
A Quantitative Performance

Evaluation of SCI Memory

Hierarchies

Roberto A Hexsel

University of Edinburgh

1994

Abstract

The Scalable Coherent Interface (SCI) is an IEEE standard that defines a hard-

ware platform for scalable shared-memory multiprocessors. SCI consists of three

parts. The first is a set of physical interfaces that defines board sizes, wiring and

network clock rates. The second is a communication protocol based on unidirec-

tional point to point links. The third defines a cache coherence protocol based on

a full directory that is distributed amongst the cache and memory modules. The

cache controllers keep track of the copies of a given datum by maintaining them

in a doubly linked list. SCI can scale up to 65520 nodes.

This dissertation contains a quantitative performance evaluation of an SCI-

connected multiprocessor that assesses both the communication and cache coher-

ence subsystems. The simulator is driven by reference streams generated as a

by-product of the execution of "real" programs. The workload consists of three

programs from the SPLASH suite and three parallel loops.

The simplest topology supported by SCI is the ring. It was found that, for the

hardware and software simulated, the largest efficient ring size is between eight

and sixteen nodes and that raw network bandwidth seen by processing elements

is limited at about 80Mbytes/s. This is because the network saturates when link

traffic reaches 600-700Mbytes/s. These levels of link traffic only occur for two

poorly designed programs. The other four programs generate low traffic and their

execution speed is not limited by interconnect nor cache coherence protocol. An

analytical model of the multiprocessor is used to assess the cost of some frequently

occurring cache coherence protocol operations. In order to build large systems,

networks more sophisticated than rings must be used. The performance of SCI

meshes and cubes is evaluated for systems of up to 64 nodes. As with rings,

processor throughput is also limited by link traffic for the same two poorly designed

programs. Cubes are 10-15% faster than meshes for programs that generate high

levels of network traffic. Otherwise, the differences are negligible. No significant

relationship between cache size and network dimensionality was found.

I

Acknowledgements

This dissertation is one of the products of my living in Scotland. It was a period

of much discovery, both technically and personally. On the personal side, I lived

there long enough to become well acquainted with British culture and politics.

Some of the good memories I will keep are from many hours spent with BBC

Radio 4, BBC 1 and 2, Channel 4, The Edinburgh Filmhouse, The Cameo Cinema,

The Queen's Hall, The Royal Sheakespeare Company. Through these media, I

met the Bard and Handel, Inspectors Taggart and Frost, Jeremy Paxman and

John Pilger, Marina Warner and Glenys Kinnock, Noam Chomsky and Edward

Said, Dennis Skinner and Tony Benn, Prime Minister Question Time and Spitting

Image, Peter Greenaway and a wealth of European cinema. Along with many

others, these people, their work and the institutions they work for became an

important element of my thinking. Being in exile is not easy but it can be an

extremely enriching experience. It was for me.

Many people took part, directly or indirectly, in the work that is reported

here. Some were related to me in a professional capacity, some helped by just

being there. I would like to express my gratitude to them all.

The Coordenadoria de Aperfeiçoamento de Pessoal de NIvel Superior (CAPES),

Ministério da Educação, Brazil, awarded the scholarship that made possible my

coming to Britain.

I would like to thank the people at the Department of Computer Science for

making easy my life and endeavours as a graduate student. J particular, I am

grateful to Angela, Chris (cc), Eleanor, George, Jenny, John (jhb), Murray, Paul,

Sam and Todd. I would also like to thank all the people who put up with my

simulations hogging the compute servers and/or their workstations.

Dave Gustayson, the chairman of the IEEE-SCI working group, provided useful

coments on a paper about SCI rings that evolved into Chapter 4. He kept insisting,

thankfully, that SCI= rings is not true!

Nigel Topham was my supervisor and I am indebted to him for the opportunity

to work on Computer Architecture. I am also indebted to Nigel for his guidance

and support. Had I followed his advice more closely on a few occasions, much time

and grief would have been saved. Stuart Anderson was my second supervisor and

I thank him for being there during the mid-summer crises.

My parents offered much needed support and encouragement. Without their

financial support in the later stages of this work, it would not have been completed.

Table of Contents

1. Introduction
	 1

2. Shared Memory Multiprocessors 5

2.1 	Interconnection Networks 6

2.2 	Shared Memory Implementations 10

2.2.1 	Cache Memories 10

2.2.2 	Multiprocessor Cache Coherency 12

2.2.3 	Ring Based Shared-Memory Multiprocessors 15

2.3 	The Scalable Coherent Interface 16

2.3.1 	SCI Communication Protocol 17

2.3.2 	SCI Cache Coherence Protocol 18

2.3.3 	Related Work 21

3. The Architecture Simulator 24

3.1 	Simulation Methodology 24

3.2 	The Simulated Multiprocessor 27

3.2.1 	Processors and Memory Hierarchy 27

3.2.2 	The Simulation Model of SCI Rings 30

3.3 	The Workload 32

3.3.1 	SPLASH Programs 33

3.3.2 	Parallel Loops 34

3.3.3 	Data Set Sizes 36

3.4 	Accuracy of the Simulation Results 38

111

Table of Contents 	 iv

4. The Performance of SCI Rings 40

4.1 	Performance Metrics 40

4.2 	Node and Ring Design 42

4.2.1 	Design Space 42

4.2.2 	Characterising the Workload 43

4.2.3 	Cache Size and Cache Access Latency 48

4.2.4 	Processor Clock Speed 53

4.3 	Throughput and Latency 54

4.4 	Other Ring-based Systems 59

4.4.1 	Comparing DASH and SCI 59

5. A Model of the SCI-connected Multiprocessor 	 67

5.1 	The Analytical Model67

5.2 Costing Sharing-lists and Conflict Misses73

6. The Performance of Meshes and Cubes 78

6.1 The Simulated Multiprocessor 78

6. 1.1 	Routing 79

6.1.2 	SCI Switches 80

6.2 SCI Meshes 81

6.2.1 	Machine and Cache Size - SPLASH Programs 81

6.2.2 	Machine and Cache Size - Parallel Loops 83

6.2.3 	Throughput and Latency 85

6.3 SCI 	Cubes 89

6.3.1 	Machine and Cache Size 89

6.3.2 	Throughput and Latency 92

6.4 A Comparison of Rings, Meshes and Cubes 95

6.4.1 	Throughput and Latency 97

6.4.2 	Cache Size and Network Dimensionality 99

Table of Contents 	 v

7. Conclusion 	 101

A. Performance Data 114

A.1 	SCI Rings 115

A.1.1 	chol() - DASH Parameters 115

A.1.2 	mp3d() - DASH Parameters 116

A.1.3 	water() - DASH Parameters 117

A.1.4 	chol() 118

A.1.5 	mp3d() 121

A.1.6 	water() 124

A.1.7 	ge() 127

A.1.8 	mmult() 130

A.1.9 	paths() 133

A.2 	SCI Meshes 136

A.2.1 	chol() 136

A.2.2 	mp3d() 137

A.2.3 	water() 138

A.2.4 	ge() 139

A.2.5 	mmult() 140

A.2.6 	paths() 141

A.3 	SCI Cubes 143

A.3.1 	chol() 143

A.3.2 	mp3d() 143

A.3.3 	water() 144

A.3.4 	ge() 145

A.3.5 	mmultQ 146

A.3.6 	paths() 147

List of Figures

2.1 Interconnection networks: network size versus cost..... 	 6

2.2 	SCI link interface....................... 	18

2.3 	Sharing-list setup........................ 	19

2.4 Sharing-list purge sequence................... 	20

3.1 	Simulation environment . 26

3.2 Architecture of the processing nodes 27

3.3 	SCI link interface . 	. 	30

4.1 Execution time breakdown for cholO, mp3d() and waterO. 	. . . 45

4.2 Execution time breakdown for geO, minult() and paths () 46

4.3 Shared-data read hit ratios for 64, 128, 256 and 512Kbytes coherent

caches................................. 48

4.4 Execution time as a function of cache size, for cholO, mp3d() and

water()................................. 51

4.5 Execution time as a function of cache size, for ge 0, mniult () and

paths () 52

4.6 Speedup achieved by doubling processor clock frequency, with cache

sizes of 64 and 256Kbytes 53

4.7 Throughput per node, coherent cache sizes of 64K and 256Kbytes 	. 54

4.8 Average round-trip delay, with cache sizes of 64K and 256Kbytes 	. 55

4.9 Latency versus throughput on 2-, 4-, 8- and 16-node rings. 56

4.10 Traffic per link, for cache sizes of 64K and 256Kbytes 57

4.11 Distribution of packet sizes for 256Kbytes caches 58

VI

List of Figures 	 Vii

4.12 Average packet size for 64K, 128K, 256K and 512Kbytes caches. . . 58

4.13 Speedup plots for cholO, mp3d() and water()62

4.14 Execution time breakdown for cholO, mp3d() and waterO. . . . 63

4.15 Normalised execution time breakdown for chol 0, mp3d() and

water 0, for shared data references 64

4.16 Execution time breakdown for cholO, mp3d() and water() -

100MHz clock .. 	65

4.17 Normalised execution time breakdown for cholO, mp3d() and

waterO, for shared-data references - 100MHz clock.........65

5.1 Distribution of error in the model predictions when compared to

the simulation result . 	73

5.2 Effect of long sharing lists on the performance of paths() with

256K and 512Kbytes caches . 74

5.3 Effect of conflict misses on the performance of mmult 0 with 128K

and 512Kbytes caches . 75

5.4 Effect of conflict misses on the performance of paths 0 with 256K

and 512Kbytes caches . 75

5.5 Effects on performance of conflict misses and sharing-list length for

mp3d() on 256Kbytes coherent caches 77

6.1 	A four-by-four SCI mesh . 79

6.2 Data paths of a two-dimensional SCI switch 80

6.3 Execution time plots for cholO, mp3d() and water()82

6.4 Coherent cache shared-data read hit ratio plots for cholO, mp3d0

and water 0...............................82

6.5 Execution time breakdown for cholO, mp3d() and water 0. . . . 83

6.6 Execution time plots for ge0, mniult() and paths(). 	 84

6.7 Coherent cache shared-data read hit ratio plots for geQ, znmult()

and paths() . 	. 	85

6.8 Execution time breakdown for ge0, mmult() and paths(). 85

List of Figures 	 v111

6.9 Throughput per node for 256Kbytes caches 86

6.10 Round-trip delays for 256Kbytes caches 86

6.11 Link traffic per dimension, output buffer traffic per dimension and

bypass buffer traffic per dimension, for 256Kbytes caches. 88

6.12 A four-by-four-by-four SCI cube . 89

6.13 Execution time plots for cholO, mp3dO, water O, geQ, inmult()

and paths() . 	. 	90

6.14 Coherent cache shared-data read hit ratio plots for chol 0, mp3d0,

waterO, geG, inmult() and paths()90

6.15 Execution time breakdown for cholO, mp3d() and water(). . . . 91

6.16 Execution time breakdown for ge0, minult() and paths ()92

6.17 Throughput per node and round-trip delay, for 256Kbytes caches. . 93

6.18 Link traffic per dimension, output buffer traffic and bypass buffer

traffic, for 256Kbytes caches . 94

6.19 Performance of 4-node and 8-node multiprocessors, with 256Kbytes

caches. 	95

6.20 Performance of 16-node and 64-node multiprocessors, with

256Kbytes caches . 96

6.21 Processor throughput and round-trip delay for mp3d() and

paths 0, 256Kbytes caches . 97

6.22 Execution time and processor throughput for paths(), processor

clock of 100 and 200MHz, 256Kbytes caches 99

6.23 Performance of mp3d() and paths() with 128, 256 and 512Kbytes

caches, on 4-, 8-, 16- and 64-node multiprocessors 100

Chapter 1

Introduction

As soon as the newest, biggest and fastest computer is delivered to its users they

become emboldened by their new computational prowess and attempt to solve

larger and more complex problems. This in turn creates the need for an even

bigger and faster computer since the problems they are trying to solve grow at

a faster rate than computer architects can design new machines. In the last few

years, the high-performance computing community has been turning its attention

to massively parallel machines, that is, several hundred processors cooperating in

the solution of ever larger and more complex problems.

One of the challenges facing multiprocessor designers is the machinery to allow

a large number of processors to share data. One school of design advocates as

little sharing as possible; all cooperation and synchronisation is achieved by the

exchange of messages. The machines based on message passing are called mul-

ticomputers since each processing element in these machines contain processors

and memory and is a computer in its own right. The other school of design ad-

vocates as much sharing as possible. In these multiprocessors, large sections of

the address space is shared by all processors. The crucial difference between the

two designs is the cost of processor cooperation. In a multicomputer, any commu-

nication involves the assembly and dispatch of a message over the communication

channel. In a multiprocessor, processors simply write or read memory locations

when they have to cooperate. Unfortunately, sharing memory is more complicated

than "reading and writing to memory". With current technology, the cooperating

processors are likely to be a couple of feet from each other and from the memory

modules. The communication between processors and memory is concealed by

hardware mechanisms which make it invisible to the programmer and are, in the-

ory, faster than the software mechanisms involved in message-passing systems.

1

Chapter 1. Introduction 	 2

Communication entails transmission delays. While two cooperating processors

are accessing a shared variable, a third processor might become interested in that

variable as well. If the distances between the three processors are different, it

is very likely that they will perceive changes in memory state at different times.

Which version of the datum is "the good one" then? The problem is made more

complicated by the use of cache memories. A cache is a block of very fast memory

that sits near the processor in order to reduce delays in the path between processor

and main memory. Each processor keeps in its cache copies of memory words it

has referenced in the recent past, in the hope they will be referenced again in the

near future. If one of the processors updates the contents of its cache, all other

copies of the data must be updated or, at least, invalidated.

In a shared memory multiprocessor, keeping the shared portion of the ad-

dressing space in a consistent state is the task of the memory subsystem. This

subsystem consists of the memory itself (caches and the slower main memory)

and the mechanisms that allow processors to cooperate while keeping memory

in a consistent state. These physically-distributed logically-shared memory sys-

tems have received much attention from the Computer Architecture community

recently. Chapter 2 surveys some of the research in this area.

One of the proposals for implementing shared memory is the Scalable Coherent

Interface (SCI), an IEEE standard for providing a coherent memory interface to

as many as 65520 processing nodes [1EE92]. SCI consists of three parts. The first

defines a set of physical interfaces such as connectors, cabling, board sizes and clock

rates. The second part defines a communication subsystem that allows processors

to exchange information efficiently and correctly. The communication subsystem

is based on unidirectional point to point links and data are transferred between

processing nodes by packets containing commands and (sometimes) data. The

third part defines a scalable cache-coherence protocol. Memory is kept consistent

by the invalidation of out-of-date copies. The protocol keeps track of the number

and location of the copies of each shared data block by maintaining a linked list

of the copies. SCI is described in more detail in Section 2.3. Other efforts at

evaluating the performance of SCI as a communication medium are also surveyed

in Section 2.3.

This dissertation contains a performance evaluation study of a complete SCI-

based multiprocessor where the influence of both interconnect and memory hier-

archy are investigated in detail. Such a study is important because it can reveal

deficiencies and bottlenecks that might be overlooked when only parts of a com-

plex system are exercised. Other researchers have investigated the performance of

Chapter 1. Introduction 	 3

some aspects of SCI and their work has been focussed mainly on the communic-

ation subsystem. The performance of a shared-memory multiprocessor depends

on the communication medium between processors and memory as well as on its

implementation of shared-memory. For example, studies on SCI's communication

subsystem rely on assumptions about traffic patterns that do not seem to occur

in practice.

While every simulation environment is based on certain assumptions about the

simulated system, the quality of the results it produces depends crucially on how

well the simulator "implements" reality. Thus, a set of architectural parameters

that is representative of current designs was selected and a multiprocessor based

on these parameters was used to execute scientific programs that are also repres-

entative of current practice. The results produced by the simulated system are

therefore a fair indication of the performance of an actual system.

The simulation experiments described here are, as far as the author is aware,

the first to examine in depth the behaviour of a complete multiprocessor, consisting

of processors, a memory hierarchy and an SCI interconnection. The relationship

between cache coherency and interconnect is crucial to the performance of a mul-

tiprocessor since these two must operate in synergy. In particular, a network must

have enough capacity to transmit the cache coherency commands without introdu-

cing unreasonable delays and, the coherency protocol must generate low network

traffic for the most common patterns of data sharing.

The simulator used in the research reported here is driven by reference streams

produced by the execution of real programs, rather than from a synthetic work-

load. The workload consists of three programs from the SPLASH suite [SWG91] -

Cholesky, MP31) and WATER - and three parallel loops - Gaussian elimination,

matrix multiplication and all-to-all minimum cost paths. The simulation environ-

ment, the simulated multiprocessor and the programs used to drive the simulator

are described in Chapter 3.

The simplest pattern of interconnecting processing nodes with SCI is in a ring.

In this topology, the output interface of a node is connected to the input interface

of the next "downstream" node. Chapter 4 contains the results of experiments

designed to assess the performance of SCI rings and the relationship between

performance, the number of processors in the ring and the design parameters of

the memory subsystem. Rings were simulated with one, two, four, eight and

sixteen 100MIPS processors. The memory system parameters investigated were

cache size, cache access latency and processor clock speed. These experiments

Chapter 1. Introduction 	 4

provide data on the behaviour of the communication system and cache coherence

protocol and expose performance bottlenecks.

Simulation is an inherently slow, albeit accurate, method for evaluating the

performance of computing systems. The simulation experiments reported here

take a very long time to run; over 100 CPU hours in some cases. A much less time

consuming alternative is to use an analytical model of the system under scrutiny.

One such model of the behaviour of the SCI-connected multiprocessor is presented

in Chapter 5.

Earlier on it was said that there is a need for machines with large numbers

of processors. Chapter 4 presents evidence that the number of processors (of the

type simulated) that can be efficiently interconnected in a single SCI ring is rather

small. In order to increase the number of processors in a system, richer intercon-

nection patterns must be used. Chapter 6 explores the performance of systems

with up to 64 processors, interconnected with SCI links in two different topolo-

gies, namely the mesh and the cube. The behaviour of the memory subsystem

and of the communication networks are investigated in detail. The extensions to

the simulation environment presented in Chapter 3, such as routing and switches,

are described in Section 6.1.

The findings from Chapters 4, 5 and 6 are summarised in Chapter 7. The

Appendix contains tables with the numeric data produced in the experiments.

Chapter 2

Shared Memory Multiprocessors

From the programmer's point of view, an ideal shared memory multiprocessor can

be programmed in the same way as multiprogrammed uniprocessors. This means

that a shared memory multiprocessor must provide two abstractions. First, it has

a large addressing space accessible by all processors. Second, the cost of refer-

ences to any location in the address space must be roughly the same. Computer

architects have to design machines that implement these abstractions. The pro-

cessors and memory modules might be built on several printed circuit boards yet

the whole system has to behave as if implemented on a small silicon monolith,

in order to fulfil the second abstraction. With current technology, a possible im-

plementation is to have a processor and a portion of the address space on each

module, and to interconnect the modules so that processors have access to all the

memory in the system. Section 2.1 presents some of the possibilities for inter-

connecting the processors and memory. Section 2.2 discusses the implementation

of the shared-memory abstraction. Section 2.3 describes in some detail the Scal-

able Coherent Interface (SCI). SCI defines an interconnect and a shared-memory

implementation. Logically-distributed memory systems, or message passing mul-

ticomputers, are not discussed here. Good surveys on these systems can be found

in [1T89,Sto9O,Hwa93].

5

Chapter 2. Shared Memory Multiprocessors 	 6

2.1 Interconnection Networks

There are many ways of interconnecting the components of a shared-memory mul-

tiprocessor and this section contains a non-exhaustive survey of such interconnects.

The size of the system that can be built with each of the networks depends on

inherent characteristics of each network, such as electrical (capacitive loading) or

topological (too large a distance between two nodes). The balance between cost

and performance as well as the intended application determine the suitability of

a given design. Figure 2.1 depicts the design space for interconnection networks.

In the figure, network types are roughly ordered by hardware costs and number of

nodes they can support.

SI
jl
Z I 	 fat-tree
e 	 k-ary n-cube

ring-of-rings
tree-of-buses

ring 	 MIN 	crossbar

bus

cost

Figure 2.1: Interconnection networks: network size versus cost.

Two very important characteristics of a network are its bandwidth and latency.

Bandwidth is the rate of information transfer. The term can be used to refer

to the bandwidth of a link, in which case it is determined by the "width" of

the link (number of signal-carrying wires) and the signalling rate (network clock

frequency). Network bandwidth also measures the amount of information transfer

that a whole network can support per time unit. Network bandwidth depends on

link bandwidth and topology. The topology of a network defines what nodes are

connected to what nodes, and through how many intermediary nodes. Network

latency is a measure of the time it takes for a unit of information to be moved

from its source to its destination. Latency also depends on link width, network

clock rate and topology. Processor throughput is the rate of data transfer achieved

by processors. The throughput is a fraction of the available bandwidth and it is

Chapter 2. Shared Memory Multiprocessors 	 7

limited by network bandwidth and latency. Packets or messages carry data or

command/control information. A packet consists of a number of flits or symbols.

A symbol is the smallest unit of information transferred along a link in a single

network clock cycle. The packet header normally contains the destination address,

source address, command or control information, and sometimes data.

Bus, tree-of-buses. A bus consists of a set of parallel signal and data lines used

by devices to communicate. A bus is normally used in a master-slave fashion,

where a master module temporarily assumes control of the bus and slave modules

act on its commands. This network has some serious limitations. One is electrical

loading which limits the number of devices that can be connected to a bus. The

other limitation arises from the competition by devices for access to the bus. The

conflicts must be resolved by an arbiter and that increases the time it takes for an

access cycle to complete. Buses are in widespread use as they are an inexpensive

yet effective way of connecting small numbers of processors - up to about 32

devices. The VMEbus [VIT90] and Futurebus [IEE91] are two examples of high

performance buses. A tree, or hierarchy, of buses can be used to connect a larger

number of devices. When an access request is destined to a device on a distant

branch, the request is propagated up towards the root and then down towards the

destination. This architecture allows for concurrent activities in disjunct branches

of the tree. The buses near the root can become bottlenecks if traffic levels are

high. Examples of such machines are the Wisconsin Multicube [GW88] and the

Data Diffusion Machine [HALH91,Hag92].

Ring, ring-of-rings. The processing nodes can be connected by unidirectional

point-to-point links into a ring where the output of one node is connected to

input of the next. A ring is topologically and functionally equivalent to a bus

but provides higher performance and can connect up to about 64 devices. Since

links connect only two nodes, the transmission rates can be much higher than in

buses because of the smaller and more controllable electrical loading. The low-level

transmission control mechanism between two adjacent nodes can be synchronous

or asynchronous. In the former, each datum transmitted is acknowledged by the

receiver. In an asynchronous ring, it is assumed that all data transmitted is

accepted by the receiver and synchronisation actions between output and input

take place only at certain intervals.

In a bus, a centralised arbiter decides when a device can transmit onto the

bus. In a ring, the access mechanism determines when a given device can start

Chapter 2. Shared Memory Multiprocessors 	 8

transmitting a message [Tan89]. There are three access mechanisms. In a 'token

ring' a token circulates around the ring and when a node is in possession of the

token it transmits its data and then passes the token along. In a 'slotted ring', the

ring is logically divided in slots and when a device sees an empty slot, it can insert a

message in that slot. Thus, in a slotted ring, there can be several messages in flight

at any moment. The third access mechanism is 'register insertion'. The SCI ring

uses this mechanism and it is described in detail in Section 2.3 (page 17). Besides

the higher transmission rates, the other advantage of slotted and register insertion

rings over buses is the possibility of several devices transmitting concurrently. The

Express Ring [BD91] is an example of a slotted ring. The Cambridge Ring is a high-

speed token-ring local area network {HN88}. As is the case with buses, rings can

also be assembled in a hierarchy, in what is called a ring-of-rings. Hector [VSLW91]

and the KSR1 [Bur92] are examples of multiprocessors built as a hierarchy of

slotted rings.

Multistage interconnection network. A multistage interconnection network

(MIN) consists of a sequence of permutation circuits followed by multi-way

switches. Machines built with MINs normally have one such network between

processors and memory and another between memory and processors in what

is called a 'dance hall' architecture. Some interconnection patterns might re-

quire multiple round-trips over the network since, depending on the topology, not

all pairs <processor, memory> are reachable by just steering the switches ap-

propriately. MINs are thus called indirect networks. Several topologies for the

permutation circuits have been proposed and used in high performance vector

processors. Examples of permutation circuits are the Delta, Butterfly and Shuffle

networks [1T89,Sto9O,JG91 ,Hwa93].

Crossbar switch. A crossbar switch is a grid of buses and at each crossing there

is a switch that can connect the vertical and horizontal buses. Processors are

attached to, say, the vertical buses and memory modules to the horizontal buses.

These networks are expensive for large machines but have very high bandwidth

between processors and memories and allow for high levels of concurrency [Hwa93].

k-ary n-cube. The nodes of a k-ary n-cube contain n links to neighbouring

nodes, one for each of the n dimensions [Sei85,Dal9O]. Along a given dimension,

there are k nodes. For example, a binary 3-cube is a cube with 2 nodes on each of

three dimensions. Networks with arity k = 2 are called hypercubes. The links can

Chapter 2. Shared Memory Multiprocessors 	 9

be uni- or hi-directional. With hi-directional links, buses can be used to connect

the nodes along each dimension. With uni-directional links, the nodes along each

dimension must be connected in rings. In a k-ary n-cube, dimensionality n, ring

size k and number of nodes N are related by

N=k", 	k= 	n=logN 	 (2.1)

If uni-directional links are used, the number of link interfaces, or fanout, is 2n.

Network capacity is proportional to the fanout and thus to n. For a given system

size and link width, higher dimensional networks are more expensive since they

use more link interfaces. However, the maximum distance between two nodes is

smaller [JG92]:

dmar = n(k - 1)
	

(2.2)

since, in the worst case, a packet must visit all nodes in a ring passing through all

links minus one before switching on to the next dimension. This must be done on

all dimensions. The number of "ring hops" is n. If the cost to switch rings is c,

the maximum static latency is proportional to

imax = nk + (c - 2)n. 	 (2.3)

An important issue is the routing strategy used to deliver messages in k-ary

n-cubes. Since there is more than one possible route from source to destination,

routing must be deterministic and deadlock-free. In a store-and-forward network,

complete incoming packets are buffered before a routing decision is made. If buffers

become full, new packets can either be dropped or sent on alternative routes. In

a wormhole routed network, routing decisions are made as soon as the first packet

symbol arrives at a node. This means that the first symbol of a packet might

reach its destination before the last symbol is transmitted by its source. In either

mechanism, there is a possibility of paths being blocked by packets in flight and

thus of deadlock. One routing mechanism that is deadlock-free is described in

Section 6.1.1 (page 79).

Fat-tree. In a fat-tree, leaves are normally processing nodes (processor +

memory) and internal nodes are normally switches, with nodes connected via

hi-directional links. The main characteristic of this network is that bandwidth in-

creases towards the root. This compensates for the higher levels of traffic suffered

at nodes far from the leaves. An example of a fat-tree network is that in the

Connection Machine CM-5 [Lei85,LAD92}. A fat-tree can also be implemented

Chapter 2. Shared Memory Multiprocessors 	 10

as a ring-of-rings, as in the KSR1 [Bur92], or as a hierarchy of buses, as in the

Data Diffusion Machine [HALH91,Hag921.

2.2 Shared Memory Implementations

This section discusses some of the proposed or existing implementations of the

shared-memory abstraction. The basic problem to be solved by any implementa-

tion is to provide all processors with a coherent view of memory. Because memory

modules are physically distributed in space, two processors could perceive the

update of a given memory word at different instants. This would be a most un-

desirable feature since the majority of programs would not exhibit deterministic

behaviour or, the programming of such machines would be an exceedingly difficult

task. The solution is to ensure that all processors in a system perceive updates at

the same instant and thus do not operate on stale data.

2.2.1 Cache Memories

Matters are further complicated by the use of cache memories [HP90,Sto9O,

Hwa93]. The rate at which DRAMs can service access requests is much lower

than the rate at which processors issue requests - in the range of about 2 to 100

times. One solution is to add a small but very fast block of memory between

processor and main memory DRAMs. This small and fast memory is called a

cache memory since, in principle, it is hidden from the programmer. The success

of cache memories depends on the Principles of Locality. Temporal locality means

that if a memory word was referenced in the recent past, it is very likely that

it will be referenced again in the near future. Spacial locality means that if a

memory word was referenced, other words in its neighbourhood are very likely to

be referenced as well.

When the processor issues a request for a word, if that word is in the cache

(a hit), it is returned with low latency. If the word is not in the cache (a miss),

it is fetched from main memory before being returned to the processor. Caches

are normally designed to service a read request in one processor clock cycle, and a

write request in two or more cycles. The hit ratio is the ratio between the number

of hits and the number of processor requests. The closer the hit ratio is to unity,

the shorter it takes to run a given program.

Chapter 2. Shared Memory Multiprocessors 	 11

A cache is divided into a number of frames, with a fixed number of words

per frame. Memory is divided into lines that have the same size as cache frames.

Before any lines are copied from memory to the cache, all cache frames are invalid.

A frame may contain a copy of a memory line, in which case the contents of the

frame are said to be valid. A valid frame might be dirty if it has been written to

and its contents are different from those of the memory line. If a valid frame is

not dirty, it is clean.

Since caches are smaller than physical memory, a mapping of lines to frames

must be used. In a fully associative cache, any memory line can be loaded into any

frame. The matching between an address issued by the processor and the contents

of the cache frames is done by a fully associative search. When a newly referenced

line needs to be loaded into a full cache, some policy must be used to decide which

line is to be evicted to make space. The policies are usually some form of least

recently used or random replacement. In a N-way set associative cache, each set

consists of N frames and a mapping function on the address bits relates lines to

sets. A 1-way set associative cache is called a direct mapped cache.

There are four types of cache misses. Compulsory misses occur when a line is

first referenced and must be brought into the cache (also called 'cold-start misses').

Capacity misses occur when the data set of a program is larger than the cache.

Blocks that are flushed for lack of space must be retrieved later on. Conflict misses

occur when two lines map to the same cache frame. Coherency misses are caused

by actions of other processors, i.e. a shared line is updated by another processor.

A cache can be write-through, that is, writes are passed along directly to the

memory. In a write-back cache, the copy of a line is only updated in the cache.

When the updated frame must be flushed to make space for a newly referenced

line, the contents of the frame are copied back to memory. Another issue related

to writes is line allocation. Write-allocate caches allocate a frame on a write. No-

write-allocate caches do not allocate frames on writes. Normally, write-through

caches do not allocate frames on writes.

Some systems have a write-buffer between cache and memory. It consists of a

queue of words to be written to memory. Writing to the write-buffer takes one or

two processor clock cycles whereas writing to memory can take many cycles, e.g.

flush the (possibly unused) dirty line then write the new line to the cache/memory.

When the word at the head of the queue is written to memory, that word is retired

from the buffer and a new write cycle is started. Write-buffers can greatly reduce

the time a processor stalls while waiting for writes to complete.

Chapter 2. Shared Memory Multiprocessors 	 12

2.2.2 Multiprocessor Cache Coherency

On a multiprocessor, the use of caches creates a serious problem. Since many copies

of a given line may exist at any time, when one of the copies is updated, all other

copies must be either updated or marked invalid. One solution is to rely on software

techniques to separate out read-shared, write-shared and not-shared (local) data.

Read-only variables can be read and copied by all processors Writable variables

can have no copies at all. The variables belonging to each of these classes are

grouped and allocated to read-only/read-write pages and the operating system

manages the updates of writable pages. Examples of software controlled shared-

memory systems are Ivy [LH89], Mach [FBYR89] and Clouds [RAK89]. The

disadvantage of this technique is the low level of parallelism that it yields on some

applications [CDK94]. A hybrid approach can be used where some of the most

common coherency operations are implemented in hardware as in the Galactica

Net [WLI94] and Alewife [CA94].

Another solution is to implement in hardware a cache coherence protocol that

keeps memory in a coherent state [Ste90,CFKA90,CKA91,Hwa93]. Such a protocol

defines the sequence of actions needed on changes of memory state, e.g. when a

cached line is updated. A cache coherence mechanism consists normally of the

cache controllers and of a directory. The cache controllers contain state-machines

that control the protocol actions. The directory holds the state, location and

number of copies of each memory line.

The actions of a cache coherence protocol depend on the state of each memory

line. Besides the three states needed for uniprocessor caches (invalid, clean, dirty),

a cache coherence protocol has to determine whether a line is shared, since this

case must be treated differently by the protocol actions. The directory entry for

a line consists of its state and one or more pointers to the copies of the line. A

full directory is normally implemented with a bit vector per cache or memory line

where each bit points to one of the processors in the system. If a processor has a

copy of the line, the corresponding bit is set. A partial directory only holds a few

pointers to processors with copies. When the number of copies exceeds the number

of pointers, either further copying is disallowed or all existing copies are marked

invalid. Weber and Gupta, in [WG89], contend that for well-designed programs,

3 or 4 pointers are sufficient to keep invalidation of copies to a minimum. A

chained directory keeps the list of copies as a linked-list or linked-tree, rooted at

memory. The directory is normally split in two sections, part in memory and part

in the caches. Full directories can be implemented with a presence flag vector

Chapter 2. Shared Memory Multiprocessors 	 13

in memory. The caches only keep the state of each line they hold. Partial and

chained directories keep the pointers and line state partly in memory and partly

in the caches.

Snooping protocols. Most of the early cache coherence protocols proposed and

implemented were snooping protocols. These are well suited for small and medium

size machines built around a bus. In these machines, broadcast operations can

be implemented efficiently since all devices attached to the bus can monitor bus

activity. Whenever a write to a shared line occurs, all cache controllers attached

to the bus update any copies of the line they might hold, that is, all controllers

"snoop" on bus activity. Normally, the state of each cached line is kept at the cache

itself and no pointers to copies are needed. Since rings are topologically equivalent

to buses and allow for inexpensive broadcasts, ring-based multiprocessors tend to

use snooping protocols [BD91 ,BD93 ,VSLW91 ,Bur92].

Invalidation protocols. One of the disadvantages of buses and rings is their

poor scalability. A system is said to be scalable when more processors can be added

without any major degradation in performance or cost [Hi190,Be192,Sco92]. The

main advantage of more general networks is their scalability to large number of

processors. However, broadcasts are inefficient on such networks. More processors

mean more network traffic when messages signalling changes in data have to be

broadcast. The solution is to avoid broadcasts by using directory-based cache

coherence schemes that send cache coherency commands to just those caches that

hold copies of shared lines. When a line is written to, messages are sent to the

caches that have copies of the line. Normally, the copies are invalidated since this

uses less bandwidth than updating large numbers of copies [ASHH88,CFKA90,

Ste90,Hwa93].

Examples of invalidation protocols are the one in Alewife [CKA91,CA94], that

uses a partial directory with five pointers and software support when the num-

ber of copies exceeds five. Thapar and Delagi, in [TD91], propose a distributed

linked-list invalidation protocol. SCI [1EE92], also uses a distributed linked-list

directory. The Scalable Tree Protocol has its directory organised as a distrib-

uted linked-tree [NS92]. DASH is a full directory cache-coherent shared-memory

multiprocessor [LLG90,LLJ92]. The memory coherence is maintained by a dis-

tributed invalidation directory-based protocol. Section 4.4.1 (page 59) compares

the performance of an SCI-based multiprocessor to that of DASH.

Chapter 2. Shared Memory Multiprocessors 	 14

DASH, like SCI-based machines, is called a Cache Coherent Non-Uniform

Memory Access Machine (CC-NUMA) because of the difference in access times for

local and remote references. The KSR1 is called a Cache Only Memory Hierarchy

(COMA) because its memory hierarchy consists of only primary and secondary

caches, with no main memory. The Data Diffusion Machine is also a COMA type

multiprocessor [Hag92]. Its interconnect is a hierarchy of buses and coherency is

maintained by a write-invalidate snooping protocol. The HORN DDM [MSW94]

uses a Banyan MIN network [1T89] and cache coherency is maintained by an

invalidation linked-list based protocol. Stenström et al. present a comparative

performance study of COMA and CC-NUMA architectures in [SJG92]. Hager-

sten disagrees with those results and presents a more refined model in [Hag92].

This new model compares NUMA and COMA architectures with similar levels of

complexity and design optimisation. The latency equations more closely reflect

COMA's behaviour and are based on more realistic design parameters. For the

architectures investigated, the new model yields results that give COMA a clear

performance advantage over NUMA. The difference in performance stems from

the better tolerance to network latency exhibited by the COMAs.

Memory consistency models. The use of caches in shared memory multi-

processors improves their performance by reducing the number of cycles during

which processors are stalled waiting for memory requests to complete. A memory

system is said to be sequentially consistent if the programming model it provides

is the same as a multiprogrammed uniprocessor [Lam79]. To implement sequen-

tially consistent memory, the processors must stall until every memory request

completes. "Completion" is determined by the absolute ordering of actions as

perceived by all processors in the system: a memory request completes when its

effects have propagated throughout the whole system. Sequential consistency is

a very restrictive model since it might disallow the use of write-buffers, for ex-

ample [DS90].

A more relaxed consistency model is processor consistency [Goo9l]. In this

model, the writes by each processor are always completed in the order they appear

in the program text, i.e. in program order, but writes from different processors

might complete in any order. The order of reads is not restricted as long as

the reads do not involve other processors. Write-buffers are allowed in processor

consistent memory systems and their performance is much better than sequentially

consistent systems, mostly because expensive invalidations can be overlapped with

other memory requests [GCH91].

Chapter 2. Shared Memory Multiprocessors 	 15

An even less strict model is defined by a weak ordering of events [DS90]. Under

this model, the synchronisation operations are sequentially consistent. The order

of successive writes by the same processor must be respected. Buffering of ordinary

references is allowed but not of references to synchronisation variables. A processor

acquires locks and releases them in program order, by using the commands lock()

and unlock(), respectively. All ordinary memory requests by that processor must

be completed before each subsequent lock() and unlock() is issued. A further

weakening is possible by only imposing an ordering on lock releases - this model

is called release consistency [GLL+90]. The weakest memory-access order model

is proposed by Bitar in [Bit92], where a semantics for asynchronous multiprocess

computation is defined.

Weaker models yield better performance at increased hardware and program-

ming costs. In weaker models, the cache controllers must keep track of each

outstanding request. Also, the programmer must label the synchronisation points

where consistency must be enforced. Of the five models, processor consistency

seems to be the best cost versus performance compromise [GGH91].

2.2.3 Ring Based Shared-Memory Multiprocessors

Uni-directional rings have some very interesting topological properties. Ordering

is easily enforced and broadcasts can be efficiently implemented. Snooping pro-

tocols can be designed to take advantage of these features. Also, rings allow for

the pipelining of messages and thus can be designed as very low-latency, high-

bandwidth networks. Rings of rings can be used for scaling up to larger numbers

of processors. The problem with this topology is the latency of cross-ring trans-

actions. These latencies are not prohibitive however because broadcasting and

snooping can hide some of the delays.

To date, the KSR1 [Bur92] is the only commercially available ring-based

shared-memory multiprocessor. It consists of a hierarchy of rings and cache coher-

ence is maintained by a snooping write-invalidate protocol. An important feature

of the KSR1 is its memory hierarchy, composed only of primary and secondary

caches. The KSR1 can grow up to 1088 processors in a two-level hierarchy of rings.

The ring:O can accommodate 32 processors; the ring:1 supports up to 34 ring:O's.

The remote access latency on a 32-node ring is 6ts and, to reduce its effects, the

KSR1 supports the software mechanisms prefetch and poststore.

Farkas et al., in [FVS92], present an invalidation-based cache coherency scheme

for a hierarchy of rings that takes advantage of the natural broadcasting and or-

Chapter 2. Shared Memory Multiprocessors 	 16

dering properties of rings. In the Hector multiprocessor [VSLW91], processors

are grouped in clusters that also contain memory modules and a communication

controller. The coherency protocol is based on snooping both at the intra-cluster

buses and on the rings. The amount of traffic caused by broadcasting consistency

commands can be reduced by filtering out incoming and/or outgoing messages

at inter-ring interfaces. The performance results presented are somewhat unreli-

able because of the simulation method (asynchronous event generation) and the

traces employed (from a different architecture). The performance of the coher-

ence scheme, when compared to that of no caching, yields speedups in the range

of 30-195% on three applications from the SPLASH suite [SWG91] - SA-TSP,

LocusRoute and PTHOR.

Barroso and Dubois describe the Express Ring in [BD91,BD93]. It is based

on a slotted ring where each of the ring interfaces is a pipeline that can hold

three symbols. The pipeline is divided in slots of different sizes for control and

data messages. When a node sees a message directed to itself, the message is

removed from the ring and the empty slot can be used by the next downstream

node. Their simulation results indicate that remote access latency is rather small.

They investigate two cache coherence protocols, one based on snooping and the

other on a full-map directory. Their results indicate that the snooping protocol

yields better performance. Also, the performance of the slotted ring is significantly

better than that of a split transaction bus. The maximum number of nodes that

can be assembled on an Express Ring is limited to between 32 and 64.

2.3 The Scalable Coherent Interface

The project that became SCI started as the design of a very high performance bus.

Early on it became obvious that the bandwidth of a bus would always place a hard

limit on performance. The solution was to employ point to point connections since

these allow for much higher clock rates and richer interconnection patterns. The

description that follows concentrates on those features of SCI that are of relevance

here. For full details, please see [1EE921.

SCI defines three subsystems, namely the physical-level interfaces, the packet-

based logical communication protocol, and the distributed cache coherence pro-

tocol. The physical interfaces are high-speed uni-directional point-to-point links.

One of the versions prescribes links 16 data-bits wide which can transfer data at

peak speed of 1 Gbyte/s. The standard supports a general interconnect, providing

Chapter 2. Shared Memory Multiprocessors 	 17

a coherent shared-memory model, scalable up to 64K nodes. An SCI node can be

a memory module, a processor-cache pair, an I/O module or any combination of

these. The number of nodes on a ring can range from two to a few tens. For most

applications, a multiprocessor will consist of several rings, connected together by

switches, i.e. nodes with more than one pair of link interfaces.

2.3.1 SCI Communication Protocol

The communication protocol comprises the specification of the sizes and types of

packets and of the actions involved in the transference of information between

nodes. A packet consists of an unbroken sequence of 16-bit symbols. It contains

address, command/control and status information plus optional data and a check

symbol. A command/control packet can be 8 or 16 symbols long, a data packet

can be 40 or 48 symbols long and an echo packet is 4 symbols in length. A data

packet carries 64 bytes of data. 16- and 48-symbol packets carry an additional

pointer (node address) used in some cache coherence operations, e.g. sharing-list

purges (see below).

The protocol supports two types of action: requests and responses. A com-

plete transaction, for example, a remote memory data-read, starts with the re-

quester sending a request-send packet to the responder. The acceptance of the

packet by the responder is acknowledged with a request-echo. When the respon-

der has executed the command, it generates a response-send packet containing

status information and possibly data. Upon receiving the response-send packet,

the requester completes the transaction by returning a response-echo packet. The

communication protocol ensures forward progress and contains deadlock and live-

lock avoidance mechanisms.

The network access mechanism used by SCI is the register insertion ring. Fig-

ure 2.2 shows a block diagram of the link interface. A node retains packets ad-

dressed to itself and forwards the other packets to the output link. A request

transaction starts with the sender node placing a request-send packet, addressed

to the receiver node, in the output buffer. Transmission can start if there are no

packets at the bypass buffer and no packet is being forwarded from the stripper

to the multiplexor. At the receiver, the stripper parses the incoming packet and

diverts it to the input buffer. On recognising a packet addressed to itself, the

stripper generates an echo packet addressed to the sender and inserts it in place

of the 'stripped' packet. If there is space at the input buffer, the echo carries an

ack (positive acknowledge) status. Otherwise, the packet is dropped and a nack

Chapter 2. Shared Memory Multiprocessors 	 18

(negative acknowledge) is returned to the sender who will then retransmit the

request-send packet.

Node Interface

	

active 	output 	

Inputbuffer

buffer

	

TUXIft

buffers 	

bypass buffer mux__ ___

	

________________________________ 	__ 	 I

	

I 	
'< 	j 	

stripper FEZ 	
Input output ._

link link

Tout 	 l)xzss 	 Tstrtp 	Twire

Figure 2.2: SCI link interface.

It is likely that during the transmission of a packet, the bypass buffer might

fill up with packets not addressed to the node. Once transmission stops, the node

enters the recovery phase during which no packets can be inserted by the node.

Each packet stripped creates spaces in the symbol stream. These spaces, called idle

symbols, eventually allow the bypass buffer to drain, when new transmissions are

then possible. The protocol also ensures that the downstream nodes cannot insert

new packets until the recovery phase is complete. This will cause a reduction in

overall traffic and create enough idles to drain the bypass buffer.

When a packet is output, a copy of it is kept in an active buffer. If the status

of a packet's echo is ack, the original packet is dropped from the active buffer and

the node can transmit another packet. If the echo carries a nack, the packet is

retransmitted. This allows for one or more packets to be active simultaneously,

e.g. one transaction initiated by the processor and other(s) initiated by the cache

or memory controller(s). The number of active buffers depends on the type of

the "pass transmission protocol" implemented. The options are: only one out-

standing packet, one request-send and one response-send outstanding or, several

outstanding request- or response-send packets.

2.3.2 SCI Cache Coherence Protocol

The SCI cache coherence protocol is a write-invalidate chained directory scheme.

Each cache line tag contains pointers to the next and previous nodes in the doubly-

Chapter 2. Shared Memory Multiprocessors 	 19

linked sharing-list. A line's address consists of a 16-bit node-id and 48-bit address

offset. In protocol actions, the cache and memory controllers can determine the

node address of any memory line by the 16-bit node-id. The storage overhead

for the memory directory and the cache tags is a fixed percentage of the total

storage capacity. For a 64-byte cache block, the overhead at memory is 4% and at

the cache tags 7%. Note that these are capacity overheads and do not translate

directly into cost.

cache A 	 cache B 	cache C

head 	 Invalid 	 Irwalid
D

(2)

=1 gone

mem M

cache A 	 cache B 	cache C

tail 	 head 	 Invalid
U

D gJMmem

cache A 	 cache B (9) 	
cache C

tagI 	I mid i(1 OLJhead

(8J

U gone

mem M

Figure 2.3: Sharing-list setup. Solid lines represent sharing-list links, dotted

lines represent messages.

Consider processors A, B and C, read-sharing a memory line L that resides at

node M - see Figure 2.3. Initially, the state of the memory lines is home and the

cache blocks are invalid. A read-cached transaction is directed from processor A

to the memory controller M (1). The state of line L changes from home to gone

and the requested line is returned (2). The requester's cache block state changes

to the head state, i.e. head of the sharing-list. When processor B requests a copy

of line L (3), it receives a pointer to A from M (4). A cache-to-cache transaction,

called prepend, is directed from B to A (5). On receiving the request, A sets its

Chapter 2. Shared Memory Multiprocessors 	 20

backward pointer to B and returns the requested line (6). Node C then requests

• copy of L from M (7) and receives a pointer to node B (8). Node C requests

• copy from B (9). The state of the line at B changes from head to mid and B

sends a copy of L to C (10), which becomes the new head. In SCI, rather than

having several request transactions blocked at the memory controller, all requests

are immediately prepended to the respective sharing-lists. When a block has to

be replaced, the processor detaches itself from the sharing-list before flushing the

line from the cache.

	

cache A 	 cache B 	cache C

taff I(2....
MO 	

tad

tJ gone

mem M

	

cache A 	 cache B 	cache C

head 	 invalid

all

• •..(3)

	

\ 	•..

(4)

ED gone

mem M

	

cache A 	 cache B 	cache C

	

exclusive 	 Invalid 	 Invalid

tJ dirty

mem M

Figure 2.4: Sharing-list purge sequence. Solid lines represent sharing-list links,

dotted lines represent messages.

Before writing to a shared line, the processor at the head of the sharing-list

must purge the other entries in the list to obtain exclusive ownership of the line -

see Figure 2.4. Node A, in the head state, sends an invalidate command to node

B (1). Node B invalidates its copy of L and returns its forward pointer (pointing

to C) to A (2). Node A sends an invalidate command to C (3) which responds

with a null pointer, indicating it is the tail node of the sharing-list (4). The state

of line L, at node A, changes to exclusive and the write completes. When a node

other then the head needs to write to a shared line, that node has to interrogate

Chapter 2. Shared Memory Multiprocessors 	 21

the memory directory for the head of the list, acquire head status and then purge

the other entries. The node that holds the tag in main memory of a line (i.e.

its home node) can be determined from the most significant 16 bits of the line's

address. If the writer is at the middle or tail, it first has to detach itself from the

sharing-list before attempting to become the new head.

2.3.3 Related Work

Scalability up to 64K nodes comes at the price of added complexity at the commu-

nication and cache coherency protocols. For instance, a write to a shared datum

needs a larger number of packets for its completion than that needed by DASH's

protocol [LLG+ 90]. Johnson, in [Joh93], proposes extensions to SCI's cache co-

herence protocol to alleviate this problem on larger systems. Additional links can

be added to the sharing-lists thus transforming them into sharing-trees. The pro-

posed schemes improve significantly the performance of invalidations even for low

degrees of sharing.

Nilsson and Stenström, in [NS92], describe the Scalable Tree Protocol (STP),

a cache coherence protocol based on sharing-trees. The advantage of trees over

lists is that, to invalidate n copies of a line, only 0(log n) messages are needed
on a tree whereas 0(n) messages are needed on a list. [NS93] compares the per-

formance of three types of directories, namely a full-map, an SCI-like linear-list,

and a tree-based, in an ideal architecture. The full-map has better performance

because it minimises invalidation traffic. The list-based is worse than STP if the

degree of data sharing is high or if memory is sequentially consistent. If data

is migratory [WG89], i.e. shared by at most two processors, then the linked-list

performs better than STP because of the lower latency involved in invalidating

just a few copies.

Aboulenein et al., in [AGGW94], examine SCI's hardware synchronisation

primitive, Queue On Lock Bit (QOLB). Its potential efficiency comes from it

fitting neatly with the linked-lists since waiting processes are naturally enqueued

when they join the sharing-list for the lock.

Bugge et al., in [BKB90], compare the performance of three uniprocessor

memory architectures, two of which are based on a 32-bit and on a 64-bit wide
Futurebus+. The third employs SCI links between secondary cache and memory.

The emphasis is on memory hierarchy design and thus coherence related issues

are not investigated. Their trace-driven simulation results indicate that the SCI-

based system outperforms the other two when the secondary cache hit ratio is

Chapter 2. Shared Memory Multiprocessors 	 22

higher than 90%. Also, with a time-shared multiprogramming workload, second-

ary cache size has the largest impact on the performance of the memory hierarchy

whereas the influence of tag access latency is small. The simulated caches are

much larger than the ones investigated here. The primary caches are 128K bytes,

and the secondary range from 1M bytes to 8M bytes. Their results do not agree

with those presented here because their simulations ignore coherence traffic and

the increase in latency with ring size and, the workloads are very different both in

nature and size.

Bogaerts et al., in [BDMR92], present simulation results for 10-node rings and

a multi-ring system with 1083 nodes for data acquisition applications in particle

physics. They concentrate on the bandwidth consumed by SCI moveXX trans-

actions for DMA and ignore coherence related events. Their experiments with

10-node rings show that certain traffic patterns can severely limit the bandwidth

available to each node. For DMA move256 transactions (move 256 bytes with

no acknowledgement), the effective bandwidth is about 175 Mbytes/s per node.

When fair bandwidth allocation is employed, effective bandwidth drops to 125

Mbytes/s. For this type of transaction, the data portion of the packet is propor-

tionally larger than for 64-byte transactions thus incurring in smaller transmission

overheads. The experiments with 64-byte data packets investigate pathological

cases and the results are not indicative of more normal conditions.

Scott et al., in [SGV92], present an analytical model of the SCI logical commu-

nication protocol. Scott's dissertation [Sco92] presents a more detailed discussion

on the model and results. The model is based on M/G/1 queues and the ring is

modelled as an open system. Both uniform and non-uniform workloads are in-

vestigated. The model is validated against simulation results. The flow control

mechanism, used to enforce fairness in bandwidth sharing (simulations only), is ef-

fective in preventing starvation and in reducing the effects of a hot transmitter on

the ring. This mechanism is not as effective for non-uniform routing distributions.

Fairness comes at a cost however. The maximum ring throughput is reduced

by up to 30%, larger rings being more adversely affected. Read-request/read-

response data-only aggregate ring throughput, for 64 byte data blocks, is around

600Mbytes/s, fairly distributed among the nodes. They show that an SCI ring

compares favourably to a conventional bus.

The scalability of k-ary n-cubes has been investigated under different sets of

constraints. In a synchronous network, each flit (symbol) is acknowledged by the

receiving node, that is the handshake is on a flit by flit basis. This makes the

network clock frequency dependent on the distance between sender and receiver.

Chapter 2. Shared Memory Multiprocessors 	 23

Daily found that, in the context of networks built in a single VLSI chip, low-

dimensional networks (n = 2) yield the lowest latencies [Da190]. This conclusion

holds true under constant bisection width, which is the case in an area limited

two-dimensional VLSI circuit. Agarwal investigated these networks under different

constraints, namely constant channel width and constant node size and concluded

for the need of higher dimensionality than in Daily's study (3 < n < 5) [Aga9l].

SCI is an asynchronous network because clock synchronisation between adjacent

nodes is not based on flit transmission between nodes, rather the clocks of two

adjacent nodes are assumed to be running at the same frequency'. This makes

the network clock cycle independent of wire length and allows for the pipelining

of flits onto wires. Unlike synchronous networks, the clock frequency depends

mainly on the technology employed in the interfaces and to a much smaller degree

on the topology of the network. Scott and Goodman investigated the scalability

of asynchronous k-ary n-cube networks [5G91]. Their results point to even higher

optimal dimensionalities than in synchronous networks (4 < n < 12). Thus,

asynchronous k-ary n-cubes should be grown by increasing dimensionality n while

keeping ring size k constant.

link interface circuits provide a few cycles of elasticity to accomodate small

differences in frequency.

Chapter 3

The Architecture Simulator

This chapter describes the simulation methodology and justifies the choices and

compromises made in the implementation of the methodology. Section 3.1 presents

the simulation methodology and the simulator design. Section 3.2 describes the

simulated architecture and how this architecture is "implemented" by the simu-

lator. This section also contains the model for the behaviour of the SCI rings. The

memory reference stream generator and the programs that comprise the workload

are presented in Section 3.3. Finally, Section 3.4 discusses the accuracy of the

simulation results.

3.1 Simulation Methodology

There are various methodologies for investigating the performance of computing

systems and a choice of method entails making tradeoffs between computational

cost and accuracy of the predictions. Jam, in [Jai9l], discusses the tradeoffs

between analytical modelling, simulation and direct measurement. Przybylski,

in [Prz90], discusses trace-driven simulation and analytical modelling of cache

memories and memory hierarchies. Both authors argue that while analytical mod-

els provide answers at a much lower computational cost (i.e. in less time), their ac-

curacy is limited by the level of detail and complexity of the models. On the other

hand, simulation studies provide more accurate results but take longer to perform.

One approach to architecture simulation is to drive the simulator with traces

of execution of a number of programs. Trace-driven simulation has two inherent

problems. The first is the dilation introduced by instrumenting the program whose

trace will be used to drive the simulator. This dilation makes the instrumented

24

Chapter 3. The Architecture Simulator 	 25

program from two to 2000 times slower than the original program, depending on

the technique used for tracing [BKW90, GN WZ9 1 ,KEL9 1]. Because of the dilation,

the relative timing of events in the simulated system may, in the worst case, bear

no relationship with event ordering on an actual system.

The second problem stems from changes in the run-time environment of a

parallel program on consecutive program runs. Potentially, each time a program

runs, the interleaving of memory references can be significantly different from

previous runs because of differing allocation of threads to processors and/or other

system-dependent factors. Fortunately, Koldinger et al., in [KEL91], conclude

that dilation induced effects on miss ratio and bus utilisation measurements are

negligible, and that multiple-run effects are insignificant unless one is interested

in absolute values for a given metric.

Taking the above into consideration, as well as availability of tools, the meth-

odology chosen for the investigation described in this dissertation is on-the-fly

reference stream generation. The simulator comprises about 3000 lines of C code,

six application programs that were ported and adapted plus several shell scripts

for post-processing the simulation results. The simulation environment that was

employed is described below.

The simulator consists of a memory reference stream generator and an archi-

tecture simulator. They both execute concurrently as Unix processes and com-

municate through Unix sockets. Figure 3.1 depicts the simulation environment.

The stream of memory references is generated as a by-product of the execution of

the simulated parallel program. The reference stream is piped to the architecture

simulator which computes the latency of each (simulated processor) reference to

memory. This latency is used by the reference stream generator to choose the

next simulated thread to run. In this way, the latency of each individual memory

reference is accounted for thus reproducing with good accuracy the interleaving of

memory references on a real machine.

The architecture simulator consists of an approximate model of the SCI link

interfaces and of a detailed model of the distributed cache coherence protocol. The

model of the ring interfaces is similar to those in [SG91,SGV92] but rather than

using statistical analysis, traffic-related values are measured and directly influence

the behaviour of the simulated system. The model of the cache coherence protocol

mimics the "typical set coherence protocol" as defined in [1EE92].

Chapter 3. The Architecture Simulator

simulated threads

unix
process

reference stream generator
and thread scheduler

memory references 	 next thread

memory system simulator

simulated multiprocessor

unix
process

Figure 3.1: Simulation environment.

The address sequences used to drive the simulator are generated by instrument-

ing the parallel programs described in Section 3.3 with Symbolic Parallel Abstract

Execution (SPAE) [GNWZ91]. SPAE is based on the GNU gcc compiler and al-

lows for tracing parallel programs at any desired level of detail. The resolution of

the reference stream generator is at instruction/data reference level. The cost of

each memory reference is computed from the state of the system - level of network

traffic and coherence actions performed - and those values are used to schedule

the execution of the simulated processors. The simulated parallel program is split

into lightweight threads, one for each simulated processor. Each data reference by

the simulated processors causes a context switch; the thread that will next run is

chosen by the architecture simulator. Likewise for instructions, except that the

context switches occur only at "basic block" borders, as defined by gcc. Thus,

the global interleaving of memory references is simulated with better accuracy

than is possible with straightforward trace simulation [BKB90,BKW90] or with

the method proposed in [MB92]. However, the computational cost is much higher.

Typically, a simulation run takes from 1 to 100 CPU hours on a lightly loaded

Sparcstation2, depending on the data-set size.

Chapter 3. The Architecture Simulator 	 27

3.2 The Simulated Multiprocessor

The multiprocessor consists of a number of processing nodes interconnected in

one or more rings by SCI links. Each node contains a processor, a split primary

cache, a coherent secondary cache, memory and one or more SCI interfaces - see

Figure 3.2. The individual components are described below.

processor

32 	 L32

I-cache 	8Kbytes 	D-cache 	8Kbytes

64

64K--512Kbytes
coherent cache

16

sci
local 	 >1 	controller

memory

Figure 3.2: Architecture of the processing nodes.

3.2.1 Processors and Memory Hierarchy

The CPU is a 32-bit scalar Harvard processor that performs an instruction fetch

and possibly a data read/write access on every clock cycle. The processor clock fre-

quency is a simulation parameter and the values investigated are 100 and 200MHz.

The instruction set is that of a SPARCstation processor since that is the processor

the simulated code is compiled for and executed on. The simulated processors al-

ways stall on memory references (both reads and writes), thus the memory model

is sequential consistency.

The memory hierarchy comprises three levels: small split primary caches, large

secondary caches and main memory. Primary caches are virtually addressed while

Chapter 3. The Architecture Simulator 	 28

secondary caches are indexed by physical (real) addresses. Note that in SCI sys-

tems, the SCI-coherent caches must be physically addressed. The size of the

instruction cache (i-cache) and data cache (d-cache) is 8 Kbytes each (one page),

both being direct mapped. The data cache is write-through with no block alloca-

tion on write misses. The secondary cache is direct mapped and, for private data

references it is copy-back with no block allocation. The mapping of virtual to

physical addresses is performed in parallel with primary cache tag-matching, as

proposed in [OMB91,WHL93].

The secondary cache size is a simulation parameter. Sizes investigated are 64,

128, 256 and, 512Kbytes. Local main memory is simulated as if implemented with

DRAMs, with a degree of interleaving of 8. On all three levels of the memory

hierarchy, cache frames and memory lines are 64 bytes wide, which is the size of

the unit of coherency in the SCI cache coherence protocol. The memory hierarchy

satisfies the multilevel inclusion property [BW88], and the SCI coherency protocol

actions affect only the secondary caches, thus called coherent caches. Coherency

between primary and secondary caches is maintained by the cache controllers.

The internal buses are 64 bits wide, except the processor-primary caches which

are 32 bits wide. The access latency for the secondary caches is 3 processor cycles.

Loading a line from the secondary cache into the primary caches or SCI controller

costs 3 processor cycles plus 2ns per 64 bit word (16ns). Loading a line from/to

memory costs 120ns of access latency plus iOns per 64 bit word (80ns). Thus, a

cache-to-memory' read-line transaction costs 246ns for a 100MHz processor. To

that, the network latency must be added if one end of the transaction, cache or

memory, is at another node. Table 3.1 gives the cost, in processor cycles, of the

various types of cache operations.

Cache operation latency (cycles)
Read from primary cache 1
Fill from secondary cache 5
Fill from local memory 20
Fill from remote node 37-54
Fill from dirty-remote, remote home 44-78
Write owned by secondary cache 3
Write owned by local node 12
Write owned by remote node 47-436

Table 3.1: Cache and memory operation latencies in processor clock cycles.

Chapter 3. The Architecture Simulator 	 29

The home of a given line is the node to which the memory page that contains

that line is mapped. References to pages mapped to memory on other nodes are

called remote references. In the early stages of this work, as reported in [HT94a],

the mapping of virtual memory pages to nodes was done naively: the first node

that references a given page becomes its home. This is inadequate since nodes

which are home to large numbers of pages are very likely to become hot spots.

Furthermore, this method also causes severe "distance imbalances" since most

shared data will be at a short distance from only one processor, which will run

relatively quickly, but far away from all the others.

The mapping policy employed here is still simplistic but is fairer. On the first

eight page faults, the faulting node becomes the home of the page. Subsequent

faults are mapped to the next "upstream" node. If the neighbour's quota has

been exceeded, the page is mapped to the next upstream node with free page

table entries. If no free entries exist, all nodes are awarded another eight-page

quota. This quota policy spreads shared data more evenly than is possible with

the naive policy, yielding better performance and more reliable results. With

quotas, queue utilisation on the SCI interfaces never exceeds 20% whereas it can

be higher than 50% with the naive policy. The lower the queue utilisation the

more reliable the simulation results since queue overruns are much less likely to

occur at low utilisations.

In order to simplify the simulator, it is assumed that on data accesses the con-

current instruction fetch hits in the primary cache and accesses to local data and

instructions do not cause any traffic on the ring. The simulator ignores intra-node

contention, that is, the processor of a hot spot node does not see any contention

for the internal buses and its local cache or memory. It is also assumed that page

faults have zero cost.

Design Choices. There are many architectural features that could be incorpor-

ated in the design outlined above. The improvements in performance achieved

by the addition of devices such as write buffers, prefetching and weaker memory

models are well documented in [HP90,Prz90,Sto9O,Hwa93] and references therein.

These devices were not incorporated in the design of the multiprocessor be-

cause the main focus of the research described here is the evaluation of SCI as

a memory system backbone rather than optimising the performance of a given

base architecture. While the author is well aware of the potential improvements

in performance by designing a more sophisticated machine, there is real danger

of these performance gains masking out and obscuring the inherent behaviour of

Chapter 3. The Architecture Simulator 	 30

an SCI-based system. The design space was thus limited to a few parameters and

values. To have done otherwise would have increased the complexity of the task,

to a combinatorial explosion in the worst case, without necessarily extending the

scope of the results.

3.2.2 The Simulation Model of SCI Rings

For the description of the model of an SCI ring that follows, please refer to Fig-

ure 2.2, repeated here for convenience in Figure 3.3. A more detailed description

of the SCI communication protocol can be found in Section 2.3.

Node Interface

I active 	 output

buffers 	 buffer 	
Input

buffer

mux
I

ypass buffer

output .uE._[
link I I I I 	•: 	stripper lIE: 	
Input

link

Tout 	 Thass 	 Tstrip 	TwUe

Figure 3.3: SCI link interface.

In accordance with the SCI standard, the network clock cycle is 2ns (500MHz)

and the physical links are 16 bits wide. The delay faced by a packet waiting

to be transmitted (Twait) depends on the number and size of packets passing

through the node. Likewise, the delay faced by packets at the bypass buffer

(Tpass) depends on the frequency and size of packets inserted by the node. Wire

propagation delay (Twire) is 2ns. The time to parse an incoming packet (Tstrip)

and the time to gate an outgoing symbol onto the output link (Tout) are also

2ns each. Thus, the latency LAB, in network clock cycles, involved in sending

a packet from NodeA to NodeB and waiting for its echo can be calculated as

follows. To simplify the expressions, the modulus operations on summation indexes

were omitted.

Chapter 3. The Architecture Simulator
	

31

LAB ,type = TwaitA + Tout + 2 size (type) 	 (3.1)
B—i

+ E (Twire + Tstrip + Tpass2 + Tout)

+ Twire + Tstrip + TPaSSB + Tout
A-i

+ 	(Twire + Tstrip + Tpass + Tout)
i=B+i

+ Twire + Tstrip

Where type can be one of Pcmd8, Pcmd16, Pdata, PdataX and, their sizes

are 8, 16, 40 and 48 symbols, respectively (1 symbol = 2 bytes). An idle symbol

must precede each packet thus making the sizes 9, 17, 41 and 49 in the throughput

calculations. The term (2 size (type)) is the time, in nanoseconds, needed to insert

a packet into the ring. The peak bandwidth of a link or buffer is the maximum

number of symbols that can pass through it per time unit. In the absence of traffic,

peak bandwidth of the output or bypass buffer is 500 Msymbols/s (lGbyte/s).

The average packet size through a link or buffer is

Pavg =>fsize(p)/>fp 	 (3.2)

where p e {Pcmd8, Pcmdl6, Pdata, PdataX, Pecho } and f, is the frequency of

packet type p. The throughput S of a buffer is the number of symbols that pass

through it per time unit:

Sbuffer =E fsize(p). 	 (3.3)

The utilisation of a link or buffer is given by the throughput divided by the band-

width available, times the average packet size. Thus, the number of network clock

cycles spent waiting for the transmission of a packet at the output buffer, Twait,

can be written as

Twait =PavgStx/(BWmax —Spass) 	 (3.4)

Similarly for the bypass buffer, Tpass is

Tpass = Pavg pass Spass /(BWmax - Stx) 	 (3.5)

where Spass and Stx are the throughputs of the bypass and output buffers re-

spectively, (BWmax - Spass) is the bandwidth available at the output buffer, and

(BWmax - Stx) is the bandwidth available at the bypass buffer.

Chapter 3. The Architecture Simulator 	 32

In the equation for the latency LAB (Eq. 3.1), by making Tpass and Twait

zero, the. resulting equation yields the static latency of the ring, that is, it depends

solely on propagation delays and is, in nanoseconds,

6N + 2size (p)
	

(3.6)

for N processors and packet p. Conversely, the dynamic component of the latency

is obtained by considering only Tpass and Twait. In the simulations, dynamic

latency is estimated from the measured traffic. Buffer utilisation and average

packet size are measured at 10is intervals (simulated time). Values from interval

i are used to compute latencies during interval i + 1.

The ring interface model assumes infinite input queues and does not account for

the retransmission of packets dropped at their destinations because of full queues.

Since the memory is sequentially consistent, processors stall on remote references.

However, cache or memory controllers may attempt to transmit response packets to

complete outstanding transactions. The effect of more than one source of packets

on a node is easily minimised by implementing at least two active buffers [SGV92].

3.3 The Workload

The workload used to study the behaviour of SCI consists of three parallel loops

and three "real" programs. The parallel loops are small - tens of source code

lines - and exhibit a well defined pattern of memory references, being based on

doall loops [Sto90]. The real programs are much larger - two to three thousand

lines of source code - and are part of Stanford's SPLASH suite [SWG91]. These

programs are thread-based and the parallel programming constructs used in them

are a subset of Mach C-threads [GNWZ91,SPG91]. The arrays and variables that

hold shared data are allocated to a specific range of addresses. The architecture

simulator treats references to these addresses as references to shared data.

The use of code optimisation has two major effects on the code produced by

a compiler. It makes the programs run faster by the reordering of some groups

of instructions and by a reduction on the number of load and store instructions

through better utilisation of processor registers [HP90]. The aim of the experi-

ments reported here is the understanding of the behaviour of a certain type of

machine. Hence, absolute performance figures for particular pieces of code are of

no relevance in this context. The object code used in the simulations was pro-

duced by gcc v2.2.2 without any optimisation flags. The code produced by the

Chapter 3. The Architecture Simulator 	 33

compiler is an input to the simulator and no assumptions are made about the

density of loads and stores.

3.3.1 SPLASH Programs

The SPLASH suite [SWG91] consists of a set of parallel scientific applications that

are representative of common usage and practices in the early 1990's. These pro-

grams have been used by several other researchers to test their ideas and designs.

A brief description of the three programs chosen follows.

Cholesky factorisation. chol 0 performs parallel Cholesky factorisation of a

sparse matrix using supernodal elimination. The scheduling of parallel work is

done by a task queue and granularity of work is large. The main data structure is

the representation of the sparse-matrix itself. Cache size is one of the parameters

used by the scheduler to allocate work to processors. The input matrix used is

bcsstkl4 which contains 1806 equations and 30824 non-zeroes in the matrix and

110461 in the factor. The matrix bcsstkl4 occupies 420Kbytes unfactored and

1.4Mbytes factored.

Brorsson and Stenström, in [BS92], examine the patterns of reference to shared

data in Cholesky. Using a highly optimised compiler and an ideal unit-delay access

latency architecture, they report a large fraction of references to exclusive and

read-only blocks. With a sampling interval of 32000 processor cycles and 64-byte

blocks, under 60% of the references to shared-data are read-only, with under 40%

being read-only exclusive. 17% of the references are read-write exclusive and the

remainder is read-write shared.

MP3D. mp3d() is a rarefied fluid flow simulator based on Monte Carlo methods.

The scheduling of tasks is static, synchronisation is based on barriers and granu-

larity of work is large. Molecules are attached to processors rather than to spacial

coordinates. Thus, as the simulation evolves, the position of molecules changes

significantly but their speed and positions are always computed by the same pro-

cessors. However, molecule data migrates from cache to cache as molecules collide

during the simulation steps. The main data structures are the space array, de-

scribing the 3-D space and what molecules may undergo a collision. The other

array holds the state of each molecule, namely its position and velocities. The

data set is scaled as 1.5 x nodes. The simulation lasts 50 time steps.

Weber and Gupta, in [WG89], analyse the cache invalidation patterns in mul-

tiprocessors. Using traces for the VAX-32000 with half a million references per

Chapter 3. The Architecture Simulator 	 34

processor (most of one time step), 16 processors and infinite caches, they find that

there are 1.03 invalidations per shared-write. Since MP3D uses arrays heavily, a

typical line of source code requires 15 i-fetches, 5 reads and 1 write. Most of the

shared data falls into the "migratory" category - the datum can be shared by all

processors but at any one period it is only referenced by one processor.

Gharachorloo et al., in [GGH91], evaluate the performance of memory con-

sistency models. They simulate 10000 molecules for 5 time steps. On an ideal

unit-delay access latency architecture, they find that there are 2.3 reads per write

to shared data and 1.4 read-miss per write-miss. Also, for over 40% of the read

misses in the application, there is a write miss within 30 cycles before those read

misses. [BS92] also reports that for a 2000 cycles sampling interval and blocks of 64

bytes, over 50% of shared-data references are read-write exclusive, 10% read-write

dominant (one processor has > 50% of references), 15% are read-write shared-by-

few (1 to 4 processors out of 32) and the remainder are read-write shared by many

(>4). There are virtually no read-only shared-data references.

Water. water() is an n-body molecular dynamics program that evaluates forces

and potentials in a system of water molecules in the liquid state. The scheduling

of tasks is static, synchronisation is based on barriers and granularity of work is

large. The set of molecules is split evenly amongst the processors and molecules

remain attached to processors as they move in tn-dimensional space. The main

data structure is an array that holds the state of each molecule - position, velocities

and accelerations. The computation describing molecular motion involves a large

number of array and floating point operations. The data set is scaled as 1.45 x

nodes. The system of molecules is simulated for 4 time steps.

Lenoski et al., in [LLJ92], present performance data for the DASH multipro-

cessor. They find that water achieves a good speedup (13.3 on 16 processors), has

good memory locality and does not place a heavy burden on the memory system

and interconnect.

3.3.2 Parallel Loops

Gaussian Elimination. ge() solves a system of linear equations by Gaussian

elimination and backwards substitution. In this implementation, it is assumed

that the system of equations has some property that makes Gaussian elimination

without pivoting numerically stable (e.g. diagonal dominance). The algorithm

consists of several elimination stages. Each stage consists of a vector scale op-

eration of the form (Xk+1 = cxk) followed by a 'rank—l' update of the matrix

Chapter 3. The Architecture Simulator 	 35

(Ak +1 = Ak + dxy) where x and y are vectors, c and d are scalars. At the k-th

stage, matrix A has dimension ((n - k) x (n - k + 1)). Input data set size grows

as 1.26 x nodes.

The serial version spends over 97% of the time on the 'rank—l' update. Thus,

the parallelisation effort was concentrated there. No attempt has been made to

optimise the serial portion of the code. The 'rank—I' update is partitioned by

columns and the vertical slices are made as large as possible to minimise overheads.

Node0 does all the serial processing. When the slices of the matrix are of different

sizes, the nodes with the lowest indexes compute on the largest slices. Thus, load

balancing deteriorates as the computation progresses since the nodes near to Node 0

do more work than those far from it (Node s for i large). Input data set size grows

as 1.26 x nodes. The source code for ge() was provided by Graham Riley, from

the Centre for Novel Computing, Manchester University. The parallel version was

compiled and optimised for the KSR1 at CNC.

Matrix multiplication. mmult 0 computes C = A x B for square matrices A

and B. The algorithm consists of three nested loops and each processor computes

a slice of the result matrix. All of the shared data is read-only and the little

write-sharing that occurs is caused by false sharing. A local variable accumulates

the partial sums for each of the result matrix's elements. This algorithm is also

0(n3) and the input data set is scaled up as 1.26 x nodes.

All-to-all paths. paths() is a member of the class of transitive closure al-

gorithms. For a graph with N nodes, paths 0 finds the lowest cost path from

each node to every other node [DPL80]. The vertices are labelled with the dis-

tance between the nodes they join and are stored in the matrix D. Thus, D [i. , j]

is the distance between nodes i and j and absence of a vertex is represented by

infinite cost. The simulated graph is a random graph with outdegree 6. Input

data set size is scaled as 1.26 x nodes. The code fragment below is the parallel

loop where all of the work is done.

doall (t = 0; t < numProc; t++) 	1* All-to-all paths */

for (k = start(t); k < end(t); k++)

for Ci = 0; j < rows; j++)

for (i = 0; i < rows; i++)

if (D[i,j] > (D[i,k] + D[k,j]))

D[i,j] = D[i,k] + D[k,j];

Chapter 3. The Architecture Simulator 	 36

3.3.3 Data Set Sizes

There are two choices for the sizes of the data sets. By fixing the data set sizes, one

can measure the scalability of a (program + architecture) by looking at speedup and

processor efficiency. The disadvantage is that individual processors do less and less

work as the system is grown. Alternatively, by scaling up the data, the work per

processor can be kept roughly constant. The performance metric is then execution

time, which should remain constant as both machine and data size are grown. The

difficulty here is finding the factor by which data is to be scaled up. Since the focus

of this dissertation is on performance of memory hierarchies with coherent caches,

an adequate way of ensuring a uniform distribution of work across processors is by

keeping the number of references to shared data (roughly) constant. By choosing

a large enough number of references, the caches can be fully and equally exercised,

thus minimising distortion caused by cold starts. Sizes were chosen so that there

are at least 1.0 x 106 references to shared data. Either way, data-set size fixed

or varying, shared data miss ratios, and indeed sharing behaviour, do change as

the machine size is grown. Miss ratios tend to increase with machine size because

coherency misses are closely related to the level of data sharing. By scaling up the

data sets, both compulsory and capacity misses tend to increase as well because

of the larger cache footprints [HP90,Sto9O].

Ring size 1 2 4 8 16 64 factor
chol() fixed size input: bcsstkl4 - 1.00
mp3d() molecules 3000 4500 6750 10125 	15187 34172 1.50
water() molecules 54 78 113 163 237 512 1.45
geO rows 136 171 216 272 343 545 1.26
nunult() rows 100 126 159 200 252 400 1.26
pa.ths() vertices 70 88 111 140 176 280 1.26

Table 3.2: Input data-set sizes and scaling factors.

Table 3.2 shows the data-set sizes and scaling factors for each of the six pro-

grams. No experiments were performed using chol() with more than 16 nodes

since the amount of work per node would be too small on a 64-node multipro-

cessor. ge() is the program whose simulation runs take the longest - on 16 nodes,

it takes about 10 CPU hours longer than any of the other programs. Thus, be-

cause of practical limitations, only a few of experiments were performed with 64

nodes. The data set size for water() with 64 nodes should have been 497 rather

than 512. The choice of 512 is due to the input data set provided with the source

Chapter 3. The Architecture Simulator 	 37

code, which contains spatial distributions for up to 343 molecules. The program

has an option for internally generating a spatial distribution provided the number

of molecules is a cube. Hence the choice of 512.

Ideally, a workload should consist of as many representative programs as pos-

sible or practical to ensure that the system under investigation is fully exercised.

The author believes that the six programs chosen are representative of the range

of behaviours displayed by scientific applications. ge 0 has good locality and the

amount of computation on the data is high. nnnult C) also has good locality and

the small amount of write-sharing that exists is caused by false sharing, paths()

does not have good locality. On the contrary, each processor sweeps the entire

array and, potentially, each array position can be written to by every processor.

Ring size 1 2 4 8 16 64
Cholesky - chol ()

shared (% wr) 10.4 (18) 12.6 (23) 8.6(23) 5.2(23) 2.9 (19) -

private (% wr) 31.0 (27) 8.5 (26) 2.7(23) 1.0(18) 0.9(17) -

instructions 71.7 37.0 20.3 11.6 8.1 -

MP3D - mp3d()
shared (% wr) 5.4(39) 5.5 (29) 4.5(27) 5.0(18) 6.0(11) 6.7 	(6)
private (% wr) 12.2 (18) 9.0 (18) 6.8(18) 5.0(18) 3.7(18) 2.1 (18)
instructions 32.8 27.0 21.1 19.0 18.6 17.0

Water - water()
shared (% wr) 1.4(18) 1.5 (17) 2.2(12) 2.9 	(9) 2.9 	(9) 5.0 	(4)
private (% wr) 14.3 (19) 15.4 (19) 16.2 (19) 16.5 (19) 17.0 (19) 16.0 (19)
instructions 30.0 30.5 33.0 34.7 35.5 39.0

Gaussian elimination - ge C)
shared (% wr) 2.6 (33) 2.6 (33) 2.6(33) 2.5(33) 2.5 (33) 2.5 (33)
private (% wr) 13.0 	(7) 12.8 	(7) 12.8 	(7) 12.8 	(7) 12.8 	(7) 12.8 	(7)
instructions 33.6 33.3 33.4 33.2 33.2 33.1

Matrix multiplication - nunult C)
shared (% wr) 2.0(0.5) 2.0(0.4) 2.0(0.3) 2.0(0.2) 2.0(0.2) 2.0(0.2)
private (% wr) 14.2 (14) 14.1 (14) 14.2 (14) 14.1 (14) 14.1 (14) 14.1 (14)
instructions 33.2 33.2 33.3 33.1 33.1 33.2

All-to-all minimum cost paths - paths()
shared (% wr) 1.0(0.8) 1.0(0.6) 1.0(0.4) 1.0(0.3) 1.0(0.2) 1.0(0.1)
private (% wr) 5.6 	(6) 5.6 	(6) 5.5 	(6) 5.5 	(6) 5.5 	(6) 5.5 	(6)
instructions 15.0 14.9 14.9 14.9 14.8 14.8

Table 3.3: Per processor reference count for the workload, in millions. 256Kbytes

secondary caches.

Table 3.3 shows the reference counts per class of reference for the six programs

in the workload. See the Appendix for the variations in the reference counts and

Chapter 3. The Architecture Simulator 	 38

hit ratios in the five cache sizes simulated. chol 0 behaves differently for different

cache sizes since the processing of supernodes takes cache size into account to

increase data locality - see the tables with reference counts and hit ratios on

page 118. Even so, there is a fair amount of data migration while a given supernode

is being eliminated. mp3d 0 exhibits poor locality since the molecules' positions

change considerably during the simulation interval. As molecules collide, the data

describing their position and velocity is shared by the processors to which the

molecules were initially assigned. water() has good locality, partly because of

the fair amount of computation involved in evaluating positions, speed and energy

levels, partly because of the nature of the physical system itself: the molecules are

"heavy" and do not move much.

In summary, the workload contains two programs that are compute-intensive

(ge() and waterO), two with poor locality and a fair degree of data sharing

(paths() and mp3dO), one with a somewhat erratic behaviour (cholO) and one

with little sharing (minult 0). These four types of behaviour encompass various

levels of traffic on the interconnect and differing patterns of data sharing. Thus,

both components of SCI, namely the interconnect and the cache coherence pro-

tocol, can be examined under a significant range of loading and stress.

3.4 Accuracy of the Simulation Results

The conclusions one can formulate from experimental data are only as good as

the accuracy of the data on which they are based. The underlying assumptions

and idealisations embedded in the architecture simulator described in this chapter

are a compromise between accuracy and the computational cost of attaining such

accuracy. While much effort was spent in ensuring the correctness of the "im-

plementation" of the cache coherence protocol, it is nevertheless a model for the

actual protocol that has to handle all the complexities of a distributed implement-

ation. The simulator does not model intra-node contention for access to buses and

to cache and memory arrays. This is a reasonable assumption since the secondary

caches have high hit ratios. If however a node becomes a hot spot, the extra traffic

and delays are not accounted for.

The behavioural model of the interconnect is based on average traffic at the

interconnect rather than instantaneous values. This is a good approximation since

the bandwidth available is very high. Only where the traffic is high, the predic-

tions of the model may loose accuracy due to localised traffic fluctuations. The

Chapter 3. The Architecture Simulator
	

39

SCI link input-queues are modelled as infinite buffers and the possible retransmis-

sions of busied packets are ignored. The simulations show that queue utilisation

is low, below 20% in all cases, which indicates that under normal load only a

very small number of busied packets would be produced. Thus, the accuracy of

the network simulator lies between that of detailed simulation of the SCI commu-

nication protocol, where the simulator keeps track of every symbol travelling on

the ring [BDMR92,SGV92,Sco92] and, that of trace post-processing [MB92,BD93]

or statistical analysis, where the network simulator is driven by random access

patterns [BGY87,SGV92,Sco92].

Chapter 4

The Performance of SCI Rings

This chapter contains a detailed investigation of the performance of SCI-based

multiprocessors interconnected in a ring. Section 4.1 begins by defining the met-

rics used to quantify performance. Section 4.2 explores the design space for high-

performance processing nodes by assessing the performance of different cache hier-

archies. Section 4.3 examines the bandwidth and latency characteristics of SC!

rings. Finally, Section 4.4 discusses the performance of SC! rings in relation to

that of some of the existing or proposed ring-based multiprocessors. Section 4.4.1

compares the performance of DASH and an SCI-based multiprocessor with similar

architectural parameters. Parts of Sections 4.2 and 4.3 were previously published

in [HT94a,HT94b].

4.1 Performance Metrics

Within a given price range, the most important characteristic of a computing

system is its speed. The question most often asked is "how long does it take

to run this or that program?" Since the focus here is on scientific computation,

the speed metric is defined as the time the machine takes to execute a program.

The choice of design parameters that will minimise execution time and cost is a

tradeoff between the cost of each subsystem or component and the improvement

in speed achievable by incorporating that component, subsystem or policy, into

the architecture.

Other metrics are useful in the evaluation of an architecture. Cache hit ratios

are very important in assessing memory hierarchies, along with the timing associ-

ated with the levels. The locality of reference of different types of memory objects

40

Chapter 4. The Performance of SCI Rings 	 41

gives rise to three different hit ratios. Instruction references have good spatial and

temporal locality and the instruction hit ratios are normally high. The locality

of shared-data depends on the type of data, e.g. arrays or barriers and locks.

Thus, shared-data hit ratio measures the hit ratio of shared-data references only.

Lastly, the private-data hit ratio indirectly measures the locality of references for

non-shared data i.e. stack and heap areas.

In an SCI-based shared memory multiprocessor, data that is actively shared

by processors is kept in linked lists, rooted at the data's home memory. When

the data is to be updated, the list collapses, the data is updated and the sharing-

list is eventually re-established. The collapsing of sharing-lists involves message

exchanges between the processor at the head of list and each of the other nodes

in the list. Sharing-list length is defined as the number of copies that have to be

purged when a line is updated. The sharing-list length reflects the level of interfer-

ence between processors on each other's computation. Because of the serialisation

imposed by the coherence protocol, the cost of purging grows linearly with the

length of the sharing-list.

The transport mechanism of SCI is based on unidirectional point to point

links. The simplest topology that can be implemented with these links is the

asynchronous insertion ring. The transmission of a packet is completed when its

echo is received by the transmitter. The time lapse between the insertion of a

packet into the output buffer and the receipt of its echo is the round-trip delay of

the ring. The number of packets a node can transmit per time unit depends on

the traffic on the ring. The traffic seen by a node at its ring interface is defined

as the number of symbols per time unit that is output by the ring interface. It

consists of all the symbols passing through plus those inserted by the node itself.

Throughput is the number of symbols per time unit inserted by the node and

measures the amount of coherence-related traffic generated by the processor and

cache/memory controllers.

A program is said to be processor bound if the largest proportion of the exe-

cution time is spent performing instructions. Conversely, a program is memory

bound when the largest fraction of the time is spent on data references. The pro-

portion of references to shared data is only a small fraction of all memory accesses

performed by the processor yet they sometimes account for a large fraction of the

execution time. The "boundedness" of a program is relevant because it indicates

the level of demand placed by the program on the distributed memory system.

Chapter 4. The Performance of SCI Rings 	 42

4.2 Node and Ring Design

In this section the design space for high-performance processing nodes is explored

and the scalability of SCI rings is investigated. Section 4.2.1 presents the sim-

ulation parameters considered and discusses the influence these have on system

performance. Section 4.2.2 describes the behaviour of the applications with re-

spect to execution time breakdown and coherent cache hit ratios. The effects of

cache size and latency are investigated in Section 4.2.3. The generation scalability

of SCI rings is considered in Section 4.2.4.

4.2.1 Design Space

The design of a memory system consists of selecting a set of architectural para-

meters, within price and performance constraints, that will yield a low-latency

high-bandwidth path between processor and memory. The combination of para-

meters has to be tested with what is considered to be a "typical" workload. The

design parameters investigated here are secondary cache size and latency, memory

access latency, ring size and processor clock speed. The experiments relate ring

size to changes in one of the other parameters. The idea is to assess the effect

of each individual simulation parameter on the overall performance while relating

these changes to ring size.

The cache sizes investigated are 64, 128, 256 and 512 Kbytes. The size of caches

should be chosen to minimise the miss ratios, that is, as large as possible, and to

reduce the number of cycles the processor stalls waiting for memory references to

be satisfied. The cache latency depends to a large extent on the memory tech-

nology and on the sophistication of the cache policies such as replacement, write-

buffers, write-through/back. Within this range of sizes (64Kbytes to 512Kbytes)

the latency is independent of the size of the memory array because drivers for

data and address lines can be designed to handle the slightly larger loads with

relative ease. The latency of static RAMs used in cache design is of the order of

a few processor clock cycles. Given the complexity of the cache controller, the

latency of the coherent caches was estimated to be three processor clock cycles.

The influence of tag access latency is investigated for latencies of two and four

processor clock cycles.

The access latency of DRAMs is of the order of tens of nanoseconds - 60 to 180

(in 1994), depending on size and organization of the memory array. When consid-

Chapter 4. The Performance of SCI Rings 	 43

ering the overhead imposed by the coherency protocol, the latency of the memory

was set to 120ns. The influence of memory access latency is investigated for laten-

cies of 80 and 160ns.

The number of processors in a ring imposes an inherent limit on the perform-

ance of the machine because each packet must travel, on average, one half of the

ring while its echo must complete the round. Thus, in the absence of traffic,

the static latency imposed by the ring interfaces already imposes a limit on per-

formance. More processors on a ring imply more traffic and consequently longer

round-trip latencies. The ring sizes investigated are 2, 4, 8, and 16. The results

for uniprocessors are also included to provide a basis for comparison and to assess

the effects of interference amongst cooperating processors.

The clock speed of processors doubles roughly every two years. The generation

scalability of SCI-based systems is investigated for one clock frequency doubling

from 100MHz to 200MHz. The higher rate of memory references, caused by the

faster clock, places an extra burden on the interconnection network, potentially

doubling the traffic through it.

There is a complex relationship between these design parameters and their

effect on performance. Larger caches yield better hit ratios and a faster rate of ex-

ecution because of the reduction in stalled cycles. The faster rate of execution also

means a faster rate of memory requests which might, in turn, increase the number

of compulsory and consistency misses. An increase in the consistency misses im-

plies higher network traffic and latency. Faster caches increase the execution rate

without reducing capacity and conflict misses. In the following sections some of

these trade-offs are explored.

4.2.2 Characterising the Workload

The execution time breakdown for each of the programs in the workload is presen-

ted next. The plots show the contributions by instruction fetch and execution and,

private and shared-data references. The graphs show the breakdown by activity

for systems with 64, 128, 256 and 512Kbytes secondary caches. The graphs also

show the breakdown by activity for infinite caches since, with very large caches,

capacity misses do not occur and consistency misses are kept to a minimum. The

shared-data hit ratios for the four smaller cache sizes are also shown. These data

combined provide a good picture of the applications' behaviours.

Chapter 4. The Performance of SCI Rings
	

44

Execution Time Breakdown

When assessing the performance of a given architecture, the amount of time pro-

grams spend on each type of activity must be quantified. In order to do this for SCI

systems, execution time was split into six activities. A program spends time (1)

performing instructions, (2) on references to private data, (3) waiting at synchron-

isation points (barriers and locks), (4) on references to shared-data that is local to

the processor, (5) on references to shared-data at another node and, (6) in delays

caused by network latency. The fraction corresponding to references to shared-

data at another node include all the delays involved in remote protocol actions

such as cache/memory tag access latencies, as well as loading/storing data from/to

caches and main memory. In the simulations performed, time spent performing

instructions and references to private data is independent of network traffic. The

fraction of time spent on remote references is given by the sum of the network

delays and memory/cache latencies at the remote nodes.

Figure 4.1 shows that on all ring sizes, chol() spends over 50% of the time

executing instructions and, for ring sizes 2-8, over 20% of the time accessing shared

data at the local cache and memory. For the 16-node ring, that falls to about 10%.

Thus, chol() is memory bound. In Figure 4. 1, it can also be seen that water()

spends over 50% of the time performing instructions and over 25% referencing

private data. Although its shared-data hit ratios are not very high, less than 15%

of the time is spent on shared data references. Thus, water() is processor bound.

Figure 4.1 also shows, for mp3d() , that the uniprocessor spends 50% of the time

on instructions, 30% on data that would be shared on a multiprocessor, and 23%

of the time on private data. These values, on a 16-node ring, fall to 10%, 5% and

5%, respectively. The percentage of time spent on network latency climbs steadily

from 0% to just over 45%. Thus, mp3d() is memory bound. A puzzling feature of

this application is that performance worsens with larger caches. This is caused by

cache pollution: larger caches hold more data from molecules that "moved away"

to another node in previous time steps. For instance, on 8-node rings, the number

of sharing lists purged per shared-data miss at the coherent cache increases with

cache size: 0.927, 0.962, 0.979, 0.991, 0.999, for 64, 128, 256, 512Kbytes and

infinite caches, respectively. The average number of copies purged is 1.1 and is

independent of cache size. It seems that the simulator models the multiprocessor

system at an adequate level of detail since such a counter-intuitive and complex

behaviour has been exposed and can be explained from simulation data.

rJ v 	10 	7 rJ v 	(0 	T 	'(3W 	(0 	- 	. 	(.0
- 	 - 	 - LL

00 	 (0 	 CIj 	 z

c.J 	 11 	 .- 	 -
If)

Chapter 4. The Performance of SCI Rings
	

45

0.9

p0.8

0.7

0.6
C
2 0.5

o 0.4
C
.2 0.3

0.2

0.1

0
- 	LO

to

To° 	 t0D° 	7 cjr 0 	.—c'Jt0 0

LL
Go 	 (0 	 C'J 	 Z

Ln
-

If)

13 syn

IM ntw

.sci

U shd

LI id

I ins

syn

ntw

sci •
I shd

LI id

lins

0.9

0.8

0.7

0.6
C

2 0.5
.4-

o 0.4

0.3
C

0.2
.4-

0.1

0
T c' v co LO

(.0

(0 	 r'J . 00 (0 	- ' J 	(0 	- 	. 	(0
- 	 - 	 L

(0 	 Z
If) 	 .- 	 -

Syfl

ntw

•sci

Ushd

LI ici

.ins

Figure 4.1: Execution time breakdown for chol() (top), mp3d() (center) and

water() (bottom). ins stands for instructions, Icl for private data references, syn

for synchronisation, shd for local shared-data references, sci to cache and memory

latencies on remote references and, ntw for network latency.

Chapter 4. The Performance of SCI Rings
	

46

0.9

0.8

0.7

0.6

2 0.5

° 0.4
C

•0

0.2

0.1

0

ntw

Sci •
• shd

fl id

• ins

't° 	Tr'ir° 	Tcjr
— 	 — Ne 	 — U. 	 —

00 	 to 	 r4 	 z
to

in 	 — 	 -

75 0.9

Eo.8

0.7

0.6
C 0.5 2
' 0.4

0.3

0.2

0.1

0

ntw

•sd

• shd

El id

• ins

T° 7 N v w 	 m tD T't'° 	-'a3°

	

— Ne Ne 	 il..
It 	 00 	 W 	 z
W 	 c'J 	 U) 	 — 	 -

c'J 	 LI)

10.9

. 0.8

0.7

0.6
C

0.5

—0 0.4
C o 0.3

0.2

0.1

0
- c'J V o

0

7 r4to 	7 N v w 	-;to _:z,(D
— 	 — 	

.— L LI—
(0 	 z

C%J 	 U) 	 .— 	 -
c'J 	 LI)

ntw

sci •
• shd

LII id

• ins

Figure 4.2: Execution time breakdown for ge() (top), mmult() (center) and

paths() (bottom). ins stands for instructions, Icl for private data references, shd

for local shared-data references, sci to cache and memory latencies on remote

references and, ntw for network latency.

Chapter 4. The Performance of SCI Rings 	 47

ge() spends over 67% of the time executing instructions, and 15% on shared

data references - see Figure 4.2. Thus, geO is processor bound. inmultO, on

almost all cases, spends over 50% of the time performing instructions. Since this

application has little write sharing, the three larger cache sizes (256, 512Kbytes

and infinite) spend little time on remote references. The 8-node rings suffer higher

instruction miss ratios then the other system sizes because of conflict misses.

paths 0, on rings of up to 8 nodes, spends over 75% of execution time performing

instructions, and about 10% on each of private and shared data references. For the

data sets used here and the associated shared-data hit ratios (see below), paths()

is processor bound. However, if the shared-data hit ratio falls below 90%, paths()

becomes memory bound. Except from mp3d() and paths(), the programs are all

processor bound. paths() is a borderline case: a decrease in the shared-data hit

ratio can make it memory bound.

Coherent Cache Hit Ratios

The shared-data read hit ratios of the six programs are shown in Fig-

ure 4.3, page 48. See the Appendix for hit ratios of all five types of memory

reference. For cholO, shared-data hit ratios are always above 90%. mp3d0 has

the worst hit ratios of the workload and the ratios deteriorate with the larger

data sets but do not vary significantly with cache size. Even though water() 's

hit ratios are not very high, it spends less than 15% of the time on shared-data

references.

ge0 has, for all ring (1-16) and cache (64-512Kbytes) sizes, secondary cache

hit ratios above 97%, for data and instructions. The shared-data hit ratio of

minult() improves with increasing cache size from about 87% (64K) to over 97%

(512Kbytes). paths0, on the 16-node ring and 256Kbytes cache, has a shared

data hit ratio about 7 percentage points lower than on smaller rings and this in

turn causes the time spend on network latency to jump from under 5% to 28%.

For a 64Kbytes cache, this last value is 47%.

Chapter 4. The Performance of SCI Rings

1

0.95

0.9

0.85

0.8

0.75

0.7

1

0.95

0.9

0.85

0.8

0.75

0.7

shared RD hit ratio - 64K

:" ...

..-
- 	ch

mp -4--
- 	w-EI-- 	 -

ge X....
- mm-— 	 -

Ip--. 	
I 	I

1 	2 	4 	8 	16
Ring size

shared RD hit ratio - 256K

-

mp -I--
- 	 w-E)-- +...5'

ge X "+ rnm

I p i-.
1 	2 	4 	8 	16

Ring size

shared RD hit ratio - 128K

WE

• 	ch 	 -
mp -4-- 	 -o

• 	w-E]-- 	+55%

ge 	 -+ - mm-k--

i 	 I 	I 	I

1 	2 	4 	8 	16
Ring size

shared RD hit ratio - 512K

I
- ch -0--

mp -4--
- 	w-EI-- 	+55•5

ge •)(....
- mm--

1 	24 	8 	16
Ring size

1

0.95

0.9

0.85

0.8

0.75

0.7

1

0.95

0.9

0.85

0.8

0.75

0.7

Figure 4.3: Shared-data read hit ratios for 64K (top left), 128K (top right),

256K (bottom left) and 512Kbytes coherent caches (bottom right). 'ch' stands for

cholO, 'mp' for mp3dO, 'w' for waterO, 'ge' for geO, 'mm' for mmultO, 'p'

for paths().

4.2.3 Cache Size and Cache Access Latency

Coherent cache size and tag access latency are two of the factors that have most

impact on the performance of memory hierarchies. The effect of cache size is

examined here. Figure 4.4 (page 51) displays the execution time as a function

of ring and cache size for the three SPLASH programs. Recall that the data-set

sizes are scaled up to keep the work each processor does constant - see Table 3.2

(page 36). For cholO, on a 4-node ring, the 128Kbytes cache is about 35% slower

than the two larger sizes. The difference is not as pronounced for the other ring

sizes. The 64Kbytes cache being faster than the 128Kbytes is due to an optim-

isation in chol 0, by which the supernodes are chosen to fit the coherent caches.

For all cache sizes (64-512Kbytes) and ring sizes 2-16, mp3d() has shared data hit

ratios that are within one percentage point of one another. The same is true of

Chapter 4. The Performance of SCI Rings 	 49

the fraction of run time due to network latency, except that the interval is under

4%. On a 16-node ring, water 0's shared data-set does not fit in the 64Kbytes

caches. Hence the difference in execution time between the 64K and 128-512Kbytes

coherent caches.

Figure 4.5 (page 52) shows the relationship between cache and ring size and

speed for the three parallel loops. Recall that the data-set sizes are scaled up

with machine size - see Table 3.2 (page 36). For geO, the differences in run time

are below 4% and this agrees with the rather small changes in shared data hit

ratio with cache size. The performance of the system, when executing mmult 0,

improves with larger cache sizes. The improvement comes from a reduction in

conflict misses and network delays. The 8-node machines endure higher instruction

miss rates because of conflict misses. As discussed above, paths() is a borderline

program: if the caches cannot accommodate the working set, the program speed

is bound by the speed of the memory and ultimately by the network latency. For

the 64Kbytes cache, the impact of the network latency increases dramatically with

ring and data set sizes because of the poorer hit ratios.

Sharing-list length. paths 0 has an average sharing-list length that grows

roughly as P/2, for P processors. The other five programs have sharing-list lengths

of one or less for ring sizes 2-8 and under 1.2 for 16-node rings. Sharing-list length

is fairly independent of cache size. This is in agreement with [WG89] in that most

of the shared-data in cholO, mp3d() and water 0 is migratory in nature. The

same can be said of geO, given its algorithm and simulation statistics. See the

Appendix for the sharing-list lengths of all six programs.

Cache Size, Cache and Memory Tag Access Latency

Table 4.1 shows the effects on performance of changing one of the major design

parameters while keeping the other two constant. The basis for comparison is

a system with 2561(bytes coherent caches with 3 processor cycles of tag access

latency, and memory access latency of 120ns. Systems with four and eight nodes

were simulated with (1) 128 and 5121(bytes secondary caches, (2) 256Kbytes sec-

ondary caches with tag access of two (20ns) and four processor clock cycles (40ns),

and (3), memory tag access of 80 and 160ns. The table shows that the factor which

has the most influence is the cache tag access latency (between —13% and +14%)

while memory access latency has the least influence (between —6% and +6%).

Chapter 4. The Performance of SCI Rings 	 50

For the workload studied here, caches with 2 processor cycles of access latency

yield an average 8.5% speed improvement while, on average, the speed loss can be

8.4% (8.6%) on the 4-node (8-node) ring with a 4-cycle latency coherent cache.

The system designers have to weigh the cost increase against the speed gains when

specifying memory technology. The plots in Figures 4.4 and 4.5 provide evidence

against the use of 64Kbytes secondary caches. The more conservative cache latency

of 3 cycles was adhered to for the experiments reported here. Note that values in

Table 4.1 follow the pattern of concave curves relating performance to changes in

cache design parameters, as discussed by Przybylski in [Prz9O].

Nodes 4 8
change: c size c latency I m latency c size c latency I m latency

128 512 2 cy 4 cy 80 160 128 512 2 cy 4 cy 80 160
chol() 1.15 1.01 0.88 1.14 0.98 1.00 1.06 0.99 0.87 1.13 0.97 1.04
mp3d() 1.02 0.98 0.92 1.08 0.94 1.06 1.00 1.02 0.95 1.08 0.96 1.05
water() 1.00 1.00 0.91 1.10 0.99 1.01 1.03 1.00 0.90 1.09 0.99 1.01
ge() 1.01 1.00 0.93 1.07 1.00 1.00 1.01 1.00 0.93 1.07 1.00 1.00
nunult() 1.06 0.99 0.93 1.04 0.98 1.02 1.09 0.99 0.93 1.02 0.99 1.01
paths() 1.03 1.00 0.94 1.07 0.99 1.01 1.04 1.00 0.94 1.06 1.00 1.01
average 1.04 0.99 0.92 1.08 0.98 1.02 1.04 1.00 0.92 1.08 0.98 1.02

Table 4.1: Sensitivity of execution time to variations in cache size, cache latency

and memory latency. The basis is 256Kbytes cache with 3 processor cycles access

latency and 120ns memory access latency, respectively. See text for details.

Chapter 4. The Performance of SCI Rings
	

51

1.8

1.6

—1.4

1.2 0

U,

0.8
U
E 0.6

0.4

0.2

0
N v 00

Ne

(D

network

LI shared

•

0.9

0.8

C) 0.7
0.

E 0.6

, 0.4

0.2

0.1

0
N v 00 to

Ne

N1- cO 	 NO3
— 	 — LL 	 -

00 	 Lo N
N 	 It) 	 .— 	 -
— 	 N 	 Il)

 7Nvww 7NVW W N v 00 to
— 	 — 	 IL 	 —

00 	 (.0 	 N 	 Z
N 	 LO 	 — 	 -

N 	 LI)

• network

LI shared

•

• network

LI shared

U if+Iocal

0
7NVWW 7NVWW NO7 	 NO3

	

—Ne 	 — 	 —he 	 — IL 	—
W 	 N 	 z

	

N 	 It)
N 	 LI)

0.7

[,K

0.5

0.4
U,

0.3
Q)
E
- 0.2

0.1

Figure 4.4: Execution time as a function of cache size, for chol() (top), mp3d()

(center) and water() (bottom). Time is broken down into network latency, refer-

ences to shared-data and references to local data and instructions. Data sets are

scaled up with machine size.

0
7cmvww 7Nvww7NO3 	 J1-cO'°_CJcOW

— 	 — 	 .—
00 	 (.0 	 N
N 	 It)

network

E shared

U if+Iocal

0.6

0.5

, 0.4

0.2

0.1

Chapter 4. The Performance of SCI Rings 	 52

0.8

0.7

0.6
E E 0.5

0.4

0.3

0.2

0.1

0
CJ'O3 0 	NO3 0

he 	— Id 	 — 	 — 	 LL
N 	 Z

	

N 	 LI) 	 — 	 -

N 	 LI)

0.5

0.45

— 0.4

0.35
°. 0.3

0.25

, 0.2

0.15

0.1

0.05

0
%JtD 7tjvww 7Nvw w 7Nvww —Nvww

Ne 	— 	 — LL 	—
00 	 4.0 N 	 Z
N LO 	 —

LI)

U network

D shared

•

U network

Li shared

U if+Iocal

Figure 4.5: Execution time as a function of cache size, for ge() (top), minult()

(center) and paths() (bottom). Time is broken down into network latency, refer-

ences to shared-data and references to local data and instructions. Data sets are

scaled up with machine size.

Chapter 4. The Performance of SCI Rings
	

53

4.2.4 Processor Clock Speed

Microprocessor technology is evolving at such a pace that the speed of processors,

and indeed of workstations, doubles roughly every two or three years. What can

be said about the performance of SCI, when the next generation of processors

is introduced? Figure 4.6 shows the speedup attained by doubling the processor

clock speed while keeping the other parameters unchanged. Note that coherent

cache access latency is 3 processor clock cycles in both cases.

2

1.8

1.6

1.4

1.2

1

speedup 200Mh7J1OOMhz - 64K

x........

MM

1 	2 	4 	8 	16
Ring size

speedup 200MhzJ10OMIiz - 256K

ch
mp -

ge ..)(.... 	k
MM

p -*-'
I 	I 	I

1 	2 	4 	8 	16
Ring size

1.8

1.6

1.4

1.2

1

Figure 4.6: Speedup achieved by doubling processor clock frequency, with cache

sizes of 64K (left) and 256Kbytes (right). 'ch' stands for chol 0, 'mp' for mp3dO,

'w' for waterO, 'ge' for ge0, 'mm' for mmult0, 'p' for paths 0.

Some of the loss in speedup can be attributed to the relatively slower memory

hierarchy, the influence of which can be gauged from the values for the uniprocessor

- between about 10 to 37% loss in speedup. As discussed earlier, for a 100MHz

clock, an increase of 30% in memory latency slows execution down by up to 6%,

chol () and mp3d 0 being the worst affected. Most of the loss in speedup for

cholO, mp3d() and paths() is caused by network saturation. Plots of the ratio

of link traffic for 100 and 200MHz processors are almost identical to those in

Figure 4.6. Programs that generate low levels of network traffic can use a lot

more bandwidth whereas programs that nearly saturate the ring suffer even higher

round-trip delays with a faster rate of network requests.

throughput per node (Mbyte/s) - 64K
70

60

50

40

30

20

10

0

throughput per node (Mbyte/s) - 256K
70. 	.

60

50

40

30

20

10

0

ch-G---
mp
w,,é-

..)(.... 	 .,.

nun-k—.

Chapter 4. The Performance of SCI Rings 	 54

4.3 Throughput and Latency

The factors that most influence the performance of a network are throughput and

latency. Throughput is the amount of data that each processor can inject into the

network per time unit. Network latency is the time it takes for a packet to be

delivered and acknowledged. The level of traffic on the network is also important

because latency increases with traffic since bandwidth is limited.

Node throughput. Figure 4.7 shows the throughput per node, that is, the

number of bytes inserted per time unit in the output buffer by the processor and

cache/memory controller. Note that the measured throughput includes packet

header overhead. Data throughput would be somewhat lower. The reason for

including header overheads in the throughput measurement is that cache coherency

commands are embedded in the packet headers and these comprise a large fraction

of the information transferred by the cache coherence protocol.

2 	4 	8 	16
	

2 	4 	8 	16
Ring size 	 Ring size

Figure 4.7: Throughput per node, coherent cache sizes of 64K and 256Kbytes.

'ch' stands for cholO, 'mp' for mp3dQ, 'w' for waterO, 'ge' for geO, 'mm' for

nunultO, 'p' for paths().

Chapter 4. The Performance of SCI Rings 	 55

Round trip delay. Figure 4.8 shows the average .round trip delay as a function

of ring size. This delay is the time elapsed from inserting a packet in the output

buffer until its echo is stripped by the sender. Note that latencies experienced

accessing memory and caches are not included. The static latency for a 16-node

ring is 116ns, for an average packet size of 11 symbols. cholO, waterO, ge()

and nunult 0 generate low network traffic and enjoy low latencies. mp3d() and

paths() endure much higher latencies because of their higher throughputs and

increased network congestion.

200

150

100

50

200

150

100

50

round-trip delay (ns) - 64K
I 	I

- 	 ch-G---
I

-

mp —f--
w-D--

2 	4 	8 	16
Ring size

round-trip delay (ns) - 256K
I 	I 	I 	I

	

- ch-ø-- 	 -
mp-f--

W ---

- ge -x.... -
nun

2 	4 	8 	16
Ring size

Figure 4.8: Average round-trip delay, with cache sizes of 64K - (left) and

256Kbytes (right). 'ch' stands for cholO, 'mp' for mp3d0, 'w' for waterO,

'ge' for ge0, 'mm' for inmultO, 'p' for paths 0.

Throughput versus latency. It is normally easier to increase bandwidth

than to reduce latency, given today's technological constraints. The relation-

ship between node throughput and round-trip delay indicates how well a network

design balances latency and bandwidth. The simulation data recorded in this dis-

sertation provide enough points to plot throughput versus latency on SCI rings

and this is shown in Figure 4.9. From the left, the data points are from water 0,

chol 0, paths 0, mp3d0, and again, paths 0 and mp3d0 with 200MHz processor

clock frequency.

The plots show a linear relationship between latency 1 and throughput s for

2- 1 4- and 8-node rings. For 16-node rings, that relationship is a parabola with a

small quadratic coefficient. The equations that describe ring behaviour, obtained

by the least squares method, are given below. The lines defined by the equations

are superimposed to the data points in Figure 4.9. Note that these equations are

valid for throughputs in the interval [2, 95]. Equation 4.5 is the least square fit

parabola computed from 16-node rings.

Chapter 4. The Performance of SCI Rings 	 56

12 	= 0.16s + 39.32 (4.1)

14 	= 0.14s + 50.82 (4.2)

18 = 	0.38s + 73.53 (4.3)

116 = 	1.40s + 119.81 (4.4)

1162 = 	0.011s 2 + 0.368s + 133.95 (4.5)

2 nodes 0 	 x
4 nodes + 	 -....

• 8 nodes 0
16 nodes X

.....

-

.-

.......................+..

I 	 I 	 I 	 I

0 	 20 	 40 	 60 	 80 	 100
Throughput (Mbytels)

Figure 4.9: Latency versus throughput on 2-, 4-, 8- and 16-node rings.

The plots in Figure 4.9 do not show the same behaviour as those obtained

with an analytical model by Scott et.al, in [SGV92]. There are some differences in

the underlying models and assumptions between their model and the simulations

discussed in this dissertation. Their model is based on M/G/1 queues and the

ring is modelled as an open system: increasing network delays do not decrease the

rate of processor requests. Here, the simulator uses 5 packet sizes rather than 3,

resulting in average packet sizes of 9-11.5 symbols rather than 12.4. Furthermore,

the frequencies of each type of packet are also different: here, data carrying packets

account for less than 14% of all injected packets - they assume that 40% of all

injected packets are 40-symbol packets. Cache coherence related traffic is also

much higher in the simulations here. The ring, as simulated here, does not behave

like an open system since processors stall on remote references, and that decreases

their rate of network requests. This behaviour is akin to negative feedback. That

250

200

150

100

50

n

Chapter 4. The Performance of SCI Rings 	 57

is why Figure 4.9 does not show the pronounced saturation produced by Scott's

model. However, network saturation does occur and its effects can be clearly seen

in Figures 4.7, 4.8 and 4.9, as well as in the coefficients of Equations 4.1-4.5. If

the rate of network requests were increased by the use of multithreading or weaker

memory consistency, saturation effects would tend to be more pronounced because

of the potential increases in traffic.

Link traffic. Figure 4.10 shows the traffic per link as a function of ring size. The

traffic consists of the packets inserted by a node plus the packets passing through

that node towards downstream nodes. mp3d() and paths() produce high levels

of traffic and suffer higher latencies. Traffic levels of 600 to 700Mbytes/s are a

limiting factor in the performance of SCI-connected systems since, at these levels,

round-trip delays are holding down the rate of network requests by processors.

Bypass buffers endure utilisations of over 50% and that leaves few opportunities

for injecting packets into the ring. Figures 4.10 and the discussion in Section 4.2.4

(page 53) are clear evidence of the effects of network saturation: doubling processor

clock rate does little to improve the performance of programs that are already

driving the network into saturation.

700
avg link traffic (Mbyte/s) - 64K

700

600 - 	ch-O--- 	 /fr 	- 600
mp —f-- 	 /

500- w-D-- 	/ 	- .500

400- ge- 400 nun
300 P * 	 - 300

A
200

- 	
._+d' 	

' 	._.._• 	- 200

100
100

avg link traffic (Mbyte/s) - 256K
I 	I 	I 	I

	

- ch--- 	 -

	

mp-±- 	 I, 	-

niM ::/.*

2 	4 	8 	16 	 2 	4 	8 	16
Ring size 	 Ring size

Figure 4.10: Traffic per link, for cache sizes of 64KK (left) and 256Kbytes (right).

'ch' stands for cholO, 'mp' for inp3dO, 'w' for waterO, 'ge' for geO, 'mm' for

inmultO, 'p' for paths().

Average packet size and distribution. The average packet size varies from

18.0 to 22.4 bytes, smaller rings carrying larger packets. Also, smaller caches

generate more of the smaller packets that carry the cache coherency commands.

Figure 4.11 shows the distribution of packet sizes for chol 0, mp3d() and water()

with 256Kbytes coherent caches. Data carrying packets account for less than 7%

of all packets in 8- and 16-node rings. Thus, data throughput accounts for 20 to

Chapter 4. The Performance of SCI Rings 	 !IJ

30% of raw throughput. With the exception of echoes, all packets carry cache

coherency information and any network delays faced by these packets slow down

all operations that involve shared data. Figure 4.12 plots average packet size as a

function of cache size. Notice that pkt48 are 'cache-write' packets that carry the

current copy of lines between sharing caches.

cn

w

U

0.

0

0

U

• pkts48

• pkts4o

U pktsl6

• pkts8

75 	 0 	 —

'C
	

0.
	 4.,

E

Figure 4.11: Distribution of packet sizes for 256Kbytes caches.

11.5

10.5

•

N
ca 	10
C,

9.5
0.
U
0) 12 a,

8.5

8

• chol()

U mp3d()

• water()

r 	 . (0 (0 	 . (0 (0

Nd 	 — 	 — 	 — Ne 	 —
(0 	 (0 	 ("J

I', 	 —
("J 	 Cl)

Figure 4.12: Average packet size for 64K (left), 128K, 256K and 512Kbytes

(right) caches.

Chapter 4. The Performance of SCI Rings 	 59

4.4 Other Ring-based Systems

In order to compute the cost of a remote transaction, memory and cache tag access

latencies must be added to the round-trip delay. For the simulations reported here,

the worst case is a cache-to-memory transaction: ring latency +246ns (30ns + 16ns

plus 120ns + 80ns). The best case is a cache-to-cache transaction, such as an

invalidate transaction, costing ring latency +60ns (2 x 30ns). Barroso and Dubois,

in [BD93], present simulation results for the Express Ring. The multiprocessor's

interconnect is based on a slotted ring and cache coherence is maintained by a

snooping protocol [BD91]. On a ring with 8 nodes, the shared-data miss latency

for chol 0, mp3d() and water() is between 280 and 320ns. On a 16-node ring,

between 320 and 380ns and, on a 32-node ring, between 390 and 440ns. On 8-node

rings, the shared-data miss latencies of an SCI ring are comparable to those of a

slotted ring. On 16- and 32-node rings, the SCI ring would have higher latencies.

A comparison with the KSR1 is difficult to make for lack of performance data

on the applications employed here. It is likely the results would show the same

broad tendencies as those of DASH since the two machines are built from similar

technologies - SCI's faster network would provide a performance advantage. The

Hector multiprocessor [VSLW91], using a hierarchical snooping protocol [FVS92,

HS94] should have a performance comparable to that of the Express Ring. Holl-

iday and Stumm report in [HS94], that Hector's hierarchical protocol scales well

to a large number of processors (1024) if the applications possess good locality

characteristics.

4.4.1 Comparing DASH and SCI

The Directory Architecture for SHared memory (DASH) multiprocessor was

conceived at Stanford University as a workbench for exploring the design of

logically-shared physically-distributed memory multiprocessors [LLG 90 ,GGH9 1,

GHG91]. A DASH prototype was built and its implementation and performance

is discussed by Lenoski et al. in [LLJ92]. The availability of performance data

makes possible a comparison between DASH and an SCI-based parallel machine

with similar architectural parameters. However, because of intrinsic differences

in architecture and run time environments, i.e. simulation compared to an ac-

tual machine, strict quantitative comparisons would be misleading. A qualitative

Chapter 4. The Performance of SCI Rings 	 60

comparison can nevertheless be informative. The two architectures are described

below, followed by the performance comparison.

The DASH architecture. DASH consists of clusters of processing nodes in-

terconnected by twin meshes. The clusters are bus-based multiprocessors within

which cache consistency is maintained by a snooping protocol. Inter-cluster con-

sistency is maintained by a full-directory invalidation protocol [LLG90]. Each

cluster contains four processors; each processor is connected to a 128Kbytes split

primary cache (64Kbytes for instructions and 64Kbytes for data, write-through)

and a 256Kbytes write-back secondary cache. Both caches are direct mapped and

support 16-byte lines. The interface between primary and secondary caches con-

sists of a 4-word deep write-buffer and a one-word read-buffer. The intra-cluster

cache coherence protocol allows for cache-to-cache transfers. This makes the four

secondary caches appear as a single (cluster) cache to remote nodes. Processor

clock speed is 33MHz. The clusters also contain memory, the memory directory

and inter-cluster communication interfaces. The interconnection network consists

of two wormhole routed networks, one for requests and one for responses. The

latency through each node (network hop) is about 50ns. The peak bandwidth is

120Mbytes/s in and out of each cluster.

The SCI ring. The SCI ring was simulated with only one processor per node,

with the same clock speed and cache hierarchy as DASH. The primary cache is split

(64K + 64K), direct mapped, write-through. Secondary caches are 256Kbytes,

direct mapped, write-back. Lines are 64 bytes wide. There is no write-buffer

between the caches. Cache and memory latencies per word are the same as those

in DASH - see Table 4.2. Notice that on the SCI ring, the latencies vary with ring

size and, in the case of writes, the number of copies of the line. The processing

nodes are interconnected by an SCI ring.

Cache operation DASH SCI ring
Read from primary cache 1 1
Fill from secondary cache 14 14
Fill from local memory 26 26
Fill from remote node 72 31-37
Fill from dirty-remote, remote home 90 49-60
Write owned by secondary cache 2 14
Write owned by local node 18 14
Write owned by remote node 64 63-207
Write to dirty remote, remote home 82 63-207

Table 4.2: Cache and memory operation latencies, in processor clock cycles.

Chapter 4. The Performance of SCI Rings 	 61

Some of the architectural differences can make a direct comparison difficult.

The clustering of processors in DASH has the potential to significantly reduce the

latencies of operations that involve only local processors. DASH's write-buffers,

although memory is sequentially consistent, do hide some of the write latencies.

The SCI ring, on the other hand, provides about four times higher bandwidth

than DASH's twin meshes. Static network hop latency in the SCI ring is much

smaller as well. It's not unlikely that these differences might cancel each other

out, depending on workload characteristics. Recall that page faults are assumed

to have a cost of zero for the SCI ring and that the simulated processors never stall

because of internal data dependencies and pipeline bubbles, for example. These

would tend to give the SCI multiprocessor an unfair advantage.

The workload for the comparison consists of cholO, mp3dO and waterO.

Data sets are, for chol() bcsstk14, for mp3d0 40000 molecules simulated over 5

time steps, and for water() 343 molecules simulated for two steps. In [LLJ92],

Water is run with 512 molecules; the simulation time for that many molecules is

so long as to be prohibitive. Thus, water() was simulated with a smaller data-set.

The comparison should still be valid since, in the 16-node case, water() makes

2.6 million references per processor to shared data and that is enough to fill up

the secondary caches at least a few times.

Speedup. Figure 4.13 shows the speedup plots for both DASH and the SCI ring.

Speedup data for DASH was taken from Figure 6 and Table 5 in [LU 2]. The

plot shows that chol C) has a very similar speedup in both architectures. The

differences for 2 and 4 nodes are most likely related to better data mapping in

the SCI ring. The differences on inp3d() are more pronounced. Network traffic is

much higher than with the other two programs and, given SCI's higher bandwidth

and lower latencies, it is not surprising that mp3d() scales up better in the SCI

ring. For waterO, SCI's advantage comes partly from the better network, partly

from the smaller number of molecules and the resulting improvement in hit ratios.

In DASH with 16 processors, water() uses 4.6% and 5.3% of available bandwidth

for the request and response networks respectively. In the SCI ring, it uses less

than 1% of the bandwidth. Also, the smaller latencies, coupled with the lower hit

ratios on larger machines, give SCI a definite advantage. In these programs, data

is mostly migratory. SCI's linear latency when purging long sharing-lists is only

felt in synchronisation actions. Those however are infrequent when compared to

data references.

	

Chapter 4. The Performance of SCI Rings 	 rM

16.

14.

12

o. 10 0 	

• DASH

0.
	 El so

00

4 00

2

0 c'J 	- 	w 	 'j 	- 	..p 	 - 	.j 	. 	 'p

E E E E

Figure 4.13: Speedup plots for chol() (left), mp3d() (mid) and water() (right).

Ring size 1 2 4 8 16
Cholesky - chol 0

read refs. (10) 8444 9883 6875 4638 2904
write refs. (10) 1862 2939 2075 1191 556
RD hit ratio 0.97 0.98 0.98 0.98 0.97
WR hit ratio 0.98 0.98 0.98 0.99 0.98
run time (s) 10.26 5.32 2.80 1.58 0.95
throughput (Mbytes/s) 0 1.18 2.06 2.54 2.69

MP3D - mp3d()
read refs. (10) 3619 3755 1594 1041 1098
write refs. (10) 2343 1171 585 293 147
RD hit ratio 0.95 0.89 0.85 0.82 0.77
WR hit ratio 0.95 0.89 0.85 0.81 0.74
run time (s) 4.83 2.96 1.61 0.90 0.58
throughput (Mbytes/s) 0 9.5 15.8 19.9 20.6

Water - water()
read refs. (10) 20172 12619 8163 4093 2414
write refs. (iO) 3071 1536 768 384 192
RD hit ratio 0.96 0.96 0.88 0.84 0.83
WR hit ratio 0.99 0.99 0.95 0.93 0.92
run time (s) 41.96 21.20 10.90 5.50 2.81
throughput (Mbytes/s) 0 0.13 1.02 1.63 1.80

Table 4.3: Per node shared-data reference counts, secondary cache hit ratios,

execution time and node throughput on the SCI ring.

In order to evaluate the effect of the network latencies in the performance of

the 16-node SCI rings, the three programs were simulated on a 4x4 SCI mesh. This

Chapter 4. The Performance of SCI Rings 	 63

resulted in an improvement of only 2% for mp3d() and virtually no change for the

other two. Were the traffic higher, the effects on performance would have been

much more pronounced. The performance of SCI meshes is further investigated

in Section 6.2.

Execution time breakdown. Figure 4.14 shows the execution time breakdown

for the workload on the SCI ring. Time is split into: (1) busy time when the pro-

cessor is performing instructions and operations on data; (2) the time wasted on

read misses (RDmiss); (3) the time wasted on write misses (WRmiss); (4) the time

spent on synchronisation actions (synchr). The plot also shows the total time spent

on references to shared data (shared data) and the time lost because of network

latencies (network). The plots indicate that most of the stall cycles come from

writes. This is partly because of the high latency of a write (14 cycles) and partly

a "normal" feature of cache-coherent shared-memory multiprocessors [GGH91,

GHG911. The fraction of the time used up by chol() in references to shared

data increases with ring size because of the relatively higher costs of remote ref-

erences while the fraction due to instruction fetches becomes proportionally more

important as the work per processor decreases. mp3d() spends 57-43% of the time

on private references, a large fraction of which is on write misses. The fraction

of time water() spends on shared data references is very small and most of the

write-stalls are caused by private data misses.

0.9

0.8

0.7
a

0.6
0

0.5

-0 0.4

. 0.3

0.2

0.1

0

synchr

WRmiss

RDmiss

busy

—ci---- networ

-U 	shared data

u00UJL U 	EE EE

Figure 4.14: Execution time breakdown for cho].() (left), mp3d() (center) and

water() (right). The lines show the fraction of shared data references and net-

work latency.

A more detailed view of the execution time breakdown is given in Figure 4.15

which shows the normalised breakdown of time spent on references to shared-data

only. Over 40% of the time is spent waiting for writes to complete. Synchronisation

Chapter 4. The Performance of SCI Rings 	 64

is a significant activity for mp3d() on a 16-node ring. For water(), synchronisation

takes up about 30% of the time spend on shared-data references but the overall

impact is negligible because of the relative cost of each class of reference. The

contribution of network latency to mp3d0's execution time is 1, 3, 5 and 10% for

2 7 4 7 8 and 16 nodes respectively. For both chol() and water(), network latency

takes up less than 1% of the time.

0
C

w
C)
C

4,

'4

'4

U,

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%

synchr

•
•WR-busy

El RD-stall

•RD-busy

U UUU.0 	EE EE

Figure 4.15: Normalised execution time breakdown for chol() (left), mp3d()

(mid) and waterO (right), for shared data references.

Figures 4.16 and 4.17 show He execution time broken down by type of memory

operation for chol (), mp3d () and water() with the architectural parameters used

in the rest of this chapter. Compare these to Figures 4.14 and 4.15. Because of

the smaller and varying data sets sizes, the instruction-related fraction is relat-

ively larger. Note that both cache and memory access latencies are shorter in

Figures 4.16 and 4.17. Also, the primary caches are 8 times smaller.

The most striking differences are the increases in the rate of memory requests

and network latency and the consequent increase in the cost of shared-data refer-

ences. Figure 4.16 highlights, for mp3d() in particular, the relationship between

network traffic and overall performance. The line for the relative cost of shared

data references is roughly parallel to the line for network latency. That is, the rel-

ative increase in the cost of shared references, as ring size grows, is caused mostly

by higher network traffic and longer latencies. This is not the case, however, for

chol () because of its fixed-size data set.

IF::P. 	.F
_I

Ii 'I 	ii Ii
I ! I I I • 111.1 • 11111
I. I 	I I I • I i-i I
I.!.!•S!i I I

• I I I I. I
•_:L1.!.IuI

0.9

0.8

0.7

• 0.6
U

X 0.5

•6 0.
C -
.2 0.
•1
U

0.

0.1

0

synchr

551 WRrniss

RDniss

busy

—ci--- networ

• 	shared data

Chapter 4. The Performance of SCI Rings 	 65

c.,j 	. 	W 	 - 	I 	 W

	

U UUU.0 	EE EE -

-
Figure 4.16: Execution time breakdown for chol() (left), mp3d() (mid) and

water() (right) - 100MHz clock. The lines show the fraction of shared data

references and network latency.

0

.E.
U'
4,
U
C

4,

4'

'4

CU

0

CU

U)

synch

•
•WR-busy

D RD-stall

U RD-busy

(0

U U U U M 	EE EE -

Figure 4.17: Normalised execution time breakdown for chol() (left), mp3d()

(mid) and water() (right), for shared-data references - 100MHz clock.

Within the limits imposed by the workload employed, the comparison of the

two architectures - coherence protocols and interconnects - indicates that SCI's

higher network bandwidth and lower latencies compensate for any advantage that

DASH's coherence protocol may offer. It is likely that this conclusion would hold

for the less restrictive memory consistency models as well. However, the small

sharing sets in the applications do not fully expose SCI's potential bottleneck of

purging long sharing-lists serially.

Chapter 4. The Performance of SCI Rings

Coda

The detailed investigation of the behaviour of SCI rings in this chapter studied

the effects of the inherent limitations of the network, namely the linear static

network latencies and decreasing throughput with high levels of traffic. These,

combined with the cache coherence protocol place a hard limit on ring size, for a

given processor and memory hierarchy. In order to scale up machine size, higher

dimensional networks must be employed. The performance of SCI-meshes and

SCI-cubes is the subject of Chapter 6. Performance evaluation studies based on

simulation provide detailed and accurate results but at high computational costs.

When extreme precision is not the main constraint, analytical models can provide

reasonably accurate predictions very quickly. An analytical model of the simulated

machine is presented next.

Chapter 5

A Model of the SCI-connected

Multiprocessor

This chapter presents an analytical model for the. performance of the SCI-based

multiprocessor. The model is based on the iterative method proposed by Menascé

and Barroso in [MB92]. Inputs to the model are the number of processors, reference

counts, primary and secondary cache miss ratios, line flush ratio, sharing-list purge

ratio and sharing-list length. The model yields the execution time of the program

described by the model inputs. The architectural parameters embedded in the

model are the same as in the simulation model employed in Chapter, 4. The

cost of the cache coherence operations is computed from the model inputs and

a simplified cost model that estimates the number and size of packets injected

into the ring. The throughput versus delay model of the SCI ring is described by

Equations 4.1 to 4.4.

5.1 The Analytical Model

This section defines the model equations and relates them to the simulation model

described in Chapter 3. The execution time is computed as follows. For each type

of memory reference (instruction fetch if, local data read ird, local data write

lwr, shared data read srd and shared data write swr), the number of references

XXcnt to each level of the memory hierarchy is computed from the individual

reference counts and the miss ratios up to that level. Thus, ignoring for the

moment references to remote locations, the time taken by each type of reference,

for primary cache miss ratio pcm, coherent cache miss ratio ccm, is

67

Chapter 5. A Model of the SCI-connected Multiprocessor 	 68

ifCost = ifcr&t (pCi/c + pcm 11 fiulpC + pcm 11 . ccm 1 fihlcC) 	(5.1)

ird Cost = irdcnt(pcmlrd fihlpC + pcm,rd ccmfrd fl/icC) 	(5.2)

iwrCost = iwrcnt(pcmiwr . wrTrupC + pcmlwr • ccm,• wrTrucC) (5.3)

srd Cost = srdcnt(pcmsrd fl//pC + pcm srd ccm srd . fluicC) 	(5.4)

swrCost = swrcnt (pcm swr wrTrupC + pcm swr ccm swr wrTrucC) (5.5)

Where pClk is the processor clock period, flhlpC is the cost of bringing a line from

the coherent cache into the primary cache, fiulcC is the cost of bringing a line from

local memory to the coherent cache and, wrTrupC and wrTrucC are the costs of

writing through the primary and coherent caches respectively.

To each of the above, the time to perform remote memory references must be

added. For local data accesses, remote references occur on conflict misses when

a line with shared data must be flushed from the coherent cache. For shared

data, remote references occur on conflict misses when other shared data must be

flushed, on capacity and compulsory misses when new data must be brought into

the cache, and on shared data updates when copies must be invalidated before the

write to memory can take place. Since instruction references attain very high hit

ratios, the effects of remote references caused by instruction fetch misses can be

safely ignored.

The cost of remote references can be split into two components. The first is

the time taken by cache and memory tag-access latencies. The second component

is the network latency which depends on the level of traffic and on the number of

packets exchanged in remote cache/memory transactions.

In order to simplify the model, it is assumed that shared data is uniformly

distributed amongst the nodes and that the location of the head of a sharing list

is independent of the location of its home memory. The probability that the head of

a sharing list is at a given node (hdHere) is assumed to be inversely proportional to

the length of the sharing-list. For N nodes, the probability that the home memory

of a given line is the same node from whose cache the line is being flushed/purged

is homeHere. However, on some cache operations (e.g a read to a remote line),

the head of the sharing-list cannot be at the node where the operation is taking

place (normally a requester). In these cases, the probability that the line is at its

home node is (l/(N - 1)). Since the line is not at the requester's cache, there are

(N - 1) other places where it could be.

Chapter 5. A Model of the SCI-connected Multiprocessor 	 69

hdHere 	= 11(shLstL + 1) (5.6)

hdA way = 1 - hdHere (5.7)

homeHere = 11N (5.8)

homeElsw = 1 - homeHere (5.9)

hdAtHome = 	11(N - 1) (5.10)

hdNotAtHome = 1 - hdAtHome (5.11)

On a conflict miss caused by local data references, the shared line has to be

flushed from the cache. This is accomplished by sending control messages to the

nodes towards the head and tail of the sharing list. It is assumed that one message

is always sent, thus ignoring the cases where the line is not being shared. If the

line is the head of a sharing list (hdHere), the line's contents have to be sent to

the next node in the list or written back if the line is dirty. A control packet is

sent out only if the home of the line is some other node.

xTagAccs = flushRt . hdHere . fihlcC 	 (5.12)

xTrips = flushRt(1 + homeElsw(hdHere + hdA way)) 	(5.13)

xSymb = flushRt(16 + homeElsw(hdHere . 48 + hdA way . 16)) (5.14)

xRem = rtDelay . xTrips 	 (5.15)

x e { lrd,lwr}

where flushRt is the number of lines flushed per coherent cache miss, rtDelay is the
round-trip delay, xTrips is the number of round trips needed for that transaction

and, xSymb is the number of symbols injected into the ring. xSymb will be used

later to estimate the level of traffic on the ring. xRem is the cost of the remote

operations for reference type x and xTagAccs is the latency of cache and memory

tag/data accesses.

The cost of a shared-data read-miss is computed as above but the cache coher-

ence protocol actions are different. For a more detailed description of the protocol

actions, see Section 2.3.2 (page 18). If there is a conflict miss, flush the line as

above, otherwise fetch the missing line: (1) send a request to the home memory

of the line, with probability hdHere of it being the at same node. (2) If the line is
at its home (hdAtHome), the remote SCI controller reads the line from memory

and (3a) sends it over the network; (4a) the local SCI controller writes the data to

the coherent cache. If the line is not at the home node, the home SCI controller

Chapter 5. A Model of the SCI-connected Multiprocessor 	 70

sends back the address of the head of the sharing list (3b); the requester then asks

its owner for a copy from the line (4b); the owner's SCI controller reads the line

from its coherent cache (5b) and sends it over to the requester (6b); the local SCI

controller writes the line to its cache (7b). The cost of looking up a line at the

memory directory is mTagAccs. The cost of a remote shared data read is given

by srdRem.

srdTagAccs = homeElsw . hdl'TotAtHome . mTagAccs +

flushRt hdHere fihlcC 	 (5.16)

srd Trips = homeElsw 2 + homeElsw hdNotAtHome .2 +

flushRt(l + homeElsw(hdHerc + hdAway)) 	 (5.17)

srdSymb = homeElsw (8 + 40) + homeElsw . hdNotAtHome (16 + 16) +

flushRt(16 + ho meElsw (hdHere - 48 + hdA way. 16)) (5.18)

srdRem = rtDelay srd Trips 	 (5.19)

In SCI, a write to a shared datum entails the invalidation of all its copies. The

SCI controller at the writing processor sends an invalidation message to each owner

of a copy thus purging the copies from other caches. After the sharing-list has been

purged, the write can proceed. For a detailed description of the protocol actions,

see Section 2.3.2 (page 18). The sequence of actions is: (1) the writer requests

exclusive ownership of the line to its home memory; (2a) if the line is clean and

not shared, the home controller acknowledges the ownership request with a control

packet (3a). If there are copies of the line, the home memory responds with the

address of the current owner (2b). The writer sends a write-exclusive request to

the owner (3b) who reads the line from its cache (4b) and (5b) returns both the

valid copy and the address of the next node in the sharing-list (if any). The writer

sends an invalidation packet (6b) to the next node in the sharing list, who (7b)

reads from its cache the address of the next node in the list and (8b) returns that

address to the writer. Actions (6b), (7b) and (8b) are repeated until all copies

have been purged. The writer then updates its exclusive copy (9b). The number

of sharing-lists purged per shared write miss is purgeRt. The average number of

copies purged is shLstL. The cost of a remote write is then

swrTagAccs = mTagAccs + hdNotAtHome . fihlcC +

purgeRt shLstL . cTagAccs +

flushRt . hdHere . fihlcC 	 (5.20)

Chapter 5. A Model of the SCI-connected Multiprocessor
	

71

swrTrips 	homeElsw (2 + hdNotAtHome 2) +

purgeRt shLstL 2 +

flushRt(1 + homeElsw(hdHere + hdAway)) 	(5.21)

swrSymb = homeElsw ((8 + 16) + hdNotAtHome (16 + 48))

purgeRt shLstL(16 + 16) +

flushRt(16 + homeElsw(hdHere .48 + hdAvizy . 16)) (5.22)

swrRem = rtDelay swr Trips 	 (5.23)

The execution time is obtained from the above equations, by adding up the

time taken by each of the reference types. Round-trip delay is initially estimated

from the network traffic, that is, from the number of symbols injected into the

ring. Its final value is obtained by an iterative method in which the cost equations

are re-computed each time a better estimate for the round-trip delay has been

obtained. As a first approximation, the throughput S 0 is set to the number of

bytes injected divided by the cost of the references. That underestimates the

execution time since network latency is ignored. The round-trip latency rtDelay 1

is then estimated with Equations 4.1 to 4.4 (function ring() in Equation 5.28).

Time t 1 is obtained from equations 5.15, 5.19 and 5.23, but using rtDelay 1 for

rtDelay. This process is repeated until the difference between two iterations is

less than 0.1%. Convergence is achieved after 5 to 20 iterations. xRaccs is the

number of remote references for operation x.

xRaccs = xcnt pcm 	ccm (591)

x e { lrd,lwr,srd,swr}

ailS ymb = lrdSymb + lwrSymb + srdSymb + swrSymb (5.25)

aliCosi = 	ifCost + ird Cost + lwrCost + srd Cost + swrCost (5.26)

So = 	2• aliSymb / ailCost (5.27)

rtDelay i = 	ring (numNodes, S1_ 1) (5.28)

localT 1 = 	irdCost + lrdRaccs . rtDeiay. ird Trips +
iwrCost + iwrRaccs . rtDeiay 1 . iwr Trips (5.29)

sharedT1 = 	srdCost + srdRaccs . rtDelay 	srd Trips +
swrCost + swrRaccs . rtDeiay . swrTrips (5.30)

ti 	= ifCost + locaiT 1 + sharedT (5.31)

Si = 2 	allSymb/t 1 (5.32)

Chapter 5. A Model of the SCI-connected Multiprocessor 	 72

Model accuracy. The main advantage of analytical models is that results can

be obtained much faster than is possible with simulation. However, the accuracy

of the results is only as good as the description of the system under study that is

embedded in the model. The accuracy of the model predictions can be assessed by

comparing them to the values produced by the simulator. Feeding the reference

counts and ratios from the workload to the model, the results obtained are in good

agreement with the simulation results. Table 5.1 shows the range of variation for

each of the programs and Figure 5.1 plots the percentage of error versus frequency

of occurrence for 120 simulation runs - six programs on five cache sizes on four

ring sizes. The worst errors are mp3dO (+11%) for the two largest cache sizes

and, paths() for a 64Kbytes cache (-13%). In both Figure 5.1 and Table 5.1, a

negative error means that the model is underestimating the execution time.

Ring size 2 4 8 16
chol() —1 1 0 —4,0 0+4 0, +4
mp3d() —10, —8 —7, —3 —3, +3 +2, +11
water() 0 —1,0 —3 1 —1 —6, —1
ge() 0 0 0 0
mmult() 0 0 ' +1 —4,0 —1, +6
paths() _1 ' O —3, 0 —7,0 —13,0

Table 5.1: Range of percentage error in the model prediction when compared to

the simulation results. A negative error means that the model underestimates the

execution time.

The model output for mp3d() overestimates network latency by 30% for the

two largest cache sizes, and by 12-14% for the three smaller cache sizes. The

time spent on shared-data references is also overestimated by about 10-15%. The

model does not explicitly account for synchronisation operations but assumes the

synchronisation-related memory references to be normal shared-data references.

The model underestimates network latencies for paths() on the 64Kbytes caches

(19%) and shared-data references (33%). The equations that describe the protocol

actions do not reproduce faithfully the behaviour of the system under very high

levels of coherency activity such as that produced by the high miss ratios caused by

paths() on small coherent caches. For more "normal" behaviour, model outputs

are within 5% of the simulation results.

Chapter 5. A Model of the SCI-connected Multiprocessor 	 73

runTime

I 	 I 	 I 	 I 	 I

- 	 2nodes G -
G 	 4 nodes +

- 	 8nodes 0 -
+ 	 16 nodes X

- 	 0 	 -
X

- 	 G 	 -

- 	 +

- 	 Do 	 -

	

+EiX 	X
- 	G 0 	+ 0 	 X 	-
X 	 *+x 	I X00 Ix 	

I

-15 	-10 	-5 	0 	5 	10 	15
Error (%)

Figure 5.1: Distribution of error in the model predictions when compared to

the simulation result. A negative error means that the model underestimates the

execution time.

5.2 Costing Sharing-lists and Conflict Misses

Impact of long sharing-lists on performance. One of the bottlenecks in

SCI is the potentially high cost of purging long sharing-lists since that cost grows

linearly with the number of copies that have to be purged. This can make syn-

chronisation operations expensive unless measures are taken to avoid a large degree

of sharing of barriers and locks - see, for example, [MS91,AGGW94]. Some al-

gorithms have large degrees of sharing for some or all of their shared variables, of

which paths() is a good example. The length of the its sharing-lists grows as 2,

3.4 7 5.4 and 7.1 for 2, 4, 8 and 16 nodes, respectively (256Kbytes cache). What

would be the impact on performance if the degree of sharing were even higher?

Using the parameters from the 256K and 512Kbytes caches, the model produced

the results shown in Figure 5.2.

The performance degradation is more easily seen on the 512Kbytes cache.

The case that is closest to the simulation is the 5-copies list. Taking that as

basis, the longest list (15 copies, 16-node ring) is 4% slower on both cache sizes.

The difference between the 1-copy list to the 16-copies list is just over 6%. The

model underestimates network latency by 7% for the 256K cache and 3% for the

512Kbytes cache. Taking that into account and assuming that network latency will

C

2

20

18

16

14

12

10

8

6

4

2

n

Chapter 5. A Model of the SCI-connected Multiprocessor 	 74

be underestimated further for the longer lists, the effect of long sharing-lists, for

paths 0, is still acceptably small for systems with up to 16 nodes. Notice however

that the number of writes to shared-data is relatively small when compared to the

number of shared-data reads - see Table 3.3 (page 37).

E
C
0

C
0

0.3
0.29
0.28
0.27
0.26
0.25
0.24
0.23
0.22
0.21

0.2

sharing list: pc256

1-G-
3 -±-.

7 ..x....
11
15

0.245

0.24

0.235

0.23

0.225

0.22

0.215

0.21

0.205

0.2

sharing list: pc512
I 	I

i-e--

2 	4 	8 	16
	

2 	4 	8 	16
Ring size
	

Ring size

Figure 5.2: Effect of long sharing lists on the performance of paths() with 256K

and 512Kbytes caches. The number of copies purged varies from 1 to 15.

The cost of conflict misses. Another interesting question concerns the effects

of flushing lines from the coherent caches because of conflict misses. nunult C)

has no write-shared data and therefore no sharing-lists are purged, except on a

handful of false-sharing cases. Thus, besides compulsory and capacity misses, all

other coherency activity is caused by conflict misses. These are responsible for

the poor performance of the 8-nodes ring when compared to the other ring sizes.

Figure 5.3 (page 75) shows the effects on performance when the number of lines

flushed per coherent cache miss varies from 0 to 1.

On the 8-node ring with 128Kbytes (512K) cache, the difference in speed

between never flushing to always flushing is 21% (17%). The level of traffic

is higher than on the other ring sizes because of the conflict misses between

instructions/local-data and shared-data. On the 16-node ring, the difference is

15% (6%). These findings were somewhat surprising since purging sharing-lists is

normally identified as the major bottleneck in SCI. Thus, the experiment 'above

was repeated using data from paths(), keeping the sharing-list related values as

per the simulations but changing the flush ratios. The results are shown in Fig-

ure 5.4. On a 16-node ring, 256Kbytes cache (512K), always flushing is 10% (4%)

slower than never flushing. Keeping in mind the caveats about model accuracy, for

Chapter 5. A Model of the SCI-connected Multiprocessor 	 75

paths(), the impact on performance of conflict misses is more pronounced than

that of long sharing-lists.

flush ratio: mmcl28 	 flush ratio: mmc512
I 	I

- 0.0 -3K-
0.2--

•

0.4 -±-.
- 0.6 -El-- :/,'--J - o

1.0

2 	4 	8 	16
Ring size

I 	I I 	I

4 	-

- 0.2 9- -

0.4 -I-- -

0.6 -0- -
0.8 	-X-
1.0

-
IA

2 	4 	8 	16
Ring size

E
C

w

0.8

0.75

0.7

0.65

0.6

0.55

0.5

E
C

C
0

0.72
0.7

0.68
0.66
0.64
0.62

0.6
0.58
0.56
0.54
0.52

Figure 5.3: Effect of conflict misses on the performance of inmult 0 with 128K

and 5121(bytes caches. The flush ratio varies from 0 to 1.

0.3
0.29
0.28
0.27
0.26
0.25
0.24
0.23
0.22
0.21

0.2

flush ratio: pc256
0.24

0.235

0.23

0.225

0.22

0.215

0.21

0.205

0.2

flush ratio: pc512

C

0.0 -)K- -
0.2 -0--
0.4 -I--
0.6 -0--
0.8 --X-
1.0 -A--

2 	4 	8 	16
	

2 	4 	8 	16
Ring size
	

Ring size

Figure 5.4: Effect of conflict misses on the performance of paths() with 256K

(left) and 512Kbytes caches (right). The flush ratio varies from 0 to 1.

The effects of long sharing lists and conflict misses on the workload is shown

in Table 5.2. The parameters are those of 256Kbytes coherent caches. First, the

length of sharing-lists was varied from 1 copy to 15 copies and the table shows

the slowdown for the 15-copies (7-copies) lists when compared to the 1-copy lists

on 16-node (8-node) rings. Notice that, except from paths 0, all of the other

programs have sharing lists with an average length close to 1. The table also

shows the slowdown of a very high level of conflict misses (always flushes: flush

ratio = 1.0) in relation to no conflict misses (never flushes: flush ratio = 0.0).

Chapter 5. A Model of the SCI-connected Multiprocessor 	 76

Table 5.2 shows that there is a marked difference in behaviour between inmult 0
and paths 0 and the other programs. The former suffer much more from long

sharing-lists than from high levels of conflict misses whereas the opposite is true

of the latter programs. The difference is caused by the higher rate of writes to

reads on the latter and the number of writes itself. uuuult 0 and paths 0 perform

only a few thousand writes while the others do hundreds of thousands of writes.

Note that five of the six programs have sharing-list lengths much closer to the basis

of the comparison (one copy) whereas they all exhibit levels of conflict misses that

do not fall at either extreme of the comparison range.

sharing-lists conflict misses
Relative change 7 : 1 15 	1 1: 0 1: 0
Ring size 8 16 8 16
chol() 5 25 3 5
mp3d() 43 153 20 28
water() 4 18 2 3
ge() 0 4 1 2
imnult() 0 0 17 9
paths() 	1 2 4 2 10

Table 5.2: Change is speed (%) for long sharing-lists and high level of conflict

misses. Values for 2561(bytes caches. See text for details.

mp3d 0 has the most extreme behaviour of the workload as far as network

latency is concerned. Thus, the experiments with varying sharing-list length and

flush rates were repeated for that program. Figure 5.5 (page 77) shows the results

for mp3d0. When comparing 3-copies lists to 1-copy lists, the differences is over

20% for mp3d() on a 16-node ring. Small increases in the levels of write-sharing

would cause serious performance degradation. -

Coda

The analytical model presented in this chapter estimates the performance of pro-

grams executing in an SCI ring-based multiprocessor with reasonable accuracy

but at a small fraction of the corresponding simulation time. The model predic-

tions are quantitatively good for programs that exhibit a "normal" behaviour and

qualitatively good for more extreme behaviours. The next chapter investigates

medium-sized multiprocessors in which the interconnects are higher dimensional

networks composed of several SCI-rings.

Chapter 5. A Model of the SCI-connected Multiprocessor

flush ratio: mpc256 	 sharing list: mpc256
1.05

1

0.95

E 0.9

0.85

0.8

0.75

0.7

0.65

2 	4 	8 	16 	 2 	4 	8 	16
Ring size 	 Ring size

Figure 5.5: Effects on performance of conflict misses (left) and sharing-list length

(right) for inp3d() on 256Kbytes coherent caches.

L.'I

2.2

2

E 1.8

1.6

1.4

1.2

1

0.8

WFA

I
)IE

A

0 1

Chapter 6

The Performance of Meshes and

Cubes

This chapter investigates the performance of SCI-based multiprocessors with up to

64 nodes. Chapter 4 provides evidence against the use of one-dimensional networks

for systems with more than 8 to 16 nodes with the type of processor and memory

hierarchy simulated. Here, two- and three-dimensional networks are examined. In

this chapter, two members of the family of k-ary n-cubes [Sei85,Da190,SG91] are

investigated, namely the mesh (n = 2) and the cube (n = 3). These networks are

implemented by having two or more pairs of SCI links on each node, each pair

belonging to a different ring. Thus, an SCI-mesh is actually a mesh-of-rings (a

torus) where each node belongs to a "vertical" and a "horizontal" ring.

The chapter is organised as follows. Section 6.1 discusses the simulation en-

vironment used to conduct the experiments. Sections 6.2 and 6.3 contain the

simulation results for SCI meshes and cubes. Finally, Section 6.4 compares the

performance of the workload on SCI rings, meshes and cubes.

6.1 The Simulated Multiprocessor

The simulation environment is basically the same as described in Chapter 3. The

network simulator was modified to incorporate the packet router described in Sec-

tion 6.1.1 and the statistics module was changed to record the extra traffic-related

information. Each ring in the network is modelled independently by Equation 3.1.

The cost of switching dimension is five extra network cycles (iOnS). The cost of

a transaction is computed by adding up the memory and network delays on all

rings in the path from requester to responder.

Chapter 6. The Performance of Meshes and Cubes

6.1.1 Routing

An important component of an k-ary n-cube network is the routing function. An

SCI-based network has characteristics of both wormhole routing and store-and-

forward [Tan89]. If the network is idle and a given node is not inserting a packet,

as soon as the destination address of an incoming packet is decoded by the parser,

it can be sent down the link leading to its destination, as is the case in wormhole

routing. If however a given node is inserting a packet, incoming traffic is buffered

until that packet is fully transmitted. Because of the buffering and the possibility

of blocked paths, the routing algorithm must be deadlock-free.

The router "implemented" by the simulator is based on the e-router [DS87].

The e-router is shown to be deadlock-free on SCI-based k-ary n-cubes by Johnson

and Goodman in [JG91]. The path from source to destination is always chosen

by inserting the packet at the highest dimension, where it travels as far as pos-

sible before being switched onto the next lower dimension. Deadlock avoidance is

ensured by the partitioning of network queues into a set of ordered classes, with

the queues in each dimension comprising one of the classes. Suppose, for example,

that in the torus depicted in Figure 6.1, node 3 sends a packet to node 8. Node 3

injects the packet into its Y (vertical) link. The packet travels on that ring until

it reaches node 11 where it is re-routed onto the X link and reaches node 8, its

destination. Notice that two echo packets are created, one from node 11 to node

3, on the Y ring and, one from node 8 to node 11, on the X ring. This algorithm

can be easily extended for routing on higher dimensionality networks.

I

ilo3lo3lo3lo3
I" 1pal"Plaroalova
I
I Or, a 1014 Ora [071

Figure 6.1: A four-by-four SCI mesh.

Chapter 6. The Performance of Meshes and Cubes 	 80

SCI's communication protocol ensures delivery within a single ring. Point-to-

point delivery must be ensured by higher level protocols implemented by inter-ring

switches. SCI allows for pipelined packet transmission along the route between

source and destination. The switch strips a packet from a higher dimension ring

and inserts that packet into a lower dimension ring, while at the same time the

packet's echo is being returned on the higher dimension ring. This frees up buffer

space at the transmitter stage of the requester (the 'active buffers' in Figure 3.3)

and intermediary switches.

6.1.2 SCI Switches

An SCI switch contains a pair of links for each dimension, in the case of k-ary

n-cube networks. Configurations for other topologies are described in [JG91]. Fig-

ure 6.2 depicts the data path of a two-dimensional switch. The incoming packets

at X- and Y-dimension link inputs are (1) passed along if the node is not the

destination of the packet and its destination is in the same dimension; (2) steered

to the node interface if the packed is addressed to the node; (3) placed at the other

dimension's output buffer if the destination node is in that dimension's ring.

x-
np

Figure 6.2: Data paths of a two-dimensional SCI switch.

In SCI, memory is physically addressed. Thus, the node address is an integral

part of the address of a coherent line. The mechanism that steers packets within a

Chapter 6. The Performance of Meshes and Cubes 	 81

switch can be implemented by simple and fast combinatorial circuits. The decision

to accept or re-route a packet can be taken by masking certain address bits [Sei85,

Hwa931. The extension to higher dimensional networks can be achieved in two

ways. For low dimensionality networks (3-D or 4-D), a simple extension of the

circuit depicted in Figure 6.2 would be feasible. For higher dimensionality, the

link interfaces within the switch could themselves be interconnected in a ring.

Johnson and Goodman propose such a scheme in [JG91]. Contention for the

internal ring would be small since all the changes in dimension occur between

adjacent dimensions, that is, dimensions i and ((i + 1) mod n). Notice that this

assumes a deadlock-free routing similar to that discussed in Section 6.1.1.

6.2 SCI Meshes

The performance of SCI-connected meshes is investigated in this section. Fig-

ure 6.1 depicts a four-by-four mesh. Note that the rows and columns can be

staggered so that all links have the same length [Da190]. Because of high compu-

tational costs, the systems simulated were restricted to three sizes, namely four-

(two-by-two), sixteen- (four-by-four) and 64-node tori (eight-by-eight). The effect

of secondary cache size on performance is assessed. Three cache sizes were sim-

ulated, namely 128, 256 and 512Kbytes. Processor throughput, packet delivery

delays, queue throughput and link traffic are investigated as well. Queue through-

put and link traffic are useful metrics because they can expose bottlenecks caused

by uneven traffic patterns.

6.2.1 Machine and Cache Size - SPLASH Programs

Figure 6.3 shows comparative simulation results of the SPLASH applications on

the machine and cache sizes simulated. Recall that the data-set sizes are scaled

up with machine size - see Table 3.2 (page 36). chol() is 3.2 times faster on a

16 nodes, 128Kbytes system than on a 4-node machine. The speedup is 2.8 with

the two other cache sizes - the performance is better but the speedup is worse.

nip3d() behaves the same way for the three cache sizes. water() shows a 12-14%

decrease in speed for a quadrupling in system size. This is partly caused by the

scaling factor used, where processors in 64-node systems do proportionally more

work. inp3d() and water() show negligible performance gains with increases in

cache size.

Chapter 6. The Performance of Meshes and Cubes 	 82

0.8

0.7

0.6

;; 0.5

0.4

0.3

0.2

0.1

0 . W 	LD 	Q 	 D • 	W 	 '1 	 U 	 ' 	 -

C. -C -C 	C(DC - DC.D 	c - W --D -- D

	

CWC'JC 	 DCCC'JC

	

In 1.0 .- C%J 	C.J 	 In W 1.0 .- C'J CJ 	.j 	 in 1.0

	

- CJ J in In.- 	._ 'J C'J 'J In In In .- -. 	 - C'J C'J r.J In In 	- -
- . CIJ . In 	0..- - 0. r.J N 0. In II 	 .- .- 	N N 	In If)

UQUUUU EEEEEEEEE

Figure 6.3: Execution time plots for chol() (left), mp3d() and water() (right).

The segments show the time spent on shared-data references and network latency.

Data sets are scaled up with machine size.

Coherent cache hit ratios. The shared-data read hit ratios of the SPLASH

applications are shown in Figure 6.4. chol 0 has a slightly lower hit ratio on the

128Kbytes caches when compared to the two larger cache sizes. The hit ratios

of mp3d() show a strong dependence on machine size but negligible changes with

cache size. water() shows a small decrease in hit ratios when going from a 4- to a

16-node machine. The low hit ratios on 64-node machines are caused by the data

set not fitting in the caches - the rates improve about 5 percentage points for each

cache size doubling.

.2 0.95

0.9
E 0.85

0.8
0.75

0.65

0.6

0.55
0.5

	

(\J C 	 C C ID C C ClJ C C 	CO C C ID C C N C C

	

N ID In CO .- N 	N ID ID if) ID ID .- N N 	N ID ID in (0 (0 	N N

	

N N if) In - 	- N N N In If) If) .- .- 	- N N N If) U) Ifl 	-

	

- .0 N .0 If) 	0. .- .- 0. N N 0. In If) 	 - .- 	 N N 	If) If)

	

UUUUUU 	E E E E E E E E E

network

D shared

U if+Iocal

Figure 6.4: Coherent cache shared-data read hit ratio plots for chol () (left),

mp3d() (center) and water() (right).

Chapter 6. The Performance of Meshes and Cubes 	 83

Execution time breakdown. Figure 6.5 shows the execution time breakdown

for the three SPLASH applications, for the machine and coherent cache sizes sim-

ulated. Time was divided into (1) fetching and execution of instructions, (2)

references to private data, (3) references to shared data local to the processor, (4)

references to shared data in another node, (5) network delays and (6) synchron-

isation. The fraction of time spent on references to shared data at another node

includes all delays caused by protocol actions such as cache/memory tag accesses

as well as loading and storing data in caches and main memory. Both chol() and

water() spend about half the time executing instructions and under 20% of the

time referencing remote shared-data. mp3d 0 spends most of the time in references

to remote shared data and synchronisation. As is the case with the shared-data

hit ratios, there is little change with cache and machine sizes.

0.9

0.8

0.7

0.6

0.5
0.4

0.3
0.2
0_i

0

synch

network

• remote

• shared

LI private

• i-fetch

	

00 cwce...ic 	co ccWccricc 	w ccccc.jcc
00 LI) W .- CJ 	CJ 	LI) W W .- C.J rj 	j 	ID ID — rj c'J

— 	I..J LI) LI).— 	.- C%J C'J 	LI) LI) LI).— — 	— CJ C'.J 	LI) LI) is .- .-

	

.C—.CC.J.CLI) 	Q..— .- Q.C..JCJ O.II)LI) 	.- 	C'4 r1 	LI)LI)

	

', '''
	 E E E E E E E E E

Figure 6.5: Execution time breakdown for cho 10 (left), mp3d C) (center) and

water() (right).

6.2.2 Machine and Cache Size - Parallel Loops

Figure 6.6 compares the performance of the parallel loops for the machine and

cache sizes simulated. Recall that the data-set sizes are scaled up with machine

size - see Table 3.2 (page 36). ge0 scales up well, with just a small performance

loss for a quadrupling of system size. On the 64-node machine, minult 0 displays

an improvement in speed of about 10% for each cache size doubling, because of

the improvement in the shared-data hit ratios. The same applies to the smaller

systems. paths O's performance depends on cache size. When the shared-data

hit-ratios are low, performance degrades badly because of the high cost of fetching

needed data and purging sharing-lists. The plots indicate that the network is

Chapter 6. The Performance of Meshes and Cubes 	 84

saturated since a very substantial portion of the execution time is spent on network

delays - see Section 6.4.1, page 97.

0.8

0.7

0.6

- 0.5

0.4
41

 0.3

0.2

0.1

0

network

El shared

U if+Iocal

CO cDccr'Jc W CCLCCCJCC W CCtQCCrgCC

	

W_ N cj W WLn WW_ r.J (%J 	.j W WLnww— C'J rJ
- c'J cJ L1) (I) LI) . 	 CJ r..J (I) LI) LI) 	 .- CM C%J €J U) LI) if) — —
U 	U C'J (.J U LI) 	E 	E NN E LI) LI) 	0..

	
0. C'J C.J 0. U) LI)

0 	 °' 	E E 	E E 	E E 	0. 0. 0. 0. 0.

Figure 6.6: Execution time plots for ge() (left), inmult() (center) and paths()

(right). The segments show the time spent on shared-data references and network

latency. Data sets are scaled up with machine size.

Coherent cache hit ratios. Figure 6.7 (page 85) shows the shared-data-read

hit ratios for the parallel loops. ge C) has high hit ratios and these vary little with

cache and machine size. mmult 0 has slightly lower hit ratios and these depend

on both cache and machine size. paths() on the other hand, shows large changes

in hit ratios with cache size and, to a much lesser extent on machine size. The

512Kbytes cache is large enough to contain most of the data set. In the three

programs, the decrease in the hit ratio with system size is caused by an increase

in interference amongst the processors, that is, larger systems have higher degrees

of write-sharing and longer sharing-lists.

Execution time breakdown. Figure 6.8 shows the execution time breakdown

for the parallel loops for all the machine and coherent cache sizes simulated. Time

was divided into (1) fetching and execution of instructions, (2) references to private

data, (3) references to shared data local to the processor, (4) references to shared

data in another node and (5) network delays. ge() spends a large fraction of its

time executing instructions and just a little time on references to remote shared-

data. The fraction of execution time in which mmult C) is stalled waiting for

network delays increases with machine size and decreases with cache size. paths 0,
when the caches are large enough to contain the data sets, spends most of the time

W 	 D 	 D
C.W C 	C.D 	C.W CW C.W

	

C CW C CC'.) C C 	 C CW CCC'.) C C
Cs) 	 U) (0 (0 .- CS.) C'.) 	 (I) (0 (0 	N

Cs) Cd C'.) LI) LI) LI) 	.- 	 Cd Cd e'.J U) It) SI) .-
E 	E Cd Cd E LI) II) 	Q .- CLCS.)C'.) Q II) LI)

EEEEEEEEE CL 	CL CL

Chapter 6. The Performance of Meshes and Cubes 	 85

performing instructions. If the caches are too small, network traffic then takes a

very substantial fraction of the execution time.

cc 	
0.8

0.75

0.7

C .-
C (.D 	C 	C CS.) 	C

CS.) 	U') 	W W .- 	C's)
C'.) 	C'.) 	U') 	U') LI)

w N W 	LI)
0) 0) 0) C) C) C) C)

Figure 6.7: Coherent cache shared-data read hit ratio plots for ge() (left),

minult() (center) and paths() (right).

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

network

• remote
• shared

D private

• i-fetch

	

(0C(OCCC-4C 	Go CC(DCCC'JCC 	00 CCLDCCC's)CC
N 0 LI) (0 (0 	Cs) 	C'..) 0) 0) in (0 (0 ..- N Cs) 	N 0) 0) U) (0 	N

	

NNtflLI)Lfl- 	-CSJNC's)LI)LflII) 	 ...NNJU)Lflifl.-.-

	

U C's.) CS..) U I!) 	E 	E CS.) CS.) E LI) II) 	Q. 	— 0. N N Q. U) LI)

	

C) C) 0) 0) C) 0) 0) 	E 	E E E E E E E 	0. 0. 	0. 0. 	0. 0.

Figure 6.8: Execution time breakdown for ge() (left), inmult() (center) and

paths() (right).

6.2.3 Throughput and Latency

The network characteristics of the SCI-meshes is examined next. Unlike the ring,

a single processor request can generate up to two packets: one for each network

dimension. The first packet is injected by the processor and the second by the

SCI interface of the node where the change of dimension occurs. Thus, processor

throughput is here computed by taking the traffic generated by onboard pro-

cessor and cache/methory controller only and dividing it by the execution time.

1 00

90
>'

80

, 70

60

50
CL

40
CL 	

0

o 20

10

0

o .c
0

1) 7 T • ;.(
CL '' EE 	0.0.

EE 	 0)0) E
EE

Chapter 6. The Performance of Meshes and Cubes 	 86

Figure 6.9 shows the throughput per node for systems with 256Kbytes coherent

caches. The applications with the lower shared-data hit ratios are the ones that

cause most traffic on the network, namely mp3d() and paths().

Figure 6.9: Throughput per node for 256Kbytes caches. From left to right:

cholO, mp3dO, water(), ge0, minult() and paths 0.

2 SOT

I 	207

c200T 18e
E. 172 . 	iso

I

II

1 55

1131 '
0

io 103 11
7 4

1
I

2

-

76 I 9 ilhliE

iic
84

l '•I

76

67 i i
1

l

0 	Iii 	IiII 	III 	IIII 	IIII 	III

	

W 	 W 	 (0 	 (0 	 (0 	 . (0
(0

EE 	 °'°' 	EEE
EE

Figure 6.10: Round-trip delays for 256Kbytes caches. From left to right: chol 0,

mp3d0, water(), ge0, inmult() and paths().

Figure 6.10 shows the round-trip delays incurred by the applications. Those

which generate higher traffic endure longer delays, as is the case with single rings.

The round-trip delay is computed in a similar fashion to the throughput. The

"round-trip" considered is that of packets inserted by the processors. The delay

is computed by dividing the time spent on network latencies by the number of

packets inserted by each processor. On a 2x2 torus, the average round-trip delay

is 75ns; on a 4x4, is 108ns and, on a 8x8 torus, is 174ns. These values are in broad

Chapter 6. The Performance of Meshes and Cubes 	 87

agreement with Equation 2.3 (page 9), with c set to 5 (five extra network cycles on

a change of dimension). Note however that the delays estimated by Equation 2.3

are maximum delays whereas those measured are closer to average or best-case on

the smaller systems.

Higher dimensionality networks offer high bandwidth and, in theory, suffer less

from network congestion. However, the interaction between allocation of processes

to processors and data to nodes can cause non-uniform traffic patterns and hot

spots. The quality of a network design depends on how these are tolerated. The

following paragraphs discuss the measurements of traffic through links and queues

in the network.

In meshes, unlike rings, the routing algorithm and allocation of data to nodes

can produce different traffic patterns on individual rings or on the rings belonging

to a given dimension. The average value for link traffic tends to hide irregular

behaviours. Figure 6.11 (page 88) shows both the average and the peak traffic

per link for the two dimensions. Peak traffic varies considerably between the

two dimensions whereas average traffic is roughly the same. As is the case with

throughput, inp3d() and paths() cause the highest levels of traffic.

The output buffer holds packets inserted by the processor and local cache as

well as packets that changed dimension and are entering the second leg of their

trip. The routing has a more noticeable effect here, with the Y-dimension buffers

being busier than their X-dimension counterparts - see Figure 6.11. As before,

mp3d() and paths() have the busiest output queues but, except for paths(),

average traffic is much closer to peak. paths() has a hot spot node that handles

nearly twice the average traffic.

The plots for the traffic through the bypass buffers are similar to those of link

traffic, with X-dimension queues being busier - see Figure 6.11. Because of the

routing algorithm, the majority of the packets are injected into Y-rings whereas

most of the non-local traffic occurs on the X-rings. This is a consequence of the

mapping of data to nodes: when the quota of pages is exceeded, overspill pages

are allocated to the neighbour on the X-dimension.

700

6001

500
.0

400
0

300

zoo

100

iJ
• w

0

w
	

I
 i - 0 - '.

I 	 I
0) 	0)

0)0) E EE EE

x-rnax

y-max

• 	x-avg

—ci----- y-avg

'.0 	•

&-; 9
0. 0.

60

2 4°

0 -A.. Al CL
20

0 I4
'.0 ''.0 ''.0 It

I 	 1Ø .- 	'.o . 0.i 	I Wi 	• U . E 0. 0. '
0)0) E EE EE

j 160

140

. 120
-I

3:100

::

x-max

y-max

• 	x-avg

—0----- y-avg

600

VII
.0

500

-c 4-.
400

C
.8 300

C)

200
.0
(0
cc 100-
CL

iD1ID1Ij °D1I
I 0.. 	i I..) •-(I -W

°-c 0)WQ) 0)0) E EE EE

x-max

y-max

• 	x-avg

—ci--- y-avg

(0 .
& 1 0. 0.

Chapter 6. The Performance of Meshes and Cubes

(I)

Figure 6.11: Link traffic per dimension (top), output buffer traffic per dimension

(mid) and bypass buffer traffic per dimension (bottom), for 256Kbytes caches.

From left to right: cholO, mp3dO, vat erO, geO, mmult() and paths C).

Chapter 6. The Performance of Meshes and Cubes 	 89

6.3 SCI Cubes

This section discusses the performance of SCI-connected cubes. Figure 6.12 depicts

a four-by-four-by-four cube. Because of high computational costs, the systems

simulated were restricted to two sizes, namely eight- (2x2x2) and 64-node cubes

(4x4x4). The effect of secondary cache size on performance is assessed. The

cache sizes simulated were 128, 256 and 512Kbytes. Processor throughput, packet

delivery delays, queue throughput and link traffic are investigated as well.

Figure 6.12: A four-by-four-by-four SCI cube. Wrap-around connections in the

Z dimension not shown.

6.3.1 Machine and Cache Size

Figure 6.13 shows the execution time for the SPLASH applications on machines

with 8 and 64 nodes and 128, 256 and 512Kbytes caches. Recall that the data-set

sizes are scaled up with machine size - see Table 3.2 (page 36). chol () performs

better on the two larger cache sizes and the poorer performance with 128Kbytes

stems from lower hit ratios. mp3d C) 's performance is roughly independent of cache

size. Of the 8-node systems, the 128Kbytes is faster because of less cache pollution,

as was the case on the single ring (Section 4.2.2). water() is 38-40% slower

on the larger machine because of the scaling factor used. For ge 0, the slight

loss in speed on the 64-node, when compared to the 8-node, is caused by higher

network latency. mmult ()'s performance depends on both cache and machine sizes.

Although the differences are small, they are a consequence of better hit ratios (see

below), paths() has a very poor performance with the two smaller cache sizes,

Chapter 6. The Performance of Meshes and Cubes 	 90

on the 64-node machines. This is a consequence of the low hit ratios it endures

with the smaller caches.

0.8

0.7

0.6

0.5

0.4

0.3

::flñj
1I1ij 11111111111 111111111 11111 U)U)U) U) • •U)••U)•• U)U)U) 00003 V U)U)U)

C c c C CD C CD C CD c CD c CD C CD C a CD C C CD C CD C CD C CD c CD C CD U) CD N U) C CD C N C U) C CD C N C U) CD C C.J U) C ID C N C U) C CD C N C
N LI) .- N U) LI) CD .- N cJ U) Ln CD.- N N U) CD .- N U) LI) CD.- N em U) in CD.- N - N 11) .- N N in LI).- .- N N in LI) .- N II) in - N N in in - .- N N in LI) -
.0 C.0
UUU

Q. .- 0. N 0. in .- 	N 	U) G 	C) N C) E - E N E in 0. N C). it)
E E E E E E '°'°'°' EEEEEE ° 	0.

Figure 6.13: Execution time plots for chol () (left), mp3d 0, water 0, ge 0,

nunult 0 and paths() (right). The bottom section of the columns corresponds to

time spent fetching instructions and referencing local data, the middle section to

references to shared-data and synchronisation, and the top, to network latency.

Data sets are scaled up with machine size.

0.95

0.9

Z 0.85

0.8

0.75

0.7

I

0.65

0?:5

C C C 	C CD C CD C CD 	C CD C CD C CD 	C C CD C 	C CD C CD C CD 	C CD C CD C CD
U) CD N 	co C CD C N C 	co C CD C N C 	co CD C N 	co C CD C N C 	co C CD C N C
N

In
	N U) in CD.- CM 	N In CD.- 	CM U) LI) CD-N 	N U) in CD-N - N LI) 	(MN U) It) .- 	- C') C'JIt)LI) - 	-N it) 	CM U) II).- ('J NIh It).-

.0 0..- 0. N 0. LI) 	.- 	C') 	LI) 	4) 4) 	 E - E 	E " 	- 	CM 0. LI)
°"" 	EEEEEE 	 0) 	V) 	E E E E E E 	0. 	0. 	0.

Figure 6.14: Coherent cache shared-data read hit ratio plots for chol() (left),

mp3d0, water (), geO, nunult() and paths() (right).

Coherent cache hit ratios. Figure 6.14 plots coherent cache shared-data read

hit ratios for the cache and machine sizes investigated. These hit ratios explain

the results presented in Figure 6.13. The situation here is similar to Figures 6.4

and 6.7. chol () shows a small improvement with the larger caches. On the 8-node

system, mp3d0 has worse hit ratios on the larger caches. This is caused by higher

Chapter 6. The Performance of Meshes and Cubes 	 91

levels of cache pollution on the larger caches. water 0, on the 64-nodes system

shows an improvement of five percentage points for each cache size doubling. ge 0

has a slightly lower hit ratio on the 64-node, as compared to the smaller system.

nunult 0, on 64-node machines, shows a 5% improvement in the hit ratios of the

512Kbytes cache. Finally, paths() needs the 512Kbytes of cache to accommodate

its data set and that is reflected in its hit ratios and performance.

Execution time breakdown. Figure 6.15 shows the execution time breakdown

for the three SPLASH applications, for all the machine and coherent cache sizes

simulated. Time is split into (1) fetching and execution of instructions, (2) refer-

ences to private data, (3) references to shared data local to the processor, (4) refer-

ences to shared data in another node, (5) network delays and (6) synchronisation.

Recall that the fraction of time spent on references to shared data at another

node includes all delays caused by protocol actions as well as loading and storing

data in caches and main memory. Both chol() and water() spend about half

the time executing instructions while they spend little time referencing remote

data. mp3d 0 spends most of the time in references to remote shared data and

synchronisation operations.

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

• synch

1 network

• remote

• shared

[1 private

• instrn

	

CO W cJ 	W C (0 C t'J C 	 wo C (0 C CJ C

	

Ll — 	N W Ln (0 	 CJ 	 N W Ln (0 	 N

	

N Ln 	 N Ln I!) .- 	 N N fl

	

0. — 0. N 0. ifl 	 .- 	 N 	 0

	

0 	 E E E E E E

Figure 6.15: Execution time breakdown for cholO (left), mp3d() and

water() (right).

Figure 6.16 shows the execution time breakdown for the parallel loops. Time is

split into (1) fetching and execution of instructions, (2) references to private data,

(3) references to shared data local to the processor, (4) references to shared data

in another node and (5) network delays. As with the other two topologies, ge 0

spends a large fraction of its time executing instructions and just a little time on

Chapter 6. The Performance of Meshes and Cubes
	 92

references to remote shared data. The time imnult 0 spends on network latency

is inversely proportional to the hit ratios, with the smaller caches spending over

12% of the time on network delays (64-node systems). paths 0, when the caches

are large enough to contain the data sets, spends over half the time performing

instructions. If the caches are not big enough, network traffic then accounts for a

very large fraction of the time.

0.9
0.8
0.7

0.6
0.5
0.4
0.3
0.2
0.1

0

L network

• remote

• shared

E] private

• instm

00 t~ C C 	 C CD 	C C'J 	C 	 .. •• 	 .. 	 -

C..J Lfl CD 	 in CD .- 	 CJ 	 .j 	 in CD 	. N

— N 	 in 	 N N tfl ifl 	 N N 	ifl

W U N U 	 E — E N E 	 — 0. N 0. 'fl

a, 	LEE LEE 	 0. 	0. 	0.
U D

Figure 6.16: Execution time breakdown for ge() (left), mmult C) and

paths 0 (right).

6.3.2 Throughput and Latency

Figure 6.17 shows processor throughput and round-trip delay for the six pro-

grams simulated with 256Kbytes coherent caches. As was the case with meshes,

throughput and latency are computed only from processor generated traffic. The

round-trip values are in agreement with Equation 2.3, with c set to 5 (five extra

network cycles on a change of dimension). Again, note that the delays estimated

by Equation 2.3 are maximum delays whereas those in Figure 6.17 are closer to

average or best case. Since the rings are smaller and there are, relatively speaking,

more links between nodes, the average distance between nodes is smaller and so

are the network latencies, when compared to 64-node meshes.

16

14

,512
>'

4:1 10
o. 8'

6

2 41

2

C.

U

	

 Go . 	 . OD 	1W

06 	 CL

	

C? 	 C?
E 	 CD 	C)

	

, 	E 	 0.

Chapter 6. The Performance of Meshes and Cubes 	 93

- 100

90

80
>.

a 70
0

60

50
0.

40
CL
 0

2 20

•- 	10

0

U

99

	

CO . 	 . 	 C

E 	cL 	 0 	 0.
E 	 CD 	 E E

159

Figure 6.17: Throughput per node (top) and round-trip delay (bottom), for

256Kbytes caches .From left to right: cho 10, mp3d 0, water 0, ge 0, mmult C)

and paths 0.

The plots for link, output- and bypass-buffer traffic, are shown in Figure 6.18.

When comparing to Figure 6. 11, the levels of traffic on individual links and queues

are lower. This is a direct consequence of increased network capacity. There is

another contributing factor which is the proportionally smaller number of nodes

on each individual ring, for instance, 4-node rings instead of 8-node rings on the

64-node machines. This decreases the rate of network requests on each ring while

the traffic created by packet delivery to nodes in remote rings is divided amongst

the links in each dimension.

Chapter 6. The Performance of Meshes and Cubes
	

94

450

400

350

. 300

250

' 200

- 1 Sc
C

- bc

50

0
C
-C
'I

(I,

250
>'

200
-c

ISO

100

50
0.
4-.

0

0
00
-C
0

U,

-.- 300

250
-C

I :::
a, 100
.0
U,
U, a 50

0
00
-C
U

00 	 00 	 00 	 V, 	00 V
CD 	 CD 	• 	CD 	 • 	CD 	 CD a. 	 • 	a 	• 	E CL

E C,

	

 00 00 It 	 - 	 . 	 . 00 qw

0.
I 	CD 	 I 	CD 	 I

U CD
	 I 	CD 	 •

E 	 a.

	

E cL 	 0)
CD 	

&

- 	 - 	 IT 	IT 	CO V CO

a. 	• 	 • 	a, I 	C.D 	 (.0 	• 	CD 	
&

CD

C,U 	 &
0,

x-MAX

z-1UtA_X

• 	x-AVG

—0----- y-AVG

-•- z-AVG

x-MAX

y-MAX

• 	x-AVG

—0--- y-AVG

• 	z-AVG

x-MAX

z-ttA.X

• 	x-AVG

—0----- y-AVG

• 	z-AVG

Figure 6.18: Link traffic per dimension (top), output buffer traffic (center) and

bypass buffer traffic (bottom), all for 256Kbytes caches. Notice that the verti-

cal scales are all different. From left to right: chol 0, mp3d 0, vat er 0, ge 0,
minult() and paths0.

Chapter 6. The Performance of Meshes and Cubes 	 95

6.4 A Comparison of Rings, Meshes and Cubes

This section compares the performance of the three topologies investigated here,

namely rings, meshes and cubes. Since the simulated machine sizes are not all

the same on the three topologies, comparisons are drawn for same-sized multi-

processors. The significant metric is execution time. Processor throughput and

round-trip latency are examined since these help to explain the relative advant-

ages of one topology over another. Figure 6.19 plots the execution time of 4-node

rings and 2x2 meshes, and of 8-node rings and 2x2x2 cubes. The execution time

of 16-node rings and 4x4 meshes is shown in Figure 6.20 as well as 8x8 meshes

and 4x4x4 cubes.

ch-r
ch-m

12 rnp-r
mp-rn

U
2 w-r

w-m

E ge-r
. ge-m

mm-r
mm-rn

p-r
p-rn

network

LI shared

•

o 	0.1 	0.2 	0.3 	0.4 	0.5 	0.6 	0.7 	0.8
time (s)

ch-r
ch-c

12 mp-r
Sal mp-c
4,
U
2 w-r
sw-c
75
E ge-r

. 	ge-c

mm-r
mm-c

p-r
p-c

• network

[II] shared

•

o 	0.1 	0.2 	0.3 	0.4 	0.5 	0.6 	0.7 	0.8
time (s)

Figure 6.19: Performance of 4-node (top) and 8-node (bottom) multiprocessors,

with 256Kbytes caches. The suffixes -r, -m and -c stand for ring, mesh and cube,

respectively. From top to bottom: cholO, mp3dQ, waterO, geQ, mmult()

and paths().

Chapter 6. The Performance of Meshes and Cubes 	 96

The performance of higher dimensionality networks with 4 and 8 nodes is worse

than that in their low-dimensional counterparts - see Figure 6.19. This is caused

by the higher cost of changing dimensions, that is, five extra network cycles on

each packet delivered to nodes in remote rings. For example, on 4-node systems,

on average, two thirds of the packets need to pass through a network switch, thus

incurring the extra delays. For small systems, the ring is clearly the best choice,

both in terms of performance and cost.

ch-r
ch-rn

mp-r
mp-rn

CL w-r
w-rn

ge-r
- ge-m
0

c.o mm-r
rnrn-m

p-r
p-rn

network

El shared

U if+Iocal

0 	0.1 	0.2 	0.3 	0.4 	0.5 	0.6 	0.7 	0.8

time (s)

mp-m
rnp-c

0
w-rn

U
w-c

41 ge-m
E ge-c
U

mm-m
mm-c

p-rn
p-c

U network

LI shared

U i4Iocal

0 	0.1 	0.2 	0.3 	0.4 	0.5 	0.6 	0.7 	0.8

time (s)

Figure 6.20: Performance of 16-node (top) and 64-node (bottom) multiproces-

sors, with 256Kbytes caches. The suffixes -r, -m and -c stand for ring, mesh and

cube, respectively. From top to bottom: chol() (16-node only), mp3d(),water(),

ge0, nuuult() and paths().

On the 16- and 64-node multiprocessors, the higher dimensionality networks

are clearly better for programs that cause high levels of network traffic, namely

mp3d() and paths(). For these programs, the performance gains are 15 and 10%

respectively. For the rest of the workload, the performance gains are smaller. Fig-

Chapter 6. The Performance of Meshes and Cubes 	 97

ure 6.20 shows that speed improvements stem mostly from a decrease in network

latency. Variations in hit ratios and mapping of pages to nodes are the cause of

the small variations in the time spent on instruction fetching and execution and

shared-data references.

6.4.1 Throughput and Latency

Figure 6.21 plots throughput for inp3d() and paths(). The speed of these two

programs is clearly limited by network latency as can be seen in Figure 6.20.

On a ring, throughput can be pushed to 78Mbytes/s by doubling the processor

clock speed, as discussed in Section 4.2.4 (page 53). mp3d() attains 93Mbytes/s

on the 16-node mesh and 73Mbytes/s (84Mbytes/s) on the 64-node mesh (cube).

paths() achieves 89Mbytes/s (98Mbytes/s) on the 64-node mesh (cube).

rnp8-r 62 	 -

93 rnp8-c

rnpl6-r 50
rnpl6-rn

rnp64-m 73
mp64-c

E12

84

p8-r
p8-c 16

p1 6-r 34
p16-rn 46

p64-m- 89
198 p64-c

O

I 	 I 	 I 	 I

10 	20 	30 	40 	50

I

60 	70 	80 	90 	100

throughput per node (Mbyte/s)

rnp8-r 83
rnp8-c 82

rnpl6-i 17
rnpl6-rn 108

rnp64-m 1 207
mp64-c 159

p8-r 78
p8-c bC

p16-r 15E
p16-rn

115

p64-M 188
p64-c 152

0 50 	 100 150 	 200 	 250

round-trip delay (ns)

Figure 6.21: Processor throughput (top) and round-trip delay (bottom) for

mp3d() (mp) and paths() (p), 256Kbytes caches. The suffixes -r, -m and -c stand

for ring, mesh and cube, respectively.

Chapter 6. The Performance of Meshes and Cubes 	 98

The question needing an answer concerns the apparent limit of 100Mbytes/s

throughput. Given the evidence provided in Section 4.2.4 and Figure 6.20, it is

fair to say that the network places a limit on performance, this limit being node

throughput at about 100Mbytes/s. Figure 6.21 also shows the round-trip delay for

mp3d() and paths(). Figure 6.21 explains the performance improvement achieved

by higher dimensional networks. Two effects cooperate towards better perform-

ance. To a decrease in latency, and increase in network capacity, corresponds an

increase in throughput and hence better performance.

The above conclusion indicates that processor throughput is limited at about

100Mbytes/s. To confirm that, more simulations were done with a 200MHz pro-

cessor clock to increase the rate of network requests. paths() was run on 16-node

ring and mesh, and 64-node mesh and cube. The results are shown in Figure 6.22.

Throughput does go beyond 100Mbytes/s on the 64-node cube. Table 6.1 shows

traffic levels, throughput and round-trip delays for paths() with 100 and 200MHz

processor clock frequencies. Section 4.3 (page 57) discusses the effects of network

saturation in SCI-rings. Saturation occurs for link traffic levels at about 600-

700Mbytes/s and that places a limit on system performance. The traffic levels re-

corded in Table 6.1 for the 200MHz mesh are near those where network saturation

occurs. Traffic levels for the 200MHz cube are lower than saturation and through-

put reaches 121Mbytes/s. Thus, throughput can be higher than 100Mbytes/s

provided network traffic is kept below saturation levels.

tput. dly. peak avg. peak avg. 	peak 	avg.
dimension I 	- I 	X Y Z

mesh 	100MHz
200MHz

89
106

188
194

594
687

434
512

430
483

362 	- 	 -

429 	- 	-
cube 	100MHz

200Mhz
98

121
152
153

406
466

233
283

324
370

217 	233 	182
265 	289 	224

Table 6.1: Processor throughput, round-trip delay and link traffic, for paths(),

with 100 and 200MHz processor clock.

Chapter 6. The Performance of Meshes and Cubes

0.7

0.6

0.5
network

0.4
U)

0.3
C] shared

U it+Iocal
0.2

I 	

I

0.1

0 • E 	E
I I I

U 	U
U) 	6 	o

0 0
C 	•- 	tJ

6 	6 6
0 2

66
N

Q. 	0. - 	N
0. 	0.

N
CL 	0

w

140
IZI

120 106
98

I 1 80 70
61

3 cL 	40

1 20
d4

0 U) 	-
U)

0 	0 	0

E
66
0

E

0

to E 	E
66
0 	0

6 	6
00

C 	 N
0. 0. N .

(0

- 	N
a. 	a.

- 	N
CL 	CL

Figure 6.22: Execution time and processor throughput for paths(), processor

clock of 100 and 200MHz, 256Kbytes caches. The suffixes -r, -m and -c stand for

ring, mesh and cube, respectively. -

6.4.2 Cache Size and Network Dimensionality

An interesting question concerns the relationship between cache size and network

dimensionality. Larger caches cause less network traffic because of their higher

hit ratios. Lower traffic means decreases in network latency and that in turn

tends to increase the rate of memory and network requests. Higher dimensionality

networks have inherently lower latencies and higher bandwidth. These effects also

tend to increase the rate of network requests. However, the higher traffic levels

are supported better because of the network's higher capacities.

Given a limited budget, the architect has to weigh two options: either use

the largest possible cache size or increase the network dimensionality. Both op-

tions have an associated cost and both improve performance. In order to gauge

the effects of both cache size and network dimensionality, the execution times of

mp3d() and paths() are shown in Figure 6.23 for 128, 256 and 512Kbytes caches

and 4-, 8-, 16- and 64-node multiprocessors. These two programs generate the

highest traffic levels in the workload. mp3d 0 's performance benefits more from

Chapter 6. The Performance of Meshes and Cubes 	 100

a higher-dimensional network than from bigger caches. For instance, the 64-node

cube is 14 to 16% faster than the mesh while the differences in performance for the

three cache sizes is less than 1%. The hit ratios are roughly the same for the three

cache sizes on 64-node rings. The behaviour of the 16-node machines is similar.

The two smaller multiprocessors suffer from the higher costs of switching dimen-

sion. paths 0 behaves differently. The systems with 512Kbytes caches show little

performance difference (within 2%) in all sizes and topologies considered. The

performance of the two larger machines with 128 and 256Kbytes caches improves

by about 10% on the higher dimensionality networks.

0.8

0.7
0.6

CO CL

0.5

0.4
.21

0.3

- 0.2

0.1

0

• 128K

0256K

• 512K

 E 	 E 	?
00 	00

CL 	 CL E CL 	 CL 	
CL 	

CL 	CL

E 	 E 	E

0.8

0.7
0.6

-a

2.0.5

0.3

0.2
0.1

0

• 128K

El 256K

• 512K

rE 	 r 	E 	 E 	?
It 	4 	OD 	C6
CL 	 CL 	

4

	

CL 	 CL 	 W

fX 	CL

Figure 6.23: Performance of mp3d() (top) and paths() (bottom) with 128K,

256K and 512Kbytes caches, on 4-, 8-, 16- and 64-node multiprocessors.

Coda

Higher hardware costs should be balanced against the potential performance gains.

The performance improvements due higher dimensionality, for the experiments

reported here, are in the range of 10% to 15%, for applications that generate high
levels of network traffic. For programs that make better use of shared-data, the

performance gains are negligible.

Chapter 7

Conclusion

This dissertation contains a detailed performance evaluation study of an SCI-based

shared memory multiprocessor. Previous studies of SCI based systems have con-

centrated on network performance and to a large extent ignored the influence of

the cache coherence protocol. Here, the interactions between interconnection net-

work and cache coherence protocol were investigated. The results of the detailed

simulations are summarised below.

A multiprocessor system was "implemented" in the simulator with components

compatible with the current levels of performance. Several architectural paramet-

ers were investigated, namely machine size, secondary cache size, processor clock

speed and interconnection topology. Machines were simulated with one, two, four,

eight, sixteen and sixty-four 100MIPS processors. In order to reproduce accurately

the interleaving of the memory references in a NUMA architecture, the architec-

ture simulator is driven by reference streams generated as a by-product of the

execution of real programs. The simulated threads are scheduled for execution ac-

cording to the state of the simulated multiprocessor and the actual delays incurred

by references to remote memory and cache coherency actions.

Summary of Results

The workload used in the experiments consists of three programs from the

SPLASH suite (cholO, mp3d() and waterO) and three parallel loops, namely

Gaussian elimination (geO), matrix multiplication (mmult 0) and all-to-all min-

imum cost paths (paths 0). Two of the programs are ill suited for execution on

physically distributed memory. mp3d() has low hit ratios and its data is highly

migratory, causing high levels of cache coherence activity and network traffic. This

101

Chapter 7. Conclusion 	 102

program exhibits poor performance in every published experiment seen by the au-

thor. It is however very useful to expose architectural bottlenecks, as is the case

with network saturation (see below). The data used by paths() has a high degree

of read-sharing and writes to shared data often cause the purging of long sharing-

lists. This also causes high levels of network traffic and, for the smaller cache

sizes, high levels of coherence activity. These two programs do drive the network

into saturation and their performance is, in most of the experiments, limited by

network bandwidth and delays.

The other four programs have more regular behaviour and better coherent

cache hit ratios. The performance penalties imposed by the cache coherence

protocol and interconnect are rather small. The results of the simulation with

64Kbytes caches are a little worse than those with the larger cache sizes (128K-

512Kbytes). With the larger caches, the overheads imposed by the cache coherence

protocol are always smaller than 5% of the execution time. The losses caused by

network latencies are under 10% of the execution time, with higher losses occurring

on 16-node rings.

An important figure of merit of an interconnect is node throughput, defined as

the network bandwidth available to processing elements. For rings with processors

and memory hierarchy as simulated, the experiments revealed that raw processor

throughput is limited at about 80Mbytes/s because of network saturation. Data-

only throughput is about 20 to 30% of raw throughput. Given that under 14%

of all packets injected into the ring carry 64 bytes of data while all except echo

packets carry cache coherency information, raw throughput is a better measure of

overall system performance.

High levels of network traffic cause queue backlogs in the link interfaces with

round-trip delays increasing by as much as 25% as a consequence. For mp3d()

and paths 0, network saturation occurs for link traffic at 600 to 700Mbytes/s,

for 8- and 16-node rings, and this in turn limits node throughput at 80Mbytes/s.

Unlike analytical results produced by others [SGV92], the relationship between

throughput and latency was found to be linear for 2-, 4- and 8-node rings. For 16-

node rings, the relationship is a parabolic curve with a small quadratic coefficient.

The difference between the two sets of results stems from the feedback effects

of memory latencies increasing with traffic levels and holding down the rate of

network requests by processors. The simulation results for SCI-rings indicate

that, for hardware and software with characteristics similar to those investigated

here, the maximum efficient ring size is between eight and sixteen. The scalability

in these small systems (1, 2, 4, 8, and 16 processors) was found to be fairly good.

Chapter 7. Conclusion 	 103

A comparison between DASH [LLJ92} and an SCI-based multiprocessor with

similar architectural parameters reveals that SCI's higher bandwidth and lower

latencies yield better performance on programs that cause higher network traffic.

On programs that generate little traffic the systems exhibit similar behaviour.

The programs in the workload simulated do not have high degrees of write-sharing

and thus the cache coherence protocols show similar performance. A comparison

of medium size machines built with an SCI-based interconnect to contemporary

machines, such as DASH, the Express Ring and the KSR1, suggest that SCI's low

latency and high bandwidth make it a suitable and efficient interconnect.

Systems of 64-nodes were also investigated. The topologies simulated were a

mesh (2x2, 4x4, 8x8) and a cube (2x2x2, 4x4x4). The programs in the workload

exhibit similar patterns of behaviour on SCI-meshes and SCI-cubes as those of SCI-

rings. mp3d() and paths() tend to generate very high levels of cache coherence

activity and network traffic. The other four programs show good scalability and

suffer small losses in performance because of the cache coherence protocol and

interconnection network. Because of increases in the data-set sizes, larger cache

sizes produce better performances.

No significant relationship between cache size and network dimensionality was

found. Meshes and cubes can sustain somewhat higher processor throughput

than is the case for rings, mostly because of the increases in network capacity.

The programs that produced node throughputs of 60-80Mbytes/s on rings pro-

duce 90-100Mbytes/s on meshes and cubes, with cubes supporting 11-16% higher

throughputs than meshes. This is because of the inherently higher capacities and

lower latencies of cubes. In terms of overall performance, cubes are 10-15% faster

than meshes with programs that generate high levels of network traffic, that is,

drive the network near to saturation. For programs that produce low levels of

traffic, the differences between meshes and cubes are negligible.

An analytical model of the ring-based multiprocessor was described and used

to assess the cost of flushing shared-data lines from the caches, and of purging

sharing-lists. The performance of the multiprocessor degrades but is acceptable

for high levels of conflict misses. The performance degrades badly for high levels of

write-sharing - over 300% in one case. The analytical model provides reasonably

accurate performance predictions for "well-behaved" programs and qualitatively

good predictions for programs with more extreme behaviour.

Chapter 7. Conclusion 	 104

The results presented above indicate that the Scalable Coherent Interface is a

good implementation of the shared-memory abstraction on a machine with phys-

ically distributed memory. For the architectural parameters and workload invest-

igated, the cache coherence protocol proved to be efficient and the interconnect

provided a high-bandwidth low-latency path between processors and memory.

Further Work

There is still work to be done in the performance evaluation of SC! based mul-

tiprocessors. That work can be pursued along two directions. First, further in-

vestigation of small systems is needed. Second, the evaluation of systems with

hundreds of processors is necessary in order to assess the scalability of SCI-based

multiprocessors. Some of the issues that deserve investigation concern both small

and large systems. For simulations of large systems, the programs in the workload

will need to be adapted, rewritten or replaced because they were designed and

coded for medium size machines (32-64 processors). These codes are unlikely to

scale up well to hundreds of processors without extensive rewriting.

Some architectural devices can be added to the simulator in order to improve

the performance of both SC! meshes and cubes. A better mapping of data to nodes

is an important optimisation because it can further reduce the distance between

requesters and responders. This entails changes to the programs to reflect different

mapping strategies. The efficiency of the synchronisation mechanisms employed

here can be improved as well, either by software methods or by adding SCI's

QOLB primitive (Queue On Locked Bit) to the simulator [AGGW94].

The simulation of SC! cubes has shown that higher dimensionality networks can

sustain higher processor throughput because of lower network latency and higher

capacity. The simulated multiprocessor can be modified to take advantage of the

unused capacity by the addition of write-buffers between primary and secondary

caches. Another alternative is to use multi-threading to hide the latency of remote

memory requests. Improvements in processor performance by the addition of these

devices would cause increases in network congestion. The question then is how

much room for improvement there is before the network becomes the bottleneck.

One of SCI's major advantages is the scalability that is built into the commu-

nication and cache coherence protocols. Because of the high computational cost

of the simulation runs, the simulation of very large systems will need a different

approach. The simulation technique used here produces accurate results but its

computational cost is very high. Two alternatives seem attractive. One is the

Chapter 7. Conclusion 	 105

direct simulation of the processors, thus avoiding interactions with the operat-

ing system [BDNS93]. The other is to use a customisable synthetic workload.

While not strictly realistic, proper tuning of parameters can produce insightful

results [HS94].

With 512 or 1024 nodes, a more thorough study of the relationship between

cache size and dimensionality is possible since there will be more data points on

which to draw comparisons. Another problem relates to synchronisation actions on

large machines. Different mechanisms can be simulated and compared. To perform

these experiments, either a synthetic workload will be used, or new programs

suitable for large scale shared-memory will have to be employed.

Bibliography

[Aga9l] 	Anant Agarwal. Limits on interconnection network performance. IEEE

Trans. on Parallel and Distributed Systems, 2(4):398-412, October 1991.

[AGGW94] N M Aboulenein, J R Goodman, S Gjessing, and P J Woest. Hardware

support for synchronisation in the Scalable Coherent Interface (SCI). In

Proc of the 8th mt. Parallel Processing Symposium, pages 141-150, Cancn,

Mexico, 1994. IEEE Comp Soc Press.

[ASHH88] A Agarwal, R Simoni, J Hennessy, and M Horowitz. An evaluation of dir-

ectory schemes for cache coherence. In Proc. 15th mt. Symp. on Computer

Architecture, pages 280-289, May 1988.

[BD91] 	Luiz A Barroso and Michel Dubois. Cache coherence on a slotted ring.

In Proc 1991 mt. Conf. Parallel Processing, volume 1, pages 230-237, St.

Charles, IL, USA, August 1991.

[BD93] 	Luiz A Barroso and Michel Dubois. The performance of cache-coherent ring-

based multiprocessors. In Proc. 20th mt. Symp. on Computer Architecture,

pages 268-277. ACM SIGARCII Comp Arch News 21(2), May 1993.

[BDMR92] J A C Bogaerts, R Divià, H Muller, and J F Renardy. SCI based data

acquisition architectures. IEEE Trans. on Nuclear Sciences, 39(2), April

1992.

[BDNS93] M Brorsson, F Dahigren, H Nilsson, and P Stenström. The CacheMire test

bench - a flexible and effective approach for simulation of multiprocessors.

Tech Report Dt-159, Dept of Computer Engineering, Lund Univ, March

1993. In Proc. of the 26th Annual Simulation Symposium, Arlington, USA,

March 1993.

[Be192] 	Gordon Bell. Ultracomputers: A teraflop before its time. Comm. of the

ACM, 35(8):27-47, August 1992.

[BGY87] L N Bhuyan, D Ghosal, and Q Yang. Approximate analysis of single and

multiple ring networks. IEEE Trans. on Computers, C-38(7):1027-1040,

July 1987.

106

Bibliography 	 107

[Bit92] 	Philip Bitar. The weakest memory-access order. Journal of Parallel and

Distributed Computing, 2(15) :305-331, March 1992.

[BKB90] H 0 Bugge, E H Kristiansen, and B 0 Bakka. Trace driven simulations for

a two-level cache design in open bus. systems. In Proc. 17th mt. Symp. on

Computer Architecture, pages 250-259. ACM SIGARCH Comp Arch News

18(2), May 1990.

[BKW90] A Borg, R E Kessler, and D W Wail. Generation and analysis of very long

address traces. In Proc. 17th mt. Symp. on Computer Architecture, pages

270-279. ACM SIGARCH Comp Arch News 18(2), May 1990.

[BS92] 	Mats Brorsson and Per Stenström. Visualising sharing behaviour in rela-

tion to shared memory management. Tech Report Dt-150, Dept of Com-

puter Engineering, Lund Univ, December 1992. In Proc. of 1992 hit. Conf.

on Parallel and Distributed Systems, Hsinchu, Taiwan, December 1992,

pages 528-536.

[Bur92] 	H Burkhardt. Overview of the KSR1 computer system. Tech Report KSR-

TR-9202001, Kendall Square Research, Boston, 1992.

[BW88] 	Jean-Loup Baer and Wen-Hann Wang. On the inclusion properties for

multi-level cache hierarchies. In Proc. 15th mt. Symp. on Computer Archi-
tecture, pages 73-80, May 19.88.

[CA94] 	David Chaiken and Anant Agarwal. Software-extended coherent shared

memory: 1,rformance and cost. In Proc. 21st mt. Symp. on Computer

Architecture, pages 314-324. ACM SIGARCH Comp Arch News 22(2), April

1994.

[CDK941 A L Cox, S Dwarkadas, P Kaleher, H Lu, R Rajamony, and W Zwaenepoel.

Software versus hardware shared-memory implementation: A case study.

In Proc. 21st mt. Symp. on Computer Architecture, pages 106-117. ACM

SIGARCH Comp Arch News 22(2), April 1994.

[CFKA90] D Chaiken, C Fields, K Kwihara, and A Agarwal. Directory-based cache co-

herence in large-scale multiprocessors. IEEE Computer, 23(6):49-59, June

1990.

[CKA911 D Chaiken, J Kubiatowicz, and A Agarwal. LimitLESS directories: A scal-

able cache coherence scheme. In Fourth mt. Conf. on Architectural Support
for Progr. Lang. and Oper. Sys., pages 224-234. ACM SIGARCH Comp

Arch News 19(2), April 1991.

Bibliography 	 108

[Da190] 	William J Daily. Performance analysis of k-ary n-cube interconnection net-

works. IEEE Trans. on Computers, C-39(6):775-785, June 1990.

[DPL80] 	N Deo, C Y Pang, and R E Lord. Two parallel algorithms for shortest path

problems. Tech Report CS-80-059, Washington State Ijniv, March 1980.

[DS87] 	William J Daily and Charles L Seitz. Deadlock-Free message routing in

multiprocessor interconnection networks. IEEE Trans. on Computers, C-

36(5):547-553, May 1987.

[DS90] 	Michel Dubois and Christoph Scheurich. Memory access dependencies in

shared-memory multiprocessors. IEEE Trans. on Software Engineering,

16(6):660-673, June 1990.

[FBYR89] A Form, J Barrera, M Young, and R Rashid. Design, implementation, and

performance evaluation of a distributed shared memory server for MACH.

In Proc of the Winter USENIX Conf, January 1989.

[FVS92] 	K Farkas, Z Vranesic, and M Stumm. Cache consistency in hierarchical ring-

based multiprocessors. Tech Report EECG TR-92-09-01, Univ. of Toronto,

1992. Also in Proc. of Supercomputing '92.

[GGH91] K Gharachorloo, A Gupta, and J Hennessy. Performance evaluation of

memory consistency models for shared-memory multiprocessors. In Fourth

mt. Conf. on Architectural Support for Progr. Lang. and Oper. Sys., pages

245-257. ACM SIGARCH Comp Arch News 19(2), April 1991.

[GHG91] A Gupta, J L Hennessy, K Gharachorloo, T Mowry, and W-D Weber. Com -

parative evaluation of latency reducing and tolerating techniques. In Proc.

18th mt. Symp. on Computer Architecture, pages 254-263. ACM SIGARCH

Comp Arch News 19(3), May 1991.

[GLL90] K Gharachorloo, D Lenoski, J Laudon, P Gibbons, and J L Hennessy.

Memory consistency and event ordering in scalable shared-memory mul-

tiprocessors. In Proc. 17th mt. Symp. on Computer Architecture, pages

15-26. ACM SIGARCH Comp Arch News 18(2), May 1990.

[GNWZ91} D Grunwald, G J Nutt, D Wagner, and B Zorn. A parallel execution eval-

uation testbed. Tech Report CU-CS-560-91, Dept of Computer Science,

Univ of Colorado, November 1991.

[Goo9l] 	James R Goodman. Cache consistency and sequential consistency. Tech Re-

port 1006, Computer Sciences Dept, Univ of Wisconsin-Madison, February

1991. Also published as SCI Committee Report 61, March 1989.

Bibliography
	

109

[GW88] 	J R Goodman and P Woest. The Wisconsin multicube: A new large-

scale cache coherent multiprocessor. In Proc. 15th mt. Syrnp. on Computer

Architecture, pages 422-431, May 1988.

[Hag92] 	Erik Hagersten. Toward Scalable Cache Only Memory Architectures. PhD

dissertation, Swedish Institute of Computer Science, October 1992. ISBN

91-7170-103-6.

[HALH91] E Hagersten, P Andersson, A Landin, and S Haridi. A performance study

of the DDM - a cache-only architecture. Tech Report R91:17, Swedish Inst

of Computer Science, November 1991.

[Hil90] 	Mark D Hill. What is scalability? ACM SIGARCH Computer Architecture

News, 18(4):18-21, December 1990.

[HN88] 	A Hooper and R Needham. The cambridge fast ring networking system.

IEEE Trans. on Computers, C-37(10);1214-1224, October 1988.

[HP90] 	John L Hennessy and David A Patterson. Computer Architecture: A Quant-

itative Approach. Morgan Kaufmann, 1990. ISBN 1-55860-069-8.

[HS94] 	Mark Holliday and Michael Stumm. Performance evaluation of hierarchical

ring-based shared memory multiprocessors. IEEE Trans. on Computers,

C-43(1):52-67, January 1994.

[HT94a] 	Roberto A Hexsel and Nigel P Topham. The performance of SCI memory

hierarchies. In Proc of the mt. Workshop on Support for Large Scale Shared

Memory Architectures, pages 1-17, Canci'in, Mexico, April 1994. In conjunc-

tion with 8th IPPS.

[HT94b] Roberto A Hexsel and Nigel P Topham. The performance of SCI memory

hierarchies. Tech Report CSR-30-94, Dept of Computer Science, Univ of

Edinburgh, February 1994.

[Hwa93] 	Kai Hwang. Advanced Computer Architecture: Parallelism, Scalability, Pro-

grammability. McGraw-Hill, 1993. ISBN 0-07-031622-8.

[IEE91] 	IEEE. Futurebus: Logical Layer Specification, 896.1-1991. IEEE Micro-

processor Standards Subcommittee, 1991.

[IEE921 	IEEE. ANSI/IEEE Std 1596-1992 - Standard for Scalable Coherent Inter-

face. IEEE, 1992. IEEE publications are available from the Institute of

Electrical and Electronics Engineers, Inc., Service Center, 445 Hoes Lane,

P.O. Box 1331, Piscataway, NJ 08855-1331.

Bibliography 	 110

[1T89] 	Roland N Ibbett and Nigel P Topham. Architecture of High Performance

Computers, volume 2. Macmillan, 1989. ISBN 0-333-48988-8.

[Jai9l] 	Raj Jam. The Art of Computer Systems Performance Analysis. John Wiley,

1991. ISBN 0-471-50336-3.

[JG91} 	Ross E Johnson and James R Goodman. Interconnect topologies with

point-to-point rings. Tech Report 1058, Computer Sciences Dept, Univ

of Wisconsin—Madison, December 1991. 	-

[JG92] 	Ross E Johnson and James R Goodman. Synthesising general topologies

from rings. In Proc of the Intl Conf on Parallel Processing (ICPP92),

volume I - Architecture, pages 86-95, 1992.

[Joh93] 	Ross E Johnson. Extending the Scalable Coherent Interface for Large-

Scale Shared-Memory Multiprocessors. PhD dissertation, Computer Sci-

ences Dept, Univ of Wisconsin—Madison, February 1993. Also Tech Report

1136. -

[KEL91] 	E J Koldinger, S J Eggers, and H M Levy. On the validity of trace driven

simulations for multiprocessors. In Proc. 18th mt. Symp. on Computer

Architecture, pages 244-253. ACM SIGARCH Comp Arch News 19(3), May

1991.

[LAD92] C E Leiserson, Z S Abuhamdeh, D C Douglas, C R Feynman, M N Gan-

mukhi, J V Hill, W D Hillis, B C Kuszmaul, M A St Pierre, D S Wells, M C

Wong, S Yang, and R Zak. The network architecture of the connection ma-

chine CM-S. In Proc of the 4th Annual ACM Symp on Parallel Algorithms

and Architecture, San Diego, USA, 1992. ACM SIGACT, SIGARCH.

[Lam79] 	Leslie Lamport. How to make a multiprocessor that correctly executes mul-

tiprocess programs. IEEE Trans. on Computers, C-28(9):690-691, Septem-

ber 1979.

[Lei85] 	Charles E Leiserson. Fat-trees: universal networks for hardware-efficient

supercomputing. IEEE Trans. on Computers, C-34(10):892-901, oct 1985.

[L1189] 	Kay Li and Paul Hudak. Memory coherence in shared virtual memory

systems. ACM Trans on Computer Systems, 7(4):229-359, November 1989.

[LLG90] D Lenoski, J Laudon, K Gharachorloo, A Gupta, and J L Hennessy. The

directory-based cache coherence protocol for the DASH multiprocessor. In

Proc. 17th mt. Symp. on Computer Architecture, pages 148-159. ACM SIG-

ARCH Comp Arch News 18(2), May 1990.

Bibliography 	 111

[LLJ921 D Lenoski, J Laudon, T Joe, D Nakahira, L Stevens, A Gupta, and J Hen-

nessy. The DASH prototype: Implementation and performance. In Proc.
19th mt. Symp. on Computer Architecture, pages 92-103. ACM SIGARCH
Comp Arch News 20(2), May 1992.

[MB92] 	Daniel Menascé and Luiz A Barroso. A methodology for performance eval-

uation of parallel applications on multiprocessors. Journal of Parallel and
Distributed Computing, 2(14):1-14, January 1992.

[MS91] 	J M Mellor-Crummey and M L Scott. Synchronisation without contention.

In Fourth mt. Conf. on Architectural Support for Progr. Lang. and Oper.

Sys., pages 269-278. ACM SIGARCH Comp Arch News 19(2), April 1991.

[MSW94] H L Muller, P W A Stallard, and D H D Warren. An evaluation study of

a link-based data diffusion machine. In Proc of the mt. Workshop on Sup-
port for Large Scale Shared Memory Architectures, pages 115-128, Cancthi,
Mexico, April 1994. In conjunction with 8th IPPS.

Hkan Nilsson and Per Stenström. The scalable tree protocol - a cache

coherence approach for large-scale multiprocessors. Tech Report Dt- 149,

Dept of Computer Engineering, Lund Univ, December 1992. In Proc. of

4th IEEE Symp. on Parallel and Distributed Processing, December 1992,

pages 498-506.

Hkan Nilsson and Per Stenström. Performance evaluation of link-based

cache coherence schemes. Tech Report Dt-151, Dept of Computer Engin-

eering, Lund Univ, January 1993. In Proc. of the 26th Hawaii hit. Conf. on

System Sciences, January 1993, pages 1-486-495.

[OMB91] 0 A Olukotun, T N Mudge, and R B Brown. Implementing a cache for a

high-performance GaAs microprocessor. In Proc. 18th mt. Symp. on Com-
puter Architecture, pages 138-147. ACM SIGARCH Comp Arch News 19(3),
May 1991.

[Prz90] 	Steven A Przybylski. Cache and Memory Hierarchy Design: a Perform-
ance-Directed Approach. Morgan Kaufmann, 1990. ISBN 1-55860-136-8.

[RAK89] U Ramachandran, M Ahamad, and M Y A Khalidi. Coherence of distrib-

uted shared memory: Unifying synchronisation and data transfer. In Proc
of the Intl Corif on Parallel Processing (ICPP89), volume II, pages 160-169,
1989.

[Sco92] 	Steven L Scott. Toward the Design of Large-Scale, Shared-Memory Multi-
processors. PhD dissertation, Computer Sciences Dept, Univ of Wisconsin-

Madison, July 1992. Also Tech Report 1100.

Bibliography 	 112

[Sei85] 	Charles L Seitz. The cosmic cube. Comm. of the ACM, 28(1), January

1985.

SG911 	Steven L Scott and James R Goodman. Performance of pipelineci K-ary

N-cube networks. Tech Report 1010, Computer Sciences Dept, Univ of

Wisconsin—Madison, February 1991.

[SGV92} 	S L Scott, J R Goodman, and M K Vernon. Performance of the SCI ring.

In Proc. 19th mt. Syrnp. on Computer Architecture, pages 403-414. ACM

SIGARCH Comp Arch News 20(2), May 1992.

[SJG92] 	P Stenström, T Joe, and A Gupta. Comparative performance evaluation of

cache-coherent NUMA and COMA architectures. In Proc. 19th mt. Symp.
on Computer Architecture, pages 80-91. ACM SIGARCH Comp Arch News

20(2), May 1992.

[SPG91] 	A Silberschatz, J L Peterson, and P B Galvin. Operating Systems Concepts.

Addison-Wesley, third edition, 1991. ISBN 0-201-54873-9.

[Ste90] 	Per Stenström. A survey of cache coherence schemes for multiprocessors.

IEEE Computer, 23(6):12-24, June 1990.

[Sto90] 	Harold S Stone. High-Performance Computer Architecture. Addison-

Wesley, second edition, 1990. ISBN 0-201-51377-3.

[SWG91] J P Singh, W-D Weber, and A Gupta. SPLASH: Stanford ParalleL Applica-

tions for SHared-memory. Technical Report CSL-TR-91-469, Computer

Science Dept, Stanford Univ, April 1991. Also in ACM SIGARCH Comp

Arch News 20(1).

[Tan89] 	Andrew S Tanenbaum. Computer Networks. Prentice-Hall, second edition,

1989. ISBN 0-13-166836-6.

[TD91] 	Mann Thapar and Bruce Delagi. Cache coherence for large scale shared

memory multiprocessors. ACM SIGARCH Computer Architecture News,

19(1):114-191, March 1991. Reprinted from Proc of SPAA 1990.

[VIT90] 	VITA. 64-Bit VMEbus Specification - Edition D. VME Bus International

Trade Association and IEEE P1014 Working Group, January 1990.

[VSLW91] Z Vranesic, M Stumm, D Lewis, and R White. Hector: a hierarchically

structured shared memory multiprocessor. IEEE Computer, 24(l):72-78,
January 1991.

Bibliography 	 113

[WG89] 	Wolf-Dietrich Weber and Anoop Gupta. Analysis of cache invalidation pat-

terns in multiprocessors. In Third mt. Conf. on Architectural Support for

Progr. Lang. and Oper. Sys., pages 243-256. ACM SIGARCH Comp Arch
News 17(2), April 1989.

[WHL93} C E Wu, Y Hsu, and Y-H Liu. A quantitative evaluation of cache types

for high-performance computer systems. IEEE Trans. on Computers, C-
42(10):1154-1162, October 1993.

[WLI94] A W Wilson Jr, R P LaRowe Jr, R J lonta, R P Valentino, B Hu, P R

Breton, and P Lau. Update propagation in the galactica net distributed

shared memory architecture. In Proc of the mt. Workshop on Support for

Large Scale Shared Memory Architectures, pages 18-31, Canciin, Mexico,

April 1994. In conjunction with 8th IPPS.

Appendix A

Performance Data

This appendix contains the statistics for the experiments described in Chapters 4
and 6. The tables are grouped by topology, and within each topology, by program.
The the statistics collected in the tables are defined in Sections 4.1 and 6.2.3.
Table A.l defines the meanings of the columns of the reference count tables.
Table A.2 defines the meanings for the hit ratio tables. Table A.3 defines the
meanings for the traffic and timing tables.

tag meaning
cSz cache size
N machine/ring size

shdRD shared-data read
shdWR shared-data write
1c1RD local-data read
1c1WR local-data write
i-fetch instruction fetch

Table A.1: Per node reference count tables.

cSz cache size
N 	machine/ring size

lrpch local read in primary cache
lrcch local read in coherent cache
lwcch local write in coherent cache
srpch shared-data read in primary cache
srcch shared-data read in coherent cache
swcch shared-data write in coherent cache
ifpch i-fetch in primary cache
ifcch i-fetch in coherent cache
flush lines flushed per coherent cache reference
purge sharing-lists purged per coherent cache write

shi 	sharing-list length

Table A.2: Hit ratio tables.

114

Appendix A. Performance Data 	 115

cSz cache size
N 	machine/ring size
n 	dimension (meshes and cubes)

lkav average link traffic
lkmx maximum link traffic
txav average output buffer traffic
txmx maximum output buffer traffic
psav average bypass buffer traffic
psmx maximum bypass buffer traffic
rtdly round-trip delay
rtime execution time
ntwF fraction of the time due to network latency
shdF fraction of the time due to shared-data references (RD+WR+synch)
lclF fraction of the time due to local references (RD+WR+ifetch)

Table A.3: Network traffic and timing tables.

A.1 SCI Rings

A.1.1 chol() - DASH Parameters 	 -

cSz 	N shdRD shdWR 1c1RD 1c1WR. i-fetch
256K 	1 8444 1863 22763 8303 71750

2 9883 2939 6641 2168 38930
4 6875 2075 2049 543 21027
8 4639 1191 1111 166 14313

16 2904 556 1172 157 11106

Table A.4: Per node reference counts for chol() (x1000).

cSz 	N lrpch Ircch lwcch srpch srcch swcch ifpch ifcch flush purge shl
256K 	1 0.654 0.999 1.000 0.775 0.973 0.983 1.000 0.000 0.797 0.000 0.0

2 0.692 0.999 1.000 0.711 0.987 0.990 1.000 0.000 0.662 0.553 1.0
4 0.754 0.999 0.999 0.708 0.987 0.990 1.000 0.000 0.621 0.694 1.0
8 0.863 0.999 1.000 0.753 0.987 0.989 1.000 0.000 0.568 0.810 1.0

16 0.875 0.999 0.998 0.816 0.983 0.986 1.000 0.000 0.516 0.875 1.0

Table A.5: Hit ratios for cholO.

Appendix A. Performance Data
	

116

cSz 	N lkav lkmx txav txmx psav psmx rtdly rtime ntwF shdF iciF
256K 	1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10.260 0.000 0.152 0.848

2 1.5 1.5 1.2 1.2 0.4 0.4 42.0 5.315 0.001 0.456 0.541
4 5.6 5.7 2.1 2.3 3.5 3.7 52.7 2.801 0.003 0.625 0.371
8 14.1 14.1 2.5 2.7 11.5 11.8 79.5 1.581 0.007 0.658 0.336

16 30.2 30.3 2.7 4.0 27.5 28.2 130.2 0.953 0.012 0.528 0.460

Table A.6: Traffic and timing for cholO.

A.1.2 mp3d() - DASH Parameters

cSz 	N shdRD shdWR 1c1RD 1c1WR i-fetch
256K 	1 3620 2343 10754 2339 35059

2 3755 1171 5382 1172 21439
4 1594 585 2694 587 10164
8 1041 293 1352 295 5585

16 1098 147 677 148 3951

Table A.'?': Per node reference counts for mp3d() (x1000).

cSz 	N lrpch lrcch lwcch srpch srcch swcch ifpch ifcch flush purge shi
256K 	1 0.818 0.997 0.999 0.338 0.951 0.950 1.000 0.000 0.911 0.000 0.0

2 0.826 0.995 0.998 0.681 0.892 0.890 1.000 0.000 0.608 0.710 1.0
4 0.830 0.993 0.997 0.624 0.853 0.848 1.000 0.000 0.513 0.910 1.0
8 0.832 0.992 0.997 0.709 0.824 0.812 1.000 0.000 0.472 0.963 1.0

16 0.833 0.992 0.997 0.860 0.770 0.744 1.000 0.000 0.430 0.985 1.1

Table A.8: Hit ratios for mp3dO.

cSz 	N llcav Ikmx txav txmx psav rtdly rtime ntwF shdF iciF
256K 	1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.833 0.000 0.421 0.580

2 12.5 12.6 9.5 9.7 2.9 3.0 44.2 2.957 0.013 0.519 0.469
4 43.6 44.0 15.8 16.9 27.7 29.2 54.0 1.608 0.028 0.541 0.429
8 105.2 105.7 18.9 20.9 86.3 89.8 82.2 0.900 0.052 0.563 0.384

16 228.5 229.1 20.6 26.2 207.9 211.3 152.9 0.580 0.104 0.597 0.299

Table A.9: Traffic and timing for mp3dO.

	

Appendix A. Performance Data 	 117

A.1.3 water() - DASH Parameters

cSz 	N shdRD shdWlt 1c1RD 1c1WR i-fetch

	

256K 1 20173 	3071 200076 46251 475688

	

2 12619 	1536 100038 23125 242909
4 	8163 	768 50019 11563 125162
8 	4093 	384 25010 5781 62604

16 	2414 	192 12505 2891 32038

Table A.10: Per node reference counts for water() (x1000).

cSz 	N• lrpch lrcch lwcch srpch srcch swcch ifpch ifcch flush purge shi
256K 	1 0.912 0.999 1.000 0.917 0.955 0.988 1.000 0.000 0.640 0.000 0.0

2 0.913 1.000 1.000 0.934 0.956 0.988 1.000 0.000 0.637 0.119 1.0
4 0.913 0.999 1.000 0.949 0.884 0.948 1.000 0.000 0.539 0.765 1.0
8 0.913 1.000 1.000 0.949 0.839 0.926 1.000 0.000 0.507 0.907 1.0

16 0.913 0.997 0.999 0.957 0.826 0.922 1.000 0.000 0.369 0.925 1.0

Table A.11: Hit ratios for waterO.

cSz 	N lkav lkmx txav txmx psav psmx rtdly rtime ntwF shdF iciF
256K 	1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 41.960 0.000 0.047 0.953

2 0.2 0.2 0.1 0.1 0.1 0.1 44.3 21.200 0.000 0.058 0.941
4 2.8 2.8 1.0 1.2 1.8 1.9 52.9 10.900 0.002 0.083 0.915
8 9.2 9.3 1.6 2.2 7.6 7.8 76.5 5.504 0.004 0.090 0.905

16 20.9 21.1 1.8 3.3 19.1 19.4 127.7 2.812 0.008 0.102 0.890

Table A.12: Traffic and timing for waterO.

Appendix A. Performance Data

A.1.4 chol()

cSz N shdRD shdWR 1c1RD 1c1WR i-fetch
64K 1 8444 1863 22763 8303 71750

2 9596 2933 6451 2175 37254
4 6963 1990 2343 628 22257
8 4805 1205 1018 152 14287

16 1931 315 1554 398 9160
128K 1 8444 1863 22763 8303 71750

2 9818 2984 6230 2124 37265
4 9348 1954 2813 664 29136
8 4671 1174 1100 184 14209

16 1904 308 1571 405 9216
256K 1 8444 1863 22763 8303 71750

2 9609 2942 6333 2165 36918
4 6561 2002 2071 616 20253
8 3988 1177 845 180 11576

16 2387 558 774 155 8132
512K 1 8444 1863 22763 8303 71750

2 9738 2962 6215 2145 36952
4 6689 2052 1989 566 20327
8 3999 1186 851 172 11713

16 1785 324 1426 389 8336
8M 1 8444 1863 22763 8303 71750

2 9743 2988 6230 2119 37033
4 6645 2041 1991 577 20258
8 3919 1186 831 172 11394

16 2344 555 771 157 8028

Table A.13: Per node reference counts for chol() (x1000).

118

Appendix A. Performance Data 	 119

cSz N lrpch lrcch lwcch srpch srcch swcch ifpch ifcch flush purge shi
64K 1 0.651 0.998 0.999 0.732 0.926 0.962 0.998 0.450 0.660 0.000 0.0

2 0.678 0.999 0.999 0.682 0.970 0.985 0.998 0.441 0.645 0.252 1.0
4 0.743 0.998 0.998 0.707 0.950 0.974 0.995 0.181 0.571 0.203 1.0
8 0.860 0.994 0.996 0.746 0.962 0.979 0.996 0.219 0.558 0.343 1.0

16 0.752 0.978 0.990 0.829 0.938 0.965 0.997 0.183 0.365 0.521 1.0
128K 1 0.651 0.999 0.999 0.733 0.954 0.973 0.998 0.606 0.694 0.000 0.0

2 0.675 0.999 0.999 0.686 0.980 0.988 0.998 0.618 0.646 0.387 1.0
4 0.773 0.999 0.999 0.784 0.943 0.970 0.995 0.145 0.533 0.221 1.0
8 0.843 0.999 0.999 0.745 0.964 0.980 0.997 0.231 0.538 0.415 1.0

16 0.753 0.998 0.998 0.831 0.952 0.968 0.998 0.403 0.523 0.635 1.0
256K 1 0.650 0.999 1.000 0.735 0.977 0.983 0.999 0.912 0.797 0.000 0.0

2 0.673 0.999 0.999 0.684 0.988 0.990 0.999 0.913 0.655 0.553 1.0
4 0.713 0.999 0.999 0.693 0.988 0.990 0.999 0.916 0.600 0.729 1.0
8 0.797 0.999 1.000 0.706 0.987 0.989 0.999 0.920 0.557 0.816 1.0

16 0.809 0.999 0.998 0.766 0.983 0.986 0.999 0.894 0.527 0.860 1.0
512K 1 0.651 1.000 1.000 0.736 0.989 0.992 0.999 0.954 0.645 0.000 0.0

2 0.671 1.000 1.000 0.687 0.990 0.991 0.999 0.953 0.556 0.740 1.0
4 0.728 0.999 0.999 0.692 0.989 0.990 0.999 0.953 0.552 0.812 1.0
8 0.810 1.000 1.000 0.704 0.989 0.989 0.999 0.957 0.512 0.879 1.0

16 0.740 1.000 0.999 0.814 0.975 0.977 0.999 0.925 0.486 0.913 1.0
8M 1 0.650 1.000 1.000 0.735 0.996 0.996 0.999 0.998 0.436 0.000 0.0

2 0.675 1.000 1.000 0.684 0.992 0.992 0.999 0.996 0.478 0.836 1.0
4 0.724 1.000 1.000 0.689 0.990 0.991 0.999 0.993 0.473 0.895 1.0
8 0.804 1.000 1.000 0.698 0.989 0.990 0.999 0.988 0.466 0.913 1.0

16 0.804 1.000 0.999 0.764 0.986 0.987 0.999 0.978 0.454 0.936 1.0

Table A.14: Hit ratios for cholO.

Appendix A. Performance Data 	 120

cSz N lkav lkmx txav txnix psav psmx rtdly rtime ntwF shdF iciF
64K 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.607 0.000 0.144 0.856

2 13.4 13.6 10.3 10.6 3.0 3.1 46.2 0.842 0.014 0.335 0.652
4 76.0 82.4 28.5 51.4 47.4 68.1 59.0 0.537 0.050 0.427 0.523
8 108.5 111.4 19.8 28.3 88.7 93.5 86.0 0.307 0.053 0.464 0.483

16 195.7 200.7 17.8 23.4 177.9 188.3 152.0 0.187 0.087 0.244 0.669
128K 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.571 0.000 0.131 0.869

2 13.1 13.2 10.1 10.2 3.0 3.0 46.5 0.826 0.014 0.332 0.655
4 79.6 89.0 30.0 58.0 49.6 78.8 58.8 0.651 0.052 0.461 0.487
8 88.4 89.7 16.1 19.0 72.2 75.6 83.9 0.299 0.044 0.453 0.503

16 178.9 182.0 16.2 24.0 162.7 167.3 150.5 0.176 0.081 0.232 0.688
256K 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.541 0.000 0.120 0.881

2 8.1 8.2 5.7 5.9 2.3 2.3 36.5 0.801 0.008 0.322 0.670
4 29.6 29.9 9.8 10.1 19.8 20.3 45.8 0.437 0.020 0.414 0.566
8 71.8 72.3 11.6 13.1 60.2 61.6 71.5 0.245 0.040 0.446 0.513

16 144.2 146.7 11.5 16.3 132.7 136.6 130.1 0.158 0.072 0.360 0.568
512K 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.527 0.000 0.113 0.887

2 9.7 9.7 7.4 7.5 2.3 2.3 44.1 0.798 0.010 0.320 0.670
4 34.5 35.1 12.7 14.2 21.8 23.0 55.7 0.437 0.023 0.422 0.555
8 88.4 88.9 15.9 17.4 72.5 74.6 83.1 0.246 0.044 0.439 0.517

16 172.8 173.9 15.4 24.3 157.4 162.6 148.3 0.160 0.078 0.236 0.686
8M 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.517 0.000 0.109 0.891

2 7.2 7.2 5.1 5.1 2.1 2.1 35.4 0.793 0.007 0.320 0.671
4 26.7 27.4 8.8 9.2 17.9 18.5 45.3 0.433 0.019 0.419 0.562
8 66.9 67.1 10.7 12.4 56.1 57.0 71.3 0.240 0.037 0.444 0.519

16 134.6 136.0 10.6 15.4 124.0 127.1 129.2 0.154 0.068 0.353 0.579

Table A.15: Traffic and timing for cholO.

cSz 	N Irpch lrcch lwcch srpch srcch swcch ifpch ifcch flush purge shi
64K 	1 0.651 0.998 0.999 0.732 0.926 0.962 0.998 0.450 0.660 0.000 0.0

2 0.679 0.997 0.998 0.701 0.968 0.984 0.998 0.441 0.638 0.253 1.0
4 0.767 0.995 0.997 0.739 0.945 0.972 0.995 0.167 0.561 0.185 1.0
8 0.887 0.996 0.998 0.815 0.959 0.978 0.997 0.204 0.555 0.327 1.0

16 0.860 0.977 0.988 0.904 0.936 0.965 0.998 0.184 0.361 0.523 1.0
256K 	1 0.651 0.999 1.000 0.736 0.977 0.983 0.999 0.912 0.798 0.000 0.0

2 0.677 0.999 1.000 0.687 0.987 0.989 0.999 0.913 0.668 0.552 1.0
4 0.728 1.000 1.000 0.695 0.987 0.989 0.999 0.915 0.630 0.686 1.0
8 0.825 0.999 1.000 0.712 0.987 0.989 0.999 0.921 0.561 0.817 1.0

16 0.754 0.999 0.999 0.820 0.974 0.977 0.999 0.894 0.509 0.881 1.0

Table A.16: Hit ratios for cholO, 200Mhz CPU clock.

Appendix A. Performance Data
	

121

cSz 	N lkav lkmx txav txmx psav psmx rtdly rtime ntwF shdF iciF I
64K 	1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.941 0.000 0.180 0.820

2 23.6 25.8 18.2 20.5 5.4 5.4 45.6 0.512 0.024 0.376 0.599
4 113.8 123.4 43.0 73.1 70.8 102.0 59.8 0.367 0.076 0.447 0.478
8 144.3 146.1 26.8 37.3 117.5 125.4 89.2 0.226 0.075 0.490 0.435

16 226.6 233.9 20.6 33.2 206.1 219.3 161.2 0.166 0.107 0.208 0.686
256K 	1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.875 0.000 0.140 0.860

2 18.1 18.5 13.9 14.3 4.2 4.2 45.3 0.466 0.019 0.357 0.624
4 63.6 64.1 23.4 24.9 40.2 41.4 56.3 0.259 0.042 0.460 0.497
8 151.2 151.8 27.3 30.6 123.9 128.4 86.4 0.150 0.079 0.475 0.446

16 284.6 286.7 25.5 38.4 259.2 266.0 161.1 0.100 0.139 0.248 0.614

Table A.17: Traffic and timing for cholO, 200Mhz CPU clock.

A.1.5 mp3d()

cSz N shdRD shdWR 1c1RD 1c1WR i-fetch
64K 1 3301 2116 10031 2123 32770

2 4456 1577 7427 1591 28256
4 3464 1198 5580 1201 21429
8 3432 898 4166 900 17675

16 4720 667 3093 672 17465
128K 1 3301 2116 10031 2123 32770

2 4016 1578 7426 1590 27368
4 3461 1196 5579 1201 21423
8 3768 901 4179 903 18382

16 5030 665 3083 669 18057
256K 1 3301 2116 10031 2123 32770

2 3922 1577 7426 1590 27183
4 3318 1193 5566 1199 21103
8 4102 895 4151 897 18975

16 5341 662 3071 667 18647
512K 1 3301 2116 10031 2123 32770

2 3661 1576 7422 1590 26653
4 3246 1195 5570 1199 20971
8 4120 893 4145 896 19000

16 4972 664 3079 668 17932
8M 1 3301 2116 10031 2123 32770

2 3836 1578 7427 1590 27014
4 3446 1193 5563 1198 21351
8 4281 895 4152 897 19339

16 5321 662 3071 667 18607

Table A.18: Per node reference counts for inp3d() (X 1000).

Appendix A. Performance Data
	 122

cSz N Irpch lrcch lwcch srpch srcch swcch ifpch ifcch flush purge shi
64K 1 0.814 0.991 0.996 0.331 0.934 0.933 0.998 0.439 0.833 0.000 0.0

2 0.821 0.992 0.997 0.630 0.872 0.868 0.998 0.404 0.607 0.653 1.0
4 0.825 0.988 0.994 0.639 0.839 0.831 0.998 0.358 0.511 0.850 1.0
8 0.827 0.990 0.995 0.726 0.809 0.797 0.998 0.421 0.463 0.927 1.1

16 0.827 0.986 0.994 0.850 0.766 0.748 0.999 0.439 0.411 0.959 1.2

128K 1 0.814 0.996 0.998 0.332 0.970 0.970 0.999 0.596 0.804 0.000 0.0
2 0.821 0.995 0.998 0.590 0.876 0.871 0.999 0.616 0.560 0.815 1.0
4 0.825 0.992 0.996 0.639 0.841 0.832 0.998 0.446 0.500 0.899 1.0

8 0.827 0.994 0.997 0.749 0.805 0.790 0.999 0.576 0.453 0.962 1.1

16 0.828 0.992 0.997 0.860 0.763 0.741 0.999 0.705 0.411 0.980 1.2

256K 1 0.814 0.996 0.999 0.332 0.974 0.974 0.999 0.596 0.788 0.000 0.0
2 0.821 0.996 0.998 0.580 0.888 0.883 0.999 0.614 0.528 0.874 1.0
4 0.825 0.996 0.998 0.624 0.837 0.825 0.999 0.600 0.485 0.961 1.0

8 0.827 0.995 0.998 0.771 0.804 0.787 0.999 0.810 0.453 0.979 1.1
16 0.828 0.995 0.998 0.868 0.761 0.737 0.999 0.847 0.408 0.991 1.2

512K 1 0.814 0.999 0.999 0.332 0.994 0.994 0.999 0.646 0.520 0.000 0.0
2 0.821 0.999 0.999 0.550 0.886 0.880 0.999 0.691 0.492 0.970 1.0
4 0.825 0.998 0.999 0.615 0.838 0.825 0.999 0.699 0.480 0.984 1.0

8 0.827 0.998 0.999 0.772 0.803 0.785 0.999 0.978 0.450 0.991 1.1
16 0.828 0.997 0.999 0.858 0.761 0.738 0.999 0.973 0.411 0.996 1.2

8M 1 0.814 1.000 1.000 0.332 0.999 0.999 0.999 0.992 0.433 0.000 0.0
2 0.821 1.000 1.000 0.571 0.894 0.887 0.999 0.991 0.495 0.994 1.0

4 0.825 1.000 1.000 0.638 0.837 0.822 0.999 0.988 0.482 0.998 1.0

8 0.827 1.000 1.000 0.780 0.804 0.786 0.999 0.985 0.450 0.999 1.1

16 0.828 1.000 1.000 0.868 0.756 0.731 0.999 0.981 0.410 0.999 1.2

Table A.19: Hit ratios for mp3dO.

Appendix A. Performance Data
	

123

cSz N Ikav Ikmx txav txnix psav psmx rtdly rtime ntwF shdF IciF
64K 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.738 0.000 0.331 0.669

2 60.7 61.5 43.1 43.8 17.7 17.7 36.9 0.750 0.065 0.450 0.485
4 182.6 186.3 59.5 62.4 123.1 128.9 47.7 0.672 0.131 0.459 0.410
8 379.9 384.9 61.7 67.4 318.3 326.8 82.3 0.644 0.239 0.445 0.316

16 622.0 626.7 50.4 53.4 571.5 578.4 172.0 0.764 0.400 0.400 0.200
128K 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.691 0.000 0.294 0.706

2 67.2 67.6 47.5 48.0 19.6 19.7 36.6 0.737 0.071 0.440 0.489
4 186.1 189.8 60.5 63.3 125.6 131.4 47.7 0.671 0.134 0.459 0.407
8 385.0 389.4 62.6 67.6 322.4 331.5 82.7 0.666 0.243 0.453 0.304

16 624.3 628.9 50.6 54.2 573.7 579.5 172.4 0.781 0.402 0.406 0.191
256K 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.685 0.000 0.289 0.711

2 64.9 65.0 45.9 46.0 19.0 19.0 36.8 0.718 0.069 0.430 0.502
4 198.0 201.5 63.8 66.1 134.2 136.6 47.7 0.676 0.142 0.460 0.398
8 383.0 387.9 62.2 65.2 320.8 325.2 82.7 0.676 0.242 0.462 0.296

16 621.4 622.6 50.4 54.7 571.0 574.3 172.7 0.795 0.401 0.413 0.186

512K 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.661 0.000 0.266 0.734
2 70.5 70.5 49.9 49.9 20.7 20.7 36.5 0.717 0.075 0.426 0.499
4 200.7 203.1 64.6 66.2 136.1 139.9 47.6 0.674 0.144 0.458 0.397
8 387.5 393.1 62.8 67.8 324.7 329.0 83.0 0.680 0.245 0.463 0.292

16 631.4 633.0 51.1 54.0 580.3 582.8 172.9 0.786 0.408 0.404 0.188

8M 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.653 0.000 0.260 0.740
2 67.7 67.8 47.9 47.9 19.9 19.9 36.7 0.709 0.072 0.427 0.502
4 202.9 206.3 65.1 68.8 137.8 140.7 47.7 0.681 0.145 0.465 0.390
8 384.7 391.2 62.2 66.1 322.5 333.2 82.7 0.684 0.243 0.467 0.289

16 629.3 632.0 51.0 54.0 578.3 584.0 173.1 0.805 0.407 0.411 0.182

Table A.20: Traffic and timing for mp3dO.

cSz 	N lrpch lrcch lwcch srpch srcch swcch ifpch ifcch flush purge shi

64K 	1 0.813 0.990 0.995 0.331 0.932 0.931 0.998 0.374 0.809 0.000 0.0
2 0.820 0.991 0.996 0.741 0.877 0.873 0.998 0.367 0.616 0.613 1.0
4 0.824 0.987 0.994 0.758 0.843 0.836 0.998 0.318 0.517 0.822 1.0
8 0.829 0.993 0.997 0.839 0.805 0.794 0.999 0.389 0.455 0.922 1.1

16 0.827 0.986 0.994 0.917 0.772 0.755 0.999 0.383 0.413 0.951 1.2

256K 	1 0.813 0.997 0.999 0.331 0.988 0.988 0.999 0.630 0.662 0.000 0.0
2 0.820 0.997 0.999 0.682 0.892 0.887 0.999 0.664 0.519 0.903 1.0
4 0.825 0.998 0.999 0.770 0.840 0.828 0.999 0.654 0.491 0.958 1.0
8 0.829 0.998 1.000 0.880 0.800 0.784 0.999 0.867 0.443 0.983 1.1

16 0.828 0.996 0.998 0.928 0.764 0.743 1.000 0.869 0.414 0.990 1.2

Table A.21: Hit ratios for mp3dO, 200Mhz CPU clock.

Appendix A. Performance Data 	 124

cSz 	N lkav lkmx txav txmx psav psmx rtdly rtime rrtwF shdF iciF
64K 	1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.454 0.000 0.401 0.599

2 101.4 102.4 77.7 78.7 23.6 23.7 45.5 0.525 0.107 0.513 0.380
4 295.8 298.2 106.3 112.6 189.5 199.3 59.4 0.512 0.206 0.496 0.298
8 568.0 569.5 102.9 119.9 465.2 476.7 107.0 0.571 0.361 0.447 0.192

16 786.1 788.4 71.0 87.7 715.1 723.9 226.6 0.747 0.526 0.360 0.114
256K 	1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.380 0.000 0.309 0.691

2 114.6 114.8 87.4 87.6 27.2 27.2 44.8 0.492 0.121 0.485 0.393
4 318.6 320.3 114.0 121.3 204.7 213.6 59.4 0.524 0.224 0.501 0.274
8 560.7 562.3 101.0 115.7 459.8 468.3 107.2 0.616 0.357 0.471 0d72

16 783.6 786.8 70.7 86.6 712.9 719.7 227.7 0.789 0.528 0.370 0.102

Table A.22: Traffic and timing for mp3dO, 200Mhz CPU clock.

A.1.6 water()

cSz N shdRD shdWR 1c1RD 1c1WR i-fetch
64K 1 1150 223 11709 2639 28466

2 1389 221 11593 2665 28617
4 1705 236 12384 2849 30772
8 2635 224 12436 2863 32575

16 5400 202 12311 2841 37704
128K 1 1150 223 11709 2639 28466

2 1395 221 11593 2665 28628
4 1704 236 12384 2849 30769
8 2892 224 12436 2863 33087

16 3756 202 12311 2841 34416
256K 1 1177 251 12339 2800 29972

2 1269 258 12540 2887 30476
4 1969 265 13141 3027 32974
8 2594 267 13397 3102 34684

16 2684 264 13770 3187 35547
512K 1 1150 223 11709 2639 28466

2 1392 221 11593 2665 28621
4 1709 236 12384 2849 30779
8 2603 224 12436 2863 32509

16 3736 202 12311 2841 34375
8M 1 1177 251 12339 2800 29972

2 1247 258 12540 2887 30433
4 2074 265 13141 3027 33183
8 2653 267 13397 3102 34800

16 2662 264 13770 3187 355021

Table A.23: Per node reference counts for water() (x 1000).

Appendix A. Performance Data 	 125

cSz N lrpch lrcch lwcch srpch srcch swcch ifpch ifcch flush purge shf
64K 1 0.879 0.995 0.999 0.874 0.880 0.964 0.993 0.922 0.478 0.000 0.0

2 0.897 0.994 0.999 0.896 0.890 0.956 0.992 0.920 0.463 0.116 1.0
4 0.907 0.993 1.000 0.912 0.820 0.907 0.992 0.896 0.469 0.423 1.0
8 0.909 0.981 0.993 0.945 0.812 0.905 0.992 0.812 0.253 0.564 1.0

16 0.910 0.985 0.995 0.975 0.780 0.903 0.993 0.849 0.307 0.616 1.1
128K 1 0.880 0.999 1.000 0.877 0.952 0.986 0.993 0.977 0.617 0.000 0.0

2 0.897 0.999 1.000 0.898 0.953 0.983 0.993 0.984 0.609 0.338 1.0
4 0.908 0.999 1.000 0.912 0.860 0.932 0.992 0.963 0.510 0.764 1.0
8 0.910 0.994 0.997 0.950 0.847 0.922 0.993 0.917 0.320 0.827 1.0

16 0.911 0.996 0.998 0.964 0.818 0.918 0.993 0.952 0.425 0.848 1.1
256K 1 0.882 1.000 1.000 0.867 0.960 0.988 0.993 0.979 0.630 0.000 0.0

2 0.899 1.000 1.000 0.873 0.960 0.985 0.992 0.986 0.623 0.358 1.0
4 0.908 1.000 1.000 0.916 0.855 0.928 0.992 0.968 0.526 0.806 1.0
8 0.909 1.000 1.000 0.936 0.847 0.922 0.992 0.976 0.508 0.878 1.0

16 0.910 1.000 1.000 0.938 0.848 0.920 0.992 0.982 0.497 0.918 1.0
512K 1 0.880 1.000 1.000 0.877 0.958 0.987 0.993 0.977 0.623 0.000 0.0

2 0.897 1.000 1.000 0.898 0.957 0.984 0.993 0.984 0.614 0.359 1.0
4 0.908 1.000 1.000 0.913 0.864 0.933 0.992 0.966 0.525 0.791 1.0
8 0.910 1.000 1.000 0.945 0.852 0.924 0.993 0.974 0.506 0.871 1.0

16 0.911 1.000 1.000 0.964 0.856 0.921 0.994 0.980 0.491 0.917 1.1
8M 1 0.882 1.000 1.000 0.869 0.997 0.997 0.993 0.998 0.323 0.000 0.0

2 0.899 1.000 1.000 0.872 0.988 0.992 0.992 0.999 0.439 0.778 1.0
4 0.908 1.000 1.000 0.921 0.893 0.935 0.992 0.999 0.488 0.981 1.0
8 0.909 1.000 1.000 0.938 0.877 0.926 0.993 0.999 0.485 0.988 1.0

16 0.910 1.000 1.000 0.938 0.871 0.923 0.993 0.999 0.480 0.992 1.0

Table A.24: Hit ratios for waterO.

Appendix A. Performance Data
	

126

cSz N lkav lkmx txav txm.x psav psrnx rtdly rtime ntwF shdF iciF
64K 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.468 0.000 0.045 0.956

2 5.3 5.6 4.1 4.4 1.2 1.2 47.3 0.467 0.005 0.063 0.931
4 28.2 28.9 10.4 12.7 17.9 19.2 57.1 0.514 0.018 0.094 0.888
8 61.8 63.2 11.0 16.7 50.8 53.3 81.5 0.565 0.029 0.135 0.836

16 123.4 125.7 10.9 17.5 112.5 116.5 141.7 0.652 0.050 0.243 0.707
128K 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.458 0.000 0.036 0.964

2 2.3 2.3 1.8 1.8 0.5 0.5 47.1 0.455 0.003 0.053 0.945
4 25.4 25.6 9.2 9.8 16.2 17.0 54.5 0.504 0.017 0.088 0.895
8 57.2 57.6 10.1 13.6 47.1 48.9 80.0 0.554 0.027 0.146 0.826

16 127.2 127.9 11.2 15.2 116.0 118.5 139.6 0.585 0.052 0.182 0.766
256K 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.483 0.000 0.037 0.963

2 1.9 1.9 1.3 1.4 0.5 0.5 27.9 0.486 0.002 0.045 0.953
4 22.4 22.8 7.2 7.4 15.2 15.5 45.0 0.542 0.015 0.103 0.881
8 52.2 52.9 8.0 9.8 44.3 45.2 69.1 0.578 0.027 0.132 0.841

16 109.5 111.7 8.1 10.7 101.4 103.9 123.3 0.606 0.050 0.129 0.821
512K 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.458 0.000 0.035 0.965

2 2.3 2.3 1.7 1.8 0.5 0.5 48.7 0.455 0.003 0.053 0.945
4 25.2 25.4 9.1 9.6 16.1 16.8 54.7 0.503 0.017 0.088 0.895
8 58.3 58.6 10.3 13.1 48.1 49.7 79.8 0.536 0.028 0.134 0.838

16 110.3 111.0 9.6 13.4 100.7 103.2 136.2 0.573 0.045 0.180 0.775
8M 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.480 0.000 0.032 0.968

2 0.9 0.9 0.6 0.7 0.3 0.3 37.2 0.481 0.001 0.038 0.961
4 20.9 21.3 6.7 6.9 14.2 14.6 44.9 0.541 0.015 0.104 0.881
8 49.2 49.9 7.5 9.4 41.7 42.1 68.9 0.575 0.026 0.132 0.842

16 103.7 106.0 7.7 10.5 96.0 98.4 122.6 0.601 0.048 0.126 0.826

Table A.25: Traffic and timing for waterO.

cSz 	N lrpch lrcch lwcch srpch srcch swcch ifpch ifcch flush purge ski
64K 	1 0.879 0.995 0.999 0.874 0.880 0.964 0.993 0.922 0.478 0.000 0.0

2 0.897 0.994 0.999 0.896 0.890 0.956 0.992 0.920 0.463 0.116 1.0
4 0.907 0.993 1.000 0.912 0.820 0.908 0.992 0.896 0.468 0.423 1.0
8 0.909 0.981 0.993 0.966 0.813 0.905 0.992 0.812 0.252 0.563 1.0

16 0.910 0.985 0.995 0.984 0.780 0.903 0.994 0.849 0.307 0.617 1.1
256K 	1 0.880 1.000 1.000 0.877 0.958 0.987 0.993 0.977 0.622 0.000 0.0

2 0.897 1.000 1.000 0.898 0.957 0.984 0.993 0.984 0.612 0.361 1.0
4 0.908 1.000 1.000 0.914 0.863 0.933 0.992 0.966 0.525 0.787 1.0
8 0.910 1.000 1.000 0.948 0.851 0.924 0.993 0.974 0.506 0.866 1.0

16 0.911 1.000 1.000 0.969 0.853 0.921 0.994 0.980 0.491 0.913 1.1

Table A.26: Hit ratios for water 0, 200Mhz CPU clock.

Appendix A. Performance Data 	 127

cSz 	N Ikavlkmx txav txmx psav psmx rtdlly rtime ntwF shdF iciF
64K 	1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.262 0.000 0.181 0.820

2 5.2 5.3 4.1 4.1 1.1 1.1 48.8 0.262 0.006 0.183 0.812
4 20.9 21.3 7.8 9.0 13.0 14.6 60.0 0.264 0.014 0.184 0.803
8 66.9 67.4 12.3 14.7 54.6 59.1 89.3 0.271 0.033 0.187 0.781

16 177.7 178.5 16.0 21.7 161.8 169.7 155.3 0.286 0.076 0.186 0.738
256K 	1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.259 0.000 0.174 0.826

2 1.7 1.7 1.3 1.3 0.4 0.4 41.1 0.254 0.002 0.172 0.826
4 11.4 11.4 4.2 4.7 7.1 8.1 58.4 0.257 0.007 0.174 0.818
8 36.3 36.8 6.6 7.7 29.7 31.5 87.9 0.259 0.018 0.177 0.806

16 115.2 116.1 10.1 12.7 105.0 109.8 152.9 0.270 0.049 0.178 0.773

Table A.27: Traffic and timing for waterO, 200Mhz CPU clock.

A.1.7 ge()

cSz N shdRD shdWR 1c1RD 1c1WR i-fetch
64K 1 1724 857 12080 901 33660

2 1704 848 11935 882 33254
4 1709 852 11971 878 33351
8 1700 848 11908 869 33177

16 1700 848 11906 865 33169
128K 1 1724 857 12080 901 33660

2 1704 848 11935 882 33254
4 1709 852 11971 878 33351
8 1700 848 11908 869 33177

16 1700 848 11906 865 33169
256K 1 1724 857 12080 901 33660

2 1704 848 11935 882 33254
4 1709 852 11971 878 33351
8 1700 848 11908 869 33177

16 1700 848 11906 865 33169
512K 1 1724 857 12080 901 33660

2 1704 848 11935 882 33254
4 1709 852 11971 878 33351
8 1700 848 11908 869 33177

16 1700 848 11906 865 33169
4M 1 1724 857 12080 901 33660

2 1704 848 11935 882 33254
4 1709 852 11971 878 33351
8 1700 848 11908 869 33177

[

16 1700 848 11906 865 33169

Table A.28: Per node reference counts for ge() (x 1000).

Appendix A. Performance Data
	

128

cSz N lrpch lrcch Iwcch srpch srcch swcch ifpch ifcch flush purge shi
64K 1 0.925 0.998 0.998 0.493 0.986 0.990 1.000 0.092 0.593 0.000 0.0

2 0.924 0.995 0.998 0.482 0.986 0.990 1.000 0.083 0.581 0.032 1.0
4 0.925 0.996 0.998 0.487 0.985 0.992 1.000 0.062 0.575 0.171 1.0
8 0.925 0.997 0.998 0.484 0.981 0.990 1.000 0.034 0.580 0.309 1.0

16 0.925 0.996 0.998 0.483 0.977 0.987 1.000 0.024 0.591 0.418 1.0
128K 1 0.925 1.000 1.000 0.493 0.991 0.993 1.000 0.092 0.539 0.000 0.0

2 0.924 0.997 0.999 0.482 0.993 0.996 1.000 0.227 0.492 0.078 1.0
4 0.925 0.998 0.999 0.487 0.989 0.994 1.000 0.093 0.533 0.253 1.0
8 0.925 0.998 0.999 0.485 0.987 0.993 1.000 0.062 0.538 0.472 1.0

16 0.925 0.998 0.999 0.483 0.983 0.990 1.000 0.050 0.562 0.588 1.0
256K 1 0.925 1.000 1.000 0.493 0.991 0.993 1.000 0.092 0.538 0.000 0.0

2 0.924 0.999 1.000 0.482 0.995 0.996 1.000 0.227 0.504 0.087 1.0
4 0.925 0.999 1.000 0.487 0.992 0.996 1.000 0.121 0.460 0.413 1.0
8 0.925 0.999 1.000 0.485 0.990 0.995 1.000 0.133 0.454 0.664 1.0

16 0.925 0.999 1.000 0.484 0.987 0.993 1.000 0.148 0.503 0.767 1.0
512K 1 0.925 1.000 1.000 0.493 0.991 0.993 1.000 0.092 0.538 0.000 0.0

2 0.924 0.999 1.000 0.482 0.995 0.996 1.000 0.227 0.501 0.089 1.0
4 0.925 1.000 1.000 0.487 0.993 0.997 1.000 0.121 0.455 0.451 1.0
8 0.925 1.000 1.000 0.485 0.991 0.996 1.000 0.134 0.419 0.729 1.0

16 0.925 0.999 1.000 0.484 0.988 0.993 1.000 0.202 0.392 0.863 1.0
4M 1 0.925 1.000 1.000 0.495 0.999 0.999 1.000 0.942 0.477 0.000 0.0

2 0.924 0.999 1.000 0.482 0.997 0.998 1.000 0.949 0.470 0.141 1.0
4 0.925 1.000 1.000 0.488 0.996 0.998 1.000 0.952 0.369 0.618 1.0
8 0.925 1.000 1.000 0.486 0.993 0.996 1.000 0.949 0.375 0.799 1.0

16 0.925 1.000 1.000 0.484 0.989 0.994 1.000 0.940 0.372 0.898 1.0

Table A.29: Hit ratios for geO.

Appendix A. Performance Data
	

129

cSz N lkav lkmx txav txinx psav psmx rtdly rtime ntwF shdF 1W
64K 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.483 0.000 0.152 0.848

2 2.8 2.9 2.2 2.3 0.6 0.6 48.8 0.481 0.003 0.153 0.843
4 11.3 11.5 4.3 4.9 7.1 7.9 61.2 0.484 0.008 0.155 0.838
8 36.8 37.2 6.7 8.0 30.1 32.4 87.4 0.489 0.018 0.158 0.825

16 100.5 100.8 9.0 12.2 91.5 95.8 147.5 0.504 0.041 0.159 0.800
128K 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.480 0.000 0.148 0.852

2 1.7 1.8 1.3 1.4 0.4 0.4 39.2 0.475 0.001 0.149 0.849
4 8.2 8.4 3.1 3.4 5.1 5.3 57.3 0.480 0.005 0.151 0.843
8 26.5 26.8 4.8 6.5 21.7 23.0 86.3 0.482 0.013 0.153 0.834

16 77.7 78.1 6.9 9.3 70.8 73.9 146.4 0.494 0.032 0.155 0.813
256K 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.480 0.000 0.148 0.852

2 0.7 0.7 0.5 0.5 0.2 0.2 50.5 0.473 0.001 0.148 0.851
4 5.0 5.1 1.7 1.9 3.3 3.6 48.8 0.477 0.003 0.149 0.848
8 16.2 16.5 2.6 3.0 13.5 14.3 75.1 0.477 0.008 0.151 0.841

16 51.8 52.4 4.0 5.0 47.8 49.9 130.3 0.487 0.023 0.153 0.823
512K 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.480 0.000 0.148 0.852

2 0.8 0.9 0.7 0.7 0.2 0.2 53.8 0.473 0.001 0.147 0.852
4 5.3 5.5 2.0 2.3 3.4 3.6 59.7 0.476 0.004 0.149 0.848
8 18.8 19.0 3.4 4.1 15.4 16.2 86.6 0.477 0.009 0.150 0.841

16 56.2 56.9 5.0 6.1 51.3 53.7 147.9 0.486 0.023 0.152 0.825
4M 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.475 0.000 0.143 0.857

2 0.6 0.6 0.4 0.4 0.2 0.2 31.7 0.472 0.001 0.146 0.853
4 3.0 3.1 1.0 1.3 2.0 2.3 50.1 0.473 0.002 0.146 0.851
8 12.2 12.6 2.0 2.4 10.2 11.2 74.2 0.474 0.006 0.149 0.845

16 42.0 43.1 3.3 4.0 38.8 40.9 129.2 0.483 0.019 0.152 0.829

Table A.30: Traffic and timing for geO.

cSz 	N lrpch lrcch lwcch srpch srcch swcch ifpch ifcch flush purge shi
64K 	1 0.925 0.998 0.998 0.493 0.986 0.990 1.000 0.092 0.593 0.000 0.0

2 0.924 0.995 0.998 0.482 0.986 0.990 1.000 0.083 0.581 0.032 1.0
4 0.925 0.996 0.998 0.487 0.985 0.992 1.000 0.062 0.575 0.171 1.0
8 0.925 0.997 0.998 0.484 0.981 0.990 1.000 0.034 0.580 0.309 1.0

16 0.925 0.996 0.998 0.483 0.977 0.987 1.000 0.024 0.591 0.418 1.0
256K 	1 0.925 1.000 1.000 0.493 0.991 0.993 1.000 0.092 0.538 0.000 0.0

2 0.924 0.999 1.000 0.482 0.995 0.996 1.000 0.227 0.504 0.087 1.0
4 0.925 0.999 1.000 0.487 0.992 0.996 1.000 0.121 0.460 0.413 1.0
8 0.925 0.999 1.000 0.485 0.990 0.995 1.000 0.133 0.454 0.664 1.0

16 0.925 0.999 1.000 0.484 0.987 0.993 1.000 0.148 0.503 0.767 1.0

Table A.31: Hit ratios for geO, 200Mhz CPU clock.

Appendix A. Performance Data
	

130

cSz 	N lkav Ikmx txav txm.x psav psmx rtdly rtime ntwF shdF iciF I
64K 	1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.313 0.000 0.074 0.926

2 20.7 24.1 15.3 18.7 5.4 5.4 40.5 0.327 0.022 0.137 0.841
4 76.9 91.0 26.5 51.4 50.4 63.8 50.7 0.361 0.053 0.184 0.764
8 168.9 195.7 28.3 65.8 140.6 172.2 78.2 0.476 0.091 0.171 0.738

16 366.8 406.5 31.9 85.3 334.9 378.8 151.9 0.468 0.195 0.177 0.628
256K 	1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.293 0.000 0.037 0.963

2 2.5 2.5 1.9 2.0 0.5 0.5 45.7 0.291 0.003 0.077 0.921
4 10.2 11.5 3.6 5.3 6.6 7.4 51.9 0.303 0.007 0.107 0.886
8 32.7 35.6 5.6 9.2 27.1 30.3 75.3 0.391 0.016 0.105 0.878

16 187.2 195.9 16.0 23.0 171.2 179.2 139.4 0.369 0.087 0.135 0.778

Table A.32: Traffic and timing for geO, 200Mhz CPU clock.

A.1.8 mmult()

cSz N shdRD shdWR 1c1RD 1c1WR i-fetch
64K 1 2000 10 12112 2030 33295

2 2000 8 12091 2024 33240
4 2010 6 12129 2029 33348
8 2000 5 12055 2015 33146

16 2000 4 12046 2012 33122
128K 1 2000 10 12112 2030 33295

2 2000 8 12091 2024 33240
4 2010 6 12129 2029 33348
8 2000 5 12055 2015 33146

16 2000 4 12046 2012 33122
256K 1 2000 10 12112 2030 33295

2 2000 8 12091 2024 33240
4 2010 6 12129 2029 33348
8 2000 5 12055 2015 33146

16 2000 4 12046 2012 33122
512K 1 2000 10 12112 2030 33295

2 2000 8 12091 2024 33240
4 2010 6 12129 2029 33348
8 2000 5 12055 2015 33146

16 2000 4 12046 2012 33122
4M 1 2000 10 12112 2030 33295

2 2000 8 12091 2024 33240
4 2010 6 12129 2029 33348
8 2000 5 12055 2015 33146

16 2000 4 12046 2012 33 122 1
Table A.33: Per node reference counts for mmu].t() (x 1000).

Appendix A. Performance Data
	

131

cSz N Irpch Ircch Iwcch srpch srcch swcch ifpch ifcch flush purge shi
64K 1 0.783 0.993 0.999 0.845 0.864 0.915 1.000 0.000 0.556 0.000 0.0

2 0.821 0.991 0.998 0.685 0.886 0.909 1.000 0.000 0.677 0.000 0.0
4 0.823 0.989 0.998 0.555 0.883 0.909 1.000 0.000 0.744 0.000 0.0
8 0.809 0.914 0.955 0.461 0.884 0.911 1.000 0.000 0.294 0.000 0.0

16 0.807 0.974 0.990 0.449 0.883 0.907 1.000 0.000 0.593 0.000 0.0
128K 1 0.783 1.000 1.000 0.849 0.955 0.919 1.000 0.000 0.887 0.000 0.0

2 0.821 0.998 1.000 0.687 0.932 0.914 1.000 0.000 0.878 0.000 0.0
4 0.823 0.998 0.999 0.556 0.925 0.914 1.000 0.000 0.879 0.000 0.0
8 0.809 0.922 0.957 0.462 0.919 0.919 1.000 0.000 0.241 0.000 0.0

16 0.807 0.982 0.991 0.450 0.917 0.918 1.000 0.000 0.576 0.000 0.0
256K 1 0.783 1.000 1.000 0.849 0.985 0.929 1.000 0.000 0.633 0.000 0.0

2 0.821 0.999 1.000 0.687 0.986 0.926 1.000 0.000 0.616 0.000 0.0
4 0.823 0.998 1.000 0.556 0.986 0.922 1.000 0.000 0.624 0.000 0.0
8 0.809 0.924 0.957 0.462 0.982 0.925 1.000 0.000 0.062 0.000 0.0

16 0.807 0.984 0.992 0.450 0.960 0.928 1.000 0.000 0.407 0.000 0.0
512K 1 0.783 1.000 1.000 0.849 0.985 0.929 1.000 0.000 0.633 0.000 0.0

2 0.821 1.000 1.000 0.687 0.989 0.926 1.000 0.000 0.660 0.000 0.0
4 0.823 1.000 1.000 0.556 0.990 0.929 1.000 0.000 0.649 0.000 0.0
8 0.809 0.926 0.958 0.462 0.990 0.931 1.000 0.000 0.028 0.000 0.0

16 0.807 0.986 0.992 0.451 0.989 0.933 1.000 0.000 0.123 0.000 0.0
4M 1 0.783 1.000 1.000 0.849 0.995 0.929 1.000 0.000 0.000 0.000 0.0

2 0.821 1.000 1.000 0.687 0.997 0.930 1.000 0.000 0.000 0.000 0.0
4 0.823 1.000 1.000 0.557 0.998 0.932 1.000 0.000 0.000 0.000 0.0
8 0.809 1.000 1.000 0.462 0.997 0.933 1.000 0.000 0.036 0.000 0.0

16 0.807 1.000 1.000 0.451 0.996 0.934 1.000 0.000 0.015 0.000 0.0

Table A.34: Hit ratios for minultO.

Appendix A. Performance Data
	

132

cSz N Ikav lkmx txav txmx psav psmx rtdly rtime ntwF shdF iciF I
64K 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.554 0.000 0.051 0.950

2 11.9 14.0 8.7 10.8 3.1 3.1 40.1 0.567 0.013 0.099 0.889
4 47.1 51.8 16.7 21.0 30.4 34.2 50.4 0.608 0.033 0.137 0.831
8 115.8 128.7 19.6 34.3 96.2 111.4 76.1 0.731 0.061 0.141 0.798

16 243.5 267.1 20.8 48.8 222.7 249.1 141.8 0.714 0.119 0.146 0.735
128K 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.537 0.000 0.034 0.965

2 9.5 11.0 7.0 8.5 2.5 2.5 38.2 0.548 0.010 0.083 0.908
4 35.7 40.0 12.5 17.6 23.2 27.3 50.6 0.581 0.024 0.117 0.859
8 97.7 106.2 16.3 28.4 81.4 92.9 76.7 0.699 0.050 0.124 0.826

16 204.2 219.2 18.0 28.9 186.2 203.6 139.4 0.674 0.099 0.131 0.771
256K 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.534 0.000 0.029 0.971

2 1.4 1.4 1.1 1.1 0.3 0.3 33.0 0.530 0.001 0.060 0.938
4 6.0 6.5 2.1 3.0 3.8 4.2 51.8 0.547 0.004 0.085 0.911
8 19.9 21.5 3.5 5.6 16.4 18.2 73.8 0.640 0.010 0.091 0.899

16 117.6 120.2 10.0 12.6 107.6 110.3 132.3 0.618 0.051 0.111 0.838
512K 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.534 0.000 0.029 0.971

2 1.1 1.2 0.9 0.9 0.2 0.2 42.2 0.529 0.001 0.060 0.939
4 4.2 4.4 1.5 1.9 2.6 3.3 50.2 0.544 0.003 0.082 0.915
8 10.1 10.9 1.7 3.2 8.4 8.9 77.1 0.631 0.005 0.085 0.910

16 25.3 27.2 2.2 5.7 23.2 25.1 132.2 0.578 0.011 0.096 0.893
4M 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.533 0.000 0.027 0.973

2 0.2 0.2 0.1 0.2 0.0 0.0 0.0 0.526 0.000 0.056 0.944
4 0.8 0.9 0.3 0.4 0.5 0.6 77.1 0.539 0.001 0.077 0.922
8 3.3 3.5 0.6 0.7 2.7 2.9 90.8 0.553 0.002 0.092 0.907

16 10.3 10.6 0.9 1.2 9.3 9.8 145.9 0.557 0.004 0.093 0.902

Table A.35: Traffic and timing for mmult 0.

cSz 	N lrpch lrcch lwcch srpch srcch swcch ifpch ifcch flush purge ski
64K 	1 0.783 0.993 0.999 0.845 0.864 0.915 1.000 0.000 0.556 0.000 0.0

2 0.821 0.991 0.998 0.685 0.886 0.909 1.000 0.000 0.677 0.000 0.0
4 0.823 0.989 0.998 0.555 0.883 0.909 1.000 0.000 0.744 0.000 0.0
8 0.809 0.914 0.955 0.461 0.884 0.911 1.000 0.000 0.294 0.000 0.0

16 0.807 0.974 0.990 0.449 0.883 0.907 1.000 0.000 0.593 0.000 0.0
256K 	1 0.783 1.000 1.000 0.849 0.985 0.929 1.000 0.000 0.633 0.000 0.0

2 0.821 0.999 1.000 0.687 0.986 0.926 1.000 0.000 0.616 0.000 0.0
4 0.823 0.998 1.000 0.556 0.986 0.922 1.000 0.000 0.624 0.000 0.0
8 0.809 0.924 0.957 0.462 0.982 0.925 1.000 0.000 0.062 0.000 0.0

16 0.807 0.984 0.992 0.450 0.960 0.928 1.000 0.000 0.407 0.000 0.0

Table A.36: Hit ratios for mmult 0, 200Mhz CPU clock.

Appendix A. Performance Data 	 133

'cSz 	N lkav lkmx txav txrnx psav psmx rtdlly rtime ntwF shdF iciF
64K 	1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.313 0.000 0.074 0.926

2 20.7 24.1 15.3 18.7 5.4 5.4 40.5 0.327 0.022 0.137 0.841
4 76.9 91.0 26.5 51.4 50.4 63.8 50.7 0.361 0.053 0.184 0.764
8 168.9 195.7 28.3 65.8 140.6 172.2 78.2 0.476 0.091 0.171 0.738

16 366.8 406.5 31.9 85.3 334.9 378.8 151.9 0.468 0.195 0.177 0.628
256K 	1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.293 0.000 0.037 0.963

2 2.5 2.5 1.9 2.0 0.5 0.5 45.7 0.291 0.003 0.077 0.921
4 10.2 11.5 3.6 5.3 6.6 7.4 51.9 0.303 0.007 0.107 0.886
8 32.7 35.6 5.6 9.2 27.1 30.3 75.3 0.391 0.016 0.105 0.878

16 187.2 195.9 16.0 23.0 171.2 179.2 139.4 0.369 0.087 0.135 0.778

Table A.37: Traffic and timing for mmult 0, 200Mhz CPU clock.

A.1.9 paths()

cSz N shdltD shdWll. 1c1RD 1c1WR i-fetch
64K 1 1045 8 5266 353 15072

2 1035 6 5206 349 14906
4 1035 5 5201 348 14894
8 1036 4 5201 348 14898

16 1028 3 5154 345 14767
128K 1 1045 8 5266 353 15072

2 1035 6 5206 349 14906
4 1035 5 5201 348 14894
8 1036 4 5199 348 14895

16 1027 3 5152 345 14761
256K 1 1045 8 5266 353 15072

2 1035 6 5206 349 14906
4 1035 5 5199 348 14892
8 1036 4 5200 348 14896

16 1027 3 5151 345 14759
512K 1 1045 8 5266 353 15072

2 1035 6 5206 349 14906
4 1035 5 5199 348 14892
8 1036 4 5200 348 14896

16 1028 3 5153 345 14763
4M 1 1045 8 5266 353 15072

2 1035 6 5206 349 14906
4 1035 5 5199 348 14892
8 1036 4 5200 348 14896

16 1028 3 5153 345 147631

Table A.38: Per node reference counts for paths C) (x 1000).

Appendix A. Performance Data
	

134

cSz N lrpch lrcch lwcch srpch srcch swcch ifpch ifcch flush purge sKi
64K 1 0.925 1.000 1.000 0.701 0.999 0.953 1.000 0.000 0.496 0.000 0.0

2 0.924 0.984 1.000 0.597 0.969 0.203 1.000 0.000 0.514 0.982 1.0
4 0.924 0.983 1.000 0.494 0.919 0.091 1.000 0.000 0.612 0.945 2.3
8 0.923 0.975 0.998 0.412 0.878 0.022 1.000 0.000 0.685 0.971 3.5

16 0.923 0.976 0.998 0.362 0.803 0.008 1.000 0.000 0.805 0.970 4.1
128K 1 0.925 1.000 1.000 0.701 0.999 0.953 1.000 0.000 0.496 0.000 0.0

2 0.924 1.000 1.000 0.597 0.986 0.167 1.000 0.000 0.476 1.000 1.0
4 0.924 1.000 1.000 0.494 0.965 0.058 1.000 0.000 0.372 0.994 2.5
8 0.923 0.990 1.000 0.413 0.961 0.026 1.000 0.000 0.325 0.992 4.3

16 0.923 0.988 1.000 0.363 0.902 0.006 1.000 0.000 0.662 0.989 6.2

256K 1 0.925 1.000 1.000 0.701 0.999 0.953 1.000 0.000 0.496 0.000 0.0
2 0.924 1.000 1.000 0.597 0.986 0.140 1.000 0.000 0.476 1.000 1.0
4 0.924 1.000 1.000 0.497 0.979 0.088 1.000 0.000 0.280 1.000 2.4

8 0.923 0.998 1.000 0.415 0.972 0.023 1.000 0.000 0.202 0.999 4.4
16 0.923 0.996 1.000 0.364 0.911 0.006 1.000 0.000 0.695 0.993 6.1

512K 1 0.925 1.000 1.000 0.701 0.999 0.953 1.000 0.000 0.496 0.000 0.0
2 0.924 1.000 1.000 0.597 0.986 0.167 1.000 0.000 0.476 1.000 1.0
4 0.924 1.000 1.000 0.497 0.979 0.088 1.000 0.000 0.280 1.000 2.4
8 0.923 1.000 1.000 0.415 0.974 0.024 1.000 0.000 0.179 1.000 4.4

16 0.923 1.000 1.000 0.364 0.972 0.006 1.000 0.000 0.125 1.000 6.3
4M 1 0.925 1.000 1.000 0.701 0.999 0.954 1.000 0.000 0.489 0.000 0.0

2 0.924 1.000 1.000 0.597 0.986 0.139 1.000 0.000 0.476 1.000 1.0
4 0.924 1.000 1.000 0.497 0.979 0.087 1.000 0.000 0.279 1.000 2.4
8 0.923 1.000 1.000 0.415 0.974 0.023 1.000 0.000 0.178 1.000 4.4

16 0.923 1.000 1.000 0.364 0.972 0.006 1.000 0.000 0.124 1.000 6.3

Table A.39: Hit ratios for paths().

Appendix A. Performance Data
	

135

cSz N lkav lkmx txav txmx psav psmx rtdly rtime ntwF shdF iciF
64K 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.195 0.000 0.076 0.924

2 11.6 12.2 8.9 9.5 2.7 2.7 44.5 0.208 0.012 0.124 0.865
4 76.2 81.7 29.3 37.1 46.9 52.6 59.8 0.237 0.051 0.183 0.766
8 281.9 295.3 52.5 59.8 229.3 244.5 95.1 0.291 0.151 0.222 0.627

16 695.3 701.9 63.8 78.0 631.5 639.4 205.6 0.461 0.401 0.208 0.391
128K 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.195 0.000 0.076 0.924

2 9.0 9.1 6.9 6.9 2.1 2.1 42.3 0.203 0.009 0.114 0.877
4 38.7 41.9 14.7 20.5 24.0 25.1 58.7 0.218 0.026 0.149 0.825
8 103.1 108.4 19.1 30.1 84.0 88.0 88.3 0.230 0.050 0.167 0.783

16 484.4 489.8 44.6 61.0 439.8 452.0 184.5 0.320 0.250 0.192 0.558
256K 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.195 0.000 0.076 0.924

2 7.5 7.6 5.3 5.4 2.2 2.2 36.4 0.203 0.008 0.115 0.878
4 24.0 24.1 8.5 8.8 15.6 15.8 50.2 0.211 0.017 0.138 0.845
8 69.6 70.1 12.1 13.5 57.6 60.4 78.1 0.222 0.036 0.159 0.805

16 395.1 402.2 33.8 42.2 361.3 370.8 156.1 0.299 0.212 0.196 0.592
512K 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.195 0.000 0.076 0.924

2 9.0 9.1 6.9 6.9 2.1 2.1 42.3 0.203 0.009 0.114 0.877
4 29.3 29.4 11.1 11.5 18.3 19.1 58.7 0.212 0.019 0.138 0.843
8 81.2 81.6 15.2 17.5 66.0 69.4 88.4 0.222 0.040 0.157 0.804

16 179.3 180.5 16.8 21.0 162.6 168.3 156.8 0.233 0.077 0.162 0.761
4M 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.195 0.000 0.076 0.924

2 7.5 7.6 5.3 5.4 2.2 2.2 36.5 0.203 0.008 0.115 0.878
4 24.0 24.1 8.4 8.8 15.6 15.8 50.3 0.211 0.017 0.138 0.845
8 67.2 67.7 11.7 13.2 55.5 58.1 77.7 0.221 0.035 0.158 0.807

16 149.4 151.4 12.9 15.3 136.5 141.0 139.8 0.231 0.069 0.164 0.767

Table A.40: Traffic and timing for paths().

cSz 	N lrpch lrcch lwcch srpch srcch swcch ifpch ifcch flush purge shi
64K 	1 0.925 1.000 1.000 0.701 0.999 0.953 1.000 0.000 0.496 0.000 0.0

2 0.924 0.984 1.000 0.597 0.970 0.242 1.000 0.000 0.515 0.980 1.0
4 0.924 0.983 1.000 0.494 0.920 0.081 1.000 0.000 0.616 0.941 2.2
8 0.923 0.975 0.998 0.412 0.879 0.031 1.000 0.000 0.689 0.965 3.5

16 0.923 0.976 0.998 0.362 0.805 0.017 1.000 0.000 0.811 0.969 4.1
256K 	1 0.925 1.000 1.000 0.701 0.999 0.953 1.000 0.000 0.496 0.000 0.0

2 0.924 1.000 1.000 0.597 0.987 0.217 1.000 0.000 0.474 0.999 1.0
4 0.924 1.000 1.000 0.497 0.979 0.093 1.000 0.000 0.280 1.000 2.3
8 0.923 0.998 1.000 0.415 0.973 0.030 1.000 0.000 0.205 1.000 4.3

16 0.923 0.996 1.000 0.364 0.910 0.006 1.000 0.000 0.693 0.993 6.1

Table A.41: Hit ratios for paths(), 200Mhz CPU clock.

Appendix A. Performance Data
	 136

cSz 	N lkav lkmx txav txmx psav psmx rtdly rtime ntwF shdF iciF
64K 	1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.104 0.000 0.096 0.903

2 20.1 21.2 15.4 16.6 4.7 4.7 45.9 0.115 0.021 0.162 0.817
4 131.3 139.4 49.7 57.8 81.6 92.3 60.7 0.142 0.089 0.238 0.673
8 423.1 443.0 78.4 91.4 344.7 368.3 100.4 0.194 0.237 0.264 0.498

16 854.8 863.3 78.4 95.8 776.4 787.3 223.7 0.373 0.537 0.208 0.255

256K 	1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.104 0.000 0.096 0.903
2 15.6 15.7 11.9 12.0 3.7 3.7 44.8 0.111 0.017 0.145 0.838
4 52.7 53.0 19.9 21.1 32.8 34.2 59.6 0.117 0.035 0.175 0.789

8 142.6 143.8 26.9 29.8 115.7 120.1 91.6 0.127 0.072 0.196 0.732

16 656.6 661.9 60.9 87.6 595.7 610.0 203.8 0.221 0.377 0.205 0.418

Table A.42: Traffic and timing for paths 0, 200Mhz CPU clock.

A.2 SCI Meshes

A.2.1 chol()

cSz N shdRD shdWR 1c1RD 1c1WR i-fetch
128K 4 9113 2007 2814 611 29007

16 2732 553 1135 160 10603
256K 4 6720 2044 2010 574 20499

16 2383 558 804 155 8290
512K 4 6620 2042 2064 576 20428

16 2343 553 766 160 7972

Table A.43: Per node reference counts for chol() (X 1000).

cSz N lrpch lrcch lwcch srpch srcch swcch ifpch ifcch flush purge ski

128K 4 0.791 0.998 0.999 0.773 0.952 0.973 0.996 0.171 0.539 0.239 1.0
16 0.865 0.996 0.995 0.796 0.967 0.980 0.998 0.312 0.519 0.559 1.0

256K 4 0.726 0.999 1.000 0.694 0.988 0.990 0.999 0.916 0.601 0.721 1.0
16 0.815 0.998 0.998 0.767 0.984 0.986 0.999 0.894 0.519 0.864 1.0

512K 4 0.732 0.999 1.000 0.690 0.988 0.990 0.999 0.953 0.557 0.814 1.0
16 0.800 1.000 0.999 0.764 0.985 0.986 0.999 0.925 0.488 0.913 1.0

Table A.44: Hit ratios for cholO.

Appendix A. Performance Data
	

137

cSz N n lkav lkmx txav txmv psav psmx rtdly rtime ntwF shdF iciF
128K 4 X 13.4 23.1 11.1 20.1 2.3 2.9 63.1 0.628 0.050 0.446 0.504

Y 23.8 41.4 17.1 30.6 6.7 10.9
16 X 31.6 41.9 7.9 10.1 23.7 35.8 112.1 0.189 0.057 0.321 0.622

Y 33.8 37.8 12.7 16.0 21.1 24.2
256K 4 X 9.0 9.7 6.3 6.7 2.7 3.1 76.3 0.445 0.032 0.417 0.551

Y 12.9 13.3 9.9 10.5 3.0 3.1
16 X 33.9 41.9 8.7 11.1 25.2 33.5 109.9 0.157 0.061 0.351 0.587

Y 37.2 40.7 14.0 17.3 23.2 25.3
512K 4 X 9.1 10.2 6.2 6.7 2.9 3.5 73.1 0.442 0.031 0.414 0.555

Y 12.7 13.4 9.8 10.5 2.8 2.9
16 X 33.4 45.8 8.6 12.6 24.7 36.9 108.8 0.153 0.060 0.361 0.579

Y 36.3 40.9 13.8 19.8 22.5 24.6

Table A.45: Traffic and timing for cholO.

A.2.2 mp3d()

cSz N shdRD shdWR 1c1RD 1c1WR i-fetch
128K 4 8051 2013 2064 371 23556

16 5740 897 2091 432 17488
64 6375 367 1707 373 17178

256K 4 7506 2000 2054 369 22426
16 5827 891 2077 429 17622
64 6306 367 1707 373 17043

512K 4 7380 1997 2051 369 22163
16 5509 891 2078 429 16989
64 6132 367 1707 373 16694

Table A.46: Per node reference counts for mp3d() (x1000).

cSz N lrpch lrcch lwcch srpch srcch swcch ifpch ifcch flush purge shi
128K 4 0.828 0.994 0.999 0.768 0.880 0.884 0.998 0.354 0.501 0.892 1.0

16 0.831 0.993 0.998 0.845 0.781 0.772 0.999 0.501 0.398 0.979 1.2
64 0.830 0.993 0.998 0.936 0.578 0.533 0.999 0.563 0.302 0.994 1.4

256K 4 0.828 0.998 1.000 0.752 0.875 0.877 0.999 0.657 0.475 0.967 1.0
16 0.831 0.997 0.999 0.848 0.777 0.767 0.999 0.869 0.397 0.992 1.2
64 0.830 0.995 0.998 0.935 0.576 0.529 0.999 0.749 0.302 0.997 1.4

512K 4 0.828 1.000 1.000 0.748 0.872 0.873 0.999 0.696 0.466 0.987 1.0
16 0.831 0.998 0.999 0.839 0.772 0.761 0.999 0.973 0.396 0.996 1.2
64 0.830 0.996 0.998 0.933 0.573 0.527 1.000 0.910 0.302 0.998 1.4

Table A.47: Hit ratios for mp3dO.

Appendix A. Performance Data 	 138

cSz N n lkav lkmx txav txmv psav psmx rtdlly rtime ntwF shdF iciF
128K 4 X 56.8 59.6 36.9 39.3 20.0 22.0 66.7 0.774 0.183 0.540 0.277

Y 71.4 74.5 57.1 60.2 14.3 14.4
16 X 173.5 205.0 45.8 50.1 127.7 162.8 107.4 0.708 0.320 0.492 0.188

Y 189.6 203.6 73.2 79.9 116.5 130.6
64 X 345.2 603.3 40.1 52.4 305.1 566.7 206.9 0.794 0.463 0.432 0.104

Y 345.1 387.3 67.2 82.8 277.9 312.2
256K 4 X 62.4 70.7 40.8 44.7 21.5 26.0 68.5 0.780 0.202 0.528 0.270

Y 79.8 87.4 63.6 69.8 16.2 17.6
16 X 175.0 209.7 46.4 49.7 128.6 173.3 107.7 0.716 0.323 0.494 0.182

Y 192.2 207.2 74.1 78.9 118.1 132.0
64 X 348.6 608.2 40.4 54.2 308.1 571.1 207.2 0.796 0.467 0.430 0.103

Y 346.8 381.5 67.8 85.9 279.0 308.8
512K 4 X 64.2 72.8 41.9 45.9 22.3 26.8 67.9 0.786 0.207 0.527 0.267

Y 81.4 89.7 65.1 71.8 16.3 17.9
16 X 182.1 220.4 47.6 52.5 134.5 182.7 107.8 0.716 0.332 0.486 0.182

Y 194.4 211.2 76.1 83.0 118.3 135.2
64 X 352.9 517.4 40.9 61.5 311.9 489.5 205.3 0.790 0.469 0.428 0.104

Y 350.5 395.2 68.6 98.4 281.9 318.7

Table A.48: Traffic and timing for mp3dO.

A.2.3 water()

cSz N shdRD shdWR 1c1RD 1c1WR i-fetch
128K 4 9974 2280 4165 805 30871

16 7941 1274 7997 1770 34156
64 4736 197 13510 3129 38800

256K 4 9964 2280 4165 805 30851
16 8000 1274 7997 1770 34275
64 4829 197 13510 3129 38987

512K 4 9977 2280 4165 805 30877
16 8021 1274 7997 1770 34317
64 4967 197 13510 3129 39263

Table A.49: Per node reference counts for water() (xl000).

cSz N Irpch lrcch lwcch srpch srcch swcch ifpch ifcch flush purge shi
128K 4 0.913 0.997 1.000 0.905 0.977 0.993 0.992 0.963 0.528 0.742 1.0

16 0.910 0.998 1.000 0.930 0.948 0.982 0.993 0.952 0.538 0.696 1.1
64 0.909 0.994 0.998 0.971 0.755 0.907 0.994 0.936 0.417 0.863 1.1

256K 4 0.913 1.000 1.000 0.904 0.978 0.993 0.992 0.966 0.529 0.780 1.0
16 0910 0.999 1000 0931 9.962 0.986 0.994 0.980 0.485 0.918 1.1
64 0.909 0.996 0.999 0.972 0.804 0.909 0.994 0.962 0.421 0.901 1.1

512K 4 0.913 1.000 1.000 0.905 0.979 0.993 0.992 0.966 0.524 0.791 1.0
16 0.910 1.000 1.000 0.931 0.963 0.986 0.994 0.980 0.482 0.925 1.1
64 0.909 0.998 0.999 0.973 0.845 0.912 0.994 0.977 0.397 0.952 1.1

Table A.50: Hit ratios for water C).

Appendix A. Performance Data

cSz N a lkav lkmx txav txmv psav psmx rtdly rtime ntwF shdF iciF
128K 4 X 6.9 7.2 4.5 4.7 2.4 2.5 75.8 0.510 0.023 0.292 0.685

Y 9.0 9.5 7.2 7.5 1.8 2.1
16 X 25.6 33.6 6.2 9.1 19.4 28.3 102.8 0.577 0.042 0.276 0.683

Y 23.9 29.6 9.7 13.9 14.2 17.3
64 X 68.1 109.6 7.4 12.9 60.7 101.5 156.1 0.674 0.067 0.201 0.732

Y 53.2 61.8 11.5 19.7 41.7 47.8
256K 4 X 6.9 7.1 4.5 4.7 2.4 2.5 75.0 0.509 0.023 0.291 0.686

Y 8.9 9.6 7.2 7.5 1.8 2.0
16 X 22.4 26.7 5.3 8.1 17.1 22.8 103.0 0.570 0.037 0.275 0.688

Y 20.8 25.6 8.4 12.6 12.4 15.0
64 X 58.0 104.0 6.2 13.0 51.9 97.1 154.8 0.664 0.057 0.204 0.739

Y 45.7 54.2 9.7 20.1 36.0 44.1
512K 4 X 6.9 7.1 4.5 4.7 2.4 2.4 75.4 0.509 0.023 0.291 0.686

Y 8.9 9.5 7.1 7.4 1.7 2.0
16 X 22.3 26.4 5.3 8.1 17.0 22.6 102.3 0.570 0.036 0.276 0.688

Y 20.6 25.5 8.3 12.6 12.2 14.9
64 X 50.7 90.7 5.3 11.6 45.4 84.7 155.1 0.658 0.050 0.208 0.742

Y 40.0 50.3 8.5 18.1 31.6 36.9

Table A.51: Traffic and timing for water 0.

A.2.4 ge()

cSz N shdRD shdWR 1c1RD 1c1WR i-fetch
128K 4 1709 852 11971 878 33351

16 1700 848 11906 865 33169
256K 4 1709 852 11971 878 33351

16 1700 848 11906 865 33169
64 1698 848 11893 860 33134

512K 4 1709 852 11971 878 33351
16 1700 848 11906 865 33169

Table A.52: Per node reference counts for ge() (x 1000).

cSz N lrpch lrcch lwcch srpch srcch swcch ifpch ifcch flush purge shi
128K 4 0.925 0.998 0.999 0.487 0.989 0.994 1.000 0.093 0.533 0.253 1.0

16 0.925 0.998 0.999 0.483 0.983 0.990 1.000 0.050 0.562 0.588 1.0
256K 4 0.925 0.999 1.000 0.487 0.992 0.996 1.000 0.121 0.460 0.413 1.0

16 0.925 0.999 1.000 0.484 0.987 0.993 1.000 0.148 0.503 0.767 1.0
64 0.925 0.999 0.999 0.478 0.975 0.987 1.000 0.043 0.583 0.800 1.0

512K 4 0.925 1.000 1.000 0.487 0.993 0.997 1.000 0.121 0.455 0.451 1.0
16 0.925 0.999 1.000 0.484 0.988 0.993 1.000 0.202 0.392 0.863 1.0

Table A.53: Hit ratios for ge0.

Appendix A. Performance Data 	 140

cSz N n Ikav lkmx txav txmv psav psmx rtdly rtime ntwF shdF iciF
128K 4 X 2.0 2.1 1.3 1.4 0.7 0.8 82.0 0.481 0.007 0.152 0.842

Y 2.5 2.9 2.0 2.3 0.5 0.7
16 X 14.7 17.8 3.4 4.4 11.3 14.9 99.3 0.489 0.022 0.157 0.821

Y 11.9 14.4 5.4 6.6 6.6 10.2
256K 4 X 1.6 1.7 1.1 1.2 0.5 0.6 74.9 0.478 0.005 0.149 0.846

Y 2.0 2.1 1.7 1.8 0.3 0.4
16 X 12.1 14.1 2.7 3.7 9.3 11.4 97.3 0.484 0.018 0.154 0.828

Y 9.4 12.4 4.3 6.0 5.1 9.0
64 X 59.7 72.8 5.9 9.9 53.7 662 146.8 0.511 0.055 0.161 0.784

Y 39.2 58.2 9.1 15.2 30.1 50.1
512K 4 X 1.3 1.5 0.8 1.1 0.5 0.5 76.9 0.477 0.004 0.148 0.847

Y 1.6 2.1 1.3 1.7 0.3 0.4
16 X 10.7 12.5 2.4 3.2 8.3 10.1 96.6 0.482 0.015 0.153 0.832

Y 8.1 10.7 3.8 5.2 4.3 7.7

Table A.54: Traffic and timing for geO.

A.2.5 mmult()

cSz N shdltlJ shdWR 1c1RD 1c1WR. i-fetch
128K 4 2010 6 12129 2029 33348

16 2097 4 12628 2109 34723
64 2000 2 12028 2008 33073

256K 4 2010 6 12129 2029 33348
16 2097 4 12628 2109 34723
64 2000 2 12028 2008 33073

512K 4 2010 6 12129 2029 33348
16 2097 4 12628 2109 34723
64 2000 2 12028 2008 33073

Table A.55: Per node reference counts for minult() (x 1000).

cSz N lrpch lrcch lwcch srpch srcch swcch ifpch ifcch flush purge shl
128K 4 0.824 0.995 0.999 0.471 0.967 0.920 1.000 0.000 0.634 0.000 0.0

16 0.808 0.979 0.991 0.465 0.909 0.922 1.000 0.000 0.576 0.000 0.0
64 0.821 0.991 0.999 0.458 0.899 0.919 1.000 0.000 0.803 0.000 0.0

256K 4 0.824 0.997 1.000 0.472 0.988 0.927 1.000 0.000 0.463 0.000 0.0
16 0.808 0.982 0.992 0.465 0.951 0.930 1.000 0.000 0.446 0.000 0.0
64 0.821 0.996 0.999 0.458 0.920 0.929 1.000 0.000 0.841 0.000 0.0

512K 4 0.824 0.997 1.000 0.472 0.992 0.930 1.000 0-000 0.402 0,000 00
16 0.808 0.985 0.992 0.465 0.989 0.932 1.000 0.000 0.122 0.000 0.0
64 0.821 0.998 1.000 0.458 0.959 0.932 1.000 0.000 0.726 0.000 0.0

Table A.56: Hit ratios for mmultQ.

Appendix A. Performance Data
	

141

cSz N ii lkav lkmx txav txmv psav psmx rtdly rtime ntwF shdF iciF
128K 4 X 4.4 6.7 2.9 4.5 1.6 2.2 77.6 0.575 0.017 0.112 0.871

Y 6.0 8.5 4.5 7.0 1.4 1.5
16 X 54.4 86.4 14.1 21.4 40.3 70.5 111.1 0.701 0.089 0.134 0.777

Y 52.9 66.5 21.9 34.4 30.9 37.3
64 X 150.2 190.9 18.6 26.7 131.6 172.4 175.0 0.709 0.160 0.136 0.705

Y 135.7 150.1 28.4 42.7 107.3 121.3
256K 4 X 1.6 2.5 1.1 1.7 0.5 0.8 83.7 0.557 0.007 0.097 0.896

Y 2.3 3.2 1.7 2.6 0.6 0.6
16 X 30.9 42.1 8.3 1LO 22.6 33.3 112.6 0651 0.053 0.113 0.833

Y 32.9 37.9 12.9 17.6 20.1 25.1
64 X 130.3 166.0 16.3 23.1 114.0 150.8 172.5 0.674 0.136 0.127 0.737

Y 115.9 130.4 24.6 35.8 91.3 104.0
512K 4 X 1.0 1.6 0.6 1.1 0.3 0.5 79.3 0.553 0.004 0.094 0.902

Y 1.4 2.0 1.0 1.7 0.4 0.4
16 X 6.4 11.6 1.6 3.5 4.8 9.5 113.2 0.604 0.010 0.094 0.896

Y 6.3 8.7 2.6 5.4 3.6 5.0
64 X 72.4 102.0 8.8 11.9 63.6 94.8 166.2 0.608 0.073 0.112 0.815

Y 62.5 71.4 13.5 19.4 49.0 55.1

Table A.57: Traffic and timing for nunultO.

A.2.6 paths()

cSz N shdRD shdWR 1c1RD 1c1WR i-fetch
128K 4 1035 5 5200 348 14894

16 1027 3 5152 345 14761
64 1031 1 5163 345 14799

256K 4 1035 5 5199 348 14892
16 1027 3 5152 345 14761
64 1031 1 5164 345 14801

200MHz 64 1031 1 5164 345 14801
512K 4 1035 5 5199 348 14892

16 1027 3 5152 345 14761
64 1031 1 5164 345 14799

Tihli A!S: Per node referenre. eniints für iM-.hqfl (10flfli -- ---- ---------------- --- £

Appendix A. Performance Data
	

142

cSz N lrpch Ircch lwcch srpch srcch swcch ifpch ifcch flush purge shi
128K 4 0.924 1.000 1.000 0.494 0.965 0.054 1.000 0.000 0.370 0.994 2.5

16 0.923 0.988 1.000 0.363 0.901 0.004 1.000 0.000 0.657 0.990 6.2
64 0.923 0.984 0.999 0.339 0.610 0.001 1.000 0.000 0.900 0.984 8.3

256K 4 0.924 1.000 1.000 0.497 0.979 0.098 1.000 0.000 0.278 1.000 2.4
16 0.923 0.996 1.000 0.364 0.910 0.005 1.000 0.000 0.689 0.995 6.4
64 0.923 0.994 1.000 0.340 0.647 0.000 1.000 0.000 0.900 0.995 9.3

200M 64 0.923 0.994 1.000 0.340 0.648 0.000 1.000 0.000 0.902 0.993 8.9
512K 4 0.924 1.000 1.000 0.497 0.979 0.098 1.000 0.000 0.278 1.000 2.4

16 0.923 1.000 1.000 0.364 0.971 0.004 1.000 0.000 0.120 1.000 6.6
64 0.923 0.996 1.000 0.340 0.964 0.002 1.000 0.000 0.117 0.998 11.1

Table A.59: Hit ratios for paths 0.

cSz N n lkav lkmx txav txmv psav psmx rtdly rtime ntwF shdF iciF
128K 4 X 9.7 12.8 6.9 9.1 2.9 3.8 76.5 0.220 0.034 0.148 0.819

Y 13.9 16.9 11.1 14.0 2.8 2.9
16 X 102.0 114.7 27.0 35.4 75.0 89.3 115.2 0.290 0.173 0.212 0.615

Y 104.1 114.6 42.9 55.6 61.1 67.2
64 X 446.5 523.3 53.8 75.4 392.7 468.1 188.3 0.719 0.530 0.220 0.250

Y 369.9 419.8 79.9 112.0 289.9 343.2
256K 4 X 7.2 8.0 5.2 5.7 1.9 2.3 76.2 0.213 0.025 0.137 0.838

Y 10.7 12.0 8.4 9.5 23 2.5
16 X 97.9 117.5 25.8 31.8 72.0 90.0 115.7 0.283 0.167 0.208 0.625

Y 100.6 105.7 41.0 49.4 59.5 63.3
64 X 434.5 594.2 52.6 100.8 381.9 533.3 187.6 0.670 0.515 0.219 0.266

Y 362.2 429.8 78.3 150.3 283.9 332.5
200M 64 X 512.2 687.0 62.5 110.3 449.7 615.4 0.0 0.568 0.629 0.207 0.164

Y 429.2 483.2 93.0 163.1 336.2 390.2
512K 4 X 7.2 8.0 5.2 5.7 1.9 2.3 76.2 0.213 0.025 0.137 0.838

Y 10.7 12.0 8.4 9.5 2.3 2.5
16 X 35.9 41.8 9.3 11.1 26.6 32.3 119.4 0.229 0.060 0.165 0.774

Y 37.8 40.4 16.2 19.0 21.6 26.8
64 X 105.1 129.9 11.3 17.6 93.7 118.9 180.8 0.245 0.107 0.167 0.726

Y 89.9 113.3 20.1 29.1 69.8 93.8

Table A.60: Traffic and timing for paths().

Appendix A. Performance Data
	

143

A.3 SCI Cubes

A.3.1 chol()

cSz N shdftD shdWR 1c1RD 1c1WR i-fetch
128K 8 4616 1199 1112 158 14301
256K 8 4017 1208 790 149 11516
512K 8 4089 1198 841 160 11885

Table A.61: Per node reference counts for chol() (X 1000).

cSz N lrpch hcch lwcch srpch srcch swcch ifpch ifcch flush purge shfl
128K 8 0.866 0.998 0.998 0.738 0.971 0.983 0.997 0.298 0.544 0.476 1.0
256K 8 0.822 0.999 1.000 0.701 0.988 0.989 0.999 0.921 0.552 0.827 1.0
512K 8 0.820 0.999 0.999 0.709 0.988 0.989 0.999 0.956 0.523 0.871 1.0

Table A.62: Hit ratios for cholO.

cSz N n Ikav lkmx txav txmv psav psmx rtdly rtime ntwF shdF iciF
128K 8 X 12.4 15.0 9.6 11.3 2.8 3.7 90.7 0.293 0.046 0.439 0.515

Y 13.2 14.1 10.4 11.2 2.7 2.9
Z 14.5 16.3 11.6 13.0 3.0 3.3

256K 8 X 13.7 16.3 10.7 12.4 3.1 4.0 92.9 0.247 0.051 0.450 0.499
Y 16.0 16.8 12.8 13.4 3.2 3.5
Z 15.3 16.4 12.2 13.3 3.1 3.1

512K 8 X 13.4 15.7 10.4 11.9 3.1 3.9 92.2 0.251 0.050 0.444 0.506
Y 15.5 16.9 12.4. 13.7 3.1 3.4
Z 15.2 16.7 12.1 13.4 3.1 3.3

Table A.63: Traffic and timing for cholO.

A.3.2 mp3d()

cSz N shdRD shdWR 1c1RD 1c1WR i-fetch
128K 8 3959 885 4110 889 18587

64 5424 367 1705 373 15273
256K 8 5013 881 4095 885 20655

64 5597 367 1706 373 15620
512K 8 3950 868 4035 872 18374

64 5588 367 1706 373 15603

Table A.64: Per node reference counts for mp3d 0 (x 1000).

Appendix A. Performance Data
	

144

cSz N lrpch lrcch lwcch srpch srcch swcch ifpch ifcch flush purge shi
128K 8 0.827 0.994 0.997 0.764 0.785 0.759 0.999 0.570 0.454 0.969 1.1

64 0.830 0.993 0.998 0.925 0.574 0.528 0.999 0.561 0.305 0.994 1.4
256K 8 0.827 0.995 0.998 0.814 0.775 0.742 0.999 0.809 0.449 0.983 1.1

64 0.830 0.995 0.998 0.927 0.575 0.527 0.999 0.753 0.309 0.997 1.4
512K 8 0.827 0.998 0.999 0.766 0.758 0.718 0.999 0.977 0.443 0.994 1.1

64 0.830 0.997 0.999 0.927 0.574 0.529 1.000 0.915 0.306 0.999 1.4

Table 4.65: Hit ratios for mp3dO.

cSz 	N n llkav Ikmx txav txmv psav psmx rtdly rtime ntwF shdF 	iciF
128K 	8 X 68.0 76.2 52.0 56.7 16.0 19.7 83.4 	0.703 0.256 0.461 0.283

Y 77.0 89.4 60.3 68.8 16.8 21.2
Z 71.1 85.0 55.6 67.7 15.5 17.3

64 X 178.6 311.1 74.0 131.2 104.6 209.9 159.5 	0.686 	0.418 0.461 	0.121
Y 193.6 248.3 90.1 107.4 103.5 148.8
Z 186.5 212.4 84.8 102.4 101.7 114.3

256K 	8 X 68.5 84.5 52.3 62.6 16.2 22.1 81.8 	0.750 0.251 0.487 0.263
Y 81.1 95.2 63.5 71.8 17.6 23.5
Z 58.6 63.7 44.9 49.6 13.6 14.1

64 X 176.6 317.5 73.1 133.6 103.4 215.7 159.5 	0.691 	0.416 0.465 0.119
Y 193.7 247.6 90.1 106.4 103.6 147.5
Z 184.8 208.6 83.9 99.0 100.9 114.4

512K 	8 X 85.9 122.5 66.1 91.3 19.8 31.5 81.2 	0.737 0.270 0.468 0.262
Y 76.3 83.6 59.5 63.4 16.8 20.2
Z 62.9 67.8 48.5 52.5 14.4 15.3

64 X 176.6 318.5 73.2 135.0 103.5 214.8 159.7 	0.691 	0.417 0.465 0.118
Y 193.6 257.2 90.1 112.1 103.6 154.1
Z 185.9 217.5 84.6 104.7 101.4 117.7

Table A.66: Traffic and timing for mp3dO.

A.3.3 water()

cSz N shdRD shdWR 1c1RD 1c1WR i-fetch
128K 8 9594 2305 4048 782 29718

64 4782 197 13510 3129 38892
256K 8 9594 2305 4048 782 29718

64 4839 197 13510 3129 39006
512K 8 9594 2305 4048 782 29718

64 4999 197 13510 3129 39326

Table A.67: Per node reference counts for water() (x1000).

Appendix A. Performance Data
145

cSz
128K

N
8

lrpch
0.918

lrcch lwcch srpch srcch swcch ifpch ifcch flush purge shi
64 0.909

0.998
0.994

1.000
0.998

0.899
0.972

0.984 0.994 0.992 0.917 0.543 0.097 1.4
256K 8 0.918 1.000 1.000 0.900

0.755
0.990

0.908
0.998

0.994 0.936 0.417 0.862 1.1
64 0.909 0.996 0.999 0.972 0.804 0.909

0.992
0.994

0.974
0.962

0.592
0.421

0.283
0.901

1.4
512K 8

64
0.918 1.000 1.000 0.900 0.991 0.998 0.992 0.974 0.582 0.297

1.1
1.4 0.909 0.998 0.999 0.973 0.845 0.912 0.994 0.977 0.397 0.952 1.1

Table A.68: Hit ratios for waterQ.

Table A.69: Traffic and timing for waterQ.

A.3.4 ge()

CZ 	N shdffD shdWR 1c1 RD iciWit i-fet5ii
128K 	8 1700 848 11908 869 331w
256K 	8 1700 848 11908 869 3317

64 1698 848 11893 860 33134
12K 	8 1700 848 11908 869 33177

Table A.70: Per node reference counts for ge() (xl000).

Appendix A. Performance Data
	

146

[z N lrpch lrcch lwcch srpch srcch swcch ifpch ifcch flush purge shi
128K 8 0.925 0.998 0.999 0.485 0.987 0.993 1.000 0.062 0.538 0.472 1.0
256K 8

64
0.925
0.925

0.999
0.999

1.000
0.999

0.485
0.478

0.990
0.975

0.995
0.987

1.000
1.000

0.133
0.043

0.454
0.583

0.664
0.800

1.0
1.0

512K 8 0.925 1.000 1.000 0.485 0.991 0.996 1.000 0.134 0.419 0.729 1.0

Table A.71: Hit ratios for geO.

cSz N ii Ikav lkmx txav txmv psav psmx rtdlly rtime ntwF shdF iciF
128K 8 X 4.9 7.0 3.8 5.5 1.0 1.5 97.4 0.483 0.014 0.153 0.833

Y 4.1 6.7 3.4 5.6 0.8 1.1
Z 3.3 6.1 2.7 5.1 0.6 0.9

256K 8 X 3.7 4.7 2.9 3.7 0.8 0.9 90.6 0.478 0.010 0.151 0.839
Y 3.0 4.8 2.5 4.0 0.5 0.8
Z 2.1 3.9 1.7 3.3 0.4 0.6

64 X 28.6 38.8 11.1 17.3 17.6 24.7 127.3 0.507 0.048 0.162 0.790
Y 21.3 35.8 9.4 16.5 11.9 19.3
Z 15.4 27.5 6.6 14.0 8.8 17.5

512K 8 X 3.6 4.3 2.8 3.4 0.8 0.9 88.3 0.477 0.009 0.150 0.841
Y 2.8 4.3 2.3 3.6 0.5 0.7
Z 1.9 3.0 1.5 2.5 0.4 0.5

Table A.72: Traffic and timing for geO.

A.3.5 mmult()

cSz N shdRD shdWR 1c1RD 1c1WR i-fetch
128K 8 2000 5 12055 2015 33146

64 2000 2 12028 2008 33073
256K 8 2000 5 12055 2015 33146

64 2000 2 12028 2008 33073
512K 8 2000 5 12055 2015 33146

64 2000 2 12028 2008 33073

Table A.73: Per node reference counts for mmult 0 (x 1000).

cSz N lrpch lrcch lwcch srpch srcch
128K 8 0.810 0.921 0.957 0.468 0.939

64 0.821 0.991 0.999 0.458 0.899
256K 8 0.810 0.923 0.958 0.469 0.972

64 0.821 0.996 0.999 0.458 0.920
512K 8 0.810 0.923 0.958 0.469 0.991

64 0.821 0.998 1.000 0.458 0.959

swcch ifpch ifcch flush purge shl
0.923 1.000 0.000 0.188 0.000 0.0
0.919 1.000 0.000 0.803 0.000 0.0
0.930 1.000 0.000 0.093 0.000 Lfl
0.929 1.000 0.000 0.841 0.000 0.0
0.931 1.000 0.000 0.023 0.000 0.0
0.932 1.000 0.000 0.726 0.000 0.0

Table A.74: Hit ratios for minultO.

Appendix A. Performance Data 	 147

cSz 	N n Ikav Ikrnx txav txmv psav psmx rtdly rtime ntwF shdF iciF
128K 	8 X 13.6 18.9 10.8 15.7 2.8 3.9 96.5 0.687 0.049 0.112 0.839

Y 15.8 21.4 12.9 17.9 2.8 3.5
Z 16.1 21.0 13.2 17.5 2.9 3.4

64 X 68.5 92.0 29.2 42.3 39.3 59.7 153.4 0.695 0.143 0.138 0.719
Y 72.3 96.9 34.6 56.5 37.7 59.2
Z 62.7 86.6 28.9 45.0 33.8 45.9

256K 	8 X 6.3 8.6 5.0 7.3 1.3 2.0 101.6 0.652 0.025 0.094 0.881
Y 8.7 10.0 7.2 8.5 1.5 1.7
Z 8.1 9.4 6.7 7.9 1.4 1.6

64 X 60.2 90.7 25.8 40.8 34.3 53.0 156.2 0.666 0.125 0.129 0.746
Y 63.2 87.8 30.4 44.2 32.8 51.3
Z 57.6 72.3 26.7 44.7 30.9 39.0

512K 	8 X 1.8 3.5 1.4 2.8 0.4 0.7 99.2 0.631 0.006 0.083 0.910
Y 1.9 2.6 1.6 2.0 0.4 0.5
Z 1.9 2.3 1.5 2.0 0.3 0.3

64 X 32.2 48.0 13.8 22.9 18.4 34.3 151.1 0.604 0.066 0.113 0.821
Y 34.3 52.0 16.4 25.0 17.9 29.7
Z 28.8 37.5 13.3 22.2 15.5 20.8

Table A.75: Traffic and timing for mmultO.

A.3.6 paths()

cSz N shdRD shdWR 1c1RD 1c1WR i-fetch
128K 8 1036 3 5199 348 14895

64 1031 1 5163 345 14799
256K 8 1036 3 5199 348 14894

64 1031 1 5164 345 14800
200M 64 1031 1 5164 345 14800
512K 8 1036 3 5199 348 14894

64 1031 1 5164 345 14800

Table A.76: Per node reference counts for paths() (x 1000).

cSz N lrpch lrcch lwcch srpch srcch swcch ifpch ifcch flush purge shi
128K 8 0.923 0.990 1.000 0.413 0.961 0.026 1.000 0.000 0.324 0.992 4.4

64 0.923 0.984 0.999 0.339 0.609 0.000 1.000 0.000 0.897 0.989 8.9
256K 8 0.923 0.998 1.000 0.415 0.972 0.021 1.000 0.000 0.199 0.999 4.5

64 0.923 0.994 1.000 0.340 0.647 0.000 1.000 0.000 0.899 0.994 10.4
200M 64 0.923 0.994 1.000 0.340 0.647 0.000 1.000 0.000 0.900 0.994 9.7
512K 8 0.923 1.000 1.000 0.415 0.974 0.019 1.000 0.000 0.176 1.000 4.4

64 0.923 0.996 1.000 0.340 0.963 0.002 1.000 0.000 0.116 0.998 11.1

Table A.77: Hit ratios for paths().

Appendix A. Performance Data
	

148

cSz 	N n lkav lkmx txav txmv psav psnix rtdly rtime ntwF shdF 	iciF
128K 	8 X 17.8 25.1 14.2 20.3 3.6 4.7 99.3 	0.232 0.056 0.166 0.778

Y 17.1 21.1 14.1 17.5 3.0 3.6
Z 17.7 21.2 14.6 17.9 3.1 3.3

64 X 238.1 327.8 101.5 161.3 136.6 198.3 151.8 0.646 0.476 0.246 0.278
Y 224.2 297.0 107.8 153.9 116.4 161.8
Z 186.9 236.3 84.2 119.6 102.7 126.2

256K 	8 X 13.0 14.3 10.4 11.7 2.6 2.8 100.2 0.224 0.046 0.157 0.797
Y 16.2 18.5 13.4 15.5 2.7 3.0
Z 14.9 18.0 12.3 15.0 2.6 3.0

64 X 232.8 405.7 99.4 212.3 133.4 252.3 151.9 	0.605 0.463 0.243 0.295
Y 217.0 324.3 104.4 198.4 112.5 174.5
Z 181.9 232.5 82.3 127.7 99.6 138.5

200M 64 X 283.0 465.7 120.8 243.8 162.2 286.3 0.0 	0.493 0.571 0.240 0.189
Y 265.3 370.2 127.4 212.8 137.9 196.9
Z 224.0 288.6 101.2 153.2 122.7 170.3

512K 	8 X 12.5 14.4 10.0 11.7 2.5 2.7 99.4 0.223 0.045 0.156 0.799
Y 15.6 19.3 12.9 16.2 2.6 3.1
Z 14.5 17.3 11.9 14.5 2.5 2.8

64 X 45.8 60.5 19.3 31.3 26.5 40.5 157.4 0.242 0.096 0.170 0.735
Y 48.2 60.1 23.5 34.1 24.6 33.3
Z 43.9 71.7 20.9 34.7 23.0 38.2

Table A.78: Traffic and timing for paths 0.

