).
Three pathways of A|3 production have been discovered, of which there are differing

pathways for secreted A(31 -42 (traversing the trans-golgi network) and for
intracellular A(31 -42 (which is processed at the endoplasmic reticulum). In addition,
a minor amount of secreted A[3 is processed after reinternalization at the plasma
membrane by endo- and lysosomes. Clearly, with these many varied locations, the

amyloidogenic processing activity is present in several subcellular compartments.

Genetic evaluation of a new group ofFAD patients in 1995 led to the elucidation of
an enzymatic complex protein involved in both amyloidogenic and non-

amyloidogenic APP processing. A gene was cloned from Chromosome 14 that
contained missense mutations that produced an autosomal dominant for ofAD that

presented well before sporadic AD onset (Sherrington et ah, 1995). This gene, called
Presenilin 1 (PS1) is 60kB in length with 13 exons, and is the first component
identified of the g-secretase enzyme, an activity that acts downstream of a- and (3-

secretase, which were as yet unidentified in the mid-1990s.
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Figure 1.4 Amyloidogenic and non-amyloidogenic processing of APP.
Upper panel: The amyloidogenic APP processing pathway. APP is
cleaved by p-secretase at +1 to produce the psAPP fragment that is
trafficked out of the cell, and the C-terminal p-fragment called p-CTF or
C99. The amyloid peptide is produced by subsequent y-secretase of
C99, resulting in Api -40/42 and the amyloid intracellular domain (AICD)
which is translocated to the nucleus. Api-42 is considered the
amyloidogenic peptide, as it is capable of toxic aggregation. Lower
panel: The non-amyloidogenic APP processing pathway. APP is
cleaved by a-secretase at +17 to produce the asAPP secreted fragment
and a-CTF or C83. Following C83 cleavage by y-secretase, the AICD
fragment and the Api 7-40/42 fragment. Endoproteolysis by a- and p-
secretase is a competitive enzyme process, in which the vast majority
of APP is processed by the a-secretase pathway.
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1.1.5 y-Secretase

The cleavage sites of the y-secretase enzyme are unusual in that APP cleavage is an

intramembrane event, and cleavage by y-secretase can result in a number of lengths
of amyloid peptide fragments (Gu et al., 2001). These findings clarify the basis of
the hotspots of gene mutations in APP, PS1 and PS2, a second novel gene similar to
PS1 found on Chromosome 1 whose missense mutations also lead to FAD.

Mutations in these regions give rise to increased production of A(31-42, as these

mutations cause preferential cleavage ofy-secretase at the site that generates A(31 -42

(Citron et al., 1997). Further study led to the discovery that y-secretase has other

substrates, including the Notch receptor, which is critical for neural development as
well as adult differentiation of cells (De Strooper et al., 1999). Development of

drugs to reduce A(31 -42 production via inhibition of y-secretase now require a

complex degree of specificity, as the first y-secretase inhibitory compounds also
reduced production of thymocytes (Fladland et al., 2001). Research involving y-

secretase continues, in hopes of identifying specific components that would

proteolyze membrane-bound amyloid fragments while sparing the Notch receptor.

1.1.6 a-Secretase

The processing of the non-amyloidogenic species is initiated by an enzyme called
the a-secretase, which cleaves APP at the cell surface between residues 16 and 17 of

the amyloid peptide (Anderson et al., 1992). The resulting truncated cleavage

products are aAPP, a soluble ectodomain fragment that is secreted from the cell,

and the membrane-bound C-terminal fragment C83, a substrate for y-secretase

(Nunan and Small, 2000). Following intramembrane cleavage by y-secretase, C83 is
further processed to the p3 peptide (A(317-40 or A|317-42) and the Amyloid
Intracellular Domain AICD or CT57-59. This enzymatic activity is called the a-

secretase, and since the discovery of its actions on APP, several different a-

secretases have been identified from previously known gene products (Asai et al.,

2003). These a-secretases include a number ofA Disintegrin And Metalloproteinase
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(ADAM) family members, including ADAM9, ADAM 10, and ADAM 17, also
called Tumor Necrosis Factor Converting Enzyme or TACE. Experimental evidence
shows that several different ADAM enzymes are required to produce a-secretase

activity on APP, and that a number of other proteins like TGF-a and L-Selectin
Adhesion Molecule are also a-secretase substrates (Condon et ah, 2001). Elowever,

a-secretase cleavage of A|3 is the major APP processing enzyme of non-neuronal

cells, with little of this activity in neurons (Saitoh and Mook-Jung, 1999).

1.1.7 p-Secretase

While work related to a-secretase has been successful and contributes to the

understanding of the APP lifecycle, most research efforts are committed to

elucidating processes that clearly yield the amyloidogenic fragment of A|3 generated

by |3-site cleavage. The (3-secretase activity processes APP mostly in the lumen of
the ER, cutting at the +1 Asp to liberate a soluble |3APP ectodomain and a

membrane-bound C99 fragment (Siman et al., 1993; Hussain et al., 2003). After

cleavage by the y-secretase complex, C99 proteolysis largely yields the amyloid

peptides A|31-40 and A|31-42 as well as the AICD fragment. Alternately, (3-secretase

cleavage occurs in the TGN, preferentially cleaving at Glu 11 of the amyloid

sequence, resulting in a C89 membrane-bound fragment that is further truncated to

A|311-40 and A|311-42 by y-secretase (Eluse et al., 2002; Liu et al., 2002).

Scientific pursuit of the |3-secretase entity was intense in the late 1990s, aided by
several clues gleaned from prior research (Vassar and Citron, 2000). Isolated A|31-

42 from plaques suggests that the site for |3-cleavage is the Asp +1 amino acid of the

A|3 peptide. It is certain from experiments that established the subcellular

localization of A|31-42 that the (3-secretase activity exists in the ER and TGN. (3-

secretase is also localized to trafficking organelles with an acidic environment, as

treatments that altered pH in cells also disrupt (3-site cleavage of APP. Other

experiments suggest that |3-secretase activity is expressed across many tissues of the

body, with higher levels in neurons in regions of the brain like the neocortex,
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hippocampus and entorhinal cortex (ERC) where amyloid deposits were prominent

(Haass et al., 1992; Haass et ah, 1993; Roher et al., 1993; Seubert et ah, 1993; Koo

and Squazzo, 1994; Citron et ah, 1995; Knops et ah, 1995; Zhao et ah, 1996).

Finally, the (3-secretase activity had to be either a membrane-bound protease itself

or one closely associated with a membrane protein, as APP lacking any

transmembrane domain is not a substrate for (3-site cleavage in cells (Citron et ah,

1995). Components of the a- and y-secretase complexes had been identified in 1994

and 1995, but the (3-secretase remained tantalizingly elusive throughout the 1990s.

In the meantime, the rapid expansion of knowledge about the biology of AD
allowed for a number of targets for disease-modifying therapeutic intervention to be

proposed and investigated, to varying degrees. At the same time however, the AD
research field was conducted was being fundamentally changed by the introduction
of several transgenic animal models of AD. These useful AD animal models
allowed for biochemical, histological as well as cognitive analysis of in vivo

manipulation of APP, its processing enzymes, and metabolites and provided a basis
for developing and testing innovative new AD therapeutics. Prior to describing these

transgenic models, it is critical to lay the groundwork for the various behavioral
tasks used to test the cognitive deficits in the AD transgenic models, and to discuss
the relationship between these tasks and the neuropsychological tests used to

diagnose and assess AD.

1.2 Behavioral tasks used to assess animal models of AD and their

relevance to human cognitive tests

Alzheimer's Disease (AD) is associated with a broad spectrum of cognitive

impairments that have a negative impact of the daily living functions of patients and
severe practical repercussions for their families and other caregivers. The most

commonly described cognitive deficits are those related to episodic and declarative

memory, abstract thinking, as well as attentional impairments (Devanand et al.,

1992; Perry and Hodges, 1996; Devanand, 1997; Petersen, 1998). Other clinical
features that complicate the dementia profile ofAD patients may include aggression,
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depression, and anxiety disorders (Cooper et al., 1990).

Ideally, animal models of AD should display behavioral deficiencies that have a

relationship to the clinical disease. However, many of the neuropsychological tests
like the CDR, ADAS-COG, and MMSE used to diagnose and assess the severity of
AD in a patient rely on the use of verbal abilities to delineate a patient's cognitive
status (Folstein et al., 1975; Rosen et al., 1984; Price et al., 1991; Mega, 2001). In

addition, even the non-verbal testing paradigms between the clinical and laboratory

settings are also highly divergent. This represents a major challenge for

experimenters involved in animal modeling ofAD, as many tasks must be validated
with respect to the region of the brain involved or a general behavioral concept and
not a primarily clinical similarity. The tasks discussed in this section are those that
are commonly employed to assess the cognitive status of transgenic mouse models
of AD, and their relationships, if any, to AD deficits in neuropsychological
examinations will also be presented.

A rough division can be drawn for the tasks used to assess rodent memory function,
which are either aversive or appetitive in reinforcement. Aversive tasks involve

exposure to a noxious stimulus or set of stimuli, with reinforcement being applied
via bodily escape from the effects of the stimuli. Performance in appetitive tasks
does not typically involve escape, but rather draws on reinforcement based on

extinguishing of an internally motivation (Golob and Taube, 2002). While many

animal behavioral tasks are aversively reinforced, more clinical tests for AD are

appetitive. Indeed, in some cases, tasks that are aversively reinforced in animals
have clinical test correlates that are appetitive (Table 1.1):
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Animal Task Stimulus Human Task Motivation

Verbal or
Instrumental

Component
Morris water maze Water, swimming VR water maze Internal Yes

Fear Conditioning Electric Shock Fear Conditioning Electric Shock No

Eyeblink Conditioning Corneally-directed air Eyeblink Conditioning Corneally-directed air No

Startle Inhibition Loud Noise Double-Click Task Loud Noise No

T/Y-Maze Exploration/Novelty* Eye Movement Exploration/Novelty No

Social Recognition Social/Internal Facial Recognition Social/Internal Yes

Object Recognition Exploration/Novelty Object Recognition Exploration/Novelty Yes

Table 1.1 Cognitive tasks used in assessing AD models and their
human neuropsychological task correlates, with externally motivated
or aversive animal tasks in upper table, and internally-motivated animal
tasks in the lower table. When any human task has an inherent element
of language, reading, device operation

1.2.1 Spatial memory tasks

There have been several prominent theories of memory processes proposed in the

past few decades, like the Cognitive Mapping Theory, Working Memory Theory,
Declarative Memory, Configural Association Theory, Relational Memory Theory,
but all of them have a significant functional component based in the hippocampal
formation ((Olton et al., 1978; Walker and Olton, 1979a, b; Squire, 1986;
Sutherland et ah, 1989; Rudy and Sutherland, 1995; Cohen et ah, 1997). In AD, the

hippocampus is one of the earliest affected and most damaged areas of the brain,

leading to subsequent memory impairment (O'Keefe, 1976; Cooper et ah, 1990;
Hubbard et ah, 1990; Adelstein et ah, 1992; Convit et ah, 1993; Killiany et ah,

1993; Bouras et ah, 1994). Anecdotally AD patients are prone to wandering; this has
a defined clinical basis as AD patients are impaired in spatial working memory due
to the particular affliction of the hippocampus (Cooper et ah, 1990; Adelstein et ah,

1992) The hippocampus is home to the "place cells" that are responsible for the

encoding of map information that is accessed by working memory when spatial
tasks must be solved (O'Keefe, 1976; Wiener et ah, 1989; Wilson and McNaughton,

1994).
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Morris water maze

Developed in the early 1980s by Richard Morris, the water maze has become one of the
most commonly used behavioral paradigms to assess memory in transgenic AD models

(Morris, 1984). Drawing on rodents' innate ability to swim and the evolutionary drive
to escape from swimming by finding land, the water maze task assesses the spatial

navigation from memory of rodents who must locate a submerged platform using
various cues and strategies. The water maze apparatus is simple, consisting typically of
a circular pool filled with water tinted with an occludant, a visible or non-visible

landing platform submerged beneath the surface of the water, and a video tracking

system to monitor and analyse the movements of the animal (Figure 1.5, and 2.5-2.9).
The water maze paradigm is highly modifiable, as visual cues can be employed both
within and without the perimeter of the pool. Experimental designs that employ single

platform locations can provide information about spatial reference memory, memory

retention when the platform is removed, and also perseveration when the platform
location is moved. Alternatively, experimental designs that feature a series of platform
locations and require learning locations to a specified criterion can provide greater

information about the status ofworking spatial memory and learning capacities.

Aside from the benefits of being able to access various types of spatial memory with

simple study design changes, the ability to perform in the water maze has been
examined to a high degree in lesion and pharmacological studies. Competence for

performance in the water maze is dependent on the hippocampus, although other brain

regions compensate for injury or drug-induced hippocampal (Schenk and Morris, 1985;
Morris et al., 1986; Morris et al., 1990). In later sections, several transgenic models are

presented that replicate pathological features of hippocampal deposition of amyloid with
concomitant loss of hippocampally-mediated spatial memory function in the water maze

(Hsiao et al., 1996; Sturchler-Pierrat et al., 1997; Chen et al., 2000; Chishti et al., 2001).

In human clinical assessments, a virtual reality version of the water maze has been

reported (Astur et al., 2002). Patients with hippocampal resections are severely impaired
in the ability to use extramaze cues to locate the virtual platform, compared to age-
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matched control patients with either no brain surgery or surgery on regions other than
the hippocampus. While there are major differences between the animal version and the
human virtual versions of the water maze, as the human task is appetitive and requires
instrumental learning and coordination to perform, it is clear that across species the
reliance on the hippocampus is preserved (Bunsey and Eichenbaum, 1996).
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Figure 1.5 The Morris water maze. Upper panel: Typical water maze
laboratory, in which a water-filled pool with a submerged landing platform
is surrounded by external cues. Automated water mazes feature trial
recording by camera, with data collected by computer. Lower left panel:
Sample water maze swim paths (in red) of animals with spatial memory
impairments (transgenic), and unimpaired animals (non-transgenic). Note
the length and random nature of an impaired animal's swim path versus
the shorter, more direct swim path of an unimpaired animal. Lower right
panel: Sample graph of water maze swim trial latencies. Spatial learning
and memory in non-transgenic animals is represented by rapid reduction
of swim trial latencies overtime, while transgenic animals have a markedly
slower reduction in swim trial latency.
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T and Y-Mazes

In the early 1900s dry land rodent mazes were commonly used to examine the

rudimentary psychology of learning, and were often highly complex structures (Olton,

1979). Mazes were large platforms with walled pathways leading to exits and/or food
rewards. In the modern study of learning and memory mazes have become simpler, with

only a few possible passageways. The most common of these are the T and Y-mazes,
which have a starting arm (the stem of the T or Y), 2 choice arms, which may have

connecting passages back to the start arm (Blodgett et al., 1949). Rodents are measured
for their ability to explore one arm and either naturally explore the next arm (alternation)
or to explore the "correct" arm based on memory of the presence of food rewards.

These mazes can be used to study spatial working memory, as error rates of for entering
a wrong arm to collect a food reward can be measured. Alternatively these mazes can be
used unbaited as a paradigm to assess spatial memory as a function of spontaneous

explorative entries into each arm (alternations) and the repeated visitation of any arms

(perseveration) (Tester, 1968). The clinical relationship to a human deficit with T- or Y-
mazes is more tenuous than with the water maze, as the closest correlates are visual

exploration tests. Patients are shown a series of images while their eye movements are

tracked electronically; reduced novelty-seeking and overall visual exploration are

evident in AD patients (Daffner et al., 1992; Daffner et al., 1994; Daffner et al., 1999).
While animal maze tasks rely on spatial working memory as well as exploration, the
human task depends more heavily on visual attention and may be influenced by amyloid

pathology in the visual cortex, in addition to the hippocampus.
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Figure 1.6 T-, Y- and Modified T-mazes. Rodents are placed in a
passageway junction or an arm terminus and allowed to freely explore.
Alternations between arms and number of arms entered are motivated by a
rodent's instinct to explore and working spatial memory.

Barnes circular holeboard maze

It is useful to describe another spatial memory task that has no direct clinical correlate
that has nonetheless been used to assess transgenic mouse models of AD. Developed in
the 1970s by Carol Barnes, the Barnes maze is an elevated circular platform with a ring
of small holes near the perimeter of the circle (Figure 1.7) (Barnes, 1979; Pompl et al.,

1999). These smaller holes are fitted with shallow cups or an escape tubnnel. Rodents in
the Barnes maze are stimulated to seek to a tunnelhole via exposure to loud noise or

bright light. Over several explorative trials animals will learn to escape efficiently to the

escape hole, using external spatial cues.

Figure 1.7 Barnes maze apparatus. Left panel: Circular holeboard with one
escape tunnelhole, with adjacent noxious noise or light devices. Right
panel: Example escape paths of spatially impaired and unimpaired
animals.

Transgenic Non-Transgenic
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1.2.2 Recognition tasks

Related to the spatial memory tasks, recognition tasks have aspects of spatial learning
removed from their design by balancing the presentation of objects and images in space.

In both human and animal tasks recognition memory tests are appetitive without a

noxious component to the sampling or match-to-sample phases. While there is greater

overlap between AD patients and animals in the anatomical regions of the brain
involved in processing recognition memory, there is still an element of difference due to
deviations between species due to the greater use of olfaction in guiding exploration in
rodents.

Object recognition

In the spontaneous object recognition tasks, rodents are placed in an arena in which
there are one or more objects (Ennaceur and Delacour, 1988; Rothblat and Kromer,

1991). While exploring the arena the experimental animal will also examine these

objects and the object exploration time is recorded (sampling) (Figure 1.8). After a

delay, the rodent is returned to the arena, in which a facsimile of the original object plus
a novel object has been placed. The amount of time the animal spends inspecting the
novel object in comparison to the familiar object is recorded and expressed as

recognition index. In the human task, patient subjects may either be given physical

objects to examine or a series of visual images (Flicker et al., 1987; Purdy et al., 2002).
This task is highly correlated between human and animals as it utilizes the same

anatomical processing regions (inasmuch as rodent and human processes are alike) and
shares similarities in study design parameters.

25



Arena Habituation Sample Exploration Novel Exploration

Figure 1.8 Object recognition task

An identical 3rd object
is placed in the arena
with a novel object,
A preference ratio is
calculated from time

spent exploring new
object v. familiar one.

Social recognition

Another recognition task that accesses a very complex type of memory is social

recognition (Guan and Dluzen, 1994; Kogan et al., 2000). This task exploits the social
hierarchies developed when rodents are exposed to each other or housed together.
Animals are housed together or alternatively briefly exposed to each other to allow

familiarity to be established. After a separation of variable time the animals are brought
back together, with social exploration time (directed sniffing, visual examination)
recorded. In addition any aggressive behavior is noted. In some versions of this task
rodents are also brought into contact with stranger animals with which they have had no

prior contact. From this interaction an index of social examination can be made from the

stranger versus familiar exploration times. As complex a behavior as social recognition
in rodents is, it relies on several anatomical structures within the brain, resulting in lesser

dependence on the hippocampus for intact social memory function (Bannerman et al.,
2001; Ferguson et al., 2001; Shang and Dluzen, 2001; Petrulis and Eichenbaum, 2003).
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Social recognition tests in humans diagnosed with AD are not typically done by

assessing recognition of long-time familiar persons, although the inability to recognize

family and friends is often a feature of moderate to severe AD. Social recognition is

typically tested by memory for a series of face images (Wilson et al., 1982; Flicker et al.,

1990). As faces of other people have significant social implications, the ability to

recognize faces is distinct from simple visual recognition, and relies on function of the
fusiform gyrus (Sergent et al., 1992; Kanwisher et al., 1997). In addition, AD patients
have a deficit in the ability to correctly name facial emotion, a complication that is

relatively unexplored in animal models (Lavenu et al., 1999; Hargrave et al., 2002).
While these tasks across species both rely on complex social memory processing, the
differences in test parameters, functional anatomic regions, and the unknown

relationship between human and rodent emotional processing also make this task
difficult to evaluate for direct relevance between the laboratory and clinical settings.

1.2.3 Conditioned memory tasks

Conditioned learning and memory involves the association of a novel stimulus

(unconditioned stimulus) with no inherent initial response value to a stimulus that has a

characteristic response (conditioned stimulus and response). Over several pairings of the
unconditioned and conditioned stimulus, the presentation of the conditioned stimulus
alone will elicit the unconditioned response. This concept was made famous by the

experiments of Pavlov, who paired a ringing bell to the presentation of food to canine
test subjects, which respond to food by salivation. After several of these pairings

contingent in time, the dogs would salivate to the ringing of the bell alone (Pavlov,

1951).

While conditioned learning paradigms have been developed for numerous physiological
reflexes in animals and has clinical correlations to conditioned learning deficits in AD

patients, these tasks are not as commonly used as spatial learning and memory tests

described in the previous section (Solomon et al., 1991; Solomon et al., 1995). Indeed,
while tasks like the water maze are generally viewed as "hippocampal" and often
focuses on a few critical hippocampal synaptic pathways, conditioned learning involves
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several regions of the brain and with less well-defined cortical connections. The relative
lack of transgenic animal models of AD testing in conditioned learning and memory

tasks does a disservice to the field as these tests in animals are highly similar to clinical
tests performed on AD patients and others with memory deficits (Woodruff-Pak et al.,

1990; Arendash and King, 2002; Corcoran et al., 2002; Gerlai et al., 2002; Hamann et

al., 2002; Weiss et al., 2002; McCool et al., 2003; Hejl et al., 2004).

Eyeblink conditioning

The most documented type of conditioned learning deficits are in eyeblink conditioning
(Woodruff-Pak et al., 1990; Solomon et al., 1991; Solomon et al., 1995). In this simple
associative memory paradigm, auditory tones are presented prior to administration of a

puff of air towards the cornea. In successive pairings of the tone and air stimuli, the

latency between the presentation of the tone and an eyeblink response is reduced. While
this eyeblink conditioning task is classically performed in rabbits, it has been

successfully been validated in rats and mice and can be performed in some cases in free-

moving animals (Schneiderman et al., 1962; Schmajuk and Christiansen, 1990; Weiss
and Thompson, 1991; Chen et al., 1995). This paradigm is experimentally very similar
in both animal and human studies (especially in physically unrestrained animals), and

although the neural substrate for this activity involves the cerebellum and brainstem in
addition to the hippocampus, these are also areas that are affected by amyloid burdens in
AD (Pro et al., 1980; Steinmetz et al., 1992; Anderson and Steinmetz, 1994; Gabriel et

al., 1996; Miller and Steinmetz, 1997; Steinmetz, 2000).

Fear conditioning

Emotional memory responses, as quantified by fear conditioning, have highly complex
neural circuitry. In animal behavioral models there are typically two types of fear

conditioning most commonly used, contextual fear conditioning, which relies on spatial
environment as the unconditioned stimuli, and cued fear conditioning, in which the
unconditioned stimulus are auditory tones (Brown et al., 1951; Kurtz and Siegel, 1966;
Dexter and Merrill, 1969). While the contextual version of the fear conditioning task has
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greater relationship to visuospatial memory tasks based in the hippocampus, cued fear

conditioning involves a high degree of processing in the auditory cortex prior to

hippocampal activation, and greater dependence on the amygdaloid nuclei (Phillips and

LeDoux, 1992; LaBarand LeDoux, 1996).

While there is a high degree of variation in fear conditioning paradigms for measuring
emotional memory in rodents, a typical scheme involves using mild electrical foot shock
as the unconditioned stimulus and measurement of subsequent fearful crouching or

freezing body positions (Blanchard and Blanchard, 1969; Davis and Astrachan, 1978).
In a cued fear experiment, a rodent is placed in a box with an electrified grid floor and
allowed to acclimate and explore for a period of time on the order of a few minutes, after
which the animals are presented with an auditory tone followed by a footshock. After at
least two cue-shock pairings, the animal is returned to its homecage. Training for
contextual fear conditioning is often conducted in concert with cued fear training. After
a variable time delay, the rodent is placed in the familiar shock chamber and time spent

in a freezing posture is recorded. After a variable delay in which the animal is in its

homecage, cued memory testing proceeds with the rodent being placed in a novel
context. The novel context is typically a shockbox in which the context is changed, often

by addition of chamber dividers and a flat material to cover the electric grid floor.

Freezing time in this novel context is also measured to provide a contextual fear memory
ratio. After a period of time in the novel context, the familiar auditory cued is presented,
with freezing times recorded (Figure 1.9).

As complex as the neural basis for memory is, the animal task has a clinical correlate in
human tasks. AD patients have been found to have fear conditioning deficits when given
visual stimuli paired with a loud aversive auditory stimulus, and fear being measured via

palmar galvanic skin response. This task has a relationship to the both elements of the
cued and contextual fear conditioning task in animals, as both species of subjects must

use visuospatial processing to examine the unconditioned stimuli, although in the case of
the human task the auditory tone is used as the unconditioned stimulus, not the
conditioned stimulus. While the ethics of using a tasks more akin to the animal test in
demented patients is highly questionable and precludes the development ofmore related
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human conditioned fear tests, there is a neural basis for emotional memory deficits in
AD, as there is significant neurodegeneration in the human amygdala that makes the

comparison of tests valuable (Haroutunian et al., 1998; Haroutunian et al., 1999).
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Figure 1.9 Cued and contextual fear conditioning. During training, the
rodent is placed in a box with an electrified grid floor and allowed to
explore freely for a short period. A cue and shock follows, in which a loud
auditory tone precedes a noxious footshock; cue and shock blocks are
separated by a rest period. After a delay of hours to days, spatial
contextual memory is assessed by placing the rodent in the same box in
which it experienced the footshock (familiar context). Fear-based
recognition of the familiar environment in which the aversive stimuli was
experienced is quantified by the time in which the animal crouches
unmoving in a "fearful" posture. Cued memory is assessed by placing the
animal in a novel environment and quantifying fearful responses to the
sounding of the auditory cue that preceded a footshock previously.

Startle inhibition

The ability to habituate in startle response to a loud, unexpected noise is central to startle
inhibition (Groves et al., 1974). In this paradigm a series of acoustic tones are presented
at variable frequencies and durations before a very loud tone is presented. If the

magnitude of the startle response is less than that recorded after the loud tonal pulse is

presented alone, prepulse startle inhibition (PPI) has occurred. PPI is a task that involves
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sensory gating and is not specific to memory function, but also attention and
sensorimotor processing. Although deficits in PP1 have been described in transgenic
mouse models of AD, patients with mild AD have not been found to have this deficit

(Kurtz and Siegel, 1966; Groves et al., 1974; McCool et al., 2003; Hejl et al., 2004). AD

patients have been found to have sensory gating deficits in habituation to evoked

encephalogram (EEG) P50 responses to loud auditory stimuli (Jessen et al., 2001), but
this physiological finding has no current behavioral representation. Although the PP1
task has been used to describe other cognitive deficits in transgenic mouse models of

AD, the correlation to the human disease is unclear due to differences in the interspecies
task and the lack of PP1 impairment at least in mild AD.

1.2.4 Anxiety tasks

AD patients have been described with a constellation of psychological afflictions,

including anxiety (Mega et al., 1996; Devanand, 1997; Teri et al., 1999; Ferretti et al.,

2001; McCurry et al., 2004). Although many transgenic animal models ofAD have been

reported to show behaviors that relate to anxiety, these cognitive impairments are not

given the importance that memory deficits receive as crucial behavioral elements for an
in vivo AD model (Arendash et al., 2001; Lalonde et al., 2002). Elowever, as these tasks
are frequently used in assessing the cognitive dysfunction of transgenic models for AD,

they will be described here.

Elevated plus maze

This exploration task has been successfully utilized for nearly 40 years as a screen for

anxiety behaviors in rodents (Halliday, 1967; Pellow et al., 1985). The maze consists of
4 maze arms that intersect at right angles to form a plus sign on an elevated platform. On
one parallel, two arms are enclosed, with a dark wall on both sides of the arm

passageway (Figure 1.10). The area of arm intersection as well as the remaining two

arms is open, without walls. A normal rodent in its exploration of an elevated plus maze

will spend some time in the open arms, including examination of the edges of the open

arms, whereas an animal considered "anxious" will spend little time in these open areas.

Most elevated plus mazes used in the present are video-based with animal movement
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time in open and closed arms analysed by a tracking system, allowing for relatively

objective quantification of a highly subjective behavior.

Figure 1.10 Elevated plus maze. Rodents placed in the center of the plus
maze arms will have a natural tendency to explore all arms, while animals
with anxiety-like phenotypes will spend less time in the exposed open
arms of the maze.

Open field activity

Another rodent behavioral task that evaluates spontaneous exploration as a measure of

anxiety is the open field activity task. Rodents are placed on a closed arena that is often

brightly lit and allowed to freely explore. Rodent behavior is tracked in a quantitative
manner, and with video tacking software can include such measures as total exploration

path lengths, number of vertical rearings, time spent near the center and grooming

(Delbarre et al., 1970; Britton and Britton, 1981). Anxious rodents would presumably
be indisposed to movement near the center of the arena and a reduced number of

exploratory movements or autoattentive behaviors compared to a non-anxious animal.
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1.2.5 Locomotor activity tasks

Motoric abnormalities are part of the clinical spectrum of symptoms seen in AD

patients, often described as motor agitation (Devanand et al., 1992; Mega et al., 1996;

Devanand, 1997). The anatomical origins of this excessive and undirected motor

activity is unresolved, possibly due to motor cortex disinhibition impairments or

hyperexcitability (Alagona et al., 2001; Liepert et al., 2001; Pennisi et al., 2002). Motor

hyperactivity has been noted in numerous transgenic mouse models of AD, mirroring
another important non-memory cognitive impairment in AD (Dodart et al., 1999;
Arendash et al., 2001; Gerlai et al., 2002; Lalonde et al., 2002; Lalonde et al., 2003).

Spontaneous locomotor activity monitoring

Highly sophisticated automated computer-based systems are used to measure locomotor

activity in rodents, capable of capturing information on increasingly complex behaviors

(Sanberg et al., 1985). Activity monitoring chambers are often framed by infrared beam
emitter and receiver arrays that create a grid of beams that collect quantitative and

qualitative information for each beam break. Detailed information can be collected on

dozens of parameters as spatial maps can also be created within the confines of the

activity chambers to collect even more specialized information about spatially-
constrained behaviors, e.g. rearing at the chamber periphery versus near the center of the
chamber (Dow-Edwards, 1998). Depending on the protocol designs employed, activity
readouts can detect motor impairments, anxiety-like behaviors, seizures, and perhaps
even memory perturbations with lack of habituation over several trials.

Rotorod motor coordination test

Originally developed to assess cardiovascular capacity and used heavily by

pharmaceutical companies, the rotorod can be adapted to measure motor coordination
and learning (Watzman et al., 1964). The rotorod apparatus consists of a motorized rod

suspended above an electrified grid (Figure 2.4). The rod can be programmed to turn at

constant or accelerating speeds, and set to run for specified time intervals. Rodents
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placed on the rod must learn how to ambulate on the rod as well as to keep pace with

any increases in rotational speed. The electrified grid below the rod serves to motivate
rodents to perform the task, and latency to fall is the major measure in rotorod testing.
Rotorod testing for motor coordination usually involves a period of training with a few
trials per day at slow and/or constant speeds, followed by a testing day of rapidly

increasing speeds (Forster and Lai, 1999). In protocols where motor learning is assessed
the protocols are similar to those intended to test motor coordination, but tend to use

more trials over more days to establish rates of improvement over time between animals
with motor impairment and motor competency (McFadyen et al., 2003).

There are a number of behavioral tasks that are used to assess cognitive and
sensorimotor function in models of AD, and their relationships to clinical tests are

variable. It was important to understand the correlations between human and transgenic
animal tasks and the deficits they describe before moving to an examination of the

specific transgenic mouse lines themselves, as this will help us to evaluate their
individual strengths as disease models.

1.3 Transgenic models of Alzheimer's Disease

During this very productive time for AD research in the 1980s and 1990s,
researchers were limited by availability of experimental tissues. Banked human AD
brain tissues were the primary source of research material, but are logistically
difficult to obtain for many investigators and are also subject to regional variability
in FAD patterns and/or other epidemiological factors (Jendroska et al., 1993). Aged
animals provided another source of tissue for AD research, but maintaining large
numbers of rodents to ages at which there is sufficient brain amyloid is costly and
even aged animals did not reproduce many of the important pathological features of
the disease. Developments in the field of transgenic technology made it possible to

develop living cells, organisms, and even animals that could express gene products
from other species in quantities that could be manipulated in time, spatial location
and level of expression (Brinster et al., 1981; Bernstein and Breitman, 1989; Sass,

1990; Hennighausen et al., 1995; Albanese et al., 2002). Using these transgenic

implantation techniques, the first successful transgenic animal models of plaque-
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related neurodegeneration were created, by introducing high levels ofmutant human
APP genes into mice. Although no single animal model devised can replicate all the

features of a complex human disease, many transgenic mice that have modifications
of genes implicated in AD are today often referred to as "AD models."

1.3.1 PDAPP

The first successful transgenic AD mouse model was reported in early 1995 by
researchers at Athena Neurosciences (Games et al., 1995). Taking the human
Indiana mutation V717F of APP, Games and colleagues inserted the gene sequence

into a |3hAPP695 minigene under the control of the human Platelet-Derived Growth
Factor promoter (PDGF) on a C57B16 background outbred to DBA2J mice (Figure

1.11). Detailed histological analysis showed that there is widespread AD-like

pathology in the brains of these PDAPP mice, in the cerebral cortex and

hippocampus (Masliah et al., 1996; Johnson-Wood et al., 1997; Chen et al., 1998;
Gonzalez-Lima et al., 2001). At 6-9 months of age, PDAPP mouse brains began to

exhibit amyloid accumulations like AD neuronal plaques, increasing in density over
time until the pattern of deposition tightly resemble that of human AD. In addition
to neuronal plaques, aged PDAPP mouse brains have astrocytosis and gliosis in the

region of dense core plaques, hyperphosphorylated tau and have widespread

synaptic loss. At earlier ages prior to visible amyloid accumulation PDAPP brains
have marked hippocampal atrophy, and perturbations in synaptic transmission, with
increased paired-pulse facilitation and inability to maintain long-term potentiation

(LTP) (Larson et al., 1999; Dodart et al., 2000). Later studies characterized the
behavioral impairments present in PDAPP mice, some of which are correlated to

accumulation of plaques, like in spatial paradigms such as radial arm mazes and
Morris Water Maze tasks, and other impairments, which are more plaque-

independent, e.g. object recognition tasks (Morris, 1984; Dodart et al., 1999; Chen
et al., 2000). PDAPP mice lack paired helical filaments and neurofibrillary tangles,
but in other respects closely mirror the range of cognitive and cellular AD

pathology, and this useful disease model did much to underscore the role of amyloid
in the etiology ofAD (Masliah and Rockenstein, 2000; Masliah et al., 2001a). Many
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of the AD-like features of PDAPP mice are summarized in Figure 1.11.
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Figure 1.11 AD-like Characteristics of PDAPP mice. A,B: ELISA immunoassays
reveal that with age, there is an exponential increase in total brain Ap (which
includes soluble and insoluble peptides) in both the cortex and the hippocampus.
C: In parallel to the increases in total brain Ap content, PDAPP brains have an
increase in amyloid plaque-like deposition of Ap. At 3mo there is no deposition,
while by 13mo there is widespread deposition that becomes even more
pronounced by 18mo. D: Serial spatial memory phenotypes of PDAPP mice to
non-transgenic controls over age. Upper panel compares measures of learning
capacity over age between genotypes, bottom panel displays similar comparison
for memory acquisition rates (adapted from Chen et al.; 2000 in Nature).
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1.3.2 Tg2576

Later in 1996 a multicenter research effort led by Karen Hsiao published their works
in developing the first transgenic mouse of AD that overexpressed the human
Swedish mutation (K670N, M671L) of the APP gene (Hsiao et al., 1996). By

inserting this mutant hAPP into the open reading frame of a hamster prion protein

(PrP) cosmid vector and injecting it into mouse blastocysts and implanted in

psuedopregnant surrogate C57B16 dams, transgenic mice were developed and bred
to uniform heterozygosity with SJL mice. The ensuing Tg(HuAPP695.K670N-

M671L)2576 or Tg2576 mice produce about hAPP 5.5x the level of endogenous
mouse APP. Immunochemical analyses show that these mice produce A|31-40 at 5x
and A|31-42 at 14x the endogenous mouse levels, and that mice with elevated A|3
had numerous dense core and diffuse amyloid plaques. These plaques are mostly
immunoreactive for Thioflavin-S (dense core plaques with (3-sheet amyloid

formations as opposed to general fibrillar amyloid (3-sheet binding by Congo Red),
and are found throughout the frontal and temporal cortices, hippocampus, entorhinal

cortex, the subiculum and cerebellum. Astrocytes and glia ringed these plaques, and

dystrophic neurites are evident around denser amyloid cores. These mice were

initially reported to have cognitive deficits in spatial and reference memory with

impairments at 10 months age, but not at 3 months of age, leaving the exact

temporal details of this deficit unresolved. While other behavioral deficits in Tg2576
mice have since been validated, these results suggest that the hippocampal deficits
are connected to the appearance of plaque formations over time.

The Tg2576 and PDAPP mouse models are both of great utility to researchers
focused on AD, although there are important distinctions between the two models.
While the PDAPP mice over time do not display frank neuronal loss but have

significant synaptic loss, Tg2576 mice have no pattern of cell loss but have higher

synaptic density compared to similarly aged non-transgenic controls(Chen et al.,
1998; King and Arendash, 2002). Neither model has shown the presence ofNFTs or

paired helical assemblies, although PDAPP mice have linear hyper-phosphorylated
tau filaments. Tg2576 mouse brains also stain positively for proteins involved in
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intracellular protein degradation, ubiquitin and a-synuclein, making it more like the

Lewy-Body Variant type of AD (Yang et al., 2000). Other researchers developed
other transgenic lines with mutated human APP, with similarly varying results in the

TgCRND, J20 and APP23 mouse models (Hsia et al., 1999; Chishti et al., 2001;

Kelly et al., 2003).

1.3.3 APP23

Researchers at Novartis published their works in 1997 with the same Swedish
mutation as the Tg2576 mice, but under the control of different promoter, murine

Thy-1, with pronuclear injection to B6D2F1 mice (Sturchler-Pierrat et al., 1997).
While the gross regions of expression are similar to the prior models in the
neocortex and hippocampus, the resulting line of mice that expressed high levels of

A(31 -42 (APP23), and seem to model a fundamentally different kind of AD than
either of the two original models. APP23s display comparatively massive glial

response, more diffuse than dense core plaques, have higher levels of A|3 in the

cerebrospinal fluid, and have plaques that are much more soluble in nature than
those of typical AD (Bornemann et al., 2001; Kuo et al., 2001). APP23 mice have
similar levels of memory and learning impairments compared to other mutant
hAPP-over expressing mice in passive-avoidance and spatial maze paradigms (Kelly
et al., 2003). Most notably, these APP23 mice have several focal deposits of

amyloid in the endothelial lining of brain blood vessels, a hallmark of Central

Amyloid Angiopathy (CAA), which 20-80% ofAD patients develop (depending in
the individual study's definition of CAA, which may or may not require vascular

symptoms), making APP23 a model for AD/CAA or even hemorrhagic stroke rather
than typical sporadic AD or FAD (Calhoun et al., 1999; Winkler et al., 2001;
Castellani et al., 2004).

With these AD animal models in hand, AD research entered a new era, in which

putative treatments could be tested in transgenic disease models to establish proof of

concept and efficacy of therapy. Mechanisms of aggregation, synapse and cell loss
could now be observed in vivo, as well as other critical events in the evolution of
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AD. Indeed, transgenic mouse models ofAD help to provide intriguing information
about the normal function of APP and its metabolites, and how disruption of these
functions contribute to cognitive deficits typical ofAD (Table si.2, 10.1-10.2).

Transgenic
Model

Gene,
Mutation,
Promoter Behavioral Phenotypes Age of Phenotype Reference

PDAPP hAPP Hyperactivity 3, 6, 9 mo Dodart et.al. (1999), Behavioral Neurosci
V717F Object Recognition (Lilly) 6, 9-10 mo Dodart et.al. (1999), Behavioral Neurosci

PDGF promoter Radial Arm Maze 3 mo Dodart et.al. (1999), Behavioral Neurosci
Operant Learning 3, 6 mo Dodart et.al. (1999), Behavioral Neurosci
(bar pressing)
Spatial Reference Memory, 3-4, 10, 13, 18 mo Chen et.al. (2000), Nature

(non-progressive)
Serial Spatial Memory 13, 18 mo Chen et.al. (2000), Nature

(progressive)
Cued Fear Conditioning 11mo Gerlai et.al. (2002), Behav Brain Res
Sleep/Wake Patterns 3-5 mo, 20-26 mo Huitron-Resendiz et.al (2002), Brain Res

(progressive)
Holeboard Spatial 3-5 mo, 20-26 mo Huitron-Resendiz et.al (2002), Brain Res
Working Memory (progressive)

Eyeblink Conditioning 6,10mo Weiss et.al. (2002), Neurobiol Dis
(non-progressive)

Tg2576 hAPP Hyperactivity, Open Field 17 mo Lalonde et.al. (2003), Brain Res
K670N.M671 L Y-Maze Alternation 10 , 16-18 mo Chapman et.al. (1999), Nat Neurosci
Hamster PrP String Agility Test 3, 9 mo, female specific King et.al. (1999), Brain Res

Spatial Memory Retention 6-11, 12-15, 12-18, Westerman et.al. (2002), J Neurosci
2-25mo (progressive)

WM Spatial Memory 6-11, 12-18, 20-25mo Westerman et.al. (2002), J Neurosci
Acquisition (progressive)
Holeboard Spatial Reference 3, 7, 9 mo Pompl et.al. (1999), J Neurosci Meth
Memory (progressive)
Visual Cued Water Maze 3, 9, 19 mo King et.al. (2002), Physio Behav

(progressive)
Open Field 10, 16 mo Chapman et.al. (1999), Nat Neurosci
T-Maze Alternation (forced) 10, 16 mo Chapman et.al. (1999), Nat Neurosci

(progressive)
Contextual Fear Conditioning 16-18 mo Corcoran et.al. (2002), Learn Mem

APP23 hAPP Passive Avoidance Memory 25mo (progressive) Kelly et.al. (2003), Neurobio Aging
K670N.M671L WM Spatial Memory 3, 6, 18, 25 mo Kelly et.al. (2003), Neurobio Aging
Thy-1 promoter Retention, Acquisition (progressive)

Hyperactivity 6-8 w, 3, 6 mo Van Dam et al. (2003), Eur J Neurosci
Rotorod Performance 3, 6 mo Van Dam et.al. (2003), Eur J Neurosci
Open Field 3, 6 mo Van Dam et.al. (2003), Eur J Neurosci
Vascular Amyloidosis, 12 mo Winkler et.al. (2001), Brain Res
Spontaneous Microhemorrhages

Table 1.2 Behavioral phenotypes of transgenic mouse models related
to AD. WM is an abbreviation for water maze, while the term
"progressive" indicates a behavioral phenotype that is age-related,
developing over time.

1.4 Relating cognitive deficits in Alzheimer's Disease to normal

functions of APP and AB

The behavioral deficits seen in the hAPP transgenic mice are good correlates to the
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cognitive impairments observed in AD patients, but it is yet unclear how the

development ofAD pathology mechanistically translated to cognitive impairments.
From comparisons of the hAPP transgenic mice, it is evident that there are likely

multiple mechanisms that could lead to AD-like behavioral deficits. In the Tg2576
animals there is a maintained synaptic density with age that is itself correlated to

poor performance in spatial memory tasks like the Morris Water Maze, while
decreased synapse numbers in PDAPP mice correlate to impairment in the same

tasks. One explanation for these seemingly opposing results was that increases in A|3

impaired efficient synaptic transmission, which could arise from situations with
either too many ineffective synaptic connections or too few synapses to make
effective synaptic connections. To understand the basis of this cognitive impairment,
researchers began to experiment with A|3 in a number of different experimental

paradigms.

1.4.1 Neuronal and synaptic toxicity

At one level, A|3 could be considered to have a deleterious or toxic effect on

neurons, and that cognitive impairment was due to the effects of accumulations of

A|3 damaging neurons. Many studies have since demonstrated toxic effects ofA(3 on

cortical and hippocampal cells in vitro, via a number of pathways including

apoptosis by activation of caspases, disruption of cellular CaT+ homeostasis, and

generation of free radicals due to oxidative stress (Mattson et ah, 1993; Yatin et ah,

1999; Troy et ah, 2000; Allen et ah, 2001; Rowan et ah, 2003). This neurotoxic

property of A|3 is not straightforward, as neurotoxicity is ascribed to differing

lengths of A|3 peptide, various structural assemblies related to amyloid fibril

elongation, as well as cellular locations. It soon became clear that A|3 neurotoxicity

is not alone among the mechanisms that promote cognitive impairment, as

researchers found that adding diffusible A(3 to organotypic hippocampal slice

cultures altered synaptic transmission prior to cellular degeneration, and that
removal ofA|3 itself causes neuronal aberrations (Freir et ah, 2001).

It is known that the electrophysiological profile of young PDAPP mice in the
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hippocampal region CA1 is perturbed prior to any amyloid deposition, showing

inability to maintain LTP, with potentiated responses to high frequency bursts, and

unusually high levels of paired-pulse facilitation. These physiological aberrances

closely reflect cognitive spatial learning and memory deficits seen in young pre-

plaque PDAPP animals, suggesting that there is an extended period of increasing

synaptic dysfunction and subtle cognitive changes before any overt

neurodegeneration or synaptic loss. Accordingly, Lambert and colleagues found that
direct addition of small oligomeric A|3-derived diffusible ligands (ADDLs) to rat

hippocampal slice cultures immediately inhibited LTP, hours before cellular

degeneration (Wang et al., 2002). Taken together these findings argued for a

biphasic effect of A|3 on cognitive loss, from impaired synaptic plasticity in the

early stages ofAD followed by severe neuronal loss.

1.4.2 Neurotransmission

The rapid way in which A|3 addition alters neurotransmission hinted at A|3 acting

directly on some critical aspect of synaptic plasticity. Decreased cholinergic
transmission has long been a hallmark of AD and there are also changes in the
numbers of cholinergic receptors and their binding profiles (Bartus, 2000). In young

pre-plaque APPSwe mice, increased binding of the nicotinic AChR-specific
neurotoxin a-bungarotoxin is highly increased compared to non-transgenic controls

(Wang et al., 2000). This a-bungarotoxin binding enhancement is present until old

age, and was specific to the nicotinic receptor binding upregulation, as binding to

muscarinic AChRs decreases at older ages. A(31 -42 is found to bind tightly to the a7

subunit of nAChR with picomolar affinity, and the same A|3 peptide is found to

inhibit single-channel nAChR currents in rat hippocampal neurons (Pettit et ah,

2001; Bednar et al., 2002). AChR signaling appears to be intimately linked to APP
and A|3, and they are described as modulators of each other's functions. A(3 at

nanomolar amounts will suppress the expression of nAChRs, while nicotine itself
has been found to have the ability to inhibit amyloidogenic fibrillization (Guan et

al., 2001; Ono et al., 2002). Overall these results argue at a minimum that APP and

A|3 have a role in modulation ofAChR transmission.
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AD is not simply a cholinergic disorder, as glutamatergic signaling dysfunction has
also been recently described in AD models. Using Tg2576 mice, Cha and colleagues
found that there is a subtle change in the binding properties of hippocampal AMPA

receptor binding in aged mice (Cha et al., 2001). This increased binding affinity of
AMPA is specific and restricted to regions with amyloid deposits, and does not

extend to other glutamatergic receptors. A|3 is also found to affect the ability of

astrocytes to clear glutamate in culture, as they were able to uptake glutamate at

much higher levels due to upregulation of the cell-surface concentration of glial

glutamate transporters, leading to a concomitant decrease in neuronal glutamatergic
transmission (Ikegaya et al., 2002).

1.4.3 Neuritogenesis

Throughout these studies, efforts had been largely directed to discerning the scope

of the deleterious functions of A|3 in AD, but now there was interest in learning
more about the normative functions of APP and A|3. Developmental experiments

have shown that APP is highly expressed in the growth cones of the developing
nervous system, and that APP induced neurite outgrowth both in developing and
mature hippocampal cells (Storey et al., 1996; Small et al., 1999; Salinero et al.,

2000; Neill et al., 2001). In mouse neuroblastoma cells, a group from Newcastle has
found that transfection of APP751 caused a rapid differentiation and neuritic

outgrowth, with more neurites per cell and overall shorter process extension period
than untransfected cells (Neill et al., 2001). This effect is mediated solely by
membrane-associated and not soluble APP751, although other authors have shown
that purified substrate APP from sporadic AD brains is sufficient to promote neurite
extension and considerable branching in cultured hippocampal cells.

1.4.4 Neurogenesis

Neurogenesis has been confirmed within areas of the brain that are highly plastic,

namely the cortex and hippocampus. Neural progenitor cells (NPCs) are thought to
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exist as a regenerative pool, providing replacements for cells that die due to normal
turnover or injury, and are an important contributor to the neural plasticity

underlying learning and memory (Parent et al., 1997; Doetsch et al., 1999; Nilsson
et ah, 1999; Schinder and Gage, 2004; Schmidt-Hieber et ah, 2004). Several lines of
evidence implicate A|3 as a disruptor of this regenerative process, both in vivo and in
vitro (Haughey et ah, 2002a; Haughey et ah, 2002b; Ikegaya et ah, 2002). NPCs

normally proliferate in the hippocampus, however in APPSwe mice, NPC counts are

lower than non-transgenic controls. Infusion of A|3 to the ventricles of these mice
also results in greatly decreased numbers of NPCs migrating to the subventricular
zone (SVZ) of the olfactory bulb (OB). Cultured rat and human hippocampal NPCs
have reduced proliferation and differentiation upon exposure to A|3 compared to

control protein infusions, due to disruption of the Ca++-regulated homeostasis of
these cells, which leads to apoptosis.

Taken together, the decrease in specific types of neurotransmission in the presence

of A|3, the ability of amyloid to promote neurite outgrowth and interfere with
cortical and hippocampal neurogenesis suggest that A|3 broadly disrupts synaptic

plasticity at a cellular level. These excess or gain-of-function properties can be

interpreted such that the normative role of APP and A|3 is to modulate synaptic

transmission, the cellular basis of learning and memory, and that AD amnesia is a

consequence of amyloid disrupting these processes. The line of thinking that

proposes amyloid as a normal-state modulator of plasticity is experimentally well

motivated, but had to be further validated in loss-of-function paradigms in which
APP and A(3 is absent.

1.4.5 APP-null mice

Using similar technologies that created the first hAPP transgenic mice, APP
deficient mice were created. In conjunction with Merck, a group from the University
of Chicago reported in 1996 that APP-null mice created by homologous
recombination in embryonic stem cells are viable and fertile, without gross brain
differences from controls (Zheng et al., 1996). Further publications about the
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homozygous APP-null mice report decreased spontaneous locomotion, forelimb grip

strength and weighed 15-20% less than age-matched wild-type mice (Zheng et al.,

1995). In addition, APP-null mice have reactive brain gliosis in CA1 starting at 14
weeks of age. These findings indicate that complete deficiency of APP permits the
viable development of the nervous system, but there are neuromuscular impairments
of an unknown basis. Finer analysis of the APP-null mice revealed specific

disruptions of hippocampal anatomy and plasticity (Dawson et al., 1999; Seabrook
et al., 1999). Dendrites and synaptic terminals are decreased in the areas of CA1
with gliosis, and APP-null mice also have impairments in the generation of LTP

trains, including glutamatergic inhibitory post-synaptic currents. Additionally, it was
found that APP-deficient mice are hypersensitive to seizure induction, having earlier
onset and higher mortality, that is correlated to decreased neurogenesis in the corpus

callosum (Steinbach et al., 1998; Moechars et al., 1999).

1.4.6 Regulation of synaptic activity

In vivo APP-null mouse data supports a synaptic plasticity modulatory role for APP,
which is strengthened by subsequent in vitro experiments. Researchers at Cold

Spring Flarbor Laboratories used an experimental design in which an APP695

minigene is acutely overexpressed in rat hippocampal slices with a resulting in

depression of excitatory synaptic transmission (Kamenetz et al., 2003). This

depression is specific to decreased excitatory currents in AMPA and NMDA
transmitters but not GABA, with a reduction in firing frequency but not response

amplitudes. In addition, the production and secretion of Ab peptides has been
measured in the presence of pharmacological agents that increase or decrease
neuronal activity. Production and secretion of Ab mirror the affects of these agents

on neuronal activity, implying that Ab secretion and generation is controlled by
neuronal activity. Further experiments in which the C-Terminal Fragment (b-CTF)
that includes Ab and the cytoplasmic domains of APP is transfected into rat

hippocampal slices show that this fragment was sufficient to depress synaptic
transmission (Figure 1.12). A truncated form of b-CTF lacking the cytoplasmic tail
is also efficient in depressing transmission. This APP-induced synaptic depression
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requires neuronal activity, as agents that block neuronal activity like tetrodotoxin

(TTX) prevent this decrease in neurotransmission, which returns once TTX is

washed out. These negative feedback synaptic depression effects by APP are

diffusible, and are seen to spread beyond individual cells infected with APP, causing
local synaptic depression.

6-Secretase y-Secretase
APP — * p-CTF > A(5

Neuronal

Activity

Synaptic
Depression

Figure 1.12 APP-Based regulation of Synaptic Activity, adapted from
Kamenetz et.al., (2003). APP processing to A{3 forms a negative
feedback loop which results in decreased neuronal activity. Neuronal
activity stimulates the p-secretase activity, which cleaves APP to 0-
CTF. Processing by y-secretase yields Ap, which causes local synaptic
depression. In turn synaptic depression inhibits neuronal activity,
which can stimulate b-secretase.

APP is highly conserved throughout evolution, and it has been shown in an in vivo
chick model to be a requisite for the formation of new memories. Administration of
anti-APP antibodies prior to training on an inhibitory avoidance task prevents chicks
from performing correct memory-driven response (Mileusnic et al., 2000). This
amnesia lasts for over 24h, and is similar in another APP-removal paradigm, in
which APP antisense sequences are injected prior to training. By restoring APP via

injection of a synthetic APP pentapeptide, memory is rescued, suggesting that APP
itself is required for early-phase memory formation and amnesia based on its
absence is reversible.

Investigations focusing on uncovering the normal function of APP and A|3
demonstrate that these peptides have a wide range of effects on development,
neurotransmission and synaptic plasticity, and at the same time A|3 production and
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secretion are driven by neuronal activity (Panegyres, 2001). This suggests that APP
and A|3 are synaptic modulators, and that they are involved in a negative feedback

loop that acts to regulate neuronal hyperactivity. Unchecked accumulation of APP is
neurotoxic and disrupts neural plasticity in plaque-dependent and plaque-

independent ways, and understanding the regulation of A|3 has become a crucial
focus point of therapeutics-minded research. Intact cognitive function lies
somewhere between excess and deficient levels of A(3, and efforts to understand the

processes that mediate generation ofA|3 intensified in the mid- to late 1990s. During
this period critical discoveries about the entities responsible for the processing of
APP were made, providing important new information about the mechanisms of
APP enzymatic processing, as well as potential strategies for modulating A|3 burden
in the brain.

1.5 Current treatment strategies for Alzheimer's Disease

Most of these new AD therapeutic targets are motivated by some form of the

Amyloid Cascade Hypothesis, and employ various strategies to reduce A|3 burdens

by addressing deposited plaques and/or soluble products of APP metabolism. These

major strategies are summarized as follows: vaccination, amyloid capture, anti¬

inflammatory agents, cholesterol reduction, and inhibition of secretases involved in

amyloidogenic processing.

1.5.1 Active immunization

Vaccination therapy for AD involves peripheral administration of the amyloidogenic

peptide A(31 -42 wholly or in part. Administration of A(31 -42 combined with an

immunoadjuvant is believed to stimulate the immune system to develop antibodies
that recognize this fragment and clear it more effectively from amyloid deposits in
the brain. This principle has been validated in hAPP transgenic mice, as PDAPP
mice given A(31 -42 over a period of time have a striking reduction in the number of

plaques in aged mice and prevents the development of AD-like pathology when

given to young pre-plaque mice (Schenk et al., 1999). A|3 immunization is also
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effective in reducing amyloid burden in systems where APP generation is highly
excessive and rapid, like in the CRND8 transgenic mice harboring APPSwe/Ind
mutations (Janus et al., 2000). Using this animal model of early amyloid deposition,

A(3 immunization results in a reduction in plaques as well as significant behavioral

improvements in spatial learning and memory tasks.

The success of A(3 immunization in animal models of AD led to the initiation of
clinical trials to test a similar vaccine in humans (Thatte, 2001). The initial Phase I
clinical trials by Elan and Wyeth-Ayerst showed the vaccine to be safe in small
numbers of healthy volunteers, but difficulties arose in the expanded Phase II trials
in which the A|3 vaccine was given to 300 AD patients. 19 of these 300 patients

developed an encephalomeningitis, which halted the trial (Check, 2003; Robinson et

al., 2004). A subsequent report of similar vaccinations causing cerebral

hemorrhaging in APP23 mice brought into focus the dangers of active
immunization-mediated clearance of A|3 (Pfeifer et al., 2002). A subset of AD

patients also have Central Amyloid Angiopathy (CAA), with A|3 deposits lining the
endothelial cells of the brain vasculature, and removal of these vascular deposits
could weaken these vessels walls, leading to hemorrhaging. While it is unclear what

component ofCAA-mediated hemorrhaging led to the encephalomeningitis, animal
data suggests that it is also possible that the immune response itself caused an

activation and migration of T-cells to the brain, causing central inflammation

(Munch and Robinson, 2002; Furlan et al., 2003).

Examination of the patients from this clinical trial that did not incur this severe side
effect have since shown that there is significant slowing of cognitive decline in

patients who had generated antibody titres to A|3, and further, that significant

cognitive improvements were seen in patients with greater amyloid levels (Hock et

al., 2003; Gilman et al., 2005). This is supported by autopsy data from a single

patient's brain, in which there was a high level of amyloid plaque clearance and low
number of dystrophic neurites (Nicoll et al., 2003). It is likely that there is some

beneficial response of the patients due to the A|3 vaccination, however this positive

finding is countenanced by the possibility of vascular side effects. While the proof
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of concept driving A|3 vaccination therapy for AD is well founded, the risks of

treatment in the presence of unknown levels of CAA are very high. Generally,
vaccination in the elderly is a slow process requiring the use of a strong

immunoadjuvant to elicit sufficient immune response (Martin, 1997; Castle, 2000).
Concern about the risks of A|3 vaccination therapy may in part be mitigated with the

use of a more sophisticated adjuvant that is incapable of causing T-cell migrations in
future A|3 vaccination trials, and with exclusion of patients with suspected CAA. At

this time Elan and Wyeth-Ayerst have initiated a second vaccine clinical trial that
utilizes a new immunoadjuvant, and their progress in this new immunotherapy foray
will be highly scrutinized..

1.5.2 Passive immunization

Passive treatment of AD by administration of antibodies for A|3 is another regime
that has been successful in animal model research. While some of these antibodies

act by binding to deposited amyloid, others bind to soluble A|3, capturing the

peptide before it is able to aggregate into plaques. This capture therapy is

epitomized with by experiments with the antibody m266, which preferentially binds
to the central domain of free amyloid and crosses the blood-brain barrier (BBB) at a
low level. By peripheral administration of this monoclonal antibody, experimenters
at Eli Lilly and Washington University were able to dramatically reduce amyloid

deposits in PDAPP mice, while observing a 1000-fold increase in plasma
concentrations of A|3 (DeMattos et al., 2001). Subsequent studies have shown that
short-term treatments of m266 are able to reverse cognitive deficits in PDAPP

object recognition without any visible changes to plaques (Dodart et al., 2002). The
authors have sought to explain these observations by propagating an Amyloid Sink

Hypothesis, in which removal of peripheral amyloid causes release of A|3 in central

locations, diminishing plaque loads. This working hypothesis remains highly
controversial. However, regardless of the debate surrounding the mechanism, it

appears that the plaque-independent cognitive deficits seen in transgenic mice are

now matched by a treatment that also does not directly address plaques. These
reversals are possibly caused by rapid changes in synaptic plasticity. Indeed these
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amyloid capture principles appears to operate on a general level as well, as

peripheral administration of an agent with a simple affinity for A|3 that is incapable
of passage through the BBB, gelsolin, is able to reduce amyloid burdens with
behavioral improvements in Tg2576 mice (Matsuoka et al., 2003).

While peripheral administration of antibodies appears to be as successful as

vaccination, it too has tough practical issues to face. Long-term delivery of antibody
treatments remains susceptible to severe systemic immune reactions, even if such
antibodies could be humanized without loss of potency (Stockwin and Holmes,

2003). In addition, widespread removal of soluble A(3 may have deleterious effects
as the peptide becomes unavailable to perform any of its putative normative
functions. Titration of the amount of capture agent will become critical in human
tests. As these reports are yet only a few years old, more study is required to provide
a better evaluation of these promising A|3 capture strategies in animal models before

moving to clinical trials for AD.

1.5.3 Anti-inflammatory drugs

In some senses, AD can be viewed as an inflammatory disease, as there is

widespread gliosis and activated microglia in AD brains, and these perturbed

inflammatory processes promote the aggregation of amyloid deposits. At a certain

level, some of these processes may in fact be protective or beneficial, like the
activation of microglia that act as scavengers of A|3. Other inflammatory processes

in AD are deleterious, such as increased expression of cytokines that cause release
of neuron-damaging free radicals; indeed there are working theories that feature AD

simply as distal sequelae of prior inflammatory brain injury. In AD brains, there is
an upregulation of cyclooxygenase-2 (COX-2), a potent mediator of inflammatory
molecule production (Kitamura et al., 1999; Xiang et al., 2002). There are already a

number of effective drugs used to reduce levels of COX-2, for the indications of
inflammation and inflammatory pain, including a class called the Non-Steroidal

Anti-Inflammatory Drugs (NSAIDs). Administration of NSAIDs has been

experimentally found to reduce the production of A|3 both in cells and in hAPP
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transgenic mice, and incrementally improve memory performance in APP/PS1

overexpressing mice receiving A|3 immunizations (Lim et al., 2001; Stephan et al.,

2003). Epidemiological evidence exists that links long-term use of NSAlDs like

ibuprofen and indomethacin with protection against AD, but not vascular dementia

(in t' Veld et al., 2001).

Use ofNSAIDs to protect against AD is an intriguing clinical strategy, as NSAIDs
are widely available and inexpensive as a long-term therapy. However, given the
wide range of NSAIDs with different actions available, selecting one or a few of
them for a convincing clinical trial will be critical. Also, long-term treatment ofAD

by NSAIDs may require the development of new drugs altogether as many of them
cause gastric bleeding with continued usage (Butt et al., 1988). Typically, the other
medications used to treat these side effects are strong contraindications for high
blood pressure, a common problem in the elderly. Finally, transgenic AD mouse

model data suggests that NSAID treatments would be more efficacious in

preventing development ofAD only in conjunction with A|3 immunization, and may

be less able to reverse established cognitive deficits altogether (Jantzen et al., 2001).

1.5.4 Cholesterol reduction

The cholesterol connection to AD remains a developing story, but one with
extended clinical trial information. Cholesterol has been implicated in the
metabolism of APP, glial cholesterol is required for the formation of synapses, and
inhibition of cholesterol is associated with reduced dendritic outgrowth and

apoptosis (Michikawa and Yanagisawa, 1999; Refolo et al., 2001; Ullian et al.,

2001; Fan et al., 2002). AD brains are found to have an elevated level of the

cholesterol degradation product 24S-hydro cholesterol, and subsequent treatment of
AD patients with a drug that reduces cholesterol levels, Simvastatin, reduces A(31 -
40 in the patients' cerebrospinal fluid (CSF) (Futjohann et al., 2000; Vega et al.,

2003). However, this effect is seen only in moderate AD patients given exceedingly

high doses. A follow-up clinical trial in which Simvastatin was given to AD patients
at doses typical for simple reduction of cholesterol revealed no changes in plasma or
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CSF A|3 (Simons et al., 2002). While these initial clinical trial results do not support

a strong role for cholesterol inhibition as an effective strategy for treatment ofAD, it
is possible that it will be useful in treating those FAD patients with genetic
mutations in the cerebral transport of cholesterol.

1.5.5 y-secretase inhibition

As the endoprotease involved in the final cleavage step in the generation of A|3, y-
secretase is itself a target for therapeutic inhibition in the treatment ofAD (Esler and

Wolfe, 2001). It has been proposed that the PS1 and PS2 components of the y-

secretase holoenzyme contain the specific cleavage activity needed to generate A|3,
and several groups have investigated this hypothesis with transgenic mice.

Transgenic mice that overexpress PS1 are found to have spontaneous seizure

activity, neurodegeneration, and increased A|31 -42 production (Siman et al., 2000;
Schneider et al., 2001; Huang et al., 2003; Jankowsky et al., 2004; Wen et al., 2004).
PS2 mutations and transgenic mice are similarly associated with behavioral

impairments and increased A(31 -42 production (Oyama et al., 1998; Sawamura et

al., 2000; Hwang et al., 2002). In contrast, PS 1-null mice die shortly after birth,
have deformed skeletons, and are deficient in neurogenesis (Shen et al., 1997).

It is believed that y-secretase deficiency affects Notch signaling in cellular
differentiation and causes cell death, as this is one of the substrates for y-secretase.

In 2001, a series of y-secretase functional inhibitors were reported to reduce A|3

secretion up to 80% in cultures expressing APP751 as well as PDAPP mouse brains,
without overt cellular toxicity (Dovey et al., 2001). In addition, conditional PS1
knockout mice in which the inactivation of the gene is restricted to the postnatal
forebrain are viable, with only subtle spatial memory deficits (Yu et al., 2001).

Furthermore, recent studies featuring mice with conditional knockout of PS1 and

overexpression of mutant hAPP display a phenotypic rescue from their expected

cognitive deficits (Chen et al., 2003; Saura et al., 2005). While this effect is more

prominent in younger mice, this data serves as a strong in vivo proof-of-principle for

y-secretase inhibition as an AD target. These studies provided hope for development
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of safe y-secretase inhibitors that effectively reduce A|3 generation while leaving
Notch substrate cleavage intact, a critical feature in the design of any future y-

secretase inhibitor therapeutics.

In reviewing these many proposed therapeutic approaches to AD, we now

understand the depth and breadth of the difficulties facing so many of these targets.

This is an opportune time to turn our attention back to the (3-secretase, which has
remained throughout these developments an attractive target precisely because it
does not share many of the other therapeutic candidates' practical and theoretical
limitations.

1.6 Identification of the B-Secretase

After the discovery in 1994 that the A(3 peptide is processed by 3 different proteases
in 2 distinct pathways, focused research efforts identified and characterized the a-

and y-secretase activities, while the p-secretase remained unknown. In late 1999,

there was a sudden flurry of publications heralding the identification of the protease,

which was independently found by four different groups of investigators using four
different experimental strategies. The multiple ways that the P-secretase enzyme

was independently discovered served to definitively prove that unlike the a- and y-

secretase enzymes, P-secretase is a single enzyme with the ability to generate the

amyloidogenic fragment A|31-42.

The first report identifying the p-secretase came from investigators at SmithKline
Beecham in September of 1999, who submitted abstracts to the International

Aspartic Proteinase Conference in Portugal (Hussain et al., 1999). Using a

proprietary database, Hussain and colleagues isolated a partial aspartyl protease
cDNA sequence, using it to probe against the full-length cDNA in a melanoma cell
line. The protease is an aspartyl protease-like enzyme dubbed Asp2, and is found to

exist in cell lines known to produce Ap. In a series of critical cell line transfection

experiments, Hussain and colleagues demonstrated that transient expression ofAsp2
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increases production of A|3. In addition, mutations directed at the catalytic aspartyl
sites of Asp2 reduces (3—site cleavage of APP. Asp2 was found to co localize with

APP751, and fulfills other requirements of a putative |3-secretase, as it was

localized to the ER and TGN.

Researchers at Amgen quickly published their findings in October 1999 with an

enzyme that they called (3—site APP Cleaving Enzyme, or BACE (Vassar et al.,

1999). Using a high-throughput library of cDNA clones to transfect cells carrying
the APP Swedish mutation (APPSwe), overexpression of the BACE clone increases
the output of (3—site cleavage products. BACE acts at the known (3-secretase cutting

positions, and antisense inhibition endogenous BACE mRNAs results in reduction
of (3—site cleavage products. BACE also exists in the TGN and ER compartments,

and is present in all tissues of the body, but is highly expressed in AD brain.

By utilization of a public database for predicted aspartyl proteases in the worm

Caenorhabiditis elegans scientists at Pharmacia tested human orthologues in cell
lines carrying the Swedish APP mutation (Yan et al., 1999). By applying antisense

constructs, a reduction of the products of (3—site APP cleavage was found using a

sequence from a gene they called Asp2. Soluble Asp2 cleaves synthetic APP
substrates at the expected (3—sites, with a greater rate of cleavage in substrates with

the Swedish mutation. Examination of Asp2 showed its distribution across tissues,
most notably in the brain, and reveal Asp2 to be a membrane-bound protease, a

predicted requirement of the [3-secretase activity.

The final group to independently identify |3-secretase in 1999 was from Elan, the

only group who used biochemical methodologies (Sinha et al., 1999). Employing a

substrate analogue inhibitor of the (3-secretase activity, Sinha and colleagues were

able to purity a single protein. This purified enzyme was sequenced from the N-

terminus, and is a membrane-bound protease able to cleave APP into the full-length

[3—site cleavage products. Unlike a- and y-secretase activities, BACE is the sole

(3-secretase activity for neurons, making it a prime target for strategic inhibition to

reduce amyloidogenic fragment processing.
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These independent characterizations were the beginning of the explosion of research
into the (3-secretase enzyme, which became a focal point of research in the ensuing

years. Other groups continued to independently describe the (3-secretase, and it now
has many names, like Asp2, Memapsin2, and BACE. While the (3-secretase

protease will be called BACE for the remainder of this paper, all of the variously
named (3-secretase enzymes share the same subcellular and regional distributions,
all have a single transmembrane-spanning region, and are similar in activity and

sequence to an aspartyl protease.

1.6.1 Investigating BACE

After the isolation and identification of BACE, new information about this APP

protease came at a rapid pace. BACE is mapped to Chromosome 11 by using

expression sequence tags matched against the GenBank database (Saunders et.al.,

1999). By using the BACE amino acid sequence to screen against a cDNA database,
a second novel aspartyl protease was found, BACE2 (184). BACE exists as a 51 or

70kDa protein, depending on the level of N-linked glycosylation, and is derived
from one of 3 transcripts of 2.6, 4.4 or 7.0kB in length. BACE has about 52% amino
acid homology to BACE2, and both enzymes share many features of a putative

(3-secretase activity. However, BACE2 is not likely to be a major (3-secretase in

neurons, as antisense constructs targeting BACE reduce (3—site cleavage of A|3 to

near zero levels in the presence of functional BACE2 (Vassar et al., 1999). Further
human genetic database examinations have thus far been unable to find any gain-of-
function mutations of the BACE gene that strongly correspond to FAD, although
certain polymorphisms of BACE and APOE4 genes increase the risk for AD (Gold
et ah, 2003; Liu et ah, 2003).

Experiments designed to elucidate the localization and expression of BACE in AD
brain provided an enhanced theoretical rationale for BACE inhibitor therapies for
AD. Levels of BACE are elevated in AD brain compared to aged controls, and are

higher in cortex and hippocampus, as well as the subiculum and entorhinal cortex
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(ERC) (Sun et al., 2002). While BACE levels were high in the CA2-4 and ERC and
moderate in the dentate gyrus (DG) and CA1 regions of the hippocampus, BACE
levels do not directly correlate to senile amyloid plaques and NFTs have low levels
of BACE. Other authors found significant increases in both BACE expression and

activity in the neocortex of AD brains, as well as the thalamus and amygdala

(Fukumoto et al., 2002; Tyler et al., 2002).

Once it is synthesized at the ER, BACE contains a short signaling and propeptide
domain that is cleaved prior to trafficking outside the golgi. Interestingly enough,
this proprotein domain is not inhibitory, as purified pro-BACE is still capable of

cleaving the N-terminus of APP substrates (Shi et al,, 2001). Instead, it appears that
this form of proBACE acts like a chaperone to the protease domain of BACE by

promoting proper folding of the active enzyme. The cleavage of the BACE

propeptide domain to the mature enzyme is mediated by a family of proprotein
convertases including Furin, which cleave propeptide domains at RLPR|E amino
acid sequences in the TGN, ER and endosomes (Bennett et al., 2000; Creemers et

al., 2001). This processing occurs largely at the golgi, as experimental agents that
interfere with the golgi, like brefeldin A or monensin also prevent propeptide
removal.

After BACE is processed to maturation, it is post-translationally modified with re¬
linked glycosylation at the golgi at any of four potential sites (Huse et al., 2000).
This carbohydrate modification is important to the function of BACE, as site-
directed mutagenesis removal of two of the four sites of glycosylation reduces
BACE activity on APP. While BACE appears to have no O-linked carbohydrate

alterations, N-glycosylated sites are sulfated and cysteine residues in the

cytoplasmic end of BACE are palmitoylated (Benjannet et al., 2001). Most cellular
BACE enzyme is thus restricted to the membrane, as the increased polar anchoring
due to palmitoylation acts to prevent ectodomain shedding of transmembrane

proteins. Recent experiments show that ectodomain shedding ofBACE is stimulated

by Protein Kinase C (PKC) and the metalloproteinase ADAM 10 is the likely BACE
sheddase (Hussain et al., 2003). Interestingly enough, inhibition of BACE shedding
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has no effect on (3—site cleavage of APP. The small fraction of BACE that is

released from the membrane and becomes soluble promotes generation of A(3, due
to reinternalization to endosomes where the majority ofAPP processing occurs, and
this remains a possible mechanism for pathogenic increases of amyloidogenic

fragment levels.

The trafficking ofBACE is more complicated than what was originally predicted for
the putative (3-secretase. BACE localizes to the TGN and ER, but the long amyloid

fragment A|31-40/42 is produced by BACE in the ER whereas a truncated A(311-
40/42 fragment is produced in the TGN (Huse et al., 2002). The presence of various

signaling moieties determines the location of the BACE enzyme. The same single
transmembrane domain that is requisite for BACE cleavage activity access to APP
and the subsequent generation of the C99 peptide contains a cytoplasmic golgi

trafficking signal that causes retention of this form ofBACE in the TGN (Yan et ah,

2001b). The fraction of BACE that is sequestered at the ER lumen is kept in place

by a C-terminal dilysine motif that prevents complex carbohydrate processing for

proteins bound for the golgi. BACE was also found in the endosomes and at the

plasma membrane, which requires a cytoplasmic cysteine motif for trafficking to the
cell surface (Capell et ah, 2000).

1.6.2 BACE regulation, interactions and other substrates

Information regarding other substrates and modulators of BACE activity is

emerging, and other proteins involved in the generation of amyloid may activate
BACE. A recently characterized component of the y-secretase holoenzyme,

Nicastrin, is mapped to Chromosome 1 and mutations in this gene are responsible
for subset FAD patients of a village in Italy (Feldman et ah, 1963; Yu et ah, 2000).
Nicastrin forms complexes with PS1 and PS2 and is requisite for the y-secretase

activity, and recent immunoprecipitation data showed that BACE and Nicastrin bind
in cells (Hattori et ah, 2002). Nicastrin was also found to be able to activate BACE
in COS-7 cells. Similar studies focusing on PS1 show binding to BACE as well, as

they coprecipitate in human cortical cell immunoblots (Hebert et ah, 2003). PS1
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binds preferentially to immature BACE, suggesting a possible role for PS1 in BACE
maturation or activation.

Evidence also exists that suggests a certain golgi-resident sialyltransferase is also a

substrate for BACE cleavage (Kitazume et al., 2001). BACE and ST6Gal co localize

together in the golgi, and when BACE is over expressed in COS cells the post-

cleavage secretion of ST6Gal increases, and is reduced via proposed inhibitory

competition in the presence of APPSwe. Subsequent work by the same group has

definitively shown that the ST6Gal protease is cleaved by BACE between L37 and
G38 (Kitazume et al., 2003). The only other known non APP-processing pathway
substrate for BACE is the P-Selectin Glycoprotein Ligand-1 (PSGL-1), which is
involved in the highly pleiotropic inflammatory leukocyte adhesion process

(Lichtenthaler et al., 2003). Transfection studies of BACE transcripts to human

monocytes and hek293 cells show PSGL-1 cleavage, which is absent in cells lacking
BACE.

While BACE2 shares much gene (52%) and amino acid sequence (68%) homology
with BACE, its activity is markedly different, as it is capable at cleaving at the

(3-site, but cleaves APP preferentially at sites that resemble a-secretase cleavage,
F19 and F20 (Yan et al., 2001a). BACE2 has been implicated in the development of
AD in Down's Syndrome patients as there is trisomy of the BACE2 gene at

Chromosome 21. The Flemish mutation of APP (A21G) is adjacent to the preferred
site of action of the BACE2, suggesting that BACE2 may have a role in the

pathogenesis of Flemish FAD (Farzan et al., 2000). While BACE2 is autocatalytic
and active at a range of pH value unlike BACE, it is also subject to maturational

cleavage by BACE (Shi et al., 2001; Kim et al., 2002). This may be an important

regulatory mechanism, as high expression levels of BACE will activate the
a-secretase-like BACE2 and reduce amyloidogenic A|3 via competition for APP
substrates. In addition RNA inhibition studies indicate an antagonistic relationship
between BACE and BACE2, in which BACE2 acts to suppress BACE activity on

APP (Basi et al., 2003).
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BACE may also be acting on the APP substrate both before and after PS 1-dependent

y-secretase cleavage. This new activity of BACE is thought to be responsible for the

appearance of truncated A|3 species A(31 -34, as overexpression of BACE in Hek293
cells showed a reduction of the long form A|31-40/42 (Fluhrer et al., 2003). While an

alternative y-secretase cleavage site could also explain the appearance of truncated

A|3, in vitro experiments in conditioned media proved otherwise. Purified BACE
incubated with A(31 -40 generated A(31 -34 species, even when BACE and A(31-40/42

were incubated in cells with a loss of function mutation of PS1. This y-secretase-

like activity of BACE was unexpected, and suggests that BACE may play a role in
the clearance of A(3, as this second cleavage removes the most hydrophobic residues
of the A[3 peptide. It is postulated that this shortened A(3 species may be a better
substrate for the proteases that normally facilitate clearance of A|3, the Insulin-

Converting Enzyme (ICE) and Neprilysin. This is not the first example of BACE

having other APP fragment substrates, as BACE is also capable of using C99 to

cleave and generate the C89 fragment (Liu et al., 2002).

1.7 Rationale for BACE inhibition as a treatment strategy for

Alzheimer's Disease

The human |3-secretase has been hotly pursued for both basic science and

therapeutic purposes, based on the rationale that if |3-secretase activity could be

inhibited sufficiently to reduce production of A|3, the cognitive impairments related

to A(3 could be alleviated. Subsequent discoveries about the identity, function, and

amyloid-promoting properties of |3-secretase have intensified its value as a prime
candidate for therapeutic inhibition for AD. Unlike y-secretase, BACE appears to be

comprised of a single protease, and thus far has a much more limited number of
substrates than y-secretase. Also, there appears to be no mutations of the BACE

gene that lead to early- or late-onset FAD, unlike APP, PS1, and PS2, implying that
various allomorphs of BACE and presumably BACE activity allow for normal

generation ofAPP without predisposition to AD.
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Recent experiments examining the expression and activity levels of BACE in AD
brain have shown that the expression is increased by 15% and activity is increased

greatly from 63-185%. These are dramatic upregulations given the long half-life of

proBACE and BACE, which is greater than 9h and 16h respectively (Vassar, 2002).
Given that BACE is highly expressed in neurons of the brain compared to other

tissues, a BACE inhibitor that effectively reduces A(3 levels in the brain may have

the benefit of inherent tissue specificity, if activity of the primarily non-neuronal
BACE2 is spared.

Peptidergic inhibitors of the active site of BACE have been utilized in resolution of
the BACE crystal structure (Hong et al., 2000; Hong et al., 2002). These structures

will prove vital to the rational design of BACE inhibitors, which can also draw on

lessons from the successful development of other drugs aimed at inhibiting aspartyl

proteases, namely the HIV protease (Beck et al., 2002). Like the HIV protease, the
first substrate-based BACE inhibitors designed were organic compounds, as

peptides are unlikely to penetrate the BBB and accumulate in the acidic cellular

compartments preferred by BACE (Beck et al., 2002; Tung et al., 2002; Horn et al.,

2003). While the design of an efficacious BACE inhibitor will be a challenging task,

by many respects BACE remains the most promising target for AD therapeutic

intervention, and must be pursued.

1.7.1 Current genetically modified BACE mouse lines: proof of

principle for BACE inhibition strategies for Alzheimer's Disease

With the rapidly acquired wealth of knowledge about BACE and its activities, there
is also an important drive to investigate the role of BACE in living systems, and so

the first experiments examining BACE in vivo were commissioned. The first

publications regarding BACE in living systems are experiments dissecting the

spatial patterns of expression and activity in various tissues. BACE is as

ubiquitously expressed as its major substrate APP, with the most notable expression
in regions of the brain, pancreas and muscle fibre. In AD brain, BACE expression is

highest in the frontal and temporal cortex (15% of aged controls), with expression
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patterns in the hippocampus that are at present controversial, with reports of AD
brain BACE levels modestly higher than aged controls in some studies and

equivocal in others (Fukumoto et al., 2002; Gatta et ah, 2002). BACE activity levels
are also elevated by 63-185% in the temporal cortex and 15% in the frontal cortex

(Fukumoto et ah, 2002; Tyler et ah, 2002).

Transgenic animal models overexpressing mutated hAPP were also assayed for
BACE expression and results from the Tg2576 and PDAPP lines have been

published. In both transgenic lines, BACE mRNA is detected at high levels in the
cortical and limbic regions that develop amyloid plaque burdens and express

transgenic hAPP, but BACE is also detected in regions not known to develop

plaques, like the cerebellum (Irizarry et ah, 2001; Rossner et ah, 2001; Fukumoto et

ah, 2004). The temporal expression patterns of BACE in the brains of these

transgenic animals are static, with no age-related changes in BACE protein levels
even at ages when significant amyloid deposition is ongoing. While these results are

descriptive of expression of the BACE gene product, it does not directly relate to

BACE activity levels, which could be different from the expression patterns

(Fukumoto et ah, 2002; Fukumoto et ah, 2004). Still, this data, along with the results

indicating that BACE enzyme is not specifically localized to amyloid plaques,

suggests that the role of BACE in the production of A(3 is important but subtle (Bigl
et ah, 2000; Rossner et ah, 2001; Hartlage-Rubsamen et ah, 2003).

1.7.2 hBACE1/BACE1 KO mice

Further information about the absolute effects of BACEl function came from the

report ofHarrison et ah (2003), who described their characterization ofBACEl KO
mice created by targeting the BACEl gene with a LacZ reporter construct (Harrison
et ah, 2003). The authors also produced a transgenic BACEl mouse line with a

human BACEl cDNA linked to a LacZ reporter gene, driven to overexpression by
the CaMKIIa promoter. Visualization of the LacZ (3-galactosidase expression
revealed that the hBACEl of the transgenic mouse was localized to the

hippocampus, cortex, caudate putamen and caudate striatum, while the BACEl KO
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had LacZ expression largely in the hippocampus. Expression of transgenic hBACEl

protein was 4-1 Ox that of endogenous murine BACE1, while BACE1 KO mice

completely lacked the carboxy terminal fragments expected of (3-secretase cleavage

ofAPP.

Behavioral phenotyping of 6-7 week old BACE1 KO and transgenic mice was

performed with the full observational battery, holeboard exploration, and the plus

maze, with a number of significantly different results between the two lines.

Transgenic hBACEl mice weighed less, and were more explorative in the open

arms of the elevated plus maze and visited more holeboard holes than control mice.
In contrast BACE1 KO mice were more timid, with greater fecal output during

observation, spent less time and moved shorter distances in the inner regions of an

open field, and were inclined to examine fewer holes in the holeboard task. The
BACE1 KO mice displayed stronger limb tone in resistance to pushing and an

improved righting reflex compared to control animals.

The bold and timid phenotypes associated with the BACE1 transgenic and KO mice

respectively suggest involvement of BACE1 activity in anxiety-related phenotypes.
Harrison et.al. (2003) conducted a broad array of neurochemical analyses in a

number of brain regions between the hBACEl transgenic and control mice in
addition to their behavioral phenotyping. Alterations in the levels of 5HT, 5-HIAA,
homovanillic acid (HVA), and dopamine (DA) were noted across several brain
structures. Transgenic hBACEl mice had increased turnover of 5HT in the

cerebellum, hippocampus, hypothalamus, nucleus accumbens (NA), and caudate
striatum (CS), accompanied by increased levels of 5-HIAA in the same regions. DA
levels in hBACEl mice were reduced in the hypothalamus and NA, with increased
DA turnover in the hypothalamus and CS, with a decreased DA turnover in the

hippocampus. Limited neurochemical analysis of the BACE1 KO mice revealed
decreases of 5HT and DA turnover in the hippocampus, as well as an increase of
total DA in the striatum.
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These serotonergic and dopaminergic changes as well as the bold and timid

phenotypes of the hBACEl and BACE1 KO mice argue respectively for a role in

anxiety behaviors for BACE1. This report by Harrison et al. (2003) is the first

published report that casts a cautionary light on BACE1 inhibition as a therapeutic

strategy for AD. However, the authors are careful to point out the caveats of

translating their results directly to possible effects of AD therapeutics, as their
results are derived directly from manipulation of BACE1 gene expression, wheareas
human disease intervention is likely to result from inhibition of protein activity.

In a similar experimental concept to that of the hAPP x PS1 mice, Mohajeri et.al.

developed mice that were crossbred from Tg2576 and a line of hBACE mice under
the control of the Thy 1.2 promoter (Mohajeri et al., 2004). While hBACE mice
alone had intracellular amyloid accumulations and did not develop plaques, the
APP+BACE mice had accelerated amyloid pathology, with high levels of total A|3
and A(31 -42, and greater numbers of plaques than the hAPP mice alone.
APP+BACE mice have widespread amyloid plaques, visualized in the motor,

sensory and somatosensory cortices, as well as the hippocampus. Indeed, even at

4mo of age the doubly transgenic APP+BACE mice had amyloid plaques and

amyloid deposits in blood vessels. Behavioral testing of this recent AD transgenic
model will be illuminating, as it will present new information on the role of BACE
in cognitive processes that are altered in AD.

Finally, Willem et al. (2004) reported the development of a mouse line that featured
both hBACEl and the London V717I hAPP mutation under control of the neuron-

specific thy-1 promoter (Willem et al., 2004). The resulting BACE x APP[V7171I]

mice, like the APP+BACE mice reported by Mohajeri et al (2004), had increased

deposition of hippocampal plaques. Interestingly, the use of a parental hAPP line
with the V717I mutation also yielded a hitherto unreported increase in truncated and
C-terminal A|3 fragments which in turn were correlated to a dramatic 2-4fold
decrease in vascular amyloid deposition in 16 and 22mo old mice. The features of
this AD model underline the array of pathologies that can arise from divergent
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hAPP mutations, and provide a novel framework from which to assess factors that

impact parenchymal versus vascular amyloid deposition.

1.7.3 BACE1 KO x transgenic hAPP mice

Other BACE1 KO mice were developed and subsequently bred to transgenic lines
that overexpress human mutant APP. One such line featured BACE1 KO on a

Tg2576 background (BACEl KO/APPtg) (Luo et al., 2001). The double transgenic
mice of this line do not develop amyloid plaques, a finding that is replicated with
another model, the BACEl KO/PDAPP mouse, which is the experimental focus of
this thesis. One exciting experimental hypothesis that could be explored in double

transgenic mice was whether removal of BACEl not only prevented development of

amyloid plaques but also prevented the development of cognitive deficits typical of
hAPP transgenic mice.

At the SfN meeting in 2003, Ohno and colleagues presented their work using the
BACEl KO mouse line developed by Luo et al (2001) bred to Tg2576 mice, and
which was later published in 2004 (Luo et ah, 2001; Ohno et ah, 2004). The

resulting BACE1-/-Tg2576+ mice were tested in social recognition and y-maze

alternation memory tasks at the age of 4-6 months. In addition, hippocampal slices
from these and other control mice were tested for neuronal excitability profiles

specific to cholinergic function.

While Tg2576 mice at 4-6mo do not have significant amyloid deposits, they do have

high levels of total brain amyloid, which are related to their pre-plaque cognitive
deficits (Westerman et ah, 2002). The Tg2576 mice in Ohno et.al.'s study have

significant impairments in social recognition, as measured by a social recognition

index, or percentage of time spent investigating a mouse that they had been

previously exposed to prior to a 3-hour separation. In contrast to wild-type animals,
BACEl-/- and BACE1-/-Tg2576+ mice displayed recall of the previous social
encounter, with a reduction in time spent investigating the familiar mouse. In Y-
maze alternation, Tg2576 mice had lesser spontaneous arm alternation compared to
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wild-type animals, while BACE1-/- mice had alternation levels that was

intermediate between the two. In contrast, BACE1-/-Tg2576+ mice had wild-type-
like levels of Y-maze alternation. In counts of arms entered, BACE-/- mice had a

phenotype like that of wild-type animals, while both Tg2576 and BACE-/-Tg2576+
mice had a significantly higher number of arm entries than wild-type control
animals.

Examination of cholinergic function was assessed by measuring post-burst

afterhyperpolarization (AHP) in the CA1 region of the hippocampus.
Administration of the pharmacological agent carbachol (CCh) acts to inhibit the
slower component of the AHP without affecting the overall peak of neuronal

activity, and in response to depolarization in the presence of CCh, Tg2576+ brain
slices show lesser neuronal excitability compared to all other genotypes. BACE1-/-
and BACE-/-Tg2576+ hippocampal response to CCh was like that of wild-type

mice, suggesting normal capacity for neuronal excitability.

Within the parameters of these experiments, it appears that removal of BACE 1 in
the presence of hAPP overexpression ameliorates certain cognitive and

physiological deficits associated with A|3, although BACE1 KO itself confers an

aberrant phenotype in one aspect of Y-maze exploration. Both Y-maze alternation
and social recognition tasks rely on some aspect of normal hippocampal function,
but their relationship to clinical AD impairments is unclear. However the AHP data
from Ohno et al. (2004) suggests that the hippocampal cholinergic function that
underlies learning and memory processes itself is restored in BACE-/-Tg2576+

compared to Tg2576+ mice. The functional improvements described by Ohno et.al.
are based in non-aversive, internally motivated tasks, and conceptually the processes

that underlie these tasks exist on a continuum of cognitive function with aversive

spatial memory tasks like the water maze. It is possible that certain types of

cognitive processes are differentially sensitive to the presence of functioning
BACE1 enzyme, or even that BACE1 and its substrates may play an entirely
different role in various cognitive processes. Finally, it is interesting to note that

genetic BACE1 removal in the presence of hAPP overexpression in Tg2576 mice
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ameliorates histological pathology and reduces particular types of cognitive deficits.
In addition, experimental data indicates the converse is also true, as BACEl/hAPP

transgenic mice have accelerated histological pathology, again emphasizing the

importance of maintaining critical levels of biochemical entities involved in

cognitive function.

Given the broad expression of BACE throughout the body, with higher levels in the

pancreas and brain, it is somewhat surprising to find no significant abnormalities or

mechanistic toxicity in BACE knockout mice had been reported in the published
literature. Concerns about possible mechanistic toxicity due to actions on an

unknown substrate of BACE similar to the case of y-secretase and Notch were

allayed with this data, although the full learning and memory profiles of these
BACE-null animals are yet unknown. While previous genetic knockout mouse
model work defined the need for APP and other amyloid processing pathway
entities like A|3 and the presenilins for normal function in behavioral memory tasks

(and even fundamental postnatal development), the removal of BACE may cause

lesser phenotypes. It is possible that the products of an intact a-secretase A(3

pathway and intact BACE2 will be sufficient to allow normal cognitive

performance, alternatively, A|3 could be requisite for the synaptic plasticity that
underlies highly regulated learning and memory processes.

1.8 Evaluation of behavioral and spatial memory phenotypes of BACE

KO x PDAPP mice: using a genetically modified animal model to

approximate the risks and benefits of therapeutic BACE inhibition

Evaluation of the cognitive status of the BACE knockout animals using standard
aversive spatial memory tasks like the MWM would answer many of these questions

regarding deleterious effects of BACE removal on synaptic plasticity. A series of
behavioral studies that approximate the effects of BACE reduction in various

genetic paradigms would shed light on the function and necessity of various

products ofAPP metabolism in the processes underlying learning and memory.
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A reasonable initial proof-of-principle experiment would entail behavioral and

histological testing of BACE knockout mice on a PDAPP background at various

ages to catalogue the range of possible effects ofBACE removal in AD. While these

analyses would be informative about theoretical mechanistic toxicity from complete
removal of BACE, an absolute genetic knockout of BACE on an APP

overexpressing background is not directly analogous to the situation that would arise
from therapeutic BACE inhibition. Any putative BACE inhibitor would likely be a

small molecule drug that acts to bind the excess BACE enzyme that exists in the
neurons ofAD patients.

This dissertation will feature the behavioral and histological analyses of BACE

homozygous and hemizygous mice on a PDAPP background. Indeed, a much more

relevant therapeutic model would involve a reduction of BACE on an human mutant
APP overexpressing background. This can be accomplished with conditional
mutants ofBACE, or alternatively with a mouse line that has a partial deletion of the
BACE gene. Heterozygous BACE knockout mice overexpressing hAPP mutations
would more closely approximate partial BACE inhibition than even conditional
mutants of BACE, as some level of BACE activity would be retained throughout

any potential BACE inhibition via small molecule drug. Given what has been
discussed about the effects of removal of APP, overexpression of A|3 and the

potential role for the APP processing pathway in regulating neuronal activity, here
are some of the potential outcomes from behavioral analysis of these BACE KO x

PDAPP lines:

• Deletion of BACE on a background overexpressing A|3 could rescue the
mouse cognitive deficits associated with the PDAPP transgene.

• Deletion of BACE and subsequent loss of (3-CTF and A|3 could worsen the

phenotype if these metabolites and/or some other substrate of BACE
are required for normal learning and memory as well as neuronal activity

regulation in mice.
• Deletion of BACE could produce an intermediate phenotype that

improves/worsens the cognitive phenotype of PDAPP mice, dependent on
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the dosage of the gene (e.g. partial vs. complete BACE gene deletion).
• Deletion of BACE could have no effect the PDAPP mouse phenotype.

Thus, the behavioral and histological studies with both BACE homozygous and

hemizygous mice crossed to the PDAPP line can provide valuable cautionary or

validative information for the therapeutic BACE inhibition rationale for AD.

Finally, these BACE KO x PDAPP mouse studies would also examine the role of

APP, BACE and A(3 in normal and pathological learning and memory processes.

1.9 Summary

Alzheimer's Disease is the major debilitating and ultimately terminal neurological
affliction of the elderly. As the world's population ages, AD will become a public
health crisis of global proportions if no disease-modifying prophylactic or treatment

is developed. In the past two decades there have been numerous critical discoveries
about the evolution ofAD pathology, and the amyloid-beta peptide has emerged as a

major culprit in the pathogenesis of this disease. Various experimental strategies to
reduce or otherwise modify the levels of A|3 are currently being developed, ranging
from administration of A(3 vaccines, A|3 antibodies, anti-inflammatory agents, to

inhibitors of the secretase enzymes that generate mature amyloidogenic A(3.

Therapeutic inhibition of the recently identified BACE enzyme is an appealing
method of A (3 control, as it is solely responsible for (3-site cleavage of

amyloidogenic A(3, BACE activity is highly elevated in AD brains, inhibitor design
is aided by the known BACE crystal structure, and BACE-null animals are viable
and fertile.

To help determine the true benefits and possible deleterious effects on synaptic

plasticity and function of therapeutic BACE enzyme reduction, detailed behavioral

analyses of BACE-modified mice on various genetic backgrounds must be initiated.

Spatial memory testing of homozygous and heterozygous BACE knockout mice on

hAPP mutant and BACE2 knockout backgrounds would provide significant
information about the therapeutic and toxic effects of BACE reduction in AD, and
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generate information on the requirements of the various APP metabolites and BACE

substrates in learning and memory. Even before it was identified, the BACE activity
of APP was the focal point of intense research efforts in the field of AD. This
dissertation will focus on the behavioral and histological analyses of BACE

homozygous and hemizygous mice on a PDAPP background, in hopes of answering
some of the questions regarding the value and theoretical risks of AD therapeutic
BACE inhibition, and the role of the amyloid-processing pathway in normal and

perturbed memory function.
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Chapter 2 Materials and Methods

2.1 General practices

2.1.1 Animal use

Examination of the phenotypic characteristics of genetically modified mice and tissue
from such mice was the experimental basis for this dissertation. All mice used in these

experiments have been cared for and studied in a manner in accordance with general
Institutional Animal Care and Use Committee policies, as well as with the specific
animal research protocols in place at Elan Pharmaceuticals, South San Francisco, CA,
USA.

2.1.2 Animal care

Mice were raised offsite by a protocol-approved vendor (Charles River Laboratories
or Taconic Farms) and transported by air and truck to Elan Pharmaceuticals in South
San Francisco (Elan SSF). After shipment the mice were transferred to their

permanent caging within the Research Animal Facility (RAF), and given ad libitum
access to food and water. The maximum number of adult animals per cage was 4, and

every effort was made to cage multiple animals of the same gender together, to reduce
socialization anxieties. Animals were maintained in ventilated rooms with 24

complete air changes per hour, with a microisolator cover on each cage to reduce

spread of airbourne diseases. All animals were housed under a 12 hour light/dark

cycle, and all experimentation was conducted during the hours of light between 0700
to 1900. Animals are allowed to acclimatize for one week following shipment.

2.1.3 Animal handling
After acclimatization, mice were handled and examined prior to testing. Handling
included 2-4 sessions of gentle restraint by tail, transfer between cage to table surface
and transfer to the experimenter's hip in a manner akin to what would be required

during later behavioral testing. Upon initial handling animals were examined for any

injuries or abnormalities that would exclude them from further study, including:
wounds and other open skin lesions, abnormal or damaged limbs, tumors, obvious

blindness, pregnancy, pathological circle-pacing or spinning, hemiplegia and seizure.
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If at any time during later behavioral testing a mouse displayed any of the
aforementioned exclusionary characteristics it was removed from further study. All
efforts were made to ensure a clean and quiet experimental environment for the
research animals in these studies.

2.1.4 Preparation and collection of animal tissues
After in vivo experimentation was completed, animals were euthanized and their
tissues collected for further analysis. Mice were placed in an acrylic box and
euthanized by carbon dioxide asphyxiation until breathing stopped. Blood was

collected by cardiac puncture, prior to transcardiac perfusion. Mice were abdominally
bisected to expose the heart in preparation for 2 minutes of transcardiac perfusion by
0.9% saline solution. Brain tissue was dissected with one whole hemibrain drop-fixed
in 4% paraformaldehyde (stored at 4°C for 48h) and the other hemibrain further
dissected to collect cortical and hippocampal regions for ELISA measurements

(~0.100 and 0.025g wet weight respectively, stored at -80°C).

2.2 sensorimotor behavioral testing

2.2.1 Activity monitoring
Locomotor activity was measured as part of the basic phenotypic characterization of
the BACE KO mouse lines. Previous work with the PDAPP mouse had shown

behavioral abnormalities related to motor function and possibly anxiety, which could
be affected by the alteration of the BACE gene (Dodart et al., 1999; Gerlai et ah,

2002).

Spontaneous motor activity data was quantitatively captured using the Versamax

activity monitoring system (Accuscan Instruments, Columbus, Ohio, USA)(Figure

2.1). This system features 4 separate 50cm x 50cm acrylic activity chambers which
can be partitioned to produce 8 activity arenas from which mouse activity can be

reliably detected (Figure 2.2). The activity chambers are framed by an array of
infrared beam emitters and receivers spaced 2cm apart on the x, y, and z axes. The
Versamax program, which controls the monitoring session via a Dell Optiplex

computer, records all movements that break the line of the infrared beams.
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Once the activity data was collected the resultant .VMX files could be filtered for

specific types of motor activity using the Versamap program. Using Versamap,
various zones could be created within the 25cm x 25cm mouse activity arena to

measure the duration and quantity of generalized movements (e.g. total distance

moved, time spent in movement, and number of rests in movement), spatially
constrained movements (e.g. number of entries into an adjacent sector, Figure 2.2)
and specific movements (e.g. rearing and stereotypic movements). Filtered data from
the Versamap program were compiled into a format that can be read by the

spreadsheet software program Excel (Microsoft Corporation, Redmond, WA, USA).

Any number ofmapping filters could be applied to the .VMX data so this represents a

very detailed source of spontaneous locomotor data (Dow-Edwards, 1998).

In most experiments, activity detection time was 15min per each primary and

secondary session, of which the primary session is performed to allow animals to

habituate to a less explorative state. In Study 01 IB, only one detection session was

recorded due to mechanical error. All chambers are cleaned with unscented cloths

(Clorox Wipes, Oakland, CA, USA) prior to entry by any animal to prevent motor

behaviors based in social examination of scents.

A subset of the motor activities measured within the Versamax system was analysed
to generate open field-like test information. The open field is a test in which a rodent
is exposed to novel arena and assessed for the quantity, quality and duration of
movements within the open central area of the novel environment. Anxious animals
will move notably less within the central area of the space, while normal animals will

increasingly enter this area. Distance traveled, time spent in area, and number of
vertical movements in the central open field (25% of total area) were calculated

(Figure 2.2)



Figure 2.1 Activity monitor chambers (top) and an individual mouse
activity arenas (bottom). Animals are placed in each chamber and all
movements are recorded via infrared beam breaks.

Figure 2.2 Activity chamber map schematics for rearings (pink),
stereotypy (purple) sector crossings (movement from blue to red or red
to blue area, left) and open field maps (green area indicates central area,
right)
2.2.2 Grip strength/positional sense
There is evidence in the literature that links the metabolism of A|3 and the expression

of BACE and BACE2 to a rare muscular condition called Inclusion Body Myositis

(IBM) (Askanas V, 1992; Vattemi et al., 2001; Vattemi et al., 2003). Patients with
IBM have myopathies that feature congophilic A|3 intracellular aggregations which
vacuolate muscle cells. BACE and BACE2 colocalize to areas of dying muscle fibers
in IBM and accumulate at the postsynaptic site of the neuromuscular junction. To
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determine whether experimental animals lacking in the products of the BACE gene

have muscular phenotypes, forelimb grip strength tests were conducted.

The mice were weighed immediately before testing and the body mass used to

calculate a body strength ratio. Using a grip strength apparatus (San Diego

Instruments, San Diego, CA, USA) with a digital force transducer readout, mice were

brought in proximity to the gripping plate (Figure 2.3). Once a grip was taken with the

forelimbs, each mouse was gently pulled away from the transducer along the plane of
the apparatus until the grip was broken (Meyer et al., 1979). Maximum force per three
successive trials was used in creating an average grip strength for that day. After three
successive days, the grip force data was taken to calculate the grip strength ratio:

Average maximal grip force (g)/mouse body mass (g) = Grip Strength Ratio

After performing 2 studies using the digital force transducer the device

malfunctioned, and a manual test was done instead to similarly assess the limb muscle
tone (Roberds et.al. 2001). In this positional sense/tone test, individual mice were

constrained to a small surface area and nudged at the shoulder in an effort to upend
the animal. Mice were scored for their ability to remain upright using their limbs, with
0 for normal ability to resist upending, 1 for staggering to remain upright, 2 for losing

footing in 2 or more limbs, and 3 for immediate loss of upright position.



Figure 2.3 Grip strength apparatus. Mice are allowed to grip the square
foil plate, which is attached to the digital force transducer at the right to
provide a measure of limb strength.

2.2.3 Rotorod

In continuing with the motor phenotype characterization of the BACE KO mouse

lines, Rotorod testing was also performed to provide information on ambulatory
movement. The measurement of motoric coordination in rodents is commonly done

using a mechanized rotorod apparatus, which causes minimal distress to animals
when applied properly with a sensible protocol (Forster and Lai, 1999). The apparatus

in these experiments is an EZRod system (Accuscan Instruments, Columbus, Ohio,

USA), consisting of 6 test chambers, which have 44.5cm x 14cm x 51cm dimensions

(Figure 2.4). A Dell Optiplex computer running the EZRod and EZDiag programs

was used to control the EZRod.

Figure 2.4 Rotorod motor activity chambers. Mice are placed on the rod
in each chamber, suspended above an electrified grid floor. Latency to
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fall from each motorized rod is recorded, as a measure of motor
coordination.

At the height of 35cm, there is a mechanized plastic rod 70mm in diameter that is
turned by a driver motor located behind the chamber. Below the rod is an electrifiable

grid that delivers the footshock to mice that fall from the rod. The rod can be

programmed to rotate at specific speeds over time, giving information on the motor

capacity of animals at various rotational speeds. The metal grid below the rotation
chambers is electrified with a 0.8mA current, which is noxious but not painful to
touch once the mice have fallen, serving to prevent the mice from prematurely leaving
the rod without respect to their motor capabilities.

The test animals are placed on the motorized rod (40mm or 70mm in diameter) in an

enclosed chamber. An individual trial begins with the rotation of the rod and ends
when the rodent falls from the rod or completes the trial without falling for the
duration of the trial. This latency to fall is the primary measure for rotorod testing.
The animals are then returned to their home cages to recoup before their next trial in
10 minutes.

There are three stages to the rotorod testing performed at Elan to assess motor

coordination and capacity, comprising a 3-day test regime:
• Day 1 - Animals are acclimated to the test chambers, in which they are placed

on an immobile rod for 30s for 4 trials with 10 minutes intertrial breaks.

• Day 2 - Animals are placed on a rod that rotates at constantly at 1 Orpm for 4
trials of 90s duration with 10 minutes intertrial breaks.

• Day 3 - Animals are subjected to 4-7 trials of 150s maximum duration with
rotation increasing steadily from 0-40rpm with 10 minutes intertrial breaks.

• Primary measurements are made from calculating average latencies over trials
from both constant and accelerating speed tests.

2.3 Spatial Memory Testing

AD patients suffer from declarative memory dysfunction, particularly episodic

memory that is attributed to neuropathology in the hippocampus as well as cortical
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regions of the brain. Concomitantly, behavioral analysis of transgenic models of AD
also focuses on cognitive deficits based in the hippocampus and cortex. While there
are many behavioral tasks that are based on a component of hippocampal function,
the Morris water maze has become the gold standard task for detecting spatial

memory impairments in transgenic mouse models of AD. The task entails placing a

test rodent into a pool with a platform of some kind that the animal must locate and
land to escape the aversive task of swimming. When released into the pool over a

series of trials, rodents improve their navigational performance by engaging spatial

learning and memory abilities. The original water maze spatial learning and memory

studies were conducted in rats, and were extended to show that the ability to solve
watermaze tasks is highly dependent on the function of the hippocampus, and because
of these early publications, the task is sometimes referred to as the Morris Water
Maze (MWM) (Morris, 1984; Schenk F. and Morris, 1985).

At the present time every major transgenic model of AD has been assessed in some

version of the MWM (Hsiao et al., 1996; Sturchler-Pierrat et al., 1997; Holcomb et

ah, 1998; Chen et ah, 2000; Chishti et ah, 2001). Initial reports of the behavioral
deficits in the PDAPP mouse utilized a protocol like the classic rat experiments, in
which the mice were tested for their ability to solve a single task (Morris, 1984;
Justice and Motter, 1997). While the PDAPP mice did display a spatial learning

deficit, it was not age-related as it was apparent in even young mice and, surprisingly
at the time, did not reflect accumulating amyloid plaque burden. Chen et ah (2000),
revisited this issue by publishing a report in 2000 in which PDAPP mice were tested
with a modified MWM protocol for the ability to learn a series of spatial locations

(Learning capacity) as well as to complete tasks to a certain performance level

(testing to criterion). Using this MWM study design Chen et.ah, 2000 were able to

demonstrate a cognitive spatial learning and memory deficit that is related to age and

accumulating amyloid burdens. Much of the watermaze experimentation for the
BACE KO mouse lines described here is based specifically on the protocol developed

by Chen et ah (2000).

2.3.1 The Water Maze Apparatus
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The watermaze is a system encompassing the tank in which the animal swims, a CCD
video camera, and a computer that contains the Watermaze software (Actimetrics,

Evanston, IL, USA) that collects the image data and manages the running of the

study. At Elan, the watermaze tank is an adapted circular livestock trough 1.52m in

diameter, 61cm high that sits on an 183cm x 183cm wooden platform 30cm high.
When filled, the Watermaze tank contains about 1800L of water to which 300mL of

white flat latex paint (Home Depot, Colma, CA, USA) is added to make the water

opaque enough to occlude a submerged platform. Each escape platform is made of

acrylic with a circular 18cm landing surface covered in a cross-hatched polyfoam
shelf liner (Rubbermaid, Atlanta, GA, USA) to facilitate landing and is submerged
lcm below the surface of the water.

The camera, videoboard, imaging analysis program and Watermaze software are all
from Actimetrics as part of their complete Watermaze system. Images of the

swimming mice are collected via the CCD camera mounted centrally over the pool.

Ceiling rods hang from the ceiling, suspending the curtains that can be drawn around
the tank to exclude extramaze cues. 500W Lights are mounted at various places along
the walls at 90cm from the floor to illuminate the maze for video tracking. To aid in

tracking of light-colored animals, a black non-toxic marker was applied to the
shoulder areas of the mice. The room in which the animals are tested is rectangular
with separate tank, computer and the cage rack areas. Water temperature during

testing is typically 23+2°. When released into the pool, mice are positioned with their
heads facing the wall of the tank to prevent bird's eye viewing of the pool as they are

placed. Upon landing the platform, mice are given 30s to explore and fix the location

spatially using visual cues. Mice are removed from the platform using a immobilized

paint roller with a foam cover (Home Depot, Colma, CA, USA) and returned their
home cage for a 10 minute rest interval. During this time, animals are warmed using a

space heater (Costco, Mountain View, CA, USA).

2.3.2 Visual Cued Navigation (VCN)

After sufficient pre-study handling, mice are tested for the ability to navigate to an

escape or landing platform marked by a visible intramaze cue, a darkened cylinder

standing 25cm from the center of the platform (Figure 2.5). Extramaze cues are
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occluded by the drawing the curtains around the watermaze. Animals are released
from random sites and given 90s to navigate to the visibly cued platform

independently and given 30s on the platform after landing. If after 90s have elapsed
and any mouse has not independently landed on the platform, it is guided manually to
the landing platform, allowed to land, and also given 30s on the platform.

VCN exposes the animals to swimming and allows them to associate landing the

platform with being returned to their home cages. VCN is conducted for 4 trials/day,
over 3 days with the platform in the center of the maze on Days 1 and 2 (Figure 2.6).
On Day 3 a new platform location is utilized to ensure the animals are swimming to

the visible cue and not a specific location. Animals not averaging Day 3 swim times
of less than 20s are removed from the study. Typically these animals are not simply
slower swimmers, as even aged PDAPP mice are capable of performing to this basic
criterion.

Figure 2.5 Watermaze in VCN mode, with curtains hiding extramaze
spatial cues, and a visible object marking the submerged platform site.
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Figure 2.6 Watermaze in VCN mode, schematic of visible platform
locations (black circle) within the pool over days 1-3. Note the change in
platform location on day 3, for trials 9-12.

Instead, these animals have characteristics that would confound the interpretation of
swim performance as a function of spatial memory: neophobic animals that avoid the

visibly cued platform, "floaters" who are uninclined to swim in order to find the

platform, and other mice that have obvious visual impairment. Typically very few
mice are excluded from study for these reasons, between 5-10%.

2.3.3 Serial Spatial Navigation from Memory (SNM)

Mice that have been judged fit to swim from previous VCN testing proceed to SNM,
in which their performance depends on the formation and use of strategies based in

memory to successfully locate the now hidden platform. The occluding curtains are

removed to reveal several extramaze features within the watermaze room that can be

used to help form a stable representation of space outside the pool. These features
include one curtain wall that is left extended, light stands, a pair of purple gloves
attached to the wall, the hose and piping system, as well as a large vertical shelf

system (Figure 2.7). All efforts is made to keep the extramaze environment stably
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positioned not just during any given test day, but throughout a single experiment and
indeed throughout all experiments across age and colonies tested.

In the SNM paradigm, animals were trained on a series of spatial locations into

finding each one to a predetermined criterion of performance (<21s over 3 successive

trials). The mice were exposed to a series of platform locations over 10 days, with a

maximum of 8 90s trials per day separated by a 10 minute intertrial period (Figure

2.8). Mice are released from 4 different release sites (at the base of the NW-SE, SW-
NE diagonals crossing the pool) along the edge of the tank, in 1-4, 1-4 order. The
number of locations the animals will experience depends how quickly they reach the

specific performance level at the previous platform location.

To reduce spatial location bias, halfof the animals tested in one experiment are tested
on platform locations in order 1-10, while the other group experiences the platforms
in order 10-1. In order to gain sufficient information about the spatial

S

d platform is not visible, but several extramaze cues are available to
form a spatial map.
Figure 2.8 Map of SNM platform locations (numbered) and release sites
(starred, in order of release).
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Figure 2.9 Example swim performance paths (in red) for mice with
unimpaired (left panel) and impaired (right panel) spatial learning by day
and platform. Impaired animals require several more trials to learn any
given location.

on the following day. Using these parameters an animal with the highest possible

spatial performance levels will solve the full set of 10 spatial location tasks in the
minimum of 30 total trials (3 per location) (Figure 2.9). Similarly poorest

performance level would be to be tested on only 3 platform locations over the
maximum 80 trials overall (with exposure to the second and third locations only

possible via the automatic platform change rule after 32 unsuccessful trials).

Thus the number of platforms learned provides a measure of 'learning capacity,'
while the mean number of trials to reach the learning criterion (TTC) for any one

location is a measure of acquisition rate, especially in the case of the first platform
location. Performance on the first platform location alone is analogous to the classic
version of the watermaze in which animals are trained on a single task.
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2.4 Seizure Experiments

During the initial watermaze experiments to characterize the homozygous BACE KO
mice on a PDAPP mouse line, some animals were observed to have spontaneous

clonic seizures (alternation ofmuscle contraction and relaxation) prior to, during and
after swim trials. Mice observed to have seizures often were subsequently noted to

have extreme muscle weakness, no forelimb grip responses and in some cases were

hemiplegic to either the right or left side of the body. After each cohort ofwater maze

experiments was completed and the study blind was removed, it was apparent that

spontaneous seizures were occurring in mice lacking BACE. This suggested that the
absolute deficiency of the BACE gene product had some mechanistic involvement in
this seizure activity, and accordingly, formal seizure testing was done to investigate
this possibility.

2.4.1 Induction of Seizures

Induction of seizures was achieved by administration of the compound

pentylenetetrazole (PTZ, from Sigma Chemicals, St. Louis, MO, USA). PTZ is a

commonly used seizure-inducing drug that acts via the GABAA/benzodiazepine

receptor complex, possibly by blocking CI- influx (Vitek et al., 1965; Zhang et ah,

1989). By employing intraperitoneal (i.p.) injections of PTZ at varying doses in

rodents, seizures of a range of strengths, types and durations can be initiated. A

typical experiment involves removal of an animal from its home cage to a larger
observation area. Animals are then dosed i.p. with PTZ at 25 or 60mg/kg made with

5-10ml/kg dose volume in 0.9% saline solution and observed for seizure profile for 30
minutes. The observation arena used is an acrylic cylinder 30cm in diameter, 45cm

high placed on a bench liner sheet (Figure 2.10). The cylinders are cleaned with
Clorox cloth wipes between uses.
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Figure 2.10 Seizure observation arenas. Animals were placed in clear
plexiglass cylinders for seizure activity scoring.

The low (25 mg/kg) and high (60 mg/kg) doses were chosen for their published

ability to reliably elicit mild clonic seizures and severe tonic-clonic seizures

respectively in the vast majority of treated animals. One unavoidable aspect of

experimental tonic-clonic seizure induction, whether by chemical agent or direct
electrocorneal kindling, is that it is lethal to the majority of animals . Indeed, any
treatment that causes 95% of controls animals to display tonic-clonic seizures will

typically also be near the 50% lethality range for the treatment, such that half of the

experimental animals will not survive the induction. Given these dismaying losses,

every effort was made to reduce the discomfort of the animals and to reduce the
numbers of animals used. For example, animals were all euthanized immediately after
seizure testing, and in the third seizure experiment (Study 011C), the N of animals
used per treatment group was reduced from N-10-15 to N~8, as prior analysis of
Studies 011A and 01 IB showed that this number was sufficient to produce

statistically meaningful results. Details of the ethical concerns and scientific concerns

considered in performing this study are addressed in the study protocol presented to

the Elan Institutional Animal Care and Use Committee (IACUC), which is included in
the appendix of this dissertation (Ch. 10.2).
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2.4.2 Seizure observations

The PTZ seizure profile includes observations of the time to onset, the severity and

description of seizure, number of seizures and duration of seizure activity as well as
time to death and group percentage of lethality. Seizure activity is generally divided
into partial clonic, general clonic and tonic seizures. Partial clonic seizures are

observed when animals exhibit localized single head or limb twitches that are brief,

lasting no more than the time it takes to perform the activity. General clonic seizures
are characterized by a combination of smaller clonic activities that may occur over a
wider area of the body, e.g. tremor of the forebody, haunches, which may have
duration of several seconds to minutes. Tonic seizures are the most severe type of
seizures induced by PTZ and is often lethal. Tonic seizure activity is defined by the
extension ofmuscles, with head, limbs, torso and tail elongated in an extreme caudal
direction.

The capacity to seize in response to exposure to seizure-inducing compounds in
rodents is a function of the individual animal's resistance to seizure. Generally,

previous spontaneous seizure activity predisposes experimental animals towards

having greater seizure activity in response to PTZ (Kosobud and Crabbe, 1990;
Kosobud et al., 1992; Ferraro et al., 1999). In experiments where 25mg/kg of PTZ
was used, the objective of the study was to examine the resistance to clonic-type
seizures by BACE and/or PDAPP genotype. Similarly the 60mg/kg doses of PTZ
were used to examine resistance to tonic seizures by genotype. Seizure types and their
common abbreviations are described below:

Clonic type: alternative contraction and relaxation of the voluntary muscles

C = Clonic - co-coordinated, unsymmetrical convulsion occurring while natural,
purposeful like movements are also present, e.g. head or tail twitches.
Ch = Champing - clonus of the jaws only
Cs = Clonic symmetrical - repetitive symmetrical jerks or twitches of the limbs, can
include whole-body tremors that do not interfere with locomotion.
Rn = Running excitement - often preceded by partial or symmetric clonus; a severe
clonic convulsion that features rapid and jerky walking or running.

Tonic type: persistent contraction and spasm of a set of voluntary muscles.
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PE = Paw extension - sustained extension of hindlimbs, usually preceded by tonic
flexion (Tf). Tf is used if linear tonic flexion occurs without extension; Tf is
uncommon.

Op = Opisthotonus - head, body and limbs are rigidly extended and arched
backwards.
Em = Emprosthonus - opposite ofOp i.e. extended forward.
EPE = Extreme paw extension - Tonic flexation with underlying tremor that
involves the whole body, directed towards the caudal aspect; typically a pre-lethal
observation.

Mixed Clonic/Tonie type

Pop = Popcorn - seizure where animal repeatedly "pops" into the air; this seizure is a
mixture between clonic and tonic types, as the rapid alternation between the two in
the hindlimbs propel the animals into unrestrained leaps around the arena.
Rr = Rock and roll - animal is prostrate on its back and rocks from side to side in a
seeming effort to right itself, occasionally rolling over (overshooting) and continuing
to rock again; often due to asymmetrical tonic activity.
Su = Sitting up - sits upright on hindlimbs during the seizure
Pr = Praying - sitting up seizure in which forelimbs are held together or crossed in
manner resembling prayer.

2.4.3 Seizure scoring

Experiments using the PTZ model of seizure induction frequently use seizure scores

to grade the severity of seizure activity in test animals (Matsumoto, 1990; Ferraro et

al., 1999). In collecting the seizure observations, it is possible to distinguish between
the types of seizure activity and allocate them to partial clonic (PC), general clonic

(GC) or tonic (T) seizure categories. By recording the latencies in minutes to onset of
the three seizure classes, a formula can be applied that generates a composite seizure

severity score that differentially weights seizures by severity:

Seizure score = 0.2/(onset PC) + 0.3/(onset GC) + 0.5/(onset T)

2.5 Histological Experiments

One of the classical pathological features ofAD is the presence of A|3 deposits in the
brains of patients. While amyloid plaques in the cortex, hippocampus and entorhinal
cortex are often used post-mortem to confirm the clinical diagnosis of AD, there is a

much controversy regarding the relationship between levels of brain amyloid burdens
and cognitive status (Terry et ah, 1991; Nagy et ah, 1995; Gomez-lsla et ah, 1996;
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Naslund et al., 2000; Bussiere et al., 2002, see also Ch.l, p.8 of this dissertation).
With respect to the PDAPP transgenic mouse model ofAD, there is some relationship
between amyloid burdens in the cortex and behavioral deficits and progressive

synaptic loss is observed, however unlike in the AD there is no global neuronal loss

present in this model (Irizarry et al., 1997; Chen et al., 1998; Chen et al., 2000).

Among the various synaptic proteins that are emerging as biomarkers for synaptic

function, Calbindin levels have been directly correlated in a transgenic mouse model
that overexpresses mutant human APP to spatial memory performance in the water

maze (Lally et al., 1997; Eriksson et al., 1998; Jiang et al., 2003; Palop et al., 2003;

Shetty, 2004). Calbindin (CB) is a calcium-binding protein expressed throughout the
brain, and is associated with homeostasis and protection from apoptosis in neurons as

well as developmental and pathologically-induced neurogenesis in the granule cell

layer of the hippocampus (Lally et al., 1997; Eriksson et al., 1998; Jiang et al., 2003;

Shetty, 2004). In these studies, CB is measured and correlated to behavior in all
animals where possible. Also, while it is not the objective of this work to examine the
levels of APP and amyloid in the transgenic BACE KO mice, this type of histology is
used to confirm the genotypic identities of animals tested.

2.5.1 Calbindin Histology

After submersion in 4% paraformaldehyde, hemibrain tissues are placed in 0.05%
Sodium Azide (NaN) in phosphate buffered saline pH 7.4 (PBS, Gibco, Carlsbad,

CA, USA) solution until further processing. Brain tissues are cut coronally to 40um
thickness on a Leica vibratome (Wetzlar, Germany) and stored free-floating in 48-
well Costar plates (Corning, NY, USA) in a 10% glycerol PBS solution. Quantitative
CB immunostaining is conducted with one section per brain that contains

hippocampal structures, particularly the outer molecular layer of the dentate gyrus.

Sections are collected into a 96-well Costar plate filled with PBS using a fine
camelhair paintbrush. All incubation and wash steps are done with gentle agitation

applied by a Nutator or an orbital shaker (Becton-Dickinson, Franklin Lakes, NJ,

USA). Tissues are washed 2x for 10 minutes. Tissues are quenched with a 3%H202,
0.05% Triton X-100 (Fisher Scientific, Hampton, NH, USA) in PBS solution for 20
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minutes. After 2 more 10 minute rinses, a blocking step follows with 10% normal
horse serum (NHS) (Vector Labs, Burlingame, CA, USA) for lh. Following a single
10 minute wash, sections are incubated overnight at 4°C in 3mg/mL mouse anti-CB

antibody (Sigma Chemicals, St. Louis, MO, USA) in PBS solution. The following

morning, sections are washed 2x for 10 minutes in PBS and incubated for lh in the
dark with a 1:75 horse anti-mouse fluorescein-isothicyanate secondary antibody

(Vector Labs, Burlingame, CA, USA) and again washed 2x for 10 minutes in PBS
afterwards. Sections are mounted onto Fisher charged superfrosted slides with
Vectashield from Vector Labs.

CB-stained sections are imaged using a Biorad/Zeiss 5000 laser confocal microscope

system operating from a Dell Optiplex computing platform. Images are collected

using the fluorescein filter on the Zeiss microscope at 10% laser power. Images are

collected at 60x magnification at the level of the dorsal granule cells of the outer

molecular layer of the dentate gyrus in the hippocampus. Quantitative analysis of the

images was performed using the NIH Image 1.63 program available for free
download at the http://rsb.info.nih.gov/nih-image/download.html webpage. CB

density is presented as a value normalized to the levels of CB from 6 different brains
from 18mo non-transgenic littermates from the PDAPP line concurrently stained in
each staining run.

2.5.2 APP/Ap Histology

Staining for hAPP and hA|3 was performed using the monoclonal mouse antibodies
8E5 and 3D6, respectively. 8E5 is an antibody raised to the 444-592 amino acid
residue stretch of the hAPP protein that is used to stain dystrophic neurites, while 3D6
is a synthetic antibody for the N-terminus 1-5 amino acid stretch of hA(3 capable of

binding diffuse and compact deposited amyloid. Prestaining, processing, and
anatomical regions of interest for tissues immunoreacted with 8E5 and 3D6 is the
same as with CB staining. Again all incubation and wash steps were done with gentle

agitations on a nutator device.
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All sections are washed 2x for 10 minutes in PBS with the same quenching step as

with CB. After another set of 2 10 minute washes in PBS, sections are incubated

overnight in 3ml/mL of biotinylated 3D6 (1:433 concentration) or 8E5 (1:233

concentration) in a 1% NHS in PBS solution at 4°C. On the following morning after 2
10 minute washes in PBS, sections are incubated in a secondary antibody complex

solution, A/B Vector Elite kit from Vector Labs at 1:75 in PBS for lh. After 2 10

minute washes in PBS, sections are reacted in a 0.5 mg/mL diamino benzidine
solution in lOOmM Tris-HCl buffer activated with 1:2400 H2O2 for no more than 10

minutes. Sections are then mounted on superfrosted charged slides and air dried

overnight. Slides are cleaned with a 10 minute dip in Propar (Anatech, Denver NC,

USA) and coverslipped in Permount (Fisher Scientific) mounting solution. Images of
the 8E5 and 3D6-immunoreacted sections are collected using an Axiocam microscope

system from Zeiss. Under the light phase 4x photomicrographs are taken of the

hippocampal and cortical regions of the tissues. As these images are used solely for
the qualitative confirmation of genotype by visible hAPP and hAb expression, no
further analysis was performed with these images.

2.6 Statistical Analyses

Analyses were performed using Prism 4 from Graphpad Software (San Diego, CA

USA) and Matlab7 (The Mathworks, Natick, CA, USA). A MANOVA-based analysis
of factors sufficient to handle wide differences in group values and N was done to

determine the importance of genotype, age, gender, and color factors on measure

results prior to other tests. Following the factorial MANOVA all further analyses
were based in genotype, age and Genotype*age. For some of the watermaze studies,

especially where there are multiple age- and genotype-related variables imposed on an

experimental design with a by-day variable, a simple ANOVA (analysis of variance)
was insufficient to analyse the data. ANOVAs would make assumptions about

experimental parameter simplicity or sphericity that are untrue in this case. Instead a

Two-Way ANOVA is employed when measures involved trials over multiple days

(e.g. VCN speed, latencies). In other cases, like learning capacity, which is presented
as a single number column per age/genotype, a simple ANOVA with the Cochran-
Mansel-Heusen test was used to determine between-group differences. Other tests
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were used as necessary and described in text (e.g. Seizure Lethality was measured

using Fisher's exact Chi-squared test).

Correlational analyses were conducted between behavioral measures, CB levels and

pharmacological seizure data are conducted using Spearman's Correlation test. This

type of correlation analysis produces an R-value that describes the amount of

variability in one measure that can be described by values in another. These value

relationships are generated by a log ranking method, which is preferable to

comparison of actual values due to the extreme differences in sources of variability
between the methodologies producing the data. Arbitrary numerical assignments were

given to data with text values to allow the numeric correlational analyses: within color

albino=0, agouti=l, black=2, while with gender male=l, female=2. In Study 001 the

following genotype assignments were made: Control=l, PDAPP=2, BACE KO=3,
and BACE KO; PDAPP=4. Finally in Study 006 genotype assignments were as

follows: PDAPP=1, BACE pKO; PDAPP=2.

2.7 Experimental Overview

This dissertation work revolves around three major experiments: the spatial memory
characterization of mice with homozygous and hemizygous deletions of the BACE

gene crossed to a heterozygous PDAPP mouse line, and the profiling of these mice for
sensorimotor phenotypes and susceptibility to pharmacologically-induced seizures.
The terminology homo- and hemizygous refers specifically to genetic knockout of
either both (homo) or one (hemi) BACE gene allele, while heterozygous refers to

mice carrying one copy of the PDAPP transgene. These experiments will be referred
to as Study 001 (BACE homozygous KO x PDAPP lines), Study 006 (BACE

hemizygous KO x PDAPP lines) and Study 011 (PTZ seizure experiments on mice
from both Studies 001 and 006), with an experimental roadmap presented below.

Animal shipment
Acclimatization (7d)
Mouse handling (2d)

Spatial memory
Visual cued navigation (3d)

Hidden platform navigation (10d)
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Biochemistry ; Histology
Activity assays, ; Tissue processing (5d)
soluble/insoluble j Calbindin, amyloid
amyloid extraction • staining and imaging (5d)

Chart 2.1 Flowchart for Studies 001, 006. This schema represents the
workflow for each individual cohort, with a total of 18 cohorts. Red
boxes indicate research was conducted outside the scope of this thesis
by other collaborators on the Elan/Pharmacia BACE project team. Brains
collected from each mouse undergoing spatial memory testing were
partitioned to one hemi-brain each for the purposes of
biochemical/histological analysis.

Animal shipment
Acclimatization (7d)
Mouse handling (2d)

Sensorimotor testing
Grip strength/positional sense (3d)
Spontaneous activity monitoring (2d)

Rotorod Analysis (3d)
Seizure Induction (5d)

Histology
Tissue processing (5d)
Calbindin, amyloid

staining and imaging (5d)

Chart 2.2 Flowchart for Studies 011A-C. This schema represents the
workflow for each study, which was similar to Study 001 in Chart 2.1
above.

2.7.1 Study 001, 006 Animals

The Study 001 and 006 mice have been generated from a triple-strained background

comprising the C57B16, DBA/2J, and Swiss-Webster mouse lines. At the time the
various BACE KO x PDAPP lines were generated, the PDAPP breeding stock was
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12-14 generations from the F1 progeny of the original Line 109 mice first described
in Games et al. (1995). As a point of reference, the published work of Chen et al.

(2000) describing the spatial memory phenotypes of PDAPP mice involved animals
from generations 6-10, while currently PDAPP mice are 22-25 generations from Fl.
All study cohorts utilize both male and female mice, with albino as well as agouti-
and black-coated pigmented animals. Best efforts were made to balance each cohort

by genotype, gender and color.

BACE KO mice were created by an exon deletion process (Roberds et al., 2001). A
lambda KOS vector containing the BACE gene from 129 mice was used to create the
exon 1 deletion of the BACE1 gene. A 165 base pair deletion was introduced into the
vector BACE1 exonl sequence, and replaced with an expression cassette containing a

neomycin-resistance gene and an HSV-thymidine kinase gene to select for specific

homologous recombination. The vector was electroporated into 129/ SvEvBrd ES
cells and selected positively for neomycin resistance with G4189 (Gibco) and

negatively for thymidine kinase with gancylcovir (Roche Bioscience) resistance.

Upon successful BACE1 gene targeting, the embryonic stem cells were injected into
C57/B16 blastocysts. These chimeric offspring were bred to C57/B16 mice to produce
BACE1 knockout heterozygotes. Heterozygous BACE1 KO mice were subsequently
bred together to produce progeny homozygous for the BACE1 knockout allele (1/2
would be BACE1 KO heterozygotes, 1/4 would be wild-type, 1/4 would be BACE1
KO homozygotes.

Mice BACE1 knockout heterozygotes were bred to PDAPP transgene homozygous
mice. The resulting progeny for that breeding are the Study 006 mice, with animals
that are heterozygous for the PDAPP transgene with both or one BACE1 genes. The
subset of the Study 006 mice that were heterozygous for both BACE1 and the PDAPP

transgene were then bred to mice of the same genotype to produce the Study 001 mice

(Figure 2.11).
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Study 001 Mice
4 genotypes tested

Wt/Wt Wt/Het

KO/Wt KO/Het
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Het/Het
%"

Wt/Hom KO/Hom

Figure 2.11 Genetic Lineage of BACEKO mice in Studies 001 and 006.
Upper panel: A mouse with one copy of BACE1 is bred to a mouse with
2 copies of the PDAPP transgene, the resulting Study 006 progeny are
all PDAPP heterozygotes, 50% with one copy of BACE1 (Het/Het), 50%
with 2 copies of BACE1 (Wt/Het). Lower panel: PDAPP heterozygotes
with one copy of BACE1 are bred, producing an assortment of
genotypes. Of the 8 possible genotypes, 4 were assessed in Study 001;
a Control animal with both copies of BACE1 and no PDAPP transgene
(Wt/Wt), PDAPP heterozygous animals (Wt/Het), BACE1 KO animals with
no copies of the gene (KO/Wt), and BACE1 KO; PDAPP animals with no
BACE1 genes and one copy of the PDAPP transgene (KO/Het). Black
lines represent the BACE1 gene and PDAPP transgene, red crosses
indicate a BACE1 gene deletion, while blue boxes represent copies of
the PDAPP transgene. Green boxes indicate genotypes tested in Studies
001 and 006.

2.7.2 Study 001 Experimental Design
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Study 001 was designed to examine the spatial memory phenotypes of BACE

homozygous KO x PDAPP mice of various genotypes across ages that would give a

wide representation of amyloid plaque burdens (young pre-plaque mice, middle-aged
mice with moderate plaque depositions, and old mice with heavy amyloid deposits).
The animals tested in the watermaze by age, genotype and gender are described in the

following tables; the majority ofmice tested in the watermaze also were analysed for

hippocampal levels of CB and a selection of mice were qualitatively genotyped for

APP/A|3 expression.

2.7.3 Study 006 Experimental Design

The objectives of Study 006 were similar to that of Study 001, with the major
difference stemming from the difference in the dosage of the BACE knockout allele.

Study 006 compared head-to-head the spatial memory performances of animals with a

hemizygous deletion of BACE on a heterozygous PDAPP transgene background to

mice with intact BACE genes on a heterozygous PDAPP background. As a result of
the breeding scheme (Figure 2.11 upper panel) there were only two genotypes

produced in Study 006 animals, which were also tested at young, middle and old ages

to understand the spatial memory phenotypes in a context that would normally

produce high levels of pathogenic amyloid. Mice in Study 006 were assessed for

spatial memory profiles in the watermaze, tested for CB immunoreactivity in the

hippocampus and a select number of tissues were analysed to ascertain genotype with

APP/A|3 histology.

2.7.4 Study 011 Experimental Design

Using the same lines of animals from studies 001 and 006, Study 011 was conducted
to develop a larger set of behavioral phenotype data including tests to determine the
relative propensity to seizures in the BACE KO and PDAPP mouse lines. Three

separate experiments were conducted within Study 011, with differing ages and also
different doses of the seizure-inducing agent, PTZ. In Study 011A 18mo old mice of
the same lines as the Study 001 (BACE homozygous KO colony) were examined for
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body mass, grip strength, spontaneous locomotor activity, motor coordination, and

response to administration of 60mg/kg of i.p. PTZ. In Study 01 IB, 5mo old mice
from the same lines as Study 006 (BACE hemizygous KO colony) were also analysed
for the same functional measures as with Study 011A. In Study 011C 18mo old mice
from the Study 006 lines were profiled with the same measures as the previous

studied, and further tested on response to both 25 and 60mg/kg of PTZ. Study 011
tissues were tested for CB immunoreactivity in the hippocampus with a select number
of tissues immunostained to ascertain genotype with APP/A(3 histology.
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The research data and conclusions (Ch. 3-8) that follows is
confidential as of October 21st, 2005, although an attempt to
publish the majority of the data will be made in late Fall
2005. Publication of data from this thesis will be done as a

stand-alone document. However, the manuscript generated
from this work will include references to related work done

by Elan researchers involving biochemical and detailed
histological analyses of the BACE1 KO x PDAPP mouse
model that will be published around the same time.
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Ch.3 Study 001: Spatial memory characterization and histological
analysis of homozygous BACE KO x PDAPP mice

In the opening chapter of this dissertation, information about the biology of Alzheimer's
Disease and the rationale for in vivo examination of BACE KO x PDAPP mice was

presented. These BACE KO x PDAPP mice are fully or partially deficient in the (3-

secretase gene, while transgenically overexpressing a human mutant form of the

Amyloid Precursor Protein driven by the PDGF promoter (PDAPP transgene). In effect,

they represent a gross genetic model of therapeutic BACE inhibition.

This chapter focuses on the experimental data gathered from these Study 001 mice,
which have a homozygous BACE gene knockout on a transgenic PDAPP background.
Behavioral and histological data are derived from analysis using a modified serial

spatial reversal water maze paradigm, histological analysis of Calbindin (CB) levels in
the hippocampus, confirmation of APP-overexpressing genotypes with APP and A(3

staining, and correlational analyses of behavioral and CB histological measures are also

presented. The genotypic identities of Study 001 animals are described in section 2.7 in
the previous chapter, while the details of the animals tested are presented below in
Tables 3.0a.

Non-Tg (Wt) PDAPP -/+ (Het)
BACE +/+ '

BACE -/- (KO)
Control PDAPP
BACE KO BACE KO; PDAPP

Table 3.0a Study 001 Table of Genotypes

Due to the variability inherent in spatial memory testing of PDAPP-based mice of both

genders and on triple-strained background (C57B16, DBA/2J, Swiss-Webster), it was

essential to test N~20 mice to obtain sufficiently powered statistical analysis. As the
effects of p-secretase gene ablation may vary as a function of age, animals in Study 001

were tested at young (3mo), middle (13mo) and old ages (18mo). In addition, the
constraints of breeding a colony of mice with 4 genotypes of interest required an effort
to balance animals by coat colors (albino, black and agouti) as well as gender. The
numbers of Study 001 animals separated by genotype, coat color and gender groupings
are presented in Table 3.0b with Ntotai=251 mice.
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Female Male ALL

Agouti Black Albino ALL Agouti Black Albino ALL Agouti Black Albino ALL

Age (mo) Genotype
3 BACE KO; PDAPP 2 2 4 8 2 0 6 8 4 2 10 16

BACE KO 2 5 4 11 4 0 7 11 6 5 11 22
PDAPP 1 2 8 11 1 5 5 11 2 7 13 22
Control 3 1 7 11 3 1 5 9 6 2 12 20

ALL 8 10 23 41 10 6 23 39 18 16 46 80

13 BACE KO; PDAPP 2 4 5 11 1 0 8 9 3 4 13 20
BACE KO 2 2 7 11 2 2 5 9 4 4 12 20

PDAPP 3 2 6 11 3 2 7 12 6 4 13 23
Control 1 4 4 9 3 1 8 12 4 5 12 21

ALL 8 12 22 42 9 5 28 42 17 17 50 84

18 BACE KO; PDAPP 1 2 8 11 2 2 4 8 3 4 12 19
BACE KO 1 3 6 10 2 4 3 9 3 7 9 19

PDAPP 8 3 2 13 2 3 10 15 10 6 12 28
Control 4 3 3 10 0 1 10 11 4 4 13 21

ALL 14 11 19 44 6 10 27 43 20 21 46 87

ALL BACE KO; PDAPP 5 8 17 30 5 2 18 25 10 10 35 55
BACE KO 5 10 17 32 8 6 15 29 13 16 32 61

PDAPP 12 7 16 35 6 10 22 38 18 17 38 73
Control 8 8 14 30 6 3 23 32 14 11 37 62

ALL 30 33 64 127 25 21 78 124 55 54 142 251

Table 3.0b Study 001 mice by genotype, age, gender and color.

Details of the statistical analysis of Study 001 must be mentioned here. While best
efforts were taken to balance the genotypes and gender of animals studied, it was not

possible to also balance by color or pigmentation. A cross-categorization analysis

(MANOVA) similar to general linear modeling to determine the contribution of each
factor to results was performed across animals and measures (Table 3.0c). The major

finding was that the most important factor in determining data outcomes was genotype,

followed by age. Although gender was an insignificant factor in all measures, color was
a significant factor in several measures (TTC1, Average TTC, Swim speed and Swim

latencies). Further analysis revealed that when the disparity in number of Albino versus

Black and Agouti animals was built into the model, color became an insignificant factor
that was dependent on genotype and age (overall p=0.62). Thus all statistics further will
be described by genotype, age and genotype*age.

Outcome Gender Color Age Genotype
VCN Latency 0.48 <0.0001 <0.0001 0.078
VCN Speed 0.06 0.035 <0.0001 0.0013

TTC1 0.29 0.022 0.0015 0.038
TTC2 0.87 0.22 0.16 <0.0001
TTC3 0.66 0.34 0.065 <0.0001

Average TTC 1-3 0.47 0.036 0.2 <0.0001
Platforms Learned 0.74 0.069 0.42 <0.0001

Calbindin 0.042 0.46 0.0022 <0.0001

Table 3.0c Statistical summary of factor significance in Study 001.
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3.1 Visible platform testing

Prior to spatial memory testing in the hidden platform serial locations task, Study
001 mice were assessed in visual cued navigation (VCN). In this first phase ofwater
maze testing, lasting 3 days, 4 trials/day, the mice learned to swim to a visible

platform as described in Ch 2, p.9-l 1. VCN is a general associative task that also

provides insight into the sensorimotor function of the test mice. The primary
measures of performance are latency to escape which should show a decline across

trials, and swim speed, which should remain relatively static.

Qualitatively, all lines of the Study 001 mice were equally able to perform the
rudiments of the swim task, although with progressive age more animals were

removed from the study due to their inability to complete the VCN testing in a

satisfactory enough manner to progress to hidden platform testing. If by the third

day of VCN any animals were not escaping to the visible platform in <20s, they
were removed from further study as they could not be expected to meet the criterion
for serial learning in the hidden platform testing. Study 001 mice swam at mean

speeds ranging from 22-30cm/s, with a typical swim path sequence beginning with
the mice swimming at the perimeter of the pool. In later trials mice steadily learned
to climb onto the visible platform and treat it as an escape route from the aversive
task of swimming and their increasingly efficient swim path reflect this learning.

Figure 3.1.1 shows the steady decline in escape latency across days at all ages

(Tables 3.1.1 a-d). The greatest differences between genotypes were visible on the

Day 1 of testing, varying from 21.4-26.4s in 3mo animals, 34-54.8s in 13mo

animals, and 42.3-56.9s in 18mo animals. In Study 001 mice there was a strong

effect of age on performance (Age: F=T3.88, p<0.0001). At 3mo, there were no

genotypic differences in VCN swim latency. By 13mo, BACE KO mice had longer
swim latencies than Control mice (BACE KO p<0.01). At 18mo as BACE KO
swam for shorter trials than all mice carrying the PDAPP transgene (BACE KO;
PDAPP p<0.01, PDAPP p<0.01).
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Most of the Study 001 groups' VCN swim latencies were longer on the first testing

day as a function of age, except for the PDAPP group, suggesting that this was an

age-related influence upon search patterns rather than sensorimotor function as

swim speeds were equivalent with age. Although mean latency values were higher
with age, there was no indication that any of the transgenic mice completing VCN

testing on day 3 then had any significant difference from the Control mice. All

genotype groups were able to navigate to the visible platform with a mean escape

latency of 10s, with no genotypic deficiency at any age, by day 3 ofVCN.

BACE KO; PDAPP mice had the slowest average swim speeds of mice at 3 and
18mo of age as seen in Figure 3.1.2 and Tables 3.1.2a-d. In addition, all of the

genotypes experienced age-related declines in swim speed (Table 3.1.2c). However,
even these aged BACE KO; PDAPP mice were competent to perform within the
strictures of a trials to criterion-based serial learning paradigm as their average swim
latencies by Day 3 of VCN testing were <20s, making their inclusion in the

experiment reasonable. In addition it appears that the BACE KO mice may have a

genotypic deficiency in learning-based performance of the VCN, as their swim

speeds are similar to that ofControl mice, but still swam for longer periods.

Study 001 albino mice had longer swim latencies than other pigmented mice, but did
not have slower swim speeds compared to other mice. This difference was only

apparent on Day 3 of testing (Table 3. l.le), still well within the <20s criterion set in
hidden platform testing. Visual inspection of trials in the Watermaze program

showed that albino mice were tracked with less precision than pigmented animals,
which led to artifactually extended trials for ~l-4s, as trials automatically ended
when animal are tracked "on platform" for >ls. This color-based swim speed
difference is not treated as a meaningful difference in this measure. Later serial

spatial testing with a hidden platform featured better tracking of albino mice than in
VCN as there was greater tonal contrast between mice and the platform area.
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Figure 3.1.1 Visual cued navigation swim latencies of Study 001 mice
by age and genotype. A: Latencies for 3mo mice do not differ by
genotype. B: At 13mo BACE KO mice had longer swim latencies than
Control mice. C: Again at 18mo BACE KO mice require the longest
trials overall, swimming for longer time than PDAPP or BACE
KO;PDAPP mice. These data suggest a BACE KO specific deficit in
associative memory or swimming efficiency.
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Figure 3.1.2 Visual cued navigation swim speeds of Study 001 mice by
age and genotype. A: At 3mo BACE KO; PDAPP mice swim slower than
Control and PDAPP mice. B: There were no genotypic differences in
swim speed at 13mo. C: 18mo old BACE KO; PDAPP mice swim
significantly slower than Control and PDAPP mice although their swim
latencies (Figure 3.1.1C) are indistinguishable at this age.
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3 months 13 months 18 months All

Age (Mo)

13

Genotype N I Mean Std N I Mean Std N I Mean Std N I Mean Std
BACE KO; PDAPP 16 23.21 22.39 20 43.98 18.51 19 56.87 23.78 55 42.39 25.19

BACE KO 22 21.36 13.16 20 33.95 23.95 19 42.25 18.22 61 31.99 20.44
PDAPP 22 26.4 20.3 23 39.51 16.77 28 47.53 21.12 73 38.64 21.21
Control 20 21.32 15.39 21 54.75 24.22 21 44.59 19.08 62 40.53 24.12

ALL 80 23.11 17.68 84 43.06 22 87 47.71 20.97 251 38.31 22.87
BACE KO; PDAPP 16 11.55 13.57 20 17.09 14.41 19 22.04 12.96 55 17.19 14.07

BACE KO 22 8.67 4.6 20 11.71 7.7 19 10.85 8.47 61 10.46 7.01
PDAPP 22 13.22 11.53 23 15.25 15.91 28 21.81 16.79 73 17.16 15.36
Control 20 11.69 13.88 21 17.34 13.74 21 14.04 9.3 62 14.4 12.48

ALL 80 11.34 11.18 84 15.37 13.36 87 17.59 13.49 251 14.85 12.96
BACE KO; PDAPP 16 17.45 7.02 20 8.79 5.9 19 10.13 4.42 55 11.77 6.8

BACE KO 22 13.06 8.07 20 7.29 5.58 19 6.31 3.25 61 9.07 6.72
PDAPP 22 14.9 10.38 23 9.83 6.27 28 10.29 5.71 73 11.54 7.79
Control 20 15.91 10.74 21 9.7 5.26 21 9.09 6.3 62 11.5 8.22

ALL 80 15.16 9.25 84 8.84 5.76 87 9.1 5.31 251 10.98 7.48
BACE KO; PDAPP 16 17.4 16.05 20 23.39 20.44 19 29.68 25.34 55 23.78 21 62

BACE KO 22 14.46 10.53 20 17.65 18.77 19 19.8 19.38 61 17.17 16.72
PDAPP 22 18.18 15.67 23 21.53 18.83 28 26.54 22.19 73 22.44 19.59
Control 20 16.53 13.83 21 27.26 25.55 21 22.57 20.21 62 22 14 20.9

Source Factor(s) F statistic DF p-value
Genotype*Age 1.6 6 0.053

Age 13.88 2 <0.0001

Genotype 11.73 3 0.078

p-value
Comparison tCE KO; PDA BACE KO PDAPP Controls ALL

3 vs 13 months <0.0001 0.0015 0.0015 <0.0001 <0.0001
3 vs 18 months <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
13 vs 18 months 0.34 0.11 0.052 0.77 0.37

p-value
Comparison 3 mo 13 mo 18 mo ALL

BACE KO; PDAPP VS BACE KO 0.21 0.13 0.0079 0.0076
BACE KO; PDAPP VS PDAPP 0.094 0.49 0.82 0.89

BACE KO; PDAPP VS CONTROL 0.36 0.68 0.21 0.76
BACE KO VS PDAPP 0.74 0.062 0.0052 0.016

BACE KO VS CONTROL 0.9 0.0058 0.5 0.058
PDAPP VS CONTROL 0.79 0.38 0.2 0.83

Day
1 2 3

Color N Mean (Std) N Mean (Std) N Mean (Std)
<&0lb5m© 142 38.66 (24.55) 142 16.25 (13.42) 142 13.38 (7.48)
Agouti 55 38.19 (19.58) 55 13.10 (10.51) 55 8.24 (7.20)
Black 54 37.52 (21.73) 54 12.97 (13.76) 54 7.44 (5.14)

Tables 3.1.1a-e Descriptive, MANOVA and pairwise ANOVA statistics
for VCN swim latencies in Study 001 mice by age and genotype.
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Age (Mo) Genotype
3 BACE KO; PDAPP

BACE KO
PDAPP
Control

ALL
13 BACE KO; PDAPP

BACE KO
PDAPP
Control

ALL
18 BACE KO; PDAPP

BACE KO
PDAPP
Control

ALL
ALL BACE KO; PDAPP

BACE KO
PDAPP
Control

N | Mean Std N I Mean | Std N | Mean Std N | Mean Std
16 19.28 3.95 20 27,59 6.27 19 22.31 6.58 55 23.35 6.67
22 21.16 4.13 20 27.69 7.57 19 25.36 6.65 61 24.61 6.72
22 22.22 3 52 23 26.9 6.29 28 26.32 6.11 73 25.27 5.82
20 24.38 4.78 21 32.37 6.15 21 26.25 7.66 62 27.72 7.11
80 21.76 4.41 84 28.64 6.82 87 25.06 6.8 251 25.24 6.7
16 20.39 23.86 20 28.82 7.96 19 23.24 5.63 55 24.36 6.99
22 23.9 7.06 20 29.03 6.32 19 28.48 5.44 61 27.01 6.68
22 25.4 5.85 23 25.69 5.28 28 26.66 5.59 73 25.98 5.52
20 27.1 6.1 21 30.14 6.14 21 29.95 6.86 62 29.1 6.43
80 24.2 6.29 84 28.34 6.54 87 27.11 6.27 251 26.65 6.55
16 23.41 6.8 20 30.18 10.07 19 23.23 4.1 55 25.81 8.08
22 24.74 7.71 20 28.53 5.45 19 28.66 7.85 61 27.2 7.22
22 26.02 7.25 23 26.27 6.83 28 29.91 9.84 73 27.59 8.32
20 28.6 6.85 21 30.71 7.16 21 29.44 5.82 62 29.6 6.58
80 25.79 7.3 84 28.85 7.61 87 28 07 7.84 251 27.6 7.67
16 21.03 5.25 20 28.87 8.18 19 22.93 5.45 55 24.51 7.3
22 23.27 6.57 20 28.42 6.42 19 27.5 6.77 61 26.27 6.94
22 24.55 5.9 23 26.29 6.09 28 27.63 7.51 73 28.8 6.72
20 26.69 6.13 21 31.07 6.47 21 28.55 6.91 62 26.52 7.05

Source Factor(s)
Genotype*Age

Genotype*Gender
Gender*Age

Gender

Age
Genotype

F statistic DF p-value
1.1 6 0.35
0.38 9 0.95
1.24 6 0.28
3.51 1 0.035
8.27 2 <0.0001
3.07 3 0.0013

p-value
Comparison iCE KO; PDA BACE KO PDAPP Controls ALL

3 vs 13 months <0.0001 0.0056 0.04 0.0016 <0.0001
3 vs 18 months 0.18 0.045 0.1 0.49 0.003
13 vs 18 months 0.018 0.62 0.34 0.0043 0.0018

p-value
Comparison 3 mo 13 mo 18 mo ALL

BACE KO; PDAPP VS BACE KO 0.23 0.98 0.035 0.036
BACE KO; PDAPP VS PDAPP 0.029 0.42 0.035 0.1

BACE KO; PDAPP VS CONTROL 0.0031 0.13 0.005 <0.0001
BACE KO VS PDAPP 0.74 0.29 0.25 0.38

BACE KO VS CONTROL 0.15 0.11 0.95 0.062
PDAPP VS CONTROL 0.58 0.045 0.14 0.039

Tables 3.1.2a-e Descriptive, MANOVA and pairwise ANOVA statistics
for VCN swim latencies in Study 001 mice by age and genotype.
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Serial spatial reversal learning

Following the 3 days of VCN, Study 001 mice were tested in cross-sectional age

groups on a series of spatial locations for measures of learning acquisition rates and

memory capacity. These direct measures can be further analysed to provide

interpretations about changes in learning and memory by genotype with age. As
described in Ch.2 p. 10-15, the specified learning criterion for each individual mouse
was to locate the hidden escape platform in <2Is in three consecutive trials. Upon

reaching this criterion on a given day, mice were tested on a new spatial location on

the following day. In Chen et al.'s (2000) study using an MWM protocol, trials to
criterion (TTC) was measured in a distinct experiment in which all animals were

tested until they learned 5 spatial locations, after which the animals were tested for

learning capacity over a period of 10 days in which it was possible for each mouse

to experience up to 10 separate platform locations. In addition, Chen et al. (2000)
validated their MWM protocol in both cross-sectional and longitudinal groups of
PDAPP and Control animals at various ages. In this experiment however, TTC and

platform learning capacity measures were combined into a single cross-sectional

experiment where over 10 days mice of young (3mo), middle (13mo) and old (18)

ages were tested on a maximum of 10 platform locations and minimum of 3
locations.

3.2 Acquisitional and serial learning deficits

The first spatial memory measure that is generated by Study 001 MWM testing is
the mean number of trials required for an animal to reach the specific learning
criterion on platform location one. Analysis of number of trials to criterion for
location one alone is akin to the classical non-serial reference memory version of the
watermaze in which only one spatial task is solved. Deficits in learning this task are

thus the earliest opportunity to observe impairments in spatial memory .

By taking the average of TTC on this first platform location across ages so that the

major variable is genotype, the only significantly different group was the BACE

KO; PDAPP line, which required 11 trials to learn location one compared to 7.5
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trials in Control mice as seen in Figure 3.2.1 A (F=2.86, df 3/239, p<0.05). By

examining performances to criterion on location one, it was possible to detect

impairments in 3 mo PDAPP and BACE KO; PDAPP mice relative to Control mice
with a post-hoc analysis (Table 3.2.1a-d). Mice carrying the PDAPP transgene at

3mo required an average of 7.23 and 11.19 trials to learn what Control mice

acquired in 5.25 trials (p<0.05, p<0.025). By 18mo all groups have performance
levels that are indistinguishable from each other. At all ages it is clear that both in

Study 001 PDAPP and BACE KO; PDAPP mice were impaired in single-task

spatial learning relative to Control mouse lines. BACE KO mice were statistically

indistinguishable from Controls in this task whether compared by age group or with

performances averaged over ages, suggesting that they were unimpaired in initial

spatial learning.

By expanding this single-platform learning analysis to platform locations 2 and 3, it
is possible to ascertain the status of the first two memory reversals. Learning
successive tasks requires not only the ability to learn a new location but also to

'rewrite' the memory of the prior location. Deficits in learning platforms 2 and 3 by

genotype revealed a genotypic impairment in spatial memory reversal that was static
with age, but amplified with respect to successive locations (Figure 3.2.2). Control
mice learned the locations of platforms in about 4.05-5.40 trials, while PDAPP mice

required 6.82-10.39 trials, BACE KO mice needed 4.70-7.0 trials, and BACE KO;
PDAPP mice had to swim 7.3-12.21 trials to reach the same learning criterion on

location 2 (by genotype F=8.75 df 3/239, p<0.0001). Differences in TTC on

Location 3 were even wider, as the genotypic deficits of the PDAPP, BACE KO and

especially the BACE KO; PDAPP mouse lines expanded (by genotype F=21.35,
df 3/238, p<0.001). Tables 3.2.1a-d and 3.2.2a-h summarizes the statistics for both
the initial spatial learning deficits on Location 1 as well as the reversal deficits on

Locations 2 and 3 by genotype and age.

At all ages, the BACE KO; PDAPP mice required the greatest number of trials to

reach the same performance criterion on the first spatial location as other mice in
this study and were also most impaired in reversal-based learning. This general
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pattern is evident when average trials to criterion for locations 1-3 are assessed
across ages and at individual ages (Figure 3.2.3, Table 3.2.3a-d). Averaged across

all ages, BACE KO; PDAPP mice have generalized learning and memory deficits
that appear to be additives of PDAPP and BACE KO deficits alone as they require
overall about 12 trials per location relative to the 8.1-9.45 trials for PDAPP and
BACE KO mice, and 5.8 trials for Control animals (Figure 3.2.3a, Table 3.2.3a).
When broken into age groups, PDAPP and BACE KO mice have a progressive

spatial memory impairment that is present by 3mo relative to Controls, both

averaging 7.2-10.2 trials per location compared to 5.4-6.4 trials in Controls.

This increased BACE KO; PDAPP deficit finding was unexpected, as the concept of

therapeutic inhibition of BACE for AD as well as the Amyloid Hypothesis would
lead one to expect BACE KO would abolish or at least reduce the cognitive deficits
associated with amyloid overexpression in PDAPP mice. Thus far the severe

impaired acquisitional learning phenotype of BACE KO; PDAPP mice instead

argues that BACE activity, whether via APP cleavage to A(3 or by action on some

other substrate, is a requirement for intact spatial memory processes.

3 months 13 months 18 months All

Genotype N | Mean | Std N | Mean Std N | Mean | Std N Mean Std
BACE KO; PDAPP 16 11.19 8.78 20 10.95 7.13 19 11 5.85 55 11.04 7.12

BACE KO 22 6.32 3.81 20 8.55 4.59 19 9.42 7.11 61 8.02 5.36
PDAPP 22 7.23 4.82 23 12.61 8.54 28 10.21 7.91 73 10.07 7.55
Control 20 5.25 2.69 21 7.43 3.85 21 9.86 7.93 62 7.55 5.6

ALL 80 7.28 5.55 84 9.95 6.61 87 10.13 7.23 251 9.16 6.63

Source Factor(s) F statistic DF p-value
Genotype*Age 0.68 6 0.67

Age 6.68 2 0.0015

Genotype 2.86 3 0.038

p-value
Comparison BACE KO; PDAPP BACE KO PDAPP Controls ALL
3 vs 13 months 0.71 0.12 0.015 0.11 0.0036
3 vs 18 months 0.54 0.13 0.16 0.009 0.0026
13 vs 18 months 0.79 0.98 0.24 0.31 0.92

p-value
Comparison 3 mo 13 mo 18 mo ALL

BACE KO; PDAPP VS BACE KO 0.05 0.37 0.35 0.021
BACE KO; PDAPP VS PDAPP 0.15 0.67 0.34 0.24

BACE KO; PDAPP VS CONTROL 0.013 0.14 0.47 0.0063
BACE KO VS PDAPP 0.58 0.18 0.77 0.2

BACE KO VS CONTROL 0.51 0.57 0.65 0.66
PDAPP VS CONTROL 0.24 0.05 0.85 0.083

Tables 3.2.1a-d Descriptive, MANOVA and pairwise ANOVA statistics
for Study 001 mice on TTC1 performance by age and genotype.
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Figure 3.2.1 Deficits in initial spatial memory acquisition in Study 001
mice by age and genotype. A: Average of first platform location trials
to criterion across all ages, by genotype. By this measure BACE KO;
PDAPP mice required more trials to learn this task than BACE KO and
Control mice. B: At 3mo BACE KO; PDAPP mice show a non-age-
related deficit in the ability to learn location 1 compared to BACE KO
and Control mice. C: By 13mo, PDAPP mice are deficient in TTC1
relative to Control mice. D: There are no differences in initial spatial
learning between genotypes by 18mo.
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Figure 3.2.2 Deficits in spatial reversal memory on locations 2 and 3 in
Study 001 mice by age and genotype. A,C: At 3 the BACE KO; PDAPP
mice have perseverative deficits relative to Control mice on Location 2,
with no differences at 13mo. E: All mice carrying the PDAPP transgene
are impaired on second platform learning compared to BACE KO and
Control mice. BACE KO mice have no perseverative deficits at any age
tested. B: On location 3, both PDAPP and BACE KO mice have learning
deficits compared to Controls, while BACE KO; PDAPP mice have
additive PDAPP and BACE KO-derived impairments. D: 13mo old BACE
KO; PDAPP, BACE KO and PDAPP mice have decreased ability to learn
location 3 compared to Control mice. F: At 18mo BACE KO; PDAPP,
BACE KO and PDAPP mice display location 3 learning deficits relative
to Control mice, and the BACE KO; PDAPP mouse deficits again
appear to be synergistic to BACE KO and PDAPP impairments.
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3 months 13 months 18 months All

Genotype N Mean Std N Mean Std N Mean Std N Mean Std
BACE KO; PDAPP 16 8.94 4.89 20 7.3 5.31 19 12.21 13.1 55 9.47 8.86

BACE KO 22 7 5.33 20 4.7 2.11 19 6.32 4.64 61 6.03 4.33
PDAPP 22 6.82 5.2 23 7.39 6.04 28 10.39 9 73 8.37 7.22
Control 20 5.4 3.75 21 4.48 1.89 21 4.05 1.24 62 4.63 2.52

ALL 80 6.94 4.91 84 6 4.47 87 8.37 8.75 251 7.12 6.44

Source Factor(s) F statistic DF p-value
Genotype*Age 1.23 6 0.29

Age 1.86 2 0.16

Genotype 8.75 3 <0.0001

p-value
Comparison BACE KO; PDAPP BACE KO PDAPP Controls ALL
3 vs 13 months
3 vs 18 months

13 vs 18 months

p-value
Comparison 3 mo 13 mo 18 mo ALL

BACE KO; PDAPP VS BACE KO
BACE KO; PDAPP VS PDAPP

BACE KO; PDAPP VS CONTROL
BACE KO VS PDAPP

BACE KO VS CONTROL
PDAPP VS CONTROL

Tables 3.2.2a-d Descriptive, MANOVA and pairwise ANOVA statistics
for Study 001 mice on TTC2 performance by age and genotype.

0.19 0.19 0.84 0.68 0.14
0.75 0.66 0.11 0.41 0.78
0.085 0.4 0.16 0.68 0.078

0.11 0.13 0.018 0.0017
0.098 0.9 0.51 0.15
0.011 0.082 0.0001 <0.0001
0.94 0.015 0.05 0.057
0.27 0.84 0.15 0.12
0.31 0.094 0.0004 0.0004

3 months 13 months 18 months All

Genotype
BACE KO; PDAPP

BACE KO
PDAPP
Control

ALL

Source Factor(s) F statistic DF p-value
Genotype'Age 0.58 6 0.75

Age 2.76 2 0.065

Genotype 21.35 3 <0.0001

p-value
Comparison BACE KO; PDAPP BACE KO PDAPP Controls ALL
3 vs 13 months
3 vs 18 months

13 vs 18 months

p-value
Comparison 3 mo 13 mo 18 mo ALL

BACE KO; PDAPP VS BACE KO
BACE KO; PDAPP VS PDAPP

BACE KO; PDAPP VS CONTROL
BACE KO VS PDAPP

BACE KO VS CONTROL
PDAPP VS CONTROL

Tables 3.2.2e-h Descriptive, MANOVA, and pairwise ANOVA statistics
for Study 001 mice on TTC3 performance by age and genotype.

N Mean Std N Mean Std N Mean Std N Mean Std
16 17.5 10
22 11.41 7.96
22 10.68 8.1
20 5.55 3.36
80 10.96 8.5

20 12.1 9.98
20 8.35 4.21
23 9.13 5.65
21 5.14 2.83
84 8.65 6.58

18 16.56 10.7
19 10.95 4.88
28 9.96 7.38
21 5.19 2.52
86 10.4 7.85

54 15.19 10.3
61 10.26 6.07
73 9.92 7.05
62 5.29 2.88
250 9.99 7.7

0.019 0.3 0.46 0.81 0.026
0.69 0.63 0.59 0.95 0.8

0.045 0.14 0.8 0.86 0.045

0.023 0.38 0.16 0.0086
0.014 0.42 0.0065 0.0006

<0.0001 0.001 <0.0001 <0.0001
0.83 0.92 0.22 0.4

0.0013 0.016 0.0003 <0.0001
0.0026 0.0092 0.0055 <0.0001
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3.2.3 Deficits in spatial memory average TTC Location 1-3 in Study 001
mice by age and genotype. A: Grouped across ages, PDAPP and BACE
KO animals show impaired spatial learning and memory relative to
Controls; BACE KO; PDAPP mice have spatial memory deficits in
excess of the PDAPP and BACE KO mice, suggesting an additive
deficit. B: Separated by ages, it is apparent that BACE KO; PDAPP
mice have the poorest learning memory and profile at any given age.
PDAPP mice develop deficits in spatial criterion-based learning by
3mo, which are still present at 18mo, while BACE KO mice have milder
deficit that is significantly different at 3 and 18mo compared to Control
mice, but not at 13mo.
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3 months 13 months 18 months All

Genotype N Mean Std N Mean Std N Mean Std N Mean Std
BACE KO; PDAPP 16 12.48 5.33 20 10.22 5.16 19 13.58 7.08 55 12.02 5.99

BACE KO 22 8.24 4.08 20 7.2 1.8 19 8.89 3.71 61 8.1 3.39
PDAPP 22 8.24 4.67 23 9.71 5.26 28 10.19 5.55 73 9.45 5.2
Control 20 5.4 1.98 21 5.68 2.2 21 6.37 3.05 62 5.82 2.46

ALL 80 8.39 4.74 84 8.2 4.28 87 9.72 5.61 251 8.79 4.95

Source Factor(s) F statistic DF p-value
Genotype*Age 0.8 6 0.57

Age 1.6 2 0.2

Genotype 22.96 3 <0.0001

p-value
Comparison BACE KO; PDAPP BACE KO PDAPP Controls ALL
3 vs 13 months

3 vs 18 months
13 vs 18 months

p-value
Comparison 3 mo 13 mo 18 mo ALL

BACE KO; PDAPP VS BACE KO
BACE KO; PDAPP VS PDAPP

BACE KO; PDAPP VS CONTROL
BACE KO VS PDAPP

BACE KO VS CONTROL
PDAPP VS CONTROL

Tables 3.2.3a-d Descriptive, MANOVA and pairwise ANOVA statistics
for Study 001 mice on averaged TTC1-3 performance by age and
genotype.

0.1 0.69 0.26 0.73 0.71
0.73 0.45 0.17 0.32 0.094
0.038 0.26 0.86 0.5 0.038

0.003 0.086 0.0089 <0.0001
0.0025 0.72 0.015 0.0007
<0.0001 0.0004 <0.0001 <0.0001
0.93 0.16 0.67 0.31
0.01 0.068 0.023 0.0001
0.013 0.001 0.0035 <0.0001
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3.3 Learning capacity (Number of platforms learned)

Beyond the initial three platform locations learned, Study 001 mice tested in this
serial spatial learning task may learn up to 10 locations depending on their ability to

sufficiently demonstrate their knowledge of test locations on any one day. The
measure that corresponds to the number of total platform locations learned within
this criterion-based context is called learning capacity (LC), although because of the
use of a learning criterion, this is not strictly a measure of capacity.

Figure 3.3.1 and Table 3.3.1a-d shows the LC measure results from Study 001 mice
across age and genotype. Control mice at all ages have the highest LC levels,

learning between 8.3-8.95 out of a possible 10 locations for each age tested. BACE
KO mice had LC performances that were intermediate between Controls and

transgenic groups, as they were statistically distinct from both at most ages (Table

3.3.1a). At all ages PDAPP mice performed more poorly than Controls in LC,

learning between 6.9-7.5 locations over time (genotype: F= 15.59, df 3/241,

p<0.0001). In turn, PDAPP mice performed significantly better than BACE KO;
PDAPP mice at 3 and 18mo. Again, BACE KO; PDAPP mice consistently had the

poorest memory measure profile, with LC numbers ranging from 5.8-6 platforms
learned. At nearly every age BACE KO; PDAPP mice performed significantly
worse than other genotype groups, with the sole exception of 13mo PDAPP mice.
There was no significant effect of an LC deficit due to age within any genotype

group (F=0.88).
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These data argue that both the PDAPP and BACE KO genotypes conferred a spatial

learning capacity deficiency in comparison to non-transgenic Control mice. At all

3 months 13 months 18 months All

Genotype N | Mean Std N | Mean Std N Mean Std N Mean Std
BACE KO; PDAPP 16 5.94 1.57 20 6.45 1.85 19 5.84 1.98 55 6.09 1.81

BACE KO 22 7.77 1.88 20 7.55 1.36 19 6.95 1.72 61 7.44 1.68
PDAPP 22 7.45 1.9 23 6.91 2.23 28 7.25 1.92 73 7.21 2
Control 20 8.95 1.28 21 8.86 1.46 21 8.33 1.71 62 8.71 1.5

ALL 80 7.61 19.5 84 7.44 1.97 87 7.14 2 251 7.39 1.97

Source Factor(s) F statistic DF p-value
Genotype*Age 0.77 6 0.6

Age 2.71 2 0.069

Genotype 15.59 3 <0.0001

Comparison BACE KO; PDAPP BACE KO
p-value

PDAPP Controls ALL
3 vs 13 months 0.39 0.68 0.31 0.87 0.76
3 vs 18 months 0.87 0.14 0.69 0.27 0.12

13 vs 18 months 0.29 0.29 0.5 0.34 0.2

Comparison 3 mo

p-value
13 mo 18 mo ALL

BACE KO; PDAPP VS BACE KO 0.0018 0.05 0.056 <0.0001
BACE KO; PDAPP VS PDAPP 0.0098 0.39 0.0081 0.0005

BACE KO; PDAPP VS CONTROL <0.0001 <0.0001 <0.0001 <0.0001
BACE KO VS PDAPP 0.55 0.24 0.57 0.48

BACE KO VS CONTROL 0.033 0.019 0.014 <0.0001
PDAPP VS CONTROL 0.0068 0.0003 0.035 <0.0001

ages the genotype with the poorest performance was the BACE KO; PDAPP group,

while the deficits of the PDAPP and BACE KO were similar in scale, implicating an

additive effect of deficits from the presence of the PDAPP transgene and the

homozygous deletion BACE KO. This pattern reproduced the implication from TTC
measures that BACE gene deletion and the PDAPP transgene independently
contribute to the BACE KO; PDAPP spatial memory phenotype.

Tables 3.3.1a-d Descriptive, MANOVA and pairwise ANOVA statistics
for Study 001 mice on learning capacity by age and genotype.
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Figure 3.3.1 Deficits in spatial memory capacity in Study 001 mice by
age and genotype. A: At 3mo of age, PDAPP and BACE KO mice learn
fewer locations than Control animals, although BACE KO; PDAPP learn
significantly less than all groups. B: As at 3mo, PDAPP and BACE KO
mice have impairments relative to Control animals, but the BACE KO
mice perform better than BACE KO; PDAPP mice. C: BACE KO; PDAPP
mice again have the worst spatial memory capacity profiles relative to
BACE KO, PDAPP and Control mice, while BACE KO and PDAPP mice
are also deficient relative to Controls.
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Non-Memory Phenotypes

3.4 Seizures and other observations

In the course of handling and testing the Study 001 mice, a number of spontaneous
seizures were observed. The seizures were clonic-tonic type, in which mice would
run around their cages, with intermittent whole-body tremors and asymmetric paw

waving. Post-seizure mice would be extremely weak, with little to no grip strength,

hemiplegia and would have to be removed from study (Figure 3.4, Table 3.4A).
Animals were also removed from study for other reasons, including excessive

anxiety, spinning, floating and blindness, with greater percentage of removals linked
to the PDAPP transgene. It is notable to mention that the total numbers per genotype

group between Tables 3.4A and 3.4B are not equal. This was due to the fact that the

percentage of animals removed from study reflected the current number of animals
in the study at that point, which may have been reduced by prior removals. Analysis
of the seizure observations by genotype revealed a pattern related to the BACE KO

phenotype (Table 3.4B). It is also possible that animals observed to have hemiplegia
and weakness and inability to swim may have had unobserved seizures. In light of
these observations, it may be that homozygous BACE gene deletion predisposes

Study 001 mice to have seizure activity, a hypothesis explored extensively in Study
Oil.

3.5 Death and survival rates

Animals observed to have seizures often died within 24h of the seizure. These in-

house deaths rates motivated an analysis of the death rates of Study 001 mice at the

remaining throughout life at the vendor site, thus not exposed to the stress of

shipment and behavioral testing. Using a survival analysis method, the mortality

ages of 50% of the various Study 001 genotypes groups was calculated with
information regarding the breeding colony kept at the vendor site (Table 3.5, Figure

3.5). Disparities between numbers of animals between groups do not affect analysis,
which is based on rate of death within each group only.
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It appears that the degree of genetic modification (e.g. ablation of one or both
BACE1 genes, carrying one or two PDAPP transgenes) was related to the life

expectancy of the Study 001 mice, although the BACE KO genotype (2 degrees of

modification) lives longer on average than the PDAPP mice (one degree of

modification). Although mice carrying one copy of the PDAPP transgene (PDAPP

lx, always heterozygous for transgene unless otherwise noted) reached 50% group

mortality in the same 6 month timeframe as the animals carrying 2 PDAPP

transgenes (PDAPP 2x), PDAPP lx mice survived at a much higher rate that
PDAPP 2x mice after 8 months (Figure 3.5A). Combinations of the BACE KO and
PDAPP transgene appear to be additive in that they had shorter lifespans than either
of the component genotypes. In-house deaths are highest in animals with BACE

KO, with a similar pattern of deaths at the vendor site.

Finally, it has been noted that even the non-transgenic Control mice have relatively
short lifespans, which is about 15mo on average (Figure 3.5A). This is not

unexpected, given their DBA/2J background strain heritage, as this line has been
noted to have unusually short lifespans, varying between 15-20 months (Goodrick,

1975).

Age
(Mo) Control PDAPP BACE KO BACE KO; PDAPP

16.6% 8.3% 8.3% 35.7%
3 (N=4 of 24) (N=2 of 24) (N= 2 of 24) (N=10 of 28)

12.5% 36.1% 23.2% 31.1%
13 (N=3 of 24) (N= 13 of 36) (N= 6 of 26) (N=9 of 29)

8.7% 31.7% 24% 47.2%
18 (N=2 of 23) (N= 13 of 41) (N= 6 of 24) (N= 17 of 36)

Table 3.4A Study 001 mice removed from study by age and genotype.
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Age
(Mo) Control PDAPP BACE KO BACE KO; PDAPP
3 0% 0% 4.2% (N= 1 of 23) 17.9% (N=4 of 21)
13 0% 0% 8.0% (N= 2 of 22) 12.0% (N=3 of 23)
18 0% 0% 4.0% (N= 1 of 20) 14.0% (N= 3 of 22)

Table 3.4B Spontaneous seizures in Study 001 mice by age and
genotype.

N

Age of 50%
Group
Mortality
(mo)

Degrees of
Genetic PDAPP

Modification Transgenes
Deleted
Alleles

Control 48 14 0 0 0
BACE KO 49 8 2 0 2
PDAPP 1 x 143 6 1 1 0
PDAPP 2x 52 6 2 2 0

BACE KO; PDAPP 1x 100 4 3 1 2

BACE KO; PDAPP 2x 82 2.75 4 2 2

Table 3.5 50% Mortality ages of Study 001 mice, 1x indicates one copy
of PDAPP transgene (heterozygous), 2x indicates two copies of PDAPP
transgene (homozygous).
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Figure 3.4 Seizures and other observations in Study 001 mice. A;
Percentage of mice removed by genotype/age, note the preponderance
of PDAPP transgenic mouse removals relative to BACE KO and Control
mice. B: Spontaneous seizures are observed in mice with BACE gene
deletions, with more seizure activity in BACE KO; PDAPP mice. C:
Study removal reasons by genotype. Red arrows indicate removals due
to seizure or possible seizure-related activity, like hemiplegia or acute
inability to swim, which were prevalent in mice lacking BACE.
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a Mouse Survival Analysis
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Figure 3.5 Death and survival rates in Study 001 mice. A: Survival
analysis by genotypes. A: Survival analysis of Study 001 mice by
genotype, housed at the vendor site. The degree of genetic
manipulation apparently has a deleterious effect on mouse lifespan, as
mice with 3-4 gene modifications have the shortest lives (BACE KO,
PDAPP 2X, BACE KO; PDAPP 1X). The PDAPP transgene also
negatively impacts lifespan as mice with one or two transgene copies
live shorter lives than BACE KO or Control mice. B: Spontaneous
death rates by genotype after shipment to Elan, animals with BACE KO
appear to die at higher levels than PDAPP or Control mice. C:
Spontaneous deaths at the vendor site appear to generally follow a
pattern of greater deaths in mice with more genetic modifications,
similar to Figure 3.5A.

119



Calbindin and Amyloid Histology

3.6 Calbindin histology in the hippocampal Outer Molecular Layer

Calbindin (CB) is a Ca++-binding protein ubiquitously expressed in cerebral neurons
often used as a surrogate marker for neurogenesis related to seizures, which were

observed in Study 001 mice (Figures 3.6.1-3.6.2). Previous experiments by Palop et

al. (2003) showed that behavioral performance in the MWM correlated positively
with levels of CB in the outer molecular layer of the hippocampus of J20 hAPP

transgenic mice. CB measurements were made in the BACE x PDAPP mice of

Study 001 to determine whether CB is a marker for cognitive function in the PDAPP
mouse lies as well.

CB immunostaining was performed with an anti-CB antibody from Sigma
Chemicals at 3ug/mL concentrations with a fluorescent secondary antibody.
Fluorescence images were collected with a laser confocal microscope, and imaged

using the NIH Image 1.63 program. Mean intensity measurements in the neurite

region of the outer molecular layer were taken and normalized against the average

intensity levels of a group of 18mo non-transgenic mice. Non-specific
immunoreactive artifacts like blood vessels were not included in the CB mean

intensity measurements.

At 3mo in Study 001 mice CB levels were decreased in all animals carrying the
PDAPP transgene relative to either the Control or BACE KO mice, as seen in Figure
3.6.1a and Table 3.6a-d (F=5.07, df 3/52610, p<0.005). At 13mo there are no

significant differences in CB immunoreactivity in any measure by genotype groups.

By 18mo, there was an unexpected phenotypic shift in CB levels, as all mice with

homozygous BACE gene deletion had higher mean CB intensity levels than PDAPP
mice (BACE KO; PDAPP p=0.025, BACE KO p<0.0005). Indeed, BACE KO mice
had higher CB levels than Control mice (BACE KO p<0.05). This pattern of
increased CB immunoreactivity coupled with the behavioral epileptic activity

suggested a link between the CB histology and the seizures observed in BACE KO
mice (section 3.4). This CB-seizure relationship would be explored more deeply in
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study 011A to better determine whether genotype plays a role in the apparent seizure

activity ofBACE KO mice.

3 months 13 months 18 months All

Genotype N [ Mean Std N | Mean Std N | Mean Std N Mean | Std
BACE KO; PDAPP 6 64.21 13.7 12 71.24 15.7 19 104.6 32.7 37 87.24 31.1

BACE KO 8 100.2 32.7 10 81.36 27.9 16 124.4 45.8 34 106 41.9
PDAPP 18 66.03 20.4 16 81.45 17.1 22 82.48 25.8 55 77.09 22.8
Control 10 103 51.2 13 94.38 50.9 19 95.76 30.5 42 97.11 41.9

ALL 41 81.43 36 51 82.38 31.2 76 100.2 36.2 168 90.19 35.7

Source Factor(s) F statistic DF p-value
Genotype*Age 6

Age 6.35 2 0.0022

Genotype 5.07 3 0.0022

p-value
Comparison BACE KO; PDAPP PDAPP Controls ALL
3 vs 13 months 0.55 0.22 0.05 0.58 0.85
3 vs 18 months 0.0052 0.18 0.05 0.96 0.0025
13 vs 18 months 0.0067 0.0045 0.84 0.55 0.0017

p-value
Comparison 3 mo 13 mo 18 mo ALL

BACE KO; PDAPP VS BACE KO 0.028 0.46 0.19 0.012
BACE KO; PDAPP VS PDAPP 1 0.32 0.025 0.63

BACE KO; PDAPP VS CONTROL 0.038 0.17 0.42 0.063
BACE KO VS PDAPP 0.0059 0.87 0.0005 0.0009

BACE KO VS CONTROL 0.81 0.58 0.037 0.41
PDAPP VS CONTROL 0.0074 0.65 0.16 0.0079

Table 3.6a-d Descriptive, MANOVA and pairwise ANOVA statistics for
hippocampal Calbindin levels in Study 001 mice by age and genotype.
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Figure 3.6.1 Calbindin immunoreactivity in the hippocampal outer
molecular layer in Study 001 mice. A: At 3mo animals carrying the
PDAPP transgene (PDAPP and BACE KO; PDAPP mice) have
significant depletions of Calbindin (CB) relative to Control mice. BACE
KO mice have CB levels similar to Controls, and significantly higher
levels than BACE KO; PDAPP mice. B: At 13mo there are no significant
differences in CB level by genotype. C: In contrast the PDAPP-specific
CB depletion of 3mo animals, 18mo Study 001 mice feature a
significant BACE KO-specific enrichment of CB relative to PDAPP
mice. In addition, BACE KO mice have higher hippocampal CB levels
relative to Control mice, suggesting an age-related shift in CB
phenotypes in BACE-deficient animals.
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Figure 3.6.2 Calbindin images from the hippocampal outer molecular
layer in Study 001 mice. Images with CB immunoreactivity levels close
to group averages are presented, and the immunoreactivity of blood
vessels (white arrows) is artifactual. 3mo: PDAPP and BACE KO;
PDAPP mice have depletions of CB relative to Control and BACE KO
mice. 13mo: There is no distinction between CB levels from any
genotype. 18mo: BACE KO and BACE KO; PDAPP mice have visibly
higher levels of CB compared to Control and PDAPP mice, suggesting
an age-related shift from PDAPP-specific CB depletion in young
animals to a BACE-specific CB enrichment in aged mice.

123



3.7 hAmyloid Precursor Protein immunoreactivitv and AB processing

Expression of hAPP in the PDAPP and BACE KO; PDAPP animals was confirmed

by antibody staining with 8E5, a monoclonal antibody raised to the 444-592 amino
acid residue stretch of the hAPP protein. The same staining was used to confirm the
lack of hAPP expression in Control and BACE KO (Figure 3.7.1). As this was a

qualitative confirmation of genotypes it is difficult to draw further conclusions,

although it is clear which animals transgenically overexpressed hAPP with the 8E5

staining and which individuals did not (Figure 3.7.1 rows a and c vs. rows b and d).

Confirmation of hA|3 processing was conducted via antibody staining with 3D6, a

synthetic antibody for the 1-5 amino acid stretch of the N-terminus of the hA|3

peptide (Figure 3.7.2). Using this antibody amyloid deposits are visible in the

hippocampus and cortex of PDAPP mice at 13 and 18mo of age, while none is
visible in the Control and BACE KO mice that do not carry the APP transgene.

Homozygous knockout of the BACE gene on the background of a PDAPP transgene
in BACE KO; PDAPP animals effectively abolishes processing of APP to

hA|3, as seen in Row D of the 13 and 18mo BACE KO; PDAPP panels of Figure
3.7.2.

ELISA hA|31-4x data was not collected from these Study 001 animals as their brain

homogenates were depleted in separate biochemical fractionation and extraction

experiments to confirm lack of BACE enzyme activity.
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PDAPP

Figure 3.7.1 APP brain immunoreactivity in Study 001 mice. 3mo,
13mo: hAPP is detected by the antibody 8E5 in PDAPP and BACE KO;
PDAPP mice. 18mo: hAPP is present in PDAPP and BACE KO; PDAPP
mouse brains, however, the dystrophic neurites present (plaque-like
accumulations within the hippocampus, delineated by red arrows) in
18mo PDAPP mice are abolished in 18mo BACE KO; PDAPP mice.
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Figure 3.7.2 BACE KO abolishes Ap processing in Study 001 mice.
3mo: No Ap depositions detected by the 3D6 antibody are present in
young mice, as this neuropathological feature does not manifest until
at least 6-7mo in PDAPP mice. 13mo: Plaque-like deposits of Ap are
present in 13mo animals, while BACE KO; PDAPP brains are devoid of
any Ap. The black arrow in the 13mo Controls panel points to an air
bubble. 18mo: The cortex and hippocampus of PDAPP animals have
heavy Ap burdens, while BACE KO; PDAPP brains remain free of such
deposits, suggesting that homozygous BACE gene deletion alone is
sufficient to abolish all Ap processing.

r.v -'. -
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3.8 Correlation analyses of behavioral and histological data

Correlation Analysis Cell Key

R-Values Colorimetrics P-Values Colorimetrics Self-Correlation Insignificant p- or
Non-correlative r-value,

0.3<R<1 |-1<R<-03| | p<0.05

Column Abbreviations

Plats = Number of Platforms Learned
TTC N = Trials to Criterion, Location N
Ave 1-3 = Average TTC Locations 1-3
CB = Calbindin Intensity in the Hippocampal Outer Molecular Layer

Example Correlation Table, Behavioral Measures Interrelationships
R-values from
correlation analysis

#Platforms TTC 1 TTC 2 TTC 3 ave1-3 nfMrh mpa<snrp

#Platforms -0.2208 -0.4811 -0.677 -0.7621

TTC 1 0.0476 0.3994

TTC 2 P<0.0001 0.3305 0.6643

TTC 3 P<0.0001 0.0026 0.8075

ave1-3 P<0.0001 0.0002 ooodVCL oopdVCL

p-values from
correlation analysis of
each measure

Figure 3.8.1a Example correlation tables. A: Correlation table of
relationships between various behavioral measures, with R-values
presented in upper diagonal section and p-values presented in lower
diagonal section. Corresponding p-values and R-values are found in
the same coordinate distance from the black diagonals separating the
two types of values, with R-values at xr,yr coordinates, and p-values at
yp,xp coordinates where xr=yp and yr=xp
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Example Correlation Table, Hippocampal
Intensity/Behavioral Measures by Genotypes

Calbindin

#Platforms TTC 1 TTC 2 TTC 3 ave1-3

Controls

PDAPP

BACE KO

BACE KO; PDAPP

Controls

PDAPP

BACE KO

BACE KO; PDAPP

-0.5419

0.0301

R-values from
correlation analysis
of each measure

p-values from
correlation analysis
of each measure

Figure 3.8.1 B Example correlation tables B: Correlation table of
calbindin values to behavioral performance measures, with individual
genotypes presented. R-values are in upper sections and p-values are
in lower section.

One method of determining whether behavioral and histological markers such as CB
are functionally related is to perform correlation analyses between them. Correlation
tests compare the distribution of values from one set ofmeasures to the value set for

another, and generate statistical coefficients that describe how much variance in one

set is due to changes in values on the other set (the R-value). Data from Study 001
mice were tested using the Spearman's Correlation test, which does an evaluation of
value sets based on a log-ranking methodology. These correlation results were

checked for reliability by creating R- and p-value tables in which the same

behavioral and CB measures formed the rows and columns. Reliable and reflexive

values generated from one row*column set should equal the values from the same

column*row set (e.g. TTC1 vs. TTC3 == TTC3 vs. TTC1). Upon analysis, certain
variables were found to fail the reflexivity test, largely because they based on

comparison of derived values with wide variability and were not presented (e.g.

averages of several trials over several animals like latencies for day one of VCN).
Two correlation tables are presented for each age group tested in Study 001, with the
R- and p-values from the reflexive behavioral measures for all groups combined as

the first table (Tables 3.8.1-3.8.3), and by-genotype comparisons of CB to

behavioral measures for the second table (Tables 3.8.4-3.8.6).
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Analysis of the relationships between the various behavioral measures in all Study
001 mice reveals a relatively stable pattern with age of connections between specific
measures (Tables 3.8.1-3.8.3). By examining both the statistical p-value and
correlation coefficient R generated by a non-parametric Spearman's correlation test,

it possible to make three important interpretations about the functional directionality
of correlations, the grouping of similar behavioral measure sets and the grouping of
dissimilar behavioral measure sets. In addition, by including the Genotype, Gender
and Color factors one can also see the relationships that were implied in more

traditional statistical analyses presented in Sections 3.2-3.3, and 3.6. Overall the

major factor related to spatial memory performance is genotype, which has high

degrees of association Platforms Learned (memory capacity), TTC2, TTC3 and

Average TTC1 -3 (serial memory and learning) at all ages. Surprisingly there were

data associations as well with aged animals by color and gender in TTC1, TTC2,

Average TTC 1-3 and Calbindin Intensity (CB). These findings were in part reflected
in the more traditional ANOVA analyses, but were lesser factors in those analyses

compared to genotype.

With respect to directionality of measures, the best example was that of platform
locations learned and all other measures, which were based in number of trials (see

Correlation Key above). While an animal that had intact spatial memory learned a

higher number of spatial locations, if their acquisitional rate was also unimpaired the
measures like TTCs, Ave 1-3 will be low as animals needed fewer trials to learn any

specific location to the performance criterion. At all ages there was a negative R-
value correlation between Plats and all other measures, satisfying this intuitive
condition.

Behavioral tasks with a high degree of statistically significant positive R-values like
Platforms learned and TTC 1-3 at 3mo can be theoretically grouped together as a

similar set of measures. The high degree of correlation in this particular task set

suggests that the processes that are the basis for these measures are also highly
related if not the same. The patterns of related measures did change between age
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groups, suggesting that the if the pattern of related values was due to relatedness of

underlying functional processes, then these were age-related changes. At Brno
TTC2 and TTC3 were no longer correlated highly, as many mice were deficient in

learning platform location 3. This lack of correlation is another statistical

representation of the limits of learning and memory in the Study 001 mice. By 18mo
the TTC3 and TTC1 and TTC2 measures were all highly correlated, and overall

average learning rate was correlated to number of platforms learned (R=-0.24,

P<0.025) indicative of an even greater age-related decline in memory performances
as animals are able to learn fewer locations. This pattern of changing relatedness of
similar sets of values may be due to utilization of different memory processes as

more tasks are presented to the animals.

Finally, TTC1 and TTC3 can be considered unrelated sets of measures as they
shared no strong statistical relationships in Study 001 mice until 18mo (18mo:

R=0.235, p<0.05). One interpretation of this finding is that the processes that

generate the TTC1 and TTC3 performance data rely on distinct spatial learning and

memory capabilities to acquire these locations, as TTC1 is analogous to single
location acquisition rate while the serial learning of TTC3 requires elements of

flexibility in spatial learning and/or capacity as well as acquisition. By 18mo, many
more animals rely on components of long-term memory processes to learn even

platform location one to the specified criterion (because they need >8 trials, >1

testing day to learn this location). This age-related change may make the
fundamental process of learning location one more akin to that of learning on later

platforms when serial learning capacity impairments also force animals to use long-
term memory processes and potentially overnight memory consolidation to solve
their tasks.
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Genotype Gender Color #Platforms TTC 1 TTC 2 TTC 3 ave1-3 CBInt

Genotype -0.034 0.015 -0.468 0.184 0.271 0.475 0.524 -0.127

Gender 0.767 0.060 0.043 0.096 -0.068 -0.047 -0.008 -0.083

Color 0.895 0.599 -0.077 0.005 0,037 0.104 0.078 0.011

#Platforms P<0.0001 0.705 0.499 -0.248 -0.533 -0.705 -0.779 0.193

TTC 1 0.102 0.399 0.964 0.027 0.137 0.107 0.440 -0.406

TTC 2 0.015 0.552 0.745 P<0.0001 0.227 0.377 0.691 0.011

TTC 3 P<0.0001 0.677 0.358 P<0.0001 0.346 0.001 0.813 -0.050

ave1-3 P0.0001 0.943 0.494 P<0.0001 P<0.0001 P<0.0001 P<0.0001 -0.181

CBInt 0.4197 0.9481 0.2443 0.8339 0.1383 0.4983 0.2111 0.6025

Table 3.8.1 Correlation of behavioral measures, R- and P-values of all
3mo Study 001 mice. Spatial memory capacity (#Platforms) is highly
correlated to learning each of 2 spatial locations (TTC2, TTC3). The
ability to learn locations 2 and 3 (TTC2, TTC3) are also highly
correlated, suggesting a relationship between the ability to rewrite
memory once (TTC2) or more times (TTC3). Genotype appears to have
a major association with spatial memory performance values.

Genotype Gender Color #Platforms TTC 1 TTC 2 TTC 3 ave1-3 CBInt

Genotype 0.097 -0.055 -0.397 0.085 0.136 0.301 0.335 -0.121

Gender 0.378 0.179 -0.065 0.192 0.054 0.051 0.187 -0.072

Color 0.622 0.104 -0.046 -0.198 -0.067 -0.092 -0.204 -0.285

#Platforms 0.000 0.559 0.676 -0.055 -0.050 -0.022 -0.072 0.041

TTC 1 0.440 0.081 0.071 0.620 0.294 0.099 0.730 0.024

TTC 2 0.216 0.623 0.547 0.651 0.007 0.150 0.545 0.251

TTC 3 0.005 0.645 0.403 0.840 0.369 0.172 0.608 0.236

ave1-3 0.002 0.088 0.062 0.515 P<0.0001 P<0.0001 P<0.0001 0.200

CBInt 0.3979 0.6142 0.0426 0.7753 0.8676 0.0759 0.0955 0.1597

Table 3.8.2 Correlation of behavioral measures, R- and P-values of all
13mo Study 001 mice. As in 3mo mice, spatial memory capacity
(#Platforms) in 13mo animals is highly correlated to learning on spatial
location 3 (TTC3). At 13mo the ability to learn locations 1 and 2 (TTC1,
TTC2) are now highly correlated, suggesting a relationship between
initial memory acquisition (TTC1) and the ability to rewrite memory
once (TTC2). Again, Genotype appears to be a significant factor in
spatial memory performance, although Color is related to CB Intensity.
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Genotype Gender Color #Platforms TTC 1 TTC2 TTC 3 ave1-3 CBInt

Genotype
Gender

Color

#Platforms

TTC 3

TTC 1

TTC 2

CBInt

Table 3.8.3 Correlation of behavioral measures, R- and P-values of all
18mo Study 001 mice. As in 3 and 13mo mice, spatial memory capacity
(#Platforms) in 18mo animals is highly correlated to learning 2 spatial
locations (TTC2, TTC3). At 18mo the ability to learn locations 1 and 2
(TTC1, TTC2) are correlated to learning location 3, suggesting a wider
relationship with age between initial and subsequent spatial learning.
At this age there is stronger relationship between Color and spatial
memory performance than seen at younger ages, and Gender appears
to be associated with higher Calbindin Intensity.

In analyzing patterns of correlation between CB histology and various cognitive

spatial measures in animals by genotype, it is apparent that with age, the functional

relationships are changing and there is little overall relationship between CB levels
and behavioral measures (Tables 3.10.4 - 3.10.6). At 3mo there were no significant
correlations between CB and any other measure (Table 3.10.4). The actual

directionality of the few meaningful CB-behavioral R-values in Study 001 mice was

surprising considering the Palop et.al. (2002) report that claimed CB as a surrogate

marker for spatial memory function, in which greater CB levels were associated
with better learning performance in both transgenic and non-transgenic hAPP mice.

However, in Study 001, only mice at 13mo were higher CB values associated by R-
values with higher numbers of spatial location learned only in the PDAPP mouse

(R=0.549, P=0.028, with no extension of this pattern to Control animals. Other CB

relationships with other measures were found, as at Brno albino Control mice had

higher CB levels (R=-0.660, P=0.014) and at 18mo CB was higher in male Control
mice (R=-0.567, P=0.009). Overall these data and their lack of repeating patterns

across age or genotypes imply that CB had little value as a robust predictor of spatial

memory function (Tables 3.8.4-3.8.6).
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Gender Color #Platforms TTC 1 TTC 2 TTC 3 ave1-3

BACE KO;PDAPP 0.157 0.086 -0.559 0.416 0.389 0.265 0.556

BACE KO -0.088 0.473 -0.323 -0.149 0.156 0.302 0.235

PDAPP -0.164 0.302 0.041 -0.069 -0.037 0.031 0.045

Control 0.064 0.412 -0.205 -0.002 0.064 0.379 0.341

BACE KO;PDAPP 0.627 0.792 0.059 0.178 0.211 0.405 0.060

BACE KO 0.747 0.064 0.223 0.582 0.563 0.255 0.381

PDAPP 0.503 0.208 0.867 0.779 0.881 0.901 0.855

Control 0.820 0.127 0.464 0.995 0.822 0.164 0.213

Table 3.8.4 Correlation of hippocampal calbindin intensity to behavioral
measures, R- and P-values by genotype in 3mo Study 001 mice. CB
levels in BACE KO mice do not correlate to other measures in Study
001 mice of this age.

Gender Color #Platforms TTC 1 TTC 2 TTC 3 ave1-3

BACE KO; PDAPP -0.171 -0.269 -0.345 -0.392 0.074 0.526 0.109

BACE KO -0.174 -0.174 -0.149 -0.213 0.139 0.290 -0.024

PDAPP -0.260 -0.058 0.549 0.111 0.076 0.349 0.227

Control 0.178 -0.660 0.057 0.389 0.282 0.048 0.365

BACE KO;PDAPP 0.594 0.398 0.272 0.207 0.818 0.079 0.737

BACE KO 0.631 0.631 0.681 0.555 0.703 0.416 0.947

PDAPP 0.332 0.832 0.028 0.683 0.781 0.186 0.398

Control 0.560 0.014 0.854 0.189 0.351 0.877 0.221

Table 3.8.5 Correlation of hippocampal calbindin intensity to behavioral
measures, R- and P-values by genotype in 13mo Study 001 mice. At
this age PDAPP mice had a positive correlation with higher CB levels
and the ability to learn more spatial locations. In Control animals there
was no comparable pattern, although albino Control mice had higher
CB levels.

Gender Color #Platforms TTC 1 TTC 2 TTC 3

BACE KO;PDAPP -0.234 -0.139 0.194 0.073 0.174 -0.096

BACE KO -0.380 -0.102 0.135 -0.240 -0.038 -0.063

PDAPP -0.222 0.007 0.091 0.028 0.391 0.196

Control -0.567 -0.418 -0.122 0.101 -0.049 0.025

BACE KO; PDAPP 0.336 0.570 0.426 0.766 0.475 0.704

BACE KO 0.147 0.709 0.619 0.372 0.888 0.817

PDAPP 0.321 0.974 0.687 0.900 0.072 0.382

Control 0.009 0.067 0.608 0.673 0.837 0.917

Table 3.8.6 Correlation of hippocampal calbindin intensity to behavioral
measures, R- and P-values by genotype in 18mo Study 001 mice. At
this age the only statistically significant correlation was that higher CB
levels occur in male Control mice. Overall CB does not appear to be a
robust biomarker for spatial memory in Study 001 mice.
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Ch.4 Study 006: Spatial memory characterization and histological
analysis of hemizyqous BACE pKO x PDAPP mice

In the previous chapter of this dissertation, the details of spatial memory and

histological characterization of homozygous BACE KO x PDAPP mice were

presented. While the original working hypothesis was that deletion of the BACE

gene would ameliorate both the cognitive and histological pathologies in PDAPP

mice, the data Study 001 did not support this hypothesis. Complete knockout of
murine BACE genes on a PDAPP background prevented plaque-like deposition of

amyloid in the mouse brain, but spatial memory performance in the modified MWM
in these mice was poorer than that of PDAPP mice. At the same time, there was a

mild spatial learning capacity impairment associated with the BACE KO genotype

on a wild-type background — suggesting that BACE activity is required for normal

spatial memory processes.

Following on these findings, it was of interest to perform the same assessments on

animals with a partial BACE gene deletion, to determine whether the deleterious

phenotypes of BACE KO x PDAPP mice are due to the absolute lack of BACE in

development. In addition, a partial deletion of the BACE gene may confer cognitive
rescue of the PDAPP phenotype. Study 006 focuses on the MWM spatial learning
and memory characterization and histological analysis on mice with one functioning
allele of the BACE gene on a PDAPP background, relative to PDAPP mice.

The genotypic identities and creation of Study 006 animals are described in section

2.7, while the details of the animals tested are presented below in Tables 4.0a-c. Due
to the variability inherent in spatial memory testing of PDAPP-based mice of both

genders and on a triple-strained background (C57B16, DBA/2J, Swiss-Webster),
N~20 mice were tested to sufficiently power statistical analysis. As the effects of b-
secretase gene ablation may vary as a function of age, animals in Study 001 were

tested at young (3mo), middle (13mo) and old ages (18mo). In addition, the
constraints of breeding a colony with two genotypes of interest required examination

by coat colors (albino, black and agouti) and gender, with a preponderance of agouti
animals produced. Study 006 animals are presented in Table 4.0b (Nlotai=143 mice).
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PDAPP +/+

BACE -/+
PDAPP

Table 4.0a Study 006 table of genotypes.

Female Male ALL

Agouti Black Albino ALL Agouti Black Albino ALL Agouti Black Albino ALL

Age
(mo) Genotype
3 9 3 2 14 10 1 1 12 19 4 3 26

PDAPP 12 0 3 15 10 0 5 15 22 0 8 30
ALL 21 3 5 29 20 1 6 27 41 4 11 56

13 10 0 1 11 10 0 1 11 20 0 2 22
PDAPP 3 0 3 6 9 0 4 13 12 0 7 19

ALL 13 0 4 17 19 0 5 24 32 0 9 41

18 8 0 3 11 4 3 5 12 12 3 8 23
PDAPP 10 1 2 13 8 0 2 10 18 1 4 23

ALL 18 1 5 24 12 3 7 22 30 4 12 46

ALL 27 3 6 36 24 4 7 35 51 7 13 71
PDAPP 25 1 8 34 27 0 11 38 52 1 19 72

ALL 52 4 14 70 51 4 18 73 103 8 32 143

Table 4.0b Study 006 mice.

Statistical analysis of the contribution of genotype, age gender and color on the
behavioral and histological measures in Study 006 mice were performed. Overall the

major factors impacting measure outcomes were age and genotype, with some

contribution from color and gender. In many instances there was also a significant

age*genotype interaction, suggesting these were indeed the most importance factors

affecting performance. Further analysis revealed that when the disparity in number of
Albino versus Black and Agouti animals was built into the model, color became an

insignificant factor (overall p=0.06). Furthermore when the unequal numbers of colors

among genotypes was analysed, color was found to not be the driving factor in the

significance of color (p=0.17 by Cochran-Mantel-Haenszel test). Thus all statistics
further will be described only by genotype, age and genotype*age.

Outcome Gender Color Age Genotype Interactions
VCN Latency 0.22 <0.0001 0.035 0.82 None
VCN Speed 0.21 0.13 <0.0001 0.7 Genotype*Age (p=0.0057)

TTC1 0.086 0.0064 0.05 0.78 None
TTC2 0.67 0.19 0.0087 0.82 Genotype*Age (p=0.0057)
TTC3 0.3 0.9 0.0043 0.0034 None

Average TTC1-3 0.088 0.14 <0.0001 0.086 Genotype'Age (p<0.0001)
Platforms Learned 0.1 0.72 <0.0001 <0.0001 Genotype*Age (p<0.0001)

Calbindin 0.19 0.37 <0.0001 <0.0001 Genotype*Age (p<0.0001)

Table 4.0c Statistical summary of factor significance in Study 006.
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Visual Cued Navigation

4.1 Visible Platform Testing

Prior to spatial memory testing in the hidden platform serial locations task, Study
006 mice were assessed in visual cued navigation (VCN). VCN is a procedural

learning task that also provides insight into the sensorimotor function of the test

mice with trial latency and swim speed measurements (Figure 4.1.1-4.1.2). Animals
are tested for 4 trials/day for 3 days in a pool with a visible platform.

Over successive trials the mice learned to climb the platform to escape from the task
of swimming. The mice became more efficient at the task over the 3 days of VCN

testing, with shorter trial latencies each day (Figure 4.1.1). Among all the mice
tested at 3, 13, and 18mo, the swimming performances of PDAPP and BACE pKO;
PDAPP mice featured a strong effect of age, such that older animals of both

genotypes swam slower and had longer swim trials (Tables 4.1.1a-d-4.1.2a-d). At
13mo BACE pKO; PDAPP mice located the visible platform faster than PDAPP
mice (F=2.3, p<0.05). There were no genotypic differences in Study 006 swim

speeds overall.

136



3mo

50-,

o* 40-
c
a>

ra 30

H 20-|
0)
O)

5 10-

< n.

■PDAPP

BACE pKO; PDAPP

1 2 3

Day of Testing

B

50-

>«
o
c 40-
0)

•4—«

03

30-
03 —
■jz
h-
o
U)
03

20-

CD
>
<

10

50-

o
C 40-
0)

03

^ 30-
03 ^
■Z if)

CD
O)
CO
i_

<1)

<

20-

10-

13mo

—A-PDAPP

BACE pKO; PDAPP

p=0.036 vs PDAPP mice

1 2 3

Day of Testing

18mo

■ PDAPP

BACE pKO;PDAPP

1 2 3

Day of Testing

Figure 4.1.1 Visual cued navigation swim trial latencies in Study 006
mice by age and genotype. A-C: At 3 and 18mo VCN trial latencies
between PDAPP and BACE pKO; PDAPP mice are similar, while at
13mo BACE pKO; PDAPP mice have shorter trials than PDAPP mice.
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Figure 4.1.2 Visual cued navigation swim trial speeds in Study 006
mice by age and genotype. A,C: Swimming speed in 3 and 18mo
animals are equivocal. B: At 13mo, PDAPP mice swim slower than
BACE pKO; PDAPP mice on Day 1, but their performance becomes
indistinguishable by Day 2 and 3, suggesting that subsequent
criterion-based hidden platform testing is not affected by differences in
swim speed.
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3 months 13 months 18 months All
Day Genotype

1 3ACE

PDAPP
ALL

2 3E pKO;PDAPP
PDAPP

ALL
3

PDAPP
ALL

ALL

PDAPP

ALL

Source Factor(s) F statistic DF p-value
Genotype*Age 1.98 2 0.069

Age 2.3 2 0.035

Genotype 0.3 1 0.82

p-value
Comparison BACE pKO;PDAPP PDAPP ALL
3 vs 13 months 0.0053 0.84 0.12

3 vs 18 months 0.027 0.51 0.17

13 vs 18 months 0.0009 0.91 0.07

Comparison
VS PDAPP

Tables 4.1.1a-d Descriptive, MANOVA and pairwise ANOVA statistics
for VCN swim latencies in Study 006 mice by age and genotype

N I Mean Std N I Mean Std N | Mean | Std N I Mean Std
26 34.96 10.56 22 35.24 13.42 23 37.03 17.03 71 35.72 13.63
30 33.77 16.65 19 36.38 16.87 23 40.73 18.01 72 36.44 17.03
56 34.32 14.05 41 35.76 14.93 46 38.71 17.36 143 36.07 15.37
26 7.61 5.71 22 6.69 4 38 23 15.56 13 32 71 9 9 9.43
30 11.24 10.48 19 9 92 8.29 23 11.48 13.14 72 1094 10.62
56 9 55 8.72 41 8 19 6.61 46 13.72 13.24 143 1041 10.01
26 6 12 3.56 22 3.5 1.82 23 7.14 5.31 71 5.64 4.08
30 5.43 2.1 19 5.92 3.22 23 5.81 3.74 72 5.68 2.93
56 5.76 2.88 41 4.62 2.81 46 6.54 4.66 143 5.66 3.55

26 16.23 15.13 22 15.14 16.5 23 19.91 17.92 71 17.09 16.54
30 16.94 16.74 19 17.4 17.4 23 19.34 20.06 72 17.74 17.85
56 16.61 15.97 41 16.19 16.89 46 19.65 18.84 143 17.41 17.18

3 mo
p-vaiuc

13 mo 18 mo ALL

0.34 0.036 0.25 0.79
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3 months 13 months 18 months All

Genotype N | Mean Std N [ Mean Std N | Mean Std N I Mean I Std

1 26 22.73 13.44 22 19.11 5.93 23 19.61 3.63 71 20.6 9.05

PDAPP 30 24.22 14.42 19 12.01 6.25 23 19.77 3.8 72 19.56 11.41

ALL 56 23.53 13.87 41 15.82 5.99 46 19.68 3.66 143 20.09 10.25
2 26 25.81 10.67 22 23.29 6.99 23 19.49 5.31 71 22.98 8.43

PDAPP 30 28.82 13.75 19 20.31 13.06 23 20.25 4.09 72 24.05 12.26
ALL 56 27.42 12.4 41 21.91 10.23 46 19.84 4.76 143 23.5 10.46

3 26 33.81 8.25 22 23.69 4.2 23 19.99 3.69 71 26.2 8.37
PDAPP 30 34.38 8.67 19 25.21 11.8 23 23.23 7.6 72 28.7 10.57

ALL 56 34 12 8.4 41 24.4 8.51 46 21.46 5.94 143 27.42 9.56

26 27.45 11.82 22 22.03 6.1 23 19.7 4.22 71 23.26 8.88
PDAPP 30 29.14 13.09 19 19.13 11.93 23 21.08 5.56 72 24.11 11.98

ALL 56 28.35 12.51 41 20.71 9.34 46 20.33 4.9 143 23.67 10.51

Source Factor(s)
Genotype*Age

Age
Genotype

Comparison BACE pKO;PDAPP PDAPP ALL

3 vs 13 months 0.0045 0.0007 <0.0001

3 vs 18 months <0.0001 0.0007 <0.0001

13 vs 18 months 0.3 0.081 0.079

Comparison 3 mo

p-value
13 mo 18 mo ALL

VS PDAPP 0.99 0.092 0.7 0.38

Tables 4.1.2a-d Descriptive, MANOVA and pairwise ANOVA statistics
for VCN swim speeds in Study 006 mice by age and genotype

F statistic DF p-value
1.19 6 0.31

9.45 2 <0.0001

0.47 1 0.7
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Serial Spatial Navigation from Memory

Study 006 mice were tested in a water maze task across cross-sectional age groups

for measures of learning and memory acquisition and capacity. As in Study 001,
these measures were based on a specified criterion at each spatial location, requiring
the animals to swim to the hidden platform in 3 successive trials in <2Is. Measures
of learning rates and the ability to modify acquired spatial memory through serial

platform locations (reversal) provides information about patterns and changes in

learning and memory by genotype with age.

4.2 Acquisitional and Serial Learning Deficits

Analysis of number of trials to criterion for the first platform location is akin to the
classical version of the watermaze in which only one spatial task is presented

(TTC1). Deficits in learning this task are thus the earliest observable impairments in
rodent spatial memory as shown in Figure 4.2.1. Overall, the mice took

approximately 7 test trials to learn this first problem (Figure 4.2.1). The ANOVA

analysis shows no difference as a function of genotype (F<1), but there was an

overall slowing in the rate of learning as a function of age (F=2.89, df 2/136,

p<0.05). While the age*genotype interactions were not significant, 13mo BACE

pKO; PDAPP mice did learn location one in fewer trials than PDAPP mice (Table
4.2a-d p=0.05). However, there was a tendency for PDAPP mice to learn location 1
faster than BACE pKO; PDAPP mice by 18mo (p=0.06).

Analysis of performance on TTC2 and TTC3 provides a measure of spatial memory

reversal, as animals must have the capacity to learn new locations and "overwrite'
the residual memory of the previous spatial location. As seen in Tables 4.2e-h and

4.2i-l, both genotypes exhibit decline in serial TTC2 and TTC3 learning. Study 006
mice have genotypic differences at various ages, with BACE pKO; PDAPP mice

performing better than PDAPP mice at 13mo, with a reversal of this pattern by
18mo on TTC2 and TTC3. Indeed in TTC2 there is a significant age*genotype

interaction, which approaches significance on TTC3 (TTC2 F=5.37, 2/136, p<0.01;
TTC3 F=3.0 df 2/136, p=0.053).
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Another way of displaying these differences is by taking the average of TTC over

locations 1-3 (Figure 4.2.3, Table 4.2m-p). The same significant patterns that were
seen with analysis of individual locations were reproduced analysis of average TTC
of locations 1-3 (age*genotype: F= 14.28, df 2/1291, p<0.0001). This spatial

memory improvement relative to PDAPP mice at 13mo in a reversal-like task on

TTC2 suggested that the partial deletion of the BACE gene on a PDAPP background
confers some rescue of the deleterious spatial memory phenotype of hAPP mice.
However by 18mo, this BACE pKO; PDAPP genotype becomes a cognitive liability
in both TTC2 and TTC3. This may indicate a shift in the relative function of BACE

gene products with age, such that decreased BACE may further impair memory in
mice with transgenic APP overexpression.

The other major utility of this analysis was that it was easier to visualize an age-

related decline in spatial memory acquisition rates by genotype. In particular,
PDAPP mice reach the nadir of their performance levels at 13mo, while BACE

pKO; PDAPP mice have steady age-related declines that continue from 13-18mo
and from 3-18mo overall (Figure 4.3.2b-c). This difference reflects, in part, the

apparent "rescue" of the PDAPP associated decline in performance that occurs by
the end of the first year of life by the partial BACE knock-out. If this is due to a

relative decline in A|3 levels at Brno, it suggests that this cannot be sustained at

older ages, by which time, the transgenic overproduction of A|3 can no longer be

compensated for by the partial inactivation of BACE. Alternatively it could be that
BACE pKO; PDAPP mice become susceptible to a separate deleterious phenotype
due to their reduced BACE levels. It must be noted that by 18mo the PDAPP mice

appear to have very little spatial memory decline, as performance at this age is

significantly better than at Brno. As these PDAPP mice have overall fewer deficits
in this colony than others reported (Chen et al. 2000), it may be that longitudinal

analysis between ages is not appropriate without prior confirmation that crosse-
sectional analyses will yield the same results.
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1PDAPP

Figure 4.2.1 Deficits in initial spatial memory acquisition in Study 006
by age and genotype. A: PDAPP and BACE pKO; PDAPP require on
average the same number of trials to learn location 1 when grouped
across all ages. B: At 3mo, Study 006 animals both require about 6
trials to learn location 1 to criterion. C: By 13mo, BACE pKO; PDAPP
mice learn location 1 in fewer trials than PDAPP mice. D: The
difference in PDAPP and BACE pKO; PDAPP mouse performance at
18mo on location 1 approaches statistical significance (p=0.06), such
that PDAPP mice appear to learn location 1 faster than BACE pKO;
PDAPP mice.
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Figure 4.2.2 Deficits in serial spatial reversal memory on locations 2
and 3 in Study 006 mice by age and genotype. A,B: At 3mo Study 006
mice have equivalent performance in a test of initial (location 2) and
serial (location 3) spatial reversal. C: BACE pKO; PDAPP mice at 13mo
have improved ability to learn a new spatial location compared to
PDAPP mice. D: Performance on location 3 by 13mo Study 006 mice is
equivocal. E,F: At 18mo BACE pKO; PDAPP display significant
impairments in learning locations 2 and 3 compared to PDAPP mice.
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Figure 4.2.3 Deficit in memory acquisition average trials to criterion in
Study 006 mice by age and genotype. A: At 13mo BACE pKO; PDAPP
mice require on average fewer trials to learn each spatial location to
criterion compared to PDAPP mice, but by 18mo PDAPP mouse
performance is superior to that of BACE pKO; PDAPP mice. B: BACE
pKO; PDAPP mice show a progressive age-related deficit in memory
acquisition and serial learning between 13 and 18mo, and 3 and 18mo
groups. C: PDAPP mice show a non-progressive memory deficit
between 3mo and older animals, with the worst overall performance in
average trials to criterion at 13mo, not 18mo of age.
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3 months 13 months 18 months All

Genotype
BACE pKO; PDAPP

PDAPP
ALL

N Mean Std N Mean Std N Mean Std N Mean Std
26 5.88 3.02

30 6.03 3.3

56 5.96 3.14

22 6.77 5.14

19 9.16 5.19

41 7.88 5.24

23 10.13 7.11

23 6.39 2.71

46 8.26 5.65

71 7.54 5.52

72 6.97 3.91

143 7.25 4.77

Source Factor(s) F statistic DF p-value
Genotype'Age 1.49 2 0.23

Age 2.89 2 0.05

Genotype 0.08 1 0.78

Comparison
p-value

BACE pKO; PDAPP PDAPP ALL

3 vs 13 months 0.7 0.019 0.05

3 vs 18 months 0.0095 0.51 0.02

13 vs 18 months 0.033 0.098 0.77

Comparison
VS PDAPP

Tables 4.2.1a-d Descriptive, MANOVA and pairwise ANOVA statistics
for Study 006 mice on TTC1 performance by age and genotype.

Genotype
BACE pKO;PDAPP

PDAPP
ALL

p-value
3 mo 13 mo 18 mo ALL

0.97 0.05 0.06 0.93

3 months 13 months 18 months All

N Mean Std N Mean Std N Mean Std N Mean Std
26 4.31 1.46

30 4.62 2.26

56 4.47 1.91

22 5.18 2.42

19 7.58 4.71

41 6.29 3.81

23 8.04 5.79

23 4.91 2.75

46 6.48 4.75

71 5.79 3.96

72 5.51 3.42

143 5.65 3.69

Source Factor(s)
Genotype*Age

Age
Genotype

Comparison
3 vs 13 months

3 vs 18 months

13 vs 18 months

Comparison
VS PDAPP

F statistic DF p-value
5.37 2 0.0057
4.92 2 0.0087

0.05 1 0.82

p-value
BACE pKO; PDAPP PDAPP ALL

0.3 0.0059 0.0072

0.0012 0.76 0.011

0.032 0.019 0.83

p-value
3 mo 13 mo 18 mo ALL

0.78 0.05 0.0085 0.82

Tables 4.2.2a-d Descriptive, MANOVA and pairwise ANOVA statistics
for Study 006 mice on TTC2 performance by age and genotype.
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3 months 13 months 18 months All

Genotype

PDAPP
ALL

Source Factor(s)
Genotype*Age

Age
Genotype

p-value
Comparison PDAPP ALL

3 vs 13 months 0.095 0.0062 0.002

3 vs 18 months 0.0027 0.45 0.0069

13 vs 18 months 0.19 0.054 0.64

Comparison 3 mo
p-value
13 mo 18 mo ALL

VS PDAPP 0.15 0.85 0.0005 0.0036

Tables 4.2.2e-h Descriptive, MANOVA and pairwise ANOVA statistics
for Study 006 mice on TTC3 performance by age and genotype.

N Mean Std N Mean Std N Mean Std N Mean Std
26 6.92 3.51

30 5.5 2.37

36 6.16 3.01

22 8.82 4.36

19 9.74 7.28

41 9.24 5.83

23 11.09 5.62

23 6 2.24

45 8.49 4.92

71 8.83 4.78

72 6.78 4.53

143 7.79 4.75

F statistic DF p-value
3 2 0.053

5.68 2 0.0043
8.86 1 0.0034

3 months 13 months 18 months All

Genotype

PDAPP
ALL

N Mean Std N Mean Std N Mean Std N Mean Std

26 5.71 1.94

30 5.39 1.56

56 5.54 1.74

22 6.92 2.78

19 8.82 2.94

41 7.8 2.98

23 9.7 3.92

23 5.77 1.62

46 7.74 3.57

71 7.38 3.37

72 6.42 2.48

143 6.9 2.98

Source Factor(s) F statistic DF p-value
Genotype*Age 14.28 2 <0.0001

Age 15.19 2 <0.0001

Genotype 2.98 1 0.086

p-value
Comparison PDAPP ALL

3 vs 13 months 0.063 <0.0001 <0.0001

3 vs 18 months <0.0001 0.44 <0.0001

13 vs 18 months 0.0008 <0.0001 0.59

p-value
Comparison 3 mo 13 mo 18 mo ALL

VS PDAPP 0.58 0.015 <0.0001 0.086

Tables 4.2.3a-d Descriptive, MANOVA and pairwise ANOVA statistics
for Study 006 mice on averaged TTC1-3 performance by age and
genotype.
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4.3 Learning Capacity (Number of platforms learned)

Over the course of the Study 006 experiment, mice were exposed to a series of

platform locations. The number of spatial locations or platforms learned serves as a

measure representative of the learning and memory capacity of these animals. The
PDAPP and BACE pKO; PDAPP genotypes are indistinguishable with respect to

their learning capacity (LC) in the watermaze until they reach 18mo of age, when
BACE pKO; PDAPP mice have significantly less memory capacities than PDAPP
mice (F= 17.94, df 1/138, pO.OOOl, Table 4.3a-d, Figure 4.3.1). In addition there is
a significant age-related decline in LC measures within genotypes across ages from

learning an average of 9 locations at 3mo to about 7 locations by 13m-18mo

(F=32.97, df 2/138, pO.OOOl, Table 4.3.1). Overall there is a strong interaction of

age*genotype that impacts spatial memory capacity in Study 001 mice (F=27.17 df

2/138, pO.OOOl). The data implies that partial loss of the BACE gene confers a

severely deleterious memory capacity impairment in mice that overexpress

transgenic mutant APP.
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Across Ages
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Figure 4.3.1 Deficits in spatial memory capacity in Study 006 mice by
age and genotype. A: Across ages BACE pKO; PDAPP mice are
significantly worse in their spatial memory capacity in aged mice. B:
BACE pKO; PDAPP mice display an age-related decline in their total
spatial memory capacity, as performance mice aged between 3 and
13mo, 13 and 18mo, as well as 3 and 18mo are significantly different.
C: PDAPP mice show a non-progressive deficit in serial spatial
memory capacity, with the poorest spatial memory capacity at 13mo.
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3 months 13 months 18 months All

Genotype

PDAPP
ALL

Source Factor(s) F statistic DF p-value
Genotype*Age 27.17 2 <0.0001

Age 32.97 2 <0.0001

Genotype 17.94 1 <0.0001

p-value
Comparison PDAPP ALL

3 vs 13 months 0.0013 <0.0001 <0.0001

3 vs 18 months <0.0001 0.24 <0.0001

13 vs 18 months <0.0001 <0.0001 0.47

Comparison 3 mo

p-value
13 mo 18 mo ALL

VS PDAPP 0.46 0.1 <0.0001 <0.0001

Tables 4.3.1a-d Descriptive, MANOVA and pairwise ANOVA statistics
for Study 006 mice on learning capacity by age and genotype.

N Mean Std N Mean Std N Mean Std N Mean Std
26 9 0.85

30 9.2 0.76

56 9.11 0.8

22 8.05 1.33

19 7.53 1.31

41 7.8 1.33

23 6.39 1.08

23 8.87 0.69

46 7.63 1.54

71 7.86 1.53

72 8.65 1.14

143 8.26 1.4
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Non-Memory Phenotypes

4.4 Seizures and Other Observations

In comparison to Study 001 mice with homozygous deletions of the BACE gene,

Study 006 mice displayed a lesser seizure phenotype with only about 3% of animals

having observed seizures compared to 17% of BACE KO; PDAPP animals in Study
001. (Figure 3.4B, 4.4B). Indeed, Study 006 mice had fewer deleterious phenotypes

altogether, and those that remained, including seizures and circling behavior or

spinning, could be attributed to the presence of the PDAPP transgene as the

hemizygous BACE gene deletion appeared to confer no additional abnormal

phenotype itself.

Animals were also removed from study for other reasons, including excessive

anxiety, spinning, floating and blindness, with nearly equivalent numbers of animals
removed by genotype across ages (PDAPP: 18.1% of original N=72, BACE pKO;
PDAPP: 16.2% of original N-74). Different removal reasons ("Other") that were
unrelated to deleterious phenotypes included shipment of incorrectly aged animals,

body wounds, or removal of animals prior to behavioral testing for biochemical

analysis (Figure 4.4C). Observation of Study 006 animals suggests that the

hemizygous removal of the BACE gene did not predispose mice to spontaneous

seizure activity, although this possibility is explored more extensively in Study 011.

4.5 Death and Survival Rates

Study 006 mice have much lower percentages of deaths in-house than Study 001

mice, suggesting that these mice are more capable of responding to the stresses of

travel, new caging environments, and behavioral testing (Figures 3.5, 4.5). In

addition, although BACE pKO; PDAPP mice were on the whole more genetically
altered than PDAPP mice, the partial deletion of the BACE gene on a PDAPP

background appeared to promote longer lifespans as these mice lived on average to

10.5mo while PDAPP mice lived on average to 8.5mo when vendor inventories
were analysed (PDAPP N=117, BACEpKO; PDAPP N=167, Table 4.5). This
somewhat surprising data suggest that partial deletion of BACE on a PDAPP
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background provides a meaningful rescue of the early death phenotype associated
with PDAPP animals, possibly by a beneficial reduction ofA|3 levels.

Age
(Mo) PDAPP BACE KO; PDAPP

26.1% 21%
3 (N=6 of 23) (N=7 of 24)

24% 8.3%
13 (N=6 of 25) (1X1=2 of 24)

4.2% 12%
18 (ISM of 24) (N= 3 of 26)

Table 4.4A Study 006 Mice Removed from Experiment by Age and
Genotype

Age
(Mo)
3
13
18

PDAPP BACEpKO; PDAPP
0% (N= 0 of 23) 4.2% (N=1 of 24)
0% (N= 0 of 25) 0% (N=0 of 24)
4.2% (N= 1 of 24) 4% (N= 1 of 26)

Table 4.4.B Spontaneous Seizures in Study 006 Mice by Age and
Genotype

PDAPP

BACE pKO;PDAPP

Degrees of
Age of 50% Group Genetic PDAPP Deleted

Mortality (mo) Modification Transgenes Alleles

8.5 1 1 0
10.5 2 1 1

Table 4.5 50% Mortality Ages of Study 006 Mice
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Removal Statistics by Genotype and Age
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Figure 4.4. Seizures and other observations in Study 006 mice. A: The
percentage of mice removed from study various from 5-25% when
broken down by PDAPP and BACE pKO; PDAPP mice across ages. B:
A small number of mice display spontaneous seizure activity, with
about 3% in 3mo BACEpKO; PDAPP mice and about 4% each for 18mo
PDAPP and BACE pKO; PDAPP mice. Unlike the Study 001 mice,
seizure activity in Study 006 mice is not limited to animals with BACE
gene deletions. C: Breakdown of removal reasons for PDAPP and
BACE pKO: PDAPP mice. BACE pKO; PDAPP mice were removed for
more reasons than the PDAPP mice, including anxiety, spinning and
inability to swim. Red arrows indicate removals related to seizure
activity.
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Mouse Survival Analysis
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Figure 4.5 Death and survival rates in Study 006 mice. A: BACE pKO;
PDAPP mice live on average longer than PDAPP mice, with average
lifespans of 10.5mo and 8.5mo (Table 4.5), and oldest ages at 32.5mo
and 30.5mo respectively. B: A similar number of BACE pKO; PDAPP
and PDAPP mice died after shipment to Elan prior to testing. This 1%
death rate is much lower than the Study 001 death rates which ranged
from 3% in Control and PDAPP mice to 10% in mice with BACE gene
deletions.
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Calbindin and Amyloid Histology

4.6 Calbindin Histology in the Hippocampal Outer Molecular Layer

Calbindin (CB) is a Ca++-binding protein ubiquitously expressed in cerebral neurons,

which has been linked to spatial memory performance in transgenic hAPP mice

(Palop et.al.; 2003). CB has also often been used as a surrogate marker for

neurogenesis related to seizures in rodents, which were originally observed at a high
rate in Study 001 mice. By using an antibody to CB and probing it with a fluorescent

secondary antibody, measurements of the average intensity of hippocampal CB in
006 mice were made with the intention of relating spatial memory performance to

hippocampal CB immunoreactivity.

While there was far less spontaneous seizure activity in Study 006 mice, there was

also a dynamic range ofCB intensity patterns in the hippocampus with age. At 3mo,
there was tendency towards BACE pKO; PDAPP mice having higher CB levels than
PDAPP mice (p=0.078). However, by 18mo PDAPP mice had the greater CB
intensities compared to BACE pKO; PDAPP mice (p=0.0008, Figure 4.6.1C). This

pattern of CB immunoreactivity mirrors the behavioral findings in which the BACE

pKO; PDAPP mice display a significant decline in spatial memory relative to

PDAPP mice. Overall this pattern translated to a significant age*genotype
interaction in Study 006 mice (F=7.0 df 6/138, p.0014).

It is possible that if CB is functionally related to memory status, the BACE hemi-
deletion may protect against the loss of CB in the hippocampus at early ages as was

also observed in Study 001 PDAPP mice, but by 18mo some other process is taking

place (Tables 4.6a-d). Alternatively, it is possible that 18mo PDAPP mice were

experiencing greater unobserved seizure activity, which could contribute to the
elevation of CB levels. Again, the hypothesis of hemizygous BACE deletions

protecting against seizure and, with it, changes in CB levels will be explored in

greater detail in Study 011c.
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Genotype
BACE pKO; PDAPP

PDAPP
ALL

3 months 13 months 18 months All

N Mean Std N Mean Std N Mean Std N Mean Std
22 59.23 9.91

25 52.82 12.2

47 55.82 11.5

13 45.21 9.83

15 49.04 9.35

28 47.26 9.6

21 59.18 19.1

19 81.71 30.5

40 67.62 21.7

56 55.96 15.1

59 59.63 19.2

115 57.84 17.3

Genotype'Age 7 2 0.0014

Age 15.43 2 <0.0001

Genotype 2.55 1 0.11

Comparison
3 vs 13 months

3 vs 18 months

13 vs 18 months

Comparison
VS PDAPP

p-value
PDAPP ALL

0.0018 0.45 0.0052

0.69 <0.0001 0.0021

0.0058 <0.0001 <0.0001

3 mo
p-value
13 mo 18 mo ALL

0.078 0.36 0.0008 0.11

Table 4.6a-d Descriptive, MANOVA and pairwise ANOVA statistics for
hippocampal Calbindin levels in Study 006 mice by age and genotype.

«
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Figure 4.6.1 Calbindin intensity in the hippocampal outer molecular
layer of Study 006 mice. A: Although there is a trend towards BACE
pKO; PDAPP mice having higher Calbindin (CB) levels than PDAPP
mice, they are statistically equivocal at 3mo. B: At 13mo BACE pKO;
PDAPP and PDAPP mice have indistinguishable CB levels. C: By 18mo,
there is a significant deficit in CB levels in BACE pKO; PDAPP mice
relative to PDAPP mice, mirroring the behavioral deficits seen in these
animals.
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Figure 4.6.2 Caibindin images from the hippocampal outer molecular
layer in Study 006 mice. Images with CB immunoreactivity levels close
to group averages are presented, and the immunoreactivity of blood
vessels (white arrow) is artifactual (3mo PDAPP). 3mo: PDAPP and
BACE pKO; PDAPP mice have equivalent CB levels. 13mo: There is no
distinction between CB levels from any genotype. 18mo: BACE KO;
PDAPP mice have visibly lower levels of CB compared to PDAPP mice,
suggesting an age-related decline in CB immunoreactivity in mice with
partial BACE gene deletion.
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4.7 hAmvloid Precursor Protein Immunoreactivitv and AB processing

Expression of hAPP in the PDAPP and BACE pKO; PDAPP animals was confirmed

by antibody staining with 8E5. hAPP expression was evident in cortical and

hippocampal tissues of all Study 006 mice (Figure 4.7.1a-b). Confirmation of hA|3

processing was conducted via antibody staining with 3D6 (Figure 4.7.2). Using this

antibody, amyloid deposits were visible in the hippocampus and cortex of PDAPP
mice at 13 and 18mo of age, with attenuated amyloid deposition in BACE pKO;
PDAPP brain tissues at the same ages. Deletion of one murine BACE allele was

sufficient to reduce A|3 metabolism, especially at the 13mo age (Figure 4.7.2a-b
middle panels). This finding was intriguing as this was the age in which BACE

pKO; PDAPP mice had superior spatial memory performance in acquisitional
measures (Figures 4.2.2c, 4.2.3a). By 18mo the accumulation of amyloid in BACE

pKO; PDAPP mice still appeared to be less than that of PDAPP mice but

comparable in regions of the hippocampus to that of 13mo PDAPP mice (Figures
4.7.2a middle panel, Figure 4.7.2b right panel). This observation suggests that

hemizygous BACE gene deletion partially rescues PDAPP mice from amyloid

neuropathology, as it seems that accumulations are delayed in their development. In
PDAPP mice there was little spatial memory decrement between the ages of 13-

18mo, so it was perhaps not surprising that there is no distinction between 18mo

performance in PDAPP and BACE pKO; PDAPP mice. By 13mo BACE pKO;
PDAPP mice may have also reached a level of saturation in histological

pathology/spatial memory performance.
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3mo 13mo 18mo

Figure 4.7.1 APP brain immunoreactivity in Study 006 mice. 3mo,
13mo: hAPP is detected by the antibody 8E5 in PDAPP and BACE pKO;
PDAPP mice. 18mo: hAPP is present in PDAPP and BACE KO; PDAPP
mouse brains, however, the extent of neuritic dystrophy pathology
present (plaque-like accumulations within the hippocampus, delineated
by red arrows) in 18mo PDAPP mice appears to be greater than that of
18mo BACE KO; PDAPP mice.

3mo 13mo 18mo

PDAPP ~ •

B BACEpKO;
PDAPP

Figure 4.7.2 Partial BACE gene deletion ameliorates cerebral Ap
deposition in Study 006 mice. 3mo: No Ap depositions detected by the
3D6 antibody are present in young mice, as this neuropathological
feature does not manifest until at least 6-7mo in PDAPP mice. 13mo:
Plaque-like deposits of Ap are present in 13mo animals, while BACE
KO; PDAPP brains appear to have attenuated levels amyloid burdens.
18mo: The cortex and hippocampus of PDAPP animals have heavy Ap
burdens, while BACE KO; PDAPP brains have fewer deposits than
even 13mo PDAPP mice, suggesting that hemizygous BACE gene
deletion is sufficient to diminish and/or delay Ap deposition throughout
life.

160



4.8 Correlation Analyses of Behavioral and Histological Data

Correlation Analysis Cell Key

R-Values Colorimetrics P-Values Colorimetrics Self-Correlation Insignificant p- or
Non-correlative r-value,

0.3<R<1 -1<R<-0.3 p<0.05

Column Abbreviations

Plats = Number of Platforms Learned
TTC N = Trials to Criterion, Location N
Ave 1-3 = Average TTC Locations 1-3
CB = Calbindin Intensity in the Hippocampal Outer Molecular Layer

Example Correlation Table, Behavioral Measures Interrelationships
R-values from
correlation analysis

#Platforms TTC 1 TTC 2 TTC 3 ave1-3 nf oarh mMcnro

#Platforms -0.2208 -0.4811 -0.677 -0.7621

TTC 1 0.0476 0.3994

TTC 2 P<0.0001 0.3305 0.6643

S* TTC 3 P<0.0001 0.0026 0.8075

ave1-3 P<0.0001 0.0002 TJAO OOO ~UAOboo

p-values from
correlation analysis of
each measure

Figure 4.8.1a Example correlation tables. A: Correlation table of
relationships between various behavioral measures, with R-values
presented in upper diagonal section and p-values presented in lower
diagonal section. Corresponding p-values and R-values are found in
the same coordinate distance from the black diagonals separating the
two types of values, with R-values at xr,yr coordinates, and p-values at
yp,xp coordinates where xr=yp and yr=xp
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Example Correlation Table, Hippocampal
Intensity/Behavioral Measures by Genotypes

Calbindin

#Platforms TTC 1 TTC2 TTC 3 ave1-3

Controls

PDAPP

BACE KO

BACE KO; PDAPP

Controls

PDAPP

BACE KO

BACE KO; PDAPP

-0.5419

0.0301

R-values from
correlation analysis
of each measure

p-values from
correlation analysis
of each measure

Figure 4.8.1 B Example correlation tables. B: Correlation table of
calbindin values to behavioral performance measures, with individual
genotypes presented. R-values are in upper sections and p-values are
in lower section.

The patterns of intra-behavioral measures in Study 006 were reminiscent to that of

Study 001, as once again, numbers of platforms learned at all ages was inversely
related to trial-based measures like TTC, and there were certain measures that were

linked and also unrelated at specific ages. Study 006 correlation patterns for
behavioral measures differ in that all the TTC measures were unrelated to each other

from the earliest age tested (3mo) and remained distinct at 13mo and l8mo as well

(Tables 4.8.1-4.8.3). However the TTC1 and TTC3 measures were inversely
correlated to LC at 3mo and expanded to include all TTC measures to LC by 13 and
18mo.

At all ages TTC2 appeared to be functionally disconnected in value patterns

compared to all other measures. While TTC1 performance is measure of spatial

memory acquisition, learning the TTC2 task requires the ability to "unlearn" a

previous task to successfully solve a new task. The lack of correlation between
TTC1 and TTC2 performance values suggests that they may be fundamentally
different processes.

Finally, the fact that many of the general features of the behavioral correlations

patterns between 001 and its progenitor colony 006 are similar even though these are
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not directly comparable colonies suggests that these behavioral measure

relationships were genuine. These patterns of relationship implicate separate

anatomical and/or synaptic processes, a concept which could be further explored
with electrophysiological studies.

Correlational analysis conducted between genotype, color and gender factors and
behavioral and Calbindin (CB) measures revealed several patterns of relationships.
At 3mo, Genotype is related to Color (R=0.295, P=0.0275), which is the
correlational affirmation of the earlier data that shows that the majority of BACE

pKO; PDAPP mice are pigmented (Table 4.0a). However, both gender and color
show associations to behavioral performance in 3mo Study 006 mice, such that
female mice appear to learn more platform locations (R=0.287, P=0.032), and dark-
coated mice learn location 1 faster (R=-0.371, P=0.0049). In addition female mice
and dark-coated mice had higher CB intensities. By 13mo, there only by-factor
correlation in Study 006 was that dark-coated mice now had lower levels ofCB. By

18mo, the influence of genotype was stronger, indicating that overall BACE pKO;
PDAPP mice had lesser memory capacity (#Platforms), took longer to learn location
2 (TTC2), and had lower CB levels, all of which were presented directly in Sections

Genotype Gender Color #Platforms TTC 1 TTC 2 TTC 3 ave1-3 CBInt

Genotype 0.038 0.295 -0.119 -0.007 -0.006 0.196 0.072 0.277

Gender 0.7788 0.111 0.287 -0.043 0.173 -0.107 -0.093 0.442

Color 0.0275 0.4140 -0.047 -0.371 -0.112 0.095 -0.252 0.319

ffPlatforms 0.3809 0.0320 0.7319 -0.287 -0.115 -0.432 -0.547 0.123

TTC 1 0.9607 0.7551 0.0049 0.0320 0.033 0.039 0.593 -0.082

TTC 2 0.9647 0.2054 0.4152 0.4040 0.8122 0.131 0.467 -0.198

TTC 3 0.1472 0.4306 0.4855 0 0009 0.7777 0.3413 0.664 -0.063

ave1-3 0.5969 0.4948 0.0609 P0.0001 P0.0001 0.0003 P0.0001 -0.193

CBInt 0.0598 0.0018 0.0288 0.4097 0.5849 0.1878 0.6719 0.1929

4.2-4.3, and 4.6.

Table 4.8.1 Correlation of behavioral measures, R- and P-values of all
3mo Study 006 mice. Spatial memory capacity (#Platforms) is highly
correlated to initial and subsequent spatial locations (TTC1, TTC3).
Higher Calbindin intensity is correlated to gender (female) and color,
(agouti, black). The correlational analysis also implies that there are
more agouti and black BACE pKO; PDAPP mice (Table 4.0b).

163



Genotype Gender Color #Platforms TTC 1 TTC 2 TTC 3 ave1-3 CBInt

Genotype 0.179 0.184 -0.110 -0.107 -0.088 0.105 -0.121 0.073

Gender 0.1564 0.027 0.021 -0.177 -0.159 -0.018 -0.163 0.126

Color 0.1457 0.8307 0.154 -0.087 -0.210 0.035 -0.186 -0.360

^Platforms 0.3866 0.8698 0.2245 -0.379 -0.296 -0.526 -0.734 -0.218

TTC 1 0.3992 0.1616 0.4923 0.0020 -0.015 0.181 0.405 0.056

TTC 2 0.4911 0.2091 0.0952 0.0174 0.9070 -0.058 0.671 -0.073

TTC 3 0.4126 0.8858 0.7856 P0.0001 0.1547 0.6510 0.612 -0.001

ave1-3 0.3392 0.1995 0.1411 P<0.0001 P<0.0001 0.0009 P<0.0001 0.008

CBInt 0.6230 0.3942 0.0119 0.1375 0.7039 0.6210 0.9935 0.9585 ■SHBI

Table 4.8.2 Correlation of behavioral measures, R- and P-values of all
13mo Study 006 mice. As in 3mo mice, spatial memory capacity
(#Platforms) in 13mo animals is highly correlated to learning spatial
locations 1 and 3, but at 13mo memory capacity is also correlated to
location 2 (TTC2). Higher Calbindin intensity is correlated to animal
color (agouti, black).

Genotype Gender Color #Platforms TTC 1 TTC 2 TTC 3 ave1-3 CBInt

Genotype 0.000 -0.125 -0.838 0.241 0.317 0.472 0.623 -0.425

Gender 1.0000 0.059 -0.044 -0.102 -0.080 -0.050 -0.167 -0.335

Color 0.4097 0.6948 0.011 0.092 -0.184 0.037 0.006 -0.245

^Platforms P<0.0001 0.7739 0.9411 -0.326 -0.404 -0.585 -0.753 0.337

TTC 1 0.1073 0.4989 0.5412 0.0273 0.146 0.120 0.629 0.084

TTC 2 0.0321 0.5988 0.2216 0.0054 0.3333 0.263 0.646 -0.112

TTC 3 0.4126 0.8858 0.7856 P<0.0001 0.1547 0.6510 0.606 -0.232

ave1-3 P<0.0001 0.2661 0.9684 P<0.0001 P<0.0001 P<0.0001 P<0.0001 -0.207

CBInt 0.0056 0.0324 0.1233 0.0312 0.6009 0.4846 0.1494 0.1946

Table 4.8.3 Correlation of behavioral measures, R- and P-values of all
18mo Study 006 mice. Spatial memory capacity (#Platforms) in 18mo
animals is highly correlated to learning each of 3 spatial locations
(TTC1, TTC2, TTC3). Genotype is also correlated to spatial memory and
CB intensity, as BACE pKO; PDAPP mice learn fewer platform
locations, need more trials to learn location 2, and have lower CB
levels. Female Study 006 mice have overall higher CB levels.

The histological and behavioral correlations in Study 006 are similar to that of Study

001, as in both CB does not appear to be a rigorous predictor or biomarker of spatial

memory status (Tables 4.8.4-4.8.6). CB content in hippocampal neurons was

absolutely non-predictive of spatial memory function at 3mo in Study 006 mice,

although female BACE pKO; PDAPP mice had higher CB levels (R=0.604,

P=0.003, Table 4.8.4). By 13mo Study 006 mice had no significant correlations
between CB and any other measure (Table 4.8.5). At 18mo CB was also not

correlated to spatial memory performance, although male PDAPP and albino BACE

pKO. PDAPP mice had higher CB levels (table 4.8.6). These Study 006 findings
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argue against the proposal that CB levels are a metric for spatial memory

performance in mice in opposition to the transgenic hAPP mouse data from Palop
et.al. (2003).

Gender Color #Platforms TTC1 TTC 2 TTC 3 AVGTTC1-3
PDAPP

BACE pKO, PDAPP
PDAPP

BACE pKO, PDAPP

Table 4.8.4 Correlation of hippocampal calbindin intensity to behavioral
measures, R- and P-values by genotype in 3mo Study 006 mice. At 3mo
there is only apparent CB immunoreactivity relationship in Study 006 is
to animal gender, such that female BACE pKO; PDAPP mice have
higher CB levels.

PDAPP
BACE pKO, PDAPP

PDAPP
BACE pKO, PDAPP

Table 4.8.5 Correlation of hippocampal calbindin intensity to behavioral
measures, R- and P-values by genotype in 13mo Study 006 mice. At
13mo there are no significant correlations between Calbindin and any
other measure.

PDAPP
BACE pKO, PDAPP

PDAPP

BACE pKO, PDAPP

Table 4.8.6 Correlation of hippocampal calbindin (CB) intensity to
behavioral measures, R- and P-values by genotype in 18mo Study 006
mice. Pigmented BACE pKO; PDAPP mice have lesser hippocampal CB
immunoreactivity, while albino animals tend to have greater CB
immunoreactivity. Aged Male PDAPP mice have higher levels of CB
than females. Overall it does not appear that CB is a biomarker of
memory function in Study 006 mice.

0.604

0.003

Gender Color #Platforms TTC 1 TTC 2 TTC 3 AVG TTC 1-3
0.314 0.367 0.012 -0.476 -0.375 0.013 -0.390
0.124 -0.232 -0.338 0.126 -0.192 0.254 0.166

0.275 0.197 0.969 0.085 0.187 0.964 0.168
0.687 0.447 0.259 0.681 0.529 0.402 0.587

Gender Color #Platforms TTC 1 TTC 2 TTC 3 AVG TTC 1-3

-0.567
-0.742

0.009
0.000
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Ch.5 Study 011A: General Sensorimotor Behavioral Phenotvpinq and
Response to Seizure Induction of 18mo Homozygous BACE KO x

PDAPP Mice

The purpose of Study 011A was to explore the genotypic basis for the spontaneous

seizure phenotype observed in Study 001 mice with homozygous deletions of the
BACE gene. While BACE KO and BACE KO; PDAPP mice had mild to severe

spatial memory phenotypes in the water maze, some part of this impairment may be
linked to irregular regulation of neuronal activity that itself is the basis for seizures.

In this study homozygous BACE KO x PDAPP mice were screened by genotype for
their responses to chemically induced tonic seizures with the drug pentylenetetrazole

(PTZ). PTZ is a seizure-inducing drug that acts via the GABAA/benzodiazepine

receptor complex, possibly by blocking CI- influx (Vitek et al., 1965; Yu et al.,

1986). PTZ is commonly used in mice as a model of epileptiform activity, and has
well-documented dose-response effects (Engstrom and Woodbury, 1988; Martin et

al., 1988; Kosobud et al., 1992; Ferraro et al., 1999). Using this chemically-induced
seizure model, aged Study 001 mice were administered PTZ in an effort to
determine if BACE is normally involved in regulation of neuronal activity in

epiletogenic regions of the brain like the hippocampus. In addition, mice in this

Study 011A were also tested on a number of sensorimotor tasks (including forelimb

grip strength, spontaneous locomotor activity monitoring, and rotorod motor

coordination) to provide a broad general behavioral profile of homozygous BACE
KOmice (Table 5.0).

Experimentation was limited to the number of homozygous BACE KO x PDAPP
mice available, and it served the purpose of the study hypothesis to utilize aged
animals to better determine whether they had differential seizure-induction profiles
based on lifetime spontaneous activity. However, there were very few BACE KO
animals alive at this age, and all were female mice, so this must be considered in

examining the results of Study 011A. Around 18mo of age the survival rates of
BACE KO mice dropped off sharply, which may indicate that there is an age-related
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genotypic effect of BACE KO on survival (Ch.3 Figure 3.5a). Total N for this study
was 45 mice.

Female Male ALL

Agouti Black Albino ALL Agouti Black Albino ALL Agouti Black Albino ALL

Genotype
BACE KO; PDAPP 2 0 5 7 3 0 2 5 5 0 7 12

BACE KO 1 0 2 3 0 0 0 0 1 0 2 3
PDAPP 2 2 2 6 4 0 5 9 6 2 7 15
Control 3 0 3 6 3 2 4 9 6 2 7 15

ALL 8 2 12 22 10 2 11 23 18 4 23 45

Table 5.0a Study 011A mice, all aged 18mo.

The overall findings from Study OilA are summarized below (Table 5.0b). One¬

way ANOVA tests were conducted on all measures except for grip strength and the

rotorod, which had serial timepoints and was subject to MANOVA testing, and the

Lethality measure which was analysed with Fisher's exact Chi-squared test. Due to

the scarcity of animals across all gender and genotype groups, statistical analysis of

performance by color was not possible, nor was any analysis of interactions between

gender and genotype. However, descriptive statistics are presented for all factors.

Although Study OilA mice had equivalent sensorimotor task responses on the

majority of responses, it appears that BACE gene ablation results in an anxiety

phenotype (which may have influenced the rotorod performance) and these animals
also have less resistance to kindling severe seizures. Only one measure featured

gender-based statistical differences (constant speed rotorod).
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P-Values
Measure Gender Genotype

Masses 0.21 0.028

Grip Strength 0.23 0.16

Crossings 0.44 0.61
Distance 0.43 0.2

Rests 0.64 0.38
Movement Time 0.45 0.28
Vertical Actvity 0.59 0.12

Stereotypy 0.72 0.37

Open Field Distance 0.62 0.2

Open Field Time 0.55 0.0023

Open Field Vertical Activity 0.83 0.24

Rotorod Constant Speed 0.0002 0.0097
Rotorod Accelerating 0.29 P<0.0001

PC Latency 0.58 0.15
GC Latency 0.14 0.63
TC Latency 0.26 N/A

PC Score 0.8 0.028
GC Score 0.2 0.094
TC Score 0.63 N/A

Seizure Score 0.31 0.45

Percentage Lethality 1 0.57
Death Latency 0.71 0.19

Calbindin Intensity 0.7 0.4

Table 5.0b Statistical summary of factor significance in Study 011 A.
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Mass and Muscular Function

5.1 Body mass and grip strength

In the immediate aftermath of spontaneous seizure activity in Study 001 mice,
animals were observed to have very weak forelimb grip strength. This lack of limb

strength is one of the common sequelae of severe clonic-tonic seizures in mice, in
which limbs are rigidly extended during convulsions, as previously described in
section 2.3.2 of the Materials and Methods chapter. Thus, it was hypothesized that
animals that experience spontaneous seizure throughout life would have weaker
forelimb grip strength when tested quantitatively for this characteristic.

Using an apparatus that digitally records transduced force, Study 011A mice were

assessed for their forelimb grip strength as a function of their individual body mass.

Animals were brought in proximity to a foil screen attached to a mass-displacement

measuring device and allowed to grasp the surface with their forelimbs. The mice
were then gently pulled laterally by the tail until their grip on the screen was broken.
Mice were tested on three successive days, with three trials per day. The expected
normal result would be for an animal to have relatively stable grip strength

performances over the testing period, with no detectable reduction or increases in

average grip strength. The effects of relative body mass or size differences between
animals are minimized using a unitless grip strength ratio. For example, a mouse

with a mass of 50g that displaces lOOg with its forelimbs, or one of 25g that

displaces 50g, each will have the same grip strength ratio of 2. A typical grip

strength ratio for aged mice will vary between 2.0-3.0, with higher ratios of 2.5-3.5
in younger animals.

Grip strength ratio = (mass displaced by grip) / (body mass ofmouse)

Study 011A mice were separated by gender and compared by genotype for body
mass. Analysis of body mass revealed no statistical differences between the female
mice of any genotypes as all had average masses between 34-45g. However, male
PDAPP and BACE KO; PDAPP mice weighed significantly less than Control
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males, with average group body masses at about 35g and 45g respectively

(genotype: F=3.343, df 2/22, p<0.05; Table 5.1a-c). This finding was somewhat

surprising given the largely anecdotal belief held by experimenters working with
PDAPP-based mice that they are predisposed to obesity. Unfortunately, there were

no male BACE KO mice available for body mass analyses.

Grip strength was also determined for Study 011A mice, using a ratio of maximal
masses displaced prior to breaking of forelimb screen grip to individual body mass.

As with the body mass comparisons, female Study 011A mice by genotype had

statistically equivocal performances with grip strength ratios of about 2.5-3.0. Male
mice carrying the PDAPP transgene all had significantly stronger grip strengths than
Control mice, at ratios of 2.5-2.7 versus 2.0-2.2 respectively (Table 5.1d-f).

Factor N Mean (g) STD
Color

Agouti 18 36.24 5.91
Black 4 38.23 6.93

23 38.57 6.91

Gender
Female 22 35.7 5.73

Male 23 39.43 6.74

Genotype
BACE KO; PDAPP 12 38.21 5.57

BACE KO 3 34.01 3.52

PDAPP 15 39.5 11.32

Control 15 34.35 5.4

All 45 36.1 5.94

Source Factor(s)
Gender

Genotype

Comparison P-Values
BACE KO; PDAPP VS PDAPP

BACE KO; PDAPP VS CONTROL
PDAPP VS CONTROL

Table 5.1a-c Descriptive and One-Way ANOVA statistics for body
masses in Study 011A mice by gender and genotype

F statistic DF p-value
1.579 1 0.21
3.343 3 0.028

0.27
0.019

0.034
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Male Body Masses

A Bn P=0.019 Female Body Masses
50-i p=0.034

III
Male Grip Strength

Controls M

*-A-PDAPP M

BACE KO;
PDAPPM

*

p=0.05 vs Control mice

Day of Testing

Female Grip Strengths

- Controls F

-PDAPP F

BACE KO F
- BACE KO; PDAPP F

1 2 3

Day of Testing

Figure 5.1 Body mass and grip strength of 18mo Study 011A mice by
gender and genotype. A: Male PDAPP and BACE KO; PDAPP mice
weighed significantly less than Control male mice; there were no male
BACE KO mice in this experiment. B: There were no significant
differences in body weights between 18mo female mice in Study 011 A.
C: Male mice with the PDAPP transgene have stronger forelimb grips
than Control males. D: There were no significant differences in grip
strength among female mice of the various Study 011A genotypes.
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Trials

Factor N 1 2 3

Color Mean Std Mean Std Mean Std

Agouti 18 2.71 0.7 2.84 0.62 2.74 0.66
Black 4 2.92 0.57 2.93 0.73 2.63 0.61

AOtoOin® 23 2.48 0.75 2.48 0.75 2.34 0.66

Gender
Female 22 2.39 0.69 2.5 0.66 2.42 0.61

Male 23 2.79 0.62 2.83 0.73 2.63 0.71

Genotype
BACE KO; PDAPP 12 2.58 0.82 2.79 0.7 2.68 0.54

BACE KO 3 2.46 0.72 2.25 0.81 2.63 0.88
PDAPP 15 2.93 0.6 2.93 0.59 2.64 0.81
Control 15 2.29 0.53 2.39 0.74 2.27 0.56

All 45 2.59 0.68 2.67 0.71 2.53 0.67

Source Factor(s)
Gender

Genotype

Comparison '-Values
BACE KO; PDAPP VS PDAPP

BACE KO; PDAPP VS CONTROL
PDAPP VS CONTROL

Tables 5.1d-f Descriptive and One-Way ANOVA statistics for grip
strengths in Study 011A mice by gender and genotype

F DF p-value
1.51 3 0.23
1.61 6 0.16

0.29
0.05
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Motoric Phenotypes

5.2 Spontaneous locomotor activity monitoring

Measurement of spontaneous locomotor activity is one of the most basic
assessments made in phenotyping a transgenic mouse line as it provides information
on the fundamental motor activity levels that are often the basis for other behavioral
tasks. General activity levels can be recorded objectively by automated systems to

produce a wide array of locomotor data, which inform the experimenter on aspects

of locomotion, exploration, and anxiety states in test animals. In this section

homozygous BACE KO x PDAPP mice were tested in an automated spontaneous

locomotor monitoring system for measures of total distance moved, total time spent

in motion, number of sectors crossed, number of total rests in movement, vertical

activity (a measure related to motivation to explore and lack of anxiety) and

repetitive or stereotypic movements (often associated with seizure propensity) as

described in section 2.2.1. In addition open field exploration measurements were

also made, to gain information about any underlying anxiety phenotypes in the
BACE KO x PDAPP mice.

Examination of spontaneous motor phenotypes in Study Oil mice revealed no

significant differences in horizontal activity profiles between genotypes except for a

greater level of vertical activity in BACE KO; PDAPP mice compared to PDAPP
animals (p=0.05, Figure 5.2.2b). Interestingly, PDAPP mice tended towards

traveling shorter distances and spending less time in motion than Control mice

(Tables 5.2.1a-c; Figure 5.2.1a-b). PDAPP mice have a noted anxiety phenotype,
which these measures seem to support if anxiety indeed prevented the mice from
further exploration (Gerlai et al., 2002). Alternatively, these PDAPP mice (which
had no motor impairment in later locomotor testing on the rotorod), could simply be
incurious with respect to novelty, a feature that has been noted in AD patients

(Daffner et al., 1999). At the same time these findings suggest that the lower body
masses described in PDAPP mice relative to Control mice in Figure 5.1a are not

likely due to leaner body profiles due to overexploratory hyperactivity.
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The increased vertical activity finding in which BACE KO; PDAPP mice reared
more than PDAPP mice is in disagreement with the overall timid phenotype of 6-7w
old BACE1 KO mice described by Harrison et.al. in 2003. This may be due to

differences in the measures used or the age of the mice tested. One alternative

hypothesis is that excess vertical activity of BACE KO; PDAPP is related to their

propensity to spontaneous seizures, not anxiety per se.

To better examine the possibility of an anxiety phenotype in BACE KO animals, an

open field-like analysis was performed. Exploration of an unfamiliar open area is

commonly used to assess anxiety levels in rodents, as animals with higher anxiety
levels will spend greater time exploring the periphery of an arena, spending less

time, traveling shorter distances and rearing less in open central areas (Delbarre et

ah, 1970; Britton and Britton, 1981). The Accuscan activity monitoring system was

modified to extract open field-like activity in a 12.5x12.5cm square centered within
the larger 25x25cm arena. Over the same two 15min exploration sessions, mouse

activity as recorded for distance traveled, time spent within, and number of rearings
in the open field area.

BACE KO; PDAPP mice spent significantly less time in the open field area than
both Control and PDAPP mice during monitoring sessions, which suggests a strong

anxiety phenotype in these mice (Table 5.2.3a-c, Figure 5.2.3b, F= 7.16, df 2/68,

p<0.005). Open field distance and vertical activity was not significantly different
between any of the genotypes, although there was a trend towards greater activity in
BACE KO mice compared to other genotypes in these as well as the open field time
measure. The PDAPP mouse pattern of reduced exploration is repeated in the open

field anxiety analysis, although they spend similar amounts of time in the open

region compared to Control mice. As the PDAPP mice appear to ambulate less, and
do not spend time in spatially distinct areas relative to Control mice, it is possible
that the altered pattern of exploration present in PDAPP mice is not based in

anxiety, but perhaps reduced motivation to explore. In this the BACE KO; PDAPP
mice appear to be distinct from PDAPP mice, as they appear to have a more
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classical anxiety phenotype, in which they travel shorter distances and also spend
less time in the central open field area compared to Control mice.

The unusual pattern of higher activity levels but significantly less time spent in the

open field area in BACE KO mice could be explained by an anxiety phenotype

superimposed on a hyperactive phenotype. This concept is supported by the pattern

of overall greater activity in BACE KO mice in distance traveled and time spent in
motion, albeit with high variability, although this interpretation is still not

completely aligned with the findings of non-exploratory BACE KO mice by
Harrison et al. (2003).

Distance (cm) Time (s) Motion Rests
Factor N Mean Std Mean Std Mean Std
Color

Agouti 18 379.97 300.57 47.14 37.66 80.28 33.42
Black 4 266.6 122.12 35.93 18.35 60.75 17.42

/yibSro® 23 423.61 235.28 53.83 30.5 81.13 22.87

Gender
Female 22 443.88 297.82 55.75 37.7 80.91 30.19

Male 23 342.77 203.3 43.65 26.44 77.13 24.84

Genotype
BACE KO; PDAPP 12 415.99 231.17 52.94 33.03 76.17 26.66

BACE KO 3 669.37 423.43 79.33 51.04 83 29.31
PDAPP 15 281.62 251.26 36.82 34.21 72.87 32.25
Control 15 428.31 209.82 53.65 23.59 86.53 22.71

All 45 392.2 256.15 49.56 32.64 78.98 27.33

Source Factor(s) F DF p-value
Distance Gender 0.63 1 0.43

Genotype 1.69 2 0.2
Time Gender 0.59 1 0.45

Genotype 1.31 2 0.28

Rests Gender 0.22 1 0.64

Genotype 1 2 0.38

Comparison
BACE KO; PDAPP VS PDAPP

BACE KO; PDAPP VS CONTROL
PDAPP VS CONTROL

Tables 5.2.1a-c Descriptive and One-Way ANOVA statistics for
distance, time and motion rests activity monitoring measures in Study
011A mice by gender and genotype.

P-Values
Distance Time Rests

0.18 0.23 0.82
0.8 0.86 0.3

0.092 0.14 0.19
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A Total Distance Moved

Complete Rests in Movement

Figure 5.2.1 Spontaneous locomotor activity monitoring in 18mo Study
011A mice. A: Across genotypes there are no significant differences in
their total horizontal exploration distances. B: As in horizontal distance
explored, there are no differences in total time spent in motion for
Study 011A mice. C: There was no genotypic differentiation in the
number of pauses in movement in Study 011A mice.
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A Sector Crossings

350n
I Controls

IPDAPP

BACE KO

IBACE KO; PDAPP

B

Vertical Activity (Rearings)

p=0.05

I Controls

IPDAPP

I BACE KO

I BACE KO; PDAPP

Stereotypic Movements

I Controls

I PDAPP

BACE KO

I BACE KO; PDAPP

Figure 5.2.2 Spontaneous locomotor activity monitoring in Study 011A
mice. A: There was no genotypic differentiation in the number of
quadrants crossed in Study 011A mice. B: BACE KO; PDAPP mice
reared significantly more than PDAPP mice. C: Study 011A mice by
genotype were indistinguishable in their levels of stereotypic or
repetitive movements.
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Open Field Distance

80CH
I Controls
IPDAPP

IBACE KO

IBACE KO; PDAPP

B
Open Field Time

p=0.0023

p=0.0059

I Controls

IPDAPP

]BACE KO
IBACE KO; PDAPP

C Open Field Vertical Activity

Figure 5.2.3 Open field activity in Study 011A mice. Open field
exploration in rodents is associated with anxiety status, as anxious
animals avoid open central areas in novel environments, and bold
animals explore all areas to a high degree. A: Study 011A mice do no
differ in the distances traveled in open fields. B: BACE KO; PDAPP
mice spent less time than Control or PDAPP animals in the open field
region of the arena, suggesting an anxiety phenotype. C: There was no
difference in open field vertical rearing activity in Study 011A mice.
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Crossings Rears Stereotypy
Factor N Mean Std Mean Std Mean Std
Color

Agouti 18 177.72 106.68 9.28 11.49 3.17 2.81
Black 4 121.75 27.79 3 2.94 2.25 2.06

AUfeim® 23 193.74 97.37 7.3 7.51 4 4.26

Gender
Female 22 197.77 111.5 9.73 11.48 3.64 4.26

Male 23 164.83 82.32 5.78 5.66 3.39 2.86

Genotype
BACE KO; PDAPP 12 175.25 72.93 11.25 12.22 3.75 3.77

BACE KO 3 265 160.69 20.33 11.93 6.67 8.96
PDAPP 15 157.87 109.93 4.8 5.48 2.4 1.96
Control 15 191.73 89.32 5.27 5.71 3.8 3.17

All 45 180.93 97.97 7.71 9.11 3.51 3.57

Source Factor(s) F DF p-value
Crossings Gender 0.6 1 0.44

Genotype 0.5 2 0.61

Rears Gender 0.29 1 0.59

Genotype 2.27 2 0.12

Stereotypy Gender 0.13 1 0.72

Genotype 1.03 2 0.37

P-Values

Comparison Crossings Rears Stereotypy
BACE KO; PDAPP VS PDAPP 0.72 0.05 0.24

BACE KO; PDAPP VS CONTROL 0.58 0.079 0.99
PDAPP VS CONTROL 0.33 0.88 0.21

Table 5.2.2a-c Descriptive and One-Way ANOVA statistics for
crossings, rears and stereotypic activity monitoring measures in Study
011A mice by gender and genotype.

OF Distance (cm) OF Time (s) OF Rears

Factor N Mean Std Mean Std Mean Std
Color

Agouti 18 407.89 302.42 536.57 210.56 2631.67 1358.43
Black 4 291.95 91.62 647.4 150.96 2460.75 405.25

AOtoOm© 23 432.88 314.96 560.28 179.61 2914.43 1009.8

Gender
Female 22 430.89 338.91 520.07 173.28 2684.59 1084.57

Male 23 390.72 252.25 595.33 199.77 2834.09 1178.33

Genotype
BACE KO; PDAPP 12 390.03 246.95 409.13 128.61 2334.58 878.74

BACE KO 3 429.57 386.23 448.8 126.39 2776 1213.97
PDAPP 15 320.53 323.6 605.87 201.4 2753 1277.99
Control 15 512.61 281.7 652.69 151.15 3107.13 1108.8

All 45 410.36 295.04 558.54 189.03 2761 1123.1

Source Factor(s) F DF p-value
OF Distance Gender 0.25 1 0.62

Genotype 1.69 2 0.2
OF Time Gender 0.36 1 0.55

Genotype 7.16 2 0.0023
OF Rears Gender 0.05 1 0.83

Genotype 1.47 2 0.24

P-Values

BACE KO; PDAPP VS PDAPP
BACE KO; PDAPP VS CONTROL

PDAPP VS CONTROL

0.6 0.0059 0.37
0.26 0.0008 0.094
0.079 0.45 0.4

Table 5.2.3a-c Descriptive and One-Way ANOVA statistics for
crossings, rears and stereotypic activity monitoring measures in Study
011A mice by gender and genotype.
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5.3 Rotorod motor coordination

In addition to assessing the homozygous BACE x PDAPP mice for spontaneous
locomotor activity, it was also necessary to examine motor coordination in an

involuntary paradigm. Motoric coordination in rodents is typically tested using a

rotorod apparatus. While the details of the apparatus may vary, the basic rotorod
involves placing a mouse on a circular rod that is driven by a motor, which can turn

at a constant or accelerating rate of speed. Time to fall is the primary measure for
motor coordination on the rotorod, and increases in these fall latencies (indicative of

procedural motor learning) are expected over a series of trials. In this study mice
were tested for 4 trials in a static rotorod paradigm (10 rpm constant speed) and 7
trials on the following day in an accelerating rotorod paradigm (0-40 rpm) as

described in section 2.2.3 of this dissertation.

Testing for motor coordination with the rotorod revealed significant motor

phenotypes in mice carrying the PDAPP transgene as well as BACE KO mice

(Figure 5.3.1a-b). The overall ANOVA analysis showed a highly significant
difference between groups (F=3.39, df 3/86, p=0.0097). These results show that
Control mice in constant velocity paradigms were able to stay on the rotorod for 2-
4s, while PDAPP mice had superior motor performance compared to other

genotypes, with fall latencies of 3-4s. In contrast animals with BACE gene deletions
had constant rotorod falling latencies that were between 1.5-2.5s with little overall

improvement over a series of trials.

In the accelerating rotorod paradigm, mice experience a more challenging task that

requires more attention to perform in each trial and typically rodents respond with

greater falling latencies. In Study 011A, the accelerating rotorod profde of Controls
and PDAPP mice showed the typical pattern ofmotor improvement over the 7 trials
of testing. The performance of PDAPP and Control mice was indistinguishable,

improving in fall latencies over 7 trials from 10-23s. As there is an element of

procedural motor learning in rotorod testing, it appears that PDAPP mice were not

deficient in this kind of learning, just as they were similarly unimpaired in cued
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navigation of the water maze over 12 trials. However there was no such overall

improvement in the performances of either BACE KO or BACE KO; PDAPP mice,
which averaged between 9-13s in 7 trials at 0-40 rpm (genotype: F=T1.7, df 14/308,

p<0.0001; Figure 5.3.1b).

The presence of the PDAPP transgene did not appear to ameliorate the poor motor

coordination phenotype conferred by the deletion of the BACE gene, suggesting this

may be a dominant functional phenotype of BACE KO animals. BACE KO animals
were unimpaired in grip strengths and measures of visually cued swimming ability
in the water maze, but the rotorod task is more motorically complex than simple grip
tests and requires a different type of motivation to perform than the water maze

(aversion to shock / falling versus aversion to swimming). The poor motor

coordination phenotype of BACE KO mice may thus be based not just in
neuromuscular impairment, but perhaps also altered motivational states. These

speculations have some empirical basis, as BACE has been implicated in the
maintenance of muscular fibres at the motor endplate in human, and BACE KO
mice have also been found to have alterations in the dopaminergic and serotonergic

neurochemistry (Vattemi et al., 2001; Harrison et al., 2003; Vattemi et al., 2003).

In addition, gender was a highly significant factor in performance on the constant

speed rotorod (Figure 5.3.2a, Table 5.3c). The impact of this finding on the

genotype-based analysis is unclear, but it may be based in excess falling fear in
female mice (F=14.1, df 1/86 p=0.0002). This gender-based difference did not

extend to performances on the accelerating rotorod, while the genotypic impact on
rotorod performance did — implying that genotype is more broadly important in

determining rotorod motor coordination in Study 011A mice (Figure 5.3.2b).

181



Trials
Factor N 1 2 3 4

Color Mean Std Mean Std Mean Std Mean Std

Agouti 18 2.6 2.96 3.27 5.54 3.17 3.25 3.43 3.52
Black 4 3.88 3.29 8.44 6.95 4.24 2.41 2.43 1.5

23 1.62 1.59 3.06 3.2 2.26 2.65 2.54 2.33

Gender
Female 22 1.56 1.46 2.09 1.32 1.74 1.35 2.4 1.98

Male 23 2.84 2.98 5.09 6.24 3.81 3.58 3.34 3.38

Genotype
3ACE KO; PDAPP 12 1.19 0.64 1.84 0.74 1.42 0.43 2.88 2.42

BACE KO 3 1.17 1.57 1.45 0.29 1.22 0.31 1.49 0.73
PDAPP 15 3.22 3.19 5.2 6.64 4.11 3.56 3.75 4.04

Control 15 2.23 2.33 3.91 4.46 2.9 3.08 2.29 1.4
All 45 2.21 2.43 3.62 4.75 2.8 2.9 2.86 2.76

Source Factor(s) F DF p-value
Gender 14.1 1 0.0002

Genotype 3.39 3 0.0097

Comparison P-Values
BACE KO; PDAPP VS PDAPPl 0.034

3ACE KO; PDAPP VS CONTROL 0 1
PDAPP VS CONTROL 0.16

Male VS Female 0.011

Tables 5.3a-c Descriptive and One-Way ANOVA statistics for
performance on the constant speed rotorod in Study 011A mice by
gender and genotype.

Trials
Factor N 1 2 3 4 5 6 7

Color Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std

Agouti 18 9.19 5.98 13.52 9.59 16.76 9.83 20 10.1 18.37 11.16 17.31 9.43 2.03 11.72
Black 4 16.76 1.96 9.67 3.68 12.94 7.43 18.39 5.76 17.02 6.8 19.38 7.75 19.15 1.73

23 10.89 5.86 14.06 8.48 14.21 11.3 16.01 10.7 14.48 8.94 17.05 11.4 16.06 12.63

Gender
Female 22 10.3 6.42 11.27 6.65 13.63 11.1 16.65 10.6 13.44 8.52 15.53 9.55 16.75 10.51

Male 23 11.13 5.61 15.55 9.81 16.54 9.57 18.93 9.74 18.97 10.23 19.1 10.68 19.25 12.88

Genotype
3ACE KO; PDAPP 12 9.3 5.92 10.51 5.2 12.83 11.7 14.7 8.01 10.14 4.15 13.45 7.21 12.3 8.16

BACE KO 3 8.84 1.68 9.29 5.36 7.99 2.85 9.14 3.43 12.79 7.93 8.87 4.54 8.6 4.97
PDAPP 15 13 7.51 18.1 10.7 20.37 9.81 20.69 10.8 20.4 11.97 21.36 11.93 22.71 13.93
Control 15 10.27 4.79 12 7.53 13.12 9.07 19.16 10.9 17.72 8.76 18.18] 9.69 19.8 10.37

All 45 10.72 5.97 13.45 8.6 15.12 10.4 17.81 10.1 16.26 9.74 17.36 10.19 18.03 11.72

Source Factor(s) F DF p-value
Gender 1.3 7 0.29

Genotype 11.7 14 P<0.0001

Comparison P-Values
BACE KO; PDAPP VS PDAPP

IACE KO; PDAPP VS CONTROL
PDAPP VS CONTROL

Tables 5.3d-f Descriptive and MANOVA statistics for performance on
the accelerating rotorod in Study 011A mice by gender and genotype.

0.032
0.17

0.061
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Figure 5.3.1 Motoric coordination on the rotorod in Study 011A mice by
genotype. A: When placed on a rod turning at a constant slow speed,
BACE KO; PDAPP mice fall significantly faster than PDAPP mice on all
trials, and do not improve in their falling latencies. B: BACE KO;
PDAPP mice fall faster from an accelerating rotorod than PDAPP mice.
These mice are able to improve on their rotorod performance over
trials, suggesting a BACE KO-specific motor coordination impairment.
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Figure 5.3.1 Motoric coordination on the rotorod in Study 011A mice by
gender. A: When placed on a rod turning at a constant slow speed,
female Study 011A mice fall significantly sooner than male mice on
most trials, with little improvement in their falling latencies. B: In an
accelerating rotorod paradigm male and female Study 011A mice have
equivalent performances over 7 trials, both improving over time.
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Seizure Phenotypes

5.4 PTZ-lnduced seizures

Animals with homozygous BACE gene deletions in Study 001 were observed to

have severe spontaneous seizures, implicating BACE or one or more of its
substrates as a necessary regulator of neuronal activity, which can give rise to

epileptiform activity when unchecked. Given the random nature of observations of

spontaneous seizures it was decided to examine the deliberate induction of seizures,
in a controlled experimental setting. To accomplish this, the animals were

administered the agent PTZ, commonly used to induce seizure activity in mice, as

described in section 2.3 of this dissertation (no spontaneous seizure activity was

observed prior to seizure induction). Indeed, many anti-seizure medications are pre-

clinically tested for efficacy in preventing or reducing PTZ-induced seizures in
rodents (Zhang et al., 1989; Ferraro et al., 1999).

Conceptually, it is possible to determine the prior seizure activity levels of

homozygous BACE KO x PDAPP mice given PTZ as the mice will have divergent
levels of resistance to seizure with different doses of intraperitoneal PTZ. For

example, mice that have experienced spontaneous tonic seizures throughout their
lives generally display significantly shorter latencies to severe seizures and even

death compared to seizure-naive animals upon treatment of 60mg/kg of PTZ.

Conversely and counter intuitively, animals with a history of severe seizures will be
resistant to developing signs of mild clonic seizure, while seizure-inexperienced
animals will have shorter latencies to these kinds of seizures. In addition, seizure

scores (based on a formula that weights seizure type latency depending on seizure

severity) can also be used to determine whether the overall seizure profile of BACE
KO x PDAPP mice diverges with genotype.

Seizure severity order: Partial Clonic (PC) < General Clonic (GC) < Tonic-Clonic (TC)
Seizure score = 0.2/(onset PC) + 0.3/(onset GC) + 0.5/(onset TC)

Unfortunately, only two BACE KO animals survived to this point and ANOVA

analyses require more than 2 values per group, so these animals were not included in
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any PTZ-induction analysis. Testing of Study 011A animals in the PTZ-seizure
induction paradigm overall revealed that the presence of the PDAPP transgene and

complete deletion of the BACE gene predisposes such mice to earlier and more

severe seizure activity (Table 5.4; Figures 5.4.1, 5.4.2). The first seizures seen after
PTZ treatment are of the partial clonic (PC) type, and onset to first sign of this
mildest form of seizure is generally faster in seizure-naive animals. In keeping with
this idea. Control animals had partial clonic seizure onset at about 50s after PTZ

induction, while all other PDAPP and BACE KO mice had partial clonic seizures at

70-80s (Figure 5.4.1a). Subsequently, Control mouse composite seizure scores were

largely based on the rapid onset ofPC convulsions, as opposed to more severe types

of seizures (Figure 5.4.Id, 5.4.2a). PDAPP mice had significantly smaller PC
seizure scores (indicative of longer latencies to mild clonic seizures) than Controls

(Figure 5.4.2a, F=3.92, df 2/44, p=0.028). Similarly, the BACE KO genotype mice
also had a tendency towards having smaller PC scores, implying that these mice
have experienced seizures at some point in their lives (Figure 5.4. la, 5.4.2a,c).

To obtain a high rate of animals with severe tonic-clonic seizures, a dose of PTZ

(60mg/kg) must be given, resulting in many animal deaths (see section 2.3). In

Study 011A there was 40% lethality in Control mice and 70% in all other genotypes

(Figure 5.4.1b, Table 5.4.Id). Examination of the mice that died showed that

compared to Controls, BACE KO; PDAPP mice tended to have average times to

death that were significantly shorter, by about half at 12 min compared to 22 min.

(Figure 5.4.1c). Death latencies also tended to be shorter for PDAPP and BACE KO

mice, which died on average about 15 min after PTZ administration.

Composite seizure scores did not differ between any statistically analyzable

genotypic groups in Study 011A mice had as all animals had average scores

between 0.38-0.45, but the breakdown of these composite scores into their PC,

general clonus (GC) and severe tonic-clonic seizures (TC) components were more

informative (Composite Seizure Scores F<1; Figure 5.4.Id, Table 5.4.1b). As
mentioned above, Control animals were not resistant to the development of PC
convulsions and had high PC scores of about 0.3, while animals carrying the
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PDAPP transgene and/or homozygous BACE gene deletions were slower to kindle
these mild PC seizures and had scores ranging from 0.18-0.2 (Figure 5.4.2a). There
were no genotypic differences between groups in the onset of seizures (PC Scores),
BACE KO; PDAPP mice had higher GC scores than PDAPP mice, implying a

divergence in their resistance to developing more severe types of convulsions

(p=0.034, Figure 5.4.2b, Table 5.4.2a-c).

Flowever, with respect to the most severe kind of seizure activity, BACE KO;
PDAPP mice have significantly higher tonic seizure scores of about 0.25 compared
to either Controls or even PDAPP mice which also have a tendency towards higher
tonic scores than Controls mice at scores of 0.10 and 0.15 respectively (F=5.25, df

3/44, p=0.048; Figure 5.4.2c). This last finding suggests that combining the BACE

gene deletion with the PDAPP transgene in mice had an additive effect on the
PDAPP propensity to severe seizure activity. Taken together this data implicates
some entity within the APP metabolic processing pathway as having an important
role in the fundamental regulation of neuronal activity, whether in development or
in the adult maintenance of brain function.

Seizure Latency (min) Death Latency Seizure Score
Factor N Mean Std N Mean Std N Mean Std
Color

Agouti 18 1.54 2.14 11 6.48 5.94 18 0.43 0.22
Black 4 1.28 0.52 2 18.18 12.55 4 0.35 0.03

All ]&li ID® 23 1.11 0.67 14 7.26 7.29 23 0.45 0.2

Gender
Female 22 1.23 0.68 13 8.76 7.48 22 0.4 0.21

Male 23 1.36 1.92 14 6.81 7.56 23 0.46 0.2

Genotype
BACE KO; PDAPP 12 1.93 2.66 8 3.68 3.25 12 0.48 0.29

BACE KO 3 1.15 0.24 2 7.3 0 85 3 0.33 0.04
PDAPP 15 1.28 0.43 10 7.26 7.44 15 0.39 0.15
Control 15 0.83 0.38 7 13.24 9.32 15 0.45 0.19

All 45 1.3 1.44 27 7.75 7.44 45 0.43 0.2

Source Factor(s) F DF p-value
Seizure Latency Gender 0.3 1 0.58

Genotype 2.02 2 0.15
Death Latency Gender N/A 1 0.71

Genotype N/A 2 0.19
Seizure Score Gender 1.06 1 0.31

Genotype 0.83 2 0.45

Comparison
BACE KO; PDAPP VS PDAPP

3ACE KO; PDAPP VS CONTROL
PDAPP VS CONTROL

Table 5.4.1a-c Descriptive and One-Way ANOVA statistics for seizure
responses and lethality in Study 011A mice by gender and genotype.

P-Values
Seizure Onset Seizure Score

0.23 0.21
0.05 0.55
0.4 0.48

187



A Seizure Onset

p-0.05

B Percent Lethality by Genotype

Controls PDAPP BACE KO BACE KO; PDAPP Controls PDAPP BACE KO BACE KO; PDAPP

^ Death Latency

Niiii
Controls PDAPP BACE KO BACE KO; PDAPP

Figure 5.4.1 PTZ-induced seizure activity in Study 011A mice. Mice
were given 60 mg/kg of a seizure-inducing agent to kindle mild to
severe seizures. A: Onset to initial seizure observation following
treatment was significantly shorter in BACE KO; PDAPP mice
compared to Control animals. There was a trend towards animals with
PDAPP transgenes or BACE gene deletion having later mild seizure
onset, suggesting tolerance to mild seizures. B: More PDAPP, BACE
KO and BACE KO; PDAPP mice (-70%) die in response to PTZ
treatment than Control mice ( 40%). C: PDAPP, BACE KO, and BACE
KO; PDAPP mice have a tendency to die sooner than Control mice
following seizure induction, although this is not a significant effect. D:
Composite seizure scores consisting of mild (partial clonic), moderate
(general clonic) and severe (tonic) seizures are equivocal between
Study 011A mouse genotypes.
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A Partial Clonus Seizure Scores

B General Clonus Seizure Scores

g 0.3-

C Tonic Seizure Scores

p=0.048

Figure 5.4.2 PTZ-induced component seizure scores in Study 011A
mice. While composite seizure scores based on latency between Study
011A mice was similar, contributions from each type of seizure was
also analysed. A: Control mice develop mild seizures faster than
PDAPP mice, with a trend towards the same compared to BACE KO
and BACE KO; PDAPP mice. B: BACE KO; PDAPP mice develop
general clonic convulsions more rapidly than PDAPP animals. C: BACE
KO; PDAPP mice have a faster onset to severe seizure activity than
Control mice, suggesting lesser resistance to kindling major seizures.

189



Female Male All

Number of n (%) that Number of n (%) that Number of n (%) that
Genotype Mice died Mice died Mice died
BACE KO; PDAPP 7 5(71.4) 5 3 (60.0) 12 8 (66.7)

PDAPP 6 3 (50.0) 9 7 (77.8) 15 10 (66.7)
Control 6 3 (50.0) 9 4 (44.4) 15 7 (46.7)

All 19 11 (57.9) 23 14 (60.9) 42 25 (59.5)

Source Factor(s) P-Values
Lethality Gender 1

Genotype 0.57

Tables 5.4.1 d Descriptive and Fisher's Chi-squared test statistics for
seizure component scores in Study 011A mice by gender and
genotype.

Partial Clonus Score General Clonus Score Tonic-Clonic Score
Factor N Mean Std N Mean Std N Mean Std
Color

Agouti 18 0.21 0.12 15 0.15 0.05 10 0.16 0.11
Black 4 0.18 0.07 4 0.11 0.01 2 0.13 0.05

23 0.24 0.15 22 0.14 0.06 10 0.18 0.12

Gender
Female 22 0.21 0.13 20 0.13 0.06 9 0.16 0.12

Male 23 0.23 0.14 21 0.14 0.05 13 0.18 0.1

Genotype
BACE KO; PDAPP 12 0.2 0.11 10 0.16 0.08 7 0 25 0.12

BACE KO 3 0.18 0.04 3 0.15 0 0 NA NA
PDAPP 15 0.17 0.06 14 0.12 0.04 11 0.14 0.07
Control 15 0.3 0.18 14 0.13 0.03 4 0.09 0.08

All 45 0.22 0.13 41 0.14 0.05 22 0.17 0.11

Source Factor(s) F DF p-value
PC Score Gender 0.07 1 0.8

Genotype 3.92 2 0.028
GC Score Gender 1.73 1 0.2

Genotype 2.53 2 0.094
TC Score Gender 0.23 1 0.63

Genotype 5.25 2 0.015

P-Values

Comparison PC Score GC Score TC Score
BACE KO; PDAPP VS PDAPP 0.57 0.034 0.065

ACE KO; PDAPP VS CONTROL 0.06 0.1 0.048
PDAPP VS CONTROL 0.011 0.54 0.19

Tables 5.4.2a-c Descriptive and One-Way ANOVA statistics for seizure
component scores in Study 011A mice by gender and genotype.
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Calbindin and Amyloid Histology

5.5 Calbindin histology in the hippocampal outer molecular layer

Previous reports regarding a positive correlation between spatial memory

performance and hippocampal Calbindin (CB) levels by Palop et al. (2003)
motivated a similar attempt to reproduce these findings in the BACE KO x PDAPP

mice. In addition, increases in CB have been found to be associated with seizure-

induced neurogenesis and resistance to post-seizure neuronal toxicity (Yang et al.,

1997; Gary et al., 2000; Lee et al., 2002; Jiang et al., 2003). In 18mo Study 001
BACE KO mice had higher levels of hippocampal CB intensity than PDAPP mice
as described in section 3.6. These differences in Study 001 were based on an

analysis ofmouse brains that may have had spontaneous seizure activity, and it was
of interest to determine the genotypic changes in CB in response to chemically
induced seizures with PTZ treatments.

Using a monoclonal antibody to CB, hippocampal tissues from PTZ-treated Study
011A mice were analysed for CB intensity levels in the hippocampal outer
molecular layer. This quantitation of CB intensity revealed no significant
differences between any genotypes (F<1, Figure 5.5a, Tables 5.5a-c). It is possible
that all that the indistinguishable results are based in unequal levels ofCB intensities

prior to PTZ administration that differentially increased to a post-seizure equivocal
level. Previous results from the 18mo Study 001 animals (Figure 3.6.1c) argue

against this explanation, as do the reports from other authors claiming that seizure

activity alters CB levels in the brain. One perhaps salient feature is that each

genotype group had a specific profile of seizure activity, and also time to death.
Given these facts, each animal would have upregulated CB levels dependent on the
amount of time to death and tissue processing. Thus another explanation for the lack
of distinction between CB levels between Study 011A genotypes is that by-genotype

changes simply exist as a function of time since seizure induction, and PTZ treated
animals reach equivalent levels ofCB over different timescales.
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Factor N Mean STD
Color

Agouti 16 74.96 20.89
Black 4 74.77 11.88

AMbSuD® 21 75.97 12.78

Gender
Female 19 74.22 16.21

Male 22 76.53 16.13

Genotype
BACE KO; PDAPP 10 80.24 15.42

BACE KO 2 65.11 2.86
PDAPP 15 71.77 13.61
Control 14 77.48 19.22

All 41 75.46 16.01

Source Factor(s)
Gender

Genotype

Comparison P-Values
BACE KO; PDAPP VS PDAPP

ACE KO; PDAPP VS CONTROL
PDAPP VS CONTROL

Tables 5.5a-c Descriptive and One-Way ANOVA statistics for Calbindin
immunoreactivity in Study 011A mice by gender and genotype.

APP antibody staining of Study 011A animals to confirm their hAPP genotypes

revealed one mistyped animal, which was removed from analysis (described as a

Control animal by the vendor, the animal in fact did express hAPP). All other mice
were of expected genotypes (images not shown).

F statistic DF p-value
0.15 1 0.7
0.93 2 0.4

0.67
0.37
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Figure 5.5 Calbindin (CB) immunoreactivity and images in the
hippocampal outer molecular layer of Study 011A mice. A: Aged Study
011A mice had equivocal levels of CB following acute and largely lethal
treatment with PTZ. B: Images of the CB immunoreactivity by genotype
are shown, with sections close to the genotype group average Cb
intensity value.
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5.6 Correlation analyses of sensorimotor, seizure, and histological data

Correlation analysis cell key

R-Values Colorimetrics P-Values Colorimetrics Self-Correlation

0.3<R<1 -1<R<-0.3 P<0.05

Column Abbreviations

PC Lat =Latency to Partial Clonus
GC Lat= Latency to General Clonus
TC Lat = Latency to Tonic Seizure
Score = Composite seizure score
DeathT = Latency to death
PCscore= Partial clonus component of seizure score
GCscore= General clonus component of seizure score
Tcscore = Tonic seizure component of seizure score
CB Int = Calbindin Intensity in the Hippocampal Outer Molecular Layer
GS1 = Grip strength day 1
GS2 = Grip strength day 2
GS3 = Grip strength day 3
2RR1 = Constant speed rotorod trial 1
2RR4 = Constant speed rotorod trial 4
3RR1 = Accelerating speed rotorod trial 1
3RR4 = Accelerating speed rotorod trial 4
3RR7 = Accelerating speed rotorod trial 7
SectXI = Sector crossings, session 1
Restl = Complete rests in motion, session 1
Distl = Total distance traveled, session 1
Timel = Total time spent in motion, session 1
Rearl = Vertical activity counts, session 1
Stereol = Number of stereotypic movements, session 1
Open Distl = Total open field distance traveled, session 1
Open Dist2 = Total open field distance traveled, session 2
Open Timel = Total time spent in motion in open field, session 1
Open Time2 = Total time spent in motion in open field, session 2
Open Vertl = Vertical activity counts, session 1
Open Vert2 = Vertical activity counts, session 2
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Example Correlation Table, Behavioral and Immunochemical Measures

R-values from
correlation analysis
of each measure

p-values from
correlation analysis
of each measure

Example Correlation Table, Hippocampal Calbinidin Intensity/Behavioraj
Measures by Genotype

PDAPF

C LaTV GC Lat TC Lat Score DeathT,

BACE pKO; PDAPP

0.7857 ] -0.7857

P-values
PC Lat GC Lat TC Lat Score DeathT PCscore GCScore

0.048 0.048

Figure 5.6.1a-b Example correlation tables. A: Correlation table of
relationships between various behavioral measures, with R-values
presented in upper diagonal section and p-values presented in lower
diagonal section. Corresponding p-values and R-values are found in
the same coordinate distance from the black diagonals separating the
two types of values, with R-values at xr,yr coordinates, and p-values at
yp,xp coordinates where xr=yp and yr=xp Values contained within red
circle indicate significant intrameasure correlations, e.g. clonic to tonic
seizure latency. Values contained within blue circles indicate
significant intermeasure correlations, e.g. clonic seizure latency to
Calbindin intensity. B: Correlation table of various behavioral
measures and Calbindin intensity separated by genotype. R-value
tables are above while P-values are below. Values in green circles
indicate significant behavioral/Calbindin correlations.

Functional analysis of diverse behavioral and histological measures allows for the

discovery of mathematical relationships that may be based in similar neuronal
activational processes. Every behavioral response is inherently based in some

complex network of neuroanatomical connections and correlational analyses makes
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it possible to make predictions regarding functional relatedness of various inter-

methodology measures.

In conducting Spearman's correlation analyses of Study 011A animals' behavioral
and histological measures, several statistically meaningful relationships were

discovered between measures that formed two broad patterns of correlations. The
first pattern of correlation featured measurements within groups were on average

interchangeable in their prediction of function within the larger feature group,

forming a group of reliable and consistent correlates (seizure activity, motor

coordination, etc.). These intratask correlates are exemplified by grip strength data,
as performance on day 1 was predictive of performance on day 2. The second

pattern of correlation centered on numerical relationships from intermeasure
datasets that were on the surface unrelated, like anxiety and seizure propensity.
These novel findings also include some measures that were predictive of PTZ-
induced seizure activity, and suggest that there is indeed some underlying functional
connection based in anatomy between these phenotypes (Table 5.6). For the overall

analysis presented in Table 5.6 N=45. For the CB/sensorimotor phenotype analysis

presented in Table 5.7, N=41, as the BACE KO group had too few values to conduct
the analysis and this group was excluded from the correlation (Controls N-15,
PDAPP N=14, BACE KO; PDAPP N=12).

Intrameasure relationships

There were five main sets of intrameasure relationships seen in Table 5.6:

• General Clonic (GC)/Tonic Seizures )TC)
• Grip Strengths
• Constant and Accelerating Rotorod
• Elorizontal locomotor activity (including open field measures)
• Vertical/Stereotypic locomotor activity (including open field measures)
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Table 5.6 Correlation of pharmacologic, behavioral and histological
measures, with resulting R- and p-values of Study 011A mice. Table is
located in pocket at back cover of document.

This table of correlation values underlines several intrameasure and
intermeasure relationships.

Intrameasure values are highly correlated within each set, as
performance on one measure is likely to be functionally related to
performance on a similar measure. These intrameasure correlations
are circled in red, and are closest to the table diagonal separating R-
and p-values. Thus many measures within PTZ-seizure induction, grip
strength, rotorod, general and open field activity monitoring have high
degrees of correlations within each set.

Intermeasure relationships occur between different task measures and
are circled in blue, typically distant from the R-/p-value diagonal.
Correlations between these metrics suggest that although the tasks
vary methodologically, the underlying functional bases for their
performance are similar, and even predictive of one another. In
particular, seizure response appears to be correlated to CB intensity,
rotorod fall latency, as well as vertical activity or rearing. In addition
grip strength is related to the tendency to have fewer repetitive
movements, and CB intensity is correlated to spending less time in
open field areas.
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GC and TC latencies and scores were positively correlated (R=0.65, p=0.0009) to
each other and also in latency to death (latency/scores: R=0.596, p<0.0001; death

latency: R=0.885, p=<0.0001), but not related to PC (partial clonus) measures. This

suggested that the processes underlying onset to PC vs. GC/TC were distinct in

Study 011A mice. Grips strength measures from day-to-day were highly related due
to their expected stability of values between days (R>0.70, p<0.001). Rotorod

performance in both the constant and accelerating rod paradigms were also strongly
correlated between days, such that performance on the static rod appeared to be

predictive of performance on the accelerating rod (R>0.40, p<0.008). Interestingly,
the automated locomotor activity monitoring produced two separate groups of
correlated measures, the horizontal activity set (which included measures of distance
traveled, time spent in movement, sector crossings, and rests; for all horizontal

activity measures: R>0.798, p<0.001) and the vertical/stereotypic measure set

(R=0.329, p<0.05).

By definition, the open field measurements should be highly related to the general

activity monitoring measures, as they are simply taken from a spatially constrained
subarea of the whole activity monitoring arena. OF distl and OF Vertl and OF
Vert2 values were overall correlated with all horizontal activity measures (dist

R>0.82, p<0.001, Vert 1/2 R>0.46, p<0.01). Total rearing activity was also
correlated to OF distl but inversely related to OF timel and OF time2, suggesting
that mice that had high levels of vertical activity did not spend much time in open

areas, but still traversed the central area, at a higher speed (OF distl R>0.32, p<0.05,
OF timel/2 R<-0.46, p<0.01). This finding suggests that there is an anxiety

phenotype involved as animals who are averse to spending time an open field would
do so by not spending time there and by moving rapidly through the area. Oddly,
there was no apparent correlation between overall rearing activity and open field

rearing activity, suggesting that the majority of rearing did not occur within the
circumscribed open field area.
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Intermeasure relationships

Interset correlations were also significant between a number ofmeasures, suggesting
similarities in underlying physiological processes. Most notable of these

relationships are those that are related to seizure activity, to the point where they can

be predictive of PTZ-induced seizure resistance and susceptibility. Resistance to

severe seizures, represented by high TC latencies, was positively correlated to better

performance on the static and accelerating rotorod (R>0.33, p<0.025). In contrast,

lower TC latencies and thus greater susceptibility to seizures were associated with

greater levels of vertical activity (R=-0.522, p<0.025). Patterns of correlation with
the open field behaviors were also interesting, as higher seizure scores were

associated with longer times spent as well as more rearings in the center of the

arena, suggesting that animals with less anxiety were resistant to seizure (R>0.32,

p<0.03).

Finally, although there were no genotypic differences in CB levels when analysed as

a single measure (Section 5.5), there was a significant correlation between CB

intensity in the hippocampus and total seizure scores, providing a mathematical

linkage between a neuroanatomical measure with a gross set of behavior
observations (R=-0.317, p<0.05; Table 5.7). This finding argues that use of
correlational analyses can define functional phenotypes that are difficult to discern

by examining any individual. The direction of this relationship was in fact positive,
so that increased CB intensity was associated overall higher seizure activity scores.

In addition, CB intensity was correlated with lesser time, distance and vertical

activity within the open center of the monitoring arena, suggesting a link between

the levels of hippocampal Ca++ and anxiety (R<-0.37, p<0.025). These findings

support the previous information from Study 001 and Study 006, in which greater

CB immunoreactivity was related to poorer spatial memory performance. Thus not

only was CB implicated as a measure of spatial memory dysfunction, but it also was

linked to reduced neuronal activity regulation with greater propensity to seizure

activity and anxiety phenotypes.
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Analysis of CB measures by genotype revealed significant correlations with certain

open field activity measures (Table 5.7). Controls animals had an inverse correlation
between CB levels and OF vertical activity, in that greater CB intensities were seen

in mice with lesser open field rearings (R—0.582, p<0.05). PDAPP mice also had
inverse relationships between CB intensity and OF time and distance (R<-0.625,

p<0.025). These findings argue that CB levels do not correspond to generally
normal behavior, as even in non-transgenic mice high levels relate to increased
deleterious behaviors like anxiety in open field and increased propensity to seize.
CB in Control mice also had a tendency towards correlation with PC Lat/Scores (PC
Lat/Scores: R=|0.508|, p=0.064). If this was a real trend then this strengthens the

concept of CB as a marker for neuronal dysfunction, as the Controls mice have no

genetic modifications and no underlying neuropathology they represent a more

default state of relationships between CB and seizure response.

Table 5.7 Correlation of Calbindin (CB) to all other measures, R- and P-
values of Study 011A mice. Table is located in pocket at back cover of
document.

Specific assessment of CB correlations to behavioral and
pharmacological metrics was done by genotype to discern wider
patterns of predictive functional relationships. The only significant
correlations with CB were in open field exploration during the second
activity monitoring session. High levels of CB in Control mice were
related to lesser vertical activity in the open field, while PDAPP mice
moved less and spent less time in open field areas. While Control and
PDAPP mice typically differ in many other respects, the cross-
genotype pattern of open field avoidance in mice with high CB
suggests that anxiety behaviors may be influenced by neuronal Ca++
homeostasis.
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Ch.6 Study 011B: General Behavioral Phenotypinq and Response to
Seizure Induction of 5mo Hemizyqous BACE pKO x PDAPP Mice

Study 01 IB was designed to examine the resistance to induction of severe seizures
in animals with a partial deletion of the BACE gene, and to broadly profile other
sensorimotor phenotypes in these mice. In Study 011A PDAPP mice were found to

have tendencies for lowered resistance to tonic seizure kindling, supernormal

performance in a motor coordination task, and what could be interpreted either as an

anxiolytic or incurious phenotype. Other findings from this prior study revealed a

deficit in motor coordination in mice with homozygous BACE KO; PDAPP
animals. Also in Study 011A, homozygous BACE KO; PDAPP mice had the least
resistance to developing tonic seizures, suggesting that the loss of BACE on a

PDAPP background amplified the seizure-prone phenotype ofPDAPP mice.

The BACE partial knockout (pKO); PDAPP mice in Study 01 IB were compared

directly to littermate PDAPP mice, analysed for body masses, grip strength,

spontaneous locomotor activity, motor coordination and response to chemically-
induced seizures. One critical objective of Study 01 IB was to determine if the
BACE pKO; PDAPP rescue of spatial memory impairments, relative to the PDAPP

mice, described in the water maze experiments of Study 006 would be extended to

the amelioration of propensity to seize and other PDAPP-related sensorimotor

phenotypes. In addition, younger animals were used in Study 01 IB (5mo) compared
to Study 011A (18mo) in an effort to assess the affect of age on sensorimotor and
seizure resistance phenotypes in BACE KO mice (Table 6.0a). Total N for this study
was 28 mice.

Female Male ALL

Agouti Black Albino ALL Agouti Black Albino ALL Agouti Black Albino ALL

Genotype
2 1 0 3 2 2 5 9 4 3 5 12

PDAPP 4 4 3 11 5 0 0 5 9 4 3 16

ALL 6 5 3 14 7 2 5 14 13 7 8 28

Table 6.0a Study 011B mice, all aged 5mo.

The overall performance of Study 01 IB mice is summarized below (Table 6.0b).

One-way ANOVA tests were conducted on all measures except for grip strength and



the rotorod, which had serial timepoints and was subject to MANOVA testing, and
the Lethality measure which was analysed with Fisher's exact Chi-squared test. Due

to the scarcity of animals across all gender and genotype groups, statistical analysis
of performance by color was not possible, nor was any analysis of interactions
between gender and genotype. However, descriptive statistics are presented for all
factors. Although Study 011A mice had equivalent sensorimotor task responses on

the majority of responses, it appears that BACE gene ablation impacts resistance to

kindling moderate to severe seizures (GC Latency/Score). However, gender was
also a significant factor in resistance to developing moderate seizures, with male
mice having more susceptibility to seizures.

P-Values
Measure Gender Genotype

Masses 0.21 0.028

Grip Strength 0.55 0.37

Crossings 0.15 0.43
Distance 0.25 0.4

Rests 0.73 0.8
Movement Time 0.19 0.4
Vertical Actvity 0.27 0.66

Stereotypy 0.97 0.34

Open Field Distance 0.27 0.43

Open Field Time 0.54 0.3

Open Field Vertical Activity 0.92 0.1

Rotorod Constant Speed 0.24 0.86
Rotorod Accelerating 0.73 0.45

PC Latency 0.072 0.077
GC Latency 0.0032 0.0044
TC Latency 0.67 0.39
PC Score 0.1 0.083
GC Score 0.025 0.01
TC Score 0.15 0.19

Seizure Score 0.018 0.066

Percentage Lethality 1 0.57
Death Latency 0.71 0.19

Calbindin Intensity 0.7 0.4

Table 6.0b Statistical summary of factor significance in Study 011B.

202



Mass and Muscular Function

6.1 Body mass and grip strength

BACE pKO; PDAPP and PDAPP mice in Study OllB mice were separated by

gender and compared for differences in body mass and forelimb grip strength
relative to body mass (Figure 6.1). Grip strength was an important measurement in

phenotyping the BACE pKO mice, as feeble forelimb grips are associated with

previous seizure activity, and observations of spontaneous seizures in Study 001 and
006 mice motivated these seizure induction experiments. Individual mice were

assessed for grip strength using a grip strength apparatus with a digital readout for
transduced force. Mice were allowed to grasp a foil screen attached to the force
transducer and gently pulled laterally until their grip on the foil was broken. The

expected normal result would be for an animal to have static grip strength

performances over the three-day testing period, with no significant fluctuation in

average grip strength.

Grip strengths were presented as ratios of force required to break their grips over

individual body mass, measured in 3 successive trials each for 3 days as described in
section 2.2.2. Using a unitless grip strength ratio, effects of relative body mass or

size differences between animals are minimized, since grip strength is presented as a

function of body mass.

Grip strength ratio = (mass displaced by grip on screen) / (body mass ofmouse)

Analysis of body mass revealed no statistical differences between genders by

genotype as males and females of both genotypes had average body masses of 37-

42g and 27-33g respectively, although male mice did weigh more than female mice

(F<1, Table 6.1 a-b). Examination of grip strength ratios between the two genotypes

in this study also were equivocal, so that with respect to both body mass and
forelimb muscle tone and grip PDAPP and BACE pKO; PDAPP mice are equals,
with Male grip strengths ranging from 3.0-4.0, and Female grip strengths ranging
from 3.5-4.5 (Gender F<1; Genotype F<1.1; Table 6.1d-ef). One comment that can
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be made is that all of these mice have relatively high grip strengths compared to the

expected values for wild-type mice of this age, which typically varies between 2.5-
3.5. While there were no littermate non-transgenic control mice to compare to

PDAPP and BACE pKO; PDAPP mice in Study 01 IB, this follows the trend set in

Study 011A, in which male mice carrying the PDAPP transgene had greater average

grip strengths than male Control mice (Ch. 5, Figure 5.1c). These data would

suggest that the PDAPP transgene confers supranormal muscular strength to mouse

carriers, which is in apparent contradiction to the hypothesis that animals

Factor N Mean (g) STD
Color

Agouti 13 36.24 5.91
Black 7 38.23 6.93

8 38.57 6.91

Gender
Female 14 31.57 3.55

Male 14 39.64 4.34

Genotype
12 38.1 6.56

PDAPP 16 33.73 4.17
ALL 28 35.6 5.66

Source Factor(s) F DF p-value
Gender 9.478 1 P<0.0001

Genotype 0.96 1 0.11

experiencing spontaneous seizures would have weaker grip strengths.

Table 6.1a-b Descriptive and One-Way ANOVA statistics for body
masses in Study 011B mice by gender and genotype.

Trials
Factor N 1 2 3
Color Mean Std Mean Std Mean Std

Agouti 13 3.78 0.69 3.82 0.67 3.78 0.7

Black 7 3.49 0.35 3.23 0.39 3.78 0.65

8 3.45 0.77 3.65 0.78 4.13 1.84

Gender
Female 14 3.73 0.74 3.76 0.77 4.18 0.56

Male 14 3.47 0.57 3.5 0.58 3.63 1.58

Genotype
12 3.39 0.54 3.64 0.71 3.75 1.74

PDAPP 16 3.76 0.72 3.62 0.68 4.03 0.58
ALL 28 3.6 0.66 3.63 0.68 3.91 1.2

Source Factor(s) F DF p-value
Gender 0.72 3 0.55

Genotype 1.09 3 0.37

Table 6.1c-d Descriptive and One-Way ANOVA statistics for grip
strengths in Study 011B mice by gender and genotype.
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Motoric Phenotvpes

6.2 Spontaneous locomotor activity monitoring

Basic initial behavioral phenotyping of transgenic mice almost invariably includes
some aspect of spontaneous locomotor activity monitoring, which can inform the
researcher about effects of genetic manipulation on exploration and anxiety

phenotypes. The mice in Study 01 IB were assessed for horizontal activity including
total distance traveled, total time of movement, crossings into specified test areas,

and stoppages in movement. Study 01 IB mice were also tested for vertical activity
in the form of rearing, and repetitive motions (stereotypy), which includes circling,

grooming or even seizures. Finally, these mice were also tested for specific anxiety

phenotypes using an open field activity measures. The details of the system utilized
to collect these data are described in section 2.2.1.

Comparison of horizontal and vertical spontaneous locomotor activity as well as

repetitive movement between BACE pKO; PDAPP and PDAPP mice resulted in no

significant differences between groups (Figure 6.2.1-6.2.2). There was a tendency
for BACE pKO; PDAPP mice to move shorter distances over less time on the
horizontal plane in a more restricted set of sector areas. Overall however, this can

be attributed to the far greater variability in activity levels in PDAPP in these

activity measures (Tables 6.2.1a-b, 6.2.2a-b; Figure 6.2.1-6.2.2). If the reduced

activity in BACE pKO; PDAPP mice is not simply due to trivial vagaries of
statistical variation, then another possible interpretation is that partial deletion of the
BACE gene confers some kind of hypoexploratory, incurious or possibly an anxious

phenotype, in excess of the overall lesser exploration seen in PDAPP mice of Study
011A. Harrison et.al. in 2003 reported that their homozygous BACE knockout mice
had a non-exploratory phenotype, and the BACE pKO; PDAPP may be more

analogous to these animals, although BACE KO mice in Study 011A were not found
to be hypoexploratory (possibly due to a very small N=3, with all female animals in
this group).
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Open field testing in which mice were monitored for movements in the central

region of the arena also revealed no significant differences between PDAPP and
BACE pKO; PDAPP mice (Table 6.2.3a-b, Figure 6.2.3). As in the other general
motor activity measures, there was a non-significant trend towards lowered activity
in BACE pKO; PDAPP mice in the open field. Taken together these data argue that

although there are intimations otherwise, partial removal of the BACE gene product
confers no statistically meaningful change in spontaneous motor or anxiety behavior
ofPDAPP animals.

Total Distance (cm) Total Time (s) Complete Rests in Motion
Factor N Mean Std N Mean Std N Mean Std
Color

Agouti 12 1171.33 2041.17 12 116.28 157.47 12 118.5 43.95
Black 6 2471.05 3751.19 6 207.48 236.31 6 135.5 59.94

10 692.88 439.24 10 90.94 57.62 10 134.6 52.57

Gender
Female 14 1970.36 2985.68 14 179.81 204.08 14 130.43 52.37

Male 14 587.57 240.75 14 73.74 33.9 14 125.36 48.13

Genotype
12 576.08 236.12 12 75.66 32.89 12 129.17 48.78

PDAPP 16 1806.13 2817.04 16 165.11 194.65 16 126.94 51.47
ALL 28 1278.96 2194.47 28 126.78 153.37 28 127.89 49.42

Source Factor(s) F DF p-value
Distance Gender 1.39 1 0.25

Genotype 0.73 1 0.4
Time Gender 1.83 1 0.19

Genotype 0.72 1 0.4
Rests Gender 0.12 1 0.73

Genotype 0.06 1 0.8

Tables 6.2.1a-b Descriptive and One-Way ANOVA statistics for
distance, time and motion rests activity monitoring measures in Study
011B mice by gender and genotype.
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Figure 6.2.1 Spontaneous locomotor activity monitoring in 5mo Study
011B mice. A: BACE pKO; PDAPP and PDAPP mice do not significantly
differ in total exploration distance, although PDAPP mice have a
tendency towards greater activity levels. B: PDAPP mice spend a non-
significantly greater amount of time in movement compared to BACE
pKO; PDAPP mice, suggesting that partial BACE gene deletion confers
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Figure 6.2.2 Spontaneous locomotor activity monitoring in 5mo Study
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difference. B: There is no difference in the level of vertical exploration
as measures by rearings between BACE pKO; PDAPP and PDAPP
mice. C: Study 011B mice are indistinguishable in their number of
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Figure 6.2.3 Open field behavior of 5mo Study 011B mice. Open field
exploration in mice is associated with anxiety status, as anxious
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not differ in the amount of time they spend in an open field area. C:
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pKO;PDAPP mice, suggesting these mice are anxious in novel
environs.
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Sector Crossings Vertical Activity (Rears) Stereotypic Movements
Factor N Mean Std N Mean Std N Mean Std
Color

Agouti 12 397.5 496.63 12 10.42 12.01 12 6.25 6.88
Black 6 770.67 1010.8 6 40.5 33.32 6 15.83 11.72

10 304.2 160.29 10 22.9 16.82 10 12.2 7.54

Gender
Female 14 653.79 763.11 14 15.21 16.91 14 9.57 10.55

Male 14 234.5 93.51 14 27.43 25.69 14 11.29 7.16

Genotype
12 252.25 94.41 12 26.33 27.72 12 12.58 7.37

PDAPP 16 588.06 732.27 16 17.56 17.05 16 8.81 9.8
ALL 28 444.14 574.6 28 21.32 22.23 28 10.43 8.89

Source Factor(s) F DF p-value
Crossings Gender

Genotype
2.18
0.65

1
1

0.15
0.43

Rears Gender

Genotype
1.26
0.2

1
1

0.27
0.66

Stereotypy Gender
Genotype

0
0.95

1

1
0.97
0.34

Table 6.2.2a-b Descriptive and One-Way ANOVA statistics for
crossings, rears and stereotypic activity monitoring measures in Study
011B mice by gender and genotype.

Open Field Distance Open Field Time (s) Open Field Vertical Activity (Rears)
Factor N Mean Std N Mean Std N Mean Std
Color

Agouti 12 1305.23 2552.85 12 863.61 350.62 12 4647.67 3527.15
Black 6 2814.27 5030.69 6 862.58 446.9 6 2955.17 2150.39

10 624.35 441.8 10 612.89 294.16 10 3317 1661.87

Gender

Female 14 2248.76 3884.53 14 855.3 411.26 14 4369.36 3398.47
Male 14 522.09 286.57 14 692.39 297.18 14 3250.14 1779.1

Genotype
12 513.52 263.14 12 658.09 317.53 12 4402.58 3756.68

PDAPP 16 2039.35 3664.02 16 860.66 377.9 16 3365.13 1579.91
ALL 28 1385.42 2842.16 28 773.85 361.71 28 3809.75 2722.07

Source Factor(s) F DF p-value
OF Distance Gender

Genotype
1.29
0.65

1
1

0.27
0.43

OF Time Gender

Genotype
0.39
1.14

1
1

0.54
0.3

OF Rears Gender

Genotype
3.07
2.87

1
1

0.092
0.1

Tables 6.2.3a-b Descriptive and One-Way ANOVA statistics for
crossings, rears and stereotypic activity monitoring measures in Study
011B mice by gender and genotype.
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6.3 Rotorod motor coordination

While the Study 01 IB mice were statistically indistinguishable in spontaneous

locomotion measures, examination of involuntary movement and motor

coordination was also necessary to fully characterize motor activity levels in these
animals. The rotorod is a mechanized rod that can rotate at constant or accelerating

speeds, and animals placed on this rod are tested for their latency to fall. Typically
mice placed on the rotorod improve their performance and increase their falling
latencies over a number of trials, in a protocol described in section 2.2.3.

On the rotorod, PDAPP and BACE pKO; PDAPP mice in Study 01 IB have motor

coordination phenotypes that are also indistinguishable (Tables 6.3a-d, Figure 6.3a-

b). Mice of both genotypes not only stay on the rotating rod for similar amounts of
time in static and accelerating paradigms, but also have a similar pattern of

improvement of falling latencies over time. This results of this forced locomotion
task affects the interpretation of the prior spontaneous locomotion data in which
BACE pKO; PDAPP mice had a tendency towards hypoactivity. As BACE pKO;
PDAPP mice do not apparently have any basic locomotor deficiencies when

challenged on the rotorod, their decreased horizontal activity patterns as more likely
a result of changes in exploratory motivation or anxiety. In addition, mice with

homozygous BACE KO in Study 011A had poor performances on the rotorod that
was statistically worse than PDAPP mice. That the BACE pKO; PDAPP and
PDAPP mice in this study had indistinguishable rotorod performances suggests that
unlike homozygous deletions, partial deletion of the BACE gene does not confer a

deleterious motor coordination phenotype.
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Figure 6.3 Motoric coordination on the rotorod in Study 011B mice. A:
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BACE pKO; PDAPP and PDAPP mice are equivalent in their ability to
stay of a rotorod accelerating from 0-40rpm in a series of trials.
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Trials
Factor N 1 2 3 4

Color Mean Std Mean Std Mean Std Mean Std

Agouti 12 19.18 12.67 19.47 12.93 24.88 15.45 24.97 14.51
Black 6 22.32 9.1 21.49 9.11 20.76 8.46 18.12 12.26

AlfeOofa® 19 22.07 112.22 20.96 12.07 27.42 19.31 34.96 34.04

Gender
Female 14 23.22 10.07 24.35 7.55 28.06 16.47 38.27 25.51

Male 14 18.55 12.75 16.51 13.63 21.75 14.41 15.87 14.36

Genotype
12 18.62 12.18 18.35 13.34 21.03 10.06 17.21 16.97

PDAPP 16 22.58 11.1 22 10.12 27.81 18.39 34.47 25.09
ALL 28 20.88 11.52 20.43 11.53 24.9 15.52 27.07 23.3

Source Factor(s) F DF p-value
Gender 1.5 4 0.24

Genotype 0.33 4 0.86

Tables 6.3a-b Descriptive and One-Way ANOVA statistics for
performance on the constant speed rotorod in Study 011B mice by
gender and genotype.

Trials
Factor N 1 2 3 4 5 6 7

Color Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std

Agouti 12 11.45 7.26 15.65 12.73 20.56 16.51 25.62 15.42 24.25 18.77 30.05 21.46 24.47 25.88
Black 6 11.16 5.49 11.77 9.12 13.33 12.16 10.38 5.99 22.54 17.65 25.85 16.71 19.2 8.03

10 18.98 8.15 19.04 13.33 17.91 11.54 23.13 14.16 22.7 18.45 30.06 17.88 29.65 16.55

Gender
Female 14 16.07 8.39 18.54 11.36 20.94 14.47 24.77 14.39 29.62 20.48 37.25 17.77 30.62 15.18

Male 14 12.08 7.21 13 52 12.84 15.18 12.98 18.16 14.07 17.03 12.25 21.06 16.36 20.13 22.17

Genotype
12 13.65 7.38 15.07 9.74 12.09 7.39 18.45 12.31 17.64 11.49 24.54 16.05 23.11 15.54

PDAPP 16 14.4 8.56 16.75 13.99 22 54 15.9 23.73 15.73 27.59 20.63 32.61 20.02 26.84 22.6

ALL 28 14.07 7.94 16.03 12.17 18.06 13.8 21.47 14.36 23.33 17.76 29.15 18.68 25.18 19.51

Source Factor(s) F DF p-value
Gender 0.63 7 0.73

Genotype 1.03 7 0.45

Tables 6.3c-d Descriptive and One-Way ANOVA statistics for
performance on the accelerating speed rotorod in Study 011B mice by
gender and genotype.
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Seizure Phenotypes

6.4 PTZ-lnduced seizures

Study 01 IB mice were ultimately tested for their responses to the seizure-inducing

drug pentylenetetrazole (PTZ). The PTZ seizure induction model of epilepsy is

commonly used in mice to detect either predisposition to seizures in genetically-
modified animals or in tests of anti-epileptic compounds that promote resistance to

seizures. Mice given 60 mg/kg of PTZ intraperitoneally typically display a particular

pattern of seizure activities, described in section 2.3, with no spontaneous seizures
observed prior to seizure induction. Post-PTZ, mice begin with mild partial clonic
seizures (twitches) that expand to whole body tremors (general clonus) and finally
severe tonic seizures (tonic) in which muscles are rigorously clenched and forelimbs

dramatically extended. Animals with partial BACE deletions tested for spatial

memory phenotypes in Study 006 had few observations of spontaneous seizure

compared to homozygous BACE KO mice in Study 001, and these PTZ induced-
seizure experiments were designed to profile the propensity to seizure in these
animals. Specifically, it was of interest to determine whether partial BACE gene

deletion proffered protection against seizure kindling on the PDAPP background in
the manner it appeared to ameliorate PDAPP spatial memory impairments.

Study 01 IB mice by genotype did not differ on any measure of seizure kindling
induced by PTZ except for that BACE pKO; PDAPP mice had greater resistance to

developing moderate severity general clonic seizures (F=6.84, df 1/25, p=0.015;
Tables 6.4.2a-b Figure 6.4.2b). Data from latency to partial clonus and latency to

death were indistinguishable between PDAPP and BACE pKO; PDAPP mice, with
81.25% and 75% mortality in PDAPP and BACE pKO. PDAPP mice (Tables

6.4.1a-b, Figure 6.4.1 a-b). Neither composite seizures scores nor scores separated by
seizure type were appreciably different in PDAPP and BACE pKO; PDAPP mice

(Figure 6.4.1c, Figure 6.4.2). Overall it appears that the partial deletion of the BACE

gene reduces the propensity to have moderate strength seizures following PTZ
administration in mice carrying the PDAPP transgene.
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There were gender-specific differences in general clonic seizures, death latency and
overall seizure scores (Tables 6.4.1-6.4.2a-b, Figures 6.4.1-6.4.2a-c). These
differences were based in the greater susceptibility to seizures in male mice, but
without the ability to perform interaction analyses on these animals it is difficult to
assess the impact of this finding. Indeed, there did not appear to be a gender-related
difference in the animals observed to have spontaneous clonic-tonic seizures in
Studies 001 or 006 (Table 6.4.3).
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Figure 6.4.1 PTZ-induced seizure activity in 5mo Study 011B mice.
Overall there is little to distinguish BACE pKO; PDAPP seizure
response from that of PDAPP mice. A: Latency to first seizure
observation, mild clonus, is similar between both genotypes of Study
011B. B: Percentage of mice that die within 30 minutes of 60mg/kg i.p.
PTZ administration is equivocal between BACE pKO: PDAPP and
PDAPP mice. C: Time to death in PTZ-treated mice is similar in Study
011B mice. D: Cumulative seizure scores that include mild and general
clonus as well as severe tonic seizures were statistically similar
between Study 011B mice by genotype.
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A
Partial Clonus Seizure Scores

0.4

0.0

B

PDAPP PC BACE pKO; PDAPP PC

General Clonus Seizure Scores

0.4-i

PDAPP GC BACE pKO; PDAPP GC

0.4

Tonic Seizure Scores

PDAPP TC BACE pKO; PDAPP TC

Figure 6.4.2 PTZ-induced component seizure scores in Study 5mo
011A mice. There is a non-significant trend for BACE pKO; PDAPP
mice to have lower seizure scores (based on latency to that specific
seizure type) than PDAPP mice. A: Mild or partial clonic seizures
response in Study 011B mice is similar. B: BACE pKO; PDAPP mice
have greater resistance to kindling general clonic seizures than PDAPP
mice in response to PTZ treatment. C: BACE pKO; PDAPP and PDAPP
mice have similar levels of severe tonic seizures in response to PTZ
treatment.
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Seizure Latency (min) Death Latency Seizure Score
Factor N Mean Std N Mean Std N Mean Std
Color

Agouti 12 0.85 0.26 11 7.36 4.09 12 0.69 0.46
Black 6 0.89 0.25 6 8.62 4.47 6 0.53 0.11

10 1.2 0.32 5 4.62 2.21 10 0.46 0.25

Gender

Female 14 1.05 0.34 9 8.3 4 14 0.46 0.16

Male 14 0.92 0.28 13 6.24 3.89 14 0.69 0.44

Genotype
12 1.06 0.26 9 6.2 3.27 12 0.51 0.22

PDAPP 16 0.93 0.35 13 7.7 4.42 16 0.62 0.42

ALL 28 0.98 0.32 22 7.08 3.98 28 0.58 0.34

Source Factor(s) F DF p-value
Seizure Latency Gender 3.53 1 0.072

Genotype 3.39 1 0.077
Death Latency Gender N/A 1 0.028

Genotype N/A 1 0.98

Seizure Score Gender 6.36 1 0.018

Genotype 3.71 1 0.066

Table 6.4.1 a-b Descriptive and One-Way ANOVA statistics for seizure
responses and lethality in Study 011B mice by gender and genotype.

Female Male All
Number of n (%) that Number of n (%) that Number of n (%) that

Genotype Mice died Mice died Mice died
3 1 (33.3) 9 8 (88.9) 12 9 (75.0)

PDAPP 11 8 (72.7) 5 5 (100.0) 16 13 (81.3)
ALL 14 9 (64.3) 14 13 (92.9) 28 22 (78.6)

Source Factor(s) P-Values
Lethality Gender 0.16

Genotype 1

Tables 6.4.1c Descriptive and Fisher's Chi-squared test statistics for
PTZ-induced seizure lethality in Study 011B mice by gender and
genotype.
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Partial Clonus Score General Clonus Score Tonic-Clonic Score
Factor N Mean Std N Mean Std N Mean Std
Color

Agouti 12 0.3 0.25 12 0.22 0.08 9 0.23 0.17
Black 6 0.23 0.05 6 0.19 0.06 4 0.16 0.11

AMm© 10 0.18 0.06 10 0.17 0.08 7 0.17 0.12

Gender
Female 14 0.21 0.07 14 0.18 0.08 7 0.16 0.07

Male 14 0.28 0.24 14 0.21 0.07 13 0.22 0.16

Genotype
BACE dKO- PDAPP 12 0.2 0.05 12 0.17 0.06 10 0.17 0.12

PDAPP 16 0.28 0.23 16 0.21 0.08 10 0.22 0.16

ALL 28 0.24 0.18 28 0.19 0.08 20 0.19 0.14

Source Factor(s) F DF
PC Score Gender

Genotype
2.91
3.27

1

1
GC Score Gender

Genotype
5.66

6.84
1

1
TC Score Gender

Genotype
2.3
1.87

1
1

Tables 6.4.2a-b Descriptive and One-Way ANOVA statistics for seizure
component scores in Study 011B mice by gender and genotype.
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Calbindin and Amyloid Histology

6.5 Calbindin histology in the hippocampal outer molecular layer

Following the behavioral phenotyping and PTZ treatment of Study 01 IB mice,
mouse hippocampal tissues were immunochemically examined for Calbindin protein
levels. Calbindin is a ubiquitiously expressed Ca"^ binding protein found in cerebral
neurons that is involved in homeostatic regulation of functioning neurons. CB has
been also linked to neurogenesis in epileptic animals, as other researchers have

reported that CB levels increase in response to seizure activity, including epileptic

activity due to PTZ administration. If BACE pKO mice have experienced

spontaneous seizures at a greater rate than PDAPP mice, then analysis of CB levels
would provide another means to detect any functional differences related to seizure
between the two genotypes of Study 01 IB.

Calbindin (CB) immunostaining in the OML of the hippocampus revealed that
BACE pKO; PDAPP mice had a tendency towards having more CB than PDAPP
mice (p=0.072; Table 6.5a-b, Figure 6.5a-c). While the statistical significance of this
difference was not meaningful, even a tenuous trend towards greater CB in BACE

pKO; PDAPP would represent one of the few measures in which the two genotypes

in Study 01 IB even approached distinction from each other. This finding was more

deeply explored in section 6.6 regarding the correlational analyses of general
behavioral observations, PTZ-induced seizure profiles and CB levels. These

analyses revealed a link between CB levels in BACE pKO; PDAPP mice and tonic

seizures, in which CB was associated with resistance to severe seizure activity.

Antibody staining for APP-expression in Study 01 IB animals confirmed the

genotypes of all mice, in accordance with the vendor's inventory. Animals carrying
one copy of the PDAPP transgene typically develop sparse plaque-like amyloid

deposits between 6-8mo, thus no confirmatory A(3 staining was performed as Study
01 IB mice were 4.75-5.25mo old, and negative results would be largely

uninterpretable.
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A Calbindin Intensity in the Hippocampal OML
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Figure 6.5 Calbindin (CB) immunoreactivity and images in the
hippocampal outer molecular layer of 5mo Study 011B mice. A: There
is no statistically significant difference in hippocampal CB levels in
Study 011B mice. B: Images of the CB immunoreactivity, displaying
sections with intensity values close to the genotype group average are
also visually equivalent between BACE pKO; PDAPP and PDAPP mice.
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Factor N Mean STD
Color

Agouti 11 61.24 6.87
Black 5 58.66 1.79

^OfeSDfa® 10 61.24 8.07

Gender
Female 14 60.23 7.99

Male 12 61.34 4.87

Genotype
11 63.5 7.25

PDAPP 15 58.72 5.53
ALL 26 60.74 6.63

Source Factor(s) F DF p-value
Gender 0.22 1 0.64

Genotype 3.56 1 0.072

Tables 6.5a-b Descriptive and One-Way ANOVA statistics for Calbindin
immunoreactivity in Study 011B mice by gender and genotype.
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6.6 Correlation analyses of sensorimotor, seizure, and histological data

Correlation analysis cell key

R-Values Colorimetrics P-Values Colorimetrics Self-Correlation

0.3<R<1 -1<R<-0.3 P<0.05

Column Abbreviations

PC Lat =Latency to Partial Clonus
GC Lat= Latency to General Clonus
TC Lat = Latency to Tonic Seizure
Score = Composite seizure score
DeathT = Latency to death
PCscore= Partial clonus component of seizure score
GCscore= General clonus component of seizure score
TCscore = Tonic seizure component of seizure score
CB Int = Calbindin Intensity in the Hippocampal Outer Molecular Layer
GS1 = Grip strength day 1
GS2 = Grip strength day 2
GS3 = Grip strength day 3
2RR1 = Constant speed rotorod trial 1
2RR4 = Constant speed rotorod trial 4
3RR1 = Accelerating speed rotorod trial 1
3RR4 = Accelerating speed rotorod trial 4
3RR7 = Accelerating speed rotorod trial 7
SectXI = Sector crossings, session 1
Restl = Complete rests in motion
Distl = Total distance traveled
Timel = Total time spent in motion
Rearl = Vertical activity counts
Stereol = Number of stereotypic movements
Open Distl = Total open field distance traveled
Open Timel = Total time spent in motion in open field
Open Vertl = Vertical activity counts
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Example Correlation Table, Behavioral and Immunochemical Measures

R-values from
correlation analysis
of each measure

p-values from
correlation analysis
of each measure

Example Correlation Table, Hippocampal Calbinidin Intensity/Behavioral
Measures by Genotype

PDAPF
GC Lat TC Lat Score DeathT ^^Cscore^GCScore

BACE pKO; PDAPP

[ 0.7857 ; 1 -0.7857

P-values
PC Lat GC Lat TC Lat Score DeathT PCscore GCScore
0.048 0.048

Figure 6.6.1a-b Example correlation tables. A: Correlation table of
relationships between various behavioral measures, with R-values
presented in upper diagonal section and p-values presented in lower
diagonal section. Corresponding p-values and R-values are found in
the same coordinate distance from the black diagonals separating the
two types of values, with R-values at xr,yr coordinates, and p-values at
yp,xp coordinates where xr=yp and yr=xp Values contained within red
circle indicate significant intrameasure correlations, e.g. clonic to tonic
seizure latency. Values contained within blue circles indicate
significant intermeasure correlations, e.g. clonic seizure latency to
Calbindin intensity. B: Correlation table of various behavioral
measures and Calbindin intensity separated by genotype. R-value
tables are above while P-values are below. Values in green circles
indicate significant behavioral/Calbindin correlations.

All behavioral and histological data gathered from individual animals tested in

Study 01 IB was subjected to Spearman's Correlational Test in an effort to uncover

relationships between these varied measures. Measures were compared individually,
with the expectation that correlations that may arise are due to underlying
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relatedness of the brain processes that govern specific behaviors and/or anatomical
features.

Correlational analyses of Study 01 IB behavioral and histological measures

produced patterns of measure relationships that were reminiscent of those of Study
011A: there again were five groups of related measures that formed functional sets,
and there also were certain sensorimotor measures that were predictive of seizure

activity (Figure 6.6). Although there were some new features in Study 01 IB the five
main sets of related measures were largely unchanged:

• Partial Clonic (PC)/General Clonic Seizures (GC)
• Grip Strengths
• Constant and Accelerating Rotorod, with broader relationships than in Study

011A

• Florizontal locomotor activity, with wider correlations to grip strength and
rotorod data than in Study 011A

• Vertical/Stereotypic locomotor activity, including open field measures

Intrameasure relationships

Between Study 011A and 01 IB there was a shift in related measures from GC/TC to

PC/GC respectively. This may be due to the fact that death latencies in Study 01 IB
PDAPP mice in response to PTZ were about 1/3 shorter overall that in Study 011 A,

shortening the amount of time between PC and GC seizures while the time between
GC and TC seizures remained the same (Figures 5.4b, 6.4b). In Study 01 IB the

greater relatedness of the sensorimotor data values would allow for the grouping of

grip strength, rotorod performance and all the spontaneous activity monitoring
measures into one larger functional group. One interpretation of this change towards

greater interrelatedness in the motor data measures could be attributed to the overall
lack of distinction between PDAPP and BACE pKO; PDAPP mouse phenotypes.
The indistinguishable genotypic mouse data from Study 01 IB statistically is based
on similarities in data between genotypes, and thus less variation in the total
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Table 6.6 Correlation of pharmacologic, behavioral and histological
measures, with resulting R- and p-values of 5mo Study 011B mice.
Table is located in pocket at back cover of document.

This table of correlation values underlines several intrameasure and
intermeasure relationships.

Intrameasure values are highly correlated within each set, as
performance on one measure is likely to be functionally related to
performance on a similar measure. These intrameasure correlations
are circled in red, and are closest to the table diagonal separating R-
and p-values. Thus many measures within PTZ-seizure induction, trial
performances over days of testing in tasks like grip strength and the
rotorod, and the general and open field activity monitoring have high
degrees of correlations within each set.

Intermeasure relationships occur between different task measures and
are circled in blue, typically distant from the R-/p-value diagonal.
Correlations between these metrics suggest that although the tasks
vary methodologically, the underlying functional and/or anatomical
bases for their performance are similar, and even predictive of one
another. In particular, resistance to partial clonic seizure response
appears to be correlated to higher CB intensity, longer post-seizure
and death latencies are associated with greater forelimb grip strength.
The ability to stay for longer periods on the rotorod was also related to
greater grip strength and exploration over a wide range of arena space
(SectXI, number of sectors crossed).
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correlational data set. Decreases in variation mathematically are akin to increasing
the power of any analysis, and ultimately confers greater ability to detect patterns of
correlations.

Intermeasure relationships

There were many statistically significant relationships between CB and the various
seizure measures in Study 01 IB (Table 6.7). There were unexpected positive
correlations between PC and TC seizure latency and Calbindin intensity, a finding
that was opposite to that of Study 011A. Again it may be possible that the greater

lethality and shorter times to death seen in Study 01 IB animals treated with PTZ
could be affecting the data, since there would be less time to affect any changes in
baseline levels of CB before tissue processing. To examine this more closely, the
individual PDAPP and BACE pKO; PDAPP genotypes were separately compared to

all other seizure and observational behavior measures. This individual analysis
revealed that in BACE pKO; PDAPP mice, high levels of CB were still negatively
correlated to composite seizure scores as seen previously in Study Oil A (R=-

0.3909). However, TC latencies were positively associated with CB levels in BACE

pKO; PDAPP mice (R=0.7258, p=0.0269). This finding seems to go against the

pattern of correlation between CB-Seizure score, but in BACE pKO; PDAPP mice
TC scores account for less of the total seizure score than do PDAPP TC scores in

either study (Figure 5.4d-e, 6.4d-e), so this finding could be less relevant from this

perspective. It is also important to realize that any differences in the correlational

patterns between Study 011A and 01 IB could be due to the ages of the mice tested

(18 vs. 5mo), as any of these opposing patterns could be due to aging effects.

There were other measures in Study 01 IB that were correlated to seizure measures.

Again, CB levels were associated with seizures, as there was a significant

relationship between propensity to PC seizures and high levels of CB, while there
was a trend towards significance with propensity to TC seizures and high CB levels
(R=0.3979, p=0.0441 and R=0.4281 and p=0.0763 respectively). In addition, grip

strength ratio data on the third day of testing was highly correlated to death latency,
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suggesting that individual animals with lower grip strengths may have had seizure

activity as evinced by lower time to death. Animals that overall had greater

resistance to seizure and death from PTZ administration are those most likely to

have had the least spontaneous previous seizure activity during their lives. In
addition to this concept of resistance to severe seizure through lack of prior

experiences, limb weakness is one of the most common of the seizure sequelae,
which taken together makes this grip strength and death latency correlation

intuitively sensible.

Lastly, when CB correlations to all other measures were separated by genotype, a

novel relationship between TC and CB in BACE pKO; PDAPP mice was detected

(Table 6.7). In BACE pKO; PDAPP CB intensity was significantly correlated to

lower TC activities, (R=0.726, p<0.05). In addition CB was related to Stereo 1
values in a way in which greater CB intensity was correlated to lesser repetitive
motor activity, which itself is a reliable predictor of seizure propensity (R=-0.607,

PO.025; Table 6.7). Finally, CB levels in BACE pKO; PDAPP mice were related to

increased activity in open field areas, and a lack of anxiety phenotypes. This last

finding is in opposition to the PDAPP CB/open field correlation data from Ch. 5. If
CB is truly anything like a biomarker for functional cognitive status in mice, this

genotypic discrepancy implies that the relationship is not absolute. Indeed this CB-
function relationship may be age-dependent as Ch. 5 focused on aged mice and Ch.6
described young animal subjects, and there was an apparent age-related shift in CB
across the PDAPP, BACE KO, and BACE KO; PDAPP mice in Study 001 (Figure

3.6.1).

Overall these Study 01 IB results with CB help support the concept that partial
deletion of the BACE gene on a PDAPP background in certain circumstances may

indeed be beneficial to the functioning nervous system, improving anxiety and
seizure activity profiles. The next study will examine these findings in aged mice
which have more direct comparability to Study 011A mice, in hopes of expanding
this hint of functional improvement of PDAPP mice conferred by partial BACE

gene deletion.
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Table 6.7 Correlation of Calbindin (CB) to all other measures, R- and P-
values of 5mo Study 011B mice. Table is located in pocket at back
cover of document.

Specific assessment of CB correlations to behavioral and
pharmacological metrics was done by genotype to discern wider
patterns of predictive functional relationships. The only significant
correlations with CB were in BACE p KO; PDAPP mice, which had
lesser severe seizure activity, less repetitive movements, and spent
more time in the open field with high CB levels. As repetitive or
stereotypic movements in mice are predictive of seizure response to
PTZ in mice, CB appears to be a biomarker for seizure protection in
mice with partial BACE gene deletion. Anxiety phenotypes in mice are
often represented by avoidance of open field areas, but BACE pKO;
PDAPP mice with higher CB levels explored these areas more,
suggesting that partial BACE KO ameliorates anxiety phenotypes in
PDAPP mice.
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Ch.7 Study 011C: General Behavioral Phenotypinq and Response to Dose-
Scaled Seizure Induction in 18mo Hemizyqous BACE pKO x PDAPP mice

In Study 011C aged (18mo) hemizygous BACE pKO x PDAPP mice were assessed for their
sensorimotor and seizure phenotypes using tests that measured limb strength, spontaneous
and involuntary motor function, as well as activity profiles in response to a seizure inducing

agent (Table 7.0a-b). Previous analysis using the same tests in aged homozygous BACE KO
x PDAPP mice revealed a deficiency in motor coordination in BACE KO mice, and lesser
resistance to chemically-induced severe seizures in mice carrying the PDAPP transgene.

BACE KO; PDAPP mice were severely impaired in spatial memory processes even

compared to PDAPP mice, suggesting that the lack of the BACE gene product exacerbated
the PDAPP spatial memory phenotype. In addition, BACE KO; PDAPP mice in Study 011A

appeared to have the least resistance to developing severe seizures in response to treatment

with an epileptic kindling agent (PTZ). While Study 01 IB BACE pKO; PDAPP mice were

indistinguishable from PDAPP mice on most measures, correlative data suggested that partial
deletion of BACE genes confer some level of protection from seizure phenotypes. These

Study 01 IB results gathered in young mice (5mo) needed further examination in aged
animals.

In addition to examining the sensorimotor phenotypes of 18 mo BACE pKO, PDAPP mice
for more direct comparison to aged homozygous BACE KO; PDAPP mice, Study 011C was

also designed to detect differential responses between BACE pKO; PDAPP and PDAPP mice
to induction of mild and severe seizures. Partial deletion of the BACE gene on a PDAPP

background in Study 006 appeared to alleviate some of the spatial memory deficits of
PDAPP mice, and it was of interest to see if this spatial memory rescue extended to

protection from various types of seizure activity. Total N for this study was 32 mice (Table

7.0a).

The overall performance of Study 011C mice is summarized below (Table 7.0b). One-way
ANOVA tests were conducted on all measures except for grip strength and the rotorod, which
was subject to MANOVA testing, and the Lethality measure which was analysed with
Fisher's exact Chi-squared test. Due to the scarcity of animals across all gender and genotype
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groups, statistical analysis by color was not possible, nor was interaction analysis between

dose, gender and genotype. Descriptive statistics are presented for all factors.

Female Male ALL
Factor Agouti Black Albino ALL Agouti Black Albino ALL Agouti Black Albino ALL
Dose
25 mg/kg PTZ 8 2 0 10 6 0 0 6 14 2 0 16
60 mg/kg PTZ 7 1 1 9 5 1 1 7 12 2 2 16

Genotype
BACE pKO;PDAPP 8 2 0 10 6 0 0 6 14 1 1 16

PDAPP 7 2 0 9 5 1 1 7 12 3 1 16
ALL 15 4 0 19 11 1 1 13 26 4 2 32

Table 7.0a Study 011C mice, all aged 18mo.

Overall even with aged mice there was little to distinguish BACE pKO; PDAPP from
PDAPP mice. There were no genotypic significant differences in Study 011C, and by gender
the only difference was that female mice had shorter latencies to mild seizure signs than
males. The most important factor impacting performance was dosage of penetylenetetrazole

(PTZ), which was given at 25 and 60 mg/kg to induce mild and severe seizures respectively.
Animals that were grouped into low and high PTZ dose cohorts were not selected until after

they had completed other sensorimotor testing. Post-hoc analysis of PTZ dose group

sensorimotor performance revealed no significant differences; no graphical data by dose is

presented except for the seizure data.

Measure

Masses
Positional Tone

Crossings
Distance

Rests
Movement Time
Vertical Actvity

Stereotypy
Open Field Distance

Open Field Time
Open Field Rears

Rotorod Constant Speed
Rotorod Accelerating

PC Latency
GC Latency
TC Latency
PC Score

GC Score
TC Score

Seizure Score

Percentage Lethality
Death Latency

Calbindin Intensity
Table 7.0b Statistical summa

P-Values

Gender Dose Genotype
0.14 0.18 0.21
0.6 0.28 0.69

0.75 0.34 0.15
0.92 0.33 0.11
0.64 0.63 0.33
0.97 0.28 0.099
0.54 0.69 0.54

0.61 0.56 0.33

0.91 0.36 0.13
0.5 0.13 0.54
0.4 0.97 0.37

0.46 0.17 0.059
0.82 0.77 0.59

0.012 0.0002 0.73
0.35 N/A 0.22
0.8 N/A 0.23

0.036 0.017 0.73
0.43 N/A 0.25
0.85 N/A 0.46
0.19 P0.0001 0.61

1 P<0.0000 1
0.61 P0.0001 0,72

0.33 0.59 0.52

ry of fac or significance in Study 011C.
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Mass and Muscular Function

7.1 Body Mass and Positional Tone

Forelimb muscular tone was measured in Study 011C mice, as this is often reduced in the
aftermath of severe seizure activity. The original observations of spontaneous clonic-tonic
seizures in homozygous BACE KO x PDAPP mice motivated concern that experimental
mice were having unobserved seizures throughout life, which may have contributed to the

early death phenotype of these animals (section 3.4-3.5). While it was not possible to

continuously monitor all the BACE KO x PDAPP mice in their homecages long-term to

record any spontaneous seizure activity, it was possible to perform simple behavioral tests to
determine if animals had been experiencing spontaneous seizures. Analysis of forelimb
muscular strength was one method employed to make judgments about the spontaneous

seizure status ofBACE pKO; PDAPP mice.

In Study 011C, manual measurements were made to assess the muscle tone of the mice,
where each mouse was tested for its ability to resist being upended by gentle force at the level
of the foreshoulder, with a score ranging 0 (normal) -3 (upended) given to animals in

response to a gentle push (section 2.2.2). Analysis of these positional sense scores revealed
no differences in resistance to upending gender or genotype (F<1 Gender, F<1 Genotype;

Tables, 7.1c-d Figure 7.1b). BACE pKO; PDAPP also appeared to be impaired in positional
sense relative to PDAPP mice, but this was not a statistically significant finding. Body
masses between BACE pKO; PDAPP and PDAPP mice separated by gender were

indistinguishable, as they were in Study 01 IB (Figures 6.1a, 7.1a, Tables 7.1a-b).

While positional sense is related to grip strength as they both rely on forelimb muscular tone,

positional sense has a strong component of motor coordination as well. Thus the tendency
towards deficiencies observed in BACE pKO; PDAPP mice in positional sense as well as
their rotorod motor coordination deficits described in section 5.3, and later in section 7.3 of

this chapter appear to support a concept of a general deleterious motor phenotype in aged
BACE KO mice.
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Figure 7.1 Body mass and positional sense of 18mo Study 011C mice by
gender and genotype. A: Study 011C mice do not differ in body mass by either
gender or genotype. B: Positional sense/tone scores above zero indicate
reduced ability to remain afoot when gentle force is applied to the shoulder
area, which can be based in poorer righting reflex and/or decreased forelimb
muscular tone. Male BACE pKO; PDAPP mice have significantly higher
positional scores than PDAPP mice, with a similar but non-significant trend in
female mice, suggesting that the partial BACE gene deletion confers a motor
deficit.
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Factor N Mean (g) STD
Color

Agouti 24 42.25 1.46
Black 4 38.22 1.07

2 40.47 5.18

Gender
Female 14 44.12 1.49

Male 18 39.37 1.66

Dose
25 mg/kg PTZ 16 43.65 1.66

60 mg/kg PTZ 16 39.25 1.59

Genotype
BACE pKO;PDAPP 16 39.34 1.45

PDAPP 16 43.56 1.82
ALL 32 41.45 1.2

Source Factor(s) F DF p-value
Gender 2.03 1 0.14

Dose 1.75 1 0.18

Genotype 1.61 1 0.21

Table 7.1a-b Descriptive and One-Way ANOVA statistics for body masses in
Study 011C mice by gender and genotype.

Factor N Mean STD
Color

Agouti 24 1.33 0.19
Black 3 0 0

2 0.5 0.5

Gender
Female 18 1.29 0.23

Male 11 0.91 0.28

Dose
25 mg/kg PTZ 14 1.43 0.25
60 mg/kg PTZ 15 0.87 0.24

Genotype
BACE pKO; PDAPP 16 1 0.22

PDAPP 13 1.31 0.29
ALL 29 1.138 0.18

Source Factor(s) F DF p-value
Gender 0.51 1 0.6

Dose 1.29 1 0.28

Genotype 0.37 1 0.69

Table 7.1 c-d Descriptive and One-Way ANOVA statistics for grip strengths in
Study 011C mice by gender and genotype.

234



Motoric Phenotypes

7.2 Spontaneous Locomotor Activity Monitoring

Analyses of spontaneous locomotor activity of Study 011C mice on the horizontal and
vertical planes were made with an automated monitoring system as described in section 2.2.1.
In Study 011C mice were assessed for these measures, including distance traveled, time spent

in motion, number of sector crossings, number of rests in movement, vertical activity (rears)
and stereotypic movements, as well as open field activity over two 15min sessions. These
measurements are useful in any characterization of transgenic mice as they can provide

quantitative information on the exploration and anxiety phenotypes of experimental mice. In

general mice in activity monitoring arenas explore novel environments by ambulating around
the perimeter of the area, with occasional forays in the central regions of the arena. Animals
with reduced explorative characteristics will travel shorter distances, with lesser travel time
than control animals. Animals with anxious phenotypes will also explore less, both

horizontally and vertically, especially in the open central region of the arena. Finally,

repetitive or stereotypic movements like circling, grooming and tremors are captured in

spontaneous activity monitoring, as they are often related to propensity to seizures.

There were no significant differences in spontaneous motor activity in the BACE pKO;
PDAPP and PDAPP mice of Study 011C (Tables 7.2.1a-b-7.2.2a-b, Figures 7.2.1-7.2.3).

Previously, in aged mice homozygous for BACE gene deletion, greater vertical activity had
been associated with faster conversion to severe tonic seizures, making vertical activity one

of the most interesting spontaneous measures in this study (Figure 5.6).

In all other direct comparisons of BACE pKO; PDAPP and PDAPP general activity measures

there were no significant differences, although there was again a trend towards BACE pKO;
PDAPP being less horizontally explorative than PDAPP mice, as in younger mice of these

genotypes (Table 7.2.1a-b, 7.2.2a-b, Figure 7.2.1-7.2.2). BACE pKO; PDAPP mice tended to
have greater vertical activity and more stereotypic movements than PDAPP animals, but
overall little can be said about the general spontaneous motor activity levels differences
between these mice.
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When the Study 011C mice were assessed for activity in the open central region of the

monitoring arena, there were again no statistically meaningful differences between BACE

pKO; PDAPP and PDAPP mice (Tables 7.2.3a-b, Figure 7.2.3). Overall the lack of

significant inter-genotype differences between BACE pKO; PDAPP and PDAPP mice,

suggesting that partial removal of the BACE gene product has no effect on general

spontaneous motor or anxiety behavior in aged PDAPP mice.

Total Distance (cm) Total Time (s) Rests in Motion
Factor N Mean Std Mean Std Mean Std
Color

Agouti
Black

26
4

2

287.22
223.43

182.9

277.99
94.36

5.09

34.75
30.1

25.3

29.94

14.03

0.99

62.08
75.5

63

19.01
34.16

16.97

Gender
Female

Male
19
13

277.83
265.25

252.36
264.96

33.56
33.59

27.78
27.89

65.58
61.23

23.94
15.78

Dose
25 mg/kg PTZ
60 mg/kg PTZ

16

16
228.59
316.86

199.46
297.87

28.35
38.8

23.46
30.65

65.75
61.88

16.71
24.69

Genotype
BACE pKO;PDAPP

PDAPP
16
16

345.28
200.17

333.67
100.5

41.69
25.46

34.95
13.65

67.56
60.06

19.57
21.99

ALL 32 272.72 253.37 33.58 27.37 63.81 20.83

Source Factor(s) F DF p-value
Distance Gender

Genotype
Dose

0.01
2.65

1

1
1

1

0.92
0.11

0.33
Time Gender

Genotype
Dose

0
2.91
1.2

1
1
1

0.97
0.099
0.28

Rests Gender

Genotype
Dose

0.22
0.92
0.23

1
1
1

0.64

0.34
0.63

Tables 7.2.1a-b Descriptive and One-Way ANOVA statistics for locomotor
activity monitoring measures (distance, movement time, and rests) in Study
011C mice by dose, gender and genotype.
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Figure 7.2.1 Spontaneous locomotor activity monitoring in 18mo Study 011C
mice. A: While not a significant finding, BACE pKO; PDAPP mice had a
tendency towards lesser exploration than PDAPP mice. B: BACE pKO; PDAPP
mice tended to spend less time in motion than PDAPP mice. C: Study 011C
mice were equivalent in the number of movement stoppages.
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Figure 7.2.2 Spontaneous locomotor activity monitoring in 18mo Study 011C
mice. A: BACE pKO; PDAPP mice had a non-significant tendency to explore a
smaller area than PDAPP mice. B: Study 011C mice were equivalent in the
number of vertical movements or rearings. C: BACE pKO; PDAPP mice had a
greater tendency to have repetitive or stereotypic movements than PDAPP
mice.
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Figure 7.2.3 Open field activity in 18mo Study 011C mice. Locomotor activity in
an open field area is a measure of anxiety in rodents, as anxious animals are
disinclined to enter the central region of any novel environment. A: BACE
pKO; PDAPP mice tend to explore less in an open field area than PDAPP mice.
B: BACE pKO; PDAPP mice appear to spend slightly less time in the open field
area than PDAPP mice. C: BACE pKO; PDAPP mice have less vertical activity
in the open field area than PDAPP mice. These trends in aged mice are similar
to results in young BACE pKO; PDAPP mice from Study 011B (Figure 6.2.3),
and they collectively suggest that partial BACE gene deletion may confer an
anxious phenotype on the PDAPP mouse background.

239



Sector Crossings Vertical Rearings Stereotypy
Factor N Mean Std Mean Std Mean Std

Color

Agouti 26 142.12 81.46 11.42 11.29 4.77 4.11

Black 4 129 51.39 14 9.31 3.25 2.06

AltoHin® 2 100 18.38 14.5 4.95 8.5 2.12

Gender
Female 19 141.79 77.72 10.95 8.66 4.53 3.64

Male 13 132.08 75.47 13.38 13.28 5.23 4.42
Dose

25 mg/kg PTZ 16 125.06 62.03 11.06 8.43 4.38 3.93
60 mg/kg PTZ 16 150.63 87.51 12.81 12.7 5.25 3.99

Genotype
BACE pKO; PDAPP 16 157.94 97.46 13.06 11.38 5.5 4.24

PDAPP 16 117.75 38.64 10.81 10.09 4.13 3.58
ALL 32 137.84 75.73 11.94 10.64 4.81 3.92

Source Factor(s) F DF p-value
Crossings Gender 0.11 1 0.75

Genotype 2.2 1 0.15

Dose 0.96 1 0.34

Rearings Gender 0.39 1 0.54

Genotype 0.38 1 0.54
Dose 0.17 1 0.69

Stereotypy Gender 0.26 1 0.61

Genotype 1 1 0.33
Dose 0.34 1 0.56

Table 7.2.2a-b Descriptive and One-Way ANOVA statistics for locomotor
activity monitoring measures (crossings, rears and stereotypic activity) in
Study 011C mice by dose, gender and genotype.

OF Distance (cm) OF Time (s) OF Rearing
Factor N Mean Std Mean Std Mean Std
Color

Agouti 26 312.21 304.59 516.1 182.81 2231.9 1012.2
Black 4 265.83 171.07 675.4 71.48 2076 962.03

2 129.65 9.97 447.3 282.56 2171 1801.71

Gender
Female 19 301.43 286.96 548.3 156.04 2346.5 955.42

Male 13 285.61 287.07 507.5 220.33 2007.2 1095.6
Dose

25 mg/kg PTZ 16 248.94 213.37 482.7 176.31 2210.6 761.88
60 mg/kg PTZ 16 341.07 338.84 580.7 180.85 2206.6 1238.73

Genotype
BACE pKO;PDAPP 16 373.88 366.77 553 161.01 2385.3 1145.3

PDAPP 16 216.13 130.67 510.5 205.02 2032 858.29
ALL 32 295 282.44 531.7 182.61 2208.6 1011.61

Source Factor(s) F DF p-value
OF Distance Bender 0.01 1 0.91

Genotype 2.49 1 0.13
Dose 0.87 1 0.36

OF Time Bender 0.46 1 0.5

Genotype 0.38 1 0.54
Dose 2.45 1 0.13

OF Rears Bender 0.73 1 0.4

Genotype 0.83 1 0.37
Dose 0 1 0.97

Tables 7.2.3a-b Descriptive and One-Way ANOVA statistics for open field
locomotor activity monitoring measures (OF distance, time and rears) in Study
011C mice by dose, gender and genotype.
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7.3 Rotorod Motor Coordination

To complete the motoric phenotyping of the Study 011C BACE pKO x PDAPP mice,
animals were tested for involuntary motor coordination on a rotorod apparatus. Mice were

placed on a rod capable of turning at constant or accelerating speeds, and measured for

latency to fall. Over several trials mice generally will learn to improve their motor

performances and lengthen their falling latencies. Study 011C mice were tested for 4 trials on

two consecutive days in which performance on the static (1 Orpm) rotorod was tested on the
first day and performance on the accelerating rotorod (0-40rpm) was tested on the second day

(section 2.2.3).

Aged BACE pKO; PDAPP mice had tendency to perform poorly on the accelerating rotorod

compared to aged PDAPP mice, while they were indistinguishable on the constant speed
rotorod paradigm (Accelerating Rotorod: F=2.64, df 1/268, p=0.059Tables 7.3a-d; Figure

7.3a-b). In both constant and accelerating rotorod tests, BACE pKO; PDAPP mice showed
little improvement in their performance over a number of trials, a finding that was similar to
that of similarly aged mice with homozygous BACE KO genotypes in Study 011A. However,
before claiming that BACE gene deletions predispose mice to poorer motor coordination, one

important caveat about the comparability of animals from different lines must be mentioned.
PDAPP mice of Study 011A were superperformers with the longest latencies to fall and

greatest rates of improvements, while Study 011C PDAPP mice had performance levels that
were far below these high standards. It must be stated that while these mice are genotypically
identical with respect to the PDAPP transgene, they are in fact from different colonies with

divergent breeding schemes, which could affect the comparability of inter-group behavioral

testing (Figure 2.11). Mice of both genotypes in Study 011C had notably very poor rotorod

performances, which were easily the shortest falling latencies in accelerating tests of animals
tested in either Study 011A or 01 IB. This said, it still appears that certain patterns ofmotor

performance in BACE KO mice over the course of 2 separate studies have been replicated,

suggesting that both complete and partial BACE KO confers a motor coordination deficit in

aged mice.
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Figure 7.3 Motoric rotorod coordination in 18mo Study 011C mice. A: Aged
Study 011C mice do not have genotypic differences in their performance on
the constant speed rotorod. B: BACE pKO; PDAPP mice have a tendency to
fall sooner from the accelerating rotorod compared to PDAPP mice. Animals
of both genotypes are exceedingly poor performers on this task compared to
younger BACE pKO; PDAPP and PDAPP mice (Figure 6.3) and do not display
any improvement over trials, suggesting either/or a major motor coordination
phenotype and/or deficit in motor skills learning in both genotypes at this age.
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Trials
Factor N 1 2 3 4

Color Mean Std Mean Std Mean Std Mean Std

Agouti 26 6.3 4.21 6.51 4.35 4.59 3.05 5.48 3.23
Black 4 4.82 2.62 2.71 2.32 4.74 1.87 4.62 1.17

2 7.76 3.62 6.27 0.42 2.57 2.62 3.87 2.83

Gender
Female 19 6.48 4.93 6.05 5.28 4.39 3.42 4.83 2.66

Male 13 5.82 2.16 5.94 1.98 4.6 2.02 5.88 3.42
Dose

25 mg/kg PTZ 16 6.62 5.01 6.7 5.36 5.01 3.32 5.08 2.25
60 mg/kg PTZ 16 5.76 2.54 5.26 2.29 3.91 2.3 5.47 3.7

Genotype
BACE pKO;PDAPP 16 5.99 5.24 6.09 5.44 4.14 3.61 4.5 2.26

PDAPP 16 6.41 2.4 5.92 2.65 4.8 2.05 5.99 3.47

ALL 32 6.2 3.97 6 4.17 4.48 2.88 5.27 3

Source Factor(s) F DF p-value
Gender 0.38 1 0.82

Genotype 0.72 1 0.59

Dose 0.45 1 0.77

Tables 7.3a-b Descriptive and One-Way ANOVA statistics for performance on
the constant speed rotorod in Study 011C mice by dose, gender and genotype.

Trials
Factor N 1 2 3 4

Color Mean Std Mean Std Mean Std Mean Std

Agouti 26 12.54 10.36 8.41 6.82 13.94 9.75 12.74 19.8

Black 4 13.11 7.54 10.4 7.22 6.27 2.1 5.33 1.18

MMm 2 6.8 2.44 4.88 0.42 2.51 1.1 5.09 2.43

Gender
Female 19 14.26 11.16 9.04 7.84 12.65 11.21 13.61 22.62

Male 13 9.04 5.85 7.49 4.17 11.51 6.26 7.62 4.42
Dose
25 mg/kg PTZ 16 9.87 6.72 7.8 3.79 13.48 6.83 9.61 6.95

60 mg/kg PTZ 16 14.77 11.82 9.13 8.81 10.85 11.8 13.09 25.18

Genotype
BACE pKO; PDAPP 16 9.25 4.51 7.15 4.12 8.4 4.19 7.82 6.34

PDAPP 16 15.05 12.31 9.65 8.28 15.78 11.65 14.55 24.19
ALL 32 12.24 9.69 8.44 6.62 12.21 9.49 11.29 17.97

Source Factor(s) F DF p-value
Gender 0.94 1 0.46

Genotype 2.64 1 0.059
Dose 1.75 1 0.17

Tables 7.3c-d Descriptive and One-Way ANOVA statistics for performance on
the accelerating speed rotorod in Study 011C mice by dose, gender and
genotype.
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Seizure Phenotypes

7.4 PTZ-lnduced Seizures

Pharmacologic seizure studies were conducted on Study 011C mice, based on the premise
that prior seizure experience and/or genetic propensity to kindle seizures would produce
differential epileptic response profiles (section 2.3). Previous experiments with aged

homozygous BACE KO x PDAPP mice revealed that BACE KO; PDAPP mice had reduced
resistance to seize compared to seizure-prone PDAPP mice (section 5.4). Testing of younger
BACE pKO; PDAPP mice showed no such differences in seizure propensity compared to the
PDAPP response to seizure, but this result could have been due to effects of age, as these
mice were 5mo old and may have had little cumulative seizure activity if they were so

disposed (section 6.4). In Study 011C aged BACE pKO; PDAPP were tested to provide a

better frame of comparison to the homozygous BACE KO; PDAPP mice of Study 011A.

In addition, the design of Study 011C allowed for the examination of BACE pKO; PDAPP

responses to lower doses of PTZ (25mg/kg) which elicit mild partial clonic seizures (Tables
7.4.1a-b, Figure 7.4.1a-b). Mice treated with 25mg/kg of PTZ had a range of mild seizure

activity consisting of sporadic localized head or tail twitches over a period of 30min, in
which all animals survive. There was no statistical difference between BACE pKO; PDAPP
and PDAPP mice in the onset or scores for partial clonic seizure response to a low dose of
PTZ (Genotype: F<1; Figure 7.4.1a-b).

At 60mg/kg, treatment of Study 011C mice was almost uniformly lethal, with 100% death in
BACE pKO; PDAPP and 87.5% death in PDAPP mice (data not shown). The increase in

lethality in response to PTZ could be based on the change of drug lots between Study 01 IB
and 011C, as over a year had elapsed to allow for the aging of animals and the prior lot had
been replaced. Seizure latencies by type in mice treated with 60mg/kg PTZ were not

significantly different between genotypes (Genotype: F<1; Tables 7.4.1a-b, Figure 7.4.2a).
There was a trend towards longer latencies in the more severe types of seizures in BACE

pKO; PDAPP mice, suggesting that these mice had experienced lesser spontaneous seizure

activity throughout life and could resist kindling severe convulsions. Analysis of time to

death in Study 011C mice given high doses of PTZ revealed a longer latency in BACE pKO;
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PDAPP that bordered on statistical significance, also hinting that animals with BACE pKO
had greater seizure resistance than PDAPP mice (p=0.056, Figure 7.4.2c). In composite
seizure scores as well as seizure scores by type, there was no statistically meaningful
difference between BACE pKO; PDAPP and PDAPP mice (Tables 7.4.2a-b). It is worth

mentioning that BACE pKO; PDAPP mice did have a tendency towards lesser composite
scores than PDAPP mice in Study 011C, a finding which was reproduced in Study 01 IB

(Figures 6.4d, 7.4.3a).

Finally, seizure response to PTZ in Study 011C animals was largely dose-dependent, as

animals receiving 60 mg/kg of PTZ generally had significantly shorter latencies to partial
clonic seizures than animals treated with 25mg/kg of PTZ (Dose: F= 19.69, df 1/31,

p=0.0002; Table 7.4.2a-b, Figure 7.4.3b). BACE pKO; PDAPP mice appeared have lesser
seizure responses than PDAPP mice at high PTZ doses, suggesting that partial BACE gene

ablation may confer resistance to seizures on an hAPP background. Overall, higher doses of
PTZ produced the expected profile ofmore severe seizure activity in shorter times, in which
dose-based differences in seizure response within genotypes was highly significant (F=152.3,
df 3/31, p<0.001; Tables 7.4.1a-b; Figure 7.4.3a). The seizure data from Study 011C suggests

that BACE pKO on a PDAPP background has a protective effect on seizure resistance, but it
is parsimonious to say that at a minimum partial deletion of BACE in this experiment did not

amplify propensity to seizure, and did not uncover any sign of greater spontaneous seizure

activity in these mice.

There were significant differences in gender response to PTZ seizure induction as aged Study
011C female mice had shorter latencies to the first signs ofmild seizure compared to males

(Tables 7.4.1a-b). This finding is the opposite of the gender effect seen in Study 01 IB, as

young male mice from the BACE pKO x PDAPP line had shorter general clonic seizure and
death latencies and higher overall composite seizure scores. This age-related shift was similar
to that seen upon observation of spontaneous seizures in Study 001 and 006 (Table 7.4.3).
While this it is not unexpected that there could be gender differences in response to PTZ

treatment, this age-related change in seizure pattern by gender is unusual, and the mechanistic
basis, if any, is unknown.
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Figure 7.4.1 Low dose PTZ-induced seizures in 18mo Study 011C mice. A:
Study 011C mice treated with 25 mg/kg i.p. PTZ do not differ appreciably in the
latency to mild clonic seizure activity. B: Aged BACE pKO; PDAPP mice have a
tendency to have higher partial clonic seizure scores than PDAPP mice.
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Figure 7.4.2 High dose PTZ-induced seizures in 18mo Study 011C mice. A:
Given 60 mg/kg of PTZ, BACE pKO; PDAPP mice tend to resist developing
moderate (general clonic) and severe (tonic) seizures compared to PDAPP
mice. B: PDAPP mice appear to have slightly higher contributions from mild
and moderate seizures than BACE pKO; PDAPP mice, suggesting a greater
overall seizure liability in these mice. C: Upon high dose treatment with PTZ,
BACE pKO; PDAPP mice have a nearly significant tendency to survive for
longer periods of time than PDAPP mice (p=0.056).
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Seizure Onsel (min) Death Latency Seizure Score
Factor N Mean Std N Mean Std N Mean Std
Color

Agouti 23 1.43 0.89 12 5.5 3.38 26 0.4 0.35

Black 4 1 0.8 2 4.22 2.99 4 0.62 0.46

2 1.08 0.42 2 5.97 1.13 2 0.87 0.13

Gender
Female 17 1.1 0.66 9 5.92 3.84 19 0.46 0.39

Male 12 1.69 1 7 4.74 1.65 13 0.44 0.36

Dose
25 mg/kg PTZ 13 1.9 0.97 0 NA NA 16 0.12 0.12

60 mg/kg PTZ 16 0.89 0.32 16 5.4 3.05 16 0.79 0.18

Genotype
BACE pKO; PDAPP 15 1.39 1.02 8 6.84 3.12 16 0.44 0.34

PDAPP 14 1.29 0.66 8 3.96 2.35 16 0.47 0.41

ALL 29 1.34 0.85 16 5.4 3.05 32 0.45 0.37

Source Factor(s) F DF p-value
Seizure Latency Render 7.29 1 0.012

Genotype 0.12 1 0.73
Dose 19.69 1 0.0002

Death Latency Sender N/A 1 0.72

Genotype N/A 1 0.61

Dose N/A N/A P<0.0001
Seizure Score Sender 1.79 1 0.19

Genotype 0.27 1 0.61

Dose 152.5 1 P<0.0001

Table 7.4.1a-b Descriptive and One-Way ANOVA statistics for seizure
responses and lethality in Study 011C mice by dose, gender and genotype.

Female Male All

Number of n (%) that Number of n (%) that Number of n (%) that
Factor Mice died Mice died Mice died

Dose
25 mg/kg PTZ 10 0 (0%) 6 0 (0%) 16 0 (0%)
60 mg/kg PTZ 9 9 (100%) 7 7 (100%) 16 16 (100%)

Genotype
10 5 (50.0) 6 3 (50.0) 16 8 (50.0)

PDAPP 9 4 (44.4) 7 4 (57.1) 16 8 (50.0)
ALL 19 9 (47.4) 13 7 (53.9) 32 16 (50.0)

Source Factor(s) P-Values

Lethality Gender 1

Genotype 1

Dose P0.0001

Tables 7.4.1c Descriptive and Fisher's Chi-squared test statistics for PTZ-
induced lethality in Study 011C mice by dose, gender and genotype.
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PC Score GC Score TC Score
Factor N Mean Std N Mean Std N Mean Std
Color

Agouti 23 0.2 0.13 12 0.25 0.07 11 0.26 0.08
Black 4 0.36 0.28 2 0.25 0.07 2 0.27 0.03

AOIbaGrD® 2 0.2 0.08 2 0.3 0 2 0.37 0.05

Gender
Female 17 0.26 0.19 9 0.24 0.08 8 0.27 0.09

Male 12 0.16 0.07 7 0.27 0.05 7 0.27 0.08
Dose

25 mg/kg PTZ 13 0.15 0.12 0 NA NA 0 NA NA
60 mg/kg PTZ 16 0.28 0.16 16 0.25 0.07 15 0.27 0.08

Genotype
DArc rtlfrv PHADDJMw L_ UiWJ, 1 L/M1 I 15 0.21 0.12 8 0.23 0.08 8 0.26 0.1

PDAPP 14 0.23 0.19 8 0.28 0.05 7 0.29 0.04
ALL 29 0.22 0.16 16 0.25 0.07 15 0.27 0.08

Source Factor(s) F DF p-value
PC Score Gender 4.93 1 0.036

Genotype 0.12 1 0.73
Dose 6.51 1 0.017

GC Score Gender 0.67 1 0.43

Genotype 1.47 1 0.25
Dose NA NA NA

TC Score Gender 0.04 1 0.85

Genotype 0.58 1 0.46
Dose NA NA NA

Tables 7.4.2a-b Descriptive and One-Way ANOVA statistics for seizure
component scores in Study 011C mice by dose, gender and genotype.

3 mo 13 mo 18 mo

Mice Removed Mice Removed Mice Removed
Gender (% of Total N) (% of Total N) (% of Total N)

Study 001
Male 3 (7.3%) 3 (7.1%) 7 (11.6%)

Female 5 (7.7%) 2 (4.8%) 5 (11.4%)
Study 006

Male 2 (6.9%) 0 0
Female 0 0 2 (17.2%)

Table 7.4.3 Descriptive statistics of spontaneous tonic-clonic seizures
observed in Study 001 and 006 mice by gender.
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Calbindin and Amyloid Histology

7.5 Calbindin Histology in the Hippocampal Outer Molecular Layer

Calbindin (CB) is a Ca+" binding protein found in neurons that has been shown to increase in

experimental conditions that include seizure activity. As CB has been implicated as a marker
for hippocampal neuron function, it was particularly interesting to analyse BACE pKO;
PDAPP brain tissues for CB intensity levels following treatment with both low and high
doses of a pharmacologic seizure-inducing agent. While treatment of PTZ at 60 mg/kg in

young hemizygous BACE KO mice and aged homozygous BACE KO mice proved to be

equivocal in CB levels, it is possible that analyzing data from aged groups given low doses of
PTZ could provide information on any shifts in CB levels as a response to increasing doses of
PTZ. Study 011C mouse brain tissues were immunostained with an antibody for CB with
fluorescent intensity levels captured using a confocal microscope and quantified as described
in section 2.4.1 using the NIH Image program.

At low doses of PTZ, levels of CB immunoreactivity were statistically equivalent between
BACE pKO; PDAPP and PDAPP mice (Figure 7.5a). At 60 mg/kg of PTZ, CB was lower in
PDAPP mice relative to BACE pKO; PDAPP mice (F=2.614, df 3/29, p=0.05; Figure 7.5a).
It appears that the response of mice from each genotype is different with escalating doses of

CB, as PDAPP mice have somewhat reduced levels of CB going from 25 to 60mg/kg doses
of PTZ, while BACE pKO; PDAPP mice had static levels of CB with the same doses. These
shifts in CB level by genotype are difficult to interpret, although there are certainly possible

explanations.

CB is a marker for Ca++ homeostasis in neurons, and is considered a functional marker

because normal living neurons have high requirements for Ca++ trafficking. Previous

interpretations of correlational analysis of aged hemizygous BACE KO mice implied that

high CB levels were associated with cognitive function (table 4.8.3). It may be that in the
PTZ-untreated mouse high levels of CB are synonymous with behavioral function because
CB is being properly used by the neurons and are thus reflective of activity. When low doses
of PTZ are applied there is large range of responses in PDAPP mice, with a much smaller

variability in BACE pKO; PDAPP mice. It may be that this difference is due to depletion of
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CB rather than divergence in the original level of CB. Indeed it is possible that BACE pKO;
PDAPP mice were better able to utilize their CB and regulate their intracellular CaT+
trafficking, so that they have a more static level of CB even in the face of neuronal challenge,

allowing them to resist seizure onset and death for longer periods of time. In fact there was a

trend towards CB levels increasing with higher doses of PTZ in BACE pKO; PDAPP

animals, suggesting that they retain cellular responsiveness to severe neuronal activation
stressors.

Immunostaining with an antibody to hAPP to confirm the presence of the PDAPP transgene

in these mice revealed no mistyped animals.

Factor N Mean STD
Color

Agouti 25 86.35 16.9
Black 3 73.64 5.19

2 82.54 4.14

Gender
Female 17 87.39 18.29

Male 13 81.47 12.1
Dose

25 mg/kg PTZ 15 86.78 19.78
60 mg/kg PTZ 15 82.87 11.27

Genotype
BACE pKO; PDAPP 15 82.97 11.54

PDAPP 15 86.68 19.64
ALL 30 84.82 15.94

Source Factor(s) F DF p-value
Gender 0.98 1 0.33

Genotype 0.43 1 0.52

Dose 0.3 1 0.59

Tables 7.5a-b Descriptive and One-Way ANOVA statistics for Calbindin
immunoreactivity in Study 011C mice by dose, gender and genotype.
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Figure 7.5 Calbindin (CB) immunoreactivity and images in the hippocampal
outer molecular layer of 18mo Study 011C mice. A: After treatment with 25
mg/kg of PTZ, BACE pKO; PDAPP mice have statistically equivalent CB levels
as PDAPP mice. PDAPP mice treated with 60 mg/kg PTZ have significantly
lower CB levels than BACE pKO; PDAPP mice. B: Images of the CB
immunoreactivity, displaying sections with intensity values close to the
genotype group average are also visually equivalent between BACE pKO;
PDAPP and PDAPP mice. White arrows point to brightly stained blood vessel
artifacts.

253



7.6 Correlation Analyses of Behavioral and Histological Data

Correlation Analysis Cell Key

R-Values Colorimetrics P-Values Colorimetrics Self-Correlation

0.3<R<1 -1<R<-0.3 P<0.05

Column Abbreviations

PC Lat =Latency to Partial Clonus
GC Lat= Latency to General Clonus
TC Lat = Latency to Tonic Seizure
Score = Composite seizure score
DeathT = Latency to death
PCscore= Partial clonus component of seizure score
GCscore= General clonus component of seizure score
TCscore = Tonic seizure component of seizure score
CB Int = Calbindin Intensity in the Hippocampal Outer Molecular Layer
PositTone = Positional sense/tone
2RR1 = Constant speed rotorod trial 1
2RR4 = Constant speed rotorod trial 4
3RR1 = Accelerating speed rotorod trial 1
3RR4 = Accelerating speed rotorod trial 4
SectXI = Sector crossings, session 1
Restl = Complete rests in motion, session 1
Distl = Total distance traveled, session 1
Timel = Total time spent in motion, session 1
Rearl = Vertical activity counts, session 1
Stereol = Number of stereotypic movements, session 1
Open Distl = Total open field distance traveled, session 1
Open Dist2 = Total open field distance traveled, session 2
Open Timel = Total time spent in motion in open field, session 1
Open Time2 = Total time spent in motion in open field, session 2
Open Vertl = Vertical activity counts, session 1
Open Vert2 = Vertical activity counts, session 2
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Example Correlation Table, Behavioral and Immunochemical Measures

PC Lat GC
PC Lat
GC Lat

TC Lat

Score

Death|
'

PCscore
GCScore [ 0.002
TCScore

CB Int [ 0.0441

p-values from
correlation analysis
of each measure

R-values from
correlation analysis
of each measure

Example Correlation Table, Hippocampal Calbinidin Intensity/Behavioral
Measures by Genotype

A✓"PC LaTS. GC Lat TC Lat Score DeathT >^PCscore^VGCScore
PDAPff 0.7857 ) -0.7857

BACE pKO; PDAPP

60 mg/kg PTZ P-values
PC Lat GC Lat TC Lat Score DeathT PCscore GCScore

PDAPP 0.048 0.048
BACE pKO; PDAPP

Figure 7.6.1a-b Example correlation tables. A: Correlation table of
relationships between various behavioral measures, with R-values presented
in upper diagonal section and p-values presented in lower diagonal section.
Corresponding p-values and R-values are found in the same coordinate
distance from the black diagonals separating the two types of values, with R-
vaiues at xr,yr coordinates, and p-values at yp,xp coordinates where xr=yp and
yr=xp Values contained within red circle indicate significant intrameasure
correlations, e.g. clonic to tonic seizure latency. Values contained within blue
circles indicate significant intermeasure correlations, e.g. clonic seizure
latency to Calbindin intensity. B: Correlation table of various behavioral
measures and Calbindin intensity separated by genotype. R-value tables are
above while P-values are below. Values in green circles indicate significant
behavioral/Calbindin correlations.
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Correlational analysis provides a mathematical method for finding associations between

diverse behaviors, pharmacologic responses and histological markers. These associations are

tested with the premise that measures with values that vary with respect to each other are
linked by some underlying neuronal processes. Using individual measure data collected from

Study 011C animals were analysed against all other measures with Spearman's Correlational
Test that non-parametrically assigns log ranks to each value within a measure set. The

resulting correlation R values and statistical significance p-values were then arranged into a

table format, in which diagonal cells have self-values which by definition have R=1 and

p<0.0001. Accordingly, each half of the tables is reflexive, having R-values that are columns
in one direction and p-values that are rows in the other, intersecting with identical or self
correlations in black boxes that run diagonally across the table.

Intra- and intermeasure relationships

Correlational analysis of all Study 011C mice revealed a continuation of relationship patterns

seen in Study 011A and 01 IB. Again there were several groups of behavioral measures that
formed functional sets, as they were highly correlated to each other. These behavioral
intersets were not much different from the previous two seizure studies:

• General Clonic (GC)/Tonic Seizures (TC)
• Constant and Accelerating Rotorod, with broader relationships to seizure measures

than in Study 011A
• Horizontal locomotor activity, and subset open field measures

• Vertical/Stereotypic locomotor activity

Overall, a quick glance at the correlational maps of Study OilA and 011C reveal visual

patterns of similarities, possibly due to their similarity in age (Tables 5.6, 5.7, 7.6, 7.7). There
was again a strong relationship between GC and TC measures. GC latency and scores were

associated to rotorod performance such that poor performance in the rotorod seemed to be

predictive of higher scores in GC seizures (GC/TC: R=0.520, p<0.05; 3RR1/GC Score: R=-

0.576, p<0.025). GC latencies and Scores were also correlated to vertical activity, as

increased values in Rears were associated with lower latencies to GC seizures, a finding that
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Table 7.6 Correlation of pharmacologic, behavioral and histological measures,
with resulting R- and p-values of 18mo Study 011C mice. Table is located in
pocket at back cover of document.

This table of correlation values underlines several intrameasure and
intermeasure relationships.

Intrameasure values are highly correlated within each set, as performance on
one measure is likely to be functionally related to performance on a similar
measure. These intrameasure correlations are circled in red, and are closest to
the table diagonal separating R- and p-values. Thus many measures within
PTZ-seizure induction, trial performances over days of testing in the rotorod,
and the general and open field activity monitoring values have high degrees of
correlations within each set.

Intermeasure relationships occur between different task measures and are
circled in blue, typically distant from the R-/p-value diagonal. Correlations
between these metrics suggest that although the tasks vary methodologically,
the underlying functional and/or anatomical bases for their performance are
similar, and even predictive of one another. In particular, resistance to general
clonic seizure response and longer times to death post-seizure appear to be
correlated to higher CB intensity and performance on the constant speed
rotorod. Resistance to general clonic seizure is also seen in animals with high
levels of vertical activity, while resistance to the mildest (partial clonic)forms
of seizure is associated with greater locomotor activity. Lastly, longer times
spent in the open field is correlated in aged Study 011C mice to superior
performance in the constant speed rotorod task.
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makes intuitive sense as pathological repetitive behaviors are often post-seizure sequelae. In

addition, dose of PTZ was strongly correlated to PC Lat, PC Score, and TC Score, which

replicates the findings of section 7.4 using a dramatically different statistical analysis, and
lends credence to the power of correlational analysis to uncover sensible relationships
between measures.

The entire set of horizontal locomotor measurements were so highly related that they could
almost be considered interchangeable, as R>0.607 and p<0.001 between all combinations of

SectXl, Restl, Distl and Timel. In addition, Study 011C animals had values in Stereo 1 that
were also strongly related to Rearl, as seen before in Studies 011A and 011C, but also to

horizontal measures like Timel and Distl (Rearl/Stereo R=0.653, p<0.001; Distl/Stereol

R=0.468, p<0.01; Timel/Stereol R=0.491, p<0.005). Measures like PositTone, 2RR1, and
2RR4 did not have any significant relationships to any other measures. Unlike the results
from Studies 011A and 01 IB, there were few significant relationships between open field
measures and other tasks, as open field time correlated to performance on the first day of the

accelerating rotorod (R=0.47, p<0.01).

When separated by genotype and dosage of PTZ treatment, correlations between CB intensity
in the hippocampal outer molecular layer and other measures become apparent. BACE pKO;
PDAPP animals treated with lower doses of PTZ had positive correlations between CB

intensity and performance on the rotorod such that higher latencies to fall off the accelerating
rotorod were associated with higher CB levels (R=0.786, p<0.05). At the higher doses ofPTZ

however, there were no relationships between CB and behavioral or pharmacologic measures

in BACE pKO; PDAPP mice. In PDAPP mice given 60 mg/kg of PTZ, there was a positive
mathematical correlation between PC measures and CB intensity, as though higher CB levels
were related to resistance to developing PC seizures (R=0.786, p<0.05). This pattern was

reminiscent of that seen in Study 01 IB with BACE pKO; PDAPP mice, which had the same

positive correlations between CB and TC seizure activity (Table 6.7). While these are

singular relationships, it appears that there is some kind of pattern in animals given high
doses of PTZ, such that CB levels may indicate protection against development of seizure

activity. As the statistical significance of these correlations were tenuous, this analysis would
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ultimately need to be reproduced for any strong statements about CB levels in the

hippocampus as a predictor for protection against seizure activity.

However, the correlation data from these studies using aged BACE KO or BACE pKO mice

consistently argue that performance on the rotorod is predictive of seizure propensity. Given
the poorest rotorod performers were aged animals with some kind of BACE KO, this also

suggests that homozygous deletion of BACE does confer a deleterious seizure-related

phenotype (Figures 5.3, 7.3). There are biological possibilities for a lack of motor strength
and coordination in BACE-deficient animals, as BACE1 distribution patterns are altered in

patients with Inclusion Body Myositis (IBM), a muscular degeneration disease that features

amyloid deposits in vacuolated muscular fibres (Askanas V, 1992; Vattemi et al., 2001;
Vattemi et al., 2003). As BACE1 is implicated in the development of neuromuscular

junctions, it is possible that BACE KO mice over time develop an IBM-like phenotype.
Earlier analysis of BACE KO mice did not reveal any muscular pathology, but these studies
were performed in young mice, which would preclude discovery of an age-related muscular

phenotype.

Table 7.7 Correlation of Calbindin (CB) to all other measures, R- and P-values
of 18mo Study 011C mice. Table is located in pocket at back cover of
document.

Specific assessment of CB correlations to behavioral and pharmacological
metrics was done by genotype to discern wider patterns of predictive
functional relationships. In Study 011C mice treated with a low 25 mg/kg dose
of PTZ, BACE pKO; PDAPP animals, high levels of CB are associated with
superior performance in the accelerating rotorod paradigm. However this
relationship shifts in animals treated with higher 60 mg/kg doses of PTZ, as
Study 011C PDAPP mice with high CB levels are poor performers on the
constant speed and accelerating rotorod. However, this inverse relationship
between function and CB levels is not broadly applicable as PDAPP mice with
high CB levels do have greater resistance to developing mild seizures. Taken
together these correlations suggest at the minimum that if CB is truly a
biomarker for hippocampal function, the relationship to other functions is not
a simple one.
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Ch.8 Discussion and Summary

8.1 Phenotypic characterization of BACE KO x PDAPP mice

The behavioral and histological characterization of the BACE KO x PDAPP mouse line was

conducted to test the straightforward hypothesis that removal of the rate-limiting enzyme (3-

secretase on a mutant human APP expressing background would positively impact the
deleterious cognitive and histological phenotypes present in the PDAPP transgenic mouse.

Although amelioration of PDAPP deficits represents the most supportive outcome for the
BACE inhibition strategy of Alzheimer's Disease, there are in fact four possible outcomes on

any given phenotypic measure from the crossing ofBACE KO and PDAPP mice, which were

outlined in Ch. 1 on p. 66-7 (these outcomes also could be age-related and evolve over time):

• Deletion of BACE on a background overexpressing A(3 could rescue the mouse

cognitive deficits associated with the PDAPP transgene.
• Deletion of BACE and subsequent loss of (3-CTF and A(3 could worsen the phenotype
if these metabolites and/or some other substrate of BACE are required for normal

learning and memory as well as general neuronal activity regulation in mice.
• Deletion of BACE could produce an intermediate phenotype that improves/worsens

the cognitive phenotype ofPDAPP mice, dependent on the dosage of the gene.

• Deletion of BACE could have no effect the PDAPP mouse phenotype.

Given the diverse array of spatial memory, sensorimotor, seizure induction and histological

analyses performed on these mice, it is somehow not surprising that depending on the
measure being tested, all of the possible outcomes above are observed in BACE KO, BACE

pKO; PDAPP and BACE KO; PDAPP mouse phenotypes. These results within each type of

experimental paradigm used in this dissertation are reviewed in the next sections, followed by
a discussion focusing on the normal role of APP metabolism in the nervous system and

ultimately implications for the risks and rewards ofBACE inhibition strategy for AD.
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8.2 Spatial memory phenotypes of BACE KO and BACE KO; PDAPP mice

PDAPP mice have been previously shown to be deficient in several aspects of water maze

spatial memory performance relative to non-transgenic control mice, and the experiments of
Studies 001 and 006 reproduce these findings (Table 8.1) (Chen et al., 2000). While the
accumulation of cerebral A|3 has been implicated as a causal factor in the development of

AD, BACE KO mice that are unable to produce this APP metabolite also have a spatial

memory phenotype that is limited to impairment in serial learning and memory capacity

(Figures 3.2.1-3.2.3, 3.3.1). This BACE KO memory capacity deficit suggests that long-term

synaptic plasticity may require a functional BACE enzyme. When the total spatial memory

phenotype of the BACE KO mouse relative to the PDAPP mouse is considered, it seems that
the BACE KO phenotype is milder than that of the PDAPP mouse, which in addition to lesser
relative capacity and serial learning deficits at all ages, also has no perseverative impairment.
The fact that BACE KO mice are fully viable, fertile and have longer lifespans than mice
with a single copy of the PDAPP transgene suggests that the normal system is capable of

compensating for even a complete lack of the BACE1 enzyme, although the mild spatial

memory phenotype suggests it is somehow involved in normal cognition (Table 3.4, 8.1).

Study 001

Young
PDAPP

BACE KO
BACE KO, PDAPP

Middle-aged
PDAPP

BACE KO
BACE KO, PDAPP

Oid
PDAPP

BACE KO
BACE KO, PDAPP

Table 8.1 Spatial memory phenotypes of Study 001 BACE KO x PDAPP mice.
All animal performances for each measure are compared to Control (non-
transgenic) and/or PDAPP mice of the same age. The (-) denotes a
performance that was significantly poorer than that of Control mice, —)
denotes performance that was significantly poorer than that of Control and
PDAPP mice, and "no A" denotes no statistical difference in performance.

Spatial Memory
Acquisition Perseveration Serial Learning Capacity

Platform Location 1 Location 2 Average TTC 1-3 N Platforms learned
no A no A - —

no A no A - -

- no A

- no A — —

no A no A no A -

no A no A — --

no A - — -

no A no A - -

no A - ...
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However, the spatial memory phenotype of the BACE KO; PDAPP mouse was anything but
mild. The BACE KO; PDAPP mouse was the most impaired of all animals tested, with

significant deficits in acquisition, perseveration, serial learning, and memory capacity at

various ages (Table 8.1). In addition, the depth of the impairment of BACE KO; PDAPP
mice suggests that it is the cumulative effect of both BACE KO and PDAPP mouse

phenotypes (Figures 3.2.1-3.2.3, 3.3.1). This represents a singularly intriguing finding, as it
would suggest that there are two distinct mechanistic pathways by which APP metabolism

impacts learning and memory processes. Closer examination of the deficits between PDAPP,
BACE KO, and BACE KO; PDAPP mice reveals that old animals with PDAPP transgenes in

particular have difficulties forming new memories (perseveration at spatial location 2), while
all the mice have lesser spatial memory capacity.

The perseverative deficit shared by PDAPP and BACE KO; PDAPP mice draws attention to

the distinction between APP metabolism in each genotype. Animals of both genotypes

overexpress mutant hAPP, but only the PDAPP mouse has the ability to generate A[340/42

fragments. One explanation for a deficit in perseveration in both mice is that simple

overexpression of hAPP in the PDAPP transgene regardless of further metabolism is itself
toxic to synaptic plasticity. There is some evidence to support this possibility, as earlier
neuroanatomical analysis of PDAPP mice showed a marked hippocampal and callosal

atrophy which was correlated to spatial reference and working memory (Dodart et al., 2000).

Unpublished analysis of BACE KO; PDAPP mouse brains by Elan researchers shows that the
PDAPP-associated hippocampal atrophy is not rescued by BACE gene deletion, so it is also

possible that these phenotypes are the result of developmental transgene-associated brain

shrinkage. It must be noted also that both types of mice would overproduce the APP
intracellular domain (AICD) fragment, which has remained largely unexplored compared to

A(340/42 but is reportedly involved in apoptotic nuclear signaling and regulation of APP
itself (Passer et al., 2000; von Rotz et al., 2004). It is possible that this shared phenotype is
the product ofAICD-induced altered nuclear signaling and/or upregulation ofAPP itself.

Another explanation for this shared perseverative phenotype is that the PDAPP and BACE

KO; PDAPP mice develop a similar impairment via divergence in their pathways. PDAPP
mice feature an overproduction of A|340/42, |3-CTF,s|3APP and AICD, while BACE KO;
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PDAPP mice overproduce A[317-40/42, a-CTF, saAPP, and AICD (Figures 1.4a-b). While

several players in the amyloidogenic pathway have been implicated in neurological disease

processes, the non-amyloidogenic pathway has been investigated and associated with rescue

of cognitive deficits and reduction of amyloid pathology. It may be that the absolute lack of

amyloidogenic fragments is deleterious to cognitive and synaptic function in the same way

that excess is, not just in BACE-deficient but also in y-secretase-deficient animals (Furukawa
et al., 1996; Colciaghi et al., 2002; Postina et al., 2004; Saura et al., 2004). This serves to

support the concept that amyloidogenic pathway is involved in normal cognitive processes.

As a whole, these deleterious spatial memory phenotypes in the BACE KO and BACE KO;
PDAPP mouse do not completely agree with the results of Ohno et al. (2004) who
characterized the BACE1 -/-; Tg2576 mouse line (Ohno et ah, 2004). These authors noted
that on the background of the Swedish human APP mutation, deficits in social recognition
and Y-maze exploration were ameliorated with BACE gene deletion. The BACE KO mouse

itself had a memory deficit in social recognition, while the BACE1 -/-; Tg2576 mice had near

normal cholinergic physiology compared to Tg2576 control mice. While these results seem to

be in opposition to the exceedingly poor spatial memory performance of the BACE KO;
PDAPP mouse, there are many points in which the two experiments and mouse lines differ. It

may be that the two sets of tasks are too divergent to fairly compare the lines. BACE KO;
PDAPP mice perform very poorly on spatial memory tasks that rely more specifically on

hippocampal function, but Y-maze and social recognition require significant frontal cortex
involvement so deficits in these tasks could exist in the same animal. Water maze testing of
the BACE1 -/-; Tg2576 mice would shed light on this disparity. In addition, the differences
between the animals themselves could factor into the opposing directions of these results.
While Ohno and colleagues (2004) tested 4-6mo old animals, this dissertation examined
animals from 3-18mo of age, and it may be that 4-6mo is too early a time point for any age-

related BACE-/-; Tg2576 deficit to be detected.

One global interpretation of the BACE KO x PDAPP phenotypes is that memory capacity is

governed by more than one set of amyloid-driven pathways, while acquisition and flexibility
of memory are processes sensitive to the accumulation of APP and/or AICD. These

hypotheses would be best explored by a new experiment in which conditional knockout of
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BACE is achieved on a hAPP transgenic mouse background, in which spatial memory,

amyloid metabolism and electrophysiological parameters are examined. For example, if

impairment in capacity for both BACE KO and hAPP mice was related to deficits in late-LTP

and all deficits in acquisition were directly related to levels of AICD these data would

support the global interpretation stated above.

8.3 Spatial memory phenotvpes of BACE pKO; PDAPP mice

Spatial memory testing of PDAPP and BACE pKO; PDAPP mice with a serial water maze
task revealed few distinctions between the performance of the two genotypes until they were

13 or 18mo old (Figures 4.2.1-4.2.3, 4.3.1). In most measures collected in young mice it

appears unlike complete BACE gene deletion, partial BACE deletion does not exacerbate any

existing PDAPP spatial memory deficits. However an age-related shift in phenotype was

observed in BACE pKO; PDAPP mice. At 13mo, BACE pKO; PDAPP mice had ameliorated

spatial memory deficits compared to PDAPP mice in acquisition, perseveration and serial

learning. (Figure 4.2.2c, 4.2.3a, Table 8.2). However, by 18mo BACE pKO; PDAPP mice
were severely impaired in perseveration, serial learning and memory capacity relative to

PDAPP animals. Thus is appears that the beneficial effects of BACE gene reduction rescues

the PDAPP mouse deficits only within a certain range of age-related A|3 accumulation.

Study 006 Spatial Memory
Acquisition Perseveration Serial Learning Capacity

BACE pKO,BACE Platform Location 1 Location 2 Average TTC 1-3 N Platforms learned

Young no A no A no A no A

Middle-aged + + + no A

Old no A — ... ...

Table 8.2 Spatial memory phenotypes of Study 006 BACE pKO x PDAPP mice.
All animal performances for each measure are compared to PDAPP mice of the
same age. The (+) and (-) symbols denote performances that were significantly
better or worse than that PDAPP mice, and "no A" denotes no statistical
difference in performance. The number of (+) and (-) symbols ranges from 1,2
or 3 and is indicative of the magnitude of the differences between the two
groups.

This age-related shift in cognitive phenotypes suggests again that there may be multiple ways

in which alteration ofAPP metabolism can deleteriously impact spatial learning and memory.
While 18mo BACE pKO; PDAPP animals have far less amyloid accumulation than PDAPP

264



mice, the inferior spatial memory in the mice with partial BACE gene deletion status argues

that some other aspect of BACE activity is needed for normal cognitive function. Decreasing
the productivity of the (3-secretase pathway ostensibly increases processing in the a-secretase

pathway, but these a-metabolites have been shown to be neuroprotective themselves, which

suggests another sources for this age-related impairment.

In part the data from Study 006 also agrees with that presented by Singer et al. (2005), in
which the authors performed behavioral testing on hAPP mice (London and Swedish

mutations) and saw cognitive rescue upon 4 weeks of cerebral lentiviral delivery of small

interfering RNA targeting BACE1 sequences. These 1 lmo old animals exhibited restoration
of dendritic and synaptic markers like MAP-2, and Synaptophysin, with dramatic reduction
in A(3 production and plaque deposition. However, although the works of Singer et al. (2005
and the Brno Study 006 suggest that BACE1 inhibition may result in beneficial cognitive

outcomes, the 18mo Study 006 data casts a specter of caution on the long-term ability of
BACE1 activity reduction to prevent cognitive impairment in AD. This issue could be
examined more closely with in vivo experiments with effective BACE inhibitor compounds,
or alternatively long-term studies with animals treated with BACE1 siRNA or conditional
BACE 1 gene knockout animals.

8.4 Sensorimotor phenotypes of BACE KO x PDAPP mice

8.4.1 Visual Cued Navigation

Performance in the visual cued navigation (VCN) aspect of the water maze requires a basic
sensorimotor functionality to swim and use intramaze cues to locate the platform. However,
there is also some aspect of procedural (motor) and associative learning involved as well. In
Studies 001 and 006 there was no major difference in VCN trial latencies between Control
mice and those of other genotypes - except for 18mo BACE KO, PDAPP mice that took

significantly longer to navigate to the visible platform (Figures 3.1.1-3.1.2, Table 8.3). At
both 3 and 18mo of age PDAPP and BACE KO; PDAPP mice swam at slower speeds in the
VCN task (Figure 3.1.2a,c). Although this slower swim speed phenotype could influence the

analysis of hidden platform navigation, the criterion for performance was set at locating the
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platform in 21s or less. Given the size of the pool (150cm), BACE KO; PDAPP mice
released at even a site most distant from a platform would be able to swim to the platform
well within the 21s time limit, as the slowest swim speed was 22 cm/s (Figure 3.1.1c, 3.1.2c).
So despite this slow swimming phenotype, the poor performance of the BACE KO; PDAPP
on the spatial memory task was most likely determined by memory and not motor status.

Finally, it must be noted that at 13mo both PDAPP and BACE KO mice both had

significantly shorter swim latencies than Control mice on Day 1 (Figure 3.1.1b). While these

findings were statistically meaningful, it may be that these are spurious findings, as Control
mice at this age took an uncharacteristically long time to navigate to the visible platform (56s
vs. 29-45s) when there was no difference between swim speeds at this age (Figure 3.1.2b).
There were no VCN differences between any of the Study 006 mice, featuring the PDAPP
and BACE pKO, PDAPP mice (Table 8.3).

Study 001

Young
PDAPP

BACE KO
BACE KO, PDAPP
Middle-aged

PDAPP

BACE KO
BACE KO, PDAPP
Old

PDAPP

BACE KO

BACE KO, PDAPP

Study 006

BACE pKO, BACE
Young

Middle-aged
Old

Table 8.3 Visual cued navigation phenotypes of Study 001 and 006 mice. All
animal performances for each measure are compared to Control (Study 001) or
PDAPP (Study 006) mice of the same age. The (+) or (-) symbols denote a
performance that was significantly better or poorer than that of Control mice
(Study 001), or PDAPP mice (Study 006), and "no A" denotes no statistical
difference in performance.

Non-Spatial Water Maze
visual Cued Navigation Visual Uued Navigation

Latency Swim Speed
no A no A

no A no A

no A -

no A no A

no A no A

no A no A

no A no A

no A no A
- -

Non-Spatial Water Maze
Visual Cued Navigation Visual Cued Navigation

Latency Swim Speed
no A no A

+ no A

no A no A

266



8.4.2 Mass and muscular strength observations of BACE KO x PDAPP mice

Simple analysis of body masses of aged Study 011 A, 01 IB, and 011C mice revealed that
male BACE KO; PDAPP weighed less on average than male Control mice (Figure 5.1a,
Table 8.4). Young Study 01 IB mice displayed no body mass differences between genotypes.

Before one can conclude that BACE KO; PDAPP mice that swim slowly and weigh less than
other mice are simply weak or sickly animals, the muscular strength testing results must be
considered. Aged PDAPP mice had greater grip strengths than Control mice, with a similar
trend in BACE KO; PDAPP mice (Figure 5.1c). This finding suggests that mice carrying the
PDAPP transgene have a dominant fine motor and strength phenotype, but it can also be

interpreted as an anxiety characteristic as anxiety in rodents is associated with increased
forelimbs grips forces (Benaroya-Milshtein et ah, 2004). At the same time, young BACE KO;
PDAPP mice had equivalent positional sense as PDAPP mice (Figure 7.1b, Table 8.4). These
PDAPP grip strength findings and trends are in agreement with the rotorod performance data.

Study 011A Mass & Muscular Observations
Old Body Mass Muscle Strength

PDAPP males +, males
BACE KO no A no A

BACE KO, PDAPP males no A

Study 011C
BACE pKO, BACE no A no A

Study 011B
Young

BACE pKO, BACE[ no A no A

Table 8.4 Mass and muscular observations of Study 011A, 011B and 011C
mice. All animal performances for each measure are compared to Control (Old
BACE KO x PDAPP mice) or PDAPP (BACE pKO x PDAPP) mice of the same
age. The (-) denotes a body mass that was significantly less than that of
PDAPP mice, (+) denotes performance that was significantly better than that
of Control mice, and "no A" denotes no statistical difference in performance.

8.4.3 Spontaneous sensorimotor activity in BACE KO x PDAPP

Analysis of the locomotor activity of BACE KO x PDAPP mice revealed few significant
differences between any of the genotypes, although there were trends towards lowered
horizontal plane activity in aged PDAPP mice from Study 001 (Figure 5.2.lady 5.2.2, Table
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8.5). The only statistically meaningful finding was that BACE KO; PDAPP mice displayed
more vertical activity (rearings) than PDAPP animals (Figure 5.2.2b). This excessive rearing

behavior, is part of a range of movements including repetitive movements that are part of a
seizure- phenotype.

Subset analysis of the aged Study 001 mice in the central "open field" of the monitoring
arena showed that BACE KO; PDAPP mice spent much less time in the open area compared
to both Control and PDAPP animals, while BACE KO mice had a strong tendency for the
same (Figure 5.2.3b). Avoidance of the open field is a classic test for anxiety, and if this is

interpreted as an anxiety phenotype in animals will BACE gene ablation, then this reproduces
the findings of other researchers (Delbarre et al., 1970; Britton and Britton, 1981; Harrison et

al., 2003). Harrison et al. (2003) also reported that their BACE KO mice had deficits in open

field exploration, and decreases in the levels of 5HT, which plays a role in anxiety as well as
other affective disorders. However, the analysis of Study 011A BACE KO mice did not agree

with the decreased exploration phenotype also presented by Harrison and colleagues. This

may simply be due to differences between the age of animals tested (10 weeks versus 18mo)
and the fact that only a few Study 011A BACE KO mice were examined (N=3), and all were
female.

A more reasonable assessment of a possible BACE-related hypoactivity phenotype can be
drawn from the young and aged BACE pKO; PDAPP analysis done in Studies 01 IB and
011C. While there again were no significant differences between the involuntary locomotor

activity of PDAPP and BACE pKO; PDAPP mice, there were trends towards decreased
horizontal plane activity in BACE pKO; PDAPP mice at both ages tested (Figures 6.2.1a-b,

7.2.1a-b, Table 8.5). In addition there were similar tendencies for reduced open field activity
in BACE pKO; PDAPP mice, suggesting that the BACE gene deletion does confer not only a

hypoexploratory but also an anxiety phenotype (Figures 6.2.3, 7.2.3).
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Study 011A Spontaneous Locomotor Activity
Old Horizontal activity Vertical activity Stereotypy Open Field

PDAPP no A no A no A no A

BACE KO no A no A no A no A
- vs Control

BACE KO, PDAPP no A +, vs. PDAPP no A and PDAPP

Study 011C
BACE pKO, BACE no A no A no A no A

Study 011B
Young

BACE pKO, BACE no A no A no A no A

Table 8.5 Spontaneous locomotor observations of Study 011A, 011B and 011C
mice. All animal performances for each measure are typically compared to
Control (Old BACE KO x PDAPP mice) or PDAPP (BACE pKO x PDAPP) mice
of the same age. The (--) denotes a performance that was significantly poorer
than that of comparator mice, (+) denotes performance that was significantly
better than that of PDAPP comparator mice, and "no A" denotes no statistical
difference in performance.

8.4.5 Rotorod performance in BACE KO x PDAPP mice

While the grip strength tests largely measured fine motor control, locomotor performance
measured on the rotorod is more a readout of gross motor coordination. Male mice harboring
the PDAPP transgene in Study OilA had supranormal grip strengths, but in the rotorod all

aged BACE KO and BACE KO; PDAPP mice had poor rotorod performances regardless of

gender (Figure 5.3.1, Table 8.6). Similarly, aged BACE pKO; PDAPP mice in Study 011C
also did poorly on the accelerating rotorod (Figure 7.3b). This is in agreement with the trends
towards poorer positional tone phenotype seen in aged BACE pKO; PDAPP mice of Study
011C as well, as this task has elements of both forelimb strength and motor coordination

(Figure 7.1b). It may also be that poor motor coordination in BACE-deficient mice is a

dominant phenotype, as Study 011A PDAPP mice had superior rotorod performances, while
BACE KO; PDAPP mice performed as poorly as BACE KO mice.

Any BACE KO muscular findings could represent a phenotype with an explainable
mechanism. Although AD is the most prevalent of the amyloid accumulation diseases,
Inclusion Body Myositis (IBM) is a disease in which patients present with progressive
muscular atrophy, with vacuolization of muscle tissue. Examination of the neuromuscular
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junction of IBM patients has revealed the pathogenic presence of amyloid, as well as

alterations in the levels of BACE1 and BACE2 enzyme (Askanas V, 1992; Vattemi et al.,

2001; Vattemi et al., 2003). Like AD, IBM is an age-related disorder, and the muscle wasting
strikes both distal and proximal muscle groups, but most notably in the large muscles of the

leg. Although no muscular pathology was seen in young mice lacking BACE, the seemingly

poorer locomotor coordination phenotype of the aged mice with BACE gene ablations could
be related to an IBM-like muscular disorder that is possibly age-related, and for this reason

neuromuscular side effects of BACE inhibition that must be considered (Roberds et al.,

2001). Alternatively, it is possible that poor BACE KO; PDAPP performance on the rotorod
is influenced by a deficit in procedural motor skills learning, just as the BACE-deficient mice
had impairments in spatial learning and memory.

Study 011A Motor Coordination
Old Rotorod static Rotorod accelerating

PDAPP no A no A

BACE KO no A no A

BACE KO, PDAPP +, vs. PDAPP +, vs. PDAPP
Study 011C

BACE pKO, BACE no A no A

Study 011B
Young

BACE pKO, BACE no A no A

Table 8.6 Rotorod motor coordination of Study 011A, 011B, and 011C mice. All
animal performances for each measure are typically compared to Control (Old
BACE KO x PDAPP mice) or PDAPP (BACE pKO x PDAPP) mice of the same
age. The (+) denotes performance that was significantly better than that of
PDAPP comparator mice, and "no A" denotes no statistical difference in
performance.

8.5 PTZ-induced seizure responses of BACE KO x PDAPP mice

After observing spontaneous tonic-clonic seizures in Study 001 mice during water maze

testing, there was a concern that BACE gene deletion may predispose animals to seizure

activity. In two subsequent experiments aged BACE KO x PDAPP and BACE pKO x

PDAPP mice were tested at 60 mg/kg of the seizure inducing agent pentylenetetrazole (PTZ)
in an effort to produce major seizures (Studies 011A, 011C). In addition young BACE pKO;
PDAPP mice were tested with 60 mg/kg of PTZ (Study 01 IB), and old BACE pKO; PDAPP
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mice were tested with a lower 25 mg/kg dose of PTZ which would cause minor seizures

(Study 011C). The results of Study 011A showed that PTZ treatment was more lethal to

genetically modified animals, and PDAPP mice had the least resistance to seizure onset, as

presented by partial clonus scores (Figure 5.4.1a, 5.4.2a, Table 8.7). However, the major

finding was that BACE KO; PDAPP mice had the greatest severe tonic-clonic seizure

activity, suggesting that their lack of resistance was due to significant prior seizure activity or

neuronal dysfunction in brain areas that regulate epileptiform kindling (Figure 5.4.2c).

Unfortunately, there were too few BACE KO mice to make assessments of their seizure

susceptibility. Fortunately, there were enough aged BACE pKO; PDAPP mice to perform a

similar severe seizure experiment, and compared to PDAPP mice, mice with a partial BACE

gene deletion had a tendency to survive seizure induction for longer (7.4.2c, Table 8.7).

Along with this finding, it appears that BACE pKO; PDAPP mice treated with a high dose of
PTZ displayed trends towards greater resistance to developing seizures overall (Figure

7.4.2a,b). a similar trend towards lesser seizure activity was present in young BACE pKO;
PDAPP mice of Study 01 IB compared to PDAPP mice given high doses of PTZ, as these
animals had significantly less moderate severity general clonic seizures (Figure 6.4.Id,

6.4.2a,-c).

When given lower doses of PTZ to examine resistance to lesser seizures, aged BACE pKO;
PDAPP mice appeared to have somewhat higher mild clonus scores, which is actually similar
to a Control-like response to PTZ treatment (Figure 5.4.2a, 7.4.1b). Comparison of aged
PDAPP and BACE pKO; PDAPP seizure responses to 25 and 60mg/kg of PTZ revealed a

strong-dose dependency, with significantly more total seizure activity and faster onset to mild
seizures with higher doses (Figure 7.4.3).

These seizure data suggest a gene dosage effect of BACE on seizures, as absolute loss of
BACE was associated with severe seizures, while partial loss of BACE appeared to rescue

some of the seizure phenotype, both on the PDAPP background. The fact that this trend is
also present in young BACE pKO; PDAPP mice argues that BACE plays a role in the

regulation of neuronal activity, which if perturbed can result in seizures. There is ample
evidence tying modifications in the APP processing pathway to seizure activity and neuronal

regulation, in both humans and animals (Holcomb et al., 1998; Steinbach et ah, 1998; Del
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Vecchio et al., 2004). Clonic seizures are indeed part of the clinical profile of AD patients
themselves, and have been linked to specific mutations in the y-secretase complex activity,
Presenilin 1 (PS1) (Petersen, 1998; Ezquerra et al., 1999; Devi et al., 2000; Furuya et al.,

2003; Velez-Pardo et al., 2004). Loss of function between BACE and PS1 would both result

in deficiency of A|3, although loss of PS1 would also result in accumulation of (3-CTF

peptides. Also, previous research with transgenic animals that either are APP-nulls or

overproduce APP that lacks an a-secretase cleavage site develop spontaneous seizure
activities as well (Steinbach et al., 1998; Moechars et al., 1999). These experiments all

implicate seizures vis-a-vis neuronal activity dysregulation as the outcome for deviation from
a "normal" APP metabolite production.

Old

60 mg/kg PTZ dose
PDAPP

BACE KO
BACE KO, PDAPP
BACE pKO, BACE

Old

25 mg/kg PTZ dose
BACE pKO,BACE

Young
60 mg/kg PTZ dose
BACE pKO, BACE

Table 8.7 PTZ-induced seizure responses of Study 011A, 011B and 011C mice.
All animal responses are compared to Control (BACE KO x PDAPP mice) or
PDAPP (BACE pKO x PDAPP) mice of the same age. The (-) denotes a seizure
response that was significantly less than that of Control and PDAPP mice, (+)
denotes a seizure-based response that was significantly greater than that of
Control or PDAPP comparator mice, and "no A" denotes no statistical
difference in performance.

8.6 Histological analysis of BACE KO X PDAPP Mice

One of the major analytical endpoints of interest in the generation of BACE KO x PDAPP
mice was the examination of effects on amyloid deposition pathology. While BACE1 was

thought to be the primary neuronal (3-secretase activity, it was possible that BACE2 or some

other activity could become the compensatory central APP (3-cleaving enzyme (Bennett et al.,

2000; Cai et al., 2001; Luo et al., 2001; Roberds et al., 2001). Later assessments of BACE

PTZ-lnduced Seizure Response
Partial Clonus General Clonus Tonic-Clonic Seizure Onset Death Latency Lethality

- no A no A no A no A +

no A no A no A no A no A +

- + vs PDAPP + no A no A +

no A no A no A no A no A/+ no A

Partial Clonus Seizure Onset
no A no A

PTZ-lnduced Seizure Response
Partial Clonus General Clonus Tonic-Clonic Seizure Onset Death Latency Lethality

no A - no A no A no A no A
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KO tissues and gene expression experiments revealed that there was no compensatory

enzyme activity as A|3 was not detected and levels of BACE2 were unaltered (Basi et al.,

2003; Luo et al., 2003). Most notably, when Tg2576 mice were crossed to BACE1 KO

animals, plaque-like amyloid deposition was abolished (Ohno et al., 2004).

There has been a wide array of analysis of the BACE KO x PDAPP mouse, which has not

been published in peer-reviewed journal format, but is currently in preparation by other Elan
researchers. The major findings have been replicated and produced by qualitative

investigation in this thesis and will be discussed in the following sections on APP, A|3 and
Calbindin (CB) immunostaining.

8.6.1 hAPP immunoreactivity in BACE KO x PDAPP mice

The antibody 8E5 is used to detect the presence of the PDAPP transgene in mouse brains, and
is also used to quantitate the neuritic plaque burden in aged mice with the PDAPP transgene

(Table 8.8) (Games et al., 1995). In Studies 001, 006, 011A, 01 IB, and 011C, this antibody
was used only to confirm the genotype of animals (Figure 3.7.1, 4.7.1, Sections 5.5, 6.5, 7.5)
In one case the genotype was found to be in conflict with the vendor's report and that animal
was removed from analysis (Section 5.5). Other researchers working on the BACE KO x

PDAPP mouse lines found that there were indeed no neuritic plaques in Study 001 BACE

KO; PDAPP brains, as there was no amyloid deposition of any kind (Figure 3.7.1. panel D)

(McConlogue et al., 2003). Study 006 mice which had only one functioning BACE gene had
a significant decrease in neuritic plaque burden at 13 and 18mo compared to PDAPP mice of
the same age (Figure 4.7.1 panel B) (McConlogue et al., 2003).

8.6.2 Ap immunoreactivity in BACE KO x PDAPP Mice

Diffuse total amyloid plaques are typically visualized with 3D6 immunostaining. Plaque-like

depositions were abolished in BACE KO; PDAPP Study 001 mice, while diffuse plaque
burden was reduced in BACE pKO; PDAPP mice (Figure 3.7.2 panel D, 4.7.2 panel B, Table

8.9). (McConlogue et al., 2003). Interestingly, plaque reductions in mice at 13mo mirrored
the behavioral rescue of perseveration deficits in the water maze in BACE pKO; PDAPP
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mice. These findings replicate those reported by Ohno et al. although data regarding the

amyloid deposition status of partial BACE deletion on an hAPP overexpressing background
have not been reported elsewhere.

Study 001
Young

PDAPP

BACE KO
BACE KO, PDAPP
Middle-aged

PDAPP

BACE KO
BACE KO, PDAPP
Old

PDAPP

BACE KO
BACE KO, PDAPP

Amyloid Histology
hAPP

present
none

present

Neuritic plaques
none

present

Neuritic plaques
none

present

Study 006

BACE pKO, BACE
Young

Middle-aged
Old

Amyloid Histology
hAPP
no A

++

Table 8.8 hAPP immunoreactivity of Study 001 and 006 mice. All
immunoreactivity levels for each measure are compared to Control (Study 001)
or PDAPP (Study 006) mice of the same age. The "present" denotes the
presence of hAPP, "none" indicates no hAPP was detected, "Neuritic plaques"
indicates that accumulations of the 8E5 antibody were present in the
hippocampus and/or prefrontal cortex, (+,++) denotes the degree of
amelioration of neuritic plaque burden compared to PDAPP mice of the same
age, and "no A" denotes no visually obvious difference in hAPP.

Study 001
Young

PDAPP

BACE KO
BACE KO, PDAPP
Middle-aged

PDAPP

BACE KO
BACE KO, PDAPP
Old

PDAPP

BACE KO
BACE KO, PDAPP

Amyloid Histology
Ap

none

none

none

none

none

none

Study 006

BACE

Young
Middle-aged

Old

Amyloid Histology
Ap

++

Table 8.9 hAPP immunoreactivity of Study 001 and 006 mice. All genetically
modified immunoreactivity levels for each measure are compared to PDAPP
mice of the same age. The "none" indicates no 3D6+ plaques were detected, (-

—) denotes the degree of accumulation of diffuse plaque burden compared
to PDAPP mice of the same age, (+,++) and denotes the degree of
amelioration of diffuse plaque burden compared to PDAPP mice of the same
age.
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8.6.3 Calbindin immunoreactivity in BACE KO x PDAPP Mice

The Calbindin (CB) analysis performed in these experiments were motivated by reports that
CB levels in hAPP J20 mouse dentate gyrus were depleted, and spatial memory performance
in the water maze correlated to levels of this Ca++ binding protein (Palop et al., 2003). It was

postulated that decreases in CB bespoke of impaired neuronal Ca++ homeostasis and that CB
could be a biomarker for cognitive impairment. Indeed, as CB is also reported to be
decreased in the cortex of AD patients, this seemed a reasonable hypothesis (Lally et al.,

1997; Geula et al., 2003). However, histological analysis in Study 001 and 006 dentate gyrus

revealed a pattern much more complex than simply amyloid-driven CB depletion.

In Study 001 there appeared to be a PDAPP-linked depletion of CB relative to all other

genotypes at 3mo, but at 13mo all CB levels were similar (Figure 3.6.1a-b). However by
18mo, there appeared to be a BACE KO-related increase in CB dentate gyrus levels, which is
in conflict with the concept that CB depletion is a surrogate for spatial memory performance
in the water maze (Figure 3.6.1c, Table 8.10). The results of Study 006 suggest CB are

similar, as 18mo BACE pKO; PDAPP mice have both much lower levels of CB and poorer

spatial memory performance than PDAPP animals, (Figure 4.6.1c). These patterns suggest

that the relationship, if any, between CB and hippocampal memory function is dynamic.

Study 001
Young

PDAPP

BACE KO
BACE KO, PDAPP
Middle-aged

PDAPP
BACE KO

BACE KO, PDAPP
Old

PDAPP

BACE KO
BACE KO, PDAPP

Histology
Calbindin

no A

Study 00G

, BACE
Young

Middle-aged
Old

no A

no A

no A

Histology
Calbindin

no A

no A

no A

Table 8.10 Calbindin immunoreactivity of Study 001 and 006 mice. All
genetically modified immunoreactivity levels for each measure are compared
to Control (Study 001) or PDAPP (Study 006) mice of the same age. The (-)
or(+) denotes a deficit or increase in CB levels compared to Control or PDAPP
mice, and "no A" denotes no statistical difference in performance.
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Hippocampal CB levels in BACE KO x PDAPP mice driven to seizures by PTZ treatment are

for the most part equivocal except for one notable exceptions. Old BACE pKO; PDAPP mice

given a high dose of PTZ have higher levels of CB relative to PDAPP mice (Figure 7.5a,
Table 8.11). Similarly, young BACE pKO; PDAPP mice have a trend towards higher CB
levels compared to PDAPP mice when administered a high dose of PTZ (Figure 6.5). The

significance of the age-specific genotypic CB phenotype seen in Study 001 and 006 suggest

that levels of CB are changing over time, and this may play a role in the disparity between
CB levels in response to different doses of seizure-inducing drug. Previous authors have
found similarly confusing CB levels in response to severity of seizure. Gary et al. found that
there was an association between neuronal protection from seizure and CB levels but this

relationship is seen prior to excitotoxic insult, such that CB levels after injury are not

informative as to the protective role CB may play in neurons vulnerable to seizure (Gary et

al., 2000).

Old

60 mg/kg PTZ dose
PDAPP

BACE KO

BACE KO, PDAPP
BACE pKO, BACE

Histology
Calbindin

no A

no A

no A

Old

25 mg/kg PTZ dose
BACE pKO, BACE

Histology
Calbindin

no A

Young
60 mg/kg PTZ dose
BACE pKO, BACE

Histology
Calbindin

no A

Table 8.11 Calbindin immunoreactivity of Study 011A, 011B and 011C mice. All
genetically modified immunoreactivity levels for each measure are compared
to Control or PDAPP (BACE pKO; PDAPP) mice of the same age. The
(+) denotes and increase of CB compared to PDAPP mice of the same age, and
"no A" denotes no statistical difference in performance.

While the relationships between CB levels, APP processing and response to seizure kindling
are on the surface difficult to comprehend, it is possible that these interactions are important
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to the pathological phenotypes of the BACE KO x PDAPP mice. One possible explanation
for these findings is that unobserved seizure activity is affecting the levels of dentate gyrus

CB. There are several reports linking seizure activity to CB levels, as one of the neuronal

consequences of chemically-induced seizures is increased neurogenesis in the hippocampus

(Parent et al., 1997; Yang et al., 1997; Gary et al., 2000; Lee et al., 2002; Jiang et al., 2003).

Newly-born neurons have high energy requirements and Ca+J" trafficking in these cells is

increased, such that CB measurements in the various brain regions are routinely measured in

neurogenesis experiments (Lally et al., 1997; Yang et al., 1997; Eriksson et al., 1998; Nilsson
et al., 1999; Gary et al., 2000; Lee et al., 2002; Geula et al., 2003; Shetty, 2004). One

intriguing connection between neurogenesis and the hippocampus is that the formation of
new neurons could be an important mechanism for learning and memory, as evidence
indicates that learning can drive birth of highly plastic new neuronal cells (Eriksson et al.,

1998; Doetsch et al., 1999; Nilsson et al., 1999; Schinder and Gage, 2004; Schmidt-Hieber et

al., 2004). One additional dimension of complexity to this is that amyloid itself has been

reported to disrupt the process of neurogenesis - which in turn may be a contributor to the

poor spatial memory and decreased synaptic plasticity of hAPP mice (Bondolfi et al., 2002;

Haughey et al., 2002; Wen et al., 2004). While these CB analyses have generated more

questions than answers, it is possible that electrophysiological methods can help determine
whether CB is a functional biomarker for hippocampal function or simply an uninformative
red herring.

8.7 Correlational relationships for BACE KO x PDAPP mice phenotypic

measures

To generate a phenotypic profde for novel transgenic animals, several different types of

behavioral, histological and other assessments are performed. The readouts of these
measurements typically are described as unitary findings, but in many cases the neural bases
of cognitive function and neuroanatomy for seemingly divergent phenotypes are in fact
related. For instance, there are reports that link performance in the water maze to levels of
cerebral amyloid (Chen et al., 2000; Kotilinek et al., 2002; Westerman et al., 2002). While

relationships between amyloid levels and spatial memory performance at this point have
sufficient experimental support and are to a certain degree "expected", there may be many
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other important unexpected functional relationships that have yet to be discovered. The
correlational analyses of the results of each phenotypic measure in the BACE KO x PDAPP

operate in this manner, as these analyses described mathematical relationships between
similar types of tests (water maze acquisition and memory capacity) and revealed linkages
between dissimilar measures that may have shared underlying functional anatomy (rotorod

performance and resistance to developing severe tonic-clonic seizures).

Among the many "expected" intratask relationships were correlations between water maze

measures, open field and general horizontal activity monitoring, and sequential rotorod

performances (Tables 3.8.1, 4.8.1, 5.6, 6.6, 7.6). Conversely, even among the related
measures there were relationships that appeared to be counterintuitive, like the lack of
correlation between water maze acquisition and perseveration in Study 001 and 006 mice,
which suggests a distinct neural basis for the two spatial memory functionalities (TTC 1 and

TTC2, Table 3.8.1, 4.8.1). However, the most interesting correlations came from performing

analyses on measures that on the surface do not appear to be similar, such that they formed
intertask or intermeasure relationships (e.g., resistance to severe seizures and rotorod

performance in aged animals) (Table 5.5, 7.5). These "discovered" correlations were

numerous and derived value from their ability to identify potential surrogate assessments for

partner tests that are difficult or otherwise onerous to conduct, like vertical activity

monitoring or rotorod testing in lieu of lethal seizure testing.

Another valuable feature of correlation analysis was that larger general patterns of function
and dysfunction can be discerned. The relationship between hippoeampal CB levels and
behavioral function in Studies 001 and 006 is such that at young ages high CB levels are not

correlated to spatial memory performance, but that high CB levels in aged mice are

associated with poorer performances in Study 006. In seizure studies with young and aged
BACE pKO x PDAPP mice (Studies 01 IB and 011C), and to a lesser degree in aged BACE
KO x PDAPP mice (Study 011A), higher CB is associated with seizure protection Tables 5.6-

5.7, 6.6-6.7, 7.6-7.7). These correlational findings suggest that absolute levels of CB are not

linearly predictive of cognitive function, as the experimental context like age or neuronal
trauma appears to be important. The fact that the dentate gyrus is immunoreactive for CB,

simply means that it is present, not that the proteins are functional, and can shepherd Ca++

278



ions when stimulated by normal or excessive neuronal activity. It is thus possible that the

higher levels ofCB in aged BACE KO and BACE KO; PDAPP mice may represent a pool of
non-functional proteins that are unable to traffic Ca++. Alternatively, if this CB pool is

functional, then it may be a biomarker for dysfunction in some other aspect of neuronal

activity, as the concentration ofCB may be elevated as a compensatory mechanism.

One model that captures the duality of the correlations between dentate gyrus CB

immunoreactivity and cognitive function is based on a U-shaped curve (Figure 8.1). In such a

model, increasing levels ofCB only correspond to normal cognitive function, which includes

spatial memory and resistance to seizure induction, within a certain range, as excessively

high or low concentrations both relate to cognitive impairment. This model does not

specifically address the experimental contexts that produce CB depletion or enrichment, but it
is possible that age-related synaptic loss and/or irregular patterns of neuronal activity may

mechanistically influence CB levels.

Hippocampal Calbindin levels

Figure 8.1 U-shaped curve models a possible relationship between
hippocampal Calbindin levels and cognitive function.
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8.8 Role of the amyloid processing pathway in cognitive function

The Amyloid Cascade hypothesis in one form or the other is a central framework for much of
the AD basic and therapeutic research today. Whether deposited in compact or diffuse

plaques, soluble or insoluble, fibrilized or not, A|3 is routinely described as an entity toxic to

synapses, neurons, and ultimately cognitive function. What is not underlined or equally
examined is the normal role of amyloid in the nervous system. In vitro experiments like that
of Kamenetz and colleagues cast amyloid in a different light, as an important regulator of
basal neuronal activity (Kamenetz et al., 2003). Numerous in vivo experiments in which A(3
is genetically depleted yield animals that have poor cognitive performance in spatial memory
tasks and are often prone to seizure activity (Steinbach et al., 1998; Saura et al., 2005). While
there is strong evidence that accumulation of A(340/42 is indeed deleterious to neuronal and

subsequently cognitive function, the findings reported in this dissertation aver that the
converse is also true, in that over time loss of function of amyloid is as just as damaging to

the nervous system as amyloidogenic gain of function (Table 8.13).

Given the links between regulation of basic neurotransmission and amyloid both in vitro and
in vivo, it is perhaps not too surprising that alterations to the APP processing pathway via
BACE deletion should give rise to the motor and spatial memory phenotypes seen in this
dissertation (Wang et al., 2000; Pettit et al., 2001; Boncristiano et al., 2002; Doraiswamy,

2002). However, modification of BACE genes are simply a means of effecting the final

product of the APP cleavage, A|3. As no other substrate for BACE has yet been found that is

implicated in cognitive function, the consequences ofBACE gene deletion must be discussed
with regard to perturbation to the APP processing pathway. This pathway is highly regulated
and modulation of the substrates, products and enzymes involved (whether APP, A|3, P3,

BACE, a- or y-secretase) appears to yield deleterious effects on cognition, although the
mechanism by which these perturbations impact function is unclear (Figure 8.2).

Perhaps the more appropriate context in which to examine this question of how the APP

pathway affects cognitive function is at the most basic level, at the synapse. Soluble A|3 has
been shown in non-transgenic rodent tissue to bind to cortical ACh receptors, inhibit LTP,
and APP overexpression causes overall synaptic depression in hippocampal excitatory
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synapses (Wang et al., 2000; Freir et al., 2001; Pettit et al., 2001; Kamenetz et al., 2003). If

A(3 exists as an inhibitory modulator of basic neuronal activity, then several pieces of

evidence immediately agree with this concept.

APP Processing in Vivo Model Phenotvpe Reference

P Y
APP ► ► Ap Wild-type

P Y

XX ► ► APP KO

P Y
APP ► ► Afi PDAPP,

APP- . A/Af

Tg2576, etc

PSIcKO

Normal spatial learning and memory
and neuronal activity regulation

Impaired spatial learning and memory,
seizures

Impaired memory, anxiety,
predisposition to seizure

Zheng etal. (1995, 1996)
Steinbach et al. (1998)

Chen et al. (2000)
Hsiao et al. (1995, 1996)

P Y
APP ► ► Ap hAPP PSIcKO

Impaired spatial learning and memory Saura etal. (2003)
Dewachter et al. (2002)

Improved spatial learning and memory Chen et al. (2004)
relative to hAPP mice

APP ► ►Ap PSAPP,
APP+PS1

Accelerated impairment in spatial
learning and memory

Holcomb et al. (1998, 1999)
Janus et al. (2000)

P Y
appXX—1 BACE KO Impaired spatial learning and memory, present work

P Y

apiXX-h BACE KO Severely impaired spatial learning and present work
memory, seizures

£ Y
APP— ► BACE KO Improved spatial learning and memory present work

and resistance to seizure relative to

PDAPP mice

XX = Homozygous gene deletion
X = Hemizygous gene deletion
—► = Conditional gene deletion

APP ory = Transgenic overexpression of mutant human gene

Ap = Overexpression of Af540/42

Figure 8.2 Cognitive phenotypes of genetically modified in vivo mouse models
of APP processing pathway alterations. Diagrams feature a biochemical
schematic of various modifications to the normal amyloid processing pathway
in genetically altered mice, and their in vivo outcomes. While the genetic
modifications may differ in target (APP, p- or y-secretase) the resulting
features of these animal models are similar, as many of them have seizure
activity and spatial memory impairments.
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In a context like AD or in hAPP transgenic mice, excess hAPP and A|3 could conceivably
cause the following synaptic and functional consequences:

• The uncoupling of neuronal firing to events in the environment cause activity-

dependent reductions in the number of synapses, which may be a contributing factor
to the loss of synapses in areas like the hippocampus and cortex with heavier
accumulations of amyloidogenic processing.

• Synaptic remodeling that is not driven by event-related activity results in disorganized
neural networks, which is worsened by the neuritigenic properties of amyloid.

• The depleted and disorganized synaptic environments can allow strong activity in a

small subset of excitatory cells to have disproportionately broad effects on the

existing neural network, resulting in seizure activity.
• Excessive A(3 causes neuronal depression, leading to impaired memory function via

the inability to generate lasting LTP activity.

Conversely, similarly deleterious consequences on neuronal and general cognitive function
can arise due to lack of inhibitory modulatory control by the APP processing pathway:

• Synapses are improperly strengthened by timely but random firing events, resulting in
a disorganized neural network.

• Non-meaningful neuronal connectivity impedes the performance of memory-based
tasks that rely on formation of event contingent synapses.

• Impaired inhibitory control of synapses results in excitotoxic neuronal activity
conducive to seizure kindling.

Finally, the exacerbated spatial memory impairment seen in all BACE KO; PDAPP and
18mo BACE pKO; PDAPP mice suggests that if it is due to additive deficits from two

separate mechanisms, then it may be that this phenotype is the consequence of
simultaneous loss- and gain-of-function dysfunction. It is reasonable to conclude that if
an entity regulates a vital function, then perturbations to this entity will also cause

changes to the function it regulates. Perhaps this is why A(3 appears to be so toxic to

synapses in AD, and why AD patients with accumulations of A|3 have such widespread
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progressive mental disorders. The lack of patients with naturally occurring deficiencies in

amyloid may explain why so little focus is placed on its normative role, as the deleterious

gain-of-fiinction effects of A|3 take such a heavy toll on the aged population in the form
of AD. However, if the medical research community is willing and ready to embrace

amyloid modifying treatments, specifically with BACE inhibition, then the theoretical
risks and benefits must be examined.

8.9 Implications for BACE inhibition treatment in Alzheimer's Disease

The results of the characterization of the BACE x PDAPP animals described previously
in this dissertation suggest that absolute loss of BACE on an amyloid overexpressing

background acts to worsen the spatial memory status and seizure propensity of PDAPP
mice. While this may sound like a damning statement for BACE inhibition as an AD

therapy, there is still reason to believe to continue to examine this strategy as a potential
source ofmeaningful benefit to AD patients.

The first major piece of evidence to support BACE inhibition for AD is that partial loss of
BACE on a PDAPP background did improve spatial memory function with respect to

acquisition, perseveration, and general serial learning in middle-aged animals. While this

may seem like a limited positive finding, two things must be considered. The first is that
the ability to acquire, rewrite and serially encode information is critical to learning and

memory, and is a key feature of synaptic plasticity. These cognitive improvements could
translate to major improvements in daily living functions if they could be applied to AD

patients. The second item to consider is that the age in which the spatial memory was

improved relative to PDAPP mice suggests that progressive cognitive dysfunction in the

presence of amyloid plaques can be arrested within a specific context. This result echoes
the findings of other researchers in amyloid-modifying treatment studies using other

transgenic hAPP mice, as lowering amyloid levels in younger animals seems to be more

effective than "curing" cognitive pathology in aged animals (Janus et al., 2000; Morgan et

al., 2000; Dodart et al., 2002; Austin et al., 2003; Jensen et al., 2005). While this trend in
hAPP treatment studies may be telling us that prophylactic AD treatments will be the
most successful, it may also be that these models are limited by their greater relationship
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with end-stage AD disease than the disease at the time of clinical diagnosis. In either

case, the improvement of spatial memory deficits in 13mo BACE pKO; PDAPP mice is

important.

This is not to say that deleterious spatial memory phenotypes were not also uncovered
with partial BACE gene deletion in Study 006. The increase in spatial memory deficits in
18mo BACE pKO; PDAPP mice suggests that while excess A(3 in the PDAPP mouse

produces one set ofmemory impairments, another set of cognitive deficiencies can occur

when there is a reduction of BACE activity in the context of aged PDAPP mice. The

neurodegeneration present in the PDAPP mouse is a dynamic process that undergoes
dramatic changes over time, and it is difficult to draw definitive parallels between disease
states in Brno and 18mo old mice with that ofmild, moderate and highly symptomatic
AD. These data suggest that the in vivo effects ofBACE inhibition on an AD disease state

must be examined over time, preferably from a number of different intervention time

points to best understand the dynamic between cognitive benefit and collapse derived
from BACE reduction.

Underlying non-spatial neuronal dysfunction was also notably ameliorated in even older
18 mo BACE pKO; PDAPP mice, as they were more resistant to and survived longer
after high dose PTZ-induced seizure induction. This finding is equally as exciting as the

improved spatial memory function at Brno, as this demonstrated that despite lifelong
reduction of BACE enzyme activity, BACE pKO; PDAPP animals were still able to

respond to an acute neuronal challenge in a more typically normal manner. Thus it

appears that while complete BACE KO and partial BACE KO on an aged PDAPP

background is doubly damaging to spatial memory, potentially by two distinct

mechanisms, other cognitive benefit can be achieved by addressing one mechanism via
BACE reduction alone.

Aside from the spatial memory and seizure phenotypes, there were also notable anxiety
and motor coordination deficits in the BACE KO x PDAPP mice. In the case of the

anxiety characteristics, it is possible that this seemingly dominant PDAPP phenotype is
the result of developmental abnormalities in the PDAPP mouse line caused by a lifetime
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of hAPP expression. Alternatively, this unchanged phenotype may be separate from that
of the PDAPP mouse, but this would have to be explored by use of other in vivo models
that would specifically allow for normal development without excess hAPP.

The motor coordination impairment phenotype is however, possibly indicative of a true

mechanistic toxicity induced by removal of BACE1. Impaired motor coordination was a

dominant phenotype of BACE KO; PDAPP animals, with a trend towards a similar
deficit in aged mice with a partial BACE gene deletion. The fact that this phenotype

appeared to be age-related, as only 18mo BACE KO, BACE KO; PDAPP and BACE

pKO; PDAPP mice had poorer rotorod performances, suggests a link to the amyloid
neuromuscular disease IBM.

Cognitive improvements and impairments, motor deficits and anxiety have been
identified in this initial phenotyping of BACE KO; PDAPP mice, but there are limitations
to using genetically-modified animals to understand the implications of BACE inhibition
for AD. The BACE KO x PDAPP model incorporates three separate transgenic lines that
each have their own flaws as in vivo AD research tools. These three lines will be

examined separately, beginning with the PDAPP mouse.

The PDAPP mouse as a model of AD produces mutant human A(3 at a level 5-14x that of

endogenous A|3 from birth, but the majority of AD patients are not carriers of genetic
mutations that result in lifelong overexpression of cerebral amyloid. As the PDAPP
mouse has a high level of hAPP from a very young age, its pathology is accelerated

compared to that most AD patients, as these mice have less than 50% of the total lifespan
of Control mice (Figure 3.5a) . This early expression also adversely impacts neonatal
brain development, as PDAPP mice have hippocampal and callosal atrophy (Dodart et al.,

2000). Although PDAPP mice develop AD-like cognitive impairments it is difficult to
determine if these are direct effects of excess amyloid on synapses or secondary effects of

amyloid on development. From this perspective it must be emphasized that the PDAPP
mouse is an attempt to approximate FAD, but it fails to capture all the nuances of the
disease (lacking neurofibrillary tangles and neuronal loss), and it also includes a disease
evolution that is not within the scope of sporadic AD.
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The purpose driving the creation of animals that absolutely lack the BACE1 enzyme is to
determine the most extreme repercussions of removing that gene product from the living

system. BACE KO mice had overall milder phenotypes than PDAPP mice, and lived

longer on average, although they have motor coordination problems (Table 3.4). While
there is no apparent change in a-secretase or BACE2 expression as a result of BACE1
KO in these mice, it is possible that BACE KO mice were influenced by other

compensatory shifts in gene expression that could negatively affect memory or motor

function (Basi et al., 2003). These mild spatial memory BACE KO-affiliated phenotypes

may be developmental or progressive with age, but they are not the most accurate way to

gage how BACE reductions will affect an AD patient, as indeed most AD patients have
elevated BACE1 levels (Fukumoto et al., 2002; Gatta et al., 2002; Fukumoto et al., 2004;

Li et al., 2004).

BACE KO; PDAPP mice are a better approximation of theoretical BACE reduction on an

AD-like background, but it shares the same drawbacks of both PDAPP and BACE KO
mouse models, and seemingly suffers an additive combination of their deficits, including
a lifespan that is only 30% of Control animals. The most valuable theoretical model of
BACE inhibition is the BACE pKO; PDAPP mouse, as this animal has had the benefit of
some functional BACE1 enzyme throughout development. It is indeed very interesting
that the BACE pKO; PDAPP mouse line was either better than or no worse than PDAPP
mice for the 13mo age in all measures tested, but much worse at 18mo in spatial memory.
The arbitrary 50% reduction of the BACE gene product was seemingly well-tolerated, as
these mice were fertile and lived longer than PDAPP littermates (Table 4.5).

Certain of the limitations inherent in phenotyping traditional genetically-modified
animals could be addressed by the development of a conditional BACE KO animal on a

PDAPP background. Thus the animals would have the full benefit of BACE throughout

development, by employing different conditional knockout systems, different levels and

regions of BACE reduction could be achieved. This experimental paradigm could be a

fruitful method to answer some of the theoretical questions about how much of the BACE
KO phenotype was a direct or indirect consequence of aberrant development. However,
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use of a BACE conditional knockout would introduce the novel limitation of not being
able to know the breadth of effect of BACE tissues on the entire system as the enzyme

would only be lessened locally in the brain.

Knockdown of BACE gene transcription by cerebrally-injected RNA interference (RNAi)

sequences that inhibit transcription from DNA to RNA, goes a step further towards

understanding the effects of BACE inhibition for AD (Fire et al., 1998). Like conditional
BACE KO, BACE-directed RNAi would allow the developing nervous system full access
to BACE gene products. While both conditional BACE KO and RNAi would have

spatially restricted local effects, RNAi has the additional advantage of allowing the

experimenter to specifically choose the time of BACE reduction (current brain-specific
conditional knockout systems begin to activate at a few weeks after birth), and is also
reversible if the cerebral RNAi infusions are stopped depending on the delivery system

(Hommel et al., 2003; Beglopoulos and Shen, 2004). While this technology has several

advantages over more traditional in vivo genetic manipulation, the added complication of
intracerebral infusions and the fact that BACE is still being reduced at the level of the

gene rather than at the enzyme activity level like a pharmacologic treatment does mitigate
the predictive value of this model. The positive initial findings reported by Singer et al

(2005) using siRNA targeting BACE1 on a hAPP mouse model with accelerated amyloid

deposition are indeed heartening, as these animals have ameliorations in amyloid-driven

neuropathology as well as behavioral improvements. These results are similar to that of
13mo BACE pKO; PDAPP mice, but it was not until 18mo that these animals displayed a

severe cognitive impairment. It is of critical importance that BACE RNAi experiments be
done over a long period of time and from various starting times to best determine if this
BACE reduction paradigm will be continue to be beneficial to cognition within the
context of progressive aging.

Ultimately, the best way to truly gauge the effects of BACE inhibition on AD patients
would be to have an actual compound that could be given to aged rats or transgenic hAPP
mice. Repeated drug dosing would inform as to whether cognitive deficit reversals are

possible in aged animals, or if neuromuscular phenotypes evolve with consistently
reduced BACE activity. If BACE inhibition is efficacious in reducing amyloid and
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memory impairments, and the majority of the BACE KO non-memory phenotypes are in

reality developmental defects, then BACE inhibition would have earned its place as one

of the most exciting potential therapies for AD. If BACE inhibitor drugs are

biochemically and mnemonically efficacious, but do cause IBM-like conditions, BACE
reduction can still be a viable strategy for AD if a suitable therapeutic window between

efficacy and side effects can be found. It is unlikely that BACE inhibition could cause

catastrophic cognitive collapse and motor problems like the BACE KO; PDAPP mouse

phenotype as the chances of developing a systemically-administered drug that could
reduce BACE activity levels in acidic cellular compartments to 0-50% are vanishingly
small. Indeed results from deletion of one BACE gene allele in the BACE pKO; PDAPP
mice suggests that even long-term loss of 50% of BACE activity could be well-tolerated
and cognitively efficacious in dosing regimes, but must be scrutinized very carefully at

older ages.

In summary, the characterization of the BACE x PDAPP mouse line has shown that while

complete deletion of the BACE gene causes a mild but progressive spatial memory

phenotype, absolute BACE deletion on an hAPP background causes severe cognitive
deficits. These findings underscore the importance of the APP processing pathway in
normal neuronal activity regulation and memory processes, building upon the body of

knowledge that suggests loss of function in this pathway is as deleterious to the nervous

system as A|3 gain of function. In addition to these findings, the cognitive rescue at

middle ages and the cognitive deterioration at older ages in mice with partial deletion of
BACE on the PDAPP background serves as both the strong endorsement and caution for
BACE inhibition as a strategy for treatment ofAD. Definitive information on whether |3-
secretase activity reduction would be a benefit or detriment to AD patients will likely

only come from in vivo experiments done with an efficacious BACE inhibitor compound.
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Ch. 10 Appendix

10.1 Behavioral phenotypes of other genetically modified mouse
models relevant to AD

Transgenic
Model

Gene,
Mutation,
Promoter Behavioral Phenotvpes Age of Phenotype Reference

TgCRND8

C3H/B6

hAPP

K670N,M671L
V717I, Hamster
PrP promoter

Low survival rates
WM Spatial Memory
Retention, Acquisition
Auditory Startle

Paired Pulse Inhibition

50% death by 3 mo
11 w

6-7, 10-12, 12-14, 15-
17w (progressive)
6-8, 12-14, 15-17 w

Chisthi et al. (2001), J Biol Chem

McCool et al. (2003), Brain Res

J20

DBA/2J
C57BI6J

hAPP

K670N, M671L
V717F, PDGF
promoter

WM Spatial Memory
Retention, Acquisition

6-7 mo Palop et al. (2003), PNAS

TAS10 hAPP

K670N.M671L
Thy-1 promoter

WM Spatial Memory
Retention, Acquisition
Y-Maze Alternation

6 , 12, 18mo

12, 18 mo

Richardson et al. (2003), Neurosci

APP KO APP-null by
Homologous

Recombination

Decreased locomotion
Lesser forelimb grips
Decreased body mass
Spontaneous seizures

14w
14w
14w
14w

Zheng et al. (1996), Ann NY Acad

APP/RK

(FVB/N)
hAPP

K670N, M671L
V717I,
Thy-1 Pr

Premature death

Aggression
Hyperactivity
Spontaneous seizures

1 yr
3mo
3mo
6mo (progressive)

Moechars et al. (1996), EMBO J
Moechars et al. (1999) Neurosci
Moechars et al. (2000) JBC

ADAMIOxAPP

(FVB/N)
hAPP V717I,
hADAMIO

Thy-1 Pr

Rescue ofWM spatial
memory deficits
relative to hAPP mice

6-10 mo Postina et al. (2004) J Clin Invest

BACE1 KO Less exploratory in
Holeboard, open field
Greater limb tone
Greater Righting Reflex

6-7 w

6-7 w

6-7 w
6-7 w

Harrison et al. (2003), Mol Cell Neurosci

hBACEl Tg hBACEl
CAMKIIa Pr

Bold exploratory phenotype
in Holeboard, open field
Lesser body mass

6-7 w

6-7 w

Harrison et al. (2003), Mol Cell Neurosci

BACE1 -/-/Tg2576* BACE1 -/-
hAPP Tg2576

Rescued social recognition
Memory relative to Tg2576
Rescued Y-Maze Alternation
Relative to Tg2576

4-6mo

4-6mo

Ohno et al. (2004), Neuron

WM = water maze

(progressive) indicates a behavioral phenotype that is age-related

Table 10.1 Behavioral Phenotypes of Other Transgenic Mouse Models
Related to AD, genetic models with modifications to hAPP, a- and (3-
secretase.
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Transgenic
Model

Gene,
Mutation,
Promoter Behavioral Phenotvpes Age of Phenotype Reference

PS1cKO PS1-deficient

By cre/lox
aCAMKII

promoter

WM Spatial Memory
Retention, Reference

5, 8 mo Yu et.al. (2001), Neuron

PS1 Tg PS1

L235P
Object Recognition 6mo Huang et.al. (2003), Exp Neurol

PS1 Tg PS1

L286V
Object Recognition 6mo Janus et.al. (2000), Neurobiol Aging

hPS2 Tg PS2
N1411

Dominant

Negative

WM Spatial Memory
Retention, Reference

12mo
12mo

Hwang et.al. (2002), FASEB J

APP+PS1 hAPP Tg2576,
hPS1 M146L

Y-Maze Alternation

Y-Maze entries

Open Field
String Agility Test
WM Spatial Memory,
Acquisition
Radial Arm WM,
Working Memory

12-14 w, 6, 9 mo

5-7 ,15-17 mo

15-17 mo (progressive)
15-17 mo (progressive)
15-17 mo (progressive)

4-5, 14.5-16.5, 15-17mo

Holcomb et.al. (1998), Nat Med
Arendash et.al. (2001), Brain Res

Gordon et.al. (2001), Neurobiol Aging

PSAPP hAPP Tg2576,
hPS1 A246E

Contextual Fear Conditioning
WM Spatial Memory
Retention, Acquisition

5, 9mo
14mo

Dineley et.al. (2002), J Biol Chem
Liu et.al. (2003), Neuroreport

APPxPS1(-/-) hAPP V717I,
Conditional KO

of PS1, cre/lox,
LacZ promoter

Object recognition 3-6mo Dewachter et.al. (2002), J Neurosci

PS2APP hAPP K670N,
M671L,

hPS2 N1411

Lesser body mass
Hyperactivity
High shock thresholds
Weaker grip strengths
Improved rotorod performance
WM Spatial Memory
Retention, Acquisition
Active Avoidance'

4, 16 mo

4, 16 mo

4, 16 mo

4, 16 mo

4, 16 mo

8, 16mo (progressive)

8, 16mo (progressive)

Richards et.al. (2003), J Neurosci

PS1 cKO x hAPP PS1-deficient

By cre/lox
CAMKIIa

promoter,
hAPPJ20

Rescue of WM spatial
memory deficits
relative to J20 mice

3-4mo

Lesser rescue at

15.5-17.5mo ages

Saura et.al. (2005), J Neurosci

WM = water maze

(progressive) indicates a behavioral phenotype that is age-related

Table 10.2 Behavioral Phenotypes of Other Transgenic Mouse Models
Related to AD, genetic models with modifications to y-secretase.
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10.2 Animal use protocol approved for pentvlenetetrazole-lnduced
seizure experiments in BACE KO x PDAPP mice

Taken from an original internal Elan Pharmaceuticals animal use protocol submitted
for review and approval by our Internal Animal Care and Use Committee (IACUC)
by Dione Kobayashi. This protocol details the activity monitoring, grip strength,
rotorod and seizure tasks upon which the analysis of the BACE KO x PDAPP mice
was based. This animal use protocol, was approved 4/23/03 after expedited review
by George Shopp Ph.D. (IACUC Chairman) and Hermann Bonasch D.V.M.
(Consulting Veterinarian).

Please Check One
New Protocol_x
Renewal

Protocol No. MO-PH-18-03

1 Principal Investigator: Dione Kobayashi

1. Work Phone: 650 794-4343

3. Emergency Phone: 650 274-4343

3. Project Associate(s): Tracy Cole

3. Work Phone: 650 866-2870

3. Project Title:

Pilot Behavioral and Pharmacologic Assessment of Spontaneous Activity, Motor
Coordination, Muscular Strength and Epileptiform Activity in Mice.

7. Species identification and source of animals: DBA 2J and C57BL6J mice, male
and female, of no more than 3mo of age. Prefer vendor source that can provide
both strains, as DBA/2J is not as commonly ordered as C57BI6 and inter-vendor
variability between strains is should be avoided if at all possible.

8. Proposed number of animals/year: 80, 16 C57BI6J mice and 64 DBA/2J mice.

9. Estimated starting date: April 2003

10. Building/Room Locations of Animals: 800 Building, Room 199, later Room
140B.

10 Describe experimental goals in appropriate terminology in order that the
IACUC committee members will understand the purpose of the experiment
and why the research requires the use of live animals.

In the analysis of genetically manipulated (GM) or pharmacologically-treated (PT)
animals in therapeutic research, it is often useful to determine whether the animals
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have behavioral alterations that are indicative of greater systemic effects. Changes
in appearance, motor activity and dexterity, and functional musculature in PT or GM
animals are critical observations that can provide information in mechanisms of
action or drugs or genes, and can help predict the array of adverse reactions that
may arise from therapeutics. In addition, PT and GM animals used in neurological
therapeutic research must also be assessed for perturbations of the nervous
system, including changes in anxiety and fear responses, epileptiform and pain
thresholds, and cognition. To help provide a basis of analysis for our experimental
animals, a set of representative tasks must be developed in-house to address the
effects of specific gene manipulations or drug treatments on these basic functions.
Specifically, the establishment of these tasks could provide useful data for BACE1
KO characterizations and BACE inhibitor treatment studies in PDAPPs.

These pilot studies performed on mice from the background strains (C57BI6J an
DBA/2J) of our GM and PT mice will serve as historical strain controls for future
experiments, thereby eliminating the need to perform serial strain controls and
greatly reducing the numbers of animals required for studies. To ensure that best
and most informative use of these pilot study animals, a complex set of behavioral
features must be collected. The relative subjectivity/objectivity and thus rigor of
each task set is variable. However, even the more subjective tasks based on
grading of observed behaviors (Functional Observational Battery, FOB) are
valuable and gain rigor through multifactor analysis, in which composite FOB scores
can be distinctly grouped based on results from similar tests, e.g. spontaneous
locomotion, gait and rotorod performance.

In addition this protocol uses many important behavioral screening techniques. The
listed PA will gain experience from observing FOB data collection, gaining
proficiency for future solo testing. Also, efforts will be made to create a video record
of stereotypic FOB behaviors and scores to assist experimenters learning the tasks
and to help make grading more uniform.

Summary: Objective 1: to develop tasks for future screening of PT and GM animals,
Objective 2: to generate a set of historical control data as a basis for comparison.
Objective 3: To expose Project Associate to a wide array of behavioral tasks and
collect visual information for more uniform behavioral scoring.

12 Are there alternative methods available to reduce or replace the use of live
animals in this research effort?

To gauge the effects our therapeutics may have on human patients, we need an
intact mammalian system. However, one of the main purposes of performing these
studios is to reduce future animal use based in animals generated from the C57BI6
and DBA 2J strains.

13. Provide a justification for the need for the total number of animals required
for this experiment.

Some of the methodologies used in this protocol, like the rotorod and PTZ-induction
of seizure require Ns of at least 8 per group to overcome the inherent interanimal
variability. This must also be done with sufficient numbers of male and female
animals to account for experimental deviations due to sex differences. At least two
experiments are planned, totaling 80 animals.

The Experiment 1 will utilize 8 animals per strain, 8 of each gender for a total of 32
animals. This will be to determine whether there is significant by-gender differences,
and the results will play into the gender of the animals for Experiment 2, whether it
will be mixed in gender or one gender or another. The second experiment will be a
PTZ dose-finding experiment with 12 animals per dose arm, of 4 doses, bringing the
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pilot total to 80.

Summary:

Experiment 1: 2 strain comparision, gender comparison, N=8 per strain, gender,
total N-=32

Experiment 2: Dose-response experiment with seizure-inducing agent PTZ, 3 doses
of PTZ plus vehicle control N=12 each dose, total N=48. Mixed/one gender will be
used depending on the results of Experiment 1; strain used will be DBA/2J.

14. Describe the experimental methods to be performed on the laboratory
animals.

Please note that testing will be performed in the order of tests described, from least
to most distressful, culminating in euthanasia of animals.

Only one experimenter will be allowed to perform the FOB testing, assign
behavioral scores and submit descriptions for the induced seizure profiling to
promote uniformity of scoring and collection of meaningful data. This experimenter
is experienced in handling mice in a number of behavioral paradigms, familiar with
the behavioral responses of unaltered mice described in the FOB, has observed a
variety of murine seizure activities, and also is proficient in administering
intraperitoneal and subcutaneous injections to mice. All experimenters named on
this protocol have experience and training in basic handling of mice, so that the grip
strength, automated locomotion testing, and motoric coordination tasks may be
effectively conducted by all listed experimenters.

SHIRPA Functional Observation Battery (SHIRPA acronym is derived from the
laboratories in which the battery was developed: SmithKline Beecham
Pharmaceuticals, Harwell, MRC Mouse Genome Centre and Mammalian Genetics
Unit, Imperial College School of Medicine at St Mary's Royal London Hospital, St
Bartholomew's and the Royal London School of Medicine. Phenotype Assessment)

Animals will be removed from their home cages and be manually handled or
otherwise placed in empty observation cages.

General condition: Note general body thinness, grooming status and stained fur,
vocalization when handled or in cage, noting if animals appears hunched,
dehydrated or has edema.

The severity of various abnormalities (see below) should be ranked according to the
q-scale:

0 = normal
1 = slight
2 = moderate
3 = severe

Splay reflex: Animal is lifted near base of tail; a normal (0) animal splays and
extends hind limbs.

Reduced: not out to sides and not fully extended, held close to abdomen
And/or unable to extend legs.
(NB: animals with reduced splay reflex may also show gait
abnormalities and reduced foot withdrawal reflex.)

Visual Placing: lift mouse by the tail and slowly move it downward towards the
benchtop edge. A normal (0) animal extends the forelimbs and attempts to seize
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the edge as soon as it is within reach. A reduced response for is scored as 1
-animal extends and grips bench after contact of whiskers and/or nose, 2 - no
response even after nose contact with bench.

Rearing: Animal is placed in standard open field enclosure and observed for 2
minutes. The number of rears, i.e. front legs lifted completely off the benchtop but
does not have to raise itself up, is counted. Include when animal uses the side of
enclosure for support and lifts paws for grooming. No acclimation time is provided
and counting should commence within ca 10 seconds of transfer. The previous
animal should be removed from the open field before transferring a new animal. A
disposable lab liner should be used in the enclosure and replaced as needed to
prevent animal distractions from previous voided excreta.

Activity: Animal is transferred to the standard open field and observed briefly.
Normal activity is to explore the new environment, this may be decreased or
increased and is scored on a 3 point scale. Decreased activity may range from
walking around occasionally but noticeably less than control (-1), walks only when
stimulated (-2) or will not walk even when stimulated (-3). Increased activity may
range from constant movement with normal gait (1), constant movement (2) with
rapid gait and animal may try to escape from cage, to (3) animal runs about and
tries to escape, gait and posture are slightly abnormal. Stereotypic or bizarre
movement e.g. circling, repetitive grooming, head flicking, head searching, walking
backwards, rolling over, back flipping, paw flicking, etc should be noted in the free
text

Prostration - Animal lies on the bottom of the cage (ventral or lateral recumbancy)
and appears powerless and does not respond to stimulation.

Sedation - State of decreased functional activity and reduced response to external
stimuli, e.g. sound or touch.

Comatose - Animal is unconscious and there are no reflex responses e.g. pinna
reflex although respiration is detectable.

(If animal is comatose for more than 15 observed minutes, it will be euthanized.)

Gait: observe animal moving about the open field, gently prod the animal if it
doesn't move. Look at the movement of all four limbs in relation to one another
and the saggital plane of the body. The normal animal moves opposing limbs
simultaneously and remains steady.

Ataxia: staggering, wobbly gait, i.e. muscular coordination failure even though
power for movement remains. May range from slight loss of equilibrium as
indicated by an irregular gait (1), marked loss of equilibrium - animal can walk a
straight line but gait is very irregular (2) to extreme - animal can hardly walk and
there is almost complete loss of coordinated movement (3).
Splayed - Hindlimbs may be splayed or point to the side of the body
Tiptoe - walking on toes, i.e. the heels of the feet are elevated or perpendicular to
the surface

Paralysis: The hind or fore limb function may be affected from slight (1) difficulty
using limb when walking to severe (3) muscles of limb stiff and not able to be used,
animal drags limb or for forelimbs, 'snow plows'. The affected limbs (fore or hind)
should be noted and, if unilateral, side noted.

Posture: observe animal while moving about - normal posture is straight back and
pelvis off the surface. Abnormalities should be classified (see below) and severity
ranked.
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Hunched: back raised
Low: pelvis is low, severe is when the pelvis is flat on the surface

Fur: normal fur is sleek and unstained, abnormalities include: sparse - (alopecia),
stained, ungroomed, or piloerection (hair standing on end)

Tremor: rhythmic, involuntary movement of a muscle, limb or whole body caused by
repeated alternating contractions of flexor and extensor muscles. Tremors can
often be observed without handling the animal but detection of fine tremors may
require grasping the animal around the back. 0 - no tremors, 1 - occasional fine
tremors, 2 - continuous but not pronounced, 3 - coarse tremors, easily observed
and where the ability to walk may be affected. Tremors also include fasciculations
(irregular contractions of a muscle block) and writhing (animal twists its whole body
and tail from side to side).

Convulsion: more severe than tremors in that a convulsion is always a whole body
response and animal can not maintain an upright posture during a convulsion.
Severity and type (see below) should be noted

Clonic type: alternative contraction and relaxation of the voluntary muscles

1) C = Clonic - co-ordinated, unsymmetrical convulsion and natural, purposeful like
movements, e.g. running, sometimes preceded by a running excitement (Rn)
2) Cs = Clonic symmetrical - repetitive symmetrical jerks or twitches of the limbs
3) Rn = Running excitement - often accompanied by mild clonus or leading to a
severe convulsion

4) Ch = Champing - clonus of the jaws only
5) P = Popcorn - seizure where animal repeatedly "pops" into the air
6) A = Asphyxia - a terminal clonic or clonic-tonic convulsion resulting from

respiratory failure.

Tonic type: persistent contraction and spasm of a set of voluntary muscles.

1) T = Tonic - sustained extension of hindlimbs, usually preceded by tonic flexion
(Tf) This is used if tonic flexation occurs without extension
2) Op = Opisthotonus - head, body and limbs are rigidly extended and arched
backwards.

3) Em = Emprosthonus - opposite of Op i.e. extended forward.

Miscellaneous Type

1) Rr = Rock and roll - animal is prostrate on its back and rocks from side to side
in a seeming effort to right itself, occasionally rolling over (overshooting) and
continuing to rock again.
2) Su = Sitting up - sits upright on hindlimbs during the seizure
3) Pr = Praying - sitting up seizure in which forelimbs are held together or crossed
in attitude resembling prayer.

If convulsions appear to be initiated by stimulation, i.e. touch, this should be noted.

It is not expected that animals will have seizure or convulsant activity endogenously
without administration of agen PTZ. Howver, animals will be euthanized if observed
to have seizures of any kind for more than 15 minutes in the FOB.

Tail: the posture of the tail is observed and abnormalities may range from extremely
limp and dragging around (-1), normal (0), stiff (1) but not close to body, rigid (2)
and S shaped, or Straub tail (3): rigid and held vertical or arched over the back.
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Unusual movement of the tail, i.e. lashing back and forth, is noted in the free text

Urine - signs of excessive urination are noted by wet fur around the vulva/penis.
Urinary incontinence is indicated by wetness of the lower abdomen and may be
associated with hindlimb paralysis and is noted in the free text. Abnormal color is
also noted in the free text

Feces - if different from normal scored for severity 1 - slight, 3 - severe/ marked
the color and state should be noted, diarrhea is soft to liquid feces.

Respiration: The character and rate of breathing is compared to control animals.
The depth of respiration may be decreased or increased as well as the rate.
Labored breathing, dyspnea, is deep respiration with movement of the thorax,
gasping is deep respiration with mouth wide open. Noisy respiration may range
from wheezing, whistling to croaking

Approach Response: Approach the animal from the front with a blunt rod and record
whether it evades (E), ignores (I) or attacks (A) the rod. Normal (N) behavior is to
orient to the rod and may investigate it.

Righting Reflex: The animal is laid on its back and the time and effort to turn itself
over is noted. A normal animal immediately rights itself while a reduced reflex may
range from a slight, few second delay (-1), rights itself after struggle (-2) to an
inability to right and stays on its back (-3).

Handling Behavior: fearful, aggressive, or normal

Abdominal Tone: Gently press the abdomen until firm resistance is felt. Tone may
be increased (1) or decreased (-1) compared to control (0) animal.

Cyanosis: color of the extremities, e.g. ears and feet may indicate the degree of
perfusion and blood oxygenation. Scored from normal (0), through paleness (1), to
blue (3). Other changes in skin color, i.e. jaundice (yellow), should be noted in the
free text. Erythema, i.e. redness, should be noted in the free text.

Salivation: the wetness of the mouth and surrounding fur is evaluated for signs of
increased salivation. Normal is scored as 0, fur immediately around mouth is wet
(1), a definite wet area ca 3 - 10 mm (2) all the way to the chin and throat wetness
(3). Signs of dried saliva should be noted.

Lacrimation: Eyes are examined for presence of colorless fluid, normal condition
(score 0) is slightly wet, cornea reflects light. Excess fluid may range from slight,
noted as a minimal accumulation at the lower eyelid (1) to severe (3) where the
adjacent fur is wet. Dry eye (scored -1) is noted as a dry, dull appearance of the
eye. Chromodacryorrhea is red - dark fluid around the eyes and should be noted
and ranked.

Toe Pinch: The foot is pinched with fingers or cushioned forceps (carefully, without
breaking bones or dislocating joints). Normal animals try to vigorously withdraw
foot. An abnormal response may be caused by analgesic effect (animal cannot feel
stimulus) or motor nerve damage (feels stimulus but unable to withdraw foot).
Scored as normal (0), slight (more pressure is needed to elicit normal response) to
no response to firm pressure (-2).

Palpebral Closure : Opening of the eyelids is noted as reduced (i.e. ptosis, scored
as -1) or normal (0)
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Eye Prominence: Compared to control animals, eyes may appear to protrude
(exophthalmos) when viewed from a front on position (1) or to be recessed into the
sockets, endophthalmos (-1). If only one eye is effected note right or left.

Pupil Size: The animal is restrained and the eye observed for constriction of the
pupil (miosis, -1) or dilation (mydriasis, 1) under normal room light illumination. It is
difficult to examine a mouse eye pupil so this observation is not routinely conducted
for mouse studies.

Corneal Reflex: The animal may need to be lightly restrained, the cornea is gently
touched with a probe (stick with soft hair attached) taking care to not touch the
eyelid or eyelashes. Normal animals blink (scored as 0), abnormal response is
absent (-2) or reduced (-1).

Pinna Reflex: The animal is held behind the shoulders but not scruffed since free
head movement is needed to respond, and the ear canal probed. A normal
response is a head twitch and is scored as present (0) or absent (-1).

Acoustic Startle: loud, short-lived noise e.g. click or clap. A normal response (0) to
stimulus is short lived and animal increases alertness and may cease activity. An
exaggerated reaction (score 1) may jump, bite or attack and response may be
prolonged while decreased reaction (-1) is no response.

Geotaxis: Place animal horizontal on screen tilted 45°. Note direction of mouse

movement, i.e. rotate and walks up (U), across (A) or down (D) the screen.

Inverted Screen: Place animal on screen and invert. Note if animal drops off (2),
hangs on for 60 sec or slowly climbs to top (1) or readily climbs to top within 20 sec
(0). Repeat for a total of 3 chances or until score = 0 and note number of trials.

Grip Strength Test

Using a San Diego Instruments Grip Strength apparatus, mice will be tested on both
fore- and hindlimbs. The apparatus consists of an acrylic platform with space for
force gauges at either end to which animal grip yokes may be attached. Mice will
grasp the triangular grip yoke with their fore- or hindlimbs while the experimenter
grasps the animal's tail 3/4 from the base, moving the animals in the x-axis away
from the strength gauge until it releases the yoke. The average force recorded from
3 successive trials will be taken as the grip strength value.

Minimal distress is expected from this manipulation, the level will be similar to what
occurs during basic handling to remove an animal from its home cage.

Motor Activity

Using an automated system to quantitate spontaneous motor activity, animals will
be placed in an open plexiglass arena. After an unmeasured period of
acclimatization of about 10m, animals will be followed by the detection system for
various periods of time, measuring patterns of ambulation, rearing, grooming and
other repetitive behaviors. These time periods will not last longer than 2h, as the
animal is bereft of food and water during this observation.

Motor Coordination with a Rotorod Apparatus

The measurement of motoric coordination in rodents is commonly done using a
mechanized rotorod apparatus, which causes minimal distress to animals when
applied properly with a sensible protocol. The apparatus itself consists of the test
box, which houses 4 40cm x 10cm x 40 cm rotation chambers, the driver for the
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rotorod on the side of the chamber boxes, and 2 instrumentation boxes beneath the
test box which control the timing, speed, and electrical shock grid. Using either rats
or mice, test animals are placed in on a motorized rod 40mm or 70mm in diameter
in an enclosed chamber. An individual trial begins with the rotation of the rod and
ends when the rodent falls from the rod (a distance of 30 cm) to the metal grid
below, giving the primary measure of latency to fall. The rod can be programmed to
rotate at specific speeds over time, giving information on the motor capacity of the
animals at various speeds. The metal grid below the rotation chambers is electrified
with a 3-5mA current, which is noxious but not painful to touch, and serves to
prevent the rodents from prematurely leaving the rod without respect to its motor
capabilities. After trials animals are returned to their home cages to recoup before
their next trial in 10 minutes.

In this type of study, each experimental group or arm consists of N=15-20 per strain
or genotype, to provide sufficiently powered statistical analysis. There are three
stages to the rotorod testing performed at Elan to assess motor coordination and
capacity, comprising a 3-day test regime. On the first day, animals are acclimated to
the test chambers, in which they are placed on the rod for 30s for 4 trials with 10
minutes intertrial breaks. One the second day, animals are placed on a rod that
rotates at 10rpm for 4 90s trials, in which animals that are unable to stay on the rod
for 2 trials at the maximum 90s are considered impaired. With the information
gained from this phase of testing, impaired animals can be removed from the third
phase of testing, so that the third phase of testing can be used to assess the finer
gradations of motor capacities in the remaining animals, and to spare incapable
animals from further stress. On the third day of testing, animals are subjected to 7
trials of 240s maximum duration with rotation increasing steadily from 0-40rpm.
Primary measurements are made from calculating average latencies over trials from
constant and accelerating speed tests.

Typical Rotorod Protocol Schedule

Day 1 non-moving rotorod acclimatization Trial 1
(optional) animals will be placed on rod until Trial 2

they can stay on for 30s Trial 3
Electrified grid on intensity 3-5 Trial 4

Day 2 slow-moving rotorod training Trial 1
animals will be placed on rod at Trial 2
10 rpm for 90s, 10m intertrials Trial 3
Electrified grid on intensity 3-5 Trial 4

Day 3 Increasing-speed rotorod testing Trial 1
animals to be placed on rod Trial 2
that increases from 0-40 rpm Trial 3
over 240s, 10m intertrials Trial 4
Electrified grid on intensity 3-5 Trial 5

Trial 6

Trial 7
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Seizure

Pentylenetetrazole (PTZ, from Sigma Chemicals) is a commonly used seizure-
inducing drug that acts via the GABAA/benzodiazepine receptor complex, possibly
by blocking CI- influx. By employing intraperitoneal (i.p.) or subcutaneous (s.c.) at
varying doses in rodents, seizures of a range of strengths and durations can be
initiated. A typical experiment involves removal of an animals from its home cage to
a larger observation area. Animals are dosed i.p. with PTZ at 20, 40, 60, and/or 80
mg/kg made with 5-10ml/kg dose volume in 0.9% saline solution and observed for
seizure profile.

This profile includes observations of the time to onset, the severity and description
of seizure (see above text regarding seizures in FOB section), number of seizures
and duration of seizure activity. Observation follows in two phases with an initial
Phase 1 in which animals are watched for the onset of seizure for 30 minutes, with
a Phase 2 15 minute observation to gain descriptive information about the seizures.
Alternatively, 85 mg/kg PTZ can be given s.c. at 85 mg/kg with a 30 minute window
to observe appearance of seizure profiles. After 30 minutes of post-injection
observations has passed, animals are euthanized. As the purpose of this part of the
study is to build a wide range of seizure activity profiles, animals will not be
immediately euthanized upon seizure unless they meet certain criteria, since with
many kinds of seizure activity resolves itself within the 30 minute window:

• Animals displaying asphyxic clonic seizures will be euthanized immediately.
• Animals displaying "popcorn" clonic seizures will be euthanized if they continuously

display this activity for more than 5 minutes
• Animals displaying continuous running, clonic symmetric or general clonic seizure

activity for more than 5 minutes will be euthanized.
• Animals displaying more than 3 episodes of opisthotonic or emprosthonic seizures

irregardless of duration will be euthanized
• Animals displaying episodes of partial clonus characterized by brief head twitches or

vocalizations will not be euthanized prior to the 30 minute timepoint unless they
progress to a sufficient level to any of the seizure criteria described above.

In the first experiment with the male and female animals (N=32) a single dose will
be tested, 60 mg/kg, which should be sufficient to generate seizure activity in a
majority of animals. The second experiment will entail dosing at the 20, 40, 60, and
80 mg/kg levels for a total of 12 animals per dose, N=48 to generate dose-response
curves.

15. Is a surgical procedure contemplated?

Yes x No

Building/Room location for surgery

16. Describe the surgical procedures.

17. Describe post surgical care procedures.

18. Describe dosages/route of administration of anesthetics, analgesics and/or
tranquilizers.

19. Will animals be used in more than one protocol.

No.
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20. PAIN/DISTRESS - check C, D, or E, which is most appropriate for this
protocol.C. The procedures to be performed on animals in this protocol does not involve

pain or distress (excluding routine injections and venipuncture).D. The procedures to be performed on animals in the protocol does involve pain
or distress, and will be ameliorated by drugs described in #18.

E. x Pain and/or distress will be experienced by animals in this protocol and drug
will not be used. A justification is required for non-use of pain ameliorating
drugs.

Justification:

Some subset of the animals will develop tonic seizures which may result in death,
but this is one of the central purposes of the protocol, to broadly explore the
deleterious neurological side effects that could arise from our therapeutic research
either via drug or gene manipulation. The time of distress will be kept to a minimum
with euthanasia following induction of seizure at 30 minutes. Also, the second
experiment proposed will be a dose-response study with PTZ-seizure induction to
find the minimum effective dose that can elicit seizure responses in 95% of the DBA
2J and C57/BI6J mice.

19. Describe euthanasia techniques.

Animals will be euthanized using carbon dioxide asphyxiation.

21. Does this procedure duplicate previous experiments? If yes, complete
justification.

No.

22. Agreement of compliance

We agree to conduct our experiments according to this protocol and conform with
the policies of Elan Pharmaceuticals, the N.I.H. Guide for the Care and Use of
Laboratory Animals (revised 1985) and OPRR guidelines (revised Sept. 1986).
Changes in the protocol can only be implemented by submitting an amendment to
the protocol for IACUC review.

Further, as Principal Investigator for this protocol, I have established that the project
associates involved with this study have adequate training and experience to
conduct the methods required.

Principal Investigator Date

23. Expedited Review - requires two IACUC members signature.

Signature Date

Signature Date
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24 Institutional Animal Care and Use Committee (IACUC) review.

Date

Approved

Signature of Chairman

25. USDA Category (if applicable).
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Table 7.7 Correlation of Calbindin to All Other Measures, R- and P-values of PDAPP and BACE pKO; PDAPP 011C Mice


