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ABSTRACT

A Scott/Strachey style denotational semantics intended %o
describe pure LISP is exsmined, I present evidence that it is an
accurate rendering of the language described in chapter 1 of the LISP
1.5 Programmer's Hanual, in particular I show that call-by-value and

fluid variables &re correctly handled. To do this I haves

(1) Written an cperational 'semantics® of pure LISP and shown it

equivalent to the denotational one

(2) Proved that, relative to the denotational semantics, the LISP

functions apply,eval,.e.,6tce correctly compute meanings.

The proof techniques used are derived from the work of Wadsworth;
roughly one firat proves the results for 8 clasa of 'fihite' programs
and then extends them to all programs by a limiting argument.
Conceptually these arguments are inductions on length of computation
and to bring this out I've formuleted a rule of inference which enables

such operational reasoning to be applied to the denotational semasntics.
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1.,  INTRODUCTION

tel Semantics: how this work fits in

The approach to the semantics of programming langusgss developed by
Scott and Strachey [22] has been remsrkably successful. Complete
descriptions of PAL [9 ], ALGOL 60 [14] and ALGOL 68 [9 ] have been
given and it would now gesm to bhe routine to write a formal definition
of any language of this level of complexity. Milner's theory of
procegses [11] gives a8 very satisfactory explication of non-~determinism
and parallsl procesasing &nd there is a good hope that it will
considerably simplify the formal study of operating systems and similaer
complexes of interacting programs. Although the Scott/Str&chey
approach appears to give us an sccurate way of expressing the intuitive
meaning of programming languages it is very abstract and there is a
large gap between the sophisticated mathemetical devices it exploits
and concrete computational mechanisms. Thus it is possible (thcugh not
likely, I hope) that some of these formal defiﬁitions might havs
properities which we would not expect e.g. they might assign meanings
which differ subtly from what is intended. To reduce this danger it
helps to investigate in detail the way abstract devices mimic concrete
ones, This kind of investigation has a double use for &z well as
boogting our confidence in the abstract techniques it should &lso shed
light on how to go about proving implementations of (abstractly dsfined)

languages correct, The work described here is such an investigation.

1/
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I have taken & simple yeal programming language — pure LISP* -~ and
analysed in depth the relation between the possible abstract
denotations of its programs and their mechanical evaluation. I have
paid particular attention to the correct handling of csll-by-value and
fluid variables and to illustrate the dangers of a toe naive approach
to these features I describe a superficially plausible (but in fact

wrong) senantics.
1.2 Overview

If you read the ‘'officisl' definition of pure LISP (chapter 1 of the
LISP 1.5 Programmer's Manusl) I think you will find that two distinct

ways of thinking suggest themselvess

(1) LISP functions can be thought of as denoting mappings from

S-expressions to S-expressions - so that e.g.

A [[x]s car[ecar[x]]]

denotes the composition of the cdr function with the car

¥ Pure LISP is the language describad in chepter 1 of the LISP 1.5
Programmer's Manual. It consists of LISP minus all f£rills such
as the Prog feature, arrays, list structure operators (rpl&ca),
functional arguments, ebc. A very brief summary (ggﬁ intended
a3 an introduction) is given in chapter 2 below.
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function and so to work out the value of )\[[x]; car[car[x]]1[(1 2}]

one just applies this function to (1 2).

(2) LISP functions cen be thought of as rules which specify how
their arguments are to be manipulated to compute the result.
'In thig way of thinking )\[[x]; car[cdr[x}]] is the rule
which when given an argument first binds it to x in the
environment then evaluates car[cdr[x]] - this consists in
firat eveluating x then teling the cdr and then the car of
the result. This explanation does not invoke 'mathematical!
notions guch as application and composition - only sequences

of finitistic operations are called for.

I shall call (1), (2) the "denotational® and "operational" conceptions
of LISP respectively. In the manual both ways of thinking are alluded
to; the informal descriptions are on the whole denotational whereas the
formal definition expressed in the interpreter (i.e. the functions apply,

eval,... etc.) is usually understood operationally.

In this report I describe some formal tools for translating operational
intuitions into denotational terma and vice versa. More precisely wnat

I do is:

(1) Five a Scott/strachey style denotational semantics of ypure

LISP.

ve, using a calculug, &n operationa senantics® of it.
(2) ot i leul tional ! tica! of it

(3)/
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(3) Prove that the mapping denoted by any LISP function relative
to the dendtational. semantics is correctly computed by the

operations of the operational one,

Having done this I then exploit operational reasoning to infer facts
about the denotational semantics. To assist in this I have formulated
a rule of inference called "LISP=induction" -~ in operational terms this
can be thought of as induction on the length of computations but it can
be used to prove things about the denotational semanties - and
asgociuted with thisg there are no obvious computations to do induction

on! Using LISP-induction I show:

(4) How recursive definitions (i.e. label expressions) can be

understood in terms of minimal fixed points.

(5) fThat the mappings denoted by the functions apply,eval,.,.etc,

constitute a correct (relative to the denotational sem&nties)

implementation of LISP.

I chose LISP as a subject for this study because it is a widely used
real language which ig sufficiently simple to raise mathematically
tractable problems. I chose a real language - rather than a
theoretical one like the >t~calculus - because I wanted to be sure that
the kind of problems which arise in practice would come to light. I
gls0 needed to have & language in which 8ll the programs have a precise

and unambiguous meaning for I needed to have & rigorous standard

against/
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against which to measure propoged denotational semntics.

1.3 Himtorical nerspective

ha far as I know not much work has been done comnecting the kind of
mathenatical model described here with computaticn mechanisms., A
fair amount has been done on the gimulation of one machine by another
machine or by & calculus (see €ele [ 7]) but this is & rather different
topic in which syntactic entities are not compared with conventional

wathenstical objects but only with other syntactic things.

The earliest relevant work seems t0 have been done by Kleene who
ghowed how recursive definitions of numerical funciions could be under~
stood as defining the least fixed point of certasin eguations (derived
naturally from the definitions). Kleene also showed how such
recursive definitions could be used to effectively compute the
application of the defined functions to their arguments. This work is
described, from a computing point of view, in Morris's thesis [12];
Cadiou [ 2], de Bakker and de Roever [ 1] and others have extended it

t0 deal with the kinds of recursive definitions, and associated evaluation

rules, met in geotual compuilng practice.

Althougn this work is extremely good and important the technigques it
employs are of somewhat lmited applicability and it was not wati

Vadaworth [25] came along that gensral methods of proving implemoentations
of whole languagea correct bLecame available. Wadsworth shows Low

operational/
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operational facts about the pure X-calculus are reflected in the
gemanticas Although the )\—calculus is not a real prograuming
language it turns out to be easy to apply, by anslogy, Wadsworth's
methods to real situations. Plotkin [16] has done this for ISWIM
[5 ], a }\ucalculma like language which uses a call-by-value

evaluation strategy and has "basic® functions ( b-rules),

The importance of Wadsworth's methods is that they ensable o to intro-
duce a notion of ‘progress'of computation into denotational semantics.
This notion leads to ways of proving things by induction on the 'length’!
of computation ~ & kind of induction which is very intuitive but not
eagy to precisely formulate and validate relative {o denotational
semanticos., Almost gll realistic denotational gemantics involve
infinite-type spaces, even if (a9 in pure LISP) the object langunge is
first order; Wadsworth's methods are applicable to such semantics and

it is because of this that thesze methods are so much more powerful than

the older ones.

The only other relevant research I know is that of Robert Milne of
Oxford. This remarkable work (which I only heard of during the writing
of this report)9 although rather more abstract and differently motivated
{ron mine, promiseas to provide tools considerably more elegant and
goneral than those described here. Unfortunately, I have not fully
digested that work and so am unable to give a reliable degcription of it

and its relation to what is done here. If you &re interested I suggest

you/
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you (like me) mwait his forthcoming thesis L8 J.

1.4 Contents of this report and how to read it

I hope this report will be comprehensible to readers not familiar with
Scott's approach to the theory of computation EO } and Scott and
Strachey's approach to semantics @2 ]. To this end I have included
some introductory material of & rather elementary nature in chapers 3 and 63
sophiticated readers are advised to skim through this at high apeed.
Chapter 2 is a very condensed summary of the contents of chapter 1 of
the LISP 1.5 Programmerfs Manual. I strongly advise reeders not
faniliar with LISP to read chapter 1 of the Manusl. Chapter 3 is
devoted to describing how the denotational conception of LISP can be
formalized. In chapter 4 I formalize the operational conception &nd
also state my min theorem connecting these two conceptions and show

how to exploit it. In chapter 5 I prove the main theorem - subject

to the existence of a certein infinite-type space, (which is postulated
&g a model of alisfs) and in chapter 6 I develop enough tools to prove
that this space exists. Chapter 7 contains denotationsl semantics of
some extengions of pure LISP to show that I'm not yet at a dead end and
in chapter 8 I suggest some (rather vague) topics for future research.
Appendix 1 is of & technical nature, in it I compare the theory of semi~-

domains used here with the more usual theory of domains,
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2. THE SYNTAX AND EVALUATION OF PURE LISP PROGRAMS: A RESUME OF

THE MANUAL

In this chapter I gtate the syntax of pure LISP and give the definitions
of the functions constituting the interpreter described in the Manusl.
This chapter is not meant to be an exposition of LISP-readers unfamiliar
with the l& guage are strongly advised to read chapter 1 of the Manual

[6 ] vefore proceeding., I give the syntax and interpreter here for
reference purposes and so that readers can check up that my formalizations

are accurate (e.g. that I have not gurreptitiously simplified things).

2,1 Syntax

2.1.1 The Data Languase

LETTER> 1:= A B |c ... |2
9

{atomic-gymbol> :s= <LETTER><atom part>

<{number? $:= 0 ‘1] 2, eoe

<atom part> ::= <empty> '<LETTER><atam part)l <number><atom part>

{S-expression> ::= <atomic symbol> |
(<Suexpression>.<S-expression>)]

(<S—expressiond...<S~-expression))

2.1.2 The Meta Langusge (Mwoxpressions)

{letter> ::= a lb go !... ,z
{identifier> s:= {letter><id part>

<id partd t1= <emptyd | <lettord><id part> | <number><id part>



{formd» 3= <constant>l
<variable>l
<function>[<argument>;.o°;<argument>]’

[<Foxrmd— <FOTmDsa. s <formd= <form> ]

{constant> ::= {S-expression>
<{variable> ti:= <identifier>
{srgument> ::= <formd
<function> ::= <identifier> |

A [<var 1ist>; <form>] ,
Label[<identifierd;<function]

<var listd ::= [<variabled;...;<variabled]

2.2 Standard Functions

The following functions are needed to define the interpreter

2.2.1 gcaar,cdar,cadr,caddr,cadar

caar[x]=car[car[x]]

cdar[xJ=cdr[car[x]]

cadr[z]=car[cdr[x]]
caddr{xJ=car{cdr[ecdr[x]]]

cadar[x)=car|cdr[car[x]]]

2.2,2 null
T If »=NIL

F otherwige

null[x])= {
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2.2.3 egqual

In the Manusl equal is defined by:

equallx;y)=[aton[x]- [atom[y]~ eq[x;y]; T F];
equallcar[x];car[y]) ] equai[car[x];car[y]];

T F]

It is claimed that equal, so defined, "is true if its two arguments are
ident&fical S~expressions and is false if they are different®.
Unfortunately this claim is false for, using the above definition,
equal[(1);1] is undefined not F. I have taken the description quotad
above (in English) ag the intended meaning - this ig formalized in

4,8.1.11below.
2,2.,4 pairlis

pairlis[x;y;a]:[null[x]—'8: T cons[cons[car[x];car[y]];
pairlis[cdr[x];car[y];al]]

Example: pairlis[(a B ¢);(TV W); ((0.%)(E.Y))]

=((4.0)(B.V)(c.W) (D.X)(E.T))
2.2.5 assoc
aszoc[x;8]=[equal[caar[a];x]~ car[al; T+ assoc[x;cdr[a]]]

Example: ssgoc[B;((4. (4 1)) (B. (AR X))(c.(QUOTE 1)) (C. (cIR X)))]

=(B.(CAR %))

2.3/
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2.3 The Tranglation of M-eXpressiong into S-—expressions

The following rules define & method of translating functions written

in the neta-language into S=expressions.

1. If a function is represented by its neme, it is translated by
changing a8ll of the letters to upper case, waking it an atomic

gymbol. Thus car is translated to CAR.

2. If the function uses the lambda notation, then the expression
A[[xseee5x 15 €] is translated into (LAMBDA(X,...X ) ¢*), where

e* jg the translation of €.

3¢ If the function begins with Label, then the translation of

Label[as €] is (LABEL a* ¢*),
Forms are translated as follows:

1. A variatle, like a function name, is translated by using uppercase

letters. Thus the translation of vari is VAR{,

2. The obvious translation of letting & constant translate into
itself will not work. Since the translation of x igs X, the
translation of X must be something different to avoid ambiguity.

The solution is to quote it. Thus X is translated to (QuoTE x).

3e The form fn[&rg1;..o;argn] is translated into (fn* arg?.e.argi).
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4, The cénditional expression [p1—hei;...;pn~.en] is translated

into (conp( p*{e?{) eaef ple* DR

Examples
M-expressions S—expressions

X X

car CAR

car[x] (caR x)

T (QUuoTE T)
r£{car[x]] (FF((CAR X))
[aton[x]~ x;T £flcar(x]]] (conp({AToM X)X)

((Quote T){Fr{csr X))))
Laber[£f; A [[x]; [atom[x] x;T~ ££lcar[2]]]]] (LABEL FR(LAMBDA(X)(COND

((ATOM X)X)

((quote 7) (FF(CAR X))))))

2,4 The Manual Interpreter: evalquote,apply,eval,evecon,evliis

It says in the Manual that:

"The universal function evalquote that is about to be defined
obeys the following identity. let £ be & functicn written as
an M=expresgion, and let fn be its translation, (fn ig an
S-expression.) Let f be a function of n argunents and let

arga:(arg1,,eargn),a liat of the n S-expressions being used as

argumenta/
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argunents, Then
evalquote[fn;args]zf[arg1;c..;argn]

if either side of the equation is defined at all.”

I suspect that this stetement was intended to connect up the
operational and denotational conceptions of LISP i.e. the left hand
side of the equation was intended to be understood operationally and
the righ hand side denotationally. If this is so then 4,8 of this
report ("4 gemantic analysis of the LISP eval function®) is devoted
to provinz the above statement. Here now is the definition of

evalquotes
evalquotel fn;x)=apply[fnsx;NIL]

apply[fn;x;al={aton[tn]~ [eq[fn;CAR]~ caar[x];
eq[fn; COR ]~ cdar{x]; ‘
eq[fn;CONS]—*cons[c&r[x];cadr[X]];
eq[ fn;ATOM ] atom[car{x]];
eq[fn;EQ]~ eq[car[x];cadr(x]];

T —°apply[eval[fn;a];x;a]];
eq[car[fn];LaMBDA]~ evallcaddr[fn] spairlisl cadr[fo]sxse]ls
eq{ear[fn];LABEL]~»apply[éaddr[fn];x;cona[cons[gadr[fn]:

caddr[£n]l;2]]]

eval/
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evalle;al={atom[e]~ cdr[assoc[esal]l;
aton[car{e]]- [eq[car[e];QuoTE]~ cadrle];
eqlcar[e]; conD]- eveon[carle];al;
T apply[car[e];evlis[cdr[e];a] ;a]]:

T applyl|car[e]seviis[cdar[e];al;a]]

eveon|[c;al={eval{casr[c];al~ evallcader{c];al;

T evcon{cdr[c:’ :B»] ]

evlis[m;a]=[nu11[m]- NIL;

1 cons[eval[car[n]l;a]seviis{cdr[mn];a]l]



3.  DENOTATIONAL SEMANTICS OF PURE LISP

The main goal of this chapter is to describe & denotational

gemantics of pure LISP. I shall do this by showing how I evolved
a satisfactory (though, at first sight, non»intuitive) gemantics

from an unsatisfactory (though intuitive) one.

Firat I shall give some idea of what I am trying to capture and why

doing this is useful.

3.1 Denotational intuition and its uses

Naive intuitions derived from & mathematical upbringing are not always
a good gulde to the meaning of LISP functions. For example it is
tempting to think of A [[x];NIL] as denoting the constant function

with value NIL and hence to deduce that for all forms e:

M [x1;v1n][e]=NIL

but this is wrong for if e's evaluation does not terminete then nor
does that of A[[x];NIL][e] and so this does not evaluate %o NIL.
This is not the only way that ‘mathemstical! intuition can misleads
LISP's fluid variables also causse trouble: +the problem arises when
one passes functions containing free variables inte contexts which
bind (and hence 'capture!) them., This is most simply illustrated
uging functional arguments but as I only wish to study firzt order
pure LISP (i.e. what is described in chapter 1 of the Mamual) I will
not give such an example, I am going to give & form e snd then

describe/
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describe two ways of working out its value; the first way (given in
3,1.1 below) will exploit reasoning dear to mathematically {rained
people, the second (given in 3.1.2) will use the LISP interpreter
given in chupter 1 of the Manual. Here is the e, It is a bit

complicated - do not try and apprehend it directly but go on and

read 3.191 and 3.1020

e= AIyl;
Label[fn; A [[x];
[ 15
X- 23

T A[[y)s£aly]1[71171(#]1[¥]

If we let: fa,= A[[y];£a[y]]
32=[y‘-0 1;X“" 2;T" 61]

fl'.lz2 )\[[x];ez]
Then: e = )\[[y];Label[fn;fn2][F]][F]
Here now are two chains of reasoning leading to values for e,

2.101

The value of e is the value of Label[fn;fn,][F] when y=F, now

Label[fn;fnz] denotes the function defined recursively by:

fn/
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rnlx])=[y- 132 2;T~ fn, (1]
when y=F this reduces o
fn[x]=[x» Z;Td'fn1[T]]

and so fa[Fl=[r 2; £n, [7]]
=fn, [7]
= A [y)senly]1[1]
=fn[T]
=[T= 25¢4.]

=2
hence Label[fn;fnz][F]=2 when y=F and so e=2,

3e1.2

Let fn‘%?,e?,e"é,fng be the codings into S«»expressions of fn1,e1,e

fn2 respectively, then the value of e is:

2,

evalquote/
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evalquote[ (LAMBDA(Y) ((LABEL FN fn%)(QUOTIE ™)) s(F)]
=apply[ (LAMBDA(Y) ((LABEL FN £n%)(QUOTE F)));(F);NIL]
=evall ((LABEL PN £:%) (QUOTE F));((Y.F))]
=apply[ (14BEL P8 £0%);(F); ((T.F))]
=apply[fuf; (F); ((#8.£n%) (Y.F)) ]
=evalle$; ((X.F) (FN.£a%) (Y.F))]
=evel[ef; ((X.F) (FN.£n%) (Y.F))]
=apply[£n¥; (1) 5 ((X.F) (FN.n¥) (1.F))]
=eval[ (FW ¥);((¥.7) (X.F) (FW.£n}) (T.F))]
=apply[FN; (1) 3 ((¥.7) (X.F) (7. £n5) (Y. F))]
=apply[£n%; (1) ; ((¥.7) (X.F) (¥W.£08) (T.F)) ]
=eva1[e§;((X.T)(Y.T)(X.F)(FN,fng)(YOF))]

=1

Thus unfortunately, these two chains of reasoning lead to different
results; that described in 3.1.1 is short, lucid and wrong whilst
that of 3.1.2 is tortuous, fails to exploit the intuitive meaning of
LISP but is right. The intuitions which make 3.1.,1 seem correct I
shall refer to as "denotational", those used in 3.,1.2 I shall call
"operational®™, VWhat the above shows is that denotational and
operational thinking are not necessarily congistent with one anothes.
It turns out that denotational thinking can be 'debugged! so that it
becomes in harmony with the interpreter whilst still possessing its
erigp and lucid quality, most of the rest of this thesis is devoted to

doing this (and proving that it is done successfully).

¥hy/
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Why should one be interested in the denotational intuitions about LISP?

There are two (related) answers to thiss

1) When it worke, denotationsl intuition is & very powerful way of

2)

‘seeing' facts gbout LISP. Tor example it is much easier to

apprehend directly the truth
\/xo xm[atom[x]~>x;T» cons[car[x];cdr[x]]]
than to follow the evaluation of

(corn{ (aToM X)X)

((quore T)(cons(car x)(cIR x))))

on the interpretsr. Thus when one is trying to formulate
rules of inference for reasoning about LISP it is helpful %o

know which part of one's intuition to trust and which to reject,

Whan we read the definitions of the functions apply,eval,etc.
we feel that in sowe sense they are ‘right'. There ig some-
thing against which we judge these functions and cur intuition
tells vs that this thing is in harmony with them. It would e
quite possible for apply,eval,etc. not to satisfy us (e.g. if
thers were & misprint in their definitions) and then we would
reject them as ‘wrongt. This thing, which ig prior to the
interpreter, is (I contend) the basis of the denotational
intuition of LISP and it needs to be laid out in the open so

that/
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that any errors it might lead us to are brought to light.

3.2 Some intuitions about LISP

I want now to lict three denctational intuitions, I1, I2, I3, I have
about LISP, These intuitions certainly are not exhaustive but they
are particularly important and it is not clear at first sight to what
extent they are consistent with operational intuitions as expressed in

the manual interpreter (i.e, apply,eval,avcon,evlis,etc.).

Il There are two kinds of expressions in LISP, forms and
functions. Some forms have a value which is then an
S—expression, other forms are undefined and have no value
(e.g. car[NIL], 1label[f;£][NIL]). Functions denote
partial mappings from S-expressions to S-expressions;

they may have one or more arguments.

I2, The value of a form fn[e1;...;en] is got by applying (in
the mathematical sense) the mapping denoted by fn to the

values of ©1reeer® o

I3, The denotation of & function Label[f;)\[[xis...;xn];e]]

is & mapping f which satisfies the equation
f(x1 s ooo,xn)"-:e

One can use I1-I3 in &n extremely loose way to evaluate foims. For

example/



example, to work out the value, v say, of

Label[; AM[[x]:[aton[x]~ x; T~ £[car[z]]]]][cons[1;NIL]]

we have v=f[cons[1;N1L]] by 13
=f[(1)] by I2
=f[car[(1)]] by I3
=r[1] by I2
=1 by I3

By meking I1.I3 precise one can convert informal ‘*proofg' of the

above form into rigorous, formal proofs.

One reason why it is not cbvious that I1-I3 are consistent with the
interpreter in the LISP Manual is that mappings are usuelly infinite
objects and mathematical applicafion and equation-golving are not
necessarily effective processes. Effective interpreters must mani-
pulate finite representations of mappings and try to mimic application

and equation=-golving in finitistic terms. Becsuse of this, if one

takes the manual interpreter as a definition of LISP then I1-I2 are
not immediately aveilable for use, Since we want to exploit these
intuitions in ressoning ebout LISP (e.g. see above or [ 3 ]) and

since actuel LISP systems are (loosely) based on the manual interpreter

it is useful to attempt & reconciliation between the denctational and

operational aspecis.

To/
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To do this I formalize both aspects (in 3.4, 4.2 respectively); to
formalize the mathematical semantics I use techniques due to Scott
and Str&ohey-[QZ]— these &re the only satisfactory techniques I have

heard of.

3¢3 Introduction to the Scott and Strachev approsch to Semantics

The basic idea of this approach is to "extend BNF to semantics"”.

The meaning of a language ias described by & sequence of equations whose
left hand sides consist of the various expressions in the language and
whose right hand sides give the corresponding meanings. The original
thing about the approach is the nature of these meanings and the
assunptions made about the various sets in which they occur.  These
agssumptions or axioms are rather subtle and at firgt sight can appear
ad hoc and &rbitrary. Considerable work has shown thai in fact the
axions are congistent with intuition; indeed not only are they that
but they capture in asn amazingly concise and elegant way Just enough
of our intuition to allow useful results to be cleanly proved. To
fully motivate and justify the axioms would take & lot of space and in
any case it has been adequately done elsewhere (see e.g. ﬁ 9], [20]).
Instead I shall just list the assumptions and sketch the intuitions

they axiomatize.

The kind of descriptions advocated by Scott and Strachey are often
called "denotational' or “mathematical® semsntics. Using such a

description/
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description commits one to regarding meanings as mathematical objects
and the relation obtaining between an expression and its meaning as
being a relation of denotstion holding betwsen the expression and the
corresponding object. Because of I1 above this commitment is just
what is wanted here, however, it is possible that in other langusges
one may feel that it is unnatursl to regard programs &s denoting any-

thing and in that case & denotational semantics may be inappropriate.

3.4 Scott's Axioms: preliminary motivation

I said earlier (in 13) that I thought that the denotation, f, of

Label[f;)\[[x1:¢..;xn];e]] should satisfys
f(x.',o&o,xn)::e (1)

Now there could be many f's which satisfy this equation and if so how
are we to choose among then? Well, given certain plausible assumptions,
it turns out that there is always a unique least Solution of (1) (where
I mean "least" in the sense of the inclusion ordering, & , on partial

functions), Now there does not seem to be snything more in the neaning

of Label over and gbove the requirement that (1)is gatisfied hence f
should net have any properties not forced on it by (1) and so the least
solution would scem to be the one wanted. Although this argument is
rather weak, thore is considerable evidence (e.g. in [2]) that not

only are least solutions of recursion equations the ones really intended
but also analysing recursion in this way gives one enormoug technical

benefits/



benefits,

The point of the above is to show the usefulness, for semantics, of
focussing on the order relation which exists naturally on the set of

denotationg of functions.

Consider now the set of denotations of formg; 4if a form is defined

it should denote its value - &n S-expression - but what if it has no
value? Here, perhaps, is & case of an expression which cannot
naturally be said to denote anything. It turns out to be very con-
venient (and not too unnatural I find) to introduce an ‘undefinedf
object L which undefined forms can denote, Any S-expression ig more
defined than the undefined objsct ¢ this intuition can be expressad
by introducing a relation & (read "is less defined than") such that

L E A for sl1 S-expressions A,

Thus on the set of denotatiocns of forms and also on the set of
denotations of functions there is & relation = , and in both cases it
expresses 8 notion of definedness. In fact on many gets of interest
such & relation & is naturally definable; in particular this iz so on
those gets which are composed of intuitively computable members - the
purpcse of the relation being to partially axiomsatize the computability
properiy of the elements, The first assumption of Scott's theory is
that all such feffective' seta are ordered by & relation L , and such

L 'g are not arbitrsry but satisfy certain axioms which I deteil below

(see/
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(mee Appendix 1 als0). To state these axioms I first need to give some

definitions.

%.5 Some Definitiong needed in order to state Scott's sxioms

3.5.1 Definition

A partially ordered get is a get D together with & binary relation

such that for all x,y,z € D:

(1) xSx
(2) xSy and yC z implies x5 2

(3) xC y and vy £ x implies x=y.

Remark: I shall use the symbolL for all such partisl orders, if
context fails to specify which particular relation & denotes

I shall use ED' I shall use x= yt mean y T x.

3e5.2 Definition

An element L of a partially ordered set D is a least or minimum

element if for all x ¢ D, L Cx,

Remark: I shall use . or (if context demands it) L p for such

least elements. They are 8lways unique if they exist.

3.503 D@finitiol}n

If X is a subset of a partially ordered set D, then z € D is said to

be/
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be an upper bound of X if for all x € X.x& 2z, If for every other

upper bound z' of X z S z' then 2z is said to be a least upper bound

(1ub).

Remark: It is easy to show that & set X & D has at most one least
upper bound which (if it exists) I shall dencte by LIox,
LdX or ;g o I shall sometimes say that X has a least upper

bound by seying that LIX exists or is defined.

3.5.4 Definition

A subset X of a partially ordered set D is said to be directed if it

contains an upper bound for each of its finite subsets.

Renark: If X is directed then X contains an upper bound of the empty

get and so is non-empty.
3.5.5 Definition
A Semi-domain is & partially ordered set D such that:

(1) D contains a least element

(2) Every directed subset of D has a least upper bound in D,

3.5.6 Definition

If D1'D2 are gsemi-domains and f: D1a->D2 then £ is monotonic if for all

X, ¥ €D

x & y impliea £(x) & £(y)



2T
f is gtrict if f(L)=L ,

3.5.7 Definition

If D1,D are geni-domaing and £ D1»>D2 then £ is continuous if

>
for 811 directed X € D, LI {f(x)|x ¢ X} is defined and equals £(LIX),

(1ce. £(IIX)=LIr(X)).

Remark: If f is continuous then £ is monotonic (Proof: Congider

directed sets of the form {x,y} QED),

3.6 Statement of Scott's axioms

30601 AXiOm

Effective sets are semi-domains.
30632 Axiom

Computable functions are continuous.

The notions of "effective" and "computable" are intuitive; using the
axioms consists in modelling data types with semi-domains and requiring
all admissible functions between data types to be continuous. I do
not intend to justify these axioms, this is done in [19] and O], 1
showed above thut the denotations of LISP forms and funciions were
ordered by a reldion S . It is easy to check that these sets,

together with & , Hrm gemi-domains. Axiom 3.5.2 serves to eliminate

very/
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very ‘uncomputable' functions from the theory. These functions, if
let in, would prevent certain theorems, which aire true of all
'reasonably computable' functions, from being proved. In fact I am
only resally interested in computable functions, but the theorems
needed are true of the wider class of continuous functions and this
clegs is nicer to work with. The situation is well expressed in the

following quote from Reynolds [19]:

"The fact that Scott's assumptions are weaker than the usuasl notion

of computability may be a considerable virtue. The generalization

from compubable to continuous functions is much like the
generalization from algebraic to real numbera. In both cases
one moves from & amall but subtle set, determined by & certain
kind of finite, implicit representation, to & larger but
structurally simpler set which can be constructed by limiting

processes.”

The "limiting processes" mentioned at the end of the quotaticn concern
further axioms, which Scott hes proposed, which imply that any
admissible function is a linit of computable ones. My purposes do

not reguire these extra axioms which, consequently, I do not stats.

Before giving an exsmple of a denotational semantics I need to describe

gome notation and give a4 few more definitions.

3.7 Some more definitions end notation

3.7.1/



3e7e1 Definition

Ir D1,D2 are seni-domains then D1 is a gub semi-domain of D, ifs

C
(1) D, & D,
(2) ._LDz..LD

1 2
C s e
(3) 1I£ x ¢ Dy is directed then L§)1x_ L52x

Remarks Thus a sub semi-domain of D is a subget which contains L and

is closed under directed unions.

3.7.2 Definition

Seni-~domaing D1,D2 are igsomorphic if there exist continuous functions

s, @t D,~>D, such that:

f: D,->D 5 1

1772

(1) For all x € D, g(f(x))=x

(2) TFor ally € D, £(gly))=y

Remark: If I, (or I) denotes the identity function on D and feg denotes
the function composition of g followed by £ then (1), (2) of

the above definition can be written as gef=J, and feg=Ij.

respectively. D1§D2 means D1 and D2 are iscumorphic.

3.7.3 Definition

If D,,D, are semi-donains let [D,~>D,]={f: D1m>D?!f ia continuous}s

order [D1->D2] by £ g <=> for all x € D,, £(x) & g(x).

Remark: It is easy to show that [D1—>D2) ordered by & is & semi-domain

and/
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and that if F is @ directed subset of it then:

Vixen o (UF)(x)=tr(x)

ZeT+4 Definition

If D1,D2 are gemi-domainsg then the product of D1 and I, DTXD2 is the

set. {(x,y)ix € D1 and y € Do} ordered by
(X1Y)E (x',Y') =z xt and yE !

Remark: It is easy to show that D1><D2 iz & seml-~-domain, thet
&J(xi,yi)m(%hi,%&i) and that the projection and pairing funciicng
are continuous.,

I shall denote the product DxD,..xZ, of I with itself »n>0

times, by Dn, Do={i$.
3.7.5 Definition

If D1,D2 are semi-domsins then the coalesced product D1®D2 is the

set kx,y)lx € D1 and y € D2} ordered bys

Z,WOE &',y =D xorvis L or (x Zx' end y T yt)

Remark: I do not use the coalesced product until 6.6.20 but I have

included it here because its definition belongs with the

V]

others in this section., Note that D1§ﬁ)2 is got from D1xh

by identifying with L all (x,y) such that x= L or y= L ,

3.7.6/
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3¢Te6 Definition

Let D,,D,,00e,D (1<n{ 0 ) be & sequence of semi-domains. Thon he
1205 p LS
separated sum :‘;%1])1’ is defined by:

n * ] ¢
b m{(i,xi))xi € D, and 1G4t U {4 (Y is digjoint union)
=1

n
S . = s =Y St S
&4 ig ordered by: LB (i,xi) and (1,xi) = (:j,xj) {=> i=j and x = on

2
Rewmark: 3-_2: D, can be pictured bys

n L n
D, D, D,

3677 Definition

D,4D.= <D

2
17727 3=173"

Remarks: (1) In pictures we have:

N

n
(2) Notice that El—hiibi ig not equal %o (‘"‘((Di'i"Dz)*%}’“)

3.7.8/
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30 708 D@finition

Ir D!,D2 are semi-domains then the coalesced sum D@D2 ia the seot

D, U D

Y s ordered by

xE yif x::J_D or Xa= “LD or (x,y € D, and = y)
1 2

or (x,v € D, and x & y)

Remarks D @1) can be pictured as:

VEAAIAS

. ° €1
1@1)2 is got from D.f#-D2 by identifying L , D.? .LD .

D

n
Agsociated with the sum :’%1 Di are some injection and projection

functions. Notations for these are given in the next definition.
3.7.9 Definition
Let D,,e.e,D. (1<n< 0 ) be semi-domains thens

1 n o=

n n
2] i 5.: = Z'
(1) For x, € Dj (1<3n) et (Xj i i=1Di) (j’xj) €=

3

2 J'x if x::(j,xj)
(2) For x € =D, and 1<j<n let ::IDJ

1=1"1 l L otherwise

n n
4 54 : S b4 >
Remarks: (1) The fmxct:ons % > (x ; in 521135_) D;j > D, and

. 2 - 4+ 18 ¢
X > leD;j’ i=1Di > Dj are continuous
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n

(2) 1f x; ¢ Dy then (x; in 0, | D=z,

Suppose x=f(x) is a recursion equation., I shall denote its least

solution by Y(f): the rigorous version of this remark now follows.

37,10 Dofinition

If D is & semi-domain and f € [D=->D], define Y(f) by:

v(£)= L") npol=CLem(L)

Remark: Here fnzfofO...*’f n-times, If D is not clear from context T

shall use Y,. Thig definition is valid since if f € [D—-)D]

D
then f is monotonic and L Ef(L) T f(s{))E... EeHDE,,.,

so {£3(L) [n30} is directed.

The following proposition shows that Y, as defined above, does indeed

extract least solutions of x=f(x).

3.7.11 Eroposition

(1) Y € [[D=>D]->D] (i.e. Y is continuous)
(2) £(x(£))=1(£) (i.e. Y(f) is & fixed-point of f)
(3) for all x € D, f(x)=x implies Y(£)= x (i.e. Y(f) ie the

legst fixed-point of f)

Proof

(1) I need tc show that if P < [D>D] is directed then gzgY(f)=r(LJF).

Now/
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Now Y(!IF)= ff L (LIFP)YR ()

and L(£)= n"Ofn (D)=L Hﬁf ()

go it is emough to show that for each n>0\(LJF)n£L)=éE%fnCi).
But (LIF)™(1)=((,, —fFf,i (f eFf ) (L)

e L i P ;
f1€F oo f:;eqF f1 aoe fn(i)

n "
ont S (D=t erroe D).

Now clearly ngf°...°f(i)E§ f%%F ces ~J g £420eef (L) and since F is
directed if f1,...,fn € P then there exists f € P such that
f1E f,..o,fn E £ and hence fLéF vec f €F 1 oooefn(“L)E g‘éﬁi‘ f°oeo°f(«£—)

1
also,.

(2) £(0(e))=(0 " (W)= CLe(s2())= T 2= (L) (as 2= L),
(3) Suppose x=f(x) then L Cx so £ (L) Z £(x)=f (£l e (x)se.)=x hence

0o
= on(—t-)': x i.e. Y(£)E x,

Q.E.D.

When I explain recursive definitions in terms of solving equations, Y

will be used to get the sgolution.
3.7.12 Definition

A seni-~-domain of the form:

x,/



35w

x, X, X3 .
\\l/
L
is called flat. D is flat if and only if x,y e Dand x = y => x= L
or x=y, If S is a set thenflat(S) is the semi-domsin cbtained by

adjoining "L to S and imposing the ordering L Zx for all x € S, More

precisely flat(s)=8 U {1}, V z,y € flat(S).x =y <=> = L or x=y.

Remark: The set of denotations of LISP forms is flat(<swexpression>).

2.7.13 Lambda notation

If D1’Db are semi~-domgins and E(t1,...,tn) is an expression which takes

values in D2 when variables t1,...,tn range over D1. Then

- : . n
)\t1...tn. Dye B(%{s00e,t ) denotes the function £3 DJ->D, such

th&t f(X1 I A X o,xn)=E(X1 geo ,Xn).

Remarks: (1) This is a notation of my metelanguage (not of the "LISP
metalanguage" i.e. M-expressions) it should be distinguished
from LISP functions of the form )\[[x1;...;xn];e]0 The
semantica to be presented will connect up these two uses of

)\ and describe the LISP metalanguage (M-expressions) in ternms

of my metalanguage.

(2) T shall sometimes omit the type indication ":D," if it

is clear from context.

(3)/
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(3) I sball sometimes use (t1,oao,tn)'“> E(ti""’tn) as an

infix version of >\t1oectno E(t1,eooytn)c

Z.7e14 Svyntactic notation

I want to use the kind of BNF notation used by Scott and Strachey. I
think that for my purpeses it is rather more lucid and technically
convenient than standard BNF., 1In this notation the definition of the
syntactic class <functiond of the LISP 1.5 Manual (see p.9 ) could be

phraseds

Meta veriables

e ranges over <formd>

fn " *  <function>
x " " <identifier>
vl " " <Lvar listd

Syntax equations

fn 2= x | A[vise] | Label[x;£n]

vl $i= [xO;...;xn]
Thus such a definition consists of two parts:

(1) A get of meta variables (e,fn,x,vl, in this case) together
with the syntactic classes they range over (<form>,<function>,

<identifier>/



{identifierd,<var list> here).

(2) A set of BNP-like equations specifying the structure of the
syntactic classes being defined (<functiond, <var 1istd) in
terms of assumed known classes (<form>, <identifier>)., Sub-
gsceripts on the meta variables are used to distinguish
different occurrences of the same meta variable in a single
expression. Thus if n ranges over integers then
@ $t=n n,e8en, defines e to range over all sirings of

integers but e 2¢= ne.e.n defines e to range just over

palindromes,

3.7.15 Standard syntactic classes

Let {identifier>, <S-expression> be the syntactic clagses defined in ,
the LISP 1.5 Manual., Thus {ideniifier> consists of strings of
numerals and Jlower case letters in which the firét charecter is a

letter and

{S-expression> ::= <{atomic symbol) }((atomic symbold> .<stomic symbol))
(where <atomic gymbol> consists of strings of numerals and upper case

letters in which the first character is & letter).

I shall use three mata variables x,f,z to range over {identifier>:
% will be used in contexts where the identifier is & form, f where it is

& function snd z vhere it could be either.

1/
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I shall use the meta variable A to range over <{S~expressiond,.

%. 7«16 Standard functions on S-expressions

In order to explain semantically expressions such as car[cdr[NIL]]
it is necessary for the standard functions car,cdr,cons,atom,eq to
be defined on S=flat(<S-expression>) rather than just on <S-expressiond,
then car[cdr[NWIL]] denotes car(l)=L ., I am going to use the same
names for the standard LISP functions and their meanings (as I did in
the last sentence), no confusion should reault because in LISP square
brackets [ and ] are used whereas in my mets language I shall use
round brackets ( and ). Thus car[cdr[NIL]] is a LISP form which means
car(cdr(NIL)). Note that the so called LISP meta language of the
manual, - i.e. the language of LISP M=expressions, is my object
language, when I use "meta language" I mean my meta langusge not
M-expressions.
Now define: car:iS->S
cdr: S->S
cons? S2—>S
atom: S->S

eq: 82~>S

vy/
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L if t=L or t is an atomic symbol

by ear(t): {

A, if tz(A1 .A2)

1
L if =L or t is an atomic symbol

cdr(t)= {

A

- if t:(A1 .A2)

[ L if =L ort,=L

cona(t1,t2)= ! 2
(t‘i . t2) otherwige

L if t=1L
atom(t):lfl‘ if t is an atomic symbol
F if t is composite (i.e. of the form (A1 .AQ))

Lif t1=.l_ or t2=_L or 1:1 ia composite or t2

is composite

eq(t1,t2)= T if t,,t, are atomic symbols and t,=t,

F if t1,t2 are atomic symbols and ‘a,',l-tz

3.7.17 Conditional expressions

If tyqstipsecert pt o €S, where S=rlat(<S-expression>), then

(1:11-* tioreeest 4= tnz) € S is defined by induction on n as follows:

T —
t12 if t11~T
n=13 (t“—» t12)= L otherwise
t if ¢, .,=T

12 1
BAL (84 brgrbpg™ By eeeibyy™ Bp)= (b Bpprenantyy™ Bp) 28 £,=F

L otherwise

Thus/
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Thus (t,,= ¥ypreee,t = t )=t 5 <> ((1im) => t, ;<F and t =T)

ni
Also let

(t11-‘ t121‘¢01tn1~’ tnzftns)z(t11_’ t12yboe,tn1"’ t'nzyT". tn3)
so in particular (with n=1)

(t“—» t12,t13)=(t“» by 00T t13)=if tyq then t,, else t,..

3.8 An exsmple: a naive denotationsl semsntics of LIS

3.8.1 The semi-domains of denotaticng and environments

Reecall intuition I1 of 3.2; formalizing this we see that a form
denotes & member of S=f1at(<S—expression>) and a function (being
computable and hence continuous) denotes & member of [S°->S] (where

n is the number of arguments it takes). Since we want to handle
functions of arbitrary numbers of arguments we need to take
FUN:&%%[SH;>S] as the semi~domain of denotations of LISP functions.
Thus a LISP expression, whether it be & form or & function, denotes a

member of D where

D=S+FUN
S=flat(<S-expressiond)

ac
FUN"niﬁ s™ss]

Vhat I have just said is not quite right: what, for example does the

form f[x] denote? VWe cannot answer this until we know an environuent

which/
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which tells us what the identifiers f and x dencte. Such an
environment is & map r¢: <identifier>->D, it is desirable that it ias
computable so we should like it to be continuous, this is made possible

with minimal ad hecery by letting
Id=flat(<identifierd)

and then requiring »r € [Id~>D]¢ Thug the semi--domein, Envr, of

environments is given hy:
Envr=[Id->D]

Now I can patch up the above remarks about what forms and functions
denote to take into account of free variables. The denotation of a
form or function is a function of the environment thus the correct
semi~domains of denotations are [Envr->S], [Enve->FUN] for <form>,

{function> respectively where

D=S+FUN
S=flat(<S-expression>)

(v 4]
FUN=_2., [§755]
i=1
Here is some notation which I need later on.

(1): Given an r € Env, x € Id, t < D let (t/x)r be the result of

updating'r so that t is assigned to x. More precisely

(t/i)r=)\x’. (if x=L or x'= L then Ll else if z=x' then

t else r(x))

(2)s/
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(2): If t ¢ S then (t/x)r is an abbreviation for {(t in D)/x)r and

*

if T ¢ FUN then (F/f)r is an abbreviation for ((F in D)/f)r.
(3): Suppose t1,...,tn € S and ¥ ¢ FUN then let

F(byyeve,t )=F | [s"38] (byreeert)

Then F(t1,...,tn) is what you would expect when it makes sensge

(i.e. when F takes n arguments) end L otherwise.

3.8.,2 Provisional syntax of pure LISP

The gyntactic definition of pure LISP I em geoing to use for the tine

being is given below in the notation of 3.7.14. 1In 3.13 I amend this

syntax slightly.

Meta variables

A ranges over <S-expression>

x,f " " didentifier>
e " " <formd
fn " " <Lfunction>

Syntax equationg

A lx ,fn[e1;...;en] l[e11f'e12;...;en1-»en2]

@
o0
L3
i

H
=]
(2]
i

carl cdrl cons’ aton qu lf}

)y [[x1;s..;xn];e]| Label[f;fn]

Remarks/
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Remark: I hope it is clear that this definition amounts to the same

thing as the one in the Msnusl.

%.8.3 The inadequante semantics

I am now going to define the denotations VEeE(r), W{fn}(r) of forms

e and functions fn relative to an environment r. The 'emphatic!

brackets E, B are just an aid to the sye, they always encloge

expressions from the object langusge. The semantic functions V,W

which map expressions to their denotations are of type Vi <form>—>[ENVR~>S]
Wi <functiond->[ENVR->FUN]

regpectively. They are defined by structural induction with the

following semantic equations which I give and then explain.

Sementics (Pirst attempt)

Denotations: D=S+FUN

S=flat(<{S~-expressiond)
O
n
FUN:éE%[S >3]

Environnents: Envr:[Id—>D]

Semautic functiong: Vi <form>=->[Envr->S]

Semantic/
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Semantic equations: W: <functiond->[Envr->FUN]

(s1) - vial(r)=A
(s2) vz (r)=r(x) | 5
(s3) vEfn[e1:.,.;en]}(r)s.-wifn}(r)(vEeJ(r),...,V[enl(r))
(s4) V{[e11~»312;...;en1~*e#z]](r)m(vge11](r)*V§e123(r),...,
vle_,1(x)-7e_,1(x))
(s5) Wicarkr)=(car in FUN)
wlcar¥D)=(cdr in FuN)
¥icons}r)=(cons in FUN)
wfatomn)=(atom in FUN)
wleq}(r)=(eq in FUN)
(s6) wl£)(z)=r(s) | FoN
(s7) WE)\[[x1;...;xn];e]}(r)m>\t1...tn:S.V[eﬂ((t1/x1)...(tn/in)r)

(s8)  wlrahei[f;£n]}(x)=Y( A F:ruw. wlrn] ((F/£)r))

Explanation

(S1) says that S-expressions denote themgelves in all environments

(S2) says that, relative to an environment r, a form variable x denctes
the S~expression it is ‘bound’ to' in r. If x isn't bound to an
S-expression but to & member of FUN then x denotes L in r. This
lest remark corresponds to the “JS" in (82).

(83) mzkes precise intuition I2 of 3.2, Notice that by the convention

described at tae end of 3.8.1 {33) is really:

v/
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Vieale, ;.. 50 1 (x)=ilen}(z) | [s">s1(vle,1(x),. 0., Ve }(x))

(S4) just says conditional forms denote conditionals.

(35) says that in all environments the standard functions get the
appropriate meanings.

(S6) is analogous to (S2): a function variable f denotes, in r, r(f)
if this is & function and L otherwise.

(87) connects the A notations of the object and meta languages. It
says that in r A [[x1;..e;xn];e] denotes the function f3 S"->S
which maps (t1,...,tn) to the value of e in an environment in

which x, is 'bound® to t Note that by the convention described

il
at the end of 3.8.,1 (87) is really:

w{)\[[x1;...;xn];éz(r)=)\t1...tn;s.v§e}(((t1 in D)/x,)...((t in D)/xn}r}

(s8) makes precise intuition I3 of 3.2 and also the remarks about least
solutions of recursion equations made in 3.4. Label[f;fn] denctes

in r the least solution of the equation
Fefen] ((7/£)r)

If fn= A [[x1;...;xn];e] then this can be written as:
F(t1,...,tn)=VEe]((t1/x1)...(tn/in)(E/f)r)

which is & precise gemantic analogue of f[x1;...;xn]=e. Note

that the conventions at the end of 3.8.1 mean that (S8) is really:
wltevel[£;£0]](x)=Y(\ F:Fun. ¥tn] (((F in D)/f)r)).

3.8.4/
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3.8.4 Some example calculstions of denotationg

I shall use some of the examples below to illustrate certain

inadequacies of this semantics,

Let wfn:Label[f;f]

we =Lebel[f;£][NIL]

Example 1 let e=cons[1;NIL;NIL]
Then Vie](r)=Wicons](x)(Vi1}(x),viriL](z),VINIL](2))
=(cons in FUN) ,[SB->S](1,NIL,NIL)

= L ((cons in FUN)I [SB->S]£ L <=> n=2)

Example 2 let fn=wfn=Label[f;f]
Then Wifn}(z)=Y(\ F.[£}((#/£)r))
=Y(\F.F)
=D Ovr. Q)

= L

Example 3 let e=we=wfn[NIL]
Then Vie](r)= L (NIL)=.L

The following examples come from the discussion in 3.1, "fn" is used

as an identifier ¥fn,", “fn." as names for M=expressions.
2 3

Example 4 let e=\[[x];NIL][we]
Then Vie](r)=( A t.NIL) (L)=NIL

Exauple/
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Example 5 1let fn2==>\ [[X]i[Y"’ 15x 23T\ [[y];fn[y:l][T]]]

(fn2 was previously defined in 3,1)
Then w[fnz}(r)zkt.(r(y) 5= 1,
t -2,

T = (Nt'.x(fn) | FUN(t")) (1))
= >\t.(r(y‘) ' S- 1,
t =2,

T - r(fn) l FUN(T)).

Bxample 6 let fn,=label[fnifn,] and (y) | s=F (fn, as avove)
Then w[an](r)zy(X Forfen, 1((#/tn)r))
=fen, J((len, J(z)/tn)r) (as ¥(F)=F(X(F)))
=Nt (F 1,4~ 2,1 Wlen 1 (x)(1))
= At. (4= 2,1 wfen, ] (r) (1))
=Nt (t= 2,1~ (P 1,7 2,,,.))

= )\to(t"’ 2yT~" 2)0

Example 7 1let e=\ [[y],an[F]][F] (fn3 as above)
(This is the e defined in 3.1)

Then V{e](r)=( X t {ens [F1]((4/5)2)) (¥)
Men, 1 ((#/5)r) ()
=(F- 2,T 2) (by example 6)

=2 ¢

Examples 5,6,7 show that this semantics formalizes that intuition used

in/
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used in 3.1.1. Examples 1,4,7 show different ways in which the
semantics diverges from the behaviour of LISP as it runs on actual

machines. I shall explain the differences in detail:
Example 1t e=cons|1;NIL;NTL]

Then apply[CONS; (1 NIL NIL);al]=cons[1;NIL]

80 in real LISP e evaluates to (1).

Example 4: e=X[[x]; NIL][1avei[s;£][NIL]]
The evaluation of this on an actual LISP system never
terminates since arguments are evaluated before being
bound on the alist and the evaluation of Label[f;f][NIL]
does not terminate. The non-termination of e is not
obviously forced by the manual interpreter for we have the

calculation:

evall ((LAMBDA(X) (QUOTE NIL))({LABEL F ¥)NIL));a]
=apply[ (LAMBDA(X) (QUOTE NIL)); evlis[(((LABEL F F)NIL));al;a]
=evall (QUOTE NIL); pairlis[(X); eviis[(((LABEL F P)NIL));al;a]]

=NIL

Thug the manual interpreter is not a good specification of
actual interpreters, it ig for this reason that I do not use
apply,eval,...ctc. as & formalization of my operational

intuitions about LISP, to find out what I & uvsedsee 4.2.

Example/
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Exanple 7: e:)\[[y];fns[F]][F], fn3 as in example 6,
The explanation of how e evaluates in practice was given

in 3.1.2.

3.9 What can be done about the wrong denotstions assigned by the naive

gemantics?

In 3.8.1I formalized a denotational conception of pure LISP,
unfortunately as the examples of 3.8.4 show, this formalization doves
not correspond to reality (as defined by actual LISP systems). There

are three possible moves I could now make:

Move 1: Mongterbarring

I could ciaim that examples such as exl, ex4, ex7 of 3.8.4 are
pathological cases, that one is only interested in the semantics of
gengible programs and if "monsters" such as these creep in it is due

to sloppy syntax or some such thing. This move is & use of the "method

of Monsterbarring" described in [4 ],

Move 2: The implementers got it wrons

I could claim that my semantics formalizes the intuitive description
of LISP given in the Manual and so implementations which are not in

accord with it (e.g. the msnual interpreter) are just plain wrong.

Move 3: My mathematical intuitions are wrong

1/
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I could admit that my semantics does not describe real LISP (though
it may describe a beautiful"platonic' LISP), That, like it or not,
LISP programs behave as they do and if a semantics‘is to be at all
ugseful it must help with deductions about the real thing and not the

objects of theoreticians' fantasies.

To decide which move to make I can apply the thought of chairman Mao

Tse Tungs

"If a man wants to succeed in his work, that is, to achieve the
anticipated results, he must bring his ideas into correspondence
with the laws of tle objective external world; if they do not
correspond, he will fail in his practice. After he fails, he
draws his lessons, corrects his ideas to make them correspond to
the laws of the external world, and can thus turn failure into
success; this is what is meant by "failure is the mother of

success" and "a fall into the pit, & gain in your wit".”

Moo Tse-Tung
"On Practice" (July 1937)

Selected Works, Vol.!,pp.296<97.

Thus I must bring my semantics "into correspondence with the laws of
the objective external world" and so move 3 is the one I must neke.
Beside Mao Tse Tung thought there are other arguments against moves

1 and 2. Against move 1 we have the unpleasant fact that although

"monsters"/
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“monsters" nay not arise by design they may well arise by accident and
80 we need our semantiés te tell us what they do =zo that we can find
out thgt it is wrong. Againgt move 2 T think we must accept that
even if implementers were initially wrong, we have now evolved to g
state where LISF is understood as corresponding to what they have
implemented and so describing LISP should be describing that. To
"turn failure into success" I do not need to completely abandon
denotational intuition, I just need to 'debug' it by isolating those
agpects that are misleading and patching them up. In doing this care

must be taken to preserve as much a&s possible of the naive intuition's

ugeful features.
What are these useful features of our intuition? Well, I believe they

include I1-I5 of 3.2, Which, to briefly recap, are:

I1,. Forms denote S-expressions if they are defined. Functions

denote mappings (of various arities) from S-~expressions to

S-~expregsions.

I2. fn[ef;...;en] denctes the result of applying the wapping

denoted by fn to the denotations of €,5,ece,2
1 *“n

13, Label[f;)\[[x1;...;xn];e]] denotes the (lesst) solution of

the equation:
f(z1 xxx ,Xn)r:e

Before/
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Before going on to show how to construct & correct semantics which

exploits Ii~I3 I should like to describe yet another deficiency of

the incorrect one in 3.8,

310 Simultaneous recursions: a defect of the lancuage described in 5.8.2

Suppose we wanted to work out the relation between meanings assigned by
(51)=(S8) of 3.8.3, end meanings computed by apply,eval...etc. where

the meanings of these are worked out from the semantic equations: we
would be in trouble because these functions are defined by a simulianeous
recursion, but Label only allows us to construct expressions corres-
ponding to recursion on a single variable. To overcome this one could

introduce & sort of generalized Label expression of the form:
Label[[f.];eao;fn];[fn,';ooo;fnn]]

which would allow simultaneous recursions to be expressed (s8) could

then be extended to:

W[Label[[f1:...;fn]:[fn1;..ogfnn]]](r)
=Y(%\F1e.an.FUN}(WEfn1]((F1/f1)o..(Fn/fn)r),...,W{mng((F1/f1);;o(Fnyfn)f))}

The Y here is of type [FUN'=>FUN"]->FUN" end
Label[[f1;.o.;fn];[fn1;..,;fn1]] denotes an n-tuple of functions whose
components could be got at with projection functions. Notice that
example 1 of 3.8.4 shows that V and eval compute different values, thus
even without extending LISP as above we can see that V and evsl are not

the same, Example 4 of 3.8.4 shows that eval, when interpreted via

(s1)/
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(s1)-(58), does not correspond to actual interpreters. Thus (S1)-(S8),
apply,ovales.ete. (interpreted via (S1-(S8)) and real implementations

provide three different accounts of pure LISP.

3.11 ‘'Debugeing® the gemantics of 3.8

There are three features of real LISP which are not reflected in the

semantics above, these are:

(1) In real LISP one can give a function too many arguments and, as

lceng a3 they are all defined, no harm is done.

(2) In real LISP if a form e; has no value then neither does

fn[e1;...;ei;...;en] for any function fn.

(3) In real LISP variables are fluid - that is they are lcoked up in
the environment when they are evalusated (not when %ha (outermost)

function in which they are free is evaluated).

The way in which the above semantics fails to reflect these is
illustrated in examples 1,4,7 of 3.8.4 respectively. Although it is
clear that (51)=(S8) fail in the three ways ebove it is not so obvious
that they only feil in these ways. This is in fact the case as ig

shown by the main theorem belows

I shall now describe how to modify (S1)-(S8) to incorporate (1)=(3)

above,

(1):/
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(1)

Here the problem is that in real LISP functions are variadic - it is
nore correct to think of them as mepping strings of Seexpressions to
S—expregsions than of being of any fixed arity. To incorporate this,
FUN must be changed from £§1[sn->s] to [s*->S] where S*~ the semi-

domain of finite strings over S- is defined in the definition below.
3,111 Definition
If Dis & semi-domain define the semi-domain D¥* by:

D*=n‘§onn

Remark: The D° of this sum provides an ‘empty' string —LD9= J.iDO
which I may denote by (). If (x1,o..,xn), (y1,.e.,ym) € D*,

Then (x1,ooo,xn) E (y1yooo’ym) <==> n=m and \7’ ioxig yi°

If £: D*->D' (where D' is some semi-domain) and if ZyseessX €D then
f(x1,...,xn) is to be interpreted as f(((x1,...,xn) in D*)).
The standard functions, car,cdr,cons,atom,eq can be extended to S¥ in g

natural way (aee below).

(2)s

To fix this case we need to ensure that whenever an argument denotes L
the result of applying a function to it denotes L also. This is
already the case for car,cdr,cons,atom,eq so0 we need only consider

functions/
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functions of the form)\[[x1;...;xn];e] and Label[f;fn]. It turns

out that fixing %.-expressions automatically fixes Label-sxpressions
(see corollary 4.3.4) so we just need to arrange that the semantic
equation for A [[x1;...;xn];e] always assigns it a strict function.

Now recall that, because of (1) above, A\ [[XT;...;xn];e] is going

to denote & member of [S*~>S] (given an environment) thus we &also

need a new )\mnotation (in our meta language) to enable us to talk
about functions in [S*->S], this is provided by the following definition
which algo provides & tool for writing a correct semantic equation for

%'-expressinns and also for extending the standard functions.

3e11.2 Definition

If D1,D2 are semi-~-domeins and E(t1,;..,tn) is an expression which

takes values in D2 vhen varigbles t1,...,tn range over D1. Then

Atyesst 2 D, E(%,,000,t ) donotes the function f3 D¥->D,

such that

E(tyyeeest,) 1f t=(t,000st 4000yt ) where mdn

£(4)= and xi#.i. for 1<im

L otherwige

Remark: I shall omit the type indication “:D1" if it is clear from
context. Thus Q§t1...tn.E(t1,,..,tn))(x1,...,xm) is L if

i
mén or x,= L for some ¥<ifm otherwise it is E(x1""’xn)'

Now/
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Now (87) can be modified to:
WE)\[[xf;...;xn];e]i(r);ﬁt1...tn.Vge]((t1/i1).o.(tn/kn)r)

In fact another modification will be forced on ug by the steps needed

to cope with (3), I describe these steps below.

(3):

This fluid property of LISP varibles is the hardest property of all to
handle consistently with I1-I3, To asee what to do consider again

EX7 of 398.43

e=)\[[y];fn3[F]][F] where fn3 is fn defined recursively by:

falx)=[y->1;
X223

1>\ [[y]; £nly]1[1]]

g0 the value of e is the value of fn[F] when y=F,

What goss wrong in my gsemantics is that when evaluating fn[F] the

free y gets looked up in the environment before the equation is
'solved' (i.e. Y is applied) and this is too early since at that time
the binding of y to T by the evaluation of)\[[y]:fn[y]][T] hag not et
occurred. We need to fix things so that Y can be applied Qgiggg free
variables are bound and if after that any variableg are still left free

their binding con then be done. This sounds rather obscure I know -

it/
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if you are getting confused skip to the "summing up" below. To
continue: in order to be able to plug in an environment after
applying Y we need Y's application to yield something of type
[Enve->FUN], Now intuitively (i.e. by I3 of 3.2) to
produce the denotation of Label[f;fn], in an environment »r, Y should

be applied to
A PeFON W E e} ((B/1) 1)

However, as we have seen we want to put r in after epplying Y. To
do this I abastract out r, apply Y and then apply the resulting
abstraction to r te put it back in. To see what I mean consider the

expresaion:
(A): Y(AFP:sFUN, Ar': Enve w[en] ((F/0)2")) (x)

In this we have just what we want. Y is applied yielding something of
type [Envr->FUN] which is then applied to ». There is a snag though;
A F:FUN, A r's Envre Wien]((F/£)r!) is of type FUN=->[Envr—>¥UN] and
applying Y to this does not make sense. Now just suppose Envr wes of
type Id->[Envr->FUN] then we would be 0.K. for we would have the
expression AF: [Envr->FUN] A r': Enve.Wifn]((¥/£)r!) which has type
[Envr—)FUN]—)[Envrh>FUN] and so Y could be applied to it tc yleld the
required thing of type [Envr—)FUN]. The only snag of this move is
that it requires that Envr be of typs [Td~>[Envr->FUN] i.e. that Eavr
satisfy Eovrs={Id->[Enve->FUN]]. Mathematically, as long as we work

in Scott's framework and interpret "=" as "is isomorphic" this presents

no/
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no problems (though in every other framework I know it would ring the
death knell!); but more importantly is it consistent with our
intuitions about environments? Fortunately it is; in LISP environ-
ments are the logical counterparts of alists so we should be able to
see what the logical type of environments is by lookirng to see what

alists ought to denote. Congider the alist

((P. (raMBDA(X) (P Y))))

Intuitively it binds identifiers so it should be of type [Id—)?] -
what is "?"? Well, in the example above, it is the type of the

denotation of A[[x]; £[y]] and this, in the absence of knowledgze of

its (activetion) environment, denotes WE)\[[X]; f[y]]} € [Envr—)FUN],

thus ?=[Envr->¥UN] as desired. In 3.8.1 I took ?=FUN (well D
actually - but FON '¢ ' D) and that decision was the cause of ny
troubles; it was based on too shallcow an analysis of the 'meaning' of
alists (I was misled by ' A -calculus intuition').  Thus
Envr=[1a->?]=[Ia->[Bnvr->FUN]] - to cope smoothly with form as well as

function variables it is necessary to slightly generalize this

equation to
Envr=[I¢->[Envr->D]]
Summineg i

I have shown that to handle fluid variasbles a new semi=domain of

environments ig czlled for. I shall call this Env (to distinguish it

from [1d->D] which I shall continue to call Envr) then:

Env/
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There are two reasons given above why Env hag the right type:

(1) To enable minimal-fixed-point-extraction to be done before

variable binding.

(13) Because fluid-variable-intuition demends that alists denote

things of type [Id->[Env->D]].

Taking Env:[Id-)[Env—)D]] as the semi-domein of environments
necessitates changing (S2) and (S6) - the semantic equations for

variables = recall that these were:

(s2) VEx](r)=r(x)l S
(56) wif](x)=r(¢) | Fou

Now if r € Env then r(x),r(f) ¢ [Env->D] so r(x)l s, r(f)! FUN do not
make sense (and even if they @id V[x](r),W{f](r) would be of the wrong
type). We need the expressions on the right hand sides of (s2) and
(S6) %o be of the form r(x)(r') ’S, r(f)(r')l FUN respectively where

r' ig the environment at the evaluation-time (or activation-time) of X

and f - but that is just r so the correct equations are:

(s2) vEx}(r)=r(x)(x)] s
(s6) wlel(z)=r(£)(x) | FUN

Now also taking Env=[Id~>[Env~>D]] renders the equation

(s7)/
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(s7) WEN[[xg50005x 3000(x)= Aty oant ¢ 5.Tfe((t,/7) 0ue (v /x )r)

meaning”less since for (t1/x1)...(tn/xn)r to make sense (if r € Env)
tyyeee,t, must be of type [Env->D] not of type S. To fix this is

easy; clearly the mesning of constants is environment-indepéndent so

we can identify t € S with the constant function Ar.(t in D) e [Env->D],

The following definition and conventions make this precise:
3113 Definition

If r € Env=[Id->[Env->D]], v € [Env->D] and z € Id then

(v/2)r=Az's Id, (if 2= L or z'= L then | elseif z=z' then v else r(z')).
Remarks (v/z)r € Eav, The expression (v/z)r is continuous in v,z,x,
Recall that D=S+FUN,

3.11.4 Conventions

Suppose z € Id, r € Ew:[Id—)[Env-)D]] thens

(1) if t €S then (t in [Env->D])=Ar. (t in D)

and (t/z)r=((t in [Env->D])/z)r

(2) if v € [Env->FUN] then (v in [Env->D])=Ar.(v(r) in D)

and (v/z)r=((v in [Env->D])/2)r.

Remark: Notice that if r € Env, t € S, v ¢ [Env~>FUN] then
(¢ in [Env->0]) (=) | 3t in D) | St
(v in [Env->p]) (x) | Fm}:(v(r) in D) | FURev(r).

3,12/
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3.12 How interpreters do recursion

The purpose of this ssction is to motivate my addition of expressions

of the form tl[f;fn] to LISP.

If you examine how apply treats Label expressions you will find thats
applyl (LABEL F fn*);x;al=apply[fn*;x; ((F.fn*),.a)]

I can mimic this ‘'semantically’ with the equation:
(4) W'EL&bel[f;fn]j(r):W'ﬁfn]((W'{fn]/f)r)

Now this equation does not explain recursion in terms of solving
equations, i.e. in terms of Y, so it fails to reflect intuition I3.
However, it certainly does not defy intuitionjindeed, to some extent,
it formalizes the operational intuition we bring to bear when under-
stending the definition of apply. An interesting (and, as it turns
out, importsnt) question is: do the two analyses of recursion give
the same results? The answer is a qualified "yes" but I shall not
elaborate the qualifications here -~ they are dealt with in 4.5. To
moke the study of this question smooth I shall adjoin to LIS? & new
type of expreassion, r([f;fn], then }i[f;fn] will get a fixed point
analysis end Lebel{f;fn] one as in (A) above. I have allocated
meanings to rl and Label this way round firstly because for a lot of
teclinical work later I want to use analysis (A) and secondly because,

by convention, the symbol rx seens to adhere rather strongly to

fixpointing/
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fixpointing operations.

The fact that I need to use (A)fbr certain purposes shows that by
applying Mao Tse Tung thought and resisting monsterbarring (move 1
of 3.9) and my theoretician's arrogance (ﬁove 2) I have not only
entered reality but alsc given myself a powerful tool ~ a tool which
is not only useful for dealing with essentially fluid variables
(monsters) but also for simpler cases which could be handled correctly
by the semantics of 3%.8. Notice that (A), for its formation,
requires Env to be of type [Id—>[Env->D]], thus we could not even
formulate the question of whether (A) is understandable in terms of
Y if Envn[Idn>D] were taken, (A) iz a more interpreter-like
modelling of recursion and sudying it sheds light on the 'semantics!
of interpreting - in particular on the use of fluid variables for

implementing recursion.

3.13 Syntax of pure LISP

The syntax I em going to use from now on is (in the notation of

3e7.14)2

Syntax

Meta variables

A ranges over <{S-expression>
x,f " " <{identifier>

e ¥ % <{form>

14
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F ranges over <standard function>

fn n ¥ functiond

Syntax equationg

Al x] tale,5...5e ] ][e11-*e12;...:en14'en2]

[¢]
i

car }cdr} cons !atom ,eq

F, f1X[[x1;..¢;xn;e]l Label[f;fn] ”i[f;fn]

]
ot
i

Hy
=
o
.
i

3.14 New improved semantics of pure LISP

The semantics below should be read in conjunction with the notes that

follow it, I make use of Definition 3.11.3 and convention 3.11.4.
Semantics

Denotations: D=S+FUN
S=flat(<S—expression)
FUN=[S*=>3]

Environments: Envs=[Id->[Env->D]] (see note 1)

Semantic functiong: e +> fel: <form>~>[Enva>S]

(see note 2)
fo k> fo]: <functiond->[Env->Fun]

Semantic/
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Semantic equations:

(s1) fa)(x)=a

(s2) [x1(x)=x(x)(z) | 5

(s3) [rnles.eese JI(x)=lenl() (fo, }(x), .., B0 ()

(54) flogy=0pp3eense s e T a)a(le, 1) Loy 1), ene,fo  1(2) fo L (x))
(s5) fcar}(r)= \t.car(t) )

feari(r)= \t.cdr(t)
fcons](r)= Aﬁ1t2,cons(t1,t2) >(gee note 3)
fatom](r)= \t.atom(t)

[eq}(r):’ \A.t" tz'e‘I(t1 ’tz)

(s6) [£)(x)=r(£)(x) | ¥uN
(s7) ) [[x1;...;xn];e]](r)= At, ot s S{eﬁ((‘c1/x1)...(tn/xn):e)
(s8) [raveis;a]}(r)=Ern] (([£n]/£)z)
(59) EIJ. [£5e0]f(2)=Y( Avs [Bav->FON]. Azt: Bav.[en]((v/£)r))
(see note 4)
Notes

Note 1: To state the semantics I just need to know the type of Env i.e.
that 4if r,r' € Env and z € Id then r(z)(r') makes sense and ig
in D, Solutions of the equation Env:[Id—>[Env-)D]] are geni-
dorging, Inv, such that Env and [Idm>[Env->D]] are 1lsomorpiic.
Thug if Env is such a solution and f: Env->[Id->{Rav->D]],
g2 [Id->[Ehlvm>D]]->Env are the isomorpriems then r(z)(r') is

treally'/
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troally? £(r)(z)(z') and Az: Id.r(z) is identified with
g(Az: Id.r(z)). Because of these identifications I write
Env=[Id->[Env->D]] rather than Env¥[Id->[Bav-5>D]], The
equation for Env does not, & priori, fully specify it up to
isomorphism, thus there may be many non-isomorphic solutions
each yielding a distinct semantics. In section 6.7, I
congtruct the ‘obvious! minimal solution to Env:Id-)[Env—)D]
which is the one I intend, reasons and more details of this

c¢hoice are given in 5.2.

Note 2: I have not named the semantic functions explicitly
(alternatively: I have used invisible symbols for them!),
unless otherwise indicated I shall regerve V,¥W for those

functions defined by (S1)~(58) of 3.8.3.

Note 3¢ I &all use car,cdr,cons,atom,eq &s names for Lt.car(t),
At.car(t), At,t,.cons(t,,t,), Ateaton(t), At t,.eq(t,,t,)
respectively, Thus cons(1,NIL,NIL) makes gense and means

cons(1,NIL).

Note 4: Using the fixedpoint property of Y one can derive from (S9)

the equation of which {ri[f;fn]] is a least solution:

i/
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E;l[f;fnns'f( Avo Azt fen]((v/£)r))
=( Av. Axt Een]((v/8) ")) (XA ve At fen]((v/£)21)))
(as Y()=F(X(F)))
v N r'.Efn]((v/f)r')XE/J [£5£n]])
=)\r'.{fn}((ﬁfx[f;fn]g/f)r')
hence (510): Efx[f:fnlf(r)=ﬁfn]((§fi[f;fn]]/f)r)

This last equation (S10) looks like (S8) except that (ffn}/f) 1s
replaced by (Efx[f;fn]}/f). Note that [Labei[f;fn]] 1s not obviously
8 fixedpoint of (310). I don't know in fact whether it is or not

(see 8.3), If fn=>\[[x1;...;xn];e] then from (S10) we have:
E/i[f,fn]i(r)(A1,...,An)={e]((A1/x1)..o(An/xn)(ﬁfi[f;fn]i/f)r)

This shows that }j is enalysed semantically in & way harmonious with

intuition I3 of 3.2.

3,15 Example colculalion of denotations using the new improved semantics

I now apply the new improved semantics to examples 1-7 of 3.8.4 to
show that they get the rignt meaning. [ shall use whichever of ;A or
Label is convenient - th@e¢ fact that sometimes 1t 1s one and sometames

the other shows that both M and Label are useful.

Bxample
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Example 1 e=cons[‘i ;NIL;NIL]
[@](r)=(At1t2.cona(t1 ,tz))(‘! ,NIL,NIL)
=cons(1 ,NIL)

=(1)

Example 2 fn= /«L[f;f]
[enl=Y(\v. At [£}((v/£)r1))
=T( Ave Azt ~((v/£)r))
DO e (/D)) W)
=L (as for a1l n.(Av. A rtor((v/£)r)) (D)=L )

Example 3 e= ;u[f;f] [w1s]
fel(x)= L ()(vIL)= L

Example 4 e=A[[x];NIL][ M [£:£][w1L]]
fel(x)=0 M [[x];¥m]1(x) (L)
=(\t.NIL) (L)

= L (by definition of \)

Example 5 fn=\[[x]; [y~ 15x 257 A[[3]5£n[y]][2]]

(fn2 vag previously defined -in 3.1, fn € <identifier>)

[en,}(x)= At By 150 257 A [[]305] {211 ()
where r'=(t/x)m((>\r,(t in [Env->D]))/x)>

(by S7 and convention 3.11.4)
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= At (r(y)(z*) | 5~ 1,

t -2,

T = Qs Iy (s /7)) ()

= Ao (2(y) (=) | 5~ 1,
t -2,

7 ~ [ruly]3((/y)et))
= Mt (x(y)e') | 51,

t -2,
T = x(fn) (") (1))

whers r"s(T/y)(t/x)r
Example 6 fn3=Label[fn;fn2] (fn2 as above)

[£n,}(x)=Len, }((f£n,]/2n)x)
= A2 (=) | s~ 1,
% -2,
T - fen, J(z)(1))
where r“z(T/Y)r'

r'=(t/x)(ﬁfn2]/fn)r

= At (2(y) (z?) | s 1,
t -+ 2,
P -1)

(by exsmple 5 Efnz}(r")(T)=1)

Example,



Exanple 7 e=A[[y];en [#]](r]
Eeﬁ(r)=(2yt-ﬁf%E((t/y)r)(F))(F)
=Len J((#/y)e)r)

=1 (vy example 67)

Thus the examples which caused trouble for the semantics of 3.8 now
get the right denotations. Also, as these examples illustrate, it

is not much more difficult to work out denotations with the new
gsemantics, than it was with the old one, this reflects the fact that
properties I1-I3 are retained. I have not yet shown that if Lebel
(rather than ri ) is always used then these examples still get the
right denotations, this is because to work out things like [Labei[f;r]]}
I need to know more about Env than its type. Examination of the

detailed properties of Env is m&de in 5.2.

3.16 Yhy I have assigned the game mesning to errors and non-termination

The semantics just given has the property that forms whose evaluation
does not terminate (e.g. ﬁi[f;f][NIL]) get the same denotation (viz. L )
ag forms whose evaluations lead to an error (e.g. cons[NIL])o One
might fesl that errors and unending computations should be distinguished
semantically, but if one felt that one might then feel that different
¥inds of errors should be distinguished or that non-termination of a
subcomputation should be distinguished from non=termination of the main
computation. One has to draw the line somewhere and I have chosen to

draw/
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draw it between well~behaved programs on the one hand and ill--behaved
ones (whether the bad behaviour be due to non-termination or error)
on the other, Thus my semantics is not intended %o be defined on
badly behaved progzrams so they all get lumped together and assigned L

as their denotation.
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4, IS THE SEMANTICS RIGHT?

4.1 Introduction

I got the definition of [e],ffn] by 'debugging' the definitions of
VEe},WEfn} on examples, I now turn to the question of whether this
dsbugging has been completely successful. What I would like to do

is to take a well known LISP implementation and prove that it computes
the sawe values ag my semantic equationa. Unfortunately that task

is beyond me and T am going to have to perform & Jms reliable analysis.
What I have tried to do is to formalize the essential slgorithm
embodied in many actual interpreters and to compare that with my
senanticse. In order to make things mathematically tractable for me

I have had to express this "essential algorithn®™ in a rather abatract
form and this makes the gap between real algorithms and mine rather
wide. There is another, related, test I shall apply to my semantics
and that is to see if the functions denoted by the M-expressions
defining apply,eval,...etc. compute the same values &3 my semantics

i.e¢. whether

(4)  fapprylen*;(a,...4 )1a]l(x)=lenl (fa]) (4, .00,4)
(B) [evalle*;al}(zy)=lel({a])

where fn*,e* are the Swexpression codings of fn and e, [a] is the
environment naturally associated with a and Ty containg the definitions
of &pply,eval...etc. The precise formulation and answering of this

question/
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question is done in 4.8, however, I feel that this latter test is less
reliable than the former beceuse although (4) and (B) might be true
both sides of the eguations could be wrong but the errors cancel out
(e.g. if both sides of (A) and (B) were always . ). People who have
implemented erply,eval....2tc. have probably understood the
M-expression definitions of these functions with their operational
intuition rether than their derotational one. Thus to get the spirit
of the manusl interpreter it is bhetter to formalize directly what is
intended rather than to try and get 8 precise meaning via a possibly

wrong semantica of LISP,

In addition to its role in comparing my semantic equations with
reality, the abstract 'implementation' I am sbout to describe is also
a very useful eid to their mathematical anslysis. Thig is because it
formalizes our (i.e. my!) operaticnal intuifions sbout LiSP and so
makes that available for use in generating rigorous proofs. Without
such an aid many operationally obviocus results are rather hard to
prove. In 4,4 I describe a type of argument which I call "LISP-
induction" and which, jntuitively, is induction on the length of
computation., Now length of computation is an gperaticnsl notion and
gtarting frow sgemantic eguations it is not clear vhat it corresponds
to formally. Solving this problem is one of the useful roles of my

abgtract implementation « which I now get down to describing.

4.2 A formnliration of =ome operationsl intuitions about LISP

174
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I am going to describe a calculus vhome conversion rules are intended
to formalize the evaluation process described in the LISP 1.5 Manual.
At the end of 3.8.4, ag well as in 4.1, I said why I did not find the

definitions of apply,eval,...otc. an adequate formalizaticn.

To form the termg of this calculus I need a notation for denoting
environments. I could use ordinary alists {(as in the Nanual) but
this is messy becsuse it requircs ell Heoxpressions to be coded into
S—expreasions, Instead I have invented a littls language called

ALIST,

Syntax of ALIST

Meta veriables: a ranges over <alisgt> (see note 1 below)
A " " <S—expressiony
z " W {identifier>
fn " " <Lfunetion>

Syntax equation: a ::= NIL I(A/z)akfn/z)a (see note 2 bveliow)

Semanticg of ALIST

Denotations: Env

Semantic function: a »> fa]: <alist>->Env

Semantic/



Semantic eguationas

(as81) fr}= L (see nots 3 below)
(as2) [(4/z)al=(4/2){a]
(as3)  [(£n/z)al=(ftn}/z)[a]

Noteg

Note 1: <S~expression>, <identifier> and <{functiond> are as defined
in 307:15 a-nd 3.139

Note 2: I ghall abbreviate (E,/2z,),ee.,(E /2 INIL by (E,/2,)...(E /= }

—— 1 n' “n 17 FO
8o for example (fn/f)(4/x) means (fn/f)(4/x)¥TL. I may uue
x,f as well as z to range over <{identifier>,

Note 3: I use conventions 3.11.4 in these gemantic equations,

4.2.1 Definition

If a € <alistd, z' € <identifier> then a(z!') is defined by structurai

induction on a as follows:

1.

24

3e

Remark:

NIL(z')= L
((4/z)a)(2!)=if z=z' then A else a(z')

((£n/z)a)(z')=if z=z' then fn else a(z')

Thus a(z) € {1} U <S-expression> U <function>. Let
fa(2)] ve —L[Env-&l)]’ (4 in [Env->D]),(Efn} in [Env->s])

according as & (z) is L , A, fn so that gaé(z):{a(z)} (a quick

stmctural/



structural induction on a proves this).

Now let the meta varizble p range cver the set <term> where this is

defined bys
p.ii= A ‘(e,a)

I am geing to define & binary relation -> on <termd> ., p->p' (read

"p immediately reduces to p'") is intended to mean that, using the
algorithnm implicit in the mammal interpreier, p can be converted to
p's If p's are thought of as gstates of an sbsiract machine then p->p°
means that p' is the state immediately following p in any coapatation.

Before giving the formal definition here are some examples of guch

computations.

(1): (car[cdr[(1 2)]],NIL)
(car[(2)],NIL)

2.

(2): (N[[x];x][(1 2)],¥10)
(x,((1 2)/x)¥IL)
((1 2),((1 2)/=)N1L)

(1 2)

(3): (A [[x);carfear[x]]10(1 2)],510)
( carledr[x]],((1 2)/x)NIL)
(car[(2)],((1 2)/x)NIL)

2.

The/
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The individual steps in such computations will satisfy -> and %3
will denote the reflexive, transitive closure of =». =>, %> gre
defined by structural induction below; I shall first give the
definition then immediately follow it with & description of the

notation in which it is written,



I

4.,2.2 Definition

Define ~>, %> by:

Pi.

P2,

P3,

P4,

P5.

Pé6.

P7,

P8,

P9.

P10,

This
here
meta

vize

(4,8)=>A
a(x)=A (See ncte 1 below)
(x,8)=34

F(A1,.,.,An)mA

(F{Ai Seoe ;A-n] ,a’)">A
(\/i(ei,a)ﬁ>Ai) and (3 i.ei#Ai) (See note 2 below)

(fn[e1;.oe;en],a)->(fn[A1;,..;An],a)

(em1,a)&>T and ‘Vi<m.(ei1,a)*>F

([911~*e12;.°,;en1-'enz],&)->(em2,a)

a(f)=fn (See note 3 below)

(elayseeesa 1,a)->(enla 500054 1,0)

m$n
()\[[x1;,..;xm];e}[A1;...;An},a)m>(e,(A1/k1)...(Am/xm)a)
(Laver[£3en](A, 500058 T 0)->(fnl4, 500054 1, (£0/£)a)
(/1[f;fn][A1;..,;An],a)«>(fn[A1;.oo;An],(fA [£:fn]/1T)a)
<0, B D =58, 00 B b (see note 4 below)

T
#1ﬁ>Pn

definition should be largely self explanatory but in cage it is not
is a brief explanation. Each clause P1=P10 is a schema. The

variables in them range over the sets previously sssigned to them

V4
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A ranges over <S-expression> (as in 347015)

a " " alistd (as above)

x,f " " <identifierd> (as in 3.7.15)

F " " <standard functiond={car,cdr,cons,atom,eq}
e " " <formd (as in 3.13)

fn " " <functiond (as in 3.13)

p " " Cterm (2s above)

A schema of the form p->p' means that any instance of it is a vair for
vhich -> holds.

A schema of the form

conditions
p->p'

is & kind of rule of inference., It means that any instance of p->p'
which setisfies the conditions is a pair for which -> holds,

Each step in the oxample computations (1), (2), (3) above satisfy ->

Cee
(car[ecar[{(1 2)]],N1L)~>(car[(2)],NIL)->2.

Remark: ~> is determinigtic in the seuse that p->p' and p~>p" => p'=p".

Note 1¢ The reason I use P2 rather then (x,a)->a(x) is that if
a(x)= L or a(x)=fn then (x,8)=> L or (x,a)=>fn and I do not

want this.

Note/
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Note 2: The reason I have the condition "(3 i.ei%ﬁi)" in P4 i3 %o
exclude unending computations of the form
(fn[A1;,o»;An],a)w>(fn[A1;...;An],a)m>¢,.
and also to make -> deterministic ¢.g. I do not want:
(Labelff;fn}[ﬁ1:...;An],a)~>(fn[A1;,e.;An],(fn/f)&) and

(Lab@i[f;fn}[&1;..,;An],a)~>(Lab@l[f;fn][A1;...;AhJ,&);

Note

oo

(f[A1;.,e;An],a)m>(a(f)[A1:...;An],a) will rot do for P6

because of the possibility that a(f)=L or a{f)=4 (c.f. Note 1).

Note 4: Taking n=1 in P10 yields p¥>p for all p.

I think that if you lock at the interpreter in the Manusl you will sce
that the definition of ->, #£> embody the essential idea there. If
you utterly disagree with this do not give up yet. I shall show moon
that -> ig a powerful technical device for studying E..o} &nd is needed
$0 investigate the connection between rJ and Lahel and the relation
between [...] and apply,eval...etec. Think of -> as an abstract tool

if you feel I have ‘puffed up' its intuitive significance.

4,3 Stotement of Main Theorem connecting operatirnal and denotaticnal

seranvics
Here are four questions concerning the egreement of -~>, %>and E }

Question 1: If (e,a)%>A then does fe](fa])=A?

Question 2: I for no As (e,8)%>A then does Ee}(ﬁa}): L 7

Question 3/
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Question 3¢ If fel(fa])=A then does (e,a)®>A?
uestion 4¢ If {el(fal)= L +then is there no A such that (e,a)%>4?

The answer to &ll these is "yes". Using Wadsworih's beautiful
technigues @5,§the process of answering them is straightforwsrd. Inm
chapter 5 I do this but first I shall formmlete z theorem conisining

the answers and then draw some consequences from ii.
4,3.1 Definition (extension of fece] to terms)
For p € <fterm> {p} € S is defined by:

1. fa}=a
2. [(e,a)l=fel(fal)

4,3,2 Main Theoren

pE>A <=> [pl=a

Proof

The proof of the Main Theorem ig the goal of chapter 5.

4.3.3 Corollary

The answers to questions 1-4 are "“yes".

Proof

Question 1 and question 3 follow directly from the Msin Theoren.

Question 2 yields true because if for no A: (e,a)®>A and if [e(faj){L

then/
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then ag S=flat(<S~expression>)Ee}(ﬁaf):& for some A € <{S~expression>,
but then by the Main Theorem (e,a)f>A contradicting the assumplbion,

Question 4 yields true because if (e,a)%>4 then [e](fa])=4# .L

QoEo Do

I ghall now illustrate how the calculus enables cperational reasoning

to be applied to the denotational semantics.

Consider the evaluation of expressions of the form fn[e1;..¢;en]z
F@rst the evaluations cf the ei's are attempted so if one of these
fails to terminate (or leads to an error) then so does that of
fn[e1;...;en]. Now in the semantics & form's evaluation failing to
terminate (or leading to an error) is modelled by the form denoting L

so from the above remark we would expect that:
o, denotes L => fn[eq;e..;en] denotes L .

This reasoning was operationsl but using Corollary 4.3.% it can be
justifieds if [eif(ia})= L then, as the answer to question 4 is "yeg®,
there is no Ai such that (ei,a)£>Ai, but then by P4 there is no L such

thet (fn[e1;...;en],a)ﬁ>A and so as the answer to question 2 is "ves®,

[£ale,5c0u5e H(fal)= L o

The next corollary sums up what I have just said.

4,3.4 Corollary

1t/
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If t1,...,tn € S and for some m tm=-L (1$m£n) then for any

fn € <function>, & € <aligtd:
gfn}(ga})(t1geta,tn>= J... P

Proof

Let ©,5000,8 € <form> be such that Eeii(ﬁag})sci

€e8e

ty if ti#_L
e.,=
1

;Jl[f;f] [wit]  if g=2
(this works by example 3 of 3.15 ~ e =t; does not work as t =L £ <formd)

Then frn}(fa])(s;,...,t )=[en](fa]) (fe, 1(EaD), ..o Be_1(Ha]))
=Efn[e1;...;en]§(§a}) (by the semantic equaticns)
= L (by the reasoning in the remarks before this

coroil&ry)
QOEODQ

4.4 LISP-induction: an inference rule for applving the lMain Theosrem

Many consequences of the Main Theorem which I want to deduce are staie-

ments of the form:
Vp . p#>4 => R(p,4)

where/
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where R is some relation* e.g. R(p,A) <> [pl=4.

Such statements can usually be proved by induction on the size of the
computation from p to A, These proofs &ll have the same basic siructurs

and to show what this is I define & relation <%, where informaliy:

p' <¥p<=>p' has to be evaluated in the course of evalusbting p
(I shall give a precise definition of <* in 4.4.1 below). Then, in
& gense, the set {p'! p! <* p} is the computation inducsd by p and so
should be finite if that computation terminates e.g. if p¥dA.,  Thus bo
prove \fp.(pﬁ>A => R(p,A)) it suffices to prove it for p's such that
{p'l p' <* p} is finite and so it suffices to prove BASE gnd THDUCTION

where:

BASE: p minimal for <* => (p#>A => R(p,A))

INDUCTION: (Vp' <* p.(p'#>4' => R(p',A")))=> (p&>A => R(p,A))

"t
&

In fact INDUCTION => BASE (take p minimsl in INDUCTION) but I shal

*¥ Notice that since pd>A, pEdA' => A=A' a statement of the form
(pE>A => R(p,A)) is equivalent to
({3a.p%>4) => P(p)) whore

P(p) <=>(3 A.p%>A and R(p,A). I use the former form rather than
the latter bscauge it enables prools to be 1laid out slightly more

neatly,
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shortly refine BASE and INDUCTION and then this will not be so.
Before describing this I need to give a precise definition of <¥*,

I first define a relation < of which <* is the transitive closure.
4,4.1 ;@finition
Define € and <*, binary relations on <{term> by:

p' <p <&=> (1) p=dp'

or (2) pa(fn[e1;am.;en],a)

and p':(ei,a) gome 1<in

or (3) p=([ei1~>912;..°;en1ﬂben2]pa),
P' € {(91113')7060,(9,111 ,a)} some 1_{m_{_n

b AN s ﬁ
and (em1,a)£>f and V 1<m.(ei1,a) SF
) ¥ . . \
P < P <-—> P -—P1<p2<.oo<pn="-’p fOI’ some pq,oooppn (n>1)

Remark: I only need the relation <*, < was just used to aid iun defining

<x, I shall want to usze the symbol < later with a completely
different meaning. p *> p' means p' <* p. Note that <¥* ig

not reflexive. p' <* p means p' <¥ p or p'=p.

A little thought will show (I hope) that <* corresponds toits intuiiive

meaning given esgrlier viz:

p' <* p <=> p' has to be evaluated in the course of evaluvating p

Call/
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Call p well-founded if {p'l p' ¥ p} is finite, then lemma 4.4.%

below cen be interpreted as showing that if p#EdA then A can be
effectively computed from p (i.6c the computation of A from p is
finite i.e. it terminates) this observation is important ag it shows
that -> does constitute a useable interpreter for pure LISP - it
could be implemented on & real computer (though, of course, for

practical purposes it would not be sensible to do £0) .

Before proving lemma 4.4.3 I need to clarify exactly what the "gigze®
of a computation pE>A really is. To do this close scrutiay of

definition 4.2.2 is called for.

As is usual with induction definitions it is the Jleast relation whichk
satisfies the conditions that is wanted. In view of clausesP4 and P53
of definition 4.2.2, exactly what this least solution is may not be
imnmediately obvious, Because of thig I shall now exhibit more
explicitly what -> and > are. I am going to define relations£>, %)
inductively for each n>0; p5>p' will mean p-~>p' is deducible uvsing
at most n 'recursive calla' of clauses P4, P5, §> is the reflexive,

transitive closure of E>° Then
p=>p' <=> Erupﬁ>p' and p¥>p' <=> 3n.p§>p'

and the size of & computation from p to A can be measured by the pair

(m,n) where

v/
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p‘-‘—“p,' ﬁ>p2;1> e e o'ﬁ)Pm“—:A

Argunments by induction on the gize of computation are messy double
inductions on (m,n), one of the functions of LISP-induction is to
disguise this messiness, Showing LISP-induction wlid (i.e. proving
lemma 4.4.3) is messy but applying it is not = fortunately validity
only has to be proved oncs and so by formulating LISP-induction we

can factor out the messiness.
4,4,2 Definition
Define >, i) for n>0 by induction on n as follows:
p3>p’ <=> p->p' follows from P1, P2, P3, P6, P7, P8, PO of definition 4.2.%.

pE>p! <=> p=p,=>p,=>e.ez>p =p' for some py,PyseeesPy (m>1)

1 o ]
pnpt <> (1)

or (2) Pz(fn[e1 Seeceo ;en] ,&)
p’=(fn[A1 seee ;An] ,a)

3 %
and, ﬁ/l.(ei,a)n>Ai

2};‘_ (3) p=([e11—' e12;"°;esi-‘ 882]’8')
p'=(e_,,a) (1<ugs)

% P
and (em1,a)“?T and V’i(mo(ei1,a)n?F.

. = - b ¥ =p! " cea
PA§K1 p' <=> P=py 531 Pa nl1'°' ni1 PP for some Py,PpsecesPy (m21)

Then/
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Then p->p* <=> n.p=>p'

pE>p' <=> I n.p#dp!
n

Clearly ->, %> so defined are the least relations satisfying P1-P10.
Although you might feel that explicitly introducing ﬁ>' §>is unnecessary
verbosity, I found that until I did so I often got confused. The

size of a computation p1ﬁ>p23>°‘°ﬁ>pm depends on both n and m aso
arguments by induction on the size of computation (esgo the proof of

4.,4.3 below) are difficult to formmlate if n is not in sight,
4.4.3 Lemma

pE>A => p well-founded

Proof

The lemma is trivial if p=A so assume p#A.

If pA>A then pﬁ)A for some n, I shall do induction on n,
n=0: Then:

P=D,57Py5e 05> =k and {p'] p' <* pl={p;seeuyp]

n>0: Assume true for (n-1), For some m>0:

P=Py 7P e o o7 PpAe

01l p, special if it is of the form (fn[e1;...;en];&) where ei;éA:.L for
some i or of the form ([511~'e12;...;es1"'632],a). I shall do

induction
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induction on the number of special pi's. If there are none then

p%)A end go by inducticn p is well-founded. Ctherwise let P, be

%

the first special term (i.e. pj is special and V’i(jopi is not

special).

case 1: p.=(fn[e1;.,.;e 1,8). &/i.(ei,a) £ A

J+1-~(fn[A1,...,A ] a) (since Eii.ei%Ai)

Then:

n
{p'| »* <* pl=lp, 151 Jv M

-a.\.a

which is finite since {pilfjﬁgy } is finite, each (ei,a) ig welle
founded by induction on n and Pj+1 is well~founded by induciion on

the number of special terms.

case 23 p.=([e11-*612;...;681—*982]-&)

3+1 (em2'a)

: ¢ K 5

b3

. bol
then {p'| p' <* pl=lp, [ 1815 v MYt ot e du lp] pt S

which is finite by induction on n and the number of special {erms,
Q.E.D.
Here now is the statement of LISP-~induction.

4.,4.4 Inference rule: LISP-induction

To infer (\fP-p3>A = R(p,A)) prove BASE and INDUCTION below:

BASE/

p'| p ¢* (eg,a)} Y {p'| p* ¢ p,,

;
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BASE: V A.R(A,A)

INDUCTION: Ve,a.((Vp' ¢* (e,a).p'#>A" => R(p',4')) and (s,2)%54) => R((e,n), 2}

Remark: The LISP~induction hypothesis (LIH) of such arguments is

(Vpt <* (e,2).pt#>A' => R(p',A"))

The validity of LISP-induction follows directly from lemms 4.4.3.as

that lemma impliess

(Vpep2>h => R(p,A)) <=> (V weli-founded p.pdA => R(p,4))

and BASE and INDUCTION are equivalent to this latter statement.
In doing the INDUCTION step of a proof by LISP~induction one has to
consider the various cases of p=(e,a) for which p%PA, the next lemms

lists these cages,

4,4,5 Lenma

Suppose p=(e,a)%>A then one of the nine cases below obtains (in what

follows p *> p'#>p" means p *> p' and p'%>p").
1. p=(4,a)

2 pm(x,a) and a(x):A

3. p:(F[A1;...;Aﬁ};a) and F(A1,...,An)=A

4./
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4, p=(fn[e1;...;en],a) and there are A ,..e,A such that:
V&.p*)(ei,a)ﬁ>Ai, Jm.e #a and p*> (fnla,5...58 J,8)04
54 p=¢e11ﬂe12;a.c;en1~*enz],a) and there is an m (1<m<n) such that:
Vidup * (ei,&)->F,p *y (emi,a)%>T and p *> (emz,a)&>a
6. p=(f[A1;...;An],&),a(f)sfn and p *> (£al4, 5,008 J,2)854
7o p=(\ [[x1ge..;xm];e][A1;..,;An],a),mgn and p *> (eg(A1/£1).9.(Am/im)a)%>A
8. p=(Label[f;fn][A1;...:An],a) and p *> (fn[A1;so.;An],(fn/f}a)ﬁ>A
8. p=(r/[f;fn][A1;...;An],a) and p *> (fn[Ai;.a.;An],(fI[f;fn]/f)a)%>A
Eroof

Straight from definitions of -> (4.2.2) and <* (4.4.1).

The

QOE' Da

rest of this chapter is concerned with using LISP~induction to get

interesting resulis.

4.5

Proof of half of the Main Theoren: an example of LISP-induction

4,5.1 Lemma (Soundness of =>)

pE>A => fpl=A

Proof

i/
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If R(p,A) <=> Ip}=A then what has to be proved is:
pE>A => R(p,4)
I show this by LISP-induction.

BASE:

R(A,A) <=> [A}=A which is true.

INDUCTION:
Assume LIH (viz. (Vp' <* (e,a).p'#>4' => [pt]=A')) and p=(e,a)>4

T show [(e,a)]=le](fa])=A by cases on p (see 4.4.5).

1. pz(A,&)

Clearly [p}:A

2. p=(x,a) and a(x)=4
Epl=fx](fal) (verinition of [p] - 4.3.7)
=[a](x)(§a§)’ S (by semantic equations - (S2) of 3.14)

=A {by the remark after definition 34,2.1)

2e p‘z(F[A1;coo;An],&) and F(A1,.¢0,An)_“"A

EP}T‘F(A1 poes ,An)zA

4, p:(fn[e1;..‘;en],a) and ‘Viiei:&yﬁ>ﬁi and B’H'Smﬁﬁm
Then by LIH R((ei,ﬁ,%?jue.Eei}(gaﬁ)zAi
and R((Tn[A1;,..;AnJ,a),A) ice. frn}(fal)(4,,..0,8 )=a
So [p}=Efn](Ea3)(§e1}(Ea}),...,[enf(ia}))
a[fn](iaﬁ)(A1,...,An)
A

5./
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. p=([e11~'e12;.o.;en1-*en2],a) and (emi,&)£>T and V’i<m¢(eii,&)i>F

Then by LIH R((e_,,a),T), \'/i(meR((eiwa),F) and R((e_,,a),4)
ice. fo_ I([a])=1, Vicn fe.  1(fa])=F ana fe ,i(fa])=a
so [pl=(fe,, J([a])~ 5e12}(§a§),.“,§er’ﬂE(Ea})”* fe 1(fe]))
=P~ log d(fad) oo 4y oo J(EaD)= Fe 1 (1a1))
=A.

p=(f[A1;...;AnLa) and a(f)=fn,
Then by LIH R((fa[4;3.0034 1,8),8) 1.e. [en(faD)(a),000,8 )=a
so [pl=fe]([a]) (2, revesd )

=la](£)(fe]) | Fom(a,, 0008 )

=len](fa]) (4,,...,8)

=A

P'—‘()x[[ﬂh..;xd;éﬂ%g...:An],a) and m¢n
Then by LIH R((e, (A;/x;)... (8 /x )a),a) i.e. Eel(Bh,/x)). 0o (a /2 Ja])=a
80 Mr—@’q---tm«Ee]((ti/y)o..(tm/xm)ga}))(A1,...,An)
Lol ((4y/x,) e (8 /5 a]) |
=le}(E(a,/x)) e (8 /x )a)
=A
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8. p:(Label[f;fn][A1;,ea;An],g)
Then by LIH R((fn[A1;..V;An],(fn/f)a),A) 1ol gfn§(ﬂfn/f)a§)(g?,a«n,An5=A
go Ep]=§Label[f;fn]§(Ea§)(A1;..e,An)
=len}((Een]/glal) (a),.0004)
'=Efn}(ﬁ$n/f)a})(A1,...,An)

]

9, P=(fi[f;fn][A1:..e;Ah],&)
Then by LIH R((fn[A1;a..;An].(fx[f;fn]/f)a),A) 1.0, gfnf(gﬁ[f;fn}ff}a}{
(Ayyeuvit )=A
so fpl=l jAlesm]}(fal) (a),eee i)
=ben]((Eplesen]l/0)E])(a;, 000 0n)
=Een}(Hulestn]/0)al) (4,000 8 )

=A,

Q.E.D.

4,6 The relatiocn between i1 and Label
1]

It would be very nice if for all f,fns Ef&[f;fn]}:ELabel[f;fn}}ﬁ

unfortunetely this is not go. Here is a counterexample:
First given f,g € Id let me construct an r € Env such that for sll »! ¢ Bnv:

1. r(f)=fcar]

2. r(g)lrt)=r'(£)(r)

This/
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This is easily achieved by letting r=Y{ A r% (gc&r}/f)((Xx*'.r'(f)(r"))/'g} 1)

ivee.r=(fcard/e)({ et (£)(2))/e) L
Then I claim thats [Labellf;e]l(r)=fcar](r)d L= [ uleselilx)

The proof of this is ag follows:

fLave1[r; 2]l (r)=[g}((fel/t)r)
=r(g) ((f}/f)r) | Fom

(F1/ ) (£)(z) JF‘BN (by 2. above)

e §

=fz}(r)

=r(g)(r) | FUN

=r(f)(r) I FUN (by 2. above)
=fcar](z) (by 1. above)

[fk[f;g]](r) =Y(F)(r) where F=Av.Ar'.{g]((v/£)z*)

Now FO(L)(r)=L(z)= L Suppose that nd0 and F (D) (r)=1 then:

(L) (2)=fe] ((FP()/£)x)
=r(g) ((F{L)/£)x) | Fum

=((FW)/1)2) (F) (z) | Fom (by 2. above)
L) () | PO
= L f FUN= L (by assumption)

So by induction on n: for all nd0 F{i)(r)=L hence

I/
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[ [e38] ()= (D) ()= L

Thus the claim above is justified. Despite this counterexzample it

is the case that for all a € <glist> and all f, fn:

fraver[£;rn]}(fa])=] ! [£3en]1(fa])

and thisg is good enough because the only environments which srise in
practice are those which correspond to alists, i.e. ones of the form
[a}. To prove this result I shall use LISP~induction, but Ffirst lei
me show you how to intuit it. By the Main Theorem mnd corellary 4.%.4

all that needs to be ghown is:
(Label[fsfn] [A1 See .;An] ,8)EDA (=D (/J [f:fn] [A,i Soee ;An] L8 )E5A

Now if you look at clauses P6, P8, P9 of the definition of -» you wiil

see that to any computation of the form:

(Label[r;fn] [A1 Seeo ;An] ,a)->P1->P =>eeu=dP -4

2

there corresponds one of the form:
. ° ® - e | - ! .
(ri[f,fn][AP...,An],a) YPI=>PI=> .. =dPI->A

and vice versa; vwhere (approxim&tely) P{ is got fronm Pi by revlacing
some Labels by r&'s and adding some extra it's to the alist, Thig
is an operational intuition and that is why LISP-induction (and the

Main Theorem) is needed to convert it into & formal proof . The nexi

two/
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two definitions are to enable me to say precisely what the

correspondence between the above two computations is,
4,6.,1 Definition

If e, e' are forms (and fn, fn! functions) then writeese! (and
fnafn') if and only if e' can be got from e (fn' got from fn) by
changing zero or more Labels to /x's and zero or more [i’s to

Labels,

Examples: 1. Label[f;fn]e )u[f;fn]

2. /u[g;Label[f;fn]][A]f:;u[g; /x[f:fn]][A]

I shall prove that if ese' then {e](fal)=fe'}(fa]) for all a: however
this statement is not strong enough for the induction to be carried
through, The next definition enables me to formulate a strong enough

induction hypothesis.

4.6.,2 Definition

If a, a' € <alist> then write aza' <> for all z:
(1) a(z)=A <=> a'(z)=A

(2) 1f a(z)=fn then either a'(z)=fn' vhere fnafn®

or a'(z):/x[z;fn'] where fnsfn!

(3)/
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(3) If a'(z)=fn' then either a(z)=fn where fnsfn!'

or a(z)= rk[z;fn] where fnsfn!

If p, p' € {term> then pep' <=> p=A=p' or p:(e,a)
and p'=(e',a'}

and ete' and a%a’
Remark: <« is symmetric.
4.6.3 Lemma
psp' and pidA =d plE>A
Eroof
Let R(p,A) <=> (Vp'.psp' => p'%#>A) then I need to show that pEdA => R(p,i)
I prove this by LISP—induction;

BASE:

R(A,A) <=> V p'sA, p'#>A which is true since p'sA => p'=A and AZ>A.

INDUCTION:
Assurme LIH and p=(e,a)®>A, I show R(p,A) by cases on p (sce lemma

4.4.5). In what follows assunme s%a'!, fnsfn', eise{, eijﬁeij etc,

1 p=(A,8.)
pep' => p'=(4,a!) => p'=>A => p'E>A

2./
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3e

5.

7o/
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p=(x,a) and a(x)=A

p2p' => p'=(x,a) and a'(x)=A => pl-di => p'¥>4

px(FLA" s5c0s ;An1 ?8«) and f(AT soee 7An)=A

pEp’ => P’x(Eﬂﬂ?;‘,‘;An1,a'}w¢> pl-Dh => plEdA

p:(fn[e1;...;en],&) and V/io(eiya)%>Ai.and E!m.emfhm
Then p2p? => p'u(fn'[@;;.eegog],a'). Now p->(fn[A1:...;An],&) and by
LTH %/i.R((ei,a),Ai) and R((fn[Ai;..,;An],a),A) hence

p'-)(fn'[A1 $eoe ;An]ya”)‘&>A

pu([e17>312;...;en1—'en2],a) and (em1,a)%>T and Y i<m.(ei1,a}%>F
Then pep' > p(lef = of pieuniel » efp]a0)

Now p~>(em2,a) and by LIH R((em1,a),T)9 \%i<m.R((ei,,a),?)

and R((emz,a),A) s0

p'-)(eéz,a')ﬁ>A

p=(£[4,5.0054 ],8) and a(£)=fn
Then pw>(fn[A1;.o.;An],a) so by LIH R((fn[A1;.e.;Ah],a),A)
Let pzp', there are two cases to consider:
6o1 p'z(f[A1;@09;An],a') and a'(f)=fn' where fnafn'
Then p'~>(fﬂ[A1;,,.;An],a')ﬁ>A (vy LIH)
6.2 p'=(f[A1;,.@;An],a') and a’(f)ufxif;fn’] where fnafn!
Then p'->(14[£3entJ[A 500054 Ja)->(ent A 5000sh T, (s ent /e)at)
|

234 (by LXH and definition 4.6.2)
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To pz()\[[x«!:Oco;xm};e][fi.l;-a.;An],a) and m_{n
Then psp' => p':()\[[x1:...;xm];e'][A1;ooozﬂn]fa“)
Now p“>(e’(AT/Xf)‘°'(ém/km)&) so by LIH R(éel(ﬁg/ki)-«w(ém/xm)&lﬂ)

hence p'~>(e',(A1/x1).oo(Am/im)&“)ﬁ>A

8. pm(Label[f;fn][A1;,GO;An],a)
Then p—>(fn[A1;...;Ah},(fn/f)a) g0 by LIH R((fn[ﬁ1;e.,;An]g(fn/f)ﬁjA)
Let ps#p' then there are two cases to considers
8.1 p'm(Label[f;fn'][A1;...;An],&')
Then p'n)(ﬁ)’[,ﬁ’;.o.;An],(fn'/f)a')m‘& (vy LIE)
8.2 p'=(fi[f;fn'][AF;Q..;An],a‘)

Then p’-)(fn‘[A,‘;.a.;An],(/l [£3rntl/f)at)E>a  (by LIH)

9. p:( ,\,( [f;f’n] [-A1 ;oec;An]sa)
Then p">(fn[A13»..;An]s(fi[f3fn]/f)a) so by LIH R((fﬂ[A15°'“;An]’
(ﬁi[f;fn}/f)a)yﬁ}
Let p2p' then there are two cases to consider:
9.1 p':([\,{[f;fn'][A1;00';An]!a")
Then p'-->(fn'[A1;...;An],(!H [£itnt]/f)a)®>A  (by LIH)
9.2 pf=(mbel[f;fn'][é-,;-o-:An]:&')

Then P'-}(fll?[A1 :ooo :An]’ (fni//f)&')£>A (b:)r LIB)
Q.E.D,
4,6,4 Theoren

pept => fpl=[p']

Proof/
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One might at first sight expect that if r, r' agree on the fiee

variables in fn then gfnz(r):gfn}(r'): thig is not the case for
let r=f(g/1) (car/g)l, r'={(e/£)(cdr/c)} then r and r' agres on
but lf}(r)::cm;écdrmgf? (r')e The proposition below is the result

of debugéing this intuition.
4.7.1 Definition

Let vs(o), vs(fn) be the sets of variables (identifiera) not bound by

>\'»':L, Tabels or M's in e, fn respectively.

Exanple: vs(A[[x];y][z])={y,z2}

Given a form e the next definition gives sufficient conditions on a
set 7 € <identifier> so that if a, a' agree on Z then fe}(fal)=fel(fa']),

This is proved in the lemma below.
4,7.2 Definition

If Z ¢ <identifier> and p, p' € <term> then pﬁp' <=
gither p=p'=A
or p=(e,a), p'=(e,a') and (1), (2), (3) where
(1) vs(e) & 2
(2) Vz ¢ Z. a(z)=a'(z)
(3) Vz € 7, vs(a(z)) ¢ 2Z.

4,7.3/
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4‘0 7.3 Lemm&

If p, p' € <term> and there exists Z € <identifierd> such thab p%p*

then
PEdA => plEd>A
Proof

Let R(p,A) <> Vp'((ﬂz.pip') => prE>L)

Then I need to show p%>A => R(p,A) which I can prove by LISP=induchicu.

BASE:

R(A,A) <=> A%>A which is true.

INDUCTION:

Assume LIH and p=(e,a)®>A I prove R(p,A) by ceses on p (sce lemma 4.4,5).

1. p=(4,a)
Then pgp! => p'=(4,a')->A

2. p=(x,a) and a(x)=A
Then x € Z and so pgp' => p'=(x,a') where a'(z)=A (br definition of w)

£

=> pla=dA

3. W(F[Ai:...;An],a) and F(A;,ce0,d )=

Then pgp' =D p':(F[A1;...;An],a') => p'=>A
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W(fn[e1:...;en],a) and Viw(ei;a)mAi&nd E}m.em#[xm
By LIH V 1.R((ei,,a),Ai) and R((fn[.&,;,.o;An],a),A)
pgp' => p'z(fn[ei;,..;en],&')u>(ffl[A1:ou;An]sﬁ')ﬁ”»

since vs(fn),vs(ei) C vs(fn[e.a;...;en]) C 7z

p::([eﬂ"* B pteeeio 4 enZJ’a) and (em,;,&)ﬁ}f[‘ and ¥ i<m.(ei1,a)i>z«"
By LIH R((em,a,),’i‘), Vi(m.R((ei1,a),F) and R((@mzpa),A) s0

PEP' => p'“([911"°012;e60;en1_'en2]9ae)“>(e y&')ﬁ>A

n B

gince vs(eij) < vs([eﬁw ©ipioenit = ena]) yA

P=(f[A1;ooo;An],a) and &(f)mfn
By LIH R((fn[A1;...;An]9a),A.) 80
p=p' => P'=(f[A1;’°°;An]9a')“>(fn[A1;...;An],a'>ﬁ>A

since f € Z so a'(f)=a(f)=fn and va(fn)=va(a(f)) ¢ 2

p=(\ [[x1 ;...;xm];é [A1;a..;An],a) and m<n

By LIH R((e,(4,/%,) . (4 /x )a),A) so

%p' => p'=( >\ [[X1 ; oo.;Xm];G][A15-.03An]9a')‘>(e9(A1/31 )“°°(é'm/’xm)a'i}?‘$>ﬁi
since (e,(A1/x1).“(Am/Xm)a);Z,(e;(A1/X1)on(Am/Xm)&')

Where Z'=Z (v} {x1yu-o,xm}

p:(Label[f;fzﬂ[A1;...;An‘},a)

By LIH R((fnl4, ;e..;An],(fn/f)a),A5 0

pzp' => p'=(Label[f;fn][A1;.,o.;An],a')@(fn[A‘;...;An],(fm/f)a’)ﬁm
since (fn[A1 ;...;An],(fn/f)a);z,(anA’;.,.;An],(fn/f)a')

vhere Z'=Z {f}
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9. p=(fi[f;fn][A1;e..;An],&)
By LIH R((fn[A1;o,.;An],(;x[f;fn]/f)a),A) S0
p‘ZP' => P'=( ,)u [f;]‘_‘n] [A‘] Foes ;An]'a' )-)(fn[A1 jeee ;A‘n] ’ (f( [f;i‘n_?; f"‘}?’}';'r\’g
sinco (fn[A13e»o:An],(fi[f:fn]/f)a)z.(fn[ﬂ1:«eefﬁn]s(ﬁ‘[f;fn]/’aa‘)

where Z'=Z U {r}
Q.E.D.

4.7.4 Corollary

If p, p' € <term> and there exists Z2 < {identifier> guch that pip*

then p&>A <=> p'¥d4,
Proof

By lemma 4,7.3 and symmetry of 7o

Q.EnDo

4.7.5 Proposition

~

Let fn € <functiond,a,a' € <alist> then if there exisis % < <identifiexy

such that:

va(fn) < Z (vs is defined in 4.7.1)
and VY z € Z.a(z)=a'(z)

and Vz € Z,vs(a(z)) < 2
Then [rn](fal)=[fnl({a'}).

Proof/
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Eroof
By corollary 4.7.4 for all A1,...,An € <S-expressiond:
(fn[.A1 feessd ] )84 <= (fn{A1 Fesesh ],a1)E54

hence gfn}(g&})(ﬂ19-ocyAn)“gfn}(Ea'§)(A19°~e9An)

and so (by corollary 4.3.4) [fnl(fal)=frn](fa'}]).
Q.E,D.

4,8 A semantic anelvsisg of the LISP eval function

In this section I shall examine the relation holding btetween values
computed by the manual interpreter and denotations sssigned by my
gemantics. I anm going to interpret the Meexpressioes defining apply,
eval,...etc, via the semantic equations in %.14 - asg nentioned earlier
this denotational interpretation is not necessarily the same aa the

one implementers have taken., That one I have tried {o capture in ->,

In my discussion of v{e},w{fn] in 3,10 I pointed out the problem of
acconuodating simultaneous recursions as used to define applyv,eval,..ote.
That problem raises its head here too, but using my improved environ-
mente I can get over it in the same way that actual implementstiong

do. I shell define a special alist int (for "interprster®) which
containg the definitions of apply,eval,evcon,evlis and other ‘eystenm

functions/
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functions', then the denotations of apply,evel...etce will be
Lappiv] (fint}), fevarl(fint))...etc, Here is the definition of int;
this should be compared with the definition of the interpreter given

in the Manual,
4,8,1 Definitioen

Let int=(applyfn/apply)(evalfn/eval)(eveonfn/eveon){cviiefn/eviis)
(caarfn/caar)(cdarfn/cdar) (cadrin/cadr) (caddrfn/cuddr) caderfn/cadar)

(nullfn/null) (equalfn/equal) (pairlisfu/pairiis)(assocfn/assoc )NIL
where
4.8.1.1

applyfn=A [[fnix;al;

[atom[fn]= [eq[fn;CAR]) = caar[x];

eq[fn;COR] - cdar[x];

eq[£n; CONS]~s cons{ car[x];cade[x]];

eq[ fn;ATOM ]~ atom[car[x]];

eq[fn;EQ]— eq[car[x];cadr[x]];

T - epplylevallfn;alsx;all;

eqlcar[fn]);LABDAY~ evallcaddr[fn];pairlis[cadr{rn]six;all;
eq[car[fn];LABEL]—’apply{caddr[fn];x;cons[cons{cadr[fn];

caddr(fn}]sal]]]
4,8.1.2/
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evalfn= )\ [[e;a];
[atdm[e]* cdr[assocesa]];
atom[car[e]]-» [eq[car[e];QUOTE]-é cadrf[e];
eq[car[e];conD]- eveonledr[elsal;
T — &pply[car{e];evlis[cdr[e];a; ;&-n:

T+ apply[car[e];eviis[cdr[e];a];al]

evconfn= )\ [[c;a] 8
[eval[caar[c];al- evallcadar[c];sals

gy - evcon[cdr[c];a]]]

4.8,1.4

evlisfn= >\ [[m?&]i
[nu1l[n]- NIL;

' T = cons[eval[car[m];a];evln‘.s[cd:e[m];a]]]]
4:8.1.5
casrfn= )\ [[XJ 8 car[car[x]]]
4.8.1.6

cdarfn= A\[[x];cdr[car[x]]]

4‘080'1 07
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4.8.1.
cadrfn= A [[x];car[cdr(x]]]
4.8.1.8
caddrfn= A [[x;car[cdr[car(x]]]]
4.8.1.9
cadarfn= A [[x];car[car[car[x]]]]
4.8.1.10
nullfn= A [[x];[aton[x]~ eq[x;NIL];7- F]]
4,8.1.11

equalfn= A[[x;y];[aton[x]~ [aton[y]~ eq[x;y];1~ Fl;
aton[y]- [aton[x]- eq[x;y]; T~ P];
equal[car[x};car[y]]—»equal[cdr{x];cdr{y]j;

T F]]

Remark: The definition of equal given in the Manual does not agres

with the informal description of it if x=(1), w=1 {see 2.2.3),

4.8.1.12/
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4‘08.1.12

pairlisfn= A\ [[x;y;a];[nui1[x]- a;
T ->cons[cons[car[x];car{yj];

pairlis[cdr[x];cdr[y];a]}]]

assocfn= A[[x;a];[equailcaara];x]~ carlal; T assoc[x;car[a]]]]

The functions apply,eval,evcon,evlis,caar,cdar,cadr,caddr,cadar,null,
equal,pairlis,assoc are all in FUNa[S*~>S] and are defined below,
context will distinguish these from the identifiers they are bound to

on Eint].

4,8,2 Definition

apply={app1y] ([int})=fappiyrn]({int])
eval=fevall(fint]) =levairnl({int])
eveon=fevcon](fint])=fevconrn]({int])
evlis=fevlis]({int])=feviistn]([int])
caar=fcaar](fint]) =fcaertn](fint])
cder=fcdar](fint]) =[cdarfn](fint])
cadr=fcadr] (fint]) =fcadrfn]({iat])
caddr=fcaddr} ({int])=fcaddrrnl (fint])
cadar=[cadar]({int])=fcadarrn](fint])
null=fnu11]({int]) =fnuirn]({int])
equal=fequal](fint})=fequairn}(fint})
pairlis=fpairlis}{{int])=fpair1istn]{{int])

assoc:ﬁassoc}(iimﬁ})zgassocfnﬂ(iintj)
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In order to formulate precisely what it means for the semantic
equations and manual interprater to be in harmony I shall extend the
tranglation of M-expressions inp Swexpressions given in the Mammal

to include alists. TFor the rest of this section (4.8) I want to
restrict fhe range of the meta variatles e, fn, a, p to excliude ternms
containing FL'E. To achieve this here is & 'local' definition of

these varisbles:

e si= A ’x ,fn[e1;.,.;en]i [e11~*e12;‘.e;9n1"@n2]
fn si= F| £ A[[x,5..05x ]se] | avel[£sen]

NIL | (4/x)a| (£n/f)a

4] (e,a)

®

*
.

i

p
4,8,3 Definition

The translations e¥*,fn*,a* of e,fn,a are defined by structural

induction by:
e¥*s

A*=(QUOTE A)
x¥=X
fn[e1;...;en]*t(fn* e?...eg)

. . oy - * W
legy= 095 enseyy= e, T*=(COMD (oF, e,).. (o) o%,))

fo*:/
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fn¥s

car¥*=CAR
cdr*=CIR
cong*=CONS
atom*=ATOM
eq*=EQ
Mxgseeesx Jrel*=(rammoa (x%...x%) o)

Label[f;fn]*=(LABEL £* fn*)
a¥s

NI *=NTI,
((4/z)a)*=((2*.A4) .a*)
((£n/z)a)*=((z*.fn*) .a*)

The following questions can now be asked:

1. Does apply(fn*,(A1...An),a*)=gfn}(ﬁa})(ﬁ1u.o:An) ?

2, Does eval(e*,a)=fe]{fa]) °

Unfortunately the answer to both these is '"no", however thev cnly fail

in a rather frivial wav which is illustrated by the following example:
example: 1let e=z, a=(fn/z)NIL

Then eval(e®,a*)=evai(Z,((2,fn*)))
=fn¥*

but/
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vut fe](fa]) =fz}([a])
zia}(z)ga]! S

=fen](fa]) | s
- L

To bar such monsters one just needs to separate the x's from the f's
i.e. to say that if an identifier is used to name a function then it
cannot be used as a form variable in the same program. Given thig
the two questions above got affirmative answers. To make this

precise here is a definition.
4.8,4 Definition

Call (e,a) nice if
(formvs(e) N formvs(a)) U (funvs(e) N funvs(a))=p
where: formvs(e)={z Iz is a form varisble in e}
formvs(a):{zl a(z) € <formd}
funvs(e)={z )z is a function variable in e}

funvs(a)={z }a(z) € <function>}
4 8,5 Theorem

(1) For 211 fn,0,8,41500004
apply(fn*, (4,004 ),8%) 3 [m]({al)(ay,0e0,8)

eval(e*,a*) 2 fel(la]).

(2)/
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Proof
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For all fn,e,a,A;,...,A such that (e,a) and (fn[A1;.a,;An],a}

are nice:
apply(fn*, (4,004 ), e%)=[rn}(fa])(4,,00.,4 )

eval(e*,a*?zgeﬂ(g&])

The theorem is the conjunction of propositions 4.8.10 and 4.8.13 below.

Q.E.D.

The next lemma lists some elementary properties of ‘system functions®.

First a definition.,

4,8.6 Definition

Define def, list e [S*=>S] by:

1.

2.

Remark:

L ifr 3 i.tiz A

def( )=T, def(t1,...,tn)=
T otherwise

1ist( )=NIL, list(t1,...,tn)mcons(t1,cons(tz,o,‘,conﬁ(tn,NIL)n@n>3

def(list(Ai,...,An))zT if A, € <S-expression>
algo def(L)= L and list(l)=L

Finally notice that def(t1,...,tn)z(Ax1...xnzs.T)(t1,..,,tn)

4.8,7 Lemna

Just for this lemma let fn,x,8,6,Cc,m range over S.fhen:

4‘80701
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apply(fn,x,a)=(def(x,a) (aton(fn)- (eq(fn,CAR)~ caar(x),
eq(fn, CAR)~ cdar(z),
eq(fn, CONS )~ cons(car(x),cadir(x)),
eq(fn,ATOM) - atoun(car(x)),
eq(fn,EQ)~ eq(car(x),cadr(x)),
T - apply{eval(fn,a),z.a)),
eq(car(fn),LAMBDA)~ eval(caddr(fn), pairlis!
cadr{fn),x,a)),
eq(car(fn),LABEL)~ apply{caddr(n),x, cons(

cons ( c&d.r( i‘n) 5 I8 rﬁ,dr(

£n)),8}}))
4.8.7,2

eval(e,a)=(def(a)~ (atom(e)~ cdr(assoc(e,a)),
aton(car(e))- (sq(car(e),UOTE)- cadr(e),
eq(car(e),COND)~ eveon(cdr(e),a),
T -+ apply(car(e),eviis(
cdar(e),a),a)),

T— apply(car(e),eviis{cdr(e),a),a)))

4.80 i.z

eveon(c,a)=(eval(canr(c),a)— eval(cadar(c),a),

T -+ evcon(cdr(c),a))

4.8.7.4
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4.8.7.4

evlis(m,a)=(null(m)- NIL,

i\ - cons(eval(car(n),a),evlis{cdr(m),a)))

4.80 2.5

caar(x)=car(car(x))

4,8.7.6
cdar(x)=cdr(car(x))
48.7.7
cadr(x)=car(cdr(x))
caddr(x)=car(cdr(cdr(x)))

4.8.7.9

cadar(x)=car(cdr(car(x)))

1 x= L
mll{x)={ T  x=NIL

B otherwise

4,8.7.11/
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4.8,7.11
L x=l ory=AL
equal(x,y)= { T X,y ¢ <{S-expressiond> and x=y
F %,y € {S-expression> and x%y
4.8. 2012

((A1.A{)...((Am.Al;l).a)...) if mén

pairliS((A coed ) (A'OQQA')!B'):‘ {
1 m’* n otherwie

4,8.7.13

(X oA ) if X=X and Vi<m.X£X,

_ m- m m i
aQSOC(X,((X‘I O-A-’)aoc(x A )))=
non if ‘v’i.x,-éxi

Proof

4.8.7.1 - 4.8.7.13 are all straightforward to prove,. I shall just do

4.8.7.1 as an example,

Suppose FN,X,A € <S-expression> then if r=(FN/fn)(X/x)(a/a)fint] then:

(1)/
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(1) apply(FN, X, A)=fapp1yrn} ({int]) (7N, X, 4)

=(aton(FW)~ (eq(F,cAR)~ {caar](z)(X),

eq (¥N, CDR)~ fedar{z) (),

eq(FN, CONS)~ cons(car(X), fcadr (x)(x)),

eq{FN,ATOM)~ aton{ecax(X)),

aq (PN, EQ)- eq(car(X), feadr(r)(x)),

T~ fappivi{r) ({evall(x) (¥W,4),%,4)),
eq(car(FN), LAMBDA) -+ Ee%&l}(r){ﬁc&ddr}(r)(FN),ipairlisf(r)
(feaarl(r) (Fm),x,4)),

eq(car(FN) ,LABEL)~ fappiy}(=)(fcaaari(s) (74),x.

cons(Cons(Ecadr}(r)(FH),Ecaddr}(r)(FN)),&)}}

(2) Also apply(t1,t2,t3)=.L if ty=L ort,=L or ty=L (by corecilary 4,3.4)
Now by proposition 4,7.5 (with Z={apply,ev&l,evcon,eV1is,ca&rgcdar,

\- , P \
cadr,cadar,cadar,null,equa],palrlls,assoc};

We have caar=fcaar](int)={caar](r)
cdar=fcdar](int)=fcdar](r)
cadr=[cadr](int)={cadr](r)

apply={apply](int)={epplv}(r)
eval=feval](int)=feva1}(s)
caddr=fcaddr](int)=fcaddr}(r)

pairlis=fpairiie}(int)=fpairiis](r)
Then by {1), (2) and aton(L)=1 we have 4.8.7.1

All the other parts of 4.8.7 are gimilar or eagier,

o
£
£
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I shall now prove gome lemmas which, taken together, imply Thsoram
4.8.5. (I recommend that you read them only if you think that

Theoren is false.)
4,8.8 Loenng

4.8,8.1

m——

a({z)=A => cdr(assoc(z*,a*))=a(z)

4.8.8.2

a(z)=fn => cdr(assoc(z¥,a*))=a(z)*

4.8.8.3
((Aj/x.‘)..-(Am/xm)a)*ﬂairlis((x?...x;"]),(A1n.An),&*) if mn
4,8.8.4

evlis((e¥...e¥) sa*)=list(eva1(e;*,a*) veessoval(er,a¥))
4.8.8.5

evaon((§y07,) e (o5105,)) %) (ova (o, a¥)» ovellehyat),

..,,eval(e* ,a%)~$eval(e§2ya*))

nl

Proof

4,8.8,1/
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4.8.8.1
If a(z):A then 8 isof the form:

(v1/z1).,.(vn/zn)(A/z)a' (where \/i.zézi and
v, € <S-expression> U {function>, a' € <alistd)

and so if vi are the S-expressioms translations of vy

a*=cons((zTgv§),cons((zg.vg)9o..,oons((z*.A),a'*)...))
=> assoc(z¥*,a*)=(2%,A)

=> ddr(assoc(z*,a*))=A=a(z)
4,8,8,2
If a(z)=fn then a is of the form:

(v1/z1)...(vn/zn)(fn/z)a' (vhere V’i.z#zi and

v, € <S-expression> U <{function>, a' ¢ <alistd)

i

and so if vi are the S-expressions translations of A

a*=cons((z§.v7),cons((zg.vg),,,,,cons((z*.fn*),&c*)oc.))
=>_assoc(z*,a*)=(z*.fn*)

=> cdr(assoc(z*,a*))=fn*=a(z) *

4.8.8.3

(8 /xy) oo (A /n D) i=((xt k) con (x50 )%).00)

=pa.ir1i8( (X?{o . Ox;) M (A.i ee aAmo . OAn) ’a*)
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4,8.3.4 Induction on ne

n=0: evlis(NIL,a*)=NILl=1int()

n>0: assume true for n-1 thens

evlis((ef.aeei)5&*)=cons(eva1(a?,a*),evlis((eg...gg),a*))
=cons(eva1(e*,a*),1ist(eva1(e§,a*),oe.,ewal(ez‘a*\..

(by induction)

=list(eval(e¥,a*),... yoval(s¥,e*))
4.8.8.5 Induction on n:

n=1 evcon(((e§1e?2)),a*):(ev&l(efi,a*)~°ev&l(e?g,a*),Tﬁ-evcon(NIL,a*}}
=(eva1(e?1,a*)—veval(e?z,a*)yT4»vL )
=(eva1(e?1,a*)—0eval(e?z,&*))
n>1: assume true for n-1 then:
evcon(((eT1eT2)..‘(e;1e§2)),a*)
=(eval(ef1,a*)-0eval(e?2,a%),
T -»evcon(((e§1e§2).0.(eﬁTGZE)),&*))
=(eva1(e71,a*)—’eval(e?2;a*),
T -°(eval(e§1,a*)-»ev&l(e§2,a*),...,
eval(e§1,a*)-9eval(eﬁg,a*)))
=(eval(e?1,&*)‘*eval(e§2,a*),..°,

e (e%  a%)es o % a%
evul(en1,a4) eval(en2,a ))

Q.E.D.

4,8.9/
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4,8.9 Lemnms

(fn[A1;...;An],a)t>A => apply(fn*,(A1...An),a*)=A

(e,8)%5A => eval(e*,a*)=A
Proof
I use LISPwinductien. The lemma may be put in the Tform:
PEA => R(p,4)
by definings:

R(p,A) <=> if p:(fn[Ai;ﬁ‘.;An],&)£>A .
apply(fn*, (A;yeue,h ), 8%)h

and if p=(e,a)%>A then eval{e*,a® )=,

BASE:

R(A,A) is vacuously true.

INDUCTION:
hsgume LIH and p=(e,a)%>A

I show R(p,4A) by cases on p (see lemma 4.4,5).

1.  p=(A,s)
Then R(p,A) <=> eval(A*,a*)=A

but eval(A*,a%)=eval((QUOTE A),a*)=A (by 4.8.7.2)

2./
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5. p=([e11~*912;¢.,;en1—v ° 5 ] a) angd (e ,a)i>T and b’l\me\ui1,a)ﬁ>ﬁ
Then R(p,4) <=> eval({COND (e¥ie¥,)ee0(eX, of.)),a*)=A
Now by LI8 R((2_,,a),%), Vi<n, R((ei1,a),F) and R{(e_,,a},4)
80 ev&l(e%i,a*)aTy Y44, eval(e§1,a*)xF and eval(ezg,a*)=A
hence eval((cenD {6%19?2)696( 21932))9&*>
—eveon(((e11 12)«..(6§1O§2)),&*) (by 4.8.7.2)
=(9V&1(@11,a*)“’Gval(e?zgﬁ*)yeoser&l(e§1sa*)“'eval{sigﬁa%)}
(by 4.8.8.5)

=eval{e* _a*
eval(e* ,a )

=A.

To simplify the last three cases notice that if R(p,A) <=> apply(fn*,
(Ai X7 oAn) ,8," )ﬁA
and evel{{fn* A%, . A%), a%)us
then since eval((fn* A1...A*) a*)mapplv(tn*,evllb((ﬁ1.n.A “) %), 8%)
=app1y(fn*,(A1.,.An,,a*) (by 4.8.8.4 and
ev&l(Ai,a*)mﬁi)

it follows that:
R(p,A) <=> apply(n*, (4,.. 4 ),a%)=
I use this remark in 6, 7, and 8 below.

6./
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6, p=(f[A1;...;An],a) and a(f)=rn then R(p,4) <=> apply(f*,(Ai.oaAn)?a%)mA
Now by LTH R((fn[A1;,..;A#LQ,®so apply(fn*, {4,...4 ), a%)=A
and hence apply(f*,(Ai.,.An),a*)
=apply(ev&1(f%,a*),(A1o.eAn),a*) (by 4.8.7.1)
:apply(cdr(assoc(f*,a*))Q(AT...Ah),&*) (vy 4.8.7.2)
=apply(fn*,(ﬁ1..,An),a*) (by 4.8.8.2)
=A

Te P=(>\[[X1;oeo:xm];e][A1;...;An],a) and nén
Then R(p,A) <=> apply{(LAMBDA (X?.oﬁxé) e*),(a1»,.ﬁﬁ),a%)sg
Now by LIH R((e,(A1/k1)...(Am/xm)&),A) £0
eval(e*,((A1/x1)eec(Am/xm)&)%)zﬁ
and hence apply((LANMBDA (x?..¢x$) e*),(A1,*.Ah),a*)
=eva1(e*,pairlis((xTo..xz),(A1...An),a*)) (by 4.8.7.1)
=eva1(e*,((A1/k1)..¢(Am/im)a)*) (by 4.8.8.3)

=A

8. p=(Label[f;rn][A 5,034 ],a)
Then R(p,A) <=> apply((LABEL £* fn*),(A1...An),a*)=A
Now by LIH R((fn[A1;...;An],(fn/f)a),A) 50
apply(fn*,(A1.,.An),((fn/f)a)*)=A
and hence apply((IABZL £¥ fn*),(Aio.oAn),a*)
=apply{fn¥, (4,004 ), ((£%.£n%).2%))  (by 4.8.7.1)
=app1y(fn*,(A1...Ah);((fn/f)&)%>

=A

Qo Ec Do

4.8,10/
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4,810 Proposition

apply (£, (& eeh ) 0%) 2 [en]([a])(4,,.000h )

eval(e*,n%) I fe](fal])
Proof

Since S=f1at(<S»expression>) if t,,t, € Sthent, & ¢, <=> t,=L or

17% = Y 1

Now by the Main Theorem if [fn](ga])(A1,o.o,An)# L ang fe](fa])# L

then (£ala;s.v;a Toa)>fm](fal)(4,,000,8 ) and (e,8)8fe](fa]) s

by 4.8.9 apply(fn*, (A eeoh ) e*)=lmml(fa]) (4, 000,8)
eval(e®,a*)=fa]({a])

hence the result.

Q.E.D.

Remark: Propogition 4.8,10 meanss
Een](fe]) (4, 000,8 )£ L
a>a;ply(fn*,(A1...An),a )szn](ia})(A1,.s.,An)
fel(fal)£ L => eval(e*,a%)=[e]([a])
Thus if denctations are defined then they can be computed

with the manual interpreter.

I would have liked the next lemma to have been that if

(fn{A1;...;An],a) end {e,&) were nice then:

(apply/
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(apply[fn*;(A1...An);a*],int)%>A =D gfng(ga])(ﬂ1,.a,yAn)=A

(evalle*;a*],int)e>A => fe]({a])=A.

Unfortunately, though true, this is not in & form which enables &
direct proof by LISP-induction to go through. To en&ble me to get

it into & suitable form I make a definition.

4,8.11 Definition

If a, a' € <alist> then their goncatenation a.a' is defined by

structural induction by:

NIL.a'=a!
((4/2).8).a'=(A/2)(a.a")

((fn/z).a).a'=(rn/z).(a.a")

Remark: ((v1/z1)°"(Vn/zn))‘((vn+1/zn+1)"'(vm/zm))
=-'(V1/21 )"'(Vn/zn)(vn+1/zn+1 )cco(vm/zm)

Call an a € <glist> safe if:

when Z={app1y,eval,evcon,evlis,caar,cdar,cadr,caddr,cadar,null,equal,

pairlis,assoc}
Vz € Zalz)=L

Then by corollary 4.7.4 (with 2 as above) if a' is safe thens

(apply/
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(apply{fﬁ%(A1,..An);a*],int)ﬁ>A
=> (ap‘ply[fn*; (A1 ce oAn) ;a*] ,8,' oint’)&>A
(evalle*sa*],int)uss

= (eval[e*;a*],a’.int)ﬁ>A

Thug the desired lemna mentioned above is equivalent to lemns 4,8.12
below which admits a mechanicsl LISP-induction procf, unfortunstely

this proof, though utterly gtraightforward, is particularly long and
tedious - I advise readers to omit it (the lemma is no% all that

important anyway!).
4,8,12 Lerma
Ir (fn[A1;...;An],a) and {e,a) are nice and a' ig safe then:

(epplylen®; (4;00ut )sa¥] 0 int)2oh = fend(fal)(a),000,8 )=4

(evalle*;a*],at.int)s>4 => [e](fal)=a
Proof
The lemma has the form:
p¥>A => R(p,4)
If R is defined by:

R(p,A)/
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R(p,a) <=> if p=(opply[fan*; (4 ...4 );00%],a' . int)E>A
(where a' is safe) then Efnn}(gaa})(ﬁ1,...,An)=A
and if p=(evallee¥*;aa*],at,int)%54

(where a' is safe) then fee](faa])=A

(I use ", "ee"™ and "sa" here to avoid confusion with the names of

the formsl parameters of apply and eval - ses 4.8.1.1 and 4.8.1.2.)

Before doing the LISP-indnction I ghall got & horrid caleulation out
of the way by proving a sublemma, I recommend readers to attempt to

intuit this reher than to foliow the obvriousg, bul messy, prcof.
4,8,12.1 Sublemma

(1): 17 p:(evlis[(e?..,ez);aa*],a’.int) where a' is safe then there
exist safe a{,...,aﬁ guch that:
\/i.(eval[e?;aa*],a{.int)(*p
(2): 1f p==(evcon[((e2f1 9?2)...(e§1 egz));aa*],a'.int)ﬁ>A, for gome A,
vhere a' is safe, then there exist safe a§1,...,aé1@a&9 guch that:
V’i<m.(eval[e§1;aa*],a£1,int)i>F and (eval[e§1;aa*};aa*}gaévint)<*p
¥ . # ] P e % 1 - 2
(eval[em1,aa ],a&1.1nt)£>T and (eval[emi,aa*J,a&1ﬂint)<%p

(eval[ezz;aa*],a&z.int)ﬁ>A and (ev&l[egz;aa*],aég.int)<*p

Proof

(1):/
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(1):

Let af=((e¥...e¥)/n)(aa%/a)a’ clearly al is safe as a' ig, nowt

p:(evlis[(e?G.oei);aa*],a'.int)

ﬁ}(cons[eval[carfm];a];evlis[cdr[m];&]],a{¢int) (by 4.8.1.4:
I now do induction on the lengfh n of (e?...e;)g

n=1¢

n>1:  Agsume (1) true for (n-t).
Then (evlis[(eg...eﬁ);a&*],a;.int)<*(evlis[cdr£m];a],a;oint)<*p

hence result by induction.

(2)s
- * * o * t ? % o
Let a;1«(((e?1e12)...(en1en2))/c)(aa /a)a' then a!, is clearly safe as

a' is,

Now:
p=(evcon[((e?1ef2).‘.(e§1e§2));aa*],a‘.int)
i)([eval[caar[c];a]—»eval[cadar[c];a];

T -’evcon[cdr[c];a]],a;1.int) {(br 4.8.1.%) .

I now do induction on the length n of ((e§1e?2)...(e;1e§2))

n=1:/
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n=1s

If it is not the case that
(ev&l[caar[c];a],a;1.int)ﬁ>T

then it is clearly not possible for p%dA but we assumed this so we must

in fact have (eval[caar[c]:a],&§;eint)$>T°

Thus as (eval[caar[c];a],a{1.int)~>(eval[e§1;&a*]?a{1.int)

we nust have

(eval[ef1;aa*],a;1aint)ﬁ>T, and
(evalle*, ;an*],a!, . int) <*(evel[caar[c];a],a! eint)<*p
11 11 11
and as (eval[cadar[c];a],a{1,in%)~>(eva1[e?2;&a*],a§1.int)

we must also have

(eval[e?é;aa*],a{1.int)3>A (as p¥>A), and

L Y * ] 4 2
(eval[e12,aa ],a11.1nt)< p
so taking af =a!, renders (2) true.

n>1:  Assume (2) true for (n=1).
If (evallcaar[c]sal , a{1.int)ﬁ>T then proceed &g above in the “n-i®
case, otherwise for pi>A we must have.(ev&l[c&ar[c];a],aii@int)#>F

and then

p*/
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p*>(eval[caar[c};a},a;1,int)—>(eval[@?1;aa*],ai1,int)ﬁ>F
and

p*>(evcon[cdr[c];a},a{1.int)
S( * o * o% ))eaa¥* :
>(evcon[((ez1ez2)o..(en1en2)),aa ],3{1.1nt)i>A

and using induction (2) then follows
Q.BE. D,

Now I can get on with the LISP-induction. Note that if p ig not of
the form (apply[fnn;(A1...An);aa*],a'.int) or (evallee*;ae*],at. int)
(where a' is safe) then R(p,A) is vacuously true - this chaervation

copes with the base of the LISP-induction.

BASE:

R(A,A) is vacuously true,

INDUCTION:
Assume LIH and p=(e,a)%>A where p is of one of the forms mentioned

above. I show R(p,A) by cases on p.

1. p=(apply[fnn*;(A1..,An);aa*],a'.int)
Then R(p,A) <= {fnng({aa])(A1,...,An)=A
Let a":(fnn*/fn)((A1...An)/x)(aa*/é)a' then as a' is safe so is &%,

show R(p,A) by considering the various possible cases for p.

1 .1 . far=F and F(A1 seee ’A].'l):A.

Then clearly [fnh](Eaa})(A1,...,Ah)=A.

1.2,/
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1.2, fon=f

Then by the niceness assumption as(f)=fn' for some fn'., Now
p*>(apply[eval@ﬁ;a];x;&],a”,int)

~>(apply[fnt*; (A,’ oo .An) sas*],a". int)

(since Eé#al&*ﬁa]}(Ea".int}):fnh*so by the Main Theorem (eval[fia],a".ini)¥d>rnt#)
Hence by LIH R((apply[fn’*;(A1;..An);aa%],a“.int),A) 80 ﬁfn’ﬁ({aa])(ﬁ1,.n,,én}mﬁ

and thus

[ran}(f2a]) (4,00, )=feal (£) (faa]) | FUN(A,,000,h.)
=lfn'}(fea]) (4500004

=A

1,3, fan= A [[x1;...;xm];ee]

Then p*>(evallcaddr[fn]spairiis[cadr[fn];x;a]],a%.int)

Now [caddr[fn]}(ﬁa".intﬂ =ga*
[pairlis[cadr[fn];x;a]!({a“.int])zp&irlis(cadr(fnn*),(A!.G.An),aa*)

=pairlis((x§...x£)g(A1...An),aa*)

as we are assuming pEdA it follows (from {p}%-l. and the Main Theorem)

that pairlis( (X?o ° .xl'.:) [ (A1 ce C-An} ,&a*)?! L and heunce m..<.n“ AlSC); bE’ ’i‘egagé Ei
Epairlis[cadr[fn];x;a]}([a",int])z((AT/i1)ﬁg.(Am/im)aa)*
Thua

v/
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pt>(evallcadr{fn];pairlis[cadr[fn]sx;a]],a%. int)
~>(eva1[ee*;((A1/k1)..o(Am/km)aa)*],a",int)
>4

Hence by LIH Eee}(E(Ai/x1)...(Am/xm)aa§)=A.

But then:

[ran}(fas]) (400004 )
=(Lﬁ1...tm.geeﬁ((t1/i1)...(tm/xm){aa}))(A?,.a.,An)
=fee]((4,/x,) 0. o (4 /x Yaa]) (as uin)
=lee](£(4,/x))eea(a_/x )aal)
=A,

1.4, fon=Label[f;fn']
Then p*>(apply[caddr[fn];x;cons[cons[cadr[fn];caddr[fn]]ga]],a”,int)

->(&pp1y[fn'*;(A1...An);((fn'/f)aa)*],a".int)

Hence by LIH frn'J([(fn'/f)aa])(4,,.0.,4 )=p
But then frnn}(faa])(a,,...,4 )
“fent 1 ((fen')/0) [aa]) (4,00
=[ent(Hient/2)ae]) (400004 )

=A,

2./
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2. p=(evallee*;a*],a',int)
ThenIP(p,A) <=> geﬁﬁ(ga})aA.
Let a"=(ee*/e){na*/n)a' = clearly as a' is safe so is a", I show

R(p,A) by considering the various possible cases for ee.

2‘1‘ eﬂmA',

Then p#d>A* so A=A' and hence Eee}(ﬁa})mA.

2,2, ee=x=X,
Then by the niceness assgumption aa(x)=A"' (some A') and

pE> (cdr[assoc[esall,a?. int)5>At so A'=A and feel(faal)=a.

2.3 eemfnn[e1:.e.;en]

Then p*>(apply[car[e];evlisfcdr[e];a];a],a".int)

Now by sublemma 4.8.12,1 (1) there are safe afre0.,8)

guch that for each i:

(eval[e?;aa*],a;.int)<*(evlis[(e?...ez);aa*],a".int)
*(evlis[cdr[e];a],a".int)

<*p
Hence by LIH kfi,gei}(Eaa}):eval(ei,aa*)#-L (as p>A£ L ) so

pi>(apply[fnn*;(eval(e?,aa*)...eval(eg,&a*));aa*],a"aint} (ny

Main Theorem and 4.8,8,4)

Hence/



Hence by LIH:
ﬁfnn}(ﬁaa})(eval(e?,aa*),...,eval(e*,aa*))=A

but thent

[ranfe.s.ce5e T1(lasl])
=frnal(faal) (fs,1([aal), ..., [e J(fae]))
=Efnn](Eaa})(eval(e?,aa*),...,eval(ez,aa*))

=A,

2.4, ee=[e11—'e12;...;en1-*en2
Then p*>(eveon[cdr[e]sal,a".int)
* 3 * * . ¥* L B
—>(evcon[((e11312)...(en1en2)),aa 1,a".int)

£>A
So by sublemma 4.8.12.1 (2) there is an m and safe agj such that:

Vi<m, p*>(eval[e;1;aa*l,ag1.int)*>F
p*>(eval[e$1;aa*],a;1.int)i>T

p*>(eval[e;2;aa*],a;z.int)ﬁ>A
Hence by LIH

Vi/
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V i<n, fe, ,J{faa])=rF
te_,1([ea])=r
fe  1(fas])=a ,
so foel(faal)=(fe, }([aal)~ fo, }(Taal),uuu, fe_ (faa])~ fo ,J(iect
=A

Q.E.D.
4.,8.13 Propogition
For all fn,e,A,,...,A such that (fn[A1;...;An],a) and (e,a) are nica:

appl,v(fn*, (A1 eo oAn) ,a*)=Efn§(Ea])(A1 yeee ’An)

eval(e*,a*)=[e]([a])
Proof
Taking a&'=NIL in lemms 4.8.12 yields (via the Main Theorem):

apply(fn*, (4.4 ),8%) & [m](fa])(a,...,4)

eval(e*,a*) = [e]([a])
The result follows from this and proposition 4.8.10.

Q.E.D.

Combining proposition 4.8.10 and proposition 4,8.13 yields theorem 4.8.5,
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5. PROOF OF THE MAIN 7THEOREM

51 Qutline of thse esgsential idea

The esswetial idea underlying my proof of the Main Theorem ig deriwed
from Christopher Wadsworth's work on Scott's semantics of the

A\ -calculus [25] {(however I do not need the full power of Wadsworth's
technique and I suspect and hope that & simpler proof is possible)a
Very roughly the theorem is first proved for & class of "finite!
programns and then extended tc all programs by & limiting argument.

In view of lemma 4.5.1 I only nsed to prove that ipl=h => p%EdA, note
that this is not in a form suitable for LISP—induction. The nain

steps in the proof are:

5,1,1

I extend the languages LISP and ALIST to larger languages ELISP and
EALIST. This is done by allowing functions tc¢ have indices sttacked
to them, the idea being that a function with an index n can only be
called recursively to depth n - if more than n recursive calls are
attenpted the result is undefined. TPFunctionz with finite indices
should be thought of as 'finite' approximations to the correspording
ones with infinite indices. I extend the semantics of 3.14 to ELIGK
and BALIST in a wey harmonicus with (but not identical to) the above
intuition and I also extend ~» go that indices are manipulsted

correctly in reductions.

6162
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Bele2

I define a relation < on the expressions of ELISP and BALIST.

e'<e will mean (roughly!) that ¢ is & LISP form and ¢! isg get from
e by adding indices at various pleces, similariy for ai<a. pt<p

will mean that either p=p'=A or p:(e,a), p*m(@‘,a') and e'<e,a'<a.

Thug p'<p means p' is a ‘finite! approximation to p.
5.1.3

I will then prove five lemmas - these should be plausible given the

above intuitions -~ they are:

5.43.1 lpl= |3 [r]

513.2 p'<p => p' terminates (i.e. there is a p" such that

p'%>p" and for no p"', p"->p"')
5.13.3 (p'<p,p'ﬁ>p",p"¥A“ and for no p"',dées‘pﬁé>§“') > gp}}m_L
§.)3.4 poA => [pl=A
§.1.3.5 p'<p.p'E>A => p2>A,
5.1.4
From the lemmas of 5.1.3 above Ep]:A => pE>A can be proved as follows!

S.1.
It fpl=A then by 3.1 A:‘:Ep}:p',.épgp'} and so as S is flat A=fp'} for
some p'<p. 3523.2 p'#>p" where for nov p"' does p"->p"'; if PUEAY

for/
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<.
for eny A" then by,3.3 A=[pt}= L which is impossible (4 ranges over

) £
{S-expression> not over S) hence p"=A" for some A" and s6 by, 3.4

g )
A"=[p'}=A. Thus we have p'<p,p'*>A and so by 3.5 p&d>A.
A

Q'E-D‘

Before I can convert this outline into & rigurous arguwment I have o
say something about the intended solution of Env=Id-~>|Eav->D] - this
knowledge is necessary in order to give & precise meaning éo the
indices. In the next section T shall describe and motivate enough

of the properties of this solution to enable the proof cf' the Hain
Theorem to be carried out. The fuil construction of Env occurs in
chapter 6. Until this construction is done one cannot krow for mure
that the properties I want Env to have are consistent; Zfor this reason

doing it is necessary.

5.2 PFurther specification of Env

I want now to appeal to your operational intuition to wotivate sone
axioms I am going to require Env to satisfy, thege axioms are given

in 5.2.1 below - if you get fed up with the-waffle that follows skip

to that section.

In order to do the semantics of ELISP and BEALTST I need to say what

"indexed" functions denote. If fnm ig fn indexed by m>0 then I want:

b}/
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[en}(r)(a;,c00,h) if this can be
n .
tavaluated' with
Ef%J(r)(A1.-o-,An)= function celle to dspth
m or less.

L otherwige.

Since gfﬁol(r) cannot do any looking-up in » (because looking-up

functions is ealling them) we would expect Efno}(r)=§fn]CL) (a%

leagt if fn has no free forn variables). Mso i7 rx(gfnjz/fi)...(gfnsfffﬁ)
then we would expect Efnm+1%(r%é(Efné}/f1).a.(gfn2§/fs) ) since if

fnm+1 needs to call one of the fni (1§1§s} then this uses uvp one of
fnm+1's(m+1) calls and so there is only depth n left for fni. ow
if we define rg= Ll , and for r:(Efn1}/f1)v.,(ifng}/fﬂ} we dofine

rm+1=({fn;}/f1),..(ﬁfnz}/fs) then the remarks &bove can he expressed as:

b/mzp.ﬁfnm](r)={fn}(rm)

I now shift my attention from indexed functions to indexed environments

and derive four properties of these: for the first one

Let r%ﬁfn1}/f1)...(£fns}/fs)
pr=(fen'1/t")ee o ([e0®1/2%)

Then rm+1(fl)(r')=gfn;}(r') (by definition of rm+1)
=Efn1}(ré) (by remarks dove)

=r(fi)(ré) (by definition of r)

This/
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This suggests that it would be reasonable to require that:
(1) Vrz,0t x, (2)(2")=x(2) (x})

For the sscond property observe that it seems reasonable from the

intended meaning of fn_ thats
= = = - o
Efno} — Ef’n1 —_— eoe ....Efnm —-— eee — Efn]
hence from the definition of rm:

1-—- coee— Y E-..-r

(2) L=r o

Eor

0

Thirdly notice that if ffn}(r) (Ai,...,An) is defined then there is some

maximum depth m of function calls done in its evalustion so that
{fnl (1‘) (A1 scee 9An)=Efnm} (1‘) (A'l se0e :An)

and hence by considering all possible computations it seems reasonable

that

fenl=Ltfen ]
end so
(3) r=$J T
Finally we would expect that g(fnm)m]aﬁfnm] and hence

(4) (rm)m=rm

The intuitions which I have just exploited to derive (1)-(4) are not

captured/
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captured bv the equation Enve=Id~>[Env->D]; extra axioms are needed

to build them in and these I now state.
5.2.1 Axioms

An slist égggi is a semi-domain Env together with, for n»0, mappings

re>x € [Brv->inv] such thate

Env Env&| Td~>| Bnv->D || (D=S+{S*=>3]| as in 3.14]

(Env1)  Enve[1d->[Bav->D]] (D=s+{5*=>3] as in 3.14)
- |y = = [ |

(Env2) J_uro__ rZ e = b =T

(Bnv3) r=ll r

1

(Envd) (rn)nnrn

(Bavs) r  (2)(z")=x(2)(x})

Remark: If Env is an &list model then by Env! there exist semi-domasin
isomorphisms f3 Enved>[Id=>[Env->1]], g: [Td=>[Bnve>D]}->Env,
I adopt the convention of identifying ‘across'  end g s8¢

that for »,r' € Env r(z)(r') really meausz f{r)(z)(r') etc.

How fully do these axioms gpecify alist models? I shall show that if
Env', Env" are slist models {then there are semi~domain iscmorphisms
between them which preserve not only dlrected limits but also the
application and indexing structure postulated in 5,2.1., Thus there iz
reglly only one aliat model smd so requiring Env tc bs that renders ny
gemantics coumpletely unambiguous. In 5.2,2.2 bzlow the kind of

isomorphism/
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isomorphism, up to which alist models are unique, ie defined.
Readers not interested in this uniqueness (which is not used in the

proof of the Main Theorem) should skip to definition 5.2,.6.
5.2.2 Definition

5e2:2.1

If Env', Env" are alist modsls and f: Env'~->Env" then f is an

homomorphism <=> (1) f is continuocus

(2) Yr,r' € Eov'y Vo e Id.8(x) (2)(x! Jor(2)(x")

(3) \7%' € Env', \/ngp.f(rﬁ)mf(r')n.

5,2.2,2

Alist models Env', Env" are isomorphic <=> there exist homomorphisns

f: Env'=>Env", g: Env"->Env' which are inverse to each other (i.e.

fog=Tyyon » €5=Igpp)s
22c2,

Let Env= R

Env .= [1a->[ Env_=> p]]

apbantecd

) .
Tf Env ie an alist model then for each n20 {r e Env‘ r=r ; is a

sub semi-domein of Erv and there exist gemi-domain isomorphisms
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fn: Envn—>{r € Env | r=rn}

gn: { r € Env |r.-.:rn}->Envn
inverse to each other and such that V z € Ids
(1) Yr e Bav, e Vr'oemv . fn+1(r)(z)(fn(y’)):r(z)(r“)

(2) Vre {rlr=rn+1}. Vet e fr] r'=r'}. gnH(r)(Z)(gn(r‘))=r(z)(r‘)

Proof

Define f : Env —>{r! r=r_}
n n n

gn: {r ! r=rn}->Envn

by fo(x)=L, £ (z)= ha:Ia. Nr's Bnv.x(7) (g, (1))

go(r)n L,¢g

n+1(1‘)= Nz:Id, Ar's Envn.r(z)(fn(ru))

fn(r) is indeed a member of {r ] r=rn§ since (fo(r))om L= L =f0(r)

and for n>0

= ' *tansiona.lity)
(£ (r))n+1_ Nz. Ar'. fn+1(r)n+1(z)(r ) (vy ex

n+1
= Aze Ar', fn+1(r)(z)(r;1) (by Envs)
= Az. Ar', r(z)(gn(r;m)) (by definition of fn+1)
= Aze Art, r(z)(gn(rr'l)) (by Envd)

(r) (by definition of fn+.)

=f !

n+1

I now show, by induction on n, that: ¥V T € fx I I'*'fn}' fn(gn(r))=r

and Vr e Env . gn(fn(r))=r.

n=03 /
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so if r=r then fn(gn(r))zrn=r,

g
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r=ry => r= L = fo(go(r))—.-: L =r

rebw = r=l = go(fo(r))= L =r

Assume fn~1(gn_1(r))mr, gn_1(fn_1(r))=r then:

f(e ()= Az

= Az,
Az
)\Z.
Az,

1l

=r
n

(£, ()= Ao

= )\ Ze
Az,
Az,
)\Z.

[}

Art. fh(gn(r))(z)(r') (by extensionality)

Nzt g () (2) (g _, ()

Ar'. r(z)(fn_1(g

Tiw |
)

(x*))) (by cefinition of g j
n-1

1)) (by definitinn of f%)'

13

Ar'. r(z)(ré_1, (by industion)

Ar', r (z)(z')  (by Envs)

(vy extensionality)

Art. g (£ (2))(2)(x)

Also we have:

(by extensionality)

Ar'. fh(r)(z)(fn_1(r')) (by definition of 35}

] P b Y
Ar'. r(z)(gn_1(fn_1(r )n-?)) (py definition of £

Arte x(2)(g,_((£,_4(x*))) (as ¢

Art. r(z)(z")

t - 10
n~1<r )nm1"fnmi(r H

(by induction)

Thus fn,gn are isomorphisms inverse to each other. To check (1) we

have

£ i1 (r) (Z)(fn(r')‘)f‘(Z) (gn(fn(r')n))=r(2) (gn(fn(r')))mr(Z)(r')

to check (2)s gn+1(r)(z)(gn(r'))=r(2)(fn(gn(r')))=r(2)(r')

5.2.4/

Q.E.D.
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5.2.4 Propogition

If Env', Env" are alist models then they are isomorphic (in the sanse

of 5.2.242),
Proof
By the previous lemmas
{rt € Env'l r'=r£}%EnvnQ{r“ € Env"l r":r;}

Let £ Bnv >{r' ¢ Bnvt | pt=et}, £20: Bov >t ¢ B | xtert)

L 3 “(1.

! ! )
gl {r' € uﬂV'! rl=r!i-yinv_, g"s {v" Bov? | r=pr! }->Env
n n’ ®n n n

be the isomorphisms defined in the proofs of the previcus Jemus.
Dafine fs BEnv'=>Env"
g: Env"=>Env'

by £(zr)=| £ (g!(r!))

g(x")=L] £1(gh(x2))

I claim f,2 are isomorphisms. To gsee that they are well defined

observe that

. _ . . ] ’Z 1 wten _v_;‘ B ,;_:;’\
f;+1(g£+1(r£+1))_ Aze Ar' ;+1(8£+1(rn+1))( Y(z*) (extensiomaliiy)

= Nze ATV gﬁ+1(r£+1)(z)(g;(rﬁ)) (definition of T8 )

= Az, Ar", ré+1(z)(f£(gg(rg))) (definition of g! )
= hz. Ar'. r'(z)(fﬁ(gﬁ(r;))) (vy Eavs and Bovd)

and similarly f! (g;’1+1 Iﬁ‘rgi'ﬁ"])): )\z. >\I". rl!(z)(f;(g‘;l(r;l)))

nt+i
so/
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g0 by a quick induction on n we have

L=t ez = £3(gi(x])) Evee (g (x))) Sauetlzr) (1)

L=r8(ef(xg)) £ £1(g(xy)) S oes B 22 (en(x1)) S eoeglr?) (2)

and so the Li's defining f,g are over directed sets and hence are

defined.
To show that f,g are inverses we have

£(g(x))=£( ) £!(g2(x2)})

n'én*y
=1 Lien (g (£ (en(zn))) )

=L £ (g ((£2( (=), ))  (by (1), (2) above,i.e. cofinality)
= L1 £ (g (£1 (2 (x2)))) (as £1(x") =f2(r"))

= L1 t2(gl () (as gl (£} (x))=r")

=l (as f;(gg(r;))—r")

=r" (by Env3)

and by symetry g(f(r'))=r'.
To show f is a homomorphism we have:

£(z)(2) (£(x'))= %4fn+1(gﬁ+1(rn+1))(z)(fg(g£(r )) (bz.gi)cifEZZl;tv)

=118l (x4 (2)(gl(r2)) (by lerma 5.2.3)
=L rn+1(z)(rr'1) (by lemma 5.2,3)
=r(z){(z") {by Env5,Env4 and Env3)

and/
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and also f(rg)= L =f(r), and if V x', t(z})=£(r"),

then: f(rn+1)(z)(f(r')):rn+1(z)(r') (by the last calculation)
=r(z)(z!) (by Bnv5)
=f(r)(z)(f(r£)) (by the last calculation)
=£(r)(2) (£(z*) ) (by assunption)

=£(r) ,4(2)(£(z")) (oy Bav5)
so by induction on n and the fact that f is onto ("=t (g(x")))
\j n. f(rn)=f(r)n

Thus f is a homomorphism end so, by symmetry, is g also, hence

Env', Env" are isomorphic.

QQE. Do

In view of this proposition it makes sense to talk about Env asg the

alist model.

The next proposition shows that any semi-domain whica satisfies
EnvéEnv->[Envm>D] contains an alist model as & sub semi-domain, thus
slist models are (sort of ) minimal solutions of Envzld->{Env->D]
gince minimal soluticns of recursion equations are the ones wanved
this provides another reason why alist models are appropriate. It

also shows that to prove Envl-Envs are congintent I only have to

prove that (Env1) ise

5.2,5/



~149-
5.2.5 Proposition

Let Env=[Id-> [Bnv-5>D]] then Env contains & sub semi~domsin which

is an aliat model.
Proof

For r € Env let ro=J..
T Nz Azxt. r’(z)(rn)
To= gl ™= )\z. \)\r'n r(z)(re;)

Envw={r I r:-rm}

Then I claim that Env, is a sub semi-domain of Znv satisfying (Bavi Jeo

. . - . ] s %
(Env5). It is a sub semi-domain of Env since Jd,= Az. AT, _L(z)u;;;r.‘i‘

iy e o N O I S
and if {r }i S Envy, is directed then (Lf ) "Lijz'm“ Lii r* (as

Vi.rl=r;) 80 Ll-l e Eny, To check (Envt)-(Bavs) is sireightforwards
Envi:

Note that r =L (llr ) =iilir =llr =LIr=x, so that

if f3 [Id~>[Env£>D]]—>an(,o ig defined by

£(x)=( Nz. Arte x(2)(x))),
then £(=)(z)(z")=( Az. Az'. x(2)(z})), (2)(r")
=( Nz. Ar', r(z)(ra;))(z)(rm')
=r(z)(r} )

=r(z)(z})

and/
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and hence the mappings

(Nt Bav,.x)s Bny>[Tae>[ny=>D]]

£ : [Id->[Emg.>D]]->Envw
are isomorphisms.
Env2:
By definition L= o clearly roE rye Assume: r =
T T Az, Ar'. r(z)(rr'l) (vy definition of rn_H)

E Nze Ar'e 2(z)(x' ) (by assvmption)

n+1
=T .5 (by definition of rn+2)
hence by induction on n L=r, =r, 5 ... Ern‘f cos = I e
Env3:
r € Env, => r=r, = e
Envé:

) .= Az. Ar'. rn+1(Z)(rI'1)

= Az, Ar'. r(z)(r}‘m)

Too~ ~ =To’ (rn+1 n+i

hence by induction on nil Vn. (rn)n=1‘n-
Env5:

/

rn-M
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(z)(r'):r(z)(ra) by the definition of r

n+1 n+1°

QoEoJ e

Certain simple properties of alist modds are needed for the proof of

the Main Theorem, the next proposition ccllects them together.
5.2.6 Definition

For r € Env let ry =r and for O¢n<®, v € [Env->D] define v, € [Env->D]

by
vn=)\r. v(rn)

Remark: for 0<nleo vn(r)-—-v(rn) and also Vv =v

5.2.7 Proposition

If r € Env, z € Id, v € [Env->D] and O n,m {® then:

5.2.7.1 rn_H(z):r(z)n

5,2.7.2 ((v/2)x)  4=(v /2)r

5.2.7.3 (v/z)r=LJ (v /2)r

5:2.7.4 (t in [Env->D]) =(t in [Env->D]) (for ¢ € 8)
2.7, (rn)m=r

min{n,m}

Proof/



~152-
Eroof
Trivial if n=® or m=t (if W= w +i=0® =1) eo suppose 0< n,m <& :
5e2eTed

rn+1(2)(r')=r(2)(r;1) (vy Envs)

=r(z) (') (by definition 5.2.6)

80 3:'n+1 (Z)=r(2)n-

5e2:7:2
((v/z)r)n+1(z')= Art. ((v/z)r)n+1(z')(r') {by extensionality)
= Ar'. ((v/2)r)(z')(z}) (by Env5)
= Ar'. ((v/2)r)(2') (x') (by 5.2.6)
= ((v/z)r)(z')n (vy extensionality)
.Ln if z=.L or z'=.1
=1 v if z=z'# L (by 3.11.3)
r(z')n otherwise
=(v_/2)r ,4(z") (by 3.11.3 and 5.2.7.1)
5:26T7:3
L (vn/z)rn_H: LI (vm/z)rn (as (vm/z)rn is monotonic in m,n)
=( {_mj Vm/Z) In_] rn
== L vm/z)r (by Env3)

=(v/z)r (as L V= Ar. ( ‘ml Vm)r-*-' A r. lml V(rm)
= A re v( Ly rm)
= Are v(r)

x}f)
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02‘ 04'

(t in [Env-)D])n(r)=(t in [Env-o)D])(l‘n)
=( \r. t in D)(I'n)
==('t in D)

=(t in [Env->D])(x)
2.7,

I do induction on n,m,

If 0=0 or w=0 then 7 = L=rj=r . (o 1

If n>0, m>0 and r(n—1)(m-‘!):rminf(n—?),(m-q)} then

r = A z. )\r'f rnm(z)(l") (by extensionality)
= Az. Ar'. z (2)(z! ) (by Envs)
= Aze Arte 22 (el (1)) (hy Buvs)
= Azo Ar', r(z)(rx;in{(mm”'(n_g)}) (by induction)

= Az. Ar', x{z)(z!

min{n,m}-1) (as min{(w=1),{n~1)}=ninin,n}1)

= hz. Ar'. rmin{n,m}(z)(r') (vy Envs)
“Inin{n,n} {by extensicnality)

Q.E.D.

5.3 Extended LISP (BLISP) and extended ALIST (RALIST)

I am now going to extend LISP and ALIST to bigger languages ELISP

and BEALIST, these bigger languages contain the smaller ones and on

'chese/
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thege [...} and -> are the same as hefore,

To avoid running out of

symbols I am going to extend the metavariable conventions to rENTE

over expressiong from ELISP and EALIST - in what follows the mets

{form>, <functiond and <alist> are bigger than they were previcuslyv.

The new metavariable conventions are:

in 3.7.15 above)
in 3.7.15 gbova)
in 5.3.1 below)
in 5.3.1 below)

(i.e. {oar,car, cons,atom, eq} )
$ $

variable range
A {S-expression> (as
x,f,2 {identifier> (as
e {formd (as
fn {function> (as
F {standard function>
t S (where S=flat(<S-expressiond)
r Env  (as in 5.3.1 below)
v [Env->D] (as in 5.3.1 below)
a <alist> (as in 5.3.2 below)
p <termd (as defined by p
w <bound exp>

(as in 5,3.2 bolow)

The expressions of ELISP and EALIST are like those of IISP and ALIST

except that they can contain indices at various pcints.

The purpose

of these indices is to finitise programs by converting 'circles! or

'knots' which could lead to unending computations into ‘'spirals' which,

as one traverses them, eventually 'wind down'! to L .

designed/

This remark is
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designed tc demystify some of the definitions and results which follow,

if it does not do this ignore it!

5.3.1 ELISP

Syntax

6 ti= A lx [fn[e1;,..;en] ][e11*>e12;,e‘;en1~*en2}

fn si= F’ f‘)\[[xi;...;xn];e] lLabelm[f;fn]j rﬁ[f;fn] (0£mg )
Semantics

Denotations: D=S+¥FUN
S=flat(<S-expression>)
FUN=[S*-53]
Environments: Env an alist model (as in 5.2.1)
Semantic functions: ewdfe}: <formd>->[Env-»s]
fo->ffn]: <functiondy=>[Env->FUN]

Semantic equations:

(s1) A} (r)=2
(s2) [x}(r)=r(x) | 5
(83) Efn[GT Sese ;enl } (r):&fn] (T) ( 581 } (I‘) gecey Eeni(r))

(s8) ey~ €45 00nse 4= enZH(r):'(Ee”}(r)-* fo, 1(z),u e 1(x
(s5)/

Y= f

&
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(s5) fear](r)=ht.car(t)
fcar](x)=)\t.cdr(t)
fcons] (r)::,}gc1 t,.cons(t,,t,)
fatom] (r)=\t.atom(t)

CHODTANCICRN

(s6) [£(e)=z(£)(x) | ¥ow
(s7) D\[[x1;...;xn];eH(r)m,}“\t,'m-ésnss,?:e}((%j/xj)nw(tn/xn}r}
(s8) [Labelm[f;fnn(r):—%fn'}m{(E:(‘n}/f‘)r) (2se note 1 velov)
(s9) gtkm[f;f‘n]}(r)z_l{:%( Avi[Env=>D]. hrt: Env,[rnl
((o/E)= )M ()
(zee note 2 voiow)
Notes

Nde 1: If m<® then frn] = Ar. [rn](z,) (cf. definition 5.2.6) if
m=% I define [fn]ao =Efn]
Thus Label00 [f;fn] denotes in ELISP the same as Label{f;fn] doo3

in LISP.

Note 2: Notice that the meaning of /uoo[f;fn] in ELISP is the same za
the meaning of iu [f;fn] in LI3P and that:
[ n if w=0

n sfn]i(r)=
(510) [/u Lesenll( [gfn}(@/ﬂ” [£3£0])/£)2) if w0

In view of these notes an expression of ELISP in which all the indicss
are ® can be identified with an expression of LISP, Thus ELISP

'contains' LISP and T make the notational conventions thate

Label/
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Label [f;fn]:Label[f;fn]

0
p Lestnl= i [g32n]
Notice that Note 1 above and conventions 3.11,4 imply that:
(Efn'}m in [Env=>D])=(f£n] in [Em—-->1)])m

5.3.2 BALIST

Symtax
a = NIL l(w/z)a
Wit Al | L (0gmg 00)

Remark: I may omit writing NIL in alists e.g. (A/x)(fnm/f) means

(A/x) (f‘nm/f)NIL.
Senantics

Semantic functionss ah>{a}:'<alist>~>Env

w>fw]: <bound expd=>[Env->D]

Semantic equations:

(ast) Ivmnl= L

(AS2-4) [(w/2)al=(fw]/z2)[a]

(4s2) f2l=(4 in [Env->D])

(453) fen J=(fen]  in [anv->p])
(454) = 4 pnresn)

Remark/
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Remark: The funny numbering of these equations is designed sc that it

is in harmony with that of the semantic equations in 4.2,

Each expression of ALIST corresponds to an expression of FALIST with
infinite indices (though not vice versa), hence I shall use (fn/z) %

mean (fq”/z) and thus regard ALIST as & subset of EALIST.
Notice that in view of defirition 3.11.3 Ya,fa}{l)=.L

5.4 The extension of ~> to HLISP and FALIST

In order to simplify extending - %o deal with terms (e,a) vhers
e € <form> (of ELISP) and a € <alist> (of BALIST) I male some

definitions.
5.4.1 Definition
If a € <alist>, z ¢ <identifier> define a(z) € <bound exp> by:

NIL(z)= L

((w/z')a)(z)= if z=z' then w else a(z)
This definition makes sense in view of the‘following lemma,
5.4,2 Lemna
[a] (z)=[a(2)]
Eroof

Structur&l/
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Structural induction on a:
ENIL}(Z)= J-=ENIL(Z)]. Assume result for a thens

[Ge/z)ad(2)=(({w)/2) [a]) (2) ana z'# L by the definition of <alist)
=if z=Ll then L elseif z=z' then [v] else [al(z)
(vy definition 3.1%.%)
=if z=z' then [w] slse fu}(z) (since V a.fa}(l)=-L and 2.0
=if z=2' then [w] else fa(z)] (vy induction)

=[if z=2' then w else a(z)}

=[((w/z")a)(2)]
Q.E.D.
The following definiticn is designed to make lemma 5.4.,4 (below) true.
5.4.3 Definition
For w € <bound exp>, 0<nw define LA <bound exp> by:

0<% : A =A
(fn )

L=l
n

£

n- nmin{m,n}

5.4.4 Lemma
fv 1=lv]
Proof/
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Proof.
o< ¢ [ J=[a)=(4 in [Bav->D]) vy AS2 of 5.3.2)
= >\r.(A in D)
=(Ar.(4 in r)), (by definition 5.2.6)
=[]
E(fnm)n]:Efnmin{n,m}}
:(gfn}minin’m} in {Envw>D]} (by 433 of §.3.2)
:(Kfn] in [Env">D})min{n,m}
=(ffn] in [En‘v->D])mn (by definition 5.2.6 and 5.2.7.5)
= ﬁf‘nim in [Env->D])n
=fen 1
R )efte Lo 1]
n=00 3 bu)=lvl=[v],

Q.E.D.
The next definition is designed to make lemma 5.4.6 (below) true.
5.4.5 Definition
For a € <alist>, 0n{® define & € {eiist> by:

n=0¢ NILO==NIL

((w/z)2) =(L /z)e,
O<n<® :  NIL =NIL
((w/z)a)n=(wn_1/z)an
5446/



. o P
5.4.6 Lemma
la }=la]_
Proof

n=0% {aO]= J.=Ea]o (by definition 5.4.5 and a quick structural

induction on a)
O™ ¢ I do structural induction on a.

[vm J=[vml= L= L =fNmn]  (by definition 5.4.5)
E((w/Z)a)nE:E(wn“1/z)an3 (by definition 5.4.5)
=(Ewn_1}/5)gan} (by AS2+4 of 5.3,2)
=(5w3n,1/z)§ain (by 5.4.4 and induction)
=((lvl/z) [a1) (by 5.2.7.2)
=f(w/z)el_ (by AS2-4 of 5.3,2)

Q.E.D.
Here now is the extended definition of ->.
5.4.7 Definition
Define ->, %> by:

P1/



P1

b2

P3

P4

P5

P6

P7

P8
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(4,8)=>A

a(x)nA

(X,&)n)ﬁ

F(A1, ee e ,An)—“-"u%.

(F[A1}e..;An1,a)->A

Vi.(ei,a)z‘ﬁ?’fxi and 3 m.em;!A

(fn[e1;o..;en],a)m>(fn[A1;...;An],a)

a8

£6m1 ,a)ﬁ)’j‘ and \7’1(:"').. (61‘1 ,&)-ﬁ)}i‘

(legq= eqpieense = e 5 T,8)>(e ,0)
a(f):fnm

(f[A1;..e:An].a)w>(fn[A1;--.:An],am)

min

(>\[[X,:o--:xm];e][A1;..e:An],a)->(e,(A1/k1),,.(Am/km)a)

(La.belm[f;fn] [A1 Seee ;An] ,8)=> (fn[A1 jaeo ;An] y ((fﬂ/f')w)n\)

( rxm“ [esen]laysee st Joad>(enlaysensn 1 Ot lesenl/e)a)

P10 ?1->b2->...->Pn (1<n)

1’1'-K>Pn

(0 =wa1l)

I hope it is clear that definition 5.4.7 reduces to definition 4.2.2

if all the expressions are from LISP and ALIST (i.e. have infinite

indices). LISP~induction extends to the new -> painlessiy.

<* ag in definition 4.4.1, but using -> as defined in 5.4.7.

Define

Ir

H>’ §> are defined as in definition 442 but using the new extended

P1,P2,P3,P6,P7,P8, of 5.4,7 (instead of those of 4.2.2) then the

proof/
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proof of 4.4.3 goes through, Thus LISP~induction is valid, I shall
now use it to prove the following lemme which generalises 4,5.1 and
says that -» is & sound conversion rule. Pirgt let the range,

Lterm>, of the metavariable p be given by:
p s:= A l(e,a)
and for p € <term> define Kp] € S bys

Ea}:A

[(e,a)}=le}([a])
5.4,8 Lemua

pA => [p}=a
Proof

Same as proof of lemma 4,5.1 except replace 6, 8 and 9 of that proof

by 6', 8' and 9' below:
6 ¢ .P=(f[A1 HE R ;An] ,8.) &nd a(f).—..‘fnm

Then by LIH R((fn[A1;...;Ah],am),A) i.e. [fn]({am})(A1,...,An)=A

so/
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so fpl=Ir}(fal)(4;,...,0)
=fa}(£)(a]) | ¥om(ay, e )

=fa(2)]([a]) lpun(ai,,..,An) (by lemma 5.4.2)

=(I£n], in [Fav->0])([e]) | F0(a,, 0008 ) (b7 455 of 5.3.2)

=th§(ﬁam'g)(k1,ooc,;kn) (by 3.11.4 and 5.4‘@6)

=A

8'. p=(Labelm[f;fn][A4;..o;An]y&)

Then by LIH R((fn[4,3...54 ], ((£n/1)a) ),4)
ice. [en}([((gn/)a) D (ap,.000,h )=t

so [p)=fraver”[e;:ea11(fa]) (4,,...,4 )

=fen] ((feal/2)[a])(a),00008 ) (by 8 of 5.3.1)

=[rn](Ken/£)a] ) (4, 0000n) (by Note 1 of 5.3.1)
=Efn]({((fn/f)a)m])(A1,,.,,An) (by lemma 5,4.6)
=A

9', p=(fim+1[f;fn][Ai;...;An],a)
Then by LIH R((fn[A1;...;An],(rim[f;fn]/f)a)yA)
iees fen] ([0 lesen]/eR]) (A, 00,4 )=2

80 Ep]=5f*m+1[f:fnli(ga])(A1,...,An)

=Efn}(([fkm[f;fn]}/f)gaﬁ)(A1,...,An) (by S10 of Note 2 of 5.7

=[fn](EQim[f;fn]/f)al)(A1,...,Aa) (by AS2-4 of 5.3.2)

=A

Q.E.D.

Examination/

o)
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Examination of the proof of this lemma shows that in fact it

essentially proves the stronger result:

5.4.9 p->p' => [pl=fp'}

I need to use thig fact in proving lemma 5.9.2 balow. I will not
prove 5.4.9 here as it is utterly straightforwara bo verily it hy
direct calculation (one juast considers the various cases of p; 5.4.8
is needed vhen p is an application or conditicnal) - the details
occur in the proof of 5.4.8. It would be possible to generslize
LISP-induction so that the proof of 5.4.8 would (more or lens)
constitute a proof of 5.4.9. I have not done this because I csnaot
see how to do it so that the generalized LISP-induction ig rnot messy
and ad hoc looking. I am not happy about this situation - I feel
that the essence of "induction on the size of computation® has not
been adequately captured in LISP-induction, but I cannot put my
finger on exactly what is needed. There is something lurking around

here which I need to understand and it hss escaped capture so far,

5.5 Approximants and the relation <

For e', e € <form>, a', s € <alistd I am going to define what it nesns
for e'<e and a'<a. Roughly e'<e, a'dg means that e', a' are 'finite’

approximants to e, a respectively. Here is the precise definition:

5.5.1/
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5.5+1 Definition

Define e'<e,fn'<fn,a'<a and p'<p by:

5.5.1.1 on <{form>

5.5.1.1.1 A<A
5¢5.1:1.2 x<x

e 1]
5e5.1.1.3 fn'(fn,e%<e1,.a.,en<en

fn’[e%;o@.;e£]<fn[e1;...;enl

535910104 e'1<e

i 11,e1'2<e1'2,,..,er'l1<em,é1'12<en2

1 - . . -
R T e A 8 pieenie e ]

545,1.2 on <functiond

550121 F<F

5050192.2 f<f

5.501.203 e'<e
M Cxpse0esx Jse7]¢ >\[[x1 feesix Jie]
505.10204 m<y ,fn'(fn

Labelm[f;fn'}(Label[f;fn]

5.5.1.2,5 m<o ,fnt<fn

Pﬁ[f;fn']<i%[f;fn]
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5:5.1,3 on <aligt>

5¢5.1e3.1 NILKNIL

5.5¢1:3.2 &a%<a
(&/z)at<(s/z)a

565¢1:363 a'<a
(L/z)eX(A/z)a

505010304 8.'<a,fn'<fn,m<00

(fn&/z)a'((fn/z)a

5¢5.1¢3.5 a'a,fn i85 LISP function (i.e. all indices in fn are o)

(L/z)at<(fn/z)a
505-1.306 a.’<a.,fn'<fn,m<09

(fﬂm[f;fn']/f)a'<(fk[f;fn]/f)a

5¢5.1 ¢4' on <tSI'IL>.

5eSetedel AL

505010402 e'<9,&'<&

(e',a)<(e,a)

Remarks: (1) Note that the four f's in 5.5.1,3.6 are all the same.
(2) From 5.5.1.1 and 5.5.1.2 it is clear that e'<e,fn'<fn <=>,
(2.1) £11 indices in e,fn are infinite and all indices
in e',fn' are finite.
(2.2) e',fn' can be got from e,fn by replacing all

fafinite indices in e,fn by finite ones,

The/
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The next lemma shows that the denotation of an expression is the

limit of the denotations of its 'finite' approximants.
5.5.2 Lemma,

5050201 ‘o= u {e’}
5.5.2.2 fn= Il [rnt]

5¢5.2¢5 a= L {a'l

] 0204' !
5¢5 p= [,{p fp']
Proof

Since [fn}= éﬁo Efn}m,
[Laver[fr;fn]l= N [Labe1™[£;£n]] and

[palesendl= Ly ELesen])

The regult follows by structural induction, the continuity of the
(denotations of the) expression building operations and the directedness
of {e'l e'<e}, {fn', fn'<fn}, {a'l a'(a}, ip" p'<p} (a1l these being

straightforward to cheek) .

Q.E.D.
5503 Lemms
a'<a,0Cm< 0 => aé(a
Proof

1t/
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If m=0 then result follows from 505.1¢301, 595o1r303 and 595).0?03«50
If 0<m{ & then a& can be got from &' by reducing some (perhaps none)
of the subscripts (not superscripts) hence by 5.5.1.3.4 the result

follows.

Q.E.D.

The next lemma shows thet if a ‘finite' approximant converts to an

S-expression then so dees the term it epproximates.
5.6 Lemma

p'E>A,p'<p => p¥>A
Zroof

Let R(p',A) <=> Vp.p'<p => pida

Then I need to show that:
p'#>A => R(p',A)
I prove this by LISP-~induction.

BASE:
R(4,4) <=>(V pei<p => p£>A)<=> A%YA which is true.

INDUCTION:
spune as Lifls (Vp"<(e',at). p"#>A" => R(p",A")). Let
p'={e',at}4>A then to show R(p',A) I need to show that (p'<p => p%>A);

so/
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p->(fn[A1;...;An],a)&>A

6.2 a'(f)= fim[f;fn']: /(V{m[:t‘;fn']&9 and m< @
Then px(f[Aj;".a;An]’&') and bV 505011306
a(f)= fl[f;fn]. By LIH R{( }lm[f;fn'}[ﬁ1;...;An],a'),A)

hence pn>(ri[f;fn][A1;.s,;An],a)ﬁ>A.

7. p'=()\[fx1;..a;xm1;e']fA1;--»;An].a') and m¢n
Then p=( >\ [[X,l ;ceo;xm.!;@][A1;omo;An]!a)t
by LIH R((e',(A1/&1)..,(Am/xm)a'),A) 50 by 5.5.1.3.2

p->(e, (&,/2))e0a(h /x )a)®>4.

8. p'=(Labe1m[f;fn'][A1;G..;An],a') and n< o0
Then p:(Label[f;fn][A1;...;An],a)
by LIE R((fn'[4, 5,054 ], ((£nt/£)at) ),4)
80 by lemma 5.,5.3, 5.5.1.3.4 (if m>0) and 5.5.1.3.5 (if m=0)

p->(fn[A1;.,.;Ah],(fn/f)a)k>A.

1
9. p‘=(}im+ [r3ent]{A 500054 ],8") and <0
Then p=( H [f;fn] [!l1 Seeo ;An] ’a)
by LIH R((fn'[A1;,,.;An},()im[f:an/f)a‘).A) 50 by 5.5.1.3.6

p->(fn[A1 ;o e e ;AII]’ (f\i [f;fn}/f)a)£>Ac

QIDEGD-

5.7 Some terminology

s ) o , ¢
The definitions below confer rigour upon certain phrasesg which, up to

now/
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now, I have used in an informal and intuitive gense.
5.7.1 Definition
If e'<e,fn'<fn,a'<a,p'<p then

(1) eo',fnla',p' are finite
(2) e,fn,a,p are in LISP

(3) e',fn',a',p' are approximants of e,fn,a,p respectively.

5¢7.2 Definition

p terminastes <=> there does not exigt &n infinite sequence PioPoseoce
€

5.7.3 Definition

p] (read "p is stuck") <=> pfA and for no p' does p->pi.

p¥>p'] <=> p¥>p’ and p'l.

5,74 Lemma

p terminates <=> p%>A or p¥>p'] for some A or p'.
Proof Trivial Q.E.D.

5.8 Proof that all finite terms terminate

The goal of this scction is to show that if p is finite then p
terminates. To do this I shall define the rarnk, rk(p) eEN, of D1
had initially heped to arrange things so that p=Pp! => rk(p)>rk(p'>,

unfortunately/
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unfortunately this is not quite true, but gomething similar which is
good enough, is. I could have altered the definition of -> to

make p->p' => ri(p)>rk(p') however doing that would stop the new -
from being a nice simple extension of the old ome. I Teel the
course I have taken is the lesser of the two evils. The definition
of rk given below iz the first onme I came scross which had the
desired properties; there is no uniform intuition which will render
each clause in its definition mesningful (slthough thinking of rk(p)
&s being a bound on the number of conversions which can be done on »
might help). It should be intuitively plaugible that finite terms

terminate though.
5.8.1 Definition

For e € <form>, fn ¢ <{function>, w € <bound exp>, z € <identifier>,
a € <alist> and p € <term> define rk(e),rk(fn),rk(w,z),rk{a),rk(p) € Ny {&}

by structural induction as follows:

5080101 I'k(_e)

5¢8.1.1.1 rk(4)=0
5.8.1.1.2 rk(X)=1
5.8.1.1.3 rk(fn[e1;...;en])=1+rk(fn)¥fk(e1)+...+rk(en)

50801 '3 1 .4 I‘k( [811"’ 912; XX ;en1-> enz])=1+rk(e1 1 )+I'k(e1 2)+'. » o+rk( eﬁ‘ )+rk(@n?)

508.1 02 rk(fn)/
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5.8:1.2  1k(fn)

5¢8¢1.2.1 rk(F)=0
5¢8.1.2,2 rk(f)=1

5¢841.2.3 rk(>\[[X1;u.;xn];e]);=1+rk(e)
5.8.1.2.4 rk(Lavel"[r;rn])=(m+1) (rk(£n)+1)

5¢8.1.2.5 rk(}im{f;fn])z(m+1)(rk(fn)+1}

5.8.1.3 rk(w,z)

5¢8.1.3.1 1k(A,2)=0 k
rk(fn) if fn is of the Form Li[z;fn']
5.8.1.3.2 rk(fn ,z):{
n {(m+1) (rk(£n)+1) otherwise

5.8.1.3.3 rk(.Ll,z)=0

5.8.1.4 rk(a) rk(a)= 3 rk(a(z),z)

2

5.8.1.5 rkip)

5.8.105.1 rk(A)‘:O

5.8.1,5.2 rk((e,a))=1+rk(e)+rk(a)
Remark: A binding of the form:

( ftm(f;fn]/f)
N7
same

arises from conversion on a finite temof the form

(/
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(/u”‘+1 [f;fn}[A1;...;An],a) and I want it only to make a
finite contribution to the rank of any alist in which it

occurd. Bindings of the form

( M [?fn}/%)

different

do not arise in this manner and do not nsed te be treated amo
subtly. This is the reason for 5.8.1.3.2 and why I do not

define rk(w) and then set rk(a)=S rk{a(z)).
z

The following lemma collects together some trivial (but messy!)
consequences of the definition of rk. These are nseded to prove that
finite terms terminate, I suggest that you skip the lemma initially

and only refer to it when it is invoked later on.

5.8.2 Lemma

Suppose fn € <function>, & € <alisgt> and m € N are finite then:

5.8.2.,1 p finite => rk(p) finite
5¢802.2 Yz, 0<%, rk(an(z),z).s rk(a(z),z) (hence rk(an)jrk(a))
5.8.2.3 rk{a)+rk(a') > rk{a.a')
5.8.2.4  (m+1)(zk(rn)+1)+vk(e) 2 rk((£n /1)a)
5.8.2.5 a(f)=fn_where fn not of the form /un{f;fzf]
=> rk(r)+rk(a) > rk(fn)+rk(am)

5.8.2.6/
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5.8.2,6 a(f\z/is[f:fn]n,O<s<ﬁ),nggw,
=> zk(a) > wk(fn)+sk( (U 3“1{f;fn]/'f)an)
5¢842.7 rk(Label"[f;n])+rk(a) > rk(fn)+rk(((fn/’f)a)m)

. 54842.8 rk(fim+1[f;fn])+rk(a) > rk(fn)+rk((}im[f;fn]/f)a)

Proof

5:8.2.1

If all indices in p are finite then clearly so is rk(p)#

If p is finite (as defined in 5.7.1) then the only way p. could contain

”»

infinite indices would be if p=(e,2) and for some z. a(z)= fxn[z;fn]aﬂ

but then by 5.8,1.3.2 this infinite index gets ignored by rk, hence

rk(p) ig finite,

5¢8:2.2
If n=0 then for all z, ao(z)=.L 80 rk(ao(z),z)=0_g rk(a(z),z).

If n>0 then if a(z)=A or a(z)=_L then an(z)za(z)
s0 rk(an(z),z)=rk(a(z),z) and, if a(z):fnm then an(z)zfnmin{n~1,m}

s0 rk(an(z),z).g rk(a(z),z).

2:842.3

rk(a)+rk(a')= 2 rk(a(z),z)+ z rk(a' (z'),2') (by 5.8.1.4)
> 7 v{(2-a")(2), 2) (by 4.6.11)
=rli(a.a'\)
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5.8,2.4

rk((fnm/f)a)-rk(fn P+ X rk(a(z),z) (by 5.8.14)
<(m+1)(rk(fn)+1)+5' rk(a(z),z) (by 5.8.1.3.2)
=(m+1)(rk(fn)+1)+rk(a) (bY 5.8.1.4)

5e8e2.5

If a(f)=fn_and a,fn and m are finite and fn is not of the form Mlgsene]
then rk(f)+rk(a)= 1+Z rk(a(z),z) (by 5.8.1.2.2 apd 5.8.1.4)
—1+rk(fn )+ "Z rik(a(z),z)
=1+(m+1)(rk(fn)+1)+ 2 rk(a(z),z) {(by 5.8.1.%.2)
>rk(fn)-g~m(rk(fn)+‘:)+ I‘g rk(a(z),z)
Srk(fn)+n(rk(fn)+1)+ z?:f rk(am(z),z) (by 5.8.2,2)
=rk(fn)+rk( am) i

(consider n=0 and m>0 cases separately)

3:8.2.6
If a(f)= /\As[f;fn]n and s,fn,a are finite and s>0 then:

rk(a)=rk( }ULS[f;fn] ,£)+ Zf rk(a(z),z) (by 5.8.1.4)
._rk(/us[f fnl)+ E',f rk(a(z),z) (by 5.8.1.%.2)
=(g+1) (zk(fn)+1)+ = rk(a(z),z) (by 5.8.1.2.5)

>'rk(fn)+s(rk(fn)+1)-|:f,._ rk(a (z),2) (by 5.8.2.2)

/us e, fn]/f)a

=rk(fn)+rik((
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282,

If m,fn,a are finite then:

rk(Labelm[f;fn])+rk(a)
=(m+1)(?k(fn)+1)+rk(a)
>rk(fn)+m(rk(fn)+1)+rk(a)
rk(fn)+rk((fnm_1/f)a)
rk(fn)+rk(a)

2rk(en)4ri( ((en/£)a) )

5¢8,2.8

If m,fn,a are finite then:

_ ;ﬂ*‘ [£3£0])+ri(a)

=(m+2) (rk(£r)+1 )+rk(a)

=rk(fn)+(n+1) (rk(fn)+1)+rk(a)

2pk(fn)+rk((rim[f;fn]/f)a)

(by 5.8,1.2.4)
if m>0 (by 5.8.2.4)

if m=0

(by 5.8.2.2 and detinition 5.4.5)

(bY 5.8.1.2.5)

(by 5.8.1.3.2)

Q.E,D.

An easy corollary of the next lemma is that finite terms terminate,

5.8.3 Lemna
If p is finite then:

p->p' => rk(p)>rk(p')

excegt/
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except when p is of the forms (f[A1;...;An],a) where a{f)s stf;fn]ms
'( b3

and then

P->p'=>p" => rk(p)>rk(p").

Proof

I consider the various possible cases of P.  Assume p~>p' thon p nusy

be of the form (e,a).

cagsel: p=(4,a)

Then p'=A and rk(p)=1+rk(a)>0=rk(p')

case2: p=(x,a) and a(x)=A

Then p'=A and rk(p)=1+1+rk(a)>0=rk(p')

cagels: p=(F[A1;...;An],a) and F(At""’An)zA

Then p'=A and rk(p)=1+1+rk(a)>0=rk(4)

cased: p=(fn[e1;...;en],a), V:‘L.(ei,a')*Mi and o AL
Then p'z(fn[A1;...;An],a)
and rk(p)=1+1+rk(fn)+rk(e1)+...+rk(en)+rk(a)
)1+1+rk(fn)+0+..9+O+rk(a) (as rk(em)>0)
=1+rk(fn[A1;...;An])+rk(a)

=rk(p"')

case5:/
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P=([e11~'812;¢.,;en?~'enzq,a),(em1,a)ﬁ>T and V’i<m,(ei3,a§i>F

‘Then p==(em2,a) and rk(p)=1+1+rk(ei1)+@..+rk(eﬁ2)+rk(a}

cageb,2s

case7s/

>1+rk(em2)+rk(a)

=rk(p")

p=(f[A1;..n;Ah],a),a(f}wfnﬂ,m<fb and Tn not of form ,xs[f:fﬁ]
Then p‘:(fn[A1;...;An],am)
and rk(p)=1+1+rk(f)+rk(a)

>1+1+rk(fn)+rk(am) (by 5.8.2.5)

p=(£layseeesh Toa)sa(£)= (CL25en], and po>pradp”

Then p’:([As[f;fn][A1;...;An],am)

80 p"=(fn[A1;...;An],(fisni[f;fn]/f}am) (if p>pl=dp" then =>0)
hence rk(p)=1+14rk(f)+rk(a)

)1+1+rk(f)+rk(fn)+rk((;is"[f;fn]/f)am) (B 5,8.2.6 =

>1+1+rk(fn)+rk((fis-1{f;fn}/f)am) (az r%{(£)=1}

=rk(p" )
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case]: p=()\[[x1:-»-;xm];e][A1;...;An],a) and m<n
Then p':(e,A1/x1)...(Am/km)a)
and rk(p)=t+i+l4xk(e)+rk(a)  (by 5.8.1.1.3 and 5.8.1.2.7)
>1+rk(e)+rk(a)
214ric(e)+ric((4,/x ) oo (8 /x )a)  (by 5.8.1.4)
=rk(p")
cageB: p=(Labelm[f;fn][A1;...;An],a) and md{®
Then p':(fn[A1:..»;An],((fn/f),a)m)
so rk(p)=1+1+rk(Labei™[£;£n])+rk(a)
S+t4ric(n)+rk(((en/)a) ) (by 5.8.2.7)

=rk(p"')

case9: p=(fim+1[f;fn][A1;...;An],a) and m< 00
Then p':(fn[A1;...;An],(fAm[f;fn]/f)&)
so zic(p)=t+14rie(u ™ [£52n]) 42ke(a)
>1+1+rk(fn)+rk((;im[f;fn]/f)a) (by 5.8.2.8)

=rk(p')

QOE. D.
5.8.4 Lenma
If p is finite then p terminates.

Proof

1r/
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If p is finite then so is rk(p) (5.8.2.1) hence by the previous lemms

there cannot be anyv infinite sequences:
p=p1 ->P2-> see
Q.E.D.

5.9 Termg which lecad to an error denote L

The goal of the section is to prove that if p eventually geis stuck
then fp]= L. If p is stuck (i.e, p] ) then it is in & sort of
'error' state and the action of the ‘interpreter' (i.e., ~>) is not
defined; I explained why I model this kind of undefinednesg by L in

3,16, The next lemma shows that 'errors' propagate nicely:
5.9.,1 Lemma
If fn,a are finite then Efn}([a])(... Loeee)= L

Proof

I do induction on rk(fn)+rk(a) which is firite g2a fn asund & are,

vk{(fn)+rk(a)=0:

Then rk(fn):rk(a):@ so fn=F lt by the definitions of the standard
functions car,cdr,cons,atom,eq if F is one of them then Fleoe o eve)=.L
nence [rn](fa])(cee L vee)=Fle.. Loece)=.L

rk(fn)+rk(a)>0s

I consider the various cases of fns

cagels/
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cagels fn=Ig

Then [fe}(fa])(.es 1 v.0)=F(... Laeo)=L (as above)

cage2: In=f
Then Ef]({a§)=§a§(f)([a])l FUN {by 86 of 5.3.1)

=fa(£)]({a]) | Fon (by 5.4.2)

cage2,1: a(f)%fné for any fn', then fa(£)}(fa}]) IFWN=_L

so [£1(fa])(vee L ..0)=L

cage2,2: a(f):fné
Then Ef}(ga})(... J_...):Efnm}(ﬁa})f FOR (o o i,?oo)

v =[fn'](Eam§)(ooo . ooo) (bff lemms 50466>

case2,2.1: fn' not of the form f*n[f;fn"] then by 5.8.2.5
rk(f)+rk(a)>rk(fn')+rk(am)

80 by indllction {fn'}(ﬁ&m})(... J_ ooc)= -—L

cage2.2,2: fn'= }lo[f;fn"]
men [on']([a, 1) (eoe Lowd=l POl e T3 (o D (e Lo
L )

(as [}AO[f;fn"]}=.L

case2.2.3: fn'= /Li“cz[f;fn"],0<Sx<0O
Then {fn'}(gam])(oeo J_eot)sglj‘ S{f;fn“]}(ge'm}>(‘°* L ""')
Lo (T p s T e DG 100
(by Note 2 of 5.3.1)
=Efn"](E?ism1[f;fn"]/f}amg)(a.oj.ee.)
(by 4S2-4 of 5.3.2)

=1 (by 5.8.2.6 and induction)

case3s/
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casels fn=)\[[i1:...;xm];e]
Then frn](fa])(... L voo)=Qtyeent el ((£,/x)) 00 (6 ) D) (en Lol

= L (by definition of L - 3.11,2}

cased: fn=Label™[£;fnt],m< 0
Then [m]([al)(oee L oo)=fen'] ((Een¥/0) D) (oot L.0) (b7 50301
=[fn*](£(fn*/f)aim)(..o Loese) (by 5.3.1 = Nove
=Efn'}(§((fn’/f)a)m])(.“ L veo) (by 5,4.67

=1 (by 5.8,2.7 and induction)

cage5: fn= /\J\m[f;fn'],m<00
If =0 then frn}(fa])(... L...)=L (es [fn]= L - 59 of 5.3.1)
If my0 then [fn](fa])(... L ...)=Efn'}((E/\Am“1[f;fn’ﬂ/f){a})(.u L ves)
(by 5.3.1 ~ Note 2)
=Len' I (oo 1/0)a]) (oo L)
(by AS2-4 of 5.3.2)

= 1 (by 5.8.2.8 and induction)
QOEOD.

This lemms enables corollary 4.3.4 to be proved without invoking the Main
Theorem, A 'limiting' argument is nee‘ded ~ wa first prove the result

for finite terms and then take the limit over all such terms. If fa,a

are in LISP then:

ftnl/
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Eend(faD)(oon L o0l)
=fn}2%n akéa frnt](fa' (... L. (by lemma 5,5,2)

= 1 by previcus lemma.
I can now show that errors denote L .
5.9.2 Lemma
If p is finite and p%>p'] then {pl= .
Eroof

I do induction on rk(p) which is finite as p is
rk(p):O:
Then p=A and clearly there is no p' such that pi>p'] 30 there is nothing

to prove,

rk(p)>0:

Assume as induction hypothesis that:
V' p,. (zk(p)<zk(p) and I plup#opi]) = Ip,d=1
I show that: p¥dp'] = {p}:.L

casel pJ

Examination of the definition of => (5.4.7) shows that the only cases

that can arise are:

cagel.l/



«186-

casel, 1 p:(x,a),a(x) i {S~expression>

Then fpl=[x}([a]) =f2](x)({a]) | 5 (by S2 of 5,%.1)
=fa(x)}fal) | s (vy 5.4.2)
=1

cagel 2 pz':(]?‘[A1 Sece ;An] ,a) ,F(.A1 seno ,An) # <S-expressiond
Then as F(A1,...,An) € S=<S-expression> U {L} it follows that

{P§=F(A1 sees 9An)3J_

casel,3 p=(fn[e1;....;en],a) and for some m.(em,a)i‘&pm]
(I have used 5.8.4 and 5.7.4 here.)
Then rk(p)=1+1+rk(fn)+rk(e, )+...+rk(en)+rk(a)
>rkfe ,a)
80 by induction E(em,a) ]=Eem}(5a§)==.L

hence by lemma 5,9.1
[olefeal(laD) (o, 1(Ta), oo, [o (Ll
casel 4 p::([e”-* €4pieesi® 4= en‘?],a) and for no m do we haves:
(em,a)ﬁ)'f and Y i<m.(ei,a)iﬁ>F
Now if there existed an m such that:
Eem}(ﬁa})nl‘ and Y/ i<m.Eei1}(E&})mF

Then as ¥ L , F£{ L and since Y/ i_f_m.rk((e”,&))(rk(p), it woumld
follow by induction that for no Py (1<m) could we heave (ei1,a)ﬁ>pi,i]

(1/
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(i<m).  But by lemma 5.8.4 each (ei1,a) (1<m) terminafes snd 3o by
lemma 5.7.4 there exist A (i<m) such that (ei1,a)$>éi (i<m) = but
then by lemma 5.4.8 we wouwld nave to have Asz and ‘V’i<m.AimF which
contradicts the assumpiion of this cage. Thus there cannot exist an

m such thats
Eem1](iai)=T and V’i(m.{ei1§(fa})=F

and so [pl=(le, Y(fa])~ fe,,}(feD), ..., He T(HaD)= e 1([a]))

= L (by definition 3.7.17)

casel,5 p=(f[A1;...;Ah],a) and a(f)#fnm for any fn
Then EP]=gf}(Ea})(A1 ’aooyAn)
=[e}(£)(fa]) | Pun(a,,eeust ) (by 86 of 5.3.1)

=fa(£)1(f=}]) | Fom(a,, 000\t ) (oy 5.4.2)

i

L (Aysennsh)

L

casel,6 p=()\[[x1:..a;xm];e][A1;...;An],a) and mdn
Then [p]:(lﬁ1...tm.{e]«t1/x1)..o(tm/ﬁm)Ia]))(A1,,..,An}

=\ (by definition of )\ ~ 3.11.2)

casei.7 p=( M Ol;n) (44500054 ],8)
Then EPR=5[uO[f;fm]}(§a})(A1,---,An)

L (A1,...,An) (by S9 of 5.3.1)

L

it

casez/
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case2 p->p'¥>p!]

[

‘As long as p is not of the form (f[A1;o,.:An],a) where a{f)= ﬁgﬁgj*fa
then by lemma 5.8,3 rkip)<rk(p') and so by induction and 5.4.¢
{p§m§p’}§_L o If p is of the fomm (f[A1:..¢;An],a) where
a(f):fAS[f;fn]m then if =0 then [pl=f JO[f;fn]}m(Eaf}(A%,a.a,ﬁn)mmg
and if s>0 then p->p'~>p":(fn[A1;..,;An},(;AS~1[f;fn]/f>am) and so

by 5.4.9 and induction Ep]=}p'i=.L .
Q.E.D.

5.10 Final step in the proof of the Main Theorcm

Collecting together previous lemmas yields the following which

entails the Main Theorem by the deduction described in 5.%.4 above.

5.10.1 Lemma

.10.1,1 =1 '

5 [ol= e, Io']

5.10.1,2 p'<p => p' terminates
5.10.1.3 p'<p,p'#>p"] => fprl=L
5.10,1.4 pE>4A => [pl=A

5.10,1.5 p'<p,p'#>4 => p¥>A

Proof/
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Proof

5.10.1.1 follows directly from lemma 5.5.,2.

5.10,1.2 " " " " 5,84 and 5.7.1
5.10,1.3 " " " " 59,2 and 5.7.1
5.10.1,4 " " "moo" 5,48
5.10.1.5‘ " t 1] " 5'6

Q.E.D.

A1l that now remains to he done is for me to render the Main Theorem
significant by showing that Envi-EavS are consistent (i.e. showing

that there is something that the Main Theorem applies tol)
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6. UNIVERSAL SPACE U

The goal of this chapter is to construct & 'universal space' U and

to ghow how it can be uzed

(1) To construct an alist model Env
(2) To fit syntax equations (BNF) into the theory of semi~domains

in a clean way.

Y]

(1) ig the most important use of U here since BIYF ig alraady very well
understood and known to be congistent; I shsll only sketch out (2,
The idea of universal gpaces and their uses such as (1}, (2) z2bove ig
due entirely to Scott. The details described here differ in trivial
ways from him though e.g. I use semi-domains rather than domaing &nd
interpret BNF in a way which yields finite (rather than possibly

infinite) expressions.

In the next section I shall briefly discuss the known wavs of solving
equations such as Env:Id—)[Env—)D] and indicate why I think uging U

is the beast approach.

6.1 Solving semi-domain equations

There are (to ny knowledge) two methods of solving semi-domain
equations such as Env:Id~>[Env—>D], each of these is due to Scott. The
first method is to 'classical! inverse limit technique. This is the

method/
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method originally used to construct mathematical models of the (type
free) X-calculus and it receives il fullest exposition in [1?}¢
The second method uses the algebra of retracts of a suitably

constructed ‘universal® gpace.

The first of these techniques, when applied to Envad->[EnVu>D],

works by embedding Envn in Envm for ndm (where Envn ig defined in
5.2.2) and then closing (via &n inverse 1limit) ;Zé Envn tnder directed
unions. Although this method works perfectly well (in fact it is the
one I, at first, used) it has two defects: firstly it confuses general
processes common to the solving of all equations with processes
particuler to the solving cf EnV2Id~>[Env->D] and secondly it fails to
clairfy the andogy between semi-~domain eguations and ordinsrv recursion
equations -~ the latter being solvable with ¥, The second welhod
overcomes both these defects, one starts by choosing a special universal
space U (which must be suitable) and then to solve an equation like
Env:Id—)[Env—)D] one represents Id, D as elements of U, => &g & binary
operation on U and then treats the equation ag an ordinary recursion
equation so that the desired molution is (rapressnted by)
Y()\e.Id->[e~>D]). This obviously overcomes the sscond defect
mentioned above, it overcomes the first bacause the gereral processes

common %o the solving of all equations ave factored out in the

construction of U whieh only has to be done once.

There/
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There are several universal spaces around, the older ones (e.g.
"logical space") are built via inverse limits whilst the neweast one
is just the power zet of the integers, ZN, interpreted in a subtle
way. This interpretation of 2N is based cn an idea of Gordon
Plotkin [15] (rediscovared in a glightly diffevent form by Scott)
and although it ssems to be the most promising approach at present, I
shall not adopt it. The reagon for this jia nmainly thet it has cone
on the scene too late for me fto fully digest it in time for incor-
poration here, but also its details are still in & state of flux,

The actual use made of the universal srace is rather independent of
which one it is; for the algebra of retracts, which is the main tool
I use, looks (more or less!) the same regardless of which space the
retracts are of, It ghould, I hope, be quite easy to conatrue most
of what follows as being about the nsw-fangled thing if that enarges

the winner.

6.2 Specification of the universal svace U used here

Before constructing the particular U I use,I shall characterize it uyp
to isomorphism Tre kind of "isomorphism" I mesn here is not just
continuous bijection but rather a bhijection which preserves all the
structure postulated on U (see definition 6.5.1 velow) this structure
ig described in the following axioms, These axioms heve ugeful

consequences, they are not particularly interesting in themselves.

6.2.1/
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Axiomg

A universal svace is & semi-domain U, togdher with meppings

Xk X € [0->U], for each n>0, such thats

(ut)

(v2)

(U3)
(u4)
(us)
(us)
(u7)

[ U->T]
U contains two members tt, ff such that tt 5? ff, £f E? tt and

x| x=xg}={L , b, 78}

=

x. = X, C...ExE ...Ex

0~ n
x= L %
(xn)nzxn

Xy= A Yo X=X (J_)O

xn~!-1=>\'°"’x(yn)n

Remarks: (1) 1In view of (U1) there are isomorphisms

£2 U=d>[U=dU]

[U->U)->U

1]
»0

I identify u € U with £(u) € [U=>U] and F ¢ [U.>U] with
g(P) € U thus for z,y € U x(y) means £(x)(y) and so
Ay ox(¥)=2( Ay.£(x)(y))=g(£(x})=x. I have exploited

this convention in U6 and U7.

(2) A universal spsce, as defined above, is the semi~dorzin
analogue of Scott's “"logical space"., There ars other
gpaces around (egg. ZN) that do not satisfy these

axioms which one might want to call "universal®, to

avoid/



avoid confusion from now on whenever I refer to a
universal space I mean & structure &s defined in

6.2.,1 above,

6.3 Bxistence of universal spaces

The following proposition shows that universal spaces exigt, its
proof consists in the obvicus generalization to semi-domains of
Scott's inverse limit construction. Readers aslready fawilisr with
inverse limits will find nothing new or interesting in the proof and

they are advised to skip it.

6.3.1 Proposition

There exists & universal space U

Proof

I construct U as a straightforward inverse limit.

Let Uo=f1at({tt,ff})

Un+1=[Un'>Un]

What follows roughly consists in embedding Un in U£*1 and then

closing ;;6 Un under directed unions.

Let 1n: U'n-->Un+1

In? Une1=Uy

be/
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be defined by:

jo(F)::F(._L) N jn+1 (F)'::jno Fein
60301 01 .Lemm&

in’ Jn are continuous and jn(in(f))=f

o Tt E
i (3, (MEF
Proof

i s J, are obviously continuous. I show jn(in(f))zf, in(jn(F)YE F

by induction on n:

n=0t 3o (1,(£))=3 ( Ay £)=( Ny.£)(L)=f
103 (F))=1,(F(L))= A 7. F(L)E Ay Fy)=F

n>0: Assume true for n-1 thent

jn(in(f))=jn(in-f fujn_1) (by definition of in)

ofej qei 4 (by definition of j )

=jn~1°in-1 n-1
=f {by induction)
in(jn(F))zin(jn_1°Fc1 ) (by definition of jn)

o dpFed 4odn g (by definition of in)

T |

=i
n-1

=P (by induction)

Q.E.D.
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I shall write an infinite sequence (XO,X1’X(‘9-°-) as (Xn);}-o or

just (xn). Now let Uy be the inverse limit of the sequence:

n

iO i, in ln+1'
TGN ey
Jo  J4 In Int1
i ® ] n n_. (.n+l
l.e. let U ={(x )n=0 ‘Vng_o.x €U, andx -—;|n(x )
ny 0 ny 9o RO n - n
order Uy by (x )n=0'“ (v )nm() &> Y nd0.x Ep ¥

T claim Uy is a universal space, but it takes some work to show it.

6.3.1.2 Lemma

. . . A m ny © %
U is a semi-domain and LJX=( LJUm{x l (x )n=O € X})m,_:o

Proof

If X is directed then for each m>0 so is {xm! (xn):i() e x}
hence (LIx" | (x™) 0, € X}) 7, is defined, if it is in Up then it is

clearly the least upper bound of X, but it is in Uy for

5 (U G e xD= Ula, ™D | M) e x)

= Lfx" | (x™) € x}
QoEuDo

6.3.1.3/



197

6.301.3 Definition

For 0X o0 define k : U ~>U by
=Pz g’ p g Y

IUp if p=q

(1) If p,q<c0 then k =431 ,oee0ci <
) If piq S E LTI if p<g

| ¢ o0 ® f >

Jq jp_1 if p>q

(2) If p<® then kpm(x)z(kpq(x));io
(3) If q<® then %vq((xn)ézo)=xq
(.4) Ky 00 (z)=x.

6.5.1.4 Lemna

For 0<p,q,rl Q@

(1) x ok Ex

ar pg = “pr
2) @ sr=> k_ok =k
(2) @p or qar > kel o,

o
k ::LJ ¥ ok
(3) pr q=0 "qr "pq

Proof
There are a large number of separate cases to consider, each follows

straightforwardly (but tediously!) from the definitions and lemma

6¢3¢1e1. I shall just do the hardest case viz.

k =1 k¥ ok
wr q=0 Qe wq

To/
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To prove this I need to show
pyoo % <1
(x )pzo”éébkqm( )

0 00 w0
D11 {1 a3y
but qL'-:—'JO kqm(x )"qL__—_:lo(hqp(X >/p-,:o

_ 00 (1 [s9]
=({dy (8N o

- p 1 Nne > =2
=(x )p=0 (since a2p

q
=> k S !
q<p qp(x ) Cq

Now I can show Up, satisfies (Ut)
6.3.1.5 Lemma

Uy %[V, ->T,,]
Eroof

Define i: U->[U->U]

3t [U=>U]->U

by i(x)= >\y:UOO . (km(m_,‘)(x) (koon(Y)))‘rf—

>1»

(as kwq((xp)‘p(zo =x1)

(by definition of kqw)

(by 6.3.1.2)
qp(xq):jp(...(jq_1(xq))...):xp and

P mq((xp)ﬁ:O

Ekmp((xp)pa__fo) (by (1) of 6.3.1.4)

=)

Q.E.D.

b

3(0)=(5,(Aysu_xe (20 (9))))) 2,

Clearly i,j are continuous, also:

i/
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1 (=0 1y GEN e ) 2, (by definition of 1)

s —o \ LYy 8o
=(Jn+1 ( )\.W'Un_{_’ °k06(n+1 ) (f(k(n+1 )m(ij)>)(kmn(Jy}j}ﬁzo

(by definition of j and k o +1))
(03,6 O,y Oy, (IIDe2) 5, (D)

)
—(J (k (n+1)(f(1*(n+1)v(i (x (")/)))NLO

n ®n

(definition of 3 +1
=((J Okﬂo(n+1) f('k( n+1)w ¢ lnc kwn)(y}"'nm{}
=((k o £k ok ){y)) 2y

(by lemna 6.3.1.4 - {2) =)

=L (k RS kmgkm)(y)

(by lemma 6,3.1.4 - (3)=)
ko Tk (v)  (by lemma 6.3.1.4 = (3) ~)

=f(y)

Thus ioj=I [UO'O'N({J

Now?

5(1N)=3 0. Gy ) D, (D)) 70) (by definition of 1)
=(J (>\Y~U ok m((kbo(n+1)(X)(kwn(kmw(V))))rfo——O))\ (by definition of j)
=G Ay ey () (e (e (G 2 (by dstinmition of k)
=(3 (Xy:Umokm(mH)(X)(y)))u?_’__o (by lemma 6.3.1.4 = (2) =)
=( 5, (% w(m+1)(")))§io (by extensionality)

=/
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=k LGN 2 (by lemna 6.3.1.4 = (2) -)

Lmj (x_(x)) (bvlemma6314-()) -)

mw K

=x (by lemms 6.3.1.4 - (3) =)

80 jei =I
Thus i,J ere isomorphisms,

Q.E.D.

To show that U satisfies U2-U6 define

n“knw(%»n( x))
Then {x ,x—x J== {(xn)n -0 l (Xn)n Owk (X )3
={(z" l&/n)O.x =k, (x )}

={(x, <°)) PUESRN

={k000(xo) , x € UO}

Now _LU =k, o+ o) (as Vn. J-Uh=kon( J-Ub))
and if tt, =k (6t),f, =k (If) then as tt ¥ ¢f and £f Z 4t

(by definition of Uy) tty, & ff,, £f, % tt, and

{x lxzxo}z{_l-,tt% ,ff,, } s0 U2 holds, From now on I shall identify

tt with t%, and £ with £f, .

To show U3 we have

/

xn+1
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X1 (k)0 Hx(n+1)(x)
o) s [
= L(n+1)ﬂSkn(n+1) %ﬁn(x) (by lemma 6,3.1.4 = {1) =)

=knm(kwn(X)) (by lemma 6.3.1,4 - (2) =)

=X
n

00
U4 follows directly from k =A§b knwﬂ %wn of lemms 6.3.1.4.

[o2ve)

To show U5 we have

o k) (x)

=k o kwn(x) (by lemme 6.3.1.4-(2) =)

( xn) n= ( knm ° koono knoo

=x,
U6 and U7 are & bit more tricky. Here is & lemma to help with US.
6.3.1.6 Lemma

Vzxe Uoe Vye U kO(n+1)(x)(y)=kOn(x)

Proof

Induction on n:

n=03

Koy (2) (9)=i(x) (y)=x=1,{x)

n>0/
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n>0: Agsume true for n-1 thens
ko(n“)(x)(y)=in(kon(x))(y) (by definition of k olat1) = - 6.3.1.3)

s(in‘_.‘v‘ kon(x)cjn_1)(y) (by definition of in)

gin-T(ko(n..,‘l)(x)) {vy induction)
=k0n(x) (by definition of k{)n - 6e31.3)
QOE.D.

ny 0 ny oo
Now to show U6 holds of Uy let x=(x )n___o,y:(y )n:-:() then

%57 gul koo (%))
=k, (x ) (by definition of Koo = 630143)

OB “
=(kq (7)) 25 (by definition of Koo = 6e3e1:3)

F-To} x (V) ( ( _M)(xo)(vn)) (&S nxo(y)n means i(xo)(y})

=(k OH(XO))"O (by lemma 6.%.1.6)

=xo (by definition of xo)

and t(i-)o ogo(kwo(x(i> ))
1

=Kom(x (L)) (es "x(L)" means (xn+1(i?))n o)
=k0”3('3 (x )) (by definition of j .,0)

.-_kmo(x ) (as Vn. xnzjn(xn+1))

=xo

hence U6,

To verify U7 holds another lemma is needed:

6.3.1.7/



=203

6.3.1.,7 Lemma

o]

ny & n
Let x=(x )n=0’ y=(y n=0

€ Uy thens

() mm = ey GPDEM E o ()

. ¢ oty my n+l, n
(2) n<m => K1) (me1) X Y=k, ()
Proof
If n=m then both sides of (1) are equal to xn+1(yn)
If ndn then:

n+1 T1\ . ° s n+1 4 e n\l
k(n+1)(m+1)(x )(V j'—'=(Jm+1 o-ean)(x )(dm °0°0jn_.1(y /)

15»\
(by definition of K (et ) (me1) 80 Vaosg (1))

n+i

=(jmo,,,‘:jnm1ox o in~1° ...Cim° ,jn’: vese Ojn_1)(y'n)

(by definition of Jppqreoerdy)
. \ +1 :
E(Jmo o oan_1° xn )(Yn)

(by repeated use of 6,%.1.1)

ntt, n e R
=knm(x (y)) (vy definition of an)
hence (1),

If n<m then:

k(n+1)/
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80

x(7,) =0 (e, (el ) 2
(by definition of k_)
=(e, ™ e IN D

(by previous calculation and definition of %»n)
- el n 00
=k, (7 (¥

(by definition of knn)

hence it follows from lemma 6,.,3.1.7 that xn+1(Y)=X(Yh)n-

Thus Uysatisfies Ul-U7 and so is a universal space.

QOE. Do

6.4 Properties of universal spaces

The knowledge that universal spaces exist makes properties of them
more interesting than they would otherwise be! The next few lemmas
give some useful properties, some of these are needed to prove thet

(in & strong sense) there is only one universal Spaces
6.4.1 Lemma

If U is & universal space and x € U then:
xnm=xmin{n,m}

Proof.

1/
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I do induction on n and m,

n=m=0% by U5

%00™%0

n>0: suppose Vzx e U. x(n_‘1)o=x0
xn0=xn(«1-)0 (vy U6)
=L 1) (n)o (b7 UT)
=x(L), (by induction)

=X (by U6)

0

m>0: suppose Vx e U. xo(m_1)=x0 thent
Ko™ )\y.xom(y) (by extensionality)

=Avexg(v. )., (by U7)

= )\y.xo(m_” (by U6s xo(ym“1)=x0)
=\ yx, (by induction)

So by induction Vn.x0n=xno=x0.

n>0,m>0: suppose Vxeu, x(n—1)(m—1 )= min{(n-1),(m—1)} thent

X = A y.xnm( y) (by extensionality)

= >\y.xn(y _“1) (b"J U7)

|

=>\y’x(y(m-1)(n—?))(m«1)(n-1) (by U7)
=xy'x(yminf(m-ﬂ),(nd)})min{(m«-1),(n-1)} (by induction)
=xy'x(min{(m-ﬂ,(nuﬂ}ﬂ)(y) (by U7)

(by extensionality and min{n,n}=min{(m=1), (n~1)j+1)

X111:i.n{n,m}

Q.E.D.

6.4.2/
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6.4.2 Lemma
If U is 2 universal space and x € U then:

x::)\y.x <=> X=X
Proof
By U6 X=X =) x=x0=>\y.x0= )\y.x
I show the converse by proving by induction on n that:

Vx €U x=Ay.x => ¥, =X,
For n=0 this is triviel, suppose it is true for n and x= )\y.x.

Then X = )\ygx(yn)n (vy U7)

= >\y.xn (by assumption on x)
= )\y.xo (by induction)
=X, (by U6)

Thug x= )\y.x => VnzO. X =Xy => iﬁ] X =X, => X=X, (vy U4)
QWBE.D'
6.4.3 lLemma

If U is a universal space and x € U then:

tt/
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in

X => tt=x

ff & x = fr=x

(i.e,

Proof

tt,ff are maximal)

I prove by induction on n that:

Vx e Ubtt & x = th=x_

n=0¢
= - et - =
b8 x => bt Xy => t6 5 xg (by U2 tt=tto)
=> tt=x, (by Uv2)
n>0: Assume true for (n-1) then as tt=ti =

$E x>ty ) = =y )

Thus

0

n-1

= tt (y) = x(y__,) (by U7)

n-1
=> tt = x(yn_1)

(as i:tn(y)mtt(y)=t’c)

n—1
=> £t =x(yn—1)(n«1)(n-1) (by induction)
=> tt =xn(y) (by U5 and U7)
= tt =x_ (as Ave tt(y)=tt)

the induction goes through. Nows

I: —3 — = — s
£t x => \/n.tt_xn => tt= Lix =x

Remark/

Q.E.D.
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Remark: This lemma is not true about "logical space" (T.) for in
that we have tt = T but tt£ T . As a result of this
the conditional (see definition 6.6,1) has a less pleasant
definition in "logical space" than that in its semi-domain

analogue,
6.4.4 Lemma

If U is a universal space and x € U then:

x0=tt => x=tt
xo=ff =) x=ff
Proof

xo=tt => tt=x T x => z=tt (by lemma 6.4.3)

xff => ff=x  © x => z=ff (vy lemma 6.4.3)

Q.E.D.

6.4.5 Definition

Let Uozflat( {et,£2})

Uh+1=LUh">Uﬁ]
Remark: Uh is the same as in the proof of proposition 6.3.1.
6.4.6 Lenma

If U is a universsl space then for each 120 {x £x=xn? is & sub

semi»/
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semi-domain of U isomorphic to Uh. In fact there exist isomorphisms:

£: U >x ] x=x_ }

gt {x | x=x }->0

such thats (1) ¥ x ¢ U . Vyeu. g (o=t (), ()

(2) Vxelix ,x=xn+i}. Vyeix] w=x be g (x(y) )=e_, (=) (g, ()
Proof

By U2 we can take fo,go to be the identity mappings. Then define

f inductively by:

n+1? Snet

£ (x)=( >\u:U.Jt”n(x(gn(un))))n+1

g1 (%)= >\qun.gn(X(fn(u) ),)

Clearly fo, 8 are isomorphisms., Assume fn’ g, are isomorphisms.

I show T are also:

n+1? 8nti

fn+1(gn+1(x))(u)=(>\u=U. £ e 1 () (g, (w )N ()~ (vy w7)

=f (g4 () (g (u ))_

=f, (g4 (x) (g (0 )))  (by U5)

_ “ “ e as 2 o iy
”fn(gn(x(fn(gn(un)))n)) (by definition of Byt

-.-;x(un)n (by induction)
=Xn+1 (U.) (by U7)

J

=x(u) if z ¢ {x lx:xn+1

also/
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also:?

€t (Fpuy (D) (W= (£, (2) (£ (w)) )
=g (( AusU. £, (=g, (w ) (g, (w),) ) (vy U7)
=g, (£, (x(g (£, () ))) )
=g, (f, (x(g, (£ (0))))) (oy U5)

=x(u) (by induction)

Thus \/ N, fn’ g, are gsenmi-domgin isomorphisms,

To show (1) calculate as follows:

fn+1(x)(fn(y))=fn(x(gn(fn(y)n)))n (by definition of f .4 and u7)
-t (x(e, (£ (1)) (b U3)

=f (x(y))
To show (2) we have:

&1 (x)(gn(y))=gn(x(fn(gn(y)))n) (by definition of &,.1)

=g, (x(y) )
Q.E.D.
6.4,7 Definition
An element x of a semi-domain is finite <=>
Z directed, x = LU => Jz eZ, xT g

Remark/
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Remark: This is an abstract notion of finiteness which is analogous
to the usual one; it generalizes that since in the gemi-
domain of subsets of a set (ordered by inclusion) a subset
is finite in the above serse iff it is finite in the usual
one., Intuitively definition 6.4.7 makes an element not
finite if it is a non-trivisl limis., Notice that every

member of & finite semi-domain is finite,
6.4.8 Lemma
If U is a universal space and x € U then:
x is finite <=> I n, X=X
Proof.

If x is finite then as x=lnlxn definition 6.4.7 implies that x = X
and hence x=x by U3, Conversely if X=X S LIZ vhere 2 € U is
directed then x=x C (LJZ)n= LJ{zn, z € 2},  Bul the sub gemi-donsin
{x € U, x:xn} is finite (by 6.4.6) so each X, is finite in it; now

o {
{zn ,z € 2} is directed so anE Z L 2z € Z for some z € tn |7ze 71,

b
n’

thus x is also finite in U,

Q.E.D.

6.5/
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6.5 Uniqueness of universal space

The axioms of 6.2.1 were chosen so that anything satisfying them

would essentially 'be' Uy to make this precise here is a definition,

6+5.1 Definition

A mapping f: U'->U" between two universal specas Uf, U™ 0 &

homomorphism <=> (1) f is continuous

(2) V xt,yt ¢ Utz (yt))=(z") (£{y*))

(3) V x'eu, Vnzo.f(xr'l):f(x')n

Two universal space U', U" are isomorphic <=> there exist homomorphisms
f3 U'=>U", g: U"=DU' which are inverse to sach other (i.e.

f° @I‘U"’g ° fzIU’)C

Remark: Thus a homomorphism from one universal space to another ig a
mapping which preserves directed unions, the gpplicative
structure and the projections (i.e. x > xn)e Igonorphic
universal spaces &re isomorphic as semi-domains (as in
definition 3.7.2) but they are related in & stronger sense

than just this,

6.,5.2 Propogition

If U', U" are universal spaces then they are isomorphic.

Proof/
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Proof

Let £1:U ->{xt ¢ U1 xt=xt}, £ U<y {x" € Ue | xnexr)

gr'1: {x* e U l x'::xé}-)Un, g;;: {x" ¢ U"I x"=xg}->Un

be the mappings of lemma 6.4.6, Then defines

faUt>ym

g:U%>Ut

by f(X)=lﬁ!fg(gA(xﬂ))

glx)=Lir!(g"(x"))

I claim that f,g are homomorphisms inverse to each other, To show
that they are well defined I need to show that the unions defining

then are over directed sets.

Now £4(g}(x1)) (u)=18(et (x1(g8(usy))), (by definition of £% and UT)
=t8(gp(x1 (£4(en(u))) ) (by definition of gj and U5)
=£8(gh(x' (£5(g8(u))) ) (by U7 and u5)
2e8(gl(x (D))
=8 (gd(xg))  (by T6)

~18(e3(x5)) () (by 6)

hence fa(gé(xé)) E'fy(g{(X{)). Now suppose, as induction hypothesis,

that: V x.(g!(x!)) E £ 4 (g0 g (x),q)) then:

f;+1/
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f;'1+1(gr'1+1(Xr'1+1))(“)"f§§(gg+1(X;1+1)(g;;(vnn)))n (iy definition of £1
- t S b
*fn(gn(xﬂ+1(fﬂ(g;(un)))n)) (by definition of 3

=tp(gr(x' (22 (82w, ))) ) (by U7 and U5)

SARLCARIC S CHRICAR D)

n+1 ))  (by induction)

n+t

=fg+2(gé+2(x£+2))(u) (reverse first 3 lines of this

. > \
calculation with n+i for a)

Hence by induction on n:

V. Vonsn(el () S0 (gt (22 )) (1)

and by symmetry:

Vx. Vn.£! (gt (x1)) E f1alen (xn)) (@)

Thus the unions defining f,g are over directed sets (in fact over
chains) and so these functions are well defined. They are the limits
of continuous functions and hence are continuous. To show that they

are inverses of each other we have:

fg(x"))= L f;'l(gr’l(g(x")n)) (by definition of f)

= LIL] f;'l(g;l(fr:l(g;(xl‘;l))n)) (vr definition of g)

andl7)

ang US}

=lﬁjf£(gﬁ(f'(g"(x“)) )) (vy (1), (2) and a cofinality argument)

n-"a n-'n

= L ta (gt (£ (e (=) (by U)
= LI =" (by 6.4.6)

-..':x" (by U4)
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and by symmetry g(f(x'))=x',

f,g preserve the applicative structure on U for:

Flx'(r D=1 250! (2 (37) ) (by definition of £)
=L "(”’(x‘+1(v') )) (by U7, U4 and a cofinality arsument)
=l ealer g Gt M et (r)) (vy 6,446 < (2) =)
=l (e (e D) (£ (gl (51)))
=f(x)(f(y')) (by definitions of f.8 and cof 1na11ty)

and by symmetry g(x"(y")):g(x")(g(y")). Thus to complete the proof

I just have to show that

¥ x' €Uy Vnd0. £(x!)=f(x")
- n n

Yz e U, Y n>0. g(x;)=g(x")n

By symmetry I need only verify one of these, say f(xﬁ):f(x‘)n, I do

this by induction on n.

n=0:
T must show f(xé):f(x')o
How £(xl)(£(y*))=f(x4(y'))
=f(x}) (vy U6)
80 f(xb): Xy“.f(xé) (as f is onto)

80 by lemna 6.4,2 f(x} )~f\xo,o,_ £(x! ) and hence by U2

f(x')o/
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f(x')o, f(xé) e {L,tt,ff}. Ir f(x')o=“L then f(xé) EEf(x')OxJ_
80 f(x('))= L =f(x(')) and if f(x')o=tt then by lemma 6.4.4
f(x')=tt so x'=g(tt)

=> x6=g(tt)o

=> £(xg)=r(g(tt) )

by symetry f(x')osz = f(xé):f(g(ff)o). But I shall show below
that £(tt)=tt, g(tt)=tt and so f(g(tt)o)mttg f(g(ff)o}mffland this

will complete the proof of the n=0 case.

Now f(tt):!ﬁ!f;(gé(ttn)) (by definition of f)

— it ot e = o4
ulﬁlfn(gn(tt)) (as th=tt 5 tt T £4)

] —ir it
Suppose f;(gn(tt))*fo(gé(tt)) then

f"

n+1(g£+1(tt))(u):fg(gé(tt(fﬁ(g;(un)))n)) {hy the calewlation used to

=t (g!(tt))  (by U6) establish (1) with &t for x').

=f8(g6(tt)) (by essumption)

Thus by induction on n: Y/ qZQ.fQ(gA(tt)):fg(gé(t%))=tt

hence f(tt)=tt and by symmetry g(tt)=tt.

n>0:

Assume Y x' € U, f(x;l_1)=f(x')n_1 then

£(x!)/
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f(xr'l)(f(y))=f(x;l(}r)) (as shown above)
) ) vy U7)

=f(x'(‘fn__1))n_1 (by induction)

=f(x'(y,

Y |

==1E‘(x')(f(ynd))n_nJ (as shown above)
=f(x*)(£(y) _,)
=f(x") (£(y)) (vy U7)

( . .
el N by induc tlon)

hence ag f is onto f(xr'l):zf(x')n.
QREQD.

In viow of this lemma it makes sense to talk about the universal

space, or simply just "universal space" U,

6.6 Representing thines in universal gpace

In this section I shall show how to represent various useful kinds of
entities as elements in U,
6.6.1 Definition
x  if z=tt
6.6.1.1 (zax,y): y  if g=ff

A otherwise
6:6.1.2 (z,7)=Az.(z5%,y)
6.6.1.3 fst= Au.u(tt)

snd= Au.u(ff)

.‘606.104,
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tt if x£ L
606.1.4’ def(x)‘_‘:

L otherwise ,

6.6.1.5 <x,y>=(def(z)> (def(y)D (x,y),L),L)

Remarks: - (1) read "(z5%,y)" as "if z then x olse v,

(2) £st((x,y))=x, snd((x,y))=y
6.6,2 Lemma
The expressions defined in 6.6.1 are continuous in all their variables.
Proof

6.6.1.1:

Let Z & U be directed I show (LJZDx,y)zz[E"Z (z > x,y) by cases

cagel:
If LIZ=tt then as tt is finite tt S z for some z € Z and so by lemma 5.4.5
tt=2z ¢ Z, If ff € Z then ff & | IZ=tt which is imposgible by U2, so

£ff £ Z. Hence (LJZDx,y):x::z% (z>x,7).

case2:

If LIZ=ff then proceed as in casel above with tt replaced by {f.

case’:

If LIZ#4tt and LJZAff then by lemma 6.4.3 tt £ % and ff £ Z so

(LiZox,y)= L 22%& (z>x,7).

Showing/
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Showing (z::x,y) is continuous in x and y is trivial,

6.601.2: Trivial.
6.6.1.3¢ Trivial.

6.6.1c42

If Z is directed then LIZ£L <=> Iz € Z,zfLl hence def(LJZ):éEk def(z)
6:6.1.5: Trivial,

Q.E.D.

Recall that one of the purposes of introducing U was to get a space
in which semi~domains could be represented as elements so that semi-

domain equations could be solved with Y.

If u € U what semi~domain does u represent? Well, with u is naturally

associated the equation

x=u(x)

and if x 'belongs' to u in the sense of being & solution to this then
I shall write x € u and then take the semi-domain represented by u to

be {x ,x € u}, I shall call this semi-domain fix(u) so that in general:
If u € U then fix(u)={x | x=u(x)}

6.6.3/
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6.6.3 Lemma

If u € U then fix(u) is a semi-domain and least upper bounds in U and
fix(u) coincide. If u is strict (i.e. u{L)=L ) the fix(u) is a

sub zemi-domain of T,
Proof

L t Z & i i Z\:-.- ! \:: =

e fix(1) be directed then u(lz) éEZ u(z) éé& 7= |7

gso 1JZ € fix(u) and clearly it is the least upper bound (in both U
and £ix(1)) of Z.

If u is strict then L e fix{u) and so fix(u) is a sub semi--domain of W,
QeEoDe

If we think of applying u to x as 'pushing' x into its ‘*best

)
approximation' in fix(u) then we would intuit u(x) €4, 1i.e.
Vz.u(u(x))=u(z) or u=ueu, Now this way of thinking works wonders
(I cammot yet quite put my finger on why - it still seems magic to mel)

so I shall always use u's such that u=u-u to represent semi-domains,

Hence the next definition,
6.6.4 Detinition

u € U is & retraction <=> u=uou.

If a semi-domain D is isomorphic to fix(u) for some retraction u then

D is & retract of U.

6,645/
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6.6.5 Lemma
{ul u is & retraction} is a sub semi-domain of U,
Eroof

fuluisa retraction}=fix( Au.ucu). And since L=lo] this is &

sub semi-domain of U by lemma 6.6.3.
Q.E.D'

In view of lemma 6.6.3 it would be nice if we could always essuns
that the retractions we use to represent semi-domairs ars strict.
This can be done without loss of generality since if we make the

following definition
6.6.6 Definition
If u € U then define u by:

€L if u(x)=ull)
-~ ulx)=

u(x) otherwise.
Then we have:

6.6.7/
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6.6.7 Lemma

le weU=D>yuev
2. u a retraction => u & strict retraction.
3+ ua retraction => u=u-uou and B=weUen

4, u a retraction => fix(u)=rix(u)
Proof

1t T need to show u is continuous. Let Z € U be directed.

1.1

If u(li2)=u(l) then zLE!Z u(z)=u(l) so ¥V 2z € Z,u(z) S u(l) hence as
L=z we have YV z € Z.u(l) = u(z) E ull) i.e. u(zj=ul{l). Hence

w(liz)= L =1, u(z)

1.2:

If u(LIZ)#u(l) then for some z € Z.u(z)fu(l) so z¥={z ¢ 2 ;’u(z}i‘.{u(..z)}
is non-empty. As Z is directed so is Z+ for if x,y € Z+ then

xE z,y = z for some z € Z, but then z € Al (otherwise

u(z),u(y) = u(z)=uMl) so xz,y £ Z+)° Thus

_I_I_(LJZ)=U(LJZ)zZL€lZ u(z).-:zlg&+ u(z):ZLéJZ-i- lz_(z)zzLEiA u(z)

1.1 and 1.2 show u is continuous and s> is in U

2: Suppose u=ucu then

[ u()= L =u(x) if u(x)=n(l)

u(yx))= -
l u(u(x))=u(u(z))=ulx)=u(x) if ux)#all)

so/
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so u is a retraction, it is clearly strict,

3t Suppose u=uou then

el

If u(x)=ull) then u(u(x))=u(u(l))=u(l) so
u(u(u(x)))=ulL)=u(x)

alulu(x)))=u(u(L))= L =u(z)

3.2

If u(x)fu(l) then ulu(x))=u(xz)a(l) so
wulu(x)))=u(uu(x)))=u(x)
u(u(u(z)))=u(v(u(x)))=ulu(x))=u(u(x) )=u(x)=u(x)

4: By 3 above w:fix(u)->fix(u),usfix(u)=>fix(u) are isomorphisms.
Q.E.D,

This lemma shows that any retract of U is igomorphic to fix(u) where
u is a gtrict retraction, by lemma 6.,6.3. It follows that any

retract of u is isomorphic to a sub semi-domain of u.
6.,6.8 Definition
If A is a semi-domain then a € U represents A <=>

(1) a is a strict retraction

(2) 4 2 rix(a)

Remarks Any retract of U can be represented by an element of U,

Given/
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Given eliements a,b € U representing A,B what elements represent
[A->B],AXB,A&B,A+B,A$B...etc. The angwer to this is given in

definition 6.6.10 below, first another definition,

6.6.9 Definition

If A is a semi-domain then define the semi-domein A+ by
A=a 0 {1 (U =gisjoint union)

and for x,y € A-:..XE y &=>x=.1 or x,y € A and xEA Ve

Remark: The element -LA ¢ AT 15 not .LA+ but is just ‘'above'! it.
6.6.10 Definition
For a,b € U define:

6.6,10.1 8~>b=\u,bouea

6.6.10.2 axb= Au.(a(fst(u)),b(snd(u)))

6:6.10,3 afb=Au.<a(fst(u)),b(end(u))>

6.6.10.4 a+b= Au. (£3t(u) > {(tt,a(sna(u))), (£, b(end(u))))
6.6.10.5 a8b= Au. (fst(u)> <tt,a(end(u))>, <o, v(snalu))>)

6.6.10.6 a'=Au. (fst(u) > (tt,a({sna{u))), L)

6.6,11 Lemma

+
If a,b are strict retractions then so are a->b, axb, affb, a+b, adb, =

and:

6.6.11,1/



6.6.11.1 ¢

M

6.,6.11.2 x
6.6.11.3 x €

m
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a=>b <=> foa=b and Vx € a, £(x) € b

axb <=> xz(u,v), neEa, veb

afb <=> x=1 or z=(u,v), JLAuea, Lfrebp

0.6.11.4 x € at4b <=> x=L or x=(tt,u),u € 5 or 2= (£r,v), v €b

6.6.11.5 'x € ab <=> x=L or x=(tt,u), L caor x=(ff,v), Lifv et

6.6.11.6 x ¢

Proof

8t &> x=l or x=(tt,u), v € 8

If u is a retraction then x € u <=> x=u(x), the lemms fcllows from

this by tedious,but utterly straightforward, calculation. I omit the

details.

6.6.,12 Lemma

QnEsDu

Suppose & represents A and b represents B then:

6.6.12,1 &a=>b represents [A-)B]

£.6.12,2 axb

PR S AL SRR Sy

6.6.12,3 alb
6.6.12.4 a+b
6.6.12.5 abdb

6.6.12.6 an

Proof/

1]

L

1

n

"

AXB

AGB

A+B

A®B
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Proof

Follows directly from the previous lemma,

Q.E.D.

I 3till have to represent Id, S, S* and Fav in U, To represent Id

and S notice that they are isomorphic to the integers N where
=flat({0,1,2,...})

Remark: Previously I used N for the set {0,1,2,...}, context ghould
make clear when I use N for this and when I use it for

£1et({0,1,2, 000 }).
6.6.13 Definition

Let O=(tt,tt)

n+1=(ff,n)
The next lemma shows that {L,_Q,j_,g,.a.}gN.
6.6.,14 Lemma
ncm<=>n=m
Proof

Clearly n=m => n= m to see the converse we have:

ntn => snd(n) = snd(m)

—

C me-1i

=) N-
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>

ol

E men

et

i

>0 = m-n (otherwise tt=rst(0)=fat(men)=rf)

> 04n = I-n+n

>

it

Is
]
=

QAE.D.
6.6.15 Definition
Let N=Y{ Aq,08u) € U

Remark: This use of N will be distinguished from the others by contexi.

By the fixed point property of Y we have:
N=0ON
By lemma 6.6.5 and 6.6.11 N=Ll (Au.00u)™(L) is a strict retraction.
6.6.16 Lenma
x € N<=>x € {.L,g,],...,}
Proof

x € N &> x=N(x)=Y( )\u._Q@u)(X)
=Lb (hu.08u) (L) (x)
=n|_“_—=_b?\v(n)(X) where N(n):( )\u,_geu)n(.l,)
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I show by induction on n that x ¢ N(n) {=>x € {.ng,eooy}_]:i}

n=0¢
' €N {=> x=
X (O) X ..L
Assume x € Ny => x ¢ {L,0,0ee,n=1} then:
x € Nn+1 {=> X:N(n+1)(X)
=> x=(001 ) (x)
¢=> x=L or x=(tt,u), LAu €0 orz=(ff,v), Livr e 1)
i
(by 6.6.11.5)
<=> x= L or x='<_)_ or X € {_1..""’2}

(by induction and fact that u € 0 <=> x ¢ {L,tt})

<=> x € {-L,_Q,oo-,'g}

To finish the proof I shall show x € N <= v Nex € N(n)’ This is
clearly true if x=1 80 suppose .L;éx € N then x= lﬁlN(n) (x) so d =
such that N(n) (x);é_L , but then N(n)(x) € {_Q_,...,_:g,_-_-j_}; now for m'}_n'

we have N(n)(x) = N(m) (x) ana .L;éN(m)(x) € IJ(m)={J.,_Q,...,g_n_-j_} 30

by lerma 6.6.14 N(n)(x)=N(m)(x) and hence:
X= |m| N(m) (x)=N(n)(x) € {_Q,...,g_-:-_l)

Conversely suppose .J.;éx € N(n) then x=n for some n ((n)

Now N(Q) =(oen)(0) (as N=08N)
=(0oN){(tt,tt)) (as O=(tt,tt))
=<tt,0(tt)> (by 6.6.10.5)
=(tt,tt) (by 6.6.1.5 and tt=0(tt)#.L )
=0
g0 0 €N
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Also if n e N then N(nt1)=(0en)((£f,n)) (by 6.6.13)

=<ff,N(n)> (by 6.6.10.5)
=n+1 (by €.6.13)

so ntl € N

hence by induction \/ngp.g,e N. So in particular x=m € N,

Q.E.D.
6.6.17 IJemm-a
There are elements id, s € U which represent Id, S respectively.
Proof
Just take disjoint copies of N e.g. let id=t{XN

s=ffxN

(these work by 6.,6.7 and 646611.2)

Q.EoDu

I shall now show how to represent A* given a representation of 4.
6.6,18 Definition

Define inductively:
():'::g’ (X1 geece ,Xn)=(ff, (X1 ’ (X2, X} o,Xn)))

=D, éx,i posesX D=CET, <y Sy e bX 2>

Remark/
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Remark: When n=2 this definition clashes with definition 6.6.1,

context should alwavs disambiguate things,

6.6.,19 Lemnma

(x1,...,x.'n) c (y1,...,ym) <=> n=m and Y :'L__<_n.xi = Y5

<x1’o-0’xn> E <y1,.“,ym> <=> 3 ioxiﬁj_ oy (n‘-’-—"m and v iincxi E ;‘,’A :’
Proof

Clearly (Vi_{n.xiE yi) => (x1,...,xn) = (y1,...,yn)
Now suppose (x1,...,xn) c (yT,...,ym).

If n<m then (X,,...,xn) E (y1’000’ym) => (ng...’xn) E-: (yz"",ym)

=D (Xn) E (yn,...',ym)
= _Q E (yn+1’ooogyl_ﬂ)
=> tt Eff

which is impossible.
Similarly if m>m then (xy,ee0,x ) S(y;,0e0,y) => £f Tt which is
8lso impossible hence n=m,

Then (x1y.,.,xn) E (y1,e..,yn) => X1E }"1 and (ngoeoyxn) = (3’2ypooyyn)

L N 3

=> X,' Ey‘i,u.,an yn

The result for <x1,.°°,xn> follows since if x, = L for some i then

<x1/
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<X1 XX ,xn>‘-’-' L otherwise <X1 XX ,xn>=(x1 soes ,xn) (&nd Similarly for

<y1,...,ym>).
Q.E.D.

6.6.20 Definition
For a € U define: a%=Y( )\u._Q_@(&ﬁu))
Remark: a®=00(a8a®)
6.6.,21 Lemma
If a is a strict retraction then so is a® and

x € 8® &= x=L or x=() or x=(x1,...,xn), .L;éxi €a

Proof

x € 8% => x=a%(x)= L (Au.08(a &u))?(L)(x)
= Lﬂj a®(n)(x) where a@(n)=( )\u.p_@(a&u))n(i)

By lemmas 6.6.5 and 6.,6.11 a® is a strict retraction.

Now clearly x € a@"(ox) {=> x=1 , I show by induction on n that:
x € a@(n+1) => z=1 or x=() or x=={(x1,..o,xm) ,_L#xi € a, Ki<m¢n}

n=03 /
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X €

<{=>

{=d>

Now

<=>

&=

<=
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(1)

x=(00(a8a® ))) (x)

x= 1 or x=(tt,u), Léu e or x=(ff,v), Lfv e (@ﬁa@*(f’))
(by 6.6.11.5)

x=L or x=() or x=(ff,(w,y)), L#w e a, Léye &’%(‘G)
(by 6,6.11.3)

=L orx=() (as Liy ¢ 8@(0) is impossivle)

assume true for n, I show it's true for (nt+1):

aey(n+1)

x=1 or x=() or x=(£f,(w,y)), Lfwece, Ly ¢ &'@(n)
(by & calculation like that above)
x=L or x=() or x=(£f,(w,())), Lifw eca
or x € {(ff,(w,(x1,...,xm))) ’ Lifw € a, .L;éxi € a8, 1<.4¢n}
(by induction)

x=1 or x=() or x € {(x1,...,xn) , J_ylxi € a, 1<idn<n+}

To complete the proof I show that:

x € 8% &> Jdn.x € &@(n)

This ig clearly true for ==l , suppose ._L,éx € 89 then

x=28/
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x=a‘59(x)= Inl ae“(n)(x). Then there exists an n>0 such that
J.;és,@(n)(x) € a‘@(n) and by lemma 6.6.19 Y m_)_n.aQ(n)(x)za@(m)(x) S0
g ® @
x=a! (n)(x) € 8% ye
Conversely suppose .L#x ¢ aﬁ(n) then x=(x1,,.a,xm) (m<n), I show

x € a® by induction on m3

=0z
x=() :28(() )=a®(0)
. =(00(a828%)) (0)
=(tt,tt)
=0

=()
Suppose true for m I ghow it is true for mt+l,

&8 ((x, 00005, ,))=(00(a98%)) (22, (x, (xp0 o 0rx,,)))) (b7 6.6.18)

m-1
=(££,80a8((x,, (2550 00,% 1)) (by 6.6,10.5)
‘—"(ff’ (a(x1 ) 18'@((3—’2' see ﬁxm+1 )))) (by 60601013,)

=(ff,(x1,(12,...,xm+1))) (by induction and %, € a)

=(x1i'°'9xm+1) (by 606018)

Hence Y m_?_O.(xP..@,xm) cg® (if V idmex, € Y

Q.E. Do

6.6.22/
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6.6.22 Definition
For & € U let a*=(a’)®
6.6.23 Lemma
If a represents A then a* represents A¥
Proof

By lemma 6.,6,21:

x €a¥=> x=L or x=() or x=(x1,,..9xn), Jnﬁki ca’

Now A¥{x !J.%xe A+} and 8o
An={(x1,...,xn) 'J-¥ki € A+}

The result follows from 6.,6,19,

6.6.24 Definition
Let s represent S (as in 6.6,17) then defines

fun=g¥-Dgy

d=gs+fun

6.6.25/

Qc E. Dc
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6.6.,25 Lemms,

{fun represents FUN:[S*->S]

d representy D=S+FUN
Proof
By lemmas 6,6.12, 6,6.17 and 6.6,23,
Q.E.D.
I@ is now easy to represent the alist model Env, full details follows

6.7 Representing Env in universgal space

6.7.1 Definition

Let env=Y(\ e.id->(e->d))

env=id->(env->d), so env represents a semi-domain Env which satisfies
Enwg[ld->[Env—>D]] (i.e, satisfies Envl). Thus by proposition 5.2.5
this Env contains an alist model as a sub semi-domain and sc &list

models exigt. In fact Fnv itself is an alist model asg the next lamnsa

proves,
6-7-2 Lﬁ!&"l“a.

env represents an alist model.

Proof/



=237
Proof
env=Y( )\e.id«>(env->d))=nL=Jo env(n) where env(n)=( )\@.id—)(e—>d).)n(-1-)
6e7e2.1 Lemmsa
\/nzp.env(n)oenvrenVoenv(n)=env(n)
Proof
Induetion on n:
n=0: env(o)=.L S0 env(o)oenvzenvoenv(0)=.L
Now agsume true for n then:

(env(n+1)0env)(x):env(n+1)(env(x))
=(env(n)~>d)oenv(x)cid (by 606.10.1)
=(env(n)—>d)o(env->d)oXOidcid (by 6.6.10.1)

=(env(n)->d)6(env—>d)aXoid (as 1d is a retraction)

now (env(n)->d)°(env—>d)=:Xumdc((env—>d)(u))cenv(n) (by extensionslity
and 6.6.10,1)
=:Xu.dodcuceanenv(n)
::Xu.douoenv(n) (by induetion)

=(env(n)->d) (by extensionality and 6,6,10,1)

sof
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80 (emar(m_1 y env) (x) =(env(n)->d)OXoid
=(id~>(env(n)->d))(x) (hy 6.6.10.1)
=env(n+1)(x) (by 6.6.10.1)

similarly (enVcenv(n+1))(x):(env—)d)°(env(n)~>d)vxoid

and (env-id)o(env(n)->d)==Xu.dedouoenv(n)oenv

= Xu.doucenv(n)
=env(n)->d

50 envoenv(nH)(x)=(env(n)->d)omid

=env(n+1)(x)
Q.E.D,

Thus if for r € env we let r(n)=env(n)(r) then T(p) © enve
I now show that r > r(n) gatisfics Env2-EnvS.
Env2: _L=env(o) Eenv“)f-j- see Tenvi E oeee = env
= =, [ - eee c Coool::
hence r € env => L r(o)__ r(1)__ = r(n)_. Cr
Bnv3: env:lﬁlenv(n)
hence r € env =>» r:lﬁ!r(n)
Envd4: r € env = (r(n))(n)=env(n)(enV(n)(r))
=env(n)(r) (as env(,y is a retraction)
“F(n)
Env5: env(n+1)(r)(x)(env(r')):((env(n)~>d)croid)(x)(env(r'))
ﬂ(dcr(id(x))oenv(n))(env(r'))

=(dor(id(x))venv(n))(r') {by previous lemma)
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also env(r)(x)(env(n)(r')) =((env~>d)eroid)(x)(envtn)(r'))
=(dor(id(x))oenv)(env(n)(r’))
n(dcr(id(x))oenv(n))(r‘) (by previous lemma)

hence r,r' € env,x € id => r(n+1)(x)(r'):r(x)(r{n))
It follows that env represents an alist model.

6.8 BNF ag recursion eguations in universal space

I shall now show how the apparatus described iﬁ 6.6 can be nused to
'§olve' BNF syntax equations within the theory of semi~domains., The
point of doing this is to make things more uniform so the sane theorv
can be applied to syntax eguations, semantic equations &nd recursive

definitions. Ve would like to say that vhat gets defined by s.z.

8 1= NIL] (A/z)a ' (fn/z)a
is Y(\a.NIL I(A/z)a ] (fn/z)a)

To achieve this it is first necessary to make the primitive syntactic
clasges into semi~domains and then to interpret the BNF symbels =,
and concatenation in such a way that BNF definitions becone recursion
equations. A primitive syntactic class <prim> has naturally
associated with it the flat semi-domain prim=flat (<prim>} and if we

interpret ::=, and concatenation as =, @ and & respsctively thinge

work out, Thus the BNF

a/
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a = NIL I(A/z)a l (fn/z)a
becomes the recursive definition

.
a=NIL 6( ('@ s~expression 879 identifier & ) @ a)

o("("a function &/ & identifier @) & a)
where:

NIl=flat({NIL}
F(C=r1at({" ("}
7 =r1at{{"/"}

}

)'=riat({v)"})

)
)
)

s-expression=flat(<S-expressiond)
identifier=flat(<identifier>)

function=rlat(<function>)

using the methods of proof of lemmas 6.6.16 and 6.6.21 it is straight-
forward to show that this equation (when solved with Y) defines & so

that

s-gypression

ue€a<=>u=L oru=("("A," "oz,")",a) where L £4.

L #=

mn

Q)

identifier
L#a ¢ a (two ditfevent
a's here!)
or u=("(",fn!/",2,")",a) uhere L #fn € function
L#% € identifier
J.%a c a (two differont

a's here!)

i.e./
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i.e. fiz(a)=flat(<alist>) so a represents flat(<alistd).
Of course the symbols "(","/" ")" need not occur in the abstract
gyntax so we could have got a to represent flat((alist)) by the

neater definition:

2=NIL @ (s~expression & identifier & &) @ (function & identifier @& a)

I put the extra symbols in just to show that deing it presents no
problems. The reason that &, @ are used rather than X.+ is to
exclude infinite expressions (such 23 an 8 which satisfies a:(A/z)a) -
this is essentisl if structural induction is to be a valid mode of
reasoning, If we think of &ll BNF in this way then the semantic
functions e k> {ef etc, become members of [férm»b[Envm>ﬂ]} ete. (where
form:flat((form)))and so the theorv of continuous functions can be
brought to bear on them (e.g. semantic equations can be solved with Yy,
Although this extra rigour does not seem useful in the cases discussed
in this report, it can be, especially if one does want to admit
infinite expressions (i.e. use +.X) as well as finite ones {e.g. as

in [21]). Such infinite programs cannot be defined in BNF but can be
uging recursive sgemi-domain equations, thus by regarding BNX in the
above way we got both the benefit of iis undoubted lucidity piue the

ability to extend it to desl with infinite expressions when nseded.
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7.  EXTENSIONS OF THE SEMANTICS T0 MORE OF LISP 1.5

The semantic equations described so far only deal with pure LISP,
Unfortunately very few interesting LISP programs lie in tha® subset.
Until there is a fully debugged semantics of most of LIST 1.5 one
cannot know for sure whether the approach adopted here iz a dead end
or the tip of & useful iceberg. In this chapter I ghail deuscribe
semantic equations which purnort to handie wore of LTSP 1.% than Just
pure LISP; I have done no analvais of these equations and se their
superficial plausibility may turn out to be ill-founded. I phall
give a sequence of three sets of equations, each set handing move

than its predecessor. I shall not describe the correspondiug
extensions of => as it is fairly straightforward (I think!) %o expIrans
the algorithm implicit in the extended eval function_(givan in
appendix B of the LISP 1,5 Manual [ 6 ] in tealculus form! - if thia

is not straightforward I do not know how to do it. I think it is
important that -> be extended and compared with the secusniic equations
below so that one can know whether 'higher type! operational and
denotational intuitions about LISP are consisgent with one another,
Chris Wadsworth has investigated an analogous problem for ine
A-calculus [25] and Gordon Plotkin [16] hes adapted that work to cope

with a 'strictness test' approach to call-by-value in the A -calculus.

7.1 Functional arguments (funargs)

Functional arguments or "funargs” are & very useful feature of LISP:

they/



~243-

thev (among other things) enable "canned loops" such as maplist to

be defined. The obvious way to handle them semantically is to

change D from S+[S*—>ST to S+[D*->S]; T believe this works but care

is needed as the examples below show. Congider e=)\[[f];NIL][Label[g;g]],
this should evaluate to NIL so the following calculation must not be

valid:

fel(r)=f N[[£];¥127} (r) (f1aber[e:]}(x)) (1)
=(\f.NTL) (L) (2)

=1  (by definition of )\ = 3.11.2)
However if e'=A[[£];NTL][Label[g;2][NIL]] we do want:

fe'J(x)=E N [[£]sn1L]}(z) (fLabel[g; ] (x) (WIL)) (1)
=(\f.NIL) (L) (21)
=1 (3')

Tn the semantics below these examples come out right because I have

arranged tlat only L . is identified with ., whilst ..Lm;! Lo

3

To do this here is a definition
Telel Definition

If D,,D, are semi-domains and D=D1+D2'then for x; € D, (i=1,2) define

(xi in D) € D by:



~244-
‘Ln if x= L

(xi _i_I_l_ D): i
(xi in D) otherwise

Remark: This definition should be compared with that of (xj in D)
viz, definition 3.7.9 - the difference ig just that

L=(Ly in D) but L £ .LD“z(J-D. in D).
i i i

Tt is easy to see that x> (x in D) is continuous.

7.1.2 Semantics

Syntax

New metavariable: arg ranges over <argument>

Syntactic equationg:

A I X | fn[arg1;00-;8«rgn] , [61 1-" e12;ooo;en1"" en2]

e =
fnisi= F | fl)\[[z1;...;zn];e.]| Lebel[f;fn] lr[f;fn]
arg 1= e Ifn
Semantics

Denotations D=S+FUN
S=f1at(<S-expressiond)
FON=[D*~>3]  (see Note 1 below)
Environments: Enve=Id=>[Env->D] - an alist model (5.2.1)

Semantic/



Semantie functions: e K> Eeﬁ: <form>~>[Env—>S]
fn > [rn]: <functiond->[Env->FuN]

arg > A[arg]: <argument>m>[Env~>D]

Semantic equations:

(s1) (2] (x)=a

(s2) Ex}(z)=r(x)(r) l S

(s3) [rnlarg s ..serg 11(x)=ltnl(z) (lare, 1 (2), ..., fare_}(x))

(54) [legy=oqpseenseyy= e J(x)=ley, 1)~ Iy Xahoors e J(r)= e 1))
(s5) [ear}(r)= \t:D.car(t | S)

fear}(x)= AtsD.cdr(t ]| 5)
[eonsY)= Mt t,:Dcons(t, | 5,4, 8)
faton] D)= Mt:D.aton(t | 5)
feq¥r)= Mt t,:D,eq(t, | 5,t,] 5)
(s6) [£¥e)=r(£)(r) | ¥uN
(s7) BN [[z1;...;zn];e}}(r)== At1..,f:n:D.[e}‘((t,'/z.x)sw(tn/zn)r)

(see Note 2 below)

(s8) [rave1[s;£n]]}(e)=Een} (({£n}/2)7)

(59) [les 01 (2)=t( A\ ve [Bnv->FUirl, At frad {{v/£) 20 ) (5)
(s10) Afe}(x)=(fe}(z) in D)

(s11) AEfn}(r):(ﬁfﬂ(r) in D)

Note 1: Further specification of the solution of D=S+[D*->S] is
required (cf. 5.2.1 and 6.2,1) ~ I have not investigated
this further.

Note 2/
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Note 2: If t € FUN, z € Id, r € Env then {t/z)r means:

((Ax'.(t in D))/z)r.

T.1:3 Example calculation of denotations

Telo3els o= plese]
Then frn}(r) ={ ulssel}(x)
=Y Azt e} ((v/g) ' Nx)
=¥(\v. Xr'.v((v/g)r'))(r)
= Lo (@sCAve Aet o v((w/g)r)) (W=h2t o L =L )

Tole342: e:)x[[f];?ﬂL][fL[g;g]]
Then fe](r)=f A [[£T;n7L]1(r) (Af {'«t[g:gn)

=\t NILY(L . in D)

ON
=NTL

Te1.3.3: e'“xn:f];NIL][fx[a;g][NILﬂ

Then fe'}(z)=f A [[£];n1n]1(x) (4] fx(g;g] [w1z]])
=0\t.v1L) (§ L [e;2][v1L]} in D)
=(At.NL) (L in D)
=(\t.W1L) (L)
=1

Thugs assuning fi and Lebel are appropriately related, the exauples

mentioned above get handled correctly.

7.2/



247

7.2 Functional results

Having coped with functional arguments the obvious thing to do next

is functional results, this presents no obvious difficulties ~ one

Jjust allows & function to be a form. Here are the details.
Syntax

e 1= A, x lfn ,fn[e1;...:en]l [e11—'e12;...;en1-'en2]

f{f;fn]

tn s1= 7| £|M[z,5.0055_Js0] | Lovel[£5en]
Semantics

Denotations: D=S+FUN
S=flat(<S-expressiond)
FUNE[D*—>D] (see Note 1 below)
Environments: Env=Id->[Env->D] - an alist model (5.2.1)
Semantic functions: e => Vie]: <form>=>[Env->D]

tn > Wifn]: <functiond~>[Env->FUN]

Semantic equetions:

(s1) via](z)=(4 in D)

(s2) Vix} (r)=r(x)(r)

(53) vien](r)=(wlfn](z) in D)

(s54) vitn[e 5,050 11(x)=vEen}(z) (Ve,}(x), ..., Ve 1(x))

(SS) VE[611"“ 312;¢oe;en1"’ engjx(r):(vie11}(r)# VE-’312}(1‘),...,V!Gn1 E(r)—*

(see Note 2 below)

(s6)/
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(s6) Wlcar](z)= \t:D.(car(t | 5) in D)
Wlear)(z)= \e:D. (cdr(t | 8) in D)
ifcons](x)= N b0 (cons(t, | 8,4,1 8) 1n 1)

wlaton](r)= \t:D. (aton(t | 8) in D)

Wleq)(x)= Ao t,10.(ea (b, | S,5,] §) in )
(s7) wf £} (2)=e(£) () | Pon |
(s8) WE)\[[Z1;.--;Zn];e]}(r)= Zﬁ1.oatn:Dcvge}({t?/z1)9on(tn/zn)r
(see Note 3 balow)
(s9) wiLabel[£;n]](z)=Wiend((wfenl/€)x)

(510) Wl ]} (2)-x( vt [Bave>FOn], hr? o0 T (v/2)rt

Note 1: Further specification of the solution of D=S+[D*~>D] ig
required, again I have not investigated this further.

Tot H - g TR g m 3

Note 2: For t,, € D (g4 by seenstyy tnz) 1eans

Note 3: If t € FUN then (t/Z) means (()\r'.(t in D))/z)r.\

7.3 QUOTE'd armuments

Up to now (i.e. in 7.1, 7.2) I have only considered functional arguments
formed with FUNCTION (i.e. closures)., An important and useful property
of LISP 1.5 is that one may keep the free variables of functionsl
arguzents fluid to allow the meaning of a Tunction tc depend on ite
sctivation environment as well as its definition environment {see [137]).

To cope with this in the serantics is straightforward. #

Syntax,
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Syntax

e 1= A|x lfn ,fn[arg1;...:argn] '[e11-'e12;...;en1~*en2]
fn $i= Fl f!k[[z1;...;zn];e] lLabel[f;fn] }f{f;fn]

arg = e_'QUOTE(fn)
Semantics

Denotationst D=S+FUN
S=flat(<S-expression>)
FUN=[ [Env->D]*~>D]  (see Note 1)
Environment: Env=Id->[Env->D] ~ an alist model (5.2.1)
Semantic functions: em>V[e}: <formd->[REnv->D]
fnk)W[e}: <function>->[Env—>FUN]

argr>Afarg]: <arguments~>[Env-s[Euv-5p]]

Semantic equations:

(s1) via}(r)=(4 in D)

(s2) vix] (r)=r(x)(r)

(s3) vienl(x)=(¥ftn}(r) in D)

(s4) vitn[arg, ;...;arg 1] (x)=vln](z) (afare, 1(x), ... Alare X))

(SS) V{[e1 1"’ 612; see ;en1 g enz}}(r)‘:(v‘ge—l 1 ] (r)-—g V.{e12} (r) yees 9vgell1}(r)"' V:{en:}§ '::f':e’

(see Note 2)

(s6)/
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(s6) W{oar](r)_ﬁj :[Env->D]. (car(t(r)l S) in D)
Wicar](r)=ht: [Env—>D].(cdr(t(r)! S) in D)

Wicons1(x) ~At t, :[Bnv->D]. (cons(t, ‘r)’ g, t. (T)¥ S) in D)

Wiaton) (r)=)\t: [Dnv~>D] (aton(t{r) | 5) in D)

wleq}(x)=ht, tys[Env->D]. (eq(t, (2) | 5,5,(x) | 5) in D)
(s7) wied(x)=r{r) () | Fon
CORIMERPRTAILI ORISR CHICHEN IR CWENEY
(s9)  wiravei[r;rnli(r)=wirn]((wltn]/f)r)
(s10) wﬁju[f;fn]i(r):ir( Av:[Bnv-srun], A et wien} ((v/2) 2 ) (x)
(s11) Afel(r)=hr'.vie](x) .

(s12) AfQuoTE(£n) ] (x)=(Wifn] in [Env->D])

Note 1: I have not investigated the further specification of D.

Note 2: Hm@(tnﬂ 1T.u,ﬂh*t )rwmw((ﬁ1,&*ﬂ)lsg,”,aﬁ %wt

Here is an example to show the difference between funargs and QUOTHG

arguments,

Let fn= AN[[£1; NM[[x]:£[x]][NIL]] so that

wien} (r)=ht, VEN[[x]s£ 0] Dnmnd (e /2)r)
=A’c1.(Z\t2.V§f[xH((’cz/x)(t1/f)r))( Axt,(NIL in D))
=23t1.v&f[x]]((NIL/x)(t/f)r) (by convention 3.11.4 ~ {1) =}

=\ty.t, ((v1n/x)(t, /£)x)( Az'. (NIL in D))

Then/
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Then (1) VEen[ A [[y]sx]11(x)=wlenl (x) (AF A [[¥)5x]1(2))
=(Ar VN[ ]sx]1 ) (o) (N2t o (NIL 40 D))
=\ VE (/7)) (Nrt o (WIL 1 D))
={x]((v11/y)r)
=r(x) ((¥IL/y)x)

put (2) vien[auoTE( A [[5]5x])]1(x)
=Wirn}(z) (afavore( A [[v]:z D) 3 x))
=W A LDy x 11 (m/x) (£, /) e) (et (030 dn D))
=vix}((wvm/y) (v11/7) (5, /1))
=1L (where t,=(WEX[[y];x]] in D))

In (2) x gets looked up 'later' than in (1) as intended.

7.4 Further extensgions

So far I have been able to avoid having to simulate sequencing

mechanisms in the sementic equations. Call-by-velue is essentially

a sequential notion - in egsence it consists in evaluating arpuments

before passing them, however, I have been able to cope becazuse (in

simple cases) all the conclusions that this sequerncing entails can

be deduced from just one of them - namely that fA[[x 5...5x Tself(x){o Lond=d
i.e, strictness. Unfortunately this éimple approach (which, %o my

lmowledge, first appeared in [ 2]) no longer workswhen evaluations can

have side effects which record the time at’ which things occurrad: in

such/
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such cases one has to build sequencing in. Fortunately though,

doing this ia well understcod, and it is another achievenent of

Chris Wadsworth @4 ] (see [18] also) to show how, using "continuations®,
one can make zsemantic equations just 'operaticnal enough' to cope

with thisg and other sequential notions such as jumping.

Because I do not want to go into the theory of continuations I shall
not describe how side effects (e.g. assignment) PRCG's and GOT0's sre
handled - in any case I have dons &absolutely no work on the analysis

of the resulting equations ( which I have not even written down?),

Another practically useful facility in LISP is the ability to construct
function definitions at run time and then interpret them, Doing this
is very operational and I do now know how best to handle it with
‘denotational semantics, however, even if an operational ‘semantics' is

egsential this should still be doable within the theory of semi-domaing

(see B8 ]).

I hope that the extensions described in this chapter show that there
is still lots to be done before we can conclude that Env:Id->[Ean>u] ig

a useful equation for handling fluid varidiles.
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8, SUGGESTIONS FOR FUTURE RESEARCH

During the course of this work many problemg have come up which I
have not investigated, in this section I shall list some of ther, My

future plans are such that I doubt if I shall do gny work on them,

8.1 Analysis of more sopbisticated semantic eguations

The semantic equations given in chapter 7 need to he exsmined to see if
they are in accord with reality {as defined by existing interpreters)g
I think that, given a suitable extension of >, the main theorem shouid
be extendable to cope with funargs, QUOTEd arguments and functionsal
results, If the proof idea used here is to work for the extended
semantics a more subtle set of approximants will ve needed. This is
because there are more possibilities Tor non-terwinating computations,
(e.gu X[[f];f[f]][)\[[f];f[f]]]) so to render approximents terminating
a denser gprinkling of indices is celled for. I think one will have to
combine the fclassical! kind of approximants used by Wadsworth {?5],
with the kind I have used; the 'classical' approximants being used to
finitize those parts of computations which are really A=calculus

reductions, and my approximants finitizing those parts which manipulate

alists in an essential way.

There is also a nsed to investigate the relation between Label andfg
for these extended semantics, I suspect that the begt way to do this

might not be via a generalized LISP~induction, but rather using the

techniques of Robert Milne [ 8],

8.2/



254

8,2 Fluid variables at higher tvpe: a calculus

In order to help with the study of QUOTEd arguments I give beiow an

extension of the

A

calculus which has them., The hope is that this

calculus exhibits the central features (and difficulties) of fluid

variables in & form which makes their investigation easier. There

is a considerable danger, when studying such sbsiract calculi, that

one will ignore difficult problems because ons naz left them behind

in the abstracting process. There is some evidence that call-bv-valiue

suffered this fate:

it is only recently, with the study of reel

languages, that the differences between the )\»calculus and highexr

order programming langusges have come to light (ses Bo8e [18}),

Nevertheless study of the )\-calculus did lead {to extranrdinary

insights sgo I do not feel tco irresponsible in describing the caleulus

below:

Symtax

Metavariables:

X

e

arg

Syntax equations:

Semantics/

e

arg

ran

1

.
i

»0

23
*e

ges over <identifier>
" <Lexp>

" <argument>

X } e(arg) ' Ax.e
e | ale)



Semantics

Denotationst D=[Env->D]->D
Environments: Env=Id->[Env->D] (Ia=flat(<identifier>))
Semantic functions: Vi <exp>->[Env->D]
A: <argurentd->[Env->[Env->D]]

Semantic equations:

(s1) Vix§(r)=r(x)(r)

(s2) vle(arg)}(x)=vie](r)(afarsi{r))

(s3)  VD\x.e}(r)= At:[Env=>D].vie}((t/x)r)

(54) Afel(®)=Ar':inv.vie](r)

(s5)  afa(e)}(r)=vie]

Some gquestions which naturally atise about the Q-)\-calculus sres

f, If no expressions are quoted (i.e. of the form o(e)) dees the

Q- A-calculus essentially collapse to the ordinary A\ =caleulus?

2. What relation obtains between:

viOx.x) (a(e)) 1 (2)=vix] (viel/x)r)=v{el((viel/x)r)

and Y( Avi[Env->D]. hr' :Env.VIe] ((v/x)z))(x) 7
3, What does the paradoxical combinator

Y= A7 f(r()) (A7 £(r(¥)))

denote?

These/
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These questiong may be trivial or uninteresting - I have not given

them much thought.,

8.3 The true relstion between ;4 and Label

I proved in 4.6 that for all r of the form [a}
[plesenll(r)=lraveresen]}(x)

It would be interesting to know more about the set of r's for which
thig is true. Is there some mathematically definable subset of Env
which includes {Ea}] g € <a1ist>} and whose members make the equation
true? The answer to this may be found in Robert Milne's work -~
perhaps there exist 'self-referential' predicates such that the r's

that satisfy these constitute the desired subset of Env?

My counterexample in 4.6 does not rule out the possibility that
[fi[f;fn]] E fLavel[f;fn]], T suspect this may be true (%though my

intuition here is weak) and it would be nice to know if it is.

8,4 Axioms to dissmbiguste semi-domain egquations

In section 5,2 I showed how the equation Env:Id—>[Env~>D] could be
rerdered unambisious, by requiring Env to satisfy Env2-" £nv5, These
axioms charecterize the semi-domain corresponding to the minimal
golution obtained by regarding Env:Id—)[Env~>D] a2 & retraction

equation in U (see 6.7). An interesting problem is to work out how

to/
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to move wniformly from semi-domain equations in general to axioms
vhich characterize that solution which is obtained by regarding the

equations as being about refractions of U,

8.5 Rules of irference for LISP: TISP logic

LISP~induction ig an inference rule which I found ul, it is not
clear thovgh thaot my formwiation is as genaral or s&s convenient o

use ag possible, To investigate this lots of examples need tc he

fod

exemined, It would be interesting to develop a lugic spscially
téilored for reasoning about LISP. To design the formulae of such
& logic one needs to know the 'shapes! of the theorems that one wants
to prove - this requires lots of field work. Is it convenient to

develop such a logic within LCP [10] or LAMBDA [23]? Perhaps one

should start ab initio to prevent preconceived ideas warping things?

8.6 Fizpoint treatment of simultaneouvs recurgion definitions

As mentioned in 3.10 and 4.8 I have not investigated the goluiion, via
Y, of sets of mutuvally recursing definitions (e.g. those of epply,eval,
cesetc); T feel that theorem 4.6.4 should be exiendable to cepe with
this though the deteils might get messy - perhaps category~thecretic
notation would help here? It would be interesting if it 4id becsuse
it might help to show the rationality of the worship of algebraic
theories and other high~power tools by the adherants of the category

theory cult.

8.7/
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8,7 When does the naive gemantics work?

Presumably for suitably sinple programs (eeg. with no free variables
or non-termingting sub~expressions) the semantics of 3.8 would work.
I thought for a time that proving this was trivial but I am not =o
pessimistic now and I think it raises interesting problems. One
approach would be to develop & calculus appropriate to the gemanticn
of 3.8, say define ->> analogous to ->, so that an analogue of the
Main Theorem held for =>>. Then one could try and show by induction

on the size of computation that
p=>A <=> p->>A

Another approach would be to use Robert Milne's techniques, I rather

suspect that in fact this will be the best way to do it.
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Appendix 1
"It is vain to do with moré what can be done with fewer"
William of Occam,

In this report I have worked entirely with semi-domains rather than
domains (i.e. compliete lattices). I have found that thiz has made
the theory much simpler and less nessy (in an earlier vergion I
worked with domaina), Using semi-domaing is, of course, not & new
idea, and a number of Pecple are toying with the Pros and cons of it.
In this appendix I list some of the advantages I have found, as vet
no disadvantages have come to light., I do not feel that the
advantages given below constitute conclusive evidence in favour of
semi-domains and I should like to see a list of advantages of domsins

for comparison.

Advantages of semi-domains over domains:

1

There is no need to have s, top element T , so there is no problem of
intuiting the meaning of T . Standard functions do net havs to
manipulate T so problems such as: what does "ear{cons( T, L))" nean?
do not arise. Also the absence of T can eliminate from proocfs

special ad hoc arguments neesded to deal with it,

2:/
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28
There ig only one contender for the conditional function and this has

the obvious definition viz,.

z=tt
(25 x,y)= v g=ff
4 otherwise

In logical space (the domain version of U() tt, ff are not maximal and
consequently both of the two possible conditionals have opaque

definitions vigz.

XYy 2=T
l x ttEzf T
(z>x,y)=
¥ FECefdT
[ 4 otherwise
7= T
x tt- 2 T
(z> x,7)= y £S04 T
4 otherwise

Then one also has the problem of when to use > and when to use 335

3¢
The construction of Uyis simpler than’ that of logical space because to

prove U is a seni--domain we only need to show it is closed under

directed unions and this is easy in view of the formula:

LIGDY/
1
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ny ® ny 0
137' (xi n=o=(L:Tl xi)n=o

which tells the whole storv for semi-domains (i.e. directed unians)

but does not work for arbitrary unions.

43
It is easy to show that the set of fixed points of f € [D~>D] is a

semi-domain since for all directed X¢ D £(LIX)=LIf(X). This formula
does not hold for arbitrary X and so cannot be used to prove that the
set of fixed points of f is a domain -~ the proof of this is tricky.

Aiso in semi-domains LI, = Ll which is not true for domains.
fix(f) D

52

Every retract of U is isomorphic to & sub semi-~domain of U (see 6,6.7) -
I do not know if this is true for logical space. Thus we only need

one symbol LI (cf. 4 above). The set of retrsgctions of U is a sub
semi-domgin of it and so when working with retractions we do not need

to distinguish LJU X from Linx( Ao u) X as they are the same,

63
The coalesced sum, &, and coalesced product, §&, have naiural

definitions as retractions in U and this makes some standard semie

domains easy to represent e.g. (see 6.6,16)

NG
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I cannot see how to do this in logical space, I found &* pretty
hard to define in logical space {several complex auxiliary functionas

gseemed needed), in U we have the lucid definition

a*;g@(a+&a*)

WA

The coalesced sum of two continuous semi-domains is a gontinuous
semi-domain, That fact that the coalesced sum of continucus domzins
need not be continuous has been taken as evidence that the meparated
sum is what is needed (see e.g. [17]). I feel that bolkh are useful
(see 6.6.15, 6.6.20 and 6,8 for uses) and if one uses semi-Gomains then

one can have both the continuity axiom and 9.
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