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ABSTRACT OF THESIS

Early sowing of swedes increases yield but also increases the 

risk of bolting. The aim of the study was to investigate vernalisation, 

that is, low temperature flower induction, of swedes.

In a series of experiments, plants of different ages and cultivars 

were given low temperature treatments of varying duration and tem­

perature.

Swedes were vernalised by temperatures of 11° and below, the 

optimum being around 5° to 6° for Wilhelmsburger and 3° to 6° for Doon 

Major. High temperatures following low temperature treatment and 

interruptions of treatment with periods at higher temperature were 

devernalising, reducing the numbers of plants flowering and decreasing 

the rate of flowering. Stem extension and response of stem growth to 

gibberellic acid were less affected by devernalisation than flowering.

c
Plants grown at around 15 were found to have a juvenile stage 

of under A days, some cultivars having a shorter stage of 2 days or less.

Low light intensities during vernalisation reduced the number of 

plants flowering but mature swedes could be vernalised in the absence 

of light.

There was considerable variation in susceptibility to vernalisation 

in the cultivars used in the experiments. In order of decreasing 

susceptibility they were Pentland Harvester, Della, W i 1nelmsburger and 

Marian, Harrietfield, Doon Major and Ruta Otofte. There was evidence 

of differences in within cultivar variation, early and late flowering 

selected Wilhelmsburger lines differing more from the parent population 

in susceptibility to vernalisation than selected Doon Major lines.

The longer the duration of low temperature the more plants 

flowered and the earlier they flowered.

The normal site of vernalisation was found to be the growing 

point although axillary buds could be vernalised in the presence and 

absence of the growing point. There was no evidence of a trans- 

locatable flowering stimulus.

Methods of selection and shortening the reproductive cycle are 

described.
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INTRODUCTION



1.1 The induction of flowering in swedes

The study is an examination of flower induction in swedes 

Brassica napus L. var. napobrassica), a biennial plant grown as an 

annual crop chiefly for animal fodder but also for human consumption. 

The swede has a requirement for vernalisation, that is, flowering is 

induced by a period of growth at low temperatures.

The present farming practice in Britain is to sow swedes in 

May or June (Rodger 1975), but experiments have consistently shown 

greater yields with earlier sowing of swedes (Doling and Willey 1968, 

Rodger 1975) as with sugar beet (Beta vulgaris L.) (Davey 1957,

Scott and Bremner 1965, Hull and Webb 1969, Scott and Wood 1972, 

Draycott, Webb and Wright 1973). Apart from possible difficulties 

in seedbed preparation, or timing with respect to other crops, the 

main risks associated with early sowing of swedes are the possible 

increased attacks of powdery mildew (Erysiphe polygoni D.C. or 

E . crucifarum Junell) and bolting - premature stem and flower 

formation. Although with current late sowing practice bolting is 

not a serious problem, if earlier sowing is adopted, in cold seasons 

bolting may considerably reduce the yield advantage of the earlier 

sowing, especia 11y_as there has been very little selection of 

cultivars for bolting resistance, nor any selection in commercial 

seed production. Sugar beet cultivars now have greatly improved 

bolting resistance compared with older cultivars and earlier sowing 

of sugar beet has now been widely adopted (Longden, Scott and Tyldesley 

1975).

"The means of the daily mean temperature during April in 

Scotland 1901 - 1930 were around 5-5° - 7°C(Meteorological Office 1952) 

which is within the vernalising range of temperature, and the means



of the daily maximum temperature in April were 8.5° - 12°, marginally 

vernalising or neutral, so that earlier sowing would expose seedlings 

to vernalising temperatures.

During flowering, the stem and root (the harvestable enlarged 

hypocotyl) of the swede become progressively more lignified. 

Assimilates from the leaves are used for stem and flower production 

rather than root growth, and the bolting plant tends to shade 

neighbouring non-bolting plants and reduce their growth. The tall 

bolted plant is more difficult to harvest mechanically and the woody 

root has a high fibre content (Lysgaard and N^rgaard Holm 1962). 

Experiments in Denmark with very early sown swedes (mid-March in 

some years) showed that in early sown plots with many bolters there 

was a lower root dry matter yield and bolting plants had a lower 

nitrogen content and higher crude fibre content. Different bolting 

percentages over the five years of the experiments were related to 

the particular spring temperatures, colder weather just after 

emergence being associated with more bolting (Lysgaard and N^rgaard 

Holm 1962).

Flowering swedes are often divided into early bolters which 

flower rapidly, during July and August, and late bolters which 

extend but may not even flower before harvest. Early bolters 

develop little root and are usually dead with seed set by harvest, 

whe’reas late bolters flower more slowly, in some cases only non­

flowering stems being produced, and are normally green with well- 

developed roots at harvest, although the digestibility of the root 

is reduced compared with vegetative plants.

Differences in the frequency of bolting were found in 

Canadian swede cultivars (Peto 193*0, and data from 1967 N.I.A.B.



swede variety trials at The Edinburgh School of Agriculture 

provide the following evidence on bolting resistance (Bell 1968). 

Purple top swedes were most resistant to bolting, with an average 

of *4 per cent bolters; bronze tops had an average of 9 per cent 

bolters; and the few green top cultivars in the trial had 11 per 

cent bolters on average. The highest percentage bolting in the 

trial was 20 per cent. Within each colour group, cultivars with an 

acceptable level of bolting resistance and yield were selected, 

including the purple tops Pentland Harvester and Doon Major, the 

bronze top Harrietfield, and the green top Wilhelmsburger. The 

swede is an amphidiploid of B. oleracea(cabbage group) and B. 

campestris - formerly B. rapa (turnip group) (McNaughton and Thow 

1972), and within both species there is a range of susceptibility to 

bolting (I to and Saito 1961, Heide 1970 on cabbages; Wester and 

Magruder 1937 on turnips).

To select for bolting resistance in swedes, Lysgaard (197*0 

sowed plants early enough in spring to give 75 per cent bolting.

In autumn 100 non-bolters were selected and their progeny gave fewer 

bolters compared with the original seed.

The eventual aim of this study is to provide information on 

the response of swedes to low temperature in terms of flowering and 

bolting so that accurate methods of screening for bolting resistance 

can be devised and used in plant breeding. If more bolting resistant 

cultivars were available, early sowing of swedes could be more 

safely encouraged. Breeding of bolting resistant sugar beet 

cultivars has already resulted in the general adoption of earlier 

sowing, although more resistant cultivars are still being sought 

(Kimber 1976).

3.



b.

1.2 Other species which can be vernalised

Many plant species are affected by vernalisation. in some, 

it is an obligate requirement for flowering, in others it enhances 

the flowering process but is not essential for it. Often vernalisa­

tion and photoperiodic requirements, usually long day, can replace 

each other to some extent.

Species with an obligate requirement for vernalisation which 

is enhanced by long days include Allium cspa (onion) (De Mills and 

Vest 197*0, Beta vulgaris (beet) (Margara 1960) , Campanula medium 

(Canterbury bell) (Chouard 1959, Wellensiek I960, 1962a) and Daucus 

carota (carrot) (Fisher 1956), and Hyoscgamus niger (henbane)

(Thomas 1956, Salisbury 1963) in which long days are essential for 

flowering.

Some strains of Chrysanthemum require vernalisation for flower 

induction but like other chrysanthemums and unlike most other 

vernal¡sable species, short days are required for normal flower 

development (Schwabe 1951).

Scrofularia vernalis, a species with an obligate cold require­

ment, is day-neutral (Chouard 1959). Stokes and Verkerk (1950) claim 

that sprouts are day-neutral, perhaps because they cannot be induced 

to flower by photoperiod alone, and Miller (1929) found no effect of 

extending daylength with low intensity light after low temperature 

treatment of cabbages, but Heide (1970) found a marked response to 

long days after low temperature treatment in stem growth and earliness 

of flowering of Norwegian cabbage cultivars. This difference is 

likely to be because of the cultivars used, the Norwegian cultivars 

responding more to daylength than the American cultivars, bred in 

lower latitudes with shorter summer daylength.



Among other species with an obligate requirement for vernalisa­

tion are Apium graveolens L. (celery) (Thompson 1928), biennial 

strains of Centaurium minus (centaury) (Michniewicz and Lang 1962), 

Cynosurus cristatus (crested dog's tail) (Purvis 1961), Digitalis 

purpurea (foxglove) (Brian 1958), Lunaria biennis (honesty)

(Wellensiek 1961), Myosotis alpestris (a forget-me-not) (Michniewicz 

and Lang 1962) and Oenothera biennis (evening primrose) (Chouard 1959)

Some perennial species, such as Cichorium intybus (chicory)

(Brian 1958), late strains of Lolium perenne (perennial rye-grass) 

(Cooper 1951) and Petroselinum crispum (parsley) (Lang 1957, Brian

1958), will not flower unless they have been vernalised. No stimulus 

is passed from the vernalised flowering stems to the perennating part 

of the plant, which will continue to grow vegetatively till it itself 

i s vernali sed.

Many species with a wide range of environmental requirements 

for flowering respond to vernalisation of seed or plant with more 

rapid flower development, flowers appearing at lower nodes on the 

plant, or more flowers being produced per plant. Among these are 

Agrostemma githago (corncockle) (Purvis 1961), Avena sativa (winter 

oat) (Spector 1956), Brassica juncea (mustard) (Sen and Chakravarti 

19**1), Cichorium endivia (endive) (Harrington, Rappaport and Hood 

1957), Hordeum vulgare (winter barley) (Spector 1956), Lactuca sativa 

(lettuce) (Knott, Terry and Anderson 1937), Lilium longiflorum (a 

commercial lily) (Lin, Wilkins and Angel 1 197*0, Linum usitatissimum 

(linseed or flax) (Chakravarti 195*0, Lolium italicum (Italian rye­

grass) (Cooper 1951), Lolium rigidum (Wimmera rye-grass) (Cooper 1951) 

Pisum sativum (pea) (Haupt 1969), Raphanus sativus (radish) (Suge and 

Rappaport 1968), Sinapis alba (mustard) (Bernier 19 69) , Spinacia



oleracea (spinach) (Verkerk and Volosky Yadlin 1959), Triticum 

aestivum (winter wheat) (Spector 1956) and Vicia viliosa (winter 

vetch) (Purvis 1961). In some of these species vernalisation and 

long days are complementary and can replace one another to some 

extent but in others specific daylength requirements are irreplaceable.

V/ithin species there is frequently a wide range of response to 

different flowei— inducing stimuli. The wide variety of plant types 

within the species Brassica oleracea have responses ranging from the 

non-essential but enhancing effects of plant vernalisation on 

flowering of long day broccoli (Fontes, Ozbun and Sadik 1967, Fontes 

and Ozbun 1971) through the variety of requirements for curd 

■ formation and flowering in cauliflower (Sadik 1966) to the obligate 

requirements for vernalisation in cabbage (Miller 1929) and brussels 

sprouts (Stokes and Verkerk 1950).

In B. campestris, the turnip species, there is a similar range. 

Sakr (1944) suggests that turnips (sic no species name given) have 

an obligate requirement for vernalisation, but in the Handbook of 

Biological Data (Spector 1956) it is suggested that B. rapa, 

considered an identical species to B. campestris, is a quantitative 

long day plant with no known response to vernalisation. Friend

(1969) has shown that a strain of B. campestris is a quantitative 

long day plant without an obligate cold requirement.

In B. napus there are spring cultivars of oil seed rape which 

require chiefly long days for flowering, winter cultivars with a 

greater need for vernalisation (Mendham and Scott 1974) and the 

swede, B. napus var. napobrassica, which has a high requirement 

for vernalisation (Peto 1934).

6.



Other crucifer species, such as Arabidopsis thaliana (Thale 

cress) (Napp-Zinn 1969) and Matthiola incana (stocks) (Post 1936,

Heide 1962),have different races with and without an obligate 

requirement for vernalisation.

Cereals - barley, oats, rye and wheat - have winter cultivars 

that respond to vernalisation, and spring cultivars that do not 

(Spector 1956). Similarly, in Trifolium subterraneum (subterranean 

clover) (Purvis 19 61) there are early and late cultivars, the latter 

having an obligate vernalisation requirement.

Sugar beet strains range from those that can be induced solely 

by continuous high intensity light (Stout 19^) to those in which cold 

treatment is essential (Chroboczek 1933) -

A large part of the variation in response to vernalisat ion 

within a species is genetic in origin. Occasionally ripening of 

seed at low temperatures will vernalise the seed giving rise to 

differences in bolting resistance between seed stocks of the same 

genetic constitution (Whyte 19^8, Longden et al 1975).

The wide range of response types within Brassica species 

suggests a large number of genes are involved, but in some species 

the genetics of vernalisation are relatively simple. In rye the 

difference between winter cultivars (obligate vernalisation) and 

spring cultivars (no response to vernalisation) (Purvis 19^8) and 

in henbane (Hgoscgamus niger) between biennial and annual races is 

only one gene (Purvis 19^8, Salisbury 1963). More genes are involved 

in wheat (Salisbury 1963), and in Arabidopsis thaliana the inheritance 

is more complex with different numbers of genes involved in different 

races (Napp-Zinn 1969).
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1 .3 Theoretical models of vernalisation

Various theoretical systems have been put forward to describe 

the reactions involved in vernalisation, all based on the effects of 

environmental stimuli on flowering behaviour. None of them incorporate 

evidence of internal changes during vernalisation, as this kind of 

information is not available, apart from some hormone and carbohydrate 

level studies. The systems, quoted in Purvis 1961, of Gregory and 

Purvis for rye, Van de Sande Bakhuyzen for cereals and Napp-Zinn for 

Arabidopsis (see also Napp-Zinn 1969), are based on daylength and 

temperature effects peculiar to each species and are not generally 

applicable. Within the normal range of temperatures for plant growth, 

enzyme activity always increases with temperature although at different 

rates for different enzymes. Vernalisation seems to be a quantitative 

process and presumably involves the depletion of an inhibitor or 

accumulation of some substance or substances at low temperature that 

induce the flowering process.

Inhibitors including ABA (abscissic acid) tend to induce or 

maintain bud dormancy, which can be broken by chilling or application 

of gibberellins (V/areing and Phillips 1970), but there is no evidence 

for the involvement of inhibitors in vernalisation. All the systems 

devised assume the more probable accumulation of some substance.

That of Lang and Melchers for Hyoscyamus niger (Purvis 1961, Salisbury 

1963),also suggested by Gregory (Salisbury 1963), offers a simple 

mechanism to explain how a substance can accumulate at low temperature 

when all reactions are slowed down (see below).

A  I „8 — ■ Ml > 0

I I

C



The scheme can be modified so that reaction II is B to h , and 

there is no by~product C. Because reaction I has a low Q10, reaction 

II a high Q.10, and reaction I l i a  medium Q.10, at moderate to high 

temperatures B will be rapidly converted to C. At low temperatures 

reaction I will still proceed at a moderate rate but very little B 

will be converted to C, and B will accumulate and be slowly converted 

to D. The longer the plant remains at low temperatures the more D 

accumulates. If the plant is transferred to moderate temperatures,

D and C will be formed, but if to high temperatures, mostly C will 

be produced, and little D, as reaction II will proceed faster than III.

The scheme incorporates the main features of vernalisation but 

there is no experimental evidence to confirm that vernalisation does 

operate like this. It seems probable that vernalisation is chemically 

mediated, involving the different temperature responses of enzymes 

(Q.10 s) . Other factors, such as daylength, are often involved and the 

vernalisation response and flowering of any species is probably very 

complicated, and may be very different between and even within species.

There are several difficulties peculiar to the study of 

vernalisation. Unlike photoperiodism, when as little as one or two 

days may be required for flower induction, vernalisation occurs over 

a period of weeks and subsequent bud development may take months, 

especially after marginal treatments. The age of the plant exposed 

to low temperature changes during treatments; when induction is 

completed, the plant begins the process of flowering, even at low 

temperatures, confounding measures such as plant age or time to 

flower with duration of low temperature treatment. Measuring the 

qualitative change of flowering, or not flowering, avoids this 

difficulty but the date of termination of the experiment arbitarily

9.



determines how many plants are included as flowering. In theory 

there is a minimum duration of low temperature longer than which all 

plants will flower normally but due to the genetic variability of 

the experimental material, an increasing proportion of plants will 

flower as the duration of low temperature treatment increases.

The vernalisation process may not be identical in all the 

species in which it occurs but it is likely that there is some type 

of reaction resulting in the formation of a flowering substance at 

low temperature common to all species. Photoperiodic requirements, 

however, vary considerably although long days enhance flowering in 

the majority of vernalisable species.

The range of genetic variability in the response to low 

temperature treatment differs between species, in rye and henbane the 

requirement for vernalisation being under the control of one gene, 

but in Brassica species the response is probably affected by a large 

number of genes, as there is considerable variability within Brassica 

speci e s .

1 .k Temperature of vernalisation

Vernalisation normally takes place at temperatures between 

0° and 10° although a few species which will not flower at high 

temperatures (25° and over) can be induced to flower at moderate 

temperatures, for example a Japanese cabbage cultivar grown at 17° 

for 20 days formed flower buds (I to and Saito 1961) , and Hyoscyamus 

niger is induced at 1^° (Hillman 1969). Broccoli is not considered to 

have an obligate requirement for vernalisation but will not flower 

(Fontes and Ozbun 1971) or only slowly (Fontes et al 1967) if grown 

at 2k° and above.

10.



Temperatures between 1° and 7° are equally effective for 

vernalisation of cereal seeds and even at -** and +12 vernalisation 

proceeds very slowly (Purvis 1961). Optimum temperatures for plant 

ve rnali sation are generally in the range *+ to 9 • Six degrees to 

9° (Stout 19***+) and 5° to 7° (Wellensiek and Verkerk 195^) are given 

as optima for sugar beet, 7° for sprouts (Verkerk 195^), **°, 7°

(Heide 1970) and 9° (I to and Saito 1961) for different cabbage 

cultivars and 7° rather than 2° for onions (De Mi lie and Vest 197*0.

The upper limit for vernalisation is around 12° or 13° for 

most species. Sugar beet grown at 16° and above for over three years 

never flowered (Chroboczek 1933, Margara I960), but 60 per cent of 

sugar beet plants flowered, after winter storage at 1 3 °, although 

no sugar beet plants flowered at 15° (Chroboczek 1933). Cabbages 

grown at 10° to 16° eventually formed buds and flowered, but develop­

ment was very slow (Miller 1929) and in an experiment of Heide's

(1970) some of a group of cabbages flowered, after growth at 12° for 

six months. Growing turnips (sic) at 10° to 16° for 12** days resulted 

in 70 per cent flowering (Sakr 19****) and 12 per cent of swedes grown 

at 11° average temperature for 50 days from sowing flowered (Peto 193**).

Vernalisation above 10° is normally very slow and the 

temperature range 10° to 15° is generally considered 'neutral1. An 

experiment of Heide's (1970) in which interrupting a fixed six weeks 

duration of low temperature (5°) with eight hours every day at 12° 

reduced the number of cabbages flowering (Heide 1970) compared with 

an uninterrupted six weeks, led him to suggest that 12° can be both 

vernalising and deverna1ising.
V-

If Lang and Melchers' general scheme is accepted, at every 

temperature all the different reactions will be proceeding and the

11.



12.

specific temperature will only alter the balance of reactions so 

that no temperature can truly be called neutral.

Temperatures from 4° to 9 appear to be most effective ior

vernalisation of plants, and vernalisation over 10 is so slow as to 

be of little importance in many Brassica species and in sugar beet.

1 .5 Juven i1 i ty

Many plant species cannot be induced to flower during their 

earliest stages of growth. The inability of the young plant to 

respond to the environmental conditions that are normally sufficient 

to cause flowering is called juvenility. The juvenile phase is

frequently several years in woody species and commonly there are

morphological differences, such as leaf shape, or spininess, between 

juvenile and adult plants. In herbaceous plants the juvenile phase 

is much shorter or not present at all.

The cold induced species and varieties beet (Margara 1960), 

broccoli (Warne 1961, Pontes et al 1967), brussels sprouts (Stokes 

and Verkerk 1950), cauliflower (Sadik 1966), henbane (Salisbury 1963) 

and honesty, Lunaria biennis (Wellensiek 1963) have all been shown 

to have a marked juvenile phase, with young plants subjected to low 

temperature treatment failing to flower, while older plants did flower.

There is also a more quantitative effect of plant age, older 

plants responding more than younger plants in increased proportion 

of plants flowering or reduced time to anthesis when subjected to 

the same low temperature treatment. This has been observed in beet 

(Chroboczek 1933, Margara 1960), broccoli (Fontes et al 1967, Fontes 

and Ozbun 1971), brussels sprouts (Stokes and Verkerk 1950, Verkerk



195*0 , cabbage (Miller 1929, I to and Saito 1961 , Warne 1961, Heide

1970), cauliflower (Warne 1961, Sadik 1966), celery (Thompson 1928), 

henbane (Salisbury 1963), kale (Warne 1961), kohlrabi (Warne 1961)

and stocks (Heide 1962).

Wei lensiek (19 6 1, 1963) found in honesty (Lunaria biennis) that 

leaf cuttings from juvenile plants (six weeks old) were less readily 

vernalised than leaves from adult plants ( 1 2 weeks old) and suggested 

that iuvenility is a character of the whole plant, but later work 

with honesty by Pierik (1967) showed that juvenility is located in 

the buds, and, as in woody plants (Brink 1962), (Leopold and 

Kriedemann 1964) juvenile and adult tissue can exist in the same plant. 

Pierik also found that regeneration could result in rejuvenation 

which may explain many of the previous failures to vernalise cuttings.

Some morphological differences between juvenile and adult 

plants have been found in herbaceous species. In brusseis sprouts 

the change from juvenile to adult is accompanied by an increase in 

stem diameter and an enlargement of the terminal meristem (Stokes 

and Verkerk 1950), and generally cabbages smaller than 5 to 6 mm 

stem diameter at the beginning of vernalisation cannot be induced to 

flower (I to and Saito 1961).

In the absence of obvious morphological changes, juvenility 

has to be measured by subjecting plants of different ages to an 

inductive treatment and measuring the subsequent response to the 

treatment often as proportion of plants flowering. This measure 

will be affected by the uniformity of the population in terms of 

susceptibility to flowering, with homogeneous populations having an 

apparently steeper response to plant age than heterogeneous populations.

13.



With cold induced species there is the further complication 

that plants continue to grow during the long treatment period and, 

passing out of the juvenile phase to adulthood, may receive sufficient 

low temperature treatment once out of the juvenile phase to induce 

flowering. it is difficult, therefore, to determine the exact length 

of the juvenile phase and whether the change from juvenility to adult­

hood is abrupt or gradual. This change, however, does appear to be 

more sudden in Lunaria biennis than in sprouts or sugar beet (Leopold 

and Kriedemann 1975).

In some strains of Arabidopsis thaliana (Napp-Zinn 1969) and in 

stocks (Post 1936) there is evidence of an optimum age for vernalisa­

tion: 4 5 - 9 0  days and 4 2 - 5 6  days respectively, susceptibility to

cold induction declining beyond the optimum age, but in most species 

older plants are never less susceptible to low temperature treatment 

than younger plants.

Plant size has been shown to affect susceptibility to 

vernalisation. Larger turnips (Wester and Magruder 1937) and 

larger cabbages (I to and Saito 1961) were observed to bolt earlier 

than smaller plants of the same age but I to, Saito and Hatayama 

(1966) found that stem cuttings of cabbage responded only slightly 

less well than whole plants, to low temperature treatment. When 

cabbages of the same size but different ages were subjected to the 

same low temperature treatment, the older cabbages produced more 

bolters than the younger plants (I to and Saito 1961).

Wellensiek (1962a) suggests that high light intensity during 

early growth can shorten the juvenile phase and Napp-Zinn (see Purvis 

1961) found that growing Arabidopsis thaliana at higher light intensity 

reduced the age of minimal response to vernalisation from 46 to 7 days.

14.
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1 ,6 Seed verna1i sat ion

Ripening seeds, including those still on the mother plant 

(Longden et al 1975) imbibed seeds, or seeds with the radicle 

beginning to show, can be vernalised. In a few species seed 

vernalisation can replace an obligate plant vernalisation requirement. 

Some races of Arabidopsis can be seed vernalised, and turnips can be, 

provided that seeds have germinated by the end of vernalisation 

(Wiebosch 1965). In many species with no obligate cold requirement, 

such as endive (Harrington et al 1957), lettuce (Knott et al 1937), 

mustard (Sinapis alba) (Bernier 1969) and spinach (Verkerk and 

Volosky Yadlin 1959) flowering or bolting is enhanced by seed 

vernalisation. Seed vernalisation increases percentage flowering in 

the following cold requiring plants, some cultivars of carrot (Chouard

1959), Lunaria biennis (Wellensiek 1962a), sugar beet (Owen, Carsner 

and Stout 1939, Wellensiek and Verkerk 195^, Wiebosch 1965, Longden 

et al 1975) and turnip (Wiebosch 1965), but failures of seed 

vernalisation have been reported in sugar beet (De Roubaix and Lazar 

19^7, Purvis 1961), Oenothera biennis (Chouard 1959), rape (sic)

(Whyte 19^8), turnip (sic) (Whyte 19^8) and sprouts (Stokes and 

Verkerk 1950).

The successful seed vernalisation of species with a juvenile 

phase, such as Lunaria biennis and sugar beet, suggests that seed 

vernalisation is not exactly the same process as plant vernalisation. 

The successes and failures with seed vernalisation, often with the 

same species, have led to the suggestion that seed vernalisation 

acts in most species with an obligate cold requirement by enhancing 

flowering caused by subsequent plant vernalisation, rather than 

directly causing flowering (Pierik 1967). In experiments with sugar



beet in California (Owen et al ’939)» seed vernalisation increased 

the percentage bolters when the crop was sown in March, but not when 

the crop was sown in May or October, either because the seed was 

devernalised at the higher May or October temperatures, or, more 

probably, because the crops received no vernalisation in the field 

during the adult plant stage.

Juvenility, which ensures that plants will not flower when 

younger than a critical age, occurs in many plants including Brassica 

species. Younger plants may not respond to low temperature treatment 

at all, or may respond less than older plants especially when the 

vernalisation period is long. Seed vernalisation appears to be 

unaffected by juvenility in several species possibly because the 

imbibed seed which can be affected by low temperature induction is 

not juvenile, and their juvenility is acquired during or after seed 

germination. Juvenility is closely related to plant age, although 

plant size can have similar effects, larger plants being induced 

more readily than smaller ones, but juvenility is not simply an 

effect of plant size.

1 .7 Deverna1i sat ion

At higher temperatures, especially over 15°, devernalisation, 

that is reversal of vernalisation, occurs in seeds and plants. The 

higher the temperature the greater the reversal of vernalisation, 

whether in terms of increased time to flower or reduced number of 

plants flowering. In cabbages, three days at 36°, six days at 30°, 

or 12 days at 2k immediately following low temperature treatment 

completely reversed six weeks at 5° which would normally have caused 

complete flowering (Heide 1970).

16.



Frequent short interruptions of low temperature treatment by 

periods at higher temperatures devernalise more effectively than less 

frequent and longer interruptions even when the total time at higher 

temperatures is the same (Purvis and uregory 1952).

Even during stem extension plants can revert to the vegetative 

state and produce a rosette of leaves at the top of the elongated 

stem if temperatures following low temperature treatment are too high. 

This has been observed in beet (Owen et al 1939). brussels sprouts 

(Stokes and Verkerk 1950), and swedes (Peto 193^) , especially after 

marginal low temperature treatment. In cabbages, devernalisation 

reduced flowering much more than stem extension (Heide 1970).

Devernalisation has been made use of in vegetative propagation 

of cauliflower. Curd formation is induced by suitable cold treatment, 

and apical meristems which are at an early stage of floral develop­

ment (bud stage 2, Figure 2.1)are removed. They are grown in aseptic 

culture at 20° to 2b° to make them revert to the vegetative state 

(Crisp and Walkey 1973)- According to Margara (i960), in vitro 

culture in the absence of sugar, of extending stem tips of sugar 

beet can cause reversal to the vegetative state. Similarly, 

broccoli curd cuttings with flower buds kept at temperatures from 

b. 5° to 21° formed normal flowers whereas those transferred to 15.5° 

to 27° aborted their flower buds and developed bracts (Haine 1951).

Devernalisation can only occur for a short while after the low 

temperature period and, once securely induced, plants will flower at 

high temperatures and so the stimulus produced by the plant as a 

result of low temperature treatment must become stabilised with time. 

This stabilisation ('setting1 or 'fixing') corresponds in the 

theoretical model (page 8) to a conversion of all B, the intermediate
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substance, into D the stable flowering substance. Growth at 

moderate temperatures, 10° to 15°, or 20° for Hyoscyamus (Purvis 

1961) for a few days up to a fortnight limits or prevents subsequent 

devernalisation by high temperatures. This 'setting' of vernalisation 

has been observed in rye (Purvis and Gregory 1952, Purvis 1961), 

Hyoscyamus niger (Purvis 1961), and radish, but exceptionally, 

Arabidopsis thaliana cannot be 'fixed' (Purvis 1961) . In rye one 

additional week of low temperature treatment reduced the devernalising 

effect of three days at 35° by half (Purvis 1961) showing that 

vernalisation can be 'fixed' at vernalising temperatures. This 

result was found for two to eight weeks low temperature treatment 

when rye responds linearly to increased duration of treatment so that 

the effect of decreasing devernalisation by greater 'fixing' cannot 

be clearly separated from the effect of increasing duration of low 

temperature treatment. The 'setting' or 'fixing' therefore is some­

thing which occurs at low and moderate temperatures, and possibly at 

higher temperatures as well, but devernalisation may reduce the 

level of vernalisation considerably before 'fixing' is complete.

Devernalisation of chrysanthemum at high temperatures only 

occurs at low light intensity, 20 to 25 foot candles (215 to 269 lux) 

(Schwabe 1956). In all other species studied high temperature alone 

is sufficient, although light has been shown to increase the 

stabilisation of vernalisation in rye (Purvis 1961) , that is, reduce 

its susceptibility to devernalisation.

Stem extension appears to be less affected by devernalisation 

than flowering (Heide 1970), suggesting that it is caused by somewhat 

different reactions in the plant.



In the theoretical model of the vernalisation process (see 

1.3, page 8) at high temperatures reaction II (B to C) will proceed 

most rapidly so that little flowering substance (D) will be formed, 

and any B formed during low temperature and not yet converted to D 

will be rapidly converted to C. At moderate or low temperatures 

after vernalisation, however, the accumulated B will be converted 

more to D than to C, 'fixing' the effects of vernalisation.

In natural conditions although temperatures may frequently be 

vernalising, a short daily period of higher temperature will reduce 

the vernalisation, so that any calculation of the likely outcome of 

a period of cold weather on flowering will have to take into account 

not only the sum of the hours at low temperature but also the 

reversing effect of periods at high temperature.

1.8 Duration of treatment

Unlike photoperiodic induction which is often complete with 

only a few days of the appropriate daylength, vernalisation occurs 

very gradually. Plant metabolism is slow at vernalising temperatures 

and the lower limits to vernalisation are probably determined more 

by metabolic rate than by the temperature requirements of the 

vernalisation reactions.

Only a proportion of treated plants will flower after marginal 

durations of low temperature treatment and flower development will 

be slow. Sometimes plants extend and form leaves of the shape 

associated with reproduction but do not flower. As the duration of 

low temperature increases, the proportion of plants flowering, and 

the rate of, and completeness of flower development increases.
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The requirements of different species range from two to nine 

weeks low temperature in general, although the vernalising effect 

of any duration of low temperature depends to a large extent on the 

particular conditions of the treatment. Turnips (Sakr 19*+*+) are 

highly susceptible to bolting, and 15 days at 5 to 10 produced 

22 to 80 per cent flowering plants, and 30 per cent of celery 

plants flowered after exposure to 9° for 20 days (Thompson 1928). 

Exposing swede plants to 50 days at 11° mean temperature gave 12 per 

cent flowering (Peto 193*0- At temperatures below 10° (Thow 197*0,

28 days gave almost complete flowering of swedes, and *»2 and 56 days 

gave 100 per cent flowering and faster flower development than after 

28 days. In sugar beet 30 to 31 days at 5° gave 30 per cent flowering 

(Margara 1960) but in other experiments gave 0 to 90 per cent 

(Chroboczek 1933) depending on post treatment growth temperatures 

(15° to 21°, or 21° to 27°). Fifty per cent of cabbage plants 

eventually formed flower buds after 21 days at 5° (Heide 1970) but 

**2 and 63 days gave 100 per cent flowering within the time of the 

experiment. In experiments with six Japanese cabbage cultivars only 

30 days at 9° resulted in complete flowering (I to and Saito 1961). 

Eight weeks at 5° is considered necessary for flowering of Lunaiia 

biennis (Wellensiek 1963). No brussels sprouts flowered after three 

weeks at 3° (Stokes and Verkerk 1950) but some plants bolted. Six 

weeks gave some flowering, and nine weeks gave 100 per cent flowering 

(Verkerk 195*+) .

Stem growth is more rapid after longer vernalisation as shown 

in sprouts Lunaria biennis, Campanula medium and Cheiranthus cheiri 

(Verkerk 195*+). Japanese cabbage cultivars had a shorter minimum 

duration for bolting than for flowering (I to and Saito 1961), and
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in sprouts the minimum durations for bolting and flowering varied in 

different plants (Stokes and Verkerk 1950).

Some species require only a few weeks low temperature treat­

ment for complete flowering, others require months. Within a species 

there is also considerable variation in response, as durations of 

low temperature shorter than those required for 100 per cent flowering 

result in a proportion of plants flowering, because of either genetic 

or environmental differences within the group. By exposing plants 

to less than optimum duration of low temperature, or a range of 

durations of low temperature, treatments can be compared by the 

proportion of plants flowering.

1.9 Ni trogen

In the past, nitrogen has been suggested as a possible cause 

of premature bolting (Miller 1929), but this claim was not based on 

any clear evidence. Nitrogen has no effect on the response of 

winter rye to vernalisation (Purvis 1961), Miller (1929) observed 

no bolters in an N P field experiment on cabbages and Chroboczek 

(1933) found 1 arge applications of nitrate produced no bolters in 

beet plants grown at 16° to 21°. In beets given a low temperature 

treatment, however, nitrate treated plants were larger and flowered 

earlier (Chroboczek 1933). In another experiment with beet 

(Chroboczek 1933) plants were stunted before low temperature treat­

ment by restricting water, restricting nitrate, or restricting water 

and nitrate. The number of flowering plants in the no nitrate, 

plentiful water group was only 12 out of 20, compared with 16 or 

17 out of 20 in the other groups, suggesting that nitrogen deficiency
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rather than stunting had caused the slight reduction in flowering.

The main effect of nitrogen is likely to be on plant growth after 

low temperature treatment when temperatures will permit active 

uptake and growth rather than during treatment.

Suggestions that checks to plant growth, such as drought 

(Hannah 1959) may cause bolting have been put forward but there is 

no evidence to support this, and in celery (Thompson 1928) treatments 

applied to restrict growth - drought and freezing - delayed flowering.

Early claims that nitrogen causes bolting now seem unfounded, 

although shortage of nitrogen may restrict flowering induced by low 

temperature probably chiefly by reducing rate of growth.

1.10 Light and daylength

Most species with an obligate requirement for vernalisation 

will flower in any daylength although the appropriate daylength 

enhances flowering. As an exception, Hyoscyamus niger (Salisbury 

1963) requi res long days after low temperature treatment for flower­

ing and winter rye only forms rudimentary flowers in the sheath 

during short days (Purvis 1961) .

Continuous light replaced the cold requirement for flowering 

of beet, grown at 12° to 15° (Chroboczek 1933) and of a selected 

strain of sugar beet (Stout 19^*0 but sugar beet grown at 16° and 

above for 1£ years in continuous light did not flower (Margara 1960) .

Exposing carrots to short days just before low temperature 

treatment, especially in marginal conditions, enchanced flowering 

(Fisher 1958). In rye,short days followed by long days can induce 

flowering, the short days replacing vernalisation to some extent 

(Purvis 1961).



Light during vernalisation is not essential for flower 

induction or flowering of mature sugar beet. When sugar beet roots 

were vernalised and then grown at higher temperatures in darkness 

all plants bolted, and nine per cent produced normal open flowers in 

the dark (Fife and Price 1953). Long days during vernalisation 

slightly enhanced stem elongation of cabbage (Heide 1970). In 

onions (De Mille and Vest 197*0, continuous low intensity light 

during low temperature treatment resulted in faster flowering than 

only 12 hours light which in turn gave more rapid flowering than 

treatment in the dark. Low light intensity, 35 foot candles (377 lux) 

during low temperature treatment had an inhibitory effect in flowering 

of carrots, the effect being perceived by the apical meristem, unlike 

the normal photoperiodic response, although long photoperiods after 

vernalisation stimulated flowering (Fisher 1956). This is similar 

to the effect of low light intensity after vernalisation in enhancing 

devernalisation of chrysanthemums, and probably operates through a 

different mechanism from the photoperiodic response.

Cold nights and cold days have different effects on the 

flowering and development of stocks. A period of continuous cold 

causes stocks to grow into tall flowering plants with entire leaves. 

Plants grown in warm days and cold nights produced entire leaves 

but did not extend. Those grown in cold days and warm nights 

flowered but remained dwarf and continued to produce vegetative 

pinnately lobed leaves (Post 1936). This suggests that there are 

at least three processes involved in the normal flowering of stocks, 

flowering itself requiring light, or perhaps being reversed in 

warmth and darkness, the production of reproductive leaves occurring 

in darkness or being reversed in warmth and light, and stem extension 

which requires continuous cold.



2k.

Daylengt’n after low temperature treatment usually has a greater 

effect on stem extension and flowering than daylength during treatment.. 

Chroboczek (1933) found that 16 hours of full intensity light compared 

with 12 hours after low temperature treatment enhanced stem elongation 

and rate of flowering of beets. Heide (1970) found that extending an 

eight-hour day to 2k hours with low intensity light, after low temperature 

treatment, had the same effect on cabbages. Long days after treatment 

had a much greater effect on stem extension and earliness of flowering 

than long days during treatment (Heide 1970). Miller (1929), however, 

found no effect of extending daylength with low intensity light on 

seedstalk development in cabbage. This difference may be due to the 

different cultivars used (see 1.2, page k).

Light appears to enhance vernalisation, or to replace it to some 

extent, although it is not essential for all species during vernalisation. 

Daylength, chiefly long days, affects flower development after vernalisa­

tion, in some species long days being essential for normal flowering.

The effect occurs mainly after vernalisation and so probably acts on 

flower development rather than directly on the vernalisation process.

The effect of short days followed by long days in replacing vernalisa­

tion has not been widely studied, but short days during vernalisation 

did reduce the effect of vernalisation in cabbage and therefore probably 

can only replace vernalisation in some species.

1.11 Plant hormones

1.11.1 Gibberellins

The plant hormone group, gibberellins, have variable effects 

on the flowering of photoperiod induced plants, sometimes enhancing



flowering (Michniewicz and Lang 1962, Jones 1973), especially of 

long day rosette plants, and occasionally inhibiting flowering 

(Zeevaart 1970) .

In most vernalisable species, especially those which are 

mainly cold induced rather than daylength induced, gibberellic acid 

(GA) often causes stem elongation and enhances flowering but rarely 

causes flowering directly. Biennial Hyoscyamus niger bolts and 

flowers after applications of GA (Lang 1956, Brian 1958), but 

as vernalisation occurs at relatively high temperatures, e.g. 14° 

(Hillman 1969) and it has an obligate requirement for long days 

(Salisbury 1963), it is not a typical vernalisable species.

Applications of gibberellin to the following cold requiring 

plants, cabbage, kale (Brassica oleracea), swedes (B . napobrassica 

sic), turnip (b. rapa), carrot (Daucus carota), foxglove (Digitalis 

purpurea), daisy (Beilis perennis), stocks (Matthiola incana) and 

pansy (Viola tricolor), grown at 10° to 13° in long days resulted 

in flowering in all cases (Wittwer and Bukovac 1957). At 18°, 

gibberellin was much less effective, but control plants grown at 

10° to 13° did not flower. Lang (1957) found that swedes grown at 

17° and above and treated daily with GA only produced flower buds 

after six months of continuous treatment. GA cause.d flowering in 

radish (Raphanus sativa) (Suge and Rappaport 1968) and some flowering 

in endive (Cichorium endiva) (Harrington et al 1957) and enhanced 

flowering in unvernalised winter rye plants (Purvis 1961) , in 

broccoli (Fontes and Ozbun 1971), in vernalised carrot (Globerson

1971) and vernalised iris stem disks (Pereira 1964), and enhanced7 u

bolting in spinach (Verkerk and Volosky Yadlin 1959).
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Lockhart (1956) has suggested, from studies on peas, that the 

stem tip is the site of gibberellin formation. After an application 

of gibberellin the initial effects are to stimulate active divisions, 

especially transverse divisions, in the subapical region. Increases 

in stem length in the first few days after application are probably 

mainly due to these transverse divisions although cell length increases 

later (Sachs, Bretz and Lang 1958).

Most experiments involve GA 3 - gibberellic acid. When nine 

different gibbere 1 1 ins, one to nine, were tried on five species 

(Michniewicz and Lang 1962), differences in activity were found.

GA 3 was as active as GA 7, the most active gibberellin, except on 

cold requiring Myosotis alpestris and long day Crepis parviflora. 

Failures to induce flowering in different species may occasionally 

be due to the use of an inappropriate gibberellin.

CCC (chlormequat chloride), an anti-gibberel1 in, applied to 

radish after seedling vernalisation reduced endogenous gibberellin 

levels and greatly reduced stem height but had no effect on flowering 

(Suge and Rappaport 1968). CCC sprayed onto sugar beet seed crops 

reduced stem height by 18 per cent but did not affect seed yield 

and presumably had not affected flowering (Longden 197^). High 

rates of CCC applied immediately after low temperature treatment 

delayed stem elongation of Oenothera biennis but had no effect on 

the numbers of flower buds (Picard 1967).

In sugar beet the response of seedlings to exogenous GA in 

terms of stem extension is positively correlated with the bolting 

susceptibility of the particular cultivar, and the mean length of 

the hypocotyl epidermis cells is also positively correlated with 

bolting, suggesting that susceptible cultivars respond more to both
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endogenous and exogenous gibberellin. It has been suggested that 

hydrophobic membrane proteins interfere with the plant's response to 

GA. Lexander (197*0 has shown that there is a positive correlation 

between the available sulfhydryl (-SH) and disulphide sulphur (-S-) 

content of seedlings and their susceptibility to bolting whereas in 

bolting resistant plants there is a high proportion of hydrophobic 

proteins in which -SH and -S- are bound and unavailable.

Exogenous gibberellins do not directly replace vernalisation, 

but appear to enhance the effects of vernalisation, especially stem 

extension, and the anti-gibberel1in CCC has more effect on stem growth 

than on flowering.

1.11.2 Auxins

Auxins have variable effects on flowering. At high concentra­

tions auxin always inhibits flowering (Leopold 1955) but promotive 

effects do occur, more commonly in long day species, and auxin can 

induce flowering in long day plants in threshold conditions (Lockhart 

1961).

Plants maintain apical dominance chiefly by production and 

transport of auxin from the apical meristem, and plants with 

unbranched habits of growth tend to have high apex levels of auxin 

(Leopold 1955). When plants become reproductive there is often a 

reduction in apical dominance with axillary buds growing out and 

flowering. Auxin polar transport declines in mature tissues (Wareing 

and Phillips 1970) and this may explain some of the increase in 

branching as vascular tissue in flowering plants is more mature than 

in vegetative plants. Cabbages, given a longer low temperature 

treatment, grew into more branched flowering plants (I to and Saito
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1 9 6 1). When chrysanthemum stem tips were chilled side shoots grew 

out (Schwabe 195^+a) , but this may simply be due to a reduction in 

trans1 ocation from the tip, due to low temperature rather than a 

change in vascular tissue, or a reduction in auxin supply.

De Zeeuw and Leopold (1955) applied auxin paste to brussels 

sprout plants with an 11-week juvenile stage. Fifty ppm NAA 

(napthalene acetic acid) increased flowering in the nine-week old 

group from one to six plants out of ten, and the authors suggest 

the auxin had reduced the juvenility of the plants. This rate of 

NAA reduced days to flowering in all age groups, however, and this 

is probably simply a case of auxin stimulating flowering in marginal 

conditions. In contrast, soaking seeds of Linum usitatissimum L. 

in NAA or 1 BA (indoylbutyric acid) during low temperature treatment 

reversed the effect of the treatment, but IAA (indoylacetic acid) 

had no effect (Chakravarti 195^). IAA or I BA applied to chrysanthemums 

after low temperature treatment encouraged vegetative diageotropic 

growth and delayed flowering. When plants were grown at 28°, IAA or 

I BA reduced flowering from 100 per cent for controls to 33 per cent 

(Schwabe 1970).

An interaction between NAA and temperature has been found in 

long day Wintex barley, short day biloxi soybean and winter rye.

If plants were grown at low temperatures, 10° or 3°, during or after 

treatment with NAA, most concentrations promoted flowering but at 

18° or 25°, flowering was unaffected or inhibited by NAA (Leopold 

and Guernsey 1953).

The effects of auxin on flowering of vernalisable species are 

somewhat contradictory, although NAA applied before or during low 

temperature growth generally promoted flowering, except on Linum



usitatissimum seeds - a species without an obligate vernalisation 

requirement - and NAA or I BA applied at higher temperatures tended 

to reverse vernalisation or inhibit flowering.

1.11.3 Abscissic acid

Abscissic acid is a growth inhibiting plant hormone. It reduces 

RNA (ribonucleic acid) and DNA (deoxyribonucleic acid) synthesis in 

some plant tissues, and frequently inhibits processes such as 

germination or breaking of bud dormancy which GA and cytokinins can 

stimulate (Wareing and Saunders 1971).

ABA (abscissic acid) has been shown to reduce the flowering of 

long day Lolium temulentem (Evans 1965, Wareing and El-Antably 1970) 

and spinach (Wareing and El-Antably 1970), and lily bulbs infused or 

injected with ABA before or after vernalisation were delayed in 

anthesis (Lin et al 197^). In blackcurrant, strawberry ana Pharbitis 

nil, all short day plants in which GA inhibits flowering, applications 

of ABA promoted flowering, although it had no effect on other short 

day species (Wareing and El-Antably 1970).

These inhibitory effects of ABA may be due to a general 

suppression of growth, or to ABA's an t i-g i bberel 1 i n activity rather 

than an effect on a specific flowering substance.

1.11.4 Carbohydrate level

The carbohydrate content of a plant is important in relation 

to vernalisation both as a source of energy and because of possible 

hormonal type of action (Watson 1955).

A carbohydrate source and O2 are essential for vernalisation 

(Purvis 1 9 6 1). Cereal seed embryos can be vernalised, presumably 

because they contain sufficient substrate for vernalisation but
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addition of a carbohydrate source to the medium reduces the number 

of days to anthesis (Purvis 1961) .

Exogenous sucrose can alter flowering behaviour. Root cuttings 

of chicory (Chicorium intybus) can be vernalised in vitro but 

vernalisation can be replaced by raising the sucrose concentration 

in the medium (Evans 1971).

Grainger (196^), using the swede as his principle example, 

postulates that a minimum leaf number (10 to 13 for swedes) and 

minimum carbohydrate content (*>9 per c<=nt for swedes) is necessary 

for flowering. He obtained his data for swedes by examining carbo­

hydrate content and leaf number throughout the growth of the crop 

and recording them at the time of flower initiation. He made no 

attempt to alter experimentally either carbohydrate content or leaf 

number and examine the effect of such alterations on flowering. All 

crops had been exposed to low temperature and all flowered, as might 

be expected, and his evidence on carbohydrate level and leaf number 

at flower initiation is purely circumstantial.

Sugar and starch levels tend to rise at low temperatures, 

especially soluble sugars (Rutherford and Naiem 197*0- The carbo­

hydrate levels in the stem tips of broccoli (Fontes and Ozbun 1971) 

and cauliflower (Sadik and Ozbun 1968) were examined in relation to 

chilling and flower initiation. Sugar and starch levels were higher 

in plants grown at 5° than in those grown at 20° and over.

Defoliation greatly reduced sugar levels and reduced starch levels 

slightly in broccoli, and flowering was greatly inhibited (Fontes and 

Ozbun 1971). The application of SADH (succinic acid 2,2 - dimethyl 

hydrazide) reduced sugar levels and flowering in broccoli, and GA 

increased flowering at 2 1 ° to 2 7°, and slightly increased starch
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levels (Fontes and Ozbun 1971). One week of exposure to 5 resulted 

in 55 per cent flowering of cauliflowers (Sadik and Ozbun 1968) but 

the absence of light or CO2 during the week at 5° reduced carbohydrate 

levels to those of plants grown at 20° to 26° and prevented flowering. 

Excluding light or C02 for the three days following the week at 5° 

reduced carbohydrate levels by a third, and flowering from 55 per 

cent (control) to 20 to 25 per cent. Three days at 33° or at 20° in 

darkness, following the 5° treatment also reduced carbohydrate levels, 

and prevented flowering (Sadik and Ozbun 1968). After low temperature 

treatment cabbages were distinguished as reproductive or vegetative 

by leaf shape, and the reproductive plants found to contain more 

sugars than the vegetative type plants (Miller 1929).

In these cases there is strong evidence of a correlation 

between carbohydrate level and flowering but as yet there is no 

evidence to suggest that the relationship is in any way causal.

In experiments with cabbage several treatments were used to 

lower carbohydrate levels. Growing cabbages at 30° for 30 days 

before low temperature treatment resulted in lower sugar levels and 

a poorer flowering response to the low temperature treatment than 

pre-treatment growth at 17° or 2A° (I to et al 19 66) . However, 

defoliation 30 days before low temperature treatment substantially 

reduced sugar and starch levels at the start of treatment, but the 

defoliation had very little effect on flowering.

This tends to suggest that flower induction and flowering are 

not controlled by carbohydrate levels, although minimum levels of 

sugar and starch may be necessary for both processes, and environ­

mental factors affect carbohydrate levels and vernalisation similarly.



1.11.5 Endogenous hormones

Changes in hormone levels occur during and after vernalisation. 

Most studies are of levels in the shoot tip, the usual site of 

vernalisation and flower initiation (see 1 .1 2 , page 3*0-

Gibberellins are frequently found to increase after low 

temperature treatment of vernalisable species (Evans 1971). Higher 

levels of gibbere1 1 in-1 ike substances were found in radish after seed 

vernalisation (Suge and Rappaport 1968, Suge 1970) and plant 

vernalisation (Suge 1970). Applications of CCC to radish reduced 

endogenous gibberellins and stem extension, but had no effect on 

flowering (Suge and Rappaport 1968). Hormone levels of cauliflower 

during and after low temperature treatment were studied (Thomas,

Lester and Salter 1971). Auxin levels rose then dropped after 

vernalisation treatment to a level below that of the control plants, 

cytokinins were somewhat lower during treatment but gibberellin 

levels were much higher than in the controls, during and after 

treatment. In both cold treated and control plants there was a peak 

of gibb°rellin level just prior to curd initiation - the formation 

of very immature flower buds.

Unvernalised lettuce seed had twice as much IAA as in vernalised 

seeds, but vernalised seeds had slightly more of an unidentified 

growth substance (Rf. 0.7 _ 0.86) (Fukui, Weller and Wittwer 1957)- 

A substance with a similar Rf value to the 'unidentified growth 

substance1 in vernalised lettuce seeds was found in other species.

High levels of a substance with Rf. 0.65 - 0.85 in 80 per cent 

isopropanol were found in long day Rudbeckia speciosa after three 

weeks of long day induction and in a vernalisable Chrysanthemum 

morifolium after three weeks low temperature. In a short day



C. morifolium the possible presence of the substance was masked by 

an inhibi tor (Ha rada and Nitsch 1 9 5 8).

Two different substances which promoted flowering in iris stem 

disks were found in iris scales maintained at 13°. The main substance, 

Rf.0.3 in 80 per cent isopropanol, was inactive at 25°, the other was 

gibberel1 in-1 ike (Rf. 0.5 and 0.78) (Pereira 1964).

The main identifiable effect of vernalisation on plant hormone 

levels is to increase gibberellins and gibberel1 in- 1  ike substances 

and there is some evidence that auxin levels are reduced.

1.11.6 Hormones - a summary

The initial effect of vernalisation is to bring about changes 

in the plant apex. The stimulus is probably immobile and as yet i

uncharacterised, and unlikely to be a known plant hormone. Hormone 

levels, however, do change during and after vernalisation and exogenous 

applications of hormones can alter the flowering behaviour of 

vernalisable species.

Gibberel1 in levels have frequently been observed to rise 

during and after vernalisation, and gibberellins are associated with 

stem extension at flowering, and promotion of flowering. Application 

of GA to unvernalised plants usually causes stem extension but does 

not readily cause flowering. Similarly, CCC applied to vernalised 

plants usually restricts stem growth but rarely affects flowering. 

However, gibberel1 in is the only plant hormone undoubtedly involved 

in vernalisation and subsequent flowering. The role of auxins in 

flowering of vernalisable species is not very clear, although high 

levels of applied auxin may be inhibitory. There is some'evidence 

that auxin levels may decrease at low temperatures, and the branching 

of rosette species at flowering suggests a decrease in auxin
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production or transport, although this may be partly an effect of 

plant age as well as flowering. The effect of other hormones is not 

we 1 1 -known, but abscissic acid which has growth depressing and anti- 

gibberellin properties might be expected to restrict vernalisation 

and there is some evidence that it does.

Plant carbohydrates are associated with flowering and it is 

possible that a high concentration of sugars is necessary for flower­

ing in some species but there is no evidence of a direct causal 

relat ionsh i p .

The vernalisation stimulus probably alters plant morphology 

and development to some extent through the action of hormones but 

the stimulus itself is initially retained in dividing cells of the 

meristem. This effect is similar to the phase change described when 

cells change from adult to juvenile (Brink 1962), although the 

vernalised state is more reversible that the attainment of adulthood.

1.12 The s i te of act i on

Dividing cells and cell activity are necessary for vernalisation 

(Leopold and Kriedemann 1975). Most evidence suggests that the 

apical growing point is the site of vernalisation (Salisbury 1963).

In rye, the embryo and not the endosperm, perceives the 

vernalisation stimulus (Purvis 1961). In a small experiment, Purvis 

(19^0) removed scutellum, roots or coleoptile from the embryo and 

found the embryo was vernalisable provided the shoot apex was present.

In plant vernalisation, experiments have shown that cooling
hr

the crown - growing-point and petioles - causes flowering in beet 

(Chroboczek 1933) and celery (Curtis and Chang 1930) whereas cooling
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the root is ineffective. Placing only the tips of chrysanthemum 

plants outside a warm greenhouse into low ambient temperatures 

greatly reduced the number of days to budding, compared with plants 

grown totally in the greenhouse (Schwabe 1954a) • Defoliating cabbage 

plants immediately before low temperature treatment had no effect 

on their response to treatment and 5 cm apical stem cuttings were 

also readily vernalised (I to et al 1966) , confirming that the growing 

point is vernalisable and leaves are not essential.

There is some evidence that other plant parts can be vernalised 

(Weilensiek 1961, 1962b). Leaf and root cuttings (1962b) of 

Lunaria biennis (honesty) readily form buds, and these cuttings can 

be vernalised, subsequently regenerating and growing into a flowering 

plant. Cuttings taken from whole plants after low temperature treat­

ment of leaves that were actively dividing during treatment will 

also flower (Wellensiek 19 63) . If the petiole base of a leaf cutting, 

which is the part of the cutting that regenerates the roots and 

buds, is removed after low temperature treatment, new buds form but 

the plant does not flower (Wellensiek 1963). This demonstrates 

that the vernalisation stimulus is perceived and retained only in 

the tissue that was actively regenerating during vernalisation, and 

i s not mob i1e .

In chrysanthemum, lateral buds and basal buds on underground 

stolons are vernalised, as well as apical buds. If plants are 

decapitated immediately after low temperature treatment lower shoots 

grow out and flower, but if the plant is left intact, lateral and 

basal buds remain dormant and become devernalised (Schwabe 1954b).

There is evidence that in vernalised rye not only are all buds 

in a vernalised condition, but remain so even when the plant is left

35.



intact. When all shooting tillers were removed from vernalised rye 

up to six weeks from sowing (Purvis 19^+8) small tillers grew out and 

became reproductive. However, not all tillers of partially vernalised 

plants will flower (Purvis 1948).

In rosette plants and in seeds the growing point is probably

the normal site of vernalisation but other plant tissue such as

honesty leaves can also be vernalised, provided the leaves are in 

active division and regenerating buds. Lower buds and tillers can 

be vernalised, either directly or possibly because the tillers and 

buds develop from a vernalised main shoot.

1.13 Translocation of the flowering stimulus

The vernalisation stimulus induced in the apical bud remains 

immobile initially, growing up with the apical menstem. By the 

time flower development is we 1 1 -advanced there is some evidence that 

a translocatab1e stimulus can be produced in the apex.

Bulbils of Cynosurus cristatus left on the vernalised mother

plant flowered, whereas those removed grew vegetatively (Purvis 1961), 

suggesting that a mobile substance is eventually produced. In a 

similar experiment Schwabe (1954b) removed the main apex from 

chrysanthemums at intervals after low temperature treatment and, 

from the flowering behaviour of the remaining lateral buds, concluded 

that translocation of a flowering stimulus only occurred after full 

floral initiation of the main apex.

Margara (1964) grew buds from flowering stems of beet (Beta
<>

vulgaris) and rape (Brassica napus) in vitro and compared them with 

similar buds on the plant, from which stem tips had been removed to
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encourage growth of lateral buds. All buds on the plant flowered 

whereas in the in vitro group only buds from high on the stem 

flowered, basal buds growing into vegetative plants. This suggests 

that a mobile flowering stimulus is produced at the growing tip and 

moves slowly down the stem. Studies of stem changes after photo- 

periodic induction show that a stimulus associated with flower 

initiation moves slowly down the stem, altering the activity of the 

stem cambium (Robers and Stuckmeyer 1948).

The effects of gibberellin on the plant are normally considered 

to be non-polar (Hess and Sachs 1972), and it is unlikely to be this 

flowering stimulus.

Grafting experiments with Chrysanthemum morifolium (Schwabe 

1954a), Cynosurus cristatus (Purvis 1961) and cauliflower (Sadik 1966) 

have failed to show any transfer of a flowering stimulus, but there 

have been some successes with grafting vernalisable species. Grafting 

a vernalised scion onto unvernalised biennial henbane (Hyoscyamus 

niger) (Salisbury 1963) caused the stock to flower, but as annual 

henbane and short day tobacco were also effective the effect is more 

probably due to the transfer of hormones that stimulate flowering 

in henbane rather than demonstrating the transfer of a specific 

flowering substance. Scions grafted onto seed vernalised stocks of 

a Japanese radish cultivar were induced to flower (Purvis 1961). 

Although the cultivar had a strong cold requirement, radishes are 

chiefly long day, and that may explain the successful promotion of 

flowering in the scions. Curtis, Hornsey and Campbell (1964) 

grafted scions of unvernalised bolting resistant beet onto a well- 

vernalised beet stock already developing flower buds. Several scions 

flowered, demonstrating that the flowering stimulus produced by 

vernalisation can cross a graft union.
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The failures in transfer of a flowering substance by grafting 

could be explained if a flowering stimulus is produced for only a 

short time so that unless scions are present at that time they will 

not receive the stimulus. It is also probable that more than one 

substance is produced during or after vernalisation. Auxiliary 

substances that assist the flowering process may be able to cross a 

graft union and encourage flowering especially in readily vernalised 

species, which can be induced to flower by applications of exogenous 

gibberellin or exposure to continuous light. Some other specific 

flowering substance may be necessary for flower induction in other 

species, but be immobile.

The failure to induce flowering on Cynosurus cristatus by 

grafting and the observation that attached bulbils in vernalised 

plants do flower, whereas isolated bulbils do not, could be explained 

by a requirement for flowering of both an immobile stimulus generated 

in all dividing tissue during vernalisation, and for mobile auxiliary 

substances produced only in the mother plant.

1.14 Apex changes at flower initiation

After flower induction changes occur in the apical meristem.

In crucifers for instance, brussels sprouts (Stokes and Verkerk 

1950) and Arabidopsis thaliana (Miksche and Brown 1964), in sugar 

beet (Chroboczek 1933) and other species the apical meristem 

initially changes from the flat triangular vegetative apex to a more 

raised and domed shape. In crucifers the apex then produces smaller 

leaves with enlarged buds in the axils, which tend to remain round

the apex giving it a star shaped appearance. As more flower buds
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are produced the leaf primordia become less prominent until the 

apex is surrounded by rounded flower primordia which develop 

sepals and stalks. The gradual change from reproductive to 

vegetative is accompanied by a change in leaf shape to a more 

simple strap-like leaf, often sessile near the top of the flowering 

stem (Hector 1936, Post 1936).

Some species, such as stocks (Heide 1962), require low tem­

perature for flower formation and will produce abnormal flowers if 

moved to a high temperature before flower primordia are formed, but 

in most species a period of low temperature is required only for 

flower induction, the visible change from vegetative to reproductive 

occurring at some time after the low temperature period.

1.15 Conclus i ons

A wide range of species respond to vernalisation either as 

imbibed seeds or as plants. Vernalisation occurs only in actively 

dividing cells, the normal site of action being the shoot apex. 

Changes in the apex - normally a raising of the apical meristem - 

may occur during low temperature treatment but generally flowers are 

formed after treatment, often many weeks later. The vernalisation 

stimulus is at first immobile in the apex, but in some species a 

stimulus has been shown to be translocated to other parts of the 

plant when flower formation is well-advanced.

Optimum temperatures are generally from 4° to 9° although 

higher and lower temperatures are effective. The process requires 

weeks and even months, in resistant species, to be complete. 

Vernalisation is quantitative and partial treatment results in fewer
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plants within a population flowering and a longer time for flower 

development. Many species have a juvenile stage during which plants 

cannot be vernalised and in most species older plants respond more 

to low temperature treatment than younger plants.

Other factors, such as daylength and light, during and after 

low temperature treatment, modify its effects, in most species long 

days promoting flowering. GA applications cause flowering in some 

vernalisable species, especially at lower temperatures, but auxins 

have less clear effects, in some conditions promoting flowering, 

in others reducing it.

Swedes are a vernalisable species: 11° caused limited

flowering (Peto 193^) but there is no evidence in the literature on 

the effect of lower temperatures. There are cultivar differences in 

bolting resistance (Peto 193^, Bell 1968).

The following chapters describe experiments designed to:

a) establish the effects of several factors, including plant age, 

duration of low temperature treatment, temperature of treatment 

and cultivar on the vernalisation process in the swede, with the 

aim of providing more detailed information that may be used by 

plant breeders to screen for bolting resistance;

b) study the site of action and trans 1ocation of the vernalisation 

stimulus.



EXPERIMENTAL
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2.1 THE DEVELOPMENT OF THE REPRODUCTIVE APEX

The effect of duration of low temperature on the development 

of the apex from vegetative to reproductive.

Experiment 1

The morphology of the apex and the stem extension of swedes 

was examined during the change from vegetative to reproductive 

growth, during and after low temperature treatment. Seventy-five 

four-week old Pentland Harvester swedes were grown out of doors from 

the end of October to December at 6° mean daily mean temperature for 

3 , 6 or 9 weeks, all treatments beginning on the same day,and 25 

plants were grown at 1 A° mean daily mean temperature as controls.

Four weeks of low temperature treatment was known to have resulted 

in a high proportion of plants flowering, and six weeks resuited in 

100 per cent flowering (see Thow 197*0, and so three weeks was chosen 

as a duration shorter than that known to cause some flowering, six 

weeks was expected to result in near 100 per cent flowering and nine 

weeks to ensure that some plants flowered even if conditions were 

less suitable for vernalisation than in the experiment mentioned.

Two weeks after the start of low temperature treatment, two 

plants from each of the four groups were dissected and their apical 

buds examined and drawn. This was repeated every 10 days for 13 weeks.

Results

A scale of apical bud stages was prepared from the drawings 

of the buds (Figure 2.1). The vegetative, flat, triangular apex 

(stage 0) first becomes raised and rounded (stage 1 ) often during 

low temperature treatment. The first flower primordia then appear, 

initially in leaf axils (stage 2 ) and then in place of leaves (stage 3)



FIGURE 2.1: Experiment 1 -
the development 

of the reproductive apex

Bud 
s tage

0-3 ill us trated

4 developed buds with peduncles

5 many buds with sepals

6 green buds visible without 
disturbing the leaves

0 . 2 5 m m

s t a g e  2



till the apex is clearly reproductive with stalked flower buds (stage 

k) . The first flower parts to form are the sepals which grow up and

round the bud till it is enclosed (stage 5) and then anthers, stigma

and petals successively form. The stem is meanwhile extending, and 

the developing flower head of green buds is eventually visible without

disturbing the leaves (stage 6).

The change from vegetative to reproductive occurred sooner 

after the return to warmer temperatures, the longer the cold treat­

ment had been (Table 2.1). The number of days (mean of five plants) 

from the end of low temperature treatment to flowering - that is, at 

least one open flower with dehisced anthers - was 163, 67 and 5*+ days 

for 3, 6 and 9 weeks low temperature treatment respectively and the 

number of days from the attainment of bud stage b in both plants 

sampled to the mean time of flowering for each treatment group was 

67, 39 and 35 days.

In the six and nine-week treatments flower buds (stage h) had 

already formed by the time stem extension was visible ( 2 - 5  rnm) but 

in the three-week treatment stems were 5 - 8 mm by the time plants 

had clearly changed to a reproductive state.
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TABLE 2.1: Experiment 1 - the effect of duration of low temperature
treatment on the development of the apicai bud at 10 
sequential samplings. Units of measurement are the scale 
of bud stages depicted in Figure 2.1

Plant age 
days

Duration of low temperature

0 weeks 3 weeks 6 weeks 9 weeks

44 0 0 0 0

54 0 0 0 0

65 0 1.5 1.0 0.5

76 0 0.5 1.0 0.5

85 0 1.0 2.0 1.0

97 0 1.5 3.5 1.0

105 0 1.0 5.0 2.0

115 0 2.0 5.0 5.0

125 0 1.0 5.0 5.0

135 0 2.0 5.0 5.0

Low temperature treatments were stafted at age 28 days 
and were finished at the age indicated by the double 
1ine in each column.



Discussion

The effect of low temperature on the swede is to initiate 

changes in the plant which result in flowering at a later time, 

rather than directly cause the development of flower buds. There 

was not a detectable change in the appearance of all plants sampled 

during and after low temperature treatment and the development of 

flower buds occurred some time after even the longest treatment 

period had ended.

Longer treatment not only increased the rate of change of the 

apex from vegetative and leaf producing to reproductive, producing 

flower buds, but also increased the rate of development of flower 

buds to open flowers.

After the shortest low temperature treatment stem extension 

was earlier relative to bud development than with six and nine weeks 

treatment, evidence that stem extension and flower formation are to 

some extent independent, and that stem extension probably requires 

a shorter low temperature period than- flower formation.



2.2 THE JUVENILE STAGE

The effect of the age of the plant at the start of low 

temperature treatment, duration of treatment and cultivar, on the 

flowering of swedes.

2.2.1 Experiment 2

Many photoperiodic and many vernalisable species cannot be 

induced to flower until plants have attained a critical stage of 

development, the change from juvenile to adult. The experiment was 

carried out to determine whether the age of swede seedlings affects 

their susceptibility to vernalisation, that is, whether swedes, like 

many other brassicas, have a juvenile phase.

Two swede cultivars were used, W i 1helmsburger, a green skinned 

moderately high dry matter swede, and Doon Major, a purple skinned 

lower dry matter swede. Three durations of low temperature treatment 

were used, 20, 30 and hO days at 7° in a growth chamber, and an 

untreated control (0 days at 7°). In experiment 1, six and nine 

weeks low temperature treatment had both resulted in 100 per cent 

flowering with little difference between them in days to flowering 

and so there appears to be no advantage in extending treatment beyond 

six weeks {hi days). Flower development after the three-week 

duration was much slower than after six weeks and so durations 

shorter than three weeks (21 days) are likely to give very slow, 

incomplete flowering and provide little information. The untreated 

control was included to check that conditions before and especially 

after the low temperature treatments were not vernalising so that 

any flowering could be attributed solely to the low temperature 

treatment.
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Two-week old swede plants given four weeks low temperature 

treatment became reproductive (Thow 197*0 and so any juvenile stage 

is likely to be below two weeks. Seeds were sown at intervals and 

raised at 16° mean daily mean temperature in a glasshouse so that 

they were 0, 1, 2, 4, 6, 8, 12 and 16 days old from sowing (see 

Figure 2.2) at the start of each duration of low temperature treat­

ment, including the untreated control plants which were 0, 1, 2, 4, 

6, 8, 12 and 16 days old when the other low temperature treatments 

ended. There were six plants per treatment (384 in total), plots 

being randomised within the low temperature chamber, and there were 

no replicates (see Appendix A).

The three durations of low temperature treatment ended on the 

same day and all plants, including the untreated control plants, 

were moved to a growth chamber at 13°, with warm white fluorescent 

light on 16-hour day/8-hour night for two weeks to reduce the risk 

of devernalisation by high post-vernalisation temperatures. The 

swedes were planted out in a field plot on 21 May at 15 cm spacing 

in the rows, 75 cm between the rows, the plot having previously 

been fertilised (see Appendix A ) .

The number of true leaves 1 cm and over, radicle length, 

hypocotyl height (from soil to cotyledons) and cotyledon width were 

measured where appropriate on each plant at the beginning and end of 

low temperature treatment. The date of first flowering was 

recorded of all plants flowering within 110 days of the end of the 

low temperature treatments. One hundred and thirty-four days after 

the end of low temperature treatment, plants were scored for flower 

stage on the scale set out below, a description of the whole plant.



FIGURE 2 .2 :  Experiment 2 - four-day o ld  p la n ts  in the top
pots, six-day old plants below. W i 1helmsburger 

swedes on the left, Doon Major on the right. Plant pots
7.5 cm in diameter

Ten-day old plants at the top, 16-day old plants below. 
W i 1 he 1msburger on the left , Doon Major on the right
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Stages of flowering in the swede 

Stage N o . Descri pt i on

1 Rosette (vegetative)

2 Stem beginning to extend, internodes 1 cm or over

3 Stem extending, green flower buds just visible, the 

same as bud stage 6 (see Figure 2.1)

4 Flower buds visible, some of them yellowish in colour and 

almost open

5 Open flowers, but more buds than flowers on the central 

axis (main stem) and no seed pods set

6 Open flowers, flower buds still present, but more flowers 

than buds, and some seed pods set, on the central axis

7 Flowers and seed pods only on the central axis, no 

flower buds present except on side branches

8 No flowers on the central axis, but flowers still present 

on side branches

9 Only seed pods present on the whole plant

The flower stage measurement gave information on the vegetative 

or reproductive condition of all plants whether they had flowered 

within 110 days or not.

Results

The longer the duration of low temperature treatment the more 

plants flowered (Figure 2.3) and the shorter the time to flower 

(Table 2.2) with no plants flowering in the untreated control. Age 

of plant had less effect than duration of low temperature treatment 

but more older plants flowered than younger plants.

i»6.
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The following analyses with X were done by David Cooper of 

the ARC Unit of Statistics. Considering plants of both cultivars 

in the 30 days low temperature treatment, and comparing plants two 

days old and younger with plants four days old and over at the start 

of low temperature, there is a much greater number of plants flower­

ing in the older group (x2p<0.00l). If four-day old plants are 

included in the younger group, or if two-day old plants are included 

in the older group, the difference between the older and younger 

plants is decreased. With 20 and *40 days low temperature treatment 

the difference is not so obvious as very few plants flowered in the 

20-day treatment, none aged less than six days, and almost all plants 

flowered in the 40-day treatment, but if all three low temperature 

treatments are included there is still a significant difference 

between the proportions of plants flowering in the *4 to 16 days 

group compared with the 0 to 2 days group (x 2P<0,001). There was 

some evidence of an increase in flowering with age in Doon Major 

plants aged 6 to 16 days given 30 days low temperature treatment 

but on analysis the evidence of such an increase was found to be 

insufficient. Slightly more Wilhelmsburger than Doon Major plants 

flowered and if plants 4 days old and older in the 30-day treatment 

are compared, the proportion of Wilhelmsburger plants flowering is 

much greater (x2 p<0.005).

The flowering data was also analysed using the GLIM program 

(General Linear Interactive Modelling) (see Appendix B ) . The 

flowering data can be expressed as a proportion of plants flowering 

out of the total number of plants in a treatment and the distribution 

of the data is binomial - a plant has either flowered or not 

flowered. A large number of the proportions of plants flowering in

*♦8.
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each treatment are very small, near 0 per cent, or very large, near 

100 per cent. Transformation of the flowering data to a logit scale - 

logee (p/l-p) - where p is the probability of flowering in the treat­

ment, makes small differences in the 0 per cent and 100 per cent ends 

of the scale larger.

The transformed data can then be fitted to treatment factors 

in a model (see Appendix B). If a treatment factor is on a linear 

scale, for instance duration of low temperature, 20, 30 and ^0 days, 

a linear component of the deviance attributable to the factor can be 

examined. The mean deviance, that is, total deviance divided by the 

appropriate number of degrees of freedom for the factor or factor 

component, removed from the model by addition to the model of a

m o
factor or component of a factor is compared directly with x with 

the same number of degrees of freedom as the factor or component, and 

if greater than the appropriate x2 , the effect of the factor is 

si gni fi cant.

Duration of low temperature significantly affected flowering 

and the linear component of duration accounted for almost all of the 

deviance attributable to duration of low temperature treatment 

(total effect of duration, mean deviance 106.8, compare w i t h x 2 df 

2; linear component of duration, mean deviance 2 1 1 .7 1 , compare with 

X2 df 1). Neither plant age nor cultivar affected flowering signif- 

i cantly.

A print out of the observed and fitted data for the previous 

model can be obtained with a linear predictor which gives the fitted 

data on a logit scale. The number of days required to cause 50 per 

cent flowering can be calculated from the linear predictor data.

Around 50 per cent flowering the population will be responding most
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rapidly and most linearly in increased flowering, to increased 

duration of low temperature and so it is at the 50 per cent flowering 

point that comparisons between separate response curves are most 

conveniently made. On the logit scale 50 per cent flowering is 

loge (0.5/1-0.5), that is, loge 1, which is zero, and so on a logit 

scale the 50 per cent flowering point occurs where the response line 

cuts the x-axis at y = 0. On fitted straight lines this point can 

be calculated from the equation for a straight line, y = mx + c and 

therefore at 50 per cent flowering y = 0 on the logit scale and x, 

the number of days of low temperature required to cause 50 per cent 

flowering, x = -c/m.

Fitting the data to the linear effect of duration only, this 

figure is 2 9 . 2 days at 7°. If the effect of plant age is included 

in the model and fitted lines derived for each age, the number of 

days at 7° required to cause 50 per cent flowering of both cultivars 

in each age treatment can be derived, see below:

Plant age at the start of 
low temperature treatment

Number of days at 7° required to cause 
50 per cent flowering of 

W i 1helmsburger and Doon Major

0 days old 35.0 days at 7
,o

12
16

2

b

6

8

33.9 

36.1 

28.0 

25.0

27.1

26.9

23.1

This analysis with GLIM has failed to show some of the effects 

which are obvious in the data itself and which are demonstrated in 

the analyses done by David Cooper (ARC Unit of Statistics) but the
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50 per cent flowering data for the eight plant ages confirms the 

previous result that there is a large difference in susceptibility 

to flowering between plants younger than four days and those four 

days old and over.

Only the plants that flowered provided data on the number of 

days from the end of low temperature treatment to flowering and so 

there was an unbalanced number of plants contributing to each treat­

ment mean, and analysis of the data by a standard analysis of variance 

was not possible. The data for days to flowering was analysed 

instead using the GLIM program (see Appendix B), this time with 

untransformed data and a normal distribution. There is a facility 

in the program by which the data of each plot mean can be weighted 

by the number of plants contributing to that mean so that in fitting 

the data to a model, plot means derived from few plants do not 

disproportionately affect the fit. The distribution of the data is 

normal and the significance of factors is found with the variance 

ratio and F tests.

The number of days to flowering was affected by the linear 

component of duration of low temperature (F test p<0.001) but plant 

age and cultivar had no effect (see Table 2.2).

As the experiment was unreplicated the deviance left after 

removing the three treatment effects - duration of low temperature, 

cultivar and plant age - the combined deviance of all the interactions, 

was used as the error term with the appropriate number of degrees of 

freedom for the calculation of variance ratios and F tests. None of 

the second order interactions were significant and there is no 

reason for expecting the third order interaction to be significant 

and so it is not unreasonable, although not strictly valid, to 

attribute this interaction deviance to error.
t \* \ \
V >



Flower stage (see Table 2.3), analysed in a standard analysis 

of variance, was affected by duration of low temperature, age and 

cultivar treatments in the same way as numbers of plants flowering, 

and plants that flowered earlier were more advanced in flower stage 

at the end of the experiment. The longer the low temperature treatment 

the more advanced the flower stage attained (F test p<0.001, with 

duration x cultivar x plant age interaction as the error term). The 

20 and 30-day treatments and the 30 and AO-day treatments differed 

at the 0.1 per cent level (least significant difference) but the 20- 

day treatment only differed from the control plants at the 5 per cent 

level. Older plants were more advanced in flower stage than younger 

plants (F test p<0.05, effect of age) although there was little 

difference within the group A to 16 days, and within the juvenile 

group 0.to 2 days. All the untreated control plants were vegetative 

(flower stage 1) at the end of the experiment and were not included 

in the above analysis of variance.

The longer was low temperature treatment the greater was the 

production of leaves during the treatment (Table 2.A) (F test p<0.001 . 

effect of duration), older plants produced more leaves than younger 

plants (F test p<0..001, effect of plant age) and Wilhelmsburger 

produced more leaves than Doon Major (F test p<0.001) . The third 

order interaction was used as the error term as in the analysis of 

flower stage data.

Discussion

There is a short juvenile stage of under four days in both 

cultivars, although slightly more obvious in W i 1helmsburger. Longer 

durations of low temperature treatment resulted in a greater
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proportion of plants flowering and in earlier flowering, and Doon 

Major flowered slightly, but not significantly, earlier than 

Wilhelmsburger but fewer Doon Major plants flowered in total, 

suggesting that time to flower is not solely controlled by the 

factors that control the number of plants flowering.

The greater leaf production of older plants during low 

temperature treatment will be partly because very young plants had 

not even developed leaf primordia at the start of treatment but 

the growth rate of the older plants is likely to be greater than 

that of very young plants, initially.

Flower stage, a measure of the reproductive condition of all 

plants, was affected by treatments in the same way as numbers of 

plants flowering, and so the selection of a date when recording of 

flowering in the experiment was ended will not have distorted the 

results to any great extent.

During low temperature treatment plants are growing slowly 

and although they may have been juvenile at the start of low 

temperature treatment all plants had at least expanded cotyledons 

8 to 23 mm wide by the end of low temperature treatment, that is, 

equivalent to plants eight days old grown in warmer conditions. In 

the 40-day treatment almost all plants had at least- one leaf over 

1 cm at the end of low temperature treatment. During a long period 

of low temperature, such as 40 days, seedlings will grow out of 

juvenility and may be vernalised and later flower so that it is 

difficult to determine the precise age at which juvenile plants 

become adult. The age at which the change occurs will also be 

affected by growth conditions and seedling vigour, and juvenility 

may be quantitative with plants responding increasingly to
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vernalisation as they grow older, although the evidence from the 

experiment suggests that it is a sudden change and that there is no 

very marked response to increasing age once adulthood is reached.

2.2.2 Experiment 3

In experiment 2, 20 days low temperature treatment had resulted 

in very few plants flowering, and 40 days in almost 100 per cent 

flowering, and so a similar experiment was carried out with more 

duration of low temperature treatments between 20 and 40 days, in 

the range of maximum response in terms of flowering, to increased 

duration of low temperature. Six durations of low temperature were 

used, 20, 24, 28, 3 2 , 36 and 40 days, all treatments ending on the 

same day.

The youngest plants used were two days old, as experiment 2 

had indicated that this age was juvenile, and the oldest 10 days as 

there had been little or no effect of increasing age after four days 

old. There was some indication that six-day old plants flowered more 

readily than four or eight-day old plants (see Figure 2.2) and so 

these three ages were included. Plants were raised at 16° mean 

daily mean temperature in a glasshouse and were 2, 4, 6, 8 and 10 

days old from sowing at the start of low temperature treatment.

Wi lhelmsburger and Doon Major cultivars were again used, and there 

were five plants per treatment in a completely randomised design.

The plants were treated at 5 ± 0.5° in a growth chamber and at 

the end of treatment the temperature was raised to 13 ±2.0°. After 

two weeks the plants were moved to a glasshouse compartment at 14.6° 

mean daily mean temperature. The plants were repotted into 12.5 cm
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pots and remained in the compartment for four weeks before being 

moved back to the main glasshouse and grown on at 16.4° mean daily 

mean temperature. On 21 June, 16 weeks after the end of low 

temperature treatment, those plants that had not flowered were 

planted out in a previously fertilised field plot (see Appendix A).

The experiment was terminated on 24 August, 176 days after the end 

of the low temperature treatment.

In the previous experiment no control plants had flowered and 

so a control was not included in this experiment as any vernalising 

conditions after low temperature treatment would affect all duration 

of low temperature treatments equally. Plant size, as in experiment 

2, and the number of visible leaves (see Appendix A) were measured 

at the beginning, middle and end of low temperature treatment and a 

surplus plant from each pot was dissected at these times and the 

total leaf number, that is, including all leaf primordia, was recorded, 

giving a mean value of total leaves for each plot. The date of 

first flowering was recorded.

Results

Far fewer two-day old W i 1helmsburger plants flowered than 

older plants (x2p<0.00l) but there was little effect of age on the 

flowering of Doon Major plants (see Figure 2.4). The proportion of 

plants flowering out of the total number of plants was transformed 

to a logit scale and a model fitted to it using the GLIM program.

The linear effect of duration and the interaction between the linear 

effect of plant age and cultivar were both significant (x2P<0.001) 

and so the model that fitted the data best was the 1 inear-effect of 

duration, the linear effect of plant age and the interaction of the 

linear effect of plant age and cultivar. The program requires that
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one of the factors in an interaction is fitted before the inter­

action can be fitted. The linear effect of age was slightly 

greater than the effect of cultivar and so it was used. This model, 

however, is too simple to fit the data very well. In experiment 2

it is clear that the effect of plant age is not linear although

flowering is greater in older plants. The model does demonstrate 

the difference between the cultivars in their response to increasing 

plant age. As duration of low temperature treatment increased the 

proportion of plants flowering increased and as plant age increased 

the proportion of plants flowering increased slightly in Wilhelmsburger 

but hardly at all in Doon Major. The juvenile stage in Wilhelmsburger 

appears to be greater than two days but below four days, but in Doon 

Major to be less than two days.

Including the effect of cultivars in the model did not 

significantly improve the fit of the model to the data but slightly 

more W i 1helmsburger plants flowered than Doon Major plants. If the 

treatments 28 and 2*4 days low temperature which gave flowering

percentages of 33 to 88 per cent are considered and juvenile (two-

day old) plants excluded, there is a difference between the cultivars, 

more Wilhelmsburger than Doon Major plants flowering (x2p<0.05). This 

result is similar to that in experiment 2 in which there was a 

difference between the cultivars only in plants four days old and 

older in the 30-day treatment.

The number of days at low temperature required to cause 50 

per cent flowering can be calculated from y = 0 on the logit scale.

For Wi lhelmsburger it would take 25.6, 25.1 , 2*4.6, 2*4.1 and 23-6 

days at 5° for 50 per cent flowering of 2, *4, 6, 8 and 10 day-old 

plants respectively and 2*4.6, 2*4.3, 2*4.0, 23-7 and 23-*+ days at 5°



for 2, b, 6, 8 and 10 day-old Doon Major plants. These estimates 

are not very satisfactory as the model from which they are derived 

did not fit the data very well.

Using GLIM,a model was fitted to the number of days to 

flowering, weighted by the number of plants contributing to each 

treatment and mean (the number of flowering plants) as in experiment 

2 (and see Appendix B) (Table 2.5). The linear effect of duration 

and the linear effect of plant age were significant at the 0.1 per 

cent level (F test) and the effect of cultivar at the 5 per cent 

level. As duration of low temperature increased, the number of 

days from the end of treatment to flowering decreased, and younger 

plants were slightly faster in flowering than older plants. Doon 

Major flowered slightly earlier than Wilhelmsburger.

The production of visible leaves (Table 2.6) and the 

production of all leaves including leaf primordia (Table 2.7) during 

the low temperature period was greater the longer the duration of 

the low temperature treatment (F tests, effect of duration, p<0.001) , 

and the older the plant at the start of treatment (F tests, effect 

of age, p<0.001). Wilhelmsburger produced more leaves and primordia 

than Doon Major (F.test, p<0.001).

Discussion

From this experiment there is good evidence of a juvenile stage 

of under four days in Wilhelmsburger but no evidence of juvenility 

in Doon Major although it is likely that Doon Major has a juvenile 

stage under two days. A comparison of growth measurements in the 

two experiments show that some plants were slightly more advanced 

in experiment 2, more two-day plants having the seed-coat split,

59.
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and six-day and older plants having larger cotyledons, but the four- 

day old plants were similar in radicle development in both experi­

ments and so comparisons of the effects of plant age in both

experiments are valid in terms of plant development.

Duration of low temperature affected vernalisation qualitatively, 

in numbers of plants flowering, and quantitatively, longer durations 

considerably reducing the time to flowering.

Duration of low temperature treatment, age of plant at the

start of treatment and cultivar affected leaf and primordia production 

during low temperature in the same way as visible leaf production was 

affected by treatments in experiment 2, during low temperature.



2.3 TEMPERATURE OF VERNALISATION

The effectiveness of three vernalisation temperatures on the 

flowering of two swede cultivars.

2.3.1 Experiment b

Temperatures in the range A0 to 9° induce flowering most effect­

ively in the majority of vernal¡sable species (see ^.b, page 10). To 

find what temperature is most effective in inducing swede plants to 

flower, four-week old Wilhelmsburger and Doon Major swedes were grown 

for 3, b, 5 or 6 weeks at 5°, 8° or 11°, in three growth cabinets.

The three temperature treatments were unreplicated but within the 

cabinets there were two blocks, one block in the better illuminated 

centre of the cabinet and one at the sides of the cabinet. There were 

seven plants per plot.

Differences in response of cabbage cultivars to different 

temperatures have been observed ( I to and Saito 1961, Heide 1970) 

and so two cultivars were used. Four durations of low temperature 

were used to give a range of flowering for each temperature. Air 

temperatures within the cabinets were recorded automatically every 

two hours, from thermistors. There were daily fluctuations in cabinet 

temperatures as outside air temperatures rose and fell, especially in 

cabinet 1 and least in cabinet 3- There was also some variation in 

daily mean temperatures,again greatest in cabinet 1 and least in 

cabinet 3.

Plants were raised for four weeks at 16.6° mean daily mean 

temperature in a glasshouse bed so that they would be well into the 

adult stage by the start of low temperature treatment. At the end of 

treatment cabinet temperatures were raised to 13 ± 1-5° and after

6b.
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three weeks the swedes were planted in a fertilised field plot on 

27 July with 15 cm between the plants and 75 cm between the rows.

Visible leaf number was recorded immediately before and after 

low temperature treatment. The date of first flowering was recorded 

and the flower stage (see experiment 2) of all plants was assessed 

at the end of the experiment, 92 days after the end of low temperature 

treatment, to give a measure of the reproductive condition of all 

pi ants.

Results

Treatment temperatures of 5° and 8° resulted in almost the same 

numbers of plants flowering and the same number of plants with 

visible flower buds, flower stage 3. After six weeks at 11° only 

one plant flowered and only seven plants had visible buds at the 

end of the experiment (see overleaf).

Duration of low temperature treatment had the largest effect on 

flowering, only one plant flowering after four weeks of treatment, 

compared with 21 plants after five weeks and 45 after six weeks but 

no plants had visible buds after three weeks treatment although 39 

per cent had extending stems (flower stage 2).

The proportion of plants flowering (number of plants flowering 

over total number of plants in each plot) was trans’formed to a logit 

scale and using the GLIM program (see experiment 2 and Appendix B) a 

model was fitted to the transformed data. The linear effect of 

duration and the effect of temperature were significant at the 0.1 

per cent level, the longer the duration of low temperature treatment 

the more flowering, and the effect of cultivar at the 5 per cent level, 

Wi lhelmsburger flowering more than Doon Major. There was virtually no
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buds (flower stage 3 and up, excluding flowering plants).

Plants with visible flower buds
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quadratic or other effect of duration but there was a significant 

linear and quadratic effect of temperature as flowering declined more 

steeply from 8° to 11° than from 5° to 8°. None of the interactions 

were significant and so the model that fitted the data best was 

linear effect of duration plus cultivar effect plus effect of 

temperature, shown in Figures 2.5 and 2.6. Calculating the duration 

of low temperature which will cause 50 per cent flowering- in each 

treatment can be found from the point at which the fitted response



FIGURE 2.5: Experiment 4 - the effect of duration of low tem­
perature treatment on the flowering of W i 1 he 1msburger 

and Doon Major swedes (means of the three temperature treatments)

W e e k s  at low temperature

FIGURE 2.6: Experiment 4 - the effect of temperature of low tem­
perature treatment on the flowering of Wilhelmsburger 

and Doon Major swedes (means of k, 5 and 6 weeks low temperature" 
treatments)
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lines cut the x-axis at y = 0. WiIhelmsburger requires 35-7 days 

at 5°, 36.2 days at 8° or 51.0 days at 11° for 50 per cent flowering, 

and Doon Major requires 38.5 days at 5°, 39-1 days at 8° or 53-8 days 

at 11° for 50 per cent flowering.

Days to flowering were analysed using GLIM. The linear 

component of duration of low temperature treatment and the linear 

component of temperature of treatment significantly affected time to 

flower (F tests p<0.00l), the longer the duration the earlier flower­

ing and the lower the temperature of treatment the earlier flowering, 

but there was no difference between the cultivars (Table 2.8).

There was a small difference in final flower stage between 5° 

and 8° but a much lower flower stage after treatment at 11° (Table 

2.9). Cultivar had no significant effect on flower stage but the 

longer the duration of low temperature treatment the greater the 

final flower stage attained (F test, normal analysis of variance, 

effect of duration p<0.001). There was a significant interaction 

in flower stage (F test p<0.001) between temperature and duration of 

low temperature treatment, probably because very few plants became 

reproductive after 11°, and an increase in duration only increased 

flower stage slightly compared with the 5° and 8° treatments, in 

which flowering and flower stage increased considerably with an 

increase in duration of low temperature treatment.

Production of visible leaves during low temperature treatment 

increased the higher the temperature (F test, effect of temperature, 

strictly speaking the effect of the cabinets in which the plants were 

grown p < 0.001), increased with longer duration (F test, effect of 

duration p<0.001) and Wi1helmsburger produced more leaves than Doon 

Major (F test P<0 .001) (Table 2.10).
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Discussion

Five degrees and 8° are almost equally effective in inducing 

flowering. Temperatures between 5° and 8° may be more effective in 

flower induction of Wilhelmsburger plants or there may be little 

difference in the range 5° to 8°, but 5° is obviously more effective 

than 8° for Doon Major, and lower temperatures may be still more 

effective. Eleven degrees is only marginally vernalising but there 

is no evidence from the experiment on the lower temperature limits 

of vernalisation. Due to the fluctuations in treatment temperatures, 

the comparison is not strictly between 5°, 8° and 11° but between 

a range of temperatures, averaging 5°, 8° or 11°.

The number of days required to cause 50 per cent flowering are 

longer than might be expected from earlier experiments treated at 

similar temperatures but this experiment was terminated 92 days after 

the end of low temperature treatment and there was less time in which 

plants could flower. The estimated number of days required at 11° 

to cause 50 per cent flowering is not as reliable as the estimates for 

5° or 8° as it is based on the flowering of only one plant.

As the temperature treatments were unreplicated, temperature 

effects cannot be separated from other effects of the cabinets, nor 

the immediate post treatment conditions, as plants remained for three 

weeks at 1 3 ° within the cabinets in which they were treated at low 

temperature. However, the effects of the cabinets are distinct and 

probably almost entirely due to the different low temperatures at 

which the cabinets were running during low temperature treatment.

The effect of duration - the longer the low temperature treat-
t-r

ment the more plants flowered and the faster the rate of flowering - 

is the same as in previous experiments.

71.
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Although temperatures in the cabinets fluctuated around the 

mean, leaf production was greater the higher the mean temperature, 

and so the effects of the mean temperatures calculated from the hourly 

readings agrees with the expected effects of temperature on plant 

growth. It is possible that the more vigorous growth of W i 1helmsburger 

in terms of leaf production during the low temperature period, observed 

also in experiments 2 and 3, is associated with its greater 

susceptibility to flowering.

2.3.2 Experiment 5

Experiment b was repeated, with constant temperatures 3°, 6° 

and 9°. Eleven degrees had been much less effective than 5° or 8° 

in experiment b and so a lower temperature, 9°, was selected as the 

upper limit. Five degrees and 8° had been almost equally effective 

and so a temperature in between, 6°, was used and 3° as the lowest 

temperature in the expectation that effectiveness of vernalisation 

might be declining at 3°.

W i 1helmsburger and Doon Major plants were exposed to 3, 5

or 6 weeks of low temperature, all treatments ending on the same day, 

as in experiment b. As before, there were two blocks within each 

cabinet but only six plants per plot.

Plants were 15 days old at the start of low temperature treat­

ment and after treatment the cabinet temperatures were raised to 12° 

and all treatments randomised among the three cabinets. After a 

week the plants were moved to a cool compartment at 11.8° mean daily 

mean temperature for three weeks before being repotted to 12.5 cm 

pots and moved back into the glasshouse bed at 17.2° mean daily mean
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temperature. Eighty-five days after treatment ended the piants were 

repotted to 19 cm pots.

Visible leaf number was recorded immediately before and after 

low temperature treatment. Date of flowering and apical bud stage 

(see Figure 2.1) of all non-flowering plants were recorded 112 days 

after the end of treatment, all plants with bud stage 3 or more being 

classed as reproductive.

Results

More plants flowered after treatment at 6°, and fewest after 

9°. Slightly more plants became reproductive after 6° than 3° and 

fewer plants were reproductive after 9° but the difference was much 

less than for flowering plants.

Between 6° and 9° there was a significant difference in numbers 

flowering (x2 p<0.001) and reproductive (x2 p<0.05) but between 3° and 

9° there was a significant difference only in numbers flowering 

(y2 p<0.001) and there were no significant differences between 6° and

3°.

The proportion of plants flowering in each treatment was 

transformed to a logit scale and a modei fitted to it, using the GLIM 

program, as in experiment 2 (and see Appendix B). The model which 

fitted the data best was the linear effect of duration plus the 

effect of cultivar plus the effect of temperature plus the interaction 

of the linear effect of temperature with cultivar. All effects were 

greater than x2 at the 0.1 per cent level. The linear effect of 

duration accounted for almost all the deviance removed from the model 

by the addition of duration to the model, that is the longer the 

duration the higher the proportions of plants flowering (on a logit



W D W D
_  O O6 9

The effect of cultivar (W - Wilhelmsburger, D - Doon Major) 
and temperature of treatment, 3d , 6° or 9°, on the number of 
plants flowering, and the number with apical buds at stage 3 
or over, but excluding flowering plants.

3 and over,

X v X v !  Flowering plants • • • • • • 1 • • • • • • \
• • «

scale). There were three temperature treatments and therefore two 

degrees of freedom and two possible effects of temperature, a linear 

and a quadratic effect. The linear effect of temperature was much
tr

greater than the quadratic effect but both effects were significant

Plants with apical buds at bud stage 
N ^ V x S .  excluding flowering plants

N u m b e r  o f  

p l a n t s

4 0 “

at the 0.1 per cent level.



The fitted values of the model are shown in Figures 2.7 and 2.8.

The interaction between temperature and cultivar is obvious, Doon Major 

flowering as readily as W i 1helmsburger after treatment at 3°, but flowering 

less than W i 1helmsburger at 6° and especially at 9°. The optimum 

temperature for flower induction is probably around 3° or below for Doon 

Major but is clearly around 6° for W i 1helmsburger. From the fitted lines 

the number of days of low temperature treatment required to cause 50 per 

cent flowering can be calculated for the different treatments, W i 1helmsburger 

plants requiring 2 7 . 2  days at 3°, 2 3 . 2  days at 6° or 29-9 days at 9°, and 

Doon Major requiring 27.2 days at 3°, 29.6 days at 6° or A2.5 days at 9°, 

for 50 per cent flowering.

The treatments had similar effects on the number of reproductive 

plants although a relatively larger proportion of Doon Major plants became 

reproductive after treatment at 9° compared with the number flowering after 

9°.

Days to flowering were analysed using GLIM (see experiment 2 and 

Appendix B) . Linear components of duration and of temperature significantly 

affected days to flowering (F tests p<0.001). The longer the duration of 

low temperature and the lower the temperature of treatment the earlier was 

flowering and WiIhelmsburger flowered earlier than Doon Major (F test 

p<0.025) (Table 2.11) . Th ere was an interaction between the linear effect 

of temperature and the effect of duration of treatment (F test p<0.005) as 

there was a slight decrease in time to flower at higher temperatures in the 

three-week treatment but in the A, 5 and 6-week duration treatments, the 

longer the duration, the greater the increase in time to flower as temperature 

of treatment increased.
it

The mean production of visible leaves during low temperature treat­

ment was greater the longer the treatment and the higher the treatment

75.
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FIGURE 2.8: Experiment 5 ~ the effect of temperature of low tem­
perature treatment on the flowering of WiIhelmsburger 

and Doon Major swedes (means of the four duration of low temperature 
treatments
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temperature (F test, effect of temperature p<0.001 , compared with 

within main plots error) (Table 2.12) and was slightly greater in 

Wi 1helmsburger than Doon Major (F test p<0.001).

Discussion

The optimum temperature for inducing flowering in Wilhelmsburger 

was 6°, but 3° was more effective for Doon Major and it is possible 

that an even lower temperature might be more effective than 3°.

A much smaller proportion of Doon Major plants flowered after treat­

ment at 9° than W i 1helmsburger plants and this difference between 

the cultivars suggests that no one precise temperature is suitable 

for assessing bolting resistance of swedes. Doon Major will appear 

more resistant, relative to W i 1helmsburger, the higher the treatment 

temperature. These differences between the cultivars are also apparen 

when plants with developing flower buds (bud stage 3 and over) are 

included with the flowering plants.

The interaction of the linear effect of temperature with the 

effect of duration, in which the lower the treatment temperature the 

greater the response to increased duration of treatment in terms of 

reduced time to flowering, can be explained if it is assumed that the 

accumulation of substances that affect the rate of flower development 

(measured by days to flowering) is much faster at lower temperatures 

and so an increase in duration of a low temperature treatment has a 

much greater effect on the accumulation of these substances than a 

similar increase at a higher temperature, and so affects the rate of 

flowering more. In both W i 1 he 1msburger and Doon Major, 3° was the 

optimum temperature for rate of flowering and so some other processes 

must be involved in determining the rate of flower development besides 

those governing whether a plant flowers or not.
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Increased leaf production during low temperature treatment 

caused by higher treatment temperatures does not appear to be related 

to the effectiveness of the treatment in causing flowering but the 

greater leaf production of W i 1helmsburger may be associated with its 

higher percentage of flowering plants.

The smaller number of days required for 50 per cent flowering 

in this experiment compared with experiment b is chiefly due to the 

experiment being extended for 20 days more than experiment b and to 

the higher temperatures in the glasshouse during the flowering period 

compared with experiment b, which flowered out of doors, in September.
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l.k THE EFFECT OF POST-VERNALISATION TEMPERATURES

The effect of five different temperatures during one or two 

weeks immediately after low temperature treatment on the flowering 

of W i Ihelmsburger and Doon Major swedes.

Experiment 6

The temperature immediately following low temperature treat­

ment (post-vernalisation temperature) can have a large effect on 

flower induction, especially when the treatment period has been short 

(Heide 1970), high temperatures tending to reverse the effects of the 

low temperature treatment. The effect of a period of low temperature 

in the field or in experimental conditions cannot be predicted unless 

there is some knowledge of the post-treatment environment and its 

deverna1îsing effect. To investigate the effects of post-treatment 

environment in swedes, 50 plants each of W i lhelmsburger and Doon 

Major were raised for seven weeks at 16° mean daily mean temperature, 

repotted to 12.5 cm pots and given a low temperature treatment for 

four weeks from mid-December to mid-January, at 8° mean daily mean 

temperature in an unheated glasshouse. A fairly short treatment 

period was used so that plants would be more susceptible to subsequent 

devernalisation. Immediately after treatment the plants were moved 

to five different environments, for one or two weeks with five plants 

per treatment.

1. Glasshouse bed: 18° daily mean temperature under sodium

lamps supplementing daylength to 18 hours, in the glass­

house bed.

2. Glasshouse compartment: 19° mean daily mean temperature 

in natural daylight (short days).



3. Glasshouse, beside bed: 16° mean daily mean temperature

in natural daylight, protected by screens from glasshouse

1i ghts (short days).

k. Glasshouse compartment: 14° mean daily mean temperature

in natural daylight (short days).

5. Unheated glasshouse: 8° mean daily mean temperature

in natural daylight (short days).

At the end of the one or two-week periods plants were moved

into the glasshouse bed (environment 1) and grown on for 18 or 19

weeks before being planted out in a previously fertilised field plot 

(see Appendix A) on 31 May. The experiment was replicated a week 

after the first replicate was started, and the second replicate was 

planted out on 2 June.

Date of flowering was recorded, and at the end of the experiment 

31 or 30 weeks after low temperature treatment ended growing points 

of the remaining plants in replicates one and two were dissected and 

apical bud stage recorded (see Figure 2.1).

Results

High temperatures after low temperature treatment reduced the 

number of plants flowering, or becoming reproductive (bud stage k 

and over). Tables 2.13 and 2.1A give the percentages of plants 

flowering and reproductive in each treatment. The diagram on page 8A 

illustrates the differences between the proportions of flowering 

and reproductive plants in each treatment. A line joining treatments 

means that they are not significantly different at the 5 per cent 

level (x2 test).

81.



82.

0
JZ
4-J

-er
c
O 0

CD
in 0
-X 4-J
0 in
0

X
D

0 JZ
2 — '
4—*

in
X 4-J
c C
0 0

f—
0 CL
c
0 0

>
i_ •—
o 4-J
M- u

D
4-J X
c 0
0 i_
E CL
c 0
o L.
L_
•— <4-
> o
c
0 0

CD
c 0
O 4-J
•— C in
4-J 0 0
0 u X
in i_ 0
•— 0 <:
*— Q. in
0
c 0 L.
i_ JZ 0
0 4-J •— >
> 0
i C 2 :
4-J O
in C
O X O
CL c O

0 Q
0
JZ *■>X
4-J D> c

c 0
M- •—
0 L- L_

0 0
4-J £ X
u 0 i—
0 1— D
M— <4- JZ
M— in
0 in E

4-J •—
0 c 0
-C 0 JZ
4-J 1— r—

CL
1 =2

*4—
vO 0 4-

O4-J 0
c X; .— ^
0 0 L_
E 4-J 0
•— C >
L_ 0 O
0 o
CL X
X 0 c

LU c l 0

PA

CM

LU—ICO
<

cfD 
0

I 0
0 >

in o
4-J =J

c; xi 0 O
.—  i_
Cl  Q-

X
C

C 1-°\° 0 I
£  o

00 r ^ 0 -d *
• • • • • •

vO i— LA -d " PA CM
PA -d - -d - vO r » LA

OZ PA 0 CM vO r ^
• ■ • • • •

r^> OO 0 OO OO CM
CM CM -d* CM

T— vO CM -d* OO
• • • • • •

T--- CM CM CO -d -
CNJ CM -=T vO PA

CA r— LA vO 0
• • • • •

O LA 1— CD t— CM
PA

vO A4 vO O OO CA
• • • • • •

CM PA O LA CA
LA VO CO vO

OO LA -= r O A - PA
• • • • • • •
LA O CA LA vO PA

T— CM -4T vO PA

4-J 4-J
C c
0 0 ✓-T-N
E E 0
4-J 4-J in
L_ i_ Z3
0 0 O

^—V CL CL JZ
X  JZ E E in
0  4-J O O in

_Q X O U 0
C ■—

0 0 0 0 0 X
in  <— in  in (f) in in  in in C
D  > - D  > * 3  > * 0 > . X  > - 0
O 0 O 0 O 0 O 0 0 0 0

JZ  X JZ X JZ X JZ X 4-J X E
in in in in 0
in  l. in  4-j in  4-j in  4- j 0  4-J
0 _c 0 0 * - 0 L. JZ  1-

1— —  O —  O —  O C  O
e n e o X  JZ X  JZ X  JZ Z5 JZ

-----r - —  in — " in — " in —  in i*.

O 0 0 0 O
OO (A vO -d* 00
' r— 1— *—

r— CM PA -d - LA

L_o

cooO

1 0
0 >
L_ •—

4-J
in O
4-J 3
c X
0 O

I— L_
CL Q_

a'?

CDc
L-
0
o

L_

0
CD
L.
D

JDLO
E

I 00 >

vo (/) u
° \°  4_i 3

C  X  
0 O

.—  L- 

Q- Q .

CD
C

co
0
in

0
>

in
O

CL

C
0
Eco



83

0J=-¿r4-J 0c cn0 04-J
cn cn

0 X»0 Z3JZ
— •02 cn

4-J 4-Jc
L . 0
0 r—Q.0c 0o >
4- 4-Jo o

34-JX
£Z o0 u
E CLc 0O L .L_

•— 4 —> oc0 0U)c 0O 4-J
•— c cn
4-J 0 0
0 o X
cn L . 0•— 0■— CL cn
0c 0 i_
L. JZ O0 4-J *— i
> 01 c 214-J ocn C0 X OQ. c o0 Q0

J Z X4-J cn cc 0M- •—O L_ L-0 0
4-JL £ cnu 0 L.
0 f— 3

4 - 4 - JZ
4 - cn
0 in E

4-J
0 c 0JZ 0 JZ
4-J *— t—

CL1
4 -

NO 0 4 -

O
4-J 0c cn—\
0 0 L.

E 4-J 0•— C >
L 0 o
0 u
CL L X
X 0 C

LU CL 0

< r

CNI

LU 
__ICQ
<

CfD
0

1 00 >L-.—4-Jcn u4-J 3c X0 O1— i—Q_ CL

<3̂£? 0

U )c
L_

(D 
£  
O

CO

nO
C A

c a ca
CO

LT\

CDCN

NO

CNJ

COCNJ

CO

NO
CO

CNJ

LA

CNJ
CNJ

(/>

cu
(U
£

o
5

D¿
00

0co

0̂>

1 00 >l_.—4-Jcn U4-J 3c X0 Of— L.Q- CL

d^>

CD
C

d>?

1 00 >L.•—4-Jcn O4-J 3c X0 o,—CL CL
cn
c

0X0 S I 
r  o

(/)
D¿
0
0
>

o
2

Xc0
0co

4 -o
c0
0

0
0cn

CO
r ^
LA

LA

O

O
LA

CO
CNJ

LA

CA
CNJ

CA
LA

CNl
- 3 -

oo

CNJ

CA

NO
lt(A CN|

NO

NO
r ^

CA
C A

LA
NO

o
LA

L A
L A

CD

CA

CO

LA
CNJ

Co

0
c
L_
0
>
I

4—1 LO
O

Q_

"O
0
JZ

00)3
OJZcncn
0

eneo
ooo

cnc
0
> -
0X

C
0E4->
L
0CLE
Oo
0en in 
3  > .  
O 0 JZ X  
cncn 4-* 
0 L-
—  O 
cn jz
—  cn
oCA

0en cn =3 >- O 0 jz x  cnen 4J 
0 L-
—  O cn jz—  cn
o
NO

c
0E
0CLE
O
u

0
en cn 3 >- 
O 0 jz X  cn
en 4-J
0 s- 

—  O  cn jz 
v— cn

o
-= r

0
cn3o

_ c
cncn
0
cn

cnx  >- 
0 0 4—* X  
00 4-J JZ J- C O 3 JZ v—  cn
oco

L A

C
0
0E



81«.

least most
flowering flowering

Flowering plants 1 2 3 4 5

Reproductive plants 1 2 3 4 5

The low percentage of plants flowering in treatment 1 might have 

been due to the longer daylength but is more likely to be due to the 

effect of direct radiation on the plants heating them to above the 18° 

air temperature recorded in the bed by a thermohydrograph which was 

protected by aluminium foil from direct radiation. The higher percent­

age of flowering in treatment 5 is probably due mainly to the 

vernalising effect of 8° rather than the preventing of devernalisation. 

Plants in environments 2 to 5 that were moved to the glasshouse bed 

after only one week flowered less (x2 p<0.005) and fewer plants became 

reproductive (y2 p<0.05) than those given two weeks in the different 

environments before transfer to the glasshouse bed (Table 2.14).

The glasshouse bed is the most devernalising environment, and delaying 

transfer to the bed by one week must reduce devernalisation. V/hen 

the five post-vernalisation environment treatments are considered 

separately, only treatment 5 shows a significant difference in the 

proportions flowering (y2 p<0.01) and reproductive ,(y2 p<0.025) 

between the one and two-week groups. As the treatment was at 8°, the 

difference is more likely to be due to increased vernalisation in the 

two-week group than to reduced devernalisation. If treatments 2 to 4 

only are considered there is no significant difference in the proportions 

of plants flowering or reproductive between the one and two-week 

treatments. Treatment 1 is omitted because it is the control, and 

the one and two-week treatments in it were exactly the same.



More Wi 1helmsburger plants flowered (x2 p<0.001) or became

reproductive (x2 p<0.001) than Doon Major plants.

Days to flowering increased with the post-verna1isation 

temperature (Table 2.15) and Doon Major was slightly later to flower 

than Wilhelmsburger. Days to flowering were slightly shorter after 

two-week post-vernalisation treatments than one-week treatments.

Discussion

Lower post-vernalisation temperatures increase the number of 

plants induced to flower by the vernalising low temperature treatment 

by reducing devernalisation, although if temperatures are 10° or 

below, no distinction can be made between the effect of further 

vernalisation and the prevention of devernaiisat ion. The effect of

devernalisation is apparent both in the reduced number of plants

flowering and in the longer time taken to flower after devernalisation.

In this experiment there was no clear advantage in increasing 

the period of moderate temperature from one to two weeks after low 

temperature treatment and it is possible that after a week, no further 

devernalisation takes place, although days to flowering were reduced 

slightly by prolonging the treatment for a further week.
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2.5 INTERRUPTED LOW TEMPERATURE TREATMENTS

The effect of interrupting a six-week low temperature period 

with one, two or three weeks at a higher temperature on the flowering 

of Wi1 he 1msburger and Doon Major swedes.

Experiment 7

In the field, periods of vernalising temperatures will often 

not be continuous, being separated by periods of neutral or aevernalising 

temperatures. Interrupting a period at low temperature with periods 

at higher temperature reduces the inductive effect of the low temperature 

jn other species (see 1.7, page 16). When the interruptions are long, 

in effect the plant is exposed to short periods of vernalisation, 

insufficient in themselves to cause flowering, but which may have an 

additive effect and together induce flowering.

To examine if interrupting low temperature treatment reduces 

flowering in swedes, and if separate periods of low temperature have 

an additive effect, five plants each of W i 1helmsburger and Doon Major 

swedes were given the following treatments from sowing:

T reatment

•

m I I I

I I  M U m I I I

I I I I I I I I  M U i l l I I I

I I I I I I I I I h m h n \

I I I I I I J / /m m I I I

I/ / M U I I I n i / / M M

Growth at 17° mean daily mean rrrj\ Growth at 8° mean daily mean 
temperature  temperature



88.

Each square represents one week, and all treatments ended on 

the same day.

Treatments 5, 6 and 7 show the effect of one, two and three- 

week interruptions in six weeks low temperature treatment, compared 

with continuous treatment, treatment k. In treatments 5, 6 and 7 the 

plants have 4, 5 or 6 weeks in total at 17°, before the final four 

weeks low temperature treatment, and so treatment k is given the mean 

value, five weeks growth at 1 7° before its low temperature treatment. 

Treatment 3, low temperature for four weeks only, is included so that 

the effect of two weeks additional treatment on the later four weeks 

in treatments 5, 6 and 7 can be examined. Treatment 2 is included to 

indicate whether two weeks alone can cause flowering or not, and 

treatment 1 is the untreated control.

The plants were grown at 8° in an unheated glasshouse during 

December and January with natural daylight (short days) only. Plants 

were repotted to 12.5 cm pots three weeks after sowing. All six 

treatments ended on the same day and the plants were moved into 1 7° 

beside the control plants. On 3 June, 17 weeks after low temperature 

treatments ended the swedes were planted out in a field plot.

Date of flowering was recorded. Ten weeks after planting out 

the growing points of the non-flowering plants were dissected and bud 

stage recorded (see Figure 2.1).

Results

The percentage of plants flowering, and reproductive (bud 

stage k and over) declines as the interruption of low temperature 

treatment increases from one to three weeks (Table 2.16).** The 

proportion of plants flowering or reproductive in treatment 7 (three-week
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interruption) was significantly different from the proportion of 

plants flowering in treatments b (uninterrupted six weeks at 8°) and 

5 (treatment interrupted by one week) (y2 tests, treatments 5 v 7, 

reproductive plants p<0.05; 5 v 7 flowering plants, b v 7 flowering

and reproductive plants p<0.01). Treatment 5 (two weeks at 8°, one 

week at 1 7°, four weeks at 8°) is significantly different from treat­

ment 3 (four weeks at 8°) in numbers flowering (y2 p<0.05), and so 

there may be an additive effect of the extra two weeks low temperature 

treatment in treatment 5. There is no additive effect apparent 

comparing treatments 7 (two weeks at 8°, three weeks at 17°, four 

weeks at 8°) and 3, and no significant effect comparing 6 (two weeks 

at 8°, two weeks at 17°, four weeks at 8°) and 3. Only one plant 

became reproductive in treatment 2, as in the control, indicating that 

two weeks low temperature treatment was insufficient to cause flowering 

in most plants. The number of days to flowering was least with the 

treatments giving the most flowering, b and 5 (Table 2.17).

There was no significant difference between the cultivars in 

the proportions of plants flowering or reproductive, although more 

Wilhelmsburger plants became reproductive, and no difference in mean 

time to flower.

Discussion

Interrupting a period of low temperature treatment with a 

period at a higher temperature reduces the effectiveness of the low 

temperature treatment. Although there were few plants in each treat­

ment it appears that increasing the duration of the high temperature 

interruption from one to three weeks reduces the vernalising effect of 

the total low temperature treatment period, that is devernalises more.
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Treatment 7 was no more vernalising than treatment 3 (four weeks low 

temperature treatment on 1y), suggesting that the three week inter­

ruption in treatment 7 was sufficient to completely devernalise the 

vernalising effect of the previous two weeks low temperature treatment. 

There was evidence of an additive effect in treatment 5, and it is 

possible that if the temperature of the interruption had been lower, 

around 11° to 15°, and therefore much less devernalising, an additive 

effect might have been apparent in the other treatments, 6 and 7.



2.6 THE INTERACTION OF DEVERNALISATION AND GIBBERELLIN

2.6.1 The effect of gibberellic acid applications on the stem 

extension and flowering of unvernalised, vernalised and devernalised 

swedes.

Experiment 8

Interruptions of low temperature treatment with periods at higher 

temperature reduce or nullify the effect of the temperature treatment 

(see 1.7, page 16). More than one process is probably involved in 

vernalisation, and it is possible that the several effects of 

vernalisation, for instance in stem extension and flowering, are not 

reversed by devernalisation at the same rate.

Natural gibberellins are probably involved in stem extension, 

and applications of exogenous gibberellin cause stem extension in 

many plants (see 1.11.1, page 2k) . In a preliminary experiment 

gibberellic acid (‘Berelex1, 90 per cent biologically active isomer 

of gibberellic acid) was applied, 0.01* ml per day or 0.11* ml tv/ice a 

week, at concentrations of 0, 0.01, 1, 100, 1000 and 10,000 ppm to 

Pentland Harvester swedes. Concentrations of 100 ppm and above caused 

stems to extend, but there was no sign of flowering by the end of 

the experiment, 50 days after the first application.

To examine whether devernalised plants return to the same state 

as unvernalised plants or retain some effect of vernalisation, 

gibberellic acid was applied as drops to the centre of the rosettes 

of vernalised, unvernalised and devernalised plants and their response 

in terms of stem extension and flowering was measured. A group of 

20 four-week old Pentland Harvester plants were kept in a cool 

glasshouse at 14.2° mean daily mean temperature as unvernalised

93.



controls. Twenty similar plants were given a low temperature treat­

ment out of doors in November to December at 4.6° mean daily mean 

temperature for 28 days and 20 plants were treated for a total of 28 

days at 4.6° with one day each week in a growth cabinet at 20°, 16- 

hour day/8-hour night. All plants started treatment on the same day 

and at the end of the two low temperature periods, the two groups 

were moved into a growth cabinet at 15°, 16-hour day/8-hour night.

When the last low temperature treatment had finished, twice 

weekly applications of 0.14 ml gibberellic acid solution at 

concentrations of 0, 10, 100 or 1000 ppm were started and continued 

for nine weeks, giving total applications of 25.2 jjg, 0.252 mg and 

2 . 5 2 mg gibberellic acid for 10, 100 and 1000 ppm respectively.

There were five plants at each level of gibberellic acid in every 

vernalisation group. Stem extension had begun almost as soon with 

1000 ppm as 10,000 ppm in the preliminary experiment and so 1000 ppm 

was selected as the maximum level of gibberellic acid. There had 

been little difference between the effects of daily and twice weekly 

applications, and so the latter were chosen as being more convenient. 

The plants were then grown on at 15.5° mean daily mean temperature 

beside the control•plants.

Dates of first elongation, that is when at least one internode 

is 1 cm or more, and of first flowering and stem height at first 

flowering were recorded. The experiment ended 200 days after the 

first application of gibberellic acid.

Results

Glasshouse temperatures were low, with mean minimum'temperatures 

below 10° throughout the experiment although mean daily mean

9*».



temperature rose from 14° to 20° from January to June. All plants 

except six in the 0, 10 and 1000 ppm treatments in the unvernalised 

group had flowered by the end of the experiment, but there were 

differences between the groups in days to flowering. The comparison 

was strictly speaking between a weakly vernalised group (unvernalised 

group), a strongly vernalised group and a devernalised and then weakly 

vernalised group. The group of plants subjected to low temperature 

treatment with weekly interruptions was not completely devernalised 

as its flowering behaviour was slightly different from the unvernalised 

(weakly verna1ised)group, although it was not the same as the vernalised 

group.

The stems of all plants, flowering and non-flowering, showed 

signs of extension but the weakly vernalised group started to 

elongate last (F test, effect of vernalisation group p<0.001 , compared 

with within main plot error - main plots are vernalisation groups)

(Table 2.18). Stem extension began earlier after gibberellic acid 

applications (F test, effect of gibberellic acid p<0.001) especially 

with the higher concentrations of gibberellic acid, and there was a 

significant interaction between vernalisation group and gibberellic 

acid level (F test. p<0.001), on 1y the weakly vernalised group continuing 

to respond at the highest gibberellic acid level with a reduction in 

time to first elongation.

The strongly vernalised group flowered first (Table 2.18), the 

devernalised group next and the weakly vernalised group last (F test, 

effect of vernalisation groups p<0.001 , compared with within main 

plot error). Gibberellic acid reduced the time to flowering slightly 

(F test, effect of gibberellic acid p<0.00l) and there was a significant 

interaction between vernalisation and gibberellic acid, the devernalised 

group responding to gibberellic acid much less than the other two groups.

95.
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The weakly vernalised group had the shortest stems at flowering 

(Table 2.18) then the devernalised group and the strongly vernalised 

group had the tallest stems (F test, effect of vernalisation group 

p<0.001, compared with within main plot error). Gibberellic acid 

increased stem height at flowering (F test p<0.01) chiefly due to the 

1000 ppm treatment which had taller stems than the other three 

gibberellic acid treatments. There was a significant interaction 

between gibberellic acid and vernalisation group in stem height 

(F test p<0.05), the strongly vernalised group responding only to 

1000 ppm while the other two groups responded to the lower rates.

Discussion

Devernalisation does not appear to be a uniform reversal of 

vernalisation. In days to flowering and stem height at flowering the 

devernalised group lay between the strongly vernalised and weakly 

vernalised groups as might be expected after a partial reversal of 

vernalisation. However, the devernalised plants elongated slightly 

earlier on average than the vernalised plants, suggesting that the 

cold-induced and possibly gibberel1in-1ike factors that initially 

cause stem elongation were not reduced by the devernalisation treat­

ment, unlike the flowering factors measured by days to flowering.

The devernalised and strongly vernalised plants responded to 

gibberellic acid application which reduced the time to the start of 

stem elongation and to flowering, and increased stem height at 

flowering, but the weakly vernalised treatment responded most to 

gibberellic acid, presumably because the level of cold-induced 

gibberel1in-1ike substances within the plants was low. Devernalised 

plants responded less to exogenous gibberellic acid in all effects



measured, than strongly vernalised plants and started to elongate 

seven days earlier than the strongly vernalised plants in the absence 

of gibberellic acid. It is possible that devernalisation does not 

reduce gibberel1in-1ike factors that cause stem elongation, as much 

as it reverses the factors that cause flowering.

2.6.2 The effect of gibberellic acid on the stem extension of 

unvernalised, vernalised, devernalised and strongly devernalised 

Wi Ihelmsburger and Doon Major swedes.

Experiment 9

Experiment 8 was repeated with modifications because the effects 

of the vernalisation treatments in experiment 8 were obscured by the 

subsequent low temperature in the glasshouse. WiIhelmsburger and 

Doon Major cultivars were used and only 0 and 100 ppm gibberellic 

acid, as in the previous experiment response to gibberellic acid 

declined at 1000 ppm. To examine devernalisation in more detail, an 

extra treatment was included, low temperature treatment for 28 days in 

total with two days interruption every week at.l8°, besides the original 

treatments, control plants receiving no low temperature treatment, low 

temperature for 28 days and low temperature for 28 ‘days in total with 

one day a week interruption at 18°, with 12 plants of each cultivar 

in each of the four vernalisation treatments.

Low temperature treatment was carried out in a growth chamber at 

7° mean daily mean temperature, 18-hour day/6-hour night, and pre-, 

post- and de-vernalisation growth in a glasshouse bed at ‘18° mean 

daily mean temperature, with daylength extended to 18 hours. Plants

98.
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were seven weeks old at the start of low temperature treatment, all 

treatments starting on the same day, and 39 days later, one day after 

the longest devernalisation treatment was complete, gibberellic acid 

applications of 0.08 ml of 0 or 100 ppm gibberellic acid in water, 

applied twice a week to the centre of the rosette of leaves, were 

started and continued for eight weeks, giving total applications of

0.128 mg gibberellic acid per treated plant. The plants were 

completely randomised in the glasshouse bed.

Dates of first elongation and of flowering and stem height at 

the end of gibberellic acid treatment were recorded. The experiment 

ended 150 days after the start of gibbereliic acid treatment.

Results

The vernalised group extended earliest and the unvernalised 

group last (F test, effect of vernalisation group p<0.005, compared 

with within main plot error - main plots are vernalisation groups) 

(Table 2.19), but the two devernalised groups were not significantly 

different from the vernalised although they differed from the unver­

nalised group (t tests p<0.001). Eleven out of 12 unvernalised plants, 

and four Doon Major plants in the other groups, all receiving 0 ppm 

gibberellic acid, did not extend. One unvernalised Doon Major plant 

did not extend after treatment with 100 ppm gibberellic acid. The 

difference between the proportions of plants extending in the four 

vernalisation groups was significant (x2 p<0.001) due almost entirely 

to the unvernalised group.

So that the days to first elongation could be analysed in a 

balanced analysis of variance, plants that had not started to extend 

by the end of the experiment were assumed to have begun to extend on
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the last day of the experiment and given a score of 150 days. This 

was a conservative estimate as many of these plants would never have 

extended if allowed to grow on.

Gibberellic acid treatment shortened the time to the start of 

elongation (F test p<0.001) by h~] days on average and Wi 1 helmsburger 

elongated on average 20 days earlier than Doon Major (F test p<0.001). 

There was a significant interaction between gibberellic acid application 

and vernalisation group (F test p<0.001). Almost all the unvernalised 

plants did not extend and were given a score of 150 days so that 

applications of gibberellic acid causing plants to extend in mean

40.7 days reduced the time to elongation most in this group, and least 

in the vernalised group, which extended readily without gibberellic 

acid.

The days to first elongation data was also analysed using the 

GLIM program (see Appendix B), with the number of plants contributing 

to each mean (0 or 1) used as a weight. The data is not particularly 

suitable for such an analysis as the unvernalised plants receiving no 

gibberellic acid provided data on days to first elongation of only one 

plant, and the estimates fitted by the program were smaller (42 and 

53 days W i 1 heImsburger and Doon Major respectively) than would 

reasonably be expected, considering that many plants had not extended 

by 150 days. Vernalisation treatments (F test p<0.05), cultivar 

(F test p<0.001) and gibberellic acid application (F test p<0.001) 

all had a significant effect on days to first elongation and in the 

fitted values W i 1helmsburger elongated earlier than Docn Major, and 

the vernalisation groups elongated in the order vernalised group first,
ir

then the group devernalised two days a week, the group devernalised one 

day a week and the unvernaiised group elongated last. Gibberellic 

acid reduced the time to elongation by 16.8 days (fitted values).
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Stem height at the end of gibberellic acid treatment was 

greatest in the vernalised group and least in the unvernalised group 

(F test, effect of vernalisation group p<0.05, compared with within 

main plot error).

Gibberellic acid increased stem height in all treatments 

(F test p<0.001) and there was a significant interaction between 

gibberellic acid and vernalisation group (F test p<0.01). The 

unvernalised group responded least to gibberellic acid with a mean 

increase in stem height of 5.9 cm after gibberellic acid application 

compared with mean increases of 13.2, 9-7 and 1 3 - 1  cm for the vernalised, 

devernalised and strongly devernalised groups respectively.

W i 1helmsburger had taller stems than Doon Major (F test p<0.001) 

and there was a significant interaction between gibberellic acid 

application and cultivar, W i 1helmsburger responding much more to 

gibberellic acid than Doon Major.

The post-treatment temperatures, 18° mean daily mean temperature, 

were much higher than in the first experiment, and only four plants 

flowered, all of them W i 1helmsburger receiving gibberellic acid.

Three in the vernalisation treatment flowered in mean 142 days from 

the end of their low temperature treatment, one in the one day 

interruption treatment, in 151 days, and one plant jn the two days 

interruption treatment reached bud stage 3 (see Figure 2.1) at the 

end of the experiment.

Considering the three vernalisation and devernalisation treat­

ments only, there was a significant difference between the proportions 

of plants becoming reproductive in the two. cultivars, Wilhelmsburger 

and Doon Major (y2 p<0.05) and in W i 1helmsburger, between plants with 

and without gibberellic acid treatment (y2 p<0.05)



103.

Discussion

The results in this experiment tend to confirm the previous 

experiment, in this case all treatments being to some extent de­

vernalised by post-low temperature treatment conditions. Although too 

few plants flowered for the differences between treatments to be 

significant, devernalisation reduced flowering compared with vernalised 

plants, especially the stronger devernalisation of two days a week.

Days to elongation and stem height in the 100 ppm gibberellic acid 

treatments of the devernalised groups were much closer to those of the 

vernalised group than the unvernalised group, and were not significantly 

different from the vernalised group. The more extreme devernalisation, 

two days a week, was closest in extension to the vernalised group 

suggesting that devernalisation does not greatly decrease factors 

inducing stem extension.

No Doon Major plants flowered although in other experiments 

28 days vernalisation resulted in at least a proportion of Doon Major 

plants flowering {kk per cent after 30 days in experiment 2, 80 per 

cent after 28 days in experiment 3 and 35 per cent after 28 days in 

experiment 5, mean of all temperature treatments). Many of the 36 

Doon Major plants may have been induced to flower, but high post­

vernalisation temperatures must have reversed the induction and 

caused the plants to return to the vegetative state. There were, 

however, very marked differences in stem extension and response to 

gibberellic acid between the three groups receiving vernalisation and 

the unvernalised group, presumably because stem extension factors 

are not reduced by devernalisation to nearly the same extent as 

flowering factors.



2.7 THE EFFECT OF NITROGEN ON FLOWERING

The effect of applications of nitrogen during and after low 

temperature treatment on the flowering of swedes.

Experiment 10

If nitrogen had a large effect on flower induction and flower 

development this would have to be considered in the commercial 

husbandry of the swede crop both as a root crop and for seed. There 

is some evidence for red beet (see 1.9, page 21) that shortage of 

nitrogen before low temperature treatment reduces the number of plants 

flowering, and shortage after treatment delays flowering. The effect 

of nitrogen nutrition during and after cold treatment of swedes on 

flower induction and development was examined.

Sixty Doon Major plants were raised in John Innes Number 2 

compost made up without nitrogen (blood and bone meal) for four 

weeks and were then grown at 5° mean daily mean temperature for 30 

days. Four nitrogen treatments were each applied to 15 plants, with 

five plants per plot and three replicates:

1. No nitrogen applied;

2. nitrogen applied only during the 30 days low temperature 

treatment: total application of nitrogen per plant, 0.5 g

NHi+N03 in solution;

3. nitrogen applied during and after the 30 days low temperature 

treatment: total application per plant, 1.2 g NHl,N0 3 in

solution and 1.75 g NHt+N03 to the soil at planting;

nitrogen applied only after the 30 days low temperature 

treatment: total application per plant, 0.7 g NHt+N03 in

solution and 1.75 g NHi+N03 to the soil at planting.

10*».
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After low temperature treatment the plants were grown in a 

growth chamber at 1 3° for 12 days to reduce the risk of devernalisation.

The nitrogen treatment was 0.1 g NH|+N03 In 20 ml water applied 

weekly direct to the soil in each pot. Seven weeks after low 

temperature treatment ended the swedes were planted out in a field 

plot previously fertilised with P and K fertiliser (18.8 per cent 

soluble P, 1.2 per cent insoluble P and 20 per cent K at the rate 

500 kg/ha) and 7 g per plant of 25 per cent N fertiliser (NHUNO3 ) was 

applied to each treated plot after planting out.

Visible leaf number was counted before and after low temperature 

treatment. The date of first flowering and flower stage (see experi­

ment 2) at the end of the experiment, 154 days after the end of low 

temperature treatment, were recorded.

Results

All plants flowered and nitrogen applied after low temperature 

treatment reduced the time to flower significantly (F test p<0.05) 

with the nitrogen applied during and after low temperature treatment 

having the shortest time to flowering (Table 2.20). Nitrogen 

applications increased the flower stage at the end of the experiment 

(Table 2.21), but only nitrogen applied during low temperature 

treatment increased it significantly (F test p<0.05’). Flower stage 

is related to time of flowering and as all plants flowered, gave an 

indication of the progress to seed development of the plants.

During low temperature treatment plants receiving nitrogen 

produced mean 1.7 leaves (0.057 leaves per plant per day), whereas 

those not receiving nitrogen produced mean 1.4 leaves (0.047 leaves 

per pi ant per day).
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Discussion

As all plants flowered, any effect of nitrogen on flower 

induction could not be measured, but nitrogen applied during and 

after low temperature treatment hastened flower development probably 

due to improved growth during and especially after low temperature 

treatment compared with treatments receiving less nitrogen.

Although there must have been sufficient nitrogen in the 

unfertilised compost and field plot soil for growth, the nitrogen 

treated plants were more vigorous with darker green leaves and 

produced 

pi an ts. 

appeared 

ni trogen 

in norma

more leaves during low temperature treatment, than untreated 

Severe restriction of nitrogen supply (no nitrogen treatment) 

to delay flowering and seed development, but the effect of 

is unlikely to be of great importance with plants growing 

1 condi tions .



2.8 THE EFFECT OF LIGHT DURING LOW TEMPERATURE TREATMENT

2.8.1 The effect of the absence of light during low temperature 

treatment of W i 1helmsburger and Doon Major swedes on flowering.

Experiment 11

Swedes can be vernalised in short days, as in experiments 1,

6, 7 and 8 as well as in long days, for example experiments 2, 3,

5 and 9. Mature sugar beet roots were vernalised, and flowered in 

the absence of light (Fife and Price 1953) but with cauliflower 

plants, the absence of light during one week at 5°, prevented flowering 

(Sadik and Ozbun 1968). In cauliflower the levels of starch and 

sugar in the shoot tip were much lower than in the presence of light, 

whereas the sugar beet roots would have had large reserves of 

carbohydrates.

To investigate if vernalisation of swedes would occur during a 

low temperature period, in the absence of light, W i 1helmsburger and 

Doon Major plants were kept for 10 or 15 weeks in total darkness at 

6°. Ten-week old plants were used so that they would have a reserve 

of carbohydrates in the root. Four WiIhelmsburger and four Doon Major 

swedes were placed in each of six wooden boxes, 50 cm by 30 cm and 

10 cm deep, filled with a layer of damp peat. The boxes were lined 

and covered with two layers of black plastic and a light meter 

placed in any box gave no reading. The boxes were placed in a 

refrigerator at 6 ± 2°. The plants were watered infrequently and in 

darkness. Three boxes were removed after 10 weeks and the remaining 

three after 15 weeks. The plants were uncovered and placed in a 

glasshouse compartment at 1A° mean daily mean temperature for four 

weeks and then moved into a glasshouse bed at 1 7° mean daily mean 

temperature.

109.
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Visible leaf numbers of each plant were recorded before and 

after low temperature treatment. Date of flowering was recorded.

Res ul ts

All plants flowered normally within 91 days of the end of low 

temperature treatment. One plant was dissected immediately after 

15 weeks low temperature and was at bud stage 3 (see Figure 2.1). 

Flowering was much earlier after 15 weeks than after 10 weeks treat­

ment (F test p<0.001) (Table 2.22), and W i 1helmsburger flowered 

slightly earlier than Doon Major (F test p<0.05)•

TABLE 2.22: Experiment 11 - the effect of duration of low temperature
treatment in the absence of light, and cultivar, on days 
to flowering of W i 1helmsburger and Doon Major swedes

Duration of 
low temperature

Days to flowering

Wilhelms- 
burger Doon Major Mean

10 weeks 82.3 85.3 83.3

15 weeks 38.5 42.2 39.6

Mean 62.0 65.4 63.0

For comparisons 
within table SE ± 1.21

For comparisons of 
duration or cultivar SE ± 0. 85-

Leaf number increased during low temperature treatment although 

all plants were yellow and etiolated by the end of treatment. After 

10 weeks the mean increase was 1.9 leaves, and after 15 weeks 6.2 

leaves (F test, effect of duration, p<0.005), but there was little 

difference between the cultivars, WiIhelmsburger having a slightly 

smaller increase in leaf number than Doon Major.
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Discussion

Light was completely excluded from the plants during the entire 

time they were at low temperature but all plants flowered. Light, 

therefore, is not necessary during a period of low temperature for 

induction of flowering. It is possible that normal flowering and 

extension would not have occurred if light had been excluded after

t
treatment but in the 15-week group one plant at least was beginning 

to develop flower buds (bud stage 3) by the end of treatment.

The time taken to flower after 10 weeks in darkness is similar 

to that in experiments 3, 4 (5° and 8°) and 5 (3° and 6°) after five 

weeks low temperature treatment in the light (16 or 18 hours daylength). 

and the mean leaf production of visible leaves during the low 

temperature period is similar, about two leaves.

The relatively greater increase in leaf production during 15 

weeks compared with 10 weeks might be due to the acclimatisation of 

the plants to the growth conditions in the light-proof boxes or 

possibly to the difficulty in counting leaf scar numbers after treat­

ment on pale etiolated plants so that the production of leaves in 

both 10 and 15-week treatments may have been greater than that recorded.

2.8.2 The effect of different levels of light intensity during low 

temperature treatment on the flowering of Wilhelmsburger and Doon 

Major swedes.

Experiment 12

Swedes flowered after 10 weeks low temperature treatment in 

the dark (see experiment 11) but a 10-week treatment period was



112.

equivalent in terms of days to flowering to five weeks low 

temperature treatment in full light, suggesting that light intensity 

affects the rate of the vernalisation process. High levels of carbo­

hydrates appear to be associated with flowering in some plants (see 

1.11.4, page 2 9) and a high light intensity would tend to increase 

carbohydrate levels, even at low temperatures.

Seven-week old W i 1 he 1msburger and Doon Major swedes were 

subjected to three or six weeks low temperature treatment under four 

different light intensities, full artificial light, half light, 

quarter light and total darkness. Seven-week old plants were used 

so that plants treated in complete darkness would have an adequate 

supply of carbohydrate. The experiment was in a split-plot design, 

light treatments in two replicates being the main plots and cultivar 

and duration of low temperature the subplots with three plants per 

plot.

The plants were raised at 17° mean daily mean temperature in 

natural daylight supplemented during most of the 18-hour day with 

sodi urn vapour 1i ght.

For the six-week low temperature treatment three Wilhelmsburger 

and three Doon Major plants were placed in each of eight wooden boxes 

similar to those used in experiment 11, half-fi1 led, with damp peat. 

Two boxes were left uncovered, two were shaded with two layers of 

muslin, two shaded with four layers of muslin and two were covered 

with two layers of closely woven dark cloth and a sheet of aluminium 

foil to exclude all light. The three-week treatment was placed in 

the same boxes three weeks later and both three and six-week treat- 

ments ended at the same time.



The plants were treated in a growth chamber illuminated with 

warm white fluorescent light on 18-hour daylength. Air temperature 

during treatment was 8.6± Io although shade temperature in the boxes 

at soil level was slightly lower, 7-9u mean. Light intensity was 

measured at leaf level in the boxes at the beginning and end of low 

temperature treatment and was 11,800, 5000 and 2300 lux on average 

for full, half and quarter light respectively. A light meter placed 

in the dark treatment boxes gave no reading and any handling of these 

boxes was done in darkness. One replicate was placed at the two 

ends of the bench, where the light intensity was slightly less (1000 

lux lower than the other replicate, on average).

At the end of low temperature treatment the plants were moved 

to a glasshouse compartment at 1 3 -5° mean daily mean temperature, in 

which natural winter daylight was supplemented to 18 hours daylength 

with mercury vapour lamps (HPLR) giving a light intensity of 7000 to

11,000 lux around mid-day. After four weeks they were moved to the 

main glasshouse and grown on for 20 weeks at 16.5° mean daily mean 

temperature.

Visible leaf number was measured at the start and finish of 

the three and six-week low temperature treatments. Date of flowering 

was recorded. The remaining non-flowering plants were dissected at 

the end of the experiment, 175 days after the end of low temperature 

treatment, and their bud stage assessed (see Figure 2.1).

Results

More plants flowered after six weeks low temperature treatment 

the higher the light intensity (y2 p<0.05) (Table 2.23) and more 

became reproductive (bud stage 3 and over) (y2 p<0.02, three and six 

weeks low temperature treatment) (Table 2.24) as shown on page 116.

113.
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Flowering plants in the s i x weeks low temperature treatment:

most flowering least flowering

full light half light quarter light dark

Reproductive plants in the three and six weeks low temperature 

treatment:

more plants 
reproductive

full light half light quarter light dark

A line joining two treatments shows that they are not 

significantly different at the 5 per cent level (x2 )-

W i 1helmsburger flowered more than Doon Major (x2 p<0.01,six 

weeks low temperature treatment) and more Wilhelmsburger plants 

became reproductive (x2 p<0.01,three and six weeks low temperature 

treatments).

Slightly more plants, 13 compared with 9, flowered in the 

replicate with higher light intensity, and slightly more, 30 compared 

with 2b, became reproductive, but the differences were not significant.

The full light treatment flowered more rapidly than the half 

light treatment (Table 2.25). The results for quarter light and 

darkness are less reliable as they are based on four and two plants 

respectively. W i 1helmsburger flowered earlier than Doon Major.

Light intensity affected the production of visible leaves 

during the low temperature period, the higher the light intensity, 

the more leaves were produced (F test, effect of light intensity, 

p<0 .05) (Table 2.26). W i 1helmsburger produced more leaves than 

Doon Major, but the difference was not significant.

fewer plants 
reproductive
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TABLE 2.25: Experiment 12 - the effect of light intensity during six
weeks low temperature treatment and cultivar, on days to 
first flowering. In the three-week low temperature treat­
ment only one plant, W i 1 he 1msburger, treated in full light 
intensity, flowered in 175 days

L i ght i ntens i ty

Days to flowering

Wi 1helms­
bu rger Doon Major Mean

Days Days Days

Full light 11,800 1 ux 1 3 1 . 8 152.3 138.7

Half light 5000 1 ux 151.2 170.5 156.7

Quarter 1ight 2300 1 ux 133.5 NF 133.5

Darkness 0 1 ux 126.0 1 2 9 . 0 127.5

Mean 137.9 15*1.5 142.5

NF = no plants flowering in the treatment
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Discussion

Light intensity affects vernalisation, and reducing light to a 

quarter during low temperature treatment cut flowering by about a 

half. Leaf production was slower at lower light intensity although 

plants produced leaves even in total darkness. As the plants were 

fairly old with w e l 1-developed roots, the effect of light intensity 

was probably not as great as it would have been on smaller plants 

almost totally dependent on photosynthesis for carbohydrate supply.

tr
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2.9 THE BOLTING RESISTANCE OF DIFFERENT CULTIVARS

The effect of duration of low temperature treatment on the 

flowering of five cultivars.

Experiment 13

In experiments 2, 3, 4, 5, 6, 9 and 12 Wilhelmsburger was more 

susceptible to vernalisation than Doon Major, and in no experiment has 

it been less susceptible. There is also evidence of differences between 

cultivars in bolting resistance in experiments by Peto (1934) and in 

field trials (Bell 1968).

To examine the susceptibility of more cultivars, Wilhelmsburger, 

Doon Major, Pentland Harvester, Ruta Otofte and Harrietfield seedlings 

were exposed to a range of durations of low temperature, 20, 24, 28,

32, 36 and 40 days. Pentland Harvester was included as it is known 

to be susceptible to bolting, flowering quite readily after 21 days 

low temperature treatment (see experiment 1). W i 1helmsburger is also 

a susceptible cultivar, and it and Pentland Harvester were given a 16- 

day low temperature treatment in addition to the other six duration of 

low temperature treatments. Ruta Otofte was included as an example of 

a high dry matter dark purple skin and because it is one of the highest 

yielding cultivars presently available, and Harrietfield was included 

as an example of an intermediate dry matter bronze skin.

In experiments 2 and 3, 20 to 40 days of low temperature gave 

a range of flowering percentages from 5 to 10 per cent up to 100 per 

cent for Wilhelmsburger and Doon Major. Over this range of response, 

in terms of increased numbers flowering to increased duration of low 

temperature treatment, differences between cultivars should be most 

easily detected.
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Seeds were sown in 5.5 cm 'Jiffy' compressed peat pots and 

raised for 14 days at 16.2° mean daily mean temperature so that plants 

would be well beyond the juvenile stage at the start of low temperature 

treatment. They were treated in a growth chamber at 6.1° mean daily 

mean temperature, all treatments ending on the same day when the 

temperature was raised to 11.6° mean daily mean temperature for 14 

days. The plants were moved to a glasshouse compartment at 14° mean 

daily mean temperature for 10 days and were then planted out in a 

field plot on 14 May, at 15 cm spacing, 60 cm between the rows. Five 

blocks ran the length of the growth cabinet table, parallel with the 

fluorescent lights, with mean light intensities 8500, 18,500, 15,500, 

12,500 and 6000 lux, and the same design was used in the field, each 

block being a row. Treatments were randomised within each block with 

four plants per plot.

Visible leaf number was recorded at the beginning and end of low 

temperature treatment. Date of flowering was recorded, and the experi­

ment ended 150 days after the end of low temperature treatment.

Results

Pentland Harvester had the highest percentage of flowering 

’ plants, 96 per cent, then W i 1helmsburger with 87 per cent, both 

excluding the 16-day low temperature treatment for the purposes of 

comparison with the other three cultivars, Harrietfield 76 per cent,

Ruta Otofte 70 per cent and Doon Major 68 per cent (Figure 2.9).

The following analyses were done by Michael Franklin of the ARC 

Unit of Statistics. Transforming the proportion of number of plants 

flowering to total number of plants in each treatment to a logit 

scale (loge p/1-p) lines were fitted against duration of low temperature
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(in days) on the x axis, using the GLIM program (see experiment 2 and 

Appendix B). As 36 and 40 days resulted in 100 per cent flowering in 

most cultivars, data from these treatments was omitted so that a better 

linear response curve could be fitted. Cultivar and the linear 

component of duration of low temperature affected the proportions of 

plants flowering (x2 p<0.001). The interaction between cultivars and 

the linear component of duration of low temperature was not significant, 

and so the response lines for the five cultivars can be considered to 

be parallel on a logit scale. The number of days of low temperature 

required to give 50 per cent flowering can then be found on the x axis 

where y - 0. Pentland Harvester requires 16.8 days for 50 per cent 

flowering, WiIhelmsburger 19.4 days, Harrietfield 23.4 days, Ruta Otofte

24.0 days and Doon Major 25.8 days.

There were small but not significant differences in the 

proportions of flowering plants between the replicates, 76 per cent,

74 per cent, 84 per cent, 84 per cent and 80 per cent flowering in 

replicates 1, 2, 3, 4 and 5, respectively.

Different numbers of plants flowered in each treatment and so 

the analyses of number of days to flowering were weighted to take 

account of the different numbers contributing to each mean, the 16- 

day treatment being omitted. This is similar to using the data from 

each individual plant except that the variation within the plot is 

excluded. The days to flowering data (Table 2.27) in five replicates 

was fitted into a model using the GLIM program. The simplest model 

including all significant treatment effects was the linear effect of 

duration of low temperature plus quadratic effect of duration plus
tr

cultivar effect plus the interaction of linear effect of duration 

wi th cultivar.
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Error mean square for this model was 186.68, with 19 df, and 

levels of significance in F tests were 0.1 per cent for cultivar and 

for linear effect of duration and 0.5 per cent for the quadratic 

effect of duration and the interaction of the linear effect of duration 

with cultivar.

The curves fitted to this model are shown in Figure 2.10. As 

duration of low temperature increases the time taken to flower 

decreases. The model is quadratic and so further increases in duration 

of low temperature should result eventually in increases in time taken 

to flower. This would be so if time to flower was calculated from 

the beginning of the period of low temperature, as very long durations 

of low temperature would slow up flower development. Time to flower 

is calculated from the end of low temperature treatment, however, 

and the real curves are probably asymptotic in nature, the asymptotic 

value being the minimum number of days at higher than vernalising 

temperatures required for the opening of flowers. As the fitted 

curves end at their low part, before the rise upwards again, the model 

fits the data reasonably well. Ruta Otofte was the slowest cultivar 

to flower, Harrietfield next, and Doon Major, Wilhelmsburger and 

Pentland Harvester taking about the same mean time to flower. Days 

to flowering of Doon Major and Harrietfield decreased more than in 

the other three cultivars as duration of low temperature treatment 

increased.

Production of visible leaves during low temperature treatment 

generally increased the longer the treatment (F test, effect of 

duration, P < 0.001) although the small size of the pots probably 

restricted growth in the longest duration treatment (Table 2.28).

The five cultivars produced leaves at different rates (F test p < 0.001),

124.
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TABLE 2.28: Experiment 13 ~ the effect of cultivar on the mean
number of leaves produced per plant during the low 
temperature treatment

Duration of low temperature (days)
Mean

Cu11 i var 20 24 28 32 36 40

No. of leaves
No. of 
leaves

Wi Ihelmsburger 1 .1 2.2 1.6 1.7 2.8 2.5 2.0

Doon Major 0.6 1 .5 1.4 1.5 2.1 1.9 1 .5

Pentland Harvester 1.3 2.0 1.8 2.0 2.7 3.0 2.1

Ruta Otofte 1 .0 2.3 1.5 1.8 2.6 2.0 1.9

Harrietfield 0.9 1.9 1.7 1.8 2.5 1.8 1.8

Mean 1.0 2.0 1.6 1.8 2.5 2.3 1.9

For comparisons 
within table

SE ± 0. 15
For comparisons n n7 
of durations

For comparisons of 
culti vars

SE ± 0. 06

with mean leaf production during low temperature treatment 0.071, 0.066, 

0.062, 0.060 and 0.050 leaves per plant per day for Pentland Harvester, 

Wi1 helmsburger, Ruta Otofte, Harrietfield and Doon Major respectively 

(mean of the mean daily production per plant in each of six durations 

of low temperature).

Discussion

The use of a ranqe of durations of low temperature separates the 

five cultivars in terms of resistance to flower induction. There is 

not only variation between the cultivars but response to different 

durations of low temperature in W i 1helmsburger and Ruta Otofte was not 

very regular suggesting there is some variation within these cultivars.
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W ¡ lhelmsburger is an old variety and the seed stock used was not 

highly uniform, but Ruta Otofte is a recently bred cultivar.

The mean time taken to flower for each cultivar is related to 

bolting resistance in that weakly vernalised plants, that is exposed 

to shorter than optimum durations of low temperature, tend to flower 

later (see Table 2.27) and more resistant cultivars will have a higher 

proportion of weakly vernalised plants which will flower late and 

increase the mean time to flower of the cultivar. The relationship 

is not invariable as Ruta Otofte was very slow to flower although it 

had more flowering plants eventually than Doon Major, which flowered 

as rapidly as V/i lhelmsburger and Pentland Harvester, the most suscept­

ible culti vars.

The Pentland Harvester seed was older than that of the other 

cultivars, and germinated more slowly, but seedlings were only slightly 

smaller at the beginning of low temperature treatment.

Rate of production of leaves during low temperature treatment 

appears to be associated with susceptibility to flower induction, 

cultivars with higher rates of leaf production flowering more. Ruta 

Otofte flowered less than Harrietfield, and produced leaves at a 

greater rate, but there was little difference between the cultivars 

in ei ther factor.



2.10 JUVENILITY IN FIVE CULTIVARS

The effect of plant age on the flowering of five swede 

cu 1ti vars.

Experiment 1A

In experiment 2 juvenile plants (two days old and younger) of

Doon Major flowered relatively better than Wilhelmsburger, 39-5 per

cent compared with 30.6 per cent flowering for V/i 1 helmsburger, and 

in experiment 3 there was no evidence of juvenility in two-day old 

Doon Major seedlings whereas Wilhelmsburger two-day old seedlings 

showed strong juvenility. This suggests that Doon Major has a shorter 

juvenile phase than Wilhelmsburger. A small difference in the time 

taken to become adult and susceptible to vernalisation may affect 

flowering significantly if the flowering is in the range 20 to 80 per 

cent, caused usually by 20 to 30 days low temperature depending on

other environmental conditions and on cultivar. If cultivars differ

in the duration of their juvenile stages, comparisons of bolting 

resistance of adult plants will differ from comparisons of the same 

cultivars or lines if the plants are juvenile at the start of treat­

ment.

The following experiment was carried out to test the relative 

importance of juvenility in the flowering of five cultivars.

Wi lhelmsburger, Doon Major, Pentland Harvester, Ruta Otofte and 

Harrietfield cultivars were used as their bolting resistance was 

known (see experiment 13) for adult plants. Two plant ages were 

compared, 20-day old plants, certainly adult, and 0-day old plants
tr

so that even very short juvenile phases would have an effect in the 

experiment. Lonq or short juvenile phases would be distinguished

127.
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quantitatively as plants attaining adulthood earlier would pass more 

of the low temperature period in a receptive state and therefore be 

more likely to flower. Two durations, 32 and 28 days of low tem­

perature, were used to increase the chance of differentiating treat­

ments. There were two blocks, one in the better illuminated centre 

of the growth chamber table, the second at the ends of the table, and 

seven plants per plot.

The adult plants were raised for 20 days in the glasshouse at 

16° mean daily mean temperature and the juvenile (0 day old plants) 

were moved into low temperature immediately after sowing. Plants were 

grown at 8.5° mean daily mean temperature for 32 or 28 days, both 

treatments ending on the same day and then moved to a glasshouse 

compartment and grown for 14 days at 11.3° mean daily mean temperature. 

They were then moved to a glasshouse bed at 15-8° mean daily mean 

temperature, repotted to 12.5 cm pots and after 95 days repotted to

16.5 cm pots.

The date of emergence of the juvenile plants and the date of 

flowering were recorded. At the end of the experiment, 138 days after 

the end of low temperature treatment, the stem height of all remaining 

plants was measured, and the apices were dissected and bud stage 

assessed (see Figure 2.1).

Results

All cultivars showed a marked juvenile phase both In the numbers 

of plants flowering (x2 p<0.00l) (Table 2.29) and the numbers of 

plants reproductive (bud stage 3 and over) (x2 p<0.001) (Table 2.30). 

Only six juvenile (0 day old) plants were reproductive byv the end of 

the experiment, four Harrietfield and two Pentland Harvester, including 

one flowering plant of both of these cultivars.



TA
BL
E 

2.
29

: 
Ex

pe
ri

me
nt

 
1A 

- 
th
e 

ef
fe

ct
 

of
 

du
ra

ti
on

 
of
 

lo
w 

te
mp

er
at

ur
e 

an
d 

pl
an
t 

ag
e 

at
 

th
e 

st
ar
t 

of
 

lo
w 

te
mp

er
at

ur
e 

tr
ea

tm
en

t 
on
 

th
e 

nu
mb

er
 

of
 

pl
an
ts
 

fl
ow

er
in

g 
of
 

fi
ve
 

cu
lt

iv
ar

s 
(1̂

 
pl

an
ts

 
pe

r 
tr

ea
tm

en
 
t)

129.

pl
an
t 

ag
es



130.

O 0
04-J enL- s-X

0
4-J ,-v
en L_

0
0 >
_c O4-»

X
4-J c
0 0

0 PA
en
0 0 „-s

en •
4-J 0 4-J
C 4-J c
0 en 0

i— E
CLX 4-J

3 0
X _Q 0c i-
0 4-J

en
0 4-J L_
i- c 0
3 0 CL
4-» •—
0 Ol en
L. 4-J
0 0 c
CL > 0
E •— 1—
0 4-J Q_4-J O

3 -cr
2 X *—
0 o >—-

L_
CL

<4- 0 •
o L_ 4-J

c
C <4— 0
O O E

4-J i_ L-
0 0 0
1_ -O CL
3 E X
X 3 0

C
M— 0
O 0 JC

sz 4-J
4-1 4-J
O «4-
0 c O
<4- o<4- X
0 4-J c

c 00 0
-C E 04-J 4-» jC0 4-J
1 0i_ 4-J

-4* 4-J 0
*—

0 —s
4-J L_ i—
c 3 .
0 4-J CNJ
E 0•— L. 0L. 0 L-
0 CL 3
CL E en
X 0LU 4-J Ll

O
pa
AJ
Lü

0 0L. 4-J
0 O> 4-J
O

O en 
JD C

o
u-
O  4-> íü

r— L_
0 3 
-4-* “O
O

0L_
3
4->
0
i_
0
CL
E
0

<+-
O
C
O

3
O

X

O en

>*
4-J
C

0 0
X f—

en 1 CL
>• o
0 CNI

CNJ
PA

oo
CNI

x
0 en 

+-»
>• c  0 0 “O —
1 CL OCN

0 « 
-o rr

“O
o
>-0
X '

X

’o en

>•
4-J
c

0 0
X 1—

en 1 CL
>* o
0 CNI

X I

O

>-
0
X

C '

CL
0

O 
’ 3  
X 
O
L_
CL
0
i-

■ 3  
X 
O
L-
C_
0

0
>

.W ^

"O
o £

Cl
A a;

L.
0
>

3
O

CO LA CO 
r— i— cM

LA CO -=rco

CO LA  VO
i— CN|

oo
r̂ »

-cr
co

CN vo

CNI PA CNJ
LA

LA

CNJ vO

VD LA CNJ CNJ CNI
CNJ

r-.
CNI

1-
0en
L.
3
-O
en

L-
O

c
OOO

en
0>
L_
0

X
c
0

c
0
a_

0 —
x
0 04-J

O

L-
0

To
ta

l 
of
 

bo
th

 
pl
an
t 

ag
es



131.

Too few juvenile plants flowered for a comparison to be made 

between the cultivars, but if reproductive plants are included there 

are some differences in juvenility between the cultivars, Harrietfield 

in particular having relatively more reproductive juvenile plants 

than the other cultivars. The differences between the five cultivars 

in proportions of adult to juvenile plants becoming reproductive were 

not highly significant (x2 p<0.l). If either Pentland Harvester, the 

cultivar with most reproductive plants, or Ruta Otofte, the cultivar 

with least, are omitted, the probability of the differences being due 

to chance drops to p<0.05, and if WiIhelmsburger, Doon Major and 

Harrietfield are compared, the probability falls to p<0.025.

Pentland Harvester had the highest proportion of plants 

flowering, followed by Wilhelmsburger, Harrietfield, Doon Major and 

then Ruta Otofte, and the order was the same for reproductive plants.

This is the same as in experiment 13, except the order of Doon Major 

and Ruta Otofte, which is the reverse.

Flowering was slower after 28 days low temperature (Table 2.31), 

Pentland Harvester flowered earliest, Harrietfield next, then Ruta 

Otofte, Wilhelmsburger and last Doon Major. The figures for Ruta 

Otofte and Doon Major are based on only two and three plants respectively 

and therefore carry less weight.

Stem height of plants at the end of the experiment, including 

stem height at flowering of plants which flowered is given in Table 

2-32. Many plants had long stems, even though they had a vegetative 

terminal apex, suggesting that stem growth induction was greater than 

flower induction, or survived subsequent devernalisation better.
V

Increased duration of low temperature increased stem height (F test 

p<0.005), adult plants had taller stems than juvenile plants (F test
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p<0.001) and cultivar affected stem height (F test p<0.001) , Pentland 

Harvester having the tallest stems, then Wilhelmsburger, Harrietfield, 

Doon Major and shortest, Ruta Otofte.

There was an interaction In stem height between plant age and 

duration of low temperature (F test p<0.05), adult plants responding 

more to Increased duration than juvenile plants, and between cultivars 

and plant age (F test p<0.025), Wllhelmsburger and Pentland Harvester 

adult plants being considerably taller than juvenile plants, whereas 

In Ruta Otofte and Harrietfield plants there was much less difference 

in stem height between adult and juvenile plants. As some of these 

effects might have been due to the numbers of flowering plants In each 

treatment, these being much taller than non-flowering plants, a 

rough analysis was made of the stem heights of all non-flowering 

plants. The two blocks were pooled to increase the number of plants 

contributing to each mean, and the treatments compared against the 

third order Interaction as the error term, but no attempt was made to 

weight the analysis. The duration of low temperature, age and cultivar

treatments had similar effects on stem height of non-flowering plants

as on stem height of all plants and the differences were significant 

(F tests p<0.05), but the Interactions were not significant although 

similar in trend to those of stem heights of all plants. This

suggests that differences in stem height of all plants are not largely

due to the different numbers of flowering plants in each treatment but 

to treatment effects on the stems of all plants.

The mean times from sowing to emergence were 8.2 days, 8.5 days,

8.5 days, 9.1 days and 11.6 days for Wilhelmsburger, Doon^Major, Ruta 

Otofte, Harrietfield and Pentland Harvester, respectively.

13*».
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Discussion

All cultivars exhibited a juvenile stage, but that of 

Harrietfield is probably shorter than in other cultivars. The experi­

ment unfortunately did not differentiate between the other four 

cultivars although evidence from experiment 3 suggests that the 

juvenile stage of Wilhelmsburger is longer than that of Doon Major.

The Pentland Harvester seed was old (1972 compared with 1975 or 1976 

for the other four cultivars), with emergence on average three days 

later, and it is possible that more Pentland Harvester juvenile plants 

might have flowered if they had emerged earlier. Harrietfield was 

slightly later to emerge than some other cultivars and so its apparently 

slightly shorter juvenile stage cannot be caused by earlier emergence. 

Similarly, the difference in juvenility observed in experiment 3 

between W i 1helmsburger and Doon Major is unlikely to be an effect of 

time to emergence as there was little difference between the cultivars, 

if anything Doon Major being slower in development.

As in previous experiments, longer durations of low temperature 

resulted in more rapid flowering.

Stem height at the end of the experiment was much shorter in 

juvenile plants and there was some evidence of an interaction between 

cultivars and plant age to support the hypothesis that cultivars 

differ in the duration of their juvenile phases, with W i 1helmsburger 

having the greatest difference between adult and juvenile stem heights, 

Doon Major and Harrietfield next, and Ruta Otofte least, although 

Ruta Otofte is resistant to vernalisation and had the shortest stems 

overall. Pentland Harvester showed a marked difference in stem heights
V

of adult and juvenile plants when all plants were included, but much 

less when flowering plants were excluded and so there is less evidence



of a difference between juvenile and adult plants in stem height 

when not linked with flowering, in Pentland Harvester.
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2.11 DEVERNALISATION BY DAILY INTERRUPTIONS 

OF LOW TEMPERATURE TREATMENT

The effect of interruptions of vernalisation by a daily period 

at high temperature on the flowering of six swede cultivars.

Experiment 15

In field conditions the temperature is not constant and although 

night temperatures may be vernalising, during the day temperatures 

may rise high enough to devernalise. Any assessment of the effect of 

a period of natural low temperature must take into account the reversing 

effect of periods at a higher temperature. Daily periods of high 

temperature considerably reduced the effectiveness of low temperature 

flower induction in cabbages (Heide 1970) and winter rye (Purvis and 

Gregory 1952) but the sensitivity of swedes to daily interruptions of 

low temperature treatment is not known, although weekly interruptions 

of one or two days in a period of vernalisation considerably reduced 

flowering (see experiment 9).

Wilhelmsburger and Doon Major react differently to temperature 

of vernalisation (see experiments k and 5) and it is possible that 

they might respond differently to devernalising temperatures. If 

cultivars have different sensitivities to devernalisation, a treatment 

of continuous low temperature would not give a good' indication of how 

cultivars would behave in normal field conditions. To test this 

possibility six cultivars were used, Wilhelmsburger, Doon Major, Ruta 

Otofte, Marian, Della and Seefelder. Ruta Otofte was used again as 

it is a high yielding swede, and Marian, a purple top medium high dry 

matter swede, Della, a green top high dry matter swede, ahd Seefelder,
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a green top medium high dry matter swede, were used as they are all 

recently introduced cultivars with good yields.

Three low temperature treatments were used, 6° continuously,

6° with a daily four-hour interruption at 16°, and 6° with a daily 

four-hour interruption of 22°, each treatment occupying one growth 

cabinet. These treatments did not reproduce field conditions very 

realistically, but would indicate the extent to which a brief daily 

period of higher temperature can reduce vernalisation. Six durations 

of low temperature were used, 24, 30, 36, k 2 , 48 and 54 days, the two 

interrupted treatments starting each duration earlier than the 

continuous 6° treatment so that the number of hours spent at 6° would 

be the same in all three treatments and all treatments would end on 

the same day. Long durations of low temperature were included as it 

was expected that flowering would be considerably reduced by the 

interruptions at high temperature.

Plants were sown in 5-5 cm 'Jiffy' pots and grown for 10 days 

at 18° mean daily mean temperature in a glasshouse bed before the 

start of the treatments. There were six plants per treatment with no 

replicates, in a split-plot design, the temperature treatments 

(growth cabinets) being the main plots and duration of low temperature 

and cultivar treatments the sub-plots.

Daylength was 18 hours with the four-hour interruption occurring 

in the middle of the day, from 10.00 to 14.00.

At the end of low temperature treatment the temperature was 

raised to 1 3 ° in all cabinets and the three temperature treatments 

re-randomised among the three growth cabinets. After 12 days at 13°
U

the swedes were planted out on the 27 May in a field plot in 75 cm 

rows, with 18 cm between the plants.
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Date of flowering was recorded. The experiment ended 100 days 

after the end of low temperature treatment, and the flower stage of 

all non-flowering plants was assessed (see experiment 2).

To compare the growth of the six cultivars at 6°, 36 four-week 

seedlings of each cultivar were grown for 27 days in the same cabinet 

in which the original continuous 6° treatment was carried out. There 

were four plants per plot and nine replicates. Visible leaf number 

was measured at the beginning and end of the 27_day period of growth 

at 6°.

Results

Interrupting the low temperature treatment with four hours daily 

at a higher temperature reduced the number of plants flowering 

especially when the interruption was at the higher temperature, 22° 

(Figure 2.11) .

The flowering (Table 2.33), transformed to a logit scale, was 

analysed with the GLIM program, as in experiment 2 and in Appendix B. 

Linear and quadratic components of the effect of duration of temperature 

treatment on flowering were significant (y2 p<0.001). The longer the 

duration, the greater the proportion of plants flowering, although the 

increase tailed-off after k2 days as treatments responded with 

virtually 100 per cent flowering, giving a quadratic shape to the 

curve. The cultivars differed significantly in proportion of plants 

flowering (y2 p<0.001) as did the three temperature treatments, plants 

treated in continuous 6° flowering most and those receiving a daily

four-hour interruption at 22° flowering least (y2 p<0.001). The

1 *  ̂linear component of duration was much greater than the quadratic

component. Between 2k and 36 days low temperature the curve is near
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TABLE 2.33: Experiment 15 - the effect of daily interruptions of low
temperature treatment with periods at higher temperature, 
cultivar and duration of low temperature treatment on the 
proportion of plants flowering out of six

CONTINUOUS 6°

Cu11 i va r

Durat ion
----

of low temperature (days)
Tota 1

24 30 36 42 48 54

No. of pi ants
No. of 
p 1 ants

Wi lhelmsburger 2.0 it.8 6.0 6.0 6.0 6.0 30.8

Doon Major 0.0 4.0 6.0 6.0 6.0 6.0 28.0

Ruta Otofte 0.0 1.5 6.0 6.0 5.0 6.0 24.5

Marian 1.0 6.0 6.0 6.0 6.0 6.0 3 1 . 0

De 11 a 3.0 6.0 6.0 6.0 6.0 6.0 33.0

Seefelder 0.0 1.0 1,2 6.0 5.0 6.0 19.2

Tota 1 6.0 23-3 31.2 36.0 34.0 36.0 166.5

20 HOURS AT 6° FOUR HOURS AT 16° DAILY

Cultivar

Durat i on of 1 ow temperature (days)
Tota 1

24 30 36 42 48 54

No. of plants
N o . of 
plants

Wi 1 helmsbu rger 0.0 3.0 5.0 5-0 6.0 6.0 25.0

Doon Major 0.0 0.0 2.4 6.0 6.0 . 6.0 20.4

Ruta Otofte 0.0 0.0 2.4 2.0

O
O

-3* 4.8 14.0

Mari an 0.0 4.0 2.4 5-0 6.0 6.0 23.4

Del la 0.0

oo-3- 5.0 6.0 6.0 6.0 27.8

Seefelde r 0.0 0.0 2.0 2.4 3.0 3.0 10.4

Tota 1 0.0 11.8 1 9 . 2 26.4 31.8 31.8 121 .0



TABLE 2.33: continued
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20 HOURS AT 6° FOUR HOURS AT 22° DAILY

Durât i on of 1 ow temperature (days)
Total

Cuitivar
24 30 36 42 48 54

No. of plants
No. of 
plants

Wi lrielmsburger 0.0 1.5 2 . 0 3.0 6. 0 6. 0 18.5

Doon Major 0. 0 0.0 1 . 2 4.0 6. 0 6. 0 1 7 . 2

Ruta Otofte 0. 0 0. 0 1 . 0 1 . 0 2 . 0 -jr
-

OO C
O

C
O

Mari an 0. 0 2.4 3.0 4.0 6. 0 6. 0 2 1 .4

Del 1 a 0. 0 2 . 0 4.5 4.8 6. 0 6. 0 23.3

Seefel der 0.0 0.0 0.0 2 . 0 4.0 1 . 0 7.0

Tota 1 0. 0 5.9 11.7 1 8 . 8 30. 0 2 9 . 8 9 6 . 2

TOTAL OF ALL TEMPERATURE TREATMENTS

Cu11 i var

Durât i on of low temperature (days)
Total

24 30 36 42 48 54

No. of plants
No. of 
p 1 ants

Wi lhelmsburger 2 . 0 9.3 1 3 . 0 14.0 1 8. 0 1 8. 0 74.3

Doon Major 0.0 4.0 9.6 1 6. 0 1 8. 0 1 8 . 0 6 5 . 6

Ruta Otofte 0. 0 1.5 9.4 9.0 1 1 . 8 1 5 . 6 47.3

Mari an 1 . 0 12.4 1 1.4 15.0 1 8. 0 1 8. 0 75.8

Del la 3.0 1 2 . 8 15.5 1 6 . 8 1 8. 0 1 8. 0 84.1

Seefe1 der 0. 0 1 . 0 3.2 10.4 1 2 . 0 1 0 . 0 3 6 . 6

Tota 1 6. 0 41.0 6 2 . 1 8 1 . 2 95-8 97.6 383.7
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to a straight line and the 50 per cent flowering point, where the curve 

on the logit scale cuts the x-axis, can be calculated from the 

predicted logit values for 2k and 36 days, assuming the curve is a 

straight line between these points. These values, the number of days 

of treatment at 6°, 6° with interruptions at 16°, and 6° with 

interruptions at 22°, required to give 50 per cent flowering are:

6° with 16° 6° with 22°
Cultivar 6 continuous interruptions interruptions

Wi Ihelmsburger 26.7 days at 6° 32.9 days at 6° 36.0 days at 6°

Doon Major 28.8 35.0 38.0

Ruta Otofte 53.2 39-5 k2.5

Marian 26.2 32.^ 35.k

Della 23.5 29.8 32.8

Seefelder 35.^ ^1.6 kk.b

In the interrupted treatments the number of days is that number 

of units of 2k hours at 6°, with daily four-hour interruptions adding 

to the time shown, for instance for W i 1helmsburger interrupted with 

16°, 39.5 (39.^8) days of 20 hours at 6° and four hours at 16°, are

necessary for 50 per cent flowering, or 789. 6 hours at 6° which is

32.9 units of 2k hours at 6°. The following table shows the number of

calendar days, that is 2k hours including in the interrupted treatments,

k hours at the higher temperature, in each treatment required to cause 

50 per cent flowering. The relative susceptibilities of the cultivars 

to vernalisation remain the same in the three temperature treatments, 

and there was no interaction between cultivar and temperature treat­

ment in the analysis. Della was the most susceptible cultivar, then 

Marian, Wilhelmsburger, Doon Major, Ruta Otofte and Seefelder the most 

resistant. Comparing the observed percentage of plants flowering,



6° with 16° 6° with 22°
Cultivar 6 continuous interruptions interruptions

143.

W i lhelmsburger 26.7 days at 6°
39 •5 da^ n d  16°

43.2 days

Doon Major 28.8 42.0 45.6

Ruta Otofte 33.2 47.4 5 1 . 0

Mari an 26.2 38.9 42.5

Del la 23.5 35.7 39.3

Seefelder 35.4 49.9 53.5

a slightly higher proportion of WiIhelmsburger plants flowered than 

Marian, but the differences between the two cultivars was very small, 

the observed percentages of all cultivars being 8 2 , 73, 71, 70, 45 and 

34 per cent for Della, Wilhelmsburger, Marian, Doon Major, Ruta Otofte 

and Seefelder.

When the number of plants with visible flower buds (flower stages 

3 and 4, see experiment 2) 100 days after the end of low temperature 

treatment are included with the number of plants flowering the cultivars 

are still in the same order of susceptibility to flower induction,

Della with 93 per cent, W i 1helmsburger 90 per cent, Marian 86 per cent,

Doon Major 81 per cent, Ruta Otofte 64 per cent and Seefelder 60 per

cent, and flower bud development and flowering is decreased by 

interruptions at high temperature, especially at 22°. Extending the 

time in which flowering was recorded would not therefore have altered 

the results of the experiment to any great extent.

Days to flowering were analysed as in experiment 2 (and see

Appendix B) using GLIM, with the number of plants contributing to the

mean used as a weight for that mean. The number of days to flowering 

from the end of low temperature treatment was affected by cultivar
hr

and temperature treatments (F tests p<0.001) and by the linear and 

quadratic components of duration of treatment (F tests p<0.001 for
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the linear component, and p<0.05 for the quadratic component). Unlike 

experiment 1 3 , therè was no significant interaction between cultivar 

and duration of low temperature treatment, days to flowering decreasing 

as duration of low temperature treatment increased, at the same rate 

for all cultivars. With longer durations, the decrease in time to 

flower was smaller giving the slight quadratic shape to the line. 

Interruptions of the 6° low temperature treatment at 16° and especially 

at 22° delayed flowering (Figure 2.12 and Table 2.3^).

Della flowered earliest, then Marian, Doon Major, Wilhelmsburger, 

Ruta Otofte and Seefelder, in both observed and fitted values.

The number of leaves 1 cm long and over produced by the six 

cultivars during 27 days at 6° was 0.085, 0.083, 0.088, 0.100, 0.090 

and 0.077 leaves per plant per day for W i 1helmsburger, Doon Major,

Ruta Otofte, Marian, Della and Seefelder respectively, and the effect 

of cultivar on leaf production was significant (F test p<0.025). When 

the means for each cultivar were compared using the least significant 

difference (0. 00138 for p<0.05) only Marian was significantly 

different from most other cultivars, as shown below. Cultivars joined 

by a line are not significantly different at the 5 per cent level.

Marian Della Ruta Otofte W i 1helmsburger Doon Major Seefelder

1M».

Discussion

Interrupting a period of low temperature with four hours daily 

at a higher temperature reduced the proportion of plants flowering 

and increased the number of days to flowering, even although the 

number of hours spent at 6° was the same. I nterruptions'*at 22° 

decreased flowering and rate of flowering more than 16°. The high



TABLE 2.3^: Experiment 15 ~ the effect of daily interruptions
of low temperature treatment with periods at 
higher temperature, cultivar, and duration of low 
temperature treatment on the number of days from 
the end of low temperature treatment to flowering

1^5.

CONTINUOUS 6°

Cuiti var

Duration of 
low temperature (days)

Mean

2b 30 36 bl b8 5b

Days to f1 ower
Days to 
f 1 owe r

Wi lhelmsburger 93 90 75 75 61 58 72

Doon Major NF 85 73 67 Gb 58 68

Ruta Otofte NF 92 86 75 75 63 75

Mar ian 88 77 70 62 61 55 66

De 11 a 89 69 65 62 58 53 Gb

Seefelder NF 85 89 87 70 69 76

Mean 90 80 lb 71 6 b 60 70

20 HOURS AT 6° FOUR HOURS AT 16° DAILY

Duration of 
low temperature (days) Mean

Cu 11 i var 2b 30 36 b2 b8 5b

Days to f 1 owe r
Days to 
f 1 owe r

Wi lhelmsburger NF 8b 88 7b 72 71 77

Doon Major NF NF 82 75 75 65 73

Ruta Otofte NF NF 96 79 7b 83 82

Mari an NF 8b 78 8b 61 67 73

Del la NF 86 75 63 60 57 67

Seefelder NF NF 100 96 70 77 83

Mean NF 85 85 76 68 69 7b

NF = no plants flowering in the treatment



TABLE 2.34: continued
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20 HOURS AT 6° FOUR HOURS AT 22° DAILY
.... . ■ '

Duration of 
low temperature (days)

-----------

Mean

Cu 11 i var 24 30 36 kl 48 54

Days to f 1 owe r
Days to 
f1 owe r

W i 1 heImsburger NF 92 85 76 69 70 74

Doon Major NF NF 99 84 75 70 78

Ruta Otofte NF NF 88 80 92 73 81

Mari an NF 86 7k Ik 72 64 72

Del la NF Sk 8k 67 69 61 71

Seefe1der NF NF NF 95 94 95 95

Mean NF 91 83 78 76 68 76

MEAN OF ALL TEMPERATURE TREATMENTS

Culti var

Duration of 
low temperature (days) Mean

24 30 36 42 48 54

Days to f 1 owe r
Days to 
f 1 owe r

WiIhelmsburger 93 88 82 75 67 66 74

Doon Major NF 85 78 74 71 64 72

Ruta Otofte NF 92 89 77 78 72 78

Mari an 88 81 72 72 65 62 70

Del la 89 79 73 64 63 57 67

Seefe1der NF 85 96 91 78 74 82

Mean 90 83 79 74 69 65

C
M

>

NF = no plants flowering in the treatment
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temperature must reverse some, but not all, of the effect of the 

previous 20 hours at 6°. In spring, daily temperatures are unlikely

to reach 22° but might reach 16° fairly often, and a period of

four hours each day at 16° reduced flowering by 24 per cent (38 per

cent for 22°) given the same total number of hours at 6°.

There was a wide range of susceptibility to flower induction in 

the six cultivars, and over 11 days difference between the number of 

days at continuous 6° required to cause 50 per cent flowering in 

Della, the most susceptible cultivar, and in Seefelder, the most 

resistant cultivar. The more resistant the cul.tivar, the slower was 

flowering, except for Doon Major which flowered slightly earlier than 

Wi Ihelmsburger although having a lower percentage of flowering plants 

than Wilhelmsburger.

As in experiment 13, although there was initially a linear 

response to increasing duration of low temperature in decreasing days 

to flowering, at the longer durations the response curve became less 

steep. In experiment 13, analysed by Michael Franklin of the ARC Unit 

of Statistics, the longest durations, 36 and 40 days low temperature, 

were not included in the analysis of number of plants flowering and 

the response on a logit scale, to increasing duration of low tem­

perature, was linear. When the longest durations 48 and 54 days 

were omitted in this experiment, the quadratic component of the effect 

of duration was still significant (y2 p<0.01) and so there was no 

advantage in discarding any duration of low temperature treatments.

The order of decreasing leaf production at 6° of the six 

cultivars was similar to the order of decreasing susceptibility to 

flower induction, with Marian and Della, two of the most susceptible 

cultivars, having the highest rate of leaf production and Doon Major



and Seefelder, two of the most resistant cultivars, having the lowest 

rate. The correlation between the rate of leaf production and the 

percentage of flowering for each cultivar was not, however, significant.

The experiment was unreplicated and so the residual variation, 

or deviance, left after subtracting the main effects duration, cultivar, 

and temperature treatment was used as the error term for the analysis 

of days to flowering. This error is really the second and third 

order interactions. Although it is possible that the third order 

interaction, which could not be tested, was significant, the deviance 

that could possibly be attributed to a third order interaction was 

much less than that attributable to the effects which were considered 

to be significant. The proportion of plants flowering was assumed to 

have a binomial error and the mean deviances removed by treatment 

effects compared directly with x2 with no reference to the residual 

deviance and so replicates would not improve the analysis. in this 

case the main treatments removed so much of the deviance in the 

proportion of plants flowering model that it was not possible that a 

third order interaction could be significant.

11*8.



2.12 SELECTION OF RESISTANT AND SUSCEPTIBLE LINES

The effect of three durations of low temperature treatment on 

the flowering of progeny of early and late flowering W i 1helmsburger 

and Doon Major swedes, and their parents.

Experiment 16

In experiments 13, I** and 15 cultivars that were most susceptible 

to flowering tended to flower earlier than more resistant cultivars. 

Selecting early or late flowering plants might be a convenient 

method of selecting for bolting susceptibility or resistance. It 

would have the advantage that the seed could be collected in that 

year whereas selecting non-bolters from a population of bolting 

plants involves exposing the plants to a further period of cold before 

seed can be obtained. Early flowering, however, is not invariably 

associated with susceptibility to flower induction, for instance in

experiments 13 (fitted values) and 15, Doon Major flowered earlier

than W i 1helmsburger, especially after longer low temperature treatments, 

although in experiments 6, 11, 12 and 1*t Doon Major flowered later. 

Flowering is usually slower after shorter periods of low temperature 

and within a duration of low temperature treatment, the latest 

flowering plants might be the most resistant, that is those for which 

that period of low temperature is less effective.

Early and late flowering plants in experiment 3 were selected,

covered in a muslin bag when the first flowers opened, and their seed 

collected. Age treatments were ignored as they did not show any 

marked effect on time to flower either in experiments 2 or 3 and so 

the two earliest flowering plants in each cultivar times duration of 

low temperature treatment were selected. The two latest flowering

}k3.
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plants were also selected, but if not all plants had flowered two 

non-flowering plants were left in the field for further exposure to 

low temperature and then moved to a cool glasshouse till flowering 

and seed ripening were completed.

Seed from the following 15 lines was used:

L i ne

Du rat i on 
of low 

temperatu re 
treatment

Date of 
f 1ower- 

ing
Date of 
harvest

1 Early flowering 
Wilhelmsburger

20 days 19/7/76 2nd to flower 29/10/76

2 1 1 28 days 10/5/76 1st to flower 24/ 8/76

3 1 1 28 days 17/5/76 2nd to flower 24/ 8/76

4 1 1 32 days 10/5/76 2nd to flower 24/ 8/76

5 1 1 36 days 8/5/76 1 s t to flower 24/ 8/76

6 Late flowering 
Wilhelmsburger 32 days 2/8/76 2nd last to flower 29/10/76

7 1 1 40 days 8/7/76 2nd last to flower 24/ 8/76

8 II 40 days 26/7/76 1 as t: to flower 18/11/76

9
Early flowering 
Doon Major

28 days 6/5/76 1st to flower 24/ 8/76

10 1 1 28 days 10/5/76 2nd to flower 24/ 8/76

11 1 1 32 days 3/5/76 1 st to flower 24/ 8/76

12 1 1 32 days 5/5/76 2nd to flower 24/ 8/76

13 1 1 36 days 30/4/76 1 s t to flower 24/ 8/76

14 Late flowering 
Doon Major 36 days 27/7/76 2nd last to flower 24/ 8/76

15 11 40 days 28/5/76 1 as t to flower 24/ 8/76

These lines were compared wi th the parent populations, W i1 he 1 ms-

burger (Garton's 1973) and Doon Major (McGill 197*0 used in experiment 3.

Early flowering lines were taken from short duration of low 

temperature treatments as much as possible. It was assumed that only
ir

the most susceptible individuals would flower after a short duration of 

low temperature treatment, and late flowering plants were taken from 

the longest temperature treatments.
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The seeds were germinated in three successive sowings in petri 

dishes at 18° in the light and planted out into 5-5 cm 'Jiffy' pots 

after four days, with four plants per plot and five replicates.

Plants were raised for 18 days from sowing at 18° mean daily 

mean temperature in a glasshouse bed, hardened off for three days at 

12° and then moved outside for k, 5 and 6 weeks during March and April 

at 5.3° mean daily mean temperature. The three low temperature treat­

ments all ended on the same day and the plants were then moved into a 

glasshouse compartment at 12° mean daily mean temperature for 2k days, 

before being planted out in a field plot on 19 May, in rows 75 cm apart,

12.5 cm between plants in the rows.

Date of flowering was recorded. At the end of the experiment,

100 days after the end of low temperature treatment, flower stage 

(see experiment 2) of all non-flowering plants was recorded.

Results

Progeny from early flowering plants flowered more, and from 

late flowering plants flowered less, than the parent populations, 

especially in W i 1helmsburger (Figures 2.13 and 2.14).

The percentage flowering of the 15 lines and the two parent 

cultivars is given below. If the number of plants at flower stage 

3 and A, that is with visible flower buds at the end of the experi­

ment, are included with the number of plants flowering, the relative 

susceptibilities to vernalisation of the different lines do not 

change.

The number of flowering plants for all early flowering Wilhelms- 

burger lines was combined, similarly the late flowering Wi 1 helmsburger 

lines and the early and the late flowering groups of Doon Major lines.



FIGURE 2.13: Experiment 16 - the effect of duration of low tem­
perature treatment on the flowering of 5 early flowering 

Wilhelmsburqer lines (EFW) , the Wilhelmsburger parent population (Ì7)
and 3 late flowering WiI helmsburger lines (LFW) 

W i I h e Im s burger lines

W e ek s at low temperature

FIGURE 2.14: Experiment 16 - the effect of duration of low tem­
perature treatment on the flowering of 5 ear~ly flowering 

Doon Major lines (EFD), the Doon Major parent population (D) and 2 
late flowering Doon Major lines (LFD~)

Doon Major lines

- - V

W e e k s  at low temperature



152.

X plants wi th

L i ne
X plants 
flower i ng

flowers or 
f1 owe r

1 Early flowering Wilhelmsburger 100 100

2 I I  I I  I I 8k 100

3 I I  I I  I t 88 100

k I I  I I  I I
87 100

5 II  I I  I I 95 100

Wilhelmsburger parent 72 93

6 Late flowering W i 1helmsburger 18 53

7 I I  I I  I I 39 77

8 I I  I I  I I 32 7k

9 Early flowering Doon Major 52 76

10 ii n n 8k 93

11 n ii ii 58 77

12 ii ii ii 59 80

13 ii ii n 59 82

Doon Major parent 53 73

1 it Late flowering Doon Major 51 6k

15 I I  I I  11 38 56

Including the two parent cultivars W i 1helmsburger and Doon Major, 

this gave six groups in total. There were 90 plots in total, the six 

groups, three duration of low temperature treatments, and five 

replicates. This data was analysed using GLIM, on a logit scale 

(see experiment 2 and Appendix B). Groups and duration of low tem­

perature had a significant effect on flowering (x2 tests p<0.001) and 

although the linear component of duration accounted for most of the 

deviance attributable to duration treatments there was a significant 

remainder (x2 p<0.025), as the increase in flowering on the logit 

scale was greater from 28 days to 35 days low temperature than from 

35 days to k2 days.

The data from both cultivars, each divided into the three groups, 

early flowering lines, late flowering lines and parent population, were



also analysed separately with GLIM. The groups were placed in the 

data in the order, early flowering lines, parent cultivar, late 

flowering lines, so that a linear component of the effect of 

selection on flowering could be examined. Factors significantly 

affecting the flowering of the Wilhelmsburger groups were the linear 

component of duration and the linear component of selection (x2 tests 

p<0.001), that is the flowering, on a logit scale, of the three 

groups, early flowering lines, parent, and late flowering lines could 

be arranged in a straight line and fit the data satisfactorily 

(mean deviance for total effect of lines, 116.81, compare with x2 

df 2; mean deviance for linear effect of lines, 231.3, compare with 

X2 df 1). The linear component of selection had a significant 

effect on the flowering of the Doon Major group, although smaller 

than on the W i 1helmsburger group (mean deviance for total effect of 

Doon Major groups 6.56, compare with x2 df 2 and for linear effect 

of groups, 12.66, compare with x2 df 1) but the linear component of 

duration was not the only significant effect of duration, as flowering 

(on a logit scale) increased more rapidly from 28 to 35 days than 

from 35 to kl days (x2 effect of duration, p<0.001). Although 

selection affected, flowering in both cultivars the differences 

betwen the selected Wilhelmsburger lines and the parent population 

were much greater than the differences between the Doon Major lines 

and the parent.

The number of days at 5-3° mean daily mean temperature required 

to cause 50 per cent flowering in the various groups was calculated 

from the analysis in which all six groups were included using the 

data for 28 and 35 days low temperature, assuming a straight line 

between these two points, and also from the 28 and b2 days low
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temperature treatments, when the data was fitted to a linear effect 

of duration. The number of days for 50 per cent flowering was also 

calculated from the fitted lines in the separate analyses of the two 

cultivars, in the case of Doon Major from the 28 and 35 days fitted 

points with the total effect of duration and from the 28 and 42-day 

points with the data fitted to the linear effect of duration. This 

gave three estimates of the number of days for 50 per cent flowering 

for the W i 1helmsburger groups, and four estimates for the Doon Major 

groups. The estimates generally varied by about one day, and at 

most by 2.6 days and so the means of the three or four estimates were 

taken, and are shown below:

Days to flowering (Table 2.35) were analysed with GLIM as in 

experiment 2 (and see Appendix B ) , using the number of plants con­

tributing to each mean to weight that mean. The three Doon Major 

groups and the three W i 1helmsburger groups were analysed together, 

and separately.

In all analyses the number of days to flowering from the end of 

low temperature treatment declined linearly (F tests, p<0.001) as
fr

duration of low temperature increased. The early flowering Wilhelms- 

burger lines flowered 1 and 3 days earlier (observed and fitted mean

Group

Number of days 
at 5-3 requi red to 
cause 50% flowering

Early flowering Wilhelmsburger lines 

Wi 1helmsburger parent cultivar 

Late flowering Wilhelmsburger lines 

Early flowering Doon Major lines 

Doon Major parent cultivar 

Late flowering Doon Major lines

24.4 days

30.5 days

39.3 days

33.3 days 

34.2 days 

35.9 days
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TABLE 2.35: Experiment 16 - the effect of duration of low temperature
treatment on the number of days to flowering from the 
end of treatment of selected lines of Wi 1 he I rrtsburger and 
Doon Major and the parent cultivars

Duration of low 
temperature treatment Mean

Cultivar or 
group of 1i nes k weeks 5 weeks 6 weeks

Days to flowering
Days to 

f1 owe ring

Mean of five early flowering 
Wi lhelmsburger lines

90 81 75 81

Wilhelmsburger cultivar 93 87 Ik 82

Mean of three late flowering 
Wi lhelmsburger lines Sk 96 86 89

Mean of five early flowering 
Doon Major lines 95 89 79 8k

Doon Major cultivar NF 88 Ik 80

Mean of two late flowering 
Doon Major 1ines NF 92 82 85

Mean 91 86 78 83

values respectively) than the parent population and the late flowering 

lines 6 and 10 days later (observed and fitted values) than the parent, 

giving a significant linear effect of selection (F test p<0.001).

In the Doon Major groups, although the effect of groups was significant 

(F test p<0.05) and the late flowering group was the last to flower 

by mean 1 and 3 days (observed and fitted mean values) the Doon Major 

parent was earlier in flowering than the early flowering group by 

mean 3 days.

Late flowering lines flowered less and flowered later than
w

other lines. When the flowering percentages and days to flowering 

of all nine Wilhelmsburger lines, including the parent population,



were compared, there was a significant negative correlation (r ■ -0.867 

n <= 9 p<0.01) between flowering percentage and days to flowering.

The higher the percentage flowering of any line, the earlier it 

tended to flower. There was no similar correlation in the eight Doon 

Major 1i nes.

Discussion

Resistant and susceptible lines were successfully selected from 

Wi lhelmsburger and Doon Major cultivars by taking seed from early and 

late flowering plants in the parent population. The first and second 

earliest and latest flowering plants were selected from cultivar 

times duration of low temperature treatments each containing 25 plants, 

and selected plants formed the extreme 8 per cent of each treatment 

population. Wilhelmsburger seed stocks used in previous experiments 

have always shown more variability in flowering than Doon Major stocks, 

and the selected Wilhelmsburger lines differed much more from the 

parent population than the selected Doon Major lines. Although 

Wi lhelmsburger is normally more susceptible to flower induction than 

Doon Major the late flowering Wilhelmsburger lines were less susceptible 

than any of the Doon Major lines.

Earliness of flowering of the Wilhelmsburger lines was correlated 

with susceptibility to flowering but not in Doon Major although late 

flowering lines were slightly later in flowering than early flowering 

lines. In experiment 3 the variation in time to flower was similar 

in both cultivars, but presumably the genetic component of the 

variability was greater for W i 1helmsburger than for Doon Major as 

selection for earliness or lateness of flowering was much''more 

effective in Wilhelmsburger. In general, however, the time to flower
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of an individual plant within a population is related to its 

susceptibility to flower induction and this susceptibility is heritable.

The seed of the 15 lines was not ripened at one time. Low

temperature during ripening has been shown to have an inductive 

effect on sugar beet (Longden et al 1975) and it is possible that 

lower temperatures in September and in the cool glasshouse may have 

partially vernalised seed of lines 1, 6 and 8 but even if this happened 

the flowering of two of these lines was still much less than that of 

other 1i nes.

As the lines were selected on flowering time, concluding the 

experiment fairly early, at 100 days, might have discriminated against 

lines derived from late flowering plants which might have fewer 

flowering plants at that time although equally susceptible to 

vernalisation. Examination of the number of plants flowering and

with visible flower buds show that this is not the case. Even if all

plants in bud at 100 days had flowered, the early flowering lines 

would still have had considerably more flowering plants than the late 

flower i ng 1 i nes.
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2.13 SITE OF VERNALISATION

2.13-1 The effect of cooling the growing point on the flowering of 

swedes.

Experiment 17

In two preliminary experiments all leaves over 1 cm were removed 

from Pentland Harvester swedes in the first experiment, and from 

Wi lhelmsburger and Doon Major swedes in the second, during a six or 

nine weeks low temperature treatment respectively. Leaves were allowed 

to grow after the treatment period and all plants extended and flowered 

normally although the defoliated plants flowered more slowly, 6.2 and

10.5 days later than undefoliated plants in the first and second 

experiments respectively. Defoliation probably depleted plant reserves 

of carbohydrates during the low temperature period which may have 

reduced the efficiency of vernalisation and the rate of plant growth 

and development after the low temperature period. Defoliating 

cabbage plants immediately before low temperature treatment had no 

effect on their subsequent flowering (I to et al 1966) but, in contrast, 

defoliation of broccoli plants at the beginning of a low temperature 

period lowered sugar levels greatly and prevented flowering (Fontes 

and Ozbun 1971). Broccoli is possibly more sensitive to carbohydrate 

levels, or more dependent on photoperiodic induction which requires 

the presence of leaves. Unlike cabbage and swedes, broccoli does not 

have an obligate requirement for vernalisation.

There is evidence that the crown of beet (Chroboczck 1933) and 

celery plants (Curtis and Chang 1930) and the growing point of the 

chrysanthemum (Schwabe 195*0 is the site which perceives the effect 

of low temperature. To determine if the growing point alone can act
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as the site of vernalisation in the swede, the growing points of a 

group of plants were cooled to a vernalising temperature while the 

rest of the plant remained at a higher, non-vernalising temperature.

Seven-week old Doon Major swedes in 7.5 cm pots were placed 

in the apparatus described below (Figure 2.15). Twelve mm lengths of 

6 mm diameter copper rod with 6 mm deep V-shaped slots cut in them 

were brazed to 7 mm bore, ^0 cm long copper pipes, four rods, 10 cm 

apart, to each of eight pipes. All copper parts were coated with 

polyurethane varnish. The eight pipes were held in a frame with the 

slotted rods pointing down. Four of these pipes were connected 

together with pvc (poly vinyl chloride) tubing and lagged with plastic 

foam. Water/antifreeze mixture at -1.0 ±0.5° was pumped through 

continuously from a constant temperature water bath.

Treatment was carried out in a laboratory at 18° mean daily mean 

temperature (measured with a maximum/minimum thermometer), and the two 

treatments, cooled or uncooled copper pipe, randomised in four blocks, 

parallel to the window. The plants were placed in trays under the 

frame holding the pipes, 16 with their growing points in contact with 

cold slotted copper rods, and 16 control plants with growing points in 

contact with copper rods at room temperature (Figure 2.16).

The plant surface temperature close to the growing point and on 

the leaves (mean of three leaves) of each plant was measured weekly 

with a thermocouple connected to an electronic thermometer.

The temperature on the surface of the 16 cooled growing points 

ranged from 6.5° to 8.8° (mean of seven weekly readings), 7-6° mean 

of all 16 plants. The individual readings ranged from 2.8° to 15-9° 

as copper/plant contact varied between plants, and over time. The 

growing points of the control plants were 16.7° to 18.1°, mean 17.^°,
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FIGURE 2.16: Experiment 17 ~ a swede plant in the apparatus
shown in Figure 2.15, with growing point in 
contact with a cooled copper rod

L— __________
5 cm
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with a range in individual readings of 13-7° to 26.8°. Mean leaf 

surface temperatures were 1 7 .5° and 17.2° for the cooled and uncooled 

groups respectively, and never fell below 1 3.5°- Up to 2 cm of 

growing point tissue below the tip was cooled, but the rest of the 

plant was at ambient temperature.

After six weeks of treatment the swedes were planted out in a 

field plot on 6 June at 15 cm spacing within the rows, 75 cm between 

the rows. Date of flowering was recorded and 110 days after low tem­

perature treatment ended the apical buds of remaining non-flowering 

plants were dissected and bud stage assessed (see Figure 2.1).

Results

All 16 plants that had had their growing points cooled became 

reproductive. Fourteen flowered within 85 days of the end of the 

cooling treatment with mean time to flower of 67 days and the remaining 

two plants had green flower buds (bud stage 6). None of the control 

plants flowered or extended giving a highly significant difference 

between the proportions of plants flowering in the cooled and control 

groups (x2 p<0.001) .

There was no obvious difference between the days to flowering 

of plants cooled by water coming straight from the water bath, and 

days to flowering of those lower down the circuit. The block furthest 

from the window had only two flowering plants which may have been due 

to the poorer light or slightly higher temperature further from the 

w i n dow.
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2.13-2 Experiment 18

Experiment 17 was repeated using six-week old Wilhelmsburger 

plants and re-randomising the two treatments in the four blocks.

The air temperature was higher, 22° mean daily mean temperature, and 

to compensate for this the temperature of the water/antifreeze 

mixture was lowered to -2 ±0.5° and treatment extended to seven weeks.

Weekly plant temperature and daily maximum/minimum air tem­

perature measurements were made as in experiment 17- The temperatures 

near the growing points of cooled plants were between 7.0° and 10.9°, 

mean for all plants 9-3°, and of uncooled plants 20.3° to 21.5°, mean 

20.7°. Mean leaf temperatures were 21.2° for cooled plants and 21.0° 

for uncooled plants.

After treatment the swedes were planted in a field plot on 

7 August and after a month lifted and replanted in a glasshouse com­

partment at 13° mean daily mean temperature, without supplementary 

light. After 16 weeks in the compartment, plant apices were dissected 

and the bud stage recorded (see Figure 2.1).

Results

Seven of the 15 surviving cooled plants were clearly reproductive 

(bud stage 3 and over) and six were at bud stage 2. One uncooled 

plant out of 14 surviving plants was at bud stage 2, possibly due to 

low temperatures in the compartment. Comparing proportions of plants 

at stage 3 and over the difference between the two treatments, cooled 

and uncooled, is significant at the 2 per cent level (y2 test) and 

including plants at bud stage 2, is significant at the 0.1 per cent 

level. There was no difference in bud development between the four 

blocks.

161.
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2.13*3 The effect of heating the growing point on the flowering of 

swedes.

Experiment 19

The previous two experiments have demonstrated that cooling 

the growing point only can induce flowering in swedes. To find out if 

other parts of the plant can be vernalised while the growing point is 

maintained at a non-vernalising temperature the same apparatus as in 

experiments 17 and 18 was used but with circulating hot water instead 

of cold water.

Thirty-two 11-week old Wilhelmsburger plants were placed under 

the apparatus in an unheated greenhouse for six weeks in October and 

November with the ambient temperature 6.5° mean daily mean temperature, 

range in daily mean temperature 3-3° to 12.2°, and no supplementary 

light. The two treatments, heated copper or copper at ambient tem­

perature, were randomised in the four blocks and the circulating water 

was maintained at 4 8 ± 2° to heat the growing points of treated plants 

above vernalising temperatures.

The temperatures of the plant surface near the growing point, 

on the leaves, and on the root were measured on three occasions with 

a thermistor electronic thermometer. At the end of the experiment a 

test plant was set up and the temperature measured at various points 

in or on the surface of the plant.

The surface temperatures (mean of three readings) of the heated 

growing points were in the range 14.6° to 21.8°, mean 18.5°, and of 

the unheated growing points 7.7° to 8.8°, mean 8.1°. Leaf temperatures 

were 8.5° and 8.4°, and root temperatures 8.3° and 8.1° for the heated 

and unheated plants respectively. In the test plant only the tissue



within about 1 cm of the copper rod was maintained above 10° and

tissue 3 cm from the rod was at ambient temperatures (Figure 2.17)-

All the lower buds, the root and leaves were at vernalising temperatures 

even when the growing point was heated to 15° to 20°.

At the end of six weeks treatment the plants were moved to a 

glasshouse compartment at 1 3° mean daily mean temperature for two 

weeks, and then to a glasshouse bed at 16.3° mean daily mean temperature 

for nine weeks. On 8 June the swedes were planted out in a field plot 

and the experiment ended 140 days after the end of low temperature 

treatment. Date of flowering was recorded, and buds of non-flowering 

plants were dissected and bud stage (see Figure 2.1) recorded at the 

end of the experiment.

Res ul ts

None of the plants whose growing points had been heated during 

vernalisation flowered. Fifteen of the 16 control plants had flowered 

1^0 days after low temperature treatment with a mean time to flower 

of 88 days. The remaining control plant had visible flower buds (bud 

stage 6) at the end of the experiment, but all the treated plants had 

vegetative apical buds. The difference in proportions of plants

flowering between heated and unheated plants was highly significant

(x2 p<0.001).

2.13 Discussion

Cooling the growing point can cause flowering. The growing 

point may not be the only site where low temperature can induce 

flowering but it is as effective as the entire plant as in experiment
t-

17 flowering was rapid and normal after treatment. The slow and less 

complete flower development in experiment 18 was probably chiefly due
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5 cm

FIGURE 2.17: Experiment 19 - temperatures within the tissue and
on the surface of a swede plant with its growing
point in contact with heated copper rod
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to the higher growing point temperatures during treatment, and partly 

to poorer conditions, low temperature, low light intensity and short 

days, for flower development after low temperature treatment.

Experiment 19 demonstrates that in the normal intact plant the 

growing point is the only site of vernalisation. Axillary buds near 

the growing-point were at non-vernalising temperatures but lower buds 

were below 10°. Either the lower buds are not vernalised because 

their growth is too slow or they are vernalised but are unable to 

extend and flower while the main apex is growing vegetatively. The 

condition of the lower buds could be tested by removing the growing 

point immediately after treatment to see whether the buds that grow 

out to replace the apex are reproductive or not.

It was not possible to cool a smaller part of the plant than 

the growing point including apical meristem, all leaf primordia and 

up to about 1-2 cm of stem tissue below the apex. This is the part 

of the shoot with most actively dividing cells, and evidence from 

other experiments suggests that active cell division is essential for 

vernalisation (Wellensiek 1962b).

The amount of cooled or heated tissue in these experiments is 

considerably less than in the experiments with beet and celery, in 

which the whole crown of the plant was cooled.



2.14 SITE OF DEVERNALISATION

The effect of heating only the growing point to deverna1ising 

temperatures, after low temperature treatment, on flowering of swedes.

Experiment 20

Experiments 17, 18 and 19 have established that the growing 

point is the normal site of vernalisation in an intact plant, and as 

the flowering stimulus induced by vernalisation is generally considered 

to be initially immobile (see 1.13, page 36), it is probable that 

the site of devernalisation is the growing point also. The same 

apparatus and methods as in experiments 1 7 , 18 and 19 were used to 

investigate the site of devernalisation.

Twenty-four, 5-week old W i 1helmsburger plants were repotted to

12.5 cm pots, and placed out of doors on 15 October for 32 days at 

7° mean daily mean temperature. The fairly short low temperature 

period was used so that plants would be more susceptible to devernalisa­

tion. The plants were then placed under the same apparatus as in 

experiments 1 7 , 18 and 19 in a compartment with mercury vapour lamps 

extending daylength to 18 hours, with three plants per plot. The 

compartment temperature was 12.3° mean daily mean temperature and 

water at 56 ±2.0° was circulated to heat the growing points of the 

12 treated plants to a devernalising temperature. Plant surface 

temperatures on the growing points and leaves were measured weekly 

with a thermistor electronic thermometer, with the lights off, and 

once with the lights on, as a comparison.

Mean growing point temperatures of heated plants (mean of three

0 ^
readings) were from 1 9 - 5 to 24.5 with mean 21.6 , and of unheated 

plants 12.8° to 13-8°, mean 13-2°. Mean leaf temperatures were 13*3°
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and 13-0° for heated and unheated plants respectively. While the 

lights were on, for 12 hours a day to lengthen the daylength, tem­

peratures were slightly higher: 28.2° and 15.6° for heated and

unheated growing points, and 16.2° and 16.6° for leaf surface tem­

peratures of heated and unheated plants respectively.

The temperature of a test plant heated and unheated was measured 

at several points. Only the 2 cm of the plant growing point closest 

to the copper rod were heated above ambient temperature.

Treatment in the apparatus finished after three weeks and the 

plants were moved to a glasshouse bed at 1 7° mean daily mean temperature 

and two months later repotted to 19 cm pots. Date of flowering was 

recorded, and 160 days after the end of low temperature treatment the 

apical buds of the remaining plants were dissected and bud stage 

recorded (see Figure 2.1).

Results

None of the devernalised plants flowered or became reproductive, 

but four of the control plants flowered, and five more had flower buds 

at bud stages 4 to 6 by the end of the experiment. The difference in 

the proportions of flowering plants in the two.treatments was not 

significant but the difference in numbers of reproductive plants (bud 

stage 4 and over) was highly significant (y2 p<0.001).

Flowering was very slow, mean days to flower being 140.7.

Discussion

Heating the growing point after low temperature treatment 

prevented flowering, which suggests that devernalisation occurs in the 

growing point. It also suggests that the flowering stimulus is immobile 

in the growing point as the stimulus appears to be destroyed by heating
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the growing point after low temperature treatment, even while the rest 

of the plant is at ambient temperatures which did not prevent flower­

ing of control plants. It is possible, however, that lower buds were 

induced but unable to extend and flower while the main apex was 

growing vegetatively.

i
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2.15 VERNALISATION OF GROWING POINT CUTTINGS

The flowering and stem extension of plants grown from growing 

point cuttings previously subjected to a low temperature treatment.

Experiment 21

Preliminary experiments (see experiment 17) have demonstrated 

that leaves are not required for vernalisation and experiments 17 and 

18 have shown that cooling the growing point alone can cause flowering. 

Apical stem cuttings of cabbage, 5 cm long, have been successively 

vernalised (I to et al 1966). In this experiment detached growing 

points were given a low temperature treatment and grown into plants 

to examine whether the presence of leaves, root and fibrous roots are 

essential for vernalisation or not.

The growing points were cut from 65 W i 1helmsburger and 50 Doon 

Major 12-week old swedes and trimmed to three sizes, 7, 12 or 15 mm 

cubed, leaving the apical bud intact but with all leaves removed.

The buds were placed in 5-5 cm 'Jiffy' pots filled with peat in three 

seed trays, covered with clear plastic and moved into an unheated 

glasshouse at 8° mean daily mean temperature. One tray was moved 

into a compartment at 12° mean daily mean temperature after seven 

weeks and the other two trays moved into the compartment after nine 

weeks.

As the cuttings took root and grew they were repotted. Date 

of flowering was recorded. The apical buds of non-flowering plants 

were dissected and bud stage (see Figure 2.1) recorded 90 days after 

the end of the nine-week low temperature treatment.
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Results

Thirty-eight of the 106 cuttings that survived and grew into 

plants flowered, and 23 more had reproductive buds (bud stage A to 6). 

The larger the size of the cutting, the greater the proportion of 

flowering and reproductive plants (bud stage b and over) (x2 , flowering 

plants 15 mm v 12 mm, p<0.01; reproductive plants 15 mm v 12 mm, 

p<0.05; 12 mm v 7 mm, p<0.01) (Table 2.36). The nine-week low 

temperature treatment resulted in greater proportions of flowering 

(X2 p<0.05) and reproductive plants (x2 p<0.01) than the seven-week 

treatment. There were no significant differences in proportions between 

the two cultivars.

Larger bud pieces flowered earlier than smaller pieces (Table 

2.37), but there was no difference in flowering time between the 

cultivars. After the seven-week low temperature treatment flowering 

was slightly earlier than after nine weeks treatment, but only six 

plants flowered after seven weeks compared with 32 after nine weeks 

and so the mean values are more accurate for the nine-week treatment.

Discussion

Cuttings of only apical buds can be vernalised, and once 

established as plants flower and extend normally, confirming that 

the presence of other parts of the plant - leaves, root and fibrous 

roots - are not essential for vernalisation. Larger cuttings flowered 

more readily and earlier than smaller cuttings presumably partly due 

to more vigorous regeneration and growth after low temperature treat­

ment but probably also because of the greater amount of tissue, better 

growth and larger food reserves during low temperature treatment.
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TABLE 2.37: Experiment 21 - the effect of duration of low tem-
perature treatment, size of apical bud cutting and
c u 11 i var on the number of days from the end of each
treatment period to flowering

Durat i on 
of 1 ow 

temperature

Days to flowering

S i ze of 
cutt i ng

W i 1helms- 
burge r Doon Major

Mean of 
both 

cuit i vars
Overal1 
mean

0.34 cm3 NF NF NF 73.6

7 WEEKS 1.73 cm3 64.5 NF 64.5 62.8

3.37 cm3 56.0 66.3 63.8 57.9

Mean 61.7 66.3 64.0 61.8

0.34 cm3 75.7 70.5 73.6

9 WEEKS 1.73 cm3 62.0 63.0 62.5
C

OEOC
O

C
O 58.6 53.2 56.4

Mean 62.6 59.9 61.4

OVERALL
MEAN 62.4 61.0 61.8

NF = no plants flowering in the treatment



2.16 REMOVAL OF THE GROWING POINT

2.16.1 The effect of the removal of the growing point or shoot before 

or after low temperature treatment, on flowering of swedes.

Experiment 22

Previous experiments (17, 18, 19 and 21) have established that 

the apical growing point is the normal site of vernalisation. it is 

not certain whether lower buds on the plant are induced, or only the 

growing point, but it is generally supposed that the flowering 

stimulus is immobile, and if this is so, removal after low temperature 

treatment of the induced growing point would prevent flowering unless 

lower buds were induced.

The growing point or almost the entire shoot was removed from 

nine-week old Doon Major plants after low temperature treatment so 

that the flower buds would grow out and their condition, whether re­

productive or vegetative, could be assessed. The two amounts of 

tissue, growing point or shoot, were removed so that the condition of 

both axillary buds near the growing point and the oldest buds on the 

plant could be examined.

To check that buds other than the growing point can be vernalised, 

the growing point or shoot was removed before low temperature treat­

ment, so that axillary buds would be released from apical dominance 

and would be actively growing during low temperature treatment.

Forty-five plants were repotted to 12.5 cm pots and the following 

treatments each applied to nine plants:

1. Control plants left intact.

2. The apical bud (approximately 1 cm3 of tissue, weighing about 

1 g) removed on the day low temperature treatment started,
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leaving four or five leaves, their axillary buds and lower 

axi11ary buds.

3. The shoot removed on the day low temperature treatment started,

leaving no leaves, and only four or five axillary buds on the

stem.

k. The apical bud removed on the day low temperature treatment 

ceased, leaving four or five leaves, their axillary buds and 

lower axillary buds.

5. The shoot removed on the day low temperature treatment ceased,

leaving no leaves, and only four or five axillary buds on the

stem.

All plants were given a six-week low temperature treatment at 

8° mean daily mean temperature in an unheated glasshouse during 

October and November and were then moved to a compartment at 1^° mean 

daily mean temperature for two weeks before being moved to a glass­

house bed at 18° mean daily mean temperature.

The number of buds over 1 cm in length was counted after four 

weeks of low temperature treatment and bud number and leaves over 5 cm 

in length counted at the end of low temperature treatment. The date 

of flowering of the first bud to flower on each plant was recorded 

and 135 days after low temperature treatment finished the buds on 

the remaining plants were dissected and bud stage assessed (see Figure 

2 .1).

Results
4*

One of the nine control plants left intact (treatment 1) 

flowered in 121 days, three others having unmistakable flower buds
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(bud stage 4 to 6) and four of the eight surviving plants that had had 

their apical buds removed before low temperature treatment (treatment 

2) flowered with a mean time to flower of 107 days, three others having 

unmistakable flower buds (Table 2.38). No other plants flowered or 

had flower buds, although two plants each in treatments 4 and 5 had 

internodes over 1 cm.

More plants flowered or were reproductive in treatments 1, 2 and 

3, in which the buds growing actively during low temperature treat­

ment were retained on the plant after treatment, compared with treat­

ments 4 and 5, in which actively growing buds were removed after low 

temperature treatment (y2 p<0.01) .

Four weeks after the start of low temperature treatment all 

plants in treatments 2 and 3 had at least one axillary bud over 1 cm 

(mean number 3 buds) and at the end of low temperature treatment the 

number of buds had increased slightly (Table 2.38).

Discussion

Development of flower buds only occurred in plants in which 

the buds that were actively growing during low temperature treatment 

were retained, that is the apical bud, or axillary buds fairly high 

on the stem released from apical dominance. If the apical bud was 

removed after low temperature treatment the plants 'did not flower, 

suggesting that the dormant axillary buds were not induced, and 

that no flowering stimulus was translocated from the apical buds.

Plants with only lower axillary leaf and cotyledon buds present during 

1 ow temperature treatment did not flower, probably because their bud 

growth during treatment was too slow. As few control plants flowered, 

vernalisation can only.have been marginal. Although the mean tem­

perature was 8°, the temperature frequently rose above 10°.

17*».
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2.16.2 The effect of removing the apical bud or almost the entire 

shoot 12 days and 0 days before low temperature treatment on the 

flowering of Wilhelmsburger swedes.

Experiment 23

In experiment 22 plants that had their entire shoot except for 

a few buds removed immediately before low temperature treatment did 

not subsequently flower, but this may have been due to insufficient 

vernalisation rather than an inability to be vernalised, as few control 

plants in the experiment flowered. To investigate if lower axillary 

buds can be induced to flower the following treatments were each

applied to eight, 5-week old Wilhelmsburger swedes:

1. Control plants left intact.

2. The apical bud removed 12 days before the start of low tem­

perature treatment.

3. The apical bud removed on the day low temperature treatment 

started.

k. All shoot tissue except the cotyledons and their axillary buds 

removed 12 days before the start of low temperature treatment.

5. All shoot tissue except the cotyledons and their axillary buds 

removed on the day low temperature treatment started.

Treatments 2 and A were included so that the axillary buds on 

these plants would be growing before low temperature treatment 

started, and would grow vigorously throughout the low temperature 

period. The plants were given a nine weeks low temperature treatment 

at k.2° mean daily mean temperature in an unheated glasshouse, from
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December to February, and then moved to a glasshouse compartment at

11.9° mean daily mean temperature for three weeks before being moved 

back to the glasshouse bed and grown on to flowering at 16.8° mean 

daily mean temperature.

Growing buds (those over 1 cm long) and all leaves over 5 cm 

long were counted before and after low temperature treatment, and 

date of flowering of the first branch to flower on each plant was 

recorded.

Results

All plants flowered within 62 days of the end of low temperature 

treatment and there was no difference in days to flower between the 

treatments (Table 2.39). Four plants that had had their cotyledon 

buds removed immediately before treatment died.

In treatments 2 and 4 in which tops were cut off 12 days before 

low temperature treatment plants had 2 and 1.9 growing buds respective­

ly (mean of eight plants) at the start of low temperature treatment. 

After low temperature treatment the mean numbers of growing buds were 

1> 4.5, 3.1, 2 and 1.7, and mean numbers of leaves at the end of 

treatment were 3.1, 4.6, 2, 4.6 and 3 for treatments 1, 2, 3, 4 and 

5 respectively.

Discussion

During a long low temperature period both cotyledon and higher 

axillary buds are as readily vernalisable as the apical bud. Removing 

the apical buds 12 days before low temperature treatment so that 

axillary buds were growing by the time treatment started made no 

difference to flowering but considerably increased survival of plants 

if the whole shoot was removed. The greater number of leaves and buds
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present during low temperature treatment in the control plants and 

on those plants with only the growing point removed did not increase 

the rate of subsequent flowering.

Flowering probably did not occur in the previous experiment in 

the treatment with the shoot removed only because bud growth was slow 

whereas in this experiment a more susceptible cultivar was used, low 

temperature treatment was longer, and was at a lower, more effective 

temperature.

2.16.3 The effect of the removal of the apical meristem, or apical 

bud after low temperature treatment on the flowering of Wilhelmsburger 

swedes.

Experiment 2k

In experiment 22 the removal of the apical bud or of most of 

the shoot immediately after low temperature treatment prevented 

flowering. The experiment was repeated with modifications to investi­

gate how much apical tissue must be removed after low temperature 

treatment to prevent flowering. Thirty-six, 2-week old W i 1helmsburger 

plants were grown for eight weeks at k.3° mean daily mean temperature 

in an unheated glasshouse from December to February. On the day low 

temperature treatment ended, the following treatments were applied to 

nine plants each:

1. Control plants left intact.

2. The apical meristem removed, some leaves being damaged in the 

process.
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3. Leaves damaged as in treatment 2 but the apical meristem left un­

damaged .

4. The apical bud removed as in treatment 4, experiment 22.

To remove the apical meristem leaves were cut away from one side

and the meristem cut out with a scalpel. Treatment 3 was included 

so that any effect of damage to leaves could be separated from the 

effect of removing the apical meristem.

After treatment the plants were grown in a compartment at 11.8° 

mean daily mean temperature for two weeks before being returned to the 

glasshouse bed at 16.9° mean daily mean temperature, and grown on for 

a further 66 days.

Leaf number was recorded at the end of low temperature treat­

ment before and after the four treatments, and date of flowering of 

the first branch to flower on each plant was recorded.

Results

All the plants flowered within 80 days of the end of low tem­

perature treatment and mean days to flower did not differ significantly 

between the treatments (Table 2.40) .

All treatments had a mean leaf number of 6 after low temperature

treatment, and after the removal or damage of plant- parts, leaf

numbers were 4.7, 5.0 and 4.7 for treatments 2, 3 and 4 respectively.

The leaf primordia were counted in the apical buds removed in 

treatment 4 and mean total leaf number at the end of low temperature 

treatment was 13-7 leaves, a mean number of 9 primordial and small 

leaves having been removed from each plant. In treatment, 4 the buds 

that flowered were the highest or next highest left on the stem, the 

fourth or fifth bud from the stem base (not including cotyledon buds),
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but in treatment 2 higher axillary buds grew out in place of the 

apical meristem as the total number of axillary buds must have been 

around 12 to 1 5 , and only the apical meristem was removed, although 

some leaves were damaged.

Discussion

Not only the apical bud, but axillary buds, both very near the 

apical meristem, and lower down, were vernalised by the long low 

temperature period. The failure of flowering of plants with apices 

removed after low temperature treatment in experiment 22 must have 

been due to inadequate vernalisation although there was no treatment 

in this experiment (2k) to show the condition of the lowest three or 

four axillary buds and it is possible that they were not induced.

It is probable that the apical bud is the most easily vernalised 

as, in the intact plant, it will be undergoing most active growth, 

although in this experiment axillary buds flowered almost as rapidly 

as apical buds.
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2.17 TRANSLOCATION OF THE FLOWERING STIMULUS

2.17.1 The flowering of upper and lower stem buds from flowering 

swedes, grown in vitro.

Experiment 25

Attempts were made to transmit a flowering stimulus by grafting. 

Seven and 1^-day old seedlings of Wilhelmsburger and Doon Major swedes 

were grafted into the 'bark' of the stems of older swedes, sometirries 

in the place of an axillary bud. Young scions were used to increase 

the chances of vigorous growth and the graft taking, and so the stock 

had to be the flowering plant in the union. Flowering Wilhelmsburger 

and Doon Major swedes, and extending plants with visible green buds 

were used. At least 12 grafts took, but all the scions continued to 

grow vegetatively and showed no signs of stem extension (Figure 2.18). 

The failure to induce flowering in the scion suggests that there is no 

mobile flowering stimulus but the failure might also have been due 

to the stimulus only being translocated at a particular stage in 

flower development, to the grafts not forming a close cell union 

sufficiently early, or the paths of translocation in the plant not 

carrying any substances in the phloem from the stock to the scion, as 

the scions always had green leaves whereas the stock gradually died.

There is some evidence, however, that a translocatable flowering 

stimulus is produced. When a swede plant flowers, the axillary buds, 

starting near the top of the stem, develop as flowering branches.

After a long low temperature treatment buds only a few centimetres 

above the base of the stem may grow out and flower.

Margara (196*0 compared buds removed from flowering stems of 

sugar beet and rape (Brassica napus) grown in vitro with similar buds



FIGURE 2.18: Experiment 25 ~ vegetative Wilhelmsburger
scions grafted onto flowering Wi Ihelmsburger 
swedes



left on the parent plant, and finding that lower stem buds removed 

from the plant did not flower, whereas those left on the stem did, 

suggested that the axillary stem buds are induced by a trans1ocatab1e 

stimulus moving down from the apical bud.

In experiment 2k when the growing point was removed from the 

plant immediately after low temperature, the highest axillary buds 

left on the plant grew and flowered, and so must have been induced 

directly by the low temperature treatment or by a stimulus translocated 

from the apical bud during low temperature treatment, but no lower 

buds grew out and so there is no evidence on whether they were induced 

or not.

To examine whether lower axillary buds on the stems of flowering 

swedes are already induced at first flowering, stem buds were removed 

from flowering swedes to see whether or not they would flower when 

isolated from the parent plant.

The stems from one W i 1helmsburger plant which had flowered seven 

days previously and from two W i 1helmsburger plants which had just 

flowered, and one Doon Major plant in bud, all having received six

weeks low temperature treatment, were cut into sections each with a

bud. Sections from the upper parts of the stems had visible flower 

buds and were discarded. Alternate sections were dissected and bud 

stage recorded, and the remaining 20 sections from all four stems 

were grown into plants. They were surface sterilised in 10 per cent 

'Deosan1, rinsed three times in sterile water and placed in 25 ml 

conical flasks containing 10 ml Long Ashton solution with 2 per cent 

agar, and stoppered with cotton wool and aluminium foil covers.

The flasks were kept under lights in the glasshouse at 18° mean

daily mean temperature and each stem piece was potted out as soon as

184.



it had formed roots. Flowering date or final apical bud stage (see 

Figure 2.1) 129 days after the stems had been cut up, were recorded.

Results

Five buds from the middle of the stem, two from the earliest 

plant to flower and one and two from the other two W i 1helmsburger 

plants, grew into flowering plants, but buds from near the base of 

the stems did not flower and were at bud stage 0 (vegetative) at 

the end of the experiment. The dissected alternate buds ranged from 

bud stage k near the middle of the stem to bud stage 0 at the base in 

the WiIhelmsburger plants but only from stage 1.5 near the top of the 

stem of the Doon Major plant. No cultured buds from the Doon Major 

plants flowered, the highest bud being at bud stage 2 at the end of 

the experiment.

The five flowering buds from the three Wilhelmsburger plants 

flowered in 72 and 91 days, 9^ days, and 9^ and 102 days from 

dissection and eight buds did not flower.

Discussion

Buds at the top and middle of flowering stems appear to be 

reproductive at the time of first flowering whereas those lower down 

are not. The absence of flowering in the buds from the Doon Major 

plant suggests that axillary buds are not induced before the main 

stem flowers. The flowering of the upper buds may be because re­

productive axillary buds are only produced after the apex has reached 

a certain stage of flower development or there may be a flowering 

stimulus that moves slowly down the stem from the apical bud, inducing
if

flowering in axillary buds. The evidence from the Doon Major plant 

tends to support the latter suggestion.
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There is some evidence that in vitro culture tends to devernalise 

(Crisp and Walkey 1973) and lower buds might have flowered in other 

condi tions.

2.17.2 The effect of removing different amounts of stem from flowering 

plants on the flowering of axillary buds remaining on the stem.

Experiment 26

In experiment 2k buds near the growing point were induced by 

the end of low temperature treatment. There was no evidence on the 

condition of the lowest buds, whether reproductive or not, but only 

stem buds from the middle stem and none from the lower stem flowered 

when removed from the parent plant and grown in vitro in experiment 25. 

Removing the stem above an axillary bud, allowing the bud to grow out, 

can also demonstrate whether it is induced or not.

Seventeen 9~week old Doon Major plants were selected, 10 having 

flowered that day, five one day previously and two two days previously, 

31, 30 and 29 days respectively after the end of eight weeks low 

temperature treatment at 4.3° mean daily mean temperature in an 

unheated glasshouse, from December to February. The plants had 16 to 

22 buds in the axils of true leaves, mean 18.5, at the time of 

flowering. Part of the stems were removed so that the plants were 

left with two cotyledon buds, 1 true leaf bud, 2, 3, k, 5, 6, 7, 8,

9, 10, 11, 12, 13, 1^, 15 and 16 true leaf buds respectively for the 

17 plants. The bud stage of the lowest axillary bud on the portion 

of stem removed was recorded.
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The procedure was repeated two days later with 22 similar 

plants, 13 having flowered that day, and nine the previous day.

Plants had 17 to 23 true leaf buds, mean 19.7, and stems were removed 

so that two plants were left with 2 cotyledon buds only, two plants 

each with 1, 2, 3 or b true leaf buds, and one plant each with 5, 6,

7, 8, 9, 10, 11, 12, 13, 1^, 15 or 16 leaf buds.

Date of flowering was recorded, and the buds of non-flowering 

plants were examined 97 and 95 days after the removal of stems, and 

bud stage recorded (see Figure 2.1).

Results

Of the plants left with three or more leaf buds, all but one 

flowered. The non-flowering plant had had six leaf buds left after 

stem removal and had reached bud stage 5 by the end of the experiment. 

One plant with only one true leaf bud flowered (Table 2.^1) but all 

other plants with fewer than three leaf buds did not flower and were 

vegetative at the end of the experiment. The bud stage of the lowest 

axillary bud removed decreased the more stem was removed, that is buds 

lower down on the stem were more vegetative (Table 2.A1). Lower 

axillary buds took more days to flower from the time of dissection 

probably because the buds were less we l 1-developed and took longer 

to form flowers.

Discussion

As in experiment 25, axillary buds higher on flowering stems 

flowered more readily than lower buds. Buds near the stem base 

flowered whereas they did not in the previous experiment but the 

stems in this experiment had fewer buds, and so basal buds were not 

so far from the apex as in experiment 25.
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TABLE 2.41: Experiment 26 - the effect of removing different portions
of the stem on the flowering of the buds left on the 
lower part of the stem, and days to flowering from the 
day when the portion of stem was removed

No. of 
buds 

left on 
stem

Total 
N o . of 
pi ants

No. of 
p 1 ants 

f 1 owe ring

Mean 
bud stage of 
lowest bud 
removed 

from stem

Mean 
days to 

flowering

2 cotyledon
buds 3 0 0.7 NF

1 true leaf 
bud 3 1 0.7 45.0

2 1 1 3 0 1.0 NF

3 1 1 3 3 2.0 50.3

4 1 1 3 3 3.3 45.0

5 II 2 2 3.0 46.5

6 1 1 2 1 3.0 49.0

7 2 2 4.0 31.0

8 1 1 2 2 4.0 22.0

9 1 1 2 2 5.0 30.5

10 1 1 2 2 5.0 18.0

11 1 1 2 2 5.5 17.5

12 II 2 2 5.5 17.5

13 1 1 2 2 6.0 14.5

14 1 1 2 2 6.0 14.5

15 1 1 2 2 6.0 14.5

16 1 1 2 2 6.0 9.5

Mean
or

total
39 30 3.6 28.4

NF = no plants flowering
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There is no evidence in this experiment to disprove the 

suggestion that the axillary buds are induced by a flowering sub­

stance, but if they are, the substance must be produced and translocated 

down the stem before flowers open as buds low down on the stem are 

already induced at first anthesis.

Total leaf number at the end of low temperature treatment was 

at least b on 15 plants sampled from the same group and so some of 

the flowering axillary buds were produced during low temperature 

treatment, but the majority after treatment, from the induced apex.

4r
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3.1 In troductory

The swede is induced to flower only by a period of low tem­

perature. During three years of experiments only one plant grown at 

13° and above developed flower buds (experiment 7) and two WiIhelms- 

burger and one Doon Major swede grown in a treated glasshouse for 

17 months showed no signs of flowering or stem extension.

Low temperatures, generally below 10°, induce flowering, and 

high temperatures, over 15°, tend to reverse the induction. Other 

plant and environmental factors can influence the induction process 

and there is variation in the response of cultivars and within cultivars. 

The site of induction is in the growing point.

3.2 Temperature

3.2.1 Optimum temperature

The range of temperature 3° to 6° appears to be most effective 

for vernalisation, 5° to 6° being slightly better than 3° for 

Wi lhelmsburger, but effectiveness dropping off above 6°, especially 

for Doon Major. The results from other experiments in which tem­

perature control was reasonably good and post vernalisation conditions 

not strongly deverna1ising agree with the results in experiments h and 

5. The results from experiments 2, 3, h, 5, 13, 1^, 15 and 16 are 

shown in Figure 3-1- Only W i 1helmsburger and Doon Major adult plants 

{h days old and above at the start of treatment) flowering within 92 

days of the end of low temperature treatment were included, and the 

results of all durations of low temperature from 20 to hi days were 

pooled, as all experiments had evenly spaced treatments within this 

range. Flowering data in experiment h was only recorded up to 92 

days and so this limit is set in the other experiments. The low
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percentages of flowering for 5°, 8° and 11° in experiment h are probably 

due to the poor growing conditions during flowering in September 

and October. The shape of this curve and results from experiments 4 

and 5 suggest that at lower temperatures below the optimum range, the 

slowing up of the whole plant metabolism does not restrict vernalisation 

as much as the effect of temperatures higher than the optimum which 

presumably restricts vernalisation by tending to reverse the reactions 

involved in vernalisation.

The effectiveness of vernalisation in Doon Major drops off more 

sharply at higher temperatures (over 6°) than in W i 1helmsburger. In 

Figure 3-1 the differences between the W i 1helmsburger and Doon Major 

points are greater above 3°. If the reduction in effectiveness of 

vernalisation at higher temperatures is due to reversal of the reactions 

leading to the formation of a flower inducing substance it might be 

assumed that Doon Major would be more susceptible to devernalisation. 

There is, however, no evidence from experiment 15 that there is any 

difference in susceptibility to devernalisation between Wilhelmsburger 

and Doon Major. After an uninterrupted low temperature treatment at 

6° in experiment 15, Wilhelmsburger had 86 per cent flowering plants 

and Doon Major 77 per cent. Daily four-hour interruptions at 16° 

reduced flowering by 15 per cent and 10 per cent and interruptions at 

22° reduced it by 25 per cent and 15 per cent of the flowering of the 

continuous 6° treatment, for Wilhelmsburger and Doon Major respectively.

The percentage flowering of five cultivars in experiments 13 

and 1h after low temperature treatment at 6° and 8.5° respectively 

is given below.

191.



192.

Cul tívar
% f1 owe ring 

experiment 13

Wi Ihelmsburger 

Doon Major 

Pentland Harvester 

Ruta Otofte

Harr i etf i eld

6 °

87

68
96

70

76

^3

11

71

7

18

There is a much greater difference in flowering percentages

Q Q
after treatment at 8.5" than 6 , and this could be because more

susceptible cultivars are induced relatively more easily at higher 

temperatures than more resistant cultivars. However, longer durations 

of low temperature treatment were included in experiment 13 and post­

vernalisation conditions were better for flowering and this may 

partly explain the smaller differences between cultivars in this experi­

ment. Where such a high proportion of all cultivars are flowering 

there is less chance of differences between cultivars being expressed.

If the greater differences between the cultivars at the higher 

temperature are due to differential responses to temperature of the 

five cultivars, as seems to be the case with W i 1helmsburger and Doon 

Major, this will be important in selection.' Higher treatment tem­

peratures around 5° to 10° will probably be most suitable for selecting 

out susceptible cultivars but the most suitable treatment is probably 

a fluctuating temperature, for instance with a daily cycle from 2° to 

10°. This will resemble natural conditions better than one constant 

temperature and every strain and cultivar will be exposed to its own 

optimum temperature for vernalisation for at least some of the time.
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3.2.2 Temperature measurement

In all experiments the temperature quoted is the shade air 

temperature as this is considered to be the most constant and will be 

most like temperatures within the plant tissue. Radiation raises the 

temperature of the leaf and exposed parts of the plant but the site 

of vernalisation, the growing-point and axillary buds, will be less 

affected by radiation. In experiment 20 the surface temperature of 

the growing-point of plants was 2° higher when the lights to supplement 

daylight were illuminated, but the air temperature was also 1.5° higher.

Temperature control was accurate to ±0.5° in experiments 3, 5,

12 and 15 but was also reasonably good in experiments 2, 4, 9, 10, 13 

and 14, holding to ±1.0° while temperatures out of doors were low, but 

tending to rise during warmer periods although very rarely above 10°.

Except when temperature control was very good, temperatures are 

expressed as the mean of the daily mean temperature. When this mean 

temperature is above the optimum for vernalisation it is a useful 

estimate of temperature, as the amount of time spent at temperatures 

higher than and less vernalising than the mean will be balanced by 

the time spent at lower more vernalising temperatures, and so a mean 

temperature of 8° will have roughly the same vernalising effect as a 

continuous temperature of 8°. When the mean temperature is in the 

optimum range, the time spent at temperatures higher and lower than 

the mean will be less vernalising than the mean, and so the effect of 

a mean temperature near the optimum cannot be compared with the effect 

of the same continuous temperature. In experiment 14 in which the 

mean of the daily mean temperature during treatment was 8.5°, and in 

the constant 9° treatment of experiment 5,both temperatures being above 

the optimum for vernalisation, flowering of adult plants 124 days after



low temperature treatment !n the 28-day treatments was 50 per cent 

for Wilhelmsburger in both experiments and for Doon Major 14.3 and

8.3 per cent for experiments 14 and 5 respectively. Despite the 

greater variation in temperature in experiment 14 the effect was much 

the same as that of the similar constant temperature in experiment 5. 

Five degrees is near the optimum, however, and in experiment 4 the 

temperature in the 5° treatment sometimes fluctuated between 2° and 

8°. Flowering was only 28 per cent for all W i 1helmsburger and Doon 

Major treatments at 5°, but in experiment 3 in which the treatment 

temperature was constant at 5° flowering, was 51 per cent for all 

Wi lhelmsburger and Doon Major treatments 4 days old and over at the 

start of treatment. Only the 20, 28, 36 and 40-day treatments were 

included and only plants flowering within 92 days of the end of low 

temperature treatment, to make a valid comparison with the 21, 28, 35 

and 42 days treatments in experiment 4. In all four experiments, 3, 

4, 5 and 14, post low temperature conditions were similar.

It is not possible to sum temperature over time during a period 

of low temperature to obtain a direct estimate of the vernalising 

effect of the period as the vernalising effect of temperature is not 

linear, unlike the. effect of temperature on growth. It would be 

necessary to give each temperature a score of relative effectiveness 

and this score might vary depending on the cultivar being used, and 

then sum these scores.

194.
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3.3 Devernali sat i on

3.3.1 The effect on flowering

Beyond the range of optimum temperature for vernalisation the 

rate of the vernalisation process declines sharply till at 11° (see 

experiment 4) only one per cent of all plants flowered. As the tem­

perature rises above 11°, the effects of low temperature in inducing 

flowering are progressively reversed.

in experiment 6 high temperature immediately following low 

temperature treatment reduced the number of flowering plants, and the 

higher the temperature the fewer plants flowered. As with other 

species (Stokes and Verkerk 1950, Heide 1970) this reversal only occurs 

immediately after low temperature treatment. In most experiments 

plants were grown in moderate temperatures (12° to 1 5°) immediately 

after low temperature treatment but in those experiments in which 

plants were moved directly to higher temperatures flowering was reduced. 

For instance, in experiment 9 Doon Major plants grown for 28 days at 

7° and moved immediately to 1 8° did not flower but in experiment 2,

21 per cent of adult Doon Major plants flowered after 30 days at 7° 

followed by 14 days at 13°. The reactions involved in vernalisation 

must eventually produce a heat stable substance or change in the plant 

as swedes will flower in high temperatures, for example 18° mean air 

temperature at plant level in experiments 14, 23 and 24. In the 

theoretical model of vernalisation (see 1.3 page 8) reaction III is not 

considered to be reversible and product D is assumed to be but stable. 

This heat stable substance is not formed immediately during low tem­

perature treatment but sufficient may be formed during a Jong period 

of low temperature so that subsequent high temperatures do not prevent 

100 per cent flowering or greatly increase the time taken to flower.



In experiment 7 in which six weeks of low temperature treatment at 8° 

was interrupted after two weeks by one, two or three weeks at 1 7°, 

flowering was reduced more by the three-week interruption than the two- 

week, and more by the two - week than the one-week interruption which 

suggests that reversal of a two-week low temperature treatment can take 

up to three weeks at 17°. The three-week interruption completely 

reversed the effects of the initial two weeks at 8° so that there was 

no difference in flowering after four weeks at 8° and after six weeks 

at 8° with a three-week interruption at 17° after the first two weeks.

A short period of high temperature during a period of low tem­

perature will tend to reverse the vernalising effect of the low tem­

perature. The more frequent the interruptions the more effective is 

a given duration of high temperature in reversing vernalisation 

(Purvis and Gregory 1952). This fits the theoretical model of 

vernalisation. Substance B, produced from A by reaction I, will 

accumulate at low temperature and slowly be converted to D through 

reaction III, but if the temperature rises considerably most of the 

B formed at low temperature will be converted to C through reaction 

II. The more frequent are the interruptions of high temperature the 

less B will be converted to D assuming that reaction III proceeds 

more slowly at low temperature than reaction I.

3.3.2 Quantifying devernalisation

As would be expected from the model, a daily four-hour period 

at high temperature during a low temperature treatment reduced the 

proportion of swedes flowering although the total time spent at the 

low temperature was the same (see experiment 15). Interruptions at 

22° reduced flowering more than interruptions at 16° and in the model
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reaction II will be faster at 22° than 16° and more B w i 11 be converted 

to C during the four-hour interruption period. To quantify the effect 

of the high temperature interruptions, the number of calendar days 

required to cause 50 per cent flowering at 6° continuous, 6° with 16° 

interruption, and 6° with 22° interruption are compared. The number 

of calendar days for six cultivars are given in the table on page 143, 

and the mean of the number of calendar days required to cause 50 per 

cent flowering for the six cultivars is 2 8 . 9 7 days at 6° continuous,

42.23 days for 6° with 1 6° interruption, and 45.85 days for 6° with 

22° interruption. One calendar day in the interrupted treatments 

consists of 20 hours at 6° and 4 hours at a higher temperature and so

42.23 calendar days with interruptions at 16° is composed of

42.23 x 20 = 844.6 hours at 6°, and 42.23 x 4 = 168.9 hours at 16°.

This treatment, however, had the same vernalising effect as 28.97 days 

(28.97 x 24 = 695.3 hours) at 6° continuous. The extra number of 

hours (844.6 - 695-3 = 149.3 hours) at 6° required in the 16° 

interrupted treatment, to cause 50 per cent flowering, must have 

compensated for the devernalising effect of the 168.9 hours at 16°.

In other words, the vernalising effect of 149.3 hours at 6° equals,

or neutralises, the deverna1ising effect of 168.9 hours at 16°. As 

the interruption periods were 4 hours in duration the devernalising 

effect of 16° is expressed in units of 4 hours as shorter or longer 

interruptions would probably not have a linear relationship with the 

effect of 4 hours.

-149.3 hours at 6°= +168.9 hours at 16°

-3.54 " at 6°= +4 " at 16°
V

Similarly for 22° interruptions, 917-0 hours at 6° with 183.4 

hours at 22° have the same vernalising effect as 695-3 hours at 6°



continuous, therefore 183 - ̂  hours at 22° reverses 9 1 7 ~ 695-3 = 221.7 

hours at 6°.

-221.7 hours at 6° = +183.^ hours at 22°

-k.Bk " at 6° = +k " at 22°

This can be represented graphically (Figure 3.2). The line between 

6° and 16° cuts the temperature axis at 11°. Above 11° the vernalising 

effect of a period at 6° is reversed, although at a very slow rate 

from 11° to 12°. The straight line from the temperature axis to 6° 

assumes that temperatures above 6° are not so effective in vernalising 

as 6°. The levelling off of the slope between 16° and 22° suggests 

that increasing temperature can only increase devernalisation to a 

certain extent. In the model this could be explained as a limited 

amount of B available to be converted to C, the rest of B having been 

converted to D during the low temperature period. Different durations 

of interruption would have different effects on vernalisation. If 

the interruptions were very short, it is possible that higher tem­

peratures would be much more effective in devernalisation as the rate 

of conversion of B to C would be much greater, and the main limit on 

this conversion would not be the supply of B, but the duration of the 

interruption. The graph agrees with the findings of Heide (1970) for 

cabbages that interruptions at 12° did reduce vernalisation to a small 

extent.

Over the whole range of temperature the response to increasing 

temperature in terms of proportion of plants flowering or of vernalising 

effect will be a combination of Figures 3-1 and 3.2. Subsequent 

flowering will increase as vernalising temperatures rise above 0° and 

rate of plant metabolism increases, level off around 5° and then
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decline as temperature increases above 6°. Beyond the range of 

vernalising temperatures, about 11°, an increase in temperature will 

give a negative proportion of plants flowering, that is flower 

induction caused by lower temperatures is reversed at higher tem­

peratures. This is summarised in Figure 3-3. Figure 3.^ shows the 

effect of temperature on the three reactions postulated in the 

theoretical model of vernalisation, and their response to temperature. 

At low temperatures (0° to k°) the rate of production of D, the 

flowering substance, from B (reaction 111) limits vernalisation. The 

rate of production of B from A (reaction l) then limits the process 

as this reaction increases little as temperature rises. Above 7° to 

8° reaction II begins, although very slowly, diverting B to C, instead 

of D, and as temperature increases this reaction limits vernalisation 

more till at temperatures around 11° to 12° no flowering substance 

D is being formed. In terms of its effect on flowering, this reaction 

only has a negative effect (dotted line). When combined, these 

react ion 1ines form a curve (Figure 3-5) similar to that in Figure 3-3- 

A similar analysis is given by Salisbury (1963). There is no evidence 

for the existence of any of the reactions in the model but the effects 

of temperature on the induction process in swedes and other species 

agree with the model.

In field conditions, in spring, interruptions of a period of 

low temperature are unlikely to be as high as 22° although the plant 

temperature might rise briefly to 16° in sunny weather. From Figure

3.2 it even appears that midday temperatures of only 12° to 13° will 

tend to reverse the effect of vernalising temperatures occurring
i f

during the rest of the day.
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FIGURE 3.^: The effect of temperature on the rate of reaction of
the three reactions in the theoretical model of 

vernalisation (see 1.3). The dashed line for reaction II indicates 
that this reaction has a negative effect on vernalisation

FIGURE 3-5: The combined effect of temperature on the three
reactions in the theoretical model of vernalis a t i on 

in limiting the overall rate of vernalisation
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The curve of vernalisation, measured by the proportion of plants 

flowering, in response to temperature, has been only partially 

characterised by experiments in this study. There is evidence that 

below 10° the response of different cultivars to vernalising tem­

peratures will vary, and above 10° or 11° devernalisation depends to 

a very large extent on the temperature and duration of the interruption.

To quantify a given period of field temperatures in spring 

would require a large number of experiments. It would be useful in 

that the risk of bolting associated with a given sowing date could be 

estimated if a series of meteorological records were available, but 

such estimates might be obtained more easily over a few years of field 

experiments, which would also supply information on any practical 

difficulties associated with the sowing dates.

3.k The juvenile stage

3.4.1 Differences between cultivars

There is a short juvenile stage in swedes as demonstrated in 

experiments 2, 3 and 14. In experiment 1^, in which 20-day old plants 

were compared with 0-day old plants, all five cultivars examined 

showed a marked difference between the flowering of'the juvenile and 

adult plants.

In the two cultivars, W ¡ 1helmsburger and Doon Major, examined 

in detail, the juvenile stage is certainly less than four days, 

in experiment 2 far more plants four days and older at the start of 

low temperature treatment flowering than plants younger than four days.

C 0
Four-day old plants grown at 13 to 18 are usually just emerging 

(see Figure 2.2) with radicle 0.5 to 2 cm and cotyledons sometimes
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still in the seed coat. This was confirmed for Wi 1 helmsburger iri 

experiment 3, far fewer two-day old plants flowering than older plants.

In experiment 2 the difference in percentage flowering between 

adult and juvenile Doon Major plants was not so great as for Wilhelms- 

burger but experiment 14, in which newly sown seed and 20-day old plants 

were compared, confirmed that Doon Major has a juvenile stage. In 

experiment 3, however, there was no difference in the flowering of two 

and four-day old Doon Major plants in any of the six durations of low 

temperature treatment, strongly suggesting that the juvenile stage 

is less than two days. If the change from juvenile to adult occurs at 

about two days, in Doon Major, a slight difference in vigour of 

germination between experiments 2 and 3 might affect whether two-day 

old plants were still juvenile, or just adult. Although four-day 

WiIhelmsburger plants are certainly adult, and two-day plants certainly

juvenile the change from juvenility to adulthood may occur at 3 days,

or 2j days, in which case there is only a small difference between the 

cultivars. In experiment 14, more differences between cultivars in 

juvenility were apparent, Harrietfield having a shorter or less marked 

juvenile stage than the other four cultivars examined, W i 1helmsburger, 

Doon Major, Pentland Harvester and Ruta Otofte.

3.4.2 Plant development

Whether chronological age or stage of development determines 

when adulthood is reached has not been determined but it seems more 

likely that juvenility is determined by plant development than purely 

by time from sowing.

During a low temperature treatment seedlings will grow out of 

juvenility and if the subsequent period of low temperature is long

enough will be induced and later flower.
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A longer duration of low temperature to cause a given proportion 

of plants to flower is required by plants that are juvenile at the 

start of treatment than by adult plants.

1. If plant development is the most important factor affecting 

juvenility the longer time at low temperature required by 

juvenile plants for a given proportion of flowering will 

simply be the time required for the plants to grow out of the 

juvenile phase during the low temperature.

2. The size of plants at this change from juvenile to adult can 

be estimated if the growth of the juvenile plants has been 

recorded during the low temperature period.

3. If the size of plants grown at higher temperatures has been 

recorded over time the estimated size of a plant at the change­

over from juvenile to adult, found above, can be compared with 

that of plants grown at higher temperatures and the age, in 

terms of days of growth at higher temperatures estimated.

Calculation 1: In experiment 3 the proportions of W i 1helmsburger

plants flowering, on a logit scale, were fitted to a model, using 

GLIM (see Appendix' B), of the linear effect of duration of low tem­

perature (x2 test p<0.001) and the effect of plant .age. The number 

of days at low temperature (5°) required to cause 50 per cent flower­

ing for each plant age could be calculated from these lines and were 

2 9 . 1 7  days for two-day old (juvenile) plants, 23.28 days for four and 

six-day old plants and 21.39 days for eight and 10-day old plants. 

Assuming that the susceptibility to vernalisation of all adult plants 

is the same, the mean, 22.34 days, was compared with the figure for 

juvenile plants, 29.17 days. The difference, 6. 8 3 days at 5°, must 

be the time required by the two-day old plants to reach adulthood.
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Fitting the percentages of plants flowering against duration 

of low temperature treatment into separate regression lines for 

juvenile and adult plants, a very similar difference, 6.6 days at 5°, 

was found between the number of days required to cause 50 per cent 

flowering in juvenile and adult plants.

Calculation 2: Total leaf number, that is including leaf primordia,

is the only available measurement of plant development for the early 

part of low temperature treatment. From the dissections of sample 

plants before, once during and after each duration of low temperature 

treatment a line (r = +0.977, n = 10; p<0.001) can be plotted of 

total leaf number against days of growth at 5° for plants that were 

two days old at the start of each duration of low temperature treat­

ment. On this fitted line, using the data from the GLIM fitted lines, 

after 6.83 days at 5°, plants that were two days old at the start of 

low temperature treatment have 0.8090 leaf primordia.

Calculation 3: To find what age of plant grown at 16° has reached

this stage of development (0.8090 leaf primordia), the total leaf 

number of all plants at the start of the six duration of low tern-* 

perature treatments can be plotted against the age of these plants, 

from two to ten days old. On this line (r = 0.9^6, n = 30; p<0.001) 

a plant with 0.8090 leaf primordia would be 3.87 days old if grown at 

16°, that is WiIhelmsburger plants grown at 16° attain adulthood at 

3.87 days.

The 3.87 days agrees with other evidence from flowering in 

experiment 2 that the juvenile stage ends between 2 and k days in 

Wi 1helmsburger. There is no evidence to suggest that the difference 

in flowering response to low temperature treatment of young and older
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plants is due to anything other than the extra time required for 

juvenile plants to reach adulthood. In this analysis the lines of 

flowering response fitted to duration of low temperature treatment 

are the main sources of possible error as they are based on few plants 

and few duration points. Differences in flowering behaviour of only 

one or two plants, especially in the juvenile group might appreciably 

alter the estimate of the number of days required to cause 50 per 

cent flowering, and therefore the estimates of plant development and 

age (at 16°) at the change from juvenile to adult. The lines fitted 

using GLIM and the fitted regression lines for flowering (not shown) 

were very similar and it is the data itself, rather than the fitting 

of lines, which is likely to be the main source of error.

A similar analysis with Doon Major was not possible, as two-day 

old plants did not differ from older plants in their flowering response.

The difference between the number of days required to cause 

50 per cent flowering for juvenile plants, and for adult plants is 

assumed to be the same as the number of days at low temperature required 

by juvenile plants to reach adulthood. In experiment 3 this difference 

is about 6.6 to 6.8 days for Wilhelmsburger and in experiment 2, 8.98 

days for zero day old Wilhelmsburger and Doon Major plants, that is 

juvenile plants take longer to reach adulthood during a period of low 

temperature than at higher temperatures.

From experiments 2 and 3 it appears that juvenility ends just 

at, or slightly before, the emergence of the seed above soil level as 

emergence occurred at or after four days growth.
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3.4.3 Importance of juvenility

In field conditions in April and May seedlings may remain 

juvenile for as long as two weeks if temperatures are low, and 

certainly longer than the four days required when plants are grown at 

a uniform temperature of 16°. The existence of a juvenile stage must 

reduce the incidence of bolting as it occurs at the earliest and 

generally coldest period of the growth of the crop. As the juvenile 

stage probably lasts from one to two weeks at low, vernalising tem­

peratures it can reduce the duration of a period of vernalising 

temperature in the field by a significant amount, as only 20 to 30 

days of low temperature are generally required to cause 50 per cent 

floweri n g .

Over five years of experiments with swedes, in which several 

sowing dates were used, Lysgaard and N^rgaard Holm (1962) found that 

a "relatively low temperature during a consecutive period after the 

plants had emerged" was the main factor affecting bolting percentage 

which agrees with the suggestion that the juvenile stage has ended 

by the time plants have emerged.

There is some evidence of variation between cultivars in the 

duration of the juyenile stage and it is possible that a longer 

juvenile phase could be selected for. If there is sufficient 

variability in the duration of juvenility for selection to be effective, 

a long duration of juvenility would be an advantageous plant character 

as it would provide res i stance i n th:e field to vernalisation at the time 

when a period of vernalising temperature is most likely to occur just 

after sowing and would not interfere with seed production if tern-
I

peratures were reasonably warm during the early growth of the seed 

crop. In practice, however, selection for long juvenility would be
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difficult as it requires two treatment factors in the testing of lines 

and cultivars - age of plants at the beginning of low temperature 

treatment as well as duration of low temperature treatment - instead 

of the one factor required in straightforward testing for bolting 

resistance. No morphological changes on attainment of adulthood have 

been detected and so there appears to be no easier way of measuring 

juvenility than by exposing a range of plant ages to low temperature 

treatment.

3.5 Stem extension

Stem height - the height of the main axis from soil level to 

the apical bud - was measured at flowering in all experiments but as 

stem extension always accompanied flowering and was generally affected 

by treatments in the same way as proportion of plants flowering, data 

on stem height has been omitted in the results of most experiments.

Like flower induction, the induction of stem extension occurs 

in the growing point and can occur in the absence of light. In 

experiment 5 the proportion of plants flowering was slightly greater 

after a low temperature period at 6° than at 3° and mean stem height 

of all plants was also greater after 6° (Table 3.1). The longer the 

duration of low temperature treatment the greater the stem height 

although after long durations - 40 days or over - stem height at 

flowering tends to decline with increasing low temperature treatment, 

probably because days to flowering are also reduced and flowering 

occurs earlier relative to stem extension.

More susceDtible cultivars tended to have taller stems at1

flowering than more resistant cultivars but stem height was always
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more variable than days to flowering and the effects of treatments 

less clear.

Evidence from other species (Owen efc al 1939» Stokes and 

Verkerk 1950, Heide 1970) suggests that stem extension is not always 

affected in the same way as flower induction by low temperature and 

other treatments.

Applications of exogenous gibberellic acid result in immediate 

stem extension in swedes (see experiments 8 and 9) but only result 

in flowering if temperatures are fairly low or treatment very prolonged 

(Wittwer and Bukovac 1957, Lang 1957). The accumulation of endogenous 

gibberellin has been found to occur during low temperature treatment 

of some brassica species and the stem extension of swedes after a low 

temperature treatment is probably caused by a gibberellin type of 

subs tance.

Devernalisation does not have exactly the same effect on stem 

extension as on the induction of flowering, although it does reduce 

stem height. Occasionally, when flower induction has been reversed 

by a period of high post vernalisation temperature the stem continues 

to extend so that the leaves and growing point eventually form a 

perched rosette on- top of an extended stem (Figure 3-6). Stem 

extension substances must be less affected by devernalisation than 

flower induction factors rather than being produced more readily 

during low temperature treatment. If the latter were the case, 

plants that had received a period of low temperature too short to 

induce flowering, followed by cool, post vernalisation temperatures, 

would have extending stems. This has never been observed in any 

experiment.



FIGURE 3.6: Swedes with vegetative rosettes on the
top of extended stems
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In experiment 9 in which plants were devernalised by a weekly 

interruption of one or two days at high temperature during low 

temperature treatment, the stems of devernalised non-flowering plants 

extended more than stems of unvernalised plants. This difference in 

extension 'was particularly noticeable when gibberellic acid was 

applied after low temperature treatment, the devernalised plants 

extending much more in response to the gibberellic acid than the 

unvernalised plants. It is possible that gibberel1in-1ike substances 

or gibberellin precursors produced during low temperature treatment 

are to some extent destroyed by devernalisation, like flower inducing 

factors, but the ability of the plant to respond to gibberellin is 

increased during the low temperature treatment, and not affected by 

devernali sat ion.

It is probable that stem extension inducing factors are produced 

by a similar set of reactions to those illustrated in the theoretical 

model of vernalisation, but the substances, and temperature relation­

ships of the reactions are clearly not exactly the same as for flower 

i nduct i o n .

If many plants with extended stems are present in a field it 

may make harvesting of swedes more difficult but 1ignificat ion of 

root and stem is the main yield-reducing effect of flowering and it 

is associated with flowering not stem extension. Extended stems of 

non-flowering plants whether the extension was caused by gibberellin 

or a low temperature period, were never heavily lignified like the 

stems of flowering plants. As far as yield of digestible dry matter 

is concerned, stem extension in the absence of flowering is not of 

any great importance.
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3.6 L i ght in tens i ty

Although light is not essential for vernalisation of swedes, 

at least when plants have sufficient reserves to survive for a long 

period in darkness at low temperature, vernalisation occurs more 

rapidly at higher light intensity. The highest light intensity 

(1 1 ,800 1ux) used in experiment 12 was lower than the saturation of 

photosynthesis (around 20,000 lux) (Seliger and McElroy 1965) and 

the lowest light intensity (2300 lux) was above the compensation 

point for photosynthesis (around 1000 lux) and so the three light 

intensities used in experiment 12 were in the range in which rate of 

photosynthesis increases as light intensity increases. The temperature 

was low, 8.5°, but leaf production was affected by light intensity 

and it is likely that photosynthesis was also.

In the field light intensities are much greater, for instance 

light June sunlight is around 100,000 lux (Seliger and McElroy 1965) 

and so light intensity is only likely to affect natural vernalisation 

when a plant is shaded by other plants and at the beginning and end 

of the day.

At a quarter of the highest light intensity in experiment 12 

flowering was cut by a half but the number of reproductive plants 

(those with bud stage 3 or over at the end of the experiment) was only 

reduced to 78 per cent of those in the highest light intensity treat­

ment. It is possible that light during low temperature treatment 

affects the subsequent development of flowers more than it affects 

the induction of flower buds. In one plant examined at the end of 

15 weeks low temperature treatment in darkness, flower buds (stage 3, 

see Figure 2.1) had already formed. In this respect the swede
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resembles sugar beet more than it resembles cauliflower as the former 

can be induced in darkness (Fife and Price 1953), but not the latter 

(Sadik and Ozbun 1968). In rye and other seed vernalised species 

light is not required for vernalisation. The reactions leading to 

flower induction of swedes do not require light but other effects of 

light such as improved supply of photosynthates and consequent 

increased growth are likely to affect the rate of vernalisation 

reactions.

3.7 Ni trogen

Plants receiving plentiful nitrogen whether before or after 

low temperature treatment flowered more rapidly than plants receiving 

a very restricted supply (see experiment 10), but whether additional 

nitrogen has any effect when plants have a moderate supply is uncertain. 

Comparisons of different experiments suggest that closeness of planting, 

or pot size, both factors liable to affect nitrogen supply to the 

plant made no observable difference to flowering, whereas differences 

in temperature during low temperature treatment or immediately after 

could result in large differences in flowering between similar experi- 

men ts.

Nitrogen supply, however, did have a slight effect on flowering, 

and if the maximum possible rate of flowering is required, additional 

nitrogen might be useful.



212.

3.8 Cultivars and selected lines

3.8.1 Variation between cultivars

There is a considerable range in susceptibility to vernalisation 

in the eight cultivars that have been studied and in the 15 lines 

selected from two cultivars. Taking the results from experiments 

13, 14 and 15 (continuous 6° treatment only) together the cultivars 

are, in order of increasing resistance to vernalisation, Pentland 

Harvester, Della, Wilhelmsburger and Marian, Harrietfield, Doon Major 

and Ruta Otofte, and Seefelder most resistant.

Slightly more (four more) Ruta Otofte plants than Doon Major 

flowered in experiment 13 and this result was based on 120 plants per 

cultivar, but slightly fewer (one fewer and four fewer) Ruta Otofte 

flowered than Doon Major in experiments 14 and 15 (6° continuous) 

respectively and it was not possible to determine with certainty 

which is the least susceptible cultivar. Doon Major responded steadily 

to increases in duration of low temperature treatment but the flowering 

of Ruta Otofte was much more erratic probably because of genetic 

variation in the seed stock used. Della may be more susceptible to 

vernalisation than Pentland Harvester as they were not compared in 

the same experiment but Pentland Harvester flowered 175 and 110 per 

cent of the flowering of W i 1helmsburger in experiments 13 and 14 

respectively while Della only flowered 111 per cent of W i 1helmsburger 

in experiment 15 (continuous 6° treatment). Similarly, although 

Marian and Harrietfield were not directly compared, Marian flowered 

100 per cent of Wilhelmsburger in the continuous 6° treatment in 

experiment 15 and 97 per cent of W i 1helmsburger taking a 1J treatments 

into account, whereas Harrietfield flowered only 50 and 87 per cent 

of Wilhelmsburger in experiments 13 and 14 respectively.
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In experiment 13 and 15 the proportions of plants flowering 

in each duration of low temperature treatment were transformed to a 

logit scale and a curve fitted to these values, using GLIM. The 

interactions between cultivar and duration of low temperature were 

not significant and so it can be assumed that the response curves of 

the different cultivars are parallel.

The slope of the line is a measure of the genetic variability 

in resistance to vernalisation within the cultivar. if the cultivar 

was perfectly uniform, after a given duration of low temperature all 

plants would flower and the line would rise vertically from 0 to 100 

per cent flowering at that duration. The response lines slope because 

a proportion of the population is more susceptible and flowers after 

short durations while a proportion of plants will only flower after 

longer durations. An estimate of the resistance to vernalisation 

within the population is the number of days of low temperature treat­

ment required to cause 50 per cent flowering. The durations of low 

temperature which would have caused 50 per cent flowering were 

calculated from the parallel lines for flowering response fitted with 

GLIM and are given below:

Cultivar

Days at 6° 
required to cause 

50% flowering

Experiment 13: Pent!and Harvester
WiIhelmsburger 
Harrietfield 
Ruta Otofte 
Doon Major

16.8 days
19.4 "
23.4 "
24.0 "
25.8 "

Experiment 15: Della
Wilhelmsburger 
Marian 
Doon Major 
Ruta Otofte 
Seefe1der

23.5 days
26.7 " 
26.2 "

28.8  "  

33.2 "
35.4 •*



The number of days is applicable only to the precise conditions 

of that experiment and the time at which recording of flowering 

ceases. This was 151 days in experiment 13 and 100 days in experi­

ment 15 and so more plants flowered in experiment 13 and the number 

of days for 50 per cent flowering was generally shorter. The number 

of days for 50 per cent flowering gives a clear quantitative measure 

of the relative susceptibilities of the cultivars and demonstrates 

that a relatively short period of continuous low temperature, 2 to 3 

weeks, can cause a damaging level of bolting in susceptible cultivars. 

When 50 per cent of plants are flowering a further proportion will 

be extending with developing flower buds and so more than 50 per cent 

of plants will contain a high percentage of fibre and be difficult to 

harvest.

Pentland Harvester and W i 1helmsburger, two of the most susceptible 

cultivars used in these experiments, have been described as having 

"a good yield with an acceptable level of 'bolting1, when drilled in 

circumstances likely to favour bolting" (Bell 1968). Many cultivars 

tested by Bell were rejected on the grounds of poor bolting resistance, 

and if Pentland Harvester and W i 1helmsburger were acceptable, much 

improvement in the bolting resistance of cultivars, at least those 

available in 1 9 6 8, is desirable.

3.8.2 Variation within cultivars

There is clearly a wide range of susceptibility to flowering 

among currently available cultivars and within the cultivars there is 

probably considerable scope for improvement. The progeny of early and 

late flowering Wilhelmsburger swedes differed considerably from the 

parent population in susceptibility to flowering, the late flowering

21**.



lines being more resistant than any of the similarly selected Doon 

Major lines and in comparable duration of low temperature treatments 

had a lower percentage of plants flowering at 100 days than Ruta 

Otofte at 100 days, in experiment 13 and slightly lower than Seefelder 

in experiment 1 5 , although this difference was small and could easily 

have been due to the different experimental conditions. Temperatures 

in all three experiments were similar, mean daily mean temperature 

6.1° in experiment 1 3 , 6 ± 0 . 5 °  in experiment 15 and mean daily mean 

temperature 5.3° in experiment 16. The early flowering Wilhelmsburger 

lines are probably not as susceptible to flowering as Pentland 

Harvester or Della, although flowering percentages at 100 days after 

the end of low temperature treatment were very high and comparisons 

more diffi cult.

The late flowering Wilhelmsburger lines were less susceptible 

to flowering than any of the Doon Major lines which suggests that the 

ability of a cultivar to respond to selection for resistance to 

flowering depends not so much on the present average resistance of 

the cultivar as on the variability in response to low temperature 

treatment within the cultivar.

In previous experiments within a group of Wilhelmsburger plants 

there have frequently been a few plants which responded unusually, 

flowering more readily or less readily than the majority of the group 

whereas Doon Major plants have in general behaved very uniformly.

Ruta Otofte has shown even more variability in response to low tem­

perature treatment than W i 1helmsburger and it is possible that a 

highly bolting resistant strain could be selected from this already 

res i stant cu11 i var.

215.
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Although the interaction between cultivar and duration of low 

temperature was not significant in experiment 13, the slopes of the 

cultivar response lines did differ when individually fitted, that is 

with an interaction term, those of W i 1helmsburger and Ruta Otofte 

being less steep than the others, suggesting greater variability 

within these cultivars.

Figure 3.7 shows the additional number of plants induced to 

flower in experiment 15 as duration of low temperature increases. The 

requirements of the individual plants for the appropriate period of 

low temperature to induce flowering form a normal distribution. The 

position of a distribution curve depends on the time at which flowering 

recordings are concluded, if early, the curve will be centred over 

longer durations, if late over shorter durations. At any line, 

however, the curve of more variable cultivars is wider than that of 

more uniform cultivars.

Even in different experimental conditions, the relative 

responses of the cultivars remain fairly constant. WiIhelmsburger 

and Doon Major were both used in 15 low temperature experiments 

(2, 3, *+, 5, 6, 7, 9, 11, 12, 13, 1^, 15, 16, 21 and 25), and in none 

of these did Doon Major flower more, or have more reproductive plants 

than W i 1helmsburger and in experiments 2, 3, 5, 6, 9, 12, 13, H

and 16 Wilhelmsburger had significantly more flowering or reproductive 

plants. The response of a cultivar to low temperature is consistent 

and environmental factors affect the response of different cultivars 

similarly enough so that the differences between cultivars remain 

generally the same in different environmental conditions.



O

(O
5

a>
■a

c
o
o
Û

Q>
O
co

a IO

en
L.
0X
E
D
C

C

0
10
fü
0
L
Oc

4-J
0 c
X 0
4-» E

4-»c 0
O 0

i_
4-» 4-íc
0 L.
E 0
4-J 4-J
0 1-
0 o
1_ X
4-» 10

0 m
D

=J O
4-> .—
0 >
i_ 0
0 L.
Q _ Q_E
0 0
4-J i—

4-J

O c
■— —

14- en
o i_

0c X
O E

D
4-> C
0
U X
D 4-J~o «—

£
M—
O "O

0
4-J 1_u 0
0 CL
M— E
M- O
0 ü
0 en
X c
4-J

1 0£
LP\ O
r— 1—

u-
4-Jc 10
0 4-»E c
•— 0
L- .—
0 Q-
CLX M—
LU O

rf\
UJ
a l



Two seed stocks of V/5 1 helmsburger and Doon Major were used:

Wilhelmsburger 1973 Garton's and 1976 Sharpes; and Doon Major 1974 

Sinclair and 1976 Barclay Ross and Hutchinson, but no differences 

were observed between the different seed stocks.

Besides selection within cultivars to improve the bolting 

resistance of present stocks, crossing between cultivars might 

increase the available variation and the scope for selection. 

Differences between cultivars appear to be quantitative rather than 

qualitative and so bolting resistance is probably a multigenic factor. 

The great range of responses to low temperature within Brassica 

oleracea and B. napus suggests that this is very likely.

3.9 Days to flowering

3.9.1 The effects of duration and temperature treatment

The longer the duration of low temperature, the shorter the 

time to flowering. In experiments 13 and 15 the response to increased 

duration of low temperature tended to flatten off at long durations, 

around 70 to 90 days and 50 to 75 days to flowering for experiments 

13 and 15 (continuous 6° treatment) respectively. In experiments in 

which very long durations of low temperature treatment were used, for 

example experiments 11, 23 and 2b, plants have flowered in as little 

as 40 to 55 days from the end of low temperature treatment.

During a long period of low temperature not only are flowers 

induced but some development of flower buds can take place (see 

experiment 11). If flowering can occur, at low temperatures the 

response in terms of days to flowering from the end of low temperature
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treatment to increasing duration of low temperature treatment will 

decline to zero, but if a short period of higher temperature is 

required before flowers will open the response will decline to this 

asymptotic value.

Days to flowering are calculated from the end of low temperature 

treatment in the assumption that development of flowers is much slower 

below 10° than at normal growing temperatures (12° to 20°) and it 

would therefore not be valid to compare two values of days to flower­

ing from the beginning of low temperature treatment, both, for 

instance, 110 days, one value including 30 days at low temperature, 

and the other 40 days. Temperature of treatment affects days to 

flowering, lower temperatures tending to result in more rapid 

flowering.

For the purpose of shortening the reproductive cycle, days to 

flowering from the start of low temperature treatment is more important 

than days to flowering from the end of treatment. The duration of 

low temperature treatment which results in the minimum number of days 

to flowering from the start of low temperature treatment will then 

be the appropriate duration of low temperature to select. In experi­

ment 13 this minimum value for mean days to flowering occurs after 

38 days low temperature treatment, in experiment 3 after 40 days 

treatment, and in experiment 15 (continuous 6° treatment) after 30 

days low temperature treatment but the increase in days to flowering 

from the beginning of low temperature treatment was only 4 days from 

30 days low temperature treatment to 54 days. Increasing the period 

of low temperature from around 36 days to around 50 days is unlikely 

to delay flowering measured from the start of low temperature treat­

ment by more than 3 or 4 days and flowering of all plants will be
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assured. The minimum number of days to flowering from the start of 

treatment varies among the experiments partly because of the different 

conditions for plant growth and flower development and partly because 

in the shorter treatments around 30 to 36 days not all plants flowered 

and those experiments in which the recording of flowering continues 

longer will have longer mean times to flowering, as there will be 

more late flowering plants included in the mean. Minimum times from 

the start of low temperature treatment to mean flowering time are:

Low 
temperature 
treatment Experiment

104 days 42 days 1

118 11 40 11 2

115 " 40 " 3

116 " 35 4

119-3 " 42 5

1 1 3 . 8  " 36 " 13

109.6 " 30 11 15

In experiments 2, 3, 4 and 5 W i 1helmsburger and Doon Major 

cutlivars were used, and in experiments 13 and 1 5 , a range of cultivars, 

but in experiment 1 only Pentland Harvester - a very susceptible 

cultivar - was used, which explains the more rapid flowering.

The increase in the rate of flower development with, the increase 

in duration of low temperature suggests that there is some substance, 

or substances which are produced during a period of low temperature 

which govern the rate of bud and flower development. In experiment 1 

flower buds with sepals had formed within 130, 40 and 30 days of the 

end of low temperature treatment for 3, 6 and 9 weeks low temperature 

treatment respectively and this corresponds fairly well with the mean 

differences in days to flowering from the end of low temperature
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treatment, 96 days difference between 3 and 6 weeks low temperature 

treatment, and 13 days difference between 6 and 9 weeks. It seems 

probable that the main effect of duration of low temperature is on 

the rate at which bud formation takes place rather than the rate of 

flower bud development after initiation of buds.

Devernalisation reduces the proportion of plants flowering and 

increases the number of days to flowering. In experiment 6 the 

higher the post vernalisation temperature the later was flowering and 

in experiment 7 the treatments with a one, two or three-week interruption 

of low temperature treatment flowered later than the uninterrupted 

treatment. Devernalised plants flowered later than plants which 

received an uninterrupted low temperature treatment in experiment 8, 

and in experiment 15 days to flowering were increased by a daily k- 

hour interruption at 16° or 22° of low temperature treatment, although 

there was little difference between the effects of 16° or 22°. The 

time taken to flower seems to be an expression of the degree of 

vernalisation. After a long low temperature treatment whatever 

substance or substances are required for flower induction and develop­

ment are probably present in large amounts, and flower bud initiation 

occurs promptly, and plants flower rapidly. After short low 

temperature treatments only small amounts of the substances are 

present and floral initiation is slow and erratic, only occurring in 

a proportion of plants.

There is a reduction in the variability of time to flower as 

duration of low temperature treatment increases. In experiment 13 

the difference between the least and greatest number of days to
tr

flowering of individual plants for Doon Major, one of the more uniform 

cultivars, was 7 1 , 6A, 33, 26 and 10 days difference for 2k, 28, 32,



36 and 40 days of low temperature treatment respectively. The 

differences between earliest and latest number of days to flowering 

of individual plants of all six cultivars in experiment 15 (6° 

continuous treatment) was 35, 31, 37, 27 and 19 days for 30, 36, 42,

48 and 54 days low temperature treatment respectively, and in experi­

ment 3 (mean of the differences in two cultivars) was 120, 98, 101 

and 58 days for 28, 32, 36 and 40 days low temperature treatment, 

respectively. In experiments 3 and 13 flowering was recorded for a 

longer time than in experiment 15 and so there is a greater range 

in days to flowering.

3.9.2 The effect of cultivar

Cultivars differ in their rates of flower development. To 

some extent this is a function of their susceptibility to flowering, 

especially after short durations of low temperature. In experiment 

13 after 24 days low temperature treatment the earliest cultivar to 

flower is Pentland Harvester, then WiIhelmsburger, Harrietfield,

Ruta Otofte and Doon Major last to flower but after 40 days low tem­

perature treatment the order is, from earliest to last to flower,

Pentland Harvester, Doon Major, W i 1helmsburger, Harrietfield and 

Ruta Otofte. The response, in terms of more rapid flowering, of 

Doon Major to increased duration of low temperature- treatment, is 

steeper than that of other cultivars, the response of Harrietfield 

somewhat steeper but the responses of W i 1 helmsburger, Pentland 

Harvester and Ruta Otofte being mutually parallel (see experiment 

13, Fi gure 2.10).

In experiments 2, 3, 4, 5, 7 and 21 there was no real difference 

between the rate of flowering of W i 1helmsburger and of Doon Major.

Only in experiments 6, 11 and 12 was WiIhelmsburger earlier in flowering.
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In general, especially after short durations of low temperature 

treatment, rate of flowering of a cultivar corresponds fairly well 

to its susceptibility to flowering, readily induced cultivars 

flowering most rapidly. Both characters, rate of flowering and 

susceptibility to flowering, are heritable and there is probably some 

linkage between them as selected early and late flowering plants gave 

susceptible and early flowering and resistant and late flowering 

lines, respectively. The correlation between the percentage of plants 

flowering in each line, and the mean number of days to flowering for 

each line was high, r = -0.867 (n = 9, p<0.01) for the W i 1helmsburger 

lines, but very small, r = -0.0053, for the Doon Major lines (n = 8 NS) . 

Selection was much less effective in Doon Major which probably 

explains the very low correlation as neither flowering percentages 

(from 38 to 64 per cent in Doon Major lines) nor days to flowering 

(80.5 to 85¿9 days) varied between the Doon Major lines nearly as 

much as in the W i 1helmsburger lines (18 to 100 per cent flowering and 

78.8 to 90.8 days to flowering).

3.9.3 Measurement

The mean number of days to flowering for a treatment depends 

partly on the date when the experiment is terminated. If recording 

of flowering continues for a long time, very late flowering plants 

will be included in the data and the mean number of days to flowering 

will be slightly increased. No experiment was terminated before 

the great majority of extending plants had flowered and in all experi­

ments increasing the time during which flowering was recorded would 

only have included a few more plants in the data. All plants usually 

flowered in the longest duration of low temperature treatments and
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so it is only the shorter durations with their more variable 

flowering that are affected by the date of termination of an experi­

ment. Analyses of days to flowering data were weighted by the number 

of plants contributing to each mean and so the addition or exclusion 

of a single, or a few plants flowering later than the majority of 

plants would not greatly alter the result of the analysis. The 

effects of treatments are similar in experiments which are terminated 

early and in those that are continued for a longer time, for instance 

days to flowering in experiments 2 and 3, terminated after 110 and 176 

days after the end of low temperature treatment respectively (see 

Tables 2.2 and 2.5).

A crop sown in mid-April would take at the very least b days to 

grow out of the juvenile phase, if temperatures were around 1 5° at 

sowing and they are likely to be lower, and a further 2b to 30 days 

of low temperature (below 10°) for a proportion of plants to be 

vernalised. Early bolting, that is flowering before the end of 

August, would occur within 100 to 110 days of the end of low tem­

perature treatment. Harvest in October or November or cessation of 

crop growth due to low temperatures would be 50 or 60 days later, 

around 160 days. Experiments which finish around 100 days are 

recording early bolting only, and recording has to continue to 

around 160 days to include late bolters. In some experiments, such 

as 7, 12 and 20, short low temperature treatments or high post 

vernalisation temperatures resulted in very slow flowering and in 

these experiments recording of flowering continued for a longer time 

till all or nearly all plants showing signs of flowering had flowered.

In all experiments the number of plants flowering is used as 

the best indicator of susceptibility to vernalisation as flowering
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is a clear and irreversible process. In some experiments the 

remaining plants were dissected and the presence of developing flower 

buds recorded. If the experiment had been prolonged these plants 

would presumably have flowered eventually. The number of reproductive 

but non-flowering plants provides further information on the effects 

of experimental treatments but has not been found to be affected 

differently from numbers flowering only, by experimental treatments. 

Plants in bud at the end of an experiment provide no information on 

the number of days to flowering except that the plants have not 

flowered by a certain date. Assessing the number of reproductive 

plants by dissecting the apical buds can shorten an experiment where 

treatments have been marginally vernalising and flowering very late, 

but it is not a satisfactory substitute for recording flowering.

3.10 Flower stage

Flower stage was recorded at the end of experiments 2, k and 

10. It is an assessment of the state of flower or seed development 

of all plants at a given time and is therefore related to the number 

of plants flowering and the date of flowering, as early flowering 

plants will be further advanced in development of seeds than later 

flowering plants. Plants of all stages of flower development, before 

and after flowering, including vegetative plants, are taken into 

account, which is an advantage over simply recording flowering plants, 

but flower stage is assessed subjectively from a scale, unlike flower­

ing, which is very easy and precise to record. When large numbers of 

plants are involved and regular recording of flowering cannot be made



it is a useful alternative to daily recording of flowering especially 

for the estimation of earliness of flowering.

3.11 Growth during low temperature treatment

3.11.1 Measurement and some effects of treatments

Even at temperatures below 10°, slow growth occurs in swedes.

The most convenient non-destructive assessment of plant size or 

development is visible leaf number taken as being all leaves of 1 cm 

and over including true leaf scars but not cotyledon scars. The total 

number of leaves on a plant, visible leaves and primordial leaves, is 

related to the number of visible leaves. In experiment 3 the visible 

leaf number of plants in each treatment was measured at the end of 

low temperature treatment and the total number of leaves of a sample 

of plants from the same treatment was recorded at the same time.

Over the range 0 to k visible leaves the total number of leaves 

increases linearly as the number of visible leaves increases 

(r = +0.968 for W i 1helmsburger, and +0.92 for Doon Major, n = 30 

p<0.001) the equations of the fitted lines being y (total number of 

leaves) = 2.067x (number of visible leaves) + 3-7^5 for W i 1helmsburger 

and y = 2.031x + 3-^87 for Doon Major. As the rel a.t ionsh i p is linear, 

measurements of production of visible leaves will bear a close 

relationship to the production of primordial leaves over the same 

period.

The longer the low temperature treatment the more visible 

leaves are produced during the treatment and as the increase in the 

number of visible leaves produced is apparently linear over increasing 

duration of low temperature (see Tables2.6 and 2.12) there is no
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evidence of acclimatisation to low temperature and consequent 

improved rate of leaf production during longer durations of low tem­

perature treatment. Temperature of treatment also affects leaf 

production linearly, the higher the temperature the more leaves being 

produced (see Tables 2.10 and 2.12). Plant age at the beginning of 

low temperature treatment affected leaf production during treatment 

(see Tables 2.k and 2.6), older plants producing more leaves than 

younger plants. There is some difficulty in measuring production of 

visible leaves in very young seedlings which have no visible leaves 

at the start of the measurement period. Leaf primordia, however, are 

present in very young seedlings, even two-day old seedlings and in 

experiment 3 the production of all leaves, including primordia during 

low temperature treatment was estimated from measurements of total 

leaf number in samples from each treatment before and after low tem­

perature treatment. Younger plants produced fewer primordia than 

older plants (see Table 2.7). Plants that had a very limited supply 

of nitrogen during low temperature treatment produced fewer leaves 

during treatment and flowered more slowly (see experiment 10). Higher 

light intensity results in a greater production of leaves during low 

temperature treatment (see Table 2.26). The correlation between daily 

leaf production and percentage flowering in the four light intensity 

treatments was significant (r = 0.953, p<0.05).

3.11.2 The effect of cultivar

Wilhelmsburger produced 0.057, 0.05^, 0.085, 0.101 and 0.080 

leaves per plant per day during low temperature treatment in experi­

ments 2, 3, 5 and 12 respectively, and Doon Major produced 0.0^4,

0.0^3, 0.069, 0.082 and 0.069 leaves per plant per day in the same
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experiments. The difference between the cultivars was not significant 

(F test) in experiment 12 but the differences were significant at the 

0.1 per cent level in the others, and production of primordia in 

experiment 3 also differed (F test, p<0.001) between W i 1helmsburger 

with 0.186 leaf primordia per plant per day and Doon Major with 0.161 

primordia per plant per day. Cultivars differed in their visible 

leaf production during low temperature treatment (F test, p<0.001) 

in experiment 13.

In experiments k and 5 it was apparent that lower temperatures 

were relatively more effective in causing flowering of Doon Major 

than W i 1helmsburger and Figure 3-8 shows the leaf production of the 

two cultivars at different temperatures using data from experiments 

2, 3, ^ , 3, 12, 13 and 15. The production of leaves by Doon Major 

is reduced less at low temperatures than that of W i 1helmsburger.

The order of decreasing leaf production, Pentland Harvester,

W ¡ lhelmsburger, Ruta Otofte, Harrietfield and Doon Major agrees fairly 

well with the order of decreasing susceptibility to flowering,

Pentland Harvester, W i 1helmsburger, Harrietfield, Ruta Otofte and 

Doon Major, but the correlation between leaf production and flowering 

percentage of each cultivar (r = +0.871 n = 5) was not significant. 

The leaf production during low temperature of the six cultivars used 

in experiment 15 was measured for two-week old plants grown for four 

weeks at 6°. Leaf production was 0.100, 0.090, 0.088, 0.085, 0.083 

and 0.077 leaves per plant per day for Marian, Della, Ruta Otofte,

W i 1 helmsburger, Doon Major and Seefelder, which agrees fairly well 

with the percentage flowering after treatment at 6°, 86, 91, 72, 86,
Sr

77 and 53 per cent for the same cultivars but the correlation between 

leaf production and flowering percentage (r = +0.716 n = 6) was not
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significant. In both experiments 13 and 15 Ruta Otofte had a greater 

leaf production than would be expected from its flowering percentage.

If data for Ruta Otofte is excluded the correlation between daily 

leaf production and flowering percentage increases, in experiment 13 

to r = +0.979, n = b, p<0.05, but the correlation does not increase 

in experiment 1 5 .

3.11.3 Summary

There appears to be some relationship between growth during a 

period of low temperature and subsequent flowering although there is 

no evidence that the relationship is causal. Some factors that 

affect leaf production do not, however, affect flowering in the same 

way. Young plants produce leaves more slowly than older plants, but 

apart from the effect of juvenility there seems to be no effect of 

plant age on flowering, above four days in age. Higher temperatures 

increase the rate of leaf production but above around 6° the effective­

ness of vernalisation declines as temperature rises. Light intensity 

and nitrogen supply affect leaf production and flower induction 

similarly, although this does not prove any causal relationship 

between the two processes. There does appear to be a relationship 

between the ability of a cultivar to grow, that is produce leaves, at 

low temperatures and its susceptibility to vernalisation. To some 

extent this difference in leaf production at low temperature may be 

related to the vigour of growth of the cultivar as in almost all 

experiments WiIhelmsburger plants were larger and had more leaves 

than Doon Major plants throughout the experiments. Similarly in 

experiment 15 cultivars that produced more leaves during How tem­

perature treatment had, in general, more leaves at the start of treat­

ment but in experiment 13 there was no relationship between leaf



number at the beginning of low temperature treatment and subsequent 

leaf production.

Cell division is essential for vernalisation and as the production 

of leaves is partly the result of cell divisions it is likely that 

leaf production will be associated with vernalisation. As a measure 

of growth, leaf production is crude, but as the apex is the site of 

vernalisation, cell division at the apex is probably the most important 

component of growth to be measured, and leaf production is a more 

appropriate indicator of this than, for instance, dry weight. For a 

more precise estimate, the number of leaf primordia produced during a 

given period can be measured by dissection of a suitable sample.

3.12 Selection methods

3.12.1 Direct methods

There is evidence of considerable variability in susceptibility 

to vernalisation between and within present cultivars (see 3.8).

It would be easy to improve the bolting resistance of some cultivars 

such as Wilhelmsburger, Ruta Otofte and possibly Seefelder also, but 

not so easy to improve the resistance of Doon Major and Pentland 

Harvester which have been much more uniform in their responses to 

low temperature treatment. Within only eight cultivars used in these 

experiments there is clearly sufficient variability for considerably 

more resistant swede cultivars to be bred.

The most direct way of selecting for bolting resistance is to 

expose a population of swedes to a period of low temperature and 

discard the plants that flower. Lysgaard (197*0 successfully selected 

resistant swedes by taking 100 non-bolters from a population of very
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early sown swedes. The degree of selection can be varied by altering 

the duration of low temperature treatment whether by sowing date or, 

more accurately, in a controlled low temperature environment. Short 

durations, for example 20 to 2b days at the optimum temperature for 

vernalisation, will cause only the most susceptible 10 to 30 per cent 

of individuals to flower, and could be used to improve the bolting 

resistance of an existing strain or cultivar. After longer durations, 

such as 28 to 32 days, only the more resistant 10 to 30 per cent of 

plants will not flower. Some of the selected non-flowering plants 

may actually be induced but not yet extending, but it is possible to 

select plants which are certainly vegetative by examining the apical 

bud, and if vegetative (bud stage 0, see Figure 2.1) subjecting the 

plant to a further low temperature treatment and collecting seed from 

axillary shoots in the following year.

An alternative method is to select late-flowering plants which 

has the advantage that seed can be collected at the time of selection, 

but the disadvantage that if not all plants have flowered the most 

resistant plants in the population will not be included among the 

selected resistant plants.

The use of longer durations of low temperature will tend to 

correct this difficulty, as almost all plants will flower, but the 

variation in time to flower decreases as duration of low temperature 

increases, and selection will become less effective as differences 

in time to flower between individuals decrease. There is also some 

evidence that especially after long durations differences between 

cultivars in time to flower are affected by other factors besides 

resistance to vernalisation, in experiment 13 the five cultivars being 

affected differently in days to flowering as low temperature treatment
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increased. A resistant cultivar is not necessarily slower to flower 

especially after long durations of low temperature and the same will 

be true of individual plants within a population, later flowering 

plants generally, but not always, being more resistant to vernalisation. 

However, selection of early and late flowering plants to obtain 

separate lines even within a small population ( 1 5 plants selected out 

of a population of 296 W i 1helmsburger and Doon Major plants) was 

successful in creating resistant and susceptible lines of both cultivars.

Selection of late flowering plants can be combined with selection 

of non-flowering plants. If too short a duration of low temperature 

is used, or there is less flowering than expected after treatment, 

there may be more non-flowering plants left than are required in the 

selection programme with no way of distinguishing between the resistance 

of the non-flowering plants unless they are beginning to bolt and show 

signs of flowering. However, if a longer duration is used there may 

be fewer non-flowering plants than are required, but the last plants 

to flower could be included to make up the required number of plants 

in the selected resistant population. Whether a plant is regarded as

flowering or not will depend on when selection is carried out, the

longer after low temperature treatment, the more plants will have 

flowered, but under normal conditions the bulk of flowering is usually

over 100 days after the end of low temperature treatment.

As suggested in 3-2, a daily fluctuating temperature from, 

for instance, 2° to 10°, will be the most suitable during an 

artificial low temperature treatment for selection although a steady 

temperature is also effective, for example, 5° in experiment 3.

Selection by retaining non-flowering plants or taking early and 

late flowering plants is effective for obtaining resistant swede strains.
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3.12.2 Indirect methods

Less direct methods, involving measurements of seedling and 

plant factors associated with bolting resistance, such as hypocotyl 

epidermis cell length in sugar beet (Lexander 197*0, may be quicker 

and more convenient but are unlikely to be as successful.

There is some evidence that a high rate of leaf production 

during a period of low temperature treatment is associated with 

susceptibility to flowering. Measurements of leaf production during 

low temperature treatment may provide some information on the possible 

resistance of a cultivar or strain but is unlikely to enable the 

resistance of individual plants to be assessed. Measurements of the 

production of leaf primordia are more accurate but are destructive 

and therefore of no use for assessments of individual plants. The 

measurements themselves are time-consuming and the only advantage of 

the method is that the test can be done on plants in the seedling stage 

while they are receiving a low temperature treatment to induce complete 

flowering for bulking up of seed, or for crossing programmes.

The relationship between a rapid rate of leaf production at 

low temperature and susceptibility to flowering is not absolutely 

confirmed, and if it is not an invariable relationship it might result 

in bolting resistant plants with the valuable ability to grow rapidly 

at low temperature being discarded. Ruta Otofte, for instance, is 

resistant to flowering but has an average rate of leaf production at 

low temperature.
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3.13 Shortening the reproductive cycle

The swede is a biennial, and normally the reproductive cycle 

takes almost a year to complete with young plants which are exposed 

to low temperature during the winter flowering and setting seed the 

following summer. When controlled environment growing conditions are 

available it is possible to shorten the cycle.

From the results of experiments in this study the following 

methods of shortening the reproductive cycle can be suggested. Plants 

should be grown for at least four days from sowing, and probably seven 

to eight days to ensure that all plants have outgrown the juvenile 

stage and should then be placed in a low temperature environment.

In experiment 5 flowering time was slightly shorter (about seven days 

shorter) after 3° than 6° especially after longer durations of low 

temperature and so a temperature of 3° or possibly even lower is more 

suitable than a higher temperature. In experiments 1, 2, 3, 4, 5,

13 and 13 the minimum time from the beginning of low temperature 

treatment to mean flowering time occurred after 30 to 42 days low 

temperature treatment (see 3-9) but from the beginning of low tem­

perature treatment to the time when the last W i 1helmsburger or Doon 

Major plant had flowered was longer, see below:

139 days (40 days low temperature treatment, adult plants only) 

in experiment 2

187 days (40 days low temperature treatment, adult plants only) 

in experiment 3

125 days (42 days 5° low temperature treatment but not all plants 

flowered) in experiment 4

132 days (42 days 3° low temperature treatment, one plant did 

not flower) in experiment 5



139 days (1*0 days low temperature treatment, V/i 1 helmsburger 

and Doon Major only) in experiment 13

114 days (54 days low temperature treatment, W i 1helmsburger 

and Doon Major only) in experiment 15

If it is necessary that every plant should flower promptly, 

for instance to avoid excluding very bolting resistant individuals 

from the breeding cycle, longer durations of low temperature than 

30 to 40 days low temperature will be required. In experiments 23 and

24 in which low temperature treatment continued for 56 and 63 days

respectively, all plants had flowered within 136 and 125 days of the 

start of low temperature treatment. Extending the low temperature 

treatment beyond 50 to 56 days may not be necessary, and if the use 

of the controlled low temperature environment is restricted, a shorter 

time, 40 to 50 days, could be used, depending on the resistance to 

flowering of the swedes treated.

The light intensity should be high during low temperature treat­

ment and it is probable that a 24-hour daylength would promote more 

rapid flowering if only by increasing the amount of light received 

and plant growth during the low temperature period. A good nitrogen 

supply during treatment will also promote flowering and a sufficient 

supply of other nutrients may also be important.

After low temperature treatment the temperature should be

raised to around 11° to 14° for at least a week, and preferably two 

weeks, to prevent or limit devernalisation, before the temperature 

is raised to a higher temperature, 15° to 18° , to encourage rapid 

growth and flower development. This study has provided no useful
lr

information on the effects on flower and stem development of daylength 

or light following low temperature treatment but it seems likely that



a long daylength, 24 hours preferably, and high light intensity 

will promote more rapid flowering. It is possible that applications 

of gibberellic acid will also increase the rate of flowering, but 

if conditions for vernalisation and growth after low temperature 

treatment are optimal, exogenous gibberellins may have no effect.

In the conditions suggested, flowering of all plants should occur 

within 130 to 140 days of sowing which leaves 40 to 50 days for seed 

set and ripening, if a six-month reproductive cycle is to be achieved.

Apart from providing optimum conditions of temperature, light 

and nutrition, there does not appear to be any way of reducing the 

induction and flower development phases of the reproductive cycle, 

and the seed development and ripening part of the cycle may offer 

better opportunities for shortening the cycle.

3.14 Site of vernalisation

Expanded leaves are not necessary for vernalisation, although 

removal of leaves during low temperature treatment resulted in slightly 

delayed flowering but this was probably chiefly due to the growth 

check caused by de.fol i at ion. Stem cuttings (see experiment 21) 

without expanded leaves exposed to low temperature subsequently 

developed into plants and flowered, and in experiments 17 and 18, 

directly cooling the growing point only,resulted in normal flowering 

whereas in experiment 19 heating the growing point only during a low 

temperature treatment prevented flowering. Leaf primordia and young 

leaves up to about 1 cm in length were present in the growing point 

but flower induction of swedes can occur in darkness and so it is not 

photoperiodic in nature. The primordial and young leaves may or may
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not be involved in vernalisation but it is likely that the apical 

meristem is the chief site of induction, as in vernalisation of

cereals (Purvis 19^0, 1961).

Within the growing point and in the axils of expanded leaves 

there are many axillary meristems and if these are growing actively, 

for instance when apical and upper meristems are removed, releasing 

lower meristems from apical dominance, these lower axillary meristems 

can be induced to flower, even meristems in the axils of the cotyledons 

(see experiment 23). The growth activity of these axillary buds 

appears to affect the efficiency of vernalisation. In experiment 22 

the lowest four or five buds on the plant released from apical 

dominance before a six-week low temperature treatment did not sub­

sequently flower, although some control plants did, probably because 

the growth of the lower buds was too slow during low temperature 

treatment.

Experiment 2k demonstrated that some axillary buds can be 

vernalised even when the apical meristem is present during the low

temperature treatment and the growth of the axillary buds suppressed

by apical dominance. These axillary buds may be induced by a substance 

translocated from the apical meristem during the low temperature 

treatment, or some buds may be induced because they developed from an 

apex that was itself already induced but as axillary buds can be 

induced in the absence of the apical meristem and as some axillary 

buds (see experiment 26) were already present at the beginning of low 

temperature treatment and later flowered, it is most probable that 

the axillary buds are induced independently in the same way as the 

apical meristem is or develop from an induced apex, rather than being 

induced by a translocatable substance from the apex. As axillary
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buds released from apical dominance after low temperature treatment 

in experiment 22 did not flower whereas some of the apical buds on the 

control plants did, it is probable that the vernalisation process is 

slightly slower in axillary buds under the influence of apical dominance 

than in the more actively growing apical bud.

The main site of vernalisation in the swede is without doubt the 

apical bud and probably chiefly the apical meristem, although axillary 

buds can also be vernalised. In experiment 26 the lowest buds 

(cotyledon and first and second leaf buds) flowered much less than 

higher buds when released from apical dominance at the time the main 

axis flowered. This may have been because their growth was too slow 

during low temperature treatment for induction or because these lower 

buds were induced and then devernalised after the low temperature treat­

ment in the same way as basal buds on the chrysanthemum and devernalised 

unless the rest of the plant is removed immediately after low tem­

perature treatment (Schwabe 1954b). The chrysanthemum is a perennial 

however, and requires a mechanism to prevent all buds flowering in 

one year whereas the swede is a biennial and does not persist beyond 

one flowering season, and so the flowering mechanisms of the two 

species may be very different.

3.15 Possible trans1ocation of a flowering stimulus

Unlike the photoperiodic response there is very little evidence 

that induction by low temperature results in the production of a 

translocatable flowering substance. No Brassica species has providedtr
any evidence of the existence of a mobile substance although there 

is some evidence from beet (Beta vulgaris) (Curtis et al 1964),
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crested dog's tail (Cgnosurus cristatus) (Purvis 1961) and henbane 

(Hyoscgamus niger) (Salisbury 1963) that such a substance exists 

in these species. In this study there was no indication that a mobile 

substance was produced by the swede, although no conclusive evidence 

that there was no such substance.

Vegetative young swede plants grafted onto flowering swedes 

and swedes on the point of flowering grew and formed close unions with 

the stock, but remained vegetative. This does not prove the non­

existence of a mobile substance as it might be produced for only a 

short time, possibly long before flowering, or before a full graft 

union bud formed.

It has been suggested by Margara (196*0 that axillary buds of 

rape (Brassica napus) and beet (Beta vulgaris) are induced by a substance 

translocated from the apex. This does not seem likely in the swede, 

as removal of apical meristem or the apical bud immediately after low 

temperature treatment did not prevent the highest remaining axillary 

bud from flowering normally and promptly (see experiment 2*0- Experi­

ment 23 has also shown that all buds are capable of being induced 

independently of the apical meristem and so there is no obvious need 

for a mobile flowe.ring stimulus in the plant. In experiment 26 the 

removal of various proportions of the shoot at flowering showed that 

all but the very lowest buds were induced. As upper axillary buds 

may be induced by the end of low temperature treatment it seems more 

likely that axillary buds are induced directly by the low temperature 

treatment and not by a substance translocated from the apical bud 

during low temperature treatment. Axillary buds near the apical 

meristem at flowering probably flower because they developed from 

the induced apex during or after low temperature treatment, whereas
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lower buds already present at the beginning of low temperature treat­

ment are probably induced independently of the apical meristem.

3.16 The mechanism of vernalisation

The nature of the vernalisation process in any species is 

not clear, but in the swede it is certain that the process occurs in 

the growing point or actively growing buds and that light is not 

necessary for the process. Induction in the swede occurs at 11° and 

below and is reversed at higher temperatures (15° and above) which 

fits in with the theoretical model of vernalisation (see 3-3), but 

it is not known whether the eventual result of vernalisation is the 

accumulation of a substance or the gradual destruction of an inhibitor, 

as in the release of buds from dormancy, by chilling.

In cauliflower (Thomas et al 1971), radish (Suge 1970) and 

iris scales (Pereira 196^), higher levels of gibberel1in-1ike sub­

stances were produced after low temperature treatment and in the swede 

the effects of exogenous gibberellic acid on stem growth are similar 

to the effects of a period of low temperature on stem growth but 

gibberellic acid does not cause flowering although it may promote it.

It is possible that flowering is caused by the accumulation of a 

gibberellin but either this is not the same substance that causes 

stem extension, or some other additional substance is involved in 

flowering, as stem extension and flowering are not affected in the 

same way by gibberellic acid or by devernalisation.

Vernalisation in honesty (Lunaria biennis) (Wellensiek 1962b)
Ur

has been demonstrated to occur only in actively dividing tissue and 

this may also be the case in the swede. Whether dividing cells are
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necessary for vernalisation because they are the only cells with a 

suitable level of metabolic activity at the temperatures at which 

vernalisation occurs, or whether cell division itself is essential 

for the process is not clear.

The rate of flower development varies with the duration of low 

temperature treatment, which suggests that the process is to some 

extent quantitative, although part of the process is clearly 

qualitative in nature, as a plant either becomes reproductive, or 

remains vegetative with no real gradation between these states. The 

quantitative factor, however, governs the rate of change from 

vegetative to reproductive (see experiment 1) and the rate of stem 

extens ion.

The visible change from vegetative to reproductive does not 

usually occur immediately after a period of low temperature, and 

vegetative leaves may be produced by apices which later flower and so 

there must be a gradual accumulation of some flower promoting substance 

or depletion of a flower inhibiting substance after low temperature 

treatment has ended. One explanation is that substance D, the 

flowering substance in the theoretical model, is an enzyme, or a co­

factor increasing the activity of an enzyme already present. The more 

D is present at the end of the low temperature period the more enzyme 

will be available for the production of a substance that, at a certain 

concentration, induces the apex to change from vegetative to reproductive, 

which would explain the earlier flowering after longer durations of 

low temperature treatment. Some other substance, possibly gibberellin­

like, that causes stem extension and whose production is not affected 

so much by high temperature must be produced during low temperature 

treatment and this substance may not only cause stem extension but
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possibly also promote flower bud growth and development. At least 

two substances must be produced but there may be many more involved.

Carbohydrate level affects flower induction in cauliflower and 

broccoli but defoliation or the absence of light did not greatly 

affect vernalisation in the swede. A high level of carbohydrate is 

not therefore essential for the process but low levels probably do 

reduce the efficiency of the process, possibly simply by reducing 

cell activity and division.

Little is known of the substances or reactions involved in 

vernalisation despite over 30 years of research on the subject.

Unlike photoperiodic induction, there is no clear evidence of a 

translocatable substance involved in the process and therefore much 

less chance of easily isolating a substance involved in the process.

One approach to the subject is to examine the levels of certain 

substances during and after low temperature treatment. Such studies 

have revealed the accumulation of gibberel1 in-1ike substances and 

the depletion of auxins in some species, and an increase in starch 

and sugar levels. One of the disadvantages of this method is that 

the various treatments used, low temperature and auxiliary treatments, 

such as defoliation, the absence of light or applications of SADH, 

may affect both flowering and the levels of the substances studied 

but provide no evidence of a causal relationship.

Another approach is to look for differences between varieties, 

cultivars or lines within a species that differ in resistance to 

flowering. Differences in the available sulphydryl (-SH) and di­

sulphide sulphur (-S-) content between resistant and susceptibleOr
sugar beet have been demonstrated (Lexander 1974) .
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There is a difference of only one gene between annual and 

biennial forms of rye and henbane (Purvis 1948), and a comparison 

of the accumulation of substances at low temperature within annual 

and biennial forms might provide some information on the substances 

involved in vernalisation, particularly if lines could be bred which 

were as similar as possible in all characteristics apart from this 

one gene. In the theoretical model this difference might be the 

absence of reaction II, so that all substance B produced is converted 

to D and no substance C is produced.



CONCLUSIONS



1. At temperatures of 11° and below, swedes can be vernalised. The 

swede has an obligate requirement for vernalisation and if grown

at temperatures above 13° to 1*4° will not flower. The optimum tem­

perature for vernalisation is around 5°, 5° to 6° being more suitable 

for Wilhelmsburger and 3° to 6° for Doon Major.

2. High temperatures immediately after low temperature devernalise 

and reduce the proportion of plants flowering and this reversal

of vernalisation may continue for three weeks after low temperature 

treatment. Interruptions of low temperature with short periods of 

high temperature also devernalise and reduce flowering and in both 

cases the higher the temperature the greater the devernalisation.

3. Swedes have a juvenile stage during which they cannot be induced 

to flower, but it is very short, below *4 days at temperatures

around 15° and even at vernalising temperatures plants grow out of 

the juvenile stage in one to two weeks. Some cultivars have a slightly 

shorter juvenile stage, for instance Harrietfield or Doon Major, in 

which it is less than or around 2 days. Once seedlings have emerged 

they have passed out of the juvenile stage. In Wi lhelmsburger it was 

calculated that plants at the changeover from juvenile to adult had 

0.8 of a leaf primordium. A long juvenile stage in a cultivar confers 

useful bolting resistance during early growth but would be difficult 

to select.

*4. Stem extension in the swede is caused by a period of low tern- 

perature, like flowering, but its response to gibberellin and 

temperature is slightly different. Exogenous gibberellin readily
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causes stem extension but not flowering. Stem extension is less 

affected by devernalisation than flowering is, stems sometimes 

extending after low temperature treatment when apices are devernalised 

and vegetative. When devernalisation and gibberellin are used in 

combination devernalised plants extend much more than unvernalised 

plants, in response to gibberellin. There must therefore be more than 

one reaction involved in the induction of flowering and its associated 

stem extension.

5. The higher the light intensity during low temperature treatment 

the greater the proportion of plants flowering, but swedes can be

vernalised in the dark and so light is not essential for flower 

i nduction.

6. High levels of nitrogen promote earlier flowering although all 

plants flowered in the treatment with very low nitrogen.

7. Cultivars vary considerably in susceptibility to flower induction, 

and there was 9 to 12 days difference between the number of

calculated days required to cause 50 per cent flowering of the most 

susceptible and most resistant cultivars in two experiments. The 

flowering behaviour of some cultivars is more variable than that of 

other cultivars and early and late flowering lines selected from 

Wilhelmsburger, a variable cultivar, differed much more from the parent 

cultivar than lines selected from Doon Major, a uniform cultivar.
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8. Vernalisation affects swedes qualitatively, causing some plants 

to flower, and quantitatively, the longer the duration of low

temperature treatment the earlier plants flower. Plants can take 

from 40 to 200 days to flower depending on the duration of low tem­

perature but in a population in which at least 50 per cent of plants 

are flowering the time is usually 70 to 90 days. After longer durations 

of low temperature, over 40 days, the response in terms of reduction 

in time to flower as duration of low temperature increases declines. 

Different cultivars respond at slightly different rates to increasing 

duration of low temperature but in general resistant cultivars flower 

more slowly than more susceptible cultivars.

9. There was a relationship between rate of development as measured 

by the rate of leaf production during low temperature treatment

and susceptibility to flower induction. Cultivars with higher leaf 

production rates during low temperature and nitrogen and light intensity 

treatments that increased leaf production had higher proportions of 

plants flowering.

10. To select resistant or susceptible individuals from a population

of swedes, plants over 4 days old should be given a low temperature 

treatment at about 5° for 20 to 30 days depending on the degree of 

selection required followed by at least 14 days at 12° to 14°. If the 

duration of low temperature selected does not give the required 

proportion of plants flowering, late flowering plants can be included 

with non-flowering plants.
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11. To reduce the reproductive cycle to a minimum, swedes just over

4 days should be given 50 days low temperature treatment at around

5° followed by 14 days at 12° to 14° before transfer to a higher 

temperature. Light intensity and nitrogen nutrition should be good 

during and after low temperature treatment. Flowering should occur 

within 130 to 150 days of sowing.

12. The normal site of vernalisation and devernalisation is the growing 

point although axillary buds can be vernalised in the presence

and absence of the growing point and axillary buds that develop from

a vernalised apex during or after low temperature treatment may be 

induced. There is no evidence of a translocatab1e flowering stimulus 

in the swede.

tr



BIBLIOGRAPHY



2A7.

BELL, R.A.M. (1968). Bolting in swede turnips. The Edinburgh School 

of Agriculture. Technical Notes No. 32.(1968).

BERNIER G. (1969). Chapter 13 - Sinapis alba L. In 'The Induction 

of Flowering1. Ed. Eyans, L.T. 305-327 ■ (1969).

BRIAN, P.W. (1958). Effects of gibberellins on plant growth and 

development. Biol. Rev. 34 37“8*+ (1959).

BRINK, R.A. (1962). Phase change in higher plants and somatic cell 

heredity. Q.. Rev. Biol. 37 1-22.(1962).

CHAKRAVARTI, S.C. (195*+). Inhibition of vernalization in Linum 

usitatissimum Linn, by certain synthetic hormones. Nature, Lond.

174 A6 1 -A62 (1954).

CHOUARD, P. (1959). Vernalization and its relations to dormancy.

A.Rev. PI. Physiol. 11 191-238 (i960).

CHROBOCZEK, E. (1933). A study of some ecological factors influencing 

seed-stalk development in beets (Beta vulgaris L.). Cornell Univ. 

agric. Exp. Stn Mem. 15*+ (193*0.

COOPER, J.P. (1951). Studies on growth and development in Lolium.

II Pattern of bud development of the shoot apex and its ecological 

significance. J. Ecol. 39 228-270 (1951).

CRISP, P., WALKEY, D.G.A. (1973). The use of aseptic meristem culture in 

cauliflower breeding. Euphytica 23 305-313 (197*+).

CURTIS, O.F., CHANG, H.T. (1930). The relative effectiveness of the 

temperature of the crown as contrasted with that of the rest of 

the plant upon the flowering of celery plants. (Abstr) Am. J. Bot.

17 10i»7-10*i8 (1930) .

CURTIS, G.J., HORNSEY, K.G., CAMPBELL, G.K.G. (196*+). Graft-trans- 

missable induction of elongation and flowering in scions of sugar- 

beet bred for resistance to bolting. Nature, Lond. 202 J 238 (196*+).



2b8.

DAVEY, V. McM. (1957). The sowing date of sugar-beet in Scotland.

Scott. PI. Breeding Stn. Rep. 57“'73 (1957).

De MILLE, B., VEST, G. (197*0- Flowering date of onion bulbs as 

affected by light and temperature treatments during storage.

J. Am. Soc. hort. Sci. 100 k23~b2k (1975).

De R0UBAIX, J., LAZAR, 0. (19**7). Vernalization of sugar beet. Nature, 

Lond. 159 bk2 (19^7) .

De ZEEUW, D., LEOPOLD, A.C. (1955). Altering juvenility with auxin. 

Science, NY. 122 925-926 (1955).

DOLING, D.A., WILLEY, L.A. (1968). Date of sowing and yield of swedes. 

Expl Husb. No. 18 87-90 (1969) .

DRAYCOTT, A.P., WEBB, D.J., WRIGHT, E.M. (1973). The effect of time 

of sowing and harvesting on growth, yield and nitrogen fertilizer 

requirement of sugar beet. J. agric. Sci., Camb. 81 267-275 (1973).

EVANS, L.T. (1965). Abscisin II: Inhibitory effect on flower induction

in a long-day plant. Science, NY. 151 107~108 (1966).

EVANS, L.T. (1971). Flower induction and the florigen concept. A. Rev. 

PI. Physiol. 22 365-39^ (1971).

FIFE, J.M., PRICE, C. (1953). Bolting and flowering of sugar beets in 

continuous darkness. PI. Physiol., Wash. 28 *»75“**80 (1953).

FISHER, J.E. (1956). Studies on the photoperiodic and thermal control 

of flowering in carrots. Proc. Plant Physiology meetings 26-30 Aug 

1956. PI. Physiol., Wash. 31 XXXVI (1956).

FONTES, M.R., OZBUN, J.L. (1971). Relationship between carbohydrate 

level and floral initiation in broccoli. J. Am. Soc. hort. Sci.

97 3**6-3**8 (1972) .

FONTES, M.R., OZBUN, J.L., SADIK, S. (1967). Influence of temperature 

on initiation of floral primordia in green sprouting broccoli. Proc. 

Am. Soc. hort. Sci. 91 315-320 (1967).



FRIEND, D.J.C. (1969). Chapter 16 - Brassica campestris L. In 'The 

Induction of Flowering1. Ed. Evans, L.T. 364-375 (1969).

FUKUI, H.N., WELLER, L.E., WITTWER, S.H., SELL, H.M. (1957). Natural 

growth substances in vernalized and non-verna 1 ized lettuce seedlings. 

Am. J. Bot. 45 73-74 (1958).

GLOBERSON, D. (1971). The effects of gibberellic acid on flowering 

and seed production in carrots. J. hört. Sei. 47 69~72 (1972).

GRAINGER, J. (1964). A pos sible mechanism for the action of floral 

stimuli in plants. Hort. Res. 4 104-125 (1964).

HAINE, K.E. (1951). Vegetative propagation from the broccoli curd 

after suppression of flowering. Nature, Lond. 168 919~920 (1951).

HANNAH, G.A. (1959). Dry spell hits farmers in the Lothians. Evening 

Dispatch 2 (Monday 15 June 1959).

HARADA, H., NITSCH, J.P. (1958). Changes in endogenous growth sub­

stances during flower development. PI. Physiol., Wash. 34 409-415 
(1959).

HARRINGTON, J.F., RAPPAPORT, L., HOOD, K.J. (1957). Influence of 

gibberellins on stem elongation and flowering of endive. Science,

NY. 125 601-602 (1957).

HAUPT, W. (1969). Chapter 18 - Pisum sativum L. In: 'The Induction of 

Flowering'. Ed. Evans, L.T. 393_408 (1969)•

HECTOR, J.M. (1936). Chapter 16 - Cruciferae. In '•1 ntroduct ion to the 

Botany of Field Crops'. Vol. II Non-cereals. 578-624 (1936).

HEIDE, O.M. (1962). Juvenile phase and flower initiation in brilliant 

stocks (Matthiola incana R. Br.). J. hört. Sei. 38 4-14 (1963).

HEIDE, O.M. (1970). Seed stalk formation and flowering in cabbage.

1 Daylength, temperature and time relationships. Melainger fra 

Norges Landbruksh^gskole (Scientific Reports of the Agricultural 

College of Norway) 49 No. 27 1-20 (1970).

249.



250.

HESS, T . , SACHS, T. (1972). The influence of a mature leaf on xylem 

differentiation. New Phytol. 71 903“914 (1972).

HILLMAN, W.S. (1969). Chapter 16 - Photoperiodism and vernalization.

In: 'The Physiology of Plant Growth and Development'. Ed. Wilkins,

M.B. 557-601 (1969).

HULL, R., WEBB, D.J. (1969). The effect of sowing date and harvesting 

date on the yield of sugar beet. J. agric. Sci., Camb. 75 223-229 

(1970) .

ITO, H., SAITO, T. (1961). Time and temperature factors for the flower 

formation in cabbage. Tohuku J. agric. Res. 12 297-316 (1961).

ITO, H., SAITO, T., HATAYAMA, T. (1966). Time and temperature factors 

for the flower formation in cabbage. II The site of vernalization 

and the nature of vernalization sensitivity. Tohuku J. agric. Res.

17 1-15 (1967).

JONES, R.L. (1973). Gibberel1ins: Their physiological role. A. Rev.

PI . Physiol. 24 571-598 (1973) •

KIMBER, D. (1976). Closing the sugar gap. Big Farm Management 57-60 

September (1976).

KNOTT, J.E., TERRY, O.W., ANDERSEN, E.M. (1937). Vernalization of 

lettuce. Proc. Am. Soc. hort. Sci. 35 644-648 (1937).

LANG, A. (1956). Bolting and flowering in biennial Hyoscyamus niger, 

induced by gibberellin. Proc. Plant Physiology meetings 26-30 Aug 

1956. PI. Physiol., Wash. 31 XXXV (1956).

LANG, A. (1957). The effect of gibberellin upon flower formation. Proc.

natn. Acad. Sci., USA. 43 709-717 (1957).

LEOPOLD, A.C. (1955). 'Auxins and Plant Growth1. Univ. California Press.

Berkeley and Los Angeles.

LEOPOLD, A.C., GUERNSEY, F.S. (1953). Interaction of auxin and tem­

peratures in floral initiation. Science, NY. 118 215—217 (1953).



251.

LEOPOLD, A.C., KR IEDEMANN,P .E . (1975). Chapter 11 - Juvenility, 

maturity, and senescence; Chapter 12 - Flowering. In: 'Plant 

Growth and Development1. 249-303 (1975). McGraw-Hill Inc.

LEXANDER, K. (197*0- Bolting susceptibility of sugar beet (Beta 

vulgaris) in relation to contents of sulfhydryls and disulfides 

and to protein composition of membranes. Physiologia PI. 33 142- 

150 (1975).

LIN, W.C., WILKINS, H.F., ANGELL, M. (197*»). Exogenous gibberellins 

and abscissic acid effects on growth and development of Lilium 

longiflorum. J. Am. Soc. hört. Sei. 100 9“ 16 (1975).

LOCKHART, J.A. (1956). Studi es on the organ of production of the 

natural gibberellin factor in higher plants. PI. Physiol., Wash.

32 204-207 (1957).

LOCKHART, J.A. (1961). Mechanism of the photoperiodic process in 

higher plants. In: 'Handbuch der Pflanzenphysiologie. Encyclopedia 

of Plant Physiology'. 16 Ed. Ruhland, W. 390-438 (1961).

LONGDEN, P.C. (1974). Harvesting sugar-beet seed. J. agric. Sei., 

Camb. 83 435-442 (1974).

LONGDEN, P.C., SCOTT, R.K., TYLDESLEY, J.B. (1975). Bolting of sugar 

beet grown in England. Outlook Agric. 8 188-193 (1975).

LYSGAARD, C.P. (1974). Personal communication.

LYSGAARD, C.P., N0RGAARD HOLM SV. (1962). The effect of bolting on 

the quantity and quality of swede and fodder sugar beet crops. 

Royal Veterinary and Agricultural College, Copenhagen, Denmark. 

Yearbook. 1962 94-123.

MARGARA, J. (i960). Recherches sur le déterminisme de 1'élongation 

et de la floraison dans le genre Beta. Annis Amél. Pl. 10 361-471 
(1 9 6 0 ).

MARGARA, M.J. (1964). Maintien des bourgeons de la base de la tige 

florifère à l'état végétatif in vitro, chez Beta vulgaris L., 
et Brassica napus L. C. r. hebd. Seanc. Acad. Sei., Paris. 259 
4787-4790 (1964).



252.

McNAUGHTON, i.H., THOW, R.F. (1972). Swedes and turnips. Fid Crop 

Abstr. 25 1-12 (1972).

MENDHAM, N.J., SCOTT, R.K. (197*0- The limiting effect of plant size 

at inflorescence initiation on subsequent growth and yield of oil­

seed rape (Brassica napus). J. agric. Sci., Camb. 84 *»87-502 (1975).

METEOROLOGICAL OFFICE (1952). Climatological Atlas of the British 

Isles. Air Ministry. HMSO MO *»88 (1952).

Ml CHNI EV/I C Z , M., LANG, A. (1962). Effect of nine different gibberellins 

on stem elongation and flower formation in cold-requiring and 

photoperiodic plants grown under non-inductive conditions. Planta 

58 5**9-563 (1962).

MIKSCHE, J.P., BROWN, J.A.M. (196*»). Development of vegetative and 

floral meristems of Aralidopsis thaliana. Am. J. Bot. 52 533—537 
(1965) -

MILLER, J.C. (1929). A study of some factors affecting seed-stalk 

development in cabbage. Cornell Univ. agric. Exp. Stn Bulletin *»88 

(1929) -

NAPP-ZINN, K. (1969). Chapter 12 - Arabidopsis thaliana (L) Heynh.

In: 'The Induction of Flowering'. Ed. Evans, L.T. 291_30*t (1969) -

OWEN, F.V., CARSNER, E., STOUT, M. (1939). Photothermal induction of 

flowering in sugar beets. J. agric. Res. 61 101-12*» (19*»0).

PEREIRA, A.S.R. (196*+) . Physiological analysis of flower formation 

in Wedgewood iris. J. exp. Bot. 16 *»05_*»10 (1965)’.

PETO, F.H. (193*»). The cause of bolting in swede turnips (Brassica

napus var. napobrassica (L) Peterm.). Can. J. Res. 11 733—750 (193*») -

PICARD, C. (1967). Action du CCC et du B995 sur la mise a fleur d'une 

plante bisannuelle, 1'Oenothera biennis. (English summary). Planta 

74 302-312 (1967) •

PIERIK, R.L.M. (1967). Regeneration, vernalization and flowering in 

Lunaria annua L. in vivo and in vitro. Meded. LandbHoogesch, 

Wageningen 67 No. 6 1—71 (1967).



253.

POST, K. (1936). Some effects of temperature and light upon the flower 

bud formation and leaf character of stocks (Mathiola incana) .

Proc. Am. Soc. hört. Sei. 33 649-652 (1936).

PURVIS, O.N. (19^0). Vernalization of fragments of embryo tissue. 

Nature, Lond. 145 462 (1940).

PURVIS, O.N. (1948). Studies in vernalisation. XI The effect of date 

of sowing and of excising the embryo upon the responses of Petkus 

winter rye to different periods of vernalisation treatment. Ann.

Bot. New Ser. 12 183-206 (1948).

PURVIS, O.N. (1961). The physiological analysis of vernalisation.

In: 'Handbuch der Pflanzenphysiologie. Encyclopedia of Plant 

Physiology'. 16 Ed. Ruhland, W. 76-122.

PURVIS, O.N., GREGORY, F.G. (1952). Studies in vernalisation. XII 

The reversibility by high temperature of the vernalised condition 

in Petkus winter rye. Ann. Bot. New Ser. 16 1-21 (1952).

ROBERTS, R.H., STRUCKMEYER, B.E. (1948). Anatomical and histological 

changes in relation to vernalization and photoperiodism. In: 

'Vernalization and Photoperiodism'. Eds Murneek,A.E. and Whyte, R.

0 . 9 1 - 1 0 0  0948).

RODGER, J.B.A. (1975). A note on time of sowing of swedes. East of 

Scotland College of Agriculture. Tech Note 91C March 1975-

RUTHERFORD, P.P., NAIEM, A. A 1 i (197*0. Carbohydrate changes during 

cold storage of different cultivars of virus free and virus 

infected rhubarb. J. hört. Sei. 50 249-255 (1975).

SACHS, R.M., BRETZ, C.F., LANG, A. (1958). Shoot histogenesis: The 

early effects of gibberellin upon stem elongation in two rosette 

plants. Am. J. Bot. 46 376-384 (1959).

SADIK, S. (1966). Factors involved in curd and flower formation in 

cauliflower. Proc. Am. Soc. hört. Sei. 90 252-259 (1967).



SADIK, S., OZBUN, J.L. (1968). The association of carbohydrate changes 

in the shoot tip of cauliflower with flowering. PI. Physiol., Wash.

43 1696-1698 (1968).

SAKR, E.S.M. (19*1*0. Effect of temperature and photoperiod on seed- 

stalk development in turnips. Proc. Am. Soc. hört. Sei. 44 473-478
(19***»).

SALISBURY, F.B. (1 9 63). The low temperature promotion of flowering - 

Chapter *». In: 'The Flowering Process'. 46-71 ( 1963) Pergamon Press.

SCHWABE, W.W. (1951). Factors controlling flowering in the chrysanthemum. 

II Day-length effects on the further development of inflorescence 

buds and their experimental reversal and modification. J. exp. Bot.

2 223-237 (1951).

SCHWABE, W.W. (I95*»a). Factors controlling flowering in the chrysanthemum.

IV The site of vernalization and trans1ocation of the stimulus.

J. exp. Bot. 5 389-400 (1954) .

SCHWABE, W.W. (1954b). Factors controlling flowering in the chrysanthemum.

V De-vernalization in relation to high temperature and low light 

intensity treatments. J. exp. Bot. 6 435-450 (1955).

SCHWABE, W.W. (1956). Factors controlling flowering in the chrysanthemum.

VI De-vernalization by low-light intensity in relation to temperature 

and carbohydrate supply. J. exp. Bot. 8 220-234 (1957).

SCHWABE, W.W. (1970). Chapter 23 - The possible role of plant hormones 

in the devernalization of the chrysanthemum. In: 'Cellular and 

molecular aspects of floral induction'. Ed. Bernier, G. 358-364 

(1970). Longmans.

SCOTT, R.K., BREMNER, P.M. (1965). The effects on growth, development 

and yield of sugar beet of extension of the growth period by trans­

plantation. J. agric. Sei., Camb. 66 379-388 (1966).

SCOTT, R.K., WOOD, D.W. (1972). Some aspects of seed size effects in 

monogerm sugar beet. Sugar beet research and education committee. 

Agronomic exps, Nottingham University. Report for year ended 31 March 

1972. Committee paper No. 1259 3~19-

254.



255.

SELIGER, H.H., McELROY, W.D. (1965). Chapter 1 - Measurement and

characterization of light. In: 'Light: Physical and Biological Action1. 

1-46 (1965).

SEN, B., CHAKRAVARTI, S.C. (1941) . Studies in vernalization of mustard 

(Brassica juncea). Indian J. agric. Sci. 12 1-34 (1942).

SPECTOR, W.S. Editor (1956). Table 391 - Effect of light, with tem­

perature interactions, on flowering of plants. In: 'Handbook of 

Biological Data'. 460 (1956). W.B. Saunders Co. Philadelphia and London.

STOKES, P., VERKERK, K. (1950). Flower formation in brussels sprouts. 

Meded. LandbHoogesch. Wageningen 50 142 — 160 (1951).

STOUT, M. (1944). Rei at ion of temperature to reproduction in sugar 

beets. J. agric. Res. 72 49-68 (1946).

SUGE, H. (1970). Changes of endogenous gibberellins in vernalized 

radish plants. PI. Cell Physiol., Tokyo 11 729~735 (1970).

SUGE, H., RAPPAPORT, L. (1968). Role of gibberellins in stem elongation 

and flowering in radish. PI. Physiol., Wash. 43 1208-1214 (1968) .

THOMAS, T.H., LESTER, J.N., SALTER, P.J. (1971). Hormonal changes in 

the stem apex of the cauliflower plant in relation to curd develop­

ment. J. hort. Sci. 47 449-455 (1972).

THOMAS, M., RANSON, S.L., RICHARDSON, J.A. (1956). The effect of light 

and temperature on development - Chapter 20. In: 'Plant Physiology'.

4th ed. 489-520.

THOMPSON, H.C. (1928). Premature seeding of celery. Cornell Univ. agric. 

Exp. Stn Bulletin 480 (1929).

TH0W, R.F. (1974). Personal communication.

VERKERK, K. (1954). The influence of low temperature on flower

initiation and stem elongation in brussels sprouts. Proc. sect. Sci.

K. ned. Akad. Wet. Series C 57 339-346 (1954).



256.

VERKERK, K., VOLOSKY YADLIN, E. (1959). The effect of daylength, 

gibberellin, seed vernalization, and their interaction on spinach.

Neth. J. agric. Sci. 7 202-208 (1959).

WAREING, P.F., EL-ANTABLY, H.M.M. (1970). Chapter 18 - The possible 

role of endogenous growth inhibitors in the control of flowering.

In: 'Cellular and Molecular Aspects of Floral Induction1. Ed. Bernier,

G. 285-300 (1970). Longmans.

WAREING, P.F., PHILLIPS, I .D.J. (1970). 'The Control of Growth and 

Differentiation in Plants'. (1970). Pergamon Press.

WAREING, P.F., SAUNDERS, P.F. (1971). Hormones and dormancy. A. Rev.

PI . Physiol. 22 261-288 (1971).

WARNE , L.G.G. (19 61). Juvenile stages in cultivated forms of Brassica 
oleracea. Nature, Lond. 192 889 (1961).

WATSON, M.A. (1955). The effect of sucrose spraying on symptoms caused 

by beet yellowsvirus in sugar beet. Ann. appl. Biol. 43 672-685 (1955).

WELLENSIEK, S.J. (1960). Stem elongation and flower initiation. Proc.

K. ned. Akad. Wet. Section C 63 159—166 (i960).

WELLENSIEK, S.J. (1961) . Leaf vernalization. Nature, Lond. 192 1097“

1098 (1961) .

WELLENSIEK, S.J. (1962a). The control of flowering. Neth. J. agrlc.

Sci. 10 390-398 (1962) .

WELLENSIEK, S.J. (1962b). Dividing cells as the locus for vernalization. 

Nature, Lond. 195 307~308 (1962).

WELLENSIEK, S.J. (1963). Dividing cel 1s as the prerequisite for

vernalization. PI. Physiol, Wash. 39 832-835 (1964).

WELLENSIEK, S.J., VERKERK, K. (1954). Annual seed growing of beets.

Neth. J. agric. Sci. 2 98-104 (1954).

WESTER, R.E., MAGRUDER, R. (1937). Varietal and strain differences in 

bolting of turnips. Proc. Am. Soc. hort. Sci. 35 594-598 (1937).



257.

WHYTE, R.O. (19^8). History of research in vernalization - Chapter 1. 

In: 'Vernalization and Photoperiodism1 . Eds Murn.eek, A.E. and 

Whyte, R.O. 1-38 (19^8). Ch ron i ca Botan i ca Co.

WIEBOSCH, W.A. (1965). Jarowisatie bij ervige groente-en aanverwante 

gewassen. Jaronization with some vegetables and related crops.

English summary. Med. Proefsta Groenteteelt voile Grond 30 11^-129 

(1965).

WITTWER, S.H., BUKOVAC, M.J. (1957). Gibberellin effects on temperature 

and photoperiodic requirements for flowering of some plants. Science, 

NY 126 30-31 (1957).

ZEEVAART, J.A.D. (1970). Chapter 21 - Gibberellins and flower formation. 

In: 'Cellular and Molecular Aspects of Floral Induction'. Ed.

Bernier, G. 335"3i*3 (1970). Longman.



APPENDICES



APPENDIX A 

EXPERIMENTAL METHODS

Sources of seed

The Pentland Harvester (197^) seed was obtained from the 

breeders, the Scottish Plant Breeding Station. In experiments 2, 3,

6, 7, 9, 10, 11, 12, 16, 1 7 , 18, 1 9 , 21, 22 and 2 5 , WiIhelmsburger 

(1973) was from Garton's seed merchants and Doon Major (197^0 from 

Sinclair and McGill. In all other experiments the source of seed was 

as 1i sted below:

€ u 11 i var

WiIhelmsburger (1978)

Doon Major (1976)

Ruta Otofte (1976)

Harrietfield (1975)

Seefelder (1975)

Marian (1977)

Della (1977)

Growi ng condi t i ons

Unless stated otherwise, seeds were initially sown in 7.5 cm 

diameter plastic pots and repotted later as necessary. John Innes 

No. 2 compost was used in all the experiments in which WiIhelmsburger 

seed was from Garton's (listed above) and also in experiments 1, 8 and 

13- Levington potting compost was used in all other experiments.

Two or three weeks after sowing or repotting, plants were given twice 

weekly applications of a fertiliser solution, 'Solufeed' (23 per cent 

N, 19.5 per cent soluble P20, 16 per cent K20, at a concentration of 

150 g per litre) either watered on or, when the leaf canopy was very 

dense, 30 ml applied direct to the soil surface.
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Supplier of seed

Sharpes

Barclay, Ross and Hutchinson 

Danish Plant Breeders 

Sinclai r and McGi11 

Petersen (Germany)

National Seed Development Organisation 

National Seed Development Organisation



In many experiments the swedes were transplanted from pots to 

a field plot which in all but experiment 10 had been previously 

fertilised at the rate 625 kg/ha, the fertiliser containing 15 per 

cent N, 1^.55 per cent water soluble P, 0.^5 per cent insoluble P and 

21 per cent K.

Plants in experiments 1 and 8 were raised in a glasshouse with 

daylight supplemented to 16 hours by warm white fluorescent light tubes.

In all other experiments plants were raised before and after 

treatment in a glasshouse with daylight supplemented to 16 hours 

(experiment 2 and 10) or 18 hours by sodium vapour lamps giving a 

light intensity of around 20,000 to 30,000 lux in winter at plant level.

Temperature measurement and low temperature treatment

Most temperature records were based on weekly charts from 

thermohydrograph recorders, but in a few experiments, 1, 8, 11, 17 

and 18, daily maximum minimum mercury thermometer readings were used 

over at least part of the experiment. In the three growth cabinets 

temperature records were taken from the two hourly readings of therm­

istor temperature detectors. Daily mean temperatures were calculated 

from the mean of 12 two hourly readings for each day, and the mean of 

the daily mean temperature calculated over the appropriate period, for 

thermohydrograph and thermistor records.

Glasshouse temperatures often varied daily by as much as ±5° 

from the mean temperature but as plant growth and devernalisation 

increase with increasing temperature a fluctuating temperature will 

have similar effects to a steady temperature with the same mean.

Low temperature treatment was out of doors, utilising natural 

low temperature, in an unheated glasshouse with no supplementary light
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or in controlled conditions. Experiments 3 and 12 were carried out 

in a growth chamber with good temperature control and warm white 

fluorescent light tubes supplying 10,000 to 12,000 lux at plant level

for 16 hours (experiment 3) or 18 hours (experiment 12) a day. Plants

were also given low temperature treatments in a growth chamber with 

less good temperature control, illuminated with warm white fluorescent 

light tubes on for 16 hours a day (experiments 2 and 10) or 18 hours

(experiments 9, 13 and 14).

In experiments 4, 5 and 15 plants were given temperature treat­

ments in three identical growth cabinets with generally good tem­

perature control and cool white fluorescent light tubes for 18 hours 

each day supplying between 5500 lux at the extreme corners of the 

cabinet to 11,000 lux in the central area. Low temperature treatment 

in experiment 11 was carried out in a refrigerator with good temperature 

control.

Daily variation in uncontrolled low temperature environments 

was not usually greater than ±3° about the daily mean but over a long 

period of treatment the range between highest and lowest daily mean 

temperature might be 7° or 8°.

Temperatures in the growth chamber with good temperature control, 

and generally in the growth cabinets fluctuated by ±0.5° at the most, 

and daily mean temperature was constant. In the growth chamber with 

less good control, temperatures fluctuated about ±1.5° and the range 

in daily mean temperatures was sometimes as much as 5° or 6° over a 

treatment period but temperatures were always less variable than 

temperatures out of doors.

Immediately after low temperature treatment plants were usually 

moved to an environment of moderate temperature (11° to 1 5 °) to limit



devernalisation which might be caused by an immediate return to a 

higher temperature. in experiments 2, 3 and 10 plants were kept in 

growth chambers with good temperature control, and 16 hours daylight, 

in experiment 13 in the chamber with less good temperature control 

and 18 hours daylength, and plants treated in the growth cabinets 

remained in them after low temperature treatment, the temperature 

being raised. In most other experiments plants were moved to a glass­

house compartment maintained at a lower temperature than the main glass­

house area, and supplied in all cases except experiment 22 with mercury 

vapour lamps supplementing daylight to 18 hours.

Rep!i cat ion

In a large number of experiments more than one duration of low 

temperature treatment was used. In most of these experiments all 

plants were exposed to the same post low temperature treatment conditions 

but plants were raised from sowing to low temperature treatment at 

different times. The effect of a low temperature treatment cannot 

therefore be separated from the effect of pre-treatment conditions and 

so duration of low temperature treatments can only be properly 

replicated over time, for instance by repeating the experiment.

As replicates of duration of low temperature treatments within 

an experiment were not strictly valid and the inclusion of more 

replicates restricts the number of treatments and therefore the number 

of points on a response curve, in many experiments duration of low 

temperature treatments were not replicated. Plants were mainly grown 

in controlled or glasshouse environment and variation within an 

experiment would be much less than in field experiments. v
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Pest and disease control

The only important fungal disease affecting the plants in the 

glasshouse and in the field was powdery mildew (Erysiphe polygoni DC) 

and it was controlled initially with ethirimol ('Mil go E 1 Plant 

Protection) applied at 0.6 per cent concentration (of product, not 

of active ingredient) and later more effectively by 'Persulon' (Bayer) 

in 0.2 per cent concentration. A number of plants in the glasshouse 

were infected with turnip mosaic virus in the summer of 1976 and the 

glasshouse was cleared of brassicas for a month to provide a disease 

break.

Aphids, chiefly Myzus persicae but also Brevicoryne brassicae 

were controlled by pirimicarb ('Pirimor1 Plant Protection) at 0.5 g/ 

litre concentration in the glasshouse and in the field. Pollen or 

blossom beetle (Meligethes aeneus) on flowering plants in the field 

plots were controlled with azinphos-methyl ('Gusathion' Plant 

Protection) in a 0.625 per cent concentration applied at the rate of 

3^0 litres/ha. The beetles eat into flower buds to lay their eggs 

and feed on the pollen and can cause premature opening of flowers. 

Chlorfenvinphos granules ('Sapecron1 Ciba Geigy) were sprinkled round 

plants at 10.5 kg/ha shortly after planting out to protect against 

cabbage root fly attack.

Fenitrothion ('Ciba-Geigy Fenitrothion 50EC1 Ciba Geigy) at 

0.1 per cent concentration was applied to the centre of the plant 

rosettes to protect against swede midge (Contarinia nasturtii Kieff.) 

attack in a late flowering experiment {k).

Measurements v

Plant size was measured at the beginning and end of low tem­

perature treatment in most experiments. In seedlings, hypocotyl height,



from soil level to cotyledons, and cotyledon width (the longest 

dimension of the cotyledon) were measured as they both increase as 

the seedling emerges. The length and, where possible, the width of 

the first, or largest, true leaf was measured and the number of 

leaves over 1 cm long counted. The hypocotyl, cotyledon and leaf size 

measurements were used to compare plants in different treatments and 

experiments but were of little use in comparing plants of different 

ages, or over a long period of time, as hypocotyls and cotyledons 

stopped growing after about 25 and 16 days respectively, and leaves 

after about 2 to 4 weeks from their first appearance.

With older plants, the number of visible leaves was the most 

convenient non-destructive measurement of plant development. Leaves 

1 cm long and over were usually easily seen in the rosette and so 1 cm 

was taken as the minimum leaf size. All leaf scars except cotyledon 

scars were included in the visible leaf number.

In some experiments, to obtain the most accurate measurement of 

plant development, sample plants were dissected and the total number 

of true leaves - scars, visible leaves and all leaf primordia - were 

counted. This is the only quantitative measurement of plant develop­

ment in the swede which can be applied to all plant ages from the seed 

upwards.

The aim of this project is to study the bolting and flowering 

of swedes. Bolting plants are in the process of extending and 

flowering. The most easily measured point in the reproductive cycle 

is the opening of the first flower and pollen shedding from the 

anthers (anthesis). Anthesis usually occurs shortly after the opening
Ir

of the petals or at least within a day of the first signs of petal 

opening. Anthesis was selected as the main criterion of whether a

263.



26b.

plant is reproductive or not as it is the least affected by subjective 

judgement. The word 'flowering' in this study is taken to mean 

anthesis. As this is a purely qualitative measurement a more 

quantitative measurement, the number of days from the end of low tem­

perature treatment to the time anthesis occurs, was recorded in most 

experiments.

V



APPENDIX B 

STATISTICAL ANALYSES USING A COMPUTER

Analysis of proportion of plants flowering

The most important data in most experiments was the number of 

plants flowering in each treatment. As a plant has either flowered 

or not flowered by the end of an experiment, the data is binomial in 

distribution. In some experiments a few plants died and so the 

flowering data is expressed as the number of flowering plants as a 

proportion of the number of plants remaining in each treatment.

In some simple comparisons, especially when only two treatments 

were involved, for instance between the flowering of juvenile and 

adult plants, as in experiment 2 , between the flowering of WiIhelmsburger 

and Doon Major cultivars, and when numbers of flowering plants are small, 

a straightforward x2 analysis is appropriate. In larger experiments 

with several treatment factors x2 >s not 50 suitable and a more 

complex analysis is required.

The GLIM (General Linear Interactive Modelling) program used 

on EMAS enables binomial data to be transformed to a logit, probit 

or complementary log log scale and be fitted iteratively to a model 

of treatment factors and interactions of treatment factors. When 

treatment levels are evenly spaced the linear or li-near and quadratic 

effects of the treatment factor can be used in the model instead of 

all effects of the treatment factor.

An example of a GLIM analysis of binomial data (the proportion 

of plants flowering in experiment A) is shown below (pages 263-272) 

and the lines of the analysis have been numbered for descriptive 

conven ience.
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The logit scale is used in default if no '£LINK' setting is 

declared after '£ERR0R B 1 (declares binomial distribution) (see line

21) and as the logit scale tends to straighten out S-shaped curves

(see Figure 2.11, experiment 15, for an example of an S-shaped curve 

of proportion of plants flowering) it was suggested as an appropriate 

scale by Michael Franklin, ARC Unit of Statistics. A logit is 

l°9e (-]— ) where p is the probability of an event happening, in this

case the probability of a plant flowering.

Lines 1 to 18 put the data into the program in the correct

order, and instruct that duration and temperature may be examined on

a linear scale (lines 17 and 1 8). 1£ C 1 at the beginning of a line

introduces a non-operative comment. Line 19 declares the terms that 

may be included in a fitted model, line 20 declares the y- variate 

and at line 22 the fitting process begins. In the absence of a modei 

term after 1 £. FIT' the grand mean is fitted and the deviance of the

data from the mean is calculated.

Deviance is equivalent to variance, and the 'DEVIANCE' 

calculated in the program (for example, line 3 7) is a measure of the 

variation of the individual values from the calculated means for a 

given model. In line 25, the deviance is a measure of the variation 

of individual points from the grand mean. Model terms can be fitted 

and the importance of any term in the model assessed by examining the 

decrease in deviance produced by fitting that term. When a term is 

fitted some interactions are included in that term and so the 

reduction in deviance attributable to that term must be adjusted for 

these interactions. Instead of fitting D (effect of duration of low
%r

temperature) and subtracting the deviance for fitted D from the deviance 

for the fitted grand mean to find the importance of D, all main



factors are fitted, in this example D, T and H (see line 26) and 

then the factors that are not being examined, that is, T and H, are 

fitted (line 30). The difference in deviance between these two 

fittings is solely attributable to the effect of D (adjusted D) as 

any interactions with T and H have been removed from both larger and 

smaller deviances in both models by the fitting of T and H, as T and 

H include these interactions.

In this example the adjusted effect of D (duration of low tem­

perature) is:

FIT T+H (line 30) Deviance 113-3 DF 32 (degrees of freedom)

FIT D+T+H (line 26) Deviance -26.48 DF 30

adjusted D is 86.82 DF 2

As there are 2 degrees of freedom for duration the mean 

deviance is 86.82 * 2, that is 43.21. This is compared directly with 

X2 with the same number of degrees of freedom, that is 2, and as it is 

greater than x2 at the p = 0 .0 0 1 level, the effect of duration is 

significant at this level.

The linear effect of duration (DL) can be examined in the same way:

FIT T+H (line 30) Deviance 113-3 DF 32

FIT DL+T+H (line 42) Deviance -28.78 DF 31

adjusted DL is 84.52 DF i

This leaves only 86.82 - 84.52 = 2.3 deviance for the effect of the 

rest of D which is not significant and so the only significant effect 

of D is its linear effect.

Other terms including interactions are examined in a similar way 

and any terms which by their addition to a model significantly reduce 

the deviance can be included in a final model (line 69). A print-out
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of this model can be obtained (lines 73 to 119) and the 'LIN.PRED' 

column gives the fitted values of the model on a logit scale and can 

be used for the preparation of graphs of the fitted model.

As the adjusted deviance of each factor is compared directly 

with x2 there is no great advantage in the analysis of having replicates.
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1 £C WILDGOOSE EXPERIMENT 4

£UNITS 36

£FACTOR B 2 D 3 T 2 H 3

£C B= REPS D=DURATI ON T=CULTIVARS H- TEMPERATURES 

5 £DATA 36 R N

£READ

0 7 0 7 0 7 0 7 0 7 0 7

1 7 0 7 0 7 0 7 0 7 0 7

2 7 3 7 ^ 7 2 7 0 7 0 7

1 0 1 7 4 7 4 7 1 7 0 7 0 7

7 7 5 7 5 7 6 7 0 7 0 7  

7 7 4 7 7 7 3 7 1 7 0 7  

£CAL B=%GL(2,6)

£CAL D=%GL(3,12)

15 £CAL T=%GL(2,1)

£CAL H=^GL(3,2)

£CAL DL=D 

£CAL HL=H

£TERMS R+D+T+H+DL+HL+D.T+ D .H+T.H+DL.T+DL.H+HL.D+HL.T 

20 £YVAR R

£ERROR B 

£F IT £

35 DF 

DEVIANCE CYCLE 

25 172.3 3

£FIT D+T+H £

30 DF 

DEVIANCE CYCLE 

26.48 5

30 £FIT T+H £

32 DF 

DEVIANCE CYCLE 

< 113.3 5

£ F IT D+H £

35 31 DF

DEVIANCE CYCLE

31.52 5

L i ne
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£FIT D+T £

32 DF

40 DEVIANCE CYCLE

98.53 5

£FIT DL+T+H £

31 DF 

DEVIANCE CYCLE 

45 28.78 5

£FIT D+T+HL £

31 DF 

DEVIANCE CYCLE

49.55 5

50 £FIT D+T+H+D.T £

28 DF 

DEVIANCE CYCLE

21.43 9

NO CONVERGENCE BY CYCLE 10 

55 £FIT -D.T+D.H £

26 DF 

DEVIANCE CYCLE

24.43 9

NO CONVERGENCE BY CYCLE 10 

60 £FIT -D.H+T.H £

28 DF 

DEVIANCE CYCLE

24.19 9

NO CONVERGENCE BY CYCLE 10 

65 £ F IT D+T+H+DL+DL.T £

29 DF 

DEVIANCE CYCLE

24.29 5

£FIT DL+T+H £

70 31 DF

DEVIANCE CYCLE 

28.78 5 

£D|SPLAY D E R 

ERROR BINOMIAL LiNK LOGIT 

75 Y-VAR I ATE R

DEVIANCE = 28.78 DF = 31

L i ne
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Li ne ESTIMATE S.E PARAMETER

1 ■■1 .105E 01 1 .50E 00 GM •

2 9 • 523E -01 4.31E -01 T 1

80 3 5 .149E 00 1 .0 9 E 00 H 1

4 4 -969E 00 O m 00 H 2

5 2 • 357E 00 3-41E -01 DL

UNIT OBS N FITTED RESIDUAL WE 1GHT LIN.PRED

1 0 7 0.49 -0.72 4.53E -01 -2.59E 00

85 2 0 7 0.20 -0.45 1 .9 1 E -01 -3.54E 00

3 0 7 0.41 -0.66 3.87E -01 -2.77E 00

4 0 7 0.16 -0.41 1.61E -01 -3.73E 00

5 0 7 0.00 -0.06 3. 04e -03 -7.74E 00

6 0 7 0 . 0 0 -0.03 1.17E -03 -8.69E 00

90 7 1 7 0.49 0.76 4.53E -01 -2.59E 00

8 0 7 0.20 -0.45 1.9 1E -01 -3.54E 00

9 0 7 0.41 -0.66 3.87E -01 -2.77E 00

10 0 7 0 . 1 6 -0.41 1.61E -01 -3.73E 00

11 0 7 0.00 -0.06 3. 04e -03 -7.74E 00

95 12 0 7 0.00 -0.03 1.17E -03 -8.69E 00

13 2 7 3.09 -0.83 1.73E 00 -2.36E -01

14 3 7 1.64 1.22 1.25E 00 -1.19E 00

15 4 7 2.78 0.94 1.68E 00 -4.16E -01

16 2 7 1.42 0.55 1.13E 00 1 —»
 

• K
j
J m 00

100 17 0 7 0.03 -0.18 3 -1 8e -02 -5.39E 00

18 0 7 0.01 -0.11 1 .23E -02 -6.34E 00

19 1 7 3.09 -1.59 1 -73E 00 -2.36E -01

20 4 7 1.64 2.11 1.25E 00 -1.19E 00

21 4 7 2.78 0.94 1.68E 00 -4.16E -01

105 22 1 7 1.42 -0.39 1 .13E 00 -1.37E 00

23 0 7 0.03 -0.18 3 -1 8e -02 -5.39E 00

24 0 7 0.01 -0.11 1 .23E -02 -6.34E 000

25 7 7 6.25 0.92 6.69E -01 2.12E 00

26 5 7 5.34 -0.30 1 .27E 00 1.1 7E 00

110 27 5 7 6.12 -1.28 7.69E -01 1. 94e
ir

00

28 6 7 5.10 0.76 1.38E 00 9. 88e -01

29 0 7 0.32 -0.58 3 - 0 8e -01 -3-03E 00

30 0 7 0.13 -0.36 1.26E -01 -3.98E 00

31 7 6.25 0.92 6.69E -01 2. 12E 00
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L i ne UN i T OBS N FITTED RESIDUAL WEIGHT LIN.PRED

115 32 4 7 5.3^ - 1 . 1 9 1.27E 00 1.17E 00

33 7 7 6.12 1.00 7.69E -01 1.94E 00

34 3 7 5.10 -1.79 1.38E 00 9.88E -01

35 1 7 0.32 1.22
C

D1LU
C

OC
D

c
r\ -3.03E 00

36 0 7 0.13 -0.36 1.26E -01 -3.98e 00
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Analysis of days to flowering

The date of flowering was recorded for each plant and so the 

number of days from the end of low temperature treatment to flowering 

could be calculated. This data was only recorded from flowering 

plants and so the number of plants providing data for each treatment 

depended on the number of plants flowering in the treatment. This 

unbalanced data could not be analysed in a standard analysis of 

variance and instead was analysed using the GLIM (General Linear 

Interactive Modelling) program. There is a facility in this program 

for analysing quantitative data from variable numbers of individuals 

in each treatment, or, if the data is presented as a mean for each 

treatment, weighting that mean by the number of plants contributing 

to the mean. Both methods are, in effect, an analysis of the data for 

each individual although in the latter case within treatment error 

is not present.

The presentation of the data is similar to the preceding analysis 

(pages 269 to 272) but the fitting is non-iterative and a 'EERROR' 

directive is not necessary as the distribution of the data is normal. 

The example shown on pages 276 to 279 is of the days to flowering data 

of Wi lhelmsburger .lines only in experiment 12. In line A, EFW,W and 

LFW refer to early flowering Wilhelmsburger lines, the W i 1helmsburger 

parent and late flowering W i 1helmsburger lines and the order in which 

the three groups are presented in the data (lines 8 to 15). TL (line

22) refers to the linear effect of lines so that if the effect of 

lines increases or decreases regularly from early flowering through 

the parent to late flowering lines this effect can be examined in the
ir

analysis.



The deviance attributable to each term is derived in the same 

way as in the previous example, for instance the deviance attributable 

to the effect of duration of low temperature treatment (*4, 5 or 6 weeks) 

is:

FIT T (line 3*0 Deviance 16420 DF 36

FIT D+T (line 30) Deviance -359*4 DF 3*4

adjusted D is 12826 DF 2

The mean deviance for the effect of duration is 12826 + 2 which is 

6*413.

This mean deviance is not compared with x2 as in the previous 

analysis but with F in a variance ratio test. The error term used is 

that for the appropriate model, that is the deviance left after fitting 

the model, in this case D+T, deviance 359*4, with 3*4 degrees of freedom 

(lines 30 to 33). This gives a mean deviance for error of 359*4 * 3*4 =

105.71 and the adjusted deviance for D is compared with this in a

variance ratio 6*413 / 105.71 with 2 / 3 * 4  degrees of freedom, that is 

60.67, compared with F from tables 8.77 (2 / 30 DF p= 0.001) and so the 

effect of duration is significant at the p<0.001 level and should be 

included in the final model.

In this example the linear effect of duration (deviance 12816 DF 1, 

line 37 minus line *45) accounted for most of the reduction in deviance 

attributable to fitting duration to the model and similarly with the 

effect of line (T) the linear component being by far the greater part 

(line *41 minus line *49). The model which fits the data best is the

linear effect of duration and the linear effect of line (DL+TL) (line

62) as no interactions were significant. When this model is printed
tr

out, the column 'FITTED' (lines 7*4 to 119) show the fitted values in 

the model, which can be used if required in the preparation of graphs.
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In this experiment there were replicates and each deviance 

included some within treatment error but in several other experiments 

there were no replicates and no within treatment error. The error 

deviance used in these experiments is the deviance left after sub­

tracting the main effects only, that is the deviance attributable to 

second and third order interactions. In these unreplicated experiments 

second order interactions were examined and compared with this error 

deviance but third order interactions which could not be examined 

were not expected to occur nor considered to be of any interest.
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L î ne

1 £C EXPERIMENT 16

£ U N ITS 45

£FACTOR B 5 D 3 T 3

£C B=REPLICATES D=DURATION T=LI NES,EFW,W,LFW 

5 £DATA 45 V1 V2

£C V1=DAYS TO FLOWER V2=N0. OF PLANTS 

£READ

93 15 80 17 77 16 0 0 90 4 72 3 

0 0 99 2 92 8 94 10 88 16 73 19 

10 100 1 82 2 73 4 0 0 9^ 1 85 4

88 17 80 20 72 18 0 0 82 A 77 4 

0 0 3k 4 83 7 90 18 82 20 75 17 

91 1 94 4 76 4 0 0 97 2 83 11 

88 15 76 20 76 20 92 3 84 4 73 4 

15 94 1 98 2 89 7

£ W E IGHT V2 

£CAL B=%GL(5,9)

£CAL D=%GL(3,1)

£CAL T=%GL (3,3)

20 £CAL DL=D

£CAL DQ= DL*DL 

£CAL TL=T 

£CAL TQ=TL*TL

£TERMS V1+D+T+DL+TL+D.T+DL.T+TL.D 

25 £YVAR V1

£ FIT £

38 DF 

DEVIANCE CYCLE 

0.1859E 05 0

30 £FIT D+T £

34 DF 

DEVIANCE CYCLE 

3594. 0

£F IT T £

35 36 DF

DEVIANCE CYCLE 

0.1642E 05 0
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£FIT D £

36 DF

1*0 DEVIANCE CYCLE 

9660. 0

£FIT DL+T £

35 DF 

DEVIANCE CYCLE 

45 3604. 0

£ F IT D+TL £

35 DF 

DEVIANCE CYCLE

3967. 0

50 £FIT D+T+D.T £

30 DF 

DEVIANCE CYCLE 

3133. 0

£FIT D+T+DL+DL.T £

55 32 DF

DEVIANCE CYCLE 

3444. 0

£FIT D+T+TL+TL.D £

32 DF

60 DEVIANCE CYCLE

3356. 0

£FIT DL+TL £

36 DF 

DEVIANCE CYCLE

65 3990. 0

£DI SPLAY D E R 

ERROR NORMAL LINK IDENTITY 

Y-VARI ATE VI

DEVIANCE = 3990. DF = 36

L i ne
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L i ne 

70 ESTIMATE 

1 9. 19̂  01
2 -8.071E 00

3 5.882E 00

S.E. 

1.79E 00

7.5kE -01 

8.19E -01

PARAMETER

GM.

DL

TL

UNIT OBSERVED FITTED RESIDUAL

75 1 9.30E 01 8.97E 01 1 .26E 01

2 8.00E 01 8.17E 01 -6.92E 00

3 7.70E 01 7.36E 01 1.36E 01

k 0.00E 00 9-56E 01 0.00E 00

5 9.00E 01 8.76E 01 k. 88E 00

80 6 7.20E 01 7.95E 01 -1.30E 01

7 0.00E 00 1.02E 02 0.00E 00

8 9.90E 01 9.34E 01 7 - 86e 00

9 9.20E 01 8.5kE 01 1.87E 01

10 9.40E 01 8.97E 01 1. 3kE 01

85 11 8.80E 01 8.17E 01 2.53E 01

12 7.30E 01 7.36E 01 -2.65E 00

13 1.00E 02 9.56E 01 k. 37E 00

14 8.20E 01 8.76E 01 -7.87E 00

15 7 - 30 E 01 7.95E 01 -1.30E 01

90 16 0.00E 00 1.02E 02 0.00E 00

17 9.40E 01 9.34E 01 5.56E -01

18 8.50E 01 8.5kE 01 -7.k6E -01

19 8.80E 01 8.97E 01 -7.21E 00

20 8.00E 01 8.17E 01 -7-51E 00

95 21 7.20E 01 7.36E 01 -6.83E 00

22 0.00E 00 9.56E 01 O.OOE 00

23 8.20E 01 8.76E 01 -1.11E 01

2k 7.70E 01 7.95E 01 -4.98E 00

25 0.00E 00 1.02E 02 O.OOE 00

100 26 9. kOE 01 9.3kE 01 1.11E 00

27 8.30E 01 8.5kE 01 -6.28E 00

28 9.00E 01 8.97E 01 1 .06E 00

29 8.20E 01 8.17E 01 1.43E 00

30 7.50E 01 7.36E 01 5. 7kE 00
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L ¡ ne UMIT OBSERVED FITTED RESIDUAL

105 31 9. 10E 01 9-56E 01 -4.63E 00

32 9.40E 01 8.76E 01 1 .29 E 01

33 7.60E 01 7.95E 01 -6.98E 00

3*» 0.00E 00 1.02E 02 0.00E 00

35 9.70E 01 9.34E 01 5-03E 00

110 36 8. 30E 01 8.54E 01 -7.87E 00

37 8.80E 01 OO m 01 -6.78E 00

38 7.60E 01 8.17E 01 -2.54E 01

39 7.60E 01 7.36E 01 1.07E 01

40 9.20E 01

LUvDLTV
cn 01 -6.29E 00

115 41 8.60E 01 8.76E 01 -3.12E 00

42 7.30E 01 7.95E 01 -1..30E 01

43 9.40E 01 1.02E 02 -7.51E 00

44 9.80E 01 9.34E 01 6.44E 00

45 8.90E 01 8.54E 01 9-60E 00


