
MECHANISM and MODULATION

OF EARLY GLUCOCORTICOID INHIBITION IN

ANTERIOR PITUITARY CORTICOTROPHS

Michael J. SHIPSTON

Thesis for the Degree of
Doctor of Philosophy

University of Edinburgh
1992



To my parents



Declaration

DECLARATION

This study was carried out under the guidance of Dr Ferenc A. Antoni at the MRC

Brain Metabolism Unit, Department of Pharmacology, University of Edinburgh

between October 1989 and September 1992.

The experimental work presented in this thesis is my own and this thesis has been

composed by myself. Where contributions from others have been presented these are

acknowledged in the text.

Michael J. SHIPSTON

MRC Brain Metabolism Unit

Department of Pharmacology

University of Edinburgh

1 George Square

Edinburgh EH8 9JZ

October, 1992

Page i



Abstract

ABSTRACT

Corticotrophin releasing factor (CRF-41) and arginine vasopressin (AVP) are the
principal hypothalamic mediators of adrenocorticotrophin (ACTH) secretion by the
anterior pituitary gland, while adrenal corticosteroids are the major inhibitors of ACTH
output. The aim of this thesis is to characterize in vitro the mechanism and potential
modulation of early glucocorticoid inhibition of stimulated ACTH release in anterior
pituitary corticotrophs.

In perifused rat anterior pituitary corticotrophs early (<2h) glucocorticoid inhibition of
CRF-41- and AVP-stimulated ACTH release was mediated through type II
glucocorticoid receptors and the induction of new mRNA and protein.
Glucocorticoids inhibited the amount of ACTH released by either secretagogue, but
had no effect on the time-course of the ACTH secretory response. Significantly, the
characteristics of early glucocorticoid inhibition were dependent on the nature of the
secretagogue as well as the relative timing of glucocorticoid application. ACTH
secretion stimulated by AVP, that acts through the inositol phosphate/protein kinase C
pathway, was invariably suppressed by glucocorticoids. In contrast, CRF-41, that
activates the cAMP/protein kinase A pathway, inactivated early glucocorticoid
inhibition of CRF-41-, but not AVP- stimulated ACTH release when applied at the
start of glucocorticoid exposure. When CRF-41 and AVP were applied in
combination the characteristics of early glucocorticoid inhibition resembled those
observed using CRF-41 alone. Qualitatively similar results were obtained in the
mouse corticotroph cell line, AtT20 D16:16, in static incubation: CRF-41, but not
phorbol dibutyrate ester (that activates protein kinase C), blocked early inhibition of
CRF-41-stimulated ACTH release. The precise mechanism of CRF-41-inactivation of
early glucocorticoid inhibition is unknown, however, the time-course of the effect
suggests that CRF-41 blocks glucocorticoid-induced gene transcription. To test this
hypothesis and further explore the mechanism(s) of early glucocorticoid inhibition in
corticotrophs, the mouse corticotroph cell line, AtT20 D16:16, was used to
characterize early glucocorticoid-induced protein(s). Functional evidence in AtT20
D16:16 cells, as well as other systems, suggests that early glucocorticoid inhibition
involves the suppression of intracellular free calcium levels. Hence, these studies
were confined to known calcium-binding proteins. The levels of the calcium-binding
proteins lipocortin (annexin) I and chromogranin A were not altered during the period
when early glucocorticoid inhibition was maximal in AtT20 cells. Importantly, the
mRNA and protein encoding the calcium receptor protein, calmodulin, was induced
within the timescale of early inhibition. Induction of calmodulin mRNA was
dependent on ongoing protein synthesis suggesting that additional glucocorticoid
activated transcription factors may be required for the enhancement of calmodulin gene
transcription. Pretreatment with CRF-41, but not phorbol dibutyrate ester, blocked
glucocorticoid-induction of calmodulin mRNA accumulation supporting the
hypothesis that inactivation of early glucocorticoid inhibition by CRF-41 involves
blockade of glucocorticoid-induced gene transcription. Several other glucocorticoid-
induced mRNAs were isolated using subtraction hybridization screening of an AtT20
D16:16 cDNA library and await further characterization.

Taken together, these data implicate calmodulin as a glucocorticoid-induced mediator
of early inhibition in anterior pituitary corticotrophs. Furthermore, CRF-41, through a
cAMP-dependent mechanism, can prevent early glucocorticoid action by the blockade
of glucocorticoid-induced gene transcription, as exemplified by the suppression of
glucocorticoid-induced calmodulin mRNA accumulation.

Page ii



Acknowledgements

ACKNOWLEDGEMENTS

It has been a pleasure and a privilege to work as a PhD student with my mentor Dr

Ferenc A Antoni. I am indebted to his unfailing guidance and enthusiasm and

especially his encouragement to broaden my scientific expertise.

I am grateful for the wonderful working atmosphere of Lab 208B and to all

its members past and present: Dr Mary Woods for teaching me the basics of tissue

culture; Dr Anne Pennington for her insights into electrophysiology and latterly Dr

Anne Phelps and Susan Smith.

I wish to thank Professor George Fink and all the members of the MRC

Brain Metabolism Unit, Edinburgh along with the staff and students of the Dept. of

Pharmacology for providing an encouraging and friendly atmosphere in which to

pursue my PhD. In particular: Dr Eve Lutz and Roberta Rosie for all their advice

and support during my foray into molecular biology; Jim Simpson for all the two

dimensional gel electrophoresis; Jean Hunter and the animal house staff for their

expert care of all animals used in this study and John Bennie for assistance during

radio-iodinations.

I am grateful to colleagues worldwide for supplying me with antibodies,

cDNA clones and other materials used during this study.

The work presented in this thesis was supported by a Medical Research

Council postgraduate research studentship.

Finally I would like to thank my friends, family and especially Jenny for all

their help, support and encouragement over the years.

Page iii



Contents

CONTENTS

Page
DECLARATION i

ABSTRACT ii

ACKNOWLEDGEMENTS iii

CONTENTS iv

ABBREVIATIONS x

LIST OF FIGURES xii

LIST OF TABLES xv

PUBLICATIONS xvi

1 INTRODUCTION

1.1 General introduction 1

1.2 The anterior pituitary corticotroph as a model of early
glucocorticoid inhibition 6

1.3 Aims and Objectives of the Thesis 8
1.4 Mechanism of CRF-41- and AVP- stimulated ACTH secretion 10

1.4.1 General considerations 10

1.4.2 The anterior pituitary corticotroph as the target cell type- evidence
formultiple corticotroph subpopulations 12

1.4.3 Intracellular mechanisms of CRF-41 and AVP- stimulated ACTH

secretion 13

1.4.4 Conclusion 19

1.5 Early glucocorticoid inhibition of pituitary ACTH secretion 20
1.5.1 General considerations 20

1.5.2 Glucocorticoid receptors: structure and function 23

Page iv



Contents

1.5.3 Characterization of the time domain of early glucocorticoid inhibition
in vitro 27

1.5.4 Involvement of type II glucocorticoid receptors and induction of
mRNA and protein synthesis in early glucocorticoid inhibition 30

1.5.5 Modulation of early glucocorticoid inhibition 32
1.5.6 Conclusion 34

1.6 Mechanism(s) of early glucocorticoid inhibition 35
1.6.1 General considerations 35

1.6.2 Modulation of receptor / signal transduction pathways 35
1.6.3 Suppression of intracellular free Ca2+ responses 38
1.6.4 Hyperpolarization of the membrane potential 39
1.6.5 Glucocorticoid-induced protein s involved in early inhibition 40
1.6.6 Conclusion 41

1.7 Summary 43

2 MATERIALS AND METHODS

2.1 Materials 45

2.1.1 Animals 45

2.1.2 Clonal mouse corticotroph cell line, AtT20 D16:16 45
2.1.3 Biochemicals 46

2.2 Perifusion of anterior pituitary gland segments 48
2.2.1 Apparatus construction 48
2.2.2 Perifusion protocol 50
2.2.3 Calculation of ACTH released by a secretagogue stimulus 51

2.3 Static ACTH release experiments 53
2.3.1 Pituitary fragments 53
2.3.2 Primary cultures of anterior pituitary cells 53
2.3.3 AtT20 D16:16 corticotroph cell line 54

2.4 Radioimmunoassay for ACTH and cAMP 55
2.4.1 Iodination of ACTH and cAMP using the Iodogen™ method 55
2.4.2 Measurement of ACTH by radioimmunoassay 57
2.4.3 Measurement of cAMP by radioimmunoassay 58

Page v



Contents

2.5 Protein labelling and isolation 61
2.5.1 Treatment and harvesting of AtT20 D16:16 cells for protein

isolation 61

2.5.2 Preparation of crude pellet and supernatant protein homogenates 61
2.5.3 Isolation of Ca2+-binding proteins from AtT20 D16:16 cells 61
2.5.4 32Phosphate labelling of cellular proteins in AtT20 D16:16 cells. 62
2.5.5 35S-methionine labelling of newly synthesized proteins in AtT20

D16:16 cells. 63

2.5.6 Protein determination 64

2.6 Protein gel electrophoresis 64
2.6.1 Two-dimensional gel electrophoresis 64
2.6.2 One dimensional SDS-PAGE and Western blotting 65

2.7 General molecular biology methods 67
2.7.1 Total RNA and Poly A+ mRNA extraction 68
2.7.2 Generation of radiolabelled subtraction probe 69
2.7.3 Random prime labelling of cDNA inserts 71
2.7.4 Northern blotting and hybridization 71
2.7.5 Maintenance and transformation of competent E. Coli cells 72
2.7.6 Plasmid DNA minipreps 73

2.8 cDNA Library construction 74
2.8.1 General description of vector and cDNA library construction 74
2.8.2 First strand cDNA synthesis 76
2.8.3 Second strand cDNA synthesis 76
2.8.4 Generation of uni-directional cDNA inserts 77

2.8.5 cDNA size fractionation on Sephacryl S-400 spin column 78
2.8.6 Ligation and packaging of cDNA into Uni-Zap XR™ vector 78
2.8.7 Amplification of primary cDNA library 79
2.8.8 Screening of dexamethasone-induced cDNA library 80
2.8.9 In vivo excision of pBluescript plasmid from Uni-ZAP-XR™

bacteriophage vector 81
2.9 Miscellaneous 81

2.9.1 Statistics 81

2.9.2 Densitometric analysis 81

Page vi



Contents

3 CHARACTERISTICS OF EARLY GLUCOCORTICOID
INHIBITION IN PERIFUSED RAT ANTERIOR

PITUITARY GLAND SEGMENTS

3.1 Introduction 83

Results

3.2 Early glucocorticoid inhibition of CRF-41-stimulated ACTH
release 84

3.2.1 Response to CRF-41 84
3.2.2 Effect of glucocorticoids on CRF-41-stimulated ACTH release 87
3.2.3 The relative timing of CRF-41 and glucocorticoid application is

essential for development of early glucocorticoid inhibition of CRF-
41-stimulated ACTH release 93

3.3 Early glucocorticoid inhibition of AVP-stimulated ACTH
release 103

3.3.1 Response to AVP 103
3.3.2 Effect of glucocorticoids on AVP-stimulated ACTH release 104
3.3.3 Early glucocorticoid inhibition of AVP-stimulated ACTH release is

independent of the relative timing of AVP and glucocorticoid
application 106

3.4 Interactions between CRF-41, AVP and glucocorticoids 112
3.4.1 Early glucocorticoid inhibition of AVP-stimulated ACTH release is

not modulated by CRF-41 112
3.4.2 AVP cannot inactivate early glucocorticoid inhibition of CRF-41 -

stimulated ACTH release 114

3.4.3 Early glucocorticoid inhibition of CRF-41/AVP-stimulated ACTH
release resembles that when CRF-41 is used alone 117

3.5 Discussion 119

3.5.1 Response to secretagogue stimulation: do CRF-41 and AVP
mobilize distinct pools of ACTH? 119

3.5.2 Involvement of type II glucocorticoid receptors and requirement for
mRNA and protein synthesis in the early inhibitory action of
glucocorticoids 122

3.5.3 Secretagogue context (nature and timing) determines the
characteristics of early glucocorticoid inhibition 124

Page vii



Contents

3.5.4 CRF-41 inactivates early glucocorticoid inhibition of CRF-41-, but
not AVP-, stimulated ACTH release 125

3.5.5 Putative mechanism(s) of CRF-41-inactivation of early
glucocorticoid inhibition 129

3.5.6 Physiological relevance of differential early glucocorticoid inhibition
of ACTH secretion 131

3.6 Conclusion 133

4 CHARACTERIZATION OF EARLY GLUCOCORTICOID
INDUCED PROTEINS IN THE MOUSE CORTICOTROPH

CELL LINE. AtT20 D16:16

4.1 Introduction 134

Results

4.2 Early glucocorticoid inhibition of CRF-41-stimulated ACTH
release in AtT20 D16:16 corticotrophs 136

4.2.1 Effect of glucocorticoids on CRF-41-stimulated ACTH release 136
4.2.2 CRF-41 inactivates early glucocorticoid inhibition of CRF-41 -

stimulated ACTH release 140

4.3 Characterization of known glucocorticoid-induced Ca2+-
binding, and other, proteins in AtT20 D16:16 corticotrophs 143

4.3.1 Lipocortin (annexin) I and chromogranin A 143
4.3.2 Calmodulin 146

4.3.3 Other mRNAs induced by glucocorticoids in the mouse T-
lymphocyte cell line, WEHI-7TG 152

4.4 Attempts to identify novel glucocorticoid-induced mRNAs and
proteins in AtT20 D16:16 corticotrophs 155

4.4.1 Subtraction hybridization screening of a cDNA library constructed
from dexamethasone-induced AtT20 D16:16 cells 155

4.4.2 2-D gel electrophoresis of Ca2+-precipitated, 35S-methionine- and
32Phosphate-labelled, proteins 156

Page viii



Contents

4.5 Discussion 165

4.5.1 Early glucocorticoid inhibition in AtT20 D16:16 cells 165
4.5.2 No evidence for involvement of lipocortin (annexin) I or

chromogranin A in early glucocorticoid inhibition in AtT20 D16:16
cells 167

4.5.3 Early glucocorticoid induction of calmodulin and its suppression by
CRF-41 in AtT20 D16:16 cells 168

4.5.4 Is calmodulin a generic mediator of early glucocorticoid action? 170
4.6 Conclusion 173

5 SUMMARY. CONCLUSIONS AND PERSPECTIVES

5.1 Introduction 174

5.2 Early glucocorticoid inhibition in anterior pituitary
corticotrophs: differential inhibition of ACTH release induced
by CRF-41 and AVP 175

5.3 Calmodulin: a role in early glucocorticoid inhibition in anterior
pituitary corticotrophs? 176

5.4 Future perspectives 179

REFERENCES I

PUBLISHED PAPERS XXII

Page ix



Abbreviations

ABBREVIATIONS

A260 Absorbance at 260nm
ACTH Adrenocorticotrophic hormone
ANF Atrial natriuretic factor
5'-AMP Adenosine 5'monophosphate
AtT20 Mouse clonal corticotroph cell line (subclones: Dl, D16v, D16:16)
ATP Adenosine triphosphate
AVh Amp-Volt hours
AVP Arginine vasopressin
B Corticosterone
bp Base pairs
BSA Bovine serum albumin
Ca2+ Calcium
CRF-41 41-residue corticotrophin releasing hormone
CaM Calmodulin
cAMP Cyclic adenosine 3',5'-monophosphate
cAMP-TME 2'-0-monosuccinyl cAMP tyrosyl methyl ester
cDNA Complimentary deoxyribonucleic acid
cGMP Cyclic guanosine 3',^'-monophosphate
cpm Counts per minute
cps Counts per second
8-CPT-cAMP 8-(4-chlorophenylthio) 3',5'-cyclic adenosine monophosphate
CREB cAMP response element binding protein
DAG Diacylglycerol
DMEM Dulbecco's modification of Eagle's medium
DMSO Dimethylsulphoxide
dNTP deoxy(nucleotide)triphosphate
DNA Deoxyribonucleic acid
DRB 5,6-Dichloro- 1-G-D-ribofluranosylbenzimidazole (transcription

inhibitor)
DTT Dithiothreitol
EDTA Ethylenediaminetetra-acetic acid
EGTA Ethylene glycol-bis-(B-amino ethyl ether)N,N'-tetra-acetic acid
FCS Foetal calf serum
h Hour
HPA Hypothalamic-pituitary-adrenal
IBMX Isobutylmethylxanthine
i.d. Internal diameter
EEF Isoelectric focussing
IP3 Inositol 1,4,5 triphosphate
Kd Kilodaltons
LCI Lipocortin (annexin) 1
min Minute
mRNA Messenger ribonucleic acid
OD26O Optical density at 260nm
PBS Phosphate buffered saline
PDE Phosphodiesterase
PdBu Phorbol 12,13 dibutyrate ester
pfu Plaque forming unit
PKA Protein kinase A
PKC Protein kinase C
PMSF Phenylmethylsulphonylfluoride
POMC Proopiomelanocorticotrophin

Page X



Abbreviations

PVN
RNA
RT

RU28362

RU38486

SDS
SDS-PAGE
SEM
SON
TCA
TFA
U

Paraventricular nucleus
Ribonucleic acid
Room temperature
1 IB, 17B-dihydroxy-6-methyl-17a-(l-propynyl)androsta-
1,4,6-trien-3-one: Type II glucocorticoid receptor agonist
17B-hydroxy-11B(4-dimethylaminophenyl-1)-17a(propy-nyl)-
estra-4, 9-dien-3-one: Type II glucocorticoid receptor
antagonist
Sodium dodecylsulphate
SDS polyacrylamide gel electrophoresis
Standard error of the mean

Supraoptic nucleus
Trichloroacetic acid
Trifluoroacetic acid
Units

Page xi



List of Figures

LIST OF FIGURES

Figure 1.1 The hypothalamic-pituitary-adrenal axis.

Figure 1.2 Hypothalamic pathways regulating adrenocorticotrophin
(ACTH) secretion from the anterior pituitary gland.

Figure 1.3 Intracellular second messenger pathways mediating CRF-
41- and AVP- stimulated ACTH release.

Figure 1.4 Genomic action of glucocorticoid hormones.

Figure 1.5 Current model of early glucocorticoid inhibition in anterior
pituitary corticotrophs.

Figure 2.1 Anterior pituitary gland column perifusion apparatus.

Figure 2.2 Time course of ACTH release in response to a stimulus of
CRF-41 or AVP in perifused rat anterior pituitary segments.

Figure 2.3 Purification of 125Iodine labelled ACTH on Sep-Pak ODS
cartridge.

Figure 2.4 Characterization of primary ACTH antiserum (AS6).

Figure 2.5 Generation of ss cDNA* probe used in cDNA library
screening strategy.

Figure 2.6 Schema for cDNA library construction in Uni-ZAP-XR™
vector.

Figure 3.1 Release of ACTH by perifused rat anterior pituitary
segments in response to CRF-41 and AVP.

Figure 3.2 ACTH release from typical perifusion experiments of rat
anterior pituitary segments.

Figure 3.3 Corticosterone inhibition of CRF-41-stimulated ACTH
release in perifused rat anterior pituitary segments.

Figure 3.4 Antagonism of RU28362 inhibition of CRF-41- stimulated
ACTH secretion from perifused rat anterior pituitary
segments by inhibitors of: a) transcription (actinomycin D)
and b) translation (puromycin).

Figure 3.5 Effect of the synthetic type II glucocorticoid agonist,
RU28362, on the profile of CRF-41-stimulated ACTH
release in perifused rat anterior pituitary segments.

Page

5

11

15

26

42

49

52

56

60

70

75

85

86

89

90

91

Page xii



List of Figures

Figure 3.6

Figure 3.7

Figure 3.8

Figure 3.9

Figure 3.10

Figure 3.11

Figure 3.12

Figure 3.13

Figure 3.14

Figure 3.15

Figure 3.16

Figure 4.1

Figure 4.2

Figure 4.3

Inhibition of CRF-41-stimulated ACTH secretion by a
continuous exposure to corticosterone started
simultaneously with a CRF-41 stimulus in perifused rat
anterior pituitary segments. 94

Early corticosterone inhibition of CRF-41-stimulated ACTH
secretion in perifused rat (Charles River) anterior pituitary
segments. 97

Dose response characteristics of CRF-41- and 8-CPT-
cAMP-stimulated ACTH secretion in anterior pituitary
segments in static incubation from Charles River and virally
infected Harlan Olac rats. 102

Effect of the synthetic type II glucocorticoid agonist,
RU28362, on the profile of AVP-stimulated ACTH release
in perifused rat anterior pituitary segments. 108

Antagonism of RU28362 inhibition of phorbol ester
stimulated ACTH release in rat anterior pituitary primary cell
culture in static incubation by the transcription inhibitor 5,6-
Dichloro-l-B-D-ribofluranosylbenzimidazole (DRB). 109

Corticosterone inhibition of AVP-stimulated ACTH release
from perifused rat anterior pituitary segments. 110

Inhibition of AVP-stimulated ACTH secretion by a
continuous exposure to corticosterone started
simultaneously with an AVP stimulus in perifused rat
anterior pituitary segments. Ill

Early corticosterone inhibition of CRF-41/AVP-stimulated
ACTH secretion in perifused rat anterior pituitary segments. 118

CRF-41 and AVP mobilize distinct pools of ACTH from
anterior pituitary corticotrophs. 121

Alternative models of CRF-41/glucocorticoid timing
interaction. 126

Proposed model of CRF-41 inactivation of early
glucocorticoid inhibition. 130

Reversal of dexamethasone inhibition of CRF-41-stimulated
ACTH release in AtT20 D16:16 cells by the transcription
inhibitor 5,6-Dichloro-1 -B-D-ribofluranosylbenzimidazole
(DRB). 138

CRF-41 inactivates early glucocorticoid inhibition in AtT20
D16:16 cells. 142

Northern blotting for lipocortin 1 mRNA in AtT20 DI and
D16:16 corticotrophs. 144

Page xiii



List of Figures

Figure 4.4 Immunoblotting for lipocortin 1 and chromogranin A protein
in AtT20 D16:16 corticotrophs. 145

Figure 4.5 Effect of dexamethasone on calmodulin mRNA expression
in AtT20 D16:16 corticotrophs and normal rat anterior
pituitary gland. 148

Figure 4.6 CRF-41 blocks dexamethasone-induced calmodulin mRNA
expression in AtT20 D16:16 cells. 149

Figure 4.7 Effect of phorbol dibutyrate, and the translation inhibitor,
puromycin, on dexamethasone-induced calmodulin mRNA
expression in AtT20 D16:16 cells. 150

Figure 4.8 Induction of immunoreactive calmodulin protein by
dexamethasone in AtT20 D16:16 corticotrophs. 151

Figure 4.9 Northern blotting for the glucocorticoid-induced clones 58
and 213, derived from theWEHI-7TG lymphocyte cell line,
in AtT20 D16:16 cells. 154

Figure 4.10 Representative autoradiographs of differential hybridization
screening of dexamethasone-induced clones from an AtT20
D16:16cDNA library. 158

Figure 4.11a Two-dimensional gel analysis of 33S-methionine
incorporation into newly synthesized cellular proteins in
control AtT20 D16:16 cells. 159

Figure 4.11b Two-dimensional gel analysis of 35S-methionine
incorporation into newly synthesized cellular proteins in
dexamethasone treated AtT20 D16:16 cells. 160

Figure 4.12a Two-dimensional gel analysis of Ca2+-precipitated proteins
from control AtT20 D16:16 cells. 161

Figure 4.12b Two-dimensional gel analysis of Ca2+-precipitated proteins
from dexamethasone treated AtT20 D16:16 cells. 162

Figure 4.13a Two-dimensional gel analysis of 32Phosphate incorporation
into total cellular protein of control AtT20 D16:16 cells. 163

Figure 4.13b Two-dimensional gel analysis of 32Phosphate incorporation
into total cellular protein of dexamethasone treated AtT20
D16:16 cells. 164

Figure 4.14 Current model of early glucocorticoid inhibition in anterior 172
pituitary corticotrophs.

Figure 5.1 Glucocorticoid-secretagogue interactions in anterior pituitary
corticotrophs. 177

Page xiv



List of Tables

LIST OF TABLES

Table 1.1 Physiological role of glucocorticoids in stress.

Table 1.2 In vivo characteristics of glucocorticoid feedback inhibition
of the hypothalamic-pituitary-adrenal (HPA) axis.

Table 1.3 Characteristics of glucocorticoid inhibition at the anterior
pituitary corticotroph.

Table 2.1 Standard buffers referred to in molecular biology methods.

Table 3.1 CRF-41 activates early glucocorticoid inhibition of CRF-41-
stimulated ACTH release in perifused anterior pituitary
segments from virally infected Harlan Olac rats.

Table 3.2 Inactivation of corticosterone inhibition of CRF-41 -

stimulated ACTH secretion by CRF-41 and the cyclic
adenosine 3',5'-monophosphate analogue, 8-CPT-cAMP,
in perifused rat (Charles River) anterior pituitary segments.

Table 3.3 Inhibition of AVP-stimulated ACTH release from perifused
rat anterior pituitary gland segments by the synthetic
glucocorticoid, RU28362, and the protein synthesis
inhibitor, puromycin.

Table 3.4 CRF-41 does not inactivate early glucocorticoid inhibition of
AVP-stimulated ACTH secretion in perifused rat anterior
pituitary segments.

Table 3.5 AVP cannot prevent early glucocorticoid inhibition of CRF-
41-stimulated ACTH release in perifused rat anterior
pituitary segments.

Table 4.1 Effect of dexamethasone and ketoconazole on CRF-41-
stimulated cAMP accumulation in AtT20 D16:16 cells.

Page

4

21

22

67

96

98

107

113

116

139

Page xv



Publications

PUBLICATIONS

Full papers:

Shipston, M. J. & Antoni, F. A. (1991) Early glucocorticoid feedback in anterior
pituitary corticotrophs: differential inhibition of hormone release induced by
vasopressin and corticotrophin-releasing factor in vitro. Journal of Endocrinology
129, 261-268.

Shipston, M. J. & Antoni, F. A. (1992) Inactivation of early glucocorticoid
feedback by corticotrophin-releasing factor in vitro. Endocrinology 130, 2213-2218.

Woods, M. D., Shipston, M. J., Mullens, E. L. & Antoni, F. A. (1992) Pituitary
corticotroph tumour (AtT-20) cells as a model system for the study of early inhibition
by glucocorticoids. Endocrinology 131, 2873-2880

Shipston, M. J. & Antoni, F. A. (1992) Rapid glucocorticoid induction of
calmodulin and its suppression by corticotropin-releasing factor in mouse corticotrope
tumor (AtT20) cells. Biochemical and Biophysical Research Communications
189,1382-1388

Refereed abstracts:

Shipston, M. J., McArthur, M. & Antoni, F. A. (1991) Glucocorticoid
suppression of stimulated corticotrophin release by rat adenohypophysis in vitro: The
nature of the secretory stimulus determines the pattern of inhibition. Journal of
Physiology 434, 89P.

Shipston, M. J. & Antoni, F. A. (1991) Distinct properties, with respect to early
glucocorticoid inhibition and blockage of protein synthesis, of CRF- vs. vasopressin-
induced ACTH release by rat anterior pituitary corticotrophs in vitro. Journal of
Endocrinology 129(S), Abs 297.

Shipston, M. J. & Antoni, F. A. (1992) Corticotrophin releasing factor inactivates
early glucocorticoid feedback in rat adenohypophysis in vitro. Journal ofPhysiology
446, 82P.

Shipston, M. J. & Antoni, F. A. (1992) Corticotrophin releasing factor (CRF)
blocks early glucocorticoid action in AtT-20 cells. Proceedings of the Ninth
International Conference ofEndocrinology No. 01.31.017.

Shipston, M. J., Mullens, E. L., Lightman, S. L., Woods, M. D. & Antoni, F. A.
(1992) Early glucocorticoid inhibition in mouse corticotrope tumor (AtT20) cells:
induction of calmodulin but no change in lipocortin (annexin) I mRNA or protein.
Society for Neuroscience Abstracts 18, No. 284.2.

Antoni, F. A., Shipston, M. J., Woods, M. D., Hoyland, J., Mason, W. T. &
Mullens, E. L. (1992) Secretagogue glucocorticoid interactions in the control of
anterior pituitary adrenocorticotrophin (ACTH) release. Progress in Endocrinology (in
press).

Page xvi



1

Introduction



Introduction. 1

1

INTRODUCTION

General introduction

Stress activates pleiotropic homeostatic control mechanisms including the immune,

central nervous, and metabolic control systems. Traditionally the glucocorticoid

hormones, released from the adrenal gland in response to stress, were thought to

enhance these normal defence mechanisms. However, since the 1940's the

glucocorticoid hormones, especially from evidence of their anti-inflammatory actions,

were increasingly perceived as feedback inhibitors of these adaptive responses to

stress. Indeed if left unchecked these defence mechanisms can promote collapse of

body homeostasis. In the seminal review of 1984, Allan Munck and collaborators

proposed a new conceptual framework for the physiological role of glucocorticoid

hormones in stress. As stated by these workers:

"....the physiological function of stress-induced increases in glucocorticoid levels is
to protect not against the source of the stress itself, but against the normal defense
reactions that are activated by stress, glucocorticoids accomplish this function by

turning off those defense reactions, thus preventing them from overshooting and

themselves threatening homeostasis." (Munck, Guyre & Holbrook,1984)

To this end glucocorticoids affect a bewilderingly wide range of physiological control

systems including modulation of carbohydrate metabolism, body fluid balance, neural

activity as well as the extensively characterised effects on the immune system

including anti-inflammatory and immunosuppressive actions (see Table 1.1) (Munck

etal., 1984; Munck, Mendel, Smith & Orti,1990).

Glucocorticoids exert their effects in at least two phases which will be termed early

(occurring within minutes to ~3h after glucocorticoid administration) and late (requiring
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Introduction. 1

>6h to days) in this thesis. Early glucocorticoid inhibition can be demonstrated in a

wide range of cell types and may involve a generic mechanism of glucocorticoid action

requiring induction of new mRNA and protein. Examples of early inhibition include

suppression of glucose transport in lymphocytes, inhibition of adrenocorticotrophin

hormone (ACTH) release from anterior pituitary corticotrophs and inhibition of

interleukin 1 (IL-1) and IL-2 secretion by cells of the immune system (macrophages

and T cells respectively). Late inhibition generally involves suppression of

differentiated cell function such as suppression of proopiomelanocortin (POMC)

synthesis in anterior pituitary corticotrophs and induction of apoptosis in lymphocytes

cf (Jones & Gillham,1988; Keller-Wood & Dallman,1984; Munck et al, 1984).

Release of glucocorticoids into the peripheral circulation in response to stress is

mediated through activation of the hypothalamic-pituitary-adrenal (HPA) axis with the

resultant inhibition of stress-activated defence mechanisms. Increasing evidence

suggests that these homeostatic mechanisms, such as the immune response, in turn

directly modulate the activity of the HPA axis (Bateman, Singh, Krai &

Solomon,1989; Munck et al., 1984). The HPA axis is a complex multi-component

physiological reflex arc composed of afferent inputs, central processing and

integration, efferent output and several levels of negative feedback regulation as

depicted schematically in Figure 1.1. The physiological role of the HPA axis is to

tightly regulate plasma glucocorticoid levels in order to maintain cellular homeostasis

in response to changes in the environment (for reviews see Dallman, Akana, Cascio et

al., 1987; Jones & Gillham,1988; Keller-Wood & Dallman, 1984).

Activation of the HPA axis results in release of stimulus specific 'cocktails' of the

major hypothalamic secretagogues, corticotrophin releasing factor (CRF-41) and

arginine vasopressin (AVP), into the hypothalamo-hypohysial portal circulation, that

stimulate the release of ACTH from anterior pituitary corticotrophs. In turn, ACTH
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drives the release of glucocorticoids (principally Cortisol in man, and corticosterone in

rodents) from the adrenal glands. As well as counteracting stress-induced homeostatic

defence mechanisms (Munck et al., 1984) glucocorticoids act to regulate their own

production by feedback inhibition of HPA axis activity at several feedback sites,

including the anterior pituitary corticotroph. Further inhibitory control of HPA axis

activity is provided by higher brain centres, controlling CRF-41 and AVP release, as

well as purported hypothalamic inhibitors of ACTH release such as atriopeptin (ANF)

(Antoni, Hunter, Lowry et al., 1992b; Dallman et al., 1987; Fink, Dow, Casley et

al., 1992; Jones & Gillham,1988; Keller-Wood & Dallman, 1984).
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Table 1.1

Physiological role of glucocorticoids in stress

Anti-inflammatory &
Immunosuppression

Carbohydrate metabolism

Fluid Balance

Neural- andpituitary
system

Glucocorticoid action

Suppression of cytokine and
inflammatory mediator
release.

Inhibition ofmacrophage &
T-lymphocyte activity

Stimulates gluconeogenesis
and glucagon secretion.

Inhibits glucose uptake and
insulin release.

Examples of mediators
inhibited

y-interferon
Interleukin-1
Interleukin-2
Tumor necrosis factor
Bradykinin
Histamine

Insulin

Arginine vasopressin

Corticotrophin releasing
factor

Arginine vasopressin
Adrenocorticotrophin
B-endorphin

Promotes fluid secretion

Inhibition of hypothalamic -
pituitary-adenal axis

Table 1.1: See section 1.1 and references therein for discussion.
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Figure 1.1

The hypothalamic-pituitary-adrenal axis

Signals from higher brain centres

r

CRF-41

1
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AVP I ANF ?
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_ _ ^ f Anterior pituitary N
V corticotroph J

Inhibitory pathways

ACTH
Stimulatory pathways

\

Adrenal
Cortex

Figure 1.1: CRF-41, 41-residue eorticotrophin releasing factor; AVP, arginine
vasopressin; ANF, atrial natriuretic factor; ACTH, adrenocorticotrophin.
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1.2 The anterior pituitary corticotroph as a model of early

glucocorticoid inhibition

As the anterior pituitary corticotroph is central to the integration ofHPA axis function,

and is a target for HPA axis feedback regulation by glucocorticoids (Jones &

Gillham,1988; Keller-Wood & Dallman,1984; Keller-Wood, Leeman, Shinsako &

Dallman, 1988) it is a physiologically relevant model in which to explore early

glucocorticoid inhibition of cellular function. Furthermore, the corticotroph is a

relatively simple system that is accessible to experimental manipulation in vitro: the

output signal (ACTH) is physiologically relevant and measurable; the corticotroph cell,

along with clonal cell lines, are well defined; and the action of ACTH secretagogues is

well explored. Thus, the anterior pituitary corticotroph provides a unique system in

which to study the interaction between glucocorticoid hormones and neuropeptides (in

this case CRF-41 and AVP) in the regulation of cellular function.

As the in vivo action of secretagogues and glucocorticoids is complex (see later

sections) several in vitro corticotroph model systems have been employed to elucidate

the intracellular mechanisms of ACTH secretagogue and glucocorticoid action. Such

models include perifusion and static incubation of acutely prepared pituitary fragments

or dispersed pituitary cells as well as primary cultures of dissociated cells. The

advantages and disadvantages of the various systems employed have been extensively

reviewed previously (Antoni,1986; Antoni,1992; Watanabe & Orth,1988). Briefly,

perifused corticotrophs are more responsive to ACTH secretagogue stimulation than

cells in static incubation. Furthermore, dispersion of cells by enzymatic digestion and

culturing of corticotrophs for several days probably alters secretagogue and

glucocorticoid efficacy through modulation of cell surface receptor/ion channel

populations and intracellular pathways. A further model, that responds to CRF-41
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and has been extensively used in the characterization of late glucocorticoid inhibition,

is the mouse clonal corticotroph cell line, AtT20, with various subclones (Sabol,1980;

Tashjian Jr.,1979; Yasumura,1968). Unfortunately, although some investigators

have described biological responses to AVP in this cell line (Amechi, Norman &

Gillham,1991; Johnson, Longenecker, Baxter et al., 1982), the majority of workers

fail to demonstrate any action of AVP precluding the analysis of the intracellular

pathways activated by AVP. However, activation of the protein kinase C pathway,

that mediates the action of AVP in normal corticotrophs (see section 1.4.3), stimulates

ACTH secretion in AtT20 corticotrophs. The models employed in this thesis are

discussed in the relevant results section.
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1.3 Aims and Objectives of the Thesis

The aim of this thesis is to further the understanding of the mechanism of early

glucocorticoid action using the inhibition of stimulated ACTH secretion from the

anterior pituitary corticotroph in vitro as an experimental model. Using this system it

is hoped that the fundamental mechanisms of early glucocorticoid action in

corticotrophs can be exposed and correlated with other model systems (such as

lymphocytes) to formulate a potentially generic model of early glucocorticoid action.

Furthermore, characterization of glucocorticoid action at the anterior pituitary

corticotroph should provide insights into glucocorticoid action at other relatively

inaccessible regulatory loci such as the central nervous system.

This thesis has two fundamental objectives that were designed to compliment

additional ongoing functional studies of early glucocorticoid action in this laboratory:

1) To determine the characteristics of early glucocorticoid inhibition of CRF-41 and

AVP-stimulated ACTH release - in particular to determine the nature and function of

putative glucocorticoid-induced proteins in the corticotroph. As corticotrophs

represent only -5% of the total cell population of the anterior pituitary and

glucocorticoids affect virtually all cells in the gland, characterization of early

glucocorticoid induced proteins is more likely to succeed if a nominally homogenous

corticotroph cell line such as the AtT20 cell line is used.

2) To examine whether the hypothalamic ACTH secretagogues, CRF-41 and AVP,

interact with glucocorticoids at the level of the anterior pituitary corticotroph to

modulate early glucocorticoid inhibition. Furthermore, because the mechanism of

early glucocorticoid inhibition is largely unknown investigation of

glucocorticoid/secretagogue interactions in the corticotroph could provide useful
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information for the identification of glucocorticoid-induced proteins involved in early

inhibition.

The rest of this section provides a brief overview of the actions of the ACTH

secretagogues, CRF-41 and AVP, followed by a review of the currently proposed

mechanisms of early glucocorticoid inhibition in anterior pituitary corticotrophs. A

summary of this introduction is presented in section 1.7 and the aims and objectives of

the thesis reiterated.
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1.4 Mechanism of CRF-41- and AVP- stimulated ACTH secretion

1.4.1 General considerations

The major physiological hypothalamic ACTH secretagogues are 41-residue

corticotrophin releasing factor (CRF-41) and arginine vasopressin (AVP)

(Antoni,1986; Antoni,1992; Plotsky,1991). The functional neuroanatomy of the

hypothalamic pathways controlling pituitary ACTH secretion has been extensively

reviewed (Antoni,1986; Antoni,1989; Antoni,1992; Plotsky,1991). Over the last

decade the 'final common pathway' involving a single hypothalamic projection to the

anterior pituitary has given way to a more complex, multiple pathway, of

hypothalamic regulation. Anatomical studies suggest that three pathways expressing

CRF-41 and/or AVP exist in the hypothalamus (see Figure 1.2): 1) the parvocellular

CRF-41 pathway (CRF+/AVP-); 2) the parvocellular CRF-41 and AVP pathway

(CRF+/AVP+) that contains neurones expressing AVP and CRF-41 co-packaged in

the same secretory granules (Bertini & Kiss,1991; Whitnall, Mezey & Gaiser,1985)

and 3) the magnocellular AVP pathway.

Increasing evidence suggests that the various distinct hypothalamic secretagogue

pathways may be activated in a stressor specific manner (for reviews see Antoni,1986;

Antoni,1992; Plotsky,1991). For example, cytokines such as interleukin I may

preferentially activate the parvocellular CRF+/AVP- system in vivo and in vitro (for

example see Bateman et al., 1989; Berkenbosch, Van Oers, Del Rey et al., 1988;

Gaillard, Spinedi, Goya et al., 1990; Sapolsky, Rivier, Yamamoto et al., 1988

although see Whitnall, Perlstein, Mougey & Neta,1992), whereas ketamine

anaesthesia in sheep may preferentially activate the magnocellular AVP system in vivo

(Canny, Funder & Clarke, 1989).
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Hypothalamicpathwaysregulatingadrenocorticotrophin(ACTH)secretionfromtheanteriorpituitarygland
Figure1.2:Seesection1.4.1andreferencesthereinfordescriptionofpathways.ParvocellularCRFandCRF/AVP neuronesprojecttothemedianeminenceandreleaseCRFandAVPintotheportalvesselsthatperfusetheanterior pituitary.MagnocellularAVPneuronesprojecttotheposteriorpituitaryandmayalsoreleaseAVPintotheportal vesselsinthemedianeminenceenpassant.Key:magno,magnocellularneurones;parvo,parvocellularneurones;AVP, argininevasopressin;CRF,corticotrophinreleasingfactor;ACTH,adrenocorticotrophin.
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1.4.2 The anterior pituitary corticotroph as the target cell type- evidence for multiple

corticotroph subpopulations

Anterior pituitary corticotrophs represent approximately 5% of the total anterior

pituitary cell population and are distributed throughout the gland (Westlund, Aguilera

& Childs,1985). A brief overview of evidence for multiple corticotroph cell

populations is presented here (for further reviews see Antoni,1992; Childs,1992;

Schwartz, 1990). It has been suggested on the basis of morphological, biochemical

and functional evidence that the corticotroph cell population may consist of

heterogeneous cell types (for example see Childs,1987; Fremeau Jr. &

Lundblad,1986; Hatfield, Daikh, Adelman et al.,\989; Schwartz, 1990; Tanaka &

Kurosumi,1986).

The strongest support for such a subpopulation hypothesis has come from functional

studies exploring the secretory response of corticotrophs to different secretagogues.

Results obtained using the reverse haemolytic plaque assay (RHPA), which allows

secretion from individual corticotrophs to be examined, has le& several workers to

postulate the existence of cell populations differentially responsive to CRF-41 and/or

AVP (Childs & Burke, 1987; Childs & Unabia,1989; Jia, Canny, Orth & Leong,1991;

Leong,1988). Jia & co-workers (Jia et al., 1991), using a double RHPA demonstrated

three distinct corticotroph cell populations in acutely dispersed rat anterior pituitary

cells: 1) cells responsive to CRF-41 alone (approximately 22% of the total ACTH

secreting cell population); 2) cells responsive to both CRF-41 and AVP (58%) and, 3)

cells responsive to only a combination of CRF-41 and AVP but not either peptide

alone (12%), the remaining 8% of cells released ACTH spontaneously. No evidence

for cells selectively responsive to AVP alone were observed. Whether the lack of

solely AVP responsive corticotrophs is a result of using enzymatically dispersed
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pituitary cells, high levels of AVP exposure in these studies (lOOnM for 2h) that

probably desensitizes the AVP response cf (Antoni,1986; Antoni,1992), or is

dependent on the species used (for example see Schwartz & Vale,1988) remains to be

clarified.

Increasing evidence suggests that the purported corticotroph subpopulations are

dynamic. For example, Childs & co-workers have reported that CRF-41 pretreatment

increases the percentage of cells that are subsequently responsive to AVP and vice

versa (for review see Childs, 1992). Although this view remains controversial (for

example see Canny, Jia & Leong, 1992) such recruitment of corticotrophs may

underlie the reported subpopulation of corticotrophs that responds only to CRF and

AVP in combination (Jia et al., 1991).

A recent RHPA study by Canny and co-workers in rat corticotrophs (Canny, Jia &

Leong,1992) suggests that increasing the concentration of CRF-41 or AVP generates

distinct ACTH secretory responses from single corticotrophs. CRF-41 stimulated

ACTH release in a concentration-dependent, graded, fashion from all CRF-41

responsive corticotrophs, no recruitment of corticotrophs at increasing CRF-41

concentrations was observed. In contrast, the amount ofACTH released by individual

corticotrophs in response to AVP appeared constant, elevating the concentration of

AVP appeared to increase the number of cells responding. Whether these

characteristics reflect different pools of ACTH mobilized by AVP and CRF-41

(Schwartz, Pham & Funder,1990) that may, or may not, reside in discrete

corticotroph subpopulations remains to be explored.

.3 Intracellular mechanisms ofCRF-41- and AVP- stimulated ACTH secretion

Although many investigators report that AVP is a weaker ACTH secretagogue than

CRF-41 this probably reflects the different model systems and species used in the
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study of ACTH secretagogue action. For example AVP is more potent in ovine than

rat corticotrophs and is more effective in acutely dispersed perifused cells than static

primary culture incubations (for reviews see Antoni,1986; Antoni,1992; Watanabe &

Orth,1988).

Several recent reviews of the intracellular pathways involved in CRF-41 and AVP

stimulation of ACTH secretion have been presented (Antoni,1992; King &

Baertschi,1990). The intracellular second messenger pathways involved in

secretagogue-stimulated ACTH secretion are summarised in Figure 1.3.

41-residue corticotrophin releasingfactor (CRF-41)

Since the elucidation of the structure of CRF-41 by Vale & co-workers in 1981 (Vale,

Spiess, Rivier & Rivier,1981) a wide body of pharmacological and biochemical

evidence has suggested that the CRF-41 receptor is a member of the guanine

nucleotide binding protein (G-protein) coupled receptor family linked to the adenylate

cyclase system through a Gs type G-protein (King & Baertschi,1990; Taylor,1990).

CRF-41 stimulates accumulation of intracellular cAMP with subsequent activation of

cAMP-dependent protein kinase (PKA) (King & Baertschi,1990; Reisine, Rougon &

Barbet,1986; Reisine, Rougon, Barbet & Affolter,1985; Schecterson &

McKnight,1991; Taylor & Buecler,1990). The mechanisms regulating secretion

downstream of PKA activation are unclear, however, several substrates for PKA have

been identified in AtT20 D16v cells c/(King & Baertschi,1990) including a 19kD

family of proteins (now termed Stathmin) that may mediate secretagogue action in a

variety of secretory cells (Doye, Soubrier, Bauw et al., 1989; Pasmantier, Danoff,

Fleischer & Schubart,1986; Sobel,1991; Sobel, Boutterin, Beretta et al., 1989).
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Figure 1.3

Intracellular second messengerpathways mediating CRF-41- andAVP-
stimulatedACTH release

CRF-41

Figure 1.3: See section 1.4.3 for description of intracellular pathways.
Key: AVP, arginine vasopressin; CRF-41, corticotrophin releasing factor; R,
receptor; PLC, phospholipase C; AC, adenylate cyclase; PIP2,
phosphatidylinositol bisphosphate; DAG, diacylglycerol; cAMP, cyclic
adenosine monophosphate; IP3, inositol 1,4,5 triphosphate; Ca2+, calcium;
ACTH adrenocorticotrophin.
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Although some workers have reported that CRF-41 can elicit ACTH release in the

absence of Ca2+ (Oki, Peatman, Qu & Orth,1991) the majority of evidence to date

demonstrates that Ca2+ influx through voltage sensitive L and T type Ca2+-channels is
an essential component of CRF-41-stimulated ACTH release (Abou-Samra, Catt &

Aguilera,1987a; Childs, Marchetti & Brown,1987; Guild & Reisine,1987; Luini,

Lewis, Guild et al., 1985) in accordance with the Ca2+ hypothesis of exocytosis

(Aimers,1990; Knight, von Grafenstein & Athayde,1989). Furthermore, cobalt, that

blocks Ca2+ channels, completely prevents CRF-41-stimulated ACTH release (Vale et

al., 1981) and cAMP cannot stimulate ACTH release in electrically permeabilized

AtT20 D16:16 cells maintained in submicromolar levels of Ca2+ (Guild,1991).

Corticotrophs from human adenomas and AtT20 D16:16 cells display spontaneous

Ca2+ transients in the basal state, the frequency and/or amplitude of these transients

increase in response to CRF-41 (Antoni, Hoyland, Woods & Mason,1992a;

Guerineau, Corcuff, Tabarin & Mollard,1991), however, the relationship between

modulation of these Ca2+ transients and ACTH secretion remains to be fully elucidated

c/(Korn, Bolden & Horn, 1990). To date evidence for spontaneous Ca2+ transients in

normal corticotrophs is conflicting (Guerineau et al, (1991); Link, Dayanithi, Fohr &

Gratzl, 1992) although differences in experimental protocol, such as incubation

temperature, may account for these contradictory data. Current evidence suggests that

basal (unstimulated) ACTH secretion involves both constitutive and regulated release

of ACTH (Burgess & Kelly,1987; Matsuuchi & Kelly,1991). In AtT20 D16v cells

the majority (approximately 60%) of basal (unstimulated) secretion is through the

regulated pathway (Matsuuchi & Kelly, 1991). Thus spontaneous Ca2+ transients,

and by inference CRF-41-stimulated changes in transient frequency, may play a role in

ACTH secretion. However, a word of caution is advisable at this point as the AtT20

D16v cell (as with other clonal pituitary cell lines) displays a higher basal level of
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ACTH secretion than normal corticotrophs (Sabol,1980).

The exocytotic events leading to secretion are not understood in the corticotroph. In

AtT20 cells GTP-binding proteins have been suggested to have a stimulatory

(Guild,1991) as well as inhibitory (Luini & De Matteis,1988; Luini & De

Matteis,1990) regulatory role. The nature and the role of such proteins and other

components of the exocytotic machinery in mediating CRF-41-stimulated ACTH

secretion from the corticotroph are poorly understood (for reviews of the exocytotic

machinery see Ahnert-Hilger, Bhakdi & Gratzl,1991; Aimers, 1990; Aunis &

Bader,1988; Schweizer, Schafer & Burger,1991; Thomas, Suprenant &

Aimers, 1990).

Arginine vasopressin (AVP)

The lack of an homogenous corticotroph system has hampered study of the

intracellular mechanisms of AVP action. Thus, to date, all studies of the second

messenger pathways activated by AVP have been performed on mixed pituitary cell

populations. Important in this regard is the observation that approximately 20% of

anterior pituitary AVP binding sites are associated with thyrotropes (Childs, Westlund

& Unabia,1989; Lumpkin, Samson & McCann,1987); thus all data for second

messengers involved in AVP action must be viewed with a degree of caution. An

outline of the intracellular second messenger pathways thought to be involved in AVP-

stimulated ACTH secretion is shown in Figure 1.3.

In the anterior pituitary gland AVP increases the hydrolysis of phosphatidylinositol

bisphosphate (PIP2) (Raymond, Leung, Veilleux & Labrie,1985; Todd &

Lightman,1987) presumably to increase levels of inositol 1,4,5-triphosphate (IP3) and

diacylglycerol (DAG). Pituitary AVP receptors are pharmacologically distinct from

the classical Vi receptors and termed Vie (Antoni,1984; Antoni,1987; Du Pasquier,
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Dreifuss, Dubois-Dauphin & Tribollet,1991). Although the Vie receptor has not been

isolated or cloned it is likely to be a member of the G-protein coupled receptor family

as recently verified for the rat Via (Morel, O'Carroll, Brownstein & Lolait,1992) as

well as the rat and human V2 AVP receptors (Birnbaumer, Seibold, Gilbert et

al., 1992; Lolait, O'Carroll, McBride et al., 1992).

Using dispersed anterior pituitary cells in a microperifusion system Orth and co¬

workers (Watanabe, Oki & Orth,1989; Won & Orth,1990) have observed biphasic

ACTH release in response to AVP. The initial phase is associated with an elevation of

intracellular Ca2+ from ^-sensitive stores and the more sustained phase is dependent

on the influx of extracellular Ca2+ through L type Ca2+ channels. The initial phase of

ACTH release is only evident at high (>100nM) AVP concentrations, thus whether

mobilization of intracellular Ca2+ stores is a pre-requisite for establishment of the

sustained phase of ACTH secretion at physiological AVP concentrations is unknown

(Leong,1988; Watanabe et al., 1989; Won & Orth, 1990). The activation of PKC

(through the action of DAG and increase in Ca2+) is essential for the secretagogue

activity of AVP (Carvallo & Aguilera,1989; Oki, Nicholson & Orth,1990),

furthermore downregulation of PKC by phorbol ester pretreatment (that activates PKC

in a similar manner to DAG) blocks the ACTH response to a subsequent AVP

stimulus (Bilezikjian, Woodgett, Hunter & Vale, 1987).

Although several PKC substrates have been identified, primarily in AtT20 cells cf

(King & Baertschi,1990) events downstream of PKC activation and Ca2+ influx that

regulate ACTH secretion are unknown.

Synergism ofAVP- and CRF-41- stimulated ACTH release

Release of ACTH in response to co-administration of AVP and CRF-41 in excess of

that released by either secretagogue alone has been unequivocally demonstrated in
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vivo, although such synergism is not universally reported in vitro probably as a

consequence of the different models employed c/(Antoni,1986). Although AVP and

phorbol esters potentiate CRF-41-stimulated accumulation of cAMP (Abou-Samra,

Harwood, Manganiello et al., 1987b; Carvallo & Aguilera,1989; Cronin, Zysk &

Baertschi,1986; Giguere & Labrie,1982; Lutz-Bucher, Felix & Koch, 1990) the

mechanism of synergy is poorly understood. Increasing evidence suggests that

modulation of signal transduction pathways occurs by 'crosstalk' at different levels

between components of separate second messenger systems cf (Burgess, Bird, Obie

& Putney Jr,1991; Houslay,1991) thus several sites downstream of cAMP

accumulation may also be involved. For example, synergy between AVP and 8-

bromo-cAMP has been reported in primary cultures of rat anterior pituitary cells

(Bilezikjian & Vale,1987).

1.4.4 Conclusion

CRF-41 and AVP are the major hypothalamic secretagogues that act at the anterior

pituitary corticotroph to stimulate ACTH release. Activation of the HPA axis releases

'stimulus-specific cocktails' of secretagogue into the hypophyseal-portal circulation.

Indirect evidence suggests that corticotrophs differentially responsive to CRF-41 and

AVP exist. CRF-41 and AVP activate the cAMP/PKA and inositol phosphate/PKC

intracellular pathways respectively and elevate intracellular free calcium levels to

stimulate the exocytosis of ACTH. Mechanisms downstream of intracellular calcium

regulating ACTH secretion from the corticotroph are poorly understood.
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1.5 Early glucocorticoid inhibition of pituitary ACTH secretion

1.5.1 General considerations

Glucocorticoids inhibit HPA activity in vivo in several time domains and at several loci

including the hippocampus, hypothalamus and anterior pituitary corticotroph (see

Figure 1.1, section 1.1, p5) (Dallman et al., 1987; Jacobson & Sapolsky,1991; Jones

& Gillham,1988; Keller-Wood & Dallman, 1984).

The complexity of feedback regulation in vivo has precluded the direct investigation

of the mechanisms of early inhibition at the pituitary level using whole animal

paradigms. For example, some stressors appear to be relatively resistant to inhibition

(eg laparotomy) as their afferent inputs bypass several feedback sites whereas other

stressors act through multiple feedback sites (eg exposure to ether) (Keller-Wood &

Dallman, 1984). Consequently, in order to determine the cellular mechanisms of early

glucocorticoid inhibition at the pituitary gland several in vitro models of anterior

pituitary corticotroph function have been developed as described in section 1.2.

Important in this regard is the fact that glucocorticoids in vivo are reported to act in at

least three distinct time domains namely: fast (rate sensitive),occurringwithin seconds

to minutes of glucocorticoid exposure; intermediate (rapid & delayed) evident between

0.25h-3h of application; and late (slow) evident after several hours or days. The

characteristics of these time domains are summarised in Table 1.2. Fast and

intermediate inhibition suppress stimulated ACTH secretion from the corticotroph with

no effect on cellular stores of hormone. In contrast, late inhibition generally results

through reduction in intracellular ACTH stores, through suppression of POMC gene

transcription, and downregulation of receptor/effector systems (Dallman et al., 1987;

Jacobson & Sapolsky,1991; Jones & Gillham,1988; Keller-Wood & Dallman, 1984).

Page 20



Introduction. 1

Table 1.2

In vivo characteristics of glucocorticoid feedback inhibition of the
hypothalamic-pituitary-adrenal (HPA) axis

Fast Intermediate
(rapid and delayed)

Slow

Time Domain

Rate Sensitive

secs-mins

Yes

0.25h-3h

No

>6h

No

mRNA and Protein
Synthesis

Secretogogue and
ACTH release

Intracellular ACTH
and secretogogue
stores

Site ofaction

<=>

II

<=>

Hippocampus
Hypothalamus

ft

II

II

II

II

Hippocampus Hippocampus
Hypothalamus Hypothalamus

Pituitary Pituitary

Table 1.2: For further information and review of the literature see references cited in
section 1.5
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Table 1.3

Characteristics of glucocorticoid inhibition at the anterior pituitary
corticotroph

Early
(rapid & delayed)

Late
(slow)

Time Domain 0.25h-3h >6h

mRNA and Protein
Synthesis

Induction
(proteins unknown)

Generally suppression
eg proopiomelanocortin

(POMC)

ACTH release:
Basal
Stimulated

<=> li
li

ACTH stores II

Mechanism(s) Suppression of intra¬
cellular free Ca2+ ?

Enhancement of K+
currents ?

Suppression of gene
transcription eg POMC

Downregulation of
receptor/effector systems

Table 1.3 For further information and review of the literature see section 1.5 and
references cited therein

Page 22



Introduction. 1

As discussed in the following sections, and summarised in Table 1.3, glucocorticoid

feedback at the anterior pituitary corticotroph in vitro is best described by two time

domains namely:

1) Early (rapid & delayed) apparent within 10min-3h after glucocorticoid exposure

resulting through inhibition of stimulated ACTH secretion but not corticotroph ACTH

content and;

2) Late (slow) apparent after several hours to days resulting in depletion of

intracellular ACTH stores and downregulation of signalling pathways.

The above nomenclature is used subsequently in this thesis to describe glucocorticoid

regulation at the corticotroph. The well-characterised mechanisms of late

glucocorticoid inhibition at the corticotroph have been discussed in several recent

reviews (see above) and are discussed only to highlight the fundamentally different

mechanism(s) involved in early glucocorticoid inhibition.

The following sections discuss the characteristics and mechanism(s) of early

glucocorticoid inhibition of stimulated ACTH release from the anterior pituitary

corticotroph.

1.5.2 Glucocorticoid receptors: structure and function

Although evidence for non-genomic (membrane) actions of the physiological

glucocorticoids have been documented (for reviews see Duval, Durant & Homo-

delarche,1983; Johnson et al., 1982; McEwen,1991; Schumacher, 1990) their action is

predominantly mediated through activation of intracellular receptors belonging to the

steroid superfamily of ligand activated transcription factors (for extensive reviews see

Carson-Jurica, Schrader & O'Malley,1990; Evans,1989; Evans & Arriza,1989;
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Miesfeld,1989; Miesfeld,1990; Munck et al., 1990; O'Malley,1990; O'Malley, Tsai,

Bagchi et al., 1991). The salient points of glucocorticoid receptor action with respect

to early glucocorticoid inhibition and the outline of the thesis are summarised here.

In the HPA two glucocorticoid receptor systems termed mineralocorticoid (MR or type

I) and glucocorticoid (GR or type II) respectively have been unequivocally identified

that exert a coordinate regulation of HPA axis function (Dallman et al., 1987; De

Kloet,1991; Jones & Gillham,1988; McEwen, De Kloet & Rostene,1986; Reul & De

Kloet,1985; Reul & De Kloet,1986). In most species analysed to date type I

glucocorticoid receptors are predominantly localised in the hippocampus (Jacobson &

Sapolsky,1991; Reul & De Kloet,1985; Reul & De Kloet,1986) whereas type II

receptors are found throughout the HPA axis including the hypothalamic parvocellular

CRF-41- and magnocellular AVP- containing neurones (Fuxe, Harfstrand, Agnati et

al.,1985; Kiss, van Ekelen, Reul et al., 1988) as well as the anterior pituitary

corticotroph (Antakly & Eisen,1984). Functional studies suggest that basal HPA axis

activity is regulated through hippocampal type I receptors (Dallman, Levin, Cascio et

al., 1989; Jacobson & Sapolsky,1991) whereas inhibition of 'stress' responses is

mediated through type II receptors predominantly in the hypothalamus and pituitary

(Dallman et al., 1987; Jones & Gillham,1988; Reul & De Kloet,1985).

The type I and type II receptors have been cloned from a variety of species and are

structurally similar to other members of the steroid receptor family cf

(O'Malley, 1990). In vivo the unliganded glucocorticoid receptor is thought to

associate with several proteins including a 90Kd heat shock protein (hsp90) that acts

as a negative transcriptional regulator preventing DNA binding of the receptor

(Cadepond, Schweizer-Groyer, Segard-Maurel et al., 1991; Picard, Khursheed,

Garabedian et al., 1990; Scherrer, Dalman, Massa et al., 1990). On binding of

glucocorticoid hsp90 dissociates, the receptor dimerises and interacts with

Page 24



Introduction. 1

glucocorticoid response elements (GRE) in target genes (see Figure 1.4).

Considerable evidence suggests that glucocorticoid receptors undergo a

phosphorylation/dephosphorylation cycle the functional role of which remains unclear

although receptor reutilization and DNA transcriptional activation models (amongst

others) have been proposed (Mendel, Bodwell & Munck,1986; Munck era/.,1990;

Orti, Bodwell & Munck, 1992).

To date the literature remains controversial regarding the intracellular distribution of

unliganded glucocorticoid receptors (receptors bound with ligand are found

exclusively in the nucleus). The classical two step model of steroid hormone action

(Gorski & Gannon, 1976) involving translocation of steroid receptors to the nucleus

from the cytoplasm on steroid binding has lost favour for all but the glucocorticoid

receptor. However, several recent studies suggest that unliganded glucocorticoid

receptors have a lower affinity for nuclear structures than other unliganded steroid

receptors and are thus more readily lost from the nucleus during cell disruption or

fixation procedures used in localization studies (Brink, Humbel, De Kloet &

Vandriel,1992; Carson-Jurica et al., 1990; Gasc, Delahaye & Baulieu,1989).

Although the translocation model remains controversial the action of intracellular

glucocorticoid receptors is unequivocally mediated through binding to GRE's present

in the 5'-promoter regions of glucocorticoid responsive genes such as POMC and a-

globulin (see review references above and Lundblad & Roberts, 1988).
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Figure 1.4

Genomic action ofglucocorticoid hormones

Figure 1.4: Glucocorticoid hormone enters the cell and binds to the
unliganded non-activated glucocorticoid receptor (R) to form the non-
activated liganded receptor complex (HR). Subsequent release of heat shock
protein 90 (hsp90) activates the liganded receptor (HR') which dimerises (not
shown) and can associate with nuclear glucocorticoid response elements
(GREs) within target genes to activate RNA transcription. Subsequent
translation of messenger RNA (mRNA) on ribosomes generates proteins that
mediate the action of glucocorticoids (?). Intracellular localization of the
unliganded (R) has not been defined as discussed in section 1.5.2. Diagram
after Munck, Mendel, Smith & Orti (1990).
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1.5.3 Characterization of the time domain ofearly glucocorticoid inhibition in vitro

Glucocorticoid inhibition of anterior pituitary ACTH release in vitro has been

classically subdivided into three distinct time domains: rapid, developing within 30min

of steroid application; delayed, evident between 30min to 3h and late, manifest after

~6h to days of glucocorticoid exposure cf (Dallman et al., 1987; Jones &

Gillham,1988; Keller-Wood & Dallman, 1984). The rationale for these divisions is the

assumption that distinct intracellular mechanisms are responsible for inhibition in each

time domain. For example, the classical view of rapid glucocorticoid action proposes

non-genomic, plasma membrane associated processes, whereas the well characterised

late inhibition is mediated through suppression of POMC gene transcription and

modulation of signal transduction systems (for reviews see Dallman et al., 1987;

Johnson et al., 1982; Jones & Gillham,1988; Keller-Wood & Dallman, 1984; Lundblad

& Roberts,1988; McEwen,1991). The majority of discrepancies in the literature

regarding the purported differences in the mechanisms of rapid and delayed

glucocorticoid inhibition are because many studies do not clearly define the time-scale

of glucocorticoid exposure employed, resulting in some workers discussing "rapid"

effects of steroids that were determined using overnight (>18h) steroid preincubation

protocols.

Recently Dayanithi & Antoni (1989) demonstrated that both rapid and delayed

glucocorticoid inhibition at the pituitary corticotroph requires activation of type II

glucocorticoid receptors and induction of new mRNA and protein ie. a genomic action

(see Figure 1.4 for model of genomic action of glucocorticoids). Thus a unifying

concept of 'early" glucocorticoid inhibition seems more useful when describing the

mechanisms of glucocorticoid inhibition within the 10min-3h time-scale at the anterior

pituitary corticotroph.
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In the following sections evidence in support of this definition of early glucocorticoid

inhibition is discussed, furthermore the putative mechanism(s) of early glucocorticoid

inhibition of ACTH secretion from the corticotroph are presented. It is important to

note that early glucocorticoid inhibition at the corticotroph does not display rate

sensitivity (Mahmoud, Scaccione, Scraggs et al., 1984) and is thus distinct from the

fast, rate sensitive, component observed in vivo.

Rapid and delayed glucocorticoid inhibition are characterised by the suppression of

stimulated cf (Dayanithi & Antoni,1989; Phillips & Tashjian,1982; Widmaier &

Dallman,1984) but not basal ACTH secretion, although some reports in both normal

and clonal corticotrophs do suggest slight inhibition of basal release (for example see

Buckingham & Hodges,1977; Woods, Shipston, Mullens & Antoni,1992),

independently of changes in intracellular ACTH content cf (Abou-Samra, Catt &

Aguilera,1986a; Buckingham & Hodges,1977; Phillips & Tashjian,1982;

Sabol,1980). Although glucocorticoids inhibit POMC gene transcription within 15min

of steroid application no reduction of intracellular ACTH levels is seen within 6h

(Fremeau Jr. & Lundblad,1986; Gagner & Drouin,1985; Gagner & Drouin,1987;

Lundblad & Roberts,1988; Sabol,1980).

The majority of studies performed to date report a lag time of 10-30min after

glucocorticoid application for rapid inhibition to be manifest in a variety of in vitro

corticotroph models (Abou-Samra et al., 1986a; Brattin & Portanova,1977; Dayanithi

& Antoni,1989; Gillies & Lowry,1978; Mahmoud et al., 1984; Mulder &

Smelik,1977; Portanova & Sayers,1974; Widmaier & Dallman,1984). However,

Johnson et al. (1982) have reported a virtually immediate action of glucocorticoids in

AtT20 cells while Familari & Funder (1989) failed to report rapid or delayed inhibition

in perifused primary cultures of rat corticotrophs attached to cytodex beads. Whether
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these differences are due to the characteristics of the experimental models used, or the

actual experimental paradigms employed, in each study that may modulate the

magnitude as well as direction of the glucocorticoid response (Johnson, Lan &

Baxter, 1979) remain to be established. Although these discrepancies exist it is

important to note that studies investigating inhibition at the pituitary level in vivo,

glucocorticoids inhibit CRF-41- and insulin- stimulated ACTH release within lOmin in

normal dogs (Keller-Wood,1990; Keller-Wood & Bell,1988).

Although some workers have reported a 'silent', steroid non-responsive, period

approximately 30-50min after glucocorticoid application at the pituitary level in vitro

and in vivo when the inhibitory effect of steroids is diminished (Abou-Samra et

al., 1986a; Mahmoud et al., 1984; Mulder & Smelik,1977) this has not been confirmed

subsequently c/(Dayanithi & Antoni,1989). Furthermore, as discussed by several

workers the 'silent' period is not observed when the duration of glucocorticoid

exposure is increased while maintaining the same time interval between the start of

glucocorticoid application and the secretagogue stimulus (Mahmoud et al., 1984;

Mulder & Smelik,1977).

Most workers characterise delayed inhibition at the pituitary level developing within 3h

of glucocorticoid application in vitro (Abou-Samra et al., 1986a; Arimura, Bowers,

Schally et al., 1969; Brattin & Portanova,1977; Buckingham & Hodges,1977;

Dayanithi & Antoni,1989; Gillies & Lowry,1978; Mahmoud et al., 1984; Mulder &

Smelik,1977; Oki et al., 1991; Phillips & Tashjian,1982; Woods et al., 1992) and in

vivo (Keller-Wood, Leeman, Shinsako & Dallman,1988). A notable exception is the

complete lack of inhibition observed in vitro by Familari & Funder (1989), although

the lack of inhibition may be a result of the glucocorticoid treatment paradigm

employed in this particular study (see section 1.5.5).
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1.5.4 Involvement of tvve II glucocorticoid receptors and induction of mRNA and protein

synthesis in earlv glucocorticoid inhibition

Abou-Samra & co-workers concluded on the basis of differences in EC50 values for

corticosterone inhibition of CRF-41-stimulated ACTH secretion in primary cultures of

rat anterior pituitary cells in static incubation that different receptor subtypes mediate

rapid and delayed inhibition (Abou-Samra et al., 1986a). However, using specific

type II glucocorticoid receptor agonists and antagonists in perifused isolated rat

anterior pituitary cells Dayanithi & Antoni (1989) demonstrated that both rapid and

delayed inhibition of CRF-41-stimulated ACTH release require activation of type II

glucocorticoid receptors. This is in agreement with an earlier report suggesting that

aldosterone inhibition of ACTH secretion is a result of this mineralocorticoid activating

the type II glucocorticoid receptor (Sakly, Philibert, Lutz-Bucher & Koch,1984). The

involvement of type II receptors in early inhibition has been confirmed in AtT20

D16:16 corticotrophs (Woods et al., 1992), a cell line which only contains type II

glucocorticoid receptors (Gannon, Spencer, Lundblad et al., 1990).

Although the general consensus suggests that delayed glucocorticoid inhibition in a

variety of cellular systems is manifest through induction of new mRNA and de novo

protein synthesis cf (Abou-Samra et al., 1986a; Arimura et al., 1969; Colbert &

Young,1986b; Dayanithi & Antoni,1989; Woods etal., 1992), the importance of such

a role in rapid inhibition at the corticotroph has been controversial. Portanova &

Sayers (1974) using acutely dispersed rat anterior pituitary cells in a static incubation

assay reported that rapid glucocorticoid inhibition in normal rat corticotrophs is not

blocked by the transcription inhibitor, actinomycin D, at concentrations that blocked

>80% of RNA synthesis. Blockade was observed in pituitaries obtained from

adrenalectomised rats, suggesting that a tonic induction ofmRNA by glucocorticoids
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in normal rats overides the action of actinomycin D. However, Dayanithi & Antoni

(1989) using 20 fold higher actinomycin D concentrations than employed by

Portanova & Sayers (1974) demonstrated a clear blockade of rapid glucocorticoid

inhibition in normal perifused rat corticotrophs.

The requirement for de novo protein synthesis in rapid inhibition has also been in

debate, this discrepancy is probably a result of the protein synthesis inhibitor,

cycloheximide, being used in negative reports (Abou-Samra et al., 1986a; Brattin &

Portanova, 1977; Widmaier & Dallman,1983). Indeed as discussed by Brattin &

Portanova (1977) and Dayanithi & Antoni, (1989) cycloheximide used at

concentrations that block >85% of total pituitary protein synthesis is relatively

ineffective in blocking rapid as well as delayed inhibition. Furthermore, higher

cycloheximide concentrations may have a deleterious effect on stimulated ACTH

secretion (Dayanithi & Antoni, 1989). In contrast the protein synthesis inhibitor,

puromycin (Gale, Cundliffe, Reynolds et al., 1981), blocks rapid (Brattin &

Portanova, 1977; Dayanithi & Antoni, 1989) as well as delayed glucocorticoid

inhibition cf (Dayanithi & Antoni,1989; Woods et al., 1992).

To date reports utilizing transcription or translation inhibitors to block early

glucocorticoid action have explored the inhibition of CRF-41- or mixed secretagogue-

(such as hypothalamic/median eminence extracts that contain CRF-41 as well as AVP)

stimulated ACTH release. Thus it is assumed that the mechanism of inhibition of

AVP-stimulated ACTH release also involves induction of new mRNA and protein.

Although Phillips & Tashjian (1982) reported a requirement for protein synthesis in

delayed inhibition of phorbol ester stimulated ACTH release in perifused AtT20 D16v

cells no direct evidence for protein induction has been reported for glucocorticoid

inhibition of AVP-stimulated ACTH release in normal corticotrophs. This question

requires further clarification.
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Although several studies in other systems have reported non-genomic actions of

glucocorticoids, that occur within seconds to minutes (for reviews see Duval et

al., 1983; Johnson etal., 1982; McEwen,1991; Schumacher, 1990) the time course and

requirement for mRNA and protein synthesis described above precludes such non-

genomic action for both rapid and delayed inhibition at the pituitary corticotroph.

Thus it seems more appropriate to describe glucocorticoid inhibition developing within

10min-3h at the anterior pituitary corticotroph under a single title of 'early'

glucocorticoid inhibition. The characteristics of early glucocorticoid inhibition at the

corticotroph are similar to those seen for early glucocorticoid action in other systems

such as lymphocytes and mast cells cf (Colbert & Young,1986a; Colbert &

Young,1986b; Grosman & Jensen,1984; Harrigan, Baughman, Campbell &

Bourgeois, 1989; Munck et al., 1990). To date proteins induced by glucocorticoids in

the early time domain at the anterior pituitary corticotroph have not been characterized.

1.5.5 Modulation ofearly glucocorticoid inhibition

Several workers have emphasized that stimulus context (nature and timing) may

fundamentally determine the magnitude as well as direction (ie inhibition or

stimulation) of steroid action in any particular system (De Kloet,1991; Johnson et

al., 1979). However, few reports in the literature have explored whether the nature of

the secretagogue stimulus (ie whether CRF-41, AVP or in combination) or the

temporal relationship between secretagogue stimulation and glucocorticoid exposure

are important in determining the characteristics of early glucocorticoid inhibition at the

anterior pituitary corticotroph.

Using primary cultures of rat anterior pituitary corticotrophs Abou-Samra et al.

(1986a) reported that the early inhibitory action of corticosterone on CRF-41-

stimulated ACTH release was impaired if AVP was applied simultaneously with the
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CRF-41 stimulus. However, this apparent "blockade" of corticosterone action by

AVP is probably a consequence of the combined CRF-41/AVP stimulus releasing

more ACTH than CRF-41 alone. Furthermore, the percentage inhibition of ACTH

release was identical (-60% of control stimulus) for the respective stimuli (CRF-41 or

CRF-41/AVP) suggesting that the efficacy of corticosterone inhibition is not

modulated by AVP. Indeed, early glucocorticoid inhibition of CRF-41 and CRF-

41/AVP stimulated ACTH release are identical in perifused rat corticotrophs (Antoni &

Dayanithi, 1990b). In a further study Childs & Unabia (1990) reported that phorbol

ester pretreatment blocked early glucocorticoid inhibition of CRF-41-stimulated ACTH

release and CRF-41 receptor downregulation, however, this was not mimicked by

AVP. An in vivo study in humans also reported blockade of dexamethasone

suppression of CRF-41-stimulated ACTH release by simultaneous infusion with

AVP, however this study did not report the effect of combined CRF-41/AVP stimulus

on ACTH release (von Bardeleben, Holsboer, Stalla & Miiller,1985). Consequently

the apparent 'escape' of CRF-41-stimulated ACTH release reported is probably due to

the synergistic enhancement of ACTH release induced by AVP. The above indirect

data, in conjunction with the well characterised multifactorial hypothalamic

secretagogue stimulation of ACTH secretion (see section 1.4), point to a potential

modulatory role of secretagogues on early glucocorticoid inhibition of ACTH release

that requires further evaluation.

The importance of the temporal relationship between secretagogue stimulation and

glucocorticoid application has been reported by Mulder & Smelik (1977), who found

that corticosterone pretreatment (for 15min) was necessary to suppress ACTH release

stimulated by stalk-median eminence extract in perifused rat pituitary cells.

Corticosterone started simultaneously with, and maintained during, secretagogue

stimulation did not result in inhibition of ACTH release. Other early in vitro studies

Page 33



Introduction. 1

also indirectly suggest the requirement of prior steroid exposure for inhibition to

develop c/(Arimura eta/.,1969; Kraicer, Milligan, Gosbee et al., 1969) however,

other studies provide conflicting evidence cf (Widmaier & Dallman,1984). Such a

temporal requirement may explain the lack of inhibition observed by Familari &

Funder (1989); this phenomenon requires detailed examination and may also provide

insights into the nature and function of early glucocorticoid induced proteins.

1.5.6 Conclusion

The receptor pharmacology and requirement for de novo mRNA and protein synthesis

in rapid as well as delayed glucocorticoid inhibition would suggest that similar

mechanisms underlie these time domains, the purported difference between the two

time domains simply reflects the extent of inhibition (Dayanithi & Antoni,1989).

Consequently it is more appropriate to regard rapid and delayed inhibition as 'early'

inhibition when discussing the mechanism of glucocorticoid action that occurs within

3h at the level of the pituitary. This would prevent confusion with in vivo data

reporting fast, rate sensitive, effects of steroids (seconds to minutes) on HPA function

that result from inhibition of other components of the FlPA axis such as the

hypothalamus and hippocampus. Indirect evidence suggests that the characteristics of

early glucocorticoid inhibition at the corticotroph is dependent on the nature (whether

CRF-41 or AVP) and timing of secretagogue application. No direct evidence for the

involvement of mRNA or protein induction has been presented for early inhibition of

AVP-stimulated ACTH release. To date early glucocorticoid-induced proteins have

not been characterized in the corticotroph. Analysis of the characteristics of early

glucocorticoid inhibition of CRF-41 and AVP stimulated ACTH release may provide

valuable evidence as to the nature of the glucocorticoid induced protein(s).
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1.6 Mechanism(s) of early glucocorticoid inhibition

1.6.1 General considerations

How do the putative glucocorticoid-induced proteins inhibit stimulated ACTH

secretion in the early time domain?

As discussed in section 1.4 secretagogue stimulation of ACTH exocytosis is not well

defined. However, the multiple pathways and levels involved provide numerous sites

at which glucocorticoids may exert their inhibitory effect. Important in this respect is

the fact that most workers, using a wide variety of experimental models, do not find

consistent inhibition of basal ACTH secretion by glucocorticoids. Thus some aspect

of stimulus-secretion coupling must be impaired. As discussed earlier, most of the

discrepancies in the literature relating to early glucocorticoid action have arisen due to

the glucocorticoid exposure protocols employed.

The demonstration of early glucocorticoid inhibition in the corticotroph cell line AtT20

(Antoni et al., 1992a; Phillips & Tashjian,1982; Woods et al., 1992) suggests that

paracrine interactions between different anterior pituitary cell types do not play an

important role in early inhibition. Thus, glucocorticoids must interact with target

genes within corticotrophs to generate the putative proteins that characterise early

inhibition. The rest of this section discusses the currently proposed mechanism(s) of

early glucocorticoid inhibition at the corticotroph.

1.6.2 Modulation of receptor / signal transduction pathways

Childs & co-workers reported a reduction of CRF-41 plasma membrane binding sites

within lOmin of glucocorticoid application in enriched primary cultures of rat

corticotrophs (Childs & Unabia,1990). Although such downregulation is observed in

Page 35



Introduction. 1

late inhibition c/(Bilezikjian, Blount & Vale,1987; Rivier & Vale,1987) it is unlikely

to be involved in early inhibition. Studies of late glucocorticoid inhibition have

reported inhibition of CRF-41-stimulated cAMP accumulation (Bilezikjian et al., 1987;

Bilezikjian & Vale,1983) in vitro , however, other reports on CRF-41-stimulated

cAMP accumulation in vitro and in vivo do not support this hypothesis (Giguere,

Labrie, Cote et al., 1982; Kant, Mougey, Brown & Meyerhoff,1989). To date no

direct evidence for glucocorticoid modulation of secretagogue-stimulated signal

transduction pathways in early inhibition has been documented. Furthermore, it is

important to note that ACTH secretion is not necessarily impaired when CRF-41

receptors and cAMP responses are downregulated cf (Aguilera, Wynn, Harwood et

al., 1986) suggesting that possible modulation of receptor/signal transduction systems

by glucocorticoids are not necessarily involved in ACTH secretion inhibition.

Numerous studies report that ACTH secretion stimulated by protein kinase activators

are inhibited by glucocorticoids cf (Abou-Samra et al., 1986a; Abou-Samra, Catt &

Aguilera, 1986b; Antoni et al., 1992a; Miyazaki, Reisine & Kebabian,1984; Phillips &

Tashjian,1982; Woods et al., 1992) suggesting that the site of glucocorticoid inhibition

is downstream of, or parallel to, protein kinase A or C activation. Moreover,

Miyazaki et al. (1984) demonstrated that glucocorticoid inhibition of forskolin- (that

activates adenylate cyclase to elevate cAMP levels directly) stimulated ACTH secretion

was not a failure of cAMP to activate protein kinase A in AtT20 D16:16 cells.

A recent study in AtT20 D16:16 cells suggested that the synthetic glucocorticoid,

dexamethasone, stabilizes the sub-plasmalemmal actin network with a concommitent

inhibition of CRF-41-stimulated ACTH release in the early time domain of inhibition

(Castellino, Heuser, Marchetti et al., 1992). In this study the inhibitory action of

dexamethasone was reversed by cytochalasin B and D, a fungal toxin that severs actin

filaments. Furthermore, dexamethasone elevated caldesmon protein levels (although
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determination was only performed after 24h dexamethasone treatment) suggesting a

modulatory role for this actin-stabilizing protein. However, as elevation of

intracellular Ca2+ is required to disassemble the actin network (Aunis & Bader,1988)

on secretagogue exposure it is likely that an actin-stabilization mechanism is secondary

to inhibition of intracellular Ca2+ levels by dexamethasone in this cell line (see section

1.6.3 and Antoni et al., 1992a; Castellino et al., 1992). Furthermore, reports that

depolarization-induced ACTH secretion is largely resistant to early glucocorticoid

inhibition in AtT20 cells (Antoni & Woods, 1992; Phillips & Tashjian,1982) appear to

contradict this hypothesis, because it would be assumed that the actin-caldesmon

mechanism would inhibit all types of Ca2+-mediated secretion.

As mentioned previously (section 1.5.3) glucocorticoids do not reduce the of ACTH

in anterior pituitary corticotrophs within the time-scale of early inhibition. The role of

postranslational modification of ACTH in the early suppressive action of

glucocorticoids has not been fully explored. A recent study in primary cultures of rat

anterior pituitary cells reports that after glucocorticoid exposure CRF-41 releases a

modified form of ACTH that has reduced biological activity (Norman, Gurney &

Gillham,1992). These observations may also explain some of the variations in the

reported degree of early glucocorticoid inhibition depending whether bio- or immuno¬

assays are used to determine ACTH release. As secretion is an energy dependent

process it is also possible that modulation of cellular metabolism, such as inhibition of

glucose uptake, is responsible for early glucocorticoid inhibition (Homer, Packan &

Sapolsky,1990; Munck,1971).
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1.6.3 Suppression of intracellular free Ca2+ responses

Early in vitro studies cf (Kraicer et al., 1969) suggested a modulatory role for

glucocorticoids in the Ca2+ handling of corticotrophs, indeed Ca2+ is essential for

both CRF-41- and AVP-stimulated ACTH secretion (see section 1.4). Recently Orth

and co-workers (Oki et al., 1991), using an in vitro perifusion model, suggested that

glucocorticoids inhibit the plateau phase of CRF-41- and AVP-stimulated ACTH

release (that is dependent on Ca2+ influx through L-type Ca2+ channels, see section

1.4) implicating early glucocorticoid inhibition of Ca2+ influx through L-type Ca2+
channels. In these experiments glucocorticoids did not inhibit the initial phase of

AVP-stimulated ACTH release, that is reported to be dependent on ^-stimulated

intracellular Ca2+ release (see section 1.4.3 and Oki et al., 1991). This would be in

accordance with the site of glucocorticoid inhibition being downstream of protein

kinase activation, perhaps preventing opening of plasma membrane Ca2+ channels

(Antoni & Dayanithi, 1990b).

Antoni & co-workers (Antoni et al., 1992a) have recently reported early glucocorticoid

suppression of CRF-41-induced Ca2+ transients as well as reduction of absolute

intracellular Ca2+ levels using Ca2+-imaging of fura-2 loaded AtT20 D16:16 cells. A

similar hypothesis of glucocorticoid suppression of intracellular Ca2+ signals has also

been proposed in other models of early glucocorticoid inhibition such as B-

lymphocytes (Dennis, June, Mizuguchi et al., 1987), basophilic leukaemia cells (Her,

Weissman & Zor,1990), and pancreatic islet B-cells (Billaudel, Mathias, Sutter &

Malaisse,1984). Whether the glucocorticoid-induced protein(s) modulate Ca2+
channels directly (Callewaert, Hanbauer & Morad,1989; Ebersole, Gajary &

Molinoff,1988; Janis, Shrikhande, Johnson et al., 1988) or restrict agonist induced

redistribution of intracellular free Ca2+ remains to be explored (see Figure 1.5).

Page 38



Introduction. 1

1.6.4 Hvperpolarization of the membrane potential

Several workers have demonstrated that glucocorticoids hyperpolarize the plasma

membrane potential within 30min in hippocampal CA1 neurones (Joels & De

Kloet,1989; Kerr, Campbell, Hao & Landfield,1989). Such modulation of membrane

potential would indirectly inhibit Ca2+ influx and thus modulate Ca2+ homeostasis. A
recent preliminary report using whole cell patch (nystatin) clamp recordings from

AtT20 D16:16 cells suggests that dexamethasone increases the proportion of cells

expressing an A-type K+ current, moreover, the amplitude of the A-current was

enhanced in dexamethasone treated cells (Pennington, Woods, Kelly & Antoni,1992).

Furthermore, ACTH secretion stimulated by K+ channel blockers

(tetraethylammonium and 4-aminopyridine) as well as 50mM extracellular K+ in

AtT20 cells is largely resistant to dexamethasone inhibition (Pennington et al., 1992;

Phillips & Tashjian,1982; Sabol,1980) suggesting an involvement of membrane

hyperpolarization in early inhibition (see Figure 1.5). However, it should be noted

that an early study in normal corticotrophs reported that corticosterone blocks ACTH

release stimulated by high extracellular K+ medium (Kraicer et al., 1969).

Interestingly a similar involvement of K+ channels for the inhibitory effect of atrial

natriuretic factor, ANF, acting through cGMP (Antoni & Dayanithi, 1990a; Antoni &

Dayanithi, 1990b; Dayanithi & Antoni, 1990), on pituitary ACTH release has been

reported. Although glucocorticoids have been reported to stimulate cGMP production

in other systems (Vesely,1980) glucocorticoid and ANF inhibition involve distinct

intracellular mechanisms in anterior pituitary corticotrophs (Antoni & Dayanithi,

1990b). In particular, the site of glucocorticoid and ANF inhibition of intracellular

free calcium appears to be different as ionomycin, that releases Ca2+ from intracellular

stores, reversed the inhibitory action of ANF but not glucocorticoid. Whether

glucocorticoid-induced proteins modulate K+ channels directly, for example through
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dephosphorylation as reported for the mechanism of somatostatin inhibition of

prolactin secretion from the clonal pituitary cell line GH4C1 (White, Schonbrunn &

Armstrong, 1991) is unknown. Recently Levitan & co-workers reported

glucocorticoid induction of the Kvl mRNA, encoding a voltage dependent K+

channel, within 40min in the anterior pituitary gland as well as clonal GH3 cells,

however, no induction was observed in AtT20 (strain not reported) cells (Levitan,

Hemmick, Birnberg & Kaczmarek,1991). The role of early glucocorticoid-induction

of other K+ channel proteins has not been explored (Cook,1988; Salkoff, Baker,

Butler et al., 1992).

1.6.5 Glucocorticoid-inducedproteins involved in early inhibition?

As discussed above increasing evidence suggests that early inhibition is manifest

through modulation of the regulated secretory process, perhaps by suppression of

intracellular free Ca2+ levels. Consequently the glucocorticoid-induced proteins are

likely to be Ca2+-binding proteins and associated proteins involved in secretion,

although other modes of action such as induction of K+ channel proteins also require

examination (see above).

Proteins induced within the time-scale of early glucocorticoid inhibition at the

corticotroph have not been identified to date although in other models of early

glucocorticoid action several proteins, including the Ca2+-binding proteins

calmodulin, lipocortin (annexin) 1 and glucocortin have been isolated (for example see

Baughman, Harrigan, Campbell et al., 1991; Colbert & Young,1986b; Dowd,

MacDonald, Komm et al., 1991; Flower,1988; Harrigan et al., 1989; Peers &

Flower, 1990). The functional role of these proteins in early glucocorticoid action

remains to be determined.
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1.6.6 Conclusion

The intracellular mechanisms of early glucocorticoid inhibition of stimulated ACTH

release from the anterior pituitary corticotroph are not well defined. Recent evidence

suggests that glucocorticoids suppress intracellular free Ca2+ levels, whether this

action is directly on Ca2+ channels or involves hyperpolarization of the plasma

membrane potential is unclear (see Figure 1.5). To date proteins involved in early

glucocorticoid action at the corticotroph have not been characterised, however, they

are likely to be members of the Ca2+-binding family of proteins.
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Figure 1.5

Current model of early glucocorticoid inhibition in anterior pituitary corticotrophs

AEm i|
[Ca2+]j f|

oS^liS0
yglUiglucocorticoid

Figure 1.5: Activation of type II glucocorticoid receptors (GR Typell) stimulates
expression of the glucocorticoid-induced protein(s) (protein X) that regulates
intracellular free calcium levels [Ca2+] directly, perhaps by sequestration of
intracellular Ca2+ or inhibition of Ca2+ channels, or indirectly by activating voltage
(IK(v)) or Ca2+-dependent (IK(Ca2+)) potassium
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1.7 Summary

In summary, early glucocorticoid inhibition of stimulated ACTH secretion in anterior

pituitary corticotrophs is characterised by induction of new mRNA and protein that

occurs within 3h of glucocorticoid application. This is in contrast to the general

suppression of POMC gene expression and differentiated cellular function associated

with late inhibition. Indirect evidence from early in vitro studies suggests that the

characteristics of early glucocorticoid inhibition is dependent on the nature of the

secretagogue employed as well as the temporal relationship between secretagogue and

glucocorticoid exposure. Investigation of the characteristics of early glucocorticoid

action should provide insights into the nature and function of the glucocorticoid-

induced proteins. The precise mechanism of early glucocorticoid inhibition is

unknown, however, it is likely to be mediated through alterations in intracellular Ca2+
homeostasis or plasma membrane potential as summarised in Figure 1.5. Although

proteins mediating early actions of glucocorticoids in corticotrophs have not been

identified to date they are likely to belong to the Ca2+-binding protein family.

As discussed in section 1.3 the aim of this thesis is to:

1) Determine the nature and function of the putative glucocorticoid-induced proteins

that appear to mediate the early inhibitory action of glucocorticoids in anterior pituitary

corticotrophs.

2) To examine whether the hypothalamic ACTH secretagogues, CRF-41 and AVP,

interact with glucocorticoids at the level of the anterior pituitary corticotroph to

modulate early glucocorticoid inhibition. It is hoped that analysis of such interaction

will also shed light on the identity of the induced proteins.

In section 3 I have explored and discussed the characteristics of early glucocorticoid
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inhibition of AVP- and CRF-41- stimulated ACTH secretion using a perifusion model

of normal rat corticotrophs. The identity of the putative glucocorticoid induced

proteins is addressed and discussed in section 4 using the clonal mouse corticotroph,

AtT20 D16:16, cell line as a model. The work presented in this thesis is summarised

in section 5 and the conclusions presented in sections 3 and 4 reiterated. Finally,

proposals for future studies required to consolidation and extend the work presented in

this thesis are discussed.

Page 44



2

Materials and Methods



Materials and Methods. 2

2

MATERIALS AND METHODS

2.1 Materials

2.1.1 Animals

Female ex-breeder rats of mean body weight 250-300g were obtained from Harlan-

Olac (Bicester, Oxon, UK) or Charles River Ltd (Margate, Kent, UK) and maintained

four to a cage for at least 2 weeks prior to use under controlled temperature (22°C) and

lighting (lights on 05:00h, off 19:00h) with free access to standard lab chow and

water. Twenty four hours before an experiment rats were placed in pairs and

maintained under controlled conditions in a separate quiet room. On the day of

experiment rats were decapitated, routinely between 08:30 and 09:30, within 10s of

removal from the home cages to avoid undue activation of the hypothalamic-pituitary-

adrenal axis.

2.1.2 Clonal mouse corticotroph cell line. AtT20D16:16

The mouse anterior pituitary tumour corticotroph cell line (AtT20 D16:16 passage 13)

was obtained from Dr S L Sabol, NIH, Bethesda, Maryland, USA, (Sabol,1980).

Cells were maintained as monolayers in Dulbecco's modified Eagle's medium (Gibco-

BRL, Paisley, Strathclyde, UK) supplemented with 10% foetal calf serum (FCS,

Sera-Lab, Crawley Down, Sussex, UK) at 37°C in a humidified atmosphere of 95%

air and 5% CO2. The batch of foetal calf serum used in all subsequent studies

contained 30nM Cortisol as measured by radioimmunoassay. Cells were passaged

every 7 days after reaching 70-80% confluency in 75cm2 flasks (CelCult, Sterilin Ltd,

Hounslow, UK) using phosphate buffered saline (PBS), pH7.4 containing lOmM
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glucose and 0.025% w/v EDTA. After pelleting at lOOg for 5min, cells were split 1:4,

reseeded and fed every 3-4 days. All experiments were performed on cells between

passage 16 and 35.

2.1.3 Biochemicals

Steroids: Corticosterone and dexamethasone were from Sigma (Poole, Dorset, UK).

RU28362 (116, 17B-dihydroxy-6-methyl-17a-(l-propynyl)androsta-l,4,6-trien-3-

one) and RU38486 (17B-hydroxy-llB(4-dimethylaminophenyl-l)-17a(propy-nyl)-

estra-4, 9-dien-3-one) were a generous gift from Roussel-Uclaf (Romainville,

France). 18B-glycyrrhetinic acid was from Aldrich (Poole, Dorset, UK). Working

steroid stocks were dissolved in dimethylsulphoxide (DMSO) or ethanol at a

concentration of lOmM and stored at -20°C before dilution in the appropriate cell

medium.

Peptides: Rat 41-residue corticotrophin releasing factor (CRF-41), rat arginine

vasopressin (AVP), and human adrenocorticotrophin hormone (ACTH1.39) were

obtained from Bachem UK Ltd (Saffron Walden, Essex, UK) or Peninsula

Laboratories Ltd (St Helens, Merseyside, UK). Working stock peptides were stored

as O.lmM stocks in ImM HC1, pH5 (including O.lmM ascorbate where appropriate to

prevent methionine oxidation) at -70°C. Cloned mouse lipocortin I was a generous

gift from Dr R B Pepinsky, Biogen Inc., Boston, MA., USA, (Pepinsky, Sinclair,

Douglas et al., 1990). Bovine brain calmodulin was from Biogenesis Ltd

(Bournemouth, Sussex, UK).

Primary antisera: Mouse monoclonal antibodies (MAb 105) against lipocortin I were a

generous gift of Dr R B Pepinsky, Biogen Inc, Boston, MA., USA (Pepinsky et

al., 1990). Rabbit anti-ACTH antiserum (AS6) was a generous gift from Dr G B

Makara, MTA KOKI, Budapest, Hungary (Makara, Stark, Rappay et al., 1979).
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Rabbit anti-cAMP antiserum (cAB4) was supplied by Dr K Catt, NICHD, NIH,

Bethesda, MD, USA (Dufau, Watanabe & Catt,1973). Rabbit polyclonal antibodies

to bovine chromogranin A were a generous gift ofDr D K Apps, Dept. Biochemistry,

University of Edinburgh, Edinburgh, UK. Mouse monoclonal antibodies (IgGi) to

bovine calmodulin were obtained from Upstate Biotechnology Inc., Lake Placid, NY,

USA (Sacks, Porter, Ladenson & McDonald, 1991).

cDNA clones: cDNA clones for mouse calmodulin (containing a 0.6kbp insert

encoding pCAMII in EcoRI site of pBluescript, clone 21) and a putative G-protein

linked receptor (1.3kbp insert, clone 4.2) were a generous gift of Dr S Bourgeois,

Salk Institute, San Diego, CA, USA (Baughman et al., 1991; Harrigan et al., 1989). A

cDNA clone for chicken calmodulin (0.28kbp insert in EcoRI/PstI site of pGEM-1)

was a generous gift of Dr D R Dowd, Arizona Cancer Center, Tucson, Arizona, USA

(Dowd et al., 1991). A cDNA clone for human lipocortin I (1.38kbp insert in EcoRI

site of pUC13) and a cDNA clone for human a-tubulin (1.4kbp insert in Pstl site of

pSP64) were provided by Dr E L Mullens (Lab. of Neuroendocrinology, Charing

Cross and Westminster Hospital, London, UK). A cDNA encoding the abundant

cytoplasmic 7S RNA (0.28kbp in BamHl site of pAT153 (Balmain, Krumlauf, Vass

& Birnie,1982)) was obtained through Dr J Seckl, Western General hospital,

Edinburgh, U K.

Molecular biology reagents: Guanidinium thiocyanate was from Fluka Chemicals Ltd,

Glossop, Derbyshire, UK. Bacto-tryptone, bacto-yeast extract and agar were from

Oxoid, Unipath Ltd, Basingstoke, Hampshire, UK. Materials used in cDNA library

construction were from Stratagene, Cambridge, Cambs, UK. Additional restriction

enzymes and nucleotides were from Boehringer Mannheim or Gibco-BRL. All other

material was from Sigma (Molecular biology grade) unless otherwise stated.
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Miscellaneous: Cyclic 8-(4-Chlorophenylthio) adenosine monophosphate (8-CPT-

cAMP) was from Boehringer Mannheim UK (Lewes, Sussex, UK). Isobutyl-

methylxanthine (IBMX), ketoconazole, 2'-0-monosuccinyl cAMP tyrosyl methyl

ester (cAMP-TME), cyclic adenosine monophosphate (cAMP) and 5,6-Dichloro-l-B-

D-ribofluranosylbenzimidazole (DRB) were from Sigma. Actinomycin D and

puromycin were from Aldrich.

All other materials were obtained as described in the relevant methods or results

section. General chemicals were obtained from BDH (Poole, Dorset, UK) and were

of the highest analytical grade.

2.2 Perifusion of anterior pituitary gland segments

2.2.1 Apparatus construction

Perifusion of rat anterior pituitary gland segments was performed using a modification

of previous methodologies (Dayanithi & Antoni,1989; Gillies & Lowry,1978; Mulder

& Smelik,1977). A flow diagram of the perifusion column apparatus is shown in

Figure 2.1a: typically 4 perifusion columns were run in parallel. The perifusion

medium was pumped through the system using an eight channel peristaltic pump (IPS,

Ismatec, Zurich, Switzerland) using 0.16cc/m peristaltic pump tubing (Altec, Alton,

Hampshire, UK). All other connecting tubing was 0.5mm i.d. polypropylene tubing

(Altec). Perifusion medium, columns and inlet tubing were maintained at 370C in a

thermostatically controlled incubator (Stuart Scientific, Scotlab, Paisley, UK).

Column perifusate was collected on ice using a Gilson microfraction collector

modified to collect 4 samples simultaneously.
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Figure 2.1

Anterior pituitary gland column perifusion apparatus

a) Flow diagram of perifusion apparatus

Fraction collector

b) Perifusion column construction

From debubbler

5ml Sabre syringe

Pituitary fragments/
Sephadex G10 slurry

19 gauge needle

0.5mm i.d tubing

37 °C incubator

Syringe plunger assembly

0.5mm i.d tubing

20 gauge needle

30(im nylon gauze

Medium

Rubber O-ring

15(im nylon gauze

To fraction collector

Figure 2.1: See section 2.2.1 for description of perifusion apparatus
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Perifusion columns were constructed from 2ml polystyrene syringes (Sabre, Reading,

Berkshire, UK) as shown in Figure 2.1b. The syringe plunger was pierced with a 20-

gauge needle (Becton Dickson, Wembley, Middlesex, UK) and attached to 0.5mm

i.d. polypropylene tubing (Altec). The nylon gauze (R Cadisch & Sons, Finchley,

London, UK) prevented Sephadex or cells entering the tubing and causing blockage.

A 100(il cushion of Sephadex G10 (Pharmacia. Uppsala, Sweden) was used as a

matrix for the pituitary segments and aided complete mixing of the perifusion medium

in the column chamber. Sephadex G10 was preswollen overnight in dH20 and

equilibrated with perifusion medium on the day of experiment.

Debubblers (0.2ml volume) were constructed from 1ml polystyrene syringes (Sabre)

to prevent entry of air bubbles into the perifusion chamber during transfer of inlet

tubing to experimental treatments.

2.2.2 Perifusion protocol

Anterior pituitary glands were isolated and cut into approximately equal size (1.5mm x

1.5mm) segments using a scalpel blade and randomly distributed between four

perifusion columns. Each column received 1-1.5 pituitary equivalents. The column

volume was adjusted to 0.5ml and the segments perifused with Dulbecco's modified

Eagle's medium (DMEM, Gibco-BRL, Paisley, Strathclyde, UK) containing 25mM

Hepes, pH7.4, 0.25% bovine serum albumin (BSA), 100U/1 penicillin and 100U/1

streptomycin for 2h at minimum flow rate (approximately 150|il/5min) to allow the

basal ACTH release to stabilize. Segments were perifused for a further hour at the

experimental flow rate of 200|il/min during which time the initial basal fractions were

collected. At this flow rate the transit time from the medium reservoir to the fraction

collector was 100s. Secretagogue stimuli were then applied every lh for 5min with

various treatments applied as shown in the respective figure legends. Column effluent
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was collected using a Gilson microfraction collector, modified to collect four fractions

simultaneously, and stored at -40°C until assayed for immunoreactive ACTH.

2.2.3 Calculation ofACTH released bv a secretagogue stimulus

Net ACTH release per 5min exposure to secretagogue was determined for each

stimulus as previously described (Dayanithi & Antoni,1989). Net ACTH release is

defined as:

Vl+V2+ +Vn
Net ACTH release = - B

n

Where Vi is the first 5min fraction collected during the stimulus (lOOsec transit time

discarded) and V2 to Vn are the next n consecutive fractions that are elevated with

respect to basal ACTH release (B). Basal ACTH secretion was determined

immediately prior to the application of each stimulus. For lOnM CRF-41 or AVP

n=5: for O.lnM CRF-41 n=3 (see Figure 2.2).

Because of the variability in absolute ACTH release between experiments (for example

see Figure 3.2, section 3.2) data were standardised by expressing the net ACTH

release elicited by a treatment as a percentage of that elicited by secretagogue alone (at

the 4h treatment point). The net ACTH release at 4h was defined as the 100% release

value in all columns.
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Figure 2.2

Time course ofACTH release in response to a stimulus ofCRF-41 andAVP
in perifused rat anterior pituitary segments
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Figure 2.2: The various stimuli were applied for 5min (stippled horizontal box)
as described in section 2.2.2 and 1ml fractions of column perifusate collected
every 5mins. Data are from typical experiments and expressed as a percentage
of the basal ACTH released immediately prior to application of the stimulus to
compensate for interexperimental differences in absolute ACTH release. For
lOnM CRF-41 and lOnM AVP, 5 fractions after the start of the stimulus are
elevated with respect to basal thus subsequent data are expressed as the net
ACTH released in 25min after a 5min stimulus as described in section 2.2.3.
For 0.1nM CRF-41, 3 fractions after the start of the stimulus are elevated with
respect to basal thus subsequent data are expressed as the net ACTH released in
15min after a 5min stimulus.
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2.3 Static ACTH release experiments

2.3.1 Pituitary segments

Anterior pituitaries were isolated and sectioned into eight approximately equal size

(1.5mm x 1.5mm) segments under a dissecting microscope. One pituitary eighth was

placed in each well of a 24 well cluster plate (CelCult) and maintained in DMEM

containing 25mM Hepes, pH7.4, 0.25% BSA, 100U/1 penicillin and 100U/1

streptomycin for 3h before experimental manipulation. ACTH release was determined

for a 30min secretagogue stimulus in a volume of 0.5ml.

2.3.2 Primary cultures ofanterior pituitary cells

Primary cultures of rat anterior pituitary cells were established using a modification of

the trypsin/mechanical dissociation technique (Dobson & Brown,1985; Gillies &

Lowry,1978; Portanova, Smith & Sayers,1970)

Anterior pituitaries from eight rats were aseptically isolated and placed in DMEM, pH

7.4, containing 25mM Hepes, 0.25% BSA (hereafter referred to as DMEM-Hepes).

Pituitaries were chopped into ca 0.5mm blocks using a razor blade and placed in 5ml

DMEM-Hepes containing 0.25% trypsin (TRL, Worthington Biochemical

Corporation, NJ, USA) and 5(ig/ml DNAse 1 (Sigma, Poole, Dorset). The tissue

was incubated at 37°C in a shaking water bath. Every 5min the pituitary pieces were

triturated using a 5ml pipetman tip to aid cell dispersion. After 20min the tissue was

triturated approximately 40 times using a 10ml Sterilin pipette fitted with a 1ml

pipetman tip. The suspension was filtered through lOOjam nylon gauze (R Cadisch &

Sons, Finchley, London, UK) to remove any remaining tissue debri and diluted with

an equal volume of DMEM-Hepes containing 10% FCS to inactivate the trypsin. The

supernatant was centrifuged at 200g for lOmin and the cell pellet resuspended in
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DMEM containing 10% FCS. Cell viability was determined by Trypan blue exclusion

using an haematocytometer and cells plated at a density of 3-4x10^ cells/well in 24

well cluster plates and maintained in a humidified atmosphere of 95% air and 5% CO2.

Typically 1-1.5x106 cells per pituitary were obtained with greater than 95% viability.

Secretion studies were performed on the fourth day after plating with a medium

change on day three. Cells were washed twice and maintained in DMEM containing

25mM Hepes, pH7.4, 0.25% BSA, 100U/1 penicillin and 100U/1 streptomycin for

two hours to remove FCS before experimental manipulation. Preliminary studies

demonstrated that the secretory response was identical for cells used on days 4 to 7

after plating. ACTH release was determined in a volume of 0.3ml after which samples

were spun briefly at 200g to pellet floating cells and the supernatant stored at -40°C.

2.3.3 AtT20 D16.16 corticotroph cell line

For release studies AtT20 D16:16 cells were plated in 24 well cluster dishes (CelCult)

at an initial density of 4x10^ cells/well, fed 3-4 days after plating and used at 70-80%

confluency. Prior to experimental manipulation cells were washed twice and

maintained in DMEM containing 25mM Hepes, pH7.4, 0.25% BSA, 100U/1 penicillin

and 100U/1 streptomycin for two hours to remove FCS. ACTH release was

determined in a volume of 0.5ml after which samples were spun briefly at 200g to

pellet floating cells and the supernatant stored at -40°C before radioimmunoassay.

Determination of intracellular cAMP content was performed as above except that after

treatment the incubating medium was removed and the cells lysed in 0.5ml of ice cold

0.1N HC1 with ultrasound disruption for 20s, spun at 200g to pellet cellular debri and

the acidic cell extract stored at -40°C before radioimmunoassay.
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2.4 Radioimmunoassay for ACTH and cAMP

2.4.1 Iodination ofACTH and cAMP using the Iodogen™method

Labelling of ACTH and cAMP with 125Iodine for use in their respective

radioimmunoassay was performed using the Iodogen™ method essentially as

described by Salacinski, McLean, Sykes et al. (1981).

Iodogen™ coated polypropylene 1.5ml conical Eppendorf centrifuge tubes (Sarstedt)

were prepared by adding 50|il of 0.04mg/ml Iodogen™ (Sigma) in dichloromethane

which was evaporated to dryness in a 37°C water bath in a fan extraction fume hood.

Human ACTH1.39 (Bachem or Peninsula) was stored in aliquots at 25|iM in 0.01N

HC1 and 2'-0-monosuccinyl cAMP tyrosyl methyl ester (Sigma, cAMP-TME) stored

at 25(iM in CIH2O at -70°C before use.

Five microlitres of Na^^I (ICN Radiochemicals, Irvine, CA, USA) containing

0.5mCi 0.25nmol Na^2^I) were incubated with 0.25nmol of ACTH or cAMP-

TME in a total volume of 50|il in 0.5M sodium phosphate buffer, pH 7 in an

Iodogen™ coated tube. After 12min at room temperature the reaction was terminated

by the addition of 1ml 0.1% trifluoroacetic acid (TFA) and applied to a Sep-Pak C18

octadenysilyl (ODS) cartridge.

For ACTH the cartridge was washed with three 2ml aliquots of 0.1 % TFA followed

by 2ml each of a stepwise gradient of acetonitrile (10-80%) containing 0.1% TFA.

Figure 2.3 shows a typical elution profde for labelled ACTH. Free iodine elutes in the

initial wash (Peak i, Figure 2.3), the peak typically eluting at 30 and 40% acetonitrile

(Peak ii, Figure 2.3) was suitable for use in the ACTH radioimmunoassay.
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Figure 2.3

Purification of Iodine labelledACTH on a Sep-Pak ODS cartridge

• •

T3
a
©
w
QJ
CA

U
O)
a.
(A
■*-»

c
a
o
u

Figure 2.3: lzJIodine labelled ACTH was eluted from a Sep-Pak ODS cartridge
with 0.1% trifluoroacetate and a stepwise acetonitrile gradient as described in
section 2.4.1. The peaks at i) and ii) represent free iodine and iodinated ACTH
respectively. The 30-40% acetonitrile fractions were used in the ACTH
radioimmunoassay as described in section 2.4.2.
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For cAMP-TME the cartridge was washed as for ACTH except that a 10-80%

methanol gradient containing 0.1% TFA was used, the 20% fraction was used in the

cAMP radioimmunoassay.

2.4.2 Measurement ofACTH by radioimmunoassay

Duplicate 50(il aliquots of experimental medium were assayed for immunoreactive

ACTH using a double antibody precipitation radioimmunoassay (Antoni, Holmes &

Jones, 1983) after appropriate dilution in RIA buffer (0.05M sodium phosphate buffer,

pH7.4, 0.1% BSA, 0.1% Triton X-100, 2.5mM EDTA and 100 kallikrein inhibitor

units (KIU) of aprotinin per ml).

Fifty microlitres of ACTH antiserum (AS6, courtesy of GB Makara, MTA KOKI

Budapest, Hungary) typically at a final titre of 1:70,000 (see Figure 2.4a) in RIA

buffer containing 6% polyethylene glycol 6000 (PEG-6000), were mixed with 50fll of

sample in a polypropylene microtiter RIA vial (Sarstedt). The assay was incubated

with 10|il of 125j_ACTH (approximately 10k cpm in lOpl sodium phosphate buffer

without PEG-6000) for 24h at 4°C. Subsequently donkey anti-rabbit IgG (SAPU,

Carluke, Lanarkshire, UK) and non-immune rabbit serum (SAPU) were added to a

final titre of 1:30 and 1:200, respectively, and incubated at 4°C for 3hrs. Three

hundred microlitres of ice-cold 6% PEG-6000 were added and the bound label

separated from free by centrifugation at l,500g for 20min at 4oC. The resultant

supernatant was decanted, tubes washed and blot dried, and the radioactivity

remaining in the pellet counted on a Packard autogamma counter.

Standard curves were constructed in the range 0.125 to 64.0 fmol ACTH/50p.l using

human ACTH 1.39 diluted in DMEM or RIA buffer as appropriate. Non-specific

binding was determined by either incubating in the presence of excess unlabelled
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ACTH or by omitting the ACTH antiserum and was typically <10% of the total bound

counts. Inter- and intra- assay coefficients of variance were typically <10% and <5%

respectively. a-Melanotrophin stimulating hormone significantly (<10%) cross-reacts

with this antiserum (Makara, Stark, Rappay et al., 1979).

Assayed ACTH content was determined by interpolation from the % Bound counts vs

log ACTH concentration curve (see Figure 2.4b), or its logit transformation, generated

using the respective algorithm of the Packard Cobra autogamma analysis package.

Specific bound counts were typically 35% of total counts applied. Percent bound

counts (%B) is defined as:

X-NSB
Bo-NSB

x 100%

Where X = cpm for standard/unknown sample, B0 = cpm in absence of ACTH, and

NSB is the non-specific cpm.

Logit %B is defined as:

%B
log 100-%B

2.4.3 Measurement ofcAMP by radioimmunoassay

Duplicate 25|il samples of sonicated cell extract in 0.1N HC1 were assayed for

immunoreactive cAMP using a double antibody precipitation reaction (Dufau et

al., 1973) using antiserum cAB4 at a final dilution of 1:50,000 supplied by Dr K Catt,

NIH, Bethesda, USA. All assays were performed in a final volume of 275|il in

polypropylene tubes (Alpha-Labs) in 50mM sodium acetate buffer, pH 6.0 containing

0.25% BSA. After overnight incubation with 10K cpm of 125I-cAMP-TME, donkey
anti-rabbit IgG (SAPU) and non-immune rabbit serum (SAPU) were added to a final

titre of 1:40 and 1:400 respectively and incubated at 4°C. After 3hrs one millilitre of
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ice-cold 6% PEG-6000 was applied and the bound label separated from free by

centrifugation at l,500g for 20min at 4c>C. Non-specific binding was typically <10%

of total bound counts, approximately 40% of total counts bound to the antiserum.

Inter- and intra- assay coefficients of variance were typically <10% and <5%

respectively. Standard curves were generated in the range 0.025 to 12.8 pmole/tube

using cAMP as standard (Sigma). Assayed cAMP content was determined as

described for ACTH radioimmunoassay.
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Figure 2.4

Characterization ofprimaryACTH antiserum (AS6)
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Figure 2.4: Characterization of primary ACTH antibody (AS6) used in ACTH
radioimmunoassay, a) Linear relationship of total bound counts with increasing
AS6 dilution and b) ACTH concentration standard curve using AS6 at a final
dilution of 1:70,000. Both curves were generated using a 100|il assay as
described in section 2.4.2.

Page 60



Materials and Methods. 2

2.5 Protein labelling and isolation

2.5.1 Treatment and harvesting ofAtT20 D16:16 cells forprotein isolation

In the following protein isolation procedures (unless otherwise stated) cells were

seeded at an initial density of 1x10^ cells per 75cm2 flask and grown to 70-80%

confluency in DMEM and 10% FCS. Before experimental manipulation the medium

was replaced with DMEM containing 25mM Hepes, pH 7.4, 0.25% BSA and 100U/1

penicillin and 100U/1 streptomycin for 2h. Cells were removed from the flask by

washing with PBS, pH7.4 containing lOmM glucose and 0.025% EDTA, and pelleted

at 200g for 5min.

2.5.2 Preparation ofcrude pellet and supernatantprotein homosenates

Cells (approximately lxlO^) were homogenised by sonication (3x20s) on ice in 250)0.1

of lOmM Tris/HCl, pH8.0, ImM EDTA and 0.25mM phenylmethylsulphonylfluoride

(PMSF) and spun at lOOg to remove large cellular debris.For isolation of calmodulin

2mM EGTA was also included in the homogenisation buffer. The supernatant was

centrifuged at 12,000g for 30min at 4°C in an Eppendorf microfuge. The resultant

pellet was resuspended in 50|J.l of homogenisation buffer; both supernatant and pellet

fractions were stored at -40°C before use.

2.5.3 Isolation ofCa^+-binding proteins from AtT20 D16:16 cells

Calcium binding proteins were isolated using a modification of the calcium

precipitation-elution method described by Woolgar, Boustead & Walker (1990) for the

isolation of annexins from mammalian brain. All subsequent steps were performed at

4°C. Cells (approximately 5x10^) were homogenised by sonication (3x 20s) in 0.5ml

of lOmM Hepes, pH7.4 containing 150mM NaCl, 5mM EGTA and 0.25mM PMSF
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and centrifuged for 30min at 40,000g in a Beckmann TL-100 fixed angle

ultracentrifuge. The supernatant was removed and CaCl2 added to ImM excess (final

concentration 6mM); after 15min, the sample was centrifuged at 40,000g for 30min.

The pellet was washed sequentially with 2vols of lOmM Hepes, pH7.4, 150mM NaCl

and ImM CaCl2 followed by lOmM Hepes, pH7.4 and ImM CaCl2- The pellet was

resuspended in O.lvol of lOmM Hepes, pH7.4, lOmM EGTA and centrifuged for

30min at 100,000g. The resultant supernatant contained typically -18% of total cell

protein and was stored at -40°C before use. After 2D-gel electrophoresis (see section

2.6.1) proteins were detected using the Pierce silver staining kit (Pierce Inc,

Rockford, Illinois, USA).

2.5.4 32phosphate labelling ofcellular proteins in AtT20 D16:16 cells.

32phosphate (32p) labelling of cellular proteins in AtT20 D16:16 cells was performed

using a method modified from Rougon, Barbet & Reisine (1989). Under these

conditions the cells equilibrate 32p with the intracellular phosphate pool within 3h

with approximately 5-6% of the 32p taken up into the cells in this period.

Cells were seeded at an initial density of 150,000/well in 6 well culture plates

(CelCult) and grown to 70-80% confluency in DMEM and 10% FCS. Cells were

washed and preincubated for lh in 3ml of phosphate free MEM (ICN Biomedicals,

High Wycombe, Bucks, UK), pH7.4 containing 0.25% BSA and 100U/1 penicillin

and 100U/1 streptomycin in a humidified atmosphere of 95% air and 5% CO2. After

3h in fresh medium containing 150(iCi/ml of 32p-0rthophosphoric acid (DuPont,

Stevenage, Herts, UK) lOnM dexamethasone was applied for 90min. lOnM CRF-41

was applied in the last 5min of dexamethasone treatment. Phosphorylation was

terminated by harvesting cells as described in section 2.5.1 except that lOmM NaF

was included as an inhibitor of phosphatase activity. Cells were homogenised in 50|il
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of IEF lysis buffer (9M urea, 2%w/v Nonidet P40, lOmM NaF, 5%w/v pH3-10

Pharmalyte) by trituration and centrifuged at 8000g for 2min at RT to remove

undissolved material. Protein samples containing equivalent TCA precipitable 32p
counts were used immediately in 2D-gel electrophoresis. TCA precipitable counts

were approximately 14% of the total cellular 32p counts. After overnight fixation of

the second dimension slab gels in 40% MeOH and 10% acetic acid gels were

autoradiographed for 4 weeks at -70°C using G-max Hyperfilm (Amersham,

Aylesbury, Bucks) with intensifying screens (Agfa).

2.5.5 35s-methionine labelling of newly synthesized proteins in AtT20 D16:16 cells.

Cells were seeded at an initial density of 50,000/well in 24 well cell culture plates

(CelCult) and grown to 70-80% confluency in DMEM and 10% FCS. Cells were

washed and preincubated for 2h in 0.5ml of methionine free MEM (Gibco), pH7.4

containing 0.25% BSA and 100U/1 penicillin and 100U/1 streptomycin in a humidified

atmosphere of 95% O2 and 5% CO2. Fresh medium containing 440|iCi/ml of 35s-
methionine (DuPont, Stevenage, Herts, UK (lOOOCi/mmol) with or without lOnM

dexamethasone was applied for 90min. Incorporation was terminated by triturating

cells in the well with 50|il of EEF lysis buffer (9M urea, 2%w/v Nonidet P40, 5%w/v

pH3-10 Pharmalyte) and samples frozen on solid CO2. Samples were homogenised

by trituration and centrifuged at 8000g for 2min at RT to remove insoluble material.

Protein samples containing equivalent TCA precipitable 35s_methionine counts were

used immediately in 2D-gel electrophoresis. Uptake of label was approximately 44%

of total applied ^S-methionine of which 20% was incorporated into protein as

determined by TCA precipitation. After overnight fixation of the second dimension

slab gels in 40% MeOH and 10% acetic acid gels were autoradiographed for 4 days at

-70°C using B-max Hyperfilm (Amersham, Aylesbury, Bucks, UK) with intensifying

screens (Agfa).
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2.5.6 Protein determination

The method of (Bradford, 1976) was used with bovine serum albumin (ICN

Biomedicals, High Wycombe, Bucks, UK) as standard in the range 10-100|ig

protein.

2.6 Protein gel electrophoresis

2.6.1 Two-dimensional gel electrophoresis

All two dimensional gel electrophoresis was kindly performed by Mr Jim Simpson

(MRC BMU, University of Edinburgh, Edinburgh, UK) using a modification of the

method of O'Farrell (1975) as described below.

For first dimension focusing, samples containing approximately 15(ig protein were

homogenised in IEF lysis buffer (9M urea, 2%w/v Nonidet P40, 5%w/v pH3-10

Pharmalyte) and applied to pre-focused (250V for lh at 18°C) 125mm x 1.5mm

cylindrical focusing gels. Gels consisted of 8.1 lg urea (BDH, Poole, Dorset) 6ml

dH20, 300mg Nonidet P40, 1.5ml 30%w/v acrylamide/bisacrylamide 19:1 (Bio-Rad,

Hemel Hempstead, Herts, UK), 300|il pH4-6.5 Pharmalyte (Pharmacia, Uppsala,

Sweden), 300gil pH6.7-7.7 Pharmalyte, 150|il pH3-10 Pharmalyte, 15(il 10%w/v

ammonium persulphate and 10.5p.l TEMED (Sigma). Samples were focused for 17h

at 400V and 4h at 1000V using 20mM NaOH cathodic and lOmM orthophosphoric

acid anodic buffer at 18°C. Calibration of IEF gels was performed using separate pH

and reference surface microelectrodes (Microelectrodes Inc, Londonderry, NH,

USA). For second dimension SDS-PAGE the first dimension cylindrical gels were

equilibrated for 4min in 1ml of 2.3% SDS, 62.5mM Tris-HCl, pH6.8 and applied to
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the top of SDS slab gels (139mm long x 163mm wide x 1.5mm thick). Second

dimension gels (consisting of 40ml 1.5M Tris-HCl, pH8.8, 66.7ml 30%

acrylamide/bisacrylamide 37.5:1 (Bio-Rad Laboratories Ltd, Watford, Herts, UK),

53.3ml dH20, 533|il 10% ammonium persulphate and 80|il TEMED) were

electrophoresed at 30mA/gel at 15°C in 250mM Tris/HCl, pH 7.5, 1.92M glycine and

l%w/v SDS using the Protean II 2-D Multi-Cell electrophoresis system (Bio-Rad).

Molecular mass calibrations were performed using 14C-methylated protein standards

(Amersham).

2.6.2 One dimensional SDS-PAGE and Western blotting

Samples containing l-2|ig/|il of protein were boiled for 5min in the presence of 2.5%

sodium dodecylsulphate and 5% 6-mercaptoethanol and applied in l(il to 0.45mm

thick 10-15% continuous gradient Phastgel SDS-PAGE gels (Pharmacia, Uppsala,

Sweden). Gels were run at 15°C at 10mA for 70AVh in buffer containing 0.2M Tris-

HCl pH7.5, 0.2M tricine and 0.55% SDS using the Phastsystem gel electrophoresis

apparatus (Pharmacia). After electrophoresis, proteins were transferred to Immobilon

PVDF membranes (Millipore, Watford, Herts, UK) by electroblotting after

equilibrating gels in 25mM Tris-HCl pH8.3, 192mM glycine and 20% methanol for

5min followed by 45min transfer at 25mA using carbon electrodes (Pharmacia). For

improved electrotransfer of calmodulin 2mM CaCl2 was included in the transfer buffer

and the blot immediately fixed in fresh 0.25% glutaraldehyde/PBS for 15min as

described by McKeon & Lyman (1991).

Following transfer, blots were wetted in methanol followed by (IH2O and background

blocked in 50mM Tris/HCl, pH7.6 containing 3% low fat milk powder (Marvel) for

lh. All following steps were performed with gentle agitation. After 5x 5min washes

in Tris/HCl containing 0.1% Tween-20 (Tris/Tween), blots were incubated overnight
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at 4°C with the respective concentration of primary antibody. Blots were washed for

5x 5min at RT in Tris/Tween, incubated with a 1:200 dilution of the appropriate

biotinylated antisera to the primary antibody (Dakopatts, Denmark) in Tris/HCl for lh,

washed 5x 5min Tris/Tween and incubated with a 1:300 dilution of streptavidin

biotinylated-conjugated peroxidase (Amersham, Aylesbury, Bucks) for 45min. Blots

were developed after a 3x 5min wash in Tris/Tween using diaminobenzidine

tetrahydrochloride hydrate (Aldrich, Poole, Dorset) at a concentration of 0.75mg/ml in

Tris/HCl containing 0.02% H2O2. After 5-10min at RT the reaction was terminated

by washing extensively in dH20. Alternatively, for calmodulin immunoblotting 125i_
labelled anti-mouse IgG (DuPont) was used as second antibody at a final activity of

50Bq/|il and blots autoradiographed for 3 days at -70°C using Hyperfilm-MP

(Amersham). Blot lanes containing molecular weight markers (Pharmacia LMW)

were excised and stained using 0.1% Coomassie blue R250 in 50% methanol.
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2.7 General molecular biology methods

All routine molecular biology techniques such as restriction digestion, TCA

precipitation etc were performed as described in Sambrook, Frisch & Maniatis (1989).

Table 2.1

Standard buffers referred to in molecular biology methods

SS C 150mM NaCl, 15mM trisodium citrate, pH 7.0

TBE 90mM Tris-borate, 90mM boric acid, 2mM EDTA, pH8.3

TE lOmM Tris-HCl, ImM EDTA, pH8.0

SSPE 150mM NaCl, 2.5mM NaH2P04, 0.25mM EDTA, pH7.4

SM 50mM Tris-HCl, pH 7.5, lOOmM NaCl, 8mM MgS04, 0.01% gelatin

LB lOg Bacto-tryptone, 5g Bacto-yeast extract, lOg NaCl per litre, pH 7.5

NZY 5g NaCl, 2g MgS04, 5g Bacto-yeast extract, lOg bacto-tryptone per

litre, pH7.5
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2.7.1 Total RNA and Poly A+mRNA extraction

Total RNA was extracted using the single step acid guanidinium thiocyanate-phenol-

chloroform method (Chomczynski & Sacchi,1987). Approximately 107 AtT20

D16:16 cells (70-80% confluency) were lysed directly as a monolayer from a 75cm2
flask using 1ml of GTC solution (4M guanidinium thiocyanate, 25mM sodium citrate,

pH 7,0 .5% N-laurylsarcosine and 0.1M B-mercaptoethanol) and homogenised by

trituration. For pituitary fragments tissue was homogenised in a glass hand

homogeniser using approximately 200pl GTC solution per pituitary. Sequentially,

0.1 vol 2M sodium acetate pH4, lvol water saturated phenol and 0.2vol

chloroformrisoamyl alcohol (49:1) were applied to the homogenate with vortexing.

The homogenate was cooled on ice for 15min, centrifuged 10,000g for 20min at 4°C

and the aqueous phase mixed with lvol isopropanol at -20°C for lh to precipitate

RNA. After centrifugation at 12,000g for 20min at 4°C the RNA pellet was

resuspended in 0.15vol GTC solution and precipitated with lvol isopropanol at -20°C

for lh followed by centrifugation at 12,000g, lOmin at 4°C. After washing the pellet

with 75% ethanol RNA was vacuum dried and resuspended in TE buffer. RNA

quality and quantity was determined using the absorbance ratio at 260 and 280nm and

by ethidium bromide staining of agarose gels.

Poly A+ messenger RNA (mRNA) was selected using two rounds of poly dT

cellulose spun column chromatography (Pharmacia, Uppsala, Sweden). Typically 2-

5% of the starting RNA was isolated as mRNA.
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2.7.2 Generation of radiolabelledsubtraction probe

Single strand ^phosphate labelled cDNA (ss cDNA*) was generated using mRNA

isolated from AtT20 D16:16 cells treated for 90min with lOnM dexamethasone as

shown schematically in Figure 2.5. A large scale synthesis (4p.g mRNA in a 100|il

reaction) was performed as for cDNA library construction (section 2.8.2) except that

poly dT(i2-i8) (Pharmacia) was used as primer (lp.g/p.g mRNA), and the reaction
contained 0.5mM each of dATP, dGTP, dTTP and 150(iM dCTP (Boehringer

Mannheim, Mannheim, Germany) and 400|iCi oc-32P-dCTP (3000Ci/mmol, DuPont).

First strand synthesis was terminated by adjusting the reaction to 20mM EDTA, 0.4%

SDS, and template mRNA hydrolysed with 0.2N NaOH at 68°C for 30min. After

cooling to RT the reaction was neutralized with HC1, the ss cDNA* was phenol-

chloroform extracted and unincorporated label removed by centrifugation through a

Nu-Clean R50 spin column (IBI Ltd., Cambridge, UK). The specific activity of the

generated ss cDNA* was routinely >2.2x108cpm/(ig. The ss cDNA* was hybridized

in a heat sealed silanized capillary tube to a 30-fold mass excess of uninduced mRNA

from AtT20 D16:16 cells for 48h to a R0t of 1,000 (mol/litre x s) in 0.5M sodium

phosphate (pH6.8), ImM EDTA and 0.1% SDS at 68°C. Unhybridized single

stranded ss cDNA* was collected by hydroxylapatite chromatography (Sambrook et

al., 1989). Optimal separation was achieved using 0.14M sodium phosphate pH6.8,

0.1%SDS to elute ss cDNA* using a 1ml packed volume of hydroxylapatite (DNA-

grade HAP, Bio-Rad, Watford, Herts) in a 5ml polypropylene syringe maintained at

68°C. After a single round of hybridization 7.4% of the input ss cDNA* remained

unhybridized, this ss cDNA* was used to screen the unamplified dexamethasone

induced library (see section 2.8.8 and Figure 2.5).
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Figure 2.5

Generation of ss cDNA* probe used in cDNA library screening strategy

Dexamethasone treated cells
OC1X1CD

mRNA

\
ss cDNA*

\
ss cDNA* : mRNA

^ Hybridize to R0T of 1000
Select on hydroxyapatite column

sscDNA* — mRNA
complimentary ss cDNA* removed

1° cDNA library screen:

Subtracted ss cDNA* used as probe

2° screen of positive 1° screen clones:
Differential screening of positive 'subtracted' clones from 1° screening using
duplicate filters probed with ss cDNA from control and dexamethasone treated
cells.

Plaque purify positive clones

Dexamethasone induced cDNA clones

Figure 2.5: See sections 2.7.2 and 2.8.8 for generation of ss cDNA* probe and
cDNA library screening strategy methodology
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2.7.3 Random prime labelling of cDNA inserts

cDNA inserts were cut overnight from vector DNA using the appropriate restriction

enzymes (Sambrook et al., 1989) and gel purified on a 1.2% low-melting point

agarose (Gibco-BRL) gel run in lxTBE buffer. The excised insert was heated to

65°C and extracted with phenol. The DNA in the aqueous phase was

phenol/chloroform (24:1) extracted and precipitated at -20°C (Sambrook et al., 1989).

Twenty-five nanograms of heat denatured DNA insert was used as template in a

reaction volume of 50|il containing 50mM Tris-HCl, pH8.0, 5mM MgCl2, 2mM

dithiothreitol, 0.2M Hepes, pH6.6, 20|iM each of dATP, dGTP, dTTP, 20p.g BSA,

0.05A260 U random hexanucleotide primers, 50(iCi a32P-dCTP (DuPont,

3000Ci/mmol) and 5 U Klenow DNA polymerase using the Prime-a-gene kit

(Promega Ltd, Southampton, UK). The reaction was continued at RT for 1.5-3h and

terminated by heat inactivation (95°C for 2min) and adjusting the reaction mix to

20mM EDTA. Labelled DNA was purified by Sephadex G-25 column

chromotography (Nu-Clean, IBI Ltd, Cambridge, UK) and used directly in

hybridization. DNA was typically labelled to a specific activity of >lxl09 cpm/(ig.

2.7.4 Northern blotting and hybridization

Total RNA or polyA+ mRNA was denatured for 15min at 65°C in MOPS/EDTA

buffer (20mM MOPS, pH7.0 (3-(N-morpholino)propanesulfonic acid) containing

0.66M formaldehyde, 5mM sodium acetate and ImM EDTA). Samples were

electrophoresed for 2h at 100V on a 1% agarose gel (Gibco-BRL) containing 0.66M

formaldehyde using MOPS/EDTA as running buffer (Fourney, Miyakoshi, Day III &

Paterson,1987). After equilibrating the gel in lOxSSC (2x 20min washes) RNA was

transferred overnight at 4°C by capillary blotting to nitrocellulose (Schleicher &
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Schull, Dassel, West Germany) using lOxSSC (Sambrook et al., 1989). RNA was

fixed to nitrocellulose by baking for 2h at 80°C before use in hybridization.

Northern blots were typically prehybridized for 2h at 55°C in 50% v/v deionized

formamide (Sigma), 5x SSPE, 0.5x Denhardts (Sigma), 0.1% SDS and 0.2mg/ml

salmon sperm carrier DNA (Sigma). Labelled DNA was applied directly to the

prehybridization mixture (typically 2xl06 cpm/ml) and incubated for 16-18h. Filters

were washed for 15min with 2xSSC, 0.1%SDS at 65°C and then twice with

O.lxSSC, 0.1%SDS for 15min. Any modification of the hybridization and washing

protocols for individual probes is indicated in the respective figure legend. Filters

were exposed at -70°C to Fuji-RX X-ray film (Fuji) using intensifying screens. Blots

were reprobed with the abundant cytoplasmic 7S RNA (Balmain et al., 1982) to verify

equal loading and transfer of RNA. Densitometric analysis of RNA blots was

performed as described in section 2.9.2.

2.7.5 Maintenance and transformation of comvetent E. Coli cells

Long term glycerol stocks of the E. Coli strains PLK-F, XL-1 Blue, JM109 and

HB101 (Stratagene) were prepared using 25% glycerol in LB medium (lOg NaCl, lOg

tryptone, 5g yeast extract per litre, pH 7.5) containing 12.5|i.g/ml tetracycline and

stored at -80°C (Sambrook et al., 1989). For use bacteria were streaked onto a LB-

agar plate containing 12.5(ig/ml tetracycline and incubated overnight at 37°C.

Bacteria used in library titration, screening, amplification and in vivo excision were

grown in overnight 50ml liquid cultures of LB medium containing 0.2% maltose (to

induce the lambda bacteriophage receptor) and lOmM MgSC>4 at 37°C with vigorous

shaking from a single colony selected from an LB-agar tetracycline plate. Cells were

pelleted at lOOOg for lOmin and resuspended to the appropriate optical density at

600nm in lOmM MgS04.
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Transformation was performed using the CaCl2 method (Sambrook et al., 1989).

Fifty millilitres of preequilibrated LB-broth were inoculated with 0.5ml of an

overnight 50ml culture of bacteria (PLK-F', XL-1 Blue, JM-109 or HB101) and

incubated at 37°C with shaking to an ODgoo of 0-2. Flasks were cooled on ice and

bacteria pelleted at 2,500g for 5min at 4°C. The bacterial pellet was resuspended in

25ml ice cold 50mM CaCl2 and incubate at 4°C for lh before pelleting bacteria. Cells

were resuspended in 5ml ice cold 50mM CaCl2 and incubated at 4°C for >2h.

Plasmid DNA (25ng) was incubated for 30min at 4°C with 200|il of the above freshly

prepared competent bacteria. Bacteria were heat shocked for 5min at 37°C, cooled on

ice and plated overnight at 37°C on LB-agar plates containing 50|ig/ml ampicillin.

2.7.6 Plasmid DNA minipreps

Minipreps were prepared from 3ml overnight cultures using the rapid boiling-

lysozyme method (Holmes & Quigley,1981). Cultures (1.5ml) were pelleted,

resuspended in 110(ll STETL (50mM Tris, pH 8.0, 50mM EDTA, 8% sucrose, 0.5%

Triton X-100, 0.5mg/ml lysozyme (Sigma)) and boiled for 30s in a water bath. Cell

debri was pelleted (12,000g) at 4°C for 15min and DNA in the supernatant

immediately precipitated with 1 vol isopropanol followed by centrifugation at 12,000g

for 15min at RT. The DNA pellet was washed with 75% ethanol, dried and

resuspended in TE buffer, pH 8.0. DNA was used for restriction digest as described

in Sambrook et al. (1989).
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2.8 cDNA Library construction

2.8.1 General description ofvector and cDNA library construction

Representative cDNA libraries were constructed using the lambda ZAP vector (Short,

Fernandez, Sorge & Huse,1988) after synthesis of cDNA using the ZAP-cDNA kit

(Stratagene, Cambridge, Cambs, UK). A flow chart of cDNA library formation is

shown in Figure 2.6.

The Uni-ZAP-XR™ vector is a lambda vector that allows the uni-directional insertion

of cDNA (0-10kbp) in a sense orientation (EcoR I - Xho I) with respect to the vector

lacZ promoter by using a 50 base oligo poly dT primer containing a Xho I recognition

site in the synthesis of first strand cDNA. The sequence of the poly dT primer is

shown below:

5' GAGAGAGAGAGAGAGAGAGAACTAGTCTCC,AfiTTriTnTITnTnTlT 3'
Xho I site

Methylated dCTP (5'-Me-dCTP) is included in the first strand reaction to prevent the

digestion of cDNA containing internal Xho I sites in the subsequent generation of uni¬

directional cDNA. The second strand synthesis reaction contains an excess of dCTP

to prevent 5'-Me-dCTP incorporation into the second strand allowing the Xho I site in

the linker primer to be digested with Xho I. Following second strand synthesis EcoR

I adaptors are ligated to the cDNA and the cDNA restricted with Xho I to generate

cDNA with a 5' EcoR I site and a 3' Xho I site. After size fractionation the cDNA is

ligated to the Uni-Zap-XR™ lambda vector arms containing complimentary EcoR I

and Xho I termini and packaged to generate an infective lambda bacteriophage particle.

As hemi-methylated DNA is digested by the mcrA and mcrB restriction system the

bacteriophage are initially infected into mcrA- and mcrB- PLK-F.
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Figure 2.6

Schema for cDNA library construction in Uni-ZAP-XR™ vector

poly A mRNA
5'- AAAAAAA -3'

1st strand cDNA synthesis
M-MuLV reverse transcriptase
poly dT - Xho I primer

AAAAAA
TTTTTTGAGA...Xh0l...

2nd strand cDNA synthesis
RNase H
DNA polymerase I

Xhol □

Ligation of Eco RI adaptors

1—|Eco R1

T4 DNA polymerase
T4 DNA polynucleotide kinase
T4 DNA Ligase

y Eco RI adaptors

Xhol Eco RI1—|

Unidirectional cDNA generation
Xho I digestion
Sephacryl S-400 chromatography

'—|Eco RI Unidirectional cDNA Xhol 1 1

T4 DNA Ligase
Uni-ZAP-XR™ vector

-3'

cDNA ligated into Eco Rl-Xho I cloning site of Uni-ZAP-XR™ vector

Vector DNA packaged
as lambda bacteriophage

Figure 2.6: See section 2.8 for cDNA library construction methodology

Page 75



Materials and Methods. 2

After passage of the library through PLK-F the DNA is no longer methylated and is

grown on the mcrA+ and mcrB+ bacterial strain XL-1 Blue. Following identification

of clones of interest the pBluescript plasmid is excised from the lambda bacteriophage

in an in vivo reaction circumventing the lengthy subcloning procedures required for

subsequent analysis of the cDNA insert.

2.8.2 First strand cDNA synthesis

First strand cDNA was synthesized from 4.5|ig of poly (A+) mRNA in a total reaction

volume of 45|il containing 50mM Tris-HCl, pH 8.3, 75mM KC1, 3mM MgCl2,

lOmM dithiothreitol (DTT), 0.6mM each of dATP, dGTP, dTTP, 0.3mM 5'-Me-

dCTP, 2.8|ig poly dT-Xhol primer linker, 1U RNase block II. The reaction was

started by addition of 45U Moloney-Murine Leukaemia Virus reverse transcriptase and

incubated at 37°C for lh. A small scale reaction (0.5|ig mRNA in 5|il) was

performed in parallel for subsequent gel analysis and calculation of 1st strand cDNA

yield using 5(lCi a-32P-dATP (Dupont, 800Ci/mmol). First strand cDNA yield was

typically 8-15% of input mRNA as determined by incorporation of a-32P-dATP into

TCA precipitated material.

2.8.3 Second strand cDNA synthesis

The non-radioactive 45ql first strand synthesis was carried through to a 400|il volume

second strand synthesis reaction containing: 25mM Tris-HCl, pH 8.3; lOOmM KC1;

2mM MgCl2; 2mM DTT; 0.2mM each of dATP, dGTP, dTTP; 0.5mM dCTP; 20qCi

a-32P-dATP (Dupont, 800Ci/mmol). The reaction was started by addition of 3.6U

RNase H and 75U DNA polymerase I and incubated for 2.5h at 16°C. After

synthesis the cDNA was extracted sequentially with an equal volume of

phenol:chloroform (24:1) and chloroform. The subsequent aqueous cDNA phase was
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precipitated overnight at -20°C with O.lvol 3M sodium acetate and 2.5vol 100%

ethanol and pelleted by centrifugation at 4°C for lh at 12,000g. After washing the

pellet with 75% ethanol the cDNA was vacuum dried and resuspended in sterile

(IH2O. An aliquot was removed for subsequent second strand yield determination and

gel electrophoresis. Typically second strand synthesis yield was greater than 80% of

first strand cDNA as determined by TCA precipitation (Sambrook et al., 1989).

2.8.4 Generation of uni-directional cDNA inserts

The uneven termini of double stranded cDNA were blunted using 10U T4 DNA

polymerase in a 50|ll reaction containing 30mM Tris acetate, pH 7.9; 70mM

potassium acetate; lOmM magnesium acetate; 0.5mM DTT; 125p.M each of dATP,

dCTP, dGTP, dTTP at 37°C. After 30min 50|il of dH20 was added to the reaction

and the cDNA extracted with an equal volume of phenolrchloroform (24:1) followed

by chloroform. The supernatant was precipitated at -20°C for lh using O.lvol 3M

sodium acetate and 2.5vol 100% ethanol. After centrifugation at 12,000g for lh at RT

the cDNA pellet was washed with 75% ethanol and vacuum dried.

EcoR I adaptors were ligated at 4°C to the blunted cDNA in a lOp.1 reaction containing:

50mM Tris-HCl, pH 7.5; 7mM MgCl2; ImM DTT; ImM ATP and 4 Weiss U of T4

DNA ligase. After 36h the ligase was heat inactivated at 70°C for lOmin. EcoR I

ends were kinased in a 20ql reaction for 30min containing: 50mM Tris-HCl, pH 7.5;

7mM MgCl2; ImM ATP and 10 U T4 Polynucleotide kinase, the reaction was

terminated by heat inactivation at 70°C.

The heat inactivated kinase reaction was carried through to a 50|J.l Xho I digest

reaction containing: 50mM Tris-HCl, pH7.5; lOmM MgCl2; lOOmM NaCl; ImM DTT

and 135 U Xho I. This generates cDNA that possess a 5' EcoR I site and a 3' Xho I
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recognition site that allows uni-directional insertion of the cDNA into the Uni-Zap-

XR™ vector.

2.8.5 cDNA size fractionation on Sephacrvl S-400 snin column

The 50(0.1 Xho I reaction was cooled to RT and adjusted to lOOmM NaCl and ImM

EDTA, pH8.0. The cDNA was applied to a 1ml column of Sephacryl S-400

preequilibrated with STE buffer (lOmM Tris-HCl, pH8.0, lOOmM NaCl and lOmM

EDTA) in a sterile 1ml polypropylene syringe barrel (Sabre). The cDNA was eluted

from the column by spinning at 600g. Two sequential 60jol aliquots of STE were

applied and the the three cDNA fractions pooled. These fractions contained cDNA of

>500bp whereas cDNA fragments <500bp and unincorporated nucleotides remained

on the column. Typically 30-100cps were detected per fraction on a Geiger-Muller

tube. The pooled fractions were extracted sequentially with phenohchloroform

(24:1) and chloroform and precipitated overnight with 2vols 100% ethanol at -20°C.

The cDNA was pelleted by centrifugation for lh at 12,000g, washed with 75%

ethanol, vacuum dried and resuspended in 10|il sterile dH^O. The cDNA was

quantitated by spotting 0.5|il of the sample on an ethidium bromide agarose plate

(Sambrook et al., 1989), using salmon sperm testes DNA as standard (Sigma).

2.8.6 Ligation andpackaging ofcDNA into Uni-Zap -XR ™ vector

Optimum ligation was achieved using lOOng of cDNA per lp.g of calf intestinal

alkaline phosphatase (CIAP) treated Uni-Zap-XR™/Eco RI and Xho I prepared arms

in a 5|il reaction containing: 50mM Tris-HCl, pH 7.5; 7mM MgCl2; ImM DTT and

ImM ATP. The reaction was started by addition of 2 Weiss U of T4 DNA Ligase,

continued for 48h at 4°C, followed by 2h at RT before packaging.
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Packaging was performed using the Gigapack II Gold packaging extract (Stratagene

(Kretz & Short,1989)). Test packaging reactions of the ligated cDNA/vector were

performed by mixing l-2.5|il aliquots on ice with the thawing freeze/thaw extract.

Fifteen microlitres of sonic extract were applied to the cDNA, gently mixed and

incubated for 2h at RT. Five hundred microlitres of SM buffer (50mM, pH 7.5;

lOOmM NaCl, 8mM MgS04 and 0.01% gelatin) and 20|il chloroform were added,

spun for 2s at 12,000g to sediment debri. The supernatant was titered and stored at

4°C. If greater than 200,000 pfu/|il ligation was obtained the remaining ligated

cDNA/vector was packaged in the same ratio as for the test package. The background

titre of vector arms alone ligated to themselves was <4x104 pfu/p.g vector arms.

Vector ligated with cDNA resulted in a 25-70 fold increase in efficiency compared to

arms alone. Primary libraries resulted in >1.3xl06 independent clones from lOOng

cDNA ligated per l(ig vector arms.

2.8.7 Amplification ofprimary cDNA library

Primary libraries of lambda bacteriophage are relatively unstable, thus the majority of

each library was amplified immediately into a high titre stock library (>lxl010

pfu/ml). Aliquots of the packaged lambda clones containing 50,000pfu were

incubated with 600|il of (OD^oo = 0.5) PLK-F' host E. coli bacteria for 15min at

37°C and plated on prewarmed (37°C) NZY agar plates (NZY broth + 15g/l agar)

using 6.5ml NZY top agar (NZY broth + 0.7% agarose) per 150mm plate (CelCult).

Plates were incubated for 5-8h at 37°C until pinpoint plaques were generated.

Bacteriophage were eluted overnight at 4°C using 10ml SM buffer per plate with

gentle rocking. After rinsing the plates with a further 2mls of SM buffer the

bacteriophage suspension was pooled, chloroform added to 5% and incubated for

15min at RT. Cell debris was removed by centrifugation at 5min at 4000g, the
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supernatant recovered and chloroform added to 0.3%. Aliquots (1ml) containing

>lxl010 pfu/ml were stored at 4°C. For longer term storage aliquots were stored at -

70°C with 7% dimethylsulphoxide.

2.8.8 Screening ofdexamethasone-induced cDNA library

A summary of the screening strategy employed to isolate dexamethasone-induced

cDNA clones from a cDNA library of AtT20 D16:16 cells treated with dexamethasone

is shown in Figure 2.5, section 2.7.2.

1° screen: Fifty thousand unamplified plaques were plated at a density of 12,500pfu

per 150mm plate on NZY-agar plates using PLK-F' as host as described for

amplification of libraries. Phage DNA was transferred to nitrocellulose filters

(Millipore, Watford, Hertfordshire, UK), denatured with 0.5M NaOH, 1.5M NaCl,

neutralized with 0.5M Tris-HCl, pH 8, 1.5M NaCl and washed with 0.2M Tris-HCl

pH7.5, 2xSSC and baked for 2h at 80°C (Sambrook et al., 1989). Preybridization

was performed at 42°C in a solution of 20mM Pipes, pH6.5, 0.8M NaCl, 50%

deionized formamide, 0.5% SDS and O.lmg/ml salmon sperm DNA for 2h.

Radiolabeled single stranded cDNA (ss cDNA*), enriched for dexamethasone

induced sequences as described in section 2.7.2, was added directly to the

prehybridisation mixture and incubated for 16-18h. Filters were sequentially washed

for 15min with 2x SSC, 0.1% SDS at 42°C, O.lx SSC, 0.1%SDS at 42°C and

O.lxSSC, 0.1% SDS at 55°C and exposed to Fuji-RX X-ray film for 2 weeks at -

70°C.

2° screen: Positive plaques were transferred to a cell lawn of XL-1 Blue cells on

150mm NZY-agar plates and rescreened as a grid using duplicate lifts hybridized to

single stranded 32P-cDNA probes generated from dexamethasone induced or control

AtT20 D16:16 cell mRNA.
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2.8.9 In vivo excision ofpBluescrint plasmid from Uni-ZAP-XR ™bacteriophage vector

Two hundred microlitres of recombinant bacteriophage stock (containing>lxl05pfu)
were incubated with 200|il of (OD600 = 1-0) XL-1 Blue bacteria and ljil of R408

helper phage (Stratagene) at 37°C. After 5min the mixture was incubated with 5ml of

2x YT buffer (lOg NaCl, lOg yeast extract and 16g tryptone per litre, pH7.5) with

shaking at 37°C for 3h in a 50ml conical tube. Bacteria were heat inactivated for

20min at 70°C and debri pelleted at lOOOg for 5min. The supernatant contained the

pBluescript phagemid packaged as a filamentous phage particle and was used to

reinfect XL-1 Blue cells and maintained on LB-agar plates containing 50flg/ml

ampicillin for recombinant selection.

2.9 Miscellaneous

2.9.1 Statistics

Statistical evaluation between different treatments in the perifusion studies were

performed using the non-parametric Kruskal-Wallis test with multiple comparisons for

several independent samples or the Mann-Whitney U-test for two independent samples

(Conover,1980). Alternatively Students t-test (unpaired, 2-tail) was used where

appropriate.

2.9.2 Densitometric analysis

2D-gels: Analysis was performed manually by two separate observers (MJS and JS)

using grid overlays after protein detection using autoradiography or silver staining.

Only protein spots that differed in intensity/migration in all gels of a treatment group

compared to control (typically 6 gels per group run simultaneously) were analysed
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further for optical density measurements using peak grey scale levels (0-256)

determined by the Optomax V Image analyser (Analytical Measuring Systems

(Synoptics), Cambridge, Cambs, UK).

Northern- and Immuno-blots: The areas and optical densities of the respective bands

on blots and autoradiographs were determined using the area densitometry algorithm

on the Optomax V Image analyser (Analytical Measuring Systems (Synoptics),

Cambridge, UK).

For northern blot analysis of calmodulin mRNA, optical density measurements were

divided by the respective values for 7S RNA yielding the normalized hybridization

intensity. Finally, because of slight variability in the control levels of calmodulin

mRNA between experiments (see section 4.3.2), the values for each experimental

treatment were divided by the normalized hybridization intensity of the control group

for each experiment to obtain the relative hybridization intensity.

For immunoblots, standard curves were constructed with the respective antigen and

protein levels in unknown samples determined by interpolation of the respective

optical density measurements.
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3

CHARACTERISTICS OF EARLY

GLUCOCORTICOID INHIBITION IN PERIFUSED

RAT ANTERIOR PITUITARY GLAND

SEGMENTS

Introduction

In order to investigate the characteristics of early glucocorticoid inhibition a

reproducible ACTH secretory response is required. To date the most reliable in vitro

model is the column perifusion system (Antoni,1986; Watanabe & Orth,1988),

furthermore, the composition and timing of experimental treatments is easily

manipulated in this system allowing glucocorticoid-secretagogue interactions to be

studied. Perifused anterior pituitary gland segments were used as a model because

they provide the closest approximation to in vivo corticotroph function as cell

morphology, intercellular communication and plasma membrane receptors/channels

are relatively conserved compared to mechanically and enzymatically dispersed cells.

In the following section the characteristics of early inhibition of CRF-41-, and AVP-,

stimulated ACTH release are investigated. The interactions observed between CRF-41

and glucocorticoid during these studies were then explored further to investigate

whether the physiological ACTH secretagogues, CRF-41 and AVP, interact at the

adenohypophysis to modulate glucocorticoid action. The results presented in this

section have been published as full papers (Shipston & Antoni,1991; Shipston &

Antoni,1992).
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Results

3.2 Early glucocorticoid inhibition of CRF-41-stimulated ACTH
release

3.2.1 Response to CRF-41

To evaluate the characteristics of early glucocorticoid inhibition it is essential to use a

model that consistently responds to ACTH secretagogues. Figure 3.1 shows the

dose-response relationship of net ACTH release and 5min pulses of CRF-41 in

perifused female ex-breeder Wistar (Harlan Olac) rat anterior pituitary segments in

vitro. CRF-41 was used at the submaximal concentration of lOnM in subsequent

experiments using Harlan Olac rats. After a 3h preperifusion period, to allow basal

ACTH release to stabilize, the release of ACTH at 4h in response to a 5min pulse of

lOnM CRF-41 was enhanced (net ACTH release was 121.0±5.2% of the release at

3h, mean±SEM n=46, p<0.05) with respect to the response at 3h in the columns.

Subsequent stimuli released similar amounts of ACTH to that released at 4h, up to 7h

after the start of perifusion (see Figures 3.2a and 3.3a). Typical ACTH release profiles

for a control CRF-41 and a synthetic glucocorticoid (RU28362)-treated column are

shown in Figure 3.2.

These data demonstrate that perifused rat anterior pituitary gland segments consistently

respond in a dose-dependent fashion to CRF-41 and are thus a viable model in which

to explore early glucocorticoid inhibition of CRF-41-stimulated ACTH secretion.
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Figure 3.1

Release ofACTH by perifused rat anterior pituitary segments in response to
CRF-41 andAVP

CRF-41 AVP

Secretagogue log(M)

Figure 3.1: Four columns of segments were exposed to various concentrations
of secretagogue for 5min at lh intervals in a randomized complete block design
after initial exposure to two doses of lOnM CRF-41. Data are the means of the
net release of hormone ± SEM (n=4/group). The basal secretory rate in this
experiment was 62.1± 4.3 fmol ACTH/25min (n=24).
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3.2.2 Effect of glucocorticoids on CRF-41- stimulated ACTH release

To verify that glucocorticoids suppress CRF-41-stimulated ACTH release in the early

time domain (within 2h) in perifused rat anterior pituitary segments the time course,

receptor pharmacology and transcription/translation inhibitor sensitivity of

glucocorticoid action were characterized.

Exposure of Harlan Olac rat pituitary segments to the physiological rat

glucocorticoid, corticosterone, at 0.1 |iM applied 30min before and during the lOnM

CRF-41 pulse at 5h resulted in a significant (p<0.05) attenuation of stimulated ACTH

release after 30min; the inhibitory effect was maintained at 6h. At 7h (2.5h after the

application of corticosterone) the release of ACTH returned towards the control value

(Figure 3.3b). The degree of inhibition of ACTH release was not altered by

increasing the corticosterone concentration to lp.M. The inhibition of CRF-41 -

stimulated ACTH release by corticosterone exhibited a lag-time of at least 15min

(Figure 3.3c). Surprisingly, when corticosterone application was started

simultaneously with the CRF-41 pulse at 5h (and continued for a total of 35min) no

inhibition of ACTH secretion occurred at any subsequent time point (Figure 3.3d).

The potent glucocorticoid type II receptor agonist, RU28362 (Philibert &

Moguilewsky,1983), at a concentration of lpM had no significant inhibitory effect

after 35min of exposure when applied 30min before a lOnM CRF-41 stimulus (Figure

3.4). However, at this time-point the release of ACTH was highly variable: there was

a marked inhibition in two out of six experiments. After 90min ACTH release was

significantly (p<0.05) reduced to 50% of control and, unlike corticosterone, the

inhibitory effect was maintained 2.5h after application using l(j.M and 0.1 (iM

RU28362 (compare application of corticosterone and RU28362 before a CRF-41

stimulus at 5h in Figures 3.3b and 3.4 respectively). Figure 3.5 demonstrates that the
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synthetic type II glucocorticoid receptor agonist, RU28362, suppresses the amount of

ACTH released by a CRF-41 pulse, but has no apparent effect on the time course of

the ACTH secretory response.

To investigate whether the inhibitory action of corticosterone observed after 30min

exposure is manifest through the type II glucocorticoid receptor the potent type II

glucocorticoid receptor antagonist RU38486 (Philibert,1984) at 1(J.M was applied

15min before and during the 35min exposure to corticosterone. RU38486 completely

blocked the action of corticosterone at this time point. In two experiments net ACTH

release was 109% and 86% of control at 5h in columns receiving corticosterone and

RU38486, compared to 61.3±3.4 (n=6) in columns treated with corticosterone alone

as in Figure 3.3b. RU38486 alone had no effect on stimulated or basal ACTH

secretion.

Actinomycin D (O.lmM), an irreversible inhibitor of DNA-dependent RNA synthesis

(Gale et al., 1981), completely blocked the inhibitory action of RU28362 on CRF-41-

induced ACTH secretion at all time points when given 5min before and during the

application of the steroid (Figure 3.4a) and had no effect on CRF-41-stimulated

ACTH release (in 2 columns net ACTH release was 104 and 120 % of the respective

controls at 5h; 115 and 90% at 6h; 107 and 101% at 7h). Initial experiments using the

reversible transcription inhibitor a-amanitin at concentrations up to l|lM and applied

as for puromycin (see Figure 3.4b) failed to block the action of RU28362. However,

at higher concentrations a-amanitin was insoluble. Furthermore, although a-amanitin

has been used extensively in cell-free analysis of RNA-polymerase II action, its cyclic

structure and molecular weight prevent its transfer across the plasma membrane in

many cell types (Kuwano & Ikehara,1973; Wieland & Faulstich,1978).
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Figure 3.3

Corticosterone inhibition ofCRF-41 -stimulatedACTH release in perifused
rat anteriorpituitary segments
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Figure 3.3: The control group a) received repeated 5min pulses of lOnM
CRF-41, (solid vertical bars). Other groups received corticosterone (0.1 (iM,
35min total exposure; horizontal hatched bars): 30min before, b); 15min
before c) or simultaneously with d) the start of the CRF-41 pulse at 5h. Data
are expressed as a percentage of the net ACTH released by a 5min pulse of
lOnM CRF-41 received at time 4h by all groups. Data are means ± SEM (n=4-
6/group). The range of absolute ACTH release at 4h (100%) was 75.6-494.8
fmol ACTH/25min. * p<0.05, **p<0.01 (non-parametric Kruskal-Wallis test)
compared with the control group.
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Figure 3.4

Antagonism ofRU28362 inhibition ofCRF-41-stimulatedACTH secretion
from perifused rat anteriorpituitary segments by inhibitors of: a)
transcription (actinomycin D) and b) translation (puromycin)
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Figure 3.4: Data are expressed as a percentage of the net amount of ACTH released
after the 5min pulse of CRF-41 (lOnM; solid vertical bars) at 4h. The synthetic
glucocorticoid, RU28362, (1 pM) was applied for 35min, (open horizontal bar);
actinomycin D (O.lmM) for 40min,(short hatched horizontal bar in a; puromycin
(0.1mM) for lOOmin, (long hatched horizontal bar in b. Data are means ± SEM (n=4-
6/group). The range of absolute ACTH releaseat 4h was 75.6-494.8 fmol
ACTH/25min. * p<0.05 (non-parametric Kruskal-Wallis test) compared with CRF-41
control.
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Figure 3.5

Effect of the synthetic type II glucocorticoid agonist, RU28362, on the profile of
CRF-41 -stimulated ACTH release in perifused rat anterior pituitary segments
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Figure 3.5: Typical CRF-41-stimulated ACTH release profiles from a
representative experiment performed as in Figure 3.2 a & b. The ACTH release
profile for CRF-41 (lOnM for 5min, solid horizontal box) alone are from the 4h
stimulus. The CRF-41-stimulated ACTH release profile after RU28362
treatment is from the 6h stimulus in the same column. RU28362 (O.lfiM 35min
total duration) was started 30min before the 5h stimulus as in Figure 3.2b.
Data are expressed as the amount of immunoreactive ACTH in each 5min
collection fraction.
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The inhibition of CRF-41-stimulated ACTH release by RU28362 was prevented

during exposure of the segments to the reversible protein synthesis inhibitor,

puromycin (Gale et al., 1981), at a concentration of O.lmM (Figure 3.4b). The full

inhibitory action of RU28362 was observed lh after withdrawal of puromycin,

indicating that translatable mRNA was still present in the cells. Puromycin applied at

the same concentration and duration as for the RU28362 experiments completely

blocked the inhibitory action of corticosterone on CRF-41-stimulated ACTH release at

all time points: In two experiments the net ACTH release expressed as a percent of

control was 117% and 135% at 5h, 103% and 105% at 6h, and 101% and 119% at

7h. Puromycin alone did not modify CRF-41-stimulated ACTH release (in 2

experiments net ACTH release was 117% and 135 % of the respective controls at 5h,

103% and 105% at 6h , 101% and 109 % at 7h).

Increasing the concentration of glucose in the perifusion medium to 20mM (compared

to the normal 5.6mM) had no effect on RU28362 inhibition of CRF-41-stimulated

ACTH release. The mean net ACTH release expressed as a percentage of the 4h

stimulus using medium supplemented with 20mM glucose was 96% and 101% at 5h,

87% and 40% at 6h, and 100% and 35% at 7h for control and RU28362 treated

experiments respectively.

In summary, these data support the hypothesis of Dayanithi & Antoni (1989)

implicating activation of type II glucocorticoid receptors and induction of new mRNA

and protein in the early (within 2h) inhibitory action of glucocorticoids.
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3.2.3 The relative timing of CRF-41 and glucocorticoid application is essential for

development ofearly glucocorticoid inhibition ofCRF-41 -stimulated ACTH release

During analysis of the time course of early glucocorticoid inhibition of CRF-41 -

stimulated ACTH release, presented in section 3.2.2, it was observed that when

corticosterone was started simultaneously with the CRF-41 pulse at 5h (and continued

for a total of 35min) no inhibition of ACTH secretion occurred at any subsequent time

point (Figure 3.3d). This apparent modulation of glucocorticoid action was further

explored with the aim of providing information that would be useful in identification

of proteins mediating early inhibition.

Because the time between the start of corticosterone administration and the stimuli at 6

and 7h is longer (by 30min) for columns receiving corticosterone 30min before, rather

than simultaneously with, the 5h CRF-41 pulse, experiments were performed to verify

that the absence of inhibition upon simultaneous application of corticosterone and

CRF-41 was not a result of the 'silent' (steroid non-responsive) period reported by

some workers (Abou-Samra et al., 1986a; Mahmoud et al., 1984). Four perifusion

columns were treated with O.lpM corticosterone applied simultaneously with the

CRF-41 stimulus at 5h, stimuli were then applied at 6.5h and 7.5h. No significant

inhibition was observed at either time point (net ACTH released, at 6.5h,

101.0±7.9%; at 7.5h, 102.0±7.1%).

The duration of exposure to corticosterone is also important in determining the

characteristics of early inhibition in this system. When lOnM CRF-41 was applied at

the start of a continuous corticosterone infusion (O.lpM started at 5h) no inhibition of

CRF-41 stimulated ACTH release developed lh after the start of corticosterone

treatment (Figure 3.6). However, significant inhibition of CRF-41-stimulated ACTH

release developed after 2h of steroid exposure.
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Figure 3.6

Inhibition ofstimulatedACTH secretion by a continuous exposure to
corticosterone started simultaneously with a CRF-41 stimulus in perifused rat

anteriorpituitary segments.
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Figure 3.6: The control group received repeated 5min pulses of lOnM CRF-
41 (solid vertical bars) every lh. The other group received 0.1 (J.M
corticosterone (horizontal hatched bar) started simultaneously with the 5h
stimulus and maintained to the end of the experiment. Data are expressed as a
percentage of the net ACTH released by a 5min CRF-41 stimulus applied at
4h. Data are means ± SEM (n=4-7/group). The range of absolute ACTH
released at 4h (100%) by CRF-41 was: 75.6-494.8 fmol ACTH/25min.
*P<0.05, **p<0.01 (non-parametric Mann-Whitney U test) compared with the
CRF-41 control group.
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The above observations do not resolve whether CRF-41 applied after the start of

glucocorticoid exposure (as in Figure 3.3b) is actually required to activate early

inhibition or, alternatively, that CRF-41 applied at the start of glucocorticoid exposure

(as in Figure 3.3d) inactivates the inhibitory action of glucocorticoids.

To determine whether CRF-41 is required to activate early inhibition corticosterone

was applied 30min before the 5h time point and the lOnM CRF-41 stimulus at 5h

omitted. Using this paradigm no subsequent inhibition developed (Table 3.1).

Application of O.lnM or lOnM CRF-41 at 5h during the exposure to corticosterone

resulted in significant inhibition of stimulated ACTH release within 30min before

returning towards control at 7h (Table 3.1). Application of the O.lnM CRF-41

stimulus or omission of the stimulus at 5h had no effect on subsequent ACTH release

thus their respective controls were pooled with those receiving lOnM ACTH at 5h.

Furthermore, if corticosterone (0.1 (iM, for total duration of 35min) was applied for

20min before and 15min after, but not during, the 5h stimulus no subsequent

inhibition developed (Table 3.1). These data suggested that CRF-41 is required to

activate some aspect of early glucocorticoid inhibition

However, the Harlan Olac rats used in the work suggesting an activation mechanism

were subsequently reported to be infected with Sendai virus. Consequently, the

timing characteristics of glucocorticoid action had to be re-investigated in rats obtained

from an alternative supplier, Charles River.

Repeated exposure of female ex-breeder Wistar (Charles River) rat anterior pituitary

segments with lOnM CRF-41 resulted in downregulation of subsequent ACTH

responses. However, anterior pituitary glands from Charles River rats consistently

responded to O.lnM CRF-41 (Figure 3.7), a concentration approximating that

recorded in rat hypophysial portal blood (Plotsky,1991).
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Table 3.1

CRF-41 activates early glucocorticoid inhibition of CRF-41 -stimulated
ACTH release in perifused anterior pituitary segments from virally infected

Harlan-Olac rats

net ACTH released %

4h
CRF-41

5h
Treatment

6h
CRF-41

7h
CRF-41

100 CRF-41 (10) 97.3±5.4 105.4±13.2

100

100

100

Corticosterone (4) 94.5±4.9 74.3±10.3

Corticosterone
+ lOnM CRF-41 (6)
V/////A

■
Corticosterone
+ O.lnM CRF-41 (4)
V77777A

61.3+3.7** 87.0+7.4

69.419.4* 81.018.3

100 Corticosterone
+ lOnM CRF-41 (4)

97.316.96 71.815.4

Table 3.1: All groups received 5min pulses of lOnM CRF-41 at 4, 6 and 7h. The
various treatments applied, along with their temporal relationship of application, are
shown in the 5h treatment column. CRF-41 was applied for 5min at either O.lnM or
lOnM. Because omission of the 5h stimulus or application of O.lnM CRF-41 at 5h did
not affect the subsequent stimulated ACTH release (see section 3.2.3) the corresponding
controls for these experiments were pooled with the lOnM CRF-41 controls.
Corticosterone (0.1pM, 35min total exposure) was started 30min before the 5h stimulus.
In the last row corticosterone was terminated lOmin before the 5h stimulus and reapplied
for a further 15min starting 15min after the 5h stimulus. Data are expressed as a
percentage of the net ACTH released by a 5min pulse of CRF-41 at 4h (100%) in all
groups. Values are means ± SEM; the number of experiments in each treatment group are
shown in parentheses. The range of absolute net ACTH release between experiments at
4h (100%) was 108.4-494.8 fmolACTH/25min. **p<0.01, *p<0.05 compared to
control using the nonparametric Kruskal-Wallis test.
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Figure 3.7

Early corticosterone inhibition of CRF-41-stimulatedACTH secretion in
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Figure 3.7: The control group (CRF-41) received 5min pulses of 0.1nM CRF-41
every lh. Other groups also received 0.1 pM corticosterone (B) (total exposure
35min; horizontal hatched bar) applied 30min before (+B at 4.5h) or simultaneously
with (+B at 5h) the CRF-41 pulse at 5h. Data are expressed as a percentage of the
net ACTH released by a 5min pulse of O.lnM CRF-41 received at time 4h (100%)
by all groups. Data are means ± SEM (n=4-7/group). The range of absolute ACTH
release between experiments for the 4h (100%) stimulus was 113.4-466.8
fmol/15min. *p<0.05 compared to control using the nonparametric Kruskal-Wallis
test.
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Table 3.2

Inactivation of corticosterone inhibition of CRF-41 -stimulated ACTH
secretion by CRF-41 and the cyclic adenosine 3',5'-monophosphate
analogue, 8-CPT-cAMP, in perifused (Charles River) rat anterior

pituitary segments

net ACTH released %

4h
CRF-41

5h
Treatment

6h
CRF-41

7h
CRF-41

100 CRF-41 (7) 98.0±8.4 99.0±9.9

100

100

100

100

Corticosterone (4)
Y/////A

Corticosterone
+CRF-41 (5)
V777777\
I
8-CPT-cAMP (8)
□
Corticosterone
+ 8-CPT-cAMP (6)
V777/7A
□

61.5±9.9a 54.3±9.3a

108.4±4.3b 111.2±12.4b

103.5±15.1 76.3±12.2

101.2±13.2b 106.0±13.6b

Table 3.2: All groups received 5min pulses of O.lnM CRF-41 at 4, 6 and 7h. The
various treatments applied, along with their temporal relationship of application, are
shown in the the 5h treatment column. 8-CPT-cAMP was applied for 5min at O.lmM.
Corticosterone (0.1|iM, 35min total exposure) was started simultaneously with the 5h
stimulus. Data are expressed as a percentage of the net ACTH released by a 5min
pulse of O.lnM CRF-41 applied at 4h (100%) in all groups. Because omission of the
5h CRF-41 stimulus did not affect subsequent stimulated ACTH release data from
control columns receiving no CRF-41 at 5h were pooled with the CRF-41 control
group. Values are means ± SEM, the number of experiments in each treatment group
are shown in parentheses. The range of absolute ACTH release between experiments
at 4h (100%) was 113.4-466.8 fmol/15min. aP<0.05 compared to CRF-41 control,
bP<0.05 compared to corticosterone alone using non-parametric Kruskal-Wallis test.
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The timing of glucocorticoid application was essential for early inhibition of CRF-41 -

stimulated ACTH release in Charles River rats (Figure 3.7). Furthermore, no

inhibition was observed when the potent type II glucocorticoid receptor agonist

RU28362 (0.1 [iM, 35min) was applied simultaneously with the 0.1nM CRF-41

stimulus at 5h as in Figure 3.7: in two experiments the mean net ACTH release

expressed as a percentage of that released by CRF-41 alone at 4h was 109% at 5h,

90% at 6h and 107% at 7h. Thus the timing phenomenon is intact in rats obtained

from Charles River.

In contrast to the results obtained with virally infected Harlan Olac rats, CRF-41 -

stimulated ACTH release in Charles River rats was significantly inhibited when no

CRF-41 stimulus was applied during the exposure to corticosterone (Table 3.2). This

suggests that application of CRF-41 simultaneously with the onset of corticosterone

exposure inactivates early inhibition. Omission of the CRF-41 stimulus at 5h had no

effect on the responses to subsequent pulses of CRF-41, thus these controls were

pooled with controls receiving CRF-41 at 5h. The cell membrane permeant cyclic

adenosine 3',5'-monophosphate analogue, 8-(4-chlorophenylthio)- cyclic adenosine

3',5'-monophosphate (8-CPT-cAMP; O.lmM for 5min (Miller, Beck, Simon &

Meyer,1975)) also prevented the subsequent inhibition of CRF-41-induced ACTH

release when applied at the start of corticosterone exposure (0.1 |iM, 35min duration)

at 5h (Table 3.2). At this concentration a 5min pulse of 8-CPT-cAMP elicited

26.0±5.1% of the ACTH released by O.lnM CRF-41 and did not modify the ACTH

release to subsequent CRF-41 pulses (Table 3.2). Preliminary experiments were

performed to determine whether forskolin at 1-lOp.M (an activator of adenylate cyclase

(Barber & Goka,1985)) and Rolipram at l-100p.M (a specific blocker of cAMP-

dependent phosphodiesterase (Beavo & Reifsnyder,1990; Weishaar,1987)) could

mimic the action of CRF-41 by raising intracellular cAMP levels. Although both
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compounds alone elicited ACTH secretion (10|iM forskolin and 100|iM rolipram

applied for 5min released 20% and 36% of the ACTH released by O.lnM CRF-41

respectively) subsequent responses to CRF-41 stimulation were impaired. This action

may be a result of incomplete washout of these compounds from the perifusion system

as basal levels remained elevated for up to 2h after their withdrawal. In summary,

CRF-41 inactivates early glucocorticoid inhibition of CRF-41-stimulated ACTH

release, and this can be reproduced with an analogue of cAMP.

Several workers have demonstrated that intracellular cAMP levels and adenylate

cyclase activity are modulated in cells infected with Sendai virus (Cohen &

Cuatrecasas,1976; Vallier, Farjanel, Bata & Deviller,1981). Thus, the apparent

divergent mechanism(s) of the CRF-41/glucocorticoid timing phenomenon reported in

Charles River rats and virally infected Harlan Olac rats could be a result of differential

sensitivity of corticotrophs to cAMP stimulation in the two strains. In order to test this

hypothesis the ACTH secretory response of anterior pituitary gland segments to CRF-

41 and 8-CPT-cAMP in static incubation were examined. The dose response

characteristics for CRF-41 in ex-breeder (Figure 3.8a) as well as age matched

(6month) virgin female rats (Figure 3.8b) were identical for Charles River rats and

virally-infected Harlan Olac rats. However, in response to the cell permeant cAMP

analogue, 8-CPT-cAMP, virally-infected Harlan-Olac rats released significantly lower

amounts of ACTH compared to Charles River rats in both ex-breeder and 6month

virgin females (Figure 3.8c & d) suggesting that Sendai virus infection modulates the

cAMP-activated pathways. As the inactivation mechanism reported in Charles River

rats is cAMP-dependent the impaired cAMP response in virally infected Harlan-Olac

rats may explain the discrepant findings observed. Furthermore, as cAMP action is

modulated in virgin as well as ex-breeder rats obtained from Harlan-Olac any

differences of breeding protocol between the two suppliers cannot explain the
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discrepant results. Significantly, in two subsequent perifusion experiments with virus

free rats obtained from Harlan Olac CRF-41 -inactivated early glucocorticoid

inhibition.

In conclusion, the relative timing of application of glucocorticoid and CRF-41 is

important for development of early inhibition: importantly, CRF-41 appears to

inactivate early glucocorticoid inhibition of CRF-41-stimulated ACTH release.
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Figure 3.8

Dose response characteristics ofCRF-41- and 8-CPT-cAMP-stimulatedACTH
secretion in anteriorpituitary segments in static incubation from Charles River

and virally infected Harlan Olac rats
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Figure 3.8: Anterior pituitary segments were incubated with different
concentrations of the respective secretagogue for 20min as described in section
2.3.1. Data are expressed as pmoles of ACTH released into the medium, note the
difference in scale for ex-breeder and virgin rats. Data are means ± SEM
(n=6/group). *p<0.05 compared to Charles River rats (Student two-tailed,
unpaired t-test)
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3.3 Early glucocorticoid inhibition of AVP-stimulated ACTH
release

AVP is a major hypothalamic ACTH secretagogue, however, relatively few studies

have investigated early glucocorticoid inhibition of AVP-stimulated ACTH release. In

the following sections the time course, receptor pharmacology and

transcription/translation inhibitor sensitivity of early inhibition were examined to

determine whether glucocorticoids suppress AVP-stimulated ACTH secretion with a

similar mechanism to that observed using CRF-41 as secretagogue. Furthermore, as

CRF-41 appears to inactivate early inhibition of CRF-41-stimulated ACTH release the

importance of the temporal relationship of AVP and glucocorticoid application was

studied to examine whether AVP could prevent early inhibition of AVP-stimulated

ACTH release.

3.3.1 Response to AVP

In perifused anterior pituitary gland segments from Harlan Olac rats lOnM AVP

appeared equipotent with lOnM CRF-41 (see Figure 3.1, section 3.2.1). The release

of ACTH in response to lOnM AVP was 186±24.0% (n=14, p<0.05) of a O.lnM

CRF-41 stimulus in Charles River rats. Results obtained with rats from either

supplier were identical in all respects of AVP action and interaction with

glucocorticoids and are thus pooled in the following sections. After a 3h preperifusion

period, to allow basal ACTH release to stabilize, the release of ACTH at 4h in

response to a 5min pulse of lOnM AVP was enhanced (net ACTH release at 4h was

164.2±12.3% of that at 3h, mean±SEM n=28, p<0.05) with respect to the response at

3h in the columns. Subsequent stimuli released similar amounts of ACTH to that

released at 4h, up to 7h after the start of perifusion (see Table 3.3). In all subsequent

experiments AVP was used at the submaximally effective concentration of lOnM. The
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reproducibility of AVP-stimulated ACTH release in perifused rat anterior pituitary

gland segments demonstrate that the perifusion system is a viable model in which to

investigate early glucocorticoid inhibition of AVP-stimulated ACTH release.

3.3.2 Effect of glucocorticoids on AVP- stimulated ACTH release

Few studies to date have directly investigated early inhibition using AVP solely as

secretagogue thus the characteristics of early glucocorticoid suppression of AVP-

stimulated ACTH release were examined.

The synthetic type II glucocorticoid receptor agonist RU28362 (lp.M, total exposure

35min) significantly (p<0.05) inhibited AVP-stimulated ACTH secretion to 64% of

control within 35min of application (Table 3.3) implicating type II glucocorticoid

receptors in the mechanism of early glucocorticoid inhibition of AVP-stimulated

ACTH release. The inhibition was maintained 2.5h after initial exposure to the

steroid. Basal ACTH release was unaffected by RU28362. Figure 3.9 demonstrates

that RU28362 reduces the amount of ACTH released by an AVP pulse, but has no

apparent effect on the time course of the ACTH secretory response as reported for

CRF-41-stimulated ACTH release in section 3.2.2.

To date no direct evidence for involvement of glucocorticoid-induced proteins in early

inhibition of AVP-stimulated ACTH release have been presented. Surprisingly, AVP-

stimulated ACTH release was inhibited by puromycin alone (Table 3.3). After

withdrawal of puromycin from the perifusion medium AVP-stimulated ACTH release

returned towards control. No further inhibition of ACTH release by RU28362

occurred in puromycin treated tissue (Table 3.3). At 7h in columns treated with both

RU28362 and puromycin significantly lower ACTH release was observed compared

to columns receiving puromycin alone (Table 3.3) suggesting that removal of

puromycin at 6h allows the inhibition of RU28362 to be manifest at 7h similar to that
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seen for CRF-41-stimulated ACTH release (see Figure 3.4b, section 3.2.1).

Actinomycin D also reduced AVP-stimulated ACTH release to approximately 70% of

control at 6 and 7h.

To further examine whether RU28362 inhibition of AVP-stimulated ACTH secretion

is dependent on induction of new mRNA and protein experiments were performed

using primary cultures of rat anterior pituitary cells in static incubation. Initial

experiments failed to elicit ACTH release in response to AVP at concentrations up to

25nM even after preincubation of cells for 6h with CRF-41 (2nM) or 8-bromo-cyclic

AMP (O.lmM) (Miyazaki et al., 1984). Furthermore, no consistent stimulation of

ACTH release by AVP (10-50nM for 30min) was observed using anterior pituitary

segments in static incubation. Changes in responsiveness to AVP and other ACTH

secretagogues in primary culture, compared to freshly isolated tissue, have been

widely noted (for review see Antoni, 1986). Furthermore, the ACTH secretory

response to AVP is generally more robust in the perifusion model (Antoni, 1986;

Watanabe & Orth,1988). To mimic the action of AVP in the corticotroph (King &

Baertschi,1990) the protein kinase C activator phorbol-12,13-dibutyrate (PdBu) was

used as secretagogue (Figure 3.10a & b). RU28362 (lOnM for 90min) significantly

inhibited a 20min stimulus of 50nM PdBu in this system (Figure 3.10c). The

reversible transcription inhibitor 5,6-Dichloro-l-B-D-ribofluranosylbenzimidazole

(DRB, (Tamm & Sehgal,1978)) blocked RU28362 inhibition of PdBu-stimulated

ACTH release (Figure 3.10c). DRB suppressed basal ACTH release by -20% in this

system, thus data are presented after subtraction of the respective basal values. Taken

together, these data are consonant with the hypothesis that early inhibition of AVP-

stimulated ACTH release requires the induction of new mRNA and protein.

In conclusion, the time course and pharmacology of early glucocorticoid suppression

of AVP-stimulated ACTH release appeared similar to that observed when CRF-41 is
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used as secretagogue. However, AVP-stimulated ACTH release was blocked by

inhibitors of transcription and translation alone. Whether protein induction is required

for suppression of AVP-stimulated ACTH release could not be fully resolved in this

study, however, the findings are consonant with the protein induction hypothesis.

3.3.3 Earlv glucocorticoid inhibition ofAVP-stimulated ACTH release is independent of the

relative timing ofapplication ofAVP and glucocorticoid

In perifused rat anterior pituitary gland segments significant corticosterone (O.lqM,

35min duration) inhibition of AVP-stimulated ACTH release was observed only

90min after the start of corticosterone exposure (Figure 3.11). However, this is

probably a result of the wide scatter in AVP-stimulated ACTH release at 5h as 2 out of

4 experiments showed significant corticosterone-inhibition at this time point,

furthermore RU28362 inhibition was manifest within 30min (Table 3.3).

In contrast to the results observed with CRF-41, early inhibition of AVP-stimulated

ACTH release was independent of the timing of application of corticosterone (Figure

3.11). Furthermore, when AVP was applied at the start of a continuous corticosterone

infusion (0.1 (iM started at 5h) inhibition of AVP-stimulated ACTH release developed

within lh (Figure 3.12).

In conclusion, early glucocorticoid inhibition of AVP-stimulated ACTH release was

independent of the relative timing of glucocorticoid and AVP application.
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Table3.3

InhibitionofAVP-stimulatedACTHreleasefromperifusedratanteriorpituitaryglandsegmentsbythesyntheticglucocorticoid,RU28362,andtheproteinsynthesisinhibitor,puromycin netACTHreleased%
4h5h6h7h

Treatment AVPlOnM(5)100103.6±12.6103.8±17.880.8±7.2 +RU28362lp.M(6)10064.3±4.9*59.715.4*48.0±14.0 +Puromycin0.1mM(4)10049.017.6**32.313.4**60.3111.0 +PuromycinO.lmM10058.816.125.818.0**390149*a +RU28362l|iM(4) Table3.3:DataareexpressedasapercentageofthenetACTHreleasedinresponsetoa5minpulseoflOnM AVPreceivedbyallgroupsat4h.5minpulsesofAVPwereappliedeveryhourasdescribedinFigure3.11. RU28362wasapplied30minbeforeandduringtheAVPstimulusat5h.Puromycinwasapplied35minbefore
thestimulusat5handcontinueduntiltheendofthestimulusat6hasforFigure3.4b.Thenumberofexperiments pergroupareshowninparentheses.Dataaremeans1SEM.TherangeofabsoluteACTHreleaseat4h(100%) was194-813fmolACTH/25min.**p<0.01,*p<0.05comparedwiththecontrol(AVP)group,ap<0.05 versusthepuromycinalonegroup,usingthenon-parametricKruskal-Wallistest.
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Figure 3.9

Effect of the synthetic type II glucocorticoid agonist, RU28362, on the profile of
AVP-stimulatedACTH release in perifused rat anterior pituitary segments
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Figure 3.9: Typical AVP-stimulated ACTH release profiles from a
representative experiment performed as in Figure 3.2 a & b. The ACTH release
profile for AVP (lOnM for 5min, open horizontal box) alone are from the 4h
stimulus. The AVP-stimulated ACTH release profile after RU28362 treatment
is from the 6h stimulus in the same column. RU28362 (0.1 |iM 35min total
duration) was started 30min before the 5h stimulus as in Figure 3.2b. Data are
expressed as the amount of immunoreactive ACTH in each 5min collection
fraction.
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Figure 3.10

Antagonism ofRU28362 inhibition ofphorbol ester stimulated ACTH release in
rat anteriorpituitary primary culture by the transcription inhibitor 5,6-Dichloro-
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Figure 3.10: a) Dose response curve and b) time course of 50nM phorbol 12,13
dibutyrate (PdBu) stimulated ACTH release from primary culture of rat anterior
pituitary in static incubation. Data are expressed as fmol/well of ACTH released,
PdBu was applied for 20min in a), c) Dose dependent reversal of RU28362
inhibition of 50nM PdBu stimulated ACTH release by DRB. Data are means ±
SEM, expressed as the percent of net ACTH released by PdBu alone. RU28362
(lOnM) was applied for 90min before the stimulus, DRB was started 20min
before and continued during the exposure to RU28362. *p<0.05 compared to
control (Students two-tailed, unpaired t-test)
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Figure 3.11

Corticosterone inhibition ofAVP-stimulatedACTH release from perifused rat
anteriorpituitary segments
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Figure 3.11: The control group (AVP) received repeated 5min pulses of lOnM
AVP (open vertical bars). Other groups received 0.1 |iM corticosterone (B,
total exposure 35min; horizontal hatched bar) applied 30min before (+B at 4.5h)
or simultaneously with (+B at 5h) the AVP pulse at 5h. Data are expressed as a
percentage of the net ACTH released by a 5min pulse of lOnM AVP received at
time 4h by all groups. Data are means ± SEM (n=4/group). The absolute range
of ACTH release at 4h (100%) was 82.6-577.0 fmol ACTH/25min. ** p<0.01
(non-parametric Kruskal-Wallis test) compared with the AVP group.
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Figure 3.12

Inhibition of AVP-stimulated ACTH secretion by a continuous exposure to
corticosterone started simultaneously with an AVP stimulus in perifused rat

anteriorpituitary segments.
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Figure 3.12: The control group received repeated 5min pulses of lOnM AVP
(open vertical bars) every lh. The other group received 0.1 |iM corticosterone
(horizontal hatched bar) started simultaneously with the 5h stimulus and
maintained to the end of the experiment. Data are expressed as a percentage of
the net ACTH released by a 5min AVP stimulus applied at 4h. Data are means
± SEM (n=4-9/group). The range of absolute ACTH released at 4h (100%) by
AVP was: 82.6-481.8 fmol ACTH/25min. *P<0.05, **p<0.01 (non-
parametric Mann-Whitney U test) compared with the AVP control group.
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3.4 Interactions between CRF-4I, AVP and glucocorticoids

In vivo, ACTH secretion is stimulated by AVP and CRF-41 acting in concert. Thus it

was important to examine the nature of interactions between CRF-41, AVP and

glucocorticoids in combination in order to determine whether new properties of early

glucocorticoid inhibition would be found.

3.4.1 Earlv glucocorticoid inhibition ofAVP-stimulated ACTH release is not modulated bv

CRF-41

As CRF-41 inactivates early glucocorticoid inhibition of CRF-41-stimulated ACTH

secretion it was of interest to examine whether CRF-41 could block inhibition of AVP-

stimulated ACTH release. For example, if glucocorticoids inhibit CRF-41-, and AVP-

stimulated ACTH secretion with a similar mechanism it would be expected that CRF-

41 would inactivate early inhibition of AVP-, as well as CRF-41-, stimulated ACTH

release.

CRF-41 (O.lnM) applied simultaneously with the start of corticosterone exposure

(0.1 (iM, 35min duration) at 5h could not prevent the corticosterone inhibition of AVP-

stimulated ACTH release at 6h (Table 3.4) in perifused rat anterior pituitary segments.

Although CRF-41 appears to decrease the subsequent response to AVP at 7h (Table

3.4) this effect is not statistically significant and is a result of one experiment out of the

five in the group releasing a very low amount of ACTH at 7h. Increasing the

concentration of CRF-41 to lOnM also failed to modify the inhibition by

corticosterone: in two experiments the release of ACTH at 6h was 21% & 48%, at 7h

93% & 128% of the ACTH released by AVP alone at 4h.
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Table 3.4

CRF-41 does not inactivate early glucocorticoid inhibition of AVP-
stimulated ACTH secretion in perifused rat anterior pituitary segments

net ACTH released %

4h
AVP

!_

5h
Treatment

6h
AVP

7h
AVP

■

100 AVP (9) 100.2±9.7 87.1±5.7

100 Corticosterone
+AVP (5)
Y77777A

60.4±4.5a 101.0±18.6

100 CRF-41 (5) 94.8±9.5 65.6±16.1

100 Corticosterone
+ CRF-41 (5)
V/////A

41.4±12.0b 63.8+17.2

Table 3.4: All groups received 5min pulses of lOnM AVP at 4, 6 and 7h. The
various treatments applied, along with their temporal relationship of application, are
shown in the 5h treatment column. Corticosterone (O.ljlM, 35min total exposure) was
started simultaneously with the 5h stimulus. CRF-41 was applied for 5min at O.lnM.
Data are expressed as a percentage of the net ACTH released by a 5min pulse of lOnM
AVP applied at 4h in all groups. Values are means ± SEM, the number of experiments
is shown in parentheses. The range of absolute ACTH released at 4h (100%) between
experiments was 194.0-826.7 fmol ACTH/25min. aP<0.05 compared to AVP control,
bP<0.01 compared to CRF-41 treated control using non-parametric Kruskal-Wallis
test.
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Because these columns received AVP before the application of CRF-41 and

corticosterone at 5h, it was essential to examine whether this AVP pretreatment could

prevent CRF-41-inactivation of glucocorticoid inhibition. In order to test this, CRF-

41 (O.lnM) stimuli were applied at 3h, 4h and 5h and lOnM AVP applied at 6 and 7h.

Corticosterone (O.ljiM, 35min duration) started simultaneously with CRF-41 at 5h

resulted in significant (p<0.05, using non-parametric KruskalWallis test) inhibition of

AVP-stimulated ACTH release compared to control even under these conditions. The

net ACTH release expressed as a percentage of the 4h CRF-41 stimulus for control

and corticosterone treated groups respectively was: at 6h 186.7±45.4% vs

67.8+16.6% and at 7h 214.7±48.0% vs 97.8+31.2% (n=3-4/group. Note: the

ACTH response to a lOnM AVP stimulus is 186.2±24.0% of that elicited by O.lnM

CRF-41 as described in section 3.3.1). Furthermore, CRF-41 prevented

corticosterone inhibition of CRF-41-stimulated ACTH release after pretreatment of the

segments with lOnM AVP applied at 3h and 4h; O.lnM CRF-41 stimuli were applied

at 5, 6 and 7h respectively with corticosterone (0.1 (iM, 35min duration) applied at 5h.

The ACTH release for corticosterone and control treated columns was: at 6h

119.0±20.9 vs 82.8±8.2% , at 7h 76.3±15.7% vs 101.3+25.3% of that released by

the CRF-41 stimulus at 5h.

In summary, CRF-41 does not influence early glucocorticoid inhibition of AVP-

stimulated ACTH release.

3.4.2 AVP cannot inactivate early glucocorticoid inhibition of CRF-41 -stimulated ACTH

release

To investigate whether inactivation of early glucocorticoid inhibition of CRF-41

stimulated ACTH release was specific to the CRF-41/cAMP pathway, lOnM AVP

(that acts via the inositol phosphate/protein kinase C pathway (King &
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Baertschi,1990)) was applied for 5min at 5h. The CRF-41 stimulus at 6h released

similar amounts of ACTH compared to CRF-41 controls however, downregulation of

the CRF-41 response at 7h occurred in columns treated with AVP at 5h (Table 3.5).

Importantly, when AVP was applied at the start of corticosterone exposure significant

(p<0.01) inhibition of CRF-41-stimulated ACTH release occurred at 6h (Table 3.5).

The desensitization of the CRF-41 response after application ofAVP is not understood

in this system, however, it is likely to involve modification of receptor/postreceptor

systems rather than a result of the depletion of releasable ACTH stores. Indeed, in

primary culture of rat anterior pituitary cells AVP pretreatment reduces the subsequent

ACTH response to CRF-41, but not to other secretagogues, independently of changes

in intracellular ACTH content (Hoffman, Ceda & Reisine,1985). Moreover, AVP

pretreatment has been shown in vivo and in vitro to reduce the number of pituitary

CRF-41 binding sites (Holmes, Catt & Aguilera,1987). It should also be noted that to

date corticotrophs responding solely to AVP have not been documented, for example

recent RHPA studies suggest that cells that respond to AVP are also responsive to

CRF-41 (Jia et al., 1991). Thus heterologous desensitization is possible without

involving depletion of (putatively) differentially regulated ACTH stores.

In conclusion, inactivation of early glucocorticoid inhibition would appear to be

specific to the CRF-41/cAMP pathway.
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Table 3.5

AVP cannot prevent early glucocorticoid inhibition of CRF-41-stimulated
ACTH release in perifused rat anterior pituitary segments

net ACTH released %

4h
CRF-41

5h
Treatment

6h
CRF-41

7h
CRF-41

■

100 CRF-41 (7)
■

98.0±8.4 99.0±9.9

100 Corticosterone (4)
Y////M

61.5±9.9a 54.3±9.3a

100 Corticosterone
+CRF-41 (5)
W///A
■

108.4±4.3b 111.2±12.4b

100 AVP (4)
1

82.5+4.3 48.0+15.6

100 Corticosterone
+ AVP (4)

i

32.3+18.7C 50.0±12.4

Table 3.5: All groups received 5min pulses of O.lnM CRF-41 at 4, 6 and 7h. The
various treatments applied, along with their temporal relationship of application, are
shown in the the 5h treatment column. AVP was applied for 5min at lOnM.
Corticosterone (0.1 (iM, 35min total exposure) was started simultaneously with the 5h
stimulus. Data are expressed as a percentage of the net ACTH released by a 5min
pulse of O.lnM CRF-41 applied at 4h (100%) in all groups. Because omission of the
5h CRF-41 stimulus did not affect subsequent stimulated ACTH release data from
control columns receiving no CRF-41 at 5h were pooled with the CRF-41 control
group. Values are means ± SEM, the number of experiments in each treatment group
are shown in parentheses. The range of absolute ACTH release between experiments
at 4h (100%) was 113.4-466.8 fmol/15min. aP<0.05 compared to CRF-41 control,
bP<0.05 compared to corticosterone alone, CP<0.05 compared to AVP control using
non-parametric Kruskal-Wallis test.
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3.4.3 Early glucocorticoid inhibition of CRF-41 /AVP-stimulated ACTH release resembles

that when CRF-41 is used alone

The physiological ACTH secretagogue stimulus in vivo is a cocktail of CRF-41 and

AVP, thus it was important to analyse the interaction between glucocorticoids and a

combined CRF-41/AVP stimulus in the time-scale of early inhibition. When CRF-41

and AVP were used in combination as secretagogue at concentrations approximating

levels recorded in rat hypophysial portal blood (O.lnM and 0.2nM respectively cf

Plotsky,1991) and corticosterone applied 30min before the 5h stimulus significant

inhibition developed within 90min (Figure 3.13). When the combined stimulus was

applied simultaneously with the start of corticosterone exposure no subsequent

inhibition developed (Figure 3.13). Thus early glucocorticoid inhibition of the

'physiological' CRF-41/AVP stimulus resembled that when CRF-41 was used alone

(ie no inhibition was observed when the secretagogue pulse was applied

simultaneously with the start of corticosterone) suggesting that CRF-41-inactivation is

physiologically relevant.

In summary, CRF-41 only inactivates early glucocorticoid inhibition of CRF-41-

stimulated ACTH release furthermore, inactivation is specific to the CRF-41/cAMP

pathway. Importantly, early glucocorticoid inhibition of the 'physiological' stimulus,

CRF-41/AVP in combination, resembles that when CRF-41 is used alone.
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Figure 3.13

Early corticosterone inhibition ofCRF-411AVP-stimulatedACTH secretion in
perifused rat anterior pituitary segments

100
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Figure 3.13: The control group (CRF-41 / AVP) received 5min pulses of the
combined stimulus of 0.1nM CRF-41 and 0.2nM AVP every lh. Other groups also
received 0.1 |iM corticosterone (B) (total exposure 35min; horizontal hatched bar)
applied 30min before (+B at 4.5h) or simultaneously with (+B at 5h) the CRF-41 /
AVP pulse at 5h. Data are expressed as a percentage of the net ACTH released by
the CRF-41 / AVP pulse received at time 4h (100%) by all groups. Data are means
± SEM (n=4/group). The range of absolute ACTH release at 4h (100%) between
experiments was 156.8-420.8 fmol/25min. **p<0.01, *p<0.05 compared to control
using the nonparametric Kruskal-Wallis test.

□ CRF-41/AVP

O +B at 4.5h

• +B at 5h E22
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3.5 Discussion

These data suggest that perifused anterior pituitary segments are a valid model in

which to study the characteristics of early glucocorticoid inhibition. The hallmarks of

early glucocorticoid inhibition: onset within 2h, requirement for type II glucocorticoid

receptor activation and mRNA and protein induction were demonstrated for early

suppression of CRF-41 and AVP-stimulated ACTH secretion. Significantly, the

timing and nature of the applied secretagogue was important in determining early

inhibition. CRF-41, applied at the start of glucocorticoid exposure, inactivated early

glucocorticoid inhibition of CRF-41-, but not AVP-, stimulated ACTH release and this

action was mimicked by cAMP. Early inhibition of CRF-41/AVP-stimulated ACTH

release resembled that when CRF-41 was used alone. Finally, CRF-41- and AVP-

stimulated ACTH release were differentially sensitive to transcription and translation

inhibitors suggesting that distinct pools of ACTH are mobilized by these

neurohormones.

3.5.1 Response to secretagogue stimulation: do CRF-41 andAVP mobilize distinct pools of

ACTH?

The suppression of AVP-, but not CRF-41-induced ACTH release by inhibitors of

transcription and translation suggest that the secretagogues may activate different

intracellular pools of ACTH, for example, AVP may release newly synthesized ACTH

as opposed to CRF-41, which may preferentially mobilize stored hormone (Figure

3.14). Schwartz and co-workers using the lysosmotropic drug, chloroquine (that

purportedly diverts ACTH from the stored regulatory pathway to the constitutive

secretory pathway (Moore, Gumbiner & Kelly,1983)) suggested that CRF-41

mobilized ACTH from the stored regulated pathway whereas AVP mobilized ACTH

from a pool associated with unregulated (constitutive) ACTH release (Schwartz et
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al., 1990). However, as AVP-stimulated ACTH is Ca2+-dependent (see section 1.4.3

and King & Baertschi,1990; Oki et al., 1991), and constitutive secretion is Ca2+-

independent (Brion, Miller & Moore, 1992; Matsuuchi & Kelly, 1991; Miller &

Moore, 1991) it seems unlikely that such a constitutive pool is in fact mobilized by

AVP. Thus AVP probably releases a regulated pool of newly synthesized hormone.

Protein translation inhibitors have also been reported to block components of the

regulated secretory pathway independently of hormone synthesis inhibition (Brion et

al., 1992), thus it is possible that the AVP-responsive ACTH pool has distinct

regulatory properties (in terms of translation inhibitor action) compared to the CRF-41

activated ACTH pool.

Several workers have reported subpopulations of corticotrophs that are differentially

responsive to hypothalamic secretagogues (see section 1.4.2 and Childs,1992; Jia et

al., 1991; Schwartz, Canny, Vale & Funder,1989) however, to date, no evidence for

corticotrophs responding solely to AVP have been reported. Thus on the basis of

current evidence it is likely that these potentially distinct ACTH pools reside in a single

cell population (Figure 3.14). Alternatively, it cannot be excluded at present that

actinomycin D and puromycin interfere with the signal transduction pathways

activated by AVP. However, if such interference does occur it must be distal to AVP-

receptor activation as puromycin also blocks a combined phorbol ester/ionomycin

stimulus in acutely isolated perifused rat anterior pituitary cells (Antoni,1992).

Interestingly, CRF-41 and AVP also differentially regulate corticotroph ACTH

content in the long-term. CRF-41 stimulates POMC gene expression thereby

increasing intracellular ACTH stores, in contrast, AVP does not stimulate POMC gene

expression, but may enhance the rate of processing of POMC pre-mRNA transcripts

(Levin & Roberts, 1991).
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Figure 3.14

CRF-41 andAVP mobilize distinct pools ofACTH from anteriorpituitary
corticotrophs

AVP CRF-41

ACTH

ACTH

ACTH
ACTH

Figure 3.14: CRF-41 mobilizes a stored pool of ACTH whilst AVP activates a
rapid turnover, newly synthesized, pool in anterior pituitary corticotroph cells.
Abbreviations are as follows: R, receptor; G, G-protein; PLC, phospholipase C;
DAG, diacylglycerol; IP3, inositol 1,4,5 triphosphate; ER, endoplasmic reticulum;
ICa(v), voltage operated calcium channel; AC, adenylyl cyclase; [Ca2+]i,
intracellular free calcium concentration; POMC, proopiomelanocortin, the
precursor of ACTH. See section 3.5.1 for discussion.
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3.5.2 Involvement of type II glucocorticoid receptors and requirement for mRNA and

protein synthesis in the early inhibitory action of glucocorticoids

As discussed in section 1.5.4 it has been suggested that early glucocorticoid inhibition

at the corticotroph involves rapid and delayed effects that are mediated through

different receptor subtypes (Abou-Samra et al., 1986a; Keller-Wood &

Dallman,1984). However, current evidence suggests that both rapid and delayed

inhibition are manifest through the type II glucocorticoid receptor; the purported time-

domains differing in the extent rather than the cellular mechanism of inhibition (see

Dayanithi & Antoni (1989) and section 1.5.4).

The data presented here demonstrate that both CRF-41- and AVP-stimulated ACTH

secretion are inhibited in the early time-domain by glucocorticoids acting through the

type II glucocorticoid receptor. The lack of a statistically significant inhibition of

CRF-41-stimulated ACTH release within 30min of application of RU28362 in the

present study may suggest mediation of rapid feedback by a non-type II glucocorticoid

receptor. However, because the rapid effect of corticosterone was blocked by the

potent type II receptor antagonist, RU38486, it seems reasonable to assume that type

II receptors are involved in this time domain. Thus these data support the hypothesis

that similar mechanisms underlie rapid and delayed inhibition and that these time

domains differ only in the extent of inhibition as suggested by Dayanithi & Antoni

(1989). Hence it would seem appropriate to designate rapid and delayed action under

a common title of 'early ' glucocorticoid inhibition. The more prolonged inhibitory

action of RU28362, with respect to corticosterone, on both CRF-41- and AVP-

stimulated ACTH release may be a consequence of differences in tissue traffic

(metabolism and diffusion) between RU28362 and corticosterone rather than

mediation of the response by different types of glucocorticoid receptor. For example,
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corticosterone binds to transcortin-like binding proteins and is metabolised by 116-

hydroxysteroid dehydrogenase whereas RU28362, similar to other synthetic

glucocorticoids, does not bind to transcortin and is largely resistant to degradation by

116-hydroxysteroid dehydrogenase (De Kloet, Burbach & Mulder,1977; Funder,

Pearce, Smith & Smith,1987; Stewart, Wallace, Valentino et al., 1987).

Since inhibitors of transcription (actinomycin D) and translation (puromycin) blocked

the suppressive action of glucocorticoids on CRF-41-stimulated ACTH release, the

present data are consonant with the hypothesis that early glucocorticoid action involves

the synthesis of new protein(s) (Arimura et al., 1969; Dayanithi & Antoni,1989;

Munck,1971). Increasing the concentration of glucose in the medium had no effect on

the inhibitory effect of type II receptor stimulation suggesting that a reduction of

glucose uptake (Munck,1971) by the glucocorticoid induced protein is unlikely to be

the primary cause of inhibition of secretagogue-stimulated ACTH release. Whether

glucocorticoid-inhibition of AVP-stimulated ACTH secretion requires a similar protein

could not be resolved fully in this study because of the inhibition of AVP-induced

ACTH secretion by actinomycin D or puromycin given alone. However, RU28362

produced no additional inhibition of ACTH release in the presence of puromycin and

RU28362 inhibition appeared to be present on withdrawal of the translation inhibitor.

Furthermore, the transcription inhibitor, DRB, blocked RU28362 inhibition of

phorbol ester-stimulated ACTH release in static incubation of rat anterior pituitary

primary cultures. These results are compatible with the protein induction hypothesis

for glucocorticoid inhibition of AVP-stimulated ACTH release.
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3.5.3 Secretagogue context (nature and timing) determines the characteristics of early

glucocorticoid inhibition

Early glucocorticoid suppression of CRF-41-stimulated ACTH secretion is dependent

upon the relative timing of secretagogue and glucocorticoid application, whereas this is

not the case for AVP-induced ACTH secretion.

The importance of the temporal relationship between secretagogue stimulation and

glucocorticoid exposure has been reported by Mulder & Smelik (1977) (see also

section 1.5.5), who found that corticosterone pretreatment was necessary to achieve

an early inhibitory effect in isolated perifused rat anterior pituitary cells stimulated by

short pulses of stalk-median eminence extract (that contains CRF-41 and AVP).

Mahmoud et al.( 1984) have reported a biphasic time-course of the early effects of

corticosterone on CRF-41-stimulated ACTH secretion, with a "silent" period at 30-50

min after exposure to the steroid. This latter phenomenon, however, appears to be

different from the results presented here, since a long time-interval after the application

of corticosterone simultaneously with CRF-41 has been covered and no subsequent

inhibition of ACTH release was observed. It is interesting to note that the timing

phenomenon reported here may underlie the complete lack of early glucocorticoid

inhibition reported by Familari & Funder (1989) who applied steroid simultaneously

with a CRF-41 stimulus in perifused rat anterior pituitary cells, although other factors,

such as use of primary cultures of rat anterior pituitary cells attached to cytodex beads

as opposed to pituitary segments in this thesis, may also underlie this discrepant

finding.

When CRF-41 and AVP were used in combination as secretagogue at concentrations

approximating levels recorded in rat hypophysial portal blood (0.1 nM and 0.2nM

respectively cf Plotsky,1991) early glucocorticoid inhibition was blocked by a
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secretagogue pulse started at the onset of the exposure to glucocorticoids i.e. in this

respect the 'physiological' CRF-41/AVP stimulus resembles CRF-41 alone. The

timing dependence of CRF-41/AVP-stimulated ACTH release may be a result of the

reported synergistic enhancement of CRF-41-stimulated cAMP accumulation by AVP

(Abou-Samra et al., 1987b; Carvallo & Aguilera,1989; Cronin et a/.,1986; Giguere et

al., 1982; Lutz-Bucher et al., 1990). Interestingly, the release of ACTH elicited by

CRF-41/AVP in perifused isolated rat anterior pituitary cells is suppressed by

puromycin (FA Antoni, personal communication). Thus it will be of interest to

examine whether varying the relative proportions of CRF-41 and AVP in the

combined secretagogue paradigm will modulate the subsequent characteristics (timing

dependence and translation inhibitor sensitivity) of early glucocorticoid inhibition of

CRF-41/AVP-stimulated ACTH release.

3.5.4 CRF-41 inactivates early glucocorticoid inhibition of CRF-41-. but not AVP-.

stimulated ACTH release

The dependence of early glucocorticoid inhibition of CRF-41-stimulated ACTH

secretion on the relative timing of glucocorticoid and CRF-41 application could

potentially be a result of two separate mechanisms as summarised in Figure 3.15:

1) CRF-41 is required to activate some step of early glucocorticoid inhibition (for

example post-translational modification of the induced protein) when CRF-41 is

applied following the start of corticosterone exposure (Figure 3.15a)

2) CRF-41 inactivates early glucocorticoid inhibition, perhaps by preventing activation

of the gene(s) encoding the early glucocorticoid induced protein(s), when applied

simultaneously with the start of corticosterone exposure (Figure 3.15b).
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Figure 3.15

Alternative models ofCRF-41/glucocorticoid timing interaction
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Figure 3.15: a) Model I - activation. In this model glucocorticoid inhibition
does not fully develop (aj) unless CRF-41 is applied after the start of
glucocorticoid exposure (aii) ie CRF-41 is required to activate some aspect of early
glucocorticoid inhibition (for further discussion see section 3.5.4).

b) Model II - inactivation. In this model glucocorticoid inhibition
develops independently of CRF-41 exposure (bj) however, CRF-41 applied
simultaneously with the onset of glucocorticoid application inactivates early
inhibition (by) perhaps by preventing glucocorticoid-induced gene transcription
(for further discussion see sections 3.5.4 & 3.5.5).
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Initial experiments using Wistar rats obtained from Harlan-Olac suggested that CRF-

41 was required to activate the early inhibitory action of corticosterone. However,

these experiments were performed using rats infected with Sendai virus and could not

be reproduced in rats obtained from Harlan-Olac that had been cleared of infection by

the supplier. Furthermore, subsequent experiments revealed a mechanism of

inactivation in virus-free rats as discussed below for Charles River rats.

In anterior pituitary glands of Charles River rats CRF-41-stimulated ACTH release

was significantly inhibited by corticosterone when no CRF-41 stimulus was applied

during the exposure to corticosterone or the type II glucocorticoid receptor agonist

RU28362. Furthermore, application of CRF-41 or its intracellular second messenger

analogue, 8-CPT-cAMP, simultaneously with the onset of corticosterone exposure

prevented the subsequent inhibition of CRF-41-stimulated ACTH release. Thus, it

appears that CRF-41 prevents the action/induction of the glucocorticoid-induced

protein(s) when applied at the start of glucocorticoid exposure.

Because the parameter of glucocorticoid inhibition being measured in this system,

stimulated ACTH secretion, requires CRF-41 stimuli to be used as an assay system

after the exposure to glucocorticoid (as in Table 3.1) it is possible that these

subsequent stimuli are required to activate some component of early inhibition. Thus

inactivation and activation may occur in concert in the same cell. To establish whether

activation is also important characterization of the intracellular molecular pathways of

glucocorticoid inhibition are required so that other models of early inhibition using

markers other than ACTH secretion, for example gene transcription, can be employed.
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Intriguingly, CRF-41 failed to prevent glucocorticoid inhibition of AVP-stimulated

ACTH secretion. From amongst the several possible explanations to this

phenomenon, it is reasonable to exclude on the basis of the data presented in this

thesis that priming of the tissue segments with AVP inhibits the action of a subsequent

CRF-41 pulse to prevent glucocorticoid inhibition, or that priming with CRF-41 is

required for this effect of CRF-41. The differential glucocorticoid inhibition of CRF-

41- and AVP- stimulated ACTH release reported in this thesis suggests that

glucocorticoids may suppress CRF-41- and AVP- stimulated ACTH secretion through

different mechanisms.

Current evidence suggests two alternatives for the apparent differences in the

mechanism for early glucocorticoid inhibition of CRF-41- and AVP-stimulated ACTH

release. Evidence from other workers (for review see Schwartz et al., 1990) combined

with the inhibition of AVP-stimulated ACTH release by the protein synthesis inhibitor,

puromycin, presented in section 3.3.2 indicates that distinct pools of ACTH are

mobilized by these neurohormones: CRF-41 releasing a stored, slow-turnover pool of

ACTH, whereas AVP-induced secretion is derived from a rapid-turnover pool of

hormone. A further possibility, (this in fact does not exclude the previous one) is that

distinct populations of corticotrophs are involved cf (Childs,1992; Jia et al., 1991;

Schwartz et al., 1990) in which cAMP phosphorylation targets are expressed in a cell-

specific manner. For example, the mechanism of glucocorticoid inhibition of CRF-

41, and AVP-stimulated ACTH release may be identical, however, CRF-41-mediated

inactivation of early glucocorticoid inhibition may only occur in corticotrophs that

respond solely to CRF-41 but not in corticotrophs that respond to both CRF-41 and

AVP.
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3.5.5 Putative mechanism!s) of CRF-41-inactivation of early glucocorticoid inhibition

The precise mechanism by which CRF-41 prevents early glucocorticoid inhibition of

ACTH release is unclear, however, because it can be reproduced with a cAMP

analogue, it seems reasonable to suggest that it is in fact mediated by cAMP and/or

cAMP-dependent phosphorylation. The time window during which CRF-41 must be

applied for inactivation to occur (ie within 15min after the start of glucocorticoid

exposure) would imply that CRF-41 must activate the cAMP/protein kinase pathway

before the intracellular pathways mediating glucocorticoid action are fully activated.

As the functional activity of the glucocorticoid receptor is dependent upon its state of

phosphorylation (Mendel et al., 1986; Munck et al., 1990; Orti et al., 1992) CRF-41,

through cAMP, may interfere with glucocorticoid action through modulation of the

state of glucocorticoid receptor phosphorylation (Singh & Moudgil,1985).

Although Sheppard and co-workers recently reported a reduction in glucocorticoid

receptor mRNA after exposure of AtT20 D16:16 cells to activators of cAMP synthesis

no reduction in glucocorticoid receptor mRNA was seen until 6h after treatment

suggesting that inactivation does not involve blockade of glucocorticoid receptor

synthesis (Sheppard, Roberts & Blum, 1991).

A further possibility, and probably the most plausible explanation of the timing

characteristics of inactivation, is the observation that transcription factors such as c-

fos, c-jun, the cAMP response element binding protein (CREB) and octamer factors

which are induced or activated by cAMP, interfere with glucocorticoid-induced gene

transcription (Beato,1991; Brindle & Montminy,1992; Diamond, Miner, Yoshinaga &

Yamamoto,1990; Lucibello, Slater, Jooss et al., 1990; Schiile, Rangarajan, Kliewer et

al., 1990; Wieland, Dobbeling & Rusconi,1991; Yang-Yen, Chambard, Sun et

al., 1990).
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Figure 3.16

Proposed model ofCRF-41 inactivation ofearly glucocorticoid inhibition

CRF-41

Figure 3.16: CRF-41 blocks early glucocorticoid inhibition in a cAMP-
dependent mechanism perhaps by activating or inducing additional transcription
factors (such as the cAMP response element binding protein, CREB) that
interfere with glucocorticoid-induced gene transcription to prevent expression of
the glucocorticoid-induced protein (protein X). Consequently, intracellular free
Ca2+ levels are not suppressed allowing subsequent CRF-41 stimuli to release
ACTH. For further discussion see section 3.5.5. Abbreviations are as follows:
IK(Ca), calcium activated potassium channel; IK(v), voltage regulated potassium
channel; ICa(v),voltage dependent calcium channel; GR, glucocorticoid receptor.
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CRF-41 stimulates accumulation of c-fos mRNA in AtT20 D16v cells (Boutillier,

Sassone-Corsi & Loeffler,1991) suggesting that such a regulatory mechanism may be

involved in inactivation. Interestingly, transcriptional interference between c-fos and

the glucocorticoid receptor has been reported for the CRF-41-induced blockade of

glucocorticoid suppression of POMC gene transcription (Autelitano & Sheppard,1992;

Levin & Roberts,1991; Lundblad & Roberts,1988).

However, it is important to note that c-fos mRNA in AtT20 D1 cells is also induced by

glucocorticoids within the timescale of early inhibition (Lin, MacLeod &

Hardin,1992). It remains to be explored whether activation of CREB, or other

transcription factors, are involved in the mechanism of CRF-41-inactivation of early

glucocorticoid inhibition. If such an hypothesis is correct it would be predicted that

CRF-41 prevents glucocorticoid induction of genes encoding protein(s) mediating

early inhibition (Figure 3.16). CRF-41-inactivation could be a useful marker that may

aid the identification of protein(s) involved in early glucocorticoid inhibition.

3.5.6 Physiological relevance of differential early glucocorticoid inhibition of ACTH

secretion

The implications of differential early glucocorticoid inhibition of stimulated ACTH

secretion for the control of ACTH release in vivo are that glucocorticoid feedback at

the pituitary level is modulated in a differential manner by secretagogue

neurohormones. In general, stimuli involving CRF-41 may be relatively resistant to

early glucocorticoid inhibition, and those involving primarily AVP are invariably

suppressed. For example, some of the major cytokines released during inflammation,

interleukin-1 and tumour necrosis factor, are thought to stimulate the release of CRF-

41 by hypothalamic neurones but not that of vasopressin (for example see

Berkenbosch et al., 1988; Sapolsky et al., 1988 although see Whitnall et al., 1992).
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Moreover, in certain autoimmune inflammatory diseases, adrenocortical steroid

secretion is enhanced for several days (MacPhee, Antoni & Mason, 1989; Mason,

MacPhee & Antoni,1990; Sternberg, Hill, Chrousos et al., 1989), suggesting that the

feedback mechanism may have been modified. Furthermore, several reviews of

glucocorticoid feedback inhibition in vivo have emphasized that certain 'stressors' are

relatively resistant to glucocorticoid inhibition (Dallman et al., 1987; Jones &

Gillham,1988; Keller-Wood & Dallman, 1984), it remains to be examined whether

these 'stressors' differentially mobilize CRF-41 or AVP as secretagogue. These

observations illustrate the possible functional importance of the escape of CRF-41 -

induced ACTH release from glucocorticoid feedback inhibition at the pituitary level.

Interestingly, a recent study employing the CRF-41 gene stably transfected in AtT20

cells suggests that CRF-41-gene transcription activated by protein kinase A activators

is more resistant to glucocorticoid inhibition than that evoked by the protein kinase C

pathway (Rosen, Majzoub & Adler,1992). However, as discussed by these authors

this evidence is derived from two different cell lines: the AtT20 cell stably transfected

with the human CRF-41 gene and the human primary liver carcinoma cell line NPLC

that endogenously expresses the CRF-41 gene. CRF-41 gene expression in AtT20

and NPLC cells is induced by activators of the protein kinase A and protein kinase C

pathways respectively but not vice versa, thus these data may be a result of different

tissue specific factors expressed in the two cell lines. In contrast, Bilezikjian and co¬

workers (Bilezikjian et al., 1987) have suggested ACTH release evoked by protein

kinase C activation is more resistant to late glucocorticoid inhibition than ACTH

release stimulated by protein kinase A activators. It is of interest that a reduction in

glucocorticoid receptor number and glucocorticoid receptor mRNA levels develop 6h

after exposure to activators of cAMP synthesis in AtT20 D16:16 corticotroph tumour

cells (Sheppard et al., 1991). Furthermore, glucocorticoid/CRF-41 interaction also
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occurs at the proopiomelanocortin (POMC) gene; glucocorticoids cannot inhibit

POMC gene transcription when the gene is fully activated by CRF-41 (see section

3.5.5). Thus, CRF-41 acting via cAMP exerts both short- (present findings) and

long-term control over glucocorticoid action at the pituitary level. In turn, reciprocally

opposing actions are provided by early and late glucocorticoid inhibition of CRF-41

action on ACTH release and biosynthesis cf (Dallman et al., 1987; Jones &

Gillham,1988).

3.6 Conclusion

In summary the data presented in this section suggest that:

1) CRF-41 and AVP mobilize distinct pools of ACTH from the anterior pituitary

gland.

2) Type II glucocorticoid receptors and synthesis of new protein(s) are involved in

early glucocorticoid inhibition of AVP- and CRF-41-stimulated ACTH release.

3) The timing of glucocorticoid application is important in determining the early

glucocorticoid inhibition ofCRF-41but not AVP-stimulated ACTH release.

4) CRF-41 inactivates early inhibition of CRF-41-stimulated ACTH release, and this

is mimicked by a cell permeant analogue of cAMP suggesting an acute interaction

between the cAMP/protein kinase A and glucocorticoid responsive signalling

pathways.

Such differential modulation of early glucocorticoid inhibition may be of functional

significance in vivo. CRF-41-inactivation may be a useful tool in characterization of

glucocorticoid-induced proteins explicitly involved in early inhibition.
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4

CHARACTERIZATION OF EARLY

GLIJCOCORTICOID-INDUCED PROTEINS IN

THE MOUSE CORTICOTROPH CELL LINE.

AtT20 D16:16

Introduction

The low proportion of corticotrophs in the adenohypophysis (Westlund et al., 1985)

and the fact that glucocorticoids affect virtually all cells in the gland make the

characterisation of glucocorticoid induced proteins and messenger ribonucleic acids

(mRNA) in normal corticotrophs extremely difficult. A more attractive alternative is to

employ a nominally homogenous corticotroph cell population such as the mouse clonal

anterior pituitary corticotroph cell line, AtT20, derived from a radiation induced

tumour (Furth, Gadsden & Upton, 1953; Sabol,1980). Recent data from this

laboratory (see following results and Woods et al.,1992) has confirmed that the

D16:16 strain of the AtT20 cell line, that is maintained as a monolayer and derived

from the D1 and D16v strains (Sabol,1980; Tashjian Jr.,1979; Yasumura,1968), is a

valid model in which to examine the mechanism of early glucocorticoid inhibition. As

CRF-41 inactivates early glucocorticoid inhibition in normal corticotrophs (as

discussed in section 3) CRF-41/glucocorticoid interaction in AtT20 D16:16 cells was

also analysed in an attempt to shed light on the nature of the glucocorticoid induced

protein(s).

With respect to characterization of proteins involved in early glucocorticoid inhibition

in AtT20 D16:16 cells two major methodological approaches were used:
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1) Northern and Western blotting for glucocorticoid-induced mRNAs and proteins in

AtT20 D16:16 cells using probes complimentary to mRNAs/proteins that have been

identified in other models of early inhibition. As functional evidence in AtT20 D16:16

cells, as well as other systems (see section 1.6.3), suggest glucocorticoid suppression

of intracellular free Ca2+ levels these studies were predominantly confined to known

Ca2+-binding proteins which may act as sensors of intracellular free Ca2+.

2) Complimentary DNA library technology has proved invaluable for the identification

of differentially regulated mRNAs (for example see Davis, Cohen, Nielsen et

al., 1984; Duguid, Rohwer & Seed,1988; Harrigan et al., 1989; Sargent &

Dawid,1983). Thus a cDNA library constructed from glucocorticoid-induced AtT20

D16:16 cells was screened using subtraction and differential hybridization

methodologies. Attempts were also made to characterize novel proteins using 2D-gel

electrophoresis. Messenger RNAs (mRNAs) or proteins identified in this way could

be further screened with known probes to establish potentially novel as well as

previously characterised proteins.

Glucocorticoid-induced proteins identified in AtT20 D16:16 corticotrophs will allow

the mechanism and modulation of early inhibition to be examined in detail.

Furthermore, proteins characterized in this system can be used as probes to

characterize early inhibition in normal corticotrophs as well as other models of early

inhibition in an attempt to dissect a generic mechanism of early glucocorticoid

inhibition.
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Results

4.2 Early glucocorticoid inhibition of CRF-41-stimulated ACTH
release in AtT20 D16:16 corticotrophs

4.2.1 Effect of glucocorticoids on CRF-41 -stimulated ACTH secretion

As the ACTH secretory response of normal corticotrophs is most reliable using a

perifusion system initial studies were designed to examine the secretory response of

AtT20 D16:16 corticotrophs using cells (approximately 2X106 cells/column) perifused
in a matrix of Sephadex G-10 (as described by Dayanithi & Antoni,1989) or perifused

on glass coverslips coated with 2.5|ig/cm2 poly-L-lysine (Sigma). The poly-L-lysine

was required to prevent cells detaching from the coverslip during the time course of an

experiment. The ACTH secretory response declined progressively on repeated

application of a submaximal (lOnM) dose of CRF-41 irrespective of the duration of

stimulation (2.5-5min) or interstimulus period (30-60min). Typically, stimulated

ACTH release declined to 50% of the initial evoked release after 3 consecutive pulses

of CRF-41. Lower CRF-41 concentrations did not result in reproducible ACTH

responses, thus AtT20 D16:16 cells grown as a monolayer in static incubation were

examined as a model.

AtT20 D16:16 cells consistently responded in a time and dose dependent manner to

CRF-41 (Figure 4.1a & b) in static monolayer incubations. Stimulus to basal ratios

were optimal at 20min of incubation with lOnM CRF-41, typically giving a 1.5-2fold

increase over basal ACTH release. Such short incubation periods were used in order

to stay within the time domain of early inhibition, other workers typically incubate

with secretagogue for 3h to improve stimulus to basal ratios c/(Miyazaki et al., 1984).

Pretreatment with the synthetic glucocorticoid, dexamethasone, (lOnM for 90min)
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inhibited CRF-41-stimulated ACTH release to approximately 50% of control (Figure

4.1c). Dexamethasone had no significant inhibitory effect on basal ACTH release.

The transcription inhibitor, 5,6-Dichloro-l-D-ribofluranosylbenzimidazole (DRB)

prevented the inhibitory action of dexamethasone: DRB had no effect on basal or

CRF-41-stimulated ACTH release (Figure 4.1c). Dexamethasone had no effect on

lOnM CRF-41-stimulated accumulation of cAMP in the presence of 0.5mM IBMX, a

phosphodiesterase inhibitor (Table 4.1). The peak of CRF-41-stimulated cAMP

accumulation (~7 fold above basal) was evident at 2min after lOnM CRF-41

application and remained elevated (~2 fold above basal) after 30min exposure. No

accumulation of cAMP was observed in the absence of IBMX, furthermore no

enhancement of basal cAMP accumulation was observed on addition of IBMX.

Further data from this laboratory have confirmed that early glucocorticoid inhibition in

this cell line requires activation of type II receptors and induction of mRNA and

protein. Significant inhibition is demonstrable after 45min of glucocorticoid

application, maximal inhibition (to 50-90% of control CRF-41-stimulated ACTH

release) is evident using lOnM dexamethasone for 1.5-2h (Woods et al., 1992). Thus

the AtT20 D16:16 cell line is a valid model in which to characterize proteins involved

in early inhibition.
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Figure 4.1

Reversal ofdexamethasone inhibition ofCRF-41-stimulatedACTH release in
AtT20 D16:16 cells by the transcription inhibitor 5,6-Dichloro-l-fi-D-

ribofluranosylbenzimidazole (DRB)
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Figure 4.1: a) Dose response curve and b) time course of CRF-41-stimulated
ACTH release from AtT20 D16:16 cells in static monolayer incubation. Data are
expressed as pmol/well of ACTH released, CRF-41 was applied for 20min in a),
c) Reversal of dexamethasone inhibition of lOnM CRF-41-stimulated ACTH
release by 150pM DRB. Data are means ± SEM (n=3), expressed as a percent of
the net ACTH released by CRF-41 alone. Dexamethasone (lOnM) was applied
for 90min before the stimulus, DRB was started 20min before and continued
during the exposure to dexamethasone. *p<0.05 compared to CRF-41 control and
+DEX+DRB (Students unpaired 2-tail t-test)
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Table4.1

EffectofdexamethasoneandketoconazoleonCRF-41-stimulatedcAMPaccumulationin AtT20D16.16cells
pmolcAMP/well 0'

2'

Time

5'

(min) 10'

20'

30'

Treatment Basal(4)

3.16±0.35

3.43±0.08

3.4310.39

3.5510.47

3.7810.27

3.4010.39

lOnMCRF-41(3)
3.47±0.23

21.33±1.05

16.3411.99

9.9810.74

8.4610.23

6.4710.23

lOnMCRF-41 +Dexamethasone(3)
3.16±0.35

19.50±1.56

15.1010.78

9.6710.59

7.4510.66

7.4111.05

InMCRF-41(3)

2.93±0.27

9.5910.08

8.2710.46

5.6610.35

4.9110.23

4.8810.31

InMCRF-41 +Ketoconazole(3)
2.69±0.23

8.6610.78

6.8610.12*

4.6410.19*

5.0710.27

5.1110.19

Table4.1:DataareexpressedaspmolofcAMPgeneratedperwellforthestatedtimeperiod.IBMX (0.5mM)wasappliedfor15minbeforetime0'andfreshIBMXwasappliedwiththestimulusattime0'.No accumulationofcAMPinresponsetoCRF-41wasobservedintheabsenceofIBMX.Dexamethasoneand ketoconazolealonehadnoeffectoncAMPaccumulationatanytimepoint.TotalintracellularcAMPwas determinedasdescribedinsection2.3.3.Dexamethasone(lOnM)wasappliedfor90minbeforetheCRF-41 stimulus;ketoconazole(200pM)wasstarted15minbeforeandcontinuedduringthestimulus.Dataaremeans +SEM,thenumberofexperimentsisshowninparentheses.*p<0.05comparedwiththerespectiveInM CRF-41controlgroupusingStudentsunpaired2-tailt-test.
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4.2.2 CRF-41 inactivates early glucocorticoid inhibition of CRF-41-stimulated ACTH

release

As CRF-41 inactivates early inhibition in normal corticotrophs CRF-41/glucocorticoid

interactions in the AtT20 D16:16 cell line were examined in an attempt to provide

markers that may prove useful for the identification of proteins involved in early

glucocorticoid inhibition. Treatment of AtT20 D16:16 cells with InM CRF-41 during

the first 30min of exposure to lOnM dexamethasone (total duration 90min) blocked

early inhibition of subsequent CRF-41-stimulated ACTH release (Figure 4.2).

Inactivation was not observed if InM CRF-41 pretreatment was started 15min (total

duration 30min) after the onset of dexamethasone exposure (Figure 4.2). Pretreatment

with lOnM CRF-41 or 1-100jiM 8-CPT-cAMP alone resulted in a reduction of the

subsequent ACTH response to CRF-41 to 26% and 63% respectively of control CRF-

41-stimulated ACTH release. Pretreatment with O.lnM CRF-41 alone resulted in

subsequent lOnM CRF-41 stimulated ACTH release of 90.0±12.0% (n=6) of control.

However, O.lnM CRF-41 pretreatment failed to reverse the action of dexamethasone

(ACTH release was 4.2±6.5% (n=6) of control). Phorbol dibutyrate, PdBu,

pretreatment alone (lOnM for 30min as for CRF-41 in Figure 4.2) reduced the

subsequent CRF-41-stimulated ACTH release to 66.0±10.3% (n=4) of control,

however, PdBu pretreatment did not block early glucocorticoid inhibition of CRF-41 -

stimulated ACTH release (this paradigm resulted in net ACTH release of 12.0±7.0%

(n=3) compared to control).

Experiments were performed to examine whether blockade of CRF-41-induced cAMP

accumulation could prevent CRF-41-inactivation of early inhibition. Ketoconazole,

that maximally inhibits CRF-41-stimulated cAMP accumulation in normal rat

corticotrophs when used at 200|iM (Stalla, Stalla, Huber et al., 1988) had no
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significant effect on the time course of cAMP accumulation induced by InM CRF-41

(Table 4.1) although a small but significant inhibition was observed at the 5 and lOmin

time point. A similar lack of action was observed using 20(iM ketoconazole.

Concentrations greater than 200|iM could not be achieved as ketoconazole required

greater than 1% DMSO to remain soluble, a DMSO concentration that was deleterious

to the secretory function of AtT20 D16:16 cells.

In conclusion, early glucocorticoid inhibition in AtT20 D16:16 cells develops within

2h, requires the activation of type II glucocorticoid receptors and the synthesis of new

mRNA and protein. Furthermore, CRF-41, but not phorbol dibutyrate, inactivates

early inhibition of CRF-41-stimulated ACTH secretion.
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Figure4.2

CRF-41inactivatesearlyglucocorticoidinhibitioninAtT20D16:16cellsinstaticmonolayerculture
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Figure4.2:Dexamethasonewasappliedfor90minatlOnM(DEX,solidhorizontalline),CRF-41pretreatmentwasfor 30minatInM(horizontalopenbox)appliedsimultaneouslywith(CRF)orstarted15min(15')afterthestartof dexamethasoneexposurebeforewashout.After90minthepretreatmentmediawasremovedandthelOnMCRF-41test stimulusappliedfor20min(horizontalstippledbox).DataareexpressedasapercentageofthenetACTHreleasedby lOnMCRF-41alone(Control),aftersubtractionoftherespectivebasalACTHrelease.Dataaremeans±SEM. **p<0.01comparedtoallgroups(Studentsunpaired2-tailt-test).
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4.3 Characterization of known glucocorticoid-induced Ca^ + .
binding, and other, proteins in AtT20 D16:16 corticotrophs

4.3.1 Lipocortin (annexin) I and chromogranin A

Lipocortin I has been proposed as a mediator of early glucocorticoid action in

macrophages and other systems (for reviews see Flower, 1988; Peers &

Flower, 1990). Lipocortin I mRNA or protein was undetectable in AtT20 D16:16 cells

even after 90min of lOnM dexamethasone treatment (Figure 4.3 and 4.4a

respectively). Lipocortin I mRNA was constitutively expressed in AtT20 D1 cells,

however, no induction of lipocortin I mRNA was seen after 24h of ljiM

dexamethasone treatment (Figure 4.3). Northern hybridization for lipocortin I mRNA

was kindly performed by Dr E L Mullens, Department of Medicine, Charing Cross

and Westminster Hospital Medical School, London, UK.

Recently, chromogranin A has been reported as a paracrine inhibitor mediating late

(slow >24h) glucocorticoid inhibition in AtT20 D16v cells thus it was of interest to

examine whether this protein is involved in early inhibition. Immunoblotting for

chromogranin A using a polyclonal antiserum (courtesy Dr D K Apps, Dept.

Biochemistry, University of Edinburgh, UK) in Ca2+-precipitated protein fractions

from AtT20 D16:16 cells revealed two major immunoreactive bands (that appeared as

doublets, a common feature of chromogranin A immunoblots (Simon & Aunis,1989))

at ~74kDa and ~33kDa respectively (Figure 4.4b). However, no induction of either

chromogranin A-like immunoreactive band was observed after 90min of lOnM

dexamethasone treatment (n=3). Although chromogranin A has a calculated molecular

weight of ~50kDa the protein is heavily glycosylated, binds SDS weakly and displays

an apparent molecular weight of approximately 75kDa in SDS-PAGE electrophoresis.
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Figure 4.3

Northern blotting for lipocortin I mRNA in AtT20 D1 and D16:16
corticotrophs
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Figure 4.3: a) Autoradiograph of 20|ig of total RNA from AtT20 DI cells
hybridized with (a32P) dCTP labelled lipocortin I cDNA and exposed for 5 days.
Cells were incubated for 24h in the presence (+) or absence (-) of l|iM
dexamethasone. b) Blot a) rehybridized with (a32P) dCTP labelled a-tubulin cDNA
and exposed for 5h. c) Autoradiograph of 2|ig of poly A+ mRNA from AtT20
D16:16 cells hybridized with (a32P) dCTP labelled lipocortin I cDNA and exposed for
5 days. Cells were incubated for 90min in the presence (+) or absence (-) of lOnM
dexamethasone. d) Blot c) rehybridized with (a32P) dCTP labelled a-tubulin cDNA
and exposed for 5h. All blots were hybridized with the respective probe (lxlO6
cpm/ml) overnight at 65°C in 10% dextran sulphate, 1M NaCl, 1% SDS and
100|ig/ml salmon sperm DNA. Washing was performed at 65°C for 30min in lxSSC,
0.1%SDS.
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Figure 4.4

Immunoblotting for lipocortin I and chromogranin A protein in AtT20
D16:16 corticotrophs
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Figure 4.4: a) Lipocortin I immunoblot. b) Chromogranin A immunoblot. Cells
were incubated in the presence (+) or absence (-) of lOnM dexamethasone for 90min.
Crude supernatant (S) and calcium precipitated (Ca2+) samples contained 2pg/lane,
crude pellet samples (P) contained l(ig/lane and cloned lipocortin I standard (LC 1)
contained 25ng/lane. Non-immune rabbit serum (NRS) was used to assess non¬
specific binding. Samples were electrophoresed on a 10-15% SDS-PAGE Phastgel,
electroblotted to Immobilon PVDF and reacted for lipocortin I, using monoclonal
MAbl05 at 1:1000 dilution, or chromogranin A, using a polyclonal rabbit antiserum at
1:500 dilution.
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The identity of the 33kDa and other weaker bands is unknown, however, to date all

polyclonal antisera directed against chromogranin A cross react with several other

Ca2+-binding proteins (Simon & Aunis,1989).

The lack of induction of lipocortin I or chromogranin A in the time-scale of early

inhibition suggest that these proteins are not essential components of early

glucocorticoid action.

4.3.2 Calmodulin

Recently, glucocorticoid-induction of the intracellular calcium receptor protein,

calmodulin, has been reported in several lymphocyte-derived models of early

inhibition (Dowd et al., 1991; Harrigan et al., 1989). AtT20 D16:16 cells constitutively

expressed a single major ~1.6kb mRNA species that hybridized to a calmodulin cDNA

probe encoding the mouse pCAMII calmodulin mRNA (clone 21 cited in Baughman et

al., 1991 and Harrigan et al., 1989) or a chicken calmodulin cDNA probe (Dowd et

al., 1991). Constitutive expression was slightly variable between different passage of

cells (see Figures 4.5, 4.6a and 4.7). In three separate experiments the normalized

hybridization intensity (see section 2.9.2) of control (untreated) samples was 0.062,

0.096 & 0.105 respectively. Furthermore, in 3 out of 9 experiments weak

hybridization signals were also seen at -2.4 and ~4.2kb using the above probe (for

example see Figure 4.5). Dexamethasone treatment for 90min increased the level of

the ~1.6kb calmodulin mRNA. Time-course studies showed that calmodulin mRNA

increased at 45min but not at 15min after treatment with lOnM dexamethasone (Figure

4.5), in contrast the cytoplasmic 7S RNA transcript was unaffected by dexamethasone

pretreatment and was used for normalization of all subsequent blots. After

normalization calmodulin mRNA in control cells was 1.0±0.2 (relative hybridization

intensity units (see section 2.9.2 for calculation), n=3 mean ± SEM) and increased to
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7.4±1.7 (n=5) and 10.8±1.1 (n=3) after a 90min treatment with lOnM and lOOnM

dexamethasone, respectively. Identical results were obtained using a cDNA probe

encoding chicken calmodulin (Dowd etal., 1991) hybridized at lower stringency (for

example see Figure 4.6a). Pretreatment of cells with the protein synthesis inhibitor,

puromycin (0.1 (iM, 15min before and during the exposure to lOOnM dexamethasone)

blocked the induction of calmodulin mRNA (Figure 4.7). This concentration of

puromycin fully blocks early glucocorticoid inhibition of CRF-41-stimulated ACTH

release in AtT20 D16:16 cells (Woods et al., 1992).

Application of lOnM CRF-41 during the first 30min of dexamethasone pretreatment

(as described in Figure 4.2, section 4.2.1) blocked the dexamethasone-induced

(lOOnM, 90min) accumulation of calmodulin mRNA. CRF-41 pretreatment alone had

no significant effect on calmodulin mRNA accumulation (Figure 4.6 and 4.7). The

protein kinase C activator, phorbol dibutyrate (lOnM) alone, using the same

pretreatment protocol as for CRF-41, appeared to induce calmodulin mRNA

accumulation to ~6fold above control. Importantly, phorbol dibutyrate did not block

dexamethasone induced calmodulin mRNA accumulation (Figure 4.7).

Acutely isolated rat anterior pituitary glands incubated in vitro as described in section

2.3.1 constitutively expressed 2 major RNA species of equal intensity at ~1.6kb and

~4.2kb, constitutive expression in rat anterior pituitary was consistently greater than

that observed in AtT20 D16:16 cells (Figure 4.5). No induction of either calmodulin

RNA species was observed in rat anterior pituitary after 90min dexamethasone (10-

lOOnM) pretreatment (Figure 4.5).

Dexamethasone pretreatment (90min at lOOnM) significantly elevated immunoreactive

calmodulin protein levels (band ~18Kd) to 2.1±0.3 fold above basal (n=3) in Ca2+-

precipitated protein extracts of AtT20 D16:16 cells (Figure 4.8a).
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Figure 4.5

Effect of dexamethasone on calmodulin mRNA expression in AtT20
D16:16 corticotrophs and normal rat anterior pituitary gland

AtT20 D16:16 Rat anterior pituitary
0' 20' 45' 90' 0' 90'

- 28S - w

^ m - 18S - - .

A • • # 7S RNA

Figure 4.5: AtT20 D16:16 corticotrophs and rat anterior pituitary gland segments
were treated with lOnM and lOOnM dexamethasone respectively for the indicated time
(min) in vitro. Total RNA from AtT20 D16:16 corticotrophs (20fig/lane) or normal rat
anterior pituitary segments (10pg/lane) were hybridized with a (a32P) dCTP labelled
0.4kbp EcoRI fragment of the mouse calmodulin (pCAMII) cDNA derived from the
mouse WEHI-7TG lymphocyte cell line (clone 21). Hybridization was performed as
described in section 2.7.4, autoradiographs were exposed for 3days. Blots were
reprobed with a 0.2kbp BamHI mouse cDNA fragment encoding the abundant
cytoplasmic 7S RNA and exposed for 2h.
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Figure 4.6

CRF-41 blocks dexamelhasone induction ofcalmodulin mRNA in
AtT20 D16.16 cells
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Figure 4.6: a) Autoradiograph from a typical experiment. CRF-41 (lOnM)
was applied during the first 30min of dexamethasone exposure (lOOnM, 90min
total duration) as in Figure 4.2. Total RNA (20pg/lane) was hybridized with a
(a32P) dCTP labelled 0.28kbp EcoRI/PstI cDNA fragment of chicken
calmodulin. Blots were hybridized as described in section 2.7.4, except that
the final wash was at lxSSC, 0.1%SDS at 65°C and exposed for 3days. b)
Summary of results from 3 independent experiments performed as in a). Data
are expressed as the relative hybridization intensity of calmodulin mRNA as
described in section 2.9.2. **p<0.01 with respect to control, fp<0.01 with
respect to dexamethasone treated cells (Students unpaired 2-tailed t-test).
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Figure 4.7

Effect of phorbol dibutyrate, and the translation inhibitor, puromycin,
on dexamethasone-induced calmodulin mRNA expression in AtT20

D16.16 cells

28S -

18S -

7S RNA

Figure 4.7: Puromycin (O.lmM) was applied 15min before and during the exposure
to dexamethasone (lOOnM for 90min). Phorbol dibutyrate (a protein kinase C
activator, PdBu, lOnM), and CRF-41 (lOnM) were applied during the first 30min of
dexamethasone exposure as in Figure 4.2. Total RNA (20|ig/lane) was hybridized
with a (a32P) dCTP labelled 0.4kbp EcoRI fragment of the mouse calmodulin
(pCAMII) cDNA as described in section 2.7.4, autoradiographs were exposed for
3days. Equal loading of RNA was determined by reprobing blots for 7S RNA. In
this experiment relative hybridization intensities (Control = 1.0) were as follows:
CRF, 3.2; CRF+DEX, 2.9; PdBu, 6.2; PdBu+DEX, 11.9, Puro, 1.9; Puro+DEX,
1.8, Control, 1.0; DEX, 9.4.
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Figure 4.8
Induction of immunoreactive calmodulin protein by dexamethasone in

AtT20 D16:16 corticotrophs
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Figure 4.8: a) AtT20 D16:16 cells were incubated in the presence (DEX) or absence
(Control) of lOnM dexamethasone for 90min. Calcium precipitated extracts (l|0.g/lane)
and bovine calmodulin standards (CaM, 1.56-12.50ng/lane) were run in parallel, b)
AtT20 D16:16 cells were incubated with lOOnM dexamethasone for the stated time
periods (min). Crude supernatant (S) and pellet (P) samples contained 2|ig/lane. All
samples were electrophoresed on a 10-15% SDS-PAGE Phastgel, electroblotted to
Immobilon PVDF and probed for calmodulin, using a mouse monoclonal antibody at
l|ig/ml. 125I-labelled anti-mouse IgG was used as second antibody, autoradiographs
were exposed for 3days.
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Calmodulin was detectable in both crude supernatant and pellet fractions from AtT20

D16:16 cells isolated as described in section 2.5.2 except that 2mM EGTA was

included in the homogenization buffer. In the crude supernatant fraction a slight

decrease (maximally 30-40% at 90min) was observed on increasing exposure to

lOOnM dexamethasone (Figure 4.8b). Cross reaction with a protein band at ~36Kd

was also observed in crude supernatant fractions. Calmodulin protein levels in the

pellet fraction were maximally elevated (mean 2.8 fold above control in two

experiments) after 90min of lOOnM dexamethasone exposure (4.8b)

In summary, glucocorticoids induce the mRNA and protein encoding the calcium

receptor protein, calmodulin, in the time-scale of early inhibition in AtT20 D16:16

corticotrophs. Furthermore, dexamethasone may also promote redistribution of

calmodulin from the cytosol to membrane structures.

4.3.3 Other mRNAs induced by glucocorticoids in the mouse T-lvmphoc\te cell line.

WEHI-7TG

No expression of an mRNA hybridizing to clone 4.2, a putative G-protein linked

receptor clone related to the tachykinin receptor family in the WEHI-7TG cell line

(Harrigan, Campbell & Bourgeois,1991), was observed in total RNA extracts from

AtT20 D16:16 cells even after 90min of lOnM dexamethasone treatment. Two cDNA

clones encoding early glucocorticoid-induced proteins of unknown function from the

mouse T-lymphocyte cell line, WEHI-7TG (clones 58 and 213 respectively cited in

Baughman et al., 1991 and Harrigan et al., 1989) were used to probe Northern blots of

total RNA from AtT20 D16:16 cells. Filter hybridizations were kindly performed by

Drs G Baughman and S Bourgeois, Salk Institute, San Diego, California, USA. Both

clones were constitutively expressed and slightly induced (maximally 2 fold after

45min) in AtT20 D16:16 cells treated with lOnM dexamethasone (Figure 4.9). These
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data demonstrate that common, as well as cell-specific, mRNAs are induced by

glucocorticoids in the early time domain.

In summary, glucocorticoids induce the accumulation of the Ca2+-binding protein,

calmodulin, but not lipocortin I or chromogranin A in the time-scale of early inhibition

in AtT20 D16:16 cells. Furthermore, several other unidentified mRNAs were induced

by glucocorticoids and await further characterization.
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Figure 4.9
Northern blotting for the glucocorticoid-induced clones 58 and 213,
derived from the WEHI-7TG lymphocyte cell line, in AtT20 D16:16

cells

Clone 58

0' 15' 45' 90'

Clone 213

0' 15' 45' 90'

- 28S -

- 18S -

Figure 4.9: AtT20 D16:16 cells were treated with lOnM dexamethasone for various
times as indicated (min). Total RNA (20|ig/lane) was hybridized with (a32P) dCTP
labelled EcoRI fragments of cDNAs encoding clones 58 and 213 respectively derived
from the lymphocyte cell line, WEHI-7TG. Blots were hybridized and washed as
described in section 2.7.4 except that RNA was fixed to nylon (Hybond-N,
Amersham) membranes. Equivalent RNA loading was assessed by ethidium bromide
staining (not shown).
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4.4 Attempts to identify novel glucocorticoid-induced mRNAs
and proteins in AtT20 D16:16 corticotrophs

4.4.1 Subtraction hybridization screening of a cDNA library constructed from

dexamethasone-induced AtT20 D16:16 cells

Subtraction hybridization screening of cDNA libraries has proved a powerful tool in

the characterization of differentially expressed mRNAs and was used to identify

glucocorticoid-induced mRNAs in AtT20 D16:16 cells. Two representative cDNA

libraries (control and lOnM dexamethasone treated for 90min) containing >lxl06

independent clones with average insert size >lkbp were constructed using the Uni—

ZAP-XR™ cloning vector. Screening of 50,000 independent clones from the

unamplified dexamethasone-induced library revealed 394 positive clones hybridizing

to a subtracted cDNA probe enriched for dexamethasone-induced cDNA (see section

2.7.2 and 2.8.8 for methodology). Rescreening of these primary screen positive

plaques using differential hybridization (see section 2.8.8) revealed 30 plaques that

strongly hybridized only to cDNA derived from dexamethasone treated cells. The

signal from the remaining plaques was not detectable above background using this

differential screening method. For representative autoradiographs of duplicate plaque

filter lifts used in secondary screening see Figure 4.10.

Preliminary characterization of these secondary screen positive plaques revealed

multiple cDNA clones within a single plaque. Further plaque purification and

screening is required before sequencing and complete characterization of these

dexamethasone-induced cDNAs. However, at least two plaques from the 30

secondary positive plaques hybridised with a cDNA probe encoding mouse

calmodulin (clone 21 cited in Baughman et al., 1991 and Harrigan et al., 1989),
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suggesting induction of calmodulin mRNA in the time-course of early glucocorticoid

inhibition in AtT20 D16:16 cells.

4.4.2 2-D gel electrophoresis of Ca2+-precipitated. 35S-methionine- and 32Phosphate -

labelled, proteins

Experiments were designed to analyse glucocorticoid-induced proteins using two

dimensional gel electrophoresis of proteins metabolically labelled with 35S-methionine
that incorporates into newly synthesized protein. After first dimension isoelectric

focusing, over 1,000 proteins could be resolved using 10cm x 16cm second

dimension SDS-PAGE gels, however, no reproducible difference between control

(Figure 4.11a) and dexamethasone treated (Figure 4.11b) protein extracts could be

determined during the time-scale in which the inhibitory action of dexamethasone is

maximal (see section 4.2.1 and Woods et al., 1992). Furthermore, no consistent

induction of protein(s) by dexamethasone was observed using Ca2+-precipitated

protein extracts (Figures 4.12a and 4.12b for control and dexamethasone treated cells

respectively) or phosphoprotein (32Phosphate labelled) extracts (Figures 4.13a and

4.13b for control and dexamethasone treated cells respectively). Further analysis

using this methodology would require 'giant' 2D-gel electrophoresis (typically 100cm

x 100cm second dimension gels) (Colbert & Young,1986a; Colbert & Young,1986b)

for resolution of glucocorticoid-induced proteins and was not pursued further in this

study.

Induction of calmodulin protein was undetectable using 2D-gel electrophoresis

however, this is probably a consequence of the highly acidic nature of the protein.

Several workers have reported loss of the protein from gels during the routine

overnight fixation and washing procedures used in this study (McKeon &

Lyman,1991) (see section 2.6.1), furthermore re-examination of all 2D gels revealed a
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wide variation in signal intensity between control samples for proteins of similar

electrophoretic mobility as reported for calmodulin.

In summary, cDNA technology revealed several putative glucocorticoid-induced

mRNAs in AtT20 D16:16 corticotrophs. Further work is required to isolate and

characterize these mRNAs however dexamethasone-induced clones corresponding to

calmodulin were identified.
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Representativeautoradiographsofdifferentialhybridizationscreeningof'dexamethasone-induced'cDNAclonesfrom anAtT20D16:16cDNAlibrary
a)Controlb)DEX

Figure4.10:The394firstroundscreenpositiveclonesfromtheprimarycDNAlibraryofdexamethasone-inducedAtT20 D16:16cellshybridizingtoasubtractedcDNAprobeenrichedfordexamethasone-inducedsequences(seesection4.2.3) werereplatedandduplicateplaquefilterliftstaken.Filterswerehybridizedwithtotal(a32P)dCTPlabelledcDNAprobes generatedfromeithercontrola)ordexamethasonetreated(90min,lOnM)b)AtT20D16:16mRNAasdescribedinsection 2.8.8.Filterswerehybridizedasdescribedinsection2.8.8,autoradiographswereexposedfor3days.
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Figure 4.11a

Two-dimensional gel analysis of 35S-methionine incorporation into
newly synthesized cellular proteins in control AtT20 D16:16 cells

pi
6.95

I
6.64 6.07 5.47 5.00

I I

200Kd—
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30—

14.3—

Figure 4.11a: Incorporation of 35S-methionine into newly synthesized proteins in
control AtT20 D16:16 cells was performed as described in section 2.5.5. Protein
samples containing equal TCA precipitable cpm were loaded and electrophoresed by
IEF in the first dimension followed by SDS-PAGE electrophoresis in the second
dimension. The pH and molecular weight calibrations are shown. The gel is
representative of six control samples run in parallel with six dexamethasone treated
samples (see Figure 4.11b for comparison with dexamethasone treated samples).
Gels were dried and exposed to B-max hyperfilm at -70°C with intensifying screens
for 4 days.
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Figure 4.11b

Two-dimensional gel analysis of 35S-methionine incorporation into
newly synthesized cellular proteins in dexamethasone treated

AtT20 D16:16 cells

6.95 6.64 6.07 5.47 5.00
I I I II

Figure 4.11b: Incorporation of 35S-methionine into newly synthesized proteins in
AtT20 D16:16 cells treated with lOnM dexamethasone for 90min was performed as
described in section 2.5.5. Protein samples containing equal TCA precipitable cpm
were loaded and electrophoresed by IEF in the first dimension followed by SDS-
PAGE electrophoresis in the second dimension. The pH and molecular weight
calibrations are shown. The gel is representative of six dexamethasone treated
samples run in parallel with six control samples (see Figure 4.11a for comparison with
control samples). Gels were dried and exposed to B-max hyperfilm at -70°C with
intensifying screens for 4 days.
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Figure 4.12a

Two-dimensional gel analysis of Ca2+-precipitated proteins from
control AtT20 D16:16 cells

I
I

14.3—

Figure 4.12a: Isolation of Ca2+-precipitated proteins from control AtT20 D16:16
cells was performed as described in section 2.5.3. Equivalent amounts of protein
were loaded and electrophoresed by IEF in the first dimension followed by SDS-
PAGE electrophoresis in the second dimension. The pH and molecular weight
calibrations are shown. The gel is representative of six control samples run in parallel
with six dexamethasone treated samples (see Figure 4.12b for comparison with
dexamethasone treated samples). Proteins were detected using the Pierce silver
staining procedure as described in section 2.5.3.
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Figure 4.12b

Two-dimensional gel analysis of Ca2+-precipitated proteins from
dexamethasone treated AtT20 D16:16 cells

Figure 4.12b: Isolation of Ca2+-precipitated proteins from dexamethasone treated
(10nM, 90min) AtT20 D16:16 cells was performed as described in section 2.5.3.
Equivalent amounts of protein were loaded and electrophoresed by IEF in the first
dimension followed by SDS-PAGE electrophoresis in the second dimension. The pH
and molecular weight calibrations are shown. The gel is representative of six
dexamethasone treated samples run in parallel with six control samples (see Figure
4.12a for comparison with control samples). Proteins were detected using the Pierce
silver staining procedure as described in section 2.5.3.
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Figure 4.13a

Two-dimensional gel analysis of 32Phosphate incorporation into total
cellular protein of control AtT20 D16:16 cells

Figure 4.13a: Incorporation of 32Phosphate into total protein from AtT20 D16:16
cells was performed as described in section 2.5.4. Protein samples containing equal
TCA precipitable cpm were loaded and electrophoresed by IEF in the first dimension
followed by SDS-PAGE electrophoresis in the second dimension. The pH and
molecular weight calibrations are shown. The gel is representative of six control
samples run in parallel with six dexamethasone treated samples (see Figure 4.13b for
comparison with dexamethasone treated samples). Gels were dried and exposed to B-
max hyperfilm at -70°C with intensifying screens for 4 weeks.
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Figure 4.13b

Two-dimensional gel analysis of 32Phosphate incorporation into total
cellular protein of dexamethasone treated AtT20 D16:16 cells

Figure 4.13b: Incorporation of 32Phosphate into total protein from AtT20 D16:16
cells treated for 90min with lOnM dexamethasone was performed as described in
section 2.5.4. Protein samples containing equal TCA precipitable cpm were loaded
and electrophoresed by IEF in the first dimension followed by SDS-PAGE
electrophoresis in the second dimension. The pH and molecular weight calibrations
are shown. The gel is representative of six dexamethasone treated samples run in
parallel with six control samples (see Figure 4.13a for comparison with control
samples). Gels were dried and exposed to G-max hyperfilm at -70°C with intensifying
screens for 4 weeks.
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4.5 Discussion

The results presented in this section, combined with further data from this laboratory

(Woods et al., 1992), suggest that the mouse corticotroph cell line AtT20 D16:16

retains the fundamental hallmarks of early inhibition: onset within 2h, activation of

type II glucocorticoid receptors and mRNA and protein induction, and is thus a valid

model in which to characterize early glucocorticoid-induced proteins. Furthermore,

CRF-41-inactivation of early inhibition demonstrated in AtT20 D16:16 cells as for

normal corticotrophs, may be a useful tool with which to identify proteins involved in

early glucocorticoid inhibition.

With regards to the nature of the glucocorticoid-induced protein(s), lipocortin

(annexin) I mRNA or protein was not detectable or induced in AtT20 D16:16 cells at a

time when the early inhibitory effect of glucocorticoids is maximal. Importantly,

accumulation of mRNA and protein encoding the calcium receptor protein,

calmodulin, was observed within the time-scale of early inhibition. Furthermore,

CRF-41 blocked glucocorticoid-induced accumulation of calmodulin mRNA.

Complimentary DNA technology techniques revealed several other glucocorticoid-

induced mRNAs in AtT20 D16:16 cells. These mRNAs require further

characterization.

4.5.1 Early glucocorticoid inhibition in AtT20 D16.16 cells

Because corticotrophs represent only 5% of the anterior pituitary gland cell population

and the fact that virtually all cells in the anterior pituitary gland are responsive to

glucocorticoids a homogenous corticotroph cell model is required to characterize the

molecular mechanisms of early glucocorticoid inhibition.
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The results presented in section 4, combined with further work in this laboratory

(Woods et al., 1992), indicates that the AtT20 D16:16 cell line retains the fundamental

hallmarks of early glucocorticoid inhibition observed in normal corticotrophs. The

mechanism of early glucocorticoid inhibition in AtT20 D16:16 cells does not involve

suppression of CRF-41-stimulated cAMP production. Whether glucocorticoids

suppress absolute cAMP levels by phosphodiesterase activation could not be

determined in these studies as CRF-41-stimulated cAMP accumulation was only

observed when the phosphodiesterase inhibitor, IBMX, was present in the incubation

medium. However, the majority of evidence to date in normal as well as AtT20

corticotrophs suggests that the site of early inhibition is distal to second messenger

production (cAMP or IP3/DAG for CRF-41 and AVP respectively) (Abou-Samra et

al., 1986a; Abou-Samra et al., 1986b; Antoni et al., 1992a; Miyazaki et al., 1984;

Phillips & Tashjian,1982; Woods et al., 1992).

CRF-41 pretreatment blocked early glucocorticoid inhibition in AtT20 D16:16 cells. In

contrast PdBu, that activates the protein kinase C pathway, could not block early

glucocorticoid inhibition of CRF-41-stimulated ACTH release. Taken together these

results parallel the data obtained in section 3 using normal rat corticotrophs in a

perifusion model. The observed desensitization of CRF-41-stimulated ACTH release

after pretreatment with PdBu, and higher doses of CRF-41 is probably through

heterologous and homologous desensitization of CRF-41 receptor/postreceptor

systems respectively rather than depletion of ACTH stores (Hoffman et al., 1985).

CRF-41 -inactivation should prove useful in identification of proteins involved in early

inhibition of stimulated ACTH release. Moreover, the AtT20 D16:16 cell line should

serve as a model in which to examine the molecular interactions between the

glucocorticoid and cAMP/protein kinase A activated intracellular pathways.
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4.5.2 No evidence for involvement of linocortin (annexin) / or chromogranin A in early

glucocorticoid inhibition in AtT20 D16:16 cells

It was of interest to examine whether lipocortin (annexin) I, the purported mediator of

early glucocorticoid action in macrophages and other systems (for reviews see

Flower,1988; Peers & Flower,1990), is involved in early glucocorticoid inhibition of

stimulated ACTH release from the the model corticotroph cell line AtT20 D16:16.

Lipocortin I protein ormRNA could not be detected in AtT20 D16:16 cells even after

dexamethasone pretreatment. Although a recent preliminary report has suggested that

a N-terminal fragment of lipocortin 1 mimics dexamethasone inhibition of

hypothalamic extract stimulated ACTH release in rat pituitary segments in a static

incubation assay, the lipocortin 1 fragment had no inhibitory action in AtT20 D16:16

cells (Taylor, Antoni, Croxtall et al., 1992). Furthermore, although lipocortin I is

present in the anterior pituitary gland, as well as the D16v and D1 strains of the AtT20

cell line, no evidence for its induction by glucocorticoids has been demonstrated in

these systems (Woods, Kiss, Smith et al., 1990). Work on the the role of lipocortin I

in other systems has also cast doubt on its suggested primary and generic function as a

mediator of glucocorticoid action (for example see Bronnegard, Andersson, Edwall et

al., 1988; Wong, Frost & Nick,1991).

Chromogranin A, a secretory vesicle associated protein (Deftos,1991; Huttner, Gerdes

& Rosa,1991; Simon & Aunis,1989), has been implicated as a glucocorticoid

responsive paracrine inhibitor in slow (>24h) inhibition of ACTH release in AtT20

D16v cells (Wand, Takiyyuddin, O'Connor & Levine,1991). Proteolytic fragments

of chromogranin A also inhibit secretion in other secretory cells such as adrenal

chromaffin cells (Galindo, Rill, Bader & Aunis,1991; Simon, Bader & Aunis,1988).

No induction of two major chromogranin A immunoreactive protein bands in AtT20
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D16:16 cells was observed in the time-interval of early inhibition in this system.

Furthermore, chromogranin A mRNA and protein is only expressed in gonadotrophs

of normal rat anterior pituitary even after glucocorticoid treatment (Fischer-Colbrie,

Wohlfarter, Schmid et al.,1988; Grino, Wohlfarter, Fischer-Colbrie & Eiden,1989).

The nature and function of other unidentified glucocorticoid-induced mRNAs reported

in this study using: 1) subtraction hybridization screening of AtT20 D16:16 cDNA

libraries and; 2) Northern blotting of AtT20 D16:16 mRNA with probes from the

glucocorticoid-treated mouse lymphocyte cell line, WEHI-7TG (Baughman et

al., 1991; Harrigan et al., 1989), require further evaluation.

4.5.3 Early glucocorticoid induction of calmodulin and its suppression by CRF-41 in AtT20

D16:16 cells

Dexamethasone stimulated accumulation of a single calmodulin mRNA species

(~1.6kb) maximally 10 fold with a concomitant elevation (~2 fold) in calmodulin

protein level within 90min of glucocorticoid application in AtT20 D16:16 cells.

Subtraction hybridization screening of a cDNA library generated from dexamethasone

treated AtT20 D16:16 cells identified several calmodulin cDNA clones confirming

glucocorticoid induction of calmodulin mRNA. Accumulation of calmodulin mRNA

was dependent on ongoing protein synthesis. Whether the induction requires

constitutive expression of rapid turnover proteins, as reported for the rat ai-acid

glycoprotein gene (Klein, Reinke, Feigelson & Ringold,1987), or is dependent on

glucocorticoid-induction of additional transcription factors could not be determined in

these studies. The rapid and transient induction of mRNAs (maximal within 45min,

reduced by 90min) in AtT20 D 16:16 cells complimentary to clones 58 and 213 from

WEHI-7TG cells (Baughman et al., 1991; Harrigan et al., 1989) would suggest that

glucocorticoids in fact activate a 'cascade' of potential transcription factor genes. In
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support of this hypothesis Lin & co-workers recently reported that glucocorticoids

rapidly induce the transcription factor c-fos in AtT20 D1 cells (Lin et al., 1992).

Potential glucocorticoid as well as cAMP and AP-2 response elements have been

identified in the 5' promoter region of the rat calmodulin II gene indicating, in

accordance with the findings described above, that interactions between multiple

transcription factors are involved in the regulation of calmodulin gene expression. The

promoter regions of other calmodulin genes, including those encoding the mouse

calmodulin genes have not been fully characterized (Nojima,1989).

As CRF-41 pretreatment prevents early glucocorticoid inhibition as well as

glucocorticoid-induced calmodulin mRNA accumulation in AtT20 D16:16 cells the

data strongly suggest that calmodulin is an essential component of early glucocorticoid

inhibition. The pleiotropic action of calmodulin (see section 4.5.4) along with

functional evidence from this laboratory, implicating glucocorticoid-suppression of

intracellular free Ca2+ levels and enhancement of K+ currents in this cell line (Antoni

et al., 1992a; Pennington et al., 1992), are consistent with this hypothesis.

Studies using calmodulin antagonists have implicated calmodulin in the mechanism of

CRF-41- as well as AVP-stimulated ACTH secretion (Murakami, Hashimoto &

Ota, 1985). However, these calmodulin antagonists are non-specific and also block a

wide range of cellular enzymes cf (Klee & Vanaman,1982) precluding the direct

evaluation of these results.

In normal rat anterior pituitary, no induction of calmodulin mRNA (major mRNAs at

~1.6kb and ~4.2kb) was observed after dexamethasone pretreatment. However,

glucocorticoids have divergent effects on different cells of the anterior pituitary gland

(for example see Borski, Helms, Richman III & Grau,1991; Briski & Sylvester,1991;

Suter & Schwartz, 1985). Corticotrophs represent only 5-10% of the total anterior
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pituitary cell population and thus induction of calmodulin mRNA confined to

corticotrophs may be masked by the constitutive expression of calmodulin in other cell

types. Furthermore, although only one isoform of calmodulin protein exists in all

mammalian cells the protein is encoded by several independent genes (at least 3 in rat

and 2 in mouse) with multiple mRNA transcripts (Bender, Dedman & Emerson

Jr,1988; Fischer, Roller, Flura et al., 1988; Nojima,1989; Nojima & Sokabe,1987).

It is likely that each calmodulin gene has a separate function, for example a

housekeeping gene to maintain constitutive calmodulin expression and regulated genes

to respond to changes in homeostasis. Development of transcript-specific probes for

in situ hybridization studies are required to examine glucocorticoid regulation of

calmodulin mRNAs expressed exclusively in normal rat corticotrophs.

4.5.4 Is calmodulin a generic mediator ofearly glucocorticoid action?

Calmodulin is an ubiquitous, highly conserved, EF-hand, 17Kd acidic calcium

binding protein that constitutes approximately 0.2% of total cellular protein in anterior

pituitary cells. Calmodulin acts as a multi-functional Ca2+ receptor/effector system

that has been implicated in a wide range of physiological processes including

secretion, cell growth and cell motility through modulation of a wide range of

intracellular proteins including cyclic nucleotide phosphodiesterases, adenylate

cyclase, calcium-transport enzymes, cytoskeletal proteins, metabolic enzymes and ion

channels (for reviews see Harper,1988; Klee & Vanaman,1982; Manalan &

Klee,1984; Means,1988; Wang, Pallen, Sharma et al., 1985).

The demonstration that CRF-41 blocks both early glucocorticoid inhibition of CRF-

41-stimulated ACTH secretion as well as glucocorticoid-induction of calmodulin

mRNA in AtT20 D16:16 corticotrophs strongly supports the hypothesis that

calmodulin is involved in early glucocorticoid inhibition at the corticotroph. In several
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lymphocyte-derived models of early inhibition glucocorticoids stimulate accumulation

of calmodulin (for example see Dowd et al., 1991; Harrigan et al., 1989).

Interestingly, calmodulin displays the same electrophoretic mobility in 2D-gel

electrophoresis (IEF and SDS-PAGE) as the glucocorticoid-induced protein,

glucocortin, proposed as a generic mediator of glucocorticoid action (Colbert &

Young, 1986a; Colbert & Young, 1986b). Sequencing of glucocortin is required to

verify that this protein is indeed calmodulin.

Functional evidence from this laboratory, implicating early glucocorticoid suppression

of intracellular free Ca2+ responses and enhancement of K+ currents (Figure 4.14) are

consistent with the known properties of calmodulin (see above). Glucocorticoid

suppression of intracellular Ca2+ signals has been proposed in other models of early

glucocorticoid inhibition such as B-lymphocytes (Dennis et al., 1987), basophilic

leukaemia cells (Her et al., 1990) and pancreatic islet 8-cells (Billaudel et al., 1984).

Interestingly, Epstein & co-workers recently reported that early glucocorticoid

suppression of pancreatic insulin release could be mimicked by over-expression of a

calmodulin transgene (intracellular calmodulin protein levels were elevated 5fold) in

mouse pancreatic B-cells. This inhibition was also present in transgenes expressing a

mutated calmodulin gene that sequestered Ca2+ but did not allow activation of

calmodulin dependent proteins suggesting that calmodulin acts as a Ca2+ sink in this

system (Epstein, Ribar, Decker et al., 1992). Furthermore, in other models of early

inhibition, including CA1 hippocampal neurones and AtT20 D16:16 cells (Joels & De

Kloet,1989; Kerr et al., 1989; Pennington et al., 1992) glucocorticoids activate K+

currents that may have an indirect effect on intracellular free Ca2+ levels.
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Figure 4.14

Current model of early glucocorticoid inhibition in anteriorpituitary corticotrophs

~AEm 4]
[Ca2+]t f|
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(protein X)
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Figure 4.14: Activation of type II glucocorticoid receptors (GR Typell) induces
expression of glucocorticoid induced protein(s), protein X, that include calmodulin.
The induced protein acts to inhibit stimulated hormone secretion by suppressing
intacellular free calcium levels [Ca2+]i directly, perhaps by sequestration of
intracellular Ca2+ or inhibition of Ca2+ influx, or indirectly by activating voltage (IK
(v)) or Ca2+ dependent (IK(Ca)) potassium channels causing membrane
hyperpolarisation (AEra).
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Thus as Ca2+ is essential for cellular function, and calmodulin is a highly conserved

protein, glucocorticoid-induction of calmodulin may act as a mediator of early

inhibition in several systems. Whether calmodulin modulates K+ currents, or acts as

an intracellular Ca2+ sink remains to be explored. However, elevation of intracellular

calmodulin levels probably restricts agonist-induced redistribution of intracellular free

Ca2+ (see Figure 4.14) thus blocking activation of Ca2+-dependent processes such as

secretion.

4.6 Conclusion

The clonal AtT20 D16:16 mouse corticotroph cell line displays the major hallmarks of

early glucocorticoid inhibition described for normal corticotrophs. Early inhibition

requires activation of type II glucocorticoid receptors and induction of new mRNA and

protein. Furthermore, CRF-41 inactivates early glucocorticoid inhibition of CRF-41 -

stimulated ACTH release. With respect to the nature of the induced protein(s)

glucocorticoids elevated the mRNA and protein coding for the ubiquitous intracellular

calcium binding protein, calmodulin, within the time-scale of early inhibition in AtT20

D16:16 cells. Moreover, CRF-41 blocked glucocorticoid-induced accumulation of

calmodulin mRNA implicating this intracellular calcium receptor protein in the

mechanism of early glucocorticoid inhibition. Importantly, glucocorticoid-induction

of the calcium binding proteins lipocortin (annexin) I and chromogranin A could not

be detected in the time-scale of early glucocorticoid inhibition. Finally, cDNA

technology revealed several unidentified mRNAs induced by glucocorticoids, further

work is required to characterise these mRNAs.
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5

SUMMARY. CONCLUSIONS AND

PERSPECTIVES

Introduction

Two major lines of investigation were pursued in this thesis to characterize the

mechanism and modulation of early (within 2h) glucocorticoid inhibition in the

anterior pituitary corticotroph:

1) Perifused normal rat anterior pituitary gland segments were used as a model to

characterize early glucocorticoid inhibition of ACTH released stimulated by the two

major hypothalamic ACTH secretagogucs, CRF A1 and AVP (section 3). Because the

mechanism of early glucocorticoid inhibition is largely unknown, especially with

regard to the nature of the induced proteins, it was hoped that analysis of the

characteristics of early inhibition of CRF-41- and AVP-stimulated ACTH secretion

would prove useful in subsequent characterization of glucocorticoid-induced proteins

specifically involved in early inhibition.

2) The clonal mouse corticotroph cell line, AtT20 D16:16, was analyzed as a

nominally homogenous corticotroph cell population model of early glucocorticoid

inhibition that could be used for the characterization of glucocorticoid-induced proteins

(section 4).

The experimental findings are discussed in detail in the relevant sections and are

summarised below. The proposed direction of future research based on the results

presented in this thesis are then presented.
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5.2 Early glucocorticoid inhibition in anterior pituitary

corticotrophs: differential inhibition of ACTH release

induced by CRF-41 and AVP

In perifused rat anterior pituitary corticotrophs early glucocorticoid inhibition of CRF-

41-, as well as AVP-, stimulated ACTH release requires activation of type II

glucocorticoid receptors and induction of new mRNA and protein. Whether similar

proteins mediate inhibition of hormone release stimulated by the two secretagogues

remains to be examined. Glucocorticoids inhibited the amount of ACTH released by

either secretagogue, but had no effect on the time-course of the ACTH secretory

response. The characteristics of early glucocorticoid inhibition were dependent on the

nature of the secretagogue as well as the relative timing of glucocorticoid application.

AVP-stimulated ACTH release was invariably suppressed by glucocorticoids. In

contrast, CRF-41 inactivated early glucocorticoid inhibition of CRF-41-stimulated

ACTH release when applied at the start of glucocorticoid exposure. CRF-41

inactivation of early glucocorticoid inhibition was mediated by cAMP. Qualitatively

similar results were obtained in the mouse corticotroph cell line, AtT20 D16:16, in that

CRF-41, but not phorbol ester, blocked early inhibition of CRF-41-stimulated ACTH

release.

The precise mechanism of CRF-41 inactivation of early glucocorticoid inhibition is

unknown. CRF-41 only blocks early glucocorticoid action when applied

simultaneously with the start of steroid exposure, these timing characteristics suggest

that CRF-41 blocks glucocorticoid gene transcription as depicted in Figure 5.1b. In

support of this hypothesis, CRF-41 blocked glucocorticoid-induced calmodulin

mRNA accumulation in AtT20 D16:16 cells. Whether CRF-41 blocks glucocorticoid

receptor activation/translocation or activates additional transcription factors that

Page 175



Summary, conclusions and perspectives. 5

interfere with glucocorticoid-induced gene activation remains to be explored.

Interestingly, the latter mechanism has been implicated in CRF-41 blockade of

glucocorticoid suppression of POMC gene transcription in normal and AtT20 D16:16

corticotrophs (Autelitano & Sheppard,1992; Levin & Roberts, 1991; Lundblad &

Roberts,1988). The AtT20 D16:16 cell line appears to be a useful model in

determining the mechanisms of glucocorticoid/secretagogue interaction in various time

domains and levels of cellular control processes.

During the analysis of early glucocorticoid inhibition in perifused rat anterior pituitary

corticotrophs it was noted that AVP and CRF-41 appear to mobilize distinct pools of

ACTH. AVP may mobilize a rapid turnover (newly synthesized) pool of ACTH

whereas CRF-41 activates a stored, slow turnover pool. Current evidence would

suggest that these potentially distinct ACTH pools reside within a single cell.

Secretagogue-dependent modulation of glucocorticoid action raises an important

concept for the study of glucocorticoid action at other potential feedback sites in the

HPA axis such as the hypothalamic AVP and CRF-41 containing neurones, as well as

hippocampal neurones. Target cells that express glucocorticoid receptors are not

necessarily prone to glucocorticoid inhibition, the presence or absence of other

regulatory inputs may dictate the functional role of glucocorticoids at that site. Several

workers have emphasized the importance of such stimulus context in relation to to

glucocorticoid action (for example see De Kloet,1991 and Johnson et al., 1979).

The implications of differential modulation of early glucocorticoid inhibition in vivo is

that stimuli that are primarily dependent upon CRF-41 as secretagogue may be

relatively resistant to early inhibition whereas stimuli evoking AVP release will be

invariably suppressed. Such regulation would allow fine tuning of the stress response

to enable the organism to respond appropriately to diverse stressors.
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Figure 5.1

Glucocorticoid / secretogogue interactions in anteriorpituitary corticotrophs

a) Current model of early glucocorticoid inhibiDn

Figure 5.1: a) Activation of type II glucocorticoid receptors (GR Typell) stimulates
expression of glucocorticoid induced protein(s), protein X, that include calmodulin.
The induced protein acts to inhibit stimulated hormone secretion by suppressing
intacellular free calcium levels [Ca2+]i directly, perhaps by sequestration of
intracellular Ca2+ or inhibition of Ca2+ influx, or indirectly by activating voltage
(IK(v)) or Ca2+ dependent (IK(Ca)) potassium channels causing membrane
hyperpolarisation (AEm). b) CRF-41 inactivates early glucocorticoid inhibition
probably by activating or inducing additional transcription factors such as CREB that
prevent glucocorticoid induction of protein X as demonstrated for calmodulin. See
section 3.5.5 for further discussion.
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5.3 Calmodulin: a role in early glucocorticoid inhibition in
anterior pituitary corticotrophs ?

With regards to the identity of the glucocorticoid-induced protein(s) lipocortin

(annexin) I, the purported mediator of glucocorticoid inhibition in macrophages

(Rower,1988; Peers & Flower,1990), and chromogranin A, that has been implicated

in late inhibition (Wand et al., 1991), are not central components of early

glucocorticoid inhibition in AtT20 cells. Furthermore, there is little, if any, support

for a role of either protein in early glucocorticoid inhibition in normal corticotrophs.

The demonstration that CRF-41 inactivates early glucocorticoid inhibition of CRF-41-

stimulated ACTH release and also prevents glucocorticoid-induced accumulation of

calmodulin mRNA in AtT20 D16:16 corticotrophs strongly suggests that calmodulin is

involved in early glucocorticoid inhibition. Furthermore, functional evidence from

this laboratory, implicating early glucocorticoid-suppression of intracellular free Ca2+

levels and enhancement of K+ currents (see Figure 5.1a) (Antoni et al., 1992a;

Pennington et al., 1992) are consistent with known actions of calmodulin. As

discussed in section 4.5.4 calmodulin has been implicated in the mechanism of early

glucocorticoid inhibition in other systems. Taken together, these data would suggest

that a potentially generic model of early glucocorticoid inhibition would involve

induction of calmodulin protein that plays a role in the restriction of agonist-induced

redistribution of intracellular free Ca2+. Future studies should be directed at analysis

of the mechanism of action of calmodulin in these models of early inhibition as

outlined in section 5.4 below.

Studies using dual in situ hybridization and histochemical probes are required to

examine whether glucocorticoids regulate calmodulin mRNA and protein expression in

normal corticotrophs. Furthermore, analysis of calmodulin regulation in individual
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normal corticotrophs in conjunction with functional studies of secretion are required to

determine whether early glucocorticoid inhibition of CRF-41- and AVP-stimulated

ACTH release is mediated through the same protein(s).

5.4 Future perspectives

Characterization of the mechanism and modulation of early glucocorticoid inhibition

requires identification of proteins involved in early inhibition. The work presented in

this thesis, in conjunction with functional studies in this laboratory (Antoni et

al., 1992a; Pennington et al.,1992) strongly suggest that calmodulin is involved in the

mechanism of early glucocorticoid inhibition. The direction of future studies required

to consolidate and extend these proposals are outlined below:

1) Do glucocorticoids induce calmodulin expression in normal corticotrophs? Studies

employing dual in situ hybridization and histochemical probes are required to analyze

regulation of calmodulin mRNAs expressed exclusively in normal corticotrophs.

2) Is calmodulin overexpression the cause or consequence of inhibition? Use of

antisense DNA technology to block glucocorticoid-stimulated calmodulin protein

accumulation, and use of calmodulin expression vectors to directly elevate calmodulin

levels, in AtT20 D16:16 cells should indicate the causal relationship between

calmodulin overexpression and early inhibition. Furthermore, analysis of the other

putative glucocorticoid-induced mRNAs isolated in section 4 will establish whether

multiple protein(s) are involved in inhibition.

3) What is the mechanism of action of calmodulin in early inhibition? Overexpression

studies using mutant forms of calmodulin will provide insights into the mechanism

and locus of action, for example, if the primary action of calmodulin is to act as a Ca2+
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sink then calmodulin mutants that only display Ca2+ binding should mimic early

inhibition.

4) What is the mechanism of CRF-41-inactivation? The AtT20 D16:16 corticotroph

should provide a useful model in which to examine the molecular interactions between

CRF-41/cAMP and glucocorticoid regulated intracellular signalling pathways.

Identification of the intracellular pathways involved in early glucocorticoid inhibition

will allow functional assays to be developed that will expose the locus of CRF-

41/glucocorticoid interaction.

5) Do similar glucocorticoid-induced proteins mediate inhibition of CRF-41 and AVP-

stimulated ACTH secretion. Analysis of the response of individual corticotrophs to

secretagogues and glucocorticoids should establish whether similar mechanism(s) and

protein(s) are involved in early inhibition of AVP- and CRF-41-stimulated ACTH

release. This work will require development of corticotroph purification techniques

and will also shed light on the potentially distinct intracellular pools of ACTH released

by the major hypothalamic ACTH secretagogues.

In conclusion, the work presented in this thesis provides a conceptual framework in

which to further examine the mechanism of early glucocorticoid inhibition at the

anterior pituitary corticotroph as well as other potential glucocorticoid feedback sites.
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Early glucocorticoid feedback in anterior pituitary
corticotrophs: differential inhibition of hormone release
induced by vasopressin and corticotrophin-releasing factor
in vitro
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ABSTRACT

Vasopressin and 41-residue corticotrophin-releasing
factor (CRF-41) are physiological mediators of the
hypothalamic control of pituitary ACTH secretion,
whilst adrenocortical glucocorticoids are the major
inhibitory factors regulating ACTH output. In the
.present study it was investigated in vitro whether the
characteristics of early glucocorticoid inhibition of
stimulated ACTH secretion would differ depending
on the nature of the stimulus and the temporal
relationship between secretagogue and steroid.
The experiments were carried out using perifused

segments of rat adenohypophysis obtained from
-randomly cycling female rats. Repeated pulses (5 min)
of CRF-41 or vasopressin were given at 1-h intervals
■for up to 7 h. The net release of ACTH became stable
■after the second secretagogue pulse. Administration
of 0-1 pmol corticosterone/1 30 min before and during
^ 5-min pulse of 10 nmol CRF-41/1 inhibited CRF-41-
itimulated ACTH release to 60% of control. Stimu-
ated hormone release remained suppressed at 90 min
ifter the start of the corticosterone infusion and
eturned to control levels by 150 min. If corticoster¬
one treatment (35 min total exposure) was started
simultaneously with the CRF-41 pulse, no inhibitory
;ffect of the steroid was observed at any subsequent
ime-point examined (60,90,120 and 150 min). In con-
rast, vasopressin-stimulated ACTH release was inhi¬
bited by approximately 50% when corticosterone was
ipplied before, or simultaneously with, a 5-min pulse of
10 nmol vasopressin/1. The synthetic glucocorticoid

type II receptor agonist RU28362, administered 30min
before and during a 5-min pulse of 10 nmol CRF-41/1,
reduced CRF-41-stimulated ACTH release to 50% of
control up to 2-5 h after the start of RU28362 appli¬
cation (although inhibition after 35 min exposure was
not statistically significant). Inhibition of ACTH
release stimulated by 10 nmol vasopressin/1 was
observed within 35 min of steroid application and
was maintained up to 2-5 h after the initial appli¬
cation of RU28362. The action of RU28362 on CRF-
41-stimulated ACTH release was blocked by inhibitors
oftranscription (actinomycin D) and translation (puro-
mycin); notably these drugs did not modify the ACTH
response to CRF-41. In contrast, actinomycin D aswell
as puromycin reduced vasopressin-stimulated ACTH
release.
The data suggest that: (1) the timing of steroid

application is important in determining the early gluco¬
corticoid inhibition of CRF-41- but not vasopressin-
stimulated ACTH secretion; (2) CRF-41 and
vasopressin mobilize different pools of ACTH from
the anterior pituitary gland; (3) type II glucocorticoid
receptors and synthesis of new protein(s) are involved
in the early inhibitory action of glucocorticoids; (4)
depending on the timing and nature of the incident
secretagogue, differential negative feedback inhibition
of ACTH secretion may occur at the pituitary level
in vivo.
Journal ofEndocrinology (1991) 129, 261-268

NTRODUCTION

■Adrenocortical glucocorticoid hormones inhibit the
timulated release ofadrenocorticotrophin (ACTH) by

—he anterior pituitary gland. Rapid feedback develops

within 30min ofglucocorticoid exposure; delayed feed¬
back has the same effect but is maximally apparent at
1-2 h. Slow feedback requires several hours to bemani¬
fested and results in a reduction ofbasal and stimulated
ACTH secretion as well as a decrease in the rate of
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;ynthesis of the pro-opiomelanocortin precursor (for
eviews see Keller-Wood & Dallman, 1984; Dallman,
Akana, Cascio et al. 1987; Jones & Gillham, 1988;
^undblad & Roberts, 1988). There appears to be no
-iifference between the characteristics of rapid and
■lelayed feedback in the pituitary model used in these
tudies (Dayanithi & Antoni, 1989); they will therefore
>e referred to as early feedback in this paper.
The mechanism of action of early feedback is not

stablished; in fact, some investigators have failed to
demonstrate it altogether (Familari & Funder, 1989).
larlier in-vitro studies have suggested that prior
ddition of steroid was necessary for an early gluco-
orticoid inhibition of stimulated ACTH secretion
-Mulder & Smelik, 1977; Mahmoud, Scaccione,
-Icraggs et al. 1984). Thus it was of interest to deter-
nine whether the early inhibitory action of glucocorti-
oids at the pituitary level is influenced by the timing
if glucocorticoid application in relation to the stimu-
=ation by secretagogues and whether new mRNA and
irotein are required for the inhibitory action of gluco-
orticoids. Moreover, the possibility of differential
ffects of 41-residue corticotrophin-releasing factor-
■CRF-41) and vasopressin-stimulated ACTH release
/as examined.

-IATERIALS AND METHODS

.nimals

■emale ex-breeder Wistar rats of mean body weight
50-300 g were obtained from Harlan-Olac (Bicester,

-)xon, U.K.) and maintained with free access to
—elleted food and tap water for at least 1 week before
se.

-teagents
-tat CRF-41, [Arg8]-vasopressin and human ACTH(1-
9) were supplied by Bachem Inc. (Saffron Walden,
issex, U.K.); puromycin dihydrochloride hydrate and
ctinomycin D were from Aldrich Chemical Company
.td (Gillingham, Dorset, U.K.); corticosterone was
rom Sigma Chemical Company Ltd (Poole, Dorset,
J.K.). The synthetic glucocorticoid type II agon-

=*t, RU28362 (1 l(3,17(3-dihydroxy-6-methyl-17a-(l-
ropynyl)androsta-l,4,6-trien-3-one), was generously

applied by Roussel Uclaf (Romainville, France).
—ieneral chemicals were from BDH (Poole, Dorset,
J.K.).

erifusion of rat pituitary segments
=n each experiment five or six randomly cyclic rats
/ere decapitated between 08.45 and 09.30 h. After the

posterior lobe had been discarded, the anterior pitui-
taries were immediately placed in Dulbecco's modi¬
fied Eagle's medium buffered with 25 mmol Hepes/1
(Gibco-BRL, Paisley, Strathclyde, U.K.), at pH 7-4
containing 2-5 g bovine serum albumin/1 (ICN Bio¬
medicals, High Wycombe, Bucks, U.K.) and anti-
biotic/antimycotic solution (Sigma). This medium is
subsequently referred to as DMEM-Hepes.
Each pituitary was cut into eight approximately

equal sized segments using a scalpel blade. Two seg¬
ments from each pituitary were transferred on to a
100 pi cushion of preswollen Sephadex G-10 slurry
(Pharmacia LKB Biotechnology, Milton Keynes,
Bucks, U.K.) in each of four perifusion columns per
experiment. Each column thus contained 1-2 to 1-5
pituitary equivalents.
The columns were connected to a multichannel

peristaltic pump (Ismatec, Zurich, Switzerland) using
0-5 mm internal diameter plastic tubing (Altec, Alton,
Hants, U.K.); column effluent was collected every 5
min on ice using a Gilson fraction collector modified
to collect four channels simultaneously. Media,
columns and tubing were maintained at 37 °C in a
thermostatically controlled incubator.
The column volume was adjusted to 0-5 ml and the

segments were perifused with DMEM-Hepes for 2 h
at minimum flow rate (approximately 150 pl/5 min) to
allow the basal ACTH release to stabilize. The seg¬
ments were perifused for a further hour at the exper¬
imental flow rate of 200 pl/min during which time the
initial basal fractions were collected. At this flow rate
the transit time from the medium reservoir to the frac¬
tion collector was 100 s. Various treatments were then
applied as shown in the figure legends. Column
effluent was stored at —40 °C until assayed.

ACTH radioimmunoassay
Duplicate 50 pi aliquots of effluent were sampled for
immunoreactive ACTH content using antiserum no. 6
(courtesy of G. B. Makara, MTA KOKI, Budapest,
Hungary) in a radioimmunoassay described by Antoni,
Holmes & Jones (1983). l25I-Labelled ACTH was pro¬
duced using the iodogen method (Salacinski, McLean,
Sykes et al. 1981) using Na,25I from ICN Biomedicals.
Second antibodies were supplied by the Scottish
Antibody Production Unit, Carluke, Lanarkshire,
U.K.

Analysis of data
ACTH content in the column effluent was elevated
above basal over five consecutive fractions after a 5min

exposure to 10 nmolCRF-41/1 or 10 nmol vasopressin/
1; thus net ACTH release/25 min was determined for
each stimulus. Net ACTH release is defined as ((F+
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W+X+ Y+Z)/5)— B where V is the first 5-min frac¬
tion collected during the stimulus (100s transit time
discarded) and W, X, Y, Z are the next four consecutive
fractions. B is the basal secretion value immediately
before application of the stimulus.

Because of the variability in absolute ACTH release
between experiments, data were standardized by
expressing the net ACTH release elicited by a treat¬
ment as a percentage of that elicited by 10 nmol CRF-
41/1 (or vasopressin) alone, applied to all columns at
3 h and 4 h. The net ACTH release at 4 h was defined
as the 100% release value in all columns due to the
response enhancement observed between 3 h and 4 h
in all treated columns (see the Results section).
Statistical evaluation between different treatments

at each time-point was performed using the non-
parametric Kruskal-Wallis test with multiple com¬
parisons (Conover, 1980) for several independent
samples.

RESULTS

Response to CRF-41 and vasopressin
Figure 1 shows the dose-response relationship of net
ACTH release and 5-min pulses of CRF-41. In all
subsequent experiments CRF-41 was used at the sub-
maximally effective concentration of 10 nmol/1. In this
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figure 1. Release ofACTH by perifused rat anterior
pituitary segments in response to 41-residue corticotrophin-
releasing factor (CRF-41) and [Arg]-vasopressin (AVP).
Four columns of segments were exposed to various concen¬
trations of secretagogue for 5 min in a randomized complete
block design after initial exposure to two doses of 10 nmol
CRF-41/1. Data are the means of the net release of hormone
± s.e.m. («=4/group). The basal secretory rate in this
experiment was 62-1 ±4-3 fmol ACTH/25min(n = 24).

system 10 nmol vasopressin/1 appeared equipotent
with 10 nmol CRF-41/1 (Fig. 1). The relatively high
levels of secretagogue used were necessary to ensure
stabilization of the release response to repeated
stimuli.
The release of ACTH at 4 h in response to a 5-min

pulse of 10 nmol CRF-41/1 was enhanced (net ACTH
release was 121-0 + 5-2% of the release at 3 h, mean +
s.e.m, n = 46) with respect to the response at 3 h in the
columns. Subsequent stimuli released similar amounts
of ACTH to that released at 4 h, up to 7 h after the
start of perifusion. Typical release profiles for a con¬
trol and an RU28362-treated column are shown in
Fig. 2. Response enhancement was also observed (net
ACTH release at 4 h was 164-2 + 12-3% of that at 3 h,
mean + s.e.m, n = 28) between the stimulus at 3 and
4 h when vasopressin was used as a secretagogue.

Effect of glucocorticoids on CRF-41- and vasopressin-
stimulated ACTH release

Exposure of the pituitary segments to 0-1 pmol
corticosterone/1 for 30 min before and during the
CRF-41 pulse at 5 h resulted in a significant (PcO-05)
attenuation (60% of control) of stimulated ACTH
release after 30 min; the inhibitory effect was main¬
tained at 6 h. At 7 h (2-5 h after the application of
corticosterone) the release ofACTH returned towards
the control value (Fig. 3).
The degree of inhibition of ACTH release was not

altered by increasing the corticosterone concentration
to 1 pmol/1, or by increasing the glucose concentration
in the DMEM-Hepes from the normal 5-6 mmol/1 to
20 mmol/1 (data not shown).
When corticosterone application was started simul¬

taneously with the CRF-41 pulse (and continued for a
total of 35 min) no inhibition of hormone secretion
occurred at any subsequent time-point (Fig. 3). Because
the time between the start of corticosterone adminis¬
tration and the stimuli at 6 and 7 h was longer (by 30
min) for columns receiving prior rather than simul¬
taneous corticosterone application, experiments were
also performed to verify that the absence of inhibition
upon simultaneous application of steroid and CRF-41
was not a result of the 'silent' (steroid non-responsive)
period reported by other workers (Mahmoud et al.
1984; Abou-Samra, Catt & Aguilera, 1986). Four
columns were treated with 0-1 pmol corticosterone/1
applied simultaneously with the CRF-41 stimulus at
5h, stimuli were then applied at 6-5 h and 7-5 h. No
significant inhibition was observed at either time-point
(net ACTH released, at 6-5 h, 101-0±7-9%; at 7-5h,
102-0± 7-1%). In contrast to the findingswith CRF-41,
the early inhibition of vasopressin-stimulated ACTH
release was independent of the timing of application
of corticosterone (Fig. 4). In all experiments, basal
ACTH release was unaffected by corticosterone.

Journal ofEndocrinology (1991) 129, 261-268
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figure 2. Data from typical perifusion experiments of rat anterior pituitary segments
showing (a) the release ofACTH in response to repeated 5-min pulses of41 -residue
corticotrophin-releasing factor (CRF-41, 10 nmol/1, solid vertical bars) and (b) the
effect of a 35-min exposure (open horizontal bar) to the synthetic glucocorticoid type II
receptor agonist, RU28362 (1 pmol/1), on CRF-41-stimulated ACTH secretion. Data
are expressed as the amount of immunoreactive ACTH present in each 5-min collection
fraction. Interexperimental variations in absolute ACTH release (compare abscissa ofa
with b) required subsequent data to be standardized.

120 r

80

X
H
U 40

0L

Time (h)
figure 3. Corticosterone feedback inhibition ofACTH
release by perifused rat anterior pituitary segments upon
simultaneous application of41-residue corticotrophin-
releasing factor (CRF-41) and corticosterone. The control
-group (□) received repeated 5-min pulses of 10 nmol CRF-
41/1 (solid vertical bars). Other groups received corticoster¬
one (01 pmol/1,35 min total exposure; horizontal hatched
■bars) 30 min before (A) or simultaneously with (A) the
-start of the CRF-41 pulse at 5 h. Data are expressed as a
-percentage of the net ACTH released by a 5-min pulse of
10 nmol CRF-41/1 received at 4 h by all groups. Data are
=means + s.e.m. (/j = 4—6/group). */><0 05 (non-parametric
■Kruskal-Wallis test) compared with the control group.
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figure 4. Inhibition ofvasopressin-stimulated ACTH
release from perifused rat anterior pituitary segments by
corticosterone. The control group (□) received repeated 5-
min pulses of 10 nmol vasopressin/1 (solid vertical bars).
Other groups received 0-1 pmol corticosterone/1 (total
exposure 35 min; horizontal hatched bar) applied 30 min
before (O) or simultaneously with (•) the vasopressin
pulse at 5 h. Data are expressed as a percentage of the net
ACTH released by a 5-min pulse of 10 nmol vasopressin/1
received at 4 h by all groups. Data are means ± s.e.m.
(n=4/group). **P<0-01 (non-parametric Kruskal-Wallis
test) compared with the control group.

The potent glucocorticoid type II receptor agonist,
RU28362 (Philibert & Moguilewsky, 1983), at a con¬
centration of 1 pmol/1 had no significant inhibitory

lournal ofEndocrinology (1991) 129, 261-268
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feet after 35 min of exposure when applied 30 min
efore a CRF-41 stimulus (Fig. 5). However, at this
me-point the release of ACTH was highly variable:
iere was a marked inhibition in two out of six exper-
nents. After 1-5 h ACTH release was significantly
'<0 05) reduced to 50% of control and, unlike
orticosterone, the inhibitory effect was maintained
5 h after application using both 1 pmol (compare
pplication of corticosterone and RU28362 before a
RF-41 stimulus at 5 h in Figs 3 and 5 respectively)
nd 0-1 pmol RU28362/1 (data not shown). RU28362
pmol/1, total exposure 35 min) significantly
°<005) inhibited vasopressin-stimulated ACTH
xretion to 64% of control within 35 min of appli-
ition (Table 1). The inhibition was maintained 2-5 h
fter initial exposure to the steroid. Basal ACTH re-
ase was unaffected by RU28362.

ffect of inhibitors of transcription and translation on
te action of glucocorticoids
.ctinomycin D (0-1 mmol/1), an irreversible inhi-
itor of RNA synthesis, completely blocked the inhi-
itory action ofRU28362 on CRF-41-induced ACTH
ecretion at all time-points when given 5 min before
nd during the application of the steroid (Fig. 5a) and
ad no effect on CRF-41-stimulated ACTH release (in
wo columns net ACTH release was 58 and 64 fmol/25
lin at 4 h, 104 and 120% of the respective controls at
h, 115 and 90% at 6h and 107 and 101% at 7 h).
The inhibition ofCRF-41-stimulated ACTH release
y RU28362 was prevented during exposure of the seg-
lents to the reversible protein synthesis inhibitor,
uromycin, at a concentration of 0-1 mmol/1 (Fig. 5b).
'he full inhibitory action ofRU28362 was observed 1 h
fter withdrawal of puromycin, indicating that trans-
itablemRNA was still present in the cells. Puromycin
pplied at the same concentration and duration as for
<ie RU28362 experiments completely blocked the inhi-
itory action of corticosterone on CRF-41-stimulated
iCTH release at all time-points (data not shown),
'uromycin alone did not modify CRF-41-stimulated
tCTH release (in two columns net ACTH release was
2 and 74 fmol/25 min at 4h, 117 and 135% of the
;spective controls at 5 h, 103 and 105% at 6 h and 101
nd 109% at 7 h).
In contrast to CRF-41, vasopressin-stimulated
lCTH release was inhibited by puromycin alone
rable 1). After withdrawal of puromycin from the
erifusion medium vasopressin-stimulated ACTH
slease returned towards control. No inhibition of
.CTH release by RU28362 occurred in puromycin-
eated tissue (Table 1). Actinomycin D also reduced
asopressin-stimulated ACTH release to approxi-
tately 70% of control at 6 and 7h (data not
town).

5 6
Time (h)

figure 5. Antagonism of the synthetic glucocorticoid
receptor agonist (RU28362)-induced inhibition ofCRF-41-
stimulated ACTH secretion from perifused rat anterior
pituitary segments by inhibitors of (a) transcription
(actinomycin D) and (b) translation (puromycin). Data are
expressed as the net amount ofACTH released after the 5-
min pulse of41 -residue corticotrophin-releasing factor
(CRF-41; 10 nmol/1; solid vertical bars) at4 h. CRF-41 con¬
trol (□), RU28362 treated (O), RU28362 +actinomycin D
treated (A), RU28362 + puromycin treated (•), RU28362
(1 pmol/1) for 35 min (open horizontal bar), actinomycin D
(0-1 mmol/1) for 40 min (short hatched horizontal bar) or
puromycin (0-1 mmol/1) for 100 min (long hatched horizon¬
tal bar). Data are means ± s.e.m. (« = 4—6/group). */'<0 05
(non-parametric Kruskal-Wallis test) compared with
control.

DISCUSSION

The present study demonstrates that the timing of
application of glucocorticoids is critical for the early
inhibition of CRF-41- but not vasopressin-induced
ACTH secretion. Moreover, vasopressin- but not
CRF-41-stimulated ACTH release is suppressed by
actinomycin D and puromycin.

Response to stimulation by CRF-41 and vasopressin
The mechanism(s) underlying the augmentation of
ACTH release induced by CRF-41 or vasopressin in
this system are unknown. Similar response enhance¬
ment has begn observed in acutely dispersed cells

Journal ofEndocrinology (1991) 129, 261-268
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table 1. Inhibition of vasopressin-stimulated ACTH release from perifused anterior pituitary
gland segments by the synthetic glucocorticoid receptor agonist, RU28362, and the protein
synthesis inhibitor, puromycin. Data are expressed as a percentage of the net ACTH released
in response to a 5-min pulse of 10 nmol vasopressin/1 received by all groups at 4 h. Values are
means + s.e.m., the number of experiments are shown in parentheses

ACTH released (%)

4 h 5 h 6h 7 h

Treatment

Vasopressin, 10 nmol/1 (5) 100 103-6+12 6 103-8 +17-8 80-8 + 7-2
+ RU28362, 1 pmol/1 (6) 100 64-3 ±4-9* 59-7 ±5-4* 48-0+14-0*
+ Puromycin, 01 mmol/1 (4) 100 490 + 7-6" 32-3 + 3-4** 60-3+11-0
+ Puromycin, 0-1 mmol/1,
+ RU28362, 1 pmol/1 (4) 100 58-8 + 6-1* 25-8 + 8-0** 39-0+ 4-9*

*/><005, **P<001 compared with the control group (vasopressin only) (non-parametric Kruskal-Wallis test).
The range of absolute ACTH release values at 4 h (100% value) for each group (expressed as fmol ACTH released/25
min) were: vasopressin, 194-577; +RU28362, 269-813; -I-puromycin, 247-416; + RU28362+ puromycin, 290-480.
5-min pulses of vasopressin were applied every hour as described in the Materials and Methods section. RU28362 was
applied 30 min before and during the vasopressin stimulus at 5 h. Puromycin was applied 35 min before the stimulus at
5 h and continued until the end of the stimulus at 6 h.

using CRF-41, vasopressin or a combination of the
secretagogues. The rapid stabilization of the hormonal
response to subsequent stimuli by 1 h after application
of the first secretagogue pulse is probably a result of
the relatively high secretagogue concentrations used
in the present study (Antoni & Dayanithi, 19906).

Involvement of type II glucocorticoid receptors and
requirement for mRNA and protein synthesis in the
early inhibitory action of glucocorticoids
It has been suggested that rapid and delayed effects of
glucocorticoids are mediated through different recep¬
tor subtypes (Keller-Wood & Dallman, 1984; Abou-
Samra et al. 1986). However, it has been shown recently
(Dayanithi&Antoni, 1989) that both rapid and delayed
inhibition are manifested through the type II gluco¬
corticoid receptor and that the time-domains differ
only in the extent rather than the cellular mechanism
of inhibition.
Our data demonstrate that both CRF-41- and

vasopressin-stimulated ACTH secretion are inhibited
in the early time-domain by glucocorticoids acting
through the type II glucocorticoid receptor. The lack
of a statistically significant inhibition of CRF-41 -
stimulated ACTH release within 30 min of appli¬
cation of RU28362 in the present study may suggest
mediation of rapid feedback by a non-type II gluco¬
corticoid receptor. However, the rapid effect of
corticosterone was blocked by the potent type II
receptor antagonist, RU38486 (Philibert, 1984) (M. J.
Shipston & F. A. Antoni, unpublished observations).
The more prolonged inhibitory action of RU28362,
with respect to corticosterone, on both CRF-41- and
vasopressin-stimulated ACTH release may be a conse¬
quence of differences in tissue traffic (metabolism and
diffusion) between RU28362 and corticosterone
Journal ofEndocrinology (1991) 129, 261-268

rather than mediation of the response by different
types of glucocorticoid receptor.
Since inhibitors of transcription (actinomycin D)

and translation (puromycin) blocked the suppressive
action of glucocorticoids on CRF-41-stimulated
ACTH release, the present data are consonant with
the hypothesis that early glucocorticoid action
involves the synthesis of new protein(s) (Arimura,
Bowers, Schally et al. 1969; Munck, 1971; Dayanithi &
Antoni, 1989). Increasing the concentration of glucose
in the medium had no effect on the inhibitory effect of
type II receptor stimulation suggesting that a reduction
ofglucose uptake (Munck, 1971) by the glucocorticoid-
induced protein is unlikely to be the cause of inhibition
of secretagogue-stimulated ACTH release. Whether
glucocorticoid inhibition of vasopressin-stimulated
ACTH secretion requires a similar protein could not be
resolved fully in this study because of the inhibition of
vasopressin-induced ACTH secretion by actinomycin
D or puromycin given alone. However, RU28362 pro¬
duced no additional inhibition of ACTH release in the

presence of puromycin which is compatible with the
protein induction hypothesis.

Do CRF-41 and vasopressin release different pools of
ACTH?

The suppression of vasopressin-, but not CRF-41-,
induced ACTH release by inhibitors of transcription
and translation suggest that the secretagogues may
activate different intracellular pools of ACTH, e.g.
vasopressin may release newly synthesized ACTH as
opposed to CRF-41, whichmay preferentiallymobilize
stored hormone. It has been suggested, on the basis of
experiments with the lysosomotropic drug chloroquine
and a cytotoxic conjugate of CRF-41 (Schwartz,
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Familari, Wallace & Funder, 1989; Schwartz, Pham &
Funder, 1990), that CRF-41 releases a stored pool of
ACTH whereas vasopressin-stimulated secretion is
more closely associated with the basal output of hor¬
mone. Whether such distinctly regulated pools of hor¬
mone reside within a single population of cells or are
secreted by different sets of corticotrophs remains to
be determined. Alternatively, it cannot be excluded at
present that actinomycin D and puromycin interfere
with the signal transduction pathways activated by
vasopressin.

Importance of timing of glucocorticoid application
The pattern of glucocorticoid inhibition of CRF-41 -
and vasopressin-induced hormone release appeared
different in this study.
First, significant inhibition of vasopressin-induced

release was manifest only 90 min after the application
of corticosterone, whereas CRF-41-stimulated release
was suppressed within 35 min. This, however, is likely
to be due to the larger variation in the vasopressin
data and probably does not reflect any fundamentally
distinct intracellular mechanisms of glucocorticoid
action (Antoni & Dayanithi, 1990a). In accordance
with this suggestion, the synthetic glucocorticoid type
II receptor agonist RU28362 significantly inhibited
vasopressin-stimulated ACTH release within 35 min
of RU28362 exposure.
Secondly, the early suppression of CRF-41-stimu-

lated ACTH secretion is dependent upon the relative
timing of secretagogue and corticosterone application,
whereas this is not the case with vasopressin-induced
ACTH secretion.
The importanceofthe temporal relationship between

secretagogue stimulation and glucocorticoid exposure
has been reported by Mulder & Smelik (1977), who
found that pretreatment with corticosterone was
necessary to achieve an early inhibitory effect in iso¬
lated perfused rat pituitary cells stimulated by short
pulses of stalk-median eminence extract. Several
workers (Mahmoud et al. 1984; Abou-Samra et al.
1986) have reported a biphasic time-course of the
early effects of corticosterone on CRF-induced
ACTH secretion, with a 'silent' period at 30-50 min
after exposure to the steroid. This latter phenomenon,
however, appears to be different from what we have
observed in the present study, since we have covered
a long time-interval after the application of corti¬
costerone simultaneously with CRF-41 and found
no inhibition of ACTH release at any time-point
examined.
Themechanism(s) underlying the timing dependence

of early glucocorticoid inhibition of CRF-41- but not
vasopressin-induced ACTH secretion is unknown. The
present observations do not resolve whether CRF-41

inactivates the steroid hormone-receptor complex
before it reaches the cell nucleus, orwhether it is actually
required to activate some process in the line of cellular
eventswhich leads to the suppression ofACTH release.
The latter possibility is favoured by a report showing
that cyclic AMP-dependent protein kinase activation
enhances the cytolytic action of glucocorticoids in cell
lines derived from lymphoma cells (Gruol, Rajah &
Bourgeois, 1989).
The present data point to a regulatory mechanism

which may allow differential glucocorticoid control of
stimulated ACTH release from the anterior pituitary
gland depending on the timing and nature of the inci¬
dent secretagogue. Intriguingly, some of the major
cytokines released during inflammation, interleukin-1
and tumour necrosis factor, stimulate the release of
CRF-41 by hypothalamic neurones but not that of
vasopressin (Berkenbosch, Van Oers, Del Rey et al.
1988; Sapolsky, Rivier, Yamamoto et al. 1988). More¬
over, in certain autoimmune inflammatory diseases,
adrenocortical steroid secretion is enhanced for several
days (MacPhee, Antoni & Mason, 1989; Sternberg,
Hill, Chrousos et al. 1989; Mason, MacPhee & Antoni,
1990), suggesting that the feedback mechanism may
have been modified. These observations illustrate
the possible functional importance of the escape of
CRF-41-induced ACTH release from glucocorticoid
feedback inhibition at the pituitary level.
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.BSTRACT. We have investigated the interaction between
=ypothalamic ACTH secretagogues and adrenocortical glucocor-
coids in rat anterior pituitary tissue using an in vitro perifusion
/stem.
Repeated 5 min pulses of 41-residue CRF (CRF-41) or argi-

ine vasopressin (AVP) were applied at 1 h intervals for up to 7
. Administration of 0.1 nM corticosterone 30 min before and
uring the 5 min 0.1 nM CRF-41 stimulus at 5 h resulted in a

■gnificant inhibition of CRF-41 stimulated ACTH release
ithin 30 min. Inhibition of ACTH release also developed if no
-RF-41 stimulus was applied in conjunction with steroid at 5 h.
l contrast, if the exposure to corticosterone (0.1 mm, 35 min
)tal duration) was started simultaneously with the application
-f CRF-41 at 5 h, no inhibition of ACTH release ensued. Simi-
irly, no inhibition of CRF-41-stimulated ACTH release was
■bserved when corticosterone was started simultaneously with a

5 min pulse of cyclic 8-(4-Chlorophenylthio) AMP (8-CPT-
cAMP), a cell membrane permeant analog of cAMP.
In contrast to CRF-41 and 8-CPT-cAMP, AVP failed to

modify glucocorticoid-induced inhibition of AVP- or CRF-41-
stimulated ACTH release. Moreover, CRF-41 did not prevent
the glucocorticoid-induced inhibition of AVP-stimulated ACTH
release.
In summary: 1) CRF-41 inactivates early glucocorticoid in¬

hibition of CRF-41-stimulated ACTH secretion, and this is
mimicked by a cell membrane permeant analog of cAMP; 2)
AVP does not inactivate glucocorticoid-induced inhibition of
stimulated ACTH release; 3) the data point to an acute inter¬
action between the cAMP/protein kinase A and glucocorticoid-
responsive intracellular pathways. Such differential modulation
of feedback inhibition by CRFs may be of functional importance
in vivo. (Endocrinology 130: 2213-2218,1992)

■RTICOTROPIN releasing factor-41 (CRF-41) and
irginine vasopressin (AVP) are the major physio-
hypothalamic regulators of ACTH secretion from
)r pituitary corticotrophs while the adrenocortical
jrticoids, released in response to elevated ACTH
inhibit ACTH release over several time domains
views see Refs. 1-4). At the pituitary level early-
glucocorticoid inhibition decreases stimulated
release within 30 min; the maximal effect is

-ntwithin 1-2 h of glucocorticoid application. This
is mediated through type II glucocorticoid recep-
id requires the synthesis of new messenger RNA
as protein (5-8).

mg an in vitro perifusion model we have reported
—e characteristics of early-onset glucocorticoid in-

■n of stimulated ACTH release are dependent on
=ie nature of the secretagogue as well as the tem-
-elationship between secretagogue and glucocorti-
■plication. Notably, early-onset glucocorticoid in-

/ed October 29, 1991.
—ss all correspondence and requests for reprints to: M. J.
, Medical Research Council Brain Metabolism Unit, Univer-

=artment of Pharmacology, 1 George Square, Edinburgh EH8,
=tland.
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hibition of CRF-41 stimulated ACTH release did not

develop if CRF-41 was applied at the start of corticoster¬
one exposure. In contrast, AVP had no such action on

early-onset inhibition of AVP-stimulated ACTH release
(7).
In this study we have investigated whether CRF-41

blocks early-onset glucocorticoid inhibition and whether
the action of CRF-41 is reproduced by its intracellular
second messenger cAMP. Furthermore, we have inves¬
tigated whether there is any interaction between CRF-
41 and AVP with respect to the blockage of glucocorti¬
coid-induced inhibition.

Materials and Methods

Female exbreeder Wistar rats (250-300 g body wt) were
obtained from Charles River Ltd (Margate, Kent, UK) or
Harlan-Olac (Bicester, Oxon, UK) and maintained four to a

cage under controlled conditions of lighting (lights on 0500 h,
off 1900 h) and temperature for at least 2 weeks before use with
free access to standard lab chow and water.

Reagents

Rat CRF-41, AVP, and human ACTH(139) were supplied by
Bachem Inc. (Saffron Walden, Essex, UK); corticosterone was

Animals

2213
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igma Chemical Company Ltd (Poole, Dorset, UK).
(-(4-Chlorophenylthio) AMP (8-CPT-cAMP) was from
lger Mannheim UK (Lewes, Sussex, UK). General
lis were from BDH (Poole, Dorset, UK).

on

usion of isolated rat pituitary segments was performed
iously described (7). Briefly, anterior pituitary glands
t into eight segments and perifused at 200 jd/min with
:o's modified Eagle's medium buffered with 25 mM
> (Gibco-BRL, Paisley, Strathclyde, UK), pH 7.4, con-
0.25% BSA, 100 U/liter penicillin, and 100 U/liter
nycin (Gibco-RBL, Paisley, Strathclyde, UK) at 37 C.
ly four perifusion columns were run in parallel with one
y equivalent of randomly distributed pituitary segments
;r perifusion column. Column effluent was collected
min on ice and stored at —40 C before assaying for
immunoreactivity. After an initial preperifusion period
o allow basal ACTH release to stabilize, 5 min pulses of
»ogue were applied every 1 h for up to 7 h after the start
speriment. Various treatments were applied as described
igure subscripts.

d data analysis

RLA for immunoreactive ACTH in the column effluent
formed as previously described (9) using antiserum no.6
sy G. B. Makara, MTA-KOKI, Budapest, Hungary).
ACTH release per 5 min exposure to secretagogue was
ned for each stimulus as previously described (6). Net
release is defined as {(Vi + V2+ +Vn)/n) — (Bj
'i is the first 5 min fraction collected during the stimulus
: transit time discarded) and V2 to Vn are the next n
tive fractions that are elevated with respect to basal
■release (B) immediately before the application of the
-3. For 10nM CRF-41 or AVP, n = 5. For 0.1 nM CRF-
3. Because of the variability in absolute ACTH release
experiments data were standardized by expressing the

■rH release elicited by a treatment as a percentage of
ited by CRF-41 (or AVP) alone. The net ACTH release
■as defined as the 100% release value in all columns,
^tical evaluation between different treatments at each
int was performed using the Kruskal-Wallis test with
comparisons for several independent samples, or the

Whitney U-test for two independent samples (10).

Results

and 8-CPT-cAMP inactivate glucocorticoid
-on of CRF-41-stimulated ACTH release

-costerone pretreatment (0.1 pM for 35 min) sig-
—ly (P < 0.05) inhibited CRF-41-stimulated

—secretion within 30 min of corticosterone appli-
(Fig. 1) before ACTH release returned toward
2.5 h after steroid application. Corticosterone
inhibition of CRF- and AVP-stimulated ACTH

developed with a similar time profile (data not
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Fig. 1. Early-onset corticosterone-induced inhibition of CRF-41-stim-
ulated ACTH secretion in perifused rat anterior pituitary gland seg¬
ments. The control group (□) received repeated 5 min pulses of 0.1 nM
CRF-41 (solid vertical bars)-, the other group (O) received corticosterone
(0.1 nM, 35 min total exposure; horizontal hatched bar) 30 min before
the start of the CRF-41 pulse at 5 h. Data are expressed as a percentage
of the net ACTH released by a 5-min pulse of CRF-41 applied at 4 h.
Data are means ± SEM (n = 4-7/group). *, P < 0.05 (nonparametric
Mann Whitney U-test) compared with the control group.

CRF-41 stimulated ACTH release was also signifi¬
cantly inhibited when no CRF-41 stimulus was applied
during the exposure to corticosterone (Table 1). Omis¬
sion of the CRF-41 stimulus at 5 h had no effect on the

responses to subsequent pulses of CRF-41; thus these
controls were pooled with controls receiving CRF-41 at
5 h. Early-onset glucocorticoid inhibition did not develop
when CRF-41 was applied at the start of corticosterone
exposure, suggesting that CRF-41 inactivates glucocor-
ticoid-induced inhibition (Table 1). Furthermore, the cell
membrane permeant cAMP analog, 8-CPT-cAMP [0.1
mM for 5 min (11)] also prevented the subsequent inhi¬
bition of CRF-41 induced ACTH release when applied
at the start of corticosterone exposure (0.1 /tM, 35 min
duration) at 5 h (Table 1). At this concentration a 5 min
pulse of 8-CPT-cAMP elicited 26.0 ± 5.1% of the ACTH
released by 0.1 nM CRF-41 and did notmodify the ACTH
release to subsequent CRF-41 pulses (Table 1).
To investigate whether the inactivation of glucocorti-

coid-induced inhibition was specific to the cAMP path¬
way, 10 nM AVP (that acts via the inositol phosphate/
protein kinase C pathway) was applied for 5 min at 5 h.
The release of ACTH in response to a 5 min pulse of 10
nM AVP at 5 h was 186.2 ± 24.0% (n = 14) of the 0.1
nM CRF-41 stimulus applied at 4 h. The CRF-41 stimulus
at 6 h released similar amounts of ACTH compared to
CRF-41 controls; however, down-regulation of the CRF-
41 response at 7 h occurred in columns treated with AVP
at 5 h (Table 1). Importantly, when AVP was applied at
the start of corticosterone exposure, significant (P <
0.01) inhibition of CRF-41-stimulated ACTH release
occurred at 6 h (Table 1). These data suggest that inac-
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1. Inactivation of corticosterone-induced inhibition of CRF-
ulated ACTH secretion by CRF-41 and the cAMP analog, 8-
,MP, in perifused rat anterior pituitary segments

Net ACTH released (%)

-41
5 h
Treatment

6 h
CRF-41

7 h
CRF-41

CRF-41 (7)
■
Corticosterone (4)
ea

Corticosterone +
CRF-41 (5)

ea

8-CPT-cAMP (8)
□
Corticosterone + 8-

CPT-cAMP (6)
ea

□

AVP (4)
□
Corticosterone +
AVP (4)

ea

□

98.0 ± 8.4

61.5 ± 9.9°

108.4 ± 4.3"

103.5 ± 15.1

101.2 ± 13.2b

99.0 ± 9.9

54.3 ± 9.3°

111.2 ± 12.4b

76.3 ± 12.2

106.0 ± 13.66

82.5 ± 4.3 48.0 ± 15.6

32.3 ± 18.7C 50.0 ± 12.4

oups received 5 min pulses of 0.1 nM CRF-41 at 4, 6, and 7 h.
ous treatments applied, along with their temporal relationship
:ation, are shown in the 5 h treatment column. 8-CPT-cAMP
ied for 5 min at 0.1 mM. AVP for 5 min at 10 nM. Corticosterone
35 min total exposure) was started simultaneously with the 5

-lus. Data are expressed as a percentage of the net ACTH
by a 5-min pulse of 0.1 nM CRF-41 applied at 4 h in all groups,
omission of the 5 h CRF-41 stimulus did not affect subsequent

-ed ACTH release data from control columns receiving no CRF-
were pooledwith the CRF-41 control group. Values are means

-he number of experiments in each treatment group are shown
theses.
0.05 compared to CRF-41 control.
0.05 compared to corticosterone alone.
-0.05 compared to AVP control using nonparametric Kruskal-
st.

—i is specific to the CRF-41/cAMP pathway,
-duration of corticosterone exposure is also impor-
i determining the characteristics of early-onset
ion. When CRF-41 was applied at the start of a
=ious corticosterone infusion inhibition of CRF-
-tulated ACTH release developed 2 h after the start
costerone treatment (Fig. 2).

=>rticoid inhibition ofA VP-stimulated ACTH
is not modulated by CRF-41
-41 (0.1 nM) applied simultaneously with the start

-costerone exposure (35 min duration) at 5 h could
ivent the corticosterone-induced inhibition of
—imulated ACTH release at 6 h (Table 2). Al-

100
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Fig. 2. Inhibition of CRF-41-stimulated ACTH secretion by continu¬
ous exposure to corticosterone started simultaneously with a 5 min
CRF-41 stimulus in perifused rat anterior pituitary segments. The
control groups (□) received repeated 5 min pulses of 10 nM CRF-41
(solid vertical bars) every 1 h. The other group (O) received 0.1 /iM
corticosterone (horizontal hatched bar) started simultaneously with the
5 h stimulus and maintained to the end of the experiment. Data are

expressed as a percentage of the net ACTH released by a 5-min pulse
of CRF-41 applied at 4 h. Data are means ± SEM (n = 4-9/group. *, P
< 0.05 (nonparametric Mann-Whitney U test) compared with the
control group.

Table 2. CRF-41 does not inactivate corticosterone-induced inhibi¬
tion of AVP-stimulated ACTH secretion in perifused rat anterior
pituitary segments

Net ACTH released (%)

4 h
AVP
□

5 h
Treatment

6 h
AVP
□

7 h
AVP
□

100% AVP (9)
□
Corticosterone +
AVP (5)

ea

□

CRF-41 (5)
■
Corticosterone +
CRF-41 (5)

ea

100.2 ± 9.7

60.4 ± 4.5"

87.1 ± 5.7

101.0 ± 18.6

94.8 ± 9.5 65.6 ± 16.1

41.4 ± 12.0" 63.8 ± 17.2

All groups received 5 min pulses of 10 nM AVP at 4, 6, and 7 h. The
various treatments applied, along with their temporal relationship of
application, are shown in the 5 h treatment column. Corticosterone
(0.1 fiM, 35 min total exposure) was started simultaneously with the 5
h stimulus; CRF-41 was applied for 5 min at 0.1 nM. Data are expressed
as a percentage of the net ACTH released by a 5-min pulse of 10 nM
AVP applied at 4 h in all groups. Values are means ± sem; the numbers
of experiments in each treatment group are shown in parentheses.

" P < 0.05 compared to AVP control.
b P < 0.01 compared to CRF-41 treated control using nonparametric

Kruskal-Wallis test.
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igh CRF-41 appears to decrease the subsequent re-
ise to AVP at 7 h (Table 2) this effect is not statis-
ly significant and is a consequence of one column
of the five in the group releasing a very low amount
CTH at 7 h. Increasing the concentration of CRF-
o 10 nM also failed to modify the inhibition by
costerone (data not shown). Because these columns
ved AVP before the application of CRF-41 and
costerone at 5 h, we examined whether this AVP
eatment could prevent the CRF-inactivation of glu-
rticoid inhibition. In order to test this, CRF-41 (0.1
stimuli were applied at 3 h, 4 h, and 5 h, and 10 nM
applied at 6 and 7 h. Corticosterone (0.1 jtM, 35
duration) started simultaneously with CRF-41 at 5
ulted in significant (P < 0.05, using nonparametric
■kal Wallis test) inhibition of AVP-stimulated
•H release compared to control even under these
=itions. The net ACTH release expressed as a per-
nge of the 4 h CRF-41 stimulus for control and
:osterone-treated groups, respectively, was: at 6 h
± 45.4% vs. 67.8 ± 16.6% and at 7 h 214.7 ± 48.0%
1.8 ± 31.2% (n = 3-4/group). Furthermore, CRF-41
■nted the corticosterone-induced inhibition of CRF-
imulated ACTH release after pretreatment of the
*nts with 10 nM AVP (data not shown) further
■sting that CRF-41 can only inactivate glucocorti-
induced inhibition of CRF-41-stimulated ACTH re-

Discussion

m present study demonstrates that CRF-41 inacti-
early glucocorticoid inhibition of CRF-41-stimu-
ACTH secretion from perifused rat anterior pitui-
:orticotrophs in vitro, and that this action is me-
■i by cAMP. Furthermore, the data suggest that
:orticoids act via distinct mechanisms to inhibit
41- and AVP-stimulated ACTH secretion.

-41 inactivates early glucocorticoid inhibition of
-41-stimulated ACTH release

; data confirm our previous observations showing
he development of early glucocorticoid inhibition
■lF-41-stimulated ACTH secretion is dependent
—the relative timing of application of CRF-41 with
d (7). However, our previous data did not resolve

- <er the timing phenomenon was a result of CRF-41
—ting some step in the glucocorticoid-induced inhi-
(for example posttranslational modification of the

—id protein) when CRF-41 was applied after the
of corticosterone exposure, or alternatively, that
"11 inactivates glucocorticoid-induced inhibition,
■■ps by preventing the protein induction, when ap-
simultaneously with the start of corticosterone

exposure.
CRF-41-stimulated ACTH release was significantly

inhibited by corticosterone when no CRF-41 stimulus
was applied during the exposure to corticosterone; simi¬
lar results were also observed with the type II glucocor¬
ticoid receptor agonist RU28386 (M. J. Shipston and F.
A. Antoni, unpublished data). Furthermore, application
of CRF-41 or an analog of its intracellular messenger
cAMP, simultaneously with the onset of corticosterone
exposure, prevented the subsequent inhibition of CRF-
41-stimulated ACTH release. Thus, it appears that CRF-
41 actually prevents the action/induction of the gluco¬
corticoid-induced protein(s) when applied at the start of
glucocorticoid exposure. Interestingly, the duration of
corticosterone exposure also plays a role in the charac¬
teristics of early glucocorticoid inhibition of CRF-41-
stimulated ACTH release because if CRF-41 is applied
simultaneously with the start of corticosterone then in¬
hibition of CRF-41-stimulated ACTH release develops
after 2 h of continuous steroid exposure.
The precise mechanism by which CRF-41 prevents

glucocorticoid inhibition of ACTH release is not clear.
However, because it can be reproduced with a cAMP
analog but not with AVP (an activator of the inositol
phosphate/protein kinase C pathway), it seems reason¬
able to suggest that the inactivation of glucocorticoid
action is, in fact, mediated by cAMP and/or cAMP
dependent phosphorylation. In turn, this may interfere
with glucocorticoid action through modulation of the
state of glucocorticoid receptor phosphorylation (12), and
possibly preventing translocation of the hormone-recep¬
tor complex into the nucleus (13-15). Furthermore, tran¬
scription factors such as c-fos or cAMP response element
binding protein (CREB) which are induced or activated
by cAMP (16), have been shown to interfere with glu¬
cocorticoid-induced gene transcription (17-21). Alter¬
natively, CRF-41 may induce some posttranslational
modification in, or alter events downstream of, the
glucocorticoid-induced protein to prevent the inhibition
of CRF-41 stimulated ACTH secretion.
It is of interest that a reduction in glucocorticoid

receptor number and glucocorticoid receptor mRNA lev¬
els develops 6 h after exposure to activators of cAMP
synthesis in AtT-20 corticotroph tumor cells (22). Thus,
CRF-41 acting via cAMP exerts both short- (present
findings) and long-term (22) control over glucocorticoid
action at the pituitary level. In turn, reciprocally oppos¬
ing actions are provided by early- and late-onset gluco¬
corticoid inhibition of CRF-41 action on ACTH release
and biosynthesis (c/ Refs. 3 and 23 for reviews).
CRF-41 does not inactivate glucocorticoid-induced
inhibition ofAVP-stimulated ACTH release.

Intriguingly, CRF-41 failed to prevent glucocorticoid
induced-inhibition of AVP-stimulated ACTH secretion.
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■m among the several possible explanations to this
■menon, on the basis of the present data we can
■le that the priming of the tissue segments with
inhibits the action of a subsequent CRF-41 pulse
vent glucocorticoid inhibition, or that priming with
ill is required for this effect of CRF-41. Thus, it
■rs that glucocorticoids suppress CRF-41- and AVP-
sd ACTH secretion through different mechanisms,
fl, previous evidence indicates that distinct pools of
8 are mobilized by these neurohormones: CRF-41
-38 a stored, slow-turnover pool of ACTH, whereas
-nduced secretion is derived from a rapid-turnover
-f hormone (7, 24). A further possibility, (this in
oes not exclude the previous one) is that distinct
ntions of corticotrophs are involved (c/Refs. 24 and
i which cAMP phosphorylation targets are ex-
d in a cell-specific manner.
-Bn CRF-41 and AVP were used in combination as

«gogue at concentrations approximating levels re-
4 in rat hypophysial portal blood (0.1 nM and 0.2
:spectively, cf Ref. 1), early-onset glucocorticoid
ion can be prevented by a secretagogue pulse

■1 at the onset of the exposure to glucocorticoids
e. in this respect the 'physiological' CRF-41/AVP
us resembles CRF-41 alone. This is in agreement
■he AVP-induced enhancement of CRF-41-stimu-
*ccumulation of cAMP (c/Ref. 23).
implications of these findings for the control of
release in vivo are that glucocorticoid feedback at
uitary level is modulated in a differential manner
■retagogue neurohormones. In general, stimuli in-
CRF-41 may be relatively resistant to inhibition

-cocorticoids, and those involving primarily AVP
variably suppressed. For instance, it may be pre-
that a prolonged increase in ACTH release such
t found in autoimmune inflammation (cf Ref. 27)
ore on CRF-41 while during acute stimulation the
:omponent is more dominant and consequently
' suppressed by glucocorticoids. Finally, it is of
-ance to determine whether cAMP-mobilizing
i have similar actions on glucocorticoid-mediated
sion at central nervous sites.
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