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Abstract 

Coronary heart disease is the most common cause of death in the UK affecting more then 

one in five men and one in six women. The cause is generally a constriction of the coronary 

arteries which supply the heart muscle, or myocardium, with blood. In around 95% of cases, 

the constriction is caused by the process of arteriosclerosis which results in the development of 

a plaque on the vessel wall. Even though these plaques tend to develop quite slowly, they are 

sometimes liable to sudden rupture, which causes clotting of the blood in the vessel and hence 

a sudden reduction in the supply of blood to the myocardium. 

This sudden loss of blood supply to a portion of the myocardium will result in the death, or 

infarction, of some of the muscle tissue in that area. There will be a region of tissue around 

the edge of damaged area which will recover because the body is able to form a new collateral 

blood supply and a central region which will become infarcted. 

Of the many medical imaging modalities available today, such as Magnetic Resonance Imag-

ing (MRI), X-Ray or Computer Tomography (CT), ultrasound, in the form of echocardiogra-

phy, forms the most commonly used technique for performing cardiac diagnosis, the principle 

reasons being that it is relatively cheap, safe and instantaneous compared to the others. 

This thesis is concerned with the signal processing techniques which are used in the form of 

Doppler Tissue Imaging (DTI) and real-time B-Mode imaging to study the motion of cardiac 

structures. Although these techniques are well suited to this task, improvements in B-mode 

contrast resolution and DTI velocity resolution are required if image quality and quantitative 

measurements are to reach a more acceptable level. 

Results are presented which demonstrate that the accuracy of the velocity estimations made 

using DTI can be improved with the use of model based signal processing techniques. The use 

of the fractional Fourier transform is explored in the context of coded excitation, which is a 

technique to allow improvements in imaging depth and axial resolution and results are shown 

which show that this technique is able to offer improvements similar to matched filtering. The 

combined techniques of empirical mode decomposition and the Hilbert spectrum are used to 

demonstrate a new interpretation of the physical process underlying non-linear acoustic wave 

propagation and the existing technique of tissue harmonic imaging. 
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Chapter 1 
Introduction 

1.1 Motivation 

A heart attack, technically known as "myocardial infarction", occurs when the supply of blood 

to the heart muscle, the myocardium, is disrupted. This is usually caused by a blockage of 

one of the coronary arteries which supply the myocardium with blood. Without this blood, the 

muscle is starved of oxygen and nutrients and will eventually die. In around 95 % of cases this 

occurs because of the process of arteriosclerosis in the coronary vessels. This process leads to 

the development of a plaque on the vessel wall, which may rupture suddenly leading to clotting 

of the blood in the vessel and a sudden reduction in the blood supply to the myocardium. 

This sudden change results in two things, a reduction in cardiac output (the heart is unable to 

pump as strongly) and a damming of blood in the veins leading to increased systemic venous 

pressure. Immediately after suffering damage, the output of the heart will fall rapidly and 

within a few seconds can fall to as little as two-fifths of normal. This level of cardiac output is 

still sufficient to keep a person alive, but will probably result in fainting. This stage only lasts 

for a few seconds before sympathetic reflexes in other parts of the body occur to compensate. 

This increases the strength with which the remaining heart muscle operates, thus increasing the 

cardiac output back toward a normal level. The sympathetic reflexes also lead to an increase 

in the ability of the blood to flow back to the heart because of a resulting increase in the tone 

of the vessels. This makes it easier for the heart to pump the blood and so also helps to return 

the cardiac output to normal. This condition is adequate to sustain a person who remains quiet, 

although chest pain may persist. 

The sudden loss of supply to a portion of the myocardium will result in the death, or infarction 

of that region. However, the body implements immediate corrective action and a new collateral 

blood supply will begin to penetrate the peripheral regions of the infarcted area, which often 

allows much of the muscle in the fringe areas to regain functionality. Under normal circum-

stances, the heart will recover rapidly during the first few days after a heart attack and will have 

achieved most of its final state of recovery within 5 to 7 weeks [3]. 
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It is therefore important to be able to assess the extent of myocardial damage which has oc-

curred during the initial stages of this process and to be able to monitor the degree of recovery. 

Knowledge of these factors can be used to decide what forms of treatment would be best suited 

to the particular patient. Currently, the majority of cardiac diagnoses' are made using ultra-

sound based techniques of one form or another, which come under the broad umbrella term 

'echocardiography'. Such techniques are relatively cheap, safe and instantaneous when com-

pared to the other possibilities such as Magnetic Resonance Imaging (NMI), X-Ray, Positron 

Emission Tomography (PET), etc. More importantly though is the fact that over the years 

echocardiography has been proven to be effective and has earned the trust of clinicians. 

This thesis is primarily concerned with increasing the degree of quantification which is available 

to the clinician. Until recently, echocardiography has developed as a predominantly qualitative 

tool, which provides information to the user in a visual form which can be interpreted based on 

operator experience. More recently, there has been a drive towards more quantitative systems, 

which would provide the user with accurate measurements of specific quantities. The aim of this 

is to improve the accuracy and repeatability of diagnoses made and to a lesser extent, to reduce 

the level of operator experience required. In order for such an improvement in quantification to 

take place it will be necessary to increase our understanding of the optimum signal processing 

techniques, such that the maximum amount of information can be extracted from the returned 

signals. 

Much has been published recently describing the results of using a new form of quantitative 

Doppler tissue imaging, called strain, strain-rate or velocity gradient imaging. Strain imaging 

is based on measuring the velocity gradient between two points and using this value to derive 

a value for the strain. The original velocity estimates on which this technique is based are 

made using the existing Doppler tissue imaging technology, however it appears that very little 

attention has been paid to the accuracy of this underlying technique. As with any method which 

is derived from the result of another, there is a danger that initially small errors may become 

more significant through compounding. 

1.2 Aims and Objectives 

The aims of this thesis are therefore two fold, firstly to investigate how accurate the underlying 

technique of Doppler tissue imaging is and secondly to investigate whether more modern signal 
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processing techniques could be used to improve the processing of the returned signals, with a 

view to improving overall quantification. The second of these two objectives incorporated a 

wider investigation into the possible application of two modern signal processing techniques, 

namely the fractional Fourier transform and empirical mode decomposition, which prior to this 

work have not been applied to the field of medical ultrasound. 

The accuracy with which velocity estimations could be made using the conventional techniques 

of Doppler tissue imaging was investigated using a combination of a simple rotating phantom 

arrangement with a custom developed, single crystal ultrasound system and a series of computer 

simulations generated using the Field II ultrasound simulation engine. 

These two arrangements were also used to investigate the possibility of implementing a more 

advanced velocity estimator of the form of a correlation model based technique, which had 

the potential to offer greater spatial resolution coupled with greater accuracy of the estimated 

velocities. 

The fractional Fourier transform represents a generalisation of the conventional Fourier trans-

form which offers significant benefits when combined with linear frequency-modulated signals. 

Such signals have been shown in the literature to offer benefits in terms of maximising the avail-

able imaging depth without having to increase the peak transmitted power, which has significant 

safety implications. 

Empirical mode decomposition is a technique for breaking a signal down into a series of in-

trinsic mode functions which have well defined instantaneous frequencies at each point. This 

technique was used to demonstrate a new interpretation of the process of non-linear acoustic 

wave propagation. 

1.3 Contributions 

The original contributions made within this thesis can be summarised as follows: 

The development of a simple, open, single crystal ultrasound system for the analysis 

of ultrasound signal processing techniques, including the use of approximately linear, 

frequency modulated chirped signals. 

A thorough analysis of the accuracy of time-domain correlation based Doppler tissue 
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imaging, including analysis of the sensitivity to noise based on a combination of results 

from the single crystal ultrasound system and the Field II ultrasound simulation engine. 

Demonstration that the use of correlation model based techniques for velocity estimation 

can provide an order of magnitude improvement in velocity estimation accuracy along 

with a significant improvement in spatial resolution, compared to a correlation search 

based method. 

Demonstration that the requirements for producing 2-D images limit the accuracy of 

Doppler tissue imaging to such an extent as to put into question the quantification of the 

results obtained and therefore argue that truly quantitative analysis should be performed 

using colour M-mode only. 

Application of the fractional Fourier transform as an effective method for processing the 

received echo signals resulting from the transmission of approximately liner, frequency 

modulated chirp signals. 

Demonstration that the fractional Fourier technique is able to offer spatial resolutions 

equivalent to those obtained with matched filtering without the need for a-priori knowl-

edge of the transmitted signal or the transducer. 

Derivation of a method for directly relating the position of features in the fractional 

Fourier transform domain to the corresponding position in the time domain. 

Demonstration that using this method allows the fractional Fourier transform based tech-

nique to give results which are equivalent to matched filtering in terms of axial resolu-

tion, but which offer significantly reduced range side-lobes for the same transmit signal 

apodization. 

A new interpretation of the phenomenon of non-linear propagation of acoustic waves 

based on the combined techniques of empirical mode decomposition and the Hubert 

spectrum. 

The investigation into the accuracy of Doppler Tissue Imaging (DTI) demonstrated that the 

accuracy of the velocity estimations is currently limited by the desire to have 2D images. Obvi-

ously, 2D images are preferable because they enable easy understanding of the geometry being 

inspected, however this limitation has been shown to be of clinical significance because it re-

duces the reproducibility of the results obtained from secondary measurements such as strain 
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or strain rate. The complex cross-correlation model based velocity estimator is shown to offer 

an order of magnitude improvement in accuracy, but at the cost of requiring more temporal 

domain samples to produce the velocity estimates. It would not be possible to use this method 

for producing 2D images of the velocities, unless the segment size width was very small, but it 

would work very well for interrogating a single spatial line. It is argued that in order to improve 

the reproducibility of the results, it would be worth sacrificing the 2D images in favour of this 

more accurate approach. 

The use of the fractional Fourier transform, combined with the technique of coded excitation 

was investigated and it was shown that this technique could be successfully used to gain a 

significant improvement in the spatial resolution. The problem of measuring velocity is inti-

mately related to measuring position, since velocity is simply the rate of change of position. 

Therefore, a more accurate measurement of position could lead to more accurate velocity esti-

mations. Also, the use of coded excitation allows longer signals to be used without sacrificing 

spatial resolution. This allows for imaging at greater depths because it is possible to transmit 

with a higher average energy. Simply increasing the amplitude of the transmitted signal in-

creases the peak power, which has been shown to have possible health and safety implications. 

Therefore, being able to increase the imaging depth by only increasing the average power has 

obvious advantages. The fractional Fourier transform is shown to be able to offer the same 

degree of pulse compression as the more conventional matched filtering approach, but without 

the need for a-priori knowledge of the transmitted signal and with significantly lower range 

side-lobes. 

The combined techniques of empirical mode decomposition and the Hilbert spectrum were used 

to demonstrate an alternative interpretation of the process of non-linear wave propagation. It 

has been shown that the propagation of acoustic waves with pressures and intensities of those 

used in the field of medical ultrasound and echocardiography is highly non-linear. In the past, 

Fourier based methods have been used to analyse these signals and this has led to the notion 

that the distortion caused by the non-linear propagation causes signal energy to be transferred 

into the frequency bands which correspond to the harmonics of the fundamental, transmitted 

frequency. The new results presented in this thesis clearly show that that spreading of energy 

into the harmonic frequencies is a result of the use of Fourier based methods of analysis and is 

not related to a physical phenomenon. The new interpretation offered is that the effect of the 

non-linear distortion is to introduce an intra-wave frequency modulation. Currently, ultrasound 
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scanners produce images based on the amplitude modulation of the wave cause by the medium 

through which is has passed. The new results clearly show that this amplitude modulation is 

only half of the picture and in reality, the medium through which the wave is passing is also 

modulating its frequency. 

1.4 	Organisation of Thesis 

The organisation of the remainder of this thesis is as follows: Chapter 2 provides a basic insight 

into echocardiography and the use of Doppler ultrasound. Chapter 3 describes the methods 

used for collecting data, including the development of the single crystal ultrasound system. 

Chapter 4 describes the experiments for determining the accuracy of the current techniques for 

Doppler tissue imaging and presents results obtained using these and correlation model based 

techniques. Chapter 5 introduces the fractional Fourier transform and presents results obtained, 

while Chapter 6 introduces the technique of empirical mode decomposition and presents re-

sults obtained. Finally, Chapter 7 contains the overall conclusions. It should be noted that 

throughout the thesis various symbols have been chosen to be consistent with the literature. In 

some cases, this means that a particular symbol will have multiple definitions. Reference to the 

nomenclature section should clarify the meaning of a particular symbol with respect to any of 

the chapters. 



Chapter 2 
Introduction to Echocardiography 

2.1 The Heart and the Myocardium 

The heart is a hollow muscular organ whose purpose is to pump blood around the body. Gener-

ally, it is about 10 cm long and its overall size is roughly the same as the owners fist. The heart 

is slightly heavier in men than in woman, but generally weighs about 225 g. The position of the 

heart in the body relative to the other organs may be seen in Figure 2. 1, which clearly shows 

that the heart is situated in the middle of the chest, slightly to the left of centre. 

The heart itself consists of four chambers; the left and right atria and the left and right ventricles. 

When the heart is beating, blood passes from the superior and inferia vena cava into the right 

atrium. From here, it passes into the right ventricle, from which it is pumped into the pulmonary 

artery. It then passes through the lungs, absorbing oxygen before ending up in the left atrium. 

From here, it passes into the left ventricle from which it is pumped into the aorta and on to the 

rest of the body. Both sides of the heart operate simultaneously so that blood is continuously 

moved from the right side to the left side via the lungs. Figure 2.2 shows the exterior anatomy 

of the heart and the location of the ventricles. 

The heart itself is constructed from three distinct layers, the epicardium which forms the outer 

layer, the myocardium which is the muscle which actually makes the heart beat and the en-

docardium, which lines the inside of the ventricles and atria. The myocardium is constructed 

from smooth muscle, which is different from the muscle used to construct normal muscles in 

that the muscle fibres are smaller and more tightly packed. Also unlike other muscles in the 

body, the myocardium is not under control of the will, but is part of a closed, self-regulating 

system. It constitutes most of the heart and is thickest at the apex and thinest at the base. Since 

it is a muscle, it needs to be supplied with oxygen via the blood as any other muscle. This is 

achieved via the coronary arteries, which mostly lie on the surface of the heart, but perfuse into 

the myocardium at key points. The heart muscle is actually unable to absorb any significant 

amount of oxygen from the blood within the heart, so it is entirely dependent on these arteries 

for it's supply of oxygen. 
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Figure 2.1: Illustration qf the location of the heart within the body [1]. 

Figure 2.2: Illustration of the exterior anatomy of the heart [1]. 
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2.2 Echocardiography 

Despite ultrasound having been used as early as. the first world war, the development of the 

technique as a diagnostic tool in medicine is a relatively recent one. As early as 1929, ultra-

sound was used as a method for detecting flaws in metals, however, further developments did 

not occur until after the second world war. During the war, ultrasound was used extensively in 

the form of SONAR for the detection of underwater objects, mostly submarines. Because of 

the situation at the time, information about these techniques was classified and the engineering 

skills and parts were not available. However, by the late 1940's and early 1950's, numerous 

investigators were applying ultrasound to investigate almost every organ in the body [4]. 

In 1950, W.D.Keidel attempted to use ultrasound to measure the volume of the heart. His 

method involved using a separate transmitter and receiver, positioned on opposite sides of the 

body, but was ultimately unsuccessful. In 1953, Inge Edler (a physician) and C. Heilmuth Hertz 

(an engineer) performed the first echocardiogram, which they termed ultrasound cardiography. 

They achieved this using a borrowed SONAR machine which was designed for identifying 

flaws in the hulls of ships. This technique differed from the approach used by Keidel in that 

the ultrasound equipment detected sound reflected from structures within the body, rather than 

detecting the sound which had passed through. This work formed the basis of echocardiography 

as it is used today. 

The field of echocardiography has advanced significantly since then. Today, it is established 

as one of the principal medical imaging modalities used in cardiology, although its use is not 

exclusively limited to this field of medicine. The original work described above used a system 

based on a single element transducer, which would produce a trace on an oscilloscope which a 

well trained clinician would be able to interpret. This form of ultrasound is called 'A-Mode', 

or Amplitude-Mode, because it displays the amplitude of the received signal against time. This 

was later extended to 'M-Mode' or Motion-Mode, which records multiple 'A-Mode' lines to-

gether giving information about the position of structures in the body with time. 

Figure 2.3 shows an example of an A-Mode scan, which is simply a plot of the envelope of 

a signal against time, as would be observed on the screen of an oscilloscope. In this form, it 

is obviously quite hard to determine the anatomy that is being looked at and it would take a 

great deal of experience to be able to understand and interpret this form of display. Figures 

2.4 and 2.5 show examples of M-Mode scans which are formed by plotting a series of A- 
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Figure 2.3: Example of an A-Mode scan. The top portion shows the original signal, as would 
be seen on an oscilloscope, while the lower part shows a plot of the envelope of 
this signal, as would be seen on an A-Mode ultrasound machine. 

Mode lines together such that it is possible to observe how they change over time. In this case, 

the horizontal axis is time and the vertical axis is depth. The grey-level is determined by the 

magnitude of the signal envelope. Figure 2.4 shows how an original M-Mode scan would look, 

whereas Figure 2.5 is representative of how an M-Mode scan would look on a modern scanner. 

The main difference is the addition of a two dimensional B-Mode image from which the user 

can define the particular line from which the M-Mode display is generated. 

'M-Mode' ultrasound persisted in echocardiography for some time since it was relatively easy 

to make quantitative measurements from the results obtained, which is important for making 

the correct diagnosis. However, although 'M-Mode' is still used today it is gradually being 

surpassed by real-time 2D imaging, although it is likely that it will persist in some form because 

it has a couple of advantages. Firstly, it allows changes of position with time to be observed 

very clearly and secondly it allows the ultrasound information to be easily combined with other 

physiological data, such as ECG traces. This makes it relatively easy to understand what the 

heart was doing at each particular stage of the M-mode recording. 

The first attempts to produce 21) ultrasound images of the heart were done using a 1D sys- 
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Figure 2.6: Illustration ofthefour main types of medical ultrasound transducers 

tern, as described above, but with cardiac gating and position sensing such that as the operator 

moved the transducer around the lines were stored in the correct orientation such that a 2D 

image was eventually built up. However, the technique really became useful with the advent 

of real-time 2D imaging. Originally, this worked with a mechanically rotated transducer de-

signed to sweep a beam across the region being imaged, thus allowing a 2D image to be built 

up. Today, mechanical scanners are hardly ever used, although they still do find applications 

in intra-vascular ultrasound where the transducer is required to be of very high frequency and 

as small as possible. Modern ultrasound machines used phased-array transducers, which may 

typically have 128 or so elements arranged in a linear array. Such an arrangement coupled with 

modern signal processing techniques make it possible to electronically steer the beam over a 

range of angles, thus forming a 2D image. Linear array transducers are also used without the 

phased-array technology and as such operate essentially as a collection of single-crystal ultra-

sound scanners arranged next to each other. These transducers do not require as much signal 

processing to operate as the phased-array type, which means they are capable of achieving 

higher frame rates. The differences between the four main types of transducer described above 

are illustrated in Figure 2.6, while an example echocardiogram showing the main anatomical 

features of the heart may be seen in Figure 2.7. 

More recently, these techniques for forming two-dimensional images from ultrasound signals 
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have been extended into three dimensions and some modern ultrasound scanners now support 

this feature which allows them to produce three- dimensional 'models' of various anatomical 

features. 

2.3 Doppler Ultrasound 

The Doppler effect, first described by Christian Andreas Doppler (1803 - 1853), [5],  describes 

how the observed frequency of sound from a moving source depends on the speed and direction 

of the movement relative to the observer. In the field of medical ultrasound, the Doppler effect 

cannot be used exactly as described because the elements being observed do not spontaneously 

emit ultrasound. Rather, the sound is transmitted into the body and the frequency of the re-

turned echoes may be analysed to determine information about the Doppler shift incurred due 

to motion of the reflecting and I or scattering elements. The velocity is related to the Doppler 

shift by the Doppler equation 2.1: 
c 

V 
= 2 cos af 

Where c is the speed of sound in the medium, a is the angle of motion with respect to the sound 

beam, f is the Doppler shift which was measured and f is the carrier, or centre frequency of 

the original signal. The meaning of the angle a is illustrated in Figure 2.8. 

The first use of Doppler ultrasound for medical applications was described by Satomura [6] and 

Franklin et al. [7].  The latter of these works describes a system whereby separate transmitting 

and receiving transducers are used, arranged such that some of the scattered signal will be 

received at the receiving transducer. Franklin et al. demonstrated the ability of this setup 

(2.1) 
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to measure the speed of flowing blood by observing the change in frequency of the received 

signal compared to the transmitted signal. 

Since the system described by Franklin et al. [7] transmits and receives continuously, it is an 

example of a continuous wave (CW) Doppler system. Modern Doppler systems may be broadly 

categorised into two types, continuous wave and pulsed wave (PW). The latter is more recent, 

but both have their own advantages and as such it is common to find that modern scanners still 

support both types. The PW systems operate by transmitting a short pulse in the same manner 

as for ultrasound imaging systems and in this way allow the use of time-of-flight principles to 

determine depth. In this manner it is possible to use the PW Doppler system to examine signals 

from a specified depth within the body, by gating the received signal at the appropriate time. 

The time between the transmission of the pulse and the receive signal gating determines the 

depth at which the signal will be analysed, while the time the gate is left 'open' for combined 

with the beam width and the transmit pulse length determines the size of the sample volume. 

In general, there will be more than one moving scatterer within the sample volume and these 

will usually be moving with a range of velocities. Therefore, the received signal will contain 

a spectrum of frequencies, the bandwidth of which depends on the velocities being measured 

and the sample volume size. 

As well as the distribution of the velocities within the sample volume, the bandwidth of the 

returned signal will also be affected by intrinsic spectral broadening, which will result in an 

increased bandwidth even if there were only one scatterer in the sample volume. Initially, this 

was thought to be down to two different effects, one caused by the change of angle between the 

direction of motion and the ultrasound beam as the scatterer traverses the sample volume, which 

was termed geometrical broadening. The other effect was thought to be caused by the amplitude 

modulation caused by the finite transit time of the scatterer through the sample volume, which 

was termed transit time broadening. Griffith et al. [8] and Newhouse et al. [9] studied the 

effects of transit time broadening while Newhouse et al. [10] studied the effects of geometrical 

broadening. However, Newhouse et al. [11] later showed that these two effects were actually 

the same. 

One method for displaying this information is in the form of a 'sonogram', which is essentially 

nothing more than a spectrogram of the Doppler signals. When presented in this manner, the 

display shows not only the peak and mean velocity within a sample volume, but also the band-

width of the signal& gives some information about the distribution of velocities in the sample 
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Figure 2.9: Example sonogram, generated from the signal received from blood flowing through 
the umbilical cord. 

volume, although this will be corrupted to some extent by the intrinsic spectral broadening 

effects described above. Figure 2.9 shows an example of such a sonogram. 

Alternatively, by gating the signal over a number of different depths and combining this with 

beams from a number of different directions, it becomes possible to estimate the velocities 

over a 2D area. These velocities can then be put together to form a 2D image, which forms a 

technique called Colour Flow Imaging. This technique allows many complex flow situations to 

be visualised, such as the motion of blood around the carotid bifurcation and the movement of 

blood through the heart. In general, this image would be colour coded, with one set of colours 

showing motion towards the transducer and another showing motion away from it. Clinical 

scanners will usually overlay the colour flow information onto the grey scale image and usually 

allow the user to define a region of interest in which the velocity estimations will be made. 

Figure 2.10 shows a colour M-Mode image which was generated using Doppler ultrasound. 

Here, areas which are coloured red are moving towards the transducer, while those which are 

coloured blue are moving away. The precise shade of the colour gives information about the 

magnitude of the velocity. This image demonstrates how it is possible to observe the movement 

of the various anatomical features of the heart and to determine the magnitude of the velocity 

with which they are moving. It is not possible with the Doppler ultrasound technique to be able 

to determine the angle of the motion with respect to the transducer and this can cause problems 

because the velocity measured by the Doppler method is highly angle dependent due to the co 

term in equation 2.1. 
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Figure 2.10: Example of colour M-Mode 
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Chapter 3 
Data Collection 

3.1 Introduction 

It would appear the the only previous work done on the assessment of the accuracy of tissue 

Doppler imaging, Fleming et al. [12], has been done using velocity information derived from 

the colour images produced by the scanner and captured using a digital frame-grabber to trans-

fer the images onto a computer. This form of off-line analysis has been described and verified 

by Zuna et al. [13] and Criton et al. [14]. The technique is based on comparing the colour of 

the pixels in the image with the colour scale produced by the scanner to determine the veloc-

ity. According to the manufacturers of the scanner used in each case, this colour bar gives a 

linear relationship to the velocity. Although such a technique is undoubtably of value for the 

assessment of the performance of a particular scanner it does not offer an overall picture of the 

performance of the technique of Doppler tissue imaging in general. The reason for this is that 

it does not allow the effects of factors such as the sample volume size, pulse length or pulse 

repetition frequency to be determined easily. 

In this light, it was decided that it would be better to take a lower level approach and use raw, 

unfiltered, radio-frequency signals. The thinking behind this was that these signals would not 

have been subject to any unspecified signal processing and it would therefore be possible to 

use them to assess the actual signal processing techniques rather than a manufacturers specific 

implementation. Many clinical scanners provide outputs of the in-phase and quadrature-phase 

Doppler signals, which result from a pulse-wave Doppler scan. However, these signals have 

been demodulated within the scanner and have therefore been subject to a fair degree of signal 

processing. Owing to commercial constraints, the manufacturers of the clinical scanners are 

generally reluctant to reveal the exact nature of the signal processing they use, since perceived 

image quality is one of the main areas in which they compete. Therefore, it was concluded that 

these signals would not be suitable. 	 . 

Some scanners also allow access to the radio-frequency signals, either in digital or analogue 

form. These have obviously been subjected to less signal processing and therefore are more 
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suitable than the demodulated signals. For this thesis, a Philips SONOS 5500 clinical scanner 

was available which had been modified to allow access to the 'raw' RF signals in digital form. 

The use of this equipment will be described in more detail in the next section, but there were 

two limitations to the use of these signals. Firstly, they had still been subject to a degree of 

'black-box' signal processing and secondly it was still not possible to have complete control 

over factors such as the pulse length, pulse repetition frequency or the packet size. 

It was therefore decided that for a complete, low-level approach to this problem it would be nec-

essary to develop a custom ultrasound system which allowed complete control over all stages 

of the signal path and performed no signal processing prior to digitisation of the signals. This 

system is described in more detail in the next but one section. Since it allowed complete con-

trol over every part of the system, it proved invaluable for the assessment of more advanced 

ultrasound techniques such as chirp coded excitation. 

3.2 Clinical Scanner Data 

Data were collected from an Philips Sonos 5500 clinical scanner, which was modified to allow 

the extraction of raw RF signals. All of the data presented here were collected using an S3 

probe, which is a 128 element phased array transducer. A phased array transducer was chosen 

over a linear array transducer because the fan shaped image allows more of the heart to be 

examined through the space between the ribs. 

The modification allowed the raw RF signals to be captured digitally to a dedicated PC. This 

was significantly superior to obtaining an analogue output from the scanner and re-capturing 

this using a data capture board, since the latter method would introduce more noise into the 

signal. A set of Matlab software was supplied by Philips to allow the resulting data files to be 

read and analysed. The capture process was controlled by the supplied software running on the 

PC and this allowed the user to specify how many frames of data would be captured and when 

the capture should be initiated. The rate at which the frames were produced was the same as 

the frame rate of the scanner, which was highly dependent on the scanner settings in use at the 

time. 

Once the resulting data was read into Matlab [Version 6.5, The MathWorks, Inc], it was of the 

form of a structured array, which could be broken down into a series of 2D arrays, each con-

taming all of the lines from a particular frame. Example images produced directly from the 2D 
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Figure 3.1: Example images produced from raw RF signals captured directly from the clinical 
scanner Left. Image of a phantom in a tank of water Right. Image taken from an 
actual heart scan. 

arrays may be seen in Figure 3.1, where the image on the left shows a simple wedge phantom, 

which was made of tissue-mimicking material and immersed in a tank of water, while the right 

hand image is from an actual heart scan. These images were produced without performing any 

additional signal processing on the RF signals, which is the cause of the poor quality of the im-

age from the heart scan. Usually, clinical scanners use advanced signal processing techniques, 

such as tissue harmonic imaging (described in detail in Chapter 6) which produce much clearer 

images for display during a scan. The raw RF signals may be extracted by simply taking single 

lines from the 2D array, an example of which may be seen in Figure 3.2 which shows a portion 

of the 80th line from the wedge phantom data. The apparent level of quantisation in these sig-

nals was taken to indicate that the scanner was only using an 8-bit ADC, which would limit the 

dynamic range of the signals. 

As already mentioned, the transducer used for this work was of the phased array variety, which 

had a fan-shaped beam, as illustrated in Figure 2.6. Therefore simply displaying the 2D data in 

the form of a rectangular image will result in a distortion. To overcome this, Matlab software 

was written to transform the 2D data array into the correct, fan shaped viewing geometry. 

Applying this code to the images shown in Figure 3.1 gave the results shown in Figure 3.3, 

from which it may be observed that after correcting the geometry, the edges of the wedge in the 

phantom image are straight, which reflects the nature of the phantom. 
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Figure 3.2: Single line from the wedge phantom data set. 
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Figure 3.3: Viewing geometry corrected images. 
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3.3 	Development of Single Crystal Ultrasound System 

As it was not possible to know exactly what signal processing the clinical scanner was per-

forming prior to the signals being available, it was decided that it would be necessary to have 

a more open system which would allow more complete control over the signals at every stage 

of the process. To this end, a single crystal 1  ultrasound system was developed. The use of 

a single crystal transducer eliminated the need for complex beam-forming hardware, although 

the disadvantage of this approach was that it was not possible to produce images in the manner 

that was possible with the clinical scanner. 

3.3.1 Hardware 

The system was mostly based on readily available off-the-shelf hardware and was arranged 

as illustrated in Figure 3.4. The signals which were transmitted were produced using a TTi 

TG1334 programmable function generator. These signals were amplified with a EIN 240L RF 

power amplifier with a 50 dB gain and a maximum frequency of 10 MHz. The programmable 

function generator was capable of producing signals of higher frequency than 10 MHz, but the 

bandwidth of the RF power amplifier limited what could be achieved. The connection between 

Programmable 	
RF Power 	

Transducer Function L_. 	Amplifier 
Generator 	I 	I 

Data Capture Receive 

Board in PC 	 Amplifier 

Figure 3.4: Schematic of single crystal system hardware. 

the RF power amplifier and the transducer I receiver amplifier was made using the circuit shown 

in Figure 3.5. This was necessary to protect the input of the receiver amplifier and to block 

low level noise from the source. Dl, D2, D3 and D4 were all 1N4148 high conductance fast 

'In this case, and for the remainder of this document, the term 'single crystal' is used to refer to a transducer 
which contains only one ultrasound producing / receiving element which need not be manufactured from a single 
piezo electric crystal. 
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Figure 3.5: Circuit for input level protection of the receive amplifier 

switching diodes, which were rated for an average forward current, I f  = 200 mA. Ri was 

chosen to limit the current through D3 and D4, but as this system was designed to operate with 

very short transmitted signals, it was possible to exceed the average forward current rating of 

the diodes. The value of R  used was 68 ft 

Initially, the receiver amplifier design was based on the Analog Devices AD605 wide-band am-

plifier chip, which is specifically designed for ultrasound applications. This device contained 

two separate amplifiers, each with a maximum gain of 48 dB, which could be cascaded together 

to achieve a total maximum gain of 96 dB. The quoted bandwidth of the device was 40 MHz, 

well above the maximum bandwidth achievable with the rest of the system. The AD605EB 

evaluation board was used to test the suitability of this device, however it was found that al-

though the performance of the AD605 device itself was probably suitable for this application, 

the evaluation board failed to be adequate due mainly to noise susceptibility. It was felt that 

this was due to the design of the evaluation board since it was made to be as general purpose 

as possible and therefore had many features which were unnecessary for this application. Un-

fortunately, there was insufficient time to develop a custom board for the AD605 device, so 

an alternative amplifier was found in the form of a custom made, field-effect transistor (FET) 

based design. The gain of this amplifier was tested by using the programmable function gen-

erator to provide a 2.5 MHz, 10 mVp-p sine wave to the input. Under these conditions, the 

output was 17.5 Vp-p, which gave a figure for the gain of 65 dB. The noise floor was observed 
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Figure 3.6: Plot of the frequency response of the FET based amplifier 

to be around 1 mVp-p, which with the maximum output signal of 17.5 Vp-p, gave a dynamic 

range of 85 dB. Using the same method, the dynamic range of the AD605 based amplifier was 

observed to be only 47 dB, indicating the superiority of the FET based design. The bandwidth 

of the amplifier was measured by using the programmable function generator to supply a 10 

mVp-p signal over a range of frequencies. The resulting frequency response of the amplifier 

may be seen in Figure 3.6. Inspection of these results revealed that the 3 dB bandwidth of the 

amplifer was approximately 2.5 MHz, which was not as high as would be ideal, but it was the 

best that was available at the time. 

The signals were captured using a Signatec PDA12 capture board, which was of the form of 

a PCI card which could be inserted into a standard PC. This device allowed sampling rates of 

up to 50 MSamples/sec on two channels with 12 bit accuracy. The board was configured with 

1.5 MBytes of RAM, which allowed 1048576 samples to be captured. This equated to 524288 

samples per channel, which at a sampling rate of 50 MHz, gave a maximum recording time 

of 10.5 ms. Assuming the sound was travelling through water with a velocity of 1480 m/s, 

this gave a maximum depth of 7.75 m, which was well above anything that would be required 

in the medical ultrasound context. For most of the work presented here, only 8192 samples 

were captured from each channel, giving a maximum depth of 121 mm, which was more than 

adequate. An example signal from this system may be seen in Figure 3.7. This signal was 

captured from the same wedge phantom seen in the left hand image of Figure 3.1 and the 
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Figure 3.7: Example signal from the single crystal system. 

cut-out of the wedge may be seen after a depth of 800 samples, extending to 1100 samples. 

The decrease in signal quantisation brought about through the use of a 12 bit ADC in the data 

capture card is immediately obvious in comparison with the signal from the clinical scanner 

shown in Figure 3.2. 

3.3.2 Transducers 

The inherent flexibility of the system developed allowed it to be used with more or less any 

single crystal ultrasound transducer. All of the work presented was performed using one of 

a selection of three different transducers. Two of these were custom manufactured by GE 

Panametrics, with centre frequencies of 3.5 MHz and 6 MHz respectively and a diameter of 1 

inch. The third was a 2.25 MHz centre frequency, pencil probe with a diameter of 13 mm. The 

two Panametrics transducers both had a focal depth of 50 mm, whereas the pencil probe had an 

unknown focal depth. The two Panametrics transducers had a bandwidth of 100 %. 

3.3.3 Software 

For most of the work presented, the software supplied with the data capture card was sufficient. 

This was of the form of a sample application, which gave a number of oscilloscope like features. 

Once captured, the data were stored in ASCII format which could be easily read into Matlab 

for further analysis. 
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Figure 3.8: Photo of the mechanical scanner used to allow the single crystal ultrasound system 

to capture 2D images. 

3.3.4 Mechanical Scanner 

Since the standard single crystal system was only capable of capturing signals from a single line, 

a mechanical 'scanner' was constructed from Technic Lego [Lego UK Limited. Captial Point, 

33 Bath Road, Slough, Berks. SLI 3UF, UK] which would allow the transducer to be scanned 

over a phantom such that a series of lines could be captured to form a 2D image. The 'scanner' 

was designed to fit over the phantom tank, as illustrated in Figure 3.8. Ideally, the transducer 

drive mechanism should have been made using a stepper motor, which would have made it 

possible to move the transducer along in discrete steps. This was not possible within the time 

constraints of this project, so a continuous motion design was used instead. The disadvantage 

of this was that it meant that the transducer would be moving while it was receiving the echo 

signal. To counter this, the scan speed was kept low so as to minimise the resulting distortion. 

The number of lines captured during the scan was controlled by varying the pulse repetition 

frequency of the transmitting system. Despite these rather rough approximations to the ideal 

system, it was still possible to obtain good results, an example of which is illustrated in Figure 

3.9. 
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Figure 3.9: Example image created using the mechanical scanner with a simple phantom. 

3.4 Summary 

The issues surrounding the type of signals used and the method of their capture have been 

discussed. Ultimately, raw RF signals, captured from both a Philips SONOS 5500 clincal 

scanner and from a custom developed single crystal ultrasound system, were chosen to be used. 

The development of the latter has been described and example signals from both systems have 

been presented. A mechanical scanner was also constructed to allow the single crystal system 

to capture two-dimensional images. 

27 



Chapter 4 
Doppler Tissue Imaging 

4.1 Introduction 

The concept of Doppler ultrasound has already been introduced in the form of colour flow imag-

ing which allows the flow of blood within the body to be visualised. This technique requires a 

high-pass filter be used to remove the high amplitude, low velocity signals which result from 

the tissue, otherwise these would over-power the low amplitude, high velocity signals from the 

blood. Doppler Tissue Imaging (DTI) is a technique which allows the motion of tissue struc-

tures within the body to be visualised and this can be implemented by simply removing the, 

high-pass filter stage from a colour flow imaging system and reducing the gain. 

As for colour flow imaging, the velocity information may be displayed either as a 2D image 

overlaid onto the normal grey scale image, or in colour coded M-Mode format. Either way, 

velocities towards the transducer are normally coloured in shades of red and those away from 

the transducer in shades of blue. The shade of the colour usually gives information about the 

magnitude of the velocity while the intensity can be used to give information about the signal 

power. 

The technique was first described by McDicken et al. [15],  who demonstrated that colour veloc-

ity imaging had the potential to provide information about the velocities within the myocardium 

and speculated that this might give insight into myocardial viability. They also showed that the 

velocity estimator used for colour flow imaging, as described by Kasai et al. [16], was able 

to provide meaningful results when used to measure the relatively slow velocities which result 

from the motion of myocardial tissue. 

DTI offers the possibility for evaluation of regional and global myocardial function using real-

time 2-D and M-Mode imaging. This also allows for improved border definition in technically 

difficult patients and quantification of myocardial contractility. [17] 

The technique was originally intended as a qualitative aid for the study of left ventricular wall 
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motion [17] and it has been shown that it is possible to observe differences between the veloci-

ties of normal and infarcted myocardium [18],  [19], [20]. 

The remainder of this chapter is organised as follows: The next section describes the current 

status of the technique of DTI, describing the current trends in research as well as the type 

of performance available. The next section describes the experiment setup which was used in 

conjunction with the single crystal ultrasound system described earlier to measure the accuracy 

of the velocity estimation algorithms. Following this, the next section describes the basis of 

the techniques used for velocity estimation, giving reasons for the current trend toward all 

digital solutions. This is followed by an analysis of the performance of three.different velocity 

estimation techniques; time-domain cross correlation, cross correlation model or correlation 

interpolation and the complex cross correlation model based technique. 

4.2 Current Status 

In general, all modern clinical ultrasound scanners for cardiology offer DTI facilities, although 

it may be under a slightly different name on different machines. Despite being widely available, 

up-take of the technique in the clinical environment has been slow. This is probably due to a 

number of reasons, but the most likely seem to be the qualitative nature of the results produced 

and the degree of experience required to interpret them correctly. Much research has been 

published detailing possible clinical applications of the technology, some of which may be 

summarised through the following references; Kapusta et al. [21], [22], Frommelt et al. [23], 

Fyfe et al. [24] and Lange et al. [25],  although this is only a very brief representation. 

Currently, the technique is able to offer spatial resolutions adequate for detecting anatomical 

features of the order of 3 x 3 mm, with frame rates of between 20 and 40 Hz [17],  [20]. The 

temporal resolution, determined by the frame rate, is very important for being able to visualise 

the fast moving parts of the heart, such as the valves. These features are within the capabilities 

of B-Mode imaging, where the frame rates are of the order 100 frames/sec or more, but the 

temporal resolution of DTI is often too low to reflect the motion accurately. It is possible to 

achieve significantly higher frame rates and hence higher temporal resolutions by using colour-

coded M-Mode since it is the requirements of forming a 2D image which are the main limiting 

factor. 

Quantification of the results is often achieved using on-line or off-line analysis of the colour 
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encoded Doppler images. This works by determining the colour of each pixel in a user defined 

region of interest and then comparing this with a colour scale to derive the velocity. This 

technique has been verified in-vitro by Fleming et al. [12] and in-vivo by Fraser et al. [26]. 

One of the problems with quantification of myocardial velocities from the Doppler tissue im-

ages is that the motion represented is not only due to the movement of the heart. As the person 

breaths, the heart moves around within the chest cavity, which causes a global motion of the 

myocardial tissue. Using conventional techniques it is not possible to subtract this global mO-

tion from the local motion which is of interest. One method for achieving this is to measure 

the velocity gradient rather than the absolute velocity. This is achieved by taking the estimated 

velocity at two points and using the measured distance between them to determine the gradient. 

Since each of the two points will be similarly affected by the global motion, it will effectively 

be cancelled out. The method of measuring myocardial velocity gradients was first described 

by Fleming et al. [27],  who used colour Doppler M-Mode scans to estimate the Doppler ve-

locity gradient and compared this with the rate of change of wall thickness calculated from 

conventional pulse-echo M-Mode scans. They observed statistically significant velocity gradi-

ents in all cases and verified that the velocity gradients were consistent with the wall thickness 

changes, suggesting that the technique had the potential for assessment of myocardial contrac-

tility. The usefulness of the velocity gradient technique for assessing myocardial contractility 

independently of global translational motion of the heart was demonstrated by Ueniatsu et al. 

[28]. It was also shown to be an indicator of regional left ventricular contraction by Miyatake 

et al. [29]. 

There have been a significant number of publications in recent years on the subject of my-

ocardial velocity gradient estimation, which has become known as strain-rate imaging. Many 

of these focus on the potential clinical applications of the technique, for example: detecting 

ischemic myocardium by Dobutamine challenge [30]; improved assessment of myocardial vi-

ability in patients with depressed left ventricular function [31]; characterising acutely ischemic 

myocardium through the observation of higher strain rates during isovolumic relaxation phase 

than during ejection [32] and assessment of left ventricular myocardial function in congenital 

valvular aortic stenosis [33],  to name a few. 

It would appear that the velocity gradient method forms the bulk of current attempts at quantify-

ing the technique of DTI. Nearly all of the published papers appear to use strain and strain-rate 

values derived from the velocity estimations made using tissue Doppler imaging, however in 
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nearly all cases this appears to have been done with little regard for the accuracy of the under-

lying velocity estimations. Obviously, there is a danger that errors in these initial estimates will 

be propagated through to the strain estimations and may even become exaggerated through this 

process. As has been stated in Chapter 2, the myocardium is a complex structure consisting of 

multiple muscle layers which contract in different directions and are perfused by blood vessels. 

All of these artifacts are likely to be able to introduce error into the initial velocity estimations, 

for example, if the sample volume for one velocity estimation includes a perfusing blood vessel, 

how does this affect the estimation for that region? This is currently unknown and therefore 

cannot be simply dismissed as insignificant. 

To this end, it was decided that it would be useful to investigate the accuracy of the underly-

ing DTI technique. A number of techniques have been reported for the assessment of colour 

Doppler imaging accuracy, including string phantoms as described by for example, Philips et 

al. [34] or Russell et al. [35] which consist of a thin string which is driven by a stepper motor 

in such a way that its speed can be precisely controlled. The string is partly immersed in wa-

ter, such that it intersects with the ultrasound beam at a known depth and angle. Stewart [36] 

however points out that string phantoms are not particularly suitable for the assessment of 2-D 

colour imaging systems because the moving string forhs a stationary, narrow colour image that 

cannot be easily interpreted. 

Fleming et al. [12] describe the use of two different types of phantom for investigating the 

efficacy of DTI. Firstly, they used a rotating phantom consisting of a metal cylinder with an 

attached cylinder of tissue mimicking material. The speed of rotation could be measured us-

ing an optical encoder allowing the accuracy of the velocity estimations made using DTI to 

be investigated. Secondly, they used a phantom consisting of two grooved sections of tissue 

mimicking material which could slide over each other. The purpose of this phantom was to 

investigate the spatial resolution which could be obtained with DTI. For the analysis of the ve-

locity estimation accuracy of DTI, they recorded the colour images resulting from a scan of the 

rotating phantom and used a computer program to analyse the colour of each pixel. The actual 

velocities were derived by comparing these colours to the colour bar produced by the scanner 

as shown in Figure 2.10. 

Generally, these works seem to indicate accuracies of the order of 10 %. The work in [36] 

demonstrates clear statistical significance of the effects due to type of transducer, Doppler angle 

and instrument settings. This last point may be the most important since these will vary the most 
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from one scan to another. These figures are backed-up by Embree et al. [37] who quote the 

precision of the time domain correlation technique, working on raw, unfiltered signals as being 

around 5% to 10%. 

All of this work has generally focused on the assessment of particular clinical scanners. It 

was felt that a study into the performance of the fundamental techniques used for velocity 

estimation would be more useful as this would give a more detailed overview of the issues 

which may affect quantification of myocardial velocities using DTI and derivative techniques. 

This study was performed using the single crystal ultrasound system described earlier, along 

with simulations, to enable complete control over the signal processing at every stage. It was 

decided to focus on time-domain based techniques, rather than covering all of the possible 

phase-domain approaches. The reasons for the slow uptake of the time-domain techniques 

in the clinical scanner arena is that they are more computationally expensive and it would 

appear that, so far at least, the equipment manufacturers have decided that there is little to be 

gained by switching from a phase-domain approach. However, it was felt that the time-domain 

techniques are able to offer certain advantages, such as being able to work beyond the Nyquist 

limit for example and that as digital signal processing hardware becomes cheaper, this option 

will become increasingly viable. 

4.3 Experiment Setup 

The experiment setup used for this study was of the form of a rotating phantom, similar to that 

described by Fleming et al. [12] and Miyatake et al. [19].  The phantom itself consisted of a 

cylinder constructed from tissue mimicking material which was attached to a plastic cylinder 

of the same diameter. This setup was driven, via a gear box, by a DC motor. The gear box 

was necessary because the motor would be unable to rotate smoothly at the low rotational 

speeds required to mimic the motion of the myocardium. The drive shaft of the motor was also 

connected to an optical encoder consisting of a disk with 360 slits which allowed light frori 

and infra-red L.E.D. to pass through. This device produced two signals, one 900  out of phase 

with the other, which would enable the direction of rotation to be determined. For this study, it 

was not necessary to detect the direction of motion, so only one of the outputs was used. This 

signal was used to drive an off-the-shelf frequency counter, which gave a measure of the speed 

of rotation of the motor and hence the phantom itself. The rotating phantom was designed to 

fit into a hole molded into an additional block of tissue mimicking material, which formed the 
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Figure 4.1: Illustration of the rotating phantom setup used . for this study. 

stationary part of the phantom. The whole experiment setup is illustrated in Figure 4. 1, while 

the dimensions of the entire setup are shown in Figure 4.2. 

The nature of the rotating phantom arrangement is such that the component of the velocity 

parallel to the ultrasound beam will be constant with depth. This is a simple result of the 

geometry of the situation, as illustrated in Figure 4.3. 

A standard clamp and stand combined with a micro-manipulator was used to enable the trans-

ducer to be moved around the edge of the stationary phantom accurately. Although it was 

possible to have 3 degrees of freedom with this setup, only lateral motion across the width of 

the phantom was used. In this manner it was possible to use the single crystal system to ob-

tain a single line signal from any lateral displacement across the phantom, allowing the whole 

width of the rotating portion to be used. The transducer could be aligned with the centre of the 

rotating phantom by adjusting the position until the echoes from the edges of the phantom were 

of the maximum strength. At this position, the edges would be perpendicular to the beam from 

the transducer, which causes them to give the strongest reflection. This method was verified by 

estimating the dimensions of the phantom from the received signal, which may be seen in Fig- 
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Figure 4.2: Overall dimensions of the phantom setup used. Dimensions are shown in mm, 

diagram is not drawn to scale. 
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Figure 4.3: Illustration of the rotating phantom geometry showing how the component Qf the 

velocity parallel to the ultrasound beam will be constant with depth. 
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Figure 4.4: Received echo signal demonstrating the technique for locating the centre of the 
rotating phantom. 

ure 4.4, where the distances were calculated assuming a velocity of sound of 1480 mlsec. The 

first large peak occurs at a depth of 23 mm, which was suitably close to the measured phantom 

dimensions. The location of the second peak, which corresponds to the water/tmm interface 

with the rotating part of the phantom indicated a distance of 3 mm between the rotating and 

stationary parts. The last peak occurred at a depth of 68 mm, which again correlated well with 

the measured dimensions. In this case, the rotating part of the phantom was orientated such that 

the wedge did not intersect with the ultrasound beam. 

The rotating phantom was operated such that it would provide velocities within the range of 0 

mm/sec: to 50.3 mm/sec. It was observed from the literature that normal myocardial velocities 

are within this range [21], [26],  [38] and [39]. 

Whilst the single crystal ultrasound system allowed complete control over most of the relevant 

factors, it was subject to a fixed signal-to-noise ratio (SNR). Therefore, in order to investigate 

the performance of the various velocity estimators in terms of the SNR, it was necessary to 

be able to produce signals with known SNRs. This was achieved using the Field II ultrasound 

simulation tool, developed by Jensen et al. [40], [41], [42]. The simulation was designed to 

reflect the physical rotating phantom as closely as possible. A scatterer density of 10 per cubic 

wavelength was used, giving a total of 1 x 106  scatterers for the rotating part and 6.4 x 106  for 

the stationary part, for a 2.25 MHz signal. The computational requirements of these simulations 
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Figure 4.5: Simulated phantom, produced using the Field II ultrasound simulation tool. 
Clearly shows how it was possible to create a simulation which closely matched 
the physical phantom. 

were very large, taking approximately 2 days to complete a simulation of a single line through 

the phantom over 64 frames, running on four 2.0 GHz Intel Xeon processors. The model was 

designed to have identical dimensions to the physical phantom, including an identical wedge 

cut-out. It was also designed to have a 1 mm gap between the rotating part of the phantom and 

the stationary part. A simulated overall view of the model may be seen in Figure 4.5. Note that 

the simulation was created using a model based on a 64 element linear array transducer, which 

was deemed to be suitably equivalent to a single crystal transducer being used at 64 different 

displacements over the width of the phantom. The centre of the simulated phantom was located 

at a depth of 60 mm, which was different to the dimensions of the physical phantom, however 

this was not felt to be significant in any way as the simulation engine used did not allow for 

depth dependent effects such as attenuation or spectral broadening. 

"ii 



Doppler Tissue Imaging 

Transmitting 
Amplifier 

Figure 4.6: Simplified schematic of a phase-domain velocity estimating system. The upper two 
signal paths are for the velocity estimation, which colours the image, while the 
lower signal path is for the grey scale, B-Mode image. LPF = Low Pass Filter; 
ADC = Analogue to Digital Converter; DLC = Delay Line Canceller [43] 

4.4 Velocity Estimation 

4.4.1 Phase Domain versus Time Domain Techniques 

Low frequency, base-band or phase-domain velocity estimation techniques all utilise demodu-

lation to shift the received RF signal down to the baseband, such that the remaining frequency 

content corresponds to the Doppler shift experienced by the signal. In general, all such systems 

operate in the manner illustrated in Figure 4.6 [43]. The basic principle of operation is that 

the received signal is split into two, forming two signal paths. Each of these is demodulated 

by multiplying the received signal by the transmitted signal, although one path is multiplied 

by a 901  phase-shifted version. These are then digitised by the ADC and then they are passed 

through a delay line canceller (DLC), the purpose of which is to remove any stationary signals 

which would otherwise obstruct the blood flow estimations. These signals then pass to the ve-

locity estimator, which will usually estimate the mean frequency of the signals which gives the 

velocity information. 

For a pulse-wave Doppler system, some form of spectral analysis technique, such as the FFT 

or an autoregressive modelling approach is used to form a spectrogram of the demodulated 

signals. However, in order to have enough samples to get a good frequency resolution in the 

resulting spectrum, this technique can only operate on fairly large regions of interest. 

When it is necessary to create a two dimensional image, as in the case of Doppler tissue imag-

ing, the velocity estimator used does not perform full spectral analysis of the signals, but will 
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use some form of spectral estimation technique. There are three main reasons for this, firstly 

that when colour flow imaging was first introduced, the hardware for performing real-time FFTs 

of signals did not exist. Secondly, the frequency resolution obtainable using the FFT is the re-

ciprocal of the length of the data segment being analysed, so for example using a 1 ms window 

would limit the frequency resolution to 1 kHz. The third reason is due to the problem of dis-

playing the vast amount of data which would result from a full spectral analysis. In practice, the 

user only needs to know the mean or maximum velocity within a particular sample volume and 

therefore much of the full spectral analysis data would be redundant. Even though a number of 

phase domain algorithms for estimating the frequency have been suggested, the autocorrelation 

technique was the first and remains the most widely used [43]. 

This technique was originally described by Kasai et al. [16] and is based on the principle of 

transmitting a number of pulses in each direction and then using the Wiener-Khinchine theorem 

to relate the autocorrelation of a number of these signals at a fixed depth to the power spectrum. 

Once an estimate of the power spectrum has been derived, this can be used to form an estimate 

of the mean frequency. 

The basis of the autocorrelation method is that the instantaneous angular frequency of a signal 

is related to the instantaneous rate of change of phase: 

dO = 	Oi  —b 	
(4.1) 

Where Oi and qii  represent the instantaneous phase of the signal at two different samples. 

The tangent of the required phase difference, 0j.- j1 could then be written as a ratio of sine 

and cosine terms: 

tan (qj—_1) = 
sin (d - th_1 

cos (p - i-1) 
sin qi  cos 	- cos Oi sin 
cos Oi cos 	- sin Oi sin qi-1 

(4.2) 

Of course, the sine and the cosine terms relate to the in-phase (I) and quadrature-phase (Q) 

signal components, hence an average frequency may be calculated by summing over a number 

of pulse pairs: 
- 	1 

(4.3) w = 	tan1 [ 
	Q(i)I(i - 1) - I(i)Q(i - 1)1 

i I(i)I(i —1) + Q(i)Q(i —1)] 

Radio-frequency, or time-domain methods work directly with the received RF signals and do 
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Transmitting 
Amplifier 

Figure 4.7: Simplified schematic of an RF, or time-domain, velocity estimator The upper signal 
path is for the velocity estimation, whereas the low path is for producing the grey 
scale, B-Mode image. ADC = Analog-to-Digital Converter DLC = Delay Line 
Canceller [43] 

not actually use the Doppler effect at all. As a result of this there has been much discussion 

about whether systems based on such techniques should be referred to as Doppler systems, but it 

is probable that the name will remain out of convention. A simplified schematic representation 

of a time-domain velocity estimation system may be seen in Figure 4.7. These systems work 

by determining the time-shift, 'or lag, between two signals by locating the maximum of the 

cross-correlation function of the two signals [43]. 

One of the main differences between the two systems is that the time-domain system samples 

the raw RF signals directly, before any other signal processing is performed. This is important 

because once the signals have been digitised, any further processing will not introduce more 

noise. Once the signal has been digitised, it is passed through a delay line canceller, which 

removes the components of the signal which correspond to stationary tissue structures. The 

signal is then split into two, one part goes directly to the cross-correlator, while the other part 

goes to a delay line. The purpose of the delay line is to store the entire received signal such that 

the cross-correlator receives both the current signal and the previous signal. 

It appears that there has been a general trend towards all digital systems, with offerings from 

both GE [44] and Philips [45]. Although there is little information available regarding the actual 

velocity estimation techniques which are most common among the various clinical ultrasound 

scanners, it seems that the general approach is to use the Kasai autocorrelation algorithm. The 

reasons for this are that this technique is relatively computationally efficient when compared to 

the time domain cross-correlation approach. However, as the cost of the digital signal process-

ing hardware decreases and the performance increases, this will become less of an issue. 



Doppler Tissue Imaging 

Figures 4.6 and 4.7 illustrate that one of the potential advantages of moving to a time-domain 

based technique would be the significantly reduced component count. This could have potential 

benefits in areas such as reduced power consumption and overall device size, both of which are 

important for making smaller, more portable scanners. 

A further advantage of the time-domain techniques is that the maximum measurable velocity is 

not limited by the sampling frequency in the same way as for the phase-domain techniques. As 

the later are based on estimating a frequency, they are limited because, according to the Nyquist 

sampling theorem, the maximum frequency which can be sampled reliably is half the sampling 

frequency. In this case, the sampling frequency is the PRF, so velocities which cause a Doppler 

frequency greater then half the PRF will be aliased. The time-domain techniques, on the other 

hand, are based on tracking the motion of a group of scatterers using some form of correlation 

technique, rather then estimating the Doppler frequency. They are, therefore, able to reliably 

measure velocities which would cause aliasing in a phase-domain system. 

It must be noted that the above system illustrations are for colour flow imaging, which was 

the original application of Doppler ultrasound. In order to achieve good visualisation of blood 

velocities it is necessary to filter out the high amplitude signals from slow moving tissue, which 

is achieved by the delay line canceller in the above systems (and the low-pass filter in the 

phase-domain system). However, for Doppler tissue imaging, it is exactly this signal which is 

of interest, so the filtering stage is either removed or by-passed and the gain adjusted. 

4.4.2 Sample Volumes 

In the case of Doppler techniques, such as Doppler tissue imaging, the sample volume refers to 

the region from which a single velocity estimation is made. This volume has a finite size which 

is determined by the properties of the ultrasound beam, the pulse length and the range gating. 

The width of the ultrasound beam is largely determined by the properties of the transducer, 

in the single element case it is the diameter of the transducer and the shape of any lens at the 

coupling interface which will determine the beam width. The length of the sample volume may 

be determined by the convolution of the transmitted pulse length and the range gate length. The 

combination of these factors leads to the conclusion that a single velocity estimation will be 

the mean of the velocities of the scatterers which fall within the resulting three-dimensional 

volume. 
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This can lead to problems, since the velocities which are of interest may be masked by the 

velocities of other scatterers which happen to pass through the sample volume. This is particu-

larly a problem where low velocities are to be measured, for example near to the wall in a blood 

vessel. In this situation it is extremely likely that the sample volume will include some of the 

flowing blood scatterers and some of the stationary vessel wall scatterers, which will lead to a 

false measurement of the velocity. In the same way, boundaries between stationary and mov-

ing tissue would also cause problems. It is well known that the myocardium consists of three 

muscle layers which contract in different directions, the effect of which is that each will give a 

different value for the velocity. Current spatial resolutions offered by TDI are of the order of 

3 mm x 3 mm, which is due to the finite sample volume. Since the layers of the myocardium 

are very thin, it is likely therefore that each sample volume within the myocardium will con-

tain scatterers belonging to at least two layers and which will thus contribute differently to the 

overall velocity measurement. 

4.4.3 Time Domain Cross Correlation for Velocity Estimation 

The first reference to the cross correlation method for velocity estimation was by Dotti et al. 

[46], who described the technique as a method for measuring blood flow. Bonnefous et al. [47] 

also describe the cross correlation technique and compare its performance with that of phase 

domain based velocity estimators. In particular, they noted that the cross correlation approach 

does not suffer from aliasing of velocities which are higher than the Nyquist limit. 

As illustrated in Figure 4.7, the time-domain method uses the cross-correlation between the 

current and previous received signals. If these are termed w1  (t) and W2 (t) respectively, then 

the correlation of these two signals will be given by: 

R(r) 
= foo 

wi(t)w2(t + +)dt 	 (4.4) 

These two signals will be almost identical except for the second echo being essentially a time 

delayed version of the first, hence: 

W2 (t) = wi(t - t8 ) 	 (4.5) 
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Figure 4.8: Received signals after transmission of two signals, w1 (t) and W2 (t) separated in 
time by At, for stationary scatterers (top) and moving scatterers (bottom). 

Where t is the time lag between them. Putting this back into equation 4.4 gives: 

R(T) = 
foo 

wi(t)wi(t - t + r)dt = Rii(r - t) 	 (4.6) 

Where R11 (r - t8 ) is the autocorrelation function of w  (t). This will have a maximum when 

T = t8, which therefore means that the maximum of the cross-correlation of the two signals, as 

given by equation 4.4, may be used to determine the time shift between the two signals. 

The above will work for the case when there is only one scatterer or reflector, however in the 

medical context at least, there will always be a large number of scatterers within any given 

sample volume, be it blood or tissue. Because of this and the fact that it is desirable to have 

information about how the velocity varies with depth, it is necessary to gate, or window, the 

received signals into a number of discrete sections. The cross correlation technique may then 

be described as: 
b 

= ma I. wi(t)w2(t + T)dt 	 (4.7) 

Where a and b are the start and finish times of the window respectively and max means to 

determine the value of T for which the integral is maximised. Figure 48 shows an example of 
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two received signals resulting from two transmissions separated in time by At. The top part 

of the figure shows the result for stationary scatterers, so there is no difference between the 

received signals. The lower part shows the result for a region of moving scatterers, which has 

the predicted effect of causing a lag between the two signals, which could be measured using 

the cross-correlation of the two signals as expressed by equation 4.7. In this case, the time 

between the two signals, At was 6 ms, which is greater than that which would normally be 

used, but it provides a better illustration. The scatterer velocity was 10 mm/sec. 

An analysis of the errors involved in using this method to estimate the velocity of flowing blood 

has already been performed by Foster et al. [48]. They derive an expression for the theoretical 

variance of the measured time-lag, r about the true lag, 7-0: 

VAR[-?] = _02  P 2E ___ 
(4.8) 

Where No  is the white noise power spectral density of each echo [W/Hz], /3 is the RMS band-

width of the received signals [rad/sec], p is the maximum correlation coefficient of the received 

signals without noise and E is the average energy of each range-gated echo [J].  They therefore 

conclude that the precision of the time-domain velocity estimate, [/VAR() /r0] will be given 

by: 

Preclslon[T]= 	 (4.9) 
/3pi-0SNR 

Where in this case SNR is the signal-to-noise ratio defined as: 

SNR- /NVAR(s) 

- V VAR(n) 	
(4.10) 

Where N is the number of samples in the range gate and VAR(s) and VAR(n) are the signal 

and noise variances respectively, also in the range gate. 

From this, it is possible to observe that the performance, in terms of accuracy, will improve if 

either the bandwidth or the signal-to-noise ratio are increased. 

It is likely that the implementation used in a clinical scanner will involve some form of inter-

polation of the cross-correlation function. The reason for this is that the velocity resolution 

is limited to the accuracy with which the position of the peak may be located. Since this is 

a discrete time system, the position can only vary by a whole number of samples, therefore, 

velocities which would cause the peak to shift by an amount less than this cannot be detected. 
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Displacement [mm] Actual Velocity [mm/sec] 
0 0 
2 12.6 
4 25.1 
6 37.7 
8 50.3 

Table 4.1: Actual velocities at the lateral displacements which were used. 

Window Length [Samples] Time [usec] Distance [mm] 
16 0.32 0.25 
32 0.64 0.49 
64 1.28 0.99 
128 2.56 1.97 
256 5.12 3.94 

Table 4.2: Window lengths in samples and usec and equivalent distance at f8 = 50 x 106  Hz 
and assuming velocity of sound in tissue, v = 1540 mis. 

This limitation can, however, be overcome by interpolating between the samples of the cross-

correlation function which allows sub-sample accuracy to be achieved. 

The single crystal system was used with the rotating phantom setup described earlier to deter-

mine the actual accuracy which would be obtainable using this technique. The speed of rotation 

was set at 1 revolution per second, which corresponded to an encoder signal frequency Of 6250 

Hz. Measurements were taken at various lateral displacements from the centre, in 2 mm in-

crements. Table 4.1 gives the actual velocities at each of tle lateral displacements. The pulse 

repetition frequency, was set to 1 kHz and the pulse length was varied between 1, 2 and 4 cycles. 

Matlab code was used to emulate the action of a cross-correlation based velocity estimator, 

by taking windowed 'segments' of the received signals and using the cross-correlation func-

tion provided by Matlab to determine the lag between the two signals. The code used here 

interpolated the cross-correlation function using the Matlab 'interp' function, to interpolate the 

cross-correlation function by 2, 4 and 8 times. The window length used was also varied be-

tween 16, 32, 64, 128 and 256 samples, which equates to the times and distances summarised 

in Table 4.2. In this manner, it was possible to observe the effects that each of these indepen-

dent variables had on the accuracy of the velocity estimates. The accuracy of the estimations 

under these varying conditions may be seen in Figures 4.9 to 4.13, where the percentage error 

of the estimates has been plotted against the interpolation factor, for different window lengths, 

pulse lengths and lateral displacements. The percentage error was calculated using the mean 
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Figure 4.9: Velocity estimation accuracy for 0 mm lateral displacement showing the estimated 
velocity vs. the interpolation ftictor 

of the estimated velocities over the region of the signal which was known to correspond to the 

moving part of the phantom only and was averaged over three separate tests. In the 0 mm dis-

placement case, the percentage error would have been meaningless, so that estimated velocities 

were plotted instead. 

From these results it was observed that the best achievable accuracy with the simple cross-

correlation technique was around 10% - 15% and that the best results were, in nearly all cases, 

achieved with a pulse length of 2 cycles and a window length of 128 samples. Increasing the 

pulse length to 4 cycles or decreasing it to 1 cycle resulted in a degradation of the accuracy. 

This would be expected as increasing the pulse length increases the signal-to-noise ratio, but 
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Figure 4.10: Velocity estimation accuracy for 2 mm lateral displacement, showing the percent-
age error vs. the interpolation factor 
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Figure 4.11: Velocity estimation accuracy for 4 mm lateral displacement, showing the percent-
age error vs. the interpolation factor 
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Figure 4.12: Velocity estimation accuracy for 6 mm lateral displacement, showing the percent-
age error vs. the interpolation factor 
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decreases the signal bandwidth. Increasing the window length up to 128 samples improved the 

accuracy in nearly all cases, but a further increase to 256 samples only caused an improvement 

in the 4 mm and 8 nun cases with a pulse length of 2 cycles and in the 2 mm case with a 

pulse length of 1 cycle. As shown in Table 4.2, a window length of 128 samples equates to 

a distance of 1.97 mm in tissue, which effectively places a limit of 2 mm on the maximum 

spatial resolution which can be achieved whilst maintaining relatively accurate velocity esti-

mates. Increasing the window length further results in an improvement in the accuracy in some 

cases, but this limits the spatial resolution to around 4 mm, which would be quite likely to 

obscure a number of anatomical features within the heart. Increasing the window length also 

increases the computational complexity by increasing the number of samples which need to be 

cross-correlated. 

Using the single crystal ultrasound system alone, it was not possible to control the signal-to-

noise ratio of the signals, therefore the Field II simulation engine described above was used 

to test this variable. The simulations were designed to match as closely as possible with the 

physical phantom setup and velocity profiles were obtained from lateral displacements of 0mm 

through to 10mm in 2mm increments, as with the physical experiments. The initial simulations 

results have an infinite signal-to-noise ratio, so they were corrupted with additive, white, Gaus-

sian noise to yield SNRs in the range of 0 dB up to 100 dB in 10 dB increments. The results 

obtained are summarised for a range of window lengths and velocities in Figure 4.14. 

As well as illustrating the significance of the window length on the resulting accuracy, these 

results also show that as the velocity decreases higher signal-to-noise ratios are required to 

maintain the same level of accuracy. In reality an ultrasound system could easily have a signal-

to-noise ratio higher than 50 dB and these results show that beyond around 30 dB there is 

little variation. It was therefore concluded that the cross-correlation technique is relatively 

independent of the SNR of the signal, provided it is higher than 30 dB. 

4.4.4 Alternative Techniques 

4.4.4.1 Correlation Model Based Techniques 

The cross-correlation method described above used two received signals, resulting from the 

transmission of two separate pulses separated in time by At, in the same direction. This tech-

nique may be extended by increasing the number of pulses transmitted in each direction, such 
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Figure 4.14: Effects of signal-to-noise ratio and window length on velocity estimation accu-
racy. Clearly shows that lower velocities require higher SNRs. 



Doppler Tissue Imaging 

22 

24 

26 

E 28 
E 

-30 
0 

32 

34 

36 

10 

5 E 

-10 

-15 

20 	40 	60 	80 	100 	120 
Temporal Domain [ms] 

Figure 4.15: Example data set illustrating temporal and spatial domains. 

that a two dimensional data set is created consisting of temporal and spatial axis which corre-

spond to the time of the transmission, nAt (where mis the pulse number) and depth respectively. 

An example of the resulting data may be seen in Figure 4.15, which was produced using the 

single crystal system with the rotating phantom setup. The carrier frequency was 2.25 MHz and 

the signals were post-processed by band-pass filtering to increase the clarity of the example. In 

this case, the pulse repetition frequency, fPRF  was 1 kHz and 128 transmit I receive cycles were 

used. Only a particular depth region of the entire data set has been shown to aid clarity, but it is 

possible to observe the gap between the rotating and stationary parts of the phantom at depths 

0124 mm and 26 mm. The colouring has been chosen to show the peaks and troughs of the 

signals, blue for the peaks and red for the troughs. Therefore, signals from stationary scatterers 

(above a depth of 24 mm) show as horizontal lines, while the signals from moving scatterers 

produce diagonal lines, as would be expected. The data were collected with the transducer at a 

lateral displacement of 6 mm, giving a theoretical velocity of 37.7 mm/sec. 

Once the data are in this format, the temporal domain signal at a particular depth will look 

something like either of the two examples shown in Figure 4.16, where the signals correspond-

ing to depths of 23 mm and 28 mm have been extracted. It is clear from this that the signal 

from a depth of 28 mm, which corresponds to the region of moving scatterers, contains more 

then just noise, whereas the signal from 23 mm appears to be only noise. This was confirmed 
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Figure 4.16: Temporal domain plot from the data set shown in Figure 4.15, at a depth qj 23 
mm (blue) and 28 mm (green). 

by looking at the power spectral density for each of these signals, as shown in Figure 4.17. 

Considering the Doppler equation [2.1], the frequency shift due to a velocity of 37.7 mm/sec 

should be around 115 Hz. Inspection of Figure 4.17 shows a peak near to this frequency, but it 

is far from the only peak in the signal. Under ideal circumstances, the mean frequency of the 

temporal domain signal will correspond to the Doppler frequency, but with real, noisy signals, 

this method cannot be used to form a reliable velocity estimator. Also, this example has used 

128 temporal domain samples, which with a pulse repetition frequency of 1 Khz would require 

128 ms to capture. Although this is possible, using such a long time degrades the temporal res-

olution significantly and it would certainly be impossible to use for 2D imaging where a whole 

frame, consisting of tens of lines needs to be generated at least 25 times a second. 

However, it is possible to estimate the frequency of the temporal domain signals and hence 

produce a velocity estimation, using two-dimensional cross-correlation. P.G.M. de Jong et al. 

[49], [50] describe a technique called "correlation interpolation", which is based on the idea 

that the power spectrum of a typical received signal may be modelled by a Gaussian function. 

The required function may be derived using signal power, noise power, spatial mean frequency 

and spatial bandwidth as parameters. If the displacement between observations is also taken 

into account, then the cross-spectrum is obtained. This can be transformed to a complex cross- 
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Figure 4.17: Power spectra of signals shown in Figure 4.16, clearly showing that the signal 
from 23 mm is just noise, whereas the signal from 28 mm has a definite frequency 
content. 

correlation by means of the Wiener-Khinchin relation and then because only a few unknown 

parameters are involved, a velocity estimator may be derived using only a few depth and time 

lags. 

The work by P.G.M. de Jong et al. was based on the assumption that the received signal would 

have a narrow spatial bandwidth, which simplified the derivation of an expression. However, 

Brands et al. [51] later extended this work into the "complex cross correlation model" tech-

nique, which was not based on such an assumption. This will be described in more detail later 

in the chapter, but the correlation interpolation, or "cross correlation model" technique may be 

described as follows. 

Normalising the Doppler equation (equation 2.1) results in an expression for the normalised 

mean velocity derived as the ratio of the mean velocity to the ratio between the spatial sampling 
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interval Ay = c/(2 cos 	and the temporal sampling interval At = 1/PRF: 

V 

= Ay/At 

ct 
2 cos af 

= c PRF __ 
2 cos c 19—rf 

Jt/PRF 

= Jc/fs—rf 

At 	 (4.11) - Inc 

Where c is the speed of sound, c the angle of the velocity with respect to the ultrasound beam, 

It  the temporal mean frequency, Jt  the normalised temporal mean frequency, PRF is the 

temporal sampling frequency, J the spatial mean frequency, Inc the normalised spatial mean 

frequency and frj  is the spatial sampling frequency. Then, the relation between one sampled 

RF signal, wr j(k0 + k, io + i) and the next, Wri(kü.+ k, io + i + 1), where k0  denotes depth 

and io time, can be defined as: 

Wr f(kO+k,ZQ+Z) wr j(ko+k—ico,io+i+1)+m 	 (4.12) 

Where n denotes the noise contribution, k denotes shift in depth and i denotes shift in time. 

Then, considering a received RF signal, Wrf (t), whose spatial power spectral density distribu-

tion W1 (f) can be modelled by: [51] 

h=+oo 

G(f) - 	
Q(N+S) 	1-7rQ2(f—fn —h)2 

 fnc 
	

I - 	
eXP[ 
	

(4.13) 
h=—oo Ac 

Where G is the spatial power spectral distribution of the model, S is the signal power, N the 

noise power, f the normalised spatial frequency, Q the spatial quality factor (spatial mean 

frequency divided by bandwidth) and h is the periodicity factor. Taking into account the dis-

placement between observations çoi, then the cross-spectrum may be modelled by: 

h=+oo 

G(f, i) = 	
Q(N + S exp [—j2irfi]) 	1—irQ2(f - exp 	 - 	1 

	

h=—oo 	 L 	j 	(4.14) 

From which the cross-correlation function may be determined by means of the Wiener-Khinchin 
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relation: 
05 

	

R(k,i) = f 0.5 
G(f,i)exp(j2irfk)df 	 (4.15) 

From which Peter Brands et al. [511 derive an expression for the complex cross-correlation 

function as: 

—7rf(k - R(k,i) = (S+ Ni) exp + j2J (k - wi)] 	(4.16) )
Q2  

4.4.4.2 Cross-Correlation Model (CCM) Estimator 

If a narrow spatial bandwidth is assumed and only the real part considered, then equation [4.16] 

may be simplified to: 

	

R(k, i) = (S + N) cos (27rJ(k - (pi)) 	 (4.17) 

From which it is necessary to determine the unknown model parameters, 5, N, f and W. This 

can be achieved by considering the following cross-correlation lags: 

R(O,O) = S + N 

R(1, 0) = 	(S+N)cos(2irf) 

R(0,1) = 	Scos(27rf) 

R(1,1) = 	Scos(2irJ(1—)) 

R(-1,1) = 	Scos(27rf(-1—o)) 	 (4.18) 

Note that the noise terms, N, disappear in the later three expression of equation [4.18] because 

the noise is uncorrelated across the different received signals. In this way, the model parameters 

may be estimated from a set of sampled signals using the cross-correlation defined as: 

M—k-1 N—i-1 
1 

1(k,i)= 
(M - k)(N - i) 
	 wi(ko+d, iO+T) 'Wr i(k0+d+k, io+r+i) (4.19) 

dO T0 
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Then: 

1 

	

= 	(k(1,0)lf?(O,O)) 
2ir 

	

= 	- tan—' 2 I 	
0.5((1, 1) - (-1, 1)) 	1 

[(o, 1) sin (cos—' All  0)/(01  0)))] 

fl.  

	

- 	1(0, 
CL 
 1) 

	

- - 	 (4.20) 
N 	(0, 0) cos(27rft) - (0, 1) 

From which the mean velocity, I may be calculated using: 

C PRF 
V =(4.21) 

2 cos af s_r f 

Where a is the Doppler angle, as defined in Figure 2.8. 

Using this method with the same data which was used with the cross-correlation technique 

described above gave the results shown in Figures 4.18 to 4.22. In this case, the percentage 

error has been plotted against the number of temporal domain samples used, for each of 2, 4 

and 16 spatial samples. As before, the percentage error would have been meaningless in the 

0 mm displacement case shown in Figure 4.18, so the estimated velocity was plotted instead. 

Each figure represents a different lateral displacement of the transducer and hence a different 

scatterer velocity. 

As was observed with the conventional cross-correlation results, the best results were achieved 

when the pulse length was 2 cycles. Generally, these results were felt to indicate that the 

kind of accuracy achievable with the cross-correlation model technique was between 10 % and 

20 %, slightly worse than the results from conventional cross-correlation. However, the best 

results were achieved when 16 spatial samples were used, compared to a window length of 

128 samples which was needed to get the best results from the conventional cross-correlation 

technique. From Table 4.2, this may be observed to correspond to a distance of only 0.25 

mm, which represents an order of magnitude improvement in the obtainable spatial resolution. 

Decreasing the sample volume size by this degree would also improve the accuracy of the 

technique in more complex situations where the scatterers may well be moving with different 

velocities within the sample volume. 
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Figure 4.19: Velocity estimation accuracy for 2 mm lateral displacement, showing percentage 
error vs. the number of temporal lines used. 
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Figure 4.20: Velocity estimation accuracy for 4 mm lateral displacement, showing percentage 
error vs. the number of temporal lines used. 
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Figure 4.21: Velocity estimation accuracy for 6 mm lateral displacement showing percentage 
error vs. the number of temporal lines used. 
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Figure 4.22: Velocity estimation accuracy for 8 mm lateral displacement. 
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SNR [dB] Mean Velocity [nun/sec] Variance [mm/sec] 
100 59.5 0.03 
90 59.5 0.03 
50 59.6 0.03 
40 60.8 0.02 
30 2.59 4.02 
20 8.45 0.60 
10 4.95 0.13 
0 2.95 0.10 

Table 4.3: Table of mean velocity and variance for the CCM estimator with 64 temporal sam-
ples and 12 spatial samples. 

The noise performance of the CCM estimator was assessed using the results from the simula-

tions described in the previous section. As before, these were corrupted with additive, white, 

Gaussian noise of levels ranging from 0 dB to 100 dB in 10 dB increments. Figures 4.23 to 4.27 

show the results obtained for five different lengths of spatial and temporal windows. In the vast 

majority of cases it was observed that the performance of the estimator improved considerably 

at a threshold SNR of between 30 dB and 40 dB. As would be expected given the previous 

results from the single crystal ultrasound system, the best performance was achieved with a 

temporal window length of 64 samples. However, these results appear to suggest that for this 

temporal window length, a spatial window length of 12 samples was optimum. 

It was observed that even in the case of the 0 dB SNR, the CCM estimator gave a slightly higher 

mean velocity in the region corresponding to the moving part of the phantom, which resulted in 

the finite percentage error. Considering only the 10 mm displacement line by way of example, 

Table 4.3 shows the mean velocities and the variance of the velocity profile for the moving part 

of the phantom at various SNRs. The temporal and spatial windowing was kept constant at 64 

samples and 12 samples respectively. These results clearly show that the mean velocity and the 

variance of the velocity estimate both change significantly in the region between SNRs of 30 

dB and 40 dB and that the mean velocity does not decrease to zero even in the 0 dB SNR case. 
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Figure 4.23: Noise performance of CCM estimator with 4 temporal samples. 
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Figure 4.24: Noise performance of CCM estimator with 8 temporal samples. 
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Figure 4.26: Noise performance of CCM estiintor with 32 temporal samples. 
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4.4.4.3 Complex Cross-Correlation Model (C3M) Estimator 

The model parameters may be determined from the complex cross-correlation function given 

by equation 4.16 by considering the following lags: 

R(O,O) = S + N 

1 — irf 
R(11 0) = ( + N) exp 

L 	
2 + i2irfnc] 

1
R(0

1rfflço 
+ i27rfncco] 	 (4.22) ,1) = SeXP 	Q2 

And using the cross-correlation of a set of sampled signals defined by: 

M—k-1 N—i-1 

.(k,i) = 
(M - k)(N - i) 

	

	
wri(ko+d, io+r)w f (ko+d+k, io+T+i) (4.23) 

d=O r=O 

Then: 

arg(ñ(0, 1)) 

arg(1(1, 0)) 

j221 	
(4.24) 

N 	(0,0)exp 
[ 	

2 j - 

From which the velocity can be calculated using equation 4.21. 

Applying this technique to the data sets used for the previous two tests gave the results shown 

in Figures 4.28 to 4.32. Note that the complex cross-correlation estimator requires analytic 

signals, whereas the cross-correlation estimator worked with purely real signals. The analytic 

signals were obtained using the Hilbert transform via the Matlab 'Hilbert' function. 

These results clearly demonstrate the superiority of the complex cross-correlation model based 

technique over either the conventional cross-correlation approach or the purely real correlation 

model. As before, the best results were obtained when the pulse length was 2 cycles and in 

all but the 2 nim displacement case, the error was less than 10%. In the 8 mm displacement 

case, the error was actually less than 1%. These results also showed that this technique is not 

sensitive to the number of spatial samples used, meaning that it was possible to achieve the 

maximum velocity estimation accuracy with only 2 spatial domain samples. This equates to a 

sample volume length of only Wpm. 
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Figure 4.28: Velocity estimation accuracy for 0 mm lateral displacement, showing estimated 
velocity vs. the number of temporal lines used. 
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Figure 4.30: Velocity estimation accuracy for 4 mm lateral displacement, showing percentage 
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Figure 4.31: Velocity estimation accuracy for 6 mm lateral displacement, showing percentage 
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Figure 4.32: Velocity estimation accuracy for 8 mm lateral displacement, showing percentage 
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SNR [dB] Mean Velocity [nmilsec] Variance [mm/sec] 
100 59.8 0.002 
90 59.8 0.002 
50 59.8 0.002 
40 59.6 0.003 
30 57.3 0.015 
20 42.8 0.068 
10 16.9 0.022 
0 6.48 0.184 

Table 4.4: Table of mean velocity and variance for C3M estimator with 64 temporal samples 
and 12 spatial samples. 

The noise performance of the OM estimator was assessed using the same data as the analysis 

of the CCM and cross-correlation estimators. The results of this may be seen in Figures 4.33 to 

4.37. The analysis was performed over the same range of temporal and spatial window lengths 

as for the CCM case above. 

As for the CCM case, these results show that at a certain threshold SNR of between 30 dB and 

40 dB, the percentage error rapidly decreases and then flattens out. The shape of these curves 

was observed to be different to those of the CCM estimator in that the percentage error decreases 

more steadily as the SNR is increased as opposed to remaining level until the threshold value. 

It was observed that for temporal window lengths greater than 8 samples there was very little 

variation in the results with the spatial window length. This was as expected given the results 

from the single crystal ultrasound system. 

Table 4.4 shows the mean velocities and variances for the 10 mm displacement line over a range 

of SNRs for fixed temporal and spatial window lengths of 64 and 2 samples respectively. 

4.5 Conclusions 

A phantom and simulations for the assessment of tissue Doppler imaging accuracy have been 

described and results from these have been used to demonstrate that the accuracy of conven-

tional cross-correlation based velocity estimations is around 10 % - 20 %. Two newer, model 

based velocity estimators, the cross-correlation model (CCM) and complex cross-correlation 

model (OM), and results have been given comparing these to conventional cross-correlation 

of two signals. It was demonstrated that the CCM estimator gave results which were similar 

to those obtained using conventional cross-correlation, but the OM estimator was able to give 

75 



Doppler Tissue Imaging 

C3M - Temporal Window 4 

Spatial Window 2 	 Spatial Window 4 
2000 
	

100 

1500 
	

Hoo  80 

nisIøI' 

  

0 

60 
a) 

40 

20 
IL 

 

   

0 50 
SNR 1dB] 

Spatial Window 8 

It,i,J 
0'- 
0 50 

SNR 1dB] 
Spatial Window 12 

	

100 
	

100 

	

80 
	

80 
0 
	

0 

LLj 
	

ED 60 
a) 
	

a) 

	

40 
	

'4° 

	

20 
	

20 

0'- 
0 50 

SNR [dB] 
Spatial Window 16 

100 
0 ' 
0 	 50 

SNR [dB] 
100 

100 

80 Velocity [mmlsec] 

- 63 
- 50.4 
- 37.8 

25.2 
- 12.6 

'-I 

0 	 50 	 100 
SNR [dB] 

Figure 4.33: Noise performance of C3M estimator with 4 temporal samples. 
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Figure 4.34: Noise performance of C3M estimator with 8 temporal samples. 
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Figure 4.35: Noise performance of C3M estimator with 16 temporal samples. 
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Figure 4.36: Noise performance of C3M estimator with 32 temporal samples. 
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Doppler Tissue Imaging 

nearly an order of magnitude improvement in the accuracy. 

In terms of noise, all three of the techniques had a very definite threshold SNR below which 

their performance decreased significantly. Overall, the C3M estimator was shown to be the 

least sensitive to noise, but in all cases it was observed that if the SNR was greater than 40 dB 

then the estimator would give maximum performance. 

Doppler tissue imaging is usu'ally, used to give two dimensional images showing the variation in 

velocity over entire regions of the heart. When using this technique, it is very important to have 

a sufficiently high frame rate, otherwise the motion of rapidly moving structures such as the 

valves and some of the more subtle motions of the myocardium will be missed. This imposes 

severe limitations on the time available to make the velocity estimation. If a frame rate of 25 

frames per second is assumed (a reasonable minimum) and there are, say, 64 lines in the region 

of interest, then there could only be a maximum of 0.625 ms for each line. If two lines are to 

be captured for each of the 64 velocity lines, then this equates to a minimum pulse repetition 

frequency of around 1.57 kHz. The problem with this is that the minimum velocity which may 

be measured is related to the pulse repetition frequency by equation (4.25). 

IT - Cfprf 
Vmjfl - 

U 3  
(4.25) 

Therefore, if fprf = 1.57 X 103  Hz and assuming c = 1480 m/s and f8 = 50 x 106  Hz 

then this implies a minimum velocity of 23.25 mnils, which is clearly too large for most DTI 

applications. It is, therefore, desirable to have as low a PRF as possible. Of course, this can 

be achieved by reducing the number of velocity lines, however it would not be possible to 

reduce this number sufficiently to enable more lines to be captured per velocity line while still 

maintaining a useful image. In practice, the minimum measurable velocity would be less than 

this because some form of interpolation of the cross-correlation function would be used, but the 

results for the cross-correlation estimator (which did use interpolation) clearly show that the 

accuracy decreases for the lower velocities. 

It has been shown that the C3M estimator is able to offer significant performance benefits 

in terms of accuracy compared to the conventional cross-correlation approach. The results 

also demonstrate that it would be possible to achieve a significantly higher spatial resolution 

using this method, since it requires only 2 spatial domain samples to operate. However, this 

improvement in accuracy and spatial resolution comes at the cost of requiring more temporal 
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lines per velocity line. To get the best performance, it was necessary to use at least 32 temporal 

lines, though increasing this to 64 gave a further improvement. 

Initially, Doppler tissue imaging was intended for use as a qualitative tool to enable the variation 

in velocity over regions of the heart to be observed. When used in this manner the required 

accuracy of the velocity estimations is fairly low since the operator is unlikely to be able to 

detect subtle variations in the velocity. 

The current trend is towards quantification of the velocities to enable more accurate diagnosis 

to be made and to make it easier to interpret the results. It seems that most of the research into 

quantification of DTI is focused on the use of velocity gradients from which it is possible to 

derive variables such as the strain or the strain rate. Much research has been published describ-

ing evidence of the clinical usefulness of this technique, however the velocity measurements 

required to calculate the velocity gradients come from DTI and very little attention to the ac-

curacy of these initial estimations appears to have been made. Kowalski et al. [52] studied 

the potential value of such 'deformation' measurements and clearly demonstrated the potential 

clinical relevance. However, their study also showed that the reproducibility of the results ob-

tained using the technique was relatively poor. This was caused in part by the fact that they 

were scanning a wide image sector and hence had a relatively low frame rate, but also by the 

lower SNR obtained when the difference between the two velocities used to form the velocity 

gradient was small compared to the accuracy of the initial estimations. 

Given the evidence of clinical relevance of the results obtained using strain and strain rate imag-

ing, the technique is likely to gain rapid acceptance within the medical environment, but for this 

to occur the problem of reproducibility needs to be resolved. The problem is largely down to 

the accuracy of the underlying DTI velocity measurements, so an improvement in this will have 

a corresponding impact on the use of strain and strain rate imaging. The results presented in this 

chapter were felt to indicate that the accuracy which can be obtained at present is limited by the 

need to produce 21) images. It has been shown that the complex cross-correlation model based 

velocity estimator is able to offer not only an order of magnitude improvement in accuracy, but 

also a similar degree of improvement in spatial resolution. However, this comes at the cost of 

capturing many more lines per velocity line which would make it impractical to use for forming 

2D images. 

Originally all ultrasound scans were of the M-Mode form, where a single spatial line is plotted 
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over time, which allows any time variation occurring within that line to be clearly observed. 

Two dimensional images are obviously more appealing than this approach because they make it.. 

much easier to understand the spatial geometry of the area being investigated. It is argued that in 

order to gain suitably accurate and, most importantly reproducible, quantitative measurements 

of the velocity it is necessary to abandon the idea of producing 2D images and return to the 

use of colour coded M-Mode scans. These would allow for the use of anything up to 64 lines 

per velocity line, which would enable the use of the more accurate techniques described. This 

would lead to a corresponding improvement in the accuracy and reproducibility of any further 

measurements, such as strain and strain rate. 
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Chapter 5 
The Fractional Fourier Transform and 

Coded Excitation 

5.1 Introduction 

The problem of velocity estimation is intimately related to the problem of measuring position, 

since velocity is simply the rate of change of position. The accuracy with which positions can 

be estimated can be improved by using signals which consist of shorter pulses and hence have 

wider bandwidths. However, making the transmitted signal shorter will decrease the average 

energy, unless the transmit power is increased correspondingly. This reduction in energy leads 

to a decrease in the available imaging depth that could be obtained. It would be possible to 

counter this by simply increasing the peak power of the signal, however this has serious safety 

implications, as described by Barnett et al. [53] who detail the possibilities of tissue lesions 

occurring due to thermal or cavitation effects and also talk about possible genetic implications. 

Barnett, Ter Haar et al also published a paper detailing the current status of research into the 

biophysical effects of ultrasound [54] and a further paper outlining various guidelines for the 

safe use of diagnostic ultrasound [55]. According to [55] the current WFUMB recommenda-

tions for the safe use of Doppler ultrasound state that provided tissue / gas interfaces or contrast 

agents are not present then there would be no reason to withhold the use of Doppler equipment. 

However, in situations where these conditions might be present, ultrasound exposure levels 

and duration should be reduced to the minimum necessary to obtain the required diagnostic 

information. It would therefore be better if ultrasound systems were able to offer the very best 

imaging so that the time required to obtain the relevant diagnostic information is minimised 

and that they achieve this using the lowest possible energy signals. 

There are two principle measures which are generally used in discussions related to the safety of 

medical ultrasound equipment; the Mechanical Index (MI) and the Thermal Index (TI). The first 

of these is defined as peak rarefactional pressure of an ultrasound longitudinal wave propagating 

in a uniform medium, divided by the square root of the centre frequency of the transmitted 

ultrasound pulse. The thermal index (TI) is defined as the ratio of the power being emitted to 
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Single Transmit Multiple Transmit 
Phase Coding Barker, M-sequence Qolay 

Frequency Coding Chirp 

Table 5.1: Different coding techniques used in medical ultrasound [2] 

the power required to raise the temperature one degree Celsius in a uniform medium assumed 

to have an attenuation of 0.3 dB/cm/MHz. 

The imaging resolution can be enhanced through the use of higher frequency signals which 

result in an increase in both the axial and lateral resolutions and hence the accuracy with which 

positions can be estimated. However, once again, this is limited because attenuation in media 

such as water and muscle tissue increases with frequency and so the maximum imaging depth 

which can be achieved is decreased. A possible solution to both of these problems is to use 

coded excitation, which as described in the remainder of this chapter, allows the link between 

axial resolution and signal length to be broken. This makes it possible to use longer signals, 

which naturally have a higher average energy content and therefore are able to offer improve-

ments in the available imaging depth. Given the definitions of the MT and TI above, it is clear 

that the use of longer pulses will have benefits in terms of the MI, since the peak rarefactional 

pressures will be lower. 

5.2 	Coded Excitation in Ultrasound 

The technique of coded excitation has been used in SONAR and RADAR applications for some 

time, where it has been shown to offer significant improvements in the available signal-to-noise 

ratio at modest peak power levels compared to conventional pulsed techniques [56]. However, 

the bandwidth of the transducers used in medical ultrasound systems is relatively low compared 

to that found in RADAR or SONAR applications. This has the effect of smoothing out any high 

frequencies caused by rapid changes in the code and places limits on the degree of improvement 

which could be obtained. 

A number of different pulse coding techniques have been tried for medical ultrasound systems, 

the results of which are summarised by Chiao et al. [2]. They categorised the codes according to 

whether they used single or multiple transmits and whether they used phase coding or frequency 

coding. Table 5.1 shows the codes which they considered [2]. 
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Figure 5.1: Illustration of uncoded (top) and Barker coded (bottom) signals and processing 

with appropriate matched filters. 

The single transmit codes only require the transmission of one code sequence to achieve the 

desired pulse compression, whereas the multiple transmit codes require the transmission of two 

or more sequences. For the phase based techniques the code symbols (known as chips) are 

generally drawn from the discrete set cbm  = 27rm/M, rn = 1, 2, ..., M, such that the signal 

would be given by; s(t) = exp(jq mt), where M is the order of the code. In frequency coding, 

the carrier frequency of the signal is modulated to form the code. The most common phase 

codes are the bi-phase Barker and Golay codes with code symbols ± 1, while the most common 

frequency code is the linear swept-frequency chirp. Generally, a matched filter will be used 

in the receive stage to optimise the signal-to-noise ratio by compressing the code into a short 

time interval. The matched filter will achieve the optimum results regardless of the form of 

the transmitted signal, so the coding serves only to decrease the level of the range side-lobes 

which affect the contrast resolution of the resultant ultrasound image. An example of a 4-chip 

uncoded signal and a Barker coded signal is shown in Figure 5.1. 

This clearly illustrates how the use of the Barker code and an appropriately designed matched 

filter would result in significantly reduced range-lobes. 

It is possible to remove the range side-lobes by using a multiple transmit code, such as the 

Golay code. These are designed so that the range lobes resulting from each transmit will cancel 

out, leaving only the desired main lobe. This is illustrated in Figure 5.2. 

The, disadvantage of this technique is that it requires two transmissions for each image line 

which will reduce the maximum frame rate achievable and that this approach only works per-

fectly for stationary scatterers. Any motion of the scattering / reflecting objects will introduce 

an error in the decoding, the severity of which will depend on the magnitude of the velocity. 
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Figure 5.2: Illustration of Golay code. 

Chirp coding differs from the previous two techniques in that it is based on modulating the 

frequency of the transmitted signal. Generally, this modulation will take the form of a linear 

ramp, giving a signal which could be expressed as: 

s(t) = wo(t) exp [2j7r(02  + bt)] 
	

(5.1) 

Where w0  (t) is the window function, a is the rate of change of frequency and b is the centre 

frequency. The matched filter output for this signal would be: 

f-T/2 

T/2 

Y (t) = 	s(t - T)S*(T)dT 	 (5.2) 

Which becomes: 

y(i) = exp [2j(at2  + bt)] fwo(t - 7-)w* (-r) exp [-2jatr] dT 	(5.3) 

Which is essentially the Fourier transform of the autocorrelation function of the window func-

tion, which leads to the conclusion that the choice of window function is critical for the control 

of the range side-lobes and the main lobe width. Given the importance of the window function, 

it is not surprising that literally hundreds of different window designs have been described in 

the literature, see for example Harris [57],  Nuttal [58] and Geckinili and Yavuz [59]. 

According to Chiao et al. [2], using a square window (wo (t) = 1) results in the smallest -3 

dB mainlobe width, but the range side lobes are then only 13 dB below the mainlobe. They 

also quote the other extreme when the window function takes the form of a Gaussian or cosine 

square window in which case the range side lobes are 100 dB below the mainlobe, although 

the mainlobe width is significantly increased. Takeuchi et al. [60] state that the range side-lobe 
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amplitude should be at least 60 dB below the mainlobe to produce clinically acceptable images. 

It is therefore evident that the choice of window function is extremely important in the area of 

medical ultrasound imaging. 

There have been a number of publications describing the use of coded excitation in the context 

of medical ultrasound systems. M. O'Donnell [56] describes a system based on the transmis-

sion of 'pseudo-chirp' codes and presents theoretical and practical results which shows that 

using such a form of coded excitation is able to offer a 15 - 20 dB improvement in signal-to-

noise ratio along with a corresponding improvement in imaging depth of 40 - 50 mm. Rao 

et al. [61] state that the fact that ultrasonic attenuation in soft tissue increases with frequency 

places an upper limit of the frequency which can be used of about 7 MHz, with corresponding 

limits on the imaging resolution obtainable. Although this would depend very much on the 

application, for example, intra-vascular transducers operate at 20 MHz, but they only require 

a very short range. Rao et al. [61] go on to describe a system which allows the use of linear 

swept frequency modulated pulses with a 6 dB bandwidth of 1 MHz and demonstrate that this 

is able to improve the SNR by a factor of 20 and offered similar resolution to a conventional 

short-pulse system despite have a pulse length of 201.s. Y. Takeuchi [60] describe a two term 

apodization function which is able to offer time / range side-lobes which are more than 100 dB 

down from the mainlobe when used with a 100 wavelength duration, linear chirp. They com-

pare this to conventional cosine-square apodization which can reduce the side-lobes to be about 

60 dB down from the mainlobe. Misaridis et al. [62] review the potential of coded excitation in 

medical ultrasound imaging and describe a coded excitation system based on a modified com-

mercial scanner. They also described the use of pre-distorted linear FM chirp signals, where the 

distortion introduced was designed to reduce the effects of time I range side lobes, in a similar 

manner to the work described in [60].  They also demonstrated that this system was able to 

offer improvements in the imaging depth while preserving both axial resolution and contrast. 

Two years later, Pedersen et al. [63] published the results of a clinical comparison between 

conventional pulse excitation and chirped excitation. This study was based on a modified clini-

cal scanner which allowed rapid toggling between chirp and pulse excitation to simultaneously 

produce identical image sequences with both techniques. Nine healthy, male volunteers were 

scanned and the results were analysed by three skilled medical doctors who were blinded to 

which technique was being used. They were asked to assess the depth at which the image 

quality decreased and the depth at which the image would be insufficient for clinical diagnosis. 

The results showed that an average increase in imaging depth of nearly 20 mm was obtained 
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through the use of the coded excitation technique and side-by-side comparison shows that the 

coded image quality was consistently rated better. The authors concluded from this that the use 

of coded excitation with linear FM chirps was able to improve the imaging depth and the image 

quality in a clinical environment. The technique of coded excitation has recently been adopted 

by a number of clinical ultrasound manufacturers, see for example G.E. Medical Systems [64] 

(G.E. Health Care, Chalfont St. Giles, UK). 

It is therefore apparent that the technique of coded excitation and in particular, linear FM chirp 

coding, has the potential to offer many benefits to the field of medical ultrasound imaging. 

However, one of the complications is the need to design an appropriate apodization window to 

limit the formation of range / time side-lobes which occur as a result of using a matched filter 

processing technique. The fractional Fourier transform offers an alternative way of processing 

linear FM chirp signals which has the potential to offer similar levels of pulse compression to 

the matched filtering technique, but can operate without a-priori knowledge of the transmitted 

signal and, as is shown below, is able to produce results which demonstrate significantly lower 

range / time side-lobes than the matched filtering technique even when a square apodization 

window was used. The fractional Fourier transform is introduced in more detail in the next 

section. 

5.3 The Fractional Fourier Transform 

The fractional Fourier transform represents a generalisation of the conventional Fourier trans-

form with an additional order parameter, a. The ath order fractional Fourier transform is math-

ematically equivalent to the ath power of the conventional Fourier transform operator F. For 

integer values of a, the concept of 	is readily understood; .F°  = I is simply the identity 

operator, while J 1  is the conventional Fourier transform. It can be seen that any integer power 

of the Fourier transform can be obtained by repeating the transform, i.e. J 1 	= J 2• Ap- 

plying this to a signal, .T2x(t) would result in the time reversed signal, while .T3x(t) gives the 

reversed Fourier transform and .T4x(t) gives the original signal. 

The conventional Fourier transform is a form of the standard integral transform defined by: 

X(f) = f B (f , t) x (t) dt 	 (5.4) 
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In equation 5.4, B(f, t) is the kernel of the transform which in the specific case of the conven-

tional Fourier transform is defined as: 

B(f, t) = exp (—j21rft) 	 (5.5) 

For the fractional Fourier transform, the kernel B (f, t) becomes [65]: 

B, (t, t) = Ap exp [in (t2  cot q - 2tt csc q  + t2  cot 	 (5.6) 

Where, 

Açi, = \/1 —jcot 	 (5.7) 

And, 
air 

2 
(5.8) 

The equivalence of this with the conventional Fourier transform kernel may be seen by setting 

a = 1, in which case cot 0 = 0 and csc 0 = 1 which leaves B(ta, t) = Ak  exp [—j27rtt]. 

The change in variables from f to t is requited because we are no longer dealing with fre-

quency. At a transform order of a = 1, then the fractional Fourier transform is equivalent to 

the conventional Fourier transform and it is only in this case that it would be valid to refer to 

'frequency'. The true meaning of the ta  variable is best illustrated through an alternative inter-

pretation of the fractional Fourier transform, which is related to the concept of time-frequency 

analysis. 

The conventional Fourier transform can be used to analyse the frequencies which are present 

in a particular signal, but it will give no information about when those frequency components 

occurred. Time-frequency analysis techniques allow the frequency content to be analysed at 

any given time within the signal, there-by allowing the frequency content to be analysed over 

time. This can be likened to a musical score, where the notes described the frequency to be 

played at each given time instant. Further explanation of time-frequency analysis is beyond the 

scope of this work, but the reader is pointed to Loen Cohen's book [66] which provides a very 

thorough introduction to the subject. 

As described in [66], there are numerous different time-frequency analysis techniques, such as 

the short-time Fourier transform and wavelets, but one which is of particular relevance is the 
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Wigner distribution, which can be defined as: 

W(f, t) 
= f f (t - (T/2)) 1* (t + (r/2)) exp [j27rf] dr 	 (5.9) 

Now consider a linear FM chirp signal, defined by: 

x(t) = exp [j27r(at2  ± bt + c)] 	 (5.10) 

where a determines the rate of change of frequency and b controls the centre frequency. The 

frequency of a signal may be defined as the rate of change of phase, which for the signal 

expressed by equation (5.10) results in: 

0'(t) = 2at + b 
	

(5.11) 

Equation.  (5.10) was used in Matlab to create a model chirp signal with a = —1 x 1012,b = 

1 x 106  and c = 0. The resulting time and frequency domains for this signal may be seen in 

Figure 5.3. In this case, the signal was also windowed using a Harming window to reduce the 

effects of ringing. Note that only the real part of the signal was considered. 

However, much more information about the spread of energy over frequency and time can 

be obtained through the use of the Wigner distribution, as shown in Figure 5.4, which was 

calculated using the full analytic signal resulting from equation (5.10). This clearly shows how 

the energy of the signal is distributed, not only in frequency, but also in time. As would be 

expected for a linear FM chirp signal, the frequency increases over the duration of the chirp 

and the centre frequency is at around 3 MHz, which, agrees with the frequency domain signal 

shown in Figure 5.3. 

Projecting the Wigner distribution of a signal onto the time axis gives the time-domain envelope 

of the signal, while projecting onto the frequency axis gives the frequency domain envelope, 

or the PSD. This idea can be extended through the use of the Radon transform [66], which 

allows a two-dimensional function to be projected onto an arbitrary axis. In this case, it would 

be possible to project the Wigner distribution of a signal onto an axis making an angle, 0 to 

the time axis. Simple observation of the situation illustrated in Figure 5.4 reveals that at a 

certain angle, Oopt,this projection will be maximally compressed. This is the basis for an 

alternative interpretation of the fractional Fourier transform, as a Radon transform of the Wigner 
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Time Domain 
4 

Figure 5.3: Illustration of synthetic chirp signal in time and frequency domains. The frequency 
domain plot was obtained using the Fast Fourier Transform (FFT) algorithm with 
the real part of the signal defined by equation 5.10. 

distribution. The angle, 0 corresponds to the fractional transform order, therefore there will be 

an optimum transform order at which maximum pulse compression will be achieved. 

It should be noted from the above interpretation that, unlike the conventional Fourier transform, 

the fractional Fourier transform will not be shift invariant. Inspection of the geometry of the 

rotated Wigner distribution reveals that if the chirp signal is shifted in time, then the position 

of its projection onto the transform axis will also be shifted. The reason the fractional Fourier 

transform is not shift invariant can be seen by inspecting the transform kernel as expressed in 

equation 5.6. In the case of the conventional Fourier transform, the kernel takes the form of 

a series of sines and cosines, but it is clear from equation 5.6 that in the fractional case the 

kernel will be of the form of a series of chirps. Firstly, the —2tt csc 0 term causes the center 

frequency of each of these chirps to be dependent on t, whilst the t2  cot q term defines a 

similar relationship for the phase. It is therefore clear that the value of tc,  which results in the 
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Figure 5.4: Wigner-Ville distribution of synthetic chirp signal showing distribution of signal 
energy over time and frequency. 

peak response for a particular chirp will depend on the position of that chirp with respect to the 

chirp defined by the transform kernel. It is also clear that it would be possible to implement the 

fractional Fourier transform as a bank of matched filters, each with different center frequencies 

and phases. 

5.3.1 Optimum Transform Order Determination 

As has been illustrated above, the optimum transform order is defined as the transform order 

which is equivalent to the angle of the projection axis which would result in the greatest degree 

of pulse compression. In other words, it is the transform order that minimises the width of the 

projection of the signal. It is also possible to define the optimum transform order in terms of the 

second order central fractional Fourier transform moments, as demonstrated by Stankovié et al. 

[67], who use the work published by Alieva et al. [681 on fractional Fourier transform moments 

to extend the well known concept of estimating signal width in either time or frequency domains 

using second order moments. 
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The optimum transform order is, therefore, related to the properties of the signal, such as the 

chirp rate or bandwidth, the sampling frequency and the number of samples in the signal. Capus 

et al. [69] provide a geometrical derivation of the optimum transform order as: 

( fi/Nsig'\ 
Opt tan-1 2a ) 

	
(5.12) 

Where f8 is the sampling frequency, Nsig  is the length of the signal in samples, a is the chirp 

rate parameter used in equation (5.10) and 0 is the transform order as defined in equation (5.6). 

This method allows the optimum transform order to be determined if the parameters of the 

transmitted chirp are already known, but more interestingly, it also allows the chirp rate to be 

determined if the optimum transform order could be obtained by some other method. 

It has been shown that at the optimum .transform order, the projection of the support of the sig-

nal will be maximally compressed. This means that the transform domain signal formed at the 

optimum transform order will contain the highest peak energy, therefore it will be possible to 

determine this transform order by maximising the peak energy. It is possible to achieve this by 

evaluating the fractional Fourier transform of a signal over a range of transform orders yield-

ing a two dimensional data set, from which the regions of local maxima may be determined. 

Evaluating the fractional Fourier transform for the synthetic chirp signal described above over 

transform orders between q = 0 and 	it gave the results shown in Figure 5.5. 

Inspection of the resulting data reveals that the top and bottom lines, corresponding to a = 0 

and a = 2, are equivalent to the time-domain and reversed time-domain signals respectively. 

The centre line, corresponding to a = 1 is equivalent to the conventional Fourier transform of 

the signal and therefore the width of the signal in this transform domain is determined by the 

bandwidth of the time-domain signal. 

It is also apparent that there is one clear region of global maximum, which occurs at a 0.5. 

Zooming in on only this region of the data gives the results shown in Figure 5.6. This would 

appear to indicate the optimum transform order, a0t = 0.55. Substituting a = 1 x 1012, 

Nsig = 1024 and f5 = 50 x 106  into equation (5.12) gives qopt = 0.8845, which from 

equation (5.6) gives a,,pt  = 0.5631, which is in agreement with Figure 5.6. 

An automated system for determining the optimum transform order from a signal was devel-

oped based on searching the transform domains, as shown in Figure 5.5, for regions of local 

maxima. This was achieved using a two-dimensional gradient method and searching for areas 
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Figure 5.5: Evaluation of the fractional Fourier transform of the synthetic chirp signal over a 
range of tranform orders between 0 = 0 and 0 = 7r. 
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Figure 5.6: Zoomed section of Figure 5.5, showing region of global maximum corresponding 
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where the first derivative was close to zero and the second derivative was negative. Since it was 

not possible to search for points whose first derivative was exactly zero because of the discrete 

nature of the transform domains, this method would return a number of points around the true 

local maxima. It was therefore necessary to use some form of thresholding to select only the 

most significant of these points. This was achieved by considering only those points whose 

amplitude was greater than the global maximum minus the mean, plus one standard deviation 

of the whole data set. The use of this value saved the need to manually specify a threshold 

and was found to give good results in all the cases considered. Once thresholded, the mean 

ordinate on the a axis of the remaining points was used as the optimum transform order. Ap-

plying this method to the fractional Fourier domains shown in Figure 5.5 gave 0,,pt = 0.8674 

or a0 t = 0.5522. 

5.3.2 Discrete Implementations 

The definition of the discrete Fourier transform (DFT) is well known and understood, how-

ever there is currently no such formal definition of a discrete implementation of the fractional 

Fourier transform. The reasons for this are laid out in Ozaktas' book [65], however one of the 

most fundamental is that there is also no formal definition of the discrete Wigner distribution 

owing to the difficulty in defining exactly what one sample would represent. There are also 

difficulties in defining rotations of discrete lattices, such as an approximation of the discrete 

Wigner distribution. However, there are a number of approximations of the discrete fractional 

Fourier transform, two of which have been used for the work described. 

Firstly, the method developed by Ozaktas et at. [70] was used because of its relatively low com-

putational complexity. With this method, the transform of a signal with a time-bandwidth prod-

uct of NTB could be computed in 0 (NTB log NTB) time [70]. This technique was used when a 

large number of transforms were to be performed, for example, when determining the optimum 

transform order by searching through the transform domain as described above. This technique 

will correctly transform the samples of an input signal, x(t) into the samples of the fractional 

Fourier transform, X (ta) under the assumption that the representations X (ta) of the signal 

x in all fractional Fourier domains are approximately confined to the irterval [—t/2, t/2]. 

This corresponds to assuming that the Wigner distribution of x(t) is approximately confined to 

a circle of diameter At. In practice, this condition can be met for any signal by choosing At to 

be sufficiently large [65]. 
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The second method was developed by Candan et al. [71]. This technique works by developing 

a transform matrix, which may then be used to transform a signal in the same manner as for the 

discrete Fourier transform matrix. This method differs from that described in [70] and others in 

that it was developed so that its definition would have the following properties: 

Unitarity 

Index additivity 

Reduction to the DFT when the order is equal to unity 

Approximation of the continuous fractional Fourier transform 

Although both of these techniques are approximations of the same thing, it must be noted that 

they produce slightly different results. It was found that the method described by Ozaktas et al 

[70] was more suitable for determining the optimum transform order by searching for peaks in 

the transform domain because it gave more distinct peaks as well as being less computationally 

complex. It was not, however, possible to use this method in situations where a signal had to 

be recovered from the transform domain, perhaps after.some processing, so in these cases, the 

method described by Candan et al. [71] was used. 

5.3.3 Signal Recovery 

One of the key advantages of the fractional Fourier transform is its ability to separate signals 

which overlap in time and / or frequency. Consider the Wigner distribution of two such signals, 

as shown in Figure 5.7. The two chirp signals were centred in time at 512 samples and 564 

samples respectively, as can be observed from Figure 5.7. However, this also illustrates one of 

the significant problems with the Wigner distribution, which is the generation of the cross-terms 

which may be seen between the two chirp signals. These are a result of the way the Wigner 

distribution is calculated and as they are essentially of an oscillatory nature, they can usually be 

countered by smoothing the distribution, although this will result in a loss of information. 

The fractional Fourier transform has been described above in terms of projections of the Wigner 

distribution onto an arbitrary axis using the Radon transform. Inspection of Figure 5.7 clearly 

shows that the two chirps overlap in time and in frequency and cannot therefore be separated. 

However, if this Wigner distribution were to be projected onto an axis whose angle was per-

pendicular to the chirps, then it may be seen that a degree of separation would be achieved. 
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Figure 5.8: Fractional Fourier domains of the two chirp signal, over the whole range of trans-
form orders on the left and zoomed in around the region of interest on the right. 
Clearly shows separation of the two chirps at opt  0.19. 

Therefore, the fractional Fourier transform should be able to separate the two chirps at the op-

timum transform order. Evaluating the fractional Fourier transform for this signal over a range 

of transform orders gave the results shown in Figure 5.8. Given that the chirps were generated 

using the same parameters as for the single chirp case described above, it would be expected 

that the optimum transform order would be the same. This was observed to be the case, with 

the two chirps being well separated when a 0.55. 

Putting a = —lx 1012,  N = 4096 and f, = 50 x 106  into equation (5.12) gave 0,,pt = 0.3052, 

or a,,pt  = 0.1943. Using the automated optimum transform order determining algorithm de-

scribed above gave 0,,pt = 0.2657, which was deemed to be sufficiently accurate. The accuracy 

could be improved by limiting the range of transform orders which are used during the search 

for local maxima, however this value was obtained by searching over the entire range. Trans-

forming the signal with a transform order of a = 0.1943 gave the results shown in Figure 5.9. 

These results clearly illustrate the difference between the two implementations of the fractional 
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Figure 5.9: Transform domain signal with a 0.1943, evaluated with both the Ozaktas et al. 
method and the Kutay et al. method. 
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Original Position Candan et al. Ozaktas et al. 
512 
564 

525 
577 

614 
664 

Table 5.2: Positions of recovered chirps. All in units of samples. 

Fourier transform. Although both of the transformed signals are of similar shape, the peaks 

occur at different absolute positions in the transform domain although in each case, they are 

approximately equally separated. The different position has consequences for the recovery of 

signals. In theory, it is possible to use a simple windowing function to isolate a portion of the 

transform domain signal and then invert the transform to recover the desired signal component. 

This is exactly equivalent to conventional Fourier domain filtering, except that the fractional 

Fourier transform is not time invariant. Therefore, although conventional Fourier filtering will 

yield the desired frequency components over the whole signal, such filtering in the appropriate 

fractional Fourier domain will preserve the time information and hence return the desired signal 

component at the time at which it occurred. 

In the case considered here, there are two chirp signals which overlap in both time and fre-

quency domains, however they can be shown to be completely separate in the transform domain 

corresponding to the optimum transform order. A Hanning window was used to isolate each 

peak in the transform domain and the result was subjected to the inverse transform. In the case 

of the Ozaktas et al. method, this was achieved using a transform order c = —0.1943, whereas 

for the Kutay et al. method the transform matrix was inverted using the internal Matlab function 

for inverting matrices. This gave the results shown in Figure 5.10. The time at which the chirps 

occurred could be recovered by finding the maximum of the envelope for each one. Table 5.2 

shows the positions determined from each of the recovered signals for each method compared 

with the positions of the original chirps. 

5.3.4 Direct Recovery of Time Information 

It has been shown that it is possible to isolate and extract individual chirps from a signal by win-

dowing around the corresponding feature in the transform domain and inverting the transform 

[72]. However, once done, the envelope of the result still does not have the level of improve-

ment in axial resolution which could be achieved through the use of matched filters. At the 

appropriate transform order, the fractional Fourier transform of a signal will be similar to the 

results obtained using a matched filter in terms of pulse compression. 
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Figure 5.10: Envelopes of recovered chirp signals, showing difference between Ozaktas et al. 

and Kutay et al. methods. 
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Figure 5.11: Geometry of the time recovery problem 

The fractional Fourier transform is not time invariant in contrast to the conventional Fourier 

transform, which means that the transformed signal still contains time information. Using the 

definition of the fractional Fourier transform as a Radon transform of the Wigner distribution, 

one may arrive at the geometry shown in Figure 5.11. In this Figure, if the circle corresponding 

to the Wigner distribution of a hypothetical signal were to be moved in time, but not in fre-

quency, then the position of its projection onto the u axis would vary accordingly. Similarly, 

if time were kept constant but the frequency were varied, then its projection would also move. 

It may therefore be concluded that the position at which a signal projection occurs is related 

to both the frequency, or the centre frequency for a chirped signal, and the time at which the 

signal occurred. Therefore, if one of these two variables were known, it should be possible to 

extract the other. 

Inspection of the geometry shown in Figure 5.11 results in the following expression for the 

time: 	
- A (sin a + cos atan (a + n/2)) 	

(5.13) f 
tan (a + /2) 

Where, A is the position of the peak in the transform domain, N is the number of samples, 

f is the centre frequency of the transmitted chirp, f8 is the sampling frequency and a the 

transform order which was used. The geometric relationship between the position of a feature 

in the fractional Fourier domain and the time at which the chirp that caused that feature existed, 
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Original Position Candan et al. Ozaktas et al. 
512 
564 

-433.9244 
-476.0211 

-518.9769 
-561.0736 

Table 5.3: Time-domain positions of chirp signals recovered directly from the fractional 
Fourier domain, without inverting the transform. 

as expressed by equation (5.13), may be used to determine relative distances between features. 

The key advantage of this method is that it is not necessary to invert the transform. This also 

means that the chirp detection resolution gained through the use of the optimum transform 

order, isn't lost by transforming the chirp back into the time domain. 

Applying this technique to the two chirp problem described above gave the positions shown in 

Table 5.3. It is not possible to recover the absolute time information with this method, however 

it can be used to gain relative information about the distance between features in the signal. In 

the case of the two overlapping chirps considered here, using the direct time-domain position 

recovery technique on the results of either of the discrete implementations gave a distance 

between the two chirps of 42.0967 samples. The actual distance was 52 samples, so there 

is an error of 10 samples. To put this into context, assuming an acoustic wave propagation 

velocity of 1480 m/s and a sampling frequency of 50 MHz, this would equate to a distance 

of 0.1480 mm. Bear in mind that the minimum distance between two features to enable them 

to be completely separated with conventional, un-coded signals is given by the product of the 

propagation velocity and the period of the wave. Therefore, assuming a centre frequency of 3.5 

MHz and a pulse length of one cycle, the minimum separation would be 0.4229 mm. It was 

therefore concluded that the error in the estimation of the distance between the two chirps was 

small. 

An alternative approach is to recognise that equation (5.13) is simply a linear transform and can 

therefore be used to directly scale the axis of the transform domain to fit the time-domain. This 

can be done by setting Al  = 1 and AN = N (in this case N = 4096), then the scaling factor 

would be given by: 
N 

s= I  t(AN) - t(Ai)I 
(5.14) 

Using this to scale the transform domain axis of the two chirp signal results in Figure 5.12, 

where the results of applying a matched filter have been overlaid for comparison. These results 

demonstrate that it is possible to directly relate features in the fractional Fourier domain with 

features in the time-domain. They also show that the fractional Fourier transform is able to 
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Figure 5.12: Comparison of scaled transform domain signal with the results of applying a 

matched filter. Illustrates possibility of directly relating the transform domain 
signals to the time-domain. 
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Figure 5.13: Schematic of modified single crystal ultrasound system for the generation of ap 
proximately linear FM chirp signals. 

produce results which are very similar to those obtained using a matched filter in terms of 

resolution and position. It was also observed that the fractional Fourier method appeared to 

give a greater degree of separation between the two chirps. The matched filter results clearly 

show the presence of corruption due to side-lobes, which would be expected since the chirp 

generating system used did not allow for anything other than rectangular windowing of the 

transmit pulses. However, the results obtained with the fractional Fourier method are clearly 

less affected by the side-lobe problem. It was therefore concluded that the fractional Fourier 

method described above was less sensitive to the shape of the transmitted pulse. 

5.4 Modified Single Crystal System 

The single crystal ultrasound system described earlier was modified to allow the generation 

of approximately linear frequency modulated signals. This was achieved using a secondary 

function generator providing a signal to the frequency-modulation input of the original function 

generator. The secondary function generator was setup to produce a saw-tooth wave with a 

periodic time of twice the required pulse length. In this manner, the required chirp signal could 

be generated only for the rising portion of the modulating signal, thus creating an 'up-chirp'. 

This is illustrated in Figure 5.13. The divider was based around a 74LS 161 counter device and 

was designed to produce one trigger pulse at the output after every set of 16 trigger pulses at 

the input. This would give a pulse repetition frequency of 1/16th the trigger frequency from 

the secondary function generator. The trigger output of the secondary function generator went 

'high' for the duration of the rising portion of the saw-tooth wave and could therefore be used 
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to gate the output of the primary function generator. In this way, it was possible to only produce 

output signals corresponding to the rising portion of the modulating signal, thus creating up-

chirps. However, it was found that the output of the primary function generator did not go 

completely to zero when the gate input was 'low'. The error was very small, but after passing 

through the RF power amplifier it became significant. It was therefore necessary to use an 

analogue switch circuit between the output of the primary function generator and the input to 

the RF power amplifier to ensure that there were no corrupting signals. With this system, it 

was possible to control the length of the transmitted signals by varying the frequency of the 

modulating saw-tooth wave. For the experiments described here, a frequency of 140.6 kHz was 

used, which gave a pulse length of 14 cycles. The chirp rate, or bandwidth could be controlled 

by varying the amplitude of the modulating signal. It was not possible to specify the exact 

bandwidth, so all of the experiments were performed using three 'standard' settings, referred 

to as 'low', 'medium' and 'high' chirp rate respectively. These corresponded to the first three 

graduation markers on the amplitude control knob of the secondary function generator. 

Figures 5.14 and 5.15 show the transmitted signals and their corresponding Wigner-Ville time-

frequency distributions respectively. This clearly illustrates two weaknesses of the chirp gen-

erating system. Firstly, it was not possible to implement any kind of windowing of the signals 

other than square, which will degrade the quality of the results obtained through the use of 

matched filters, as discussed above. Also, the chirps produced are not completely linear, which 

will have an impact on the degree of pulse compression which can be obtained using the frac-

tional Fourier transform. However, it was observed that a large region of the transmitted signals 

was subject to a linear frequency modulation and that the non-linearity occurred mostly at the 

lower frequency end of the signal. Unfortunately, there was insufficient time to investigate 

possible methods for improving the signals in either of these respects. 

5.5 	Results of Matched Filtering & Fractional Fourier Transform 

5.5.1 Phantom Setup 

All of the results described below were obtained using a phantom consisting of a cylindrical 

block of tissue mimicking material immersed in a tank of water. The cylinder had three slits cut 

out of it of widths 1 mm, 2 mm and 3 mm, as illustrated in Figure 5.16. The 3.5 MHz, 100% 

bandwidth Panametrics transducer was used, arranged such that one slit in the phantom would 
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Figure 5.14: Transmitted chirp signals captured prior to RF power amplifier stage. 

be within the focal region. Due to the relatively low sensitivity of this transducer (a consequence 

of making it with such a wide bandwidth), it was not possible to obtain signals from more 

than one slit at a time because the maximum available imaging depth was only around 70mm. 

Therefore, the phantom was rotated after each experiment to present the appropriate slit. 

In order to confirm the geometry of the setup, the transducer was first driven with a single-

cycle pulse, yielding the signal shown in Figure 5.17. For the case of the 3 mm wide slit, the 

'focus' of the system was adjusting by moving the transducer closer to the phantom. This was 

necessary to ensure that the largest possible signal was received from the top and bottom edges 

of the slit. 

109 



The Fractional Fourier Transform and Coded Excitation 

High Chirp Signal 
	

Medium Chirp Signal 

...iV(.'" 

2 

 

50 100 150 
	

50 100 150 200 
Time [Samples] 
	

Time [Samples] 

Low Chirp Signal 

=
N 

mi 

2 
50 100 150 200 
Time [Samples] 

Figure 5.15: Wigner distributions of the transmitted signals. 

5.5.2 Matched Filtering 

The equipment was setup so that it would be possible to capture the transmitted signal prior to 

amplification by the RE power amplifier. This could be done in conjunction with the capture 

of the received echo signals. Matched filtering of the received signals was achieved by time 

reversing the recorded transmitted signal and convolving this with the received signal in Matlab. 

The results of doing this with the signals received from the phantom described above are shown 

in Figure 5.18. 

5.5.3 Fractional Fourier Transform 

The optimum transform orders for the signals were determined using the automated procedure 

described above, yielding the results shown in Table 5.4. The optimum transform orders for 

the low chirp rate signals were found to be too close to ir/2 to be determined by the automated 
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Figure 5.16: illustration of the phantom setup used for testing the fractional Fourier transform. 

Chirp Rate 1 mm 2 mm 3 mm 
Low - - - 

Medium 0.4919 0.4156 0.4623 
High 0.2838 0.2883 0.3032 

Table 5.4: Optimum transform orders (a0 t) determined using automated procedure for each 
of the signals. For the low chirp rate signals, the optimum transform order was very 
close to 7/2, so they were not used further 

method. Since a transform order of ir/2 is just the conventional Fourier transform, no further 

analysis was performed using the low chirp rate signals as there was nothing to be gained. The 

matched filtering results shown in Figure 5.18 also demonstrate that the low chirp rate signals 

do not yield a significant improvement in axial resolution compared to the results for either the 

medium or high chirp rate signals. This is due to the axial resolution after matched filtering 

being inversely proportional to the bandwidth of the transmitted signal, therefore the lower 

bandwidth signal shows little improvement compared to the signals of higher bandwidth. 

It was found that using an optimum transform order of, for example, c = 0.2838 or a = 0.2883 

did not make a significant difference, therefore all further analysis was performed using the 
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Figure 5.17: Received signal after transmission of a single-cycle pulse. Clearly shows geom-
etry of phantom setup, including distance between transducer and phantom and 
position and width of the slits. 

mean of the optimum transform orders shown in Table 5.4, for each signal case. Using these 

transform orders with the fractional Fourier implementation by Ozaktas et al. gave the results 

shown in Figure 5.19, which clearly demonstrate a similar degree of pulse compression to that 

shown by the matched filter results. It is also apparent that the results for the high chirp rate 

signal, which had the highest bandwidth, demonstrated a greater degree of pulse compression 

compared to those for the medium chirp rate. This was also in keeping with the matched 

filter results. However, performing the same transforms using the Candan et al. method gave 

the results shown in Figure 5.20. The transform matrices used to produce these results were 

generated using the same transform orders that were used for the Ozaktas et al. method and the 

order of approximation of the 's-matrix' was set to 64, which was found to give the best results. 
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Figure 5.18: Results of matched filtering with high and medium chirp rate signals. 
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Figure 5.19: Optimum transform order domains of high chirp rate signals, using Ozaktas et al. 
method. 
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Figure 5.20: Optimum transform order domains of high chirp rate signals, using Candan et al. 
method. 
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Figure 5.21: isolation of a key signal component from the tranform domain signal using a 
Hanning window. 

The two methods were observed to give very different results, although both worked very well 

for the 1 mm slit signals, with both the high and medium chirp rates. However, whilst the 

Ozaktas method gives results which are clearly similar to those obtained using a matched filter 

for all signal cases, the Candan et al. method does not. It was not even possible to determine 

which peaks could be considered to belong to the specific geometry of the phantom, with the 

exception of the 1 mm slit case. 

However, the differences between the two techniques are not limited simply to which produces 

results most like those obtained through matched filtering. The method by Ozaktas et al, pro-

duced what appear to be the 'best' results, however it was not possible to completely recover 

key signal components in the time domain using this method. Attempting to do so gave signals 

of approximately the right shape, but did not give the correct location in time. The method by 

Candan et al., despite producing transform domain signals which do not show any similarity 

to the matched filter results, was able to correctly recover signal components in the time do-

main. A Harming window was used to isolate the signal component which should correspond 

to the top of the phantom from the transform domain signal generated using the Ozaktas et al. 

method. This is illustrated in Figure 5.21. The results of isolating the key signal component 

and transforming it back to the time domain are shown in Figure 5.22 for both methods. These 
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Figure 5.22: Comparison of signal component recovery using the two discrete methods. 

results clearly show that it is possible to isolate a particular signal component, in this case, the 

signal from the top of the phantom, in the transform domain and to recover only that part of the 

time domain signal. However, this is only possible with the transform domain signals obtained 

with the Candan et al. method. The above process was repeated for the other two peaks in 

the transform domain signal, giving the results shown in Figure 5.23, where the positions of the 

recovered components are compared to the positions of the corresponding peaks in the matched 

filtered signal as well as the original chirped signal. The above procedure was repeated for all of 

what were deemed to be the appropriate peaks for the remaining high chirp rate signals and the 

medium chirp rate signals. The positions of the recovered signal components are summarised 

in Table 5.5. 

Applying the direct time recovery technique described above to the high chirp rate signal for 

the 1 mm slit gave the results shown in Figure 5.24. As before, the absolute positions of the 

features do not agree, however both techniques gave similar results for the distance between 

the top and bottom edges of the 1 mm wide slit, with the matched filter suggesting a width of 

0.7992 mm and the fractional Fourier technique a width of 1.0952 mm. Interestingly it was 

found that although the discrete implementation by Ozaktas et al. did not work correctly for 

signal recovery by inverting the transform, it did produce very good results using the direct time 

recovery method. Figure 5.25 shows the results of applying the direct time recovery technique 
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Figure 5.23: Recovered signal components using Canden et al. method, showing accuracy of 
recovered positions in relation to the matched filtered signals. 

High Chirp Rate Top of Phantom Top of Slit Bottom of Slit Slit Width 

Actual Slit Width [mm] [mm] [mm] [mm] [mm] 

1 43.23 49.03 49.91 0.880 

2 44.12 50.25 5173 1.480 

3 42.59 50.66 53.56* 2.900 

Medium Chirp Rate 
Actual Slit Width [mm]  

1 43.33 48.35 49.40 1.050 

2 44.02 49.70 50.17 0470 

3 41.07 - - - 

Table 5.5: Positions of recovered signal components in high and medium chirp rate signal 
cases. 
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Figure 5.24: Direct recovery vs. matched filtering for the high chirp rate signal and the 1 mm 
slit 

to the fractional domain signals obtained using the Ozaktas et al. method, for all three of the 

slits with the high chirp rate signals. This analysis was repeated for the medium chirp rate 

signals and the positions of the main features and the estimated slit widths are shown in Table 

5.6. 

5.6 Summary and Conclusions 

This chapter has briefly described the topic of coded excitation and has highlighted the possi-

ble benefits to be gained from using such a technique. The concept of frequency modulated 

signals of the form of linear chirps has been described and the fractional Fourier transform has 

been introduced as an efficient technique for processing the resulting received signals. An ex-

perimental setup for producing chirped ultrasound signals has been described and signals from 

this system have been analysed. It has been shown that the fractional Fourier transform can 

produce results which are very similar to those obtained with matched filtering, although the 

fractional Fourier technique does not require a-priori knowledge of the transmitted signal since 
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Figure 5.25: Direct recovery of transtbrm domain signals generated with the Ozaktas et al. 
method, for the high chirp rate case. 

High Chirp Rate Top of Phantom Top of Slit Bottom of Slit Slit Width 

Actual Slit Width [mm] [mm] [mm] [mm] [mm] 

1 49.943 55.515 56.314 0.7990 

2 50.402 56.739 58.692 1.9530 

3 58.329 57.537 60.476 2.9390 

Medium Chirp Rate 
Actual Slit Width [mm]  

1 60.785 66.807 67.633 0.8260 

2 61.503 68.176 70.242 2.0660 

3 59.090 68.937 72.133 3.1960 

Table 5.6: Positions of key phantom features estimated using the direct time recovery technique. 

All units are in mm. 
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it is possible to derive the optimum transform order directly from the received signals. 

It has been shown that it is possible to use the fractional Fourier transform to recover specific 

signal components from the received signal by windowing around the corresponding feature 

in the transform domain and performing the inverse transform on the result. This approach is 

very sensitive to the technique used to implement the discrete version of the fractional Fourier 

transform, while it produces good results with the method by Candan et al., it was found that the 

transform domain signals derived using the Ozaktas et al. method were not properly invertible. 

This is due to the technique by which each method is derived since there is currently no formal 

definition of the discrete fractional Fourier transform. The Candan et al. method is designed 

to be as close an approximation of the continuous case as is currently possible, whereas the 

Ozaktas et al. method is designed to have a lower computational complexity and hence higher 

performance in terms of computing time. 

A technique whereby the fractional Fourier transform domain of a signal can be directly related 

to the time-domain has been presented. This is possible because the fractional Fourier transform 

is not time-invariant provided that the transform order is not equal to 7r/2. In other words, at 

transform orders other than 0 or 7r/2, the resulting transform domain is a mixture of both time 

and frequency. Therefore, if the centre frequency of the signal is known, then it is possible to 

recover the time domain information without having to invert the transform. The advantage of 

this approach is that it is possible to transform the signal and gain similar improvements in axial 

resolution as would be obtained with a matched filter and then directly derive the corresponding 

time-domain positions of the key features. Using the alternative technique of isolating a key 

signal component and the inverting the transform gives the same information, but the resulting 

signal envelope no longer has the improvement in axial resolution. 

It has also been shown that since the operation to directly relate a fractional Fourier transform 

domain feature to the time domain is essentially a linear transformation, it is possible to simply 

scale the axis of the transform domain signal so that it corresponds to the time-domain. This 

has been shown to produce results which are very similar to those obtained with a matched filter 

and was able to produce good estimates of the width of the slit in all cases considered. 

The discrete implementation by Ozaktas et al. is able to operate in N log(N) time, where 

N is the number of samples in the signal, however, as has been stated above the transform is 

not properly invertible. The Candan et al. method is very efficient once the transform matrix 
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has been formed, however for the case of a 4096 sample signal this took about 35 minutes 

on 2.0 GHz Intel Xeon processor. It is probable that, eventually, a formal definition of the 

discrete fractional Fourier transform will be found, along with a fast version in the manner 

of the fast-Fourier transform, then it will be possible to consider real-time applications of the 

above techniques. However, for the time being that remains out of the question. 
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Chapter 6 
Empirical Mode Decomposition for 

Tissue Harmonic Imaging 

6.1 Introduction 

6.1.1 Propagation of finite-amplitude acoustic waves 

It is common to describe acoustic wave propagation in terms of a linear system. However, 

this only applies to waves which have infinitesimal acoustic pressures. In reality, all waves 

will have finite acoustic pressures, so this linear approximation does not always hold, although 

it is perfectly adequate for describing the behaviour of relatively low power systems, such as 

fetal heart monitors. Beams used for therapeutic applications have been shown to give rise to 

effects which cannot be explained by the linear approximation, such as distortion of the acoustic 

waveform, the associated generation of harmonics of the fundamental frequency and an increase 

in acoustic attenuation caused by harmonic generation and acoustic shock formation. 

The principle and mechanism by which an acoustic wave travelling through a nonlinear medium 

becomes distorted has been understood for some 150 years, however over a century later the 

initial development of medical ultrasound was done without any consideration of these effects. 

It was Stokes in 1848 who first recognised the true impact of Poisson's earlier work on the exact 

solution for finite amplitude sound waves and published the first sketches of what the distorted 

waves might look like. 

In order to understand the cause of these effects, it is firstly necessary to differentiate between 

local and cumulative non-linear effects. Local effects occur due to displacements of vibrating 

sources, variations in pressure/particle velocity relationships and perhaps most significantly, the 

pressure/radius relationship of acoustically driven micro-bubbles. Cumulative effects occur due 

to a variation in the propagation speed of the wave, which causes the distortion to develop with 

distance [73].  In the case of this work, it is only the effects of the latter which are considered. 

The change in shape of the waveform is caused by the variation in the phase speed of the wave 
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over its length. The phase speed will be higher in the compressed regions and lower in the 

rarefacted regions. The effect of this is to cause the regions of compression and rarefaction to 

move in opposite directions relative to the zero-crossings and eventually they will coincide. At 

this point, the phase shift of peak compression will be */2 and that of peak rarefaction will 

be —7r/2, which leads to a pressure discontinuity Or acoustic shock. As the wave propagates 

further, dissipation causes the acoustic shock to diminish in amplitude and eventually return to 

a low amplitude sinusoidal wave. 

Given that the change in the shape of the waveform is progressive and linear with distance, the 

theoretical distance from the transducer at which the acoustic shock phenomenon will occur is 

given by [73]: 

'd = (PC' ) 
	

(6.1) 

Where p is the density of the medium, c is the wave speed, P0  is the acoustic pressure at 

the source, f the frequency of the waveform and /3 is the coefficient of non-linearity for the 

medium. 

The degree of distortion experienced by the waveform at displacement z from the source, can 

be expressed by a = z/Id, or in terms of the properties of the medium by [73]: 

2 
a= 

7r  
—(pofz9) 
pc° 

(6.2) 

From which it may be observed that the degree of distortion varies linearly with distance from 

the source z and with the nonlinear properties of the material. 

In order to demonstrate the effects described above, an experiment was carried using the trans-

mit section of the single crystal ultrasound system described previously, along with a hy 

drophone and a long tank of de-gassed water, arranged as illustrated in Figure 6.1. The hy-

drophone and the transducer were arranged in a linear fashion such that the distance between 

them could be varied easily. It was necessary to use a hydrophone to received the signals from 

the transducer because the bandwidth of the transducer would have been too narrow to observe 

the full effects of the non-linear distortion. The transducer was driven with a 2.25 MHz signal 

consisting of bursts of 4 cycles, repeated at a pulse repetition frequency of 1 KHz. The drive 

voltage from the programmable function generator was set to 1 Vp-p, which was the maximum 

input to the RF power amplifier: Signals were captured using the Signatec PDA 12 capture card, 

with a sampling frequency of 50 MHz. The acoustic absorbing material was placed at the end 
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Acoustic 
Hydrophone free to move 	Absorbing 

Material 

Water tank 

Transducer 

Hydrophone 

500 mm 

Figure 6.1: Equipment setup used to demonstrate the effects of non-linear propagation on the 
wave shape. 

of the tank such that it would prevent any stray reflections from the end of the tank. It was not 

felt that it would be necessary to line the sides of the tank in a similar manner since the beam 

width from the transducer used was narrow compared to the width of the tank. 

This setup was used to capture a series of nine signals with the transducer progressively moved 

further away from the hydrophone for each one. The first signal was arranged to be approxi-

mately 15 mm from the hydrophone, while the last was at a distance of 235 mm. Since none 

of the received signals occurred at the same time, it was possible to improve the signal-to-noise 

ratio by summing the nine signals 1 . In this manner, the random noise will cancel itself out to 

some extent, but the non-random signals will be unchanged. The nine received signals were 

then isolated from this longer signal and are shown in Figure 6.2. With the experiment setup 

used, it was not possible to accurately specify or determine the distance between the transducer 

and the hydrophone. The distances were therefore derived from the received ultrasound signals 

using the time-of-flight method. The signals were bandpass filtered around 2.25 MHz using a 

128 element FIR filter in Matlab and the envelope of the results was found using the Hubert 

transform. This envelope was then thresholded to leave only the significant peaks, the locations 

of which were then found by searching for the local maxima. Table 6.1 gives the resulting 

distances between the transducer and the hydrophone. 

The receive process was triggered at the time of transmission, therefore each of the received signals contained 
the detected echo at a different time. It was thus concluded that adding these signals together would improve the 
SNR because the random noise would be cancelled out to some extent. 
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Figure 6.2: Signals received by hydrophone with transducer at nine different displacements, 
clearly showing increasing distortion with depth (Segment 1 was the closest, while 
segment 9 was the furthest away). 

Segment Number Distance [mm] 
1 13.02 
2 29.01 
3 46.32 
4 69.97 
5 94.99 
6 126.19 
7 148.27 
8 174.34 
9 232.72 

Table 6.1: Distance between the transducer and the hydrophone for each segment. 
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These results clearly show how the shape of the wave changes with increasing distance, seg-

ment 1 at a distance of only 13 mm from the transducer is clearly sinusoidal, but this changes 

rapidly and by segment 4 at a depth of 70 mm, the distortion is clearly visible. It is interesting 

to note that the peak positive amplitude of the signals doesn't change much until the 8th and 9th 

segments at depths of 174 mm and 233 mm respectively. However, the peak negative pressure 

decreases much more rapidly. The Fourier spectra of these signals give a more complete picture 

of what is happening as seen in Figure 6.3. From these, it is obvious that as the distance and 

hence the degree of distortion increases, the corresponding Fourier spectra shows an increase 

in the proportion of signal energy which exists at the harmonic frequencies of the fundamental. 

In the case of the first segment, nearly all of the energy is concentrated at the fundamental fre-

quency of 2.25 MHz, as would be expected. However, the second segment shows a significant 

increase in the energy at the second harmonic (4.5 MHz), which continues to increase up to the 

fourth segment at a depth of 70 mm. Signal energy can be observed at the third harmonic (6.75 

MHz) from the third segment onwards, while there is clearly energy at the fourth harmonic 

from segment 5 onwards and so on. Segment 7, corresponding to a depth of 148 mm shows 

the most signal energy, taking into account all of the harmonics, while segments 8 and 9 shows 

progressively less signal energy. The reason for the sudden decrease in signal energy after the 

seventh segment is due to increased attenuation. From this, it was concluded that the depth at 

which acoustic shock formation occurs must be around 148 mm, because after this point, the 

total amount of energy in the signals appears to decrease. 

Putting the appropriate values into equation (6.1), (p = 0.99707gm1', 	= 3.5 (for wa- 

ter), c = 1480ms 1,po = 0.44MPa (estimated from peak pressure of first segment) and 

f = 2.25MHz), gave 'd 148.47mm which matched almost perfectly with the experimental 

observations. 

It was not until 1980 that two companion papers published by Carstensen et al [74] and Muir 

and Carstensen [75] highlighted the fact that the nonlinear propagation of finite amplitude 

acoustic waves might have an impact in biomedical ultrasound fields. The second of these two 

papers ([75])  gives an excellent theoretical introduction to the nonlinear effects which could 

be expected to occur at biomedical frequencies and intensities. The much later review paper 

by Duck [73] summarises much of the work in the Muir and Carstensen paper, but only men-

tions the concept of harmonic generation very briefly. Of particular interest is that Muir and 

Carstensen realised that the technique of Fourier analysis seemed to be perfect for analysing 
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Figure 6.3: Fourier spectra of signal segments, clearly showing increasing energy in the har-
monic frequencies with increasing depth. 
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the nonlinear and periodic waveforms under consideration. They state that the distorted, finite-

amplitude pressure wave as might be measured by a broadband hydrophone can be expressed 

as: 
00 

p = 
P0 ro a 

 (_) 
	

B,, (r, a) sin (n [wt - k(r - 	 (6.3) 
n=1 

Where a = 1 for spherical waves, or a = 0 for plane waves. In the plane wave case, r0  = 0 

and r = z. The authors go on to quote Blackstock's result for the Fourier coefficients: 

Where: 

B = 	W+ 	f cos (n[—a sin ])d 	 (6.4) 
\rLlr} 	rt7raI rmin 

1 r 
W=—Ij0 1  (—)IH(a-1) 	 (6.5) 

aL 	\aJJ 

Where HQ is the Heavyside step function and j' (1/cr) is a quantity whose zero order Bessel 

function is 1/a. Ornin = aWb  is an intermediate variable. Once the Fourier coefficients have 

been obtained, Muir and Carstensen state that the intensity of each component can be calculated 

from: 
r 	

2a B(r,a) 	 (6.6) 

They go on to use these results to demonstrate that the harmonic components grow cumulatively 

with distance at the expense of the fundamental. As appeared to be the case with the signals 

considered above, the growth of the harmonic components was shown to taper off after the 

initial shock formation. 

6.1.2 Tissue Harmonic Imaging 

Two independent groups simultaneously arrived at the idea of using the distortion of the wave-

form propagating through a nonlinear medium to improve the performance of medical ultra-

sound systems. One group was led by T. Christopher [76],[77] based in the USA and the other 

was led by V. Humphrey at the University of Bath in the UK [78]. Ward et al. [78] used an 

experiment setup consisting of a 2.25 MHz circular transducer and a membrane hydrophone of 

identical diameter (38 nun). They arranged these axially with a polymer lens to give an imaging 

geometry similar to that found in many B-mode clinical scanners. A hydrophone was used for 

the received stage because it would have sufficient bandwidth to capture the first four harmonics 

of the signals, whereas an ultrasound transducer would be much more limited. Using this setup 
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with a wire phantom, they were able to demonstrate a large improvement in lateral resolution 

and signal-to-clutter ratio for the higher harmonics. The group led by T.Christopher [76] looked 

at the problem of lateral and contrast resolution degradation caused by the defocusing effects 

of inhomogeneities in body tissues. They state that in homogeneous media the side-lobes of the 

nonlinearly generated higher harmonics are much lower than their linear.  counterparts. They go 

on to describe computations performed which suggest that this relationship holds for the case 

of beam propagation through abdominal wall and breast wall tissue. Their results also sug-

gested that the lateral resolution limits imposed by these tissues are slightly smaller in the case 

of the nonlinearly generated harmonics and they investigate the potential of these harmonics to 

improve image resolution. 

The work of these groups is based on the idea that the second and higher harmonics of a signal 

are able to offer improved lateral resolution because the beam width is reduced by the nature of 

the higher frequency signal. The signal-to-clutter ratio may be improved because the returned 

signal from clutter will be relatively small compared to that from tissue, or scatterers of interest. 

It can be shown that when the amplitude of the fundamental is increased by a factor of two (by 

doubling the transmitted amplitude), then the amplitude of the second harmonic increases by a 

factor of four [79].  This occurs because the process of nonlinear distortion is highly sensitive 

to the amplitude of the wave. Therefore, when looking at the second or higher harmonics, 

the difference in power between the clutter signal and the desired signal will be proportionally 

greater than when looking at the fundamental frequency. 

At around the same time that these two groups were investigating the potential benefits of 

using the higher harmonics, the manufacturers of ultrasound scanners were interested in the 

higher harmonic signals returned from micro-bubbles, a technique now commonly referred to as 

Contrast Harmonic Imaging (CHI) [80]. The interaction of micro-bubbles with an acoustic field 

is a highly complex phenomenon which would be beyond the scope of this work to describe in 

detail. Lord Rayleigh was the first to describe the nonlinear radial motion of a gas bubble in 

an acoustic field and his theory, suitable elaborated by a series of further investigations led to 

the notion that a bubble, driven into nonlinear resonant oscillation by an incident sound field, 

would give rise to a scattered signal which would contain higher harmonics of the original 

signal [81]. It was in part thanks to this work that tissue harmonic imaging was developed. 

Originally, it was thought that thermo-viscous absorption in tissue would prevent the higher 

harmonics developing, since even though most tissues have similar coefficients of nonlinearity 
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to water, they have significantly higher absorption. Averkiou et al. [82] based at ATL in the 

USA, demonstrated that the wide dynamic range, digital architecture and signal processing 

capabilities of modern scanners made it possible to utilise the harmonic energy generated by 

propagation through tissue. It would appear that Averkiou et al. were the first to use the 

term tissue harmonic imaging and they describe how they used the Khokhlov-Zabolotskaya-

Kuznetsov (KZK) equation to form a model which could be used to estimate the degree of 

harmonic generation that would take place in body tissues. Using this model, they were able 

to determine that it should be possible to detect the second or higher harmonics resulting from 

the propagation through tissue. Experiments were performed using a sample of beef tissue 

to confirm their theoretical results and were found to be in agreement. Averkiou also holds a 

patent for an implementation of this technology [83], which was filed in December, 2002. 

Of the many developments that have occurred in the field of medical ultrasound imaging in re-

cent years, most have been very effective when applied to patient groups who are easy to image 

[84]. However, the effect of these developments for the group of 'technically difficult' patients, 

or those who are more difficult to image due, for example due to excess weight, has been much 

less significant. The general solution in these cases is to use lower frequency transducers which 

thus give a greater imaging depth, but at the expense of axial resolution The introduction of tis-

sue harmonic imaging, however, has had a great impact on the imaging of technically difficult 

patients since it allows greater imaging depths with significantly less compromise to the image 

quality than would have to be tolerated when using lower frequencies. 

Since the technique of tissue harmonic imaging produces more visually appealing images, the 

technique has-become increasingly prevalent and is now the default mode on most, if not all, 

clinical scanners [85]. Certainly, a number of studies have shown the technique to be useful, 

for example Mele et al. [86] assert that tissue harmonic imaging improved the accuracy and 

reproducibility of echocardiographic evaluation of left ventricular ejection fraction. However, 

the effects of using tissue harmonic imaging techniques for the assessment of rheumatic mitral 

valve stenosis were studied by Prior et al. [85] and it was pointed out that the structures may 

appear thicker and brighter when imaged by this modality than when imaged by fundamental 2-

dimensional imaging. They go on to conclude that the use of tissue harmonic imaging changes 

the values used for the quantitative assessment of mitral valve stenosis, the very least effect 

of which is to render invalid the comparison of results obtained using tissue harmonic imaging 

with those obtained using fundamental imaging. They also claim that the use of tissue harmonic 
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imaging results in an increased splitability score that may result in the exclusion of patients 

otherwise suitable for percutaneous balloon valvuloplasty. It is also well known that using tissue 

harmonic mode involves a certain trade-off between lateral and axial resolution, namely that the 

lateral resolution will improve due to increased receive frequency and the axial resolution will 

worsen due to the reduced receive bandwidth [87].  Clearly the technique is not without its 

disadvantages and further work is needed before its true impact on echocardiography can be 

determined. 

Up until now, all of the analysis of signals resulting from distortion due to propagation through 

a non-linear medium have been performed using Fourier based techniques, either in the form 

of the conventional Fourier transform or a short-time variant such as the short-time Fourier 

transform or wavelets. However, the Fourier transform is only valid for signals which are sta-

tionary and have propagated through a linear system, that is, signals which result from a system 

which can be modelled by the linear superposition of a series of simpler signals. However, it 

has clearly been shown that these assumptions are not strictly valid for acoustic waves of the 

type used for medical ultrasound. The basis of tissue harmonic imaging is that the signal en-

ergy is spread into the harmonic frequencies by the non-linear distortion of the wave, therefore 

different information can be obtained by looking at the second or higher harmonics compared 

to the fundamental. It can be argued that these harmonic frequencies are only the result of the 

use of Fourier based analysis techniques and do not necessarily relate to the actual physical 

process. This will be discussed in more detail later in this chapter, but it leads to the question 

of whether a different signal analysis technique might lead to a different understanding of the 

process underlying tissue harmonic imaging. 

6.1.3 Empirical Mode Decomposition 

The concept of instantaneous amplitude is readily understood and is well accepted, however, 

the notion of instantaneous frequency is somewhat more vague. One of the issues is that from 

Fourier analysis, the frequency is defined for a sine or cosine wave spanning the whole dataset, 

therefore, if one extends this definition to the idea on instantaneous frequency, then this too 

must correspond to the frequency of a sine or cosine function. Therefore, it would be necessary 

to have at least one complete period of oscillation to be able to define the frequency. In the case 

of non-stationary signals, it would be possible for the frequency to vary within the time for one 

period, so this definition is unsuitable. 
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The instantaneous frequency of a signal may be defined using the Hubert transform. For a 

signal X(t), the Hilbert transform Y(t) will be given by 6.7. 

Y(t) = 1 —Pf oo

°° 
X(t')d, 	 (6.7) 

ir 	tt 

From this, the analytic signal Z(t) can be defined as in equation 6.8 below: 

Z(t) = X(t) + iY(t) = a(t)e?(t) 	 (6.8) 

where, 

a(t) = [X 2 (t)+  Y2(t)]1/2  

1 
0(t) = arctan 	 (6.9) 

The instantaneous frequency can then be defined as: 

dO(t) 

dt 
(6.10) 

The problem with this definition is that it only gives a single value at each time instant, but real 

signals will often consist of multiple frequency components, so the instantaneous frequency 

will be ambiguous. To avoid this ambiguity, it is necessary to limit the signal to be narrow 

band, although no precise definition of a suitable bandwidth has yet been found. For the defini-

tion of instantaneous frequency to be meaningful, the real part of the Fourier transform of the 

signal should only consist of positive frequencies. However, this is a global restriction which 

might not be of use for non-stationary data. Huang et al. [88] state that it is necessary, there-

fore, to develop a modified version of this restriction which can be applied locally. They go 

on to define a class of functions, called Intrinsic Mode Functions (IMFs) for which the instan-

taneous frequency can be defined anywhere. They also propose a technique called Empirical 

Mode Decomposition which breaks a signal down into a set of intrinsic mode functions, each 

corresponding to a single oscillatory mode of the original data. Since each IMF is formed from 

only one oscillatory mode, the requirement for the signal to be narrow band is achieved. 

The technique proposed by Huang et al. is based on the principle of identifying the intrinsic 

oscillatory modes according to their characteristic time scales. There are two ways of doing 

this, firstly from the time between alternations of local maxima and minima and secondly from 
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the time between the zero crossings. ENO is based on the first of these two, since measuring 

the time between the zero crossings would require the data to be of zero mean. 

The IMFs are extracted using a sifting process, the first step of which is to define envelopes 

from the local maxima and minima. This is achieved using cubic splines to connect all the 

local maxima together to define one envelope and all of the local minima to define the second 

envelope. These two envelopes should then encompass all of the data. The first component, 

h1  (t) is then found from the difference between the mean of the two envelopes, mi(t) and 

the original signal, x(t). This is illustrated in Figure 6.4. This process is repeated until the 

standard deviation of two consecutive sifting results falls below a specified threshold, at which 

point the result, h1  (t) is regarded as the first IMF, ci (1). This is then subtracted from the data 

and the process is repeated, as illustrated in Figure 6.5, until there are is no longer a sufficient 

number of local maxima or minima in the remaining signal to continue. This results in a set 

of intrinsic mode functions, the number of which depends on the nature of the original signal. 

The remainder of the process is the general trend of the signal. 

6.1.4 The Hubert Spectrum 

Once the data have been separated into IMFs, the Hilbert transform can be applied to each one 

without any difficulty. This done, it is possible to calculate the instantaneous frequencies using 

equation (6.10). Once each component has been transformed using the Hilbert transform, the 

original signal could be reconstructed using [88]: 

X(t) = E a(t)exp (if w(t)dt) 	 (6.11) 
j=1 

Equation (6.11) shows how the instantaneous amplitude and frequencies could be represented 

as functions of time on a three dimensional plot, where the amplitude can be shown as contours 

on the time-frequency plane [88]. This is called the Hilbert amplitude spectrum, HP, t), or 

simply the Hilbert spectrum. 

Using the Fourier method, the signal would be reconstructed using equation (6.12): 

00 

X(t) =ajexp(iwjt) 	 (6.12) 

Comparing equations (6.11) and (6.12) clearly illustrates the difference between these two tech- 
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Figure 6.4: Extraction of the first IMF The mean of the maxima and minima envelopes is sub-
tracted from the original signal to give h1(t) [top]. The minima and maxima en-

velopes of h1  (t) are then found and their mean is subtracted from h1  (t) to give 

h11  (t) [bottom]. The difference between h11  (t) and x(t) is now small, so h11 (t) is 
taken to be the first IME In general, the process is repeated until the difference is 
sufficiently small. 
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Figure 6.5: Extraction of the second IME The Pt  IMF is subtracted from the original signal 

to give r1  (t) and the process is repeated with ri (t) as the signal. 
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niques. In the Fourier method given by equation (6.12), each of the amplitude and frequency 

terms are fixed for the entire signal, whereas the Hubert method given by equation (6.11) al-

lows them to be functions of time. Therefore, to model a non-stationary signal, the Fourier 

method must contain many additional components, whereas the Hilbert method does not need 

any, since the non-stationary nature of the signal can be included in the instantaneous amplitude 

and frequency terms. 

6.1.5 Nonlinear, Non-stationary Signals and the Hilbert Spectrum 

The combined techniques of Empirical Mode Decomposition and the Hubert spectrum are able 

to offer an alternative view of signals which are neither stationary, or result from a linear sys-

tem. Although the Fourier transform is valid under varied conditions, Fourier spectral analysis 

is restricted to linear systems and signals which are strictly periodic or stationary, otherwise the 

resulting spectrum will make little physical sense [88]. This is illustrated by two simple exam-

ples, the first of which looks at the issue of non-stationary signals. Consider the signal shown in 

the middle of Figure 6.6, which consists of a single cycle of a 50 Hz sine wave, sampled at a rate 

of 1 kHz. Since the Fourier spectrum defines uniform harmonics globally, it needs to introduce 

additional harmonics to be able to account for the non-stationary signal which is non-uniform 

globally. This is demonstrated by the short-time Fourier transform shown at the top of Figure 

6.6, where although the bulk of the signal energy is centred on a frequency of 50 Hz, the energy 

is spread into additional harmonic components. It is also important to note that the signal is not 

well localised in time, even by the short-time Fourier transform. With a technique such as this, 

there is always an inevitable trade-off between time resolution and frequency resolution; owing 

to the uncertainty principle, it is not possible to increase one without decreasing the other. The 

bottom part of Figure 6.6 shows the Hubert spectrum of the non-stationary signal, which was 

formed by using the ENO method described above. The significant differences between the 

Hilbert spectrum and the short-time Fourier transform are that the former offers very good time 

and frequency localisation when compared to the latter and the Hubert spectrum does not need 

to introduce additional harmonic components. 

In the case of a nonlinear signal, as shown in Figure 6.7, the Hilbert spectrum offers a com-

pletely different picture to that normally given by Fourier analysis. Here, the nonlinear signal 

in question was defined by: 

s(t) = cos (wt + c sin (wt)) 	 (6.13) 
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Figure 6.6: Illustration of non-stationary signal which demonstrates how the Fourier trans-
form will introduce additional harmonic components which it needs to be able to 
model the more complex signal. Note that the Hubert spectrum contains no such 
additional harmonic frequencies and instead introduces an intra-wave frequency 
modulation which is centred on the main frequency of the signal, 50 Hz. 
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Figure 6.7: Illustration of non-linear signal demonstrating how the Fourier transform has to 
introduce spurious harmonics to represent the non-linearity. 
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In this case, e = 0.5 and the signal was defined to have a frequency of 50 Hz with a sampling 

frequency of 1 kHz. The top part of Figure 6.7 shows the Fourier power spectrum of the 

signal, which clearly shows the introduction of harmonic frequency components, but the Hubert 

spectrum shown at the bottom of the Figure again gives a different picture. Here, the signal 

energy is concentrated around 50 Hz, as would be expected given the signal definition, but 

instead of having additional harmonic components, the frequency oscillates around the centre 

frequency. This gives rise to the concept of an intra-wave frequency modulation, where the 

frequency of a signal can change within the time required for a single period at the centre 

frequency. Equation (6.10) defined the instantaneous frequency of a signal as the rate of change 

of phase. For the signal represent by equation (6.13), this would be given by: 

f(t) = w (1 + € Cos (wt)) 	 (6.14) 

This clearly demonstrates where the intra-wave frequency modulation comes from and shows 

that the period of oscillation of the frequency should be equal to that of the original signal. 

It also shows that increasing the degree of nonlinearity by increasing the value of € would 

increase the amplitude of the intra-wave frequency modulation. Huang et al. [88] go on to 

provide numerous further examples to verify the Hilbert spectrum and the physical reality of 

the intra-wave frequency modulation, but for this work it was felt that the above example was 

sufficient to theorise that any nonlinearly distorted signal could be interpreted as having an 

intra-wave frequency modulation, the amplitude of which depended on the degree of distortion. 

6.2 Experiment Setup 

The experiments described above, used to demonstrate the effects of nonlinear propagation, 

were performed using a 2.25 MHz centre frequency, circular transducer with a diameter of 

13mm. This was arranged in a tank of water and aligned axially to a wide bandwidth PVDF 

membrane hydrophone such that the distance between the transducer and the hydrophone could 

be varied easily. Signals were captured over a range of distances. 

Further experiments were carried out using a Panametrics wide-band transducer with a centre 

frequency of 6 MHz and 100 % bandwidth. In this case, the transducer was arranged above the 

same phantom described in the previous section, such that it would be possible to insonify one 

of the slits at a time. 
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In all cases, the signals were captured using the Signatec PDA12 capture card, with the sam-

pling frequency set to 50 MHz. 

6.3 Results 

6.3.1 Hydrophone Signals 

The Fourier spectra of the signals captured with the hydrophone have already been shown and 

described as they provide a good example of the effect of the nonlinear distortion and how 

the effects increase with depth. However, since these signals are non-stationary in nature, 

the Fourier spectrum can only give part of the picture since it conveys nothing about how 

the frequency content varies over time. Therefore, looking at the signals using some form 

of joint time-frequency analysis will reveal more information. In this case, the Wigner-Ville 

distribution was chosen because it has good time and frequency resolution. Since each of the 

signals consists of only a single burst, the cross-terms will not be a problem. Figure 6.8 shows 

the results obtained for four of the signal segments. These four were chosen so as to include 

the first one, with the least amount of distortion, one before shock formation (segment 4), one 

as close to the point of shock formation as possible (segment 7) and one beyond the point of 

shock formation (segment 9). From these results it was observed that as the distance between 

the transducer and the hydrophone was increased, the amount of energy being spread into the 

harmonic frequencies increased, up to the point of shock formation after which the overall 

signal energy begins to decrease due to increased attenuation. This is exactly as would be 

expected and matches with the Fourier spectra shown earlier in Figure 6.3. 

However, although time-frequency techniques such as the Wigner-Ville distribution allow for 

some non-stationarity in the signal by operating on a short-time basis, they are still fundamen-

tally based on the Fourier transform. This can be seen by inspecting the equation for the Wigner 

distribution given in equation (5.9). The Hubert spectrum, as described above, is not subject to 

the same limitations as Fourier based analysis because it is based on obtaining the instantaneous 

frequency directly from the rate of change of phase of a series of narrow band signals, rather 

than comparing the global signal to a series of infinite sines and cosines. Therefore it should be 

able to offer results which give a different physical interpretation of the effects of the nonlinear 

distortion. 

The empirical mode decomposition algorithm was applied to each of the signals, yielding be- 
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Figure 6.8: Wigner-Ville distributions of three of the signals captured with the hydrophone, 
clearly showing increasing energy at the harmonic frequencies with increasing 
depth, until after the point of shock formation when the overall energy starts to 
diminish. Red colours indicate higher energy, while blue corresponds to lower 
energy. 
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Figure 6.9: The four resulting intrinsic mode functions and the remaining overall trend, for the 
first segment. 

tween 5 and 7 intrinsic mode functions for each one. Figure 6.9 shows the four resulting IMFs 

and the overall trend for the first segment, which had the least distortion. These results clearly 

indicated that the second IMF contained most of the signal energy, while the first IMF was 

caused by high-frequency noise in the signal. It was not clear if there was any physical mean-

ing behind the third and fourth IMFs, but the overall trend is mostly due to the data capture 

card not being quite biased correctly leading to a non-zero signal mean. According to equa-

tion (6.11), it should be possible to reconstruct the original signal without the noise simply 

by adding together the second, third and fourth intrinsic mode functions. The results of doing 

this, along with the original signal for comparison, may be seen in Figure 6.10. The resulting 
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Figure 6.10: Example of reconstructing a signal from the intrinsic mode functions, leaving out 
the high frequency noise. 

Hubert spectrum for the first segment may be seen in Figure 6.11. The Hubert spectrum has 

been coloured according to energy in such a way such that blue corresponds to low energy, 

while red and black correspond to progressively higher energy. Although slightly unusual, pre-

senting the colours this way was found to give the clearest picture of what was happening. It 

was immediately apparent that according to the Hilbert spectrum, there was no signal energy 

at the second harmonic as would be expected since this segment had not been distorted to any 

significant degree. Figure 6.12 shows the results for the seventh segment, which corresponded 

to the distance at which shock formation should occur and would therefore have the maximum 

level of distortion. In contrast with the results obtained with the Fourier based methods, these 

results do not show any energy at the second harmonic frequency. Instead, it would appear that 

the distortion of the waveform has been caused by an intra-wave frequency modulation. 

Figure 6.13 shows the Hilbert spectra obtained for the first eight of the signal segments captured 

with the hydrophone, as described above. These results show that as the nonlinear distortion 

increases, there is a corresponding increase in the amplitude of the intra-wave frequency mod-

ulation, in keeping with the theory outlined previously. It was interesting to note that up to the 
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Figure 6.11: Hubert spectrum for the first segment, clearly showing bulk of signal energy at 
2.25 MHz and no signal energy at the second harmonic. Note that the Hubert 
spectrum has been coloured such that blue represents low energy, while red 
through to black represents increasingly higher energy levels. 
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Figure 6.12: Hubert spectrum for the seventh, maximally distorted segment. This clearly shows 
the bulk of the signal energy oscillating around 2.25 MHz, corresponding to an 
mt ra-wave frequency modulation. There is still no energy at the second harmonic. 
Note that the Hilbert spectrum has been coloured such that blue represents low 
energy, while red through to black represents increasingly higher energy levels. 
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point of shock formation, which occurred at a position roughly corresponding to the seventh 

segment, the intra-wave frequency modulation was fairly well defined, but it appears that after 

this point, the situation becomes more disordered. 

6.3.2 Scattered TMM Signals 

The tissue-mimicking material phantom, described previously in Chapter 5, was used to inves-

tigate if the alternative interpretation offered by the process of empirical mode decomposition 

and the Hubert spectrum could offer any advantages compared to conventional tissue harmonic 

imaging. In order to achieve this, the Panametrics 6 MHz, 100 % bandwidth transducer was 

used, which would allow signals in the range of 3 MHz to 9 MHz to be used. As for the work 

described in Chapter 5 which was based on the 3.5 MHz centre frequency transducer, the sen-

sitivity was rather low, which severely limited the imaging depth which was obtainable. The 

focal depth of the transducer was 50 mm and it was possible to obtain useful signals to a depth 

of around 70 mm. Apart from the different transducer, the experiment setup was exactly as 

illustrated in Figure 5.16. 

Initially, the transducer was driven with a 4 cycle duration pulse with a centre frequency of 4 

MHz, repeated at a pulse repetition frequency of 1 kHz. The centre frequency was chosen such 

that the second harmonic would be within the bandwidth of the transducer and the phantom 

was arranged such that the 3 mm wide slit would be visible. Figure 6.14 shows the time and 

frequency content of the received signal. The short-time Fourier transform portion of Figure 

6.14 clearly shows that the bulk of the signal energy is concentrated around 4 MHz, as would 

be expected. There is also a smaller, but still significant amount of energy distributed into the 

second harmonic, with a smaller portion remaining into the third harmonic. The contour plot 

of the short-time Fourier transform was produced without log scaling of the values, so the plot 

of the PSD gives a better idea of the relative signal power at each frequency. The short-time 

Fourier transform also demonstrates relatively poor localisation in both the time and frequency 

domains. 

However, attempting to apply the technique of tissue harmonic imaging by filtering around the 

second harmonic of this signal failed to give any improvement compared to simply using the 

fundamental frequency. It should have been possible to observe an increase in the available 

'imaging' depth, or the depth to which the signal contained useful information, though in prac-

tice this was not the case. It was known that the SNR of the single crystal ultrasound system 
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Figure 6.13: Hubert spectra of the first eight signal segments captured with the hydrophone at 
progressive distances from the transducer illustrating that the increase in distor-
tion causes a corresponding increase in the amplitude of the intra-wave frequency 
modulation, rather than spreading signal energy into harmonics of the centre fre-

quency. 
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Figure 6.14: Time and frequency analysis of 4 MHz signal. 
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was substantially lower than that of a clinical scanner and it was therefore felt that this was the 

likely cause of the 'failure' of tissue harmonic imaging applied to signals captured with this 

system. The amplitudes of the signal received at the second harmonic are very low, therefore a 

high SNR is required to be able to detect them. 

It has been shown that the combined techniques of Empirical Mode Decomposition and the 

Hilbert spectrum are able to offer significantly better localisation in time and frequency and 

that they offer an alternative view of the nonlinear distortion in terms of an intra-wave fre-

quency modulation. Applying the EIvID process to the signal being considered here gave 11 

Intrinsic Mode Functions, which may be seen in Figure 6.15, along with the overall trend. The 

Hilbert spectrum for a small portion of this 4 MHz signal may be seen in Figure 6.16. These 

results clearly demonstrate the presence of an intra-wave frequency modulation and in contrast 

to the short-time Fourier transform results, do not show any signal energy at the harmonics 

of the fundamental. Only a short portion of the signal was analysed at a time for the sake of 

clarity of the figures. In this case, the portion chosen was from the top of the phantom, so the 

first 0.5 mm corresponds to just water following which the signal is due to backscatter from 

the TMM. Figure 6.17 shows similar results for a different portion of the signal covering the 

3 mm slit. These results were taken to indicate that it was possible to observe an intra-wave 

frequency modulation occurring in signals which are the result of back-scatter from tissue mim-

icking material. Since the Hubert spectra are obtained essentially by plotting the instantaneous 

frequencies of the intrinsic mode functions and given that the intra-wave frequency modulation 

has been shown to be a result of the nonlinear propagation, then this leads to the conclusion 

that it should be possible to achieve similar results to tissue harmonic imaging using the em-

pirical mode decomposition technique. As has been stated above,'tissue harmonic imaging is 

concerned with extracting the information from a signal which is due to the way the nonlin-

ear properties of the medium through which it has propagated have changed the shape of the 

waveform. Empirical mode decomposition appears to offer an alternative way of obtaining this 

information. 

Close inspection of the signal IMFs, shown in Figure 6.15, revealed that the second IMF ap-

peared to contain information to a greater depth than either the first IMF or the original signal. 

This is shown more clearly in Figure 6.18. In this case, it is important to note that the ampli-

tudes of the signal envelopes have been normalised to aid comparison and that in reality, the 

magnitude of the second IMF was significantly smaller than that of the original signal envelope. 
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Figure 6.16: Hubert spectrum for short portion of 4 MHz signal. 

The apparent increase in depth at which useful information can be obtained was confirmed by 

plotting the SNR against depth, as shown in Figure 6.19. The SNRs were calculated by finding 

the mean noise amplitude over a 1000 sample region prior to the backscattered signals being re-

ceived and plotting the ratio between the current amplitude and this figure against depth. From 

these results, it was observed that at a depth of 80 mm, the peak SNR of the second IMF was 

around 4 dB higher than that of the original signal. However, it was found that this apparent im-

provement was approximately the same as would be gained using a 100 % bandwidth, bandpass 

filter centred on the fundamental. It was therefore concluded that the intrinsic mode function 

did not extend the available imaging depth. 

Figures 6.20 and 6.21 show the results obtained when the setup used above was driven with a 6 

MHz signal and a 9 MHz signal respectively. In both of these cases, the second harmonic of the 

signal would be beyond the bandwidth of the transducer, so that the results from filtering around 

the second harmonic are just random noise. However, the results from extracting the second 
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Figure 6.17: Hubert spectrum for short portion of 4 MHz signal. 

intrinsic mode function, as described above, demonstrate that this technique still produced good 

results despite the bandwidth limitations. 

The above experiments were repeated using the 3.5 MHz centre frequency transducer, firstly 

using a transmit frequency of 1.75 MHz which would allow the second harmonic frequency 

(3.5 MHz) to be within the transducer bandwidth, followed by signals at the centre frequency 

(3.5 MI-[z fundamental, 7 MHz second harmonic) and at 5.25 MHz, with a second harmonic 

at 10.5 MHz. Looking initially at the 1.75 MHz signals, as shown in Figure 6.22 and their 

corresponding short-time Fourier transforms shown in Figure 6.23 demonstrated two interesting 

results. Firstly, it was observed that with a pulse length of 4 cycles, the bandwidth of the 

resulting signal was too high and it was not possible to observe any second harmonic energy. 

An attempt was made to improve this situation by increasing the pulse length to 8 cycles, which 

has the expected effect of reducing the bandwidth. However, the second interesting observation 

was that neither of these two short-time Fourier transforms showed any significant energy at 
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Figure 6.19: Comparison of the SNRs of the original signal and of the second IMF, clearly 

showing that the SNR for the latter falls off more slowly with depth. 
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Figure 6.20: Comparison offundamental and second harmonic filtering of the 6 MHz signal 
with the second IMF The second harmonic frequency of 12 MHz was beyond 
the bandwidth of the transducer and so was greatly suppressed, however, the 
second IMF clearly shows improvement over the fundamental signal in terms of 
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Figure 6.21: Comparison of fundamental and second harmonic filtering of the 9 MHz signal 
with the second IMF In this case the second harmonic frequency was 18 MHz, 
which was well beyond the maximum frequency of the transducer (9 MHz), hence 
the extremely low magnitude of the second harmonic signal. However, the second 
IMP still shows significant improvement. 
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Figure 6.22: Plot of a section of two of the 1.75 MHz signals, with pulse lengths of 4 cycles 
(top) and 8 cycles (bottom). 

the second harmonic, in contrast to the results obtained for the 4 MHz signal and show in 

Figure 6.14 above. The reason for this may be seen by looking back at Figure 3.6, which shows 

the frequency response of the receiver amplifier, which peaks between 1 MHz and 2 MHz, 

corresponding exactly to the frequency of the transmit signal. The difference between the 

amplifier response at 1.75 MHz and 3.5 MHz was approximately 5 dB, whereas the difference 

between 4 MHz and 8 MHz was only around 3 dB. Therefore, the difference in received signal 

energy between the fundamental frequency of 1.75 MHz and the second harmonic of 3.5 MHz 

was much greater than between 4 MHz and 8 MHz. 

The mechanical scanner described in Chapter 3 was used to collect signals over the whole width 

of the phantom. The scan speed and pulse repetition frequency were set such that 128 lines 

would be captured. Figure 6.24 shows the results obtained and compares the effectiveness of 

filtering around the fundamental and the second harmonic for each of the transmit frequencies 

described above. As would be expected given the frequency response of the amplifier, filtering 

around the second harmonic frequency does not appear to offer any advantage. Similar results 

were obtained for the 8 cycle pulse length signals, as shown in figure 6.25. 
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Figure 6.23: Short-time Fourier transforms of the two low frequency signals shown in Figure 
6.22. 

The combined techniques of Empirical Mode Decomposition and the Hubert spectrum have 

already been shown to be able to offer an alternative time-frequency view of a signal, therefore 

using these techniques with the signals from the lower frequency transducer gave the results 

shown in Figures 6.26 to 6.28. These results appear to demonstrate that the bulk of the signal 

energy is concentrated at around 1.8 MHz in all cases, even when the transmit frequency was 

higher. This was thought to reflect the frequency response of the amplifier and it was found that 

increasing the signal energy by increasing the length of the transmitted pulses from 4 cycles 

to 8 cycles gave much better results. These results may be seen in Figures 6.29 to 6.31. In 

all cases, these results clearly indicate the presence of signal energy at the transmit frequency. 

Figure 6.29 clearly .show the presence of an intra-wave frequency modulation, particularly in 

the region between 35 mm and 40 mm, which corresponded to the higher energy reflected 

signals from the edges of the slit. It was not possible to observe such an intra-wave frequency 

modulation with the higher frequency signals when the Hilbert spectra are plotted in this way 

because they become too broken up. 

The results obtained with the 6 MHz centre frequency transducer, for transmit frequencies up to 
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Figure 6.24: Fundamental and second harmonic images produced with the low frequency 
transducer and the mechanical scanner, with a pulse length of 4 cycles. 
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Figure 6.25: Fundamental and second harmonic images produced with the low frequency 
transducer and the mechanical scanner, with a pulse length of 8 cycles. 
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Figure 6.26: Hubert spectra of]. 75 MHz signals, with a pulse length of 4 cycles. 
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Figure 6.27: Hubert spectra of 3.5 MHz signals, with a pulse length of 4 cycles. 
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Figure 6.28: Hubert spectra of 5.25 MHz signals, with a pulse length cf 4 cycles. 
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Figure 6.29: Hilbert spectra of 1.75 MHz signals, with a pulse length of 8 cycles. 

162 



3.5 MHz 
5,  
E 10 

25 	30 	35 	40 

5.25 MHz 
5, 
E 5 

25 	30 	35 	40 

Empirical Mode Decomposition for Tissue Harmonic Imaging 

I 	
III 	

I 	
II 

21 	p ,IIM1 I  II  

I L :vib\i/ 

25 	30 	35 	40 
Depth [mm] 
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Figure 6.32: Images produced by summing the first two intrinsic mode function images for each 
of the transmit frequencies, for the 4 cycle pulse length signals. 

9 MHz, clearly showed that the intrinsic mode functions could continue to contain significant 

useful information, even when the transmit frequency was increased right up to the transducer 

limit. This was also observed to be the case with the signals from the lower frequency trans-

ducer, although in this case it was found that forming images from the sum of the first two 

intrinsic mode functions appear to give very good results, with clearer definition of the slit than 

fundamental imaging in all cases. These results are shown in Figures 6.32 and 6.33 for the 4 

and 8 cycle pulse lengths respectively. As would be expected, the higher frequency signals 

give greater resolution of the slit, while increasing the pulse length degrades this somewhat 

compared to the equivalent frequency shorter pulse length case. 
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Figure 6.33: Images produced by summing the first two intrinsic mode function images for each 
of the transmit frequencies, for the 8 cycle pulse length signals. 
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Figure 6.34: Example in-vivo data presented in rectilinear format. 

6.3.3 Clinical Scanner Data 

The Philips SONOS 5500 clinical scanner was used to collect in-vivo data from a healthy vol-

unteer. The transducer used was of the form of a 128 element phased array, with a transmit 

frequency of 1.9 MHz. The volunteer was arranged in a seated position and the scans were per-

formed via the parasternal long-axis view. An example of the results obtained may be seen in 

Figure 6.34, which has been annotated to highlight the key features. The techniques described 

above were applied to this data and images produced from the first three intrinsic mode func-

tions may be seen in Figure 6.35. It was felt that the image produced from the second IMF was 

clearer and had higher contrast than the image produced from the raw, original data. The two 

images may be seen side-by-side in Figure 6.36. Inspecting the IMFs of a single line from this 

data set revealed that the first two IMFs contained nearly all of the signal information, there-

fore, summing these two did not yield any significant improvement compared to the original, 

unprocessed data. Figure 6.37 shows the result from summing the first two IMFs. 
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Figure 6.35: Images produced from the first three IMPs of the in-vivo data. 

167 



20 40 60 80 100 120 20 40 60 80 100 120 

500 

1000 

1500 

2000 

2500 

3000 

3500 

500 

1000 

1 500 

2000 

2500 

3000 

3500 

Empirical Mode Decomposition for Tissue Harmonic Imaging 

Original Data 	 Second IMF 

Figure 6.36: Comparison of image produced from raw, original data (left) and second IMP 
(right). The image on the right is clearer with higher contrast. 

6.4 Summary and Conclusions 

The phenomenon of non-linear distortion leading to a change in the shape of an initially sinu-

soidal waveform has been known for some time. Results have been presented which clearly 

show this process occurring in a water tank and demonstrate the general explanation that the 

distortion causes energy to be spread over to harmonics of the fundamental frequency. 

The Fourier transform and Fourier analysis techniques have traditionally been used to analyse 

such effects. It has been shown that the harmonic components which appear to result from the 

nonlinear distortion are in reality due to the use of these techniques to look at signals which 

are non-stationary and non-linear, two conditions for which they are not valid. It is argued that 

while the harmonic components clearly represent a good mathematical model of the signal, 

they do not necessarily reflect an underlying physical process. 

The concept of instantaneous frequency has been introduced, along with the idea of intrinsic 

mode functions for which the instantaneous frequency can be defined at any point without am-

biguity. The technique of Empirical Mode Decomposition for the generation of such intrinsic 

mode functions has been introduced. These techniques, coupled with the Hilbert spectrum 
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have been shown to be able to offer an alternative interpretation of the non-linear distortion of 

a waveform based on the introduction of an intra-wave frequency modulation, rather than the 

spreading of energy into the harmonic frequencies. 

Results have been presented which clearly demonstrate the validity of this argument, both in a 

simple water tank arrangement with the signals being received by a wide-band hydrophone and 

in the case of back-scattered signals from a phantom constructed of tissue-mimicking material 

received using a 100 % bandwidth ultrasound transducer. 

As well as giving information about the intra-wave frequency modulation and hence the non-

linear distortion which is taking place, the EMI) method has been shown to be able to extract 

useful signal information, even in the case where the transmit frequency was such that the 

second harmonic would be well beyond the bandwidth limitations of the transducer. 

The results obtained with the 3.5 MHz centre frequency transducer were not as good as those 

for the 6 MHz transducer. This was felt to be due to the frequency response of the amplifier 

having a sharp peak in the region of 1.8 MHz, which meant that the difference between the 

fundamental frequency and the second harmonic frequency was much greater than in the case 

of the signals which were of higher frequency to start with. 

Basically, ultrasound imaging in general is based on the idea that the medium through which 

the wave is passing will modulate the amplitude of that wave. Images can therefore be built 

up by displaying this amplitude modulation. However, the idea of the intra-wave frequency 

modulation leads to an extension of this whereby the medium not only modulates the amplitude, 

but also the frequency of the original signal. Currently, ultrasound systems seem to ignore this 

additional information. Even tissue harmonic imaging doesn't really make use of it directly, 

since it is based around producing images from the intensity of a few of the components of 

the Fourier transform of the signal. The phase-inversion method of tissue harmonic imaging, 

of course, is different, but this technique also fails to make use of this additional frequency 

information. 
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Chapter 7 
Conclusions 

7.1 Introduction 

The current trend in echocardiography appears to be one of greater quantification of the results 

obtained, however for any significant improvements to be made it will be necessary for the 

current technology to be improved significantly. In the light of this, the principle aim of this 

thesis was to investigate the use of more modern signal processing techniques and to determine 

if these would enable any improvement in the degree of quantification achievable. According 

to the literature, there has been a significant amount of work done in the area of quantifying 

the results obtained using this technique of Doppler tissue imaging. Much of this research has 

focused on using the estimated velocities to calculate velocity gradients, which are inherently 

immune to a number of factors, such as Doppler angle and global motion, which would oth-

erwise corrupt the result and decrease the accuracy of the quantification. However, it was felt 

that the accuracy of the velocity estimation techniques used might be insufficient for any form 

of reliable quantification and there appears to be some evidence in the literature to back this up, 

see Kowalski et al. [52] who demonstrate that the technique of estimating the strain from the 

velocity gradient suffers from poor reproducibility. They go on to conclude that this could be, 

in part, due to problems caused when the difference between the two velocities used to estimate 

the gradient is small compared to the accuracy of the initial velocity measurements. Therefore, 

any technique which could improve the accuracy of these estimations would be of significant 

benefit. 

7.2 Doppler Tissue Imaging 

Chapter 4 focused on the accuracy of the existing velocity estimation techniques and intro-

duced the concept of using correlation-model based methods in the form of the cross-correlation 

model and the complex cross-correlation model estimators. Although neither of these estima-

tors are new in any way, it is believed that the work in this thesis forms the first proper analysis 
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of their performance with a view to using the estimations for further analysis, such as strain or 

strain-rate imaging. 

One of the significant problems for Doppler tissue imaging is that it is necessary to capture 

multiple lines for each velocity line of the resulting image. This is because the velocity esti-

mation is usually performed using the cross-correlation over two or more signals to determine 

the extent to which the scatterers have shifted in the time between each line. There is an ever 

greater demand for higher imaging frame rates and this effectively limits the number of lines 

which can be used for each image (velocity) line to two. Therefore, it is only possible to use 

cross-correlation of these two signals to estimate the velocity. The results presented in Chapter 

4 clearly demonstrate that this method is able to measure the velocity with errors of the order 

of 10 % to 20 %, which confirms the figures quoted in the literature. 

The correlation-model based techniques are based on forming a two dimensional model of the 

cross-spectrum of a series of signals and then using the Weiner-Khinchin relation to transform 

this into a model for the cross-correlation. Given that the actual cross-correlations can be esti-

mated from a set of received signals, it is possible to use these to work backwards to calculate 

the model parameters, which includes a term for the temporal frequency. This frequency is 

equivalent to the Doppler. shift that would be caused by the motion of the scatterers and so it is 

possible to arrive at an estimation for the velocity. 

Results have been presented for both of these techniques which clearly demonstrate that the 

cross-correlation model estimator gives an accuracy which is similar to simply using the cross-

correlation of two signals, but the complex cross-correlation estimator gave a near order of 

magnitude improvement, with errors of the order or 1 % to 2 % in the best case. Using velocity 

measurements which are this much more accurate would clearly have an impact on the repro-

ducibility of any further estimations derived from them and it would be very interesting to carry 

out further work to investigate what the actual impact would be. 

Simulations based on the Field II ultrasound simulation engine were used to test the noise 

performance of all of the techniques and it was observed that they were all fairly similar. In 

all cases, there was a threshold signal-to-noise ratio of around 30 dB to 40 dB, above which 

they all achieved maximum performance. In the case of the correlation model based estimators 

it was observed that the estimated velocity rapidly fell to zero when the SNR fell below the 

threshold between 30 dB and 40 dB, which caused the percentage error to settle in the region of 

172 



Conclusions 

100 %. However, the time domain cross correlation estimator displayed a more gradual decline 

in accuracy with falling SNR. 

The degree in improvement in accuracy of the complex cross correlation model based estimator 

comes at the expense that the estimator requires the use of more temporal domain samples. 

Indeed, the best results were obtained when the complex cross-correlation model estimator was 

used with 64 temporal domain samples. Since the velocities encountered in Doppler tissue 

imaging contexts are fairly low there is a limit on the maximum pulse repetition frequency 

which can be used. All of the results presented in Chapter 4 were obtained using a PRF of 

1 kHz, which for the case of 64 temporal domain samples, would equate to 64 ms to capture 

enough data to produce a single line. Obviously this would render producing two dimensional 

images at an acceptable frame rate (25 f.p.s. or higher) impossible. 

Originally, echocardiography was of the form of a single scan line on an oscilloscope, called A-

mode (amplitude mode). The requirement to be able to visualise changes over time caused this 

to be developed into M-mode (motion mode). This was later developed into the 2D imaging 

form that is used today because of a requirement to get a better understanding of the spatial 

geometries involved. However, the M-mode scans have the advantage that it is only plotting a 

single spatial line over time, therefore enabling the technique to get much higher frame rates 

then would be possible for 2D images. Because of this, M-mode scanning allows much more 

time per line, so the use of this imaging technique would make it possible to make use of up to 

64 temporal domain samples to perform the velocity estimations. 

Although the use of M-mode scans may seem like a step backwards, it was felt that the degree 

of improvement in the accuracy of the velocity estimations would more then make up for the 

lack of 2D geometric information. Even the most modern clinical scanners still support M-

mode scanning since it is still the only way to reliably visualise the motion of the heart tissue 

with a sufficiently high temporal resolution to be able to analyse the motion of some of the 

faster moving parts. 

The overall conclusion from the results presented in Chapter 4 was that for the new techniques 

designed to improve the quantification of Doppler tissue imaging, such as strain imaging, to 

be reliable it would be necessary to significantly improve the accuracy of the original velocity 

estimations. This could be achieved by using the complex cross-correlation model based esti-

mator, although this requires many more temporal domain samples to work effectively. This 
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would render it unable to produce 2D images, but it would work very well with colour M-

mode. It was therefore argued that for truly quantitative and above all, reproducible results, it 

will be necessary to move away from 2D imaging and return to the older imaging technique of 

M-mode. 

7.3 The Fractional Fourier Transform and Coded Excitation 

The inspiration behind Chapter 5 was the idea that further performance improvements might 

be obtained by changing the form of the transmitted signal. The results in Chapter 4 clearly 

indicated that there was an optimum pulse length of 2 cycles and pulses which were shorter 

or longer then this did not yield as accurate velocity estimates. This is clearly at odds with 

the requirements for producing high resolution images because the longer pulse will lead to 

a reduction in the axial resolution. For the best images, a pulse length of only 1 cycle is 

generally used. As a result of this, it is believed that clinical scanners generally use longer 

pulses for the velocity estimation part of the process (it is not possible to determine this because 

the manufacturers do not reveal such details easily). This means that they have to transmit 

separate signals for producing the image and for producing the velocity estimations, or accept 

a degradation in the quality of the gray-scale image when using DTI. 

Chapter 5 introduced the idea of coded excitation, which is a technique that has been used in the 

fields of RADAR and SONAR for many years because it allows longer signals to be used with-

out sacrificing the axial resolution. However, up take of the technique for medical ultrasound 

imaging has been slow because the bandwidths of most ultrasound transducers are too narrow 

and this limits the effectiveness of any coding scheme. However, G.E. [89] now manufacture 

ultrasound scanners which use coding schemes similar to the Golay codes described in Chapter 

5. 

An alternative to this form of coding is to use linear, frequency modulated chirps. Signals 

such as this are used extensively in SONAR and are also used by some species of bats and 

dolphins for echo location. When the received signal is processed using a matched filter, the 

axial resolution of the result is inversely proportional to the bandwidth of the transmitted signal 

and is no longer dependent on the length of the signal. This makes it possible to use longer 

signals without sacrificing axial imaging resolution. These longer signals have a higher average 

energy which enables images to be formed of features deeper inside the body, without having 
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to increase the peak energy which is known to have potentially damaging consequences. 

Chapter 5 introduced the fractional Fourier transform and demonstrated the effectiveness of us-

ing this technique to process signals received after the transmission of approximately linear FM 

chirps. Results were presented which clearly demonstrate that this technique is able to produce 

levels of pulse compression similar to those obtained by matched filtering, but without the need 

to a-priori knowledge of the transmitted signal. This is possible because the chirp parameters 

may be derived from the received signal by evaluating a series of fractional Fourier transforms 

over a number of different transform orders and searching the resulting two-dimensional data 

set for local maxima, which would indicate significant peaks. Although this process is compu-

tationally very expensive, it would only be necessary to perform it once for each set of received 

signals where the parameters of the transmitted signals were not changed. To obtain optimum 

performance, a matched filter should be designed to match the signal which actually leaves 

the transducer and enters the body. The impulse response of the transducer used will alter the 

shape of the signal as it is transmitted, which means that an optimum matched filter should be 

designed with knowledge of the transducer impulse response. Although the nature of the trans-

mitted signal will always be known at 'design time' in the medical ultrasound context, there is 

some potential advantage in a technique which could automatically adapt ,to a different signal 

I transducer arrangement. The fractional Fourier transform method demonstrated in Chapter 5 

would be able to adapt in such a way. 

Results were also presented which demonstrate that it is possible to isolate key signal compo-

nents in the transform domain by windowing around significant peaks and then inverting the 

transform to recover the time-domain signals which caused those peaks.,  Signals from a test 

phantom consisting of a cylinder of tissue mimicking material with three different size slits cut 

into it were used to demonstrate that the positions of the recovered time-domain signals gave• 

very accurate measurements of the positions and relative dimensions of the phantom. 

Given that the fractional Fourier transform is not time invariant, it was possible to derive a 

method for directly relating the positions of features in the transform domain to their cor-

responding positions in the time domain without having to invert the transform. Using this 

method, it was clearly demonstrated that the fractional Fourier transform was able to give re-

sults which not only had a similar degree of pulse compression to a matched filter, but which 

also had significantly reduced range lobes. It is believed that this is the first time such a rela-

tionship between the transform domain and the time domain has been demonstrated to offer a 
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reduction in the range side lobes. It was, however, noted that there was an error in the resulting 

positions, the reason for which was not known at the time of writing. It would be interesting to 

conduct further work to investigate the cause of this error. 

One significant caveat with the fractional Fourier transform is that is currently no formal def-

inition of the discrete transform. Two different implementations have been used in the work 

described in this thesis and the results clearly show ,that there is a significant difference be-

tween them. Work is currently underway to derive a formal discrete transform [65],  but until 

then it is necessary to use approximations. 

The fact that coded excitation allows longer signals to be used without sacrificing the imaging 

performance may have benefits in terms of producing velocity images, however there wasn't 

time to study this. Results have been presented which clearly demonstrate the possibility of 

using the fractional Fourier transform based approach for producing images, but it would be 

very interesting to conduct further investigation in to the possibility of estimating the velocity 

from these signals. 

In order to truly quantify the benefits of the fractional Fourier technique in terms of resolution 

enhancement and range side lobes, it would be necessary to perform experiments using a wire 

phantom. Such a phantom consists of a thin wire suspended in water such that it intersects 

with the ultrasound beam from the transducer. The transducer can the be moved to a series of 

different positions with respect to the wire and measurements of the received echo made. This 

would give a quantitative measure of the range and beam side lobes obtained. Further wires 

could be introduced with various spacings in order to give a measure of the resolution of the 

system. It is intended to carry out further work to implement just such an experiment with the 

fractional Fourier transform processing method. 

7.4 	Empirical Mode Decomposition and Tissue Harmonic Imaging 

The work described in Chapter 6 resulted formed an investigation into alternative ways of look-

ing at the received signals which focused on the use of the relatively new technique of empirical 

mode decomposition. This technique was first described by Huang et al. [88] in 1998 and is 

designed to break a single down into a series of intrinsic mode functions, each of which has a 

clearly defined instantaneous frequency at each sample. 
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The concept of instantaneous frequency defined as the rate of change of phase of a signal 

was introduced and it was explained that for this to be valid a signal has to be 'narrow band', 

although no precise definition of what would constitute 'narrow' in this context has been put 

forward [88].  Empirical mode decomposition was designed to over come this problem. 

It has been known for some time that the propagation of finite-amplitude acoustic waves in 

water is a highly non-linear process, however it was only relatively recently that it was demon-

strated that non-linear effects occur in tissue with waves of the frequencies and intensities used 

in medical ultrasound imaging. Previously, all interpretations of this process were based on 

analysis of the signals using Fourier based methods. This lead to the idea that the non-linear 

distortion was causing a progressive shift of signal energy from the fundamental frequency of 

the transmitted signal to the harmonics. This lead to the 'invention' of tissue harmonic imaging 

in the early 1990s which makes use of the signal energy which is shifted to the second har-

monic of the transmitted signal and it has been shown that this offers clear advantages in terms 

of clutter rejection and imaging depth. 

The results presented in the first section of Chapter 6 illustrate the process of non-linear dis-

tortion occurring for a simple 4 cycle sine wave transmitted using part of the single crystal 

ultrasound system. This clearly shows that as the distance between the source transducer and 

the hydrophone was increased, so the degree of distortion increased until shock formation oc-

curred. At this point, it is not possible for the wave to distort any further, so the amplitude 

diminishes quickly. 

The same signals were analysed using the combined, techniques of empirical mode decom-

position and the Hilbert spectrum and the results clearly demonstrated a difference to the re-

sults obtained using the Fourier transform. Instead of showing signal energy being shifted into 

the harmonic frequencies, the Hilbert spectrum demonstrated the occurrence of an intra-wave 

frequency modulation. The physical significance of an intra-wave frequency modulation was 

briefly discussed in Chapter 6, but a much more thorough analysis is given by Huang et al. [88]. 

Prior to this work, all the analysis performed on waveforms which have been distorted as a 

result of propagation through non-linear media has been based on Fourier analysis. It was 

argued in Chapter 6 that the apparent spreading of energy into the second and higher harmonic 

frequencies is a result of the use of Fourier based techniques and does not represent the physical 

situation. The results presented in Chapter 6 are the first to show that the non-linear distortion 
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of the waveform causes an intra-wave frequency modulation. 

Signals were captured from a tissue mimicking material phantom using the single crystal ul-

trasound system with wide-band transducers with center frequencies of 3.5 MHz and 6 MHz. 

Analysis of these signals using empirical mode decomposition and Hubert spectrum clearly 

demonstrated that it was possible to detect the occurrence of the intra-wave frequency mod-

ulation even with a comparatively narrow band transducer (compared to the hydrophone) in 

signals resulting from scattering within a phantom. 

As well as producing the Hilbert spectra, the technique of empirical mode decomposition lead 

to the generation of .a series of intrinsic mode functions. Each signal which was analysed 

generally resulted in around 8 to 10 IMFs and it was observed that the second of these appeared 

to contain significant signal information which was different to that observed in the original 

signal. Results were presented clearly showing that the second IMF continued to contain useful 

signal information when the frequency of the transmitted signal was increased right up to the 

limit of the bandwidth of the transducer, while bandpass filtering around the fundamental or 

second harmonic frequencies obscured most of the information about the phantom. 

The mechanical scanner was used with the 3.5 MHz transducer to acquire pseudo 2D images of 

the phantom and the resulting images for pulse lengths of 4 and 8 cycles and both fundamental 

and second harmonic filtering were presented. It was observed that in these cases, good results 

could be obtained by summing the first two IMFs resulting from each signal. Images produced 

using this technique were presented and compared to those resulting from fundamental and 

harmonic filtering. The results clearly demonstrated that the images resulting from summing 

the first two IMFs were of higher contrast compared to 'conventional' imaging and the 1 mm 

wide slit was more clearly defined. This was particularly noticeable in the case of the 8 cycle 

pulse length signals where the slit was more or less completely obscured with both fundamental 

and second harmonic filtering. Also, in both of the conventional filtering cases, the signal from 

the 3 mm wide slit at the bottom of the phantom was very weak, but it is clearly visible in the 

IMF images. 

The clinical scanner was used to capture signals from a healthy volunteer and the resultant 

image after filtering around the second harmonic was presented. The signals were then broken 

down into IMFs using the empirical mode decomposition technique and images were produced 

from the first three IMFs. These results clearly showed that the second IMF appeared to contain 
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useful signal information. The image produced using the second IMFs was compared to the 

original and it was observed that this method was able to give higher contrast and more clearly 

defined features. Producing an image from the sum of the first two IMFs was observed to give 

a result which was very similar to the original, unfiltered data. 

7.5 Summary 

Although the technique of echocardiography is well suited to the task of studying the motion 

of cardiac structures, improvements in the B-mode contrast and spatial resolutions, as well as 

DTI velocity resolutions will be required if truly quantitative results are to be obtained. The 

work described in this thesis has clearly shown that such improvements are possible and has 

looked at three different techniques by which this might be achieved. Results have been pre-

sented which clearly demonstrate the the use of the complex cross correlation model velocity 

estimation technique can lead to a near order of magnitude improvement in the accuracy of 

DTI, while the fractional Fourier transform has been shown to be an effective technique for 

processing the echo signals resulting from the transmission of linear FM chirp signals. The 

combined techniques of empirical mode decomposition and the Hilbert spectrum were used 

to demonstrate an alternative interpretation of the phenomenon of non-linear wave propaga-

tion, which was based on the generation of an intra-wave frequency modulation. Results were 

presented which demonstrated that it was possible to use the EMD technique to significantly 

improve the contrast resolution obtainable with 2D B-mode images. 

7.6 Future Work 

The work presented has highlighted several interesting avenues for further exploration. Firstly, 

further work should be done to investigate the accuracy of strain estimations made using the 

velocity estimation techniques described in Chapter 4. Ultimately this would lead to performing 

in-vivo studies to determine the clinical effects of the choice of velocity estimation technique. 

The fractional Fourier transform work described in Chapter 5 could be extended by using a wire 

phantom to measure the resulting point-spread functions, which would give a definite measure 

of the improvement in imaging resolution which could be obtained. It would be beneficial 

to develop an open ultrasound system which would offer better 2D imaging facilities, while 
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allowing complete control over the transmitted signal. With such a system, it would be easier 

to assess the degree of improvement in imaging offered by this technique. 

The combined techniques of empirical mode decomposition and the Hubert spectrum have 

demonstrated the presence of an intra-wave frequency modulation in non-linearly propagated 

signals. However, further investigations should be carried out into the exact nature of the intra-

wave frequency modulation, specifically looking at what extra information about the propagat-

ing medium might be extracted. 
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