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Abstract
Linear regression based speaker adaptation approaches canim-
prove Automatic Speech Recognition (ASR) accuracy signifi-
cantly for a target speaker. However, when the available adapta-
tion data is limited to a few seconds, the accuracy of the speaker
adapted models is often worse compared with speaker indepen-
dent models. In this paper, we propose an approach to select a
set of reference speakers acoustically close to the target speaker
whose data can be used to augment the adaptation data. To
determine the acoustic similarity of two speakers, we propose
a distance metric based on transforming sample points in the
acoustic space with the regression matrices of the two speakers.
We show the validity of this approach through a speaker identi-
fication task. ASR results on SCOTUS and AMI corpora with
limited adaptation data of 10 to 15 seconds augmented by data
from selected reference speakers show a significant improve-
ment in Word Error Rate over speaker independent and speaker
adapted models.
Index Terms: ASR, MLLR, MAPLR, Speaker selection

1. Introduction
In typical Automatic Speech Recognition (ASR) based interac-
tive voice response and spoken dialogue systems, only a few
seconds of speech is generally available from a user to adapt
the acoustic models to his/her voice. Linear regression based
speaker adaptation techniques such as Maximum Likelihood
Linear Regression (MLLR) [1] and Maximum A Posteriori Lin-
ear Regression (MAPLR) [2] are widely used in such scenar-
ios. Transformation matrices for regression can be efficiently
computed with a reasonable amount of data. However when
the transforms are computed using a very small amount of
adaptation data, the improvement in recognition accuracy us-
ing the adapted models can be low; indeed the accuracy with
the adapted models can be lower than that with the speaker in-
dependent (SI) models.

To overcome this problem of sparse data, several ap-
proaches have been devised to characterise the test speakerand
make better use of the data from the existing speakers. Eigen-
voices [3] is one such idea where the test speaker is charac-
terised as a linear combination of eigenvectors which are com-
puted from speaker dependent (SD) models of the training set
speakers. This approach however has limitations when applied
to large vocabulary systems due to the need for generating sev-
eral SD models and in the computation of speaker coefficients
in the high dimensional eigenspace.

Another approach to tackle data sparsity is to augment the
adaptation data for the target speaker with speech data from
other reference speakers acoustically close to the target speaker.
The reference speakers can be a subset of the speakers used to
train the SI models as well as other speakers whose data be-
comes available at a later stage. Such systems where more cor-

pora becomes available for speaker selection can be easily en-
visaged in practical applications. In telephony based IVR sys-
tems, speech data can be collected as the system is used and
the collected data can be made available as a pool of reference
speakers. In broadcast news, speech content is made available
on daily basis from different speakers. Hence it makes sense
in such scenarios, to build a speaker independent ASR system
and use the data made available consequently, to improve the
performance of the system.

Some related work based on this approach of speaker selec-
tion include [4], where Gaussian Mixture Models (GMMs) were
trained for each reference speaker and the models that max-
imised the likelihood for the target speaker’s adaptation data
were chosen as the closest speakers. In [5], custom Hidden
Markov Models (HMMs) were built for each reference speaker
using MLLR and the speakers whose models maximised the
likelihood scores for forced alignment of the adaptation data
were chosen as the reference speakers.

Recently, an approach to speaker recognition using MLLR
transforms as feature vectors has been proposed [6, 7]. The
core idea is to concatenate the coefficients of the adaptation
transforms into high dimensional vectors and use these vectors
for speaker identification using Support Vector Machine (SVM)
classifiers. Inspired by this work, we extend the idea of using
transformation matrices as speaker features to identify the ref-
erence speakers acoustically closest to the target speaker. How-
ever, we do not use SVM classifiers since our task is different
from speaker recognition. We use a distance metric based on
transformations to compute the distance between speakers.We
show, with experimental results on two different corpora, that
when the adaptation data available is limited, ASR accuracies
can be improved by augmenting the target speakers’ adaptation
data with data from acoustically close speakers.

In section 2, we describe the distance metric used and some
results on a speaker recognition task as a sanity check for the
distance metric. The speaker selection approach is described in
section 3. ASR experimental setup and the results using aug-
mented adaptation data is described in section 4, followed by
discussion and conclusion in sections 5 and 6 respectively.

2. Speaker distance measure
In [6], the coefficients of MLLR matrices are concatenated to
create high dimensional vectors and these vectors are used as
speaker features. Such high dimensional vectors have been
shown to have good discrimination properties for classification
but the disadvantage of this approach is that it just treats the
matrix as a vector and discards the property of the matrices that
enable it to transform the means of HMMs to match the target
speaker.

In this paper, we propose a distance metric that takes ad-
vantage of the transformation defined by the linear regression
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matrices. Given transformation matrices from two speakers,
sample points in the acoustic space are transformed by the two
matrices and the distance between the transformed points iscal-
culated. We cluster the means of all the Gaussian components
in the SI model and choose the centroids of the partitions as the
sample points. This ensures a good coverage over the acoustic
space.

The distancedTS between two speakers whose MLLR
transforms are represented byAT andAS is given by:

dTS =
K∑

k=1

|(AT − AS)ck|

|ck|
(1)

where ck is the kth mean inK clusters computed from the
means of all Gaussian components in the SI Model.

2.1. Speaker identification task

In order to understand how well the proposed distance metric
helps in identifying the closest transformation matrices,it was
applied to a speaker identification task.

The experimental setup consisted of reference MLLR trans-
forms and test MLLR transforms for a set of speakers. For each
speaker, the utterances used in computing the reference andtest
transforms were disjoint. The task is to identify the closest ref-
erence transform for each test transform using the distancemet-
ric proposed and when the closest reference transform is from
the same test speaker, it is treated as correct recognition.

The SCOTUS1 corpus [8] was used for this task. The
corpus was parametrised using Perceptual Linear Prediction
(PLP) Cepstral features. A window size of 25ms and frame
shift of 10ms were used for feature extraction. Energy along
with 1st and2nd order derivatives were appended giving a 39-
dimensional feature vector. Speaker Independent acousticmod-
els were trained on 90 hours of speech data. The acoustic mod-
els were trained using HTK [9] as tied-state context dependent
triphone HMMs with 18 Gaussian components per state for all
the speech models and 36 components per state for the silence
model. In all, the SI acoustic models comprised 59886 Gaus-
sians over 3324 independent states.

A set of 100 speakers was used for the speaker identifica-
tion task. To compute the reference and test MLLR transforms,
about 40 seconds and 12 seconds of speech was used respec-
tively for each speaker. A two class regression tree for speech
and silence was used for the MLLR computation and only the
speech transforms were used in distance computation.

The sample points in acoustic space to be used in calculat-
ing the distance, were selected as the centroids from k-means
clustering on all the Gaussian means in the SI model. The task
was repeated with various sizes of sample points viz., global
mean, 100 clusters, 1000 clusters and using all the Gaussian
means in the SI model. A simple euclidean distance between
the co-efficients of the matrices was also used for comparison.

The results for this task are shown in Table 1. We observe
that a set of 1000 points in the acoustic space is sufficient to
achieve acceptable accuracy.

As mentioned earlier, the objective of this task is only to
make a sanity check of the distance metric and hence the re-
sults have not been compared with other competing methods
for speaker recognition.

1The Supreme Court Of The United States corpus.
http://www.oyez.org

Table 1:Speaker Identification Task

Distance Measure Accuracy

Euclidean Distance 32%
With Global Mean 36%

With 100 Cluster means 97%
With 1000 Cluster Means 98%

With all the Means 98%

Figure 1:Speaker Selection.

3. Speaker selection for augmentation
Given a set ofN reference speakers, our task is to select a sub-
set of these speakers who are acoustically closest to the target
speakerT .

Denoting the transformation matrices for the target speaker
asAT , theith reference speaker asARi

(i = 1..N ) and using
an identity matrix to represent the SI modelAI = [ImXm :
0mX1]mX(m+1),

1. Compute a linear transformAT for the test speaker from
the available adaptation data.

2. Compute the distancesdTRi
for i = 1..N anddTI .

3. Choose a subset of speakers satisfyingdTRi
≤ dTI to

augment the adaptation data.
4. Recompute the linear transform for the test speaker using

the augmented data.
To illustrate, the speaker selection process, Figure.1 shows

the speakers in 3d space (generated using Multidimensional
scaling). The reference speakers selected for augmentation are
the ones that lie within the spherical manifold with the target
speaker at the center with a radius ofdTI . In practice, the di-
mension of the speaker space is large and the selection manifold
is a high dimensional ellipsoid.

4. Experiments
The experiments were carried out on two different corpora, viz.,
SCOTUS and AMI2 [10].

2Augmented Multiparty Interaction. http://corpus.amiproject.org/



4.1. Corpora

4.1.1. SCOTUS Corpus

The SI acoustic models used are the same as those described
in section 2.1. Back-off bigram language models and the vo-
cabulary were constructed from the transcripts of the Supreme
Court of the United States proceedings resulting in 23445 words
types.

The reference speaker set consists of speech data from 267
training set speakers and 282 additional speakers not used in the
training set. Each reference speaker had about 8 to 20 minutes
of available data with an average of 12 minutes per speaker.

The test speaker set comprised 39 speakers disjoint from the
training and additional speaker set. Each test speaker had about
60 minutes of data and a small set of about 3 minutes kept aside
as the adaptation data.

4.1.2. AMI Corpus

The waveforms were parametrised into 39 dimensional PLP
based features similar to the SCOTUS corpus experimental
setup. To build the acoustic models, tied state context dependent
triphone HMMs were first trained on 73 hours of meetings data
recorded by International Computer Science Institute (ICSI), 13
hours of meeting corpora from the National Institute of Stan-
dards and Technology (NIST) and 10 hours of speech corpora
from the Interactive Systems Lab (ISL) [11]. These models
were then adapted using the Maximum A Posteriori (MAP) ap-
proach [12] with 40 hours of speech from the AMI corpus. With
8 and 16 Gaussian components per state for speech and silence
respectively, the SI model comprised 3712 independent states
with 29720 Gaussians in total. Back-off bigram language mod-
els and vocabulary of size 50002 words were built using tran-
scripts of several meeting corpora including Switchboard,Call
Home, Fisher, ICSI, NIST, ISL and other web data resources
[13].

The reference speaker set comprised of 69 speakers used
to MAP adapt the SI models and 78 speakers not used in the
training set. Each speaker had about 30 minutes of speech data
on average. The test speaker set in this corpus consisted of 42
speakers with 200 utterances as test data per speaker and a small
adaptation set separate from the test set.

4.2. Procedure

The means of all the Gaussians in the SI acoustic models were
clustered into 1000 groups using k-means clustering for each
of the two corpora. The centroids of each of these clusters
were used as the sample points for computing the acoustic dis-
tance between speakers. From each of the reference speakers’
data, MLLR and MAPLR mean transforms were computed us-
ing a two class regression tree, one for speech and one for non-
speech. Three sets of adaptation data were used with differ-
ent amounts of data for the test speakers viz., 1)10-15 seconds
of speech per speaker 2) About 30 seconds per speaker and 3)
About 1 minute per speaker. Adaptation transforms were com-
puted from all the adaptation sets using the actual transcripts
for supervised case and using the hypothesis from first pass de-
coding for unsupervised case. For each of the test speakers,
acoustically closest speakers were chosen as described in sec-
tion 3.

4.3. Results

The baseline results for the two corpora are shown in Tables 2
and 4. When only 10-15 secs of adaptation data is available,
speaker adaptation is not optimal. The word error rates (WER)
increase in most cases.

Speaker Independent 35.9
Adaptation Data 15s 30s 60s

MLLR Supervised 36.2 35.5 35.3
MLLR Unsupervised 36.5 35.8 35.5
MAPLR Supervised 35.6 35.2 34.9
MAPLR Unsupervised 36.0 35.5 35.3

Table 2: SCOTUS Corpus: Baseline results (WER %)

Reference Spkrs Train set Train + Add set
Adaptation Data 15s 30s 60s 15s 30s 60s
MLLR Sup 35.5 35.4 35.3 35.2 35.1 35.0
MLLR Unsup 35.5 35.4 35.4 35.2 35.2 35.1
MAPLR Sup 35.3 35.3 35.2 35.2 35.2 35.1
MAPLR Unsup 35.4 35.3 35.2 35.3 35.3 35.2

Table 3: SCOTUS Corpus: Results with augmented adaptation
data (WER %). Notation: Sup - Supervised, Unsup - Unsuper-
vised

Speaker Independent 46.3
Adaptation Data 15s 30s 60s

MLLR Supervised 50.2 46.0 43.9
MLLR Unsupervised 51.5 47.5 45.3
MAPLR Supervised 48.1 45.3 43.7
MAPLR Unsupervised 49.3 46.7 45.1

Table 4: AMI Corpus: Baseline results (WER %)

Reference Spkrs Train set Train + Add Set
Adaptation Data 15s 30s 60s 15s 30s 60s
MLLR Sup 46.2 45.6 45.5 45.9 45.6 45.2
MLLR Unsup 47.4 46.2 45.8 46.8 45.9 45.4
MAPLR Sup 46.1 45.7 45.4 45.8 45.7 45.3
MAPLR Unsup 47.1 46.1 45.7 46.2 45.9 45.7

Table 5: AMI Corpus: Results with augmented adaptation data
(WER%). Notation: Sup - Supervised, Unsup - Unsupervised

Tables 3 and 5 show the results with augmented adapta-
tion data. The tables capture WERs using 1) only the training
set speakers as reference speakers and 2) Training set speakers
and additional speakers (Train + Add Set). The results show
a significant reduction in WER with augmented adaptation data
when the adaptation data is limited to 10-15 seconds. The WER
reduction is significant atp < 0.001 using Matched Pairs Sen-
tence Segment Word Error (MAPSSWE) test. As the adaptation
data from the target speaker increases, the benefit from using
other speakers’ speech reduces.

Augmenting the adaptation data is seen to be particularly
advantageous in unsupervised case which is more often the sit-
uation in practical systems. It is also observed that accuracies
with MAPLR mean adaptation are overall better than MLLR



mean adaptation. With augmented adaptation data, an improve-
ment of 0.8% relative for supervised case and 1.7% relative
for unsupervised case on SCOTUS corpus and improvements
of 4.2% and 4.5% respectively for AMI corpus are observed.

Using speakers additional to the training set speakers, a fur-
ther improvement in recognition accuracies can be achieved.

5. Discussion
In this paper a simple and efficient method to improve the
ASR accuracies with small amounts of adaptation data is de-
scribed. Other approaches on similar tasks such as eigenvoices
have been shown to improve performance in smaller systems,
but scaling the eigenvoices approach as described in [3] to our
larger system led to Principal component analysis on large ma-
trix (2.5million x 250), which was computationally expensive.
Due to the high dimensionality, all the eigenvectors generated
had close eigenvalues. Choosing the top 20 of them as basis re-
sults in loss of information and an increase in WER of 6.2%. A
missing part in our experiments is the comparison of the results
with Cluster Adaptive Training [14].

The distance metric proposed in this paper is efficient in
memory usage and computational complexity. The storage re-
quirements are onemx(m + 1) matrix per reference speaker
andK sample vectors in the acoustic space. The computation
of the distance between two speakers only involves a few ma-
trix operations. To speed up the computations|ck| terms could
be precomputed and stored. To save on the time required for
computing the regression transforms, sufficient statistics for the
reference speakers can be computed offline.

Another feature of this approach is that there is no man-
ual tuning or thresholding involved. If no reference speaker is
close enough to the target speaker, only the original adaptation
data is used. This approach is expected to work better with the
availability of a larger and more varied reference speaker set.
Furthermore, if the speech from a target speaker is available in
the reference set, it is very likely to be selected first as augmen-
tation data and improve the recognition accuracy significantly.

The MLLR/MAPLR WERs on AMI corpus with 15 sec-
onds adaptation data are significantly higher as compared tothe
results with SI models. Despite this, the linear transform matri-
ces still capture sufficient information about the speaker to be
able to select augmentation data.

In both of our systems, the number of reference speakers
were limited to a few hundred. If thousands of reference speak-
ers are available in the selection pool, then computing the dis-
tance of the target speaker to all the speakers can be time con-
suming. A possible solution to this problem is

1. project all the reference speakers(N ) and SI model to a
p dimensional space (p << N ) using MDS.

2. Selectp non-coplanar speakers in thisp dimensional
space as reference points.

3. For a target speaker compute the distance from thesep

reference speakers and project the target speaker into this
reduced dimensionsal space using triangulation method.

4. Select the augmentation speakers satisfyingd̃TRi
≤

d̃TI , whered̃ is the euclidean distance.

6. Conclusion
In this paper, we have proposed a simple approach to compute
distance between speakers using regression matrices as speaker
features. We have shown that speakers acoustically close tothe
target speaker can be effectively selected from a pool of ref-

erence speakers to augment the adaptation data for the target
speaker. This approach works well when the adaptation data
from the target speaker is very limited and gives significant
reduction in WER. It is seen to particularly useful when the
adaptation is unsupervised which is often the case in practical
deployments of ASR systems. However when sufficient adap-
tation data is available from the target speaker, augmenting it
with speech from other speakers is not beneficial.
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