
Extending Graph Homomorphism and

Simulation for Real Life Graph Matching

Yinghui Wu
T

H
E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Doctor of Philosophy

Laboratory for Foundations of Computer Science

School of Informatics

University of Edinburgh

2010

Abstract
Among the vital problems in a variety of emerging applications is the graph matching
problem, which is to determine whether two graphs are similar, and if so, find all the
valid matches in one graph for the other, based on specified metrics. Traditional graph
matching approaches are mostly based on graph homomorphism and isomorphism,
falling short of capturing both structural and semantic similarity in real life applica-
tions. Moreover, it is preferable while difficult to find all matches with high accuracy
over complex graphs. Worse still, the graph structures in real life applications con-
stantly bear modifications. In response to these challenges, this thesis presents a series
of approaches for efficiently solving graph matching problems, over both static and
dynamic real life graphs.

Firstly, the thesis extends graph homomorphism and subgraph isomorphism, re-
spectively, by mapping edges from one graph to paths in another, and by measuring
the semantic similarity of nodes. The graph similarity is then measured by the metrics
based on these extensions. Several optimization problems for graph matching based
on the new metrics are studied, with approximation algorithms having provable guar-
antees on match quality developed.

Secondly, although being extended in the above work, graph matching is defined in
terms of functions, which cannot capture more meaningful matches and is usually hard
to compute. In response to this, the thesis proposes a class of graph patterns, in which
an edge denotes the connectivity in a data graph within a predefined number of hops.
In addition, the thesis defines graph pattern matching based on a notion of bounded
simulation relation, an extension of graph simulation. With this revision, graph pattern
matching is in cubic-time by providing such an algorithm, rather than intractable.

Thirdly, real life graphs often bear multiple edge types. In response to this, the
thesis further extends and generalizes the proposed revisions of graph simulation to
a more powerful case: a novel set of reachability queries and graph pattern queries,
constrained by a subclass of regular path expressions. Several fundamental problems
of the queries are studied: containment, equivalence and minimization. The enriched
reachability query does not increase the complexity of the above problems, shown by
the corresponding algorithms. Moreover, graph pattern queries can be evaluated in
cubic time, where two such algorithms are proposed.

Finally, real life graphs are frequently updated with small changes. The thesis in-
vestigates incremental algorithms for graph pattern matching defined in terms of graph
simulation, bounded simulation and subgraph isomorphism. Besides studying the re-
sults on the complexity bounds, the thesis provides the experimental study verifying
that these incremental algorithms significantly outperform their batch counterparts in
response to small changes, using real-life data and synthetic data.

i

Acknowledgements

I would like to thank my supervisor, Professor Wenfei Fan, for all his invaluable guid-

ance, support and inspiration. He led me into the area of databases and taught me on

every perspective of the principles of research. Moreover, He was a great source of en-

couragement. His talent, self-discipline and hardworking inspired me to keep pursuing

this PhD. This thesis would never have happened without him.

Many thanks to Professor Don Sannella. I am indebted to his support and my

source of funding, EPSRC Studentship. Thanks must also go to my second supervisor

Dr. Floris Geerts, and my colleagues Dr. Xibei Jia, Dr. Shuai Ma, Dr. Nan Tang,

Wenyuan Yu and Xin Wang, for their supportive discussions and constructive sug-

gestions during my research. They generously shared their valuable experiences and

encouraged me with their own passion, which benefited me immensely for conducting

efficient research.

My special thanks go to Professor Frank Neven and Professor Peter Buneman, for

serving as my examiners. Their constructive suggestions help improving the thesis

greatly. In addition, thanks must also go to Professor Leonid Libkin and Dr. Mary

Cryan. In the joint work with them, I learned a lot on the complexity and logic theory,

which helped to shape the theoretical foundations in this thesis.

Finally, I would like to thank all my colleagues in the database group, for the useful

talks, beneficial discussions, and all the good time I greatly enjoyed with them. On a

personal note, I would like to thank my parents and my friends, for their love, support

and encouragement over the years.

ii

Declaration

I declare that this thesis was composed by myself, that the work contained herein is

my own except where explicitly stated otherwise in the text, and that this work has not

been submitted for any other degree or professional qualification except as specified.

(Yinghui Wu)

iii

Table of Contents

1 Introduction 2
1.1 Graph Matching: A First Impression 2

1.2 Graph matching in real life applications 3

1.3 Graph Matching: The State of the Art 8

1.4 Graph Pattern Matching: The State of the Art 12

1.4.1 Graph pattern matching . 12

1.4.2 Graph Querying . 14

1.4.3 Incremental Graph Matching 16

1.5 Outline of thesis . 16

2 Graph Homomorphism Revised for Graph Matching 18
2.1 Revision of Graph Homomorphism 20

2.1.1 Graphs and Node Similarity 20

2.1.2 P-Homomorphism and 1-1 P-Homomorphism 21

2.1.3 Metrics for Measuring Graph Similarity 23

2.2 Intractability and Approximation Hardness 25

2.2.1 Intractability . 25

2.2.2 Approximation Hardness . 25

2.3 Approximation Algorithms . 27

2.4 Experimental Study . 35

2.5 Summary . 40

3 Graph Simulation Revised for Graph Pattern Matching 42
3.1 Graph Pattern Matching Problem . 43

3.2 Graph Pattern Matching Revised . 44

3.2.1 Data Graphs and Pattern Graphs 44

3.2.2 P-Similarity: a first revision 46

iv

3.2.3 Bounded Graph Simulation 47

3.2.4 The Graph Pattern Matching Problem 51

3.3 Algorithms for Graph Pattern Matching 51

3.4 Experimental Evaluation . 54

3.5 Conclusion . 58

4 Graph Pattern Queries Over Graph Databases 59
4.1 Graph Pattern Queries . 62

4.2 Fundamental Problems for Graph Queries 65

4.2.1 Containment and Equivalence 66

4.2.2 Minimizing Graph Pattern Queries 68

4.3 Evaluating Reachability Queries . 71

4.4 Algorithms for Graph Pattern Queries 73

4.4.1 Join-based Algorithm . 73

4.4.2 Split-based Algorithm . 77

4.5 Experimental Evaluation . 80

5 Incremental Graph Pattern Matching 89
5.1 Batch and Incremental Matching . 92

5.1.1 Data Graph and Graph Patterns 92

5.1.2 Graph Pattern Matching . 93

5.1.3 Incremental Graph Pattern Matching 95

5.2 Incremental Simulation Matching 97

5.2.1 Incremental Simulation for Unit Updates 98

5.2.2 Incremental Simulation for Batch Updates 102

5.3 Incremental Bounded Graph Simulation 105

5.3.1 Matrix-based Incremental Bounded Simulation 106

5.3.2 Landmark-based Incremental Bounded Simulation 120

5.4 Incremental Subgraph Isomorphism 125

5.5 Experimental Evaluation . 128

5.6 Related Work . 134

5.7 Conclusion . 135

6 Conclusion and Future Work 137

A Proofs in Chapter 2 141

v

B Proofs in Chapter 3 and Chapter 4 154

C Proofs in Chapter 5 166

D Visualization of real life dataset 172

Bibliography 175

vi

List of Figures

1.1 Real life networks . 4

1.2 Example of Terrorist Network . 7

1.3 Graph Simulation . 9

1.4 Graph Matching: The State of the Art 15

2.1 Graphs representing online stores . 20

2.2 p-hom and 1-1 p-hom . 21

2.3 Approximation algorithm compMaxCard 29

2.4 Procedures greedyMatch and trimMatching 30

2.5 Reducing the graph size . 34

2.6 Accuracy on synthetic data . 38

2.7 Scalability on synthetic data . 40

3.1 Drug trafficking: Pattern and data graph 44

3.2 Graph simulation vs. p-similarity . 46

3.3 Bounded simulation . 48

3.4 Result Graph . 50

3.5 Algorithm Match . 52

3.6 The Effectiveness and Flexibility of Match 56

3.7 Efficiency and Scalability . 58

4.1 Querying Essembly Network . 61

4.2 Example Reachability Query and Graph Pattern Query 62

4.3 Example for containment and equivalence 66

4.4 Non-isomorphic equivalent minimum PQs 68

4.5 Algorithm minPQs . 69

4.6 Example for minimizing graph pattern queries 71

4.7 Algorithm Match . 76

vii

4.8 Algorithm SplitMatch . 78

4.9 Effectiveness Results . 82

4.10 Efficiency over real life dataset . 85

4.11 Efficiency over synthetic dataset . 86

5.1 Querying FriendFeed incrementally 90

5.2 Example data graphs and graph patterns 95

5.3 Result graphs and affected areas . 96

5.4 IncSim in various updates . 98

5.5 Algorithm IncMatch− . 99

5.6 Algorithm IncMatch+ . 101

5.7 Algorithm IncMatch . 103

5.8 Incremental Bounded Simulation: An Example 106

5.9 Algorithm Match−n . 109

5.10 Algorithm Match+n . 110

5.11 Algorithm Match− . 111

5.12 Match− for single edge deletion . 113

5.13 Algorithm Match+dag . 115

5.14 Algorithm IncBMatchm . 118

5.15 Algorithm IncBMatch+ . 122

5.16 Incremental bounded simulation . 123

5.17 Incremental graph simulation . 130

5.18 Incremental bounded simulation . 131

5.19 Optimization Techniques and Incremental subgraph isomorphism . . . 132

A.1 An example reduction for p-hom . 143

A.2 An example reduction for 1-1 p-hom 146

A.3 Algorithm ISRemoval . 152

C.1 Reduction from Reachability . 167

D.1 Terrorist Collaboration Network over the last 40 years. The network

contains 215 nodes and 315 edges. Each node represents a distinct ter-

rorist organization, where edges between nodes denote collaboration

relation. The figure is generated with Gephi [Gep]. 173

viii

D.2 Youtube Network (part). The network consists of 3528 nodes and

19649 edges. Each node represents a video, where edges between

nodes represent the recommendation relation. The nodes with same

color belong to the same group. The figure is generated with

Gephi [Gep]. 174

ix

List of Tables

2.1 Notations: Optimization problems 24

2.2 Web graphs and skeletons of real life data 36

2.3 Accuracy and scalability on real life data 37

5.1 Notations: Incremental matching 97

5.2 Summary of the complexity results 135

x

Chapter 1

Introduction

There are real life graphs everywhere representing complex objects and networks, e.g.,

social networks, Internet, blog networks, food web, protein interaction networks (Fig-

ure. 1.1) etc.. With the development of graph models, the graph matching problem

becomes one of the central problems in a variety of emerging applications in com-

puter science, biology, chemistry and many other academic areas. In this chapter we

give a first impression of the graph matching problem in advance, along with the ba-

sic notations and terminology we will use in this thesis, followed by an overview of

its application areas. We analyze the characterizations of the real life graphs in these

application areas, and discuss the new challenges of the graph matching problem over

these graphs, which further motivate and inspire us on developing novel methods in the

following chapters. Finally, we provide a review of the state-of-the-art graph matching

approaches, among other related work.

1.1 Graph Matching: A First Impression

In most applications one may want to find the correspondence between two objects

represented by graph structures, via different graph models. Although there are many

feasible graph models, we consider the following representation, and we shall use the

following notations (with necessary slight modifications) in this thesis.

A node-labeled, directed graph is defined as G = (V,E,L), where (1) V is a set of

nodes; (2) E ⊆V ×V is a set of edges, in which (v,v′) denotes an edge from node v to

v′; and (3) for each v in V , L(v) is the label of v. The label L(v) may indicate a variety

of real life semantics, a list of attributes, or even a set of predicates.

A path ρ in graph G is a sequence of nodes v1/. . ./vn such that (vi,vi+1) is an edge

2

Chapter 1. Introduction 3

in G for each i ∈ [1,n− 1]. The length of the path ρ is n− 1, i.e., it is the number

of edges in ρ. The path ρ is nonempty if the length of ρ is not less than 1. Abusing

notations for trees, we refer to v2 as a child of v1 (or v1 as a parent of v2), and vi as a

descendant of v1 for i ∈ [2,n].

Abusing notations for trees, we refer to a node v2 as a child of a node v1 (or v1 as a

parent of v2) if there exists an edge (v1,v2) in E, and refer to a node v2 as a descendant

of a node v1 (or v1 as an ancestor of v2) if there exists a nonempty path from v1 to v2.

The independent set of a graph G = (V,E,L) is a set of nodes in V that no two

nodes of which are adjacent, i.e., no edge in E connecting the two nodes. The clique

of a graph G is a set of nodes in V that every two nodes are connected by an edge in E.

The strongly connected components (SCC) of a directed graph G are its maximal

strongly connected subgraphs. A graph G is strongly connected if there is a path from

each vertex in G to every other vertex.

We now give a brief description of the graph matching problem. Generally speak-

ing, we can state the graph matching problems as follows.

Graph matching. Given two graphs G1 and G2, a metric for measuring the similarity

of the two graphs, the problem is to find a (partial) mapping from the nodes (edges)

of G1 to the nodes (edges) of G2, such that the mapping satisfies the metric. If such a

mapping exists, G2 is a match of G1.

Graph pattern matching. As a class of graph matching problem, pattern matching is

to find for a given (small) pattern graph all the matches in a (large) data graph, based

on a matching metric.

Graph querying. In most literature there is no obvious difference between graph

queries and graph patterns. A slight difference would be that graph queries are usu-

ally defined by some query languages. In this thesis we will extend the graph pattern

matching to a more general class of graph querying.

1.2 Graph matching in real life applications

Graph matching problem has been widely concerned in many emerging application

areas. As remarked earlier, the problem determines whether a given two graphs are

similar to each other, based on some similarity metric; and if so, compute all the valid

matches of one (pattern) graph in the other (data graph). We introduce the following

non-exhaustive list of the areas where the problem has been widely applied to.

Chapter 1. Introduction 4

Figure 1.1: Real life networks

(1) Web page classification and web mirror detection. It is estimated over 30% of the

Web consists of duplicate pages (cf. [BB99]). This highlights the need for detecting

duplicate pages and for classifying Web pages, to reduce crawling and storage costs,

and to improve the accuracy of page ranks.

The concept of Web graphs, introduced in [KKR+99], represents web sites as

graphs. More specifically, each web page is a node in a web graph, and the edges rep-

resents the hyperlinks between the web pages. Real life web graphs may consists of

hundreds of millions of nodes and edges, which is a considerable size that of research

interests. The duplication and Web page classification problems are essentially the

graph matching problems over Web graphs, as illustrated in [PDGM08]. In this case,

two websites presented as Web graphs are compared, and the similarity are evaluated

to decide the correspondence between the nodes or edges of them, often computed by

a similarity function [PDGM08].

(2) Object identification. In data integration and data cleaning one typically needs to

identify objects from multiple, unreliable data sources that refer to the same real-world

entity [BS06, EIV07]. While object identification has been studied for decades, little

is known about how to identify complex objects, e.g., semistructured data.

Representing such objects as graphs, an efficient method is required to identify

complex objects by checking whether all the attributes of one object are also accessi-

ble via paths in another object, although the two objects may not have highly similar

structures. This requires a graph matching between the two graphs representing ob-

jects, for example, RDF graphs.

(3) Schema matching. As a first step to building schema mapping, schema matching

is to map attributes from a source schema to those in a target schema such that the

Chapter 1. Introduction 5

associated attributes are semantically related [RB01]. As schemas are typically rep-

resented as graphs, efficient graph matching approaches can be used on the source

schema to find candidate schema matches, representing the mapping relation between

the attributes of the source schema and the target schema.

(4) Plagiarism and spam detection. The source codes can be characterized by program

dependency graphs [LCHY06]. The program dependency graph (PDG) is an abstract

representation of procedures, where each node in the graphs represents a variable, an

assignment, a procedure call, etc, with edges denoting the data and control dependen-

cies between the nodes. With the two procedures represented as PDGs, one just need to

solve the graph matching problem between the PDGs to detect the possible plagiarism.

The content and the structure of documents and emails can also be represented

as graphs [AC05]. These promote the use of graph matching in plagiarism detection

and email classification, which typically need a similarity measure less restrictive than

conventional subgraph isomorphism.

(5) Social matching. With the emerging applications of social networks (e.g., Face-

book), citation and collaboration networks (e.g., Citeseer), recommendation and me-

dia networks (e.g., Amazon and Youtube), the social graphs [TM05] are proposed to

represent these networks. Generally speaking, each node in a social graph denotes a

person or an object, and the edges between them represents their relationships, such as

friendship, recommendation, among others.

Given a searching request from users which can usually be represented by graphs,

the social matching [TM05] is to find all the substructures that satisfy the re-

quirement. The studies in social network analysis such as friends-finding, experts-

recommendations and group recommendations are essentially social matching. On

the other hand, efficient graph pattern matching algorithms benefit the tasks in social

matching, especially when the social network has multiple typed nodes and relation-

ships, and (usually) with a large size.

(6) Web service composition. Web service composition, a class of verification prob-

lems, can be considered as the graph matching problem. Given a web service medi-

ator or a business process, usually represented as a graph where each node is a state,

and edges representing transitions between states labelled with actions, messages or

business artifacts, the problem searches for available services to form or realize the

global service in the mediator. Two graphs can thus be compared if their nodes are

Chapter 1. Introduction 6

similar based on some predefined metrics (usually simulation/bisimulation, or homo-

morphism), and the matches between the graphs indicate the realization relation.

(7) Other application areas. Many other research areas involve graph matching which

has various different names. For example, there has been work on (a) genetic and pro-

tein interaction network matching, (b) chemistry structure matching, (c) object recog-

nition in image processing, (d) structure and substructure similarity search in computer

vision and pattern recognitions, (e) key-word based searching in information retrieval

and data mining, among many other fields. All of the above problems are essentially

the graph matching problem. See [CFSV04] for a survey.

Characterizations of real life graphs. From the above non-exhausting list, we illus-

trate the various areas the graph matching problem can be applied to. The real life

graphs in these applications have several common characterizations, which distinguish

themselves from traditional graphs, and result in new challenges that traditional graph

matching methods may not work well.

(1) Real life graphs are usually large. Graphs and networks in real life applications

often consists of hundreds of millions of nodes and edges, for example, the social

network of Facebook and Twitter. The considerable size of real life graphs often brings

challenges to the efficiency of graph matching approaches. Thus, it is important to

develop algorithms running in low PTIME complexity while preserving the matching

accuracy.

(2) Real life graphs are usually heterogeneously typed. The graphs in real life appli-

cations often consists of nodes and edges with multiple types. For example, nodes in

a program dependency graph (PDG) may present a variable, a data block, or even a

procedure, where edges may denotes the data transition, invoking action, etc. A more

common example comes from a book recommendation network, where nodes may rep-

resent either a reader or a book, with edges either between two customers if they share

a similar book list, or between a reader and a book if the reader recommend (likes) the

book.

Another instance illustrating multiple typed edges comes from social graphs. Most

of the social graphs already contains multiple types of positive relationships between

the persons, such as friendship, relatives, lovers, fans, etc. Moreover, recent study

reveals that there may exist both positive (friends) and negative (enemy) edges in the

same social graph. For example, the Essembly network consists of nodes representing

Chapter 1. Introduction 7

Figure 1.2: Example of Terrorist Network

users that post ideas towards topics, and edges among users that share the common

ideas (allies) or disagree on most of the topics (nemeses) [BHS08].

(3) Real life graphs are dynamic. The graphs in real life applications are constantly

changing. For instance, it is common to see hundreds or thousands of new links gen-

erating or destructing in a social graph such as Facebook, and new nodes appear in

the graphs representing newly registered users joining the networks. Moreover, the at-

tributes of nodes and the types of edges are changing from time to time. In other words,

the real life graphs are evolving, usually following empirical evolving laws, such as

densitification laws [LKF07]. It is obviously not feasible to compute the matching

between two graphs from the start once there is changes. Thus, to develop matching

approaches that incrementally compute the matches with high accuracy over evolving

graphs is important for solving graph matching problem in real life applications.

(4) Real life graphs contain implicit relations. Traditional graph matching may focus

on edge to edge mappings, considering the explicit relationships indicated by edges

in a graph. However, in real life applications one may want to find more matches

that are not directly connected. Taking the Essembly network as an example. As a

part of social matching query, a user in the social graph may want to find out all his

supporters over a topic. However, all the direct links to him disagree with him, while

the potential supporters are connected with him via an allies-nemeses chain. This

Chapter 1. Introduction 8

requires a matching method that finds for the user all possible supporters.

Another example comes from the terrorist network. In the study for the terrorist

network of 911 attack [Kre01], it is revealed that two nodes, representing two terrorists

in charge of the same attack, intend to indirectly communicate via a path as long as

possible. Figure 1.2 from [Kre01] shows that the contacts trusted by the terrorists are

often 2 or 3 steps away from each other, connecting two terrorists that are in the same

attack (shown by the same color). To find all the suspect in a network, the matching

process for a pattern need to consider such indirect connections via a path rather than

a direct edge.

From the above analysis, we want to answer the following three important ques-

tions for solving the graph matching problem. (1) How to formulate the graph match-

ing problem ? This is vital for finding the matches of a graph with high accuracy;

(2) How to efficiently compute the matches for a graph ? This question concerns the

efficiency of the methods we are going to illustrate in the following chapters, based on

a feasible, well-defined similarity metric; and (3) How to compute the matches incre-

mentally ? The efficient techniques for dynamic graph matching is important when the

graphs are evolving, which is quite common in real life applications.

1.3 Graph Matching: The State of the Art

In this section we overview the state of the art methods and techniques for graph match-

ing and pattern matching problem. We will briefly illustrate the difference of their work

between ours in this thesis, and show that they may not work well for real-life appli-

cations remarked earlier. A number of existing graph matching approaches have been

developed (see [Bun00] for a survey). As the graph matching methods strongly depend

on how to model the similarity of the graphs, we classify these approaches based on

the similarity metrics they rely on into three categories, namely, the structure-based

matching, the vertex similarity-based matching, and the feature-based matching.

Structure-based graph matching. Traditional graph matching methods, especially

a class of approaches for exact graph matching, are mostly based on the structural

similarity between the two graphs, measuring the similarity of the graphs based

on simulation [HHK95, CSGM00], subgraph isomorphism (common maximum sub-

graph) [TP08, YYH05], or edit distance [ZTW+09], in both exact or inexact way.

[Bun00, SWG02] serve as good surveys on structure-based matching methods.

Chapter 1. Introduction 9

Figure 1.3: Graph Simulation

Graph Simulation. Graph simulation [ABS00] considers the edge-preserving relations

instead of functions from one graph to another. A graph G1 is said to be simulated by

graph G2 if there exists a binary relation R between the nodes of G1 and the nodes of G2

such that for each node pair (v,u) in R, (a) v and u share the same label, and (b) for each

edge (v,v′) in G1, there is an edge (u,u′) in G2 such that (v′,u′) is also in R, i.e., each

edge in G1 has a match as an edge in G2. The work in [SKL06, HHK95, CSGM00]

measure graph similarity with simulation, i.e., two graphs are similar if and only if one

can be simulated by the other, based on various quality models.

The graph simulation can be computed within quadratic time, as shown

in [HHK95]. In [CSGM00] the graph matching for discovering replicated websites

and documents is studied. Upon two web graphs, the method first identifies the similar

clusters containing single webpage or document, based on their semantic similarity.

Then the clusters are merged, according to their linkage similarity based on simula-

tion. The merging forms a bottom up clustering process, which determines the similar-

ity of graphs based on their largest common cluster. Graph simulation is extended in

[SKL06] with weights, and the graph similarity is measured by a weighted quantitative

simulation named q-simulation.

Example 1.1: Consider the two graphs given in Figure 1.3. G1 can be simulated by

G2. More specifically, (1) A2 can simulate A, (2) C1 and C2 simulate C, (3) B1 simulates

B, and (4) D1, D2 simulate D in G1. Observe that C in G1 is matched with two nodes

C1 and C2, while A1 cannot simulate A as there is no edge from A1 to 1B. On the other

hand, there is no subgraph in G2 that is isomorphic to G1. 2

Subgraph Isomorphism. There have been a class of methods [TP08, YYH05] for exact

graph matching based on subgraph isomorphism (common maximum subgraph). Two

graphs G1 and G2 are considered to be similar if and only if (1) G1 is isomorphic to

Chapter 1. Introduction 10

a subgraph of G2, which is, if there exists a bijective function f from the nodes of G1

to the nodes of G2 such that (a) for any node v in G1, v and f (v) have the same label,

and (b) there exists an edge from nodes v to v′ in G1 if and only if (iff) (f (v), f (v′))

is an edge in G2; or (2) G1 and G2 have a common subgraph with the size larger than

a threshold. The size of the subgraph in (1) and the size of the maximum common

subgraph in (2) are usually considered to be the measurement of the graph similarity

in this class of graph matching methods.

Graph Edit Distance. The graph edit distance [ZTW+09, Bun97] between the given

two graphs is defined as the number of the minimum modifications that one has to

undertake to modify one graph to the other. If each operation is weighted with a pre-

defined cost, the edit distance between the two graphs is the sum of the total cost of the

operations, which is used as the measurement of graph similarity. Graph edit distance

is essentially based on subgraph isomorphism.

As will be seen in the following chapters, the above structural-based approaches

are too strict for capturing the structural and semantic similarity between two graphs.

Indeed, (1) as real life graphs are often heterogeneously typed, it is impractical and

too restrictive to define the node similarity with label equivalence; (2) two graphs may

be similar, or represent the same object even they are not homomorphic, or there is

no simulation relation between them; and (3) the two similar graphs may have large

distance. The above approaches may fall short for capturing the similarity in these

cases.

Vertex-similarity graph matching. These approaches focus on node similarity based

on fixpoint computation [BGH+04, MGMR02, JW02] and the roles of nodes in the

structures of the graphs; on the other hand, the topological similarity is often neglected.

Similarity flooding over graphs is proposed in [MGMR02], where a similarity

propagation graph (PCG), which is a product graph of the two given graphs, is con-

structed. Based on PCG, a fixpoint computation is conducted to propagate the simi-

larity between the nodes along the edges. The top ranked matches are extracted from

the propagated similarity score on PCG, after a filtering process. Similarly, [JW02]

proposes a recursive equation on measuring vertex similarity, based on the context

similarity of vertex and the similarity of their neighbors. A fixpoint computing is then

processed to obtain the solution to the equation. In the work [BGH+04], a generaliza-

tion of hubs or authorities method is proposed, which is used to compute the similarity

matrix via a fixpoint computing process.

Chapter 1. Introduction 11

As observed by [BB99, PDGM08], vertex similarity alone does not suffice to iden-

tify accurate matches since it ignores the topology of graphs by and large. Neither is

the semantic similarity between the nodes considered in these approaches. For exam-

ple, for Web site matching in particular, it is essential to consider how pages are linked

to each other. One cannot match two sites with different navigational structures even

if most of their pages can be pairwise matched. Further, vertex similarity methods

require fixpoint operations and are thus often expensive on large graphs. On the other

hand, as will be explained in the following chapters, edge to edge and function-based

matching methods often fall short of capturing the structural and semantic similarity

of real life graphs.

Feature-based graph matching The feature-based approaches [Jos03, YZYH06]

have been studied to propose solutions for structure and substructure similarity search.

These approaches often depend on feature-based indexing, filtering methodology, and

the selection strategy of a proper set of features. The basic idea for feature-based ap-

proaches is to first represent graphs into a set (vector) of features, which are small

graphs such as twigs, cycles or trees that occur frequently in the graphs. Indexes are

then built based on the occurrence of the features in the graphs. Upon receiving a

query, the index is used to efficiently filter the graphs that cannot match the query.

[Jos03] assesses overlapping root-leaf paths in graphs representing documents,

but ignores the topology of the graphs. The general framework of the methods

in [YZYH06] first builds up an index for a data graph, specifically a matrix record-

ing the appearance of small features in the graph. The features in the query graphs are

then determined and checked in the index matrix, during which necessary relaxation

on the query graphs are made. The similarity is then calculated according to the differ-

ence in the number of common features appeared in the query graphs and data graphs.

Although the methods are proposed to relax the traditional exact graph matching meth-

ods, the worst case complexity for the feature selection is exponential w.r.t. the number

of features for selection. The concept of graph similarity in both of the above methods

are essentially based on (relaxed) subgraph isomorphism.

As pointed out by [SLBK04, YYH05], the feature-based approach does not ob-

serve global structural connectivity, and is often less accurate than the structure-based

measure. On the other hand, it is hard and impractical to define a set of proper features

on a large graph in general case, neglecting the semantics the pattern graphs carry.

Edge-to-Path Graph Matching. Besides edge to edge mapping, there have been

Chapter 1. Introduction 12

extensions of graph matching by allowing edges to map to paths, for trees [SMGL08],

DAGs [CGK05] or graphs [CYD+08, FB08, ZCO09].

An approximate retrieval method is proposed for matching trees [SMGL08], which

identifies and merges regions of XML data that are similar to a given pattern, by using

an inverted index. Stack-based algorithms are studied for matching DAGs [CGK05],

by leveraging filtering for early pruning. Exponential-time algorithms for matching

general graphs are developed in [CYD+08], based on join operations over graphs en-

coded as tables. A notion of XML schema embedding is studied in [FB08]. A form

of graph pattern matching is considered in [ZCO09], in which edges denote paths

with a fixed length. Algorithms for approximate graph matching can also be found in

[TP08, YYH05]. Most prior work does not consider node similarity in pattern match-

ing, such as all the work mentioned above except [SMGL08]. Further, except [FB08],

the complexity of graph matching is not settled; indeed, some algorithms were claimed

to be in polynomial time, whereas the problem is NP-hard even for DAGs (as will be

shown in Chapter 2). In addition, none of the previous algorithms has provable guar-

antees on match quality, as opposed to the work in this thesis.

As opposed to previous approaches, in Chapter 2 we introduce a revision of graph

homomorphism and isomorphism to capture both structural and semantic similarities

of the real life graphs, by enforcing edge-to-path mappings and by incorporating node

similarity, respectively. In addition, we provide two new similarity metrics to quanti-

tatively measure graph similarity, which have not been studied by previous work.

1.4 Graph Pattern Matching: The State of the Art

In this section we introduce the state-of-art approaches to the graph pattern matching

problem, and the existing work for modeling and answering graph queries.

1.4.1 Graph pattern matching

Graph pattern matching has been proved useful in a variety of areas [Gal06]. It is

typically based on subgraph isomorphism [BKS02, CGK05, CYD+08, TFGER07,

ZCO09], where the approaches either find all the subgraphs in a relatively large data

graph, that are isomorphic to the given pattern graph, or returns a subgraph isomor-

phic to the pattern with the best matched nodes, based on various quality models. The

pattern matching problems based on subgraph isomorphism are essentially NP-hard.

Chapter 1. Introduction 13

In light of the intractability of the problem, approximate solutions have been stud-

ied to find inexact matches, or error-tolerance matches (see [Gal06, SWG02] for sur-

veys). Closer to the work for graph pattern matching in this thesis are [NRT09, FB08,

FLM+10c, ZCO09]. A notion of weak similarity was addressed in [NRT09], which

extends simulation by mapping an edge to an unbounded path. It focuses on subgraph

similarity, an NP-complete problem. Extensions of subgraph isomorphism were stud-

ied in [FB08, FLM+10c] for XML schema mapping and for Web site matching, which

also allow edge-to-path mappings, but are still NP-complete. None of these supports

bounded connectivity or search conditions. Recently, bounded connectivity in graph

patterns was considered in [ZCO09]. It differs from the work in this thesis in the fol-

lowing. (a) Patterns of [ZCO09] impose the same bound on all edges. In contrast,

we study patterns in which edges may carry various bounds or are unbounded at all,

and moreover, nodes specify search conditions based on their contents. (b) Match-

ing in [ZCO09] is based on an extension of subgraph isomorphism, which remains

NP-complete, whereas we define pattern matching in terms of bounded simulation, a

cubic-time problem. (c) To find matches, [ZCO09] explores joins and pruning, which

are very different from our methods. (d) [ZCO09] does not study incremental algo-

rithms for pattern matching. As will be seen in the following chapters, in contrast of

the above work, we revise graph pattern matching by introducing bounded simulation

and a richer class of graph patterns in this thesis, to capture patterns commonly found

in practice in polynomial time.

Reachability queries. To allow the extension for edge to path mapping, one central

problem is to answering the reachability queries and the distance queries. The reach-

ability queries asks whether there exists a path from a node to another in a graph,

while the distance queries is to compute the distance between a pair of nodes, un-

der some constraints or not. A host of works have been proposed to evaluate reach-

ability queries [CHKZ03, JXRF09, WHY+06, CYL+08, ABJ89, JXRW08], i.e., to

decide whether there exists a path from a node to another in a graph. The distance

queries [CL07, CHKZ03, Wei10] are further investigated to compute the distance be-

tween a pair of nodes. The above approaches fall short of capturing the semantics in

real-world graphs that edges are typically associated with different relationships be-

tween nodes. Recently, [JHW+10] proposes a class of label-constraint reachability

queries which asks that whether one node reaches another via a path whose edge la-

bels are constrained by a set of labels. In contrast, we study pattern graphs in which

Chapter 1. Introduction 14

each edge denotes the connectivity of a pair of nodes possibly carrying a bound on the

length of the paths. We shall further elaborate the differences in Chapter 3.

We sum up the above discussions on the state of the art approaches for graph match-

ing with Figure 1.4. From the figure, we can see that most graph matching models (1)

are restricted to edge to edge (e-e) mappings between two graphs with single type of

nodes or edges, and (2) are often involving problems that are intractable.

1.4.2 Graph Querying

Graph query languages. There have been various query languages to define graph

queries for semistructured data, such as UnQL [BFS00] and Lorel [AQM+97].

There has also been theoretical work on conjunctive regular path queries (CRPQs,

e.g., [FLS98]) and extended CRPQs (ECRPQs) [BHLW10], which also define graph

queries using regular expressions. However, these languages are defined with gen-

eral regular expressions. As a result, the problem for evaluating CRPQs is already

NP-complete, and it is PSPACE-complete for ECRPQs [BHLW10]. For those queries

the containment and minimization analyses are also PSPACE-hard. We are not aware

of any existing efficient algorithms for answering graph pattern queries defined with

regular expressions. In contrast, this thesis defines graph queries in terms of a subclass

of regular expressions, and revises the notion of pattern matching based on an ex-

tension of graph simulation. It aims to strike a balance between the expressive power

needed to deal with common graph queries in emerging applications, and the increased

complexity incurred. This allows us to conduct the static analyses (containment and

minimization) and evaluate queries efficiently, in low PTIME. We shall present the

work in Chapter 4.

Graph query answering. Graph pattern matching is typically defined in terms of

subgraph isomorphism [BKS02, CGK05, CYD+08, TFGER07, ZCO09] In light of

its intractability, approximate solutions have been studied to find inexact matches

(see [Gal06, SWG02] for surveys). Extensions of subgraph isomorphism are studied

in [FB08, FLM+10c, ZCO09], which extend mappings from edge-to-edge to edge-to-

path. Nevertheless, the problem remains NP-complete. As a part of the work in this

thesis, the notion of bounded simulation is studied in [FLM+10b], which extends graph

simulation [HHK95, TC01, GPP03] for graph pattern matching by allowing bounds on

Chapter 1. Introduction 15

Figure 1.4: Graph Matching: The State of the Art

Chapter 1. Introduction 16

the number of hops, and makes graph pattern matching a PTIME problem. This thesis

further extends [FLM+10b] by incorporating regular expressions as edge constraints,

and for these more expressive graph queries, it develops efficient evaluation algorithms

and settles their fundamental problems (containment, equivalence and minimization).

No previous work has studied these.

Graph query containment and minimization. The containment and minimization

problems of graph queries are another interest of this thesis. These are classical prob-

lems for any query language (see, e.g., [AHV95]). In general, query containment prob-

lem asks, given two queries Q and Q′, whether the answer of Q is always contained

in the answer to of Q′. The minimization problem finds, for a specified query Q, the

query of minimum size Q′ that always return the answer equivalent to that of Q. These

problems have been well studied for XPath (e.g., [CC08, NS03, Woo03]). However,

we are not aware of previous work on these problems for graph pattern queries. We

shall study these problems for the proposed graph queries in Chapter 4.

There has also been work on structural indices [MS99, KSBG02] for evaluating

regular expression queries. Unfortunately, the indexing structures are developed for

tree-structured data (XML) in which there is a unique path between two nodes; they

cannot be directly used when processing general graphs.

1.4.3 Incremental Graph Matching

To handle the evolving data graphs, the incremental algorithms for the graph matching

problem have been developed for various applications (see [RR93] for a survey). As

observed in [RR96b], the complexity of an incremental algorithm is more accurately

characterized in terms of the size of the area affected by updates, rather than the size

of the entire input. We adopt this complexity measure. Incremental algorithms for

the shortest path problem were provided in [RR96a, RR96b]. We develop incremental

algorithms for computing matches in Chapter 5, which also make use of procedures

from [RR96a, RR96b]. We shall discuss more related work in this part in Chapter 5

after we introduce our work with more details.

1.5 Outline of thesis

The remainder of this thesis is organized as follows.

Chapter 1. Introduction 17

Chapter 2 studies the extension of graph homomorphism and subgraph isomor-

phism for graph matching. It introduces the concepts of p-homomorphism, and

presents the techniques for approximately matching graphs with p-homomorphism,

followed by the experimental study. This work is published and presented

in [FLM+10c].

Chapter 3 revisits the traditional concepts of graph simulation, and formally defines

the bounded simulation for graph pattern matching. Algorithms for simulation based

pattern matching are also developed, with experimental results. This work is taken

from [FLM+10a].

Chapter 4 discusses the extension of the work in Chapter 3, by generalizing the

graph pattern to graph queries, defined in terms of regular expressions that are more

powerful. It also discusses the fundamental problems of the proposed graph queries,

e.g., containment and minimization problems. Algorithms for efficiently answering

graph queries are developed, followed by the experimental results. This work is taken

from [FLM+11].

Chapter 5 studies the graph pattern matching over dynamic data graphs. In this

chapter the techniques for dynamically graph matching is provided, by developing

incremental algorithms over single update and batch updates, for graph simulation,

bounded simulation, and the subgraph isomorphism, respectively. The chapter ends

with experimental results. This work is taken from [FLM+10a] and the following up

work submitted to the SIGMOD conference in the year 2011.

Chapter 6 concludes the thesis.

Chapter 2

Graph Homomorphism Revised for

Graph Matching

The traditional notions of graph homomorphism and isomorphism are widely used in

a variety of emerging applications of graph matching. However, these conventional

notions are, however, often too restrictive for graph matching in emerging applica-

tions, especially for the applications where graphs match each other without necessar-

ily identical structural. This suggests a revision of these notions for better capturing

the similarity of graphs.

In this chapter we propose several notions that encompass the previous extensions

to capture the graph structural similarity, and provide a full treatment of these notions

for graph matching. As will be seen, the novel revision better captures the similarity

of graphs, with the algorithms having more efficiency and accuracy.

18

Chapter 2. Graph Homomorphism Revised for Graph Matching 19

The traditional notions of graph homomorphism and isomorphism are widely used

in a variety of emerging applications of graph matching, where one needs to decide

whether a graph G matches another Gp, i.e., whether G has a topological structure sim-

ilar to that of Gp. Given two node-labeled graphs G1 = (V1,E1) and G2 = (V2,E2), the

problem of graph homomorphism (resp. subgraph isomorphism) is to find a (resp. 1-1)

mapping from V1 to V2 such that each node in V1 is mapped to a (resp. distinct) node in

V2 with the same label, and each edge in E1 is mapped to an edge in E2.

As remarked in Chapter 1, these conventional notions are, however, often too re-

strictive for graph matching in emerging applications. In a nutshell, graph matching is

to decide whether a graph G matches another graph Gp, i.e., whether G has a structure

similar to that of Gp, although not necessarily identical. The need for this is evident in,

e.g., Web anomaly detection [PDGM08], search result classification [SLBK04], pla-

giarism detection [LCHY06] and spam detection [AC05]. In these contexts, identical

label matching is often an overkill, and edge-to-edge mappings only allow strikingly

similar graphs to be matched. We use the following example to show the restriction.

Example 2.1: Consider a pattern and two online stores depicted in Fig. 2.1 as graphs

Gp = (Vp,Ep) and G = (V,E). In these graphs, each node denotes a Web page for sale

of certain items, as indicated by its label; and the edges denote hyperlinks. One wants

to know whether G matches Gp, i.e., whether all the items specified by Gp are also

carried by the store G, and G and Gp can be navigated similarly, i.e., if a site for selling

item a can be reached from a site for item b in Gp by following hyperlinks, then the

site for item a can also be reached from the site for b in G.

When graph homomorphism or subgraph isomorphism is used to measure graph

similarity, G does not match Gp. Indeed, (a) nodes in G may not find a node in G with

the same label, e.g., audio; and worse still, (b) there exists no sensible mapping from

Vp to V that maps edges in Gp to edges in G accordingly.

However, a page checker (e.g., [BGMZ97, Webb]) may find connections between

pages in Gp and those in G based on their functionality:

A 7→ B, books 7→ books, audio 7→ digital, textbooks 7→ school,

abooks 7→ audiobooks, albums 7→ albums

That is, the store G indeed has the capability of Gp. While the edges in Gp are not

preserved by the similarity relation, each edge in Gp is mapped to a path in G, e.g., the

edge (books, textbooks) in Gp is mapped to the path books/categories/school in G. This

tells us that G preserves the navigational structure of Gp. Hence G should logically be

considered as a match of Gp. 2

Chapter 2. Graph Homomorphism Revised for Graph Matching 20

A

books

textbooks abooks albums

B

books sports digital

categories

schoolarts audiobooks

booksets DVDs CDs

audio

features genres

albums

G p G

Figure 2.1: Graphs representing online stores

These highlight the need for revising the conventional notions of graph matching.

In response to these, several extensions of the conventional notions have been studied

for graph matching [CGK05, CYD+08, FB08, SMGL08, ZCO09]. However, a formal

analysis of these extensions is not yet in place, from complexity bounds to approxima-

tion algorithms.

2.1 Revision of Graph Homomorphism

In this section we first introduce p-homomorphism and 1-1 p-homomorphism. We

then present metrics to quantitatively measure graph similarity, and formulate related

optimization problems.

2.1.1 Graphs and Node Similarity

As remarked earlier in Chapter 1, we shall use the following notations. A node-labeled,

directed graph is defined as G = (V,E,L), where (1) V is a set of nodes; (2) E ⊆V ×V

is a set of edges, in which (v,v′) denotes an edge from node v to v′; and (3) for each v

in V , L(v) is the label of v. The label L(v) may indicate e.g., the content or URL of a

Web page [BB99, BBDH00].

Consider graphs G1 = (V1,E1,L1) and G2 = (V2,E2,L2).

We assume a similarity matrix mat(). For each pair (v,u) of nodes in V1 ×V2,

mat(v,u) is a number in [0,1], indicating how close the labels of v and u are.

The matrix mat() can be generated in a variety of ways, where each entry of the

matrix denotes the node similarity. How to properly define the similarity of nodes?

In our motivation example of web site matching, for instance, mat(v,u) for each pair

(u,v) of pages may be computed in terms of common shingles that u and v share. Here

a shingle [BGMZ97] is a meaningful region contained in a Web page, and mat(v,u)

indicates the textual similarity of u and v.

Chapter 2. Graph Homomorphism Revised for Graph Matching 21

Figure 2.2: p-hom and 1-1 p-hom

One may also treat vertex similarity matrix [BGH+04, MGMR02] as mat(), which

measures the hub-authority structural similarity of two nodes [BGH+04] and incorpo-

rates certain topological structural properties of the graphs.

It may be too expensive to compute vertex similarity matrix on large graphs or

to match those graphs. To cope with this we may use “skeletons” of the graphs in-

stead, namely, subgraphs induced from “important” nodes such as hubs, authorities

and nodes with a large degree. Indeed, approximate matching is commonly accepted

in practice [BGH+04, SMGL08, TP08, YYH05]. We compute mat() for such nodes

only.

We use a similarity threshold ξ to indicate the suitability of mapping v to u, such

that v can be mapped to u only if mat(v,u)≥ ξ.

2.1.2 P-Homomorphism and 1-1 P-Homomorphism

We have illustrated the node similarity based on the similarity matrix. In this part we

propose the revision of traditional graph homomorphism and isomorphism, in terms of

p-homomorphism and 1-1 p-homomorphism.

P-homomorphism. Graph G1 is said to be p-homomorphism (p-hom) to G2 w.r.t. a

similarity matrix mat() and a similarity threshold ξ, denoted by G1 -s
(e,p) G2, if there

exists a mapping σ from V1 to V2 such that for each node v ∈V1,

(1) if σ(v) = u, then mat(v,u)≥ ξ; and

(2) for each edge (v,v′) in E1, there exists a nonempty path u/. . ./u′ in G2 such that

σ(v′) = u′, i.e., each edge from v is mapped to a path emanating from u.

We refer to σ as a p-hom mapping from G1 to G2.

Example 2.2: Recall Gp and G of Fig. 2.1. As shown in Example 2.1, Gp is neither

homomorphic nor isomorphic to a subgraph of G. In contrast, suppose that a page

checker [BGMZ97, Webb] yields mate():

Chapter 2. Graph Homomorphism Revised for Graph Matching 22

mate(A,B) = mate(audio,digital) = 0.7

mate(books,books) = 1.0

mate(abooks,audiobooks) = 0.8

mate(books,booksets) = mate(textbooks,school) = 0.6

mate(albums,albums) = 0.85

mate(v,u)= 0, for all other node pairs

Then Gp -s
(e,p) G w.r.t. mate() and any threshold ξ ≤ 0.6. Indeed, the mapping given

in Example 2.1 is a p-hom mapping.

To further illustrate p-hom, let us consider the graphs of Fig. 2.2. In each pair of

the graphs, assume that mat(v,u) = 1 if u and v have the same label, and mat(v,u) =

0 otherwise, for nodes v in one graph and u in another. Fix ξ = 0.5. One can see the

following.

(1) G1 -s
(e,p) G2. A p-hom mapping is defined by mapping both A nodes in G1 to the

A node in G2, the node B in G1 to the B node in G2, and the node C in G1 to any of the

two C nodes in G2.

(2) G3 ̸-(e,p) G4. Mapping the D node in G3 to only one of the D nodes in G4 does

not make a p-hom mapping, because either the edge (A,D) or (B,D) in G3 cannot be

mapped to a path in G4.

(3) G5 -s
(e,p) G6, for the same reason as (1). 2

1-1 p-homomorphism. A graph G1 is 1-1 p-hom to G2, denoted by G1 -1−1
(e,p) G2, if

there exists a 1-1 (injective) p-hom mapping σ from G1 to G2, i.e., for any distinct

nodes v1,v2 in G1, σ(v1) ̸= σ(v2). We refer to σ as a 1-1 p-hom mapping from G1 to

G2.

Example 2.3: For Gp and G of Fig. 2.1, the p-hom mapping given in Example 2.2 is

also a 1-1 p-hom mapping, i.e., Gp -1−1
(e,p) G.

As another example, consider G1 and G2 of Fig. 2.2. While G1 -s
(e,p) G2, G1 ̸-1−1

(e,p)

G2. In particular, the p-hom mapping given in Example 2.2 is not injective, since it

maps both A nodes in G1 to the same A node in G2. Similarly, while G5 -s
(e,p) G6,

G5 ̸-1−1
(e,p) G6 as a p-hom mapping has to map both B nodes in G5 to the B node in G6,

which is not allowed by a 1-1 mapping. 2

Note that subgraph isomorphism is a special case of 1-1 p-hom: G1 is isomorphic

to a subgraph of G2 iff there exists a 1-1 p-hom mapping σ from G1 to G2 that (a) maps

each edge (v,v′) in G1 to an edge (σ(v),σ(v′)) in G2, (b) adopts node label equality,

and moreover, (c) if (σ(v),σ(v′)) is an edge in G2, then (v,v′) must be an edge in G1;

Chapter 2. Graph Homomorphism Revised for Graph Matching 23

in contrast, 1-1 p-hom only requires edges from G1 to find a match in G2, but not the

other way around. Similarly, graph homomorphism is a special case of p-hom.

Remark. For G1 -s
(e,p) G2 (G1 -1−1

(e,p) G2) we require an edge-to-path mapping from

G1 to G2 when G1 is a pattern for a data graph G2 to match. Nevertheless, (1-1) p-

hom can be readily made symmetric that maps paths between G1 and G2. Indeed, one

only need to compute G+
1 , the transitive closure of G1 (in O(|G1|2)-time [Nuu94]), and

check whether G+
1 -s

(e,p) G2 (G+
1 -1−1

(e,p) G2).

2.1.3 Metrics for Measuring Graph Similarity

In practice one often wants to measure the similarity of graphs G1 and G2 although G1

may not be (1-1) p-hom to G2. We next provide two metrics that give a quantitative

measure of the similarity of two graphs in the range of [0, 1]. Let σ be a p-hom

mapping from a subgraph G′
1 = (V ′

1,E
′
1,L

′
1) of G1 to G2.

Maximum cardinality. This metric evaluates the number of nodes in G1 that σ maps

to G2. The cardinality of σ is defined as:

qualCard(σ) =
|V ′

1|
|V1|

.

The maximum cardinality problem for p-hom (resp. 1-1 p-hom), denoted by CPH

(resp. CPH1−1), is to find, given G1,G2, mat() and ξ as input, a (resp. 1-1) p-hom

mapping σ from a subgraph of G1 to G2 such that qualCard(σ) is maximum.

Observe the following. (1) If G1 -s
(e,p) G2 or G1 -1−1

(e,p) G2, then a p-hom mapping

σ with maximum qualCard(σ) is a p-hom mapping from the entire G1 to G2. (2)

The familiar maximum common subgraph problem (MCS) is a special case of CPH1−1

(recall that MCS is to find a subgraph G′
1 of G1 and a subgraph G′

2 of G2 such that (a)

G′
1 and G′

2 are isomorphic, and (b) the cardinality of G′
1 (equivalently, G′

2) is maximum;

see, e.g., [Kan92]).

Overall similarity. Alternatively, we consider the overall similarity of mapping σ.

Assume a weight w(v) associated with each node v, indicating relative importance of

v, e.g., whether v is a hub, authority, or a node with a high degree. The metric is defined

to be

qualSim(σ) =
Σv∈V ′

1
(w(v)∗mat(v,σ(v)))

Σv∈V1w(v)
.

Chapter 2. Graph Homomorphism Revised for Graph Matching 24

CPH maximum cardinality for p-hom

CPH1−1 maximum cardinality for 1-1 p-hom

SPH maximum overall similarity for p-hom

SPH1−1 maximum overall similarity for 1-1 p-hom

Table 2.1: Notations: Optimization problems

Intuitively, the higher the weight w(v) is and the closer v is to its match σ(v), the

better the choice of v is. This metric favors “important” nodes in G1 that can find

highly similar nodes in G2.

The maximum overall similarity problem for p-hom (resp. 1-1 p-hom), denoted by

SPH (resp. SPH1−1) is to compute, given G1,G2, mat() and ξ as input, a (resp. 1-1)

p-hom mapping σ from a subgraph of G1 to G2 such that qualSim(σ) is maximum.

These optimization problems are summarized in Table 2.1.

Example 2.4: Consider graphs G5 and G6 shown in Fig. 2.2. There are two nodes

labeled B in G1, indicated by v1 and v2, respectively. A similarity matrix mat0() is

given as follows:

mat0(A,A) =mat0(D,D) =mat0(E,E) =mat0(v2,B) = 1

mat0(v1,B) = 0.6 mat0(v,u) = 0 for other cases

Let ξ = 0.6, and assume w(v) = 1 for each node v in G5, except w(v2) = 6. Then

G5 is not 1-1 p-hom to G6: given mat0() and ξ, any p-hom mapping from G5 to G6

has to map both v1 and v2 in G5 to the B node in G6, which is not allowed by a 1-1

mapping. Nevertheless, we can still measure the similarity of G5 and G6.

(1) When the maximum cardinality metric is adopted, an optimal 1-1 p-hom mapping

σc is from a subgraph H1 of G5 to G6, where H1 contains nodes A,D,E and v1. Here

σc maps each node v in G5 to a node u in G6 that has the same label as v. The mapping

σc has maximum cardinality with qualCard(σc) = 4
5 = 0.8.

(2) When the maximum similarity metric is used, the optimal 1-1 p-hom mapping σs

is from a subgraph H2 of G5 to G6, where H2 consists of nodes A and v2 only. Here

qualCard(σs) = 1∗1+6∗1
1+1+1+1+6 = 0.7. In contrast, qualCard(σc) = 1∗1+1∗0.6+1∗1+1∗1

1+1+1+1+6 = 0.36,

although σc maps more nodes from G5 to G6 than σs. 2

Chapter 2. Graph Homomorphism Revised for Graph Matching 25

2.2 Intractability and Approximation Hardness

We next establish complexity bounds for the decision problems and optimization prob-

lems associated with p-homomorphism and 1-1 p-homomorphism (see Appendix for

detailed proofs).

2.2.1 Intractability

No matter how desirable, it is intractable to determine whether a graph is p-hom or

1-1 p-hom to another. We remark that while graph homomorphism is special case of

p-hom, there is no immediate reduction from the former to the latter, and vice versa;

similarly for subgraph isomorphism and 1-1 p-hom.

Theorem 2.2.1 Given graphs G1 and G2, a similarity matrix mat() and a threshold ξ,

it is NP-complete to decide whether (a) G1 -s
(e,p) G2, or (b) G1 -1−1

(e,p) G2. These prob-

lems are already NP-hard when both G1 and G2 are acyclic directed graphs (DAGs). It

is NP-hard for 1-1 p-hom when G1 is a tree and G2 is a DAG.

Proof sketch: We first show that this problem is in NP. An NP algorithm is given

as follows: first guess a binary relation R ⊆ V1 ×V2, and then check whether it is a

p-hom mapping. It is in polynomial time (PTIME) to check whether R is a function and

whether it is a p-hom mapping from G1 to G2.

On the other hand, we show that this problem is NP-hard by reduction from the

3SAT problem, which is NP-complete (cf. [GJ79]). 2

In addition, it is unrealistic to expect a polynomial time (PTIME) algorithm for

finding an optimal (1-1) p-hom mapping.

Corollary 2.2.2: The maximum cardinality problem and the maximum overall similar-

ity problem are NP-complete for p-hom and 1-1 p-hom. These problems are already

NP-hard for DAGs. 2

2.2.2 Approximation Hardness

In light of Corollary 2.2.2, the best we can hope for are efficient heuristic algorithms

for finding (1-1) p-hom mappings, with performance guarantees on match quality. Un-

fortunately, CPH, CPH1−1, SPH and SPH1−1 are all hard to approximate. Indeed, there

exist no PTIME algorithms for finding (1-1) p-hom mappings such that the quality of

each mapping found is guaranteed to be within O(1/n1−ε) of its optimal counterpart.

Chapter 2. Graph Homomorphism Revised for Graph Matching 26

Theorem 2.2.3 Unless P = NP, CPH, CPH1−1, SPH and SPH1−1 are not approx-

imable within O(1/n1−ε) for any constant ε, where n is the number of nodes in G1 of

input graphs G1 and G2.

The hardness is verified by a certain reduction from the maximum weighted in-

dependent set problem (WIS). In a graph, an independent set is a set of mutually

non-adjacent nodes. Given a graph with a positive weight associated with each node,

WIS is to find an independent set such that the sum of the weights of the nodes in the

set is maximum. It is known that WIS is NP-complete, and is hard to approximate: it

is not approximable within O(1/n1−ε) for any constant ε, where n is the number of

nodes [Hal00].

To show the approximation bound, we need to use a certain form of reductions.

Recall that to prove NP-hardness, it suffices to find a polynomial-time reduction that

maps instances of one problem to instances of another problem, assuring that the first

problem has a solution iff the other has one [GJ79]. For approximation algorithms,

such reductions are no longer adequate since they do not preserve approximation

bounds. Instead, we need to use approximation factor preserving reduction (AFP-

reduction) [Vaz03].

Let Π1 and Π2 be two maximization problems. An AFP-reduction from Π1 to Π2

is a pair of PTIME functions (f , g) such that

• for any instance I1 of Π1, I2 = f (I1) is an instance of Π2 such that opt
2
(I2) ≥

opt1(I1), where opt1 (resp. opt2) is the quality of an optimal solution to I1

(resp. I2), and

• for any solution s2 to I2, s1 = g(s2) is a solution to I1 such that obj1(s1) ≥
obj2(s2), where obj1() (resp. obj2()) is a function measuring the quality of a

solution to I1 (resp. I2).

AFP-reductions retain approximation bounds.

Proposition 2.2.4:[Vaz03] If (f ,g) is an AFP-reduction from problem Π1 to problem

Π2, and if there is a PTIME algorithm for Π2 with performance guarantee α, then there

is a PTIME algorithm for Π1 with the same performance guarantee α. 2

Here an algorithm A has performance guarantee α if for any instance I,

obj(A(I)) ≥ α opt(I). Theorem 2.2.3 is verified by an AFP-reduction from WIS to

each of CPH, CPH1−1, SPH and SPH1−1. That is, these problems are at least as hard

as WIS when approximation is concerned.

Chapter 2. Graph Homomorphism Revised for Graph Matching 27

2.3 Approximation Algorithms

Despite Theorem 2.2.3, we next provide approximation algorithms for each of the

maximum cardinality problems (CPH, CPH1−1) and the maximum overall similarity

problems (SPH, SPH1−1). Optimization techniques are presented in Appendix.

One of the main results of this section is an approximation bound for CPH,

CPH1−1, SPH and SPH1−1: although the problems are not approximable within

O(1/n1−ε) (Theorem 2.2.3), we establish a bound O(log2(n1n2)/(n1n2)). This is ver-

ified by AFP-reductions (f ,g) from these problems to WIS, by constructing product

graphs of G1 and G2 (see Appendix A for a detailed proof).

Theorem 2.3.1 CPH, CPH1−1, SPH and SPH1−1 are all approximable within

O(log2(n1n2)/(n1n2)), where n1 and n2 are the numbers of nodes in input graphs

G1 and G2, respectively.

Theorem 2.3.1 suggests naive approximation algorithms for these problems. Given

graphs G1(V1,E1,L1), G2(V2,E2,L2), a similarity matrix mat() and a similarity thresh-

old ξ, the algorithms (1) generate a product graph by using function f in the

AFP-reduction, (2) find a (weighted) independent set by utilizing the algorithms

in [BH92, Hal00], and (3) invoke function g in the AFP-reduction to get a (1-1) p-

hom mapping from subgraphs of G1 to G2.

More specifically, for CPH and CPH1−1, we can leverage the approximation al-

gorithm for maximum independent sets given in [BH92], which is in O(nm) time,

where n and m are the numbers of nodes and edges in a graph, respectively. For SPH

and SPH1−1, we can use the algorithm of [Hal00] for WIS, which is in O(nm logn)-

time. Thus the naive approximation algorithms for maximum cardinality and maxi-

mum overall similarity are in O(|V1|3|V2|3)-time and O(|V1|3|V2|3 log(|V1||V2|))-time,

respectively.

Although these naive algorithms possess performance guarantees, they incur a

rather high complexity in both time and space. The cost is introduced by the prod-

uct graphs, which consist of O(|V1||V2|) nodes and O(|V1|2|V2|2) edges.

We next develop more efficient algorithms that operate directly on the input graphs

instead of on their product graph, retaining the same approximation bound. We first

present an algorithm for CPH, and then extend the algorithm to CPH1−1, SPH and

SPH1−1.

Chapter 2. Graph Homomorphism Revised for Graph Matching 28

Approximation algorithm for CPH. The algorithm is referred to as compMaxCard

and is shown in Figures 2.3 and 2.4. Given G1, G2, mat() and ξ as input, it computes

a p-hom mapping σ from a subgraph of G1 to G2, aiming to maximize qualCard(σ).
The algorithm maintains the following data structures to ensure match quality. (a)

A matching list H for nodes in G1. For each node v in H, H[v].good collects candidate

nodes in G2 that may match v via the mapping σ; and H[v].minus is the set of nodes

in G2 that v cannot match via σ. (b) A set I of pairwise contradictory matching pairs

(v,u), where v is a node in G1 and u is a node in G2. For any two pairs (v1,u1), (v2,u2)

in I, if v1 is mapped to u1, then v2 cannot be mapped to u2, and vice versa. (c) An

adjacency list H1 for G1. For each node v in G1, H1[v].prev and H1[v].post store its

“parents” (i.e., the nodes from which there are edges to v) and “children” (i.e., the

nodes to which there are edges from v), respectively. (d) An adjacency matrix H2 for

the transitive closure graph G+
2 of G2 such that H2[u1,u2] = 1 iff (u1,u2) is an edge in

G+
2 , i.e., there is a nonempty path from u1 to u2 in G2.

Here the transitive closure G+(V,E+,L) of graph G(V,E,L) is the graph such that

for all nodes v,v′ ∈V , (v1,v2) ∈ E+ iff there is a nonempty path from v1 to v2 in G.

The algorithm works as follows. It first constructs the adjacency list H1 and the

matching list H for G1 (lines 1–4, Fig. 2.3), where for each v in G1, H[v].good collects

nodes v′ in G2 such that mat(v,v′)≥ ξ, and H[v].minus is initially empty. The transitive

closure graph G+
2 of G2 is then computed and stored in adjacency matrix H2 (lines 5–7).

The mapping σm is initially /0 (line 8), and is computed by a procedure greedyMatch

as follows.

In a nutshell, greedyMatch (Fig. 2.4) picks a node v from H with maximal

H[v].good, and a candidate match u from H[v].good. It then recursively computes

a mapping σ1 provided that (v,u) is a match, and a mapping σ2 without (v,u). It re-

turns the larger one of σ1 ∪{(v,u)} and σ2 to decide whether (v,u) is a good choice.

Meanwhile greedyMatch computes sets I1, I2 of pairwise contradictory matching pairs

and returns the larger one of them as I. It is worth remarking that I is nonempty.

Upon receiving σ and I from greedyMatch (line 10), algorithm compMaxCard re-

moves conflict pairs I from H (line 10) and takes the larger one of σ and σm. (line 11).

It repeatedly invokes greedyMatch until σm is no smaller than H (lines 9–11), i.e., when

σm covers all the remaining nodes in H to be matched. The quality of the mapping re-

turned (line 12) is guaranteed because (a) greedyMatch always picks the larger one of

σ1 ∪{(v,u)} and σ2, and (b) bad choices of I are removed from H at an early stage.

We next give the details of the procedures of compMaxCard.

Chapter 2. Graph Homomorphism Revised for Graph Matching 29

Algorithm compMaxCard

Input: Two graphs G1(V1,E1,L1) and G2(V2,E2,L2), a similarity

matrix mat(), and a similarity threshold ξ.

Output: A p-hom mapping from subgraph of G1 to G2.

from subgraph of G1 to G2.

1. for each node v ∈V1 of graph G1 do

2. H1[v].prev := {v′ | v′ ∈V1,(v′,v) ∈ E1};

3. H1[v].post := {v′ | v′ ∈V1,(v,v′) ∈ E1};

4. H[v].good := {u | u ∈V2,mat(v,u)≥ ξ}; H[v].minus := /0;

5. compute the transitive closure G+
2 (V2,E+

2 ,L2) of graph G2;

6. for each ordered node pair (u1,u2) in G2 do

7. if (u1,u2) ∈ E+
2 then H2[u1][u2] := 1; else H2[u1][u2] := 0;

8. σm := /0;

9. while sizeof(H)> sizeof(σm) do

10. (σ, I) := greedyMatch(H1,H2,H); H := H \ I;

11. if sizeof(σ)> sizeof(σm) then σm := σ;

12. return σm.

Figure 2.3: Approximation algorithm compMaxCard

Chapter 2. Graph Homomorphism Revised for Graph Matching 30

Procedure greedyMatch

Input: Graphs H1, H2, and matching list H for subgraph G1[H].

Output: A p-hom mapping σ for subgraph G1[H] to G2

and a set I of pairwise contradictory matching pairs.

1. if H is empty then return (/0, /0);

2. pick a node v of H and a node u from H[v].good;

3. H[v].minus := H[v].good\{u}; H[v].good := /0;

4. H := trimMatching(v,u,H1,H2,H);

5. for each node v′ in H do /* partition H into H+ and H− */

6. if H[v′].good is not empty

7. then {H+[v′].good := H[v′].good; H+[v′].minus := /0}
8. if H[v′].minus is not empty

9. then {H−[v′].good := H[v′].minus; H−[v′].minus := /0}

10. (σ1, I1) := greedyMatch(H1,H2,H+);

11. (σ2, I2) := greedyMatch(H1,H2,H−);

12. σ := max(σ1 ∪{(v,u)},σ2); I := max(I1, I2 ∪{(v,u)});
13. return (σ, I);

Procedure trimMatching

Input: Node v with matching node u, H1, H2 and H.

Output: Updated matching list H.

1. for each node v′ in H1[v].prev∩H do

/* prune the matching nodes for v’s parent nodes */

2. for any node u′ in H[v′].good such that H2[u′,u] = 0 do

3. H[v′].good := H[v′].good\{u′};

4. H[v′].minus := H[v′].minus∪{u′};

5. for each node v′ in H1[v].post∩H do

/* prune the matching nodes for v’s children nodes */

6. for any node u′ in H[v′].good such that H2[u,u′] = 0 do

7. H[v′].good := H[v′].good\{u′};

8. H[v′].minus := H[v′].minus∪{u′};

9. return H;

Figure 2.4: Procedures greedyMatch and trimMatching

Chapter 2. Graph Homomorphism Revised for Graph Matching 31

(a) Procedure greedyMatch (Fig. 2.4) takes the current matching list H as input. It

computes a p-hom mapping σ from a subgraph of G1[H] to G2, and a set I of conflict

pairs. It selects a candidate match (v,u) as mentioned earlier, moves other nodes in

H[v].good to H[v].minus and sets H[v].good to empty set, since v has already picked

a match u (lines 2–3). Assuming that (v,u) is a match, it updates H by pruning bad

matches for the parent and the children of v in G1, via another procedure trimMatching

(line 4). The updated H is partitioned into two lists, H+ and H−, such that for each

node v′ in H+, H[v′].good is nonempty, i.e., v′ may still find a match provided that (v,u)

is a match; otherwise v′ is included in H− (lines 5–9). Procedure greedyMatch then

recursively computes p-hom mappings σ1 and σ2 for G[H+] and G[H−], respectively

(lines 10–11). It compares the sizes of σ1 ∪{(v,u)} (i.e., the mapping with (v,u)) and

σ2 (i.e., the mapping without (v,u)), and returns the larger one (lines 12–13). It also

computes the set I. If (v,u) is not a good choice then it is included in I2 (line 12), the

set of conflict pairs found when computing σ2.

(b) Procedure trimMatching (Fig. 2.4) inputs a candidate match (v,u) and the current

matching list H. It removes bad matches from H assuming that (v,u) is a match.

That is, for any parent v′ in both H1[v].prev and H, it moves each candidate u′ from

H[v′].good to H[v′].minus if there is no path from u′ to u in G2 (lines 1–4), by the

definition of p-hom. Similarly, it processes v’s children (lines 5–8). The updated H is

then returned (line 9).

Example 2.5: We illustrate how compMaxCard computes a p-hom mapping from a

subgraph of Gp to G of Fig. 2.1. For the lack of space we consider subgraphs G′
1 and

G′
2 of Gp and G, respectively, where G′

1 is induced by {books, textbooks, abooks}, and

G′
2 by {books, categories, booksets, school, audiobooks}. We use the similarity matrix

mate() of Example 2.2, and fix ξ = 0.5. In the following, the nodes labeled with ‘∗’

are the nodes chosen at line 2 in the procedure greedyMatch.

After step 7, the algorithm constructs an initial matching list H for G′
1 (see below),

an adjacency matrix H2 for the transitive closure graph of G′
2, and an adjacent list H1

(G′
2 and H1 are omitted).

Nodes in H good bad

books∗ {books∗,booksets} /0

textbooks {school} /0

abooks {audiobooks} /0

The algorithm then calls greedyMatch to produce a subgraph p-hom mapping from

Chapter 2. Graph Homomorphism Revised for Graph Matching 32

G′
1 to G′

2. At step 2 of greedyMatch, it maps books to books. After step 9, it splits H

into H+ and H−, and H+ is further partitioned into H+
a and H−

a by mapping abooks to

audiobooks (shown below with empty lists omitted).

Nodes good minus

H+ textbooks {school} /0
abooks∗ {audiobooks∗} /0

H− books∗ {booksets∗} /0

H+
a textbooks∗ {school∗} /0

For these lists, σ and I are as follows (empty sets omitted).

σ I

H+
a {(textbooks,school)} {(textbooks,school)}

H− {(books,booksets)} {(books,booksets)}
H+ {(textbooks,school),(abooks,audiobooks)} {(textbooks,school)}

{(books,books),(textbooks,school), {(books,books),
H (abooks,audiobooks)} (books,booksets)}

After removing I from H, the size of H becomes smaller than that of σm, and

compMaxCard returns {(abooks, audiobooks), (textbooks, school), (books, books)} as the

p-hom mapping. 2

Analysis. Algorithm compMaxCard possesses the performance guarantee given in The-

orem 2.3.1 (see Appendix A for a proof).

Proposition 2.3.2: For any G1(V1,E1,L1), G2(V2,E2,L2), mat() and ξ, algo-

rithm compMaxCard finds a p-hom mapping σ from a subgraph of G1 to G2 such

that qualCard(σ) is within O(log2(|V1||V2|)/(|V1||V2|)) of the optimal quality. 2

One can verify that algorithm compMaxCard is in O(|V1|3|V2|2 + |V1||E1||V2|3)
time, and is in O((|V1|+ |V2|)2) space.

Algorithm compMaxCard can be readily converted to approximation algorithms for

CPH1−1, SPH and SPH1−1, as follows.

Approximation algorithm for CPH1−1. A 1-1 p-hom mapping requires that no two

nodes in G1 are mapped to the same node in G2. Minor changes to compMaxCard

suffice to do this: we add an extra step to procedure greedyMatch such that after node

v in H is mapped to u in G2, we remove u from H[v′].good and add u to H[v′].minus

for each node v′ in H other than v. The extra step changes neither the worst-case com-

plexity nor the performance guarantee of compMaxCard. This yields an approximation

algorithm for CPH1−1, referred to as compMaxCard1−1.

Approximation algorithms for SPH and SPH1−1. We develop an approximation

Chapter 2. Graph Homomorphism Revised for Graph Matching 33

algorithm, referred to as compMaxSim, for the maximum overall similarity problem

SPH. The algorithm borrows a trick from [Hal00]. The strategy of [Hal00] for com-

puting WIS is as follows. It first removes nodes with weights less than W/n, where W

is the maximum node weight and n is the number of nodes in a graph. It then partitions

the remaining nodes into logn groups based on theirs weights, such that the weight of

each node in group i (1 ≤ i ≤ logn) is in the range [W/2i,W/2i−1]. Then for each i,

it applies an algorithm for computing maximum independent sets (e.g., the algorithm

of [BH92]) to the subgraph induced by the group i of nodes, and returns the maximum

of the solutions to these groups.

Along the same lines, compMaxSim first partitions the initial matching list H into

log(|V1||V2|) groups, and then it applies compMaxCard to each group. It returns σ with

the maximum qualSim(σ) among p-hom mappings for all these groups. Similarly, an

approximation algorithm is developed for SPH1−1, referred to as compMaxSim1−1. It

is easy to verify that these algorithms are in O(log(|V1||V2|)(|V1|3|V2|2+ |V1||E1||V2|3))
time, and possess the same performance guarantee as compMaxCard.

Optimization Techniques

We next propose techniques to improve the efficiency of our algorithms given above,

while retaining or even improving their match quality. These techniques had been

implemented when conducting the experiments reported in Section 2.4.

Partitioning graph G1. Consider the set S1 of nodes in G1 such that for any node

v ∈ S1, mat(v,u) < ξ for each node u in G2. That is, no node in S1 can find a p-hom

match in G2. Obviously the nodes in S1 do not contribute to any p-hom mapping from

any subgraph of G1 to graph G2. Therefore, we only need to consider the subgraph

G1[V1 \ S1] of G1 instead of entire G1, when computing p-hom mappings from G1 to

G2.

Observe that G1[V1 \ S1] may become disconnected even if G1 is connected. For

example, G1 depicted in Fig. 2.5(a) is connected, in which node C has no p-hom nodes

in G2. After removing node C from G1, the remaining subgraph has three pairwise

disconnected components G11, G12 and G13. It is easy to show:

Proposition 2.3.3: Let graph G1 consist of k pairwise disconnected components G11,

. . ., and G1k. If σi is a maximum p-hom mapping from a subgraph of G1i to G2, then∪i=k
i=1(σi) is a maximum p-hom mapping from a subgraph of G1 to G2. 2

Chapter 2. Graph Homomorphism Revised for Graph Matching 34

A

B C

D E

F G

G1

B

A

11G

GF

E

G13G12

D

(a) Partitioning graph G1

G2 2G+
2
*G

C D

A A

B
C

D
D

B ABC

(b) Compressing graph G+
2

Figure 2.5: Reducing the graph size

This allows us to treat each component separately, and take as the final map-

ping the union of those mappings for the components. Better yet, if some group G1i

contains a single node v, e.g., G12 in Fig. 2.5(a), a match is simply {(v,u)}, where

mat(v,u) ≥ mat(v,u′) for any other node u′ in G2. Note that finding pairwise discon-

nected components is linear-time equivalent to finding strongly connected components,

which is in linear time [CLRS01].

The partitioning strategy may improve match quality. To see this let us examine

the approximation bound y = log2n/n. Obviously, (1) if n = e2 ≈ 7.39, y is maximal,

where e is the base of the natural logarithms; (2) when n ≥ e2, y is monotonically

decreasing; and (3) if n ≤ e2, it is affordable to use an exact algorithm to find the

exact maximum p-hom mapping. Thus when n ≥ e2, the larger n is, the worse the

performance guarantee is. This tells us that reducing G1 to G1[V1 \S1] and partitioning

G1[V1 \S1] to disconnected components indeed improve match quality.

Compressing graph G+
2 . Each strongly connected component (SCC) in G2 forms a

clique in its transitive closure graph G+
2 . By a clique in G we mean a set C of nodes

such that the node induced subgraph G[C] is a complete graph (i.e., any pair of nodes

is connected by an edge).

We can replace each clique in G+
2 with a single node with a self-loop, whose label is

the bag of all node labels in the clique. We denote the compressed graph by G∗
2(V

∗
2 ,E

∗
2),

where each node in V ∗
2 represents a (maximum) clique in G+

2 , and there exists an edge

from nodes u∗1 to u∗2 in G∗
2 iff there is an edge from a node in clique u∗1 to a node in

clique u∗2 in G+
2 . For example, Figure 2.5(b) shows a graph G2, its transitive closure

graph G+
2 and its compressed graph G∗

2. Note that G+
2 is often much smaller than G2.

By capitalizing on bags of labels, our algorithms can be modified such that any

strong (1-1) p-hom mapping they find from a subgraph of G1 to G+
2 is also a strong

(1-1) p-hom mapping from a subgraph of G1 to G2, with the same quality. By com-

Chapter 2. Graph Homomorphism Revised for Graph Matching 35

pressing G2 to G+
2 , the performance of the algorithms is significantly improved. The

compressing process incurs little extra cost since SCCs of G2 can be identified during

the computation of G+
2 [Nuu94].

2.4 Experimental Study

We next present an experimental study of our matching methods in Web mirror detec-

tion. Using real-life and synthetic data, we conducted two sets of experiments to eval-

uate the ability and scalability of our methods for matching similar Web sites vs. (a)

conventional graph simulation [HHK95] and subgraph isomorphism [Bun00], and (b)

vertex similarity based on similarity flooding [MGMR02].

Experimental setting. We used real-life data and synthetic data.

(1) Real-life data. The real-life data was taken from the Stanford WebBase

Project [weba], in three categories: Web sites for online stores, international orga-

nizations and online newspapers, denoted by sites 1, 2 and 3, respectively. For each

Web site, we found an archive that maintained different versions of the same site.

Using the Web data we generated our graphs as follows. We randomly chose a Web

site A in each category. We then produced a set TA of Web graphs, using data from the

archive for A. In each graph, each node was labeled with the content of the page. The

similarity between two nodes was measured by the textual similarity of their contents

based on shingles [BGMZ97].

Skeletons. These Web graphs are typically large. We thus considered their skeletons

that retain only those nodes with a degree above a certain threshold. For each graph

G in TA, we produced its skeleton Gs, which is a subgraph of G such that for each

node v in Gs, its degree deg(v) ≥ avgDeg(G)+α×maxDeg(G), where avgDeg(G)

and maxDeg(G) are the average and maximum node degree in G, respectively, and α
is a constant in [0, 1].

Selection of Web graphs. For each Web site A, we generated TA consisting of 11 graphs

representing different versions of A. Based on TA, we fixed α = 0.2 and produced a

set of Web skeletons. Unfortunately, these graphs were beyond the capability of the

algorithms we could find for computing maximum common subgraphs [cdk]. To fa-

vor [cdk], we also chose top 20 nodes with the highest degree, and constructed another

set of skeletons. The information about the Web graphs and skeletons is reported in

Table 2.2.

Chapter 2. Graph Homomorphism Revised for Graph Matching 36

Web graphs G(V,E,L) Skeletons 1 (α = 0.2) Skeletons 2 (top-20)
Web Sites

of nodes # of edges avgDeg(G) maxDeg(G) # of nodes # of edges # of nodes # of edges

Site 1 20,000 42,000 4.20 510 250 10,841 20 207
Site 2 5,400 33,114 12.31 644 44 214 20 20
Site 3 7,000 16,800 4.80 500 142 4,260 20 37

Table 2.2: Web graphs and skeletons of real life data

Since each set of the graphs represents different versions (snapshots) of the same

Web site, they should match each other. Based on this, we evaluated the accuracy of

our algorithms. More specifically, after TA was generated, we sorted the 11 graphs

based on their timestamp to get a Web graph sequence [PDGM08]. We treated the

oldest one as pattern G1, and tested whether various approaches could match the 10

later versions to G1. We used the percentage of matches found as the accuracy measure

for all the algorithms.

(2) Synthetic data. We also designed a generator to produce graphs, controlled by

two parameters: the number m of nodes and the noise rate noise%. Given m, we

first randomly generated a graph pattern G1 with m nodes and 4×m edges. We then

produced a set of 15 graphs G2 by introducing noise into G1, with added complexity to

make it hard to match G1. More specifically, G2 was constructed from G1 as follows:

(a) for each edge in G1, with probability noise%, the edge was replaced with a path of

from 1 to 5 nodes, and (b) each node in G1 was attached with a subgraph of at most 10

nodes, with probability noise%. The nodes were tagged with labels randomly drawn

from a set L of 5×m distinct labels. The set L was divided into
√

5×m disjoint groups.

Labels in different groups were considered totally different, while labels in the same

group were assigned similarities randomly drawn from [0,1].

(3) Algorithms. We have implemented the following, all in Java: (a) all of our algo-

rithms: compMaxCard, compMaxCard1−1, compMaxSim, and compMaxSim1−1, (b)

the graph simulation algorithm of [HHK95], (c) the algorithm of CDK [cdk] for finding

a maximum common subgraph, denoted by cdkMCS, and (d) vertex similarity based

on the similarity flooding (SF) algorithm of [MGMR02] (we also tested the algorithm

of [BGH+04], which had results similar to those of SF; for the lack of the space we

only report the results of SF).

The experiments were run on a machine with an AMD Athlon 64× 2 Dual Core

CPU and 2GB of memory. Each experiment was repeated over 5 times and the average

is reported here.

Chapter 2. Graph Homomorphism Revised for Graph Matching 37

Accuracy (%) Scalability (seconds)

Algorithms Skeletons 1 (α = 0.2) Skeletons 2 (top-20) Skeletons 1 (α = 0.2) Skeletons 2 (top-20)

site 1 site 2 site 3 site 1 site 2 site 3 site 1 site 2 site 3 site 1 site 2 site 3

compMaxCard 80 100 60 80 100 60 3.128 0.108 1.062 0.078 0.066 0.080

compMaxCard1−1 40 100 30 80 100 40 2.847 0.097 0.840 0.054 0.051 0.064

compMaxSim 80 100 50 90 100 60 3.197 0.093 0.877 0.051 0.051 0.062

compMaxSim1−1 20 80 10 90 100 40 2.865 0.093 0.850 0.053 0.049 0.039

SF 40 30 20 80 80 70 60.275 3.873 7.812 0.067 0.158 0.121

VSM 10 10 10 50 80 30 38.903 0.625 3.874 0.012 0.026 0.041

cdkMCS N/A N/A N/A 67 100 0 N/A N/A N/A 156.931 189.16 0.82

Table 2.3: Accuracy and scalability on real life data

Experimental results. We next present our experimental results. In both sets of ex-

periments, we fixed the threshold for matching to be 0.75; i.e., a graph G1 is said

to match G2 if there is a mapping σ from G1 to G2 such that qualCard(σ) ≥ 0.75

(resp. qualSim(σ); see Section 2.1). We also assumed a uniform weight w(v) = 1 for

all nodes v when measuring the overall similarity. We used a unified accuracy mea-

sure defined above. This is because it is impractical to determine whether two graphs

exactly match or not, and the two input graphs were guaranteed to match in all the

experiments when generated. Recall that the problems are NP-hard (see Section 2.2).

Exp-1: Accuracy and efficiency on real-life data. In the first set of experiments, we

evaluated the accuracy and efficiency of (1-1) p-hom against the conventional notions

of graph matching as well as vertex similarity (SF), using the sets of Web skeletons.

In this set of experiments, graph simulation did not find matches in almost all the

cases. This shows that the graph simulation algorithm, which aim at finding matches

for an entire graph, is too restrictive when matching Web sites. As a result, we opt to

report the results of our approximation algorithms, cdkMCS and SF only.

The accuracy and efficiency results are shown in Table 2.3. (1) In most cases, our

algorithms found more than 50% of matches. (2) The p-hom algorithms found more

matches than the 1-1 p-hom ones since the latter pose stronger requirements than the

former. (3) All algorithms found more matches on sites 1 and 2 than site 3 since a

typical feature of site 3 (online newspapers) is its timeliness, reflected by the rapid

changing of its contents and structures.

On all graphs in skeletons 1, cdkMCS did not run to completion. While

compMaxCard and compMaxSim found more than 50% of matches, SF found no more

than 40%. On skeletons 2, all of our algorithms found more matches than cdkMCS. In

particular, on site 3 cdkMCS found no matches at all. In contrast, our algorithms found

up to 60% of matches on the same data. Compared with SF, all of our algorithms

Chapter 2. Graph Homomorphism Revised for Graph Matching 38

40

50

60

70

80

90

100

100 200 300 400 500 600 700 800
A

cc
ur

ac
y

(%
)

The size m (# of nodes in G1)

compMaxCards

compMaxCard1-1

compMaxSims

compMaxSim1-1

(a) Accuracy w.r.t. the size m

40

50

60

70

80

90

100

2 4 6 8 10 12 14 16 18 20

A
cc

ur
ac

y
(%

)

The noise rate (%)

compMaxCards

compMaxCard1-1

compMaxSims

compMaxSim1-1

(b) Accuracy w.r.t. the noise rate

40

50

60

70

80

90

100

0.5 0.6 0.7 0.8 0.9 1.0

A
cc

ur
ac

y
(%

)

The similarity threshold ξ

compMaxCards

compMaxCard1-1

compMaxSims

compMaxSim1-1

(c) Accuracy w.r.t. the threshold ξ

Figure 2.6: Accuracy on synthetic data

performed better on sites 1 and 2, whereas SF did better on site 3. However, when the

size of Web sites increased, the performance of SF deteriorated rapidly.

Our algorithms took less than 4 seconds in all these cases, while cdkMCS took 180

seconds even for graphs with only 20 nodes. Note that although sites 2 and 3 are about

the same size, the running times of cdkMCS on them are not comparable. While the

running time of SF was comparable to our algorithms on small Web sites (skeleton 2),

it took much longer on large sites (skeleton 1).

From the results we can see the following: our algorithms (1) perform well on

both the accuracy and efficiency on different types of Web sites, (2) find more matches

than cdkMCS and SF, and (3) are much more efficient and robust than the other two

methods.

Exp-2: Accuracy and efficiency on synthetic data. In the second set of experiments,

using graphs randomly generated, we evaluated the performance of our algorithms and

the graph simulation algorithm of [HHK95], denoted by graphSimulation. However,

we could not evaluate cdkMCS and SF, since cdkMCS did not run to completion on

large graphs, and SF found constantly 0% of matches.

We investigated (a) the accuracy of our four algorithms, and (b) the effi-

Chapter 2. Graph Homomorphism Revised for Graph Matching 39

ciency of these algorithms and graphSimulation. We do not show the accuracy of

graphSimulation as it found 0% of matches in all the cases. We evaluated the effects

of the following parameters on the performance: the number of nodes m in G1, the

noise ratio noise% and the node similarity threshold ξ. In each setting, the accuracy

was measured by the percentage of matches found between G1 and a set of 15 graphs

(G2) as mentioned above.

(1) Varying the size of G1. To evaluate the impact of graph sizes on the accuracy and

the scalability, we fixed noise% = 10% and ξ = 0.75, while varying m from 100 to 800,

where the number of nodes in G2 was in the range [260,2225].

The accuracy results are reported in Fig. 2.6(a), which show that our approxima-

tion algorithms have accuracy above 65%, and are insensitive to the size of G1. The

scalability results are reported in Fig. 2.7(a), which show that all the algorithms scale

well with the size m. The larger G1 is, the longer the algorithms take, as expected.

(2) Varying the noise. We evaluated the accuracy and performance of the algorithms

w.r.t. noise%: fixing m = 500 and ξ = 0.75, we varied noise% from 2% to 20%, where

the number of nodes in G2 was in the range [650,2100] accordingly.

Figure 2.6(b) shows that the accuracy of our algorithms is sensitive to the noise

rate. But the accuracy is still above 50% even when noise% = 20% and G2 had 2000

nodes. Figure 2.7(b) shows that while the scalability of graphSimulation is sensitive to

noise%, our algorithms are not. All these algorithms scale well with noise%.

(3) Varying the similarity threshold. Finally, we evaluated the impact of ξ: fixing

m = 500 and noise% = 10%, we varied ξ from 0.5 to 1.0, where the number of nodes

in G2 was about 1,300.

Figure 2.6(c) shows that the accuracy of our approximation algorithms is not very

sensitive to ξ, with accuracy above 70% in all the cases. When ξ is between 0.6 and

0.8, the accuracy is relatively lower. This is because (a) when ξ is low ([0.5, 0.6]), it

is relatively easy for a node in G1 to find its matching nodes in G2; (b) when ξ is high

(above 0.8), the chances for each node in G1 to find its copy in G2 are higher, by the

construction of G2. Figure 2.7(c) tells us that the scalability of all these algorithms is

indifferent to ξ.

Summary. From the experimental results we find the following. (a) The notions of (1-

1) p-hom are able to identify a large number of similar Web sites that are not matched

by graph simulation, subgraph isomorphism and vertex similarity. On a set of organi-

Chapter 2. Graph Homomorphism Revised for Graph Matching 40

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

100 200 300 400 500 600 700 800
T

im
e

(s
)

The size m (# of nodes in G1)

compMaxCards

compMaxCard1-1

compMaxSims

compMaxSim1-1

graphSimulation

(a) Scalability w.r.t. the size m

 20

 25

 30

 35

 40

 45

2 4 6 8 10 12 14 16 18 20

T
im

e
(s

)

The noise rate (%)

compMaxCards

compMaxCard1-1

compMaxSims

compMaxSim1-1

graphSimulation

(b) Scalability w.r.t. the noise rate

 0

 5

 10

 15

 20

 25

 30

0.5 0.6 0.7 0.8 0.9 1.0

T
im

e
(s

)

The similarity threshold ξ

compMaxCards

compMaxCard1-1

compMaxSims

compMaxSim1-1

graphSimulation

(c) Scalability w.r.t. the threshold ξ

Figure 2.7: Scalability on synthetic data

zation sites, the accuracy of all of our algorithms is above 80%, as opposed to 0%, 0%

and 30% by graphSimulation, cdkMCS and SF, respectively. (b) Our algorithms scale

well with the sizes of the graphs, noise rates, and similarity threshold. They seldom

demonstrated their worst-case complexity. Even for G1 of 800 nodes and G2 of 2000

nodes, all of our algorithms took less than two minutes.

2.5 Summary

We have proposed several notions for capturing graph similarity, namely, p-hom, 1-1

p-hom, and quantitative metrics by maximizing either the number of nodes matched or

the overall similarity. These notions support edge-to-path mappings and node sim-

ilarity. We have established the intractability and the hardness to approximate for

these problems. Despite the hardness, we have developed approximation algorithms

for these problems, with provable guarantees on match quality. We have verified the

effectiveness of our techniques using Web site matching as a testbed. Our experimental

results have shown our methods are able to identify a number of similar Web sites that

cannot be matched either by the conventional notions of graph matching or by vertex

similarity alone.

Chapter 3

Graph Simulation Revised for Graph

Pattern Matching

Graph pattern matching is to find all matches in a data graph G for a given (usually

small) pattern graph P. It has been increasingly used in computer vision, knowledge

discovery, biology, cheminformatics, dynamic network traffic, and recently, social net-

works and intelligence analysis.

We have extended traditional graph homomorphism in Chapter 2, and have seen

that the extension, P-homomorphism, is capable of capturing more structural simi-

larity in graph matching applications. However, till now the graph pattern matching

is typically defined in terms of functions. This makes graph pattern matching an NP-

complete problem, and hence, hinders its scalability in finding exact or inexact matches

over large graphs. Moreover, as will be seen, the requirement of a (bijective) function

is often too restrictive in identifying patterns in emerging applications. This highlights

the need for a revision of graph pattern matching, which can be computationally effi-

cient.

Simulation between graphs is proved useful in defining graph similarities. On one

hand, simulation preserves structural similarity. On the other hand, the simulation pre-

order has been shown to be in low PTIME. Nevertheless, traditional graph simulation is

also too restrictive for identifying patterns in large graphs. In this chapter we consider

revisions of graph simulations, and evaluate how the revision helps in graph pattern

matching.

42

Chapter 3. Graph Simulation Revised for Graph Pattern Matching 43

3.1 Graph Pattern Matching Problem

Graph pattern matching is to find all matches in a data graph G for a given pattern

graph P. It has been increasingly used in computer vision, knowledge discovery, bi-

ology, cheminformatics, dynamic network traffic, and recently, social networks and

intelligence analysis (e.g., [BKS02, CGK05, CYD+08, TFGER07, ZCO09]).

Pattern matching is usually defined in terms of subgraph isomorphism, which is to

find all subgraphs of G that are isomorphic to P (see [Gal06] for a survey). That is,

a match of P is a subgraph G′ of G such that there exists a bijective function f from

the nodes of P to the nodes of G′, and (a) for each node v in G′, v and f (v) have the

same label, and (b) there exists an edge from v to v′ in P if and only if (f (v), f (v′))

is an edge in G′. This makes graph pattern matching NP-complete, and hence, hinders

its scalability in finding exact matches. Moreover, a bijective function is often too

restrictive to identify patterns in emerging applications, as illustrated by the following

real-life example taken from [Nat00].

Example 3.1: Consider the structure of a drug trafficking organization [Nat00], de-

picted as a pattern graph P0 in Fig. 3.1. A “boss” (B) oversees the operations through

a group of assistant managers (AM). An AM supervises a hierarchy of low-level field

workers (FW), up to 3 levels as indicated by the edge label 3. The FWs deliver drugs,

collect cash and run other errands. They report to AMs directly or indirectly, while

the AMs report directly to the boss. The boss may also convey messages through a

secretary (S) to the top-level FWs (denoted by the edge label 1).

A drug ring G0 is shown in Fig. 3.1 in which A1, . . . ,Am are AMs, while Am is both

an AM and the secretary (S).

One wants to identify all suspects involved in the drug ring [Nat00], by finding

matches of P0 in G0. However, graph pattern matching via subgraph isomorphism

would not be able to find these. Indeed, observe the following.

(1) Nodes AM and S in P0 should be mapped to the same node Am in G0, which is not

allowed by a bijection.

(2) The node AM in P0 corresponds to multiple nodes A1, . . . ,Am in G0. This relation-

ship cannot be captured by a function from the nodes of P0 to the nodes of G0. This

suggests that we should use relations instead of functions when characterizing certain

communities (matches).

(3) The edge from AM to FW in P0 indicates that an AM supervises FWs within 3 hops.

Chapter 3. Graph Simulation Revised for Graph Pattern Matching 44

Figure 3.1: Drug trafficking: Pattern and data graph

It should be mapped to a path of a bounded length in G0 rather than to an edge. In

a variety of applications one wants to inspect the connectivity of a pair of nodes via

a path of an arbitrary length [CHKZ03, JXRF09, WHY+06] or with a bound on the

number of hops (e.g., 3, 1 in P0) [CL07, CHKZ03, ZCO09]. Edge-to-edge mapping of

subgraph isomorphism is not able to specify such connectivity in a data graph. 2

These tell us that graph pattern matching via subgraph isomorphism is often too

strict to identify communities in real-world networks, not to mention its intractability.

Below we first define data graphs and pattern graphs. We then introduce the notion

of bounded simulation. Finally, we state the revised graph pattern matching problem.

3.2 Graph Pattern Matching Revised

Below we first define data graphs and pattern graphs. We then introduce the notion of

bounded simulation. Finally, we state the revised graph pattern matching problem.

3.2.1 Data Graphs and Pattern Graphs

Data graph. A data graph is a directed graph G = (V,E, fA), where (1) V is a finite set

of nodes; (2) E ⊆ V ×V , in which (u,u′) denotes an edge from node u to u′; and (3)

fA(u) is a function such that for each node u in V , fA(u) is a tuple (A1 = a1, . . . ,An =

an), where ai is a constant, and Ai is referred to as an attribute of u, written as u.Ai = ai.

Intuitively, the attributes of a node carry the content of the node, e.g., label, key-

words, blogs, comments, rating [AYBB07].

We shall use the following notations. (1) A path ρ in graph G is a sequence of

nodes v1/. . ./vn such that (vi,vi+1) is an edge in G for each i ∈ [1,n− 1]. (2) The

Chapter 3. Graph Simulation Revised for Graph Pattern Matching 45

length of the path ρ, denoted by len(ρ), is n−1, i.e., it is the number of edges in ρ. (3)

The path ρ is nonempty if len(ρ) ≥ 1. Abusing notations for trees, we refer to v2 as a

child of v1 (or v1 as a parent of v2), and vi as a descendant of v1 for i ∈ [2,n].

Patterns. A pattern graph is defined as P = (Vp,Ep, fv, fe), where (1) Vp and Ep are

the set of nodes and the set of directed edges, respectively, as defined for data graphs;

(2) fv is a function defined on Vp such that for each node u, fv(u) is the predicate of

u, defined as a conjunction of atomic formulas of the form A op a; here A denotes an

attribute, a is a constant, and op is a comparison operator <,≤,=, ̸=,>,≥; (3) fe is

a function defined on Ep such that for each edge (u,u′), fe(u,u′) is either a positive

integer k or a symbol ∗.

When fv(u) specifies a node label A only, we simply write fv(u) as A. We also omit

fe(u,u′) when it is 1.

Intuitively, the predicate fv(u) of a node u specifies a search condition. As will be

seen shortly, an edge (u,u′) in a pattern P is mapped to a path ρ in a data graph G, and

fe(u,u′) is a bound on the length of ρ when it is not ∗.

Traditional graph patterns [Gal06] are a special case of the patterns defined above,

when (1) a node has a unique attribute, its label, and (2) all edges have the same bound

1. In [ZCO09] the same bound δ (≥ 1) is also imposed on all edges, and a node carries

its label as its only attribute.

Example 3.2: Figure 3.1 (a) depicts a pattern P0, in which an edge is labeled with

either 1 or 3. Each node denotes a suspect, with its predicate (omitted from the figure)

defined in terms of characterizations discovered by law enforcement, such as his track-

record and the density of contacts [Nat00].

As another example, P1 in Fig. 3.3 is a pattern taken from social matching [TM05].

In P1, each node denotes a person, with a predicate specifying her job title and hobby.

To start up a company, user A wants to find in, e.g., Facebook, (1) a software engineer

(SE) and (2) a human-resource (HR) expert, both within 2 hops; and (3) sale department

managers (DM) who are within 1 hop of SE and 2 hops of HR, are connected to A

through a chain of friends, and play golf.

Pattern P2 in Fig. 3.3 depicts a pattern in e.g., Twitter or Google Wave. Each

node in P2 denotes a person, with a predicate specifying her academic field, e.g., CS,

Bio (biology), Med (Medicine) and Soc (Sociology). If a person in G2 works in an

area included in an specified academic field, then the person satisfies the predicates

specifying the field. Assume that nodes DB and AI have attributes ‘dept’=CS ; Gen

Chapter 3. Graph Simulation Revised for Graph Pattern Matching 46

G1 G4 G63G

C

A

D

B

A

B C C

A A
B C

D D

E E

A B

E C

D D

A B C

D

G2 G5

A

B C

E

D

Figure 3.2: Graph simulation vs. p-similarity

(genetics) and Eco (ecology) have attributes ‘dept’=Bio . A CS person B wants to

find collaborators in biology (within 2 hops), sociology (3 hops) and in medicine who

are mutually connected to B via chains of friends. In addition, the Biology researchers

should have connections to people in sociology (2 hops) and medicine (3 hops). 2

3.2.2 P-Similarity: a first revision

We propose p-similarity, as a first step for revising the traditional graph simulation.

p-similarity. Graph G1 is said to be p-similar to G2, denoted by G1 Ep G2, if there

exists a binary relation Sp ⊆V1 ×V2 such that for each (v,u) ∈ S,

(1) the attributes fA(v) of v satisfies the predicate fv(u) of u; that is, for each atomic

formula A op a in fv(u), v.A = a′ is defined in fA(v) and moreover, a′op a; and

(2) for each edge (v,v′) in E1, there exists a nonempty path u/. . ./u′ in G2 such that

(v′,u′) ∈ Sp, i.e., all the children of v match some descendants of u via Sp; and

(3) for every node v in V1 there exist (possibly multiple) nodes u in V2 such that (v,u)

is in S, i.e., each node in G1 is mapped to a nonempty set of nodes in G2.

We refer to Sp as a p-similarity relation from G1 to G2.

Graph simulation. Recall (from e.g., [ABS00]) that G1 is said to be simulated by G2,

denoted by G1 ≼(e,e) G2, if there is a binary relation R(e,e) ⊆V1 ×V2 such that for each

(v,u) ∈ R(e,e), (1) L1(v) = L2(u), i.e., v and u have the same label; (2) for each edge

(v,v′) in E1, there is an edge (u,u′) in E2 such that (v′,u′) ∈ R(e,e), i.e., all the children

of v match children of u; and (3) for each node v in V1, (v,u) ∈ R(e,e) for some u in V2.

Note that graph simulation is a special case of p-similarity when (1) node label

equality is required instead of satisfiability of predicates, and (2) edges in G1 are only

allowed to map to edges in G2.

Example 3.3: Consider the pattern P0 and data graph G0 depicted in Figure 3.1. One

can verify that G0 Ep P0. Indeed, the following p-similarity relation maps edges in P0

Chapter 3. Graph Simulation Revised for Graph Pattern Matching 47

to paths in G0 (where i ∈ [1,m], j ∈ [1,8]):

B 7→ B

AM 7→ Ai

FW 7→ Wj

S 7→ Am

As another example, consider graphs depicted in Fig. 3.2. In each pair of the

graphs, assume that v satisfies the predicates of u if u and v have the same label. One

can see the following.

(1) G1 ̸≼e,e G2 since there is no binary relation that preserves the edges of G1 in G2,

e.g., (A,B) in G1 cannot find a match in G2. In contrast, G1 Ep G2; an example p-

similarity relation consists of (v,u) for each v in G1 and u in G2 that have the same

label. Here edge (A,B) in G1 is mapped to a path A/D/B in G2.

(2) G3 ̸≼e,e G4 but G3 Ep G4, for the same reason as (1).

(3) G5 ≼(e,e) G6 and G5 Ep G6. Indeed, a p-similarity relation Sp is the same as the one

in (1), so is a simulation relation. Observe that the node labeled D in G5 is necessarily

mapped to both nodes labeled D in G6; similarly for the E node in G5. 2

This example shows that there exist graphs G1,G2 such that G1 is p-similar to G2

whereas G1 is not simulated by G2. In contrast, below we show that if G1 is simulated

by G2 then G1 must be p-similar to G2.

Proposition 3.2.1: For any graphs G1,G2, if G1 ≼(e,e) G2 then G1 Ep G2. 2

Proof sketch: A simulation relation is also a p-similarity relation since each edge is a

path and every similarity relation subsumes equality. 2

This shows that simulation is a stronger notion than p-similarity. As remarked

earlier, simulation is often too restrictive: a graph can only be mapped to highly similar

graphs by simulation. Indeed, many similar graphs in practice can be matched via p-

similarity but not by simulation.

3.2.3 Bounded Graph Simulation

We have proposed P-similarity, which maps edges in patterns to paths in data graphs.

In real life applications one may be interested at mappings from a pattern edge to paths

in the data graphs having bounded lengths. In light of this, we now introduce bounded

simulation, a generalization of p-similarity with length bounds on the pattern edges.

Consider a data graph G = (V,E, fA) and a pattern P = (Vp,Ep, fv, fe).

Chapter 3. Graph Simulation Revised for Graph Pattern Matching 48

(A)

(SE) (HR)

(DM,‘golf’)

2 2

1 2
∗

(A)

(HR)

(SE) (HR,SE)

(DM,‘golf’)l (DM,‘golf’)r

(Med)

(CS) (Bio)

(Soc)

∗

∗

3

2

3 2

(Med)

(Gen)

(Eco)

(Chem)

(Soc)

(DB)

(AI)

P1 G1

P2 G2

Figure 3.3: Bounded simulation

Bounded simulation. The graph G matches the pattern P via bounded simulation,

denoted by PEG, if there exists a binary relation S ⊆Vp×V such that for each (u,v)∈
S:

(1) the attributes fA(v) of v satisfies the predicate fv(u) of u; that is, for each atomic

formula A op a in fv(u), v.A = a′ is defined in fA(v) and moreover, a′op a; and

(2) for each edge (u,u′) in Ep, there exists a nonempty path ρ = v/. . ./v′ in G such

that (a) (u′,v′) ∈ S, and (b) len(ρ)≤ k if fe(u,u′) is a constant k.

We refer to the relation S as a match in G for P.

Intuitively, (u,v) ∈ S if (1) the node v in G satisfies the search condition specified

by fv(u) in P, and (2) each edge (u,u′) in P is mapped to a nonempty path ρ = v/. . ./v′

in G, such that the length of ρ is bounded by k if fe(u,u′) = k. If fe(u,u′) = ∗, len(ρ)
is not bounded. Observe that the child u′ of u is mapped to a descendant v′ of v via S.

Note that there exists a path ρ from u to u′ with len(ρ)≤ k iff the shortest path from

u to u′ is no longer than k, i.e., the distance from u to u′ is no larger than k.

Example 3.4: In Fig. 3.1, a match S0 in G0 for P0 maps B to B, AM to A1, . . . ,Am, S

to Am, and FW to Wi where i ∈ [1,6]. Observe that in p-similarity, FW is mapped to all

W in G0. In the presence of bounds over edges (AM,FW) and (FM,AW), W7 and W8 are

not matches for FW .

Next consider graphs and pattern graphs given in Fig. 3.3.

(1) P1 E G1. Indeed, a match S1 in G1 for P1 is by mapping (a) A to A, (b) SE to both

(HR, SE) and SE, (c) HR to HR and (HR, SE), and (d) DM to both (DM,’golf’) nodes in G1.

Here both HR and SE in P1 are mapped to the same node (HR, SE) in G1, and DM is

Chapter 3. Graph Simulation Revised for Graph Pattern Matching 49

mapped to two nodes (DM, ’golf’) in G1. Further, the edge (A, SE) in P1 is mapped to

paths in G1. These are not allowed by bijective functions. One can verify that P1 is not

isomorphic to any subgraph of G1.

(2) P2 E G2. A match S2 in G2 for P2 is by mapping CS to DB, Bio to Gen and Eco, Med

to Med, and Soc to Soc. However, P2 is not isomorphic to any subgraph of G2. Here CS

cannot be mapped to AI since there is no path within 3 hops from AI to Soc as required

by the edge (CS, Soc) in P2.

(3) P2 5 G3, where G3 is the same as G2 except that the edge (DB, Gen) is dropped.

Indeed, CS can no longer find a match in G3 that is within 3 hops to Soc. 2

Remark. Observe the following. (1) A match S is a relation rather than a function.

Hence, for each u in Vp there may exist multiple nodes v in V such that (u,v) is in S,

i.e., each node in P is mapped to a nonempty set of nodes in G.

(2) p-similarity is a special case of bounded simulation, by only allowing patterns in

which all the edges are labeled ∗, i.e., edges are mapped to paths of arbitrary lengths.

(3) Graph simulation [HHK95] is a special case of bounded simulation, by only allow-

ing patterns in which (a) all the nodes carry their labels as the only attributes, and (b)

all the edges are labeled 1, i.e., only edge-to-edge mappings are allowed.

(4) As opposed to subgraph isomorphism, bounded simulation supports (a) simulation

relations rather than bijective functions, (b) predicates specifying search conditions

based on the contents of nodes, and (c) edges to be mapped to (bounded) paths instead

of edge-to-edge mappings.

(5) One can readily extend data graphs and patterns by incorporating edge colors to

specify, e.g., various relationships [AYBB07]. We can extend bounded simulation by

requiring match on edge colors, to enforce relationships in a pattern to be mapped to

the same relationships in a data graph.

Maximum match. There may be multiple matches in a graph G for a pattern P.

Nevertheless, below we show that there exists a unique maximum match in G for P.

That is, there exists a unique match SM in G for P such that for any match S in G for

P, S ⊆ SM (see the appendix for a proof).

Proposition 3.2.2: For any graph G and pattern P, if P E G, then there is a unique

maximum match in G for P. 2

Intuitively, SM captures all nodes of a community that match the pattern P in a

Chapter 3. Graph Simulation Revised for Graph Pattern Matching 50

(Med)

(DB)

(Soc)

(Gen)

(Eco)

Gr

2

3

1

3

2

1

1

2

3

(a) (b)

Figure 3.4: Result Graph

network G. Note that the cardinality |SM| of SM is bounded: |SM| ≤ |V ||Vp|, where

V (resp. VP) is the set of nodes in G (resp. P). For instance, the matches S0,S1,S2 of

Example 3.4 are maximum.

Result graph. To better illustrate the mappings in terms of graphs, we introduce result

graphs to represent maximum matches. The result graph Gr = (Vr,Er) is a graph

representation of the maximum match S in G for P = (Vp,Ep), where (1) Vr is the set

of nodes of G in S, and (2) there is an edge er = (v1,v2) ∈ Er if and only if there is an

edge (u1,u2) ∈ Ep, such that (u1,v1) ∈ S and (u2,v2) ∈ S.

Example 3.5: Consider the result graph Gr for the pattern P2 of G2 in Example 3.4,

shown in Fig. 3.4(a). (1) The graph Gr contains all nodes in G2 that are mapped to

some pattern node in P2, and (2) each edge in Gr corresponds to a pattern edge in P2,

e.g., edge (DB,Soc) in Gr denotes a path of length 3 from DB to Soc, corresponding to

(CS,Soc) in P2.

We also consider a pattern P′ and a data graph from YouTube video network (see

Section 3.4 for details), in which each node denotes a video with attributes such as

submitter, category, length, rate and “age” (the number of days since uploaded), and

edges represent a recommendation relation. A pattern P′ is to find the videos longer

than 2 minutes and are more than one year old (p3), recommending videos having com-

ments less than 16 items and having been viewed 700 times (p2), and from which the

videos uploaded by “neil010” is recommended (p4); moreover, from videos matching

p4, both videos in category “People” with rating score larger than 4.5 (p1) and videos

in category “Travel & Places” with less than 30 ratings (p5) are recommended.

Figure 3.4(b) depicts the result graph G′
r, which represents the maximum match

found in the network. Observe that (1) one pattern node can be mapped to multiple

Chapter 3. Graph Simulation Revised for Graph Pattern Matching 51

data nodes, in different components, e.g., node p1 in P′ is mapped to 3 nodes in G′
r, and

(2) different pattern nodes can be mapped to a single data node, e.g., video presented

by node 2499 satisfies the predicates carried in both p2 and p3.

Moreover, while graph matching via subgraph isomorphism may produce expo-

nential matched subgraphs, result graphs represent results more succinctly. 2

3.2.4 The Graph Pattern Matching Problem

Based on graph patterns and bounded simulation given above, we revise graph pattern

matching as follows.

The graph pattern matching problem is to find, given any data graph G and pattern

graph P, the maximum match in G for P if P E G.

By Proposition 3.2.2, the problem is well defined.

3.3 Algorithms for Graph Pattern Matching

We next investigate the graph pattern matching problem. The main result of this section

is the following.

Theorem 3.3.1 For any pattern graph P = (Vp,Ep, fv, fe) and data graph G =

(V,E, fA), it is in O(|V ||E|+ |Ep||V |2 + |Vp||V |) time to decide whether P E G, and

if so, to compute the maximum match in G for P.

As remarked earlier, it takes O((|V |+ |Vp|)(|E|+ |Ep|)) time to decide graph sim-

ulation from P to G [HHK95]. This tells us that bounded simulation does not make

our lives much harder since (1) P is typically much smaller than G in practice, and (2)

|E| is in O(|V |2) in the worst case. As opposed to the NP-hardness of its traditional

counterpart via subgraph isomorphism, the revised notion of graph pattern matching

allows us to find matches in polynomial time.

We next prove Theorem 3.3.1 by providing an algorithm for graph pattern matching

with the desired properties.

Algorithm. The algorithm, referred to as Match, is shown in Fig. 3.5. Given P and G,

it returns a maximum match S in G for P if P E G, and it returns empty set /0 otherwise.

Before illustrating the algorithm, we first present notations it uses. We use u,u′ to

denote nodes in the pattern P, and x,y,z for nodes in the data graph G. (1) We use

a distance matrix M to maintain the distances between all pairs of nodes in G. (2)

Chapter 3. Graph Simulation Revised for Graph Pattern Matching 52

Input: Pattern P = (Vp,Ep, fv, fe) and data graph G = (V,E, fA).

Output: The maximum match S if P E G, and /0 otherwise.

1. compute the distance matrix M of G;

2. for each (u′,u) ∈ Ep and each x ∈V do

3. compute anc(fe(u′,u), fv(u′),x), desc(fe(u′,u), fv(u′),x);

4. for each u ∈Vp do

5. mat(u) := {x | x ∈V, fA(x) satisfies fv(u),

and out-degree(x) ̸= 0 if out-degree(a) ̸= 0};

6. premv(u) := {x | x ∈V,out-degree(x) ̸= 0, and

̸ ∃(u′,u) ∈ Ep (x′ ∈mat(u), fA(x) satisfies fv(u′),

and len(x/ · · ·/x′)≤ fe(u′,u))};

7. while (there exists a node u ∈Vp with premv(u) ̸= /0) do

8. for (each (u′,u) ∈ Ep and each z ∈ premv(u)∩mat(u′)) do

9. mat(u′) :=mat(u′)\{z};

10. if (mat(u′) = /0) then return /0;

11. for each u′′ with (u′′,u′) ∈ Ep do

12. for (z′ ∈ anc(fe(u′′,u′), fv(u′′),z)∧ z′ /∈ premv(u′)) do

13. if (desc(fe(u′′,u′), fv(u′),z′)∩mat(u′) = /0)

14. then premv(u′) := premv(u′)∪{z′};

15. premv(u) := /0;

16. S := /0;

17. for (u ∈Vp and x ∈mat(u)) do S := S∪{(u,x)};

18. return S;

Figure 3.5: Algorithm Match

For each node u in the pattern P, we use a set mat(u) to record nodes in G that may

match u, and a set premv(u) for those nodes that cannot match any parent of u. (3)

For each node x ∈ V and edge (u′,u) ∈ Ep, anc(fe(u′,u), fv(u′),x) records nodes x′ in

the graph G such that (i) the distance from x′ to x is within the bound imposed by fe,

i.e., len(x′/ · · ·/x)≤ fe(u′,u), and (ii) fA(x′) satisfies the predicate fv(u′) defined on u′;

similarly for desc(fe(u,u′), fv(u′),x), for descendants of x.

Algorithm Match first computes the distance matrix M for G (line 1). Using M, it

then computes anc() and desc() by inspecting the predicates and bounds specified in P

Chapter 3. Graph Simulation Revised for Graph Pattern Matching 53

(lines 2-3). For each pattern node u ∈Vp, Match also initializes mat(u) and premv(u)

based on P and M (lines 4-6).

For each parent node u′ of u (i.e., (u′,u) ∈ Ep), Match then refines mat(u′) by

removing those nodes in G that cannot match u′, namely, nodes z ∈ premv(u) (lines 8-

9). Moreover, it utilizes z to identify nodes z′ that cannot match any parent u′′ of u′, and

includes z′ in premv(u′) (lines 11-14). More specifically, z′ is not a candidate match

of u′′ if z is the only descendant of z′ that is within the bound fe(u′′,u′), satisfies the

predicate fv(u′), and is in mat(u′).

The process (lines 7-15) iterates until no mat() can be reduced, i.e., if premv(u)

is empty for all pattern node u (line 7). The nodes remaining in mat(u) are those that

match u, and are collected in S, which is returned as the match (lines 16-18). If mat(u)

is empty for any u ∈Vp in the process, u cannot find a match in G, and Match returns

/0 (line 10).

Example 3.6: We show how Match computes the maximum match in graph G2 for

pattern P2 of Example 3.4. For each node u in P2, Match initializes mat() and premv()

as follows, where mat(u) consists of all candidate matches of u, premv(u) consists of

all nodes that cannot match any parent of u.

P2 mat() premv()

CS {DB, AI} {DB,AI,Gen,Chem,Eco}
Med {Med} {Med,Gen,Eco,Chem}
Bio {Gen, Eco} {Med,Gen,Eco,Chem}
Soc {Soc} {AI,Med,Chem}

Algorithm Match then repeatedly removes from mat() those nodes that do not

make a match, by using premv(). For instance, AI is removed from mat(CS): while

AI is a candidate match for CS, it cannot reach Soc within 3 hops, as indicated by

AI ∈ premv(Soc). Match terminates when all nodes in P2 has an empty premv() set,

and it returns the match S2 given in Example 3.4, which is maximum.

Similarly, one can use Match to find the maximum match in G0 for P0 (Fig. 3.1)

and the match in G1 for P1 (Fig. 3.3).

Now consider G3 described in Example 3.4. Then DB is in premv(Med) and

premv(Soc), and all nodes in mat(CS) will be removed by Match. This is, for CS

no match can be found, and Match returns /0 to indicate that P2 5 G3. 2

We show in the appendix that algorithm Match (1) correctly finds the maximum

match if it exists, and (2) it has the complexity bound stated in Theorem 3.3.1. This

Chapter 3. Graph Simulation Revised for Graph Pattern Matching 54

completes the proof of Theorem 3.3.1.

To complete the proof of Theorem 3.3.1, we show that algorithm Match (1) cor-

rectly finds the maximum match if it exists, and (2) it has the complexity bound stated

in Theorem 3.3.1 (see the appendix for a detailed proof).

(1) Correctness. Observe the following. (i) The algorithm always terminates. Indeed,

for each node u in P, mat(u) decreases monotonically in the process. It starts with a

subset of V , and after a node is removed from mat(u), it will not be put back. (ii) It

returns a match S in G for P iff P E G. One can verify that after the while loop (lines

7-15), for each x remaining in mat(u), x is a match of u. (iii) The match S is maximum

because (a) Match starts with all possible match candidates for each node u in P; and

(b) the loop only drops those nodes that cannot possibly match u. One can verify that

if S is not empty, then the nodes remained in mat(u) are the matches for u.

(2) Complexity. The algorithm consists of three phases: pre-processing (lines 1-6),

match computation (lines 7-15), and result collection (lines 16-18). One can verify

that these phases take O(|Ep||V |2+ |Vp||V |+ |V ||E|) time, O(|Ep||V |2) and O(|Vp||V |)
time, respectively. In particular, by using BFS search for each node of G [BJG08], the

distance matrix M can be computed in O(|V |(|V |+ |E|)) time. Taking the costs of

these phases together, the algorithm is in O(|V ||E|+ |Ep||V |2 + |Vp||V |) time.

3.4 Experimental Evaluation

We next present an experimental study of our matching methods. Using both real-

life and synthetic data, we conducted three sets of experiments to evaluate (1) the

effectiveness of the graph pattern model, (2) the flexibility of the pattern matching,

and (3) the efficiency and scalability of algorithm Match for graph pattern matching.

Experimental setting. We used real-life data to evaluate the effectiveness of our meth-

ods in real world, and synthetic data to vary graph characteristics, for an in-depth anal-

ysis.

(1) Real-life data. The first two real-life datasets were taken from a Web

site1. (a) Matter records co-authorship’s among scientists in the Condensed Mat-

ter Archive. (b) PBlog contains Weblogs on US politics, connected via hyper-

links. (c) The third real-life graph is a crawled YouTube graph, as remarked

1http://www-personal.umich.edu/mejn/netdata/

Chapter 3. Graph Simulation Revised for Graph Pattern Matching 55

earlier in Example 3.5. The sizes of these real-life graphs are as follows:

Matter Pblog YouTube

|V | 16726 1490 14829

|E| 47594 19090 58901

(2) Synthetic data. We used the C++ boost graph generator to produce data graphs, with

3 parameters: the number of nodes, the number of edges, and a set of node attributes.

(3) Pattern generator. We implemented a generator to produce patterns, controlled by

4 parameters: the number |Vp| of nodes, the number |Ep| of edges, an upper bound k

on path lengths, and a data graph G. Each node in the pattern carries a large predicate

on the attributes of a node in G randomly chosen. Each edge has a bound randomly

picked, either ∗ or k′, where k− c ≤ k′ ≤ k and c is a constant.

(4) Implementation. We have implemented the following in C++: (1) Match and

IncBMatchm; (2) two variants of Match, BFS and 2-hop, which use breadth-first search

(BFS) to compute node distances and leverage 2-hop labeling [CYL+08] to prune dis-

connected nodes, respectively; these were to explore whether the existing techniques

could help bounded simulation; and (3) SubIso, a graph pattern matching algorithm via

subgraph isomorphism [Ull76] (from C++ library).

All experiments were run on a machine with an AMD Athlon 64× 2 Dual Core

2.30GHz CPU and 2GB of memory, using Windows Vista. For each experiments, 20

patterns were generated and tested. The average is reported here.

Experimental results. We next present our findings.

Exp-1: Effectiveness and flexibility. In the first set of experiments, we first evaluated

the effectiveness of Match vs. SubIso in identifying sensible matches in YouTube. We

then investigated the impact of the complexity (bound k and edges Ep) of patterns on

matching, using synthetic data.

Effectiveness. We constructed a set of 20 patterns with node predicates meaningful in

YouTube. Two example patterns are shown in Fig. 3.6(a). The pattern P1 was to find

“music” videos with a high rating (p1), which were linked to videos of user “FWPB”

within 2 hops (p2); the node p2 was within 3 hops to videos uploaded by “Ascrodin”

(p3), which were less than 500 days old and were in turn connected to p2 within 4 hops.

The pattern P2 was to find all “comedy” videos from user “Gisburgh” (p6), which were

referenced by both “politics” (p4) or “science” videos (p5) within 3 hops, and had links

to “people” videos within 2 hops (p7).

Chapter 3. Graph Simulation Revised for Graph Pattern Matching 56

p1:C=“Music”∧R> 3

p2:U=“FWPB”

p3:U=“ascro”∧A< 500

2

4 3

n3

n2

n4

n1

1 2

23

n6

n7 n8

n5

2

3 2 3 2
p6 :U=“Gisb”∧C=“Comedy”

p7 :C=“People”

p4:C=“Politics” p5:C=“Science”

3 3

2

1 3

1 3

2 2

n11

n9

n12

n10

n13

1

2

3

1
n16

n14

n18

n17

n15

n19

P1 S1 P2 S2

(a) Effectiveness on Youtube

36 70 96 104 110

25 62 80 84 92

28 50 60 67 70

42 50 54 57

34 36 38P (4, 3, k)

P (6, 5, k)

P (8, 7, k)

P (10, 9, k)

P (12, 11, k)

4 5 6 7 8 9 10 11 12 13
Bound(k)

(b) Varying Bound k

 0

 5

 10

 15

 20

 25

87654321

#-
m

at
ch

es

#-edges Added

P(4,E,9)
P(6,E,9)
P(8,E,9)

P(10,E,9)
P(12,E,9)

(c) Varying edge |Ep|

Figure 3.6: The Effectiveness and Flexibility of Match

We ran Match and SubIso on YouTube for each pattern. We then manually in-

spected the matches found by them to verify their accuracy. We find the following. (1)

For 2 out of 20 patterns, SubIso could not find any match, while Match still returned

9 matches in average for each pattern node, which were verified sensible. These hap-

pened even when the bound k was set to 1 to favor SubIso. (2) When SubIso did not

fail, Match always identified more accurate matches than SubIso. Indeed, SubIso found

only 1 match for each pattern node, Match found in average 5 matches for each. For

instance, partial matches found by Match are abstracted as S1 and S2 in Fig. 3.6(a),

which were missed by SubIso.

Flexibility. We investigated the impact of the bound k and pattern edges Ep on match-

ing, using synthetic data.

We used a data graph G with 20K nodes, 40K edges, and 2K different node at-

tributes. We considered various patterns for G, denoted by P(|Vp|, |Ep|,k). Fixing |Vp|
and |Ep|, we varied k from 4 to 20. The results are reported in Fig. 3.6(b), which vi-

sualizes the average number of pattern nodes that found a match in G. The number is

enclosed in a circle ◦, and the circles are scaled proportionally to the number. Consider

P(12,11,k). There are no matches when k < 9; there are 38 matches when k = 9, and

110 when k = 12. When k > 13, however, the number of matches are not increased

Chapter 3. Graph Simulation Revised for Graph Pattern Matching 57

and is hence omitted from Fig. 3.6(b). This tells us that increasing bound k induces

more matches, up to a point when no new matches can be added by increasing k.

Using the same G, we fixed |Vp| and k, and varied |Ep| by adding new edges. The

results are shown in Fig. 3.6(a), in which the x-axis represents the number of edges

added, and the y-axis gives the number of matches found. When only 1 edge was

added (x = 1), the graph could match all patterns. After 8 edges were added (x = 8),

however, the graph failed in matching most nodes. This tells that adding pattern edges

imposes new constraints on patterns, and hence, increases the difficulty of matching,

as expected.

Exp-2: Efficiency and scalability. We evaluated the efficiency of Match, BFS and

2-hop using real-life datasets and synthetic data, and their scalability using synthetic

data with various edge sets. In these experiments, the distance matrix M and 2-hop

labeling were precomputed and shared by all patterns, and thus their costs were not

counted.

Figure 3.7(a) shows the results for real-life data Matter, PBlog and YouTube, with

two patterns each. From the results we can see that Match clearly outperformed the

other approaches, i.e., the use of distance matrix was effective. In most cases, there

were a number of nodes that were not reachable from a given node, and hence, 2-hop

effectively pruned those nodes and did better than BFS. When there were only few

candidate matches to be checked, all approaches had similar performance, e.g., for

Matter.

To further evaluate the efficiency of different approaches, we used data graphs G

randomly generated. Fixing the size |V | of the set of nodes in G as 20K, we varied the

size |E| the set of edges from 20K to 60K. The results are reported in Figures 3.7(b),

3.7(c) and 3.7(d), in which the x-axis indicates various patterns when their sizes |Vp|
(= |Ep|) ranged from 4 to 10. The results show that 2-hop was effective when |E| is

small (20K). However, when |E| was 40K (Fig. 3.7(c)) or 60K (Fig. 3.7(d)), 2-hop was

not very useful since most nodes were connected. In all the cases, Match performed

the best.

The results also tell us that Match is insensitive to the increase of the size |E|. This

is because Match need constant time to check the distance between any pair of nodes,

irrelevant of the bound k, by taking advantage of the distance matrix. In light of this,

Match scales well with |E|.

Summary. We find the followings. (1) The revised notion of graph pattern matching is

Chapter 3. Graph Simulation Revised for Graph Pattern Matching 58

 10

 100

P(8,8,4)P(4,4,4)P(8,8,4)P(4,4,4)P(8,8,4)P(4,4,4)

E
la

p
se

d
 T

im
e
 (

m
se

c
)

Matter

Matter

PBlog

PBlog

Youtube

Youtube

Match
2-hop

BFS

(a) Real-life Data

 10

 100

 1000

 10000

10987654

E
la

ps
ed

 ti
m

e(
m

se
c)

P(|Vp|, |Ep|, 3)

Match
2-hop

BFS

(b) |V |= 20K, |E|= 20K

 10

 100

 1000

 10000

10987654

E
la

ps
ed

 ti
m

e(
m

se
c)

P(|Vp|,|Ep|,3)

Match
2-hop

BFS

(c) |V |= 20K, |E|= 40K

 1

 10

 100

 1000

 10000

10987654

E
la

ps
ed

 ti
m

e(
m

se
c)

P(|Vp|,|Ep|,3)

Match
2-hop

BFS

(d) |V |= 20K, |E|= 60K

Figure 3.7: Efficiency and Scalability

able to identify far more sensible matches in real-world than the conventional approach

can find. (2) Our algorithms are efficient and scale well with the size of data graphs,

and with the size and complexity of pattern graphs.

3.5 Conclusion

We have proposed a revision of graph pattern matching, based on (1) pattern graphs

that specify search conditions and (bounded) connectivity, and (2) bounded simulation.

This yields a cubic-time method for finding matches, as opposed to the intractability of

its counterpart via subgraph isomorphism. Moreover, it is able to capture more patterns

in emerging applications. Our experimental results have verified the scalability and

effectiveness of our methods.

Chapter 4

Graph Pattern Queries Over Graph

Databases

Up to now we have extended the graph homomorphism and graph simulation to more

general case for efficient graph matching. Specifically, we have proposed the graph

patterns based on bounded simulation, where each edge in the pattern represents a cor-

responding path in the data graph. However, it is increasingly common to find graphs

in which edges bear different types, indicating a variety of relationships. Traditional

reachability query, as a basic query unit on graph data, is too restrictive to model com-

plicated node relationships between graph nodes, especially when each graph edge

may carry distinct edge type.

In response to this, in this chapter we propose a class of reachability queries and

a class of graph patterns, in which an edge is specified with a regular expression of a

certain form, expressing the connectivity in a data graph via edges of various types.

In addition, we define graph pattern matching based on a revised notion of graph sim-

ulation. On graphs in emerging applications such as social networks, we show that

these queries are capable of finding more sensible information than their traditional

counterparts. Better still, as will be seen in this chapter, their increased expressive

power does not come with extra complexity, not only for fundamental problems such

as containment and minimization, but also for their evaluation.

59

Chapter 4. Graph Pattern Queries Over Graph Databases 60

It is increasingly common to find data modeled as graphs in a variety of areas, e.g.,

computer vision, knowledge discovery, biology, cheminformatics, dynamic network

traffic, social networks, semantic Web and intelligence analysis. To query data graphs,

two classes of queries are being widely used:

(a) Reachability queries, asking whether there exists a path from one node to an-

other [CHKZ03, JXRF09, WHY+06, CYL+08, ABJ89, JXRW08, JHW+10].

(b) Graph pattern queries, to find all subgraphs of a data graph that are isomorphic

to a pattern graph [BKS02, CGK05, CYD+08, TFGER07, ZCO09] (see [Gal06]

for a survey).

In emerging applications such as social networks, edges in a graph are typically

“typed”, denoting various relationships such as marriage, friendship, work, advice,

support, exchange, co-membership [MSLC01]. In practice one often wants to query

the connectivity of a pair of nodes via edges of particular types, or to identify graph

patterns with edges of certain types, as illustrated by the following real-life example

taken from [BHS08], involving a real life social network.

Example 4.1: Consider an Essembly network service [BHS08], where users post and

vote on controversial issues and topics. Each person has attributes such as userid, job,

contact information, as well as a list of issues they support or disapprove, denoted by

“sp” and “dsp”, respectively. There are four types of relationships between a pair of

persons: (1) friends-allies (fa), connecting one user to a friend, if she shares the same

views on most (more than half) topics her friend votes for; (2) friends-nemeses (fn),

from one user to a friend if she disagrees with her friend on most topics; (3) strangers-

allies (sa), relates a user to a stranger she agrees with on most topics they vote; and

(4) strangers-nemeses (sn), from a user to a stranger with whom she disagrees on most

topics they both vote.

Figure 4.1 depicts part of the network as graph G that involves a debate on cloning

research. In the graph G, each node denotes a person, and each edge has a type in

{fa, fn,sa,sn}. Consider two queries Q1 and Q2 on G, also shown in Fig. 4.1.

(1) Query Q1 is a reachability query, which is to find all biologists (nodes C) who

support “cloning”, along with those doctors (nodes B) who are friends-nemeses (via

fn) of some users supporting C within 2 hops (via fa≤2).

(2) Query Q2 is a pattern query, issued by a person A identified by id “Alice001” who

supports “cloning”. The person would like to find all her friends-nemeses (via fn) who

Chapter 4. Graph Pattern Queries Over Graph Databases 61

Figure 4.1: Querying Essembly Network

are doctors, and are against “cloning”. She also wants to know if there are people such

that (a) they are biologists (nodes C), support “cloning research”, and are connected

within 2 hops to someone via fa relationships, who is in turn within 2 hops to person A

via sa (edge (C,A)); (b) they are in a scientist group with friends all sharing the same

view towards cloning (edge (C,C)); and moreover, (c) these biologists are against

those doctor friends of her, and vice versa, via paths of certain patterns (edges (C,B)

and (B,C)).

Observe the following. (1) The graph G has multiple edge types (fa, fn,sa,sn)

indicating different relationships, which are an important part of the semantics of the

data. (2) Traditional reachability queries are not capable of expressing Q1. Indeed, they

characterize connectivity by the existence of a path of arbitrary length, with edges of

arbitrary types. In contrast, Q1 aims to identify connectivity via a path

(a) composing of edges of particular types and patterns, and

(b) with a bound on its lengths (hops).

In other words, Q1 bears richer semantics than its conventional counterparts. (3) Tra-

ditional graph pattern queries cannot express Q2 for the two reasons above; moreover,

to find sensible information for person A, it should logically allow

(c) its node to map to multiple nodes in G, e.g., from B in Q2 to both B1 and B2 in

G, and

(d) its edges map to paths composing of edges with certain types, e.g., from (C,A)

in Q2 to C1/C2/A1 in G.

That is, traditional pattern queries defined in terms of subgraph isomorphism are no

longer sufficient for expressing Q2. 2

Chapter 4. Graph Pattern Queries Over Graph Databases 62

Figure 4.2: Example Reachability Query and Graph Pattern Query

As suggested by the example, emerging applications highlight the need for revising

the traditional reachability queries and graph pattern queries to incorporate edge types

and bounds on the number of hops. In addition, it is necessary to revise the notion

of graph pattern matching to accommodate the semantics of data in new applications,

and moreover, to reduce its complexity. Indeed, the NP-completeness of subgraph

isomorphism makes it infeasible to match large data graphs.

4.1 Graph Pattern Queries

We start with data graphs, and then introduce reachability queries (RQs) and graph

pattern queries (PQs) on data graphs.

Data graphs. A data graph is a directed graph G = (V,E, fA, fC), where (1) V is a

finite set of nodes; (2) E ⊆ V ×V is a finite set of edges, in which (v,v′) denotes an

edge from node v to v′; (3) fA is a function defined on V such that for each node v in

V , fA(v) is a tuple (A1 = a1, . . . ,An = an), where Ai = ai (i ∈ [1,n]) represents that the

node v has a value ai for the attribute Ai, denoted as v.Ai = ai; and (4) fC is a function

defined on E such that for each edge e ∈ E, fC(e) is a color symbol in a finite alphabet

Σ.

Intuitively, the function fA carries node properties, e.g., labels, keywords, blogs,

comments, ratings [AYBB07]; the function fC describes edge types, i.e., node rela-

tionships; and the alphabet Σ denotes all possible edge types, e.g., marriage, friendship,

work, advice, support, exchange, co-membership [MSLC01].

Example 4.2: The graph G in Fig. 4.1 depicts a data graph G = (V,E, fA, fC): (1)

each edge e in E carries a color fC(e) in {fa,fn,sa,sn}, as shown in Fig. 4.1; and (2)

each node v in V has a tuple fA(v) s.t. (a) fA(A1) = (uid = “Alice001”), (b) for each

Chapter 4. Graph Pattern Queries Over Graph Databases 63

i ∈ [1,2], fA(Bi) = (job = “doctor”, dsp = “cloning”), (c) for each j ∈ [1,3], fA(C j) =

(job = “biologist”, sp = “cloning”), and (d) fA(D) = (job = “physician”). 2

We shall use the following notations for data graphs G.

(1) A path ρ in G is denoted as v0
e1−→v1

e2−→v2 . . .vn−1
en−→vn, where (a) vi ∈V for each

i∈ [0,n], and (b) e j =(v j,v j+1)∈E for each j ∈ [1,n]. The length |ρ| of a path ρ is the

number of edges in ρ. We say a path ρ is nonempty if |ρ| ≥ 1. As a special case, we

say a single node is an empty path of length zero from itself to itself.

(2) Abusing notations for trees, we refer to a node v2 as a child of a node v1 (or v1 as a

parent of v2) if there exists an edge (v1,v2) in E, and refer to a node v2 as a descendant

of a node v1 (or v1 as an ancestor of v2) if there exists a nonempty path from the nodes

v1 to v2 in G.

Reachability queries. A reachability query (RQ) is defined as Qr =

(u1,u2, fu1, fu2 ,F), where (1) u1 and u2 are two nodes; (2) fui (i ∈ [1,2]) is a

predicate consisting of a conjunction of atomic formulas in the form of ‘A op a’ such

that A denotes an attribute of the node ui, a is a constant value, and op is a comparison

operator in the set {<,≤,=, ̸=,>,≥}; and (3) F is a restricted regular expression,

recursively defined as F := c | c≤k | c∗ | FF such that c is either a color symbol in Σ
or a wildcard not in Σ, and k is a positive integer.

Here (1) c≤k is interpreted as the standard regular expression c1 ∪ c2 ∪ . . .∪ ck−1 ∪
ck, where c j (j ∈ [1,k]) is a list of j consecutive c symbols; and (2) the wildcard

is a variable standing for any color symbol in Σ, which can be easily expressed as a

standard regular expression.

Semantics. Consider a data graph G = (V,E, fA, fC). We say that a node v in G matches

the node u1, denoted as vmatu1, if for each atomic formula ‘A op a’ in fu1 , there exists

an attribute A in fA(v) such that v.A op a. Similarly, we can define vmatu2. Intuitively,

the predicate fu1 (resp. fu2) specifies the matching conditions for the node u1 (resp.

u2).

We say that a pair (v1,v2) of nodes in G matches the restricted regular expression

F , denoted as (v1,v2) ≈ F , if (1) either v1 = v2 and the empty sting ε ∈ L(F), where

L(F) is the language that the expression F denotes, or (2) there exists a nonempty path

ρ = v1
e1−→ v′1

e2−→ v′2 . . .v
′
n−1

en−→ v2 in G such that the string fC(e1) . . . fC(en) ∈ L(F).

When the reachability query Qr is evaluated on the data graph G, the output Qr(G)

is the set of node pairs (v1,v2) in G such that v1matu1, v2matu2, and (v1,v2)≈ F .

Example 4.3: Figure 4.2 depicts the Q1 and G in Fig. 4.1, and an auxiliary graph to

Chapter 4. Graph Pattern Queries Over Graph Databases 64

illustrate the result of Q1 over G. In Q1, the constraint F = fa≤2fn. The node C has

the predicate sp = “cloning” and job = “biologist”, and the node B has the predicate

job = “doctor”.

Clearly, for nodes in G and Q1, we have BimatB (i ∈ [1,2]) and C jmatC (j ∈ [1,3]),

referring to Example 4.2. We further have (C2,B1)≈ F since there exists a path C2
fa−→

C3
fn−→ B1 in G, and the string fafn satisfies fa≤2fn, as depicted in the result of Q1(G)

in Fig. 4.2. Analogously, we can get (C1,B1)≈ F , (C1,B2)≈ F , and (C2,B1)≈ F .

Hence the query result Q1(G) = {(C1,B1), (C1,B2), (C2,B1), (C2,B2)}. 2

Remark. (1) We require that the predicates fu1 and fu2 are satisfiable. That is, there

exist two nodes v1 and v2 in a data graph such that v1matu1 and v2matu2.

(2) RQs are more powerful than traditional counterparts, e.g., [JXRF09, Wei10,

JHW+10], since we capture edge relationships using regular expressions.

Graph pattern queries. A graph pattern query (PQ) is a directed graph Qp =

(Vp,Ep, fv, fe) without isolated nodes, where (1) Vp is a finite set of nodes; (2)

Ep ⊆ Vp ×Vp is a finite set of edges, in which (u,u′) denotes an edge from node u

to u′; and (3) the functions fv and fe are defined on Vp and Ep, respectively, such that

for each edge e = (u,u′) ∈ Ep, Qr = (u,u′, fv(u), fv(u′), fe(e)) is an RQ.

Semantics. When the graph pattern query Qp is evaluated on the graph G = (V,E,

fA, fC), the output Qp(G) is the maximum set {(e,Se) | e ∈ Ep} that satisfies:

(1) for all edges e = (u1,u2) in Qp, Se ⊆ Qr(G), where Qr = (u1,u2, fv(u1),

fv(u2), fe(e)) is an RQ;

(2) for each edge e = (u1,u2) in Qp, if a node pair (v1,v2) of G is in Se, then (a) for

each edge e1 = (u1,u3) in Qp, there exists a node v3 in G such that (v1,v3) ∈ Se1 ; and

(b) for each edge e2 = (u2,u4) in Qp, there exists a node v4 in G such that (v2,v4)∈ Se2 ;

and

(3) if there exists an edge e in Qp such that Se is not empty, then Se′ is not empty for

all the remaining edges e′ in in Qp.

Example 4.4: Figure 4.2 depicts the query PQ Q2 in Fig. 4.1 and an auxiliary graph

for presenting the result of Q2 on G.

The nodes A, B and C in Q2 have predicates uid = “Alice001”, job = “doctor” and
dsp = “cloning”, and sp = “cloning” and job = “biologist”, respectively. And edges

in Q2 are attached with regular expressions as shown in Fig. 4.2.

The graphical result of Q2 in Fig. 4.2 is a complement to the query result Q2(G).

For instance, the edge from C3 to A1 labeled with fasa indicates that there is a path

Chapter 4. Graph Pattern Queries Over Graph Databases 65

C3
fa−→ C1

sa−→ A1 in G. Analogously, one can verify the matches for the other edges

in Q2, i.e., the result Q2(G) shown in the following table, based on the node matches

A1matA, BimatB (i ∈ [1,2]) and C jmatC (j ∈ [1,3]).

edge matches edge matches

(B,A) {(B1,A1),(B2,A1)} (C,B) {(C3,B1),(C3,B2)}
(B,C) {(B1,C3),(B2,C3)} (C,A) {(C3,A1)}
(C,C) {(C3,C3)}

Notably, the node pair (C1,B1) in G cannot match edge (C,B) in Q2 since there

exist no paths in G that satisfy the constraint fn. This also prunes (C1,A1) in G from

matching edge (C,A) in Q2, although there exists a path C1
fa−→C2

fa−→C1
sa−→A1 in G

that satisfies fa≤2sa≤2. The other matches can be identified similarly. 2

Remark. (1) RQs are a special case of PQs, which consist of two nodes and a single

edge connecting them.

(2) Graph simulation [HHK95] is a special case of PQs, by changing edge mappings to

node mappings, and by only allowing patterns in which (a) all nodes carry their labels

as the only attributes, and (b) all edges are labeled with single relationships, i.e., only

edge-to-edge mappings are allowed.

(3) Bounded simulation [FLM+10b] is a special case of PQs, by only allowing patterns

in which (a) there is only a single symbol c in Σ, i.e., only a single edge type is allowed,

and (b) all edges are labeled in the form of c≤k, where k is a positive integer.

(4) We shall simply write a data graph as G = (V,E) and a PQ as Qp = (Vp,Ep), when

there are no ambiguities from the context for the functions fA and fC of G, and the

functions fv and fe of Qp.

Proposition 4.1.1: For any data graph G and graph pattern query Qp, there is a unique

output Qp(G). 2

By Proposition 4.1.1, the semantics of PQs is well defined.

4.2 Fundamental Problems for Graph Queries

We next investigate containment, equivalence and minimization of graph queries. As

remarked earlier, these problems are important for any query language [AHV95]. We

Chapter 4. Graph Pattern Queries Over Graph Databases 66

Figure 4.3: Example for containment and equivalence

focus on graph pattern queries (PQs), but state the relevant results for reachability

queries (RQs), a special case of PQs.

4.2.1 Containment and Equivalence

We first study containment and equivalence of PQs.

Containment. Given two PQs Q1 = (V 1
p , E1

p, f 1
v , f 1

e) and Q2 = (V 2
p , E2

p, f 2
v , f 2

e), we

say that Q1 is contained in Q2, denoted by Q1 ⊑ Q2, if there exists a mapping λ from

E1
p to E2

p such that for any data graph G and any edge e in Q1, Se ⊆ Sλ(e), where

(e,Se) ∈ Q1(G), (λ(e),Sλ(e)) ∈ Q2(G). and Q1(G),Q2(G) are the results of Q1,Q2 on

G, respectively.

Intuitively, for an edge e = (u1,u2) in Q1, let λ(e) = (w1,w2). Then for any data

graph G and any node v in G, (1) if vmatu1, then vmatw1, denoted as u1 ⊢ w1; and (2)

u2 ⊢ w2. Moreover, (3) L(f 1
e (e)) ⊆ L(f 2

e (λ(e))), denoted as e |= λ(e). Here λ serves

as a renaming function such that Q1(G) is mapped to Q2(G) after the renaming.
Example 4.5: Consider three PQs given in Fig. 4.3, in which all Bi’s (i ∈ [1,3]) carry

the same predicates; similarly for all C j’s (j ∈ [1,6]). Denote by λi, j a mapping from

Qi to Q j.

(1) Q2 ⊑ Q1: there exists a mapping λ2,1, where λ2,1 ((B2, C4)) = (B1,C1). Note that

the mapping is not unique, e.g., both λ2,1((B2,C4)) = (B1,C2) and λ2,1((B2,C4)) =

(B1, C3) are valid mappings.

(2) Q2 ⊑ Q3, by letting λ2,3((B2,C4)) = (B3,C5).

(3) Q3 ⊑ Q1, Indeed, one can define λ3,1((B3,C5)) = (B1, C1) and λ3,1((B3,C6)) = (B1,

C3).

(4) Q1 ⊑ Q3, by letting λ1,3((B1,C1)) = (B3,C5), λ1,3 ((B1, C2))= (B3,C5) and λ1,3

((B1,C3))=(B3,C6). 2

Chapter 4. Graph Pattern Queries Over Graph Databases 67

Equivalence. For PQs Q1 and Q2, we say that Q1 and Q2 are equivalent, denoted by

Q1 ≡ Q2, if Q1 ⊑ Q2 and Q2 ⊑ Q1.

For instance, for Q1 and Q3 of Fig. 4.3, we have that Q1 ≡ Q3, since Q1 ⊑ Q3 and

Q3 ⊑ Q1 by Example 4.5.

Observe that Q1 ≡ Q2 does not necessarily imply that Q1(G) = Q2(G) for a data

graph G. Nevertheless, there exist mappings λ1,2 and λ2,1 such that λ1,2(Q1(G)) ⊆
Q2(G) and λ2,1(Q2(G)) ⊆ Q1(G), where λ(Q(G)) stands for {(λ(e), Sλ(e)) | (e,Se) ∈
Q(G)}. That is, Q1(G) and Q2(G) are mapped to each other after the renaming by λ1,2

and λ2,1.

Complexity bounds. We next establish the complexity bounds of the containment

and equivalence problems for PQs. To do this we first present a revision of similar-

ity [HHK95].

Consider two PQs Q1 = (V 1
p , E1

p, f 1
v , f 1

e) and Q2 = (V 2
p , E2

p, f 2
v , f 2

e). We say that Q2

is similar to Q1, denoted by Q1 E Q2, if there exists a binary relation S ⊆V 1
p ×V 2

p such

that

(1) for any (u1,w1) ∈ S, (a) w1 ⊢ u1, and (b) for each edge e = (u1,u2) ∈ E1
p, there

exists an edge e′ = (w1,w2) ∈ E2
p such that (u2,w2) ∈ S and e′ |= e; and

(2) for each edge e′ = (w,w′) ∈ E2
p, there exists an edge e = (u,u′) ∈ E1

p such that (a)

(u,w),(u′,w′) ∈ S and (b) e′ |= e.

Example 4.6: Recall PQs Q1 and and Q2 from Example 4.5. One can verify that Q1 E
Q2. Indeed, there exists a binary relation S = {(B1,B2), (C1,C4), (C2,C4), (C3,C4)},

which satisfies the conditions of the revised similarity given above:

(1) for each (u,w) ∈ S, w ⊢ u (the condition (1)(a) above);

(2) for each edge e in Q1 (i.e., (B1,C1), (B1,C2) and (B1,C3)), there exists an edge e′

in Q2 (i.e., (B2,C4)) such that e′ |= e, since L(h≤1) is contained in L(h≤1), L(h≤2) and

L(h≤3) (the condition (1)(b) above); and

(3) for the edge e′ = (B2,C4) in Q2, there is an edge e′ = (B1,C1) in Q1 such that e′ |= e

(the condition (2) above). 2

The relationship between the revised graph similarity and the containment of PQs

is shown below.

Lemma 4.2.1 For PQs Q1 and Q2, Q1 ⊑ Q2 iff Q2 E Q1.

It is known that graph similarity is solvable in quadratic time [HHK95]. Along the

same lines and by leveraging Lemma 4.2.1, one can readily get the following:

Chapter 4. Graph Pattern Queries Over Graph Databases 68

Figure 4.4: Non-isomorphic equivalent minimum PQs

Theorem 4.2.2 Given two PQs Q1 and Q2, it is in cubic time to determine whether

Q1 ⊑ Q2 and whether Q1 ≡ Q2.

As a special case of PQs, the containment problem and the equivalence problem

for RQs are much easier.

Proposition 4.2.3: Given two RQs Q1 and Q2, it is in quadratic time to check whether

Q1 ⊑ Q2 or whether Q1 ≡ Q2 . 2

Contrast this with the PSPACE-completeness of the containment problem for gen-

eral regular expressions [JR93]. The gap between the two complexity bounds justifies

the choice of the subclass F of regular expressions for RQs and PQs: those regular

expressions have sufficient expressive power to specify edge relationships commonly

found in practice, and moreover, allow efficient static analyses of fundamental proper-

ties.

4.2.2 Minimizing Graph Pattern Queries

A problem closely related to query equivalence is query minimization. As remarked

earlier, query minimization often yields an effective optimization strategy. It has

been studied for, e.g., relational conjunctive queries [AHV95] and XML tree pattern

queries [CC08, NS03, Woo03]. For all the reasons that query minimization is impor-

tant for relational queries and XML queries, we also need to study minimization of

graph queries.

For a PQ Q = (Vp,Ep), we define its size |Q| = |Vp|+ |Ep|, a metric commonly used

for pattern queries [CC08].

Minimization. Given a PQ Q = (Vp,Ep, fv, fe), the minimization problem is to find

another PQ Qm = (V m
p ,Em

p , f m
v , f m

e) such that (1) Qm ≡ Q, (2) |Qm| ≤ |Q|, and (3) there

exists no other such Q′ with |Q′|< |Qm|. We refer to Qm as a minimum equivalent PQ

of Q.

Remark. (1) A PQ may have multiple minimum equivalent PQs. Moreover, these PQs

may not be isomorphic to each other, although they have the same size. Figure 4.4

Chapter 4. Graph Pattern Queries Over Graph Databases 69

Algorithm minPQs

Input: PQ Q = (Vp,Ep, fv, fe).

Output: a minimum equivalent PQ Qm of Q.

1. compute the maximum revised graph similarity S over Q;

2. compute the node equivalent classes EQ based on S;

3. determine the edges for equivalent class pairs in EQ;

4. determine the number of copies for equivalent classes in EQ;

5. construct an equivalent query Qm;

6. remove redundant edges in Qm;

7. remove isolated nodes in Qm;

8. return Qm.

Figure 4.5: Algorithm minPQs

shows such an example, where both Q2 and Q3 are minimum equivalent PQs of Q1,

|Q2|= |Q3|, but they are not isomorphic.

(2) We ignore regular expressions in the minimization analysis since for those in the

particular subclass F used in RQs and PQs, it takes linear time to minimize them.

In addition, as will be seen from our algorithms in Section 4.4, minimizing RQs

has little impact on their complexity. This would be, however, no longer the case if

general regular expressions were adopted. This further justifies the choice of F in the

definition of PQs.

The minimization problem for RQs is trivial for the reason stated above. Below we

focus on minimization of PQs.

The last main result of the section is as follows.

Theorem 4.2.4 Given any PQ Q, a minimum equivalent PQ Qm of Q can be computed

in cubic time.

To show Theorem 4.2.4, we develop an algorithm that, given a PQ Q, finds a min-

imum equivalent PQ of Q in cubic time.

The algorithm, referred to as minPQs, is outlined in Fig. 4.5. Due to space con-

straint we defer the details of the algorithm to [ful], but illustrate how the algorithm

works with an example.

Chapter 4. Graph Pattern Queries Over Graph Databases 70

Example 4.7: Consider the PQ Q1 shown in Fig. 4.6, where (a) nodes B1 and B2 have

the same predicate, (b) all nodes labeled with C (Ci, i ∈ [1,5]) have the same predicate,

and (c) all nodes with distinct labels (ignoring subscripts) have different predicates.

For clarity, we only explicitly annotate the predicates of the nodes labeled with H and

J. The query Q4 given in Fig. 4.6 is a minimum equivalent PQ of Q1. Below we show

how algorithm minPQs finds Q4 step by step.

(1) The maximum similarity S on a PQ Q(Vp,Ep) is the maximum relation S ⊆Vp×Vp

that satisfies the conditions of the revised similarity. One can verify that there exists a

unique maximum one, along the same lines as [BG03].

The maximum similarity S on Q1 is {(R,R), (Bi1 ,B j1),

(Ci2 ,C j2),(D,D),(Hi3,H j3),(Ji4 ,J j4)}, where 1 ≤ i1, j1 ≤ 2, 1 ≤ i2, j2 ≤ 5,

1 ≤ i3 ≤ j3 ≤ 3, and 1 ≤ i4 ≤ j4 ≤ 3.

(2) An equivalent relation EQ is derived from the similarity relation S. More specifi-

cally, two nodes u,w in Q1 are in the same equivalence class of EQ if (u,w) ∈ S and

(w,u) ∈ S.

For Q1, EQ consists of eq0 = {R}, eq1 = {B1,B2}, eq2 = {C1, C2, C3, C4, C5}, eq3

= {D}, eq4 = {H1}, eq5 = {H2}, eq6 = {H3}, eq7 = {J1}, eq8 = {J2}, and eq9 = {J3}.

(3) Consider two equivalent classes eq1 and eq2 in EQ, and let E(eq1,eq2) be the set

of edges in Q1 from the nodes in eq1 to the nodes in eq2. An edge e in E(eq1,eq2)

is redundant if there exist two edges e1,e2 in E(eq1,eq2) such that e1 ̸= e, e2 ̸= e and

L(e1)⊆ L(e)⊆ L(e2).

(4) The number N(eq) of the copies of an equivalent eq in EQ is determined by the

maximum number of non-redundant edges in E(eq′,eq) for all eq′ ∈ EQ.

(5) After the non-redundant edges and the number of copies for equivalent classes in

EQ are determined, an equivalent query Q2 for Q1 is constructed, shown in Fig. 4.6,

by connecting (copies of) equivalent classes with non-redundant edges.

(6) To remove the redundant edges from Q2, we first compute the maximum similarity

S′ on Q2. An edge e = (u,u′) in Q2 is redundant if there exist two edges e1 = (u1,u′1)

and e2 =(u2,u′2) in Q2 such that (a) e1 ̸= e, e2 ̸= e, (b) (u,u1), (u′,u′1), (u2,u), (u′2,u
′)∈

S′, and (c) e1 |= e and e |= e2.

After redundant edges are removed, Q2 becomes the query Q3 shown in Fig. 4.6.

(7) A node u in Q3 is isolated if it does not have any edge.

After all isolated nodes are removed, the query Q3 becomes Q4 shown in Fig. 4.6.

Chapter 4. Graph Pattern Queries Over Graph Databases 71

Figure 4.6: Example for minimizing graph pattern queries

The algorithm then returns Q4 as a minimum equivalent query of the query Q1. 2

Correctness & complexity. To show that algorithm minPQs indeed finds a minimum

equivalent PQ Qm of Q, (1) we first show that Qm ≡ Q, by proving that the operations

in the algorithm preserve query equivalence; and (2) then show that Qm is a smallest

equivalent query, by contradiction.

Algorithm minPQs runs in cubic time since each step in the algorithm can be done

in cubic time.

From the correctness and complexity analysis of algorithm minPQs, Theorem 4.2.4

immediately follows.

Observe complexity bounds of minimization, containment and equivalence are in

the sizes of queries, which are typically much smaller than the sizes of data graphs in

practice.

4.3 Evaluating Reachability Queries

We develop two methods to answer RQs. One employs a matrix of shortest distances

between nodes. It is in quadratic time, the same as its counterpart for traditional reach-

ability queries [WHY+06]. The other adopts bi-directional breadth-first search (BFS),

and utilizes an auxiliary cache to maintain the most frequently asked items. It is used

when maintaining a distance matrix is infeasible for large data graphs.

Consider an RQ Qr = (u1,u2, fu1, fu2 , fe) and a data graph G = (V,E, fA, fC). For

nodes v1,v2 in V , we want to determine whether vi matches ui (i∈ [1,2]) and moreover,

whether there exists a path from v1 to v2 that matches fe (see Section 4.1). Below

we start with a special case when fe carries a single edge color, and then consider the

general case.

Matrix-based method. We use a 3-dimensional matrix M, where 2 dimensions range

Chapter 4. Graph Pattern Queries Over Graph Databases 72

over data graph nodes and 1 dimension is for edge colors. For two nodes v1,v2 in

graph G, M[v1][v2][c] (resp. M[v1][v2][]) records the length of the shortest path from

v1 to v2 via edges of color c (resp. arbitrary colors). Capitalizing on M one can detect

in constant time whether v1 reaches v2 via a path satisfying the constraint fe.

Assume that there are m distinct edge colors in G. The matrix can be built in

O((m+1)|V |2+ |V |(|V |+ |E|)) time by using BFS [BJG08], where m is typically much

smaller than |V |. This matrix is pre-computed and shared by all queries.

Leveraging the matrix M, Qr can be answered in O(|V |2) time by inspecting those

nodes that satisfy the search conditions specified by u1 and u2, using a nested loop.

Bi-directional search. The space overhead O((m+1)|V |2) of the distance matrix, how-

ever, may hinder its applicability. To cope with large graphs, we propose to maintain

a distance cache using hashmap as indices, which records the most frequently asked

items. If an entry for a node pair (v1,v2) and a color c is not cached, it is computed

at runtime and the cache is updated with the least recently used (LRU) replacement

strategy. To do this we adopt a bi-directional BFS at runtime as follows. Two sets are

maintained for v1 and v2, respectively. Each set records the nodes that are reachable

from (resp. to) v1 (resp. v2) only via edges of color c. We expand the smaller set at a

time until either the two sets intersect (i.e., the distance is the number of total expan-

sions), or they cannot be further expanded (i.e., unreachable). This procedure runs in

O(|V |+ |E|). A similar technique is used in [CSZY09], but it does not consider edge

colors.

Compared with traditional BFS, the bi-directional search strategy can significantly

reduce the search space, especially when edge colors are considered. For instance,

in data graph G at Fig. 4.1, if a user asks whether there exists a path from C2 to D1

satisfying the constraint fa+, we can immediately answer no since no incoming edge

to D1 is colored with fa.

We next extend the two methods to evaluate a general RQ Qr. Assume that the

number of edge colors in fe is h.

Matrix-based method. We decompose Qr into h RQs: Qri = (xi,yi, fxi , fyi, fei) (i ∈
[1,h]), where x1 = u1, yk = u2, and we add y j = x j+1 (j ∈ [1,h−1]) as dummy nodes

between u1 and u2. Here each fei (i ∈ [1,h]) carries a single edge color, and a dummy

node d bears no condition, i.e., for any node v in G, v matches d. Using the procedure

for answering single-colored RQs, we evaluate Qri from h to 1; we then compose these

partial results to derive Qr(G). This is in O(h|V |2) time, where h is typically small and

Chapter 4. Graph Pattern Queries Over Graph Databases 73

can be omitted.

Example 4.8: Recall the RQ Q1 from Fig. 4.1 with edge constraint fe = fa≤2fn. The

query Q1 can be decomposed into Q1,1 and Q1,2 by inserting a dummy node d between

C and B, where Q1,1 (resp. Q1,2) has an edge (C,d) (resp. (d,B)) with edge constraint

fa≤2 (resp. fn).

When evaluating Q1,2 on the data graph G of Fig. 4.1, we get Q1,2(G) =

{(C3,B1),(C3,B2)}, since M[C3][B1][fn] = 1 and M[C3][B2][fn] = 1. Similarly, by

C3matd derived from Q1,2(G), we get Q1,1(G) = {(C1,C3),(C2,C3)}. Combining

Q1,1(G) and Q1,2(G), we find Q1(G). 2

Bi-directional search. When a distance matrix is not available, runtime search is

used instead, for evaluating an RQ Qr = (u1,u2, fu1, fu2, fe). The bi-directional search

method can handle the regular expression fe, without decomposing it. Intuitively, this

can be done by evaluating fe by iteratively expanding from (resp. to) the nodes that

may match u1 (resp. u2). In each iteration, the candidate match set with a smaller

size will be expanded, and fe is partially evaluated. When fe is fully evaluated, we

examine the intersection of the two sets to derive the result. This takes, however,

O(h|V |2(|V |+ |E|)) time. Nonetheless, as will be seen in Section 4.5, this method is

able to process queries on large data graphs, when maintaining a distance matrix for

those graphs is beyond reach in practice.

Note that while existing (index-based) solutions for traditional reachability queries

cannot answer RQs studied in this paper, they can be used as filters, i.e., we invoke

our method only after those techniques decide that two nodes are connected (possibly

constrained by a set of labels).

4.4 Algorithms for Graph Pattern Queries

We next provide two algorithms to evaluate PQs. Given a data graph G = (V,E, fA, fC)

(simply written as (V,E)) and a PQ Qp = (Vp,Ep, fv, fe) (written as (Vp,Ep)), the two

algorithms compute the result Qp(G) of Q on G, in cubic time in the size of G. The

first algorithm is based on join operations. The other is based on split, an operation

commonly used in labeled transition system (LTS) verification [RT07].

4.4.1 Join-based Algorithm

We start with the join-based algorithm. It first computes, for each node u in the PQ

Qp, an initial set of (possible) matches, i.e., nodes that satisfy the search conditions

Chapter 4. Graph Pattern Queries Over Graph Databases 74

specified by u. It then computes Qp(G) as follows. (1) If Qp is a directed acyclic

graph (DAG), the query result is derived by a reversed topological order (bottom-up)

process, which refines the match set of each query node by joining with the match sets

of all its children, and by enforcing the constraints imposed by the corresponding query

edges. (2) If Qp is not a DAG, we first compute the strongly connected components

(SCC) graph of PQ, a DAG in which each node represents an SCC in PQ. Then for all

the query nodes within each SCC, their match sets are repeatedly refined with the join

operations as above, until the fixpoint of the match set for each query node is reached.

Algorithm. The algorithm, referred to as Match, is shown in Fig. 4.7. Besides Qp

and G, it also takes a boolean flag as input, indicating whether one opts to use a dis-

tance matrix. Depending on flag, the algorithm decides to use which method given in

Section 4.3 to evaluate the RQs embedded in Qp.

The algorithm uses the following notations. We use u,v to denote nodes in the

query Qp, and x,y,z for nodes in the data graph G. (1) For each node u in Qp, we

initialize its match set mat(u) = {x |x ∈V and xmatu} (recall ‘mat’ from Section 4.1).

(2) For each edge e = (u′,u) in Qp, we use a set rmv(e) to record the nodes in G that

cannot match u′ w.r.t. e. (3) An SCC graph of Qp = (Vp,Ep) is denoted as Qs = (Vs,Es),

where Cs ∈ Vs presents an SCC in Qp, and (C′
s,Cs) ∈ Es if there exists v′ ∈ C′

s, v ∈ Cs

such that (v′,v) ∈ Ep.

Algorithm Match first checks flag. If one wants to use a distance matrix M but

it is not yet available, M is computed and Qp is normalized as Q′
p (lines 2-3), by

decomposing each RQ of Qp into simple RQs (i.e., each edge only carries one color)

via inserting dummy nodes. Otherwise no normalization is performed (line 1). The

sets mat() and rmv() are then initialized (lines 4-5). The SCC graph Qs of Q′
p is then

computed, by using Tarjan’s algorithm [Tar72] (line 6).

In a reverse topological order, Match processes each node Cs of Qs as follows: the

match set of each query node in Cs is recursively refined until the fixpoint is reached

(lines 8-15). For each node u in Cs and each edge e = (u′,u) (line 9), it computes

the nodes in mat(u′) that fail to satisfy the constraints of e, by invoking a procedure

join. The nodes returned by join are maintained in rmv(e) (line 10), which is then used

to refine mat(u′) (line 11). If the match set of any query node is empty, an empty

result is returned (line 12) and the algorithm terminates. Otherwise, the rmv() sets of

edges (u′′,u′) are checked for possible expansion due to nodes that cannot match u′

(lines 13-14). The query result is finally collected (lines 16-17) and returned (line 18).

Procedure join identifies nodes in mat(u′) that do not satisfy the edge constraint im-

Chapter 4. Graph Pattern Queries Over Graph Databases 75

posed by e = (u′,u) or the match set mat(u). It examines each node x′ in mat(u′) (line

2). If there exists no node x in mat(u) such that (x′,x) matches the regular expression

fe(u′,u) (line 3), x′ is pruned from mat(u′) and is recorded in premv(e) (line 4). The

algorithm returns premv(e) (line 5). Note that if a distance matrix is used (when flag

is true), one can check (x′,x)≈ fe(e) (line 3) in constant time, for any edge color and

wildcard. Otherwise we use bi-directional search to check the condition (Section 4.3).

Notably, in order to handle regular expressions, we provide the following options:

(1) if a distance matrix M is available, a regular expression is decomposed into a set of

simpler regular expressions with each contains one color, to leverage M. (2) otherwise,

the regular expression will be evaluated from scratch, using bi-directional search (see

Section 4.3).
Example 4.9: Recall the PQ Q2 and the data graph G from Fig. 4.1. We show how

Match evaluates Q2 on G. For each node u in Q2, the initial and final match sets are as

follows.

node initial mat() final mat()

B {B1,B2} {B1,B2}
C {C1,C2,C3} {C3}
D {D1} {D1}

In a reversed topological order (lines 7-15), Match repeatedly removes from mat()

those nodes that do not make a match, by using premv() from procedure join. There are

two SCCs: SCC1 and SCC2, consisting of nodes {D} and {B,C}, respectively. Match

starts from node D and processes edge (C,D). The node C1 is removed from mat(C),

since it cannot reach D1 within two hops colored fa followed by edges within two hops

colored sa. When processing the edge (B,D), no nodes in mat(B) can be pruned. In

SCC2, the match sets mat(B) and mat(C) are refined by recursively using the edges

(B,C), (C,B) and (C,C), and C2 is removed from mat(C) as C2 cannot reach any node

in mat(B) with 1 hop colored fn. The same result Q2(G) is found, as in Example 4.4.

2

Correctness & complexity. The algorithm returns Qp(G). Indeed, one can verify that

for any query edge e, after the for loops (lines 7-17), each node pair recorded in Se

is a match of e, and the result (e,Se) is complete. The algorithm takes O(m|V ||E|+
|E ′

p||V |2) time when a distance matrix is used, where m is the number of distinct edge

colors and is typically small in practice. When the distance matrix is not available,

it can be computed in O((m+ 1)|V |2 + |V |(|V |+ |E|)) time (line 2). Putting these

Chapter 4. Graph Pattern Queries Over Graph Databases 76

Input: a query Qp = (Vp,Ep), a data graph G = (V,E) and flag.

Output: the result Qp(G).

1. if !flag then Q′
p(V

′
p,E

′
p) := Qp;

2. else compute the distance matrix M if M is not available;

3. Q′
p :=Normalize(Qp);

4. for each u ∈V ′
p do mat(u) := {x | x ∈V , xmatu};

5. for each e ∈ E ′
p do rmv(e) := /0;

6. Qs = Sccgraph(Q′
p);

7. for each Cs of Qs in a reverse topological order do

8. do

9. for each edge e = (u′,u) ∈ E ′
p where u ∈Cs do

10. rmv(e) := join(e,mat(u′),mat(u));

11. mat(u′) :=mat(u′)\ rmv(e);

12. if mat(u′) = /0 return /0;

13. for each e′ = (u′′,u′) ∈ E ′
p do

14. rmv(e′) := rmv(e′)∪ join(e′,mat(u′′),mat(u′));

15. while there exists e=(u′,u)∈E ′
p s.t. u∈Cs and rmv(e) ̸= /0;

16. for each edge e = (u′,u) ∈ Ep s.t. u ∈Cs do

17. Se :={(x′,x) | x′∈mat(u′), x∈mat(u) and (x′,x)≈ fe(e)};

18. return Qp(G) := {(e,Se) | e ∈ Ep};

Procedure join

Input: edge e = (u′,u) ∈ Ep, mat(u′), mat(u).

Output: premv(e) (a set of nodes that cannot match u′).

1. premv(e) := /0;

2. for each x′ ∈mat(u′) do

3. if there does not exist x ∈mat(u) s.t. (x′,x)≈ fe(e) do

4. premv(e) := premv(e)∪{x′};

5. return premv(e);

Figure 4.7: Algorithm Match

together, the algorithm is in O(|V |3) time in the worst case (see [ful] for a detailed

analysis).

Chapter 4. Graph Pattern Queries Over Graph Databases 77

4.4.2 Split-based Algorithm

We next present the split-based algorithm. It treats query nodes and data graph nodes

uniformly, grouped into “blocks”, such that each block B contains a set of nodes in

V ∪Vp from a data graph G = (V,E) and a PQ Qp = (Vp,Ep). The algorithm creates a

block for each query node u, denoted as B(u), initialized with all nodes x ∈V such that

xmatui. It then computes a partition-relation pair ⟨par, rel⟩, where par is set of blocks

and rel a partial order over par. The pair ⟨par, rel⟩ is recursively refined by splitting the

blocks in par and rel based on the constraints imposed by query edges. The process

proceeds until a fixpoint is reached, and then the result of Qp is collected from the

corresponding blocks of query nodes in Vp as well as the partial order over the blocks

in rel.

The idea of split was first explored in LTS verification [RT07], which deals with

a single graph. Our algorithm extends the idea to handle two graphs, and is more in-

volved. Given an LTS presented by a graph G= (V,E), the basic idea is to compute the

pair ⟨par, rel⟩ with par a partition of states V , and rel a partial order over par. The pair

⟨par, rel⟩ is refined by splitting the partition blocks in par and rel, during which an over-

approximation of the simulation equivalence and preorder are maintained in par and

rel, respectively. When a fixpoint is reached, par induces a simulation equivalence class

in each block, while rel induces a simulation preorder Ssim = (u,v)|(B(u),B(v)) ∈ rel.

In LTS, the simulation algorithm runs in O(|Psim||E|), where Psim is the sim-

ulation equivalence classes over the states of a system induced by |par|, and E the

transitions between the states of the system.

Algorithm. The algorithm, referred to as SplitMatch, is shown in Fig. 4.8. It also

maintains rmv() used by Match.

The algorithm first checks flag, and accordingly normalizes the query Qp and com-

putes the distance matrix if needed (lines 1-3), along the same lines as Match. It then

initializes the match set and block set of each query node (line 5). In addition, it con-

structs the partition-relation pair ⟨par, rel⟩ (line 6); it also initializes rmv() for each

query edge (line 7), a step similar to its counterpart in Match. It then iteratively selects

and processes those query edges with a nonempty remove set, i.e., edges for which the

match set can be refined (lines 8-14). The set of blocks par is split based on rmv(e)

in procedure split, and rel is updated accordingly (line 10). SplitMatch further extends

the remove sets of edges e′(u′′,u′) by checking if any node in mat(u′′) has no descen-

dants satisfying the constraints of e′ (lines 12-14). The extended rmv(e′) will be used

Chapter 4. Graph Pattern Queries Over Graph Databases 78

Input: a PQ Qp = (Vp,Ep), a data graph G = (V,E) and flag.

Output: the result Qp(G).

1. par := /0; rel := /0;

2. if !flag then Q′
p(V

′
p,E

′
p) := Qp;

3. else Q′
p := Normalize(Qp); compute the distance matrix M;

/* if the matrix is not yet available */

4. for each u ∈V ′
p do

5. mat(u) := {x | x∈V and xmatu}; B(u) := {u}∪mat(u);

6. par := par∪B(u); rel := rel∪{(B(u),B(u)};

7. for each e = (u′,u) ∈ E ′
p do compute rmv(e);

8. while there exists e = (u′,u) where rmv(e) ̸= /0 do

9. rmv := rmv(e); rmv(e) := /0;

10. split(e,⟨par, rel⟩, rmv);

11. for each B⊆ rmv do rel(B(u′)) = rel(B(u′))\B;

12. for each e′ = (u′′,u′) and each B⊆ rmv do

13. for each x′′∈B(u′′) s.t. no x′∈B(u′), (x′′,x′)≈ fe(e′) do

14. rmv(e′) = rmv(e′)∪{x′′};

15. for each e = (u′,u) ∈ Ep do

16. Se := {(x′,x) | x′ ∈V,x ∈V,B(x) ∈ rel(B(u)),

B(x′) ∈ rel(B(u′)) and (x′,x)≈ fe(e)};

17. if Se = /0 then return /0;

18. return Qp(G) := {(e,Se) | e ∈ Ep};

Procedure split

Input: edge e = (u′,u) ∈ E ′
p, pair ⟨par, rel⟩, a node set SpltN⊆V ,

Output: updated pair ⟨par, rel⟩.

1. for each B ∈ par do

2. B1 := {B∩SpltN}, B2 := {B\SpltN};

3. par := par∪B1 ∪B2; par := par \{B};

4. rel(B1) := rel(B2) := {B1,B2};

5. return ⟨par, rel⟩;

Figure 4.8: Algorithm SplitMatch

Chapter 4. Graph Pattern Queries Over Graph Databases 79

for further refinement of par.

The process (lines 8-14) iterates until par can no longer be split. The result is

collected (line 16) and returned (line 18). SplitMatch terminates and returns an empty

set, if the match set of any query edge is empty (line 17).

Procedure split refines pair ⟨par, rel⟩ when given a set of nodes SpltN ⊆ V . First,

each block B∈ par is replaced by two blocks B1 = B∩SpltN and B2 = B\SpltN (line 2).

Since B is split and new blocks are generated, par and rel are updated (lines 3-4), and

the refined pair ⟨par, rel⟩ is returned (line 5).

Remark. The methods in [RT07] maintains the blocks in par representing simulation

equivalence. On the contrary, as we only need to compute the matches from the query

to the data graph, the algorithm terminates when the blocks can no long be split w.r.t.

rmv() sets of query edges.
Example 4.10: We show how SplitMatch evaluates the PQ Q2 on the graph G of

Fig. 4.1. For each node u in Q2, SplitMatch initializes par, the set of blocks (Blks) as

shown in the table below, together with the relation rel on the blocks. We also show

the rmv() set of each edge, with empty rmv() omitted.

initial par initial rel edge rmv() sets

Blk1 : {B,B1,B2} {Blk1,Blk1} (C,B) {C1,C2}
Blk2 : {C,C1,C2,C3} {Blk2,Blk2}
Blk3 : {D,D1} {Blk3,Blk3}

After the process of SplitMatch, the final par and rel are shown in the following

table. All the rmv() sets for query edges are /0. One can verify that during the while
loop (lines 8-14), the block set of node C is refined by making use of rmv((C,B)),

resulting in a new block set from which nodes C1 and C2 are absent. The other blocks

are refined similarly.

final par final rel

Blk1 : {B,B1,B2} {Blk1,Blk1}
Blk2 : {C,C3} {Blk2,Blk2}
Blk4 : {C1,C2} {Blk4,Blk2},{Blk4,Blk4}
Blk3 : {D,D1} {Blk3,Blk3}

SplitMatch finds the same result as reported in Example 4.4. 2

Correctness & complexity. The algorithm returns Qp(G), since (1) all blocks are

initialized with query nodes and all their possible matches; (2) the loop (lines 8-14)

Chapter 4. Graph Pattern Queries Over Graph Databases 80

only drops those nodes that fail to match query nodes constrained by the query edges;

(3) each graph node remaining in a block is a match to the corresponding query node,

i.e., satisfying all the edge constraints; and (4) each block decreases monotonically.

The algorithm takes O(|parout ||V |2) time in the worst case, when the distance ma-

trix is used. Indeed, SplitMatch consists of three phases: pre-processing (lines 1-7),

match computation (lines 8-14), and result collection (lines 15-18), which are in time

O((m+1)|V |2+ |V |(|V |+ |E|)+ |V ′
p||V |+ |E ′

p||V |2), O(|parout ||V |2) and O(|E ′
p||V |2)),

respectively. Observe that |parout | is bounded by O(|V ||V ′
p|) and |V ′

p| ≪ |V | in practice.

Putting these together, SplitMatch is in O(|V |3) time.

4.5 Experimental Evaluation

We next present an experimental study using both real-life and synthetic data. Five

sets of experiments were conducted, to evaluate: (1) the effectiveness of PQs, com-

pared with a subgraph isomorphism algorithm SubIso [Ull76] and a simulation based

pattern matching algorithm Match [FLM+10b]; (2) the effectiveness of minimization

as an optimization strategy; (3) the efficiency of RQ evaluation; (4) the efficiency of

algorithms Match and SplitMatch, employing distance matrix and distance cache as

indices; and (5) the scalability of algorithms Match and SplitMatch.

Experimental setting. We used real-life data to evaluate the performance of our meth-

ods in real world, and synthetic data to vary graph characteristics, for an in-depth anal-

ysis.

(1) Real-life data. We used two sets of real-life data as follows: (a) YouTube dataset

with 8350 nodes and 30391 edges, where each node denotes a video with attributes

such as uploader (uid), category (cat), length (len), comment number (com) and age

(the number of days since uploaded); edges between videos represent relationships

such as friends recommendation fc (resp. reference fr) from earlier (resp. later) videos

to later (resp. earlier) related ones, while their uploaders are friends; edge relation-

ships also include strangers recommendation sc and reference sr defined similarly; (b)

a terrorist organization collaboration network, from 81800 worldwide terrorist attack

events in the last 40 years recorded in Global Terrorism Database [ter], where each

node represents a terrorist organization (TOs) with attributes such as name (gn), coun-

try, target type (tt), and attack type (at); and edges bear relationships, e.g., interna-

tional (resp. domestic) collaborations ic (resp. dc), from organizations to the ones they

Chapter 4. Graph Pattern Queries Over Graph Databases 81

assisted or collaborated in the same country (resp. different countries). The network

has 818 nodes and 1600 edges.

(2) Query generator. We designed a query generator to produce meaningful PQs. The

generator has five parameters: |Vp| for the number of pattern nodes, |Ep| the number

of pattern edges, |pred| the number of predicates each pattern node carries, and bounds

b and c such that each edge is constrained by a regular expression e≤b
1 . . .e≤b

k , with

1 ≤ k ≤ c. An RQ is a special case of a PQ as remarked earlier.

(3) Synthetic data. We implemented a generator to produce data graphs, controlled by

4 parameters: the number of nodes |V |, the number of edges |E|, the average number

of attributes associated with a node, and a set Σ of edge colors that an edge may carry.

The size of synthetic graphs scales from 1K nodes, 20K edges to 1M nodes, 4M edges.

(4) Implementation. We have implemented the following in Java: (a) the bi-directional

search based method (BI-BFS) for RQs, with a distance cache employing hashmap

to index frequently asked items; (b) algorithms Match and SplitMatch with distance

matrix as indices, denoted as MatchM and SplitMatchM, respectively; (c) algorithms

Match and SplitMatch using distance cache, denoted as MatchC and SplitMatchC, re-

spectively; (d) SubIso, a subgraph isomorphism algorithm [Ull76]; and (e) Match, a

simulation based pattern matching algorithm [FLM+10b].

All experiments were run on a machine with an AMD Athlon 64× 2 Dual Core

2.30GHz CPU and 4GB of memory, using Scientific Linux. For each experiment, 20

patterns were generated and tested. The average is reported here.

Experimental results. We next present our findings.

Exp-1: Effectiveness of PQs. In this set of experiments, we evaluated the effectiveness

of PQs. In contrast with SubIso and Match, we show that PQs can identify meaningful

matches in real-life data. For quantitative comparison, the F-Measure [Wik] is adopted,

which is defined as follows:

F-Measure = 2 · (recall ·precision) / (recall+precision)

recall= #true matches found / #true matches

precision= #true matches found / #matches

Here #matches is the number of distinct node pairs (u,v), where u is a query node

and v is a graph node that matches u; and #true matches is the number of meaningful

results, i.e., matches satisfying constraints on nodes and edges.

Figure 4.9(a) depicts two real-life PQs Q1 and Q2. Query Q1 finds the videos A in

the category “Film & Animation”, having more than 20 comments and being uploaded

Chapter 4. Graph Pattern Queries Over Graph Databases 82

(a) Real-life result of PQs: Youtube and Terrorist Organization

 0

 0.2

 0.4

 0.6

 0.8

 1

(3,3) (4,4) (5,5) (6,6) (7,7)

F-
m

ea
su

re

JoinMatchM Match
MatchM Match
SubIso Match

(b) Effectiveness comparison

 0

 1

 2

 3

 4

 5

 6

 7

 8

(3,3) (4,4) (5,5) (6,6) (7,7)

T
im

e(
se

co
nd

)

JoinMatchM
SplitMatchM

MatchM
SubIso

(c) Efficiency comparison

 0

 10

 20

 30

 40

 50

 60

(4,6) (6,8) (8,12) (10,15) (12,18)

T
im

e(
se

co
nd

)

Minimized Queries
Normal Queries

(d) Query minimization

Figure 4.9: Effectiveness Results

more than 300 days. Videos A are related to videos B uploaded by “Davedays” via

friends references (fr) or friends recommendations (fc), which in turn are related to

videos C via constraint sr≤6fr. Moreover, B and C both reference videos D, which are

viewed over 160K times having less than 300 comments. Similarly, query Q2 poses a

request on a terrorist network searching for TOs related with a specified TO “Hamas”

via various relations e.g., ic≤2dc+ic≤2.

Chapter 4. Graph Pattern Queries Over Graph Databases 83

Partial results of Q1 and Q2 are drawn in Fig. 4.9(a). Interestingly, the result of

Q2 reflects some (indirect) connections from different TOs to the Hamas TO in the

middle east. Existing approaches e.g., SubIso and Match, are not sufficient to express

such queries. For a fair comparison, we allow different edge colors in a data graph but

restrict the color constrained by a query edge of 1, to favor SubIso and Match.

Figure 4.9(b) shows the F-Measure values of different approaches for various such

queries. The pair (|Vp|, |Ep|) in the x-axis denotes the number of nodes |Vp| and edges

|Ep| in a query. The y-axis represents the F-Measure values. The number of predicates

at each query node is 2 or 3. The result shows that (1) PQs can always find mean-

ingful matches, as expected; (2) SubIso has low F-Measure, e.g., SubIso found 33 true

matches among 245 when the x-value is (3,3). This is mainly due to its low recalls.

For the other queries, SubIso cannot find any match. Its precision is always 1 if some

matches can be identified. (3) The F-Measure of Match is better than that of SubIso.

This is because its recall is high, i.e., it can identify all true matches. However, its pre-

cision is relatively low, e.g., among the 374 matches found by Match when the x-value

is (3,3), only 245 are true matches.

Figure 4.9(c) reports the elapsed time of all the algorithms, using Terrorism data.

The matrix-based methods were employed, i.e., SplitMatchM, MatchM and MatchM.

It shows that MatchM and SplitMatchM outperform MatchM, and are much faster than

SubIso.

These results us tell that PQs are not only more effective, but also more efficient

than its conventional counterparts.

Exp-2: The effectiveness of PQ minimization. We evaluated the effectiveness of

the minimization algorithm minPQs (Section 4.2), using YouTube data. The queries

were generated by varying |Vp| and |Ep|. The average number of predicates |pred| is 3.

Here c is between 2 and 4, and b = 5, i.e., each edge is constrained by the expression

c≤5
1 . . .c≤5

k , where 2 ≤ k ≤ 4.

The results are reported in Fig. 4.9(d). In Fig. 4.9(d), the x-axis is the same as its

counterparts in Fig. 4.9(b), and the y-axis represents the elapsed time for query evalu-

ation. For space limitation, we only show the results of using the algorithm MatchM,

the others reflect similar trend and are thus omitted. The minimization process was

performed instantly. The results tell us the following: (1) minPQs can reduce the size

of queries and thus speed up the query evaluation; and (2) generally, the larger the

queries are, the better the performance can be improved. This is because larger queries

have a higher probability to contain redundant nodes and edges. Indeed, it took 18

Chapter 4. Graph Pattern Queries Over Graph Databases 84

seconds to handle queries with 12 nodes and 18 edges, while the running time was cut

by over a half for the minimized queries, which have 7 nodes and 9 edges in average.

This set of experiments verified that the minimization algorithm can effectively

optimize PQs. In the rest of experiments, all tested queries were minimized.

Exp-3: Efficiency of RQs. In this set of experiment, we tested the efficiency of the

two algorithms presented in Section 4.3 for evaluating RQs. Fixing the bound b at 5

and the cardinality of node predicates at 3, we varied the number of colors c from 1 to

4 per edge. More specifically, the tested regular expressions have the form c1
≤b . . .ci

≤b

(i ∈ [1,4]).

Figure 4.10(a) shows the average elapsed time of evaluating RQs on YouTube data.

The x-axis represents the number of distinct colors and y-axis the elapsed time. The

term DM means the method employing distance matrix. The results tell us the follow-

ing. (1) The method based on distance matrix is most efficient, and BI-BFS is more

efficient than BFS, as expected. (2) BI-BFS scales better than BFS with the number

of colors c, since by searching from two directions, BI-BFS produces less intermedi-

ate nodes than BFS. The trend of the curves of BI-BFS and BFS indicates that BI-BFS

works better for more complex regular expressions. (3) As maintaining distance matrix

is costly for large graphs, BI-BFS makes a rational solution by balancing the tradeoff

between time and space.

Exp-4: Efficiency of PQs on YouTube. This set of experiments varied the parameters

|Vp|, |Ep|, |pred|, c and b, whose default values are 6, 8, 3, 4 and 5, respectively.

Figures 4.10(b), 4.10(c), 4.10(d) and 4.10(e) depict the elapsed time when varying

one of the parameters: |Vp|, |Ep|, |pred| and b, respectively. See Fig. 4.10(a) for the

tests for varying c. The M-index represents the time of computing a distance matrix,

which is shared by all patterns and thus is not counted in the algorithms MatchM and

SplitMatchM.

Observe the following about these experimental results:

(1) Figure 4.10(b) shows that the matrix-based algorithms MatchM and SplitMatchM

outperforms the distance-cache based MatchC and SplitMatchC, respectively, since the

former answers node distance in constant time, while the latter needs to compute it

from scratch if the result is not cached.

(2) The join-based methods outperform the split-based methods. As shown in the

figures with various parameters, in most cases MatchM is the fastest, followed by

Chapter 4. Graph Pattern Queries Over Graph Databases 85

 0

 2

 4

 6

 8

 10

1 2 3 4

T
im

e(
se

co
nd

)

Bi-BFS
BFS
DM

(a) RQs over Youtube

 0

 10

 20

 30

 40

 50

4 6 8 10 12

T
im

e(
se

co
nd

)

JoinMatchM
JoinMatchC

SplitMatchM
SplitMatchC

M-Index

(b) Varying |Vp| on YouTube

 0

 10

 20

 30

 40

 50

 60

4 6 8 10 12

T
im

e(
se

co
nd

)

JoinMatchM
JoinMatchC

SplitMatchM
SplitMatchC

M-Index

(c) Varying |Ep| on YouTube

 0

 20

 40

 60

 80

 100

 120

 140

1 2 3 4 5
T

im
e(

se
co

nd
)

JoinMatchM
JoinMatchC

SplitMatchM
SplitMatchC

M-Index

(d) Varying |pred| on YouTube

 0

 5

 10

 15

 20

 25

 30

1 3 5 7 9

T
im

e(
se

co
nd

)

JoinMatchM
JoinMatchC

SplitMatchM
SplitMatchC

M-Index

(e) Varying b on YouTube

Figure 4.10: Efficiency over real life dataset

SplitMatchM; and MatchC outperforms SplitMatchC. This indicates that the compu-

tational cost of the join-based method is reduced by adopting the reverse topological

order (see Section 4.4).

(3) The elapsed time is more sensitive to the number of pattern edges (see Fig. 4.10(c))

than pattern nodes (see Fig. 4.10(b)), since the number of edges dominates the num-

ber of joins or splits to be conducted. Moreover, the elapsed time is sensitive to the

number of predicates (see Fig. 4.10(d)) since predicates impose a strong constraint in

Chapter 4. Graph Pattern Queries Over Graph Databases 86

 0

 10

 20

 30

 40

 50

 60

1k 2k 3k 4k 5k 6k 7k 8k

T
im

e(
se

co
nd

)

JoinMatchM
JoinMatchC

SplitMatchM
SplitMatchC

(a) Synthetic G(|V |,20K)

 0

 10

 20

 30

 40

 50

 60

 70

3k 6k 9k 12k 15k 18k 21k 24k 27k 30k

T
im

e(
se

co
nd

)

JoinMatchM
JoinMatchC

SplitMatchM
SplitMatchC

(b) Synthetic G(8K, |E|)

 0

 10

 20

 30

 40

 50

 60

 70

 80

1 3 5 7 9

T
im

e(
se

co
nd

)

JoinMatchC
SplitMatchC

(c) Varying b on Synthetic Data

 0

 10

 20

 30

 40

 50

 60

1 2 3 4 5 6 7 8 9 10

T
im

e(
se

co
nd

)

JoinMatchC
SplitMatchC

(d) Varying |V | (×105)

 0

 5

 10

 15

 20

 25

 30

1.0 1.02 1.04 1.06 1.08 1.1 1.12

T
im

e(
se

co
nd

)

JoinMatchC
SplitMatchC

(e) Varying α

 10

 20

 30

 40

 50

 60

 70

5 10 15 20 25 30 35 40 45 50

T
im

e(
se

co
nd

)

JoinMatchC
SplitMatchC

(f) Varying cr (×10−3)

Figure 4.11: Efficiency over synthetic dataset

initializing the match set. The more the predicates, the less graph nodes will satisfy

them, resulting in smaller candidate matches and faster evaluation. The time is sensi-

tive to the bound (see Fig. 4.10(e)) since the number of matches gets larger when b is

increased.

(4) From these figures, we can expect that all algorithms have good scalability and they

will work well when the numbers of |Vp|, |Ep| |pred| and b become much larger.

(5) The M-index can be computed efficiently, and it improves the performance, when

the dataset is relatively small.

Chapter 4. Graph Pattern Queries Over Graph Databases 87

Exp-5: Scalability of PQs on synthetic data. In the last set of experiments, we

evaluated the scalability of both algorithms over (large) synthetic data. The default

values of |Vp|, |Ep|, c, |pred| and b are 6, 8, 4, 3 and 5, respectively.

(1) We first tested both distance-cache based and matrix-based algorithms w.r.t. |V |
and |E| of data graphs with default values 8K and 20K, respectively. Figures 4.11(a)

and 4.11(b) show that all algorithms scale well with |V | and |E|, respectively.

(2) We then tested the distance-cache based algorithms on large data graphs since the

matrix-based algorithms do not work due to their high space overhead. Two additional

parameters are used: (a) candidate rate (cr) such that the number of matches of a pattern

node is bounded by |V |× cr, and (b) the density α of data graphs such that |E|= |V |α.

The default values of |V |, cr and α are 50K, 0.01 and 1.1, respectively.

Figures 4.11(c), 4.11(d), 4.11(e) and 4.11(f) show that (a) the distance-cache based

algorithms scale well with b, |V |, α and cr, respectively; (b) they are sensitive to all

these parameters; and (c) Match consistently outperforms SplitMatch.

Summary. We have the following findings. (1) PQs are able to identify far more

sensible matches in emerging application than the conventional approaches can find.

(2) The minimization algorithm can effectively identify and remove redundant nodes

and edges, and thus can improve performance for query answering. (3) With distance

matrix as indices, the evaluation of RQs is very efficient. Moreover, BI-BFS is rational

when working on large graphs. (4) PQs can be efficiently evaluated, and the distance-

cache based algorithms scale well even with large graphs with 1M nodes and 4M edges.

Chapter 5

Incremental Graph Pattern Matching

Graph pattern matching is a routine process in a variety of applications, e.g., com-

puter vision, knowledge discovery, biology, cheminformatics, dynamic network traf-

fic, intelligence analysis and social networks. In previous chapters we have intro-

duced the graph pattern matching problems defined in terms of subgraph isomor-

phism [SNS09, Ull76], graph simulation [ABS00, BHK+10] or bounded simula-

tion [FLM+10b]. Generally speaking, given a pattern graph GP and a data graph G,

graph pattern matching is to find the set M(GP,G) of matches in G for GP. For sub-

graph isomorphism, M(GP,G) is the set of all subgraphs of G that are isomorphic to

the pattern GP. For (bounded) simulation, M(GP,G) consists of a unique maximum

match, a relation defining edge-to-edge (edge-to-path) mappings.

Nevertheless, graph pattern matching is costly: NP-complete for subgraph isomor-

phism [GJ79], cubic-time for bounded simulation [FLM+10b], and quadratic-time for

simulation [HHK95]. In practice, a data graph G is typically large, and moreover, is

frequently updated. This is particularly evident in, e.g., social networks [GGCM09],

Web graphs [CGM00] and traffic networks [CSZY09]. It is often prohibitively ex-

pensive to recompute the matches starting from scratch when G is updated. These

highlight the need for incremental algorithms to compute matches.

Given a pattern graph GP, a data graph G, the matches M(GP,G) in G for GP and

changes ∆G to G, the incremental matching problem is to compute changes ∆M to the

matches such that M(GP,G⊕∆G) = M(GP,G)⊕∆M.

An incremental matching algorithm capitalizes on the information from the old

matches M(GP,G) to compute the new output M(GP,G⊕∆G). As opposed to batch

algorithms that recompute the new output from scratch, it aims to minimize unneces-

sary recomputation and improve response time. Indeed, when the changes ∆G to G are

89

Chapter 5. Incremental Graph Pattern Matching 90

Figure 5.1: Querying FriendFeed incrementally

small, the increment ∆M to the matches is often small as well, and is much less costly

to find than recompute the entire M(GP,G⊕∆G). While real-life graphs are constantly

updated, the changes are typically minor; for example, only 5% to 10% of nodes are

updated weekly in a Web graph [NCO04].

To efficiently compute the matches where the data graph is changing, this chapter

investigates the incremental algorithms for graph pattern matching defined in terms of

graph simulation, bounded simulation and subgraph isomorphism. (1) For simulation,

we provide incremental algorithms for unit updates and certain graph patterns. These

algorithms are optimal: in linear time in the size of the changes in the input and out-

put, which characterizes the cost that is inherent to the problem itself. For general

patterns we show that the incremental matching problem is unbounded, i.e., its cost

is not determined by the size of the changes alone. (2) For bounded simulation, we

show that the problem is unbounded even for unit updates and path patterns. (3) For

subgraph isomorphism, we show that the problem is intractable and unbounded for

unit updates and path patterns. (4) For multiple updates, we develop an incremental

algorithm for each of simulation, bounded simulation and subgraph isomorphism. We

experimentally verify that these incremental algorithms significantly outperform their

batch counterparts in response to small changes, using real-life data and synthetic data.

Example 5.1: Consider a small fraction of FriendFeed [Fri, GGCM09], a social net-

working service, shown as graph G (excluding edges e1–e5) in Fig. 5.1. Each node in

G denotes a person, carrying attributes such as name (Ann, Pat) and job (CTO, DB).

Chapter 5. Incremental Graph Pattern Matching 91

Consider graph patterns P1 and P2 given in Fig. 5.1:

(1) Pattern P1 is to find a bounded simulation relation [FLM+10b], including CTOs

who are connected to a DB researcher within 2 hops and a biologist within 1 hop;

moreover, the DB researcher has to reach a biologist within 1 hop and a CTO via a path

of an arbitrary length. Here M(P1,G) is the relation {(CTO, Ann), (DB, Pat), (DB, Dan),

(Bio, Bill), (Bio, Mat)}.

(2) Pattern P2 is to find all subgraphs of G that are isomorphic to P2. Here the set

M(P2,G) consists of a single subgraph of G induced by nodes Ann, Pat and Bill.

Suppose that the graph G is updated by inserting five edges e1–e5, denoted by

∆G (see Fig. 5.1). Then (1) ∆G incurs increment ∆M1 to M(P1,G), containing two

new pairs (CTO, Don) and (Bio, Tom). This yields the new output M(P1,G⊕∆G) =

M(P1,G)∪∆M1. (2) The new matches M(P2,G⊕∆G) is M(P2,G)∪∆M2, where ∆M2

consists of the subgraph of G⊕∆G induced by edges e2–e5.

When ∆G is small, the increment ∆M1 (resp. ∆M2) to the old output M(P1,G)

(resp. M(P2,G)) is also small. When G is large as commonly found in practice, it is

less costly to find ∆M1 (resp. ∆M2) than recompute the entire M(P1,G⊕∆G) (resp.

M(P2,G⊕∆G)) from scratch. 2

As suggested by the example, we can cope with the dynamic nature of social net-

works and Web graphs by computing matches once on the entire graph via a batch

algorithm, and then incrementally identifying their changes in response to updates.

That is, we find new matches by making maximal use of previous computation, with-

out paying the price of the high complexity of graph pattern matching.

As argued in [RR96b], the traditional complexity analysis for batch algorithms

is no longer adequate for incremental algorithms. Indeed, it is not very informative

to define the cost of an incremental algorithm as a function of the size of the input.

Instead, one should analyze the algorithms in terms of |CHANGED|, which indicates

the size of the changes in the input and output (see Section 5.1 for details). It represents

the updating costs that are inherent to the incremental matching problem itself. An

incremental algorithm is said to be bounded if its cost can be expressed as a function

of |CHANGED|, i.e., it depends only on |CHANGED|, rather than on the entire input

(data graph G and pattern GP). It is said to be optimal if it is in O(|CHANGED|) time,

which characterizes the amount of work that is absolutely necessary to perform for

any incremental algorithm. An incremental matching problem is said to be bounded if

Chapter 5. Incremental Graph Pattern Matching 92

there exists a bounded incremental algorithm, and unbounded otherwise.

While there has been a host of work on graph pattern matching (see [CFSV04,

Gal06] for surveys), much less is known about the incremental matching problem.

This work makes a first effort to investigate incremental graph pattern matching. For

matching defined in terms of graph simulation, bounded simulation or subgraph iso-

morphic, we show that the incremental matching problem is bounded (or unbounded),

and provide effective incremental algorithms. We consider unit update, i.e., a single-

edge deletion or insertion, and batch updates, i.e., a list of edge deletions and insertions

mixed together.

5.1 Batch and Incremental Matching

In this section we first present data graphs and graph patterns, and then define graph

pattern matching in terms of subgraph isomorphism, simulation and bounded simula-

tion. Finally we state the incremental matching problem.

5.1.1 Data Graph and Graph Patterns

We start with data graphs and pattern graphs.

Data graphs. A data graph G = (V,E, fA) is a directed graph, where (1) V is the set of

nodes; (2) E ⊆V ×V , in which (v,v′) denotes an edge from node v to v′; and (3) fA(·) is

a function that associates each node v in V with a tuple fA(v) = (A1 = a1, . . . ,An = an),

where ai is a constant, and Ai is referred to as an attribute of v, carrying the content of

the node, e.g., label, keywords, blogs, rating.

We shall use the following notations for data graphs G. (1) A path ρ from node v

and v′ in G is a sequence of nodes v = v0,v1, · · · ,vn = v′ such that (vi−1,vi) ∈ E for

every i ∈ [1,n]. The length of path ρ, denoted by len(ρ), is n, i.e., the number of edges

in ρ. The path ρ is said to be nonempty if len(ρ)≥ 1. Abusing notations for trees, we

refer to vi as a child of vi−1 (or vi−1 as a parent of vi), and v j as a descendant of vi−1

for i, j ∈ [1,n] and i < j. (2) The distance between node v and v′ is the length of the

shortest paths from v to v′, denoted by dis(v,v′).

Pattern graphs. A b-pattern is a labeled directed graph defined as GP =

(Vp,Ep, fp, fe), where (1) Vp and Ep are the set of pattern nodes and the set of pat-

tern edges, respectively, as defined for data graphs; (2) fp(·) is a function defined on

Chapter 5. Incremental Graph Pattern Matching 93

Vp such that for each node u, fp(u) is the predicate of u, defined as a conjunction of

atomic formulas of the form A op a; here A denotes an attribute, a is a constant, and op

is a comparison operator <,≤,=, ̸=,>,≥; and (3) fe(·) is a function on Ep such that

for each edge (u,u′), fe(u,u′) is either a positive integer k or a symbol ∗.

Intuitively, the predicate fp(u) of a node u specifies a search condition. An edge

(u,u′) in GP is to be mapped to a path ρ from v to v′ in a data graph G. As will be seen

shortly, fe(u,u′) imposes a bound on the length of ρ.

We refer to GP as a normal pattern if for each edge (u,u′)∈ EP, fe(u,u′) = 1. Intu-

itively, a normal pattern enforces edge to edge mappings, as found in graph simulation

and subgraph isomorphism.

Example 5.2: The social network G of Fig. 5.1 is a data graph, where each node has

two attributes, name and job. The node (Ann, “CTO”) denotes a person with (name =

“Ann”, job = “CTO”). The graph P1 in Fig. 5.1 depicts a b-pattern. Each edge in P1 is

labeled with either a bound or ∗, specifying connectivity as described in Example 5.1.

Graph P2 is a normal pattern, where each edge is labeled 1 (not shown). 2

We shall also consider special patterns, such as DAGs, i.e., when the patterns are

acyclic, and path patterns, i.e., when the patterns consist of a single path.

5.1.2 Graph Pattern Matching

We next define metrics for graph pattern matching.

Consider a b-pattern GP = (Vp,Ep, fp, fe) and a data graph G = (V,E, fA). We say

that a node v in G satisfies the search condition of a pattern node u in GP, denoted as

vmatu, if for each atomic formula ‘A op a’ in fp(u), there exists an attribute A in fA(v)

such that v.A op a.

Subgraph isomorphism. For a normal pattern GP and a subgraph G′ = (V ′,E ′) of G,

we say that G′ matches GP, denoted as GPEisoG′, if there exists a bijection h from Vp

to V ′ such that (1) umath(u) for each u ∈ Vp, and (2) for each pair (u,u′) of nodes in

GP,unbound’ (u,u′) ∈ Ep iff (h(u),h(u′)) ∈ E ′.

We use M(GP,G) to denote the set of all subgraphs of G that are isomorphic to GP.

Bounded simulation [FLM+10b]. The data graph G matches a b-pattern GP via

bounded simulation, denoted by GPEbsimG, if there exists a binary relation S ⊆Vp×V

such that

(1) for each u ∈Vp, there exists v ∈V such that (u,v) ∈ S;

Chapter 5. Incremental Graph Pattern Matching 94

(2) for each (u,v) ∈ S, (a) umatv, and (b) for each edge (u,u′) in Ep, there exists

a nonempty path ρ from v to v′ in G such that (u′,v′)∈ S, and len(ρ)≤ k if fe(u,u′)= k.

We refer to S as a match in G for GP.

Intuitively, (u,v) ∈ S if (1) the data node v in G satisfies the search condition spec-

ified by fp(u) in GP; and (2) each edge (u,u′) in GP is mapped to a nonempty path ρ
from v to v′ in G, such that v,v′ match u,u′, respectively; and moreover, when fe(u,u′)

is k, it indicates a bound on the length of ρ, i.e., v is connected to v′ within k hops.

When it is ∗, ρ can be a nonempty path of an arbitrary length.

It has been shown in [FLM+10b] that if GPEbsimG, then there exists a unique

maximum match in G for GP. In light of this, we refer to the maximum match simply

as the match in G for GP, denoted as M(GP,G).

Graph simulation [ABS00, HHK95]. Graph simulation is the special case of bounded

simulation when GP is a normal pattern, i.e., when fe(u,u′) = 1 for all (u,u′) ∈ Ep. In

other words, it only allows edges in the pattern to be mapped to edges in the data graph.

We say that G matches GP via simulation, written as GPEsimG, if there exists such a

match in G for GP. Obviously if GPEsimG then there exists a unique maximum match

in G for GP, as for bounded simulation.

Given a pattern (b-pattern) GP and a data graph G, the graph pattern matching

problem is to compute M(GP,G).

More specifically, for subgraph isomorphism, the batch computation is to find all

the subgraphs G′ that are isomorphic to GP. For (bounded) simulation, it is to find the

unique maximum match, if GPEsimG (GPEbsimG).

Example 5.3: To see the differences between the three matching metrics given above,

consider pattern graphs P3, P4 and data graphs G2, G3 and G4 shown in Fig. 5.2, where

a node from a data graph satisfies the condition of a pattern node if they have the same

label. Observe the following.

(1) P3EisoG2. In contrast, no subgraph of G3 or G4 is isomorphic to P3, i.e., M(P3,Gi)

is empty for i ∈ [3,4].

(2) P3EsimG2 and P3EsimG3. Note that a simulation match is a relation that maps a

pattern node to multiple nodes in a data graph, as opposed to bijective functions for

subgraph isomorphism. For example, node C in P3 is mapped to the two C nodes in

G3. In contrast, G4 does not match P3 via simulation, i.e., M(P3,G4) is empty, as the

node A is not adjacent to C in G4, as required in P3.

Chapter 5. Incremental Graph Pattern Matching 95

Figure 5.2: Example data graphs and graph patterns

(3) All the data graphs of Fig. 5.2 match the b-pattern P4 via bounded simulation.

Bounded simulation further relaxes edge-to-edge mappings by allowing edge-to-path

mappings, subject to bounds on pattern edges. In particular, both C nodes in G4 are

valid matches of the node C in P4.

2

5.1.3 Incremental Graph Pattern Matching

In contrast to its batch counterpart, the incremental matching problem takes as input

a data graph G, a pattern (b-pattern) GP, the matches M(GP,G) in G for GP, and

changes ∆G to G. It finds changes ∆M to the old matches such that M(GP,G⊕∆G) =

M(GP,G)⊕∆M. That is, when the data graph G is updated, it computes new matches

by leveraging information from the old matches.

As remarked ealier, the cost of an incremental matching algorithm should be ana-

lyzed in terms of the size |CHANGED| [RR96b]. To characterize |CHANGED|, we first

introduce two notions: result graphs and affected areas.

Result graphs. The result graph of a pattern GP in a data graph G is a graph represen-

tation of the matches M(GP,G). It is a graph Gr = (Vr,Er) defined as follows.

(1) For subgraph isomorphism, Gr is the union of all the subgraphs G′ of G in

M(GP,G).

(2) For bounded simulation, (a) Vr consists of all the nodes v in G such that (u,v) ∈
M(GP,G), i.e., v is a match of some pattern node u in the maximum match; (b) for each

edge (u1,u2) in Ep, there is an edge (v1,v2) ∈ Er if and only if (u1,v1) and (u2,v2) are

Chapter 5. Incremental Graph Pattern Matching 96

Figure 5.3: Result graphs and affected areas

in M(GP,G), and there exists a nonempty path ρ from v1 to v2 that satisfies the bound,

i.e., len(ρ) ≤ k if fe(u1,u2) = k, and 0 < len(ρ) otherwise. That is, the edge (v1,v2)

indicates the path in G to which the pattern edge (u1,u2) is mapped.

Similarly the result graph is defined for simulation.

Example 5.4: Consider the b-pattern P1 and data graph G of Fig. 5.1. Recall that

M(P1,G) for bounded simulation is {(CTO, Ann), (DB, Pat), (DB, Dan), (Bio, Bill),

(Bio, Mat)}. The result graph of P1 in G is shown as Gr1 in Fig. 5.3. 2

Affected areas. We characterize the changes ∆M in the matches in terms of the af-

fected area in the result graph. Let Gr and G′
r be the result graphs of GP in G and

G⊕∆G, respectively. Then the affected area (AFF) of Gr by ∆G is the difference

between Gr and G′
r, i.e., the changes in both nodes and edges (inserted or deleted)

inflicted by ∆G.

Example 5.5: Consider the graph G and the pattern P1 of Fig. 5.1. When a new edge

e2 is inserted into G, i.e., ∆G is the insertion of edge e2, the new result graph Gr2 of P1

is shown in Fig. 5.3. The affected area AFF includes two new nodes Don and Tom, and

the new edges attached to them, i.e., (Don, Pat), (Pat, Don), (Don, Tom) (Don, Dan),

and (Dan, Don). It represents the changes ∆M, which adds the new pairs (CTO, Don)

and (Bio, Tom) to M(P1,G).

When G⊕∆G is further changed by inserting edges e1,e3,e4 and e5, the new result

graph is Gr3. Here AFF contains nodes Don, Tom, along with all the new edges con-

nected to them. Compared to Gr2, although four new edges are added, AFF is increased

by only one edge (Dan, Tom).

Now consider the pattern P2 of Fig. 5.1, for subgraph isomorphism. The result

graph of P2 in G is the left subgraph of Gr4 shown in Fig. 5.3. When ∆G is to insert the

edges e1,e2,e3,e4 and e5 into G, AFF is the subgraph induced by edges e2–e5, which

Chapter 5. Incremental Graph Pattern Matching 97

Eiso subgraph isomorphism

Ebsim bounded simulation

Esim graph simulation

M(GP,G) matches in G for GP

|CHANGED| |∆G| + |AFF|, changes in the input and result

Table 5.1: Notations: Incremental matching

is a subgraph of G⊕∆G that is made isomorphic to P2 by ∆G. 2

Complexity. We define |CHANGED| = |∆G|+ |AFF|, which indicates the size of

changes in the data graph (input) and match results (output). An incremental algo-

rithm is bounded if its complexity is determined only by |CHANGED|, independent of

data graph G. It is said to be optimal if it is in O(|CHANGED|) time. The incremental

matching problem is either bounded or unbounded.

We summarize various notions in Table 5.1.

5.2 Incremental Simulation Matching

We now study the incremental simulation problem, referred to as IncSim. Given a

normal pattern GP, a data graph G, a result graph Gr representing the unique maximum

simulation M(GP,G), and changes ∆G to G, IncSim is to compute the changes to result

graph Gr, which represents ∆M such that M(GP,G⊕∆G) = M(GP,G)⊕∆M.

The main results of this section are as follows.

Theorem 5.2.1 The incremental simulation problem is

(1) unbounded even for unit updates and general patterns;

(2) bounded for (a) single-edge deletions and general patterns, and (b) single-edge

insertions and DAG patterns, within an optimal time O(|AFF|); and

(3) in O(|∆G|(|GP||AFF|+ |AFF|2)) time for batch updates and general patterns.

To the best of our knowledge, Theorem 5.2.1 presents the first results for IncSim.

While the problem is unbounded for batch updates and general patterns, its complexity

is independent of the size of the data graph: it depends only on the size of the changes

in the input and output and the size of pattern GP, which is typically small in practice.

For (1), we can verify that IncSim is unbounded for a single-edge insertion and a

pattern with one cycle. Hence, IncSim is also unbounded for batch updates and general

Chapter 5. Incremental Graph Pattern Matching 98

Figure 5.4: IncSim in various updates

patterns. In the rest of section we show (2) for unit updates (Section 5.2.1) and (3) for

batch updates (Section 5.2.2).

5.2.1 Incremental Simulation for Unit Updates

We first provide optimal incremental algorithms for (a) unit deletions and general pat-

terns and (b) unit insertions and DAG patterns. We then develop an efficient incremen-

tal algorithm for unit insertions and general patterns.

Unit deletions. The deletion of an edge from G may only reduce matches from

M(GP,G), i.e., it leads to the removal of nodes and edges from the result graph Gr.

We identify those edges in the data graph G whose deletions affect Gr, referred to as

ss edges, as follows. (1) The match (resp. candidate) set for a pattern node u ∈ Vp,

denoted as mat(u) (resp. can(u)), is the set of the nodes v ∈ G that satisfy the predicate

of u and can (resp. but does not) match u. (2) An edge (v′,v) in the data graph G is an

ss edge for a pattern edge (u′,u) if v′ ∈ mat(u′) and v ∈ mat(u). One can verify that

the result graph Gr contains all the ss edges.

It suffices to consider ss edges for edge deletions:

Proposition 5.2.2: Given a normal pattern GP and a data graph G, only the deletions

of ss edges for some pattern edge in G may reduce the matches of GP. 2

Example 5.6: Consider the normal pattern P2 and the data graph G of Example 5.1.

Observe that P2EsimG, where M(P2,G) is the relation {(CTO, Ann), (DB, Pat), (DB,

Dan), (Bio, Bill), (Bio, Mat)}. The result graph Gr5 is shown in Fig. 5.4. Suppose that

the graph G is updated by deleting e6 = ((Pat, “DB”), (Bill, “Bio”)), which is an ss edge

for the pattern edge (DB, Bio) and is also in Gr5. When e6 is removed, the node (Pat,

“DB”) is no longer a valid match for the pattern node DB, since there is no edge from

(Pat, “DB”) to a node that can match the pattern node Bio. 2

Chapter 5. Incremental Graph Pattern Matching 99

Input: Pattern GP, data graph G, the result graph Gr = (Vr,Er),

and an edge e = (v′,v) to be deleted from G.

Output: The updated result graph Gr.

1. if e = (v′,v) ̸∈ Er then delete e from G and return Gr;

2. stack eset := /0; eset.push(e);

3. while eset is not empty do

4. edge e := eset.pop();

5. for all ep = (u′,u) that e = (v′,v) can match do

6. M(ep,v′) := M(ep,v′) - 1;

7. if M(ep,v′) = 0 then

8. for all e′ = (v′′,v′) in Er do

9. Er := Er \{e′}; eset.push(e′);

10. Vr := Vr \{v′}; mat(u′) := mat(u′)\{v′};

11. if mat(u′) = /0 return /0;

12. return Gr.

Figure 5.5: Algorithm IncMatch−

Based on Proposition 5.2.2, we give an incremental algorithm for deleting an edge

e = (v′,v), denoted by IncMatch− and shown in Fig. 5.5. The algorithm first checks

whether e is an ss edge for a pattern edge. If not, the result graph Gr is unchanged

(line 1). Otherwise IncMatch− finds and propagates all the matches that are no longer

valid due to the removal of e, until the affected area AFF is identified and Gr is updated

accordingly (lines 2-12). To do this, as auxiliary structures we maintain mat(u) for

each pattern node u as described earlier, and moreover, a matrix M such that for each

pattern edge ep = (u′,u) and each node v′ in mat(u′), M(ep,v′) is the number of the

children of v′ that match u.

More specifically, IncMatch− uses a stack eset (line 2) to store edges that may be

in AFF. For each pattern edge ep = (u′,u) to which the ss edge e is mapped, it updates

and checks M(ep,v′) to determine whether v′ still has children to simulate u (line 4-7).

If not, then v′ is removed from mat(u′) and from Gr along with all the edges (v′′,v′)

connected to it (lines 8-10). The removed edges (v′′,v′) may put v′′ into AFF, and are

pushed into eset for further checking (line 9). If there is a pattern node that has no

valid matches, then G \ {e} no longer matches Gp, and the result graph Gr is empty

Chapter 5. Incremental Graph Pattern Matching 100

(line 10). This process continues until all the edges and nodes that may enter AFF are

examined (lines 3-10).

Example 5.7: Recall P2 and Gr5 from Example 5.6. When e6 is removed, IncMatch−

finds that no child of node Pat can match Bio. Thus Pat is no longer a match. The edge

(Ann, Pat), an ss edge for (CTO, DB), is then checked. Since Ann has children Dan and

Bill that match DB and Bio, respectively, IncMatch− updates Gr5 by removing Pat and

its three edges, which constitute AFF, as marked in Fig. 5.4. 2

Correctness & complexity. (1) Algorithm IncMatch− correctly updates the result graph

Gr since it only removes nodes and their edges that are no longer valid matches in Gr.

(2) It runs in O(|AFF|) time by leveraging index structures (not shown), because it only

visits those nodes v′ having a child that becomes an invalid match. Indeed, if v′ is still

a valid match for a node u′ in a pattern edge ep =(u′,u), then matrix entry M(ep,v′) is

not 0, and IncMatch− never processes it; otherwise IncMatch− identifies v′ and visits

at most all the ss edges and nodes within 1 hop of v′.

Unit insertions. In contrast to edge deletions, inserting edges into the data graph G

may only add new matches to M(GP,G), i.e., it may only add new nodes and edges to

the result graph Gr. There are two groups of edges that, when added to G, may yield

new matches, referred to as cc edges and cs edges. A newly inserted edge (v′,v) is a

cs (resp. cc) edge for a pattern edge (u′,u) if v′ ∈ can(u′) and v ∈ mat(u) (resp. v ∈
can(u)). Indeed, one can verify the following:

Proposition 5.2.3: (1) For a DAG pattern GP, only insertions of cs edges into a data

graph G may increase matches of GP. (2) For a general pattern GP, only insertions of

cs or cc edges into G may add new matches of GP. (3) Moreover, cc edges alone only

add new matches for pattern nodes in some strongly connected component (SCC) of

GP. 2

Example 5.8: Consider again P2 and G of Fig. 5.1. Suppose that after the deletion of

edge e6, edge e7 from Pat to Mat is inserted into G, which is a cs edge for the pattern

edge (DB, Bio). This yields a new match Pat for pattern node DB, and the new result

graph Gr6 is depicted in Fig. 5.4. 2

Capitalizing on Proposition 5.2.3, below we propose incremental algorithms to

process a single-edge insertion into general data graphs, denoted by IncMatch+dag and

IncMatch+, for DAG patterns and general patterns, respectively.

Unit insertions and DAG patterns. Algorithm IncMatch+dag (not shown) identifies those

Chapter 5. Incremental Graph Pattern Matching 101

Input: Pattern, data graph G = (V,E, fA), the result graph

Gr = (Vr,Er), and an edge e = (v′,v) to be added to G.

Output: The updated result graph Gr.

1. AFFcs := {(v′,v)} if (v′,v) is a cs edge for a (u′,u) ∈ Ep;

2. AFFcc := {(v′,v)} if (v′,v) is a cc edge for a (u′,u) ∈ Ep;

3. propCS(AFFcs,AFFcc,GP,Gr);

4. propCC(AFFcs,AFFcc,GP,Gr);

5. propCS(AFFcs,AFFcc,GP,Gr);

6. return Gr.

Procedure propCC

Input: A set AFFcc, pattern GP, graph G, and the result graph Gr.

Output: The updated result graph Gr, AFFcs and AFFcc.

1. construct the SCC graph Gs of GP;

2. for each SCC scci of Gs do

3. AFFcci := {(w′,w)| (w′,w) is a cc edge for (u′,u) in scci};

4. if AFFcci ̸= /0 then

5. for each node u ∈ scci do mat′(u) := can(u);

6. compute the matches for subgraph scci in AFFcci ;

7. if mat′(u) ̸= /0 then Update Gr, AFFcs and AFFcc;

8. return Gr;

Figure 5.6: Algorithm IncMatch+

nodes that yield a new match upon an edge insertion, and propagates the new matches

until the entire AFF is found. As opposed to IncMatch−, (1) for each pattern node u,

IncMatch+dag maintains a set can(u) of candidates rather than mat(u), and (2) instead

of using a counter for each data node, IncMatch+dag maintains a small list L of pattern

nodes of size O(|Vp|) for each v′ ∈ can(u′), consisting of the children u of u′ that have

no match in the children of v′. When a cs edge (v′,v) is inserted, a pattern node u is

removed from the list L if a child v of v′ is a match of u. Once L is empty, v′ become a

match of u′, reducing the list of its parents. IncMatch+dag propagates the new matches

following a depth-first, bottom-up topological order, until the result graph Gr can no

longer be changed.

One can verify that IncMatch+dag is correct and is in O(|AFF|) time, similar to its

Chapter 5. Incremental Graph Pattern Matching 102

counterparts for IncMatch−.

Unit insertions and general patterns. We present algorithm IncMatch+ in Fig. 5.6.

When it comes to cyclic graph patterns, it is more challenging to process edge inser-

tions. Following Proposition 5.2.3, IncMatch+ first identifies AFFcs and AFFcc, i.e., all

the cc and cs edges that may introduce new matches when an edge e is inserted into the

data graph G (lines 1-2). It then does the following. (1) It invokes procedure propCS

to find all new matches added by the insertion of cs edges (line 3). Note that new

matches generated in this step reduces cc edges. (2) It then uses procedure propCC

to detect new matches formed in new SCCs in G consisting of all cc edges (line 4),

which correspond to SCCs of GP. (3) Since new cs edges may be generated in step (2),

IncMatch+ invokes propCS again to detect any new match (line 5). After these three

phases no new match could be generated, and the updated result graph Gr is returned

(line 6).

We next present the procedures used by IncMatch+. Procedure propCS is similar

to IncMatch+dag: it first identifies new matches added by AFFcs, and then inductively

checks their parents for propagation of the new matches. Procedure propCC is given in

Fig. 5.6. It detects those new matches added only by cc edges, corresponding to SCCs

in GP. It first constructs a graph Gs for GP, in which each node is an SCC (line 1). For

each SCC node in Gs that contains at least a pattern edge, propCC checks whether there

exists a new match formed by the cc edges (lines 3-6). If new matches are founded,

Gr is updated by including the new nodes and edges (line 7). After each SCC in Gp is

examined (lines 2-7), the updated Gr is returned (line 8).

Correctness & Complexity. Algorithm IncMatch+ correctly updates Gr because (1) all

the matches found are valid, since IncMatch+ only adds a new match v′ to pattern node

u′ if each child of u′ can find a match in the children of v′; and (2) IncMatch+ always

terminates, as the candidate sets are monotonically decreasing. For the complexity of

IncMatch+, one can verify that it is in O(|Gp||AFF|+ |AFF|2) time.

5.2.2 Incremental Simulation for Batch Updates

We next present IncMatch, an incremental simulation algorithm for general patterns

and a set ∆G of edge deletions and insertions (batch updates). Its main idea is to

(1) remove redundant updates as much as possible, and (2) handle multiple updates

simultaneously rather than one by one.

Algorithm IncMatch is shown in Fig. 5.7. As auxiliary structures, it also maintains

Chapter 5. Incremental Graph Pattern Matching 103

Input: Pattern GP, data graph G, the result graph Gr, and

batch updates ∆G.

Output: The updated result graph Gr.

1. minDelta(∆G,GP,G);

2. for each pattern edge ep and its ss edges do

3. iteratively identify and remove invalid matches; Update Gr;

4. for each SCC in Gp and related cc and cs edges do

5. iteratively identify and add new matches; Update Gr;

6. return Gr;

Procedure minDelta

Input: Pattern GP, data graph G, updates ∆G.

Output: The reduced ∆G

1. for each edge e to be inserted do

2. if there is no edge ep ∈ Ep for which e is a cs or cc then

3. update G and auxiliary structures; ∆G := ∆G\{e};

4. for each edge e to be deleted do

5. if there is no edge ep ∈ Ep for which e is an ss then

6. update G and auxiliary structures; ∆G := ∆G\{e};

7. for each ep ∈ Ep and its cs and ss edges do

8. reduce ∆G via combination and cancellation; Update Gr;

9. return ∆G;

Figure 5.7: Algorithm IncMatch

matrix M and pattern node list L used for IncMatch− and IncMatch+, respectively.

It first invokes procedure minDelta to reduce the set of updates ∆G (line 1). It then

collects for each pattern edge e all its ss edges, and handles edge deletions first to

identify invalid matches in AFF (lines 2-3). After the invalid matches are removed

from Gr, IncMatch checks new matches formed in all the cs and cc edges, for each

SCC of GP (lines 4-5).

Procedure minDelta reduces the size of ∆G. It first removes all updates that do not

inflict changes to the result, i.e., the updates of e that are not an ss, cs or cc edge for

any pattern edge ep (lines 1-6), by leveraging M and L. It then identifies and combines

updates that “cancel” each others. Those include, for each pattern edge ep = (u′,u), (a)

Chapter 5. Incremental Graph Pattern Matching 104

insertions and deletions of ss edges from v′ ∈mat(u′), and (b) insertions and deletions

of cs edges from v′ ∈ can(u′). Indeed, for the same pattern edge ep, if ss edges (v′,v1)

and (v′,v2) are inserted and deleted from G in (a), then v′ remains to be a valid match

of u; similar for (b). Such updates are removed from ∆G, including but not limited to

those that insert and delete the same edge in G. Updates that involve the same data

node are combined such that they are processed only once in minDelta and IncMatch

(lines 7-8). The cancellation phase also includes the trivial checking on eliminating

the updates in ∆G of inserting and deleting the same edge in G. In this way, updates

involving the same data node is combined and considered only once in minDelta and

IncMatch, in contrast to the naive, one by one algorithm as remarked earlier.

Example 5.9: Recall P2 and G of Fig. 5.1. Consider batch updates ∆G, which in-

sert edges e1,e2,e3,e4,e5,e7 and delete e6, where e6 and e7 are given in Examples 5.6

and 5.8, respectively. The result graph is depicted as Gr7 in Fig. 5.4. Given these,

IncMatch first invokes minDelta to reduce ∆G: (1) the insertions of e1 and e5 are re-

moved from ∆G or simply conducted to Gr7 as they do not yield increment to matches;

(2) the deletion of e6 and the insertion of e7 cancel each other as they are both ss edges

of the pattern edge (DB, Bio) for node Pat, which remains to be an unaffected match.

After minDelta, ∆G contains the insertion of edges e2,e3,e4.

Algorithm IncMatch then identifies the new match (Don, “CTO”) generated by the

insertion of cs edges e2, e3 and e4, and includes it in Gr7. Observe that (1) the af-

fected area AFF in Gr7 consists of the new node (Don, “CTO”), the newly inserted and

deleted edges, and the edges attached to (Don, “CTO”) from other matches in Gr7, and

(2) the node (Pat, “DB”) remains to be a match, although it is affected twice by the

deletion of e6 and the insertion of e7 (as discussed in Examples 5.6 and 5.8, respec-

tively); IncMatch avoids the unnecessary recomputation by canceling these updates via

minDelta, rather than processing them one by one. 2

Correctness & Complexity. One can see that IncMatch is correct by observing the

following: (1) minDelta removes only those updates that have no impact on the final

match; and (2) IncMatch handles updates along the same line as in IncMatch− and

IncMatch+, which are shown to be correct. One can also verify that IncMatch is in

O(|∆G|(|GP||AFF|+ |AFF|2)) time for batch updates ∆G and general pattern GP. As

remarked earlier, ∆G and GP are typically small in practice. This completes the proof

of Theorem 5.2.1.

Chapter 5. Incremental Graph Pattern Matching 105

5.3 Incremental Bounded Graph Simulation

We next study the incremental bounded simulation problem, referred to as IncBSim.

It takes as input a b-pattern GP, a data graph G, a result graph Gr depicting the

unique maximum bounded simulation M(GP,G), and changes ∆G to G. Given these,

it computes the changes to Gr, which represents ∆M such that M(GP,G ⊕ ∆G) =

M(GP,G)⊕∆M. The main results of this section are as follows.

Theorem 5.3.1 The incremental bounded simulation problem

(1) is unbounded even for unit updates and path patterns;

(2) is in O(|AFF1| |AFF2|2) time for DAG patterns and (possibly cyclic) data graphs;

(3) is in O(|∆G|(|AFF| log |AFF|+ |GP||AFF|+ |AFF|2)) time for batch updates and

general patterns.
As opposed to incremental simulation, IncBSim has to find out changes to map-

pings from edges to paths of possibly bounded lengths in response to updates, and is

far more challenging. For (1), one can verify that IncBSim is already unbounded for

a single-edge insertion and a pattern with a single edge, by reduction from the incre-

mental single-source reachability problem, which is unbounded [RR96b].

To show (2), we use a distance matrix to index the distance information for G, and

further define two types of affected areas, denoted as AFF1 and AFF2, respectively. As

will be seen shortly, AFF1 and AFF2 are areas in a data graph G that are affected by

updates δ. They are typically much smaller than G and M(GP,G). That is, IncBSim

can be solved more efficiently than computing matches in graphs. This suggests that

we compute matches in G once, and then incrementally maintain the matches when G

is updated. We show this by presenting algorithms for handling unit updates (a single

edge deletion or insertion) using the distance matrix. Finally we provide an algorithm

for batch updates, with the desired bound. These algorithms update the result as a

binary relation, but they can be extended to maintain the result graphs.

To show (3), we provide an incremental algorithm with the complexity given in

Theorem 5.2.1. To keep track of paths of bounded lengths, we introduce a notion of

weighted landmark vectors, an extension of landmarks [PBCG09], in Section 5.3.2.1.

Based on the notion we develop the algorithm in Section 5.3.2.2. In contrast to the

algorithms proving (2) that only work on DAG patterns and are in cubic-time, this

algorithm is able to handle cyclic patterns and is in quadratic-time in |AFF|. The cost

of the algorithm is independent of the size of data graphs G. As remarked earlier, the

size of changes |∆G| and the size of graph pattern |GP| are typically small in practice.

Chapter 5. Incremental Graph Pattern Matching 106

Figure 5.8: Incremental Bounded Simulation: An Example

5.3.1 Matrix-based Incremental Bounded Simulation

We first consider the following example to better illustrate the incremental bounded

simulation based on the distance matrix. To illustrate the incremental graph pattern

matching problem and the methods in this part, we consider the following example,

taken from the real life graphs in the examples in Chapter 3 shown as follows.

Example 5.10: Consider the collabration network shown in Figure 5.8, which is taken

from the pattern and data graphs in Example 5.2 of Chapter 3. We recall the semantics

of the pattern P in Fig. 5.8, which depicts a pattern in e.g., Twitter or Google Wave.

Each node in P denotes a person, with a predicate specifying her academic field, e.g.,

CS, Bio (biology), Med (Medicine) and Soc (Sociology). If a person in G works in

an area included in a specified academic field, then the person satisfies the predicates

specifying the field. Nodes DB and AI have attributes ‘dept’=CS ; Gen (genetics) and

Eco (ecology) have attributes ‘dept’=Bio . A CS person B wants to find collabora-

tors in biology (within 2 hops), sociology (3 hops) and in medicine who are mutually

connected to B via chains of friends. In addition, the Biology researchers should have

connections to people in sociology (2 hops) and medicine (3 hops). As remarked in

Chapter 3, a valid match S in G2 for P2 is by mapping CS to DB, Bio to Gen and Eco,

Med to Med, and Soc to Soc.

Now suppose (1) the DB person (node DB) shows his interests towards the research

topics of the Eco person, and becomes a follower in the social network, i.e., a new edge

(DB,Eco) has been inserted into the graph G. Since there is a “shortcut” appears from

AI to Soc in G, which reduces the distance from AI to Soc from 4 to 3, there is a new

match which maps CS in P to AI in G.

On the other hand, Gen person no longer collaborate with the Eco person, and stop

following his topics. Thus, edge (Gen, Eco) is removed from G. Since the removal

Chapter 5. Incremental Graph Pattern Matching 107

of the edge, Soc person no longer stays in 2-hops of Gen . Thus, one can verify that

pattern node Bio can no longer be mapped to Gen . 2

A closer look at IncBSim suggests that we revise its AFF. Over a period of time, G

is updated and yields a sequence of graphs G1, . . . ,Gn. It is likely that for some i < n,

P E Gi+1 but GP ̸E Gi, i.e., the match Si in Gi for GP is /0. The empty Si does not help

us when computing the match Si+1 in Gi+1 for GP. Hence besides Si, one needs to

maintain a distance matrix M so that Si+1 can be incrementally found by using Si and

M, no matter whether GP E Gi or not [Sah07].

In light of this, we treat M also as an input of IncBSim, and identify affected areas

as follows: (1) AFF1 is the set of node pairs (v′,v) in data graph G such that the dis-

tance between them is changed by δ, i.e., the changes to M; (2) AFF2 is the difference

between the new match S′ and the old S, i.e., the set of matches (u,v) added to or re-

moved from S, along with nodes that are adjacent to u in GP or to v in G. We illustrate

these notations in the following example.

Example 5.11: Consider the social network graph G in Example 5.10. Af-

ter the edge (Gen,Eco) is deleted, one can verify that the affected node pairs

of AFF1 is the set (Gen,Eco), (DB,Eco), (AI,Eco), (Chem,Eco), (DB,Soc),

(AI,Eco),(Chem,Eco),(Gen,Eco). With the removal of (Gen,Eco), there is no valid

match in G for pattern P, thus AFF2 is the entire match, i.e., the set (Med,Med), (CS,DB),

(Bio,Eco), (Bio,Gen), (Soc,Soc).

As another example, one can verify that AFF1 for inserting edge (DB,Eco) only is

the set (DB,Eco),(AI,Eco); where AFF2 is the new match (CS,AI). 2

In Section 5.3.1.2 we provide an algorithm for IncBSim, referred to as IncBMatchm,

with performance guarantee: its complexity is a function that depends only on |AFF1|
and |AFF2|. We focus on patterns GP that are DAGs but allow data graphs G to be

cyclic.

5.3.1.1 Incremental Algorithms for Unit Updates

To present IncBMatchm, we first give algorithms to handle a single edge deletion or

insertion, in O(|AFF1| |AFF2|2) time.

Incrementally Update Distance Matrix. One of the problems for incrementally up-

date the maximum match is to dynamically answering the distance query. As shown in

Chapter 3, we have used the distance matrix as a fast index for answering the queries

in constant time. In this part we evaluate the methods for dynamically maintain the

Chapter 5. Incremental Graph Pattern Matching 108

matrix, with the cost within the bounded performance guarantees.

We first illustrate UpdateM (UpdateBM), for incrementally maintaining the dis-

tance matrix M of a data graph G in the presence of a single update (a list of updates).

Procedure UpdateM. Given a graph G and an edge (s, t) to be deleted,

UpdateM [RR96b] works in two phases. (1) It finds all the source-sink pairs in AFF1.

To do this, UpdateM first finds all the affected sink nodes v to which the distance from

s changes, by following a breadth first order. For each affected sink v, UpdateM then

finds all the sources v′ from which the distance to v changes. In this way UpdateM iden-

tifies all source-sink pairs that has the distance changed after the update. (2) UpdateM

then updates the distance for each (v′,v) ∈ AFF1. To do this, for each affected sink

v, UpdateM computes for each source v′ the new distance. To do this, UpdateM dy-

namically maintains for each sink a priority queue, containing the distance from the

affected children of v′ to v that needs to be updated. During the updating process the

old distances are replaced first by selecting the minimum distance from the unaffected

child or the updated affected child of v′ to v. Then the priority queue is recursively

updated propagating the new distances. The recursive process terminates when the

distance of all the affected source v′ to sink v has been updated. Similarly it handles

edge insertions.

Procedure UpdateBM. The procedure is an extension of algorithm SWSF FP

of [RR96a], which incrementally maintains single source shortest path problem upon

a list of updates.

Given a list δ of updates (s1, t1) . . .(sk, tk), where (si, ti) is an edge that can either be

deleted or inserted to data graph G, UpdateBM first invokes SWSF FP for each si to

identify the affected sink nodes vi for si, and for each ti to identify the affected source

nodes v′i. Then UpdateBM applies SWSF FP to each sink vi and source v′i respectively

to update the distance matrix.

Algorithm SWSF FP is to first identify direct changes to sinks t that are end nodes

of δ; for each affected sink t, SWSF FP compares the old distance from s and newly

computed distance in terms of the neighbors nearest to s0. In this way SWSF FP

identifies a set of specially defined sink nodes, which can be directly assigned the

correct distance, by choosing the old distance or newly computed distance. Starting

from these sinks, SWSF FP updates all affected sinks accordingly, in a Dijkstra-like

procedure.

Complexity. We say, for complexity analysis, that a node v is in 1 hop of v′ in data graph

Chapter 5. Incremental Graph Pattern Matching 109

Input: Pattern GP = (Vp,Ep, fv, fe), data graph G = (V,E, fA),

the old maximum match S, the distance matrix M of G,

and a node v to be deleted from G.

Output: The new maximum match S and the updated M.

1. Update M by removing the entries for v;

2. for all u ∈Vp that v ∈mat(u) do

3. mat(u) = mat(u)\{v};

4. for all u ∈Vp that v ∈ can(u) do

5. can(u) = can(u)\{v};

6. if there is a pattern node u having mat(u) = /0 then S := /0;

7. return S and M.

Figure 5.9: Algorithm Match−n

G if there is a path between v′ and v in G. Indeed, it is in constant time to obtain the

neighbors as well as the nodes having paths from or to v, referencing distance matrix

of G. We next elaborate the measurements for the sizes of AFF1 and AFF2 given in

Section 5.3.1. (1) |AFF1| is the number of affected source-sink pairs in AFF1. (2)

|AFF2| is the total number of (a) all pattern nodes u having (u,v) ∈ AFF2 with nodes

within 2 hops of u in GP; (b) all nodes v in data graph G that match u, with nodes

within 2 hops of v in G; and (c) all the adjacent edges to the nodes in (a) and (b) in GP

and G, respectively.

Following [RR96b], it can be verified that UpdateM is bounded by O(||AFF1||2 +
|AFF1| log|AFF1|), where ||AFF1||2 is defined as the extended size in the same sense for

|AFF2|, i.e., the total number of affected nodes and the nodes within 2 hops in G, with

all the adjacent edges considered. Following [RR96a], one can show that UpdateBM

is bounded by O(||AFF1|| log||AFF1||), where ||AFF1|| is the sum of |AFF1| and the

number of all edges adjacent to nodes in AFF1.

The size of updates δ is bounded by |AFF1| [RR96b], and hence the complexity

bounds above already contains parameter |δ|.
We will use UpdateM and UpdateBM for dynamically maintaining the distance

matrix in the rest part of this section. To simplify the discussions, we consider the

following basic operations: (1) single (independent) node insertion, (2) single (inde-

Chapter 5. Incremental Graph Pattern Matching 110

Input: Pattern GP = (Vp,Ep, fv, fe), data graph G = (V,E, fA),

the old maximum match S, the distance matrix M of G,

and a node v to be inserted to G.

Output: The new maximum match S and the updated M.

1. Update M by inserting the entries for v;

2. for all u ∈Vp do

3. if v satisfies the predicates of u then

4. can(u) = can(u)∪{v};

5. if u has no outcoming edge then

6. mat(u) = mat(u)∪{v};

7. return S and M.

Figure 5.10: Algorithm Match+n

pendent) node deletion, (3) single edge insertion, and (4) single edge deletion. Observe

that all other operations (change of node attributes, change of edge types, etc) is the

composition of these operations.

Single node deletion. In Fig. 5.9, we give an algorithm, denoted as Match−n , for

handling a single node deletion.

The algorithm takes as input a general pattern GP, a data graph G, the maximum

match S in G for GP, the distance matrix M of G, and a single node v to be deleted

from G. It first removes from M the entries for v, since there is no need to keep them

while the node is deleted (line 1). Match−n then removes the node u from the mat() and

can() sets of the pattern nodes correspondingly (lines 2-5). If in this process an empty

mat() is produced, then the pattern GP cannot be matched in G, and Match−n returns /0
as the final match.

One can verify that the complexity of Match−n is in O(|V |+ |Vp|).

Single node insertion. Similar to Match−n , we illustrate an algorithm for handling a

single node insertion, denoted as Match+n in Fig. 5.10.

With the node v The algorithm Match+n first extends M by inserting the entries for

the new node u (line 1). Match+n then tests, for each pattern node u, whether v can be a

candidate match for u. If so, v is added to the candidate set can(u) (line 4). Moreover,

Chapter 5. Incremental Graph Pattern Matching 111

Input: Pattern GP = (Vp,Ep, fv, fe), data graph G = (V,E, fA),

the old maximum match S, the distance matrix M of G,

and an edge e to be deleted from G.

Output: The new maximum match S and the updated M.

1. AFF1 := UpdateM(G,M,e); wSet := /0;

2. for all (v′,v) ∈ AFF1 do

3. for all (u′,u) ∈ Ep having v′ ∈mat(u′) and v ∈mat(u) do

4. if desc(fe(u′,u), fv(u),v′)∩mat(u) = /0 then

5. wSet.push((u′,v′));

6. while (wSet ̸= /0) do

7. (u′,v′) := wSet.pop();

8. mat(u′) := mat(u′)\{ v′ }; S:= S\{ (u′,v′) };

9. for all (u′′,u′) ∈ Ep do

10. for all v′′ ∈ anc(fe(u′′,u′), fv(u′′),v′)∩mat(u′′) do

11. if desc(fe(u′′,u′), fv(u′),v′′)∩mat(u′) = /0 then

12. wSet.push((u′′,v′′));

13. if there is a pattern node u having mat(u) = /0 then S := /0;

14. return S and M.

Figure 5.11: Algorithm Match−

if u has no outcoming edge, then v can already be a match for u, and the match is

updated accordingly (line 6). Match+n then returns S as the final match (line 7). The

complexity of Match+n is bounded by O(|V |+ |Vp|).
Moreover, we can use the following strategy to avoid increasing the size of M each

time a node is inserted, when |V | is relatively small. Once a node is inserted to G and

the current M needs to be extended, we increase its size to (2|V |+1)2, i.e., to extend

the columns and rows to twice of the original size. In this way, we save the long term

initialization time for the following up node insertions, especially for the case when

new nodes are frequently inserted into G.

Single edge deletion
In Fig. 5.11, we give an incremental algorithm for handling a single edge deletion,

Chapter 5. Incremental Graph Pattern Matching 112

denoted by Match−.

The algorithm takes as input a general pattern GP, a data graph G, the maximum

match S in G for GP, the distance matrix M of G, and a single edge e to be deleted

from G. It works as follows. (1) It first computes AFF1 and updates M by using

procedure UpdateM (line 1). UpdateM incrementally finds shortest paths, developed

by [RR96b] (see the appendix). (2) For each affected pair (v′,v) ∈ AFF1, Match−

identifies matches (u′,v′) directly affected by the distance change of (v′,v) (lines 2-

5). (3) It then recursively finds all matches (u′′,v′′) affected by (u′,v′), and updates S

accordingly (lines 6-12). These matches constitute AFF2, and are processed using a

stack wSet. UpdateM returns the updated maximum match S in G\{e} for GP and the

updated matrix M of G \ {e} (line 14). If for some pattern node u, mat(u) becomes

empty, i.e., GP 5 G\{e}, S is /0 (line 13).

We identify AFF2 based on the following. (1) The distance of a pair (v′,v) in AFF1

can only be increased by the deletion. Hence, given (v′,v) ∈ AFF1 with increased

distance, if v′ ∈ mat(u′) and v ∈ mat(u) for a pattern edge (u′,u) before the deletion,

then (v′,u′) can be removed from S if (a) the distance from v′ to v in the updated M

is larger than fe(u′,u), and (b) v′ has no descendant vs other than v in the updated G

such that vs can match pattern node u (lines 2-4). (2) After (u′,v′) is removed, a match

(u′′,v′′) in S is affected if (a) u′′ is a parent of u′ and v′′ is an ancestor of v′, and (b) v′′

has no descendant other than v′ that can be a match of u′. Using the same method as

above (lines 9-12), Match− checks whether (u′′,v′′) should be removed from S.

The algorithm works on general patterns and data graphs.

Lemma 5.3.2 For (possibly cyclic) patterns and data graphs, Match− is in

O(|AFF1| |AFF2|2) time for unit deletion.

To show the above lemma, we provide the correctness and complexity analysis of

Match− as follows.

(1) Correctness. We first show the correctness of Match−. Let S− be the match re-

turned by Match−, and Sr the match returned by the batch algorithm Match on G⊕δ.

We show that AFF2 = S\Sr by showing AFF2 ⊆ S\Sr and S\Sr ⊆AFF2. Since S− ⊆ S,

and AFF2 = S\S−, we have Sr = S−.

The computation of AFF2 is based on the following. (1) The distance of a pair

(v′,v) in AFF1 can only be increased by the deletion. Hence, given (v′,v) ∈ AFF1 with

increased distance, if v′ ∈ mat(u′) and v ∈ mat(u) for a pattern edge (u′,u) before

the deletion, then (v′,u′) can be removed from S if (a) the distance from v′ to v in

Chapter 5. Incremental Graph Pattern Matching 113

Figure 5.12: Match− for single edge deletion

the updated M is larger than fe(u′,u), and (b) v′ has no descendant vs other than v

in the updated G such that vs can match pattern node u (lines 2-4). (2) After (u′,v′)

is removed, a match (u′′,v′′) in S is affected if (a) u′′ is a parent of u′ and v′′ is an

ancestor of v′, and (b) v′′ has no descendant other than v′ that can be a match of u′.

Using the same method as above (lines 9-12), Match− checks whether (u′′,v′′) should

be removed from S.

(2) Complexity. Match− consists of three phases: (i) updating M and computing

AFF1(line 1), (ii) updating matches affected by AFF1 (lines 2-12), and (iii) collect-

ing the match result (lines 13-14).

(i) Match− uses UpdateM to identify AFF1 and update M, which is bounded by

O(|AFF1| |AFF2|2).

(ii) Match− finds and updates the affected matches with updated M and AFF1 (lines 2-

12). The total time for (ii) is O(|AFF1|+ |AFF1| |AFF2|+ |AFF1| |AFF2|2), which is

bounded by O(|AFF1| |AFF2|2).

(iii) The time to check and return updated S is bounded by the size of affected matches,

thus by O(|AFF2|).
Combining (i), (ii) and (iii), the total time of Match− is bounded by O(||AFF1||2+

|AFF1| log|AFF1|+ |AFF1| |AFF2|2), which is further bounded by O(|AFF1| |AFF2|2).
We illustrate the algorithm with a running example, using P1 and G1 of Fig. 5.12

in Chapter 3.

Example 5.12: Consider P1 and G1 of Fig. 5.12 taken from Chapter 3, and the match

S1 in G1 for P1 given in Example 3.4. We show how Match− updates S1 after (SE,

(HR,SE)) is removed from G1.

Match− first updates the distance matrix M of G1 and computes affected node pairs

Chapter 5. Incremental Graph Pattern Matching 114

in AFF1 (line 1). It then identifies those in AFF1 that may affect S1: (SE, (DM, ’golf’)r)

and ((DM, ’golf’)l , A) (lines 2-3). Match− finds that (DM, ’golf’)l has no descendant that

matches A. Hence ((DM, ’golf’), (DM, ’golf’)l) is added to wSet (line 5) and is removed

from S1 (line 8). At this point AFF2 contains ((DM,’golf’), (DM, ’golf’)l), and S1 is shown

as mat1() in the table below:

P1 mat1() mat2()

(A) (A) (A)

(SE) (SE),(HR,SE) (HR,SE)

(HR) (HR),(HR,SE) (HR),(HR,SE)

(DM, ’golf’) (DM, ’golf’)r (DM, ’golf’)r

As (DM, ’golf’)l is no longer a match of (DM,’golf’), Match− checks whether SE, a

parent of (DM,’golf’) in P1, is still mapped to SE in G1 (lines 6-12). Since SE has no

descendant in G1 that matches (DM,’golf’), (SE, SE) is affected and removed from S1.

Match− also checks (A, A). As A in G1 still has descendant (HR,SE) that matches the

pattern node SE, (A, A) is not affected. Now S1 becomes mat2() in the table above, with

((DM,’golf’),(DM, ’golf’)l) and (SE, SE) in AFF2.

Since (SE, SE) is no longer a match, the test at line 3 is false for (SE, (DM, ’golf’)r), and

Match− terminates. Match− returns M and S′1, where S′1 is the old S1 of Example 3.4

with ((DM,’golf’), (DM, ’golf’)l) and (SE, SE) removed.

In contrast to algorithm Match of Fig. 3.5, Match− only checks (SE, (DM, ’golf’)r),

((DM, ’golf’)l , A) in AFF1, i.e., those that may affect S1. Moreover, it only inspects those

matches in S1 that may be affected, i.e.,((DM,’golf’),(DM, ’golf’)l), (SE, SE) and (A, A). In

other words, Match− does not perform redundant checks or unnecessary recomputa-

tion. 2

Single edge insertion in DAG patterns
Along the same lines, we develop an incremental algorithm for handling single

edge insertion, denoted by Match+dag. In contrast to Match−, an insertion may de-

crease the distance between nodes in G. As a result, instead of finding and removing

invalid matches from S, Match+dag identifies increments to S incurred by the insertion.

However, this may introduce new cycles to G, which need a “global” check. In light

of this, we first consider the algorithm for acyclic patterns

We provide procedure Match+dag in Fig. 5.13. It maintains M as auxiliary struc-

ture. Moreover, for each pattern node u ∈ Vp, Match+dag maintains a candidate match

Chapter 5. Incremental Graph Pattern Matching 115

Input: Pattern GP = (Vp,Ep, fv, fe), data graph G = (V,E, fA),

the maximum match S, the distance matrix M of G, and

an edge e to be inserted.

Output: The maximum match S if GP E G∪{e}, and /0 otherwise.

1. AFF1 := UpdateM(G,M,e); wSet := /0;

2. for all (v′,v) ∈ AFF1 do

3. for all (u′,u) ∈ Ep having v′ ∈ can(u′) and v ∈mat(u) do

4. if for all (u′,us) ∈ Ep

desc(fe(u′,us), fv(us),v′)∩mat(us) ̸= /0 then

5. wSet.push((u′,v′));

6. while (wSet ̸= /0) do

7. (u′,v′) := wSet.pop(); mat(u′) := mat(u′)∪{ v′ };

8. can(u′) := can(u′)∪{ v′ }; S:= S∪{ (u′,v′) };

9. for all (u′′,u′) ∈ Ep do

10. for all v′′ ∈ anc(fe(u′′,u′), fv(u′′),v′)∩mat(u′′) do

11. if for all (u′′,u′s) ∈ Ep

desc(fe(u′′,us), fv(u′s),v
′′)∩mat(u′s) ̸= /0 then

12. wSet.push((u′′,v′′));

13. return S.

Figure 5.13: Algorithm Match+dag

set can(u), consisting of nodes v in which fA(v) satisfies fv(u) and v /∈ mat(u), i.e.,

candidate matches of u. Intuitively, v ∈ can(u) represents a candidate match of u.

Match+dag first invokes procedure UpdateM to identify AFF1 and update M. With

edge insertion, the distance of a pair (v′,v) in AFF1 can only be decreased, and a

new match (u′,v′) may appear if v′ ∈ can(u′) and v ∈ mat(u) for some (u′,u) ∈ Ep.

Given (v′,v) with a smaller distance, Match+dag first identifies all such u′ that may have

new matches, and further checks if (u′,v′) can be added into S. Similar to Match−,

Match+dag further computes, for each v′, the possible propagated affected matches by

recursively checking the parent of u′ and ancestors of v′. Match+dag terminates when

no more matches can be added to S for all pattern nodes. The process is bounded, as

no more matches can be added into S when the set can() become empty for all pattern

Chapter 5. Incremental Graph Pattern Matching 116

nodes.

We show how Match+dag works with the running example illustrated as follows.

Example 5.13: Consider P2 and G2 of Fig. 3.3, and the match S2 in G2 for P2 given

in Example 3.4. Now suppose the Gen person in G2 become interested in and follows

the topic Soc person studies, with edge (Gen, Soc) is inserted to G2. We show how

Match+dag updates S2.

Match− first updates the distance matrix M of G2 and computes affected node pairs

in AFF1 (line 1). It then identifies those in AFF1 that may affect S2 (lines 3-4), in this

case, (AI, Soc). Match+dag further finds that (a) AI ∈ can(CS), and (b) Soc is within 3

hops of AI after edge (Gen, Soc) is inserted (lines 5-6). Thus AI is a new match for

CS, and is added to S2 (line 11), while mat() and can() sets are updated accordingly

(lines 9-10). We show mat1() (resp. mat2()) as mat() before (resp. after) the edge

insertion as follows.

P2 mat1() mat2()

(Med) (Med) (Med)

(CS) (DB) (DB),(AI)

(Soc) (Soc) (Soc)

(Bio) (Gen) (Eco)

As can() is empty for every pattern node, there is no more possible new matches

found in the while loop of Match+dag (lines 7-15). Match+dag then returns S2 as the

updated match. 2

We next show that the algorithm Match+dag is bounded for DAG patterns.

Lemma 5.3.3 For DAG patterns and (cyclic) data graphs, Match+dag is in

O(|AFF1| |AFF2|2) time for unit insertion.

We show Lemma 5.3.3 by providing the correctness and complexity analysis of

Match+dag, shown as follows.

Correctness. Let S+ be the matches returned by Match+dag, and Sr be the match returned

by Match on G⊕δ. As S ⊆ S+, it suffices to show that AFF2 = Sr \S.

We show AFF2 ⊆ Sr \ S. As GP is a DAG, a new match (u′,v′) ∈ AFF2 can only

be produced by either (1) s ∈ can(u′), t ∈ mat(u) for a pattern edge (u′,u) before

edge insertion, and (s, t) ∈ AFF1 with decreased distance making s match u′ (line 4 of

Match+dag), or (2) v′ matches u′ since all children of u′ find matches in descendants of

Chapter 5. Incremental Graph Pattern Matching 117

v′ produced in (1) or (2). As (u′,v′) is not in S in both (1) and (2), Match will add

(u′,v′) into Sr in both cases.

Conversely, Sr \ S ⊆ AFF2, as all the new matches (u′,v′) found by Sr but not in

S are due to reasons corresponding to (1) and (2), for which Match+dag will include

(u′,v′) into AFF2. Thus S+ = Sr, and the correctness of Match+dag follows.

Complexity. Match+dag works in three phases. (1) Match+dag updates M and finds

AFF1 within time bounded by O(|AFF1||AFF2|2) (line 1), as remarked earlier. (2)

Match+dag then identifies all the matches directly affected by AFF1 (lines 2-3), in

time O(|AFF1| |AFF2|2), as for each pair (u′,v′), Match+dag checks the nodes in G

within 2 hops of v′ to determine whether v′ can match u′. (3) It further takes in to-

tal O(|AFF1| |AFF2|2) to determine whether a pair (u′′,v′′) is a match due to newly

added matches. Thus, the total time for Match+dag is bounded by O(|AFF1| |AFF2|2).

5.3.1.2 Incremental Algorithm for Batch Updates

In this part we extend δ to a batch of heterogeneous changes, where the data graph

G may be restructured by an arbitrary mixture of edge insertions and edge deletions.

We refer the problem to as batch dynamic matching problem, and provide an algo-

rithm that maintains the maximum match with bounded performance guarantee. More

specifically, the previously developed algorithms Match− and Match+dag can be readily

extended for a set of updates with desired performance guarantee, where the data graph

G is restructured by an arbitrary mixture of edge insertions and deletions.

We present IncBMatchm, an incremental algorithm for processing a list δ of edge

deletions and insertions.

The idea for IncBMatchm upon a set of updates is to (1) efficiently get the updated

distance matrix M upon the updates, and (2) after the distance matrix is updated with

AFF1 identified, for each pair (v′,v) ∈ AFF1, IncBMatchm invokes either Match+dag

or Match− to update S, depending on how the distance of (v′,v) is changed. After

all source-sink pair is processed, IncBMatchm returns the updated S. We next show

how IncBMatchm works in detail. The main difference for IncBMatchm and previous

incremental algorithms for unit changes is that, AFF1 contains source-sink pairs with

both increased and decreased distance, placing different affections to S.

Instead of processing updates in δ one by one, IncBMatchm first computes AFF1

and updates M by taking the entire δ as a batch. It then finds changes to the old match

S by identifying matches in AFF2 affected by node pairs in AFF1.

More specifically, the algorithm computes AFF1 and updates M by invoking pro-

Chapter 5. Incremental Graph Pattern Matching 118

Input: Pattern GP = (Vp,Ep, fv, fe), data graph G = (V,E, fA),

the maximum match S, the distance matrix M of G, and

a set of updates δ.

Output: The maximum match S if GP E G⊕δ, and /0 otherwise.

1. AFF1 = UpdateBM(G,M,δ);

2. for each (v′,v) ∈ AFF1 do

3. if the distance from v′ to v increases after applying δ

4. invoke Match− (lines 3-12) to update S;

5. else invoke Match+dag (lines 3-12) to update S;

6. if there is a pattern node u having mat(u) = /0 then S := /0;

7. return S.

Figure 5.14: Algorithm IncBMatchm

cedure UpdateBM. The procedure is an extension of an algorithm of [RR96a] that

incrementally maintains shortest paths (see the appendix). Based on AFF1 and the

updated M, IncBMatchm updates S as follows. (a) For each pair (v′,v) ∈ AFF1 with

increased distance, it identifies matches (u′,v′) affected directly or indirectly by the

distance change of (v′,v), and updates S accordingly, along the same lines as Match−.

(b) For each pair in AFF1 with decreased distance, IncBMatchm updates S following

Match+dag. After all affected matches in AFF2 are found, it returns the new match S and

the updated M.

We show IncBMatchm correctly computes the new S and M, and that it is in

O(|AFF1| |AFF2|2) time, for DAG patterns and (possibly cyclic) data graphs. The algo-

rithm is shown in Fig. 5.14.

We briefly describe how IncBMatchm works as follows.

(1) IncBMatchm invokes procedure UpdateBM given earlier [RR96a], to update M and

identify AFF1 upon batch updates.

(2) IncBMatchm checks for each pair in AFF1 to further update S: (a) for each pair

(v′,v) ∈ AFF1 with increased distance, IncBMatchm updates S by invoking a part of

Match− (lines 3-12). Once an affected match (u′,v′) is found, IncBMatchm moves v′

to can(u′) (as defined in Match+dag) instead of simply dropping it from mat(u′) as in

Match−; (b) for each pair (v′,v)∈AFF1 with decreased distance, IncBMatchm updates

Chapter 5. Incremental Graph Pattern Matching 119

S by invoking a part of Match+dag (lines 3-12). This process repeats until all source-sink

pairs (v′,v) ∈ AFF1 have been processed, and IncBMatchm returns the updated S.

We prove Theorem 5.2.1 by showing that (1) Algorithm IncBMatchm is correct,

and that (2) it indeed runs in O(|AFF1| |AFF2|2) time.

(1) Correctness. We first show that IncBMatchm correctly maintains the match S, by

proving that the result of IncBMatchm upon δ, denoted as Sinc, is the same as Sr, which

is the final result of applying |δ| times of Match+dag (Match−) w.r.t. each of the single

edge insertion (deletion) update in δ. Observe that the correctness of IncBMatchm

relies on the correctness of Match+dag and Match− (to be shown in Lemmas 5.3.2 and

5.3.3, respectively). As each time of applying Match+dag and Match− is guaranteed,

the correctness of IncBMatchm follows.

Denote by G j the modified graph applying δ, and Sinc j (resp. Sr j) the match from

IncBMatchm (resp. applying Match+dag and Match− j times) . The correctness of

IncBMatchm can be shown by induction on the size of δ.

(1) IncBMatchm works exactly as Match+dag or Match− when δ contains a single up-

date, thus the correctness holds for |δ| = 1, i.e., Sinc1 = Sr1 .

(2) Suppose IncBMatchm is correct when |δ| = j. We next show Sr j+1 = Sinc j+1 where

|δ| = j+1.

Let δ1 ⊆ δ with size j, and an arbitrary single update δ j+1 = δ \ δ1. Let Sinc′j+1

= IncBMatchm(GP,G j,δ j+1,Sinc j), we show that Sinc j+1 = Sinc′j+1
. Indeed, if there is

(u,v) ∈ Sinc j+1 and (u,v) ̸∈ Sinc′j+1
, then there must exists a pair (v,v′) of nodes in

G, the distance of which is and is not affected by δ, which is a contradiction. Thus

Sinc j+1 ⊆ Sinc′j+1
. Similarly, Sinc′j+1

⊆ Sinc j+1 . Thus Sinc j+1 = Sinc′j+1
.

From the assumption and (1), the correctness of IncBMatchm holds for S j, thus

Sinc′j+1
= IncBMatchm(GP,G j,δ j+1,Sinc j) = IncBMatchm(GP,G j,δ j+1,Sr j). This is

equivalent to the result from Match+dag(GP,G j,δ j+1,S j) if δ j+1 is an edge insertion,

or Match−(GP,G j,δ j+1,S j) if δ j+1 is an edge deletion. In either case, Sinc j+1 = Sr j+1

holds.

Putting these together, we have shown that Sinc j+1 = Sr j+1 holds. Thus Sinc = Sr

holds for δ with any size.

(2) Complexity. The algorithm works in two phases: updating M and finding AFF1;

and updating S with AFF1.

The algorithm uses procedure UpdateBM, which is in O(||AFF1|| log||AFF1||)
time. IncBMatchm uses either Match+dag or Match− to update S. As Match+dag

Chapter 5. Incremental Graph Pattern Matching 120

and Match− are both bounded by O(|AFF1| |AFF2|2) (to be shown in Lemmas 5.3.2

and 5.3.3, respectively), IncBMatchm is also bounded by O(|AFF1| |AFF2|2) at this

phase. The total time of IncBMatchm is thus bounded by O(||AFF1|| log||AFF1|| +
|AFF1| |AFF2|2), which is further bounded by O(|AFF1| |AFF2|2).

Remark. Observe that previously developed incremental algorithm Match+ for single

edge insertion in general patterns can be readily applied in IncBMatchm. To evalu-

ate the bounded performance guarantee, we consider IncBMatchm invoking Match+dag

only.

5.3.2 Landmark-based Incremental Bounded Simulation

In the previous work we have introduced the incremental algorithms for the bounded

simulation, based on a distance matrix and only update the result as a relation instead

of result graphs. In this part we investigate the improved methods for the incremental

bounded simulation that (1) based on a set of landmark vectors, instead of using the

distance matrix due to its high space cost, and (2) maintain the result graphs instead of

only the binary relation. We first introduce the landmark vectors.

5.3.2.1 Weighted Landmark Vectors

A landmark vector lm=<v1, . . . ,v|lm|> for a data graph G is a list of nodes in G such

that for each pair (v′′,v′) of nodes in G, there exists a node in lm that is on a shortest

path from v′′ to v′, i.e., lm “covers” all-pair shortest distances.

As observed in [PBCG09], we can easily use a landmark vector to find the dis-

tance between two nodes in G as follows. (1) With each node v in G we associate

two distance vectors of size |lm|: distv f = <dis(v,v1), . . . ,dis(v,v|lm|)>, and distvt =

<dis(v1,v), . . . ,dis(v|lm|,v)>. (2) The distance dis(v′′,v′) from node v′′ to v′ in G is the

the minimum value among the sums of distv f [i] of v′′ and distvt [i] of v′ for i ∈ [1, |lm|].
This can be found by a distance query, denoted as dist(v′′,v′, lm), which performs at

most |lm| operations. When G is dense as commonly found in real-life networks, |lm|
is typically small and can even be treated as a constant [PBCG09].

There are multiple landmark vectors for a graph G. We want to use a “high-quality”

one, with a small number of nodes that are not changed frequently when G is updated.

To capture this we define the weight of a landmark v as:

w(v) =
frq(v)

deg(v) ·Bk(v)

Chapter 5. Incremental Graph Pattern Matching 121

where (1) deg is the degree of the node v; intuitively, the higher the total degree of the

landmarks in a vector lm is, the less nodes lm needs; (2) frq(v) indicates how frequent v

and its edges are changed [NCO04]; it is known that in real-life networks, nodes with

high deg are changed more frequently [KNT06]; and (3) Bk is the km-betweenness

centrality for dynamic graphs [WS03], which is a normalized measurement for the

number of shortest paths of length less than km in G that go through the node v. We

use km to denote the maximum (finite) bound on the pattern edges in a given Gp.

A weighted landmark vector lm is a landmark vector with weight on each of its

landmarks. The weight w(lm) of lm is the sum of the weights of the landmarks in lm.

Intuitively, the less w(lm) is, the shorter and more stable lm is.

Example 5.14: Consider the data graph G of Example 5.1. A landmark vector lm for

G is <(Ann, “CTO”), (Dan, “DB”), (Pat, “DB”), (Ross, “Med”)>. Observe that distv f

of Dan is <1,0,2,∞>, and distvt of Bill is <1,2,1,∞>. Using these we can find that

the distance from Dan to Bill is 2.

Suppose that Ann frequently updates her contacts, i.e., frq(Ann) is high, while Bill

seldom updates his contacts. Although deg(Ann)·Bk(Ann) is large, Bill has a lower

overall weight than Ann and is more stable, and is a better choice for a landmark. Thus

a better landmark vector is <(Bill, “Bio”), (Dan, “DB”), (Pat, “DB”), (Ross, “Med”)>,

which has a lower overall weight. 2

This suggests that we study the following problem. Given a graph G, the problem

for computing a minimum weighted landmark vector is to find a weighted landmark

vector lm with the minimum w(lm). The problem is, however, hard:

Proposition 5.3.4: The problem for computing a minimum weighted landmark vector

is NP-hard and APX-hard. 2

This result tells us that the problem is intractable and moreover, it is among the

most difficult ones in the class of problems that allow PTIME approximation algorithms

with approximation ratio bounded by a constant. This is verified by reduction from the

weighted vertex cover problem [Chv79].

To cope with the high complexity, we shall provide an incremental algorithm in

Section 5.3.2.2 to maintain weighted landmarks offline. Observe that it is unnecessary

to maintain an optimal weighted landmarks. Indeed, we only need to keep track of

changes to the distances that may affect the match results, rather than all-pair distances

in G.

Chapter 5. Incremental Graph Pattern Matching 122

Input: Pattern GP, data graph G, landmark vector lm,

the result graph Gr, and single insertion e.

Output: The updated result graph Gr.

1. lm′ := InsLM(GP,G,e, lm);

2. identify all cc and cs pairs for each ep of GP;

3. for each SCC in Gp and related cc and cs pairs do

4. iteratively identify and add new matches; Update Gr;

5. return Gr;

Procedure InsLM

Input: Pattern GP = (Vp,Ep, fp, fe), data graph G,

edge e = (v′,v) updated, landmark vector lm.

Output: Landmark vector lm′ as the updated lm.

1. km := max(fe(ep)) for all ep ∈ Ep; stack wset := {e}; lm′ := lm;

2. while wset ̸= /0 do

3. edge e′(v1,v2) := wset.pop();

4. if dist(v1,v, lm)> 1+dist(v2,v, lm) then

5. if v′ /∈ lm then lm′ := lm′∪{v′}; update distv f of v1;

6. for each e′′ = (v3,v1) within km hops of v

and dist(v3,v, lm) = 1+dist(v1,v, lm) do

7. wset.push(e′′);

8. update distvt and lm similarly for v′′ if dis(v′,v′′) changes.

9. return lm′;

Figure 5.15: Algorithm IncBMatch+

5.3.2.2 Incremental Matching for Bounded Simulation

Based on weighted landmark vectors, we develop incremental algorithms for IncBSim.

We use the notations below.

A pair (v′,v) of nodes in a data graph G is called a cc (resp. cs) pair for a pattern

edge ep = (u′,u) if v′ ∈ can(u′) and v ∈ can(u) (resp. v ∈ mat(u)). It is called an

ss pair if (a) v′ ∈ mat(u′), v ∈ mat(u), and (b) dis(v′,v) satisfies the bound of ep, i.e.,

dis(v′,v)≤ k if fe(u′,u) = k, and 0 < dis(v′,v) otherwise. One can verify the following.

Chapter 5. Incremental Graph Pattern Matching 123

Figure 5.16: Incremental bounded simulation

Proposition 5.3.5: Given a b-pattern GP, a data graph G and the result graph Gr, (1)

GPEsimGr if and only if GPEbsimG, and (2) only the cs and cc (resp. ss) pairs with

updated distance satisfying (resp. not satisfying) the bound for a pattern edge may

increase (resp. reduce) the matches of GP. 2

Proposition 5.3.5 reduces bounded simulation in a data graph G to simulation in

the result graph Gr. It suggests a two-step strategy for IncBSim: (1) identify all the cc,

cs and ss pairs via a landmark vector; (2) find changes ∆M to matches, by treating cc

and cs pairs (resp. ss pairs) as insertions of the edges to Gr (resp. deletions from Gr).

Below we first study unit updates and then batch updates.

Single edge insertions. An algorithm to handle a single-edge insertion is given in

Fig. 5.15, denoted as IncBMatch+. It first invokes procedure InsLM to identify all the

cc and cs pairs (lines 1-2). By Proposition 5.3.5, these pairs are insertions to the result

graph Gr. Hence the algorithm finds new matches by updating Gr (lines 3-4), along

the same lines as the algorithms IncMatch+ and IncMatch (see Section 5.2.1).

Procedure InsLM updates landmarks when an edge e = (v′,v) is inserted. It finds

those nodes v1 such that (1) v1 are within km hops of v, and km is the maximum bound

in GP as remarked earlier; and (2) dis(v1,v) is changed (lines 1-4; see Section 5.3.2.1

for dist queries). It updates the old landmarks and distv f for these nodes (line 5), and

propagates the changes (lines 6-7). Similarly it processes v′ (line 8).

Observe that InsLM is a “lazy” incremental method to maintain landmarks: (a) the

distance vectors of the nodes are updated only if they are within km hops of the edge e

and if their distances are changed; and (b) at most 2 new landmarks are inserted, while

the invalid landmarks are updated later by an offline process in the background.

Chapter 5. Incremental Graph Pattern Matching 124

Example 5.15: Consider the b-pattern P1 and graph G of Fig. 5.1. A landmark vector

for G is <(Ann, “CTO”), (Dan, “DB”), (Pat, “DB”), (Ross, “Med”)>. The distance vec-

tor distv f for (Don, “CTO”) is <∞,∞,∞,∞>, and distvt for (Dan, “DB”) is <1,0,2,∞>.

In G, Don cannot reach Dan.

The following table shows the distance vectors of Don, Dan, Pat and Tom.

nodes in G distv f distvt

(Don, “CTO”) <∞,∞,∞,∞> <2,3,1,∞>

(Dan, “DB”) <1,0,2,∞> <1,0,2,∞>

(Pat, “DB”) <1,2,0,∞> <1,2,0,∞>

(Tom, “Bio”) <2,1,3,∞> <∞,∞,∞,∞>

When edge e2 is added G, the process of InsLM is illustrated in Fig. 5.16. It first

identifies node Don, Pat, Ann and Dan, from which the distances to Tom are changed.

It inserts Don into lm as a new landmark, and updates distance vectors distv f accord-

ingly. Similarly, it finds nodes whose distances from Don are changed, and updates the

distance vectors distvt . The new distv f of (Don, “CTO”) is <∞,∞,∞,∞,0>, and distvt

of (Dan, “DB”) is <1,0,2,∞,2>. The new distance from Don to Dan is 2.

After the updating, a part of the distance vectors are as shown below.

nodes in G distv f distvt

(Don, “CTO”) <∞,∞,∞,∞,0> <2,3,1,∞,0>

(Dan, “DB”) <1,0,2,∞,3> <1,0,2,∞,2>

(Pat, “DB”) <1,2,0,∞,1> <1,2,0,∞,>

(Tom, “Bio”) <2,1,3,∞,4> <∞,∞,∞,∞,1>

IncBMatch+ then incrementally finds new matches by operating on the result graph

Gr1 of Fig. 5.3, via simulation. It identifies new cc and cs pairs, e.g., (Don, Tom), (Don,

Dan) and (Don, Pat), which are inserted as edges to Gr1. This yields the new result

graph Gr3 of Fig. 5.16. 2

Single edge deletions. Similarly, when an edge e = (v′,v) is deleted, we first identify

node pairs (v1,v2) for which (1) v1 and v2 are within km hops of v and v′, respectively,

and km is as given above; and (2) dis(v1,v) or dis(v′,v2) is changed. For each such

pair (v1,v2), we (1) compute the distance from v1 to v2 following a new shortest path

between them, (2) select and add a new landmark on a shortest path from v1 to v2 to

the landmark vector, and (3) extend the distance vectors distv f of v1 and distvt of v2

with the new distances from and to the landmark, respectively. We finally collect ss

Chapter 5. Incremental Graph Pattern Matching 125

pairs following Proposition 5.3.5, and treat these node pairs as edges to be deleted from

the result graph Gr. The invalid matches are iteratively removed as in IncMatch− (see

Section 5.2.1), and changes to the match result ∆M are identified.

Batch updates. For batch updates ∆G, (1) we adopt a variant of a dynamic fixed point

algorithm [RR96a], to identify all the node pairs (v1,v2) for which (a) dis(v1,v2) is

changed, and (b) v1 and v2 are within km hops of the nodes in the edge inserted or

deleted in ∆G; here km is as given above; Instead of maintaining a distance matrix of

size O(|V |2) as in [RR96a], we compute the old distance information using a landmark

vector lm, and keep track of node pairs (v1,v2) and their new distances by extending

lm and their distance vectors. (2) We collect all ss, cs and cc pairs from those pairs

examined in (1) that have new distances satisfying the condition specified in Propo-

sition 5.3.5. We then find changes ∆M to the matches by incrementally computing

simulation of GP in Gr, using a strategy similar to algorithm IncMatch that handles

batch updates for simulation (Section 5.2.2).

Incremental maintenance of landmarks. As described above, InsLM and its exten-

sions incrementally update landmark vectors, by changing only those landmarks that

affect matches, while leaving the rest to be adapted offline. Observe the following: (1)

a landmark vector lm is valid as long as for each node pair, there is a landmark in lm

that is on a shortest path between them; and (2) we keep track of node pairs that lm

covers, and add a landmark only when necessary; only the distance vectors of those

pairs with changed distances are extended. Moreover, one can rebuild space efficient

landmark vector periodically via offline computation.

Correctness & Complexity. The correctness of the incremental algorithms for

IncBSim is assured by Proposition 5.3.5, and can be verified along the same lines

as their simulation counterparts (see Section 5.2). Following the complexity analy-

sis of [RR96a], one can verify that the incremental algorithm for batch updates is

in O(|∆G|(|AFF| log |AFF|+ |GP||AFF|+ |AFF|2)) time. This completes the proof of

Theorem 5.3.1.

5.4 Incremental Subgraph Isomorphism

We next study incremental matching for subgraph isomorphism, denoted as IncIsoMat.

Given a normal pattern GP, data graph G, matches M(GP,G) and changes ∆G to G,

IncIsoMat is to find ∆M, the set of subgraphs of G that are isomorphic to GP and are to

Chapter 5. Incremental Graph Pattern Matching 126

be added to (or deleted from) M(GP,G), such that M(GP,G⊕∆G)=M(GP,G)⊕∆M.

We also study the problem for deciding whether there exists a subgraph in the

updated graph G⊕∆G that is isomorphic to GP, i.e., GPEisoG⊕∆G, referred to as

IncIso. Here M(GP,G) is a Boolean value indicating whether GPEisoG.

The main results of this section are negative:

Theorem 5.4.1 For subgraph isomorphism,

(1) IncIso is NP-complete even when GP is a path pattern and ∆G is a unit update;

and

(2) IncIsoMat is unbounded for unit updates, even when GP is a path pattern and G

is a DAG.

It is known that subgraph isomorphism is NP-complete (see, e.g., [GJ79]). Theo-

rem 5.4.1(1) tells us that the incremental decision problem for subgraph isomorphism

is also NP-complete. It is verified by reduction from the Hamilton Path problem, which

is NP-hard (cf. [GJ79]). The reduction only needs a pattern of a single path and a

single-edge update.

Moreover, Theorem 5.4.1(2) shows that incremental matching for subgraph iso-

morphism is unbounded. Indeed, one can verify that it is unbounded for path patterns

when either a single-edge deletion or a single-edge insertion is considered.

In light of the high complexity, one might be tempted to use inexact algorithms

for IncIsoMat. However, (1) many real-life applications require exact matches for sub-

graph isomorphism, e.g., structure search in bioinformatics [PCJ06]. (2) The known

inexact or approximate algorithms for IncIsoMat also take exponential time or expo-

nential space [SNS09, WC09].

An algorithm. We next outline a simple algorithm for IncIsoMat, just to demonstrate

the benefits of incremental matching. It is based on a locality property of IncIsoMat.

To present the property, we first introduce some notations. (1) We use d to denote

the diameter of pattern GP, i.e., the length of the longest shortest path in GP when GP

is treated as an undirected graph. (2) Consider a unit update ∆e to the data graph G,

where e = (v,v′), to be deleted from or inserted into G. Let V (d,e) be the set of nodes

in G that are within a distance d of both v and v′ (ignoring the orientation of edges).

We use G(d,e) to denote the subgraph of G induced by V (d,e), i.e., the subgraph of G

consisting of nodes in V (d,e) along with edges of G connecting these nodes. (3) We

use G(d,∆e) to denote G(d,e)⊕∆e, the subgraph G(d,e) updated by ∆e.

One can verify the following locality property:

Chapter 5. Incremental Graph Pattern Matching 127

Proposition 5.4.2: Given GP, G, and a unit update ∆e, the changes ∆M to matches

M(GP,G) is the difference between M(GP,G(d,e)) and M(GP,G(d,∆e)). 2

In contrast to incremental (bounded) simulation, here an edge insertion and a

deletion may both add matches to M(GP,G) and remove matches from it. More

specifically, M(GP,G(d,∆e)) \ M(GP,G(d,e)) is the increment to M(GP,G), and

M(GP,G(d,e)) \M(GP,G(d,∆e)) is the set of matches that should be removed from

M(GP,G).

Based on Proposition 5.4.2 we develop an incremental algorithm for IncIsoMat

and unit updates, referred to as IsoUnit: (1) find the diameter d of GP; (2) extract the

subgraph G(d,e) from G; (3) compute M(GP,G(d,∆e)) and M(GP,G(d,e)); and (4)

compute ∆M as described above.

By the locality property, IsoUnit reduces IncIsoMat for a large graph G to the prob-

lem for small subgraphs G(d,∆e) and G(d,e) of G. In the worst case, IsoUnit is in ex-

ponential time in the size of G(d,∆e), since IncIsoMat is inherently exponential: there

are possibly exponentially many subgraphs in G(d,∆e) (or G(d,e)) that are isomor-

phic to GP, i.e., the size of changes to the output is exponential. In practice, however,

(1) patterns GP are typically small, and hence so are their diameters d; (2) one seldom

finds exponentially many isomorphic subgraphs in a small graph.

Example 5.16: Consider the pattern P2 and graph G of Fig. 5.1. The diameter d of

P2 is 1. Consider ∆e2, which is to insert edge e2 (from Don to Tom) into G. Then

V (d,∆e2) consists of Dan, Don, and Tom, and G(d,∆e2) is the subgraph of G induced

by the three nodes. No subgraph of G(d,∆e2) is isomorphic to P2, and ∆M is empty.

2

For batch updates ∆G, one might be tempted to first compute the union G(d,∆G)

of G(d,∆e) for each e in ∆G, and then compute M(GP,G(d,∆G)) along the same

lines as our incremental simulation algorithm for batch updates (Section 5.2). Nev-

ertheless, our experimental study shows that it often takes much longer to compute

M(GP,G(d,∆G)) than applying IsoUnit to G(d,∆e) one by one. Indeed, it is more

costly to find isomorphic subgraphs in a large graph than do it consecutively in small

graphs.

This suggests a simple algorithm, denoted by IncIsoMatch, for IncIsoMat and ∆G:

(1) remove updates in ∆G that cancel each other; (2) for each remaining unit update

∆e, compute M(GP,G(d,∆e)) and M(GP,G(d,e)) via IsoUnit; and finally, (3) compute

∆M by merging changes derived from each M(GP,G(d,∆e)) and M(GP,G(d,e)). As

Chapter 5. Incremental Graph Pattern Matching 128

will be seen in the next section, IncIsoMatch is quite effective.

5.5 Experimental Evaluation

We next present an experimental study using both real-life and synthetic data. Four

sets of experiments were conducted to evaluate: (1) the performance of IncMatch for

incremental simulation, compared with (a) its batch counterpart Matchs [HHK95],

(b) IncMatchn, a naive algorithm that processes unit updates one by one by in-

voking IncMatch+ and IncMatch−, and (c) HORNSAT, the incremental algorithm

of [SSR+97]; (2) the efficiency of IncBMatch, the incremental algorithm handling

batch updates for bounded simulation (see Section 5.3), compared with (a) its batch

counterpart Matchbs [FLM+10b], and (b) the incremental algorithm IncBMatchm in

5.3.1.2 on DAG patterns, using a distance matrix; (3) the effectiveness of the op-

timization techniques, i.e., (a) weighted landmark vectors, (b) procedure minDelta;

and finally, (4) the efficiency of IncIsoMatch for incremental subgraph isomorphism,

compared with (a) VF2, reported as the best batch algorithm for subgraph isomor-

phism [FSV01], and (b) IsoUMatch, which computes subgraph isomorphism on the

union of the affected area of each update (see Section 5.4).

Experimental setting. We used both real-life and synthetic graphs to evaluate our

methods.

(1) Real-life data. We used two real-life datasets: (a) YouTube in which each node

denotes a video with attributes length, category, age etc, and edges indicate recom-

mendations. The dataset has 187K nodes and 1M edges, and we extracted snapshots

based on the age of the nodes, each has 18K nodes and 48K edges. (b) A crawled

citation network [TZY+08], where each node represents a paper with attributes, e.g.,

title, author and the year published, and edges denote citations. The dataset has 630K

nodes and 633K edges. We extract dense snapshots based on the year of the papers,

each consisting of 18K nodes and 62K edges.

(2) Synthetic data. We designed two generators to produce data graphs and updates.

Graphs are controlled by three parameters: the number of nodes |V |, the number of

edges |E| and the average number |att| of attributes of a node. We produced sequences

of data graphs following the densification law [LKF07] and linkage generation mod-

els [GGCM09]. We used two parameters to control updates: (a) update type (edge

insertion or deletion), and (b) the size of updates |∆G|.

Chapter 5. Incremental Graph Pattern Matching 129

(3) Pattern generator. We designed a generator to produce meaningful pattern graphs,

controlled by 4 parameters: the number of nodes |Vp|, the number of edges |Ep|, the

average number |pred| of predicates carried by each node, and an upper bound k such

that each pattern edge has a bound k′ with k − c ≤ k′ ≤ k, for a small constant c.

We shall use (|Vp|, |Ep|, |pred|,k) to characterize a pattern. The patterns are carefully

generated to match a given data graph.

(4) Implementation. We implemented the following in Java:

Problem Batch Incremental

IncSim Matchs IncMatch, IncMatchn, HORNSAT

IncBSim Matchbs IncBMatch, IncBMatchm

IncIsoMat VF2 IncIsoMatch, IsoUMatch

Optimizations BatchLM, minDelta InsLM

All experiments were run on a machine powered by an Intel Core(TM)2 Duo

3.00GHz CPU with 4GB of memory, using scientific linux. Each experiment was

run 5 times and the average is reported here.

Experimental results. We next present our findings.

Exp-1: Incremental graph simulation. We first evaluated the efficiency of IncMatch

using synthetic and real life data. We generated 30 normal patterns for each of

YouTube, Citation and synthetic data, with parameters (4,5,3,1) for synthetic data

and (6,8,3,1) for real-life data.

Fixing |V | = 17K on synthetic data, we varied |E| from 78K to 108K (resp. from

108K to 78K) by inserting edges (resp. deleting), in 3K increments (resp. decrements).

The results are reported in Figures 5.17(a) and 5.17(b) for edge insertions and dele-

tions, respectively. We find the following. (a) IncMatch outperforms Matchs when

insertions are no more than 30% (resp. 30% for deletions; not shown). When the

changes are 11% for insertions (resp. 18% for deletions), IncMatch improves Matchs

by over 40% (resp. 50%). (b) IncMatch and IncMatchn consistently do better than

HORNSAT. HORNSAT does not scale well with |∆G|, due to its additional costs for

updating reflections and maintaining its auxiliary structures. (c) IncMatch does better

than IncMatchn. This verifies the effectiveness of minDelta, which reduces |∆G|. (d)

As opposed to Matchs, IncMatch and IncMatchn are sensitive to |∆G|, as expected.

This is because the larger |∆G| is, the larger the affected area is; so is the computation

cost. This justifies the complexity measure of incremental algorithms in terms of the

Chapter 5. Incremental Graph Pattern Matching 130

 0

 5

 10

 15

 20

 25

 30

 35

 40

81K 84K 87K 90K 93K 96K 99K 102K 105K 108K

T
im

e(
se

co
nd

)

Matchs
IncMatchn
IncMatch
HornSat

(a) IncSim for insertions

 5

 10

 15

 20

 25

 30

 35

 40

105K 102K 99K 96K 93K 90K 87K 84K 81K 78K

T
im

e(
se

co
nd

)

Matchs
IncMatchn
IncMatch
HornSat

(b) IncSim for deletions

 0

 10

 20

 30

 40

 50

 60

 70

30k 32k 34K 36K 38K 40K 42K 44K 46K 48K

T
im

e(
se

co
nd

)

Matchs
IncMatchn
IncMatch
HornSat

(c) IncSim over Youtube

 0

 20

 40

 60

 80

 100

43k 45k 47K 49K 51K 53K 55K 57K 59K 61K

T
im

e(
se

co
nd

)

Matchs
IncMatchn
IncMatch
HornSat

(d) IncSim over Citation

Figure 5.17: Incremental graph simulation

size of |∆G| and AFF.

Figures 5.17(c) and 5.17(d) show the results for edges inserted to YouTube and

Citation datasets, respectively. Each data set has |V | = 18K, and |E| as shown in

the x-axis. Here the updates are the differences between snapshots w.r.t. the age

(resp. year) attribute of YouTube (resp. Citation), reflecting their real-life evolution.

The results confirm our observations on synthetic data. For instance, IncMatch outper-

forms Matchs on YouTube even for 50% of changes.

Exp-2: Incremental bounded simulation. In this set of experiments, we compared

the efficiency of IncBMatch against Matchbs and IncBMatchm, using synthetic and

real-life data. We produced 30 b-patterns for each of YouTube, Citation and synthetic

data, with parameters (4,5,3,3) for synthetic data, and (6,8,3,3) for real-life data. To

favor IncBMatchm that only works on DAG patterns, the b-patterns are DAGs although

IncBMatch works well on cyclic patterns.

Fixing |V | = 17K on synthetic data, we varied |E| from 98K to 108K (resp. from

108K to 98K) by inserting edges (resp. deleting), in 1K increments (resp. decrements).

Chapter 5. Incremental Graph Pattern Matching 131

 0

 2

 4

 6

 8

 10

 12

99K 100K 101K 102K 103K 104K 105K 106K 107K 108K

T
im

e(
se

co
nd

)

Matchbs
IncMatchm
IncBMatch

(a) IncBSim for insertions

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

107K 106K 105K 104K 103K 102K 101K 100K 99K 98K

T
im

e(
se

co
nd

)

Matchbs
IncMatchm
IncBMatch

(b) IncBSim for deletions

 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

39K 40K 41K 42K 43K 44K 45K 46K 47K 48K

T
im

e(
se

co
nd

)

Matchbs
IncMatchm
IncBMatch

(c) IncBSim over Youtube

 10

 20

 30

 40

 50

43K 45K 47K 49K 51K 53K 55K 57K 59K 61K

T
im

e(
se

co
nd

)

Matchbs
IncMatchm
IncBMatch

(d) IncBSim over Citation

Figure 5.18: Incremental bounded simulation

The results are reported in Figures 5.18(a) and 5.18(b) for insertions and deletions, re-

spectively. The results tell us the following. (a) IncBMatch outperforms Matchbs when

both edge insertions and deletions are no more than 10%. (b) IncBMatch consistently

does better than IncBMatchm. The improvement is about about 30% (resp. 40%) for

insertions (resp. deletions) when |∆G| = 10K. Note that IncBMatchm employs dis-

tance matrix to compute the distance between two nodes, and does not scale with large

graphs. As will be seen soon, IncBMatch uses weighted landmarks to improve the

scalability. (c) For the same |∆G|, IncBMatch needs more time to process edge inser-

tions than deletions. As an example, it takes more than 8 second to handle 10K edge

insertions, but less than 6 second to process deletions of the same size. These confirm

our observation in Section 5.3 that edge insertions introduce more complications than

deletions.

Figures 5.18(c) and 5.18(d) show the performance of the algorithms for edge inser-

tions to YouTube and Citation datasets, respectively, in the same setting as in Exp-1.

The results show that IncBMatch does even better on real-life data than on synthetic

Chapter 5. Incremental Graph Pattern Matching 132

 1

 2

 3

 4

 5

 6

1 1.05 1.1 1.15 1.2

N
um

be
r(

x
10

3)

Varying α

Original Updates
Reduced Updates

(a) Updates reducing

 1

 2

 3

 4

 5

 6

 7

 8

 9

1K 2K 3K 4K 5K 6K 7K 8K 9K 10K

T
im

e(
se

co
nd

)

BFS
LandMark

Matrix

(b) Landmarks over Youtube

 0

 20

 40

 60

 80

 100

0.5K 1K 1.5K 2K 2.5K 3K

T
im

e(
se

co
nd

)

InsLM
BatchLM

(c) InsLM for insertions

 0

 200

 400

 600

 800

 1000

 1200

104K 108K 112K 116K 120K 124K

T
im

e(
se

co
nd

)

VF2
IncIsoMatch

IsoUMatch

(d) IncIsoMat for insertions

Figure 5.19: Optimization Techniques and Incremental subgraph isomorphism

data; e.g.,IncBMatch outperforms Matchbs on YouTube when the changes are no more

than 20%.

Exp-3: Optimization techniques. In this set of experiments we evaluated (1) the

effectiveness of minDelta, (2) the efficiency of landmark for computing distances, and

(3) the efficiency of InsLM for updating landmark vectors. In the experiments, we used

one more parameter α, and generated graphs following the densification law [LKF07],

i.e., |E| = |V |α.

To analyze the effectiveness of minDelta, we fixed |V | = 20K, varied parameter α,

and randomly inserted and deleted 4000 edges. The results are shown in Fig. 5.19(a).

We find that minDelta significantly reduces the set of updates. This becomes more

evident when α is increased, i.e., if the graphs have more edges. In this case, more

nodes are in the result graphs, and updated edges are less likely to be a cs or cc edge.

The results also demonstrate the potential benefits of minDelta in real-life applications,

e.g., social networks, where insertions are much more common than deletions.

Fixing |V | = 15K, α = 1.1, Figure 5.19(b) reports the performance of distance

Chapter 5. Incremental Graph Pattern Matching 133

queries, i.e., to find the distance between two nodes, based on (a) a distance matrix

(denoted by Matrix), (b) weighted landmarks (LandMark), and (c) BFS search (BFS).

The x-axis shows the number of queries we evaluated, and the y-axis gives the sum of

running times. The results tell us that Matrix is the most efficient, and BFS performs

the worst, as expected. However, the efficiency of Matrix comes with a huge cost of

space, i.e., a (15K)2 matrix; this hinders its scalability with large graphs. In contrast,

the size of landmarks is only 1K, i.e.,LandMark strikes a balance between the efficiency

and the space cost.

Fixing |V | = 15K and α = 1.1, we also compared the performance of InsLM with its

batch counterpart, denoted by BatchLM, which recomputes the weighted landmarks

from scratch when graphs are updated. In the “lazy” mode, InsLM only updates the

nodes within km hops of the inserted edges, where km is the maximum bound in GP.

To favor BatchLM, we set km = |V |, i.e., all the distances have to be accurate after

InsLM. The results are reported in Fig. 5.19(c), where the x-axis represents the number

of inserted edges. The results tell us that InsLM significantly outperforms BatchLM.

BatchLM does better than InsLM only when more than 25% of changes are incurred

(not shown).

Exp-4: Incremental subgraph isomorphism. The last experiments evaluated the

efficiency of IncIsoMatch against VF2 and IsoUMatch, using synthetic data and 30

normal patterns generated with parameters (4,5,3,1). Fixing |V | = 15K, we varied

|E| from 100K to 124K by inserting edges, in 4K increments. The results are reported

in Fig. 5.19(d), which show that IncIsoMatch performs much better than the batch al-

gorithm VF2 when the changes are no more than 21%. Note that IsoUMatch does not

scale well with |∆G|. Indeed, the union of affected areas grows rapidly since the up-

dates spread all over the graph, and hence, IsoUMatch can no longer enjoy the locality

property, as expected.

Summary. From the experimental results we find the following. (1) Incremental

matching is more promising than its batch counterparts for simulation, bounded sim-

ulation and subgraph isomorphism in evolving networks, even when changes to data

graphs are reasonably large. (2) Our incremental algorithms significantly and consis-

tently outperform the previous incremental algorithms for (bounded) simulation. (3)

The minDelta and weighted landmark techniques are effective in improving the per-

formance of the algorithms.

Chapter 5. Incremental Graph Pattern Matching 134

5.6 Related Work

Incremental algorithms have proved useful in a variety of areas (see [RR93] for a sur-

vey). However, few results are known about incremental graph pattern matching, far

less than their batch counterparts [CFSV04, Gal06]. About incremental algorithms re-

lated to simulation we are only aware of [Sah07, SSR+97], which are mostly developed

for verification and model checking. Incremental bisimulation is studied in [Sah07].

In contrast to our work, it considers bisimulation on a single graph, which is quite

different from incremental simulation across two graphs (a pattern and a data graph).

Moreover, it does not study whether the problem is bounded. Simulation is inves-

tigated in [SSR+97] based on HORN-SAT, which supports incremental updates on a

single graph. However, (a) it does not consider whether the incremental simulation

problem is bounded, and (b) its incremental techniques requires to update reflections

and construct an instance of size O(|E|2), where |E| is the number of edges of the data

graph. In contrast, our algorithms for incremental simulation do not have to maintain

large auxiliary structures (Section 5.2).

Closer to our work is [FLM+10b]. For bounded simulation, it shows that the incre-

mental matching problem is unbounded for batch updates and DAG patterns, and gives

cubic-time incremental algorithms for DAG patterns. It differs from our work in the

following. (a) We show a stronger result: the problem is already unbounded for unit

updates and path patterns. (b) For possibly cyclic patterns, we provide an incremental

algorithm. In contrast to the algorithm of [FLM+10b] that requires an O(|V |2)-space

matrix, where V is the set of nodes in a data graph, our algorithm significantly reduces

the space cost by using weighted landmark vectors (Section 5.3). As verified by our

experimental study, our algorithm scales better than the algorithm of [FLM+10b]. (c)

We also study the incremental matching problem for simulation and subgraph isomor-

phism, which are not considered in [FLM+10b].

Inexact algorithms have been studied for incremental subgraph search [WC09,

SNS09]. An algorithm is developed in [WC09] to approximately determine whether

a pattern is contained in graphs in a graph streams, based on an index of exponen-

tial size. An exponential-time incremental algorithm for inexact subgraph isomor-

phism is given in [SNS09], which is claimed to be bounded. We show that the incre-

mental matching problem for subgraph isomorphism is unbounded even for unit up-

dates and path patterns, and provide a simple incremental algorithm that outperforms

VF2 [CFSV01, FSV01] (Section 5.4).

Chapter 5. Incremental Graph Pattern Matching 135

There has been work on incremental view maintenance for semi-structured data

modeled as a graph (e.g., [AMR+98, ZGM98]). Assuming that data has a tree struc-

ture, [ZGM98] maintains only the nodes of views. Incremental maintenance of graph

views is studied in [AMR+98], which generates update statements in Lorel in re-

sponse to updates. There has also been a host of work on relational view maintenance

(see [GM00] for a collection of readings). Unfortunately, as pointed out by [Sah07],

the incremental matching problem is non-monotonic in nature for simulation (similarly

for bounded simulation and subgraph isomorphism), and hence cannot be reduced to

incremental evaluation of logic programs with stratified negation. As a result, view

maintenance techniques cannot be directly used in incremental graph pattern match-

ing.

Our incremental algorithms for bounded simulation employ weighted landmarks, a

nontrivial revision of landmarks proposed in [PBCG09]. We utilize the k-betweeness

centrality metric of [WS03] for landmark selections in our algorithms, and develop

incremental maintenance algorithms for weighted landmarks. In our experimental

study we take into account the densification law [LKF07] and relation generation mod-

els [GGCM09], which simulate the evolution of real-life networks.

5.7 Conclusion
Problem Update Complexity

IncSim unit insertion, DAG pattern bounded, O(|AFF|)
unit deletion bounded, O(|AFF|)
unit insertion unbounded, O(|GP||AFF|+ |AFF|2)
batch updates unbounded, O(|∆G(||GP||AFF|+ |AFF|2))

IncBSim unit update unbounded for path pattern

batch updates unbounded

INCISO unit update unbounded for path pattern

INCISOMAT unit update unbounded for path pattern and DAG graph

Table 5.2: Summary of the complexity results

We have proposed incremental solutions for graph pattern matching based on sim-

ulation, bounded simulation and subgraph isomorphism, which are routinely used in

real-life networks [BHK+10, FLM+10b, SNS09, Ull76]. We have shown that the in-

cremental matching problem is unbounded for all of them, but identified special cases

that are bounded and even optimal. For each of these, we have developed incremental

Chapter 5. Incremental Graph Pattern Matching 136

algorithms for (possibly cyclic) patterns and batch updates. In particular, the complex-

ity bounds of the algorithms for simulation and bounded simulation are independent

of the size of data graph. Our experimental study has verified that our algorithms sub-

stantially outperform their batch counterparts. The complexity results in this chapter

is summarized in Table 5.2.

Chapter 6

Conclusion and Future Work

Graph matching problem has been widely used in a variety of emerging applications.

Traditional simulation, homomorphism and isomorphism based model and matching

methods are not capable of capturing both semantic and structural similarity of graphs

in these applications. In response to this, this thesis presents a series of revised no-

tions of graph homomorphism and simulation, and develops novel graph matching

approaches bases on these concepts.

Graph homomorphism revised. To better capturing the similarity for exact graph

matching methods, the thesis have proposed several notions, namely, p-hom, 1-1 p-

hom, and quantitative metrics by maximizing either the number of nodes matched or

the overall similarity. These notions support edge-to-path mappings and node similar-

ity. The thesis has established the intractability and the hardness to approximate for

these problems. Despite the hardness, approximation algorithms for these problems

have been developed, with provable guarantees on match quality.

The effectiveness of the techniques has been evaluated using Web site matching

as a testbed. The experimental results have shown our methods are able to identify a

number of similar Web sites that cannot be matched either by the conventional notions

of graph matching or by vertex similarity alone.

Graph simulation revised. To further improve the approaches for inexact graph

matching, this thesis proposed a revision of graph pattern matching, based on (1) pat-

tern graphs that specify search conditions and (bounded) connectivity, and (2) bounded

simulation. This yields a cubic-time method for finding matches, as opposed to the

intractability of its counterpart via subgraph isomorphism. Moreover, it is able to cap-

ture more patterns in emerging applications. Utilizing real life datasets and synthetic

137

Chapter 6. Conclusion and Future Work 138

datasets, the thesis verified the effectiveness and efficiency of the proposed methods.

The thesis has also provided incremental algorithms for the patterns and general

data graphs, with performance guarantees, ranging from DAG patterns to general pat-

terns, and from single update to batch updates. Experiments over real life datasets

verified the scalability and efficiency of the presented incremental algorithms.

Graph query. To study the graph matching in a deeper scope, this thesis has proposed

extensions of reachability queries (RQs) and graph pattern queries (PQs), by incorpo-

rating a subclass of regular expressions to capture edge relationships commonly found

in emerging applications.

Graph pattern matching is further revised by introducing an extension of graph

simulation. Several fundamental problems of both theoretical and practical interests

(containment, equivalence, minimization) for these queries are studied. It has been

verified that the increased expressive power does not incur higher evaluation complex-

ity for these problems (which are all in low PTIME).

To further study the techniques for answering the queries, two algorithms for eval-

uating RQs have been proposed; we have also developed two cubic-time algorithms

for evaluating PQs, as opposed to the intractability of graph pattern matching via sub-

graph isomorphism. We have verified experimentally that these queries are able to find

more sensible information than their traditional counterparts, and that the algorithms

are efficient when evaluating RQs and PQs on large graphs.

Incremental Graph Matching. This thesis has proposed incremental solutions for

graph pattern matching based on simulation, bounded simulation and subgraph iso-

morphism, which are routinely used in real-life networks. The thesis has shown that

the incremental matching problem is unbounded for all of them, but identified special

cases that are bounded and even optimal. For each of these, we have developed in-

cremental algorithms for (possibly cyclic) patterns and batch updates. In particular,

the complexity bounds of the algorithms for simulation and bounded simulation are

independent of the size of data graph. Our experimental study has verified that our

algorithms substantially outperform their batch counterparts.

future work. There is much more to be done.

(1) To further evaluate the revision of the conventional notions of graph homomor-

phism, we are exploring the areas in which our techniques are effective, beyond Web

mirror detection. We also plan to improve our algorithms by leveraging indexing and

Chapter 6. Conclusion and Future Work 139

filtering techniques of [TP08, YYH05]. Another topic is to compare the accuracy and

efficiency of our methods with the counterparts of the feature-based approaches.

(2) Another issue is to evaluate the revision of graph simulation in more domains.

We are currently experimenting with real-life datasets in various domains for bounded

simulation, to identify areas in which the revised pattern matching is most effective.

Second, we plan to identify special cases that permit more efficient (incremental) al-

gorithms for bounded simulation.

(3) One topic for future work is to extend the graph queries RQs and PQs by supporting

general regular expressions. Nevertheless, with this comes increased complexity. In-

deed, the containment and minimization problems become PSPACE-complete even for

RQs. Another topic is to identify application domains in which simulation-based PQs

are most effective. A further topic is to study incremental algorithms for evaluating

RQs and PQs.

(4) We are also exploring optimization techniques to improve the matching and incre-

mental matching methods, notably compression methods with invariants, transforming

a data graph into a smaller one, which reduces the total matching time cost while pre-

serving the match relation.

(5) Last but not the least, we are currently experimenting with large real-life data sets

in various applications, to identify areas where incremental matching is most effec-

tive. We are also investigating optimization techniques for incremental matching by

leveraging previous strategies developed for batch matching, and by exploring usage

patterns of real-life networks [KNT06, NCO04, WS03]. Another challenging topic

is to develop efficient incremental matching methods for subgraph isomorphism, in

particular incremental heuristic algorithms that are “bounded”.

Appendix A

Proofs in Chapter 2

Proof of Theorem 2.2.1 (a)

The p-hom problem is to determine, given two graphs G1 = (V1,E1,L1) and G2 =

(V2,E2,L2), whether G1 -s
(e,p) G2. We show that the p-hom problem is NP-complete

even when both G1 and G2 are DAGs.

We first show that this problem is in NP. An NP algorithm is given as follows: first

guess a binary relation R ⊆ V1 ×V2, and then check whether it is a p-hom mapping.

It is in polynomial time (PTIME) to check whether R is a function and whether it is a

p-hom mapping from G1 to G2.

We next show that this problem is NP-hard by reduction from the 3SAT problem,

which is NP-complete (cf. [GJ79]).

An instance ϕ of 3SAT is of the form C1 ∧ ·· · ∧Cn where all the variables in ϕ
are x1, . . . ,xm, each clause C j (j ∈ [1,n]) is of the form y j1 ∨ y j2 ∨ y j3 , and moreover,

for i ∈ [1,3], y ji is either xp ji or xp ji for p ji ∈ [1,m]. Here we use xp ji to denote the

occurrence of a variable in the literal i of clause C j. The 3SAT problem is to determine

whether ϕ is satisfiable.

Given an instance ϕ of the 3SAT problem, we construct two DAGs G1,G2 and a

similarity matrix mat() such that G1 -s
(e,p) G2 if and only if ϕ is satisfiable. The

similarity threshold ξ is set to 1.

(1) The DAG G1 = (V1,E1,L1) is defined as follows:

141

Appendix A. Proofs in Chapter 2 142

• V1 = {R1,C1, . . . ,Cn,X1, . . . ,Xm};

• E1 = {(R1,Xi),(Xp j1 ,C j),(Xp j2,C j),(Xp j3,C j)} for each i ∈ [1,m] and each j ∈
[1,n]; and

• we simply let L1(v) = v for each node v ∈V1.

Intuitively, graph G1 encodes the instance ϕ of 3SAT. Node Xi (i ∈ [1,m]) denotes

variable xi, and node C j (j ∈ [1,n]) represents clause C j. Node R1 is the root of graph

G1, which connects to all Xi nodes (i ∈ [1,m]). An edge (Xi,C j) in E1 encodes that

variable xi appears in clause C j, i.e., xi is one of the three variables xp j1 , xp j2 and xp j3 .

For example, consider an instance for the 3SAT problem: ϕ = C1 ∧C2, where C1 =

x1 ∨ x2 ∨ x3 and C2 = x2 ∨ x3 ∨ x4. The corresponding graph G1 is depicted in Fig. A.1

(G1).

(2) The DAG G2 = (V2,E2,L2) is defined as follows:

• V2 = {R2,T,F,XT 1,XF1, . . . ,XT m,XFm, 01, . . . ,71, . . . ,0n, . . . ,7n}.

• E2 = {(R2,T),(R2,F)} ∪ {(T,XTi),(F,XFi)} ∪ E ′
2, where i ∈ [1,m].

• E ′
2 contains 7×3 edges for each clause C j = y j1 ∨ y j2 ∨ y j3 of ϕ (j ∈ [1,n]), and

there are in total 21n edges in E ′
2.

(a) Treating true as 1 and false as 0, we represent the truth assignments of clause

C j in terms of 8 nodes C j(ρ), where ρ ranges over all truth assignments of vari-

ables xp j1 , xp j2 and xp j3 . Each node C j(ρ) is a three-bit constant y j1y j2y j3 with a

subscript j, determined by ρ(xp j1),ρ(xp j2) and ρ(xp j3), e.g., 21.

(b) For each truth assignment ρ of xp j1 , xp j2 and xp j3 that makes C j true, E ′
2

consists of the following edges: (XT p jk ,C j(ρ)) if ρ(Xp jk) = true, or (XF p jk ,C j(ρ))
if ρ(Xp jk) = false, where k ∈ [1,3].

• L2(u) = u for each u ∈V2.

Intuitively, graph G2 encodes the truth assignments of the variables that satisfy the

clauses in the instance ϕ of 3SAT. Node XTi (i ∈ [1,m], resp. XFi) means assigning

variable xi a true (resp. false) value. Nodes {0 j, . . . ,7 j} represent C j(ρ), which are

denoted as a three-bit constant w.r.t. the truth assignments of the three variables in

Appendix A. Proofs in Chapter 2 143

Figure A.1: An example reduction for p-hom

clause C j. Node R2 is the root of graph G2. Nodes T and F are simply included

for the ease of exposition. Edges from XTi or XFi to nodes {0 j, . . . ,7 j} encode the

relationships between the truth assignments of the variables (xp j1 , xp j2 and xp j3) and

the corresponding C j(ρ).

For example, graph G2 corresponding to the 3SAT instance ϕ given above is shown

in Fig. A.1. Observe that both G1 and G2 are DAGs.

(3) The similarity matrix mat() is defined as follows:

• mat[R1,R2] = 1;

• mat[Xi,XTi] = 1 and mat[Xi,XFi] = 1 for i ∈ [1,m];

• mat[C j,0 j] = 1, . . ., mat[C j,7 j] = 1 for j ∈ [1,n];

• mat[v,u] = 0 for any other nodes v ∈V1 and u ∈V2.

The matrix mat() guarantees that (a) the root R1 of G1 must be mapped to the root

R2 of G2, (b) node Xi (i ∈ [1,m]) in G1 is mapped to either node XTi (true) or XFi (false)

of G2, and (c) node C j in G1 (j ∈ [1,n]) is mapped to one of the nodes {0 j, . . . ,7 j} of

G2.

It is easy to verify that the above construction is in PTIME. We next verify that this

Appendix A. Proofs in Chapter 2 144

is indeed a reduction from the 3SAT instance, i.e., there is a p-hom mapping from G1

to G2 if and only if the 3SAT instance ϕ is satisfiable.

Assume that there is a p-hom mapping λ from G1 to G2. We show that there is a

truth assignment ρ that makes ϕ true. The truth assignment ρ is defined as follows. For

each variable xi (i ∈ [1,m]), ρ(xi) = true if λ(Xi) = XTi, and ρ(xi) = false if λ(Xi) = XFi.

Note that node Xi in G1 cannot be mapped to both nodes XTi and XFi in G2 since λ is

a function. For each node C j (j ∈ [1,n]), λ(C j) guarantees that ρ must make clause C j

true, by the construction of graph G2. Hence the truth assignment ρ indeed makes ϕ
true.

Conversely, if there is a truth assignment ρ that makes ϕ true, we show that there is

a p-hom mapping λ from G1 to G2. The p-hom mapping λ is defined as follows: (1)

λ(R1) = R2; (2) for each i ∈ [1,m], λ(Xi) = XTi if ρ(xi) = true, and λ(Xi) = XFi if ρ(xi)

= false; and (3) for each j ∈ [1,n], λ(C j) =C j(ρ) defined as above. It is easy to verify

that λ is indeed a p-hom mapping. 2

Proof of Theorem 2.2.1 (b)

We show that the 1-1 p-hom problem (G1 -1−1
(e,p) G2) is NP-complete even when G1 is

a tree and G2 is a DAG.

We first show that this problem is in NP. An NP algorithm is given as follows:

first guess a binary relation R ⊆ V1 ×V2, and then check whether it is a 1-1 p-hom

mapping. It is in polynomial time (PTIME) to check whether R is an injective function

and whether it is a p-hom mapping from G1 to G2.

We next show that this problem is NP-hard by reduction from the exact cover

by 3-sets problem (X3C), which is NP-complete (cf. [GJ79]). Given a finite set X

= {x1, . . . ,x3q} with |X |= 3q and a collection S = {C1, . . . ,Cn} of 3-element subsets of

X , where Ci = {xi1,xi2,xi3} for i ∈ [1,n], the X3C problem is to decide whether there

exists an exact cover for X , that is, a sub-collection S′ ⊆ S such that S′ is a partition of

X , i.e., every element of X occurs in exactly one member of S′.

Given an instance I of X3C, we construct two graphs G1 and G2 and a similarity

matrix mat() such that there is a 1-1 p-hom mapping from G1 to G2 if and only if there

exists an exact cover for I. The similarity threshold ξ is set to 1.

Appendix A. Proofs in Chapter 2 145

(1) The tree G1 = (V1,E1,L1) is defined as follows:

• V1 = {R1,C′
1, . . . ,C

′
q,X

′
11,X

′
12,X

′
13, . . . ,X

′
q1,X

′
q2,X

′
q3};

• E1 = {(R1,C′
i),(C

′
i ,X

′
i1),(C

′
i ,X

′
i2),(C

′
i ,X

′
i3)} for each i ∈ [1,q]; and

• L1(v) = v for each node v ∈V1.

Intuitively, the tree G1 encodes the structure of an exact cover S′ for the X3C in-

stance I. If there exists such an S′, then S′ consists of exactly q subsets, and each con-

tains three distinct elements. Node R1 is the root node of tree G1. Nodes C′
i (i ∈ [1,q])

denote the subsets in the solution S′. Moreover, we encode the three elements for each

subset C′
i (i ∈ [1,q]) with three distinct nodes X ′

i1, X ′
i2 and X ′

i3. Edges from node C′
i to

nodes X ′
i1, X ′

i2 and X ′
i3 indicate their relationships.

For example, consider an instance of X3C, where X = {X11,X12,X13,X21,X22,X23}
and S = {C1,C2,C3} such that C1 = {X11,X12,X13}, C2 = {X11,X12,X21} and C3 =

{X21,X22,X23}. The tree G1 is depicted in Fig. A.2 (G1).

(2) The DAG G2 = (V2,E2) is defined as follows:

• V2 = {R2,C1, . . . ,Cn,X11,X12,X13, . . . ,Xq1,Xq2,Xq3};

• E2 = {(R2,Ci)} ∪ {(Ci,X jk)}, where i ∈ [1,n], 1 ≤ j ≤ p, and X jk ∈ Ci for all

k ∈ [1,3]; and

• L2(u) = u for each node u ∈V2.

Intuitively, DAG G2 encodes the instance of the X3C problem. Node R2 is the root

of G2. For each i ∈ [1,n], node Ci represents the 3-element subset Ci in S, and nodes

Xi1,Xi2,Xi3 denotes the three elements of Ci. Again, edges from node Ci to nodes Xi1,

Xi2 and Xi3 indicate their relationships.

Referring the X3C instance given above, the DAG G2 is shown in Fig. A.2 (G2).

(3) The similarity matrix mat() is defined as follows:

• mat[R1,R2] = 1;

Appendix A. Proofs in Chapter 2 146

Figure A.2: An example reduction for 1-1 p-hom

• mat[C′
i ,C j] = 1 for i ∈ [1,q] and j ∈ [1,n];

• mat[X ′
ik,X jg] = 1 for i, j ∈ [1,q] and k,g ∈ [1,3];

• mat[v,u] = 0 for any other nodes v ∈V1 and u ∈V2.

The similarity matrix mat() guarantees that (a) the root R1 of G1 must be mapped

to the root R2 of G2, (b) node C′
i (i ∈ [1,q]) of G1 is mapped to node C j (j ∈ [1,n])

of G2, and (c) node X ′
ik in G1 (i ∈ [1,q] and k ∈ [1,3]) is mapped to node X jg in G2

(j ∈ [1,q] and g ∈ [1,3]).

It is easy to verify that the above construction is in PTIME. We next verify that this

is indeed a reduction from the X3C instance, i.e., there is a 1-1 p-hom mapping from

G1 to G2 if and only if there is an exact cover for the X3C instance.

First, suppose that there exists a 1-1 p-hom mapping λ from G1 to G2. From the

mapping λ, we construct S′ = {λ(C′
i)} for each C′

i ∈V1 of G1 (i ∈ [1,q]). We next show

that S′ is an exact cover for the X3C instance.

Since the mapping λ is injective, it is easy to verify that (1) |S′| = q, and (2) for any

two distinct nodes C′
i and C′

j (i, j ∈ [1,q] and i ̸= j) in G1, λ(C′
i) ̸= λ(C′

j), i.e., they are

mapped to distinct nodes in G2. From this it follows that if S′ is not an exact cover of S,

there must exist λ(C′
i),λ(C′

j) ∈ S′ (1 ≤ i, j ≤ q and i ̸= j) such that λ(C′
i)∩λ(C′

j) ̸= /0.

However, this implies that there exist two distinct nodes X ′
ik (a child of node C′

i) and

X ′
jg (a child of node C′

j) in G1 such that λ(X ′
ik) = λ(X ′

jg), which is impossible since λ is

injective. Hence, S′ is indeed an exact cover.

To illustrate this, let us consider an example. Let λ be a 1-1 p-hom mapping from

Appendix A. Proofs in Chapter 2 147

G1 to G2 shown in Fig. A.2 such that (1) λ(R1) = R2, (2) λ(C′
1) = C1, λ(C′

2) = C3, and

(3) λ(X ′
ik) = Xik for each i ∈ [1,2] and each k ∈ [1,3]. Consider S′ = {λ(C′

1),λ(C
′
2)} =

{C1,C3}. It is easy to verify that S′ is an exact cover for the X3C instance given above.

Conversely, suppose there is an exact cover S′ for the X3C instance. We show that

there is 1-1 p-hom mapping λ from G1 to G2. Assume w.l.o.g. that S′ = {C j1 , . . . ,C jq}
such that ji ∈ [1,n] and C ji ∈ S for i ∈ [1,q].

We define a mapping λ as follows: (1) λ(R1) = R2, (2) λ(C′
i) = C ji for i ∈ [1,q], and

(3) λ(X ′
ik) = X jik for i∈ [1,q] and k ∈ [1,3], where C ji = {X ji1,X ji2,X ji3} and X ′

i1,X
′
i2,X

′
i3

are the children of C′
i in G1. Then it is easy to verify that λ is a 1-1 p-hom mapping,

using an argument similar to the one given above.

For instance, S′ = {C1,C3} is an exact cover for the X3C instance in Fig. A.2. Then

the corresponding 1-1 p-hom mapping λ is constructed as follows: (1) λ(R1) = R2, (2)

λ(C′
1) = C1 and λ(C′

2) = C3, (3) λ(X ′
ik) = Xik for i ∈ [1,2] and k ∈ [1,3]. 2

Proof of Corollary 2.2.2

We show that the maximum cardinality problem (MCP) and the maximum overall

similarity problem (MSP) are NP-complete for both p-hom and 1-1 p-hom. These

problems are already NP-hard when only DAGs are considered.

Given graphs G1, G2, similarity matrix mat, threshold ξ, and a rational number K,

MCP (resp. MSP) for p-hom (resp. 1-1 p-hom) is to determine whether there exists a

p-hom (resp. 1-1 p-hom) mapping σ from G1 to G2 such that qualCard(σ)≥ K (resp.

qualSim(σ)≥ K).

It is easy to verify that these problems are in NP. We next show that there exists a

reduction from the p-hom problem to MCP (MSP) for p-hom, and the reduction from

the 1-1 p-hom problem to MCP (MSP) for 1-1 p-hom is identical.

Given an instance I1 = (G1, G2, mat, ξ) of the p-hom problem, we construct an

instance I2 = (G1, G2, mat′, ξ, K) of MCP (MSP) such that (1) K = 1, (2) mat′(v,u) = 1

for each node v in G1 and each node u in G2 such that mat(v,u)≥ ξ, and mat′(v,u) =

mat(v,u) otherwise. The reduction is trivially in PTIME.

If there is a p-hom mapping σ such that qualCard(σ)≥ 1 for MCP or qualSim(σ)≥

Appendix A. Proofs in Chapter 2 148

1 for MSP in instance I2, then it is easy to verify that the mapping σ contains all nodes

of G1. From this, it follows that there exists a solution for instance I1 if and only if

there exists a solution for instance I2. 2

Proof of Theorem 2.2.3

We show that CPH, CPH1−1, SPH and SPH1−1 are not approximable within

O(1/n1−ε) for any constant ε, where n is the number of nodes in G1, and G1 and

G2 are input graphs.

We show that there exists an AFP-reduction (f ,g) (see Section 2.2 for a detailed

description) from the WIS problem to the SPH problem, from which the conclusion

follows since the WIS problem is not approximable within O(|V1|1−ε) for any constant

ε [Hal00].

We first construct algorithm f . Given an instance I1 of the WIS problem as its

input, algorithm f outputs an instance I2 of the SPH problem. The instance I1 is an

undirected graph G(V,E) with a positive weight w(v) on each node v. The instance

I2 consists of the following: (1) two directed graphs G1(V1,E1,L1) and G2(V2,E2,L2)

such that V1 =V2 =V , E1 contains the set of (arbitrarily directed) edges in E, E2 = /0,

and L1(v) = L2(v) = v for each node v ∈ V ; (2) a similarity matrix mat() such that

mat(v,u) = 1 iff L1(v) = L2(u) for any nodes v in G1 and u in G2, and mat(v,u) = 0

otherwise; (3) for each node v∈V1, its weight is equal to w(v) on G; and (4) a similarity

threshold ξ = 1. It is easy to verify that algorithm f is in PTIME.

We then construct algorithm g. Given a feasible solution s2 =

{(v1,v1), . . . ,(vn,vn)} of the SPH instance I2, algorithm g outputs s1 = {v1, . . . ,vn}.

Algorithm g is trivially in PTIME.

We now show that (f , g) is an AFP-reduction from the WIS problem to the SPH

problem. Let us consider the following.

Claim 1. Let s1 = {v1, . . . ,vn} be a set of nodes of G in the WIS instance I1, and

s2 = {(v1,v1), . . . ,(vn,vn)} be a mapping of the SPH instance I2. Then s2 is p-hom

mapping from subgraph G1[s1] to graph G2 in I2 iff s1 is an independent set of G in I1.

This suffices. For if it holds, then we can easily verify that algorithm g produces

a solution of the WIS instance I1, obj1(s1) = obj2(s2), and opt
2
(I2) = opt1(I1). Recall

Appendix A. Proofs in Chapter 2 149

that (1) obj1() (resp. obj2()) is a function measuring the quality of a solution to I1

(resp. I2); and (2) opt1 (resp. opt2) is the quality of an optimal solution to I1 (resp. I2).

From this it follows that (f , g) is indeed an AFP-reduction from the WIS problem to

the SPH problem.

We next prove Claim 1. First, suppose that s1 is an independent set in I1. By the

definition of p-hom, it is easy to verify that s2 is a p-hom mapping from subgraph

G1[s1] to G2 in I2.

Conversely, suppose that s2 is a p-hom mapping from subgraph G1[s1] to graph G2

in I2. We then show that s1 is an independent set of graph G in I1. By the definition

of p-hom, (1) each node vi (i ∈ [1,n]) of s1 in G1 is mapped to node s2(vi) = vi in G2;

and (2) for any nodes vi,v j (i ̸= j) in s1, (vi,v j) is not in E1 since G2 has no edges at

all (E2 = /0). Hence, s1 is an independent set of graph G1 in I2. By the construction of

graph G1 in algorithm f , s1 is indeed an independent set of graph G in I1.

For the SPH1−1 problem, the above AFP-reduction suffices since the p-hom map-

ping constructed is indeed injective.

For the CPH (resp. CPH1−1) problem, by setting the weights of all nodes in G1 to

1, the revised AFP-reduction (f ,g) for SPH given above suffices again. 2

Proof of Theorem 2.3.1

We show that CPH, CPH1−1, SPH and SPH1−1 are all approximable within

O(log2(n1n2)/(n1n2)), where n1 and n2 are the numbers of nodes in input graphs G1

and G2, respectively.

It suffices to show that there exists an AFP-reduction (f ,g) from the SPH problem

to the WIS problem, from which the conclusion follows since the WIS problem is ap-

proximable within O(log2n)/n, where n = n1n2 is the number of graph nodes [Hal00].

We first design algorithm f . Given an SPH instance I1 as its input, algorithm

f produces a WIS instance I2. The instance I1 consists of (1) two directed graphs

G1(V1,E1,L1) and G2(V2,E2,L2), (2) a similarity matrix mat() on the nodes of G1 and

G2, and (3) a similarity threshold ξ. Algorithm f first computes the transitive closure

G+
2 (V2,E+

2 ,L2) of graph G2, and then produces an undirected graph G(V,E) with a

positive weight on each node based on graphs G1 and G+
2 . The graph G, a product

Appendix A. Proofs in Chapter 2 150

graph of G1 and G2, is built as follows:

(1) V = {[v,u] | v ∈V1,u ∈V2,mat(v,u)≥ ξ}.

(2) For any nodes [v1,u1], [v2,u2] in V , there exists an edge from [v1,u1] to [v2,u2] in

E iff they satisfy the following conditions: (a) v1 ̸= v2; (b) if there is a loop (v1,v1)

(resp. (v2,v2)) in G1, then there must exist a loop (u1,u1) (resp. (u2,u2)) in G+
2 ; and

(c) if (v1,v2) ∈ E1, then (u1,u2) ∈ E+
2 .

(3) For each node [v,u] in G, its weight is equal to mat(v,u).

Finally, algorithm f produces a graph Gc(V,Ec), which is the WIS instance I2.

Graph Gc(V,Ec) is the complement graph of G(V,E) such that an edge e ∈ Ec iff e ̸∈ E.

Here graph Gc allow no self-loops. It is easy to verify that algorithm f runs in PTIME.

We then design algorithm g as follows. Given a feasible solution s2 =

{[v1,u1], . . . , [vn,un]} of the WIS instance I2, g outputs s1 = {(v1,u1), . . . ,(vn,un)}. Al-

gorithm g is obviously in PTIME.

We now show that (f , g) is an AFP-reduction from the SPH problem to the WIS

problem. Let us consider the following.

Claim 2. Let s2 = {[v1,u1], . . . , [vn,un]} be a set of nodes in Gc, and s1 =

{(v1,u1), . . . ,(vn,un)}. Then s2 is an independent set in graph Gc iff s1 is a p-hom

mapping from subgraph G1[V ′
1] to G2 such that V ′

1 = {v1, . . . ,vn}.

If Claim 2 holds, then we can easily verify that (1) algorithm g produces a solution

(a p-hom mapping) for the SPH instance I1, (2) obj1(s1) = obj2(s2), and (2) opt
2
(I2) =

opt1(I1). From this it follows that (f , g) is indeed an AFP-reduction.

We next prove Claim 2. Assume that s2 is an independent set of Gc. We show that

s1 is a p-hom mapping from G1[V ′
1] to G2. Since s2 is an independent set of Gc, s2 is

a clique of G. Hence there exists an edge in graph G between any nodes [vi,ui] and

[v j,u j] (i ̸= j) of s2. The construction of G guarantees the following: (a) if there is an

edge from nodes [vi,ui] to [v j,u j], then vi ̸= v j, and (b) if there is an edge from vi to v j

in G1, then there must exist a path from vi to v j in G2; (c) nodes with self-loops in G1

must be mapped to nodes with self-loops in G+
2 . Condition (a) guarantees that s1 is a

function; and conditions (a), (b) and (c) together guarantee that s1 is indeed a p-hom

mapping.

Appendix A. Proofs in Chapter 2 151

Conversely, if s1 is a p-hom mapping from G1[V ′
1] to G2, we show that s2 is an

independent set of Gc. This is trivial since for any nodes [vi,ui] and [v j,u j] (i ̸= j) in

s2, there is an edge ([vi,ui], [v j,u j]) in G, and thus no edge in Gc.

To prove the statement for the SPH1−1 problem, for each node pair [v1,u] and [v2,u]

(v1 ̸= v2), we further add an edge ([v1,u], [v2,u]) to Gc given above. This suffices to

guarantee that the independent set s2 corresponds to a 1-1 p-hom mapping.

For the CPH (resp. CPH1−1) problem, by setting the weights of all nodes in Gc to

1, the AFP-reduction (f ,g) for SPH (resp. SPH1−1) given above suffices. 2

Proof of Proposition. 2.3.2

We show that given any graphs G1(V1,E1,L1), G2(V2,E2,L2), mat() and ξ, algo-

rithm compMaxCard finds a p-hom mapping σ from a subgraph of G1 to G2 such

that qualCard(σ) is within O(log2(|V1||V2|)/(|V1||V2|)) of the optimal quality.

As pointed out in Section 2.3, the AFP-reductions in Theorem 2.3.1, together with

the algorithm for the WIS problem [Hal00] serve as naive approximation algorithms

for these problems. These algorithms have the performance guarantee given above.

Thus, all we need to do is to show that given the same input, algorithm compMaxCard

produces the same output as those naive algorithms.

To show this, it suffices to show that algorithm compMaxCard simulates algorithm

ISRemoval, in a non-trivial way, for finding a maximum clique on the product graph

(shown in Fig. A.3). Algorithm ISRemoval is the dual of algorithm CliqueRemoval for

finding a maximum independent set [BH92]. Recall that the maximum independent set

problem on graph G is equivalent to the maximum clique problem on the complement

graph Gc of G, and vice versa.

One can easily see how algorithm compMaxCard in Fig. 2.3 mimics algorithm

ISRemoval. We next show, in detail, how procedure greedyMatch in Fig. 2.4 simu-

lates procedure Ramsey (see a detailed explanation in [BH92]). This is based on the

following connections:

(1) The matching-list H for graph G1 corresponds to the product graph G = G1 ×
G2, and each node v in G1 and another node u in H[v].good or H[v].minus together

correspond to the node [v,u] in the product graph G. From these it follows that lines 1

Appendix A. Proofs in Chapter 2 152

Algorithm ISRemoval

Input: An undirected graph G(V,E).

Output: A clique C of G.

1.i :=1; (I1,C1) := Ramsey(G);

2.while G is not empty do
3. G := G\ Ii; /*remove independent set Ii from G*/

4. i := i+1; (Ci, Ii) := Ramsey(G);

5.return max(C1,C2, . . . ,Ci).

Procedure Ramsey

Input: An undirected graph G(V,E).

Output: An independent set I and a clique C of G.

1.if G = /0 then return (/0, /0);
2.choose some node v of G do
3. (C1, I1) := Ramsey(N (v));

/*subgraph N (v) of G consists of the neighbors of v*/

4. (C2, I2) := Ramsey(N (v));

/*subgraph N (v) of G consists of the non-neighbors of v*/

5.I := max(I1, I2 ∪{v}); C := max(C1 ∪{v},C2);

6.return (I,C).

Figure A.3: Algorithm ISRemoval

and 2 of greedyMatch simulate lines 1 and 2 of Ramsey, respectively.

(2) The matching-lists H+ and H− correspond to N ([v,u]) and N ([v,u]), respec-

tively, where nodes v,u come from line 2 of greedyMatch. Since computing the

neighbors or non-neighbors of a node on graphs is trivial, it is not explicitly ad-

dressed in Ramsey. In greedyMatch, however, we need to distinguish neighbors from

non-neighbors in the matching-list H, instead of the product graph directly. Proce-

dure trimMatching in Fig. 2.4 is thus introduced to solve this problem. Indeed, it is

trimMatching that makes it possible to operate on the product graph directly.

(3) Procedure greedyMatch(H1,H2,H) returns (σ, I), where σ and I correspond

Appendix A. Proofs in Chapter 2 153

to a clique and an independent set in the product graph G respectively, as defined

in the proof of Theorem 2.3.1. From this it follows that lines 10, 11, 12 and 13 of

greedyMatch simulate lines 3, 4, 5 and 6 of Ramsey, respectively.

Putting all these together, we have shown that compMaxCard indeed simulates

ISRemoval, i.e., given the same input, they always produce the the same output. 2

Appendix B

Proofs in Chapter 3 and Chapter 4

In this part we show the detailed proofs in Chapter 3 and Chapter 4. We combine the

proofs of these two chapters together as they are closely related.

Proof Sketch of Proposition 3.2.2

(1) We first show that there exists a maximum match, which is the union of all matches

in G for P. (2) We then show the uniqueness by contradiction. That is, if there exist

two distinct maximum matches S1 and S2, then S3 = S2 ∪ S1 is a match that is larger

than both S1 and S2.

From (1) and (2) Proposition 3.2.2 immediately follows. 2

Proof Sketch of Theorem 3.3.1

We prove Theorem 3.3.1 by showing that (1) algorithm Match correctly computes the

maximum match S in G for P, and that (2) it is in O(|V ||E|+ |Ep||V |2 + |Vp||V |) time.

(1) Correctness. (i) Algorithm Match always terminates. Indeed, for each node u in

P, mat(u) decreases monotonically in the process. (ii) The algorithm returns a match

S in G for P iff P E G. One can verify that after the while loop (lines 7-15), for each

x remaining in mat(u), x is a match of u. (iii) The match S is maximum because (a)

Match starts with all possible match candidates for each node u in P; and (b) the loop

only drops those nodes that cannot possibly match u.

154

Appendix B. Proofs in Chapter 3 and Chapter 4 155

(2) Complexity. Algorithm Match consists of three phases: pre-processing (lines 1-6),

match computation (lines 7-15), and result collection (lines 16-18). One can verify

that these phases take O(|Ep||V |2+ |Vp||V |+ |V ||E|) time, O(|Ep||V |2) and O(|Vp||V |)
time, respectively. In particular, by using BFS search for each node of G [BJG08], the

distance matrix M can be computed in O(|V |(|V |+ |E|)) time. Hence the algorithm is

in O(|V ||E|+ |Ep||V |2 + |Vp||V |) time. 2

Proof of Proposition 4.1.1

For any data graph G and graph pattern query Qp, there is a unique result Qp(G).

Proof: To show the uniqueness, assume by contradiction that there exist two distinct

results Q1
p(G) and Q2

p(G).

Consider Qp(G) = Q1
p(G)∪Q2

p(G). It is obvious that Qp(G) is larger than both

Q1
p(G) and Q2

p(G). Thus, it suffices to show that Qp(G) is a result of Qp on G. For if

it holds, it contradicts the assumption that both Q1
p(G) and Q2

p(G) are maximum.

By the semantics of graph pattern queries, one can indeed verify that the Qp(G)

satisfies the conditions (1), (2), and (3), and thus, Qp(G) should be the result of Qp on

G. Thus, we have shown that there exists a unique result. 2

Proof of Lemma 4.2.1

For two PQs Q1 and Q2, Q1 ⊑ Q2 if and only if Q1 is similar to Q2, i.e., Q2 E Q1.

Proof: (1) Assume first that Q1 ⊑ Q2. We show that Q2 E Q1 by proof by contradic-

tion.

By Q2 ̸E Q1, we can easily construct a data graph G from Q1 such that Q2(G) = /0,

while Q1(G) is not, i.e., Q2 ̸⊑ Q1.

(2) Conversely, assume that Q2 E Q1. And we next show that Q1 ⊑ Q2.

There exists a similarity relation S from Q2 to Q1 since Q2 E Q1. By the definition

of the revised simulation, it is easy to verify that there exists a mapping λ from the

Appendix B. Proofs in Chapter 3 and Chapter 4 156

edges in Q1 to the edges in Q2 based on S, and we then prove that the λ is indeed what

we need.

Consider a data graph G. For any edge e = (w1,w2) in Q1 with λ(e′) = (u1,u2) in

Q2, we have the following:

(a) for any graph node v, if vmatw1, then vmatu1 since w1 ⊢ u1, and if vmatw2, then

vmatu2 since w2 ⊢ u2; and

(b) by the semantics of PQs, for any (v1,v2) ∈ Se, we can easily show that (v1,v2) ∈
Sλ(e′), where (e,Se) ∈ Q1(G) and (λ(e′),Sλ(e′)) ∈ Q2(G), i.e., Se ⊆ Sλ(e).

From this, Q1 ⊑ Q2 immediately follows. 2

Proof of Theorem 4.2.2

Given two PQs Q1 = (V 1
p ,E

1
p) and Q2 = (V 2

p ,E
2
p), it is in cubic time to determine

whether Q1 ⊑ Q2.

Proof: Based on Lemma 4.2.1, we can readily develop an algorithm to test Q1 ⊑ Q2,

by testing whether i.e., Q2 E Q1.

(a) We first determine whether u ⊢ w for all nodes u in Q1 and all nodes w in Q2;

(b) We then determine whether e |= e′ for all edges e in Q1 and all edges e′ in Q2.

(c) After this is done, we employ the algorithm for standard graph simulations,

e.g., [HHK95], to compute the maximum relation S from Q2 to Q1.

(d) Finally, we test whether the relation S satisfies the condition (2) of the revised graph

similarity.

Both the preprocessing step and the algorithm for standard graph simulations in

[HHK95] take quadratic time. The last step can be done in cubic time as below.

For each edge e′ = (w,w′) in Q2, it finds the edges e = (u,u′) in Q1 such that

(w,u),(w′,u′) ∈ S. That is, the edges in Q1 that are covered by e′. Finally, it checks

whether all edges in Q1 are covered.

Appendix B. Proofs in Chapter 3 and Chapter 4 157

The correctness of the above algorithm is guaranteed by Lemma 4.2.1, and in total

it takes cubic time. 2

Proof of Proposition 4.2.3

Given two RQs Q1 and Q2, it is in quadratic time to check whether (a) Q1 ⊑ Q2 or (b)

whether Q1 ≡ Q2 .

Proof: Consider two RQs Q1 = (u1,u2, fu1, fu2, fe1) and Q2 = (w1,w2, fw1 , fw2, fe2),

where fu1 , fu2 , fw1 , and fw2 are satisfiable.

(1) It is easy to verify that Q1 ⊑ Q2 if and only if u1 ⊢ w1, u2 ⊢ w2, and L(fe1)⊆ L(fe2).

(2) Observe the following: (a) testing u1 ⊢ w1 can be done in O(| fu1|| fw1|) time; (b)

testing u2 ⊢ w2 can be done in O(| fu2 || fw2 |) time; and (c) testing L(fe1) ⊆ L(fe2) can

be done in linear time.

By (1) and (2), the conclusion follows easily.

(a) We first show that testing u1 ⊢ w1 can be done in O(| fu1|| fw1 |) time.

Observe that u1 ⊢ w1 if and only if each sub-formula A op a in fu1 is implied by

fw1 . There are five cases to consider, depending on the type of op.

• When op is =. It finds (i) the smallest value a< in fw1 associated with the at-

tribute A and the operator <; (ii) the smallest value a≤ in fw1 associated with the

attribute A and the operator ≤; (iii) the largest value a> in fw1 associated with

the attribute A and the operator >; and (iv) the largest value a≥ in fw1 associated

with the attribute A and the operator ≥.

If a≥ = a≤, then A op a is implied by fw1 . If not, it further checks whether A = a

appears in fw1 . If ‘yes’, then A = a is implied by fw1 .

• When op is ≤. Again, it finds the values a<, a≤, a>, a≥ and a=. A op a is

implied by fw1 iff a< ≤ a , a≤ ≤ a and a= ≤ a.

• When <, ≥, or >, it is similar.

Appendix B. Proofs in Chapter 3 and Chapter 4 158

• When op is ̸=. Again, it finds the values a<, a≤, a>, a≥ and a=. A op a is

implied by fw1 iff a< > a and a≤ > a, a> < a and a≥ < a, a= ̸= a, or A ̸= a

appears in fw1 .

It is obvious that it takes O(| fw1 |) time.

(b) Similar to (a), we can show that testing u2 ⊢ w2 can be done in O(| fu2|| fw2|) time.

(c) Finally, we show that testing L(fe1)⊆ L(fe2) can be done in linear time.

We only need to consider the following:

(i) L(ck1ck2 . . .ckn)⊆ L(ck′1ck′2 . . .ck′n), where (k1 + . . .+ kn)≤ (k′1 + . . .+ k′n);

(ii) L(ck1
1 ck2

2 . . .ckn
n)⊆ L(k′1 k′2 . . . k′n), where (k1 + . . .+ kn)≤ (k′1 + . . .+ k′n); and

(iii) the + in the regular expressions is defined as larger than any positive integer k.

By (i), (ii) and (iii), it is easy to verify that testing L(fe1) ⊆ L(fe2) can be done in

linear time.

Remark. The equivalence problem for standard regular expressions is PSPACE-

complete [JR93]. However, for the restricted regular expressions defined in Sec-

tion 3.2, their equivalence problem is much simpler – linear time. 2

Proof of Theorem 4.2.4

Given a PQ Qp, there exists an algorithm that finds a minimum equivalent PQ Qm
p in

cubic time.

To show Theorem 4.2.4, we develop an algorithm for solving the minimization

problem, which computes the minimum query Qm for any given PQ Q. The algorithm,

referred to as minPQs, is shown in Figure 4.5.

Given a PQ Q(Vp,Ep), algorithm minPQs first computes the maximum revised

graph similarity S on Q, based on which it computes the node equivalent classes EQ

based on S. It determines the edges for all equivalent pairs in EQ, and the number of

copies for all equivalent classes in EQ. After that, it constructs an equivalent query

Qm. After removing redundant edges and isolated nodes in Qm, it finally returns the

minimum equivalent query Qm.

Appendix B. Proofs in Chapter 3 and Chapter 4 159

We next explain the algorithm step by step.

Computing the maximum relation. This part computes the maximum relation by

employing a standard graph simulation algorithm. As a preprocessing step, it first

determines whether u ⊢ w for all node pairs u,w in Q, and then determines whether

e |= e′ for all edge pairs e,e′ in Q. After that, the algorithm computes the maximum

relation S by employing an algorithm for standard graph simulations, e.g., [HHK95].

Note that for this case, the relation S must satisfy the condition (2) of the revised

graph simulation.

Computing the node equivalent classes. We say that two nodes u,w in Q are sim-

ulation equivalent if and only if (u,w) ∈ S and (w,u) ∈ S, which implies u ⊢ w and

w ⊢ u.

The equivalent classes EQ is computed based on the relation S such that two nodes

u,w in Q belong to the same equivalent class in EQ if and only if they are simulation

equivalent.

Determining the edges for equivalent class pairs. For any two equivalent classes eq1

and eq2 in EQ, let E(eq1,eq2) be the set of edges from the nodes in eq1 to the nodes in

eq2, i.e., E(eq1,eq2) = {e | e = (u,w) ∈ Ep such that u ∈ eq1 and w ∈ eq2}.

An edge e is redundant in E(eq1,eq2) if (1) there exists another edge e′ in

E(eq1,eq2) such that L(e) = L(e′), or (2) there exist two other edges e1 and e2 in

E(eq1,eq2) such that L(e1)≤ L(e)≤ L(e2). For each E(eq1,eq2), redundant edges are

removed.

Note that the edges in E(eq1,eq2) form a partial order based on the expressiveness

of the restricted regular expressions attached on the edges.

Determining the number of copies for equivalent classes. The number N(eq) of the

copies for each equivalent eq is determined by the maximum number of non-redundant

edges in E(eq′,eq) for all eq′ ∈ EQ, where eq′ could be eq.

Constructing an equivalent query. The equivalent query Qm(V m
p ,Em

p , f m
v , f m

e) is con-

structed as below.

(1) For each eq in EQ, include in V m
p a set C(eq) = {eq1, . . . ,eqN(eq)} of N(eq) nodes.

For all nodes u in C(eq) (eq ∈ EQ), let f m
v (u) = fv(w), where w is any node in eq.

(2) Let E(eq1,eq2) be the set of non-redundant edges from eq1 to eq2 in EQ. For each

Appendix B. Proofs in Chapter 3 and Chapter 4 160

eqi
1 (i ∈ [1,N(eq1)]) in C(eq1), randomly choose |E(eq1,eq2)| nodes from C(eq2), and

include in Em
p a set of |E(eq′,eq)| edges from eqi

1 to those nodes. For each new edge

enew, randomly choose a distinct edge e in E(eq′,eq), and let f m
e (enew) = fe(e).

Removing redundant edges in Qm. We first re-compute the maximum revised graph

simulation relation S′ on Qm.

We say that an edge e = (u,u′) in Qm is redundant if there exist two edges

e1 = (u1,u′1) and e2 = (u2,u′2) in Qm such that (u,u1) ∈ S′, (u2,u) ∈ S′, (u′,u′1) ∈ S′,

(u′2,u
′) ∈ S′, e1 |= e, and e |= e2.

All redundant edges in Qm are removed at this step.

Removing isolated nodes in Qm. We say that a node u in Qm is isolated if there are no

edges starting from or ending with the node u in Qm.

All isolated nodes in Qm are removed at this step.

To show Theorem 4.2.4, we show that the algorithm minPQs shown in Fig. 4.5 is

indeed the algorithm that we want.

Correctness. We show the correctness of algorithm minPQs by showing that Qm ≡ Q

and Qm is the smallest one in size.

(I) We first show that Qm ≡ Q, by proving that the operations in the algorithm preserve

the query equivalence. The first four steps in minPQs does not make any changes to

Q. Consider the query Qm at step 5, we show that Qm ≡ Q, by showing that Qm E Q

and Q E Qm. Indeed, the construction of Qm merges all nodes in the same equivalent

class into one, where removing redundant edges which does not affect the equivalence

relation.

Similarly, Qm E Q and Q E Qm from step 6 to 8. The removing of redundant edges

and isolated nodes preserves the relation that Qm E Q and Q E Qm. These can be

readily verified by the definition of graph pattern queries.

(II) We then show that Qm is the smallest one in size by proof by contradiction. Con-

sider a PQ Q = (Vp,Ep) and the equivalent query Qm returned by algorithm minPQs.

Assume that there exists a PQ Q′ such that Q′ ≡ Qm and |Q′| < |Qm|. We also

assume without loss of generality that given Q′, algorithm minPQs outputs Q′. Other-

wise, if algorithm minPQs outputs a smaller size one, we would use the smaller one,

instead of Q′. We next show that |Q′| = |Qm|, a contradiction to our assumption.

Appendix B. Proofs in Chapter 3 and Chapter 4 161

Let EQm and EQ′ be the equivalent classes for Qm and Q′, computed by algorithm

minPQs at step 2.

We show the following: (1) |EQm| = |EQ′| by showing that there exists a bijective

mapping f from EQm to EQ′; and (2) for each pair of equivalent classes eq1 and eq2

in EQm, |Em(eq1,eq2)| = |E ′(f (eq1), f (eq2))|, where Em(eq1,eq2) is the set of edges

from the nodes in eq1 to the nodes in eq2 in Qm, and E ′(f (eq1), f (eq2)) is the set of

edges from the nodes in f (eq1) to the nodes in f (eq2) in Q′.

From (1) and (2), it follows that |Qm| = |Q′|.

(1) We first show that |EQm| = |EQ′|.

Since Qm ≡ Q′, we have Qm E Q′ and Q′ E Qm by Lemma 4.2.1. Let S(Qm,Q′)

and S(Q′,Qm) be the maximum revised graph simulation relations for Qm E Q′ and

Q′ E Qm, respectively.

The mapping f ⊆ EQm×EQ′ is defined as follows: (eq,eq′)∈ f if and only if there

exist u ∈ eq and u′ ∈ eq′ such that (u,u′) ∈ S(Qm,Q′) and (u′,u) ∈ S(Q′,Qm).

(a) We first show that the mapping f is a function from EQm to EQ′. Assume to the

contrary that there is an equivalent class eq in EQm and two equivalent classes eq′1 and

eq′2 in EQ′ such that (eq,eq′1) ∈ f and (eq,eq′2) ∈ f . We show that eq′1 = eq′2.

• (eq,eq′1) ∈ f implies that there exist u1 ∈ eq and w1 ∈ eq′1 such that (u1,w1) ∈
S(Qm,Q′) and (w1,u1) ∈ S(Q′,Qm).

• (eq,eq′2) ∈ f implies that there exist u2 ∈ eq and w2 ∈ eq′2 such that (u2,w2) ∈
S(Qm,Q′) and (w2,u2) ∈ S(Q′,Qm).

• u1,u2 ∈ eq implies that (u2,w1) ∈ S(Qm,Q′) and (u1,w2) ∈ S(Qm,Q′).

• (w1,u1) ∈ S(Q′,Qm) and (u1,w2) ∈ S(Qm,Q′) imply that w1 ⊢ w2.

• (w2,u2) ∈ S(Q′,Qm) and (u2,w2) ∈ S(Qm,Q′) imply that w2 ⊢ w1.

From the above, we have eq′1 = eq′2 since w1 and w2 are simulation equivalent.

(b) We then show that the mapping f is a total function, i.e., for each eq ∈ EQm, there

exists an eq′ ∈ EQ′ such that (eq,eq′) ∈ f .

Consider an edge e = (u,u′) in Qm. From the condition (2) of the revised graph

simulation, we have the following.

Appendix B. Proofs in Chapter 3 and Chapter 4 162

• There exist two edges e′1 = (w1,w2) and e′2 = (w3,w4) in Q′ such that (a)

(u,w1),(u′,w2)∈ S(Qm,Q′), e′1 |= e, and (b) (w3,u),(w4,u′)∈ S(Q′,Qm), e |= e′2
since Qm ≡ Q′.

• For e′1 = (w1,w2), there exist two edges e1 = (x1,x2) and e2 = (x3,x4) in Qm such

that (x1,w1),(x2,w2) ∈ S(Qm,Q′), e1 |= e′1, and (x3,w1),(w2,x4) ∈ S(Q′,Qm),

e′1 |= e2 since Q′ ≡ Qm.

• For e′2 = (w3,w4), there exist two edges e3 = (y1,y2) and e4 = (y3,y4) in Qm such

that (w3,y1),(w4,y2) ∈ S(Qm,Q′), e3 |= e′2, and (y3,w3),(y4,w4) ∈ S(Q′,Qm),

e′2 |= e4 since Q′ ≡ Qm.

From above, we can derive the following.

• (u,x1), (y3,u), (u′,x2), (y4,u′) ∈ S(Qm,Q′).

• e1 |= e and e |= e4.

From the step (6) of algorithm minPQs, we know that e is a redundant edge in Qm.

Thus, we have shown that for each eq in EQm, there exists an eq′ in EQ′ such that f (eq)

= eq′, and, therefore, the f is a total function.

(c) We finally show that the mapping f is surjective. This is easy by proving that f− is

total, by a similar argument as (b).

(2) We show that for each pair of equivalent classes eq1 and eq2 in EQm, |Em(eq1,eq2)|
= |E ′(f (eq1), f (eq2))|, where Em(eq1,eq2) is the set of edges from the nodes in eq1 to

the nodes in eq2 in Qm, and E ′(f (eq1), f (eq2)) is the set of edges from the nodes in

f (eq1) to the nodes in f (eq2) in Q′.

Consider a pair (eq1,eq2) in EQm. By a similar argument as case (b) above, we

can show that there exists a bijective mapping g from the edges in Em(eq1,eq2) to the

edges in E ′(f (eq1), f (eq2)) such that L(e) = L(g(e)) for each edge in Em(eq1,eq2).

Remark. The proof is inspired by the proof for minimizing Kripke structures based on

graph simulations in [BG03]. And it is shown that all minimum Kripke structures are

isomorphic.

For graph pattern queries, however, two minimum queries may not be isomorphic,

though they have the same size. Fig. 4.4 shows such an example, where both Q2 and

Appendix B. Proofs in Chapter 3 and Chapter 4 163

Q3 are the minimum queries of Q1 with the same size, but they are not isomorphic.

This makes the techniques used in this proof different from the one in the proof of

[BG03].

Complexity. We then show that algorithm minPQs indeed runs in cubic time.

• (1) step 1 can be done in cubic time, using a revised simulation preorder algo-

rithm in [HHK95].

• (2) step 2 can be done in quadratic time [BG03].

• (3) step 3 can be done in cubic time.

• (4) step 4 can be done in linear time.

• (5) step 5 can be done in linear time.

• (6) step 6 can be done in cubic time.

• (7) step 7 can be done in linear time.

Correctness and Complexity of Match

We show the correctness and complexity analysis for the algorithm Match as follows.

Correctness. The algorithm returns Q(G). (1) It always terminates. Indeed, for each

node u in P, mat(u) decreases monotonically. (2) One can verify that after the for
loop (lines 4-12), each x that remains in mat(u) is a match of u. (3) The match of

ret(Q) returns all results because (a) Match starts with all possible match candidates

for ret(Q); and (b) the loop only drops those nodes that cannot match ret(Q).

Complexity. We analyze based on the case that the distance matrix is used. The

algorithm consists of two phases: pre-processing (lines 1-5) and match computation

(lines 6-16). One can verify that these phases take O((m+ 1)|V |2 + |V |(|V |+ |E|)+
|V ||V ′

p|+(|V ′
p|+ |E ′

p|)), and O(|E ′
p||V |2), respectively. Recall that m is the number of

distinct edge colors, typically a small number in real applications. Taking both phases

together, the algorithm is in O(|V ||E|+ |E ′
p||V |2) time. Notably, |E ′

p| and |V ′
p| are

bounded by O(m|Ep|) and O(Vp +(m−1)|Ep|), respectively.

Appendix B. Proofs in Chapter 3 and Chapter 4 164

Remark. Observe the following. (1) The distance matrix can be computed in O((m+

1)|V |2 + |V |(|V |+ |E|)) time (line 2). The initilization of mat(u) is in O(|V ||V ′
p|) The

normalization and SCC graph are both bounded by O(|V ′
p|+ |E ′

p|). (2) Clearly, if Qp is

a DAG, the loop takes a single bottom-up sweep for each node in Qp, which naturally

takes O(|E ′
p||V |2) time. Otherwise, an auxiliary structure is maintained for each node,

recording its descendants removed from possible matches, to avoid redundant check in

the iterations of the loop (lines 7-14). In this way, the loop is bounded by O(|E ′
p||V |2)

for PQs that are general graphs.

Correctness and Complexity of SplitMatch

We show the correctness and complexity analysis for the algorithm Match as follows.

Correctness. We show the following. (1) Partition-relation pair <par, rel> over

approximates S if for any edge e = (u′,u) ∈ Eq with fe(e) = ck, rel(B(u′)) ⊆
∪prev(e, rel(B(u))), where prev() presents the set of nodes in G with path length to

nodes in rel(B(u)) no larger than the bound k, and all edge e in the path satisfies

fC(e) = c. In other words, SplitMatch maintains the invariant, that all matches of u is

a subset of the union of the blocks in rel(B(u)). (2) The induced relation S′ is S when

SplitMatch terminates. One can verify this by induction on the iteration of the while
loop (lines 6-12).

Complexity. The below analysis is based on using the distance matrix. The algorithm

consists of three phases: pre-processing (lines 1-7), match computation (lines 8-14),

and result collection (lines 15-18), in time O((m+1)|V |2 + |V |(|V |+ |E|)+ |V ′
p||V |+

|E ′
p||V |2), O(|parout ||V |2) and O(|E ′

p||V |2)), respectively. To sum up, SplitMatch runs

in O(|parout ||V |2), where |parout | is bounded by O(|V ||V ′
p|) and |V ′

p| ≪ |V |.

Remark. In the above analysis, parout represents the finally refined par, which is

bounded by O(|V ||V ′
p|). A closer observation of the complexity of SplitMatch tells

that |parout | is between |V ′
p| and |V ′

p||V |, i.e., the algorithm is in O(|V ′
p||V |3) time.

However, suppose a block B(u) is split (line 8) into B1 (contains u) and B2 (without

u). It is unnecessary to find matches for B2. Thus, one can verify that SplitMatch has a

comparable worst case complexity to |E ′
p||V 2|, if measured with input size. Moreover,

the same auxiliary structure used in algorithm Match is adopted here, to ensure that

the loop (lines 6-14) runs in O(|parout ||V |2), for a cyclic query.

Appendix B. Proofs in Chapter 3 and Chapter 4 165

In particular, we explain the second phase as follows. We denote the initial par

at line 6 as parin, and the final refined par as parout . For match computation process

(lines 8-14), observe that (1) at each iteration i, each pari is a refinement of pari−1 at

iteration i−1, (2) rmv(e)i and rmv(e)i−1 are disjoint, and (3) the total number of newly

generated blocks at line 10 is 2(|parout |− |parin|). From these observations, the overall

time complexity of the code at line 10 is O(|Ep||parout |). The time complexity for the

inner for loop at line 11 is O(|parout ||V |2), with the maintenance of a 2-D matrix along

the same line in Algorithm Match for each edge e(u′,u) ∈ Ep and mat(u′). The split

procedure is in O(|V |) time, thus the total time at line 8 is O(|parout ||V |). Putting these

together, the total time in the second phase (lines 8-14) is in O(|parout ||V |2).

Appendix C

Proofs in Chapter 5

Proof Sketch of Theorem 5.2.1

We prove Theorem 5.2.1 by showing that (1) Algorithm IncBMatchm is correct, and

that (2) it indeed runs in O(|AFF1| |AFF2|2) time.

(1) Correctness. We first show that IncBMatchm correctly maintains the match S, by

proving that the result of IncBMatchm upon δ, denoted as Sinc, is the same as Sr, which

is the final result of applying |δ| times of Match+dag (Match−) w.r.t. each of the single

edge insertion (deletion) update in δ. Observe that the correctness of IncBMatchm

relies on the correctness of Match+dag and Match− (to be shown in Lemmas 5.3.2 and

5.3.3, respectively). As the correctness of Match+dag and Match− is guaranteed, the

correctness of IncBMatchm follows.

Denote by G j the modified graph applying δ, and Sinc j (resp. Sr j) the match from

IncBMatchm (resp. applying Match+dag and Match− j times) . The correctness of

IncBMatchm can be shown by induction on the size of δ.

(1) IncBMatchm works exactly as Match+dag or Match− when δ contains a single up-

date; thus the correctness holds for |δ| = 1, i.e., Sinc1 = Sr1 .

(2) Suppose IncBMatchm is correct when |δ| = j. We next show Sr j+1 = Sinc j+1 where

|δ| = j+1.

Let δ1 ⊆ δ with size j, and an arbitrary single update δ j+1 = δ \ δ1. Let Sinc′j+1

= IncBMatchm(P,G j,δ j+1,Sinc j). We show that Sinc j+1 = Sinc′j+1
. Indeed, if there is

166

Appendix C. Proofs in Chapter 5 167

T

S0

∗

Tv1
. . . Tvm T

S0

Tn1

. . .

Tnk

Vr Vn

P G

Figure C.1: Reduction from Reachability

(u,v) ∈ Sinc j+1 and (u,v) ̸∈ Sinc′j+1
, then there must exist a pair (v,v′) of nodes in G

such that the distance of which is and is not affected by δ; this leads to a contradiction.

Thus Sinc j+1 ⊆ Sinc′j+1
. Similarly, Sinc′j+1

⊆ Sinc j+1 . Thus Sinc j+1 = Sinc′j+1
.

From the assumption and (1), the correctness of IncBMatchm holds for S j, thus

Sinc′j+1
= IncBMatchm(P,G j,δ j+1,Sinc j) = IncBMatchm(P,G j,δ j+1,Sr j). This is equiv-

alent to the result from Match+dag(P,G j,δ j+1,S j) if δ j+1 is an edge insertion, or

Match−(P,G j,δ j+1,S j) if δ j+1 is an edge deletion. In either case, Sinc j+1 = Sr j+1 holds.

Putting these together, we have shown that Sinc j+1 = Sr j+1 holds. Thus Sinc = Sr

holds for δ with any size.

(2) Complexity. The algorithm works in two phases: updating M and finding AFF1;

and updating S with AFF1.

The algorithm uses procedure UpdateBM, which is in O(||AFF1|| log||AFF1||)
time. IncBMatchm uses either Match+dag or Match− to update S. As Match+dag

and Match− are both bounded by O(|AFF1| |AFF2|2) (to be shown in Lemmas 5.3.2

and 5.3.3, respectively), IncBMatchm is also bounded by O(|AFF1| |AFF2|2) at this

phase. The total time of IncBMatchm is thus bounded by O(||AFF1|| log||AFF1|| +
|AFF1| |AFF2|2), which is further bounded by O(|AFF1| |AFF2|2). 2

Proof of Proposition 5.2.1(1)

We show that IGPM is unbounded by reduction from the problem of incremental

single-source reachability (ISSR) [RR96b]. Given a directed graph G0(V0,E0), a dis-

tinguished node s0 ∈ V , and a set of updates δ1, ISSR incrementally maintains Vr

(resp. Vn) as the set of nodes that are reachable (resp. not reachable) from s0. It is

Appendix C. Proofs in Chapter 5 168

known that ISSR is unbounded w.r.t. LPA, the class of locally persistent algorithms

used in a complexity hierarchy for incremental graph problems [RR96b]. Given an

I(G0,s0,δ) of ISSR, we construct an instance of IGPM in linear-time, such that the

former has a solution iff the latter has one.

(1) Given I(G0(V0,E0),s0,δ1), we construct (a) a pattern P = (Vp,Ep,Ap,Cp), where

Vp = {T,s0}, Ep = {(T,s0)}, fe(s0,T) = ∗, such that fv(u) = u for u ∈ Vp, and (b) a

data graph G = (Vg,Eg,Ag), where Vg = V0 ∪{T}, Eg = ER
0 ∪{(T,s0)}, and ER

0 is the

reversed edge set of E0. Let fA(s0) = s0, and fA(v) = T for all other v in Vg. The

reduction, shown in Fig. C.1, is in time linear in size of I(G0,s0).

Observe that P E G, with a maximum match S = {(s0,s0),(T,T),(T, ti)} for ti ∈Vr.

Hence S corresponds to a solution of ISSR, and vice versa.

(2) We encode update δ1 to G0 as an update δ2 to G, i.e., if edge (s, t) is to be deleted

from or inserted into G0, edge (t,s) is deleted from or added to G correspondingly. As

E0 ⊆ Eg, |δ2| = |δ1|.

Given updates δ2, we next show that how the changes to S of IGPM, denoted as

δIGPM, can be transformed to the changes to Vr and Vn for ISSR, denoted as δISSR.

Suppose that (T, t) is to be removed from R. If t is T ∈ Vg, neither Vr nor Vn

is changed. If t ∈ V0, then for (T, t), there is no descendant t ′ of t in G such that

(t ′,s0) ∈ S. Since the only possible node in G that can match s0 is the original node

s0 ∈V0, t cannot reach s0, i.e., s0 cannot reach t in G0, and t is to be moved from Vr to

Vn accordingly.

Similarly, if (T, t) is to be added to R, then s0 in G must be reachable from t, i.e.,

s0 ∈ G0 can reach t. Thus t will be moved from Vn to Vr.

Therefore, δIGPM can be transformed into δISSR, with size bounded by |δISSR|+1.

That is, the construction above is indeed a reduction from ISSR to IGPM. As ISSR is

known to be unbounded w.r.t.LPA [RR96b], so is IGPM. 2

Appendix C. Proofs in Chapter 5 169

Proof Sketch of Lemma 5.3.2

We prove Lemma 5.3.2 by showing Algorithm Match− correctly finds the maximum

match if it exists, and (2) it has the complexity bound stated Lemma 5.3.2.

(1) Correctness. We first show the correctness of Match−. Let S− be the match re-

turned by Match−, and Sr the match returned by the batch algorithm Match on G⊕δ.

We show that AFF2 = S\Sr by showing AFF2 ⊆ S\Sr and S\Sr ⊆AFF2. Since S− ⊆ S,

and AFF2 = S\S−, we have Sr = S−.

The computation of AFF2 is based on the following. (1) The distance of a pair

(v′,v) in AFF1 can only be increased by the deletion. Hence, given (v′,v) ∈ AFF1 with

increased distance, if v′ ∈ mat(u′) and v ∈ mat(u) for a pattern edge (u′,u) before

the deletion, then (v′,u′) can be removed from S if (a) the distance from v′ to v in

the updated M is larger than fe(u′,u), and (b) v′ has no descendant vs other than v

in the updated G such that vs can match pattern node u (lines 2-4). (2) After (u′,v′)

is removed, a match (u′′,v′′) in S is affected if (a) u′′ is a parent of u′ and v′′ is an

ancestor of v′, and (b) v′′ has no descendant other than v′ that can be a match of u′.

Using the same method as above (lines 9-12), Match− checks whether (u′′,v′′) should

be removed from S.

(2) Complexity. Match− consists of three phases: (i) updating M and computing

AFF1(line 1), (ii) updating matches affected by AFF1 (lines 2-12), and (iii) collect-

ing the match result (lines 13-14).

(i) Match− uses UpdateM to identify AFF1 and update M, which is bounded by

O(|AFF1| |AFF2|2).

(ii) Match− finds and updates the affected matches with updated M and AFF1 (lines 2-

12). The total time for (ii) is O(|AFF1|+ |AFF1| |AFF2|+ |AFF1| |AFF2|2), which is

bounded by O(|AFF1| |AFF2|2).

(iii) The time to check and return updated S is bounded by the size of affected matches,

thus by O(|AFF2|).

Combining (i), (ii) and (iii), the total time of Match− is bounded by O(||AFF1||2+
|AFF1| log|AFF1|+ |AFF1| |AFF2|2), which is further bounded by O(|AFF1| |AFF2|2).

2

Appendix C. Proofs in Chapter 5 170

Proof Sketch of Lemma 5.3.3

We prove Lemma 5.3.3 by showing Algorithm Match+dag correctly finds the maximum

match if it exists, and (2) it has the complexity bound stated Lemma 5.3.3.

(1) Correctness. Let S+ be the match returned by Match+dag, and Sr be the match

returned by Match on G⊕δ. As S ⊆ S+, we show that AFF2 = Sr \S by showing that

AFF2 ⊆ Sr \S and Sr \S ⊆ AFF2.

The computation of AFF2 is based on the following. As P is a DAG, a new match

(u′,v′) ∈ AFF2 can only be produced by either (1) s ∈ can(u′), t ∈mat(u) for a pattern

edge (u′,u) before an edge insertion, and (s, t)∈AFF1 with decreased distance making

s match u′ (line 4 of Match+dag), or (2) v′ matches u′ since all children of u′ find matches

in descendants of v′ produced in (1) or (2).

(2) Complexity. Match+dag works in the following three phases. (1) Match+dag updates

M and finds AFF1 within time bounded by O(|AFF1||AFF2|2) (line 1), as remarked

earlier. (2) Match+dag then identifies all the matches directly affected by AFF1 (lines 2-

3), in time O(|AFF1| |AFF2|2), as for each pair (u′,v′), Match+dag checks the nodes in G

within 2 hops from v′ to determine whether v′ can match u′. (3) It further takes in total

O(|AFF1| |AFF2|2) time to determine whether a pair (u′′,v′′) is a match due to newly

added matches. Thus, the total time of Match+dag is bounded by O(|AFF1| |AFF2|2).

Details for Implementation

Next, we first describe the details for generating graph patterns. We then give some

explanation about 2-hop labeling, which was used in our experimental study to improve

the algorithm Match.

More about pattern generator. Recall that a pattern generator takes 4 parameters for

generating a pattern P = (Vp,Ep): the number of nodes |Vp|, the number of edges

|Ep|, an upper bound k for pattern edges, and a data graph G. The generator was

designed towards producing positive patterns, i.e., the graph G matches the pattern P.

The generation process is as follows:

(1) For i ∈ [1, |Vp|], we iteratively generate pattern node vi in iteration i. If i = 1, we

Appendix C. Proofs in Chapter 5 171

randomly pick one graph node x1 ∈V , and generate v1 based on x1 such that x1 satisfies

v1. When i > 1, we select one pattern node v j where j < i as a base node. Note that we

record a graph node x j for each pattern node v j. Based on x j, we traverse on graph G

within k′ hops to reach another graph node xi ̸= x j. Here, k− c ≤ k′ ≤ k+ c where c is

a small constant, in order to assign various bounds on pattern edges. When xi is found,

a pattern node vi is generated upon xi, and a pattern edge will be generated from v j to

vi, with the bound k′. Alternatively, the symbol ∗ could be assigned for edge (v j,vi),

meaning unbounded.

(2) In the process above, if each edge is bounded, we assure that current pattern with

|Vp| nodes and |Vp|−1 edges is a positive pattern, i.e., a pattern that will be matched by

G. Then, for i ∈ [1, |Ep|− |Vp|+1], we randomly pick two pattern nodes and generate

an edge between them, until the number of pattern edges reaches |Ep|. The edge bound

is assigned similarly to that in (1). Notably, in this process, we do not guarantee the

positiveness of the generated pattern.

2-hop labeling. In our experimental study we evaluated two versions of Match. The

first one built a distance matrix for a data graph G, as described in Section 4.4. The

matrix was used to find the distance between any two graph nodes in constant time.

Alternatively, we generated 2-hop encodes for graph G, used as a filter for finding

distance between two graph nodes x,y. It works as follows, if via the labels L(x) of x

and L(y) of y, we know that node x can reach y, a breath first search will be invoked to

compute the exact distance from x to y.

The basic idea behind 2-hop labeling is as follows. Given a graph G = (V,E), a 2-

hop reachability labeling [CHKZ03] over G is a set of labels L(v) for each node v ∈V ,

where L(v) = (Lin(v),Lout(v)) with Lin(v),Lout(v) ⊆ V . To answer whether a node u

reaches a node v, it suffices to check Lout(u) and Lin(v). The node u reaches v iff the

intersection of Lout(u) and Lin(v) is not empty. We leverage the approach proposed

in [CYL+08] for computing 2-hop encodes over G.

Appendix D

Visualization of real life dataset

172

Appendix D. Visualization of real life dataset 173

Figure D.1: Terrorist Collaboration Network over the last 40 years. The network con-

tains 215 nodes and 315 edges. Each node represents a distinct terrorist organization,

where edges between nodes denote collaboration relation. The figure is generated with

Gephi [Gep].

Appendix D. Visualization of real life dataset 174

Figure D.2: Youtube Network (part). The network consists of 3528 nodes and 19649

edges. Each node represents a video, where edges between nodes represent the

recommendation relation. The nodes with same color belong to the same group. The

figure is generated with Gephi [Gep].

Bibliography

[ABJ89] Rakesh Agrawal, Alexander Borgida, and H. V. Jagadish. Efficient management

of transitive relationships in large data and knowledge bases. In SIGMOD, 1989.

[ABS00] Serge Abiteboul, Peter Buneman, and Dan Suciu. Data on the Web. From Rela-

tions to Semistructured Data and XML. Morgan Kaufman, 2000.

[AC05] Manu Aery and Sharma Chakravarthy. eMailSift: Email classification based on

structure and content. In ICDM, 2005.

[AHV95] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases.

Addison-Wesley, 1995.

[AMR+98] Serge Abiteboul, Jason McHugh, Michael Rys, Vasilis Vassalos, and Janet L.

Wiener. Incremental maintenance for materialized views over semistructured

data. In VLDB, 1998.

[AQM+97] Serge Abiteboul, Dallan Quass, Jason McHugh, Jennifer Widom, and Janet L.

Wiener. The lorel query language for semistructured data. Int. J. on Digital

Libraries, 1(1):68–88, 1997.

[AYBB07] Sihem Amer-Yahia, Michael Benedikt, and Philip Bohannon. Challenges in

searching online communities. IEEE Data Eng. Bull., 30(2):23–31, 2007.

[BB99] Krishna Bharat and Andrei Broder. Mirror, mirror on the Web: a study of host

pairs with replicated content. Comput. Netw., 31(11-16), 1999.

[BBDH00] Krishna Bharat, Andrei Broder, Jeffrey Dean, and Monika R. Henzinger. A com-

parison of techniques to find mirrored hosts on the WWW. J. Am. Soc. Inf. Sci.,

51(12), 2000.

[BFS00] Peter Buneman, Mary F. Fernandez, and Dan Suciu. Unql: A query language and

algebra for semistructured data based on structural recursion. VLDB J., 9(1):76–

110, 2000.

175

Bibliography 176

[BG03] Doron Bustan and Orna Grumberg. Simulation-based minimization. TOCL,

4(2):181–206, 2003.

[BGH+04] Vincent D. Blondel, Anahı́ Gajardo, Maureen Heymans, Pierre Senellart, and

Paul Van Dooren. A measure of similarity between graph vertices: Applications

to synonym extraction and web searching. SIAM Rev., 46(4):647–666, 2004.

[BGMZ97] Andrei Z. Broder, Steven C. Glassman, Mark S. Manasse, and Geoffrey Zweig.

Syntactic clustering of the Web. Comput. Netw. ISDN Syst., 29(8-13), 1997.

[BH92] Ravi B. Boppana and Magnús M. Halldórsson. Approximating maximum inde-

pendent sets by excluding subgraphs. BIT, 32(2), 1992.

[BHK+10] Joel Brynielsson, Johanna Högberg, Lisa Kaati, Christian Martenson, and Pontus

Svenson. Detecting social positions using simulation. In ASONAM, 2010.

[BHLW10] Pablo Barceló, Carlos A. Hurtado, Leonid Libkin, and Peter T. Wood. Expressive

languages for path queries over graph-structured data. In PODS, 2010.

[BHS08] Michael J. Brzozowski, Tad Hogg, and Gábor Szabó. Friends and foes: ideologi-

cal social networking. In CHI, 2008.

[BJG08] Jrgen Bang-Jensen and Gregory Z. Gutin. Digraphs: Theory, Algorithms and

Applications. Springer, 2008.

[BKS02] Nicolas Bruno, Nick Koudas, and Divesh Srivastava. Holistic twig joins: optimal

XML pattern matching. In SIGMOD, 2002.

[BS06] C. Batini and M. Scannapieco. Data Quality: Concepts, Methodologies and Tech-

niques. Springer, 2006.

[Bun97] Horst Bunke. On a relation between graph edit distance and maximum common

subgraph. Pattern Recognition Letters, 18(8), 1997.

[Bun00] Horst Bunke. Graph matching: Theoretical foundations, algorithms, and applica-

tions. Vision Interface, 3, 2000.

[CC08] Ding Chen and Chee Yong Chan. Minimization of tree pattern queries with con-

straints. In SIGMOD, 2008.

[cdk] Chemistry development kit (cdk). http://sourceforge.net/projects/cdk/.

[CFSV01] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento. An improved algorithm for

matching large graphs. In IAPR TC-15 Workshop on Graph-based Representa-

tions in Pattern Recognition, 2001.

Bibliography 177

[CFSV04] Donatello Conte, Pasquale Foggia, Carlo Sansone, and Mario Vento. Thirty years

of graph matching in pattern recognition. IJPRAI, 18(3), 2004.

[CGK05] Li Chen, Amarnath Gupta, and M. Erdem Kurul. Stack-based algorithms for

pattern matching on dags. In VLDB, 2005.

[CGM00] Junghoo Cho and Hector Garcia-Molina. The evolution of the Web and implica-

tions for an incremental crawler. In VLDB, 2000.

[CHKZ03] Edith Cohen, Eran Halperin, Haim Kaplan, and Uri Zwick. Reachability and

distance queries via 2-hop labels. SICOMP, 32(5):1338–1355, 2003.

[Chv79] V. Chvatal. A greedy heuristic for the set-covering problem. Mathematics of

Operations Research, 4(3), 1979.

[CL07] Edward P. Chan and Heechul Lim. Optimization and evaluation of shortest path

queries. VLDB J., 16(3):343 – 369, 2007.

[CLRS01] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.

Introduction to Algorithms. The MIT Press, 2001.

[CSGM00] Junghoo Cho, Narayanan Shivakumar, and Hector Garcia-Molina. Finding repli-

cated Web collections. SIGMOD Rec., 29(2), 2000.

[CSZY09] Zaiben Chen, Heng Tao Shen, Xiaofang Zhou, and Jeffrey Xu Yu. Monitoring

path nearest neighbor in road networks. In SIGMOD, 2009.

[CYD+08] Jiefeng Cheng, Jeffrey Xu Yu, Bolin Ding, Philip S. Yu, and Haixun Wang. Fast

graph pattern matching. In ICDE, 2008.

[CYL+08] Jiefeng Cheng, Jeffrey Xu Yu, Xuemin Lin, Haixun Wang, and Philip S. Yu. Fast

computing reachability labelings for large graphs with high compression rate. In

EDBT, 2008.

[EIV07] Ahmed K. Elmagarmid, Panagiotis G. Ipeirotis, and Vassilios S. Verykios. Du-

plicate record detection: A survey. TKDE, 19(1), 2007.

[FB08] Wenfei Fan and Philip Bohannon. Information preserving XML schema embed-

ding. TODS, 33(1), 2008.

[FLM+10a] Wenfei Fan, Jianzhong Li, Shuai Ma, Tang Nan, Yinghui Wu, and Yunpeng Wu.

Graph pattern matching: From intractable to polynomial time. PVLDB, 3, 2010.

Bibliography 178

[FLM+10b] Wenfei Fan, Jianzhong Li, Shuai Ma, Nan Tang, Yinghui Wu, and Yunpeng Wu.

Graph pattern matching: From intractability to polynomial time. In PVLDB,

2010.

[FLM+10c] Wenfei Fan, Jianzhong Li, Shuai Ma, Hongzhi Wang, and Yinghui Wu. Graph

homomorphism revisited for graph matching. In PVLDB, 2010.

[FLM+11] Wenfei Fan, Jianzhong Li, Shuai Ma, Nan Tang, and Yinghui Wu. Adding regular

expressions to graph reachability and pattern queries. In ICDE, 2011.

[FLS98] Daniela Florescu, Alon Y. Levy, and Dan Suciu. Query containment for conjunc-

tive queries with regular expressions. In PODS, 1998.

[Fri] Friendfeed. http://friendfeed.com/.

[FSV01] P. Foggia, C. Sansone, and M. Vento. A performance comparison of five algo-

rithms for graph isomorphism. In IAPR TC-15 Workshop on Graph-based Rep-

resentations in Pattern Recognition, 2001.

[ful] Full version. http://homepages.inf.ed.ac.uk/sma1/gpq-full.pdf.

[Gal06] Brian Gallagher. Matching structure and semantics: A survey on graph-based

pattern matching. AAAI FS., 2006.

[Gep] Gephi. http://gephi.org/.

[GGCM09] Sanchit Garg, Trinabh Gupta, Niklas Carlsson, and Anirban Mahanti. Evolution

of an online social aggregation network: an empirical study. In IMC, 2009.

[GJ79] Michael Garey and David Johnson. Computers and Intractability: A Guide to the

Theory of NP-Completeness. W. H. Freeman and Company, 1979.

[GM00] A. Gupta and I. Mumick. Materialized Views. MIT Press, 2000.

[GPP03] R. Gentilini, C. Piazza, and A. Policriti. From bisimulation to simulation: coarsest

partition problems. J. Autom. Reasoning, 31(1):73–103, 2003.

[Hal00] Magnús M. Halldórsson. Approximations of weighted independent set and hered-

itary subset problems. J. Graph Algorithms Appl., 4(1), 2000.

[HHK95] M. R. Henzinger, T. Henzinger, and P. Kopke. Computing simulations on finite

and infinite graphs. In FOCS, 1995.

[JHW+10] Ruoming Jin, Hui Hong, Haixun Wang, Ning Ruan, and Yang Xiang. Computing

label-constraint reachability in graph databases. In SIGMOD, 2010.

Bibliography 179

[Jos03] Sachindra Joshi et al. A bag of paths model for measuring structural similarity in

Web documents. In KDD, 2003.

[JR93] Tao Jiang and Bala Ravikumar. Minimal NFA Problems are Hard. SICOMP,

22(6):1117–1141, 1993.

[JW02] Glen Jeh and Jennifer Widom. Simrank: a measure of structural-context similar-

ity. In KDD, 2002.

[JXRF09] Ruoming Jin, Yang Xiang, Ning Ruan, and David Fuhry. 3-hop: a high-

compression indexing scheme for reachability query. In SIGMOD, 2009.

[JXRW08] Ruoming Jin, Yang Xiang, Ning Ruan, and Haixun Wang. Efficiently answering

reachability queries on very large directed graphs. In SIGMOD, 2008.

[Kan92] Viggo Kann. On the approximability of the maximum common subgraph prob-

lem. In STACS, 1992.

[KKR+99] Jon M. Kleinberg, Ravi Kumar, Prabhakar Raghavan, Sridhar Rajagopalan, and

Andrew Tomkins. The Web as a graph: Measurements, models, and methods. In

COCOON, 1999.

[KNT06] Ravi Kumar, Jasmine Novak, and Andrew Tomkins. Structure and evolution of

online social networks. In KDD, 2006.

[Kre01] Valdis Krebs. Mapping networks of terrorist cells, 2001.

[KSBG02] Raghav Kauhik, Pradeep Shenoy, Philip Bohannon, and Ehud Gudes. Exploiting

local similarity for indexing paths in graph-structured data. In ICDE, 2002.

[LCHY06] Chao Liu, Chen Chen, Jiawei Han, and Philip S. Yu. Gplag: Detection of software

plagiarism by program dependence graph analysis. In SIGKDD, 2006.

[LKF07] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. Graph evolution: Densifi-

cation and shrinking diameters. ACM Trans. Knowl. Discov. Data, 1(1):2, 2007.

[MGMR02] Sergey Melnik, Hector Garcia-Molina, and Erhard Rahm. Similarity flooding: A

versatile graph matching algorithm. In ICDE, 2002.

[MS99] Tova Milo and Dan Suciu. Index structures for path expressions. In ICDT, 1999.

[MSLC01] Miller McPherson, Lynn Smith-Lovin, and James M Cook. Birds of a feather:

Homophily in social networks. Annual Review of Sociology, 27:415–444, 2001.

[Nat00] Mangai Natarajan. Understanding the structure of a drug trafficking organization:

a conversational analysis. Crime Prevention Studies, 11:273–298, 2000.

Bibliography 180

[NCO04] Alexandros Ntoulas, Junghoo Cho, and Christopher Olston. What’s new on the

Web? The evolution of the Web from a search engine perspective. In WWW,

2004.

[NRT09] Lorenzo De Nardo, Francesco Ranzato, and Francesco Tapparo. The subgraph

similarity problem. TKDE, 21(5):748–749, 2009.

[NS03] Frank Neven and Thomas Schwentick. XPath containment in the presence of

disjunction, DTDs, and variables. In ICDT, 2003.

[Nuu94] Esko Nuutila. An efficient transitive closure algorithm for cyclic digraphs. Inf.

Process. Lett., 52(4), 1994.

[PBCG09] Michalis Potamias, Francesco Bonchi, Carlos Castillo, and Aristides Gionis. Fast

shortest path distance estimation in large networks. In CIKM, 2009.

[PCJ06] N. Przulj, D. G. Corneil, and I. Jurisica. Efficient estimation of graphlet frequency

distributions in protein-protein interaction networks. Bioinformatics, 22(8):974–

980, 2006.

[PDGM08] Panagiotis Papadimitriou, Ali Dasdan, and Hector Garcia-Molina. Web graph

similarity for anomaly detection. Technical report, 2008.

[RB01] Erhard Rahm and Philip A. Bernstein. A survey of approaches to automatic

schema matching. VLDB Journal, 2001.

[RR93] G. Ramalingam and Thomas W. Reps. A categorized bibliography on incremental

computation. In POPL, 1993.

[RR96a] G. Ramalingam and Thomas Reps. An incremental algorithm for a generalization

of the shortest-path problem. J. Algorithms, 21(2):267–305, 1996.

[RR96b] G. Ramalingam and Thomas Reps. On the computational complexity of dynamic

graph problems. TCS, 158(1-2), 1996.

[RT07] Francesco Ranzato and Francesco Tapparo. A new efficient simulation equiva-

lence algorithm. In LICS, 2007.

[Sah07] Diptikalyan Saha. An incremental bisimulation algorithm. In FSTTCS, 2007.

[SKL06] Oleg Sokolsky, Sampath Kannan, and Insup Lee. Simulation-based graph simi-

larity. In TACAS, pages 426–440, 2006.

[SLBK04] Adam Schenker, Mark Last, Horst Bunke, and Abraham Kandel. Classification

of Web documents using graph matching. IJPRAI, 18(3), 2004.

Bibliography 181

[SMGL08] Ismael Sanz, Marco Mesiti, Giovanna Guerrini, and Rafael Berlanga Llavori.

Fragment-based approximate retrieval in highly heterogeneous xml collections.

Data Knowl. Eng., 64(1):266–293, 2008.

[SNS09] A. Stotz, R. Nagi, and M. Sudit. Incremental graph matching for situation aware-

ness. FUSION, 2009.

[SSR+97] Sandeep K. Shukla, Eep K. Shukla, Daniel J. Rosenkrantz, Harry B. Hunt Iii, and

Richard E. Stearns. The polynomial time decidability of simulation relations for

finite state processes: A HORNSAT based approach. In DIMACS Ser. Discrete,

1997.

[SWG02] Dennis Shasha, Jason T. L. Wang, and Rosalba Giugno. Algorithmics and appli-

cations of tree and graph searching. In PODS, 2002.

[Tar72] Robert Endre Tarjan. Depth-first search and linear graph algorithms. SICOMP,

1(2):146–160, 1972.

[TC01] Li Tan and Rance Cleaveland. Simulation revisited. In TACAS, 2001.

[ter] Terrorist organization network. http://www.start.umd.edu/gtd.

[TFGER07] Hanghang Tong, Christos Faloutsos, Brian Gallagher, and Tina Eliassi-Rad. Fast

best-effort pattern matching in large attributed graphs. In KDD, 2007.

[TM05] Loren Terveen and David W. McDonald. Social matching: A framework and

research agenda. ACM Trans. Comput.-Hum. Interact., 12(3), 2005.

[TP08] Yuanyuan Tian and Jignesh M. Patel. Tale: A tool for approximate large graph

matching. In ICDE, 2008.

[TZY+08] Jie Tang, Jing Zhang, Limin Yao, Juanzi Li, Li Zhang, and Zhong Su. Arnetminer:

extraction and mining of academic social networks. In KDD, 2008.

[Ull76] J. R. Ullmann. An algorithm for subgraph isomorphism. JACM, 23(1):31–42,

1976.

[Vaz03] Vijay V. Vazirani. Approximation Algorithms. Springer, 2003.

[WC09] Changliang Wang and Lei Chen. Continuous subgraph pattern search over graph

streams. In ICDE, 2009.

[weba] Stanford webbase. http://diglib.stanford.edu:8091/testbed/doc2/WebBase.

[Webb] Webconfs. Similar page checker. www.webconfs.com/similar-page-checker.php.

Bibliography 182

[Wei10] Fang Wei. TEDI: Efficient shortest path query answering on graphs. In SIGMOD,

2010.

[WHY+06] Haixun Wang, Hao He, Jun Yang, Philip S. Yu, and Jeffrey Xu Yu. Dual labeling:

Answering graph reachability queries in constant time. In ICDE, 2006.

[Wik] Wikipedia. F-measure. http://en.wikipedia.org/wiki/F-measure.

[Woo03] Peter T. Wood. Containment for XPath fragments under DTD constraints. In

ICDT, 2003.

[WS03] Scott White and Padhraic Smyth. Algorithms for estimating relative importance

in networks. In KDD, 2003.

[YYH05] Xifeng Yan, Philip S. Yu, and Jiawei Han. Substructure similarity search in graph

databases. In SIGMOD, 2005.

[YZYH06] Xifeng Yan, Feida Zhu, Philip S. Yu, and Jiawei Han. Feature-based similarity

search in graph structures. ACM Trans. Database Syst., 31(4), 2006.

[ZCO09] Lei Zou, Lei Chen, and M. Tamer Özsu. Distance-join: Pattern match query in a

large graph database. In PVLDB, 2009.

[ZGM98] Yue Zhuge and Hector Garcia-Molina. Graph structured views and their incre-

mental maintenance. In ICDE, 1998.

[ZTW+09] Z. Zeng, A. K.H. Tung, J. Wang, J. Feng, and L. Zhou. Edit distance evaluation

on graph structures. In VLDB, 2009.

