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ABSTRACT 

A Scott/Strachey style denotational semantics intended to 

describe pure LISP is examined. I present evidence that it is an 

accurate rendering of the language described in chapter 1 of the LISP 

1.5 Programmer's, Manual, in particular I show that call-by-value and 

fluid variables are correctly handled. To do this I have: 

(1) written an operational 'semantics e of pure LISP and shown it 
equivalent to the denotational one 

(2) Proved that, relative to the denotational semantics, the LISP 

functions apply,eval,...,etc. correctly compute meanings. 

The proof techniques used are derived from the work of Wadsworth; 

roughly one first proves the results for a class of 'finite' programs 

and then extends them to all programs by a limiting argument. 

Conceptually these arguments are inductione on length of computation 

and to bring this out I've formulated a rule of inference which enables 

such operational reasoning to be applied to the denotational semantics. 
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1. INTRODUCTION 

1.1 Semantics: how this work fits in 

The approach to the semantics of programming languages developed by 

Scott and. Strachey [22] has been remarkably successful. Complete 

descriptions of PAL [9 ], ALGOL 60 [14] and ALGOL 68 [9 ] have been 

given and it would now seem to be routine to write a formal definition 

of any language of this level of complexity. Milner's theory of 

processes [11] gives a very satisfactory explication of non-determinism 

and parallel processing and there is a good hope that it will 

considerably simplify the formal study of operating systems and similar 

complexes of interacting programs. Although the Scott/Strachey 

approach appears to give us an accurate way of expressing the intuitive 

meaning of programming languages it is very abstract and there is a 

large gap between the sophisticated mathematical devices it exploits 

and concrete computational mechanisms. Thus it is possible (though not 

likely, I hope) that some of these formal definitions might have 

properties which we would not expect e.g. they might assign meanir!g8 

which differ subtly from what is intended. To reduce this danger it 

helps to investigate in detail the way abstract devices mimic concrete 

ones. This kind of investigation has a double use for as well as 

boosting our confidence in the abstract techniques it should also shed 

light on how to go about proving implementations of (abstractly defined) 

lanes correct. The work described here is such an in''esti;;ation. 

I/ 



I have taken a simple real programming language - pure LISP* .. and 

analysed in depth the relation between the possible abstract 

denotations of its programs and their mechanical evaluation. I have 

paid particular attention to the correct handling of c ,3.l..b,y value and 

fluid variables and to illustrate the dangers of a too naive approach 

to these features I describe a superficially plausible (but in fact 

wrong) semantics. 

1.2 Overview 

If you read the 'official' definition of pure LISP (chapter 1 of the 

LISP 1.5 Programmer's Mwiual) I think you will find that two distinct 

ways of thinking suggest themselves: 

(1) LISP functions can be thought of as denoting mappings from 

S-expressions to S-expressions - so that e.g. 

X [[x]; car[cdr[x]]] 

denotes the composition of the cdr function with the car 

* Pure LISP is the language described in chapter 1 of the LISP 1.5 
Programmer's Manual. It consists of LISP minus all frills such 
as the Prog feature, arrays, list structure operators (rplaca), 
functional arguments, etc. A very brief summary (not intended 
as an introduction) is given in chapter 2 below. 



function and so to work out the value of X [[x]; car[cdr[x]]][(1 2)] 

one just applies this function to (1 2). 

(2) LISP functions can be thought of as rules which specify how 

their arguments are to be manipulated to com ute the result. 

In this way of thinking X[[x]; car[cdr[x]]] is the rule 

which when given an argument first binds it to x in the 

environment then evaluates car[cdr[x]] - this consists in 

first evaluating x then taking the cdr and then the car of 

the result. This explanation does not invoke 'mathematical' 

notions such as application and composition - only sequences 

of finitistic operations are called for. 

I shall call (1), (2) the "denotational" and "operational" conceptions 

of LISP respectively. In the manual both ways of thinking are alluded 

to; the informal descriptions are on the whole denotational whereas the 

formal definition expressed in the interpreter (i.e. the functions apply, 

eval,... etc.) is usually understood operationally. 

In this report I describe some formal tools for translating operational 

intuitions into denotational terms and vice versa. More precisely what 

I do is: 

(1) Cive a Scott/Strachey style 'denotationai semantics of pure 

LISP. 

(2) Give, using a calculus, an operational 'semantics' of it. 

(3)' 



(3) Prove that the mapping denoted by any LISP function relative 

to the deY16tat U6naI_ semantics is correctly computed by the 

operations of the operational one. 

Having done this I then exploit operational reasoning to infer facts 

about the denotational semantics. To assist in this I have formulated 

a rule of inference called "LISP-induction" - in operational terms this 

can be thought of as induction on the length of computations but it can 

be used to prove things about the denotational semantics -- and 

associated with this there are no obvious computations to do induction 

on! Using LISP-induction I show: 

(4) How recursive definitions (i.e. label expressions) can be 

understood in terms of minimal fixed points. 

(5) That the mappings denoted by the functions apply,eval,...etc. 

constitute a correct (relative to the denotational semantics) 

implementation of LISP. 

I chose LISP as a subject for this study because it is a widely used 

real language which is sufficiently simple to raise mathematically 

tractable problems. I chose a real language - rather than a 

theoretical one like the X -calculus - because I wanted to be sure that 

the kind of problems which arise in practice would come to light. I 

also needed to have a language in which all the programs have a precise 

and unambiguous meaning for I needed to have a rigorous standard 

against/ 



against which to measure proposed denotational semantics. 

1.3 Historical aersgective 

As far as I know not much work hAs been done connecting the kind of 

mathematical model described here with computation mechanisms. A 

fair amount has been done on the simulation of one machine by another 

machine or by a calculus (see e.g. [ 7]) but this is a rather different 

topic in which syntactic entities are not compared with conventional 

mathematical objects but only with other syntactic things. 

The earliest relevant work seems to have been done by Kleene who 

showed how recursive definitions of numerical funcions could be under- 

stood as defining the least fixed point of certain equations (derived 

naturally from the definitions). Kieene also showed how such 

recursive definitions could be used to effectively compute the 

application of the defined functions to their arguments. This work is 

described, from a computing point of view, in Morris's thesis [12]; 

Cadiou [ 2], de B?akker and de Roever [ 1] and others have extended it 

to deal with the kinds of recursive definitions, and associated evaluation 

rules, met in actual computing practice. 

Although this work is extremely good and important the techniques it 
employs are of somewhat limited applicability and it was not until 

Wadsworth [25] came along that general methods of proving implementations 

of whole languages correct became available. Wadsworth show how 

operational/ 
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operational facts about the pure X -calculus are reflected in the 

semantics. Although the X -calculus is not a real programming 

language it turns out to be easy to apply, by analogy, Wadsworth's 

methods to real situations. Plotkin [16] has done this for ISWIM 

[5 ], a -calculus like language which uses a call-by-value 

evaluation strategy and has "basic°" functions (5 -rules), 

The importance of Wadsworth's methods is that they enable or to intro- 

duce a notion of 'progress'of computation into denotational semantics. 

This notion leads to ways of proving things by induction on the 'length' 

of computation -- a kind of induction which is very intuitive but not 

easy to precisely formulate and validate relative to denotational 

semantics. Almost all realistic denotational semantics involve 

infinite-type aces, even if (as in pure LISP) the object language is 

first order; Wadsworth's methods are applicable to such semantics and 

it is because of this that these methods are so much more powerful than 

the older ones. 

The only other relevant research I know is that of Robert Milne of 

Oxford. This remarkable work (which I only heard of during the writing 

of this report), although rather more abstract and differently motivated 

from mine, promises to provide tools considerably more elegant and 

goneral than those described here. Unfortunately, I have not fully 

digested that work anq so am unable to give a reliable description of it 
and its relation to what is done here. If you are interested I suggest 

you/ 



you (like me) await his forthcoming thesis [8 ]. 

1 . 4 Contents of this report and how to read it 

I hope this report will be comprehensible to readers not familiar with 

Scott's approach to the theory of computation [?o] and Scott and 

Strachey's approach to semantics [22 ]. To this end I have included 

some introductory material of a rather elementary nature in chajrs3 and 6; 

sophicated readers are advised to skim through this at high speed. 

Chapter 2 is a very condensed summary of the contents of chapter 1 of 

the LISP 1.5 Programmer's Manual. I strongly advise readers not 

familiar with LISP to read chapter 1 of the Manual. Chapter 3 is 

devoted to describing how the denotational conception of LISP can be 

formalized. In chapter 4 I formalize the operational conception and 

also state my min theorem connecting these two conceptions and show 

how to exploit it. In chapter 5 I prove the main theorem - subject 

to the existence of a certain infinite-type space, (which is postulated 

as a model of alists) and in chapter 6 I develop enough tools to prove 

that this space exists. Chapter 7 contains denotational semantics of 

some extensions of pure LISP to show that I'm not yet at a dead end and 

in chapter 8 1 suggest some (rather vague) topics for future research. 

Appendix 1 is of a technical nature, in it I corxpare the theory of semi- 

domains used here with the more usual theory of domains. 



2. TILE SYNTAX AND EVALUATION OF PURE LISP PROGRWMS e. A RESUME OF 

THE MANUAL 

In this chapter I state the syntax of pure LISP and give the definitions 

of the functions constituting the interpreter described in the Manuals 

This chapter is not meant to be an exposition of LISP-readers unfamiliar 

with the 1s guage are strongly advised to read chapter 1 of the Manual 

[6 ] before proceeding, I give the syntax and interpreter here for 

reference purposes and so that readers can check up that my formalizations 

are accurate (e.g. that I have not surreptitiously simplified things). 

2.1 Svntax 

2.1.1 The Data Language 

< L E T T E R > :**=A IB I C I 

<number> :: = 0 I 1' 21 

Z 
l9 

<atomic-symbol> ::= <LETTER><atom part> 

<atom part> ::_ <empty> 1 <LETTER><atom part> I <number><atom part> 

<S-expression> ::= <atomic symbol> I 

(<S-expression>.<S-expression>)I 

(<S-expression> ... <S-expression>) 

2.1.2 The Mete. Z.an vr; a rI-ex2re s ons) 

<letter> ::= a l b 

l 
e l 1z 

<identifier> : a=- 
<letter><id part> 

<id part> a e:= <empty> 
I 
<lettor><id part> 

j 
<number><id part> 



<form> ::_ <constant> 

<variable> 

<func ti on> [ <arent> ; ... ; <argument> 

[ <f orm>- <fo rm> ; ... ; <form>-. <f orm> ] 

<constant> ::= <S-expression> 

<variable> ::= <identifier> 

<argument> <form> 

<function> <identifier>1 

X [<var list>; <form>] 
I 

Label[<identifier>;<function>] 

<var list> [<variable>; ... ;<variable>] 

2.2 Standard Functions 

The following functions are needed to define the interpreter 

2.2.1 cast. edar. , cadr. caddr, cadar 

caar[x]=car[car[x]] 

cdar[x]=cdr[car[x]] 

cadr[x]=car[cdr[x]] 

caddr[x]=car[cdr[cdr[x]]] 

cadar[x]=car[cdr[car[x]]] 

2.2.2 null 

IT If x=NTL 
null [x]= 

F otherwise 
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2.2.3 e 

In the Manual equal is defined by: 

equai[x;y]=[atom[x]-* [atom[y]- eq[x;y]; r-'-F]; 

equal[car[x];car[y]]°° equal[cdr[x];cdr[y]]; 

T. F] 

It is claimed that equal, so defined, "is true if its two arguments are 

identical S.expressions and is false if they are different". 

Unfortunately this claim is false for, using the above definition, 

equal[(1);1] is undefined not F. I have taken the description quoted 

above (in English) as the intended meaning - this is formalized in 

4.8.1.11 below. 

2.2.4 paislis 

pairlis[x;y;a]=[null[x]- a; T-' cons[cons[car[x];car[y]]; 

pairlis[cdr[x];cdr[y];a]]] 

Example: pairlis[(A B c);(U V W); ((D.x)(E.Y))] 

=((A.U)(B.v)(c.w)(D.x)(E.Y)) 

2.2.5 assoc 

assoc[x;a]=[equal[caar[a];x]-. car[a];T.- assoc[x;cdr[a]]] 

Example: assoc[B;((A.(14 I))(B.(CAR x))(c.(QUOTD M))(c.(CDRR x)))] 
=(B.(cA x)) 

2.3/ 
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2.3 The Translation of M-expressions into S-expressions 

The following rules define a method of translating functions written 

in the meta--language into S-expressions. 

1. If a function is represented by its name, it is translated by 

changing all of the letters to upper case, making it an atomic 

symbol. Thus car is translated to CAR. 

2. If the function uses the lambda notation, then the expression 

X [[;...;xn]; E] is translated into (LUGDA(X1... )cn) E*), where 

E* is the translation of E. 

3. If the function begins with Label, then the translation of 

Label[a; E] is (LABEL a* E*). 

Forms are translated as follows: 

1. A variable, like a function name, is translated by using uppercase 

letters. Thus the translation of var1 is VAR1. 

2. The obvious translation of letting a constant translate into 

itself will not work. Since the translation of x is X, the 

translation of X must be something different to avoid ambiguity. 

The solution is to quote it, Thus X is translated to (QUOTE X). 

3. The form fn[arg1;...;argn] is translated into (fn* arg,.arg ). 

4./ 
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4. The conditional expression [p1-'e1;...;pn-®en] is translated 

into (COND(p1e*)...(pnen)) 

EEaT2 e9 

M-expressions S-expressions 

x x 

car CAR 

car[x] (CAR X) 

T (QUOTE T) 

ff[car[x]] (FF((CAR X)) 

[atom[x]-. x; T-. ff [car[x] ] ] (COND( (ATOM X)X) 

((QUOTE T)(FF(CAR X))). 

Label[ff; X [[x]; [atom[x]- x;T-+ ff[car[.a]]]]] (LABEL FF(X DA(X)(COi 

((APorr 'X)X) 

((QUOTE T)(FF(CAR X)))))) 

2.4 The Manual Interpreter: evalquoteaRrjy.eval,evcoft,eylis 

It says in the Manual that: 

"The universal function evalquote that is about to be defined 

obeys the following identity. Lot f be a function written as 

an M-exprres ion, and let fn be its translation. (fn is an 

s-expression.) Let f be a function of n arguments and let 
args=(arg1...argn),a list of the n S-expressions being used as 

arguments! 



arguments. Then 

evalquote[fn;args]wf[arg1;...;argn] 

if either side of the equation is defined at all." 

I suspect'that this statement was intended to connect up the 

operational and denotational conceptions of LISP i.e. the left hand 

side of the equation was intended to be understood operationally and 

the righ hand side denotationally. If this is so then 4.8 of this 

report ("A semantic analysis of the LISP eval function") is devoted 

to uroviii the above statement. Here now is the definition of 

evalquote: 

evalquote [ f'n ; x]=apply[f n; x; NIL ] 

apply[fn;x;a]=[atom[fn] [eq[fn;CAR]-. caar[x]; 

eq[fn;CDR] cdar[x]; 

eq[fn;CONS]- cons[car[x];cadr[x]]; 

eq[fn;ATOM]- atom[car[x]]; 

eq[fn;EQ]-eq[car[x];cadr[x]]; 

T -, apply[eval[fn;a];x;a]], 

eq[car[fn];UMBDA] eval[caddr[fn];pairlis[cadr[fa'a];x;a]]; 

eq[car[fn];LABEL]- apply[caddr[dn];x;oons[cons[c&dr[fn); 

caddr[fn]]9a]]] 

oval/ 
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eval[e;a]=[atom[e]- cdr[assoc[e;a]]; 

atom[car[e]] ' [eq[car[e];QUOTED- cadr[e]; 

eq[car[e];cotr]-+evcon[cdr[e];a]; 

T- apply'[car[e];evl1s[cd.r[e];a];a]]; 

a p1,y[car[e] ;evlis[edr[e];a];a]] 

evcon[c;a]=[eval[caar[c];a]-+ eval[cadar[c];a]; 

T- evcon[cdr[c];a]] 

evlis[m;a]=[null[s]--' NIL; 

`j. cons[eval[csr[m];a];eviis[cdr[m];a]]] 
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3. DENOTATIONAL S MANTICS OF PURE LISP 

The main goal of this chapter is to describe a denotational 

semantics of pure LISP. I shall do this by showing how I evolved 

a satisfactory (though, at first sight, non intuitive) semantics 

from an unsatisfactory (though intuitive) one. 

First I shall give some idea of what I am trying to capture and why 

doing this is useful. 

3.1 Denotational intuition and its uses 

Naive intuitions derived from a mathematical upbringing are not always 

a good guide to the meaning of LISP functions. For example it is 

tempting to think of X [[x];NIL] as denoting the constant function 

with value NIL and hence to deduce that for all forms e: 

X [[x];NIL][e]=NIL 

but this is wrong for if e's evaluation does not terminate then nor 

does that of X [[.x];NIL][e] and so this does not evaluate to NIL. 

This is not the only way that 'mathematical' intuition can mislead: 

LISP's fluid variables also cause trouble: the problem arises when 

one passes functions containing free variables into contexts which 

bind (and hence 'capture') them. This is most simply illustrated 

using functional arguments but as I only wish to study first order 

pure LISP (ire. what is described in chapter 1 of the N^nual) I will 

not give such an example. I am going to give a.for. e and then 

describe! 
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describe two ways of working out its value; the first way (given in 

3.1.1 below) will exploit reasoning dear to mathematically trained 

people, the second (given in 3.1.2) will use the LISP interpreter 

given in chapter 1 of the Iianual. Here is the e. It is a bit 

complicated - do not try and apprehend it directly but go on and 

read 3.1.1 and 3.1.2. 

e= > [[y]; 
Label[fn; X [[x]; 

l y- 1; 

x- 2; 

T. X [[y]fn[y]][T]]]][F]][F] 

If we let: fn1 : X [[y];fn[y]] 

el=fn1[T] 

e2=[y-' 1; x"' 2; T-. e1 ] 

fn2= X [[x];e2] 

Then: e = X[[y];Label[fn;fn2][F]][F] 

Here now are two chains of reasoning leading to values for e. 

.1.1 

The value of e is the value of Label[fn;fn2][F] when Y--F, now 

Label[fn;fn2] denotes the function defined recursively by: 

fn/ 



fn[x]=[y- 1;x-' 2;T-- fn 
1 
[TI] 

when y=F this reduces to 

fn[x]=[x- 2;T- fn 
1 
[TI] 

and so fnf F]=[F-+ 2;T--- fn 
I [T]] 

=fn1 [T] 

= X[[y];fn[y]][T] 

=,fn[T] 

=[T". 2; ... ] 
=2 

hence Label [fn; fn2] [F]=2 when 3r--F and so e.=2. 

.1.2 

Let fnT,e1,e*,fn2 be the codings into S-expressions of fn1,e1,e2, 

fn2 respectively, then the value of e is: 

evalquote/ 
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evalquote[(L DA(Y)((L B Frd fn2)(QUOTE F)));(F)] 

=apply[ (LAMBDA (Y) ((LABEL FN fn2)(QUOTE F)));(F);NIL+] 

=eval[((LABEL FN fnZ)(QUOTE F));((Y.F))] 

=apply [ (LABELL FN fn*) ; (F) ; ((Y. F)) ] 

=apply[fns;(F);((Pi.fn2)(Y.F))] 

=eval[e2;((XeF)(FN.fn2)(Y.F))] 

=eval[e1;((X.F)(FN.fn*)(Y.F))] 

=apply[fri1;(T);((X,F)(FN.fn2)(Y.F))] 

=eval[(FN Y);((Y.T)(X.F)(FN.fn2)(Y.F))] 

=apply[FN;(T);((Y.T)(X.F)(FN.fn*2)(Y.F))] 

=apply[fn2;(T);((Y.T)(X.F)(FN.fnz2)(Y.F))] 

=eval[e2;((X.T)(Y.T)(X.F)(PN.fn)(Y.F))] 

=1 

Thus unfortunately, these two chains of reasoning lead to different 

results; that described in 3.1.1 is short, lucid and wrong whilst 

that of 3.1.2 is tortuous, fails to exploit the intuitive meaning of 

LISP but is right. The intuitions which make 3.1.1 seem correct I 

shall refer to as "denotational", those used in 3.1.2 I shall call 

"operational". That the above shows is that denotational and 

operational thinking are not necessarily consistent with one another. 

It turns out that denotational thinking can be 'debugged' so that it 

becomes in harmony with the interpreter whilst still possessing its 

crisp and lucid quality, most of the rest of this thesis is devoted to 

doing this (and proving that it is done successfully). 

Why! 
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Why should one be interested in the denotational intuitions about LISP? 

There are two (related) answers to this: 

1) When it works, denotational intuition is a very powerful way of 

'seeing' fa.uts about LISP. For example it is much easier to 

apprehend directly the truth 

V'x. xa[atom.[x1°+ x;T- cons [car[x],cdr[x1]I 

than to follow the evaluation of 

(goND((ATOM x)x) 

((QuoTE T)(coNs(CAR x)(CDR x)))) 

on the interpreter. Thus when one is trying to formulate 

rules of inference for reasoning about LISP it is helpful to 

know which part of one's intuition to trust and which to reject. 

2) When we read the definitions of the functions apply,eval,etc. 

we feel that in some sense they are 'right'. There is some- 

thing against which we judge these functions and our intuition 

tells us that this thing is in harmony with them. It would be 

quite possible for apply,eval,etc. not to satisfy us (e.g. if 
there were a misprint in their definitions) and then we would 

reject them as 'wrong'. This thing, which is prior to the 

interpreter, is (I contend) the basis of the denotational 

intuition of LIST and it needs to be laid out in the open so 

that 
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that any errors it might lead us to are brought to light. 

3.2 Some intuitions about LISP 

I want now to lint three denotational intuitions, 11, 12, 13, I have 

about LISP. These intuitions certainly are not exhaustive but they 

are particularly important and it is not clear at first sight to what 

extent they are consistent with operational intuitions as expressed in 

the manual interpreter (i.e. apply,eval,evcon,evlis,etc.). 

I1. There are two kinds of expressions in LISP, forms and 

functions. Some forms have a value which is then an 

S-expression, other forms are undefined and have no value 

(e.g. car[NIL], label[f;f][NIL]). Functions denote 

partial mappings from S-expressions to S-expressions; 

they may have one or more arguments. 

12. The value of a form fn[e1;...;en] is got by applying (in 

the mathematical sense) the mapping denoted by fn to the 

values of e1,...,en. 

13. The denotation of a function Label[f; X [[x1;...;xn];e]] 

is a mapping f which satisfies the equation 

f(x1,...,xn):e 

One can use 11.13 in an extremely loose way to evaluate forms. For 

example 
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example, to work out the value, v say, of 

Label[f; X[[x][a,tom[x]-a x; T- f[car[x]]]]][cons[1;NIL]] 

we have vaf[cons[I JIL]] by 13 

by 12 

=f[car[(1)]] by 13 

=f[T] by 12 

=T by 13 

By making 11--13 precise one can convert informal 'proofs' of the 

above form into rigorous, formal proofs. 

One reason why it is not obvious that 11-13 are consistent with the 

interpreter in the LISP Manual is that mappings are usually infinite 

objects and mathematical application and equation-solving are not 

necessarily effective processes. Effective interpreters must mani- 

pulate finite representations of mappings and try to mimic application 

and equation-solving in finitistic terms. Because of this, if one 

takes the manual interpreter as a definition of LISP then I1=.I2 are 

not immediately available for use. Since we want to exploit these 

intuitions in reasoning about LISP (e.g. see above or DD and 
since actual LISP systems are (loosely) based on the manual interpreter 

it is useful to attempt a reconciliation between the denotational and 

operational aspects. 

To/ 
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To do this I formalize both aspects (in 3.4, 4.2 respectively); to 

formalize the mathematical semantics I use techniques due to Scott 

and Strachey [22] - these are the only satisfactory techniques I have 

heard of. 

3.3 Introduction to the Scott and Strzacey sptaraech to Semantics 

The basic idea of this approach is to "extend BNP to semantics". 

The meaning of a language is described by a sequence of equations whose 

left hand sides consist of the various expressions in the language and 

whose right hand sides give the corresponding meanings. The original 

thing about the approach is the nature of these meanings and the 

assumptions made about the various sets in which they occur. These 

assumptions or axioms are rather subtle and at first eight can appear 

ad hoc and arbitrary. Considerable work has shown that in fact the 

axioms are consistent with intuition; indeed not only are they that 

but they capture in an amazingly concise and elegant way just enough 

of our intuition to allow useful results to be cleanly proved. To 

fully motivate and justify the axioms would take a lot of space and in 

any case it has been adequately done elsewhere (see e.g. [1 9], [20]). 

Instead I shall just list the assumptions and sketch the intuitions 

they axioma±i.ze. 

The kind of descriptions advocated by Scott and Strachey are often 

called "denotational" or "mathematical" semantics. Using such a 

description! 
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description commits one to regarding meanings as mathematical objects 

and the relation obtaining between an expression and its meaning as 

being a relation of denotation holding between the expression and the 

corresponding object. Because of I1 above this commitment is just 

what is wanted here, however, it is possible that in other languages 

one may feel that it is unnatural to regard programs as denoting any- 

thing and in that case a denotational semantics may be inappropriate. 

3.4 Scott's Axioli s: areli. tinarZ, motivation 

I'said earlier (in 13) that I thought that the denotation, f, of 

Label[f; X [[x1;,,,;xn];e]] should satisfy: 

f(x1,...,xn)re (1) 

Now there could be many f's which satisfy this equation and if so how 

are we to choose among them? Well, given certain plausible assumptions, 

it turns out that there is always a unique least solution of (1) (where 

I mean "least" in the sense of the inclusion ordering, c , on partial 

functions). Now there does not seem to be an2thi more in the meaning 

of Label over and above the requirement that (1) is satisfied hence f 

should not have any properties not forced on it by (1) and so the least 

solution would seem to be the one wanted. Although this argument is 

rather weak, there is considerable evidence (e.g. in [2 ]) that not 

only are least solutions of recursion equations the ones really intended 

but also analysing recursion in this way gives one enormous technical 

benefits 
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benefits. 

The point of the above is to show the usefulness, for semantics, of 

focussing on the order relation which exists naturally on the set of 

denotations of functions. 

Consider now the set of denotations of forms; if a form is defined 

it should denote its value - an S-expression - but what if it has no 

value? Here, perhaps, is a case of an expression which cannot 

naturally be said to denote anything. It turns out to be very con- 

venient (and not too unnatural I find) to introduce an 'undefined' 

object -- which undefined forms can denote. Any S--expression is more 

defined than the undefined object : this intuition can be expressed, 

by introducing a relation E (read "is less defined than") such that 

1 A for all S-expressions A. 

Thus on the set of denotations of forms and also on the set of 

denotations of functions there is a relation c , and in both cases it 
expresses a notion of definedness. In fact on many sets of interest 

such a relation E is naturally definable; in particular this is so on 

those sets which are composed of intuitively computable members - the 

purpose of the relation being to partially axiomatize the computability 

property of the elements. The first assumption of Scott's theory is 

that all such 'effective' sets are ordered, by a relation p , and such 

E 's are not arbitrary but satisfy certain axioms which I detail below 

(see 
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(see Appendix I also). To state these axioms I first need to give some 

definitions. 

3.5 Some Definitions needed in order to state Scott's axioms 

3.5.1 Definition 

A partially ordered set is a set D together with a binary relation 

such that for all x,y,z E D: 

(1) X Cx 

(2) x E y and y S z implies x c z 

(3) x E y and y E x implies x=y. 

Remark: I shall use the symbol for all such partial orders, if 

context fails to specify which particular relation E denotes 

I shall use CD. I shall use x y fb mean y c x. 

3.5.2 Definition 

An element 1 of a partially ordered set D is a least or minimum 

element if for all x E D. I E x. 

Remark: I shall use rl_ or (if context demands it) 1.D for such 

least elements. They are always unique if they exist. 

3.5.3 Definition 

If X is a subset of a partially ordered set D, then z E D is said to 

be/ 
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be an upper bound of X if for all x E X.x E z. If for every other 

upper bound z' of X z E z' then z is said to be a least upper bound 

(lub). 

Remark: It is easy to show that a set X S D has at most one least 

upper bound which (if it exists) I shall denote by U DX, 

LJX or LEXx. I shall sometimes say that X has a least upper 

bound by saying that U X exists or is defined. 

3.5.4 Definition 

A subset X of a partially ordered set D is said to be directed if it 
contains an upper bound for each of its finite subsets. 

Remark: If X is directed then X contains an upper bound of the empty 

set and so is non-empty. 

3.5.5 Definition 

A Semi-domain is a partially ordered set D such that: 

(1) D contains a least element 

(2) Every directed subset of D has a least upper bound in D. 

3.5.6 Definition 

If D1,D2 are semi-domains and f: D1">D2 then f is monotonic if for all 
x,yED 

x E- y impliec f(x) c f (y) 

f/ 
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f is strict if f(--)w.L . 

3.5.7 Definition 

If D1 ,D2 are semi-domains and f: D1-.>D2 then f is continuous if 

for all directed X c D, U {f(x)lx E X} is defined and equals f(UX). 

(i.e. f(LJX)=Uf(X)),, 

Remarks If f is continuous then f is monotonic (Proofs Consider 

directed sets of the form {x,y} QED). 

3.6 Statement of Scott's axioms 

3.6.1 Axiom 

Effective sets are semi-domains. 

3.6.2 Axiom 

Computable functions are continuous. 

The notions of "effective" and "computable" are intuitive; using the 

axioms consists in modelling data types with semi-domains and requiring 

all admissible functions between data types to be continuous. I do 

not intend to justify these axioms, this is done in [19] and [20]. I 

showed above that the denotations of LISP forms and functions were 

ordered by a rel.on E . It is easy to check that these sets, 

together with form semi-domains. Axiom 3.6.2 serves to eliminate 

very 
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very'uncomputable' functions from the theory. These functions, if 

let in, would prevent certain theorems, which are true of all 

'reasonably computablot functions, from being proved.. In fact I am 

only really interested in computable functions, but the theorems 

needed are true of the wider class of continuous functions and this 

class is nicer to work with. The situation is well expressed in the 

following quote from Reynolds [191: 

"The fact that Scott's assumptions are weaker than the usual notion 

of computability may be a considerable virtue. The generalization 

from computable to continuous functions is much like the 

generalization from algebraic to real numbers. In both cases 

one moves from a small but subtle set, determined by a certain 

kind of finite, implicit representation, to a larger but 

structurally simpler set which can be constructed by limiting 

processes." 

The "limiting processes" mentioned at the end of the quotation concern 

further axioms, which Scott has proposed, which imply that any 

admissible function is a limit of computable ones. My purposes do 

not req'dre these extra axioms which, consequently, I do not state. 

Before giving an example of a denotational semantics I need to describe 

some notation and give a few more definitions. 

3.7 Some more definitions and notation 

3.7.1/ 



-29- 

3.7.1 Definition 

If D1,D2 are semi-domains then D1 is 

(1) D1 S D2 

(2) 1 = 1 
D1 D2 

(3) If X c D1 is directed then 

a sub semi-domain of D ifs 2 

Remark: Thus a sub semi-domain of D is a subset which contains -i- and 

is closed under directed unions. 

3.7.2 Definition 

Semi-domains D1,D2 are isomorphic if there exist continuous functions 

f: D1->D2, g: D2->D1 such that: 

(1) For all x E D1 g(f (x))=x 

(2) For all y E D2 f((y))=y 

Remark: If ID (or I) denotes the identity function on D and fog denotes 

the function composition of g followed by f then (1), (2) of 

the above definition can be written as gcf'--:1 and f°`D 
respectively. D1D means D1 and D2 are isomorphic. 2 

3.7.3 Definition 

If D1,D2 are semi-domains let [D1->D2]r{fs D1.,>D2If is continuous{r 

order [D1->D2] by f E g <=> for all x E D1, f(x) E g(x). 

Remark: It is easy to show that [D1->>D2] ordered by E is a semi-domain 

and/ 
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and that if F is a directed subset of it then: 

V x E DI . (Hp) (x)= L ,f (x) f Ell 

3.7.4 Definition 

If D1,D2 are semi-domains then the product of DI and D2 

set. {(x,y)lx E Dt and y E D,1 ordered by: 

(x:Y) E (x',y') <=> x C x' and y E Y' 

1xD2 
is the 

Remark: It is easy to show that DI xD2 is a semi- doma .n, that 

(xi,Yj)°=(lixi't r.) and that the projection and Pairing 

are continuous. 

I shall denote the product DXD...X , of D with itself t.>O 

times, by DP, D04{1} 

3.7.5 Definition 

If D1,D2 are semi-domains then the coalesced product Di0'D2 is the 

set{<x,y>jx e D, and y E D2# ordered by: 

<x, y> E <x' , Y' > <=> x or 7 18 ? or (x = x' and y E. ') 

Remark: of do not use the coalesced product until. 6.6.20 but I have 

included it here because its definition belongs with the 

others in this section. Note that D111D2 is got from Dg 
X"!-> 

by identifying with _L all (x,y) such that x= - or y= 

3.7.6/ 
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3.7.6 Definition 

Lot D1, D2, ... , D (1.<n< co ) be a sequence of semi-domains. 
rt 

separated sure Z D is defined by: i=1 i 

i=1 

n 
is ordered by: °- c (i,xi) and (i,xi) c (j:x j ) <=> i.--J and x. MTV} j 

n 
I ema.rk t D. can be pictured by: 

3.7.7 Definition 

'2 
D1+D2= Di. 

Remarks: (1) In pictures we have: 

D 
1 

D2 

n I 
(2) Notice that D. is not equal to (...((D1 ' 

`.'ion. t=he 

n 
={ (i,x) j x-, D. and 1 <i,<n } u {i4 ( L) is disjoint union) 

D3 

3.7.8/ 
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3.7.8 I ° ,iiition 

If D1,D2 are semi-domains then the coalesced sum D.02 is the set 

D1 D2 ordered by: 

x c y if x-1D or x= ± D or (x, y E D1 and x E y) 
1 2 

or (x,y E D2 and x E Y) 

Remark: D1OD2 can be pictured as: 

1 
D 

1. 
D2 

D1OD2 is got from D1+D2 by identifying 1 , -i-D 
1 

, -l..D 
20 

n 
Associated with the sum 1 Di are some injection and projection 
functions. Notations for these are given in the next definition. 

3.7.9 Definition 

Let D1 , e .. , Dn (1 <n< oo) be semi-domains then: 

n n 
(1) For xj E Dj (1.j<n) let (xj in 1D.)`(j'xj) 

E D3 

(2) For x E 

Remarks: The functions xj F> (x j 
n 

in J-i1 D) : D.. -> i 1 Di and 

xf> xj I DJ : 
1 
Di -> Dj are continuous. 

(1) 

n Jx if x=(j,x j) 
w1Di and 1j<n let x!D.= 

j 
1-L otherwise 

n n 
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n 
(2) If xJ E Dj then (x in 1DD.=x. 

Suppose x=f(x) is a recursion equation. I shall denote its least 

solution by Y(f)t the rigorous version of this remark now follows. 

3.7.10 Definition 

If D is a semi-domain and f E [D->D], define Y(f) by: 

Y(f)- U}fn(L)jn>0}= O00 fn(1) 

Remark: Here fn faf-...af n-times. If D is not clear from context I 
shall use YD. This definition is valid since if f c [D->D] 

then f is monotonic and J E f (-a-) o f (f (!-)) E ... E fn(!) c- ... 
so {fn(-1--) 1n90} is directed. 

The following proposition shows that Y. as defined above, does indeed 

extract least solutions of x=f(x). 

3.7.11 Proposition 

Y E [[D->D].>D] (i.e. Y is continuous) 

f(Y(f))=Y(f) (i.e. Y(f) is a fixed point of f) 

for all x E D, f(x)=x implies Y(f) - x (i.e. Y(f) is the 

least fixed-point of f) 

Proof 

(1) I need to show that if F c [D->D] is directed then f Y(f)=Y(LJF). 

Now! 
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Now Y(LJF)= (L EF)n1) 

and ffF'Y(f )= I 

n0-fl (L) _n f '( ) 

so it is enough to show that for each n>0, (L.1F)n(.L),Ljf (--). 
But (uF)n(j_)=((ff,f1)° ... (f En)) (J-) 

1 n 

2f 1 .., fU f1®...,fn() 
1 

.C 

and EFfn(.L)`4f-...of(L). 

Now clearly f6 f ° ... e f ( - L ) f L F f EF f 1 " ° . 
O fn (-J) and since P is 

1 

directed if f1,...,fn E F then there exists f E F such that 

f1 C f,...,fn E f and hence f1 F ... fn F f1°...°fn(.L)e° f`...bf(-) 
also. 

(2) f(Y(f))= 
f(-L)) of(fn(j))=w 

00 

1fn(-) n fn(-L) (as f°(J_)-.1). 

(3) Suppose x:=f(x) then J _Ix so fn(_-)"E fn(x)=f(A.. (x)...))=x hence 

1 Ofnx i.e. Y(f)E X. 

Q. E. D. 

When I explain recursive definitions in terms of solving equations, Y 

will be used to get the solution. 

3.7.12 Definition 

A semi-domain of the form: 

x1/ 
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X 
1 x2 x3 

is called flat. D is flat if and only if x, y E D and x E y => x= 

or x=,y. If S is a set then flat(S) is the semi-domain obtained by 

adjoining ' 1. to S and imposing the ordering 1 Ex for all x E S. More 

precisely flat(S)=S C) 11), V x,y E flat(S).x E y <=> x= I or x--y. 

Remark: The set of denotations of LISP forms is flat(<S-expression>). 

3.7.13 Lambda notation 

If D1,D2 are semi-domains and E(t1,...,tn) is an expression which takes 

values in D2 when variables t1,...,tn range over D1. Then 

t1...tn: D1. E(t1,...,tn) denotes the function f: D.>D2 such 

that f(x1,...,xn)=E(x1,...,xn). 

Remarks: (1) This is a notation of mMV metalanguage (not of the "LISP 

metalanguage" i.e. M-expressions) it should be distinguished 

from LISP functions of the form A[[x1;...;xn];e]. The 

semantics to be presented will connect up these two uses of 

and describe the LISP metalanguage (M-expressions) in terms 

of my metalanguage. 

(2) I shall sometimes omit the type indication ":D if it 

is clear from context. 

(3)' 
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(3) I shall sometimes use (t1,....,tn)p-> E(t1,...,tn) as an 

infix version of X t1...tn. E(t1,...,tn). 

3.7.14 Syntactic notation 

I want to use the kind of BNF notation used by Scott and Strachey. I 
think that for my purposes it is rather more lucid and technically 

convenient than standard BNF. In this notation the definition of the 

syntactic class <f nction> of the LISP 1.5 Manual (see p.9 ) could be 

phrased: 

Meta variables 

e ranges over <form> 

fn " <function> 

x <identifier> 

v1 <var list> 

S, ntax eAuati ns 

fn ::= x I \ [vl; e ] J Label [x; fn] 

vi ::= [xo;...;xn] 

Thus such a definition consists of two parts: 

(1) A set of mmeta variables (e,fn,x,vl, in this case) together 

with the syntactic classes they range over (<form>,<function>, 

<identifier>/ 
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<identifier>,<var list> here). 

(2) A set of BNF-like equations specifying the structure of the 

syntactic classes being defined (<function>, <var list>) in 

terms of assumed known classes (<form>, <identifier>). Sub- 

scripts on the meta variables are used to distinguish 

different occurrences of the same meta variable in a single 

expression. Thus if n ranges over integers then 

e ::= nI n0e.n1 defines e to range over all strings of 

integers but e ::= n In.e.n defines e to range just over 

palindromes. 

3.7.15 Standard syntactic classes 

Let <identifier>, <S-expression> be the syntactic classes defined in.,, 

the LISP 1.5 Manual. Thus <identifier> consists of strings of 

numerals and lower case letters in which the first character is a 

letter and 

<S-expression> ::= <atomic symbol> I(<atomic symbol>.<atomic symbol>) 

(where <atomic symbol> consists of strings of numerals and paper case 

letters in which the first character is a letter). 

I shall use three meta variables x,f,z to range over <identifier>: 

x will be used in contexts where the identifier is a form, f where it is 

a function and z inhere it could be either. 

I/ 
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I shall use the meta variable A to range over <S--expression>. 

3.7.16 Standard functions on S-expressions 

In order to explain semantically expressions such as car[cdr[NIL]] 

it is necessary for the standard functions car,cdr,cons,atom,eq to 

be defined on S=flat(<S-expression>) rather than just on <S-expression>, 

then car[cdr[NIL]] denotes car(J-)=-1- . I am going to use the same 

names for the standard LISP functions and their meanings (as I did in 

the last sentence), no confusion should result because in LISP square 

brackets [ and ] are used whereas in my meta language I shall use 

round brackets ( and ). Thus car[cdr[Nm]] is a LISP form which means 

car(cdr(NIL)). Note that the so called LISP meta language of the 

manual, - i.e. the language of LISP M-expressions, is my ob ect 

lan ua e, when I use "meta language" I meanM meta language not 

M-expressions. 

Now define: car:S->S 

cdr: S->S 

cons: S2->S 

atom: S->S 

eq: S2->S 

by/ 
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by car(t)= 

1 if t= 1 or t is an atomic symbol 

Al if t-(A1.A2) 

1 if t= .-1- or t is an atomic symbol 
cdr(t)= 

lA2 if t=(A1.A2) 

1 J- if t 1= -1- or t2= 1 
cons(t1,t2)= I 

(t1.t2) otherwise 

if t= 1 
atom(t)= T if t is an atomic symbol 

F if t is composite (i.e. of the form (A1.A2)) 

1 if t 1=1 or t2= 1 

eq(t1,t2)= T if t1,t2 are atomic 

3.7.17 Conditional expressions 

If t11,t12,.,tnl,tn2 E S, where S=flat(<S-expression>), then 

(t11-. 

t12,.. ,tn1-+ 
tn2) E S is defined by induction on n as follows: 

n=1: 

or t1 is composite or t2 
is composite 

symbols and t1-t2 
F if t1,t2 are atomic symbols and t1'/t2 

t 1 

(t11~ t12)= .L 

nAt: (t 
1 1 
-'t 12,t21-+t22,...ytn1-tn2)_ 

2 
if t11=T r 
otherwise 

t12 

(t2 
1 

if t11=T 

t22,...,tnl-a 
tn2) 

if t11=F 

otherwise 

Thus 
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Thus (t11 t12,...,tn1-4 tn2)=tm2 <4> ((1<i<m) => t5.1=F and tm1=T) 

Also let 

(t11- t12'...,tn1-4 tn2'tn3Mt11-+ t12,..®,tn1°+ tn2,T-+ tn3) 

so in particular (with n=1) 

(t11-+ t12,t13)=(t11-+ t12,T t13 
)=if t11 then t12 else t13. 

3.8 An extra 1e® a naive d.enotationa.l semantics of LISP 

3,8.1 The semi-domains of denotations and environments 

Recall intuition I1 of 3.2; formalizing this we see that a form 

denotes a member of S=flat(<S-expression>) and a function (being 

computable and hence continuous) denotes a member of [Sn-->S] (where 

n is the number of arguments it takes). Since we want to handle 

functions of arbitrary numbers of arguments we need to take 

FUN-n 1[Sn >S] as the semi-domain of denotations of LISP functions. 

Thus a LISP expression, whether it be a form or a function, denotes a 

member of D where 

D=S+FUN 

S=flat (<S-expression> ) 
a: 

FUN n-1 [S >S] 

What I have just said is not quite right: what, for example does the 

form f[x] denote? We cannot answer this until we know an environment 

which 
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which tells us what the identifiers f and x denote. Such an 

environment is a map r: <identifier>->D, it is desirable that it is 

computable so we should like it to be continuous, this is made possible 

with minimal ad hocery by letting 

Id=flat(<identifier>) 

and then requiring r E [Id >D]. Thus the semi-domain, Envr, of 

environments is given by: 

Envr=[Id->D] 

Now I can patch up the above remarks about what forms and functions 

denote to take into account of free variables. The denotation of a 

form or function is a function of the environment thus the correct 

semi-domains of denotatinns are [Envy->S], [Envr->FUN] for <form>, 

<function> respectively where 

Th S+FUN 

S=flat(<S-expression>) 

FUN z=1 [S"">S] 

Here is some notation which I need later on. 

(1): Given an r E Env, X E Id, t E D let (t/x)r be the result of 

'updating'r so that t is assigned to x. More precisely 

(t/x)r=Xx'. (if x=1 or x'= 1 then -I- else if x=x' then 

t also r(x`)) 

(2):/ 



-42- 

(2): If t c S then (t/x)r is an abbreviation for ((t in D)/x)r and 

if F E. FUN then (F/f)r is an abbreviation for ((F in D)/f)r. 

(3): Suppose t1,...,tn E S and F E FUN then let 

F(t1,...,tn)=PI [Sn->S] (t1,...gtn) 

Then F(t1,...,tn) is what you would expect when it makes sense 

(i.e. when F takes n arguments) and 1 otherwise. 

3.8.2 Provisional sdyntax of _pure LISP 

The syntactic definition of pure LISP I am going to use for the time 

being is given below in the notation of 3.7.14. In 3.13 I amend this 

syntax slightly. 

Meta variables 

A ranges over <S-expression> 

x,f <identifier> 

e <form> 

fn <function> 

Syntax ,equations 

e ::- A Ix I fn[e1;...;en] I [ell, e12;...;en1-+ en2] 

fn ::= car I cdr I cons I atom 
I 

eq I f I 

X [[x'1;...;xn];e] I Label[f;fn] 

Remark:/ 



-43- 

Remark: I hope it is clear that this definition amounts to the same 

thing as the one in the Manual. 

3.8.3 The in.d to semantics 

I am now going to define the denotations V[e](r), W[fnU(r) of forms 

e and functions fn relative to an environment r. The 'emphatic' 

brackets [, 1 are just an aid to the eye, they always enclose 

expressions from the object language. The semantic functions V,W 

which map expressions to their denotations are of type V; <form>-->[LNVR_>S] 

W: <function>->[ENVR->FTJN] 

respectively. They are defined by structural induction with the 

following semantic equations which I give and then explain. 

Semantics (First attempt) 

Denotations: D=S+FUN 

S=flat (<S--expression> ) 

= 1 [Sn->S] 

Environments: Envr=[Id->D] 

Semantic functions: V: <form>-> [Envr >S] 

Semantic 
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Semantic eouations: W: <function>-> [Envr .>F ] 

(S1) V[A](r)=A 

(S2) V[xl(r)=r(x)I S 

(S>>) V[fn[e1,.O.;en]](x)=W[fnl(r)(V[eI](r),...,V[en](r)) 

(S4) V[[e11--1' e12;...;e 
n1' en2]j(r)=(V[e11l(r)-'V[e12J(r),..., 

V[en1 l (r)-°V[en2J (r) ) 

(S5) W[carb)=(car in FUN) 

W[cdrlr)=' (cdr in FUN) 

w[cons)=(cona in FTJN) 

W[atom}r)=(atom in FUN) 

W[eq](r)=(eq in FUN) 

(S6) W[f] (r)= r(f) j FUN 

(s7) W[ A [[x1;...;xn];e]](r)= X t1...tn:S.V[eJ((t1/x1)...(tn/xn)r) 

(S8) W[La1 el[f; fn]] (r)=Y(X F:FUN.W[fn] ((F/f)r) ) 

ExRla,nation 

(S1) says that S-expressions denote themselves in all environments 

(S2) says that, relative to an environment r, a form variable x denotes 

the S-expression it is 'bound'to' in r. If x isn't bound to an 

S-expression but to a member of FUN then x denotes -L in r. This 

last remark corresponds to the "IS" in (S2). 

(s3) makes precise intuition 12 of 3.2. Notice that by the convention 

described at tie end of 3.8.1 (s 3) is really: 

V/ 
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V[fn[e1;...;en]J(r)=W[fnj(r)J [Sn->S](V[e11(r),...,V[enJ(r)) 

(S4) Just says conditional forms denote conditionals. 

(S5) says that in all environments the standard functions get the 

appropriate meanings. 

(S6) is analogous to (S2): a function variable f denotes, in r, r(f) 

if this is a function and -L otherwise. 

(S7) connects the X notations of the object and meta languages. It 

says that in r X [[x1;...;xn];e] denotes vie function f: Sn.->S 

which maps (t1,...,tn) to the value of e in an environment in 

which xi is 'bound' to ti. Note that by the convention described 

at the end of 3.8.1 (S7) is really: 

W1 [[x1;...;xn];e](r)- t1...tn;S.Ve(((t1 in D)/x,) ... ((t. in 

(S8) makes precise intuition 13 of 3.2 and also the remarks about least 

solutions of recursion equations made in 3.4. Label[f;fn] denotes 

in r the least solution of the equation 

F W[fnJ((F/f)r) 

If fn= X [[x1;...;xn];e] then this can be written as: 

F(t1.... Ptn)=V1e1((t1/x1)....(tn/xn)(F/f)r) 

which is a precise semantic analogue of f[x1;...;xn]=e. Note 

that the conventions at the end of 3.8.1 mean that (S8) is really: 

W[Label[f;fn]](r)=Y(X F:PUN.W[fnl(((F in D)/f)r)). 

3.8.4/ 
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3.8.4 Some example calculations of denotations 

I shall use some of the examples below to illustrate certain 

inadequacies of this semantics. 

Let wfn=Label[f;f] 

we =Label[f;f][NIL] 

Example 1 let e=cons[1;NIL;NIL] 

Then V[e](r)=W[cons](r)(V[1](r),V[NIL](r),V[NIL](r)) 

=(cons in FUN) I [S3 >S](1,NIL,NIL) 

-L ((cons in FUN) I [S3->S] 1- <=> n=2) 

Example 2 let fn-- wfn=Label[f;f] 

Then W[fn](r)=Y(,\ F.[f]((F/f)r)) 

=Y(X F. P) 

X F.F)n(1-) 

-- 1 

Example 3 let e-:we=wfn[NIL] 

Then V[e] (r)= .l (NIL)= I 

The following examples come from the discussion in 3.1. 

as an identifier °Ifn2", °ffn3" as names 

Fg le 4 lot e=X [[x];NIL][we] 

Then Vie] (r):: ( X t.NIL) (-L)=NIL 

for M-expressions. 

"fn" is used 

90-M-1 e 
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Example 5 let fn2=X [[x]; [y 1;x- 2;T-'X [[y];fn[y]][T]]] 

(fn2 was previously defined in 3.1) 

Then W[fn21(r)= X t. (r(y) I S-> 1, 

t " 2, 

T -+ (Xt'.r(fn) 
I FUN(t'))(T)) 

Xt.(r(y) I S- 1, 

t -2, 
T -4 r(fn) I FidN(T)). 

Example 6 let fn.3=Label[fn;fn2] and r(y) I S=F (fn2 as above) 

Then W[fn3](r)=Y(X F.W[fn2]((F/fn)r)) 

W[fn2] ( (W[fn3] (r)/fn.)'r) (as Y(P)=F(Y(P))) 

=Xt.(i'- 1,t- 2,T- W[fn3](r)(T)) 

= Xt. (t-. 2,T- W[fn3] (r) (T) ) 

= Xt.(t- 2,T-. (F-. 1,T-- 2,...)) 
_ Xt. (t"' 2, T- 2). 

Example 7 let e= X [[y];fn3[F]][F] (fn3 as above) 

(This is the e defined in 3.1) 

Then V[e](r)-( X t.woIf fn3[F]I ((t/y) r)) (F) 

=W[fn3] ((Fy)r) (F) 

=(F- 2,T- 2) (by example 6) 

=2. 

Examples 5,6,7 show that this semantics formalizes that intuition used 

in/ 



used in 3.1.1. Examples 194,7 show different ways in which the 

semantics diverges from the behaviour of LISP as it runs on actual 

machines. I shall explain the differences in detail: 

Example 1: e=oons[1 ;NIL; NIL] 

Then apply[CONS;(1 NIL NIL);a]=cons[1;NIL] 

so in real LISP e evaluates to (1). 

Example 4: e= X [[']; NIL][Label[f;f][NIL]] 

The evaluation of this on an actual LISP system never 

terminates since arguments are evaluated before being 

bound on the Mist and the evaluation of Label [f ; f] [NIL] 

does not terminate. The non termination of e is not 

obviously forced by the manual interpreter for we have the 

calculation: 

eval[((LAMPDA(X)(QUOTE NIL))((LABEL F F)NIL));a] 

=apply[(L.AJ4BDA(X)(Q.UOTE NIL)); evlis[(((LABEL F r)NIL));a];a] 

=eval[(QUOTE NIL); pairlis[(X); eviis[(((LABEL F F)NIL));a];r.l] 

=NIL 

Thus the manual interpreter is not a good specification of 

actual interpreters, it is for this reason that I do not use 

apply,eval,...etc. as a formalization of my operational 

intuitions about LISP, to find out what I AD usedsee 4.2. 

Example/ 
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Example 7: e= X [[y];fn3[P]][F], fn3 as in example 6. 

The explanation of how e evaluates in practice was given 

in 3.1.2. 

3.9 What can be done abut the wron ° denotauions assigned by the naive 

semantics? 

In 3.8,I formalized a denotational conception of pure LISP, 

unfortunately as the examples of 3.8.4 show, this formalization does 

not correspond to reality (as defined by actual LISP systems). There 

are three possible moves I could now make: 

Move 1: Monsterbarrir 

I could claim that examples such as ex1, ex4, ex7 of 3.8.4 are 

pathological cases, that one is only interested in the semantics of 

sensible programs and if "monsters" such as these creep in it is due 

to sloppy syntax or some such thing. This move is a use of the "meth ot3 

of Monsterbarring" described in [4 ]. 

Move 2: The implementers mot it wrona 

I could claim that my semantics formalizes the intuitive description 

of LISP given in the Manual and so implementations which are not in 

accord with it (e.g. the manual interpreter) are just plain wrong. 

Move 3: ty matheraati ca l intuitions gKft_wron 

I/ 
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I could admit that my semantics does not describe real LISP (though 

it may describe a beautiful 'platonic' LISP). That, like it or not, 

LISP programs behave as they do and if a semantics is to be at all 

useful it must help with deductions about the real thing and not the 

objects of theoreticians' fantasies. 

To decide which move to make I can apply the thought of chairman Mao 

The Tung: 

"If a man wants to succeed in his work, that is, to achieve the 

anticipated results, he must bring his ideas into correspondence 

with the laws of t1 objective external world; if they do not 

correspond, he will fail in his practice. After he fails, he 

draws his lessons, corrects his ideas to make them correspond to 

the laws of the external world, and can thus turn, failure into 

success; this is what is meant by "failure is the mother of 

success" and "a -fall into the pit, a gain in your wit"." 

Mao Tse-Tung 

"On Practice" (July 1937) 

Selected Works, Vol.l,pp.296-97. 

Thus I must bring my semantics "into correspondence with the laws of 

the objective external world" and so move 3 is the one I must make. 

Beside Mao Tse Tang thought there are other arguments against moves 

1 and 2. Against move 1 we have the unpleasant fact that although 

"monsters" 



''monsters" may not arise by desi m they may well arise by accident 'an 

so we need our seman.ttics to tell us what they do so that we can find 

out that it is'wrong. Againat move 2 I'think we must accept that 

even if, imglemonters were i.ni :ia] y wrong, we have now evolved. to 

state where LISP is understood as corresponding to what they have 

implemented and so describing LISP should be describing that. 

turn failure into success" I do not need to completely abandon, 

denotational intuition, I just need to 'debug' it by isolating those 

aspects that are misleading and patching them up. In doing this care 

must be taken to preserve as much as possible of the.naive intuitions 

useful features, 

What are these useful features of'our intuition?: Well, I believe they 

include 11-13 of 3.2. ..Which, to briefly recap, area 

Forms denote S-expressions if they are defined.. Functions 

denote mappings(of various arities).from S-expressions to 

S--expressions. 

12. fn[o1.;...;en] denotes the result of applying the napping 

denoted by fn to the denotations of e1,.e,en. 

13. Label[f;)\ [[x1;....;xn];e]] denotes the (least) solution of 

the equation: 

f(x1,..,xn 

Before 

=e 
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Before going on to show how to construct a correct semantics which 

exploits I1-13 I should like to describe yet another deficiency of 

the incorrect one in 3.8. 

3.10 Simultaneous recursions: a defect of the lain ue described in i.8.2 

Suppose we wanted to work out the relation between meanings assigned by 

(S1)-(S8) of 3.8.3, and meanings computed by apply,eval...etc. where 

the meanings of these are worked out from the semantic equations: we 

would be in trouble because these functions are defined by a simultaneous 

recursion, but Label only allows us to construct expressions corres- 

ponding to recursion on a single variable. To overcome this one could 

introduce a sort of generalized Label expression of the form: 

Label[[f1;...;fn];[fn1;...; n]] 
which would allow simultaneous recursions to be expressed (S8) could 

then be extended to: 

W[Label[[f1;...;fn]:[fn;...;fnn]]](r) 

=Y(X P1...Fn.Per.(W[fn1]((F1/f1)...(Fnifn)r),...,W[ .nI((F1/f1)0:.(F /fn 

The Y here is of type [T+'UNIl->Y(7Nn1->PUNn and 

Label[[f1;...;fn];[fn1;...;fn1]] denotes an n-tuple of functions whose 

components could be got at with projection functions. Notice that 

example I or 3.8.4 shows that V and oval compute different values, thus 

even without extending LISP as above we can see that V and eval are not 

the same. Example 4 of 3.8.4 shows that eval, when interpreted via 

(S1)/ 
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(S1)-(58), does not correspond to actual interpreters. Thus (S1).-(S8), 

apply,eval...etc. (interpreted via (S1-(S8)) and real implementations 

provide three different accounts of pure LISP. 

3.11 'Iebt xr o the semantics of 3.8 

There are three features of real LISP which are not reflected in the 

semantics above, these are: 

(1) In real LISP one can give a function too many arguments and, as 

long as they are all defined, no harm is done. 

(2) In real LISP if a form ei has no value then neither does 

fn[e1;...;ei;...;enI for any function fn. 

(3) In real LISP variables are fluid - that is they are looked up in 

the environment when they are evaluated (not when the (outermost) 

function in which they are free is evaluated). 

The way in which the above semantics fails to reflect these is 

illustrated in examples 1,4,7 of 3.8.4 respectively. Although it is 

clear that (S1)-(S8) fail in the three waysd)ove it is not so obvious 

that they only fail in these ways. This is in fact the case as is 

shown by the main theorem below. 

I shall now describe how to modify (S1)-m(S8) to incorporate (1)-(3) 

above. 

(1):! 
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Here the problem is that in real LISP functions are variadic - it is 

more correct to think of them as mapping strings of S-expressions to 

S-expressions than of being of any fixed arity. To incorporate this, 

PUN must be changed from n 1[Sn->S] to [S*->S] where S*- the semi- 

domain of finite strings over S- is defined in the definition below. 

3.11.1 Definition 

If D is a semi-domain define the semi-domain D* by: 

00 

D*= T- 
Dn 

n=_0 

Remark: The D0 of this sum provides an 'empty' string Lpo= 1 I D0 

which I may denote by (). If (x1,...,an), (y1,.R`,ym) E D*. 

Then (x1,...,xn) c (y1,...,ym) <-> nvm and V i.xi E 
y1. 

If f: D*->D' (where D' is some semi-domain) and if x1,...,xn E D then 

f(x1,...,xn) is to be interpreted as f(((x1,...,xn) in D*)). 

The standard functions, car,cdr,cons,atom,eq can be extended to S* in a 

natural way (see below). 

To fix this case we need to ensure that whenever an argument denotes 1 

the result of applying a function to it denotes 1 also. This is 

already the case for car,cdr,cons,atom,eq so we need only cansider 

functions/ 
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functions of the form X[[x1;...;xn];e] and Label[f;fn]. It turns 

out that fixing X -expressions automatically fixes Label-expressions 

(see corollary 4.3.4) so we just need to arrange that the semantic 

equation for X [[x1;...;xn];e] always assigns it a strict function. 

Nov recall that, because of (1) above, X [[x1;...;xn];e] is going 

to denote a member of [S*_>S] (given an environment) thus we also 

need a new X -notation (in our meta language) to enable us to talk 

about functions in [S*->S], this is provided by the following definition 

which also provides a tool for writing a correct semantic equation for 

X -expressions and also for extending the standard functions. 

3.11.2 Definition 

If D1,D2 are semi-domains and E(t1,...,tn) is an expression which 

takes values in D2 when variables t1,...,tn range over D1. Then 

Xt1...tn: D1.E(t1,...,tn) denotes the function f: T*->D2 

such that 

E(t1,...,tn) if t=(t1,...,tn,...,tm) where m>n 

and x L for 1 <i<m i 
1 otherwise 

Remark: I shall omit the type indication +;D1" if it is clear from 

context. Thus (Lt1...tn.E(t1,...,tn))(x1,...,x is -1- if 
I 

m<n or xi= 1 for some *,<i<m otherwise it is E(g1,...,xn 

Now/ 
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Now 07) can be modified to: 

W[X [[X1;...;xnJ;e]J(r) \\t1...tn.v[e]((t1/x1)...(tn/xn)r) 

In fact another modification will be forced on us by the steps needed 

to cope with (3). 1 describe these steps below. 

(3): 

This fluid property of LISP varibles is the hardest property of all to 

handle consistently with 11-13. To see what to do consider again 

Ex7 of 3.8.4: 

e= X [[y];fn3[F]][F] where fn3 is fn defined recursively by: 

fn[x]=[y->1 ; 

x->2; 

T-> X C[y];fn[yl][T]] 

so the value of e is the value of fn[F] when y--F. 

What goes wrong in my semantics is that when evaluating fn[F] the 

free y gets looked up in the environment before the equation is 

'solved' (i.e. Y is applied) and this is too early since at that time 

the binding of y to T by the evaluation of X [[y];fn[y]][T] has notyet 

occurred. We need to fix things so that Y can be applied before free 

variables are bound and if after that any variables are still left free 

their binding can then be done. This sounds rather obscure I know - 
if/ 
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if you are getting confused skip to the "summing up" below. To 

continue: in order to be able to plug in an environment after 

applying Y we need Y's application to yield something of type 

[Envr->>FUNV]a Now intuitively (i.e. by 13 of 3.2) to 

produce the denotation of I,abel[f;fn], in an environment r, Y should 

be applied to 

X F:FUN.W[fn}((F/f)r) 

However, as we have seen we want to put r in after applying Y. To 

do this I abstract out r, apply Y and then apply the resulting 

abstraction to r to put it back in. To see what I mean consider the 

expression: 

(A): Y(X F:FUN. X r': Envr.W[fn]((F/f)r'))(r) 

In this we have just what we want. Y is applied yielding something of 

type [Envr->FUN] which is then applied to r. There is a snag though; 

X F:FUN. X r'-. Envr.W[fnj ((F/f)r') is of type FUN->[Envr->FUN] and 

applying Y to this does not make sense. Now just suppose Envr was of 

type Id->[Envr->FUN] then we would be O.K. for we would have the 

expression X F: [Envr->FUN].X r': Envr.W[fnl((F/f)r') which has type 

[Envr >FUN]->[Envr->FUN] and so Y could be applied to it to yield the 

required thing of type [Envr->FUN]. The only snag of this move is 

that it requires that Envr be of type [Id->[Envr->FUN] i.e. that Enxrr 

satisfy &zvr-=[ Id-> [E,nvr->FUN] ] . Mathematically, as long as we work 

in Scott's framework and interpret "=" as "is isomorphic'" this presents 

no/ 



-58- 

no problems (though in every other framework I know it would ring the 

death knell,'); but more importantly is it consistent with our 

intuitions about environments? Fortunately it is; in LISP environ- 

ments are the logical counterparts of alists so we should be able to 

see what the logical type of environments is by looking to see what 

alists ought to denote. Consider the alist 

((F.(I&n3DA(X)(F Y)))) 

Intuitively it binds identifiers so it should be of type [Id->?] - 

what is "?°"? Well, in the example above, it is tie type of the 

denotation of X [[x]; f[y]] and this, in the absence of knowledge of 

its activation) environment, denotes W[X [[x]; f[y]J"1 E [Envr->FUN], 

thus ?=[EnvT->1,'ON] as desired. In 3.8.1 I took ?=FUN (well D 

actually - but FUN '. ' D) and that decision was the cause of my 

troubles; it was based on too shallow an analysis of the 'meaning' of 

.lists (I was misled by ' X -calculus intuition'). Thus 

Envr=[Id->?]=[Id->[Envr->FUN]] - to cope smoothly with form as well as 

function variables it is necessary to slightly generalize this 

equation to 

Envr_- [Id->[Envr->D]] 

Summing uM 

I have shown that to handle fluid variables a new semi-domain of 

environments is called for. I shall call this Env (to distinguish it 

from [Id->D] which I shall continue to call Eavr) then: 

Env/ 
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Env=[Id-> [Env- >D] ] 

There are two reasons given above why Env has the right type: 

(i) To enable minimal-fixed-point-extraction to be done before 

variable binding. 

(ii) Because fluid-variable-intuition demands that alists denote 

things of type [Id->[Env-->D]]. 

Taking Env=[Id->[Env->D]] as the semi-domain of environments 

necessitates changing (S2) and (S6) - the semantic equations for 

variables - recall that these were: 

(S2) V[x](r)=r(x)I S 

(S6) W[t](r)=r(f)I FUN 

Now if r e Env then r(x),r(f) a [Env->D] so r(x) I S, r(f) I FUN do not 

make sense (and even if they did V[x](r),W[f](r) would be of the wrong 

type). We need the expressions on the right hand sides of (S2) and 

06) to be of the form r(x)(r') IS, r(f)(r')I FUN respectively where 

r' is the environment at the evaluation-time (or activation--mime) of x 

and f - but that is just r so the correct equations are: 

(S2) V[x](r)=r(x)(r)I S 

(S6) W[f)(r)=r(f)(r) I FUN 

Now also taking Env_[Id->[Env->D]] renders the equation 

(s7)/ 
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(S7) W[ X [[x1,...;xn];e]}(r)= t1...tn: S.V[e]((t1/x1)...(tn/xn)r) 

meaningless since for (t1/x1)...(tnA n)r 
to make sense (if r c Env) 

t1,...,tn must be of type [Env->D] not of type S. To fix this is 

easy; clearly the meaning of constants is environment-independent so 

we can identify t c S with the constant function X r.(t in D) E [Env >D]. 

The following definition and conventions make this precise: 

3.11.3 Defiriition 

If r E Env--[Id->[Env->D]], v E [Env->D] and z E Id then 

(v/z)r=-n z': Id. (if z= 1 or z'= 1 then J. elseif z=z' then v else r(z')). 

Remark: (v/z) r E Env. The expression (v/z)r is continuous in v,z,r, 

Recall that D=S+FIIN. 

3.11.4 Conventions 

Suppose z E Id, r E Env=[Id->[Env >D]] then: 

(1) if t E S then (t in [Env->D])= X r. (t in D) 

and (t/z)r=((t in [Env-->D])/z)r 

(2) if v e [Env->FUN] then (v in [Env->D])=X r.(v(r) in D) 

and (v/z)r°=((v in [Env->D])/z)r. 

Remark: Notice that if r E Env, t E S, V E [Env->FUN] then 

((t in [E v-JD]) (r) I gt in D) I t 

((vin [Env->D])(r) 
I 

FUi=(v(r) in D) I FUI =v(r). 

3.12/ 
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3.12 How inter retore do recursion 

The purpose of this section is to motivate my addition of expressions 

of the form [f;fn] to LISP. 

If you examine how apply treats Label expressions you will find that: 

apply[(LABEL F fn's);x;a]=apply[fn*;x;((F.fn*)a)] 

I can mimic this 'semantically' with the equation: 

(A) cw' [Label [f; fn] ] (r)=W' [fnl ((1-d' [fn]/f) r) 

Now this equation does not explain recursion in terms of solving 

equations, i.e. in terms of Y, so it fails to reflect intuition 13. 

However, it certainly does not defy intuition;indeed, to some extent, 

it formalizes the operational intuition we bring to bear when under- 

standing the definition of apply. An interesting (and, as it turns 

out, important) question is: do the two analyses of recursion give 

the same results? The answer is a qualified "yes" but I shall not 

elaborate the qualifications here - they are dealt with in 4.6. To 

make the study of this question smooth I shall adjoin to LISP a new 

type of exprossion, /t [f;fn], then r [f;fn] will get a fixed point 

analysis and Label[f;fn] one as in (A) above. I have allocated 

meanings to r and Label this way round firstly because for a lot of 

technical work later I want to use analysis (A) and secondly because, 

by convention, the symbol t seems to adhere rather strongly to 

fixpointing/ I 
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fixpointing operations. 

The fact that I need to use (A)fbr certain purposes shows that by 

applying Mao Tse Tung thought and resisting monsterbarring (move I 

of 3.9) and my theoretician's arrogance (move 2) I have not only 

entered reality but also given myself a powerful tool - a tool which 

is not only useful for dealing with essentially fluid variables 

(monsters) but also for simpler cases which could be handled correctly 

by the semantics of 3.8. Notice that (A), for its formation, 

re wires Env to be of type [Id->[Env->D]], thus we could not even 

formulate the question of whether (A) is understandable in terms of 

Y if Env--[Idd>D] were taken. (A) is a more interpreter-like 

modelling of recursion and du.dying it sheds light on the 'semantics' 

of interpreting - in particular on the use of fluid variables for 

implementing recursion. 

3.13 Syntax of ure LISP 

The syntax I am going to use from now on is (in the notation of 

3.7.14): 

syntax 

Meta variables 

A ranges over <S-expression> 

x,f it " <identifier> 

e " ' <form> 

F1 
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F ranges over <standard function> 

fn <function> it to 

Syntax eg ,bona 

e::- A I x 
I 
fn[e1;...;en] 

I [e11~ e12;...;en1 en2] 

F::= car I cdr I cons I atom I eq 

fn ::= PI f IX [ [x1; ... ; xn; e] I Label [f; fn] 11 [f; fn] 

3.14 New improved semantics of pure LISP 

The semantics below should be read in conjunction with the notes that 

follow it. I make use of Definition 3.11.3 and convention 3.11.4. 

Semantics 

Denotations: 

Environments: 

D=S+PUN 

S=flat(<S-expression>) 

FUN=[S*_>S] 

Env,--[Id->[Env >D]] (see note 1) 

Semantic functions: e h-> [e]: <form>->[Env >S] 

fn f .> k"al: <function>->> [Env->FZTN] 
(see note 2) 

Se zmntic 
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Semantic eq, tions: 

(S1) [A) (r) --A 

(S2) [xJ(r)=r(x)(r) I S 

(S3)fn[e1;...;en](°)=fnl(r)(11(r)f...,enl(r)) 

(s4) Ce11 e12;...;en1-+ en2]l(r)-([e11](r), [e1` 1 [l (r)f.., en1](r) fl2 
(r)) 

(S5) [carl(r) _ Lt.car(t) 

[cdr)(r)= t.cdr(t) 

[cons](r)= t1t2.cons(t1,t2) (see note 3) 

atom](r)= Xt.atom(t) 

[eg](r)= Lt1t2.eq(t1,t2) 

(S6) [fl (r)=r(f) (r) j ITN 

(S7) E A [Cx1;...;xn];e]](r)= Lt1...tn: sje1((t1/X1)...(tn/xn)r) 

(S8) [Label[f;fn]l(r)=[fnl(([fnl/f)r) 

(s9) [ t[f;fn]H(r)=y(Xv: [ zv->FUNj.Xr': Env.[fn]((v/f)r')) 

(see note 

Notes 

Note 1: To state the semantics I just need to know the tMe of &iv i.e. 

that if r,r' E Env and Z E Id then r(z)(r') makes sense and is 

in D. Solutions of the equation nv=[Td->[Env->D]] are scni-m 

doimins, Env, such that Env and [Id->[Env->D]] are isomorWifiq. 

Thus if Env is such a solution and f: Env->[Id->[EAnv->D]], 

g: [Id->[Fnv->D]]->Env are the isomorphienis then r(z)(r') 13 

'really'/ 
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'really' f(r)(z)(r') and X z-. Id.r(z) is identified with 

g(X z: Id.r(z)). Because of these identifications I write 

Env-[Id->[Env->D]] rather than Envc[Id->[Env >D]]. The 

equation for Env does not, a priori, fully specify it up to 

isomorphism, thus there may be many non-isomorphic solutions 

each yielding a distinct semantics. In section 6.7. I 

construct the 'obvious' minimal solution to En'r=Id->[Env->D] 

which is the one I intend, reasons and more details of this 

choice are given in 5.2. 

Note 2: I have not named the semantic functions explicitly 

(alternatively: I have used invisible symbols for them!), 

unless otherwise indicated I shall reserve V,W for those 

functions defined by (S1)-(S8) of 3.8.3. 

Note 3: I thall use car,cdr,cons,atom,eq as names for Lt.car(t), 

t.cdr(t), Lt1t2.cons(t1,t2), t.atom(t), \t1t2.eq(t1,t2) 

respectively. Thus cons(1,NIL,NIL) makes sense and means 

cons(1,NIL). 

Note 4: Using the fixedpoint property of Y one can derive from (S3) 

the equation of which [ta[f;fn]1 is a least solution: 

I/ 



-66- 

[r[f;fn]l=Y( )Xv. X r'.[fnl((v/f)r')) 
( Xv. Xr'.[fn ((v/f)r'))(Y(Xv. Xr'.[rnl((v/f)ji°'))) 

(as Y(F)=F(Y(F))) 

ixv. X r'. [fnl ((v/f)r')X [' [f;fn]]) 

=Xr'.[fnl(([1 [f;fn]]/f)r') 
hence (S10): [ p[f;fn]](r)=[fn](([r [f;fn]]/f)r) 

This last equation 010) looks like (38) except that ([fn]/f) is 

replaced by ([p [f;fn]]/f). Note that [Label[f;fn]) is not obviously 

a fixedpoint of (S10). I don't know in fact whether it is or not 

(see 8.3). If fn---X [[x1;...;xn];e] then from (S10) we have: 

[iz[f,fn]](r)(A,,...,An)=[el((A1/x1)...(An/xn)([t [f;fn]]/f)r) 

This shows that 
p 

is analysed semantically in a way harmonious with 

intuition 13 of 3.2. 

3.15 Example calculation of denotations using the new improved semantics 

I now apply the new improved semantics to examples 1-7 of 3,8,4 to 

show that they get the rignt meaning. I shall use whichever of ,,1. or 

Label is convonient - thgt fact that sometimes it is one and sometimes 

the other shows that both N and Label are useful. 

Example/ 
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Exsmp_le 1 e=cons[1;NIL;NIL] 

[e](r)=(Xt1t26cons(t1,t2))(1,NIL,NIL) 

=oons(1,NIL) 

=(1) 

Expple 2 fn = put[f; f ] 
[fn]=Y( Xv. Xr'.[f]((v/f)r')) 

=Y( Xv. X r..v((v/f)r')) 

n M (Xv.Xr'.((v/f)r'))n(L) 

= 1 (as for all n.(Av. r'.v(( /f)r'))n('-)=-L ) 

Exam R1e 3 e= [f;f] [NIL] 

[e] (r)= Z (r) (NIL)= 1 

,Ea le 4 e=X[[x];NIL][ t[f;f][NIL]] 

[e](r)=[ X [[x];NIL]](r)(i-) 
=(Lt.NIL) (_-) 

= 1 (by definition of X) 

Ex fn2=/\[[x];[7`°' 1;x-+2;T- X[[3];fn[y]][T]] 

(fn2 was previously defined-in 3.1, fn E <identifier>) 

[fn2](r)= 't[[Y-' 1;x- 2;T''X[[y];fn[y]][T]]](r') 
where r'=(t/x)r=((X r. (t in [Env->D]))/x)r 

(by S7 and convention 3.11.4) 

w/ 
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= Lt6 (r(y) (r') S- it 
t -2, 
T -'' (Lt'[fn[y]]((t'/y)r'))(T)) 

= Lt.(r(y)(r') S-+ 1, 

t -' 2, 

T °+ [fn[y]]((T/y)r')) 

Lt(r(y) '') f S- 1, 

t -' 2, 

T -' r(fn) (r") (T)) 

where r"=(T/y)(t/x)r 

Example 6 fn3=Label[fn;fn2] (fn2 as above) 

[fn3] (r)=[fn2] (([fn2]/fn)r) 

= Lt(r(y)(r') S- 1, 

t -+ 2, 

T -+ [fn2](r")(T)) 

where r"=(T/y)r' 

r'=(t/x)([fn2]/fn)r 

= Lt.(r(y)(r') S- 1, 

t -'2, 

T -+1 ) 

(by example 5 [fn2](r")(T)=1) 

Exam le 
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Examtale e =X [ [Y] ; fn3 [F] ] [F] 

[e](r)=(t.[fn3]((t/Y)r)(F))(F) 

Ifn3]((Fly)r)(F) 

=1 (by example 6") 

Thus the examples which caused trouble for the semantics of 3.8 now 

get the right denotations. Also, as these examples illustrate, it 
is not much more difficult to work out denotations with the new 

semantics, than it was with the old one, this reflects the fact that 

properties 11-13 are retained. I have not yet shown that if Label 

(rather than µ ) is always used then these examples still get the 

right denotations, this is because to work out things like [Label[f;f]] 

I need to know more about Env than its type. Examination of the 

detailed properties of Env is made in 5.2. 

3.16 jTkip__ I _hatre as i ;nedthe_ same meanin o errors and non-termination 

The semantics just given has the property that forms whose evaluation 

does not terminate (e.g. J [f;f][NIL]) get the same denotation (viz. I ) 

as forms whose evaluations lead to an error (e.g. cons[ITIL]). One 

might feel that errors and unending computations should be distinguished 

semantically, but if one felt that one might then feel that different 

kinds of errors should be distinguished or that non-termination of a 

subcomputation should be distinguished from non-termination of the Main 

computation. One has to draw the line somewhere and I have chosen to 

draw/ 
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draw it between well--behaved programs on the one hand and ill-behaved 

ones (whether the bad behaviour be due to non termination or error) 

on the other. Thus my semantics is not intended to be defined on 

badly behaved pr ozrans so they all get lumped together and assigned 

as their denotation. 



4. IS THE SEMANTICS RIGHT? 

4.1 Introduction 

I got the definition of [ej,jfnj by 'debugging' the definitions of 

V[ej,W[fnj on examples, I now turn to the question of whether this 

debugging has been completely successful. What I would like to do 

is to take a well known LISP implementation and prove that it computes 

the same values as my semantic equations. Unfortunately that task 

is beyond me and I am going to have to perform a lms reliable analysis. 

What I have tried to do is to formalize the essential algorithm 

embodied in many actual interpreters and to compare that with my 

semantics. In order to make things mathematically tractable for me 

I have had to express this "essential algorithm" in a rather abstract 

form and this makes the gap between real algorithms and mine rather 

wide. There is another, related, test I shall apply to my semantics 

and that is to see if the functions denoted by the M-expressions 

defining apply,eval.... etc. compute the same values as my semantics 

i.e. whether 

(A) [apply[fn*;(A1..,An);a]j(r0)=[fnj([aj)(A1....,An) 

(B) [eva1[e*;a])(ro)-4e]([a]) 

where fn*,e* are the S-expression codings of fn and e, [a] is the 

environment naturally associated with a and r0 contains the definitions 

of apply,eva)..etc. The precise formulation and answering of this 

question 



question is done in 4.8, however, I feel that this latter test is less 

reliable than the former because although (A) and (B) might be true 

both sides of the equations could be wrong but the errors cancel out 

(e.g. if both sides of (A) and (B) were always ± ), People who have 

implemented apply,eval,...etc. have probably understood the 

N-expression definitions of these functions with their operational 

intuition rather than their denotational one. Thus to get the spirit 

of the manual, interpreter it is bettor to formalize directly what is 

intended rather than to try and get a precise meaning via a possibly 

wrong semantics of LISP. 

In addition to its role in comparing niy semantic equations with 

reality, the abstract 'implementation' I an about to describe is also 

a very useful aid to their mathematical analysis. This is because it 

formalizes our (i.e. my! ) operational intuitions about LISP and so 

makes that available for use in generating rigorous proofs. Without 

such an aid many operationally obvious results are rather hard to 

prove. In 4.4 1 describe a type of argument which I call "LISP- 

induction" and which, 1ntuitirel4y, is induction on the length of 

computation. Now length of computation is an orc,ev cnal notion and 

starting from. semantic equations it is not clear what it corresponds 

to formally. Solvirg this problem is one of the useful roles of my 

abstract ir.ip,lemo tation - which I now get down to describing. 

4.2 A forma'.!. .tion of some oneratio intuitions about LISP 

I/ 
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I am going to describe a calculus whose conversion rules are intended 

to formalize the evaluation proces described in the LISP 1.5 Manual, 

At the end of 3.8.4, as well as in 4.1, I said why I did not find the 

definitions of apply, eval, ...etc. an adequate forxnalization` 

To form the terms of this calculus I noed a notation for denoting 

environments. I could use ordinary alist (as in the Manual) but 

this is messy because it requirco all I-axto be coded into 

S-expressions. Instead I have invented a little language called 

ALIST. 

Srta,x of ALIST 

beta variables: a ranges over <alist> (see note 1 below) 

A " it <S®expression> 

z " " <identifier> 

fn " 
It <function> 

Syntax esauation: a ::= NIL I (A/z)al(fn/z)a (see note 2 below) 

Semantics ALIST of 

Denotations: Env 

Semantic function: a -> [a] : <alist>->Env 

Semantic 
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Semantic equations: 

(AS1) [NIL]= 1 

(AS2) [(A/z)aj=(A/z)[a] 

(As3) [(fn/z)a]=( fn)/z)[al 

Notes 

(see note 3 be` o-tw ) 

Note 11: <S-expression>, <identifier> and <f`unction> are as defined 

in 3.7.15 and 3.13. 

Note 2: I shall abbreviate (E1/z1),..,,(En/zn)NIL by (E1/z1), (E /: 
so for example (fn/f)(A/x) means (fn/f.) (A/x)NTTL. I may u ,,,e 

x,f as well as z to range over <identifier>. 

Note 3: I use conventions 3.11.4 in these semantic equations. 

4.2.1 Definition 

If a E <alist>, z' E <identifier> then a(z') is defined by structi.<ra.. 

induction on a as follows: 

1. NIL(z')= 

2. ((.A./z)a) (z')=if z -z' then A else a(z' ) 

3. ((fn/z)a)(z')=if z=z' then fn else a(z') 

Remark: Thus a(z) E {-' } v <S-.expression> U <function>. Let 

[a (z) ] be 1 [Env >D]' (A in [Env->D] ), ([fn] in [Env->S]) 

according as a (z) is 1.. , A, fn so that [a1(z[a(z)1 (a quick 

structural/ 
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structural induction on a proves this). 

Now let the meta variable p range over the set <term> where this is 

defined by: 

p,::= A ) (e,a) 

I am going to define a binary relation -> on <term> . p->p' (read 

"p immediately reduces to p'") is intended to Sean that, using the 

algorithm implicit in the manual interpreter, p can be converted to 

p' . If p's are thought of as states of an abstract machine hen p-.>p 

means that p' is the state immediately following p in any co. !putation. 

Before giving the foxval definition here are some examples of such 

computations. 

(car[cdr[(1 2)1],N]Z) 

(car[(2)],NIL) 

2. 

(2): (X [[x];x][(1 2)],NIL) 

(x, ((1 2)/x)NIL) 

((1 2),((1 2)/x)NIL) 

(1 2) 

(3): (X [[x];car[cdr°[x]]][(1 2)],NIL) 

( car[cdr[x]],((1 2)/x)NIL) 

(car[(2)],((1 2)/:,,)NIL) 

2. 

The/ 
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The individual steps in such computations will satisfy -? and t> 

will denote the reflexive, transitive closure of ->e ->, > are 

defined by structural induction below; I shall first give the 

definition then immediately follow it with a description of the 

notation in which it is written. 



-77- 

4.2.2 Definition 

Define -4>, > by: 

P1. (A,a)->A 

P2. a(x)=A (See note 1 below) 

(x,a)->A 

P3. F(A1,...,An)=A 

(F[A1;...;An],a)->A 

P4. (V i.(ei,a)A>Ai) and (°i i.ei/Ai) (See note 2 I 

(fn[e1;...en],a)-_>(fn[A1;...;An],a) 

P5. (em1,a)>T and Vi<m.(e119a)t>P 

([e11~'12;...; 
enJ-,'n2]a)->(em2,a) 

P6. a(f)=fn (See note 3 be 1.-'17 

(f[A1;e..;An],a).>(fn[A1;...;An 

P7. min 

( " [[x1;e.a;xm];e][A1;...;A n1'a)->(o,(A1/x1)...(Am/xm)a) 

P8. (Label[f;fn] [A1 ;...;An],a)..>(fn[A1 ; ;An], (fn/f)a) 

P9. (f_i[f;fn][A1;...;An],a)->(fn[A1;...;An],( [( [f;fn],/f)a) 

P10. 1 <n, 
1_> 2_4 , °' e,pn-1_4 n (See note 4 below) 

1;>pn 

This definition should be largely self explanatory but in case it is not 

here is a brief explanation. Each clause P1-P10 is a schema. The 

meta variables in them range over the sets previously assigned to them 

viz: 

A/ 
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A ranges over <S-expression> (as in 3.7.15) 

a It It <alist> (as above) 

<identifier> (as in 3.7.15) 

F it of <standard function>={car,cdr,eons,atom,eq} 

e It It <form> (as in 3.13) 

fn " 
It <function> (as in 3.13) 

p It It <term> (as above) 

A schema of the form p->p' means that any instance of it is a pair for 

which -> holds. 

A schema of the form 

conditions 
p->pt 

is a kind of rule of inference. It means that any instance of p-.>p' 

which satisfies the conditions is a pair for which -> holds. 

Each step in the example computations (1), (2), (3) above satisfy -> 

e.g. 

(car[cdr[(1 2)]],NIL)->(car[(2)],NIL)->2. 

Remark: -> is deterministic in the sense that p->p' and p-)p" => p'-p". 

Note 1: The reason I use P2 rather than (x,a)P->a(x) is that if 
a(x)= 1- or a(x)=fn then (x,a)-> I or (x,a)->fn and I do not 

want this. 

Notes 
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Note 2: The reason I have the condition "C-9 i.ea AA)" in P4 is to 

exclude unending computations of the fore 

(fn[A1;...;Asj],a)->(fn[A1;...;An],a)->... 

and also to make -> deterministic e . I do not want: 

(babe1[f;fn][A1;...;A],a)->(fn[A1;..,;An],(fn/f)a) and 

(Label[f;fn][A ;...;An],a)->(Label [f;fn][A1;...;An],a) 

Note : (f[A1;...;An],a)->(a(f)[A1;...;An],a) will not do for P6 

because of the possibility that a(f)= 1 or a(f)=a (c.f. Note 1) 

Note 4: Taking n=1 in PlO yields pl>p for all p. 

I think that if you look at the interpreter in the Manual you will see 

that the definition of ->, t> embody the essential idea there. If 
you utterly disagree with this do not give up yet. I shall show soon 

that -> is a powerful technical device for studying I...) and is needed 

to investigate the connection between J.. and Label and the relation 

between I".] and apply, eval... etc. Think of -> as an abstract tool 

if you feel I have 'puffed up' its intuitive significance. 

4.3 Statement of Main Theorem connecti.n ^ o eratinnal and deno ti,,t_4 1 

Here are four questions concerning the agreement of ->, X>and [ J. 

Luestion 1: If (e,a);>A then does [eJ([al)=A? 

Question 2: If for no A: (e,a) >A then does [e}([aJ)= J ? 

uestion 
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uc ion 3: If leJ(a})=-A then does (e,a)A>A? st 

uestion 4: If e](Lfa})= _L then is there no A such that (e,a)X>A? 

The answer to all those is EFyee". Using Wadswor"h's beautiftti 

techniques [25 the process of a swreri: g them is s :=raL;htforwrx . In 

chapter 5 I do this but first I shall formulate a theorem contair.i.' ng- 

the answers and then draw some consequences from it, 

4.3.1 Pi firai.t on (extension of [...] to terms) 

For p E <term> [p] E S is defined by: 

1. [A]=A 

2. [(e,a)}=[o}(JaJ) 

4.3.2 Main Theorem 

pt>A <=> [p]=A 

Proof 

The proof of the Main Theorem is the goal of chapter 5. 

4.3.3 Corollaz 

The answers to questions 1-4 are "yes". 

Froof 

Question 1 and question 3 follow directly from the ruin Theorem. 

Question 2 yields true because if for no A: (e,a) >A and if [e1([a1) J_ 

then/ 
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then as S=flat(<S-expression>)[e1([aJ)=A for some A c <S-expression>, 

but then by the Main Theorem (e,a);>A contradicting the assumption. 

Question 4 yields true because if (e,a),>A then [e ([a )=A J. 

E. D. 

I shall now illustrate how the calculus enables operational reasoning 

to be applied to the denotational semantics. 

Consider the evaluation of expressions of the form fn[e1,900;en]: 

First the evaluations cf the ei's are attempted so if one of these 

fails to terminate (or leads to an error) then so does that of 

fn[e1 ; ... ; en]. Now in the semantics a form's evaluation failing to 

terminate (or leading to an error) is modelled by the form denoting ..L 

so from the above remark we would expect that: 

ei denotes 1 => fn[e1;a..;en] denotes 1 

This reasoning was operational but using Corollary 4.3.3 it can be 

justified: if [ei1 ([a] )- 1 then, as the answer to question 4 is "yes", 

there is no Ai such that (ei,a)1->Ai, but then by P4 there is no A such 

that (fn[e1;...;en],a)->A and so as the answer to question 2 is "yes", 

[fn[e1;...;en]]([a])= -L . 

The next corollary sums up what I have just said. 

4.3.4 Corollary 

If/ 
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If t 1, ... , to E S and for some m tm= 1 (1 <m 1) then for any 

fn e <function>, a E <alist>: 

[fnl(al)(t1,...,tn)= J- . 

Proof 

Let e1, ... , en E <form> be such that [e, (Ea1),ti 

e.g. 

if ti# 1 

/ [f; f]'NIL] if ti=1. 

(this works by example 3 of 3.15 ® ei=ti does not work as tm= 1 / <form>) 

Then Efn](Eal)(t1,...,tn)=[fnJ(a}Xie1 ]([a ),..., en1([a])) 

=[fn[e1;...;en]l([al) (by the semantic equations) 

1 (by the reasoning in the remarks before this 

corollary) 

Q.E.D. 

4.4 LISP-induction: an inference rule for applying the Spain Theorem 

Many consequences of the Main Theorem which I want to deduce are state- 

ments of the form: 

V p . pA>A => R(p,A) 

where 



where R is some relation* e.g. R(p,A) <_> [pj=A. 

Such statements can usually be proved by induction on the size of tbi 

computation from p to A. These proofs all have the same basic str 

and to show what this is I define a relation <*, where informally.: 

p' <* p'<-> p' has to be evaluated in the course of evaluating p 

(I shall give a precise definition of <* In 4.4.1 below). Thai), in 

a sense, the set }p'l p' <* p} is the computation induced by p and so 

should be finite if that computation terminates e.g. If pt>.A. Th+-,As 1"o 

prove Vp.(pk>A => R(p,A)) it suffices to prove it for p':s such that 

}p11 p' <* p} is finite and so it suffices to prove BASE and INDUCTION 

where: 

BASE: p minimal for <' => (pl>A => R(p,A)) 

INDUCTION: (Vp' <* p. (p'l>A' => R(p' ,A') )) => (p2>A => R(p,A) ) 

In fact INDUCTION => 13ASE (take p minimal in INDUCTION) but I shall 

# Notice that since ph>A, pZ>A' => A=A' a stateni nt of the form 
(pJA>A => R(p,A)) is equivalent to 

((B A.p->A) _> P(p)) where 

P(p) <=>(3 A.pt>A and R(p,A)). I use the. former form rather than, 
the latter because it enables proofs to be laid out slightly more 
neatly. 
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shortly refine BASE and INDUCTION and then this will not be so. 

Before describing this I need to give a precise definition of <*. 

I first define a relation < of which <* is the transitive closure. 

4.4.1 Definition 

Define < and <*, binary relations on <term> by: 

p' < p <=> (1) P->p' 

or (2) p=-'(fn[e1je..;e],a) 

and p'=(ei,a) some 1<i<n 

or (3) p='([e11- et2;...*en1-a en2,a), 

p' {(e11'a),e..,(em1,a)) some 1<m<n 

and (eml,a)I>T and V i<m.(ei1a)-t>p 

P' <* P <=> p'_p1<p2<...<Pn=p for some p1,...,pn (n>1) 

Remark: I only need the relation <*, < was just used to aid in defining 

<*. I shall want to use the symbol < later with a completely 

different meaning. p *> p' means p' <* p. Note that <* is 

not reflexive. p' <* p means p' <* p or p'=pr 

A little thougit will show (i hope) that <* corresponds to its intuitive 

meaning given earlier viz: 

p' <* p <tl> p' has to be evaluated in the course of evaluating p 

Call, 
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Call p well-founded if }p' J p' <* p} is finite, then lemma 4.4.3 

below can be interpreted as showing that if pA>A then A m n- be 
effectively computed from p (i.e. the computation of A from p rs 

finite i.e. it terminates) this observation is important as it show 

that -> does constitute a useable interpreter for pure LISP - it 

could be implemented on a real computer (though, of course, for 

practical purposes it would not be sensible to do so). 

Before proving lemma 4.4.3 I need to clarify exactly what the f'si 

of a computation pp>A really is. To do this close scrutiny of 

definition 4.2.2 is called for. 

i 

As is usual with induction definitions it is the least relation which 

satisfies the conditions that is wanted. In view of clauses' 4 and P5 

of definition 4.2.2, exactly what this least solution is may not be 

immediately obvious. Because of this I shall now exhibit more 

explicitly what -> and ±> are. I am going to define relations->, 
n 71 

inductively for each n>0, pn>p' will mean p-->p' is deducible using 

at most n 'recursive calls' of clauses P4, P5. t> is the reflexive, 

transitive closure of m>. Then 
n 

p->p' <=> B n.p->p' and p.>p' <=> 3 n.pn>p' 

and the size of a computation from p to A can be measured by the pair 

(m,n) where 

P/ 
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p=p1>p2n>...R>pm=A 

Arguments by induction on the size of computation are messy double 

inductions on (m,n), one of the functions of LISP-induction is to 

disguise this messiness. Showing LISP-induction lid (i.e. Proving 

lemma 4.4,3) is messy but applying it is not - fortunately validity 

only has to be proved once and so by formulating LISP-induction we 

can factor out the messiness. 

4.4.2 Definition 

Define n>, n> for n>O by induction on n as follows: 

p0->p' <=> p->p' follows from P1, P2, P3, P6, P7, P8, P9 of definition 4. 

po>p' 
<=> 

P 
Plo>p2o>...o>pm p' for some p1,p2,...,pm (m i) 

pn+1p' <=> (1) p>p' 

or (2) p=(fn[e1;...;en],a) 

p'=(fn[A1;...;An],a) 

and ' i.(ei,a)n>Ai 

or (3) P=([e11-' e12;..;es1 ea2],a) 

p' =(em2 , a) (1 <m<s) 

and (em,,a)n>T and V i<m,(ei1,a)x>F` 

p_ n+1 p' <=> 
p=p 1 n+1 p2 n->>1 , r 1 pffi p ̀  

for some p1 , p2, . , . pm (ra> 1) 

Then 
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Then p-.>p' <=> a n.pn>p' 

p:>p' <=> 3 n.pn>p' 

Clearly e>, > so defined are the least relations satisfying P1-P10. 

Although you might feel that explicitly introducing n>, 

n> 
is unnecessary 

verbosity, I found that until I did so I often got confused. The 

size of a computation p1n>p2R>...R>pm depends on both n and m so 

arguments by induction on the size of computation (e.g. the proof of 

4.4.3 below) are difficult to formulate if n is not in sight. 

4.4.3 Lemma 

pl>A => p well-founded 

Proof 

The lemma is trivial if p=A so assume pitA.. 

If pb>A then pA>A for some n. I shall do induction on n. 

n=0: Then: 

P=Pj;>p2j> and {P'I p` <* p{={P1,...,pffi} 

n>O: Assume true for (n-1). For some m>O: 

p=pjn>p2R>...n>pm=A. 

Call pi stecia.l if it is of the form (fn[e1; ...; en],a) where e14. for 

some i or of the form ([e11~ 
e12;...;e51`es2],a). 

I shall do 

induction/ 
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induction on the number of special pies. If there are none then 

p>A and so by induction p is well-founded. Otherwise let p. be 
o j 

the first special term (i.e. pj is special and V i<j.pi is not 

special). 

case 1: pj=(fn[e1;...;en],a). Vi.(ei,a) 
n>1 

Ai 

Pj+1--(fn[A1;...;An] ta) (since Ei i.eA.i) 
Then: 

n 
{p', p' < p}={pi 4ij x PBI p` < (e.,a)s LI {p 

which is finite since {pij1 <i.j { is finite, each (ei,a) is vell- 

founded by induction on n and pj+1 is well-founded by induction on 

the number of special terms. 

case 2: pj`([e11-.e12;...;e$1- 
's2 ].a) 

Pj+1`(em2'a) 

and (em1,a) n>1 T and V i<m.(ei1,a) 
n>1 

F 

n 
Then {p' p' _<* ps={Pi I <i<j } V i {p, pe < C u {p'l pa 

a 

which is finite by induction on n and the number of special terms. 

Q.E.D. 

Here now is the statement of LISP-induction. 

4.4.4 Inference rule: L SP-induction 

To infer (Vp.pt>A => R(p,A)) prove BASE and INDUCTION below: 

BASE/ 
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BASEZ V A.R(A,A) 

INDUCTION: V e,a.(('p' <* (e,a).p'A>A' => R(p',A')) and (e,a)t>A) => R((o,a 

Remark: The LISP-induction hypothesis Lei of such arguments is 

( Vp' <* (e,a).p'A>A' => R(p',A`)) 

The validity of LISP-induction follows directly from lemma 4.4.3.as 

that lemma implies: 

(yp.p.>A => R(p,A)) <=> (V well-founded pope>A => R(p,A)) 

and BASE and INDUCTION are equivalent to this latter statement. 

In doing the INDUCTION step of a proof by LISP-induction one has to 

consider the various cases of p=(e,a) for which p$>A, the next 19,rima 

lists these cases. 

4.4.5 Lemma 

Suppose p=(e,a)A>A then one of the nine cases below obtains (in what 

follows p '> p'>p" means p °> p' and p':>p"). 

1. p=(A,a) 

2. p=(x,a) and a(x)=A 

3. p=(F[A1;...;An J,a) and F(A1,...,An)=.A 

4./ 
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4. p=(fn[e1;...;en],a) and there are A1,...,An such that: 

Vi.p*>(ni,a)A>Ai, Dm.em/Am and p *> (fn[A1;...;An],a)I>A 

_qO 5. p4 e11 12;..;en1'' en2],a) and there is an m (1<m<n) such that: 

`/ i<m.p *> (eia)®>F,p *> (em1,a).->T and p *> (em2,a)I>A 

6. p=(f[A ;...;A ],a),a(f)=fn and p *> (fn[..,;...aA J.,e)k>A 
1 n s n 

7. P=(X [[x1,°...;xm];e][A1;...;An],a),m<n and p '> (e''(A1/x1)...( mIxm)a)A>A 

8. p=(Label[f;fn][A1;...;An],a) and p *> (fn[A1;...;An],(fa,f1 ) >A 

8. p=(IJ [f;fn][A1;...;An],a) and p '> (fn[A1;...;Ar],(f [fIfn]If)a) >A 

Proof 

Straight from definitions of -> (4.2.2) and <* (4.4.1). 

Q.E.D. 

The rest of this chapter is concerned with using LISP-induction to get 

interesting results. 

4.5 Proof of half of the I,in Theorem: an eaxaple off' LI,S'-.dactioi 

4.5.1 Lemma (Soundness of ->) 

pL>A => [p]=A 

Proof 

If/ 
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If R(p,A) <.r> IPA then what has to be proved is: 

pl>A => R(p,A) 

I show this by LISP-induction. 

BASE: 

R(A,A) <z> [A]--A which is true. 

INDUCTION: 

Assume LIH (viz. (V p' <* (e,a).p':>A' => [p'l=A')) and ; (e,a)1>A. 

I 'show [(e,a)1=[e1([a]).-A by cases on p (see 4.4.5). 

1 p=(A,a) 

Clearly [p3=.k 

2. p=(x,a) and a(x)--A 

[pl=[xl([a]) (Definition of [p] - 4.3.1) 

=[aj(x)([aj)j s (by semantic equations - (s2) of 3.14) 

3. 

,A (by the remark after definition 4.2.1) 

p=(F[A1;...;An],a) and F(A1,...,An)=A 

[p)=F(A1,...,An)=A 

4. p= (fn[e1; ... ; en],a) and VL(ei,a)IL>Ai and 3 m. em7(Am 

Then by LIH R((ei,e),A i.e. [eI ([af )=_k 

and R((fn[A19...;Anjsa),A) i.e. [fnl([al)k/A,,,..,An)=A 

So [pl=[InJ([afa)([e11([a}),,.,,[en]([a])) 
=[fd ([aj)(A1,...,An) 

5./ 
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5. p=([e . e12;, ,;on1' 9n2],a) and (emi,a)A>T and V i<m.(ei1'a)w>r 11 

Then by LIH R((om1,a),T), V i<m,R((ei1,a),p) and R((em2,a),A) 

so 

i.e. 
[ez1J([al):=T, ` i<m [e.1](aJ)=p and [em21([al)=A 

[ICI=([e111([a )- 
21 (a 1111([a])- [en2l([a])) 

_(p-a Ie121([a)),...,T°-A,...:lera1J([af)-" [e }([a])) 
:A. 

p=(f[A1;...,An],a) and a(f)=fn. 

Then by LIH R((fn[A1;,,,;A1],a),A) 

so EpJ=[f]([a)(A1,...,An) 

[a](f)( aj) I FUIJ(A1s...,An) 

=[fn]([a})(A1'...'An) 

=A 

7. 

i.e. [fnl(al)(A1:...,An),-A 

P=( x [[x1,...,xm1; e]lA1g...,An],a) and m<n 

Then by LIH R((e, (A1/x1)... (Lam/xm)a),A) i.e. [e]( iA1px1)... (Am/xm)al)=-A. 

so EP1=(.t1...tm.[el((t1/x1)...(tm/xm)[aJ))(A1,...,An) 

=[eJ((A1/x1)...(Am/xm) a]) 

=[e]([(A1/x1)...(AmIxm)a}) 

-A 

8./ 
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1=(Label[f;fn] [A1 ; .. ;An]:'gin) 

't'hen by LIl:{ R((fn[A1;00.,-A n], (fn/f)a),A) i,e. 
so, CPj=[1,abel[f;fn]j([aa)(A,...,An 

=[fn ((frn /fiax).(A1,...q An.) 

=[fn] (C( n/f)aj) (A, 9 ... rAn) 

9. p=(f t[f;fn]CA...;An], ,) 

Then by LIII, R((fn[A.1;...;Ari1,(f[f;fn]f)a)s 

=Cfn((-Cfrfn]lf)C)(A,...,.tn} 

:..A. 

4.6 The relation bet-iieen and Label 

fnC(fr11f)L'a(A,r:ac,a,A fa 

.,.-e. fnJ ([Qif f; fn , ),a3 
L 

.CL... y i N 'y (fi 

Q.ED.7 

It would be very nice if for all f,fn: j j..l[f:fn]}= Labso. [f;fn 
unfortunately this is not so. Here is 

rla 

counterexample: 

First given f,g c Id let me constrict an r E &V such that for all- rl i v; 

1. 
r(f)=4' carl= 

2. r(;)(rE)=r'(f)(r) 

.This/' 
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This is easily achieved by letting r=Y()Xr'a,( car}/f)((.\r'.r'(f)(r:E))/g)j 

Then I claim that: [Label[f;g] ] (r) -[carj (r)/ L = [,t,& [f;g] (r) 

The proof of this is as follows: 

[Label[f; g] J (r) =[gj (([g]1'r)r) 
_..,(a)((,;/f)r) 

I F 

_'/')) (f) (r) , FUN (by 2, above) 

=r(g) (r) i PTIT 

=r(f)(r) I FUN (by 2. above) 

=[carl(r) (by 1, above) 

Ir [f;g]J (r) 

Now 

=Y(l')(r) where F=armXr'.[g]((v/f)r') 
=OPn(J_) (r) 

Fo(1.) (r)=1(r)= .1_ Suppose that 00 and Fn(-!) (r)=-!_ then: 

F1 
(J) (r)=[gJ ((F3'n(1)/f) r) 

=r(g)((Fn(1)/f)r)I FUN 

_(('n()f)r)(f)(r) I FUN (by 2. above) 

Fn(1) (i) FUN 

- IFUN=_ 1 (by assumption) 

So by induction on nt for all n90 Fn(--)(r)=,.L hence 

E/ 
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1 [f;&,] I( )=1 '8F1`(_-) (r)=. L 

Thus the claim above is justified. Despite this counterexample it 

is the case that for all a E <alist> and all f, fn: 

[Label[f;fn]]([a]) [fA [f;fn]]([a)) 

and this is good enough because the only environments which arise i.r 

practice are those which correspond to alists, i.e. ones of the form 

[a]. To prove this result I shall use LISP. induction, but first 
me show you how to intuit it. By the Main Theorem and ccroliarv 4.' 

all that needs to be shown is: 

(Label[f;fn][A1 ;...;An],a)A>A <=> ( [f;fn][Ai;...;An],a)1>A 

Now if you look at clauses P6, P8, P9 of the definition of -> you will 

see that to any computation of the form: 

(Label[f;fn][A1;...;An],a)->P1a>PZ >...->Pn >A 

there corresponds one of the form: 

(1[f;fn][Aj;...;An],a)->P1->P2->...a->PI >A 

and vice versa; where (approximately) P! is got from Pi by replacing 

some Labels by it's and adding some extra u °s to the alist. This 

is an operational intuition and that is why LISP-induction (and the 

Main Theorem) is needed to convert it into a formal proof. The ne7'., 

two 
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two definitions are to enable me to say precisely what the 

correspondence between the above two computations is. 

4.6.1 Definition 

If e, e' 'are forms (and fn, fn' functions) then writee*e' (and 

fn:fn') if and only if e' can be got from e (fn' got from fn) by 

changing zero or more Labels to 's and zero or more 's to 

Labels. 

Examples: 1. Label[f;fn]* A[f;fn] 

2. fk{;Label[f;fn]][A]f[; Cf;fn]] [A] 
I 

I shall prove that if eeQ' then [el([al)44e']]([al) for all a; however 

this statement is not strong enough for the induction to be carried 

through. The next definition enables me to formulate a strong enough 

induction hypothesis. 

4.6.2 Definition 

If a, a' E <alist> then write ava' <=> for all z: 

(1) a(z)=.A <=> a'(z)=A 

(2) If a(z)=fn then either a ,' (z)=fn' where fnfn' 
or a' (z)= /.t[z;fn' ] where fn:fn' 

(3)/ 



(3) If a'(z)=fn' then either a(z)=fn where fn--fn' 

or a(z)= r[z;fn] where fn_-fn' 

If p, p' E <term> then p*p' <=> p=A=p' or p=(e,a) 

and p'=(e',a'j 

and eae' and a:a' 

Remark: * is symmetric. 

4.6.3 Lemma 

p*p' and pl>A => p'A>A 

Proof 

Let R(p,A) <=> (Vp'.p*p' => p'A>A) then I need to show that p>A => R(pi) 

I prove this by LISP-induction. 

BASE: 

R(A,A) <=> V p'*A. p'A>A which is true since p'*A => p'--A and A#>A.. 

INDUCTION: 

Assume LIN and p=(e,a)1>A. I show R(p,A) by cases on p (soo lemma 

4.4.5). In what follows assume a;--a', fn--fn', a we!, e..Te' etc. i i i ij 
1. p=(A.,a) 

pep' => p'=(A,a') => p'->A => p'A>A 

2./ 
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2. p=(x,a) and a(x)=A 

pep' => p'=(x,a) and at(x)=.A => p'->A => p'l>A 

3. p=(F[A1,.O0,AI,a) and f(A1,...An)=A 

p*p' => p' = (i. [..t 
1 

; .....; A ] , a' ). > p' _>J _> p' l>A 

4. p=(fn[e1;..0;en]:a) and \i.(e,a) >Ai and 3 
m`em rm 

Then p:p' => p'=(fn'[e1;...;cn],a'). Now pa->(fn[A1;...;Ana) and 
by. 

LIII Vi.R((ei,a),Ai) and R((fn[A1;...;An],a),A) hence 

;A n],e,') >A 

5. p=([e11' e12;...;en1' e,,i2],a) and (em1,a),>T and V i<m.(ei1a) >F 

Then pip' p°-[e11-- e120.;en1- or'21's'') 
Now p->(em2,a) and by LIH R((em1.a),T)9 <m.R((si1,a),t) 

and R((em2,a),A) so 

p'->(e;2,a') s>A 

6. p=(f[A1;...;An],a) and a(f)=fn 

Then p->(fn[A1;...;A1],a) so by LIH R((fn[A1;...;An],a),A) 

Let p--p', there are two cases to consider: 

6.1 p'=(f[A1;...;An],a') and al(f)=fn' where fn:fn' 

Then p'®>(fn![A1;...;An],a')I>A (by LIH) 

6.2 p'=(f[A1;...;A ]a') and a'(f)=,.,t[f;fn'] where fn-fn' 

Then p'-°>(' [f;fn'][A1;...;An],s,')->(fn'[A1;...;An],(! 

4>A (by L::'i and definition 4.6.2) 

7./ 
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7. 

8. 

p=(X [[x1,...;xMJ;el[!1;...;An],a) and m<n 

Then p--p' => p'=(X nJ,a 

Now p->(e, (A1/x1)... (A /xA)a) so by LIH R((,e,.(A,/xl )... (A /x t)a), 
hence p'->(e',(A1/x1)...(A /x )a') >A 

p=(Label[f;fn][A1;...;An],a) 

Then p->(fn.[A1;...;AJ,(fn/f)a) no 'by LTH R((fn[A1;...;An ,(gnlf)W.,A) 

Let p p' then there are two cases to (consider: 

8.1 p'=(Label[f;fn'][A,;...;An].a') 

Then p'®>(fn'[= ,...;An],(fn'/f)a') >A (by LIR) 

8.2 p'=({[f;fn'][Aj;...;AJ,a') 

Then p'->(fn'[Al ...;A ], (,A[f;fn''l/f)a' )9> . (by LIH) 

9. P=Y [f;fn][A1;...;An],a) 

Then p->(fn[A1;...;An],(.t[f;fn]/f)a) so by LIH R((fi-q[A,,..4;A11 

I ( i [f;fn)/f)a),A) 

Let p:p' then there are two cases to consider: 

9.1 

9,2 

p'=( [f;fn'][Al;...;An],a') 
Then p'->(fn'[Al;...;An],(.l[f;fn']/f)a')Z>A (by LIH) 

p'=(Label [f; fn' ] [ A 1; ... ;An] , a' ) 

Then p'->(fal[A1;...;AnI,(fn'jf) a')A>A (by LIH) 

Q.N.D. 

4.6.4 Theorem 

p=p` _> lpl=fp'l 

Proof . 
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Proof 

By lemma 4.6.3 and the obvious symmetry of 

p- p f => (p t>A <=> p t>A.) 

hence by the Main Theorem 

pep' => ('pj=A <=> [p"=A) 

so as either [p],=, _L or [p}=A for some A (and similarly for [p' )"it 

follows that: 

QCD 

This shows that if you take any term p=(e,A) and .randomly chance some 

Labels to /'s and µ `s to Labels you do not change the meaning of 

the term*' In particular since (Label [f ; fn] [A1 ;...;A 
n 
], a)-(! ; fn [A 

the theorem (and corollary 4.3.4) imply that: 
f1 

[Label[f;fn]i([a])=[IU [f;fn]I([aZ) 

4.7 Aro os ition abou * riables 

The result proved in this section is needed later on. It is not of 

much intrinsic interest. 

One 
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One might at first sight expect that if r, r' agree on the f,eo 

variables in fn then fn(r)-fr(r'), this is not the case for 

let r=[(g/f)(car/g)], r'=[(gJf)(cdr/g)J then r and r' agree on f 

but Jfj(r)=-c ,x cdr=Jf3(r'). The proposition below is the result 

of debugging this intuition. 

4.7.1 Definition 

Lot vs(o), vs(fn) be the sets of variables (identifiers) xct_Loupd by 

X' `.3 Tlabels or 1 Is in e, fn respectively. 

Example: vs(X [[xl;y,[z])={Y,z} 

Given a form e the next definition gives sufficient con.ditioni on a 

set Z C <identifier> so that if a, a' agree on Z then [e] (. 
This is proved in the lemma below. 

4.7.2 Definition 

If Z C <identifier> and p, p' s <term> then p2p' <-> 

either p=p'=A 

or p=(e,a), p'=(e,a') and (1), (2), (3) where 

(1) vs(e) 
G 

Z 

(2) V z E Z. a(z)=al(z) 

(3) VZ E Z. vs(a(Z)) Z. 

]Q a 

4.7.3/ 
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4.7.3 Lemma 

If p, p' E <term> and there exists Z C <identifier> such th&t p!p 

then 

pA>A => p'A>A 

Proof 

Let R(p,A) <_> dp'((aZptp') => p'l>A) 

Then I need to show pA>A => R(p,A) which I can prove by LISP-indacti(x: 

BASE: 

R(A,A) <=> AA>A which is true. 

INDUCTION: 

Assume LIH and p=(e,a)k>A I prove R(p,A) by cases on p (see lemma 4.4.5 

1 p=(A,a) 

Then p2p' => p'=(A,a')->A 

2. p=(x,a) and a(x)=A 

Then X E Z and so pip' => p'=(x,a') where at(x)=A (by definition of 

=> p'->A 

3. p=(F[A1;...;An],a) and F(A1,...,An)=A 

Then pmp' => p'=(F[A1;...;An],a') => p'->A 

4./ 
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4. p=(fn[e1;...;en],a) and V i.(ei,a)A>Aiand 3 M/-AF.l 

By LIH and R((fn[A1;,..;An],a),A) so 

p2p' => pl_°(fn[e1,...;("nj,a4)->(fn[. 1;...;An1, ')I>. 
since vs(fn),vs(e.) vs(fn[e1;...;el]) 9 z 

5. p=([e11, 012;...9en1- en2],a) and (e 1,a)-t>T and V i<m.(ei1a) >F 

By LIH R((eml,a),T), V i<m.R((ei1,a),F) and R((em2fla),A) 

pfp' => p'=([e11, 012;.,,;e 1-4 
en2],at)->(em2 al) >A 

since vs(ei j) . v$([e1i e12;...;en1-. en2]) `' Z 

6. 

7. 

p=(f[A1;...;An],a) and a(f)=fn 

By LIH R((fn[A1;...;An],a),A) so 

p=p' _> p'=(f[A1;...;An],a°)-->(fn[A1;...;An],a')I>A. 

since f E Z so a'(-f)=a(f)=fn and vs(fn)=vs(a(f)) G z 

so 

p=(X [[x1;...;xm];-[A1;...;Ab a) and m<n 

By LIH R((e,(A1/x1)...(Am/xm)a),A) so 

pfp' => p'=(X[[x1;...;xm];e][A1;...;An(A.m/xm)a')i>A 
since (e,(A1/x1)...(Am/xm)a)V,(e,(A1/x1)...(Am/xm)&t) 

where Z'=Z V {x1,...,xm} 

8* p=(Label[f;fn][A1;...;An],a) 

By LIH R((fn[A1;...;An],(fn/f)s),A) so 

p-zp' => p'-(La,bed.[f;fn][A1;...;Anla.')->(fn[A1;...;A n],(fr.,/f)a.') >A 

since (fn[A1;...;An],(fn/f)a)f,(fi[A1;...;An],(fn/f)a') 

where Z'=Z U {f} 

9./ 
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9. P=(.([f;fnl[A1;....;A11,s 

By LIH R((fn[A;An],(1J[f;fn]/f')a),A) so 

P-ZP' _> p`=(jJ[f;fnj[A1;...;An.a`)->(fri[A1;..;,-],(([ ;r)O 
sinco (fnrA.:_1! -l/-P).l_ (.fn 
where Z'=Z U {.f'} 

fl[;; .nJ'.cc / 

Q.E - D. 

4.7.4 Corolla:-r , 

If p, p' E <term> and there existsZ <identiaier> such that pip 

then p>A <_> p':>A. 

Proof 

By lemma 4.7.3 and symmetry of 

4.7.5 Proposition 

Let fn E <function>,a,a' E <alist> then if ;hero exists Z <identifier> 

such that: 

and 

vs(fn) S Z (vs is defined in 4.7.1) 

v z 

and V z 

E Z,a(z)=a'(z) 

E Z.vs(a(z)) C z 

1 

Then [fnj([aj)=[fnj([a' ). 

I 

Proof/ 
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Proof 

By corollary 4.7.4 for all A1,,..,An E <S-expression>: 

(fn[A1;...;An],a)*>A <=> (fn[A1;...;Ani,a')A>A 

hence [fn]([al)(A1,,..,An)=[fn}([a' )(A,,,,,,An) 

and so (by corollary 4.3.4) fn]([a])=[fn]([a']). 

4.8 A semantic en.a vsis of the LISP eval function 

In this section I shall examine the relation holding between values 

computed by the manual interpreter and denotations assigned by gay 

semantics. I am going to interpret the N-.expra ss defining apply, 

eval,...ete. via the semantic equations in 3.14 - as mentioned earlier 

this denotational interpretation is not necessarily the same as the 

one implementers have taken, That one I have tried to capture 1n->, 

In my discussion of v[el,w[fn] in 3.10 I pointed out the problem of 

accommodating simultaneous recursions as used to define apply°,eval,,,eto, 

That problem raises its head here too, but using my improved onviron 

meats I can get over it in the sane way that actual implementations 

do. I shall define a special alist :ant (for y'interproter") which 

contains the definitions of apply,eval,evcon,evlis and other 'system 

functions/ 
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functions', then the denotations of apply,eval...etc. will be 

[apply] ([int] ), [eval] ([int])...etc. Here is the definition of int; 

this should be compared with the definition of the interpreter given 

in the Manual. 

4.8.1 Definition 

Let int=( app'lyfn/apply) (evalfn/eval) (evconfn/evcon) (oc'livfn,a'ovlis) 

(caarfn/caar) (cdarfn/cdar) (caadrfn/cads) (caddrfn,/c,.c &"i) cadarfn/eL, 

(nullfn/null) (equalfrn/equal) (pairlisff;/pairlie) (aassocf /assoc)N':LL. 

where 

4.8.1.1 

applvfn=X [[fn;x;a]; 

[atom[fn]-" [eq[fn;CAR]-caar[x]; 

eq[fn;CDR]-cdar[x]; 

eq[fn; CONS]--a cons[car[x]; cadr[x]]; 

eq[fn;ATOM]-3 atom[car[x]]; 

eq[fn;EQ1-4 eq[car[x];cadr[x]]; 

T --T apply[eval[fn;a];x;a]]; 

eq[car[fn];LAT4BDA] eval[caddr[fn];pairlis[cadr[fn];x;a]]; 

eq[car[fn];LADEL] applyy[caddr[fn];x;cons[cons[ca> r[fn_J; 

caddr[fn]];a]]]] 

4.8.1.2 



ovalfn=X[[e;a]; 

[atom[e] cdr[assoc[e;a]]; 

atom[car[e]]--P [eq[ca.-[e];QUOTI]--* cadr[e]; 

eq[car[e];COJ.FD] evcon[cdr[o];a] 

T 'v apply [car[e];cvlis[dr[e];;];s-;]; 

.evconfn= 

4.801.4 

T.i apply[car[e];eviis[cdr[e];a];a]]] 

X [ [c; al ; 

[eval[caar[c];a 

T 

eval[cadar[e];a]; 

-evcon[cdr[c];a]]] 

evlisfn=.X [[m;a]; 

- cons [eval[car[et];a];evli_s[cdr[m];s,]]]] 

ca rfn= \[[x];car[car[x]]1 

4.8.1.6 

cdarfn= a [ [x] ; cdr[car[x] ] ] 

.4.8P1.7 

[null[m]->NIL; 
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n.-8.1. 

cadrfn= X [[x];car.[cdr[x]]] 

4.8.1.8 

caddrfn= a [[x];car[cdr[cdr[x]]]] 

4.8.1. 

cadarfn= X [[x];car[cdr[car[x]]]] 

4.8.1.10 

nullfn= X [[x]; [atorri[x] eq[x;NI.L];T- F]] 

4.8.1.11 

equalfn= X [ [x; y] ; [atom[x]- [atom[ y]--' eq [x; f] ; T- F] ; 

atom[y]- [atom[x]- eq[x;Y];T-°' F]; 

equal[car[x];cs.r[y]]- equal[cdr[x];cdr[y]]; 

T-'F]] 

Remark: The definition of equal given in the Manual does not agree 

with the infoiinal description of it if x=(1), r--1 (see 2.2.3). 

4.8.1.12 
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4.8.1.12 

pairlisfn= X [[x;y;a];[null[x]- a; 

T -cons[cons[car[x];car[y]]; 

pairlis[cdr[x];cdr[y];a]]]] 

4.8.1.11 

assocfn= X [[x;a]; [equal[caar[a];x]-+ car[a];T°- assoc[x;cdr[a.]]]] 

The functions apply,eval,eveon,evlis,caar,cdar,cadr,caddr,cadar,null, 

equal,pairlis,assoc are all in Z [S*_>S] and are defined ba].o t, 

context will distinguish these from the identifiers they are bound to 

on [int]. 

4.8.2 Definition 

apply=apply]([int])=[applyfn]([int]) 

eval=[eval]([int]) =[evalfn]([int]) 

evcon [evcon]([intl)=[evconfn]([int]) 

evlis=[evlis]([int])=[evlisfn]([int]) 

caar=[caar]([int]) =[caarfn]([int]) 

cda:=[cdar] ([i.nt]) =[cdarfn] ([int] ) 

cadr=[cadr]([int]) =[cadrfn]([int]) 

caddr=[caddrg([int])=[caddrfnl,([int]) 

cadar=--[radar] ([int] )=[cadarfn] ([int] ) 

null= null]([Ant]) =[nullfn]([i.r_t]) 

equal=[equal] (lint f )=[equalfn] ([int] ) 

pairlis=[pairlis] RRnt] )=[pairiisfrl] ([int ] 

assoc=[assoc]([int])=[assocf_`n]([int]) 
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In order to formulate precisely what it means for the semantic 

equations and manual interpreter to be in harmony I shall extend the 

translation of M-expressions ito S-expressions given in the Manual 

to include alists. For the rest of this section (4.8) 1 want to 

restrict the range of the meta variables e, fn, a, p to exclude terms 

containing 
t 

these variables: 

To achieve this here is a 'local' definition of 

e ::= A x fn[e1;...;en] 
I 

lei 1M' e12;..c;en1-. 
fn ::= F l f 

I 
X [[x,;...;x ];ej Label[f;fn] 

m 

a ::= NIL I (A/x)a I (fn/f)a 

p ::=AI(e,a) 

4.8.3 Definition 

en2] 

The translations e*,fn*,a* of e,fn,a are defined by structural 

induction by: 

e*: 

A*=(QUOTE A) 

x*=X 

fn[e1;...;en] =(fn.* e1...e*) 

[e11_. e12;..s;en1en2]*=(COA1D 
(e11 

e12)...(en1 a ).) 

fns':/ 
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fn*: 

oar*=CAR 

edr*=CDR 

cono*=CONS 

atom.*'=ItTOIT 

eq*=EQ 

[[x1;..0;xm];e]*=(L.NBDA (x*...x**) a*) 

Label[f;fn]* =(LIA33EL f* fn*) 

a*: 

NIL*=NIL 

((A/z)a)*=((z*.A).a*) 

((fn/z)a) =((z*.fn*).a*) 

The following questions can now be asked: 

1. Does apply(fn*,(Al...An),a*)=lfn}([a])(A1,...,An) ? 

2. Does eval(e*,a)=[e](a]) ? 

Unfortunately the answer to both these is "no", however they only fail 
in a rather trivial way which is illustrated by the following example: 

example: lot e=z, a=(fn/z)NIL 

Then eval(e',a*)=eval(Z,((Z,fn*))) 

=fn* 

but 
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but [eI([al) =[z1([aj) 

=[a](z)[a) 
I S 

=[fn}([aI) I S 

=1 

To bar such monsters one Just needs to separate the x 's from the f1s 

i.e. to say that if an identifier is used to name a function then it 

cannot be used as a form variable in the same program, Given this 

the two questions above got affirmative answers. To make this 

precise here is a definition, 

4.8.4 Definition 

Call (e,a) nice if 

(formvs(e) 1) formvs(a)) U (funvs(e) 1) funvs(a))=O 

where: formvs(e)=fz Iz is a form variable in e} 

formvs(a)={zI a(z) E <form>} 

funvs(e)={z Iz is a function variable in e} 

fluzvs(a)={z I a(z) E <function>} 

4 8.5 Theorem 

(1) For all fn,e,a,A1,...,An 

apply(fn*,(A1...An),a') 2 [fn}([aJ)(A1,,,.,An) 

eval(e*,a*) [e)(1a)). 

(2) 
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(2) For all fn,e,a,A1,e..,An such that (e,a) and (tn[A1,..,;;A ],a) 

are nice: 

apply(fn*,(A1...An),a*)=[fn1([a1)(A1,... 

eval(e*,a*)=EeJ([a,]) 

Proof 

The theorem is the conjunction of propositions 4.8.10 and 4.813 be:Low. 

Q.E.D. 

The next lemma lists some elementary properties of 'system functionrle 

First a definition. 

4.8.6 Definition 

Define def, list E [S*'->S] by: 

1, def( )=T, def(t1,...,tn)= 

1. if i. ti= 

T otherwise 

2. list( )-NIL, list(t1,...,tn)=cons(tlcons(t2,fl..con ,.AIL)... 
n 

Remark: def(list(A,,...,An))=T if Ai E <S-expression> 

also def(t)= 1 and list(L)= 1 

Finally notice that def(t1,...,tn)=Q x1...xn:S.T)(t1,.,;;n) 

4.8.7 Lemma 

Just for this lemma let fn,x,a,e,c,m range over S.Then: 

408.7.1 
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apply(fn,x,a)-(def(x,a) (atora(fn)-' (eq(fn,CAit)- caar(x), 

eq(fn, CAP,)--), cdar(x), 

eq(fn,COr`rS)-+ cons (car(x),cadr(x)), 

eq(fn,ATOM)- atom(car(x)), 

eq(fn,BQ)- eq(caar(x),cadr(x)) 

T -i apply(eval(fn,a),:x,a)). 

eq (car(fn) , LANBDA) -i evai (caddr(fn) , pairli.: ( 

cadr(fr.),x,a)), 

eq(car(fn),T,_BEL)-. apply(caddr(7 n),x,cons( 

cons (cadr(xn),cA 3..r 

4,8.7.2 

eval(e,a)=(def(a)--(atom(e)- cdr(assoc(e,a)), 

atom(car(e))-. (eq(car(e),QUOTE)-+ cadr(e), 

eq(car(6),CONB)- evcon(cdr(e),a), 

T 
.'+apply(car(e),evljs 

cdr(e),a), 

T- apply(car(e),evlis(cclr(e),a),a))) 

4.8. 

evcon(c,a)=(eval(ca .r(c),a) eval(cadar(c),a), 

T evcon(cdr(c),a)) 

)), 

4 8 .4 
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4.8.2.4 

evlis(m,,a)=(null (rx)-+ wij,, 

T -cons(eval(car(m),a),eviis(edr(m),a))) 

4.8. . 

caar(x)-car(car(x)) 

4.8. .6 

cdar(x)=odr(car(x)) 

4.8. .3 

cadr(x)=car(cdr(x)) 

4.8.7.8 

caddr(x)=car(cdr(car(x))) 

4.8. . 

cadar(x)=car(cdr(car(x))) 

4.8. .10 

F 
1 x-- 1 

null(x)= T x=NIL 

F otherwise 

4.8.7.11 
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I x=1 or Y=1 

equal(x,Y)= T z,.y c. <S-expression> and r--.y 

F x,y E <S-expression> and xxy 

4.8. .12 

pairlis((A1...Am),(A;...An),a)= 
((A1.A1)...((Am.Al).a)...) if m<n 

-- otherwis 

( x.Am) if X m and 'i<m. 
assoc(X,((X1.A1)...(Xn.An)))= 

I if bi. yk 

Proof 

4.8.7.1 - 4.8.7.13 are all straightforward to prove.. I shall just do 

4.8.7.1 as an example. 

Suppose FN,X,A E <S-expression> then if r--(Fd/fn)`X/x)(A/a)[intJ then.- 

(1)/ 
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(1) apply(RT,X,A)=a ,p1 yfn] (lintl) ( r,X, A) 

=(atom(Fi'r)._, (eq(FN,CAR)-4 [Oaarj(r)(X), 

eq(FN,CDR)- [cdar](r)(X), 

cdar [cdar](irit)=[cdar](r) 

cads=[cadr](int)=[cadr.](r) 

apply=[applv.l(int)=[applyjj(r) 

eval4evalI(int)=!eva1I,(T) 

caddr=[caddr](int)=[caddr](r) 

pAirlis=[pairlis](int)=[pairlis](r) 

eq(17N,CONS)- can,(car(X)Q cadr](r)(X)), 

eq(FN,ATOM)atom(car(X)), 

oq(3+w,Ea)-+ eq(ca.r(.X)Jcadr](r)(X)), 

T -'8iL tT')l BV$l A),X,A) 

eq(car(FN),LAtiBDA)-+ [eval](r)([caddy](r).IFN), pair°lia (.r) 

([cadr-](r)(F'i+1,%,A)), 

eq(car(FN),L BEL) figply] (y) (caddx°] (r) (l'Td),1,, 

cons(cons(lcadr] (r) (F:?) , Icaddr] (x) (t:r') ),,+:) ! 1 

(2) Also apply(t1,t2,t3)=-L if t1=_L or 4- =J- or t3=1 (by corcllaiy 43,4) 
Now by proposition 4.7.5 (with Z=tapply,eval,a-%rcon,evlis,caa.r,edax, 

cadr,caddy,cadar,null,equa3,pairl s,asaoc.}) 

We have caar=[caar](int)=[caar](r) 

Then by (1) , (2) and atorn(J-)= 1 we have 4.8.701 

All the other parts of .43.7 are similar or easier. 

n,E.D D. 

i 
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I shall now prove some lemmas which, takon together, imply. Theorem 

4.8.5. (I recommend that you read them only if you think. that 

Theorem is false.) 

4.8.8 

Proof 

emma 

4.8.8.1 

a(z)=A => cdr(assoc(z*,a*))=a(z) 

4.8.8.2 

a(z)=fn => cdr(assoc(z*,a*))=a(z)* 

4.8.8. 

((A1/x1)...(Am/xm)a)*=pair3is((x*...x*),(A104.An),a*) if m<n 

4.8.8.4 

evlis((e1...en),a')=list(eva.l(e1,a.'),...,eval(en,a*)) 

evcon({(e11e12)°°°(enlen..2)),a')=(eval(ey1a )" evol(eI-,a*), 

.o.,eval(e*1, j r oval (e'ra?"a*)) 
Yl 

4.8.8.1 
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4.8.8.1 

If a(z)=A then a iscf the form: 

(v1/z1)..(vn/zn)(A/ )a° (where V i.z4zi an 

vi E <S-expression> U <function>, at E <alist>) 

and so if v* are the S-expressiot translations of vi 

.v*),...,cons((zr.A),al*)...)) a'=cons((z1.v)),cons((z*2 
2 

=> asaoc( z*,a*)=(z*.A) 

_> ddr(assoc(z*,a*))=A;=a(z) 

4.8.8.2 

If a(z)=fn then a is of the form: 

(v1/z1)...(vn/zn)(fn/z)al (where V i.z zi and 

vi E <S-expression> v <function>, a' E <alist>) 

and so if i are the S-expressions translations of vi 

a*=cons((zj.v)),cons((z*. 2),.,.,cons((z*.fn*),a°*)...)) 

=> assoc(z*,a*)=(z*.fn*) 

=> cdr(assoc(z*,a'*))=fn*=a(z) 

4.8.8.. 

((a1/x1)...(Am/xm)a)* ((x,A1)...((x*,Am).a*)...) 
m 

=pairlis((x*...x*),(A1.eAm...An),a*) 

4.8.8.4 
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4.8 8.4 Induction on n: 

n=0: evlis(NIL,a*)=NIL 1I0t() 

n>O: assume true for r -1 then: 

evli((e.en)ba')=eons(evil(e,a'),evl.is((e2e..en 

=cone(oval(e,a ),1iot(;va1(e2 xi 

(by induction) 

=11.st(evat(±fa')foee,E9iv1(cr.,.`)) 

4.8.E3, Induction on. n: 

n-1: evcon(((e1e12)),a*)=(eval(e, a*)- eval(e12,*),T-* erccn(NIL,a*)) 

eval(e1'a*) evva(O1'2, T-+ i. .) 

. =(eval(o a*)- eval(e*.,,a*)) 
11 1 

n>1: assume true for n-1 then: 

evcon(((e11e.i2)...(en1e* )),a*) 

=(e,val(e1,a#)_.eval(e2fa*)f 

T evcon(((e`ie22),.(e* 
ni n2 e* )),a*)) 

=(eva1(e1a*)-- e-;a1(e12,a*)f 

T - (eval(e21,a*) eval(e22fa)f...,. 

eval.(e* ,a*)-+ oval{e ,a ))) n1 n2 

=(eval(e 'a" )-+ eval(e fag),..., 1. 2 

eva1(e*1 ,a'*).. eva1(e* 
n 

rig,aY)) 

Q.E. D. 

4.8.9/ 
F 
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4.8.9 Lemma 

(fn[A1;...;An],a) >Q,z> app1y(1On*,(A1...An),a*)=A. 

(e, t)A>A => eval(e*,a*)-,A. 

Proof 

I use LISP-induction. The lemma may be put in the form: 

pt>A => R(p,A) 

by defining: 

R(p:A) <=> if p=.(fn[A1;...;An],a)t>A then 

appl.y(fn*,(A1,...,An),a*)-A 

and if p=(o,a)1>A then eva1(e*,a*'):Tz1. 

BASE: 

R(A,A) is vacuouslytrue. 

INDUCTION: 

Assume LIH and p=(e,a)A>A 

I show R(p,A) by cases on p (see lemma 4.4.5). 

1. p=(A,a) 

Then R(p,A) <=> eval(A*,a*)=A 

but eval(A*,a*')=eval((QUOTE A),a*)=A (by 4.8.7.2) 

2./ 
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2. p=(x,a) and x) =:A 

Then R(p,A) <=> evai(x-X-,a.-)=A 

but eval(x*,a*)=cdr- (assoc(x*,a*) )=A (by 4.8.7.2 and 4.8,M) ) 

3. p=(F[A1;...,An],a) and F(A,.,,,.,An)=A 

Then R(p,A) <=> apply(F*, (A1 .-..An) ,a*)=A and eval((Fm .A ...A*),a*)=A 

Now apply ( ",(A1.e.A21),a*)=A (by 4.8.7.1, F(A1,...,An),._L and 

.F E car, cdr, cons , atom, eq } ) 

and eval((F* AT...AP,a*) ;sapp1y(F'*,evlis((A-xi y 4,8.7,2.) 

=apply(F*,iist(evfil(A*,a*),....,eva1(A 

(by 4.8.8.4) 

=apply(F* (A.,.. An), a*) (as eva.l(A' , a )=eva?,((:LriJT . A 

=A 

4. p=(fn-[e1; ...;e11],a) and t/ i . (ei ,a) >Ai and. 2 mem4A 

Then R(p,A) <=> eval((fn* e_*...e*),a*)=A 

Now by LIH Vi.R((ei,a),Ai) and R((fn[A1,...--A ],a),A) 

so Vi_.eva1(e ,a*)=Ai and 

apply(fn*, (A1 , . ,Arl) ,a*).--A 

hence eval((fn* e^,..e*),a*)=ap?y(fn*, evlis((e`.a.o'),a*),a1`) 
1 n 1 n 

=apply(fn*, (A1 ...Aa(by 4.88...4) 

=A. 

5./ 



-123- 

5. P=([e11-' e12;...1en1- 
en2],a) 

and 
(era1,a)I>T 

and V i<m(ei1 
Then R(p,A) <=> eva?.((CoN]} (e11e12)...(enlen2)),a')=A 
Now by LIH R((O \li<m. R((ei1,a),F) and R((e a),A) m2 
so eval(e eval(e l,s*)_ and eval(e 2,a*)=A 

hence eval((COND 
(e71e12)°`(e* e* ))sa*) ni n2 

=evcon(((e11e12)...(o to*9)),a*) (by' 4.8.7,2) 

=(eval(el,a*)- ev 1(e12a eva evai(s* n2' 
(by 4.88.5) 

=eval(o*2,a*) 

=A. 

To simplify the last three cases notice that if R(p,A) <=> apply(fn*, 

(A1..eAn),a,*)=A 

and eval((f'n* ALe.A. ),a*)= 
then since eval((fn* A,...n),a*)-aPP1Y(fn*,'vlis((A'...:%'),19a" 

is 

=aPPlY(fn*,(A1...An),a*) (b: ° 4.8.8.4 and 

oval (A ,a*)z!e 4, 

? a 
it follows that: 

R(p,A) <=> apply(fn*,(A1..An),a*)=A 

I use this remark in 6, 7, and 8 below. 

6./ 
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6. p=(f[A1;...;An],a) and a(f)=fn then R(p,A) <=> apply(f*,(A1...An), 

Now by LIIi R((fn[A1 ;... ;An],&,4 so apply(fn*, (A1. .Ar),a)=A 
and hence apply(f'*,(A1...A),a*) 

=apply(eval(f*,a*),(A1,..An),a*) (by 4.8.7.1) 

apply(cdr(asooc(f*,a*)),(A1...An),&'x) (by 4.87.2) 
apply(fn*,(A1...AA),a*) (by 4.8.6.2) 

=A 

7. p=(X [[x1;...;xm];e][A1;...;An]a) and m<n 

Then R(p,A) <=> apply((LuIBDA ( ... il) e .), (.. .....Y:), ,*)=A 

Now by LTH R((e,(A1/x1)...(Am/zz)a),A) so 

eval(e*,((A1/x1)...(Am/xm)a)*)-A 

and hence apply((LAMBDA (x? ...x**) e'*),(A1...Aa),a*) 

=eval(e*,pairlis((xt...xm),(A1...An),a*)) (by 4.8.7.1) 

_eval(e*,((A1/x1)...(Am/xm)a)*) (by 4.8.8.3) 

-A 

8. p=(Label[f;fn][A1;...;An],a) 

Then R(p,A) <=> apply((LABEL f* fn*),(A1...An),a*)-A 

Now by LIII R((fn[A1;...;An],(fn/f)a),A) so 

apply(fn*, (A1.,.n), ((fn/f)a)*),A 

and hence apply((MBET, f* fn*),(A1...An),a*) 

p:app1y(fn*, (A1...An), ((x*.fn*).a*)) (by 4.8.7.1) 

-app. (fn*,(A1...An),((fn/f)a)'`) 

-A 

Q.E.D. 

4.8.10/ 
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4.8.10 Praposition 

apply(fn*,(A1..,An),a*) [fn)([aj)(A1,.,., n) 

eval(e*,a*) [e]([a]) 

Proof 

Since S=flat(<S-.expression>) if t1,t2 E S then t1 E t2 <=> t1= or 

t1=t2. 

Now by the Main Theorem if [fn](Uaj)(A1,.,,,An)5.j I and [ej(Uaj)I.J_ 

then (fn[A1;...;An],a)9>1fnj([aj)(A1,..,,An) and (e,a) >[ej(a]) so 

by 4.8.9 apply(fn*,(A1,,,An),a*)=[fnj([a])(A1m..An) 

eval(e*,a*)=[ej(aj) 

hence the result. 

Q.E.D. 

Remark: Proposition 4.8.10 means: 

[fnj(faj)(A1,...,An) 1 

[> a1jly(fn*,(A1...An),a )=[fnj([aJ)(A 1,.i.,:tt) 

[ej(aj)# J => eval(e*,a*)=[ej([aj) 

Thus if denotations are defined then they can be computed 

with the manual interpreter. 

I would have liked the next lemma to have been that if 
(fn[rA1;...;An],a) 

and were nice then: 

(apply 
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(apply[fn*;(A1...An);a*],int),t>A => [fn]( al)(A1 ..® An)= 

(eval[e*;a*],int) >A => [e]([aJ1O=A.A.0 

Unfortunately, though true, this is not in a form which enables a 

direct proof by LISP-induction to go through. To en b e me to get 

it into a suitable form I make a definition. 

4.8.11 Definition 

If a, a' E <alist> then their concatenation a,a' is defined by 

structural induction by: 

NIL. a'=a' 

((A/z).a).a'=(A/z)(a.a') 

((fn/z).a).a'=(fn/z).(a.a') 

Remark: ((v1/z1)...( z1/zn)).((vn1/zril-1)...(vm/znt)) 

=(v1/z1)...(vn/zn)(v+1Jzn1)...(vm/zm) 

Call an a E <alist> safe if: 

when Z={apply,eval,evcon,evlis,caar,odar,cadr,caddr,caaar,null,equal 

pairlis,assoc{ 

V Z E Z.a(z)=1 

Then by corollary 4.7.4 (with Z as above) if at is safe then: 

(apply'/ 
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(app1y[fi;(A1c,..An);a*],int)zt>A 

<=> (apply[fn*;(A1...An);a*],a'.int)X>A 

(eval[e*;a*],int) >A 

<=> (eval[e*;a*],a'.int)A>A 

Thus the desired lemma mentioned above is equivalent to lemma 4.8.12 
below which admits a mechanical LISP induction proof, unfortunately 

this proof, though utterly straightfore;ard, is particularly long and 

tedious - I advise readers to omit it (the lemma is not all that 

important anyway.1). 

4.8.12 Lemma 

If (fn[A1;...;An],a) and (e,a) are nice and at is safe theno 

(apply[fns;(A1...An);a'''],a'.int) >A => [fnJ(;aj)(A1,.,.,Ar)=A 

(eval[e*;a*],a'.int) >A => [e](Jaf)=A 

Proof 

The lemma has the form: 

pA>A => R(p,A) 

If R is defined by: 

R(p,A)/ 
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R(p,A) <=> if p=(epply[fnn*;(.A1...An);aa*],a'.int)2>A 

(where at is safe) then [fnnJ(EaaJ)(A1,...,An)--A 

and if p=(evai[ee*;aa*],at.int) >A 

(where at is safe) then [eej([aaj):=A 

(I use "fnn", "eel' and "art here to avoid confusion 'with the names of 

the formal parameters of apply and eval -- sea 4.8.1.1 and 4.8.1.2.) 

Before doing the LISP-indnction I shall got a horrid calculation out 

of the way by proving a sublemma, I recommend readers to .. ut, mpt to 

intuit this r ier than to follow the obvious, but messy, proof. 

4.8.12.1 Sublemma 

If p=(evlis[(e1...e*);aa*],a'.int) where a' is safe then there 

exist safe at,...,an such that: 

V i.(eval[e ;aa*],a!.int)<*p 

(2): If p=(evcon[((e11 e12)(en1 en2));aa*],at.irt)L>A, for some .1, 

where a' is safe, then there exist safe a,!1,...,a'1,al, such that: 

V i<m.(eval[e* ;aa*],a! .int)' >P and (eval[e* ;L`, .{1;u',.4", ]pa'.i'1t ii 1 11 i1 

(eval[e* ;aa*'],a' .int) >T and (eval[e* ;aa*1.a* ,lint)<*r' 
m1 m1 m1 r, 

(eval[e*2;aa*],a' .int)I>A and (eval[e*m2;aa*],am2.int)<*p 

Proof 

(1):/ 
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M: 
Let a1=((e*...en)/m)(aa*/a)a' clearly at is safe as a' is, now: 

P=(evlis[ (e* ...ep2);aa*],a' .int) 
t>(cons [eval[car[rn];a];evlis[cdr[m.];a]],aint) (by 4.8.1. 

I now do induction on the length n of (e1 .,.e*). 

n=1: 

Then (eval[e*;aa*'],ai.int)<*(eval[car[m];a]gc,il,int)<#p 

(since (eval[car[m.];a],a..int)->(eval[e';aa*],a,.3nnt) ) 

n>1: Assume (1) true for (nQ-1). 

Then (evlis[(e2...e*);aa*'],at.int)<*(evlis[cdr[rn];a],ai.i,nt)<*A 

hence result by induction. 

(2): 

Let a' =(((e11e2)...(enlen2))/c)(aa*/a)al 
11 

a' is, 

then a' 
11 

is clearly safe as 

Now: 

p=(evcon[((e11e12).,.(en1en2));aa*],at.int) 

-t> ([evai [caar[c];a]- eval[cadar[c];a]; 

T -+evcon[cdr[c];a]]>a11int) (by 4.8.1.3) 

I now do induction on the length n of ((e1e12)(enlen2)) 

n=1:/ 
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If it is not the case that 

(eval[caar[c];a ],a11 .int)IL>T 

then it is clearly not possible for pA>A but we assumed this so we must 

in fact have (eval[ca,.ar[c];a],a11 eint)zt>T. 

Thus as (eval[caar[c];a],all.int)->(eval[e*1;aa*],a11.int) 

we must have 

(eval[e11;aa*],a11.int)1>T, and 

(eval[e* ;aa*],a' .int)<*(eval[caar[c];a],a .int)<*p 
11 11 11 

and as (eval[cedar[c];s.],a1l.inv)->(eval[e12;ea*],a1l.int) 

we must also have 

(eval[e*G;aa*],a11.int)A>A (as pl>A), and 

(eval[e12;aa*],a11.int)<*p 

so taking ail=a11 renders (2) true. 

n>1: Assume (2) true for (n-1). 

If (eval[caar[c];a] , a11,int)1>T then proceed as above in the 'In 1" 

case, otherwise for per;'">A we must have. (eval[caar[cj;a],all.int). >F 

and then 

p*/ 



-131- 

p*>(eval[caar[c],aJfYi1i.int)->(eva1[o*j;aa*1,a' int)k>F 

and 

p*>(evcon[cdr[c];a],a11.int) 

->('evcon[((e21e22)...(en1a* ));aa*],a11.int) , 

and using induction (2) then follows 

Q.E. D. 

Now I can get on with the LISP-induction. Note that if p is not of 

the form (apply[fnn;(A1...An);aa*],a'.int) or (eval[ee*;aa*],rt1.iznt) 

(where a' is safe) then R(p,A) is vacuously true - this cbsprve -11. oil 

copes with the base of the LISP-induction. 

BASE: 

R(A,A) is vacuously true. 

INDUCTION: 

Assume LIII and p=(e,a)1>A where p is of one of the forms mentioned 

above. I show R(p,A) by cases on p. 

1. p=(apply[fnn*;(A1...An);aa*],a'.int) 

Then R(p,A) <=> [fnnj([aaj)(A1,...,An)=A 

Let a"=(fnn*/fn)((A1...An)/x)(aa*/a)a' then as a' is safe so is a". I 

show R(p,A) by considerin the various possible cases for p. 

1.1. fnr_=F and F(A1,...,An)=A. 

Then clearly [fnnj([aaj)(A1,...,An)=.A. 

1.2./ 
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1.2. fnn=f 

Then by the niceness assumption aa(f)=fn' for some fn'. Now 

p*>(apply[eval-;a];x;a],a,int) 

->(apply[fnt*; (A1...An);a *],a.int) 
(since [evalFY;a]]([a".intf)-fnt*so by the Main Theorem 

Hence by LIH R((apply[fn'*;(A1...An);aa*],a".int),A) so [fntj(jasj)(A1,.n., 

and thus 

[fnnj([aaj)(A1,...,An)=[aaj(f)([ j) !F (A1,...,An} 

=[fn'1([aaf)(A1,,,.,An) 

=A 

1.3. fnn= X [[x1;...;xm];ee] 

Then p*>(eval[caddr[fn];pairlis[cadr[fn];x;a]],a`.int) 

Now [caddr[fn]1([a".intji)=ee* 

[pairlis[cadr[fn];x;a]]([a".intl)=pairlis(cadr(fnn*),(A1...An),aa*) 

=pairlis((x...x )1(A1...A) as ) 

as we are assuming pA>A it follows (from [p1/ 1. and the Main Theorem) 

that pairlis((x*...x*),(A1,,,An),aa*) 1 and hence m<n. Also, by 4.8.8.3, 

[pairlis[cadr[fn];x;a]J([at.int])=((A1/x1)...(Am/xm)aa)* 

Thus 

p/ 
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pk>(oval[cadr[fn];pairlis[cadr[fn];x;a]],a'.int) 

->(eval[eo*;((A1/x1)...(Am/xm)aa)*],at'.int) 

AM 

Hence by.LIH [ee]([(A1/x1)...(Am/xm)aa])=A. 

But then: 

[fnn](Eaaa])(A1,...,An) 

=(Lt1...tm.[ee]((t1/R1)...(tm/xm)[aa]))(A1,...,An) 

=[ee]((A1/x1)...(Am/xm)[aa]) (as is<n) 

=[eel([(A1/x1)...( m/xm)aa]) 
-A. 

1.4. fnn=Label[f;fn'] 

Then p*'>(apply[caddr[fn];x;cons[cons[cadr[fn];caddr[fn]]xa]],a"',int) 

->(apply[fn"*; (A1...A 1); ((fn'/f)aa)*],an.int) 

Hence by LIH [fn'j([(fn'/f)aa])(A1,...,An)=A 

But then [fnn]([aa])(A1,O.,An) 

=[fn'](([fn']/f)[aa])(A1,...,An) 

=[fn'](['n'/f)aa]) (A1 ,...,An) 

2./ 
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2. p=(eval[ee*;a*],a'.int) 

ThenR'(p,A) <=> Jee]([a1)=A. 

Let a"-(ee*/e)(aa*/a)a° ® clearly as a' is safe so is a". I show 

R(p,A) by considering the various possible cases for ae. 

2.1. eo--A'. 

Then p *AI so A --A' and hence [eej(([aJ)=A. 

2.2. ee=x, 

Then by the niceness assumption aa(x)=A' (some A') and 

p>(cdr[aassoc[e;a]],a".int)t>A' so A'=A and jeeI ([a.aj )-.A.. 

2.3. ee=fnn[e1;.e.;en] 

Then p*>(apply[car[e];evlis[cdr[e];a];a],a".int) 

Now by sublemma 4.8.12.1 (1) there are safe a;,...,a'n' 

such that for each i; 

(eval[et;aa*'],a .int)<*(evlis[(e?...e*);aa*],a".int) 

<*(evlis[cdr[e];a],a".int) 

<*p 

Hence by LIH V i.[eiI([aa1)-eval(eI,aa*) L (as p.>AA 1 ) so: 

pA>(apply[fnn*;(oval(e*,as*)...eval(en,aa#));aa*],a".int) (by 

Main Theorem an,! 4.8:48.4) 

Hence 
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Hence by LIH: 

[fnnl(iaal)(eval(e*,aa*),...,eva1(eT,aa*))=A 

but then: 

[fnn[e1;...;en]]([aa1) 

=[fnnJ([aal)([el}([aa1),9..,[en1([aa])) 

=Efnnl([aa])(eval(e*,aa*),...,eval(en,aa#)) 

=A. 

2.4. ee=[e11-' o12;;en1-4 en2] 

Then p*'>(evcon[cdr[e];a],at4.int) 

_>(evcon[((e11e12)...(e*1en2));aa*],a".int) 

.>A 

id So by sublemma 4.8.12.1 (2) there is an m and safe such that: 

Vi<m. p*>(eval[eil;aa'],ai1.int)-t>F 

p*>(eval[eml;aa*],aml.int)IL>T 

p'>(eval[em2;aa*],a .int)A>A 

Hence by LIH 

Vi/ 
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V i<my[e.i1([aal)=F 

[em11([aal)=T 

lei 2 aaI)-A 

so [eeJ([aaf)=( e11 (aal)-- 
[e 

12]([aal),...,[en1)([ 

_A 

Q.E.D. 

4.8.13 Proposition 

For all fn,e,A1,...,An such that (fn[A1;...;Aa],a) and (e,a) are nice.4 

apply(fn*,(Al...An),a*)=[fn1(a1)(A1,...,An) 

eval(e*,a*)=[el([a]) 

Proof 

Taking at=NIL in lemma 4.8.12 yields (via the Main Theorem) 

apply(fn*,(A1...An),a*) c [fnj([aI)(A1,...,An) 

eval(e*,a*) S [e]([a]) 

The result follows from this and proposition 4.8.10. 

Q.E.D. 

Combining proposition 4.8.10 and proposition 4.8.13 yields theorem 4.8.5. 
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5. PROOF OF THE MAIN KIBORK4 

5.1 Outline of the essential idea 

The essitial idea underlying my proof of the Main Theorem is derived 

from Christopher Wadsworth's work on Scott's semantics of the 

X-calculus [25] (however I do not need the full power of Wadsworth's 

technique and I suspect and hope that a simpler proof is possible). 

Very roughly the theorem is first proved for a class of 'finite' 
programs and then extended to all programs by a limiting argument. 

In view of lemr.,a 4.5.1 I only need to prove that np] A. -> p*A, z v t 
that this is not in a form suitable for LISP-induction. The main 

steps in the proof are: 

L1.1 

I extend the languages LISP and kLIST to larger languages ELISP and 

EALIST. This is done by allowing functions to have indices attached 

to them, the idea being that a function with an index n can only be 

called recursively to depth n - if more than n recursive calls are 

attempted the result is undefined. Functions with finite in'lces 

should be thought of as 'finite' approximations to the correspo.di:i; 

ones with infinite indices. I extend the semantics of 3.14 to ELTW, 

and LIST in a way harmonious with (but not identical to) the above 

intuition and I also extend so that indices are manipulated 

correctly in reductions. 

5Q1.2 
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I define a relation < on the expressions of EIISP and EALIST. 

e' <e will moan (reugii ±y') that e is a LISP form and e' is got from 

e by adding indices at various places, similarly for e0<&, p'<p 

will mean that either p=p'--A or p=(e,a), pl=(er,a') and a <e,a'<a,. 

Thus p' <p means p' is a 'finite' approximation to p. 

..1 

I will then prove five lemmas - these should be plausible given the 

above intuitions - they are: 

5.1.3.1 [Pl=p pb ' 1 

5.1.3.2 pf <p => p' terminates (i.e. there is a p" such that 

p'J>p" and for no pill, p"->pnr 

T. 1.3.3 (P' <p,p">p ",p"/A" and for no prr r .does'p"-.>prr r) => jp r ]w 

5.1.3.4 pl>A => [P]=A 

5.1.3.5 p' <p. p' l>A => p;>A. 

5._1 .4 

From the lermas of 5.1.3 above Ep]=A => p1>A can be proved as follows: 

5.1. 
If [p]=A then by.3.1 A=[p9=pWP P' and so as S is flat A= p' for 

s' x rr III rr rr r , " 
some p' <p. By 

X 
3.2 p'">p where for no p does p >p ; if p.r1.'. 

f or/ 
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C.). 
for any All then byx3. 3 A= [p' I= .l which is impossible (A ranges over 

C.I. 
<S-expression> not over S) hence p1twA" for some All and so by 3.4 

At1=[p'j=A. Thus we have p'<p,ps&>A and so byA3.5 p.>A. 

A 

Q.E.D. 

Before I can convert this outline into a rigorous argrLmeiit I have to 

say something about the intended solution of Env-Id->[EEnv->D] - this 

knowledge is necessary in order to give a precise meaning to the 

indices. In the next section 7 shall describe and motivate enough 

of the properties of this solution to enable the proof cf the Main 

Theorem to be carried out. The full construction of Div occurs ti. 

chapter 6. Until this construction is done one cannot krow for sure 

that the properties I want Env to have are consistent; for this reason 

doing it is necessary. 

5.2 Further sx?ecification of Env 

I want now to appeal to your operational intuition to motivate some 

axioms I am going to require Env to satisfy, these axioms are given 

in 5.2.1 below - if you get fed up with the-waffle that follows skip 

to that section. 

In order to do the semantics of ELISP and EALIST I need to say what 

"indexed" functions denote. If film is fn indexed by m>O then I want: 

[fnj/ 
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if thi3 can be 
1 n , evaluated' with 

[frj(r)(A1,...,An)= function calls to depth 
m or less. 

1 otherwise. 

Since [fxi01(r) cannot do any looking-up in r (because looking-up 

functions is calling them) we would expect: [fn0II (r)=[ riI (-L) (at 
..n'(Eey 

} least if fn has no free form ble:). j:.l.so ix .=1' j/,f1) ... fns /f 
then we would expect [fn 

n,+1 
I (r)(([fn.m}/f ) ... ([fn ]/f') ) since if 

m+1 needs to call one of the fn' (1 <i<s) then this uses up one of fn 

fnm+1's(m+1) calls and so there is only depth m left for fns". l'b r 

if we define r0= - , and for r=Ufn1 }/f1) ... ([fns)/fs) we define 

rm+1_(fnm f1)...( fnffiJ/fs) then the remarks above can be expre s;d. 

V m>0.Efnm](r)=[fn](rm) 

I now shift my attention from indexed functions to indexed environments 

and derive four properties of these: for the first one 

Let r-4fn1 J/f1)... ([fns}/fs) 

r'=(jgn1j/f1)...([gnsl/fs) 

Then rm+1(f)(r°)-fnm]{r') (by definition of rm+1) 

-Ifn'i (rl) (by remafrks thove) 

=r(fi)(rm) (by definition of r) 

This 
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This suggests that it would be reasonable to require that: 

(1) Vr,Z,r. rmF1(z)(rt)=r(Z)(r ) 

For the second property observe that it seems reasonable from the 

intended meaning of fnm that: 

[fn0l 7- [fn1I c ... c [fnmI F- ... [fnl 

hence from the definition of r 
m 

: 

(2) 1=r0r rIc ...C rm - ... S r 

Thirdly notice that if [fn}(r)(A1,...,A,) is defined then there is some 

maximum depth m of function calls done in its evaluation so that 

[fnl(r)(A1,...,An)=[fnm1(r)(A1,...,An) 

and hence by considering all possible computations it seems reasonable 

that 

[fn]= kfnmI 

and so 

(3) r=J rffi 

Finally we would expect that [(fnm)m]=[fnml and hence 

(4) (rm) m=rBl 

The intuitions which I have just exploited to derive (1)-(4) are not 

captured/ 
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captured by the equation Env_Id->[Env->D]; extra axioms are needed 

to build them in and these I now state. 

5.2.1 Axioms 

An alist model is a semi-domain Env together with, for n>O, mappings 

r F-> rn E [Env-»>Eriv ] such that: 

(Env1) Env[Id-->[Env->D] 1 ( S+[ as in 3.14) 

(Env2) 1=r 
0 C r 1 .. e rn ... r 

(Env3) r_- n r 
(Env4) (rn)n=rn 
(Env5) rn+1(z)(r1)=r(z)(rn) 

Remark: If Env is an alist model. then by Env1 there exist semi.-domain 

[Id4Y>[Env--0>z?] > v£ isomorphisms f: Env->[Id->[E`nv->D]], g: 

I adopt the convention of identifying *across' f and g so 

that for r,r' E Env r(z)(r') really :eats f(r)(z)(r') etc. 

How fully do these axioms specify alist models? I shall show that if 
Env' , Env" are alist models then there are semi-domain isomorphisms 

between them which preserve not only directed limits bait a'ls) the 

application and indexing structure postulated in 5.2.1. This there i 
really only one alL3t mode. aid so requiring Env to be that renders my 

semantics completely unambiguous, in 5.2.2.2 below the kind. of 

isomorphism/ 
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isomorphism, up to which alist models are unique, is defined. 

Readers not interested in this uniqueness (which is not used 's-21 the 

proof of the Main Theorem) should skip to definition 5.2.6. 

5.2.2 Definition 

5.2.2.1 

If Env', Env" are alist models and f: Env'->Env" then f is an 

homomorphism <=> (1) f is continuous 

(2) c/r,r' E Env'. Vz E Id.f(x)(zXf(r'), r(z)(r') 

(3) Vr' E Env'. V n>O.f(rn)=f(r')n 

x.2.2.2 

Alist models Env', Env" are isomorphic <=> there exist homomorphisns 

f: Env'®>Env", g: Env"->Env' which are inverse to each other (i.e. 

f0 IEnv" ' g'.f IEnv f) . 

.2,2. 

Let EnvO -Lj 

Envrj4 i = [ I d-> [ Envn ->D1 

5.2.3 Lez na 

If Env is an alist model then for each n>0 {r E EnvI r=rns is a 

sub semidomain of Env and there exist semi-domain isomorphisms 

f n :/ 
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f : Envri > { r E P.nv I r=r } 

gn : { r E Env I r=rn 
} ->Envn 

inverse to each other and such that d z E Id: 

(1) E Envn+1 V r' E Envn. fn+1(r)(z)(fn(x°))=r(z)(r) 

(2) 
IV r 

E 
{r Ir=rn+1}. V r' E ir'I r=rn{° g +1(r)(z)(gn(r'))°'(z)(r') 

Proof 

Define f21: Envrj > r 
I 

r=rn} 

gn: {rI r-r n}->Envn 

by f0(r)-`l , fn+1(r)= \z-.1d. \ r': Env.r(z)(gn(rn)) 

go(r)-..L gn+1(r)= Xz:Id. Xr': Envn.r(z)(fn(r')) 

fn(r) is indeed a member of {r I r=rn} since (f0(r))0= aL 
0= 

.l =f0(r) 

and for n>0 

(fn+1(r))n+1~ x Z. Xr'. fn+1(r)n+1(z)(r') (by extensionality) 

A z. X r'. fn+1(r)(z)(rn) (by Envy) 

Xz. X r'. r(z)(gn(rI )) (by definition of f1:+1) 

= X z. X r'. r(z)(gn(rn)) (by Env4) 

`f'n+1(r) 
(by* defii ition of fn+1 j 

I now show, by induction on n, that: V r E 

and V r E Envn. gn(fn(r) )=r. 

{r I r==rn}. ( (r))=r 

n=0:/ 
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n=0: r=r0 => r= 1 => f0(g0(r))= I =r 

r E Envn => r= J. => g0(f0(r))= 1 =r 

n>O: Assume fn_1(gn_1(r))=r, g,-1 (fn-1(y))=r then: 

fn(;n(r))= X z. X r?. fi(gn(r))(z)(x°) (by extensionality) 

= X z. X'r:'. gn(r)(z)(;n_1(rn-1)) (by dat'initYrsa of 

= Xz. Xr'. r(z)(fnwl(gri_1(r'n_1))) (by defin 'i.or 

= X z. X r'. r(z)(r'_1) (by induction) 

= X. Xr'. rn(z)(r') (by Envy) 

=r n 
(by extensionality) 

so if r=rn then fn(gn(r))=rrj=x . Also we have: 

gn(fn(r))= Xz. X r'. gn(fn(r))(z)(r') (by extension .lity) 

= X z. X r'. 
nf 

(r)(z)(fn_1(r')) (by definition of g3 

Xz. Xr'. r(z)(gn_1(fn-1(r')n_1)) (by defirk, :ion of fn, 

= Xz. Xr'. r(z) (gn_1(fn_1(r'))) (as fn-1 (ri ) rv- I=fn-1 

= X z. X r'. r(z)(r') (by induction) 

=r 

Thus fngn are isomorphisms inverse to each other. To check (1) we 

have 

fn+1(r)(z)(fn(r'))=r(z)(gn(fn(r')n))=r(z)(gn(fn(r')))=r(z)(r') 

to check (2): gnu-1(r)(z)(gn(2"'))=r(z)(fn(-n(r')))=r(z)(r') 

Q.E.D. 

5.2.4/ 
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5.2.4 Proposition 

If Env', Env" are Mist models then they are isomorphic (in the sa se 

of 5.2.2.2). 

Proof 

By the previous lemma: 

{ r' E Env' I r' =rn}2 Envn"' { r" E Env" 
I 

r"=rn} 

Let f' : Env -> { r' E Env' 
I 
r'=r' 1, fit: Env -> { r" E Env" I r"=r" 

} n n n n n n 

fir': {fit E 1J"' 
I 

JG°'=rt }_> n 4 g' {:c" E Env91 0=W olf i_>Etly 
n n n n n 

be the i so.norphisms defined in the proofs of the previous lemma. 

Define f : Env' -> Fnv" 

g: Env"-> E nv' 

by f(r')- 1 fn(gn(rn)) 

g(r")=n fn(gn(rn)) 

I claim f,g are isomorphisms. To see that they are well defined 

observe that 

fn+1(g, (r, 1))_ \z. Ay.''" 
n+1 n+ 

fit t 
+1 1 

gn+1(rn+1)()(grn' d"if>zitioz: Of f I 
71 

n n+ n-r 

r' (2)(f°(gt1(r"))) (defini.ion of g' ) 
n.+1 n r, n 

t'(z)(fn( ri(rn))) (by 1v5 and Env r 

and similarly f` (g" (r" ))= X z. X r'. r"(z)(f"(gn(rn))) 
n+1 n+1 n+1 

so/ 
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so by a quick induction on n we have 

=f"(gI(r'')) = f(g 
1 
'(r')) E ... E f"(g'(r')) E ...f(r') 1) 

0 0 0 1 n n n 

J-=f'(g"(r")) E f'(g"(r°)) c ... E f'(g"(r")) c 
...g(r°°) (2) 

0 0 0 1 1 1 n n n 

and so the U's defining f,g are over directed sets and hence are 

defined. 

To show that f,g are inverses we have 

f(g(r"))=f(LJ fn(gn(rn))) 

_ t, W fit(g,((fn'(gn(rn")))m)) 

=l, fn(gn((fn(gn(rn)))n)) (by (1), (2) above,i.e. cofinality) 

= n fn(gn(fA(gn(rn)))) (as fn(r')n fn (r')) 

.i fn(gn(rn) (as gn(fn(r'))=r' ) 

Li r" (as 
n 

fn(gn(rn))=rn) 

=rII (by Env3) 

and by symmetry g(f(r'))=r'. 

To show f is a homomorphism we have: 

f(r)(z)(f(r')}- f" 1(gn+1(rn+1))(z)(fn(gn(rn))) (by (1) above - 
i e 

gn+1(rn+1(z)(gn(rn)) 

rn+1 (z) (rn) 

=r(z)(r') 

(by lemma 5.2.3) 

(by lemma 5.2.3) 

(by Eiiv5,Env4 and iv3) 

and/ 
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and also f(r0)= 1 =f(r)y and if d r'. f(r')=f(r£)n 

then: f(rn+1)(z)(f(r'))=rn+1(z)(r') 

=r(z)(r') 

=f(r)(z)(f(rn)) 

=f(r)(z)(f(r')n) 

(by the last calculation) 

(by Envv5) 

(by the last calculation) 

(by assumption) 

=f(r)n+1(z)(f(r`)) (by Envy) 

so by induction on n and the fact that f is onto (r"=f(g(r"))) 

V n. f(rn)=f(r)n 

Thus f is a homomorphism and so, by symmetry, is g also, hence 

Env', Env" are isomorphic. 

Q.E.D. 

In view of this proposition it makes sense to talk about inv as the 

alist model. 

The next proposition shows that to semi-domain which satisfies 

Env='h.v->[Env->D] contains an alist model as a sub semi-domain, thus 

alist models are (sort of) minimal solutions of E v=Id->[Env->D] 

since minimal solutions of recursion equations are the ones wanted 

this provides another reason why alist models are appropriate. It 

also shows that to prove Env1 Envy are consistent I only have to 

prove that (Envi) is. 

5.2.5/ 
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5.2.5 Pra_osition 

Let Env= [Id-> [Env_>D} ] then Env contains a sub semi-domain which 

is an alist model. 

Proof 

For r e Env let r0=1 

rn+1 X z. %r'. r(z)(xn) 

r0,-[ 1 r n = X z. X r'. r(z)(r,,1) 

Env,= {r 
+ r=ro } 

Then I claim that Env,, is a sub semi-domain of D'nv sat ifying (Env1)- 

(EnvS). It is a sub semi-domain of Env since J...= X Z. X r'. j_ (z)(xC ) 

and if {11 i c Env is directed then (U r1) r--- !;S r1 (as 

i.rl=rte) so i1 ri E L'trla 

Env1: 

To check (Ennv1)-(Env5) is straightforward- 

Note that (Iml rm)n= J EJ rnm= [n] rte= [J rn=rr so that 
n 

if f: [Id_> [Env->D] ]->Lnv,, is defined by 
W 

f(r)-( X z. Xr'. r(z)(r'')), 

then f(r)(z)(r')=( X z. X r'. r(z)(r ).) , (z)(r') 

=( X z. X r'. x(z)(rm))(z)(r;) 

=r(z) (r 

=r(z)(rr) 

and 
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and hence the mappings 

Xr: E >[Id_.>[nvw->D]] 

f : [Id->[EnvCO->D]]->Env 

are isonu rphisms. 

Env2: 

By definition -L=r0, clearly r0E r1. Assume: rn E 
rn+1 

then 

r-+1= 
X z. X r'. r(z)(rn) (by definition of rn+1) 

C X z. X rF. r(z)(rn+1) (by assumption) 

=r 
n+2 (by definition of rn+2) 

hence by induction on n 1=r0 E r1 c ... `= rn E ... r 

Env3: 

r E Envro => r=r. = I1 J rn 

Env4: 

X z. X r'® rn+1(z)(rn) r00= 1 =r0' (rn+1n+i= 

= Xz. Xr°. r(z)(r' an 

hence by induction on n: V n. (rn)n=rn 

Env5: 

rn+1 
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rn+1(z)(r')=r(z)(rn) by the definition of rn+1' 

Certain simple properties of alist models are needed for the proof of 

the Main Theorem, the next proposition collects them together. 

5.2.6 Definition 

For r E Env let r,, =r and for 0<n< Q , v E [Env->D] define vn e [Env->?D] 

by: 

vn X r. v(rn) 

Remark: for 0<n<co vn(r)=v(rn) and also v,, 

5.2.7 Proposition 

If r E Env, z E Id, v E [Env->D] and 0< n,m <00 then: 

5.2.7.1 r1(z)=r(z)n 

5.2.7.2 ((v/z)r)n+1-(vn/z)rn+1 

5.2.7.3 (v/z) r= In1 (vn/z) rn+1 

5.2.7.4 (t in [Env->D])n (t in [Env->D]) (for t e 3) 

5.2.7.5 (rn)m=rmin{n,m} 

Proof 



-152- 

Proof 

Trivial if n= c or m= ao (if a = co +1= co -1) so suppose OC n,.-,i 

rn+1(z)(r')=r(z)(rn) (by Env5) 

r(z)n(r') (by definition 5.2.6) 

so rn+1(z)=r(z)n. 

5.2.1.2 

((v/z)r)n+1(z')= X r', ((v/z)r)n+1(z')(r') (by extensionality) 

_ X r'. ((v/z)r)(z')(rn) (by Env5) 

= X r'. ((v/z)r)(z`)n(r') (by 5.2.6) 

= ((v/z)r)(z')n 

=(vn/z)rn+1(Z') 

(by extenUionaiity) 

if z=1. or z'=1 

if z=z' L (by 3.11.3) 

otherwise 

(by 3.11.3 and 5.2.7.1) 

5.2.7. 

(vn/`')rn+i- n 
m 

(vm/z)rn (as (vm/z)rn is monotonic in m,n) 

=(L vm/z) t rn 

=([j vm/z)r (by Env3) 

=(v/z)r (as !I vm= X r. (t 1 vm)r= X r. I v(rm) 

_-)r r. v( irm) 

.. X r.. v(r) 

) 
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.2. .4 

(t in [Env->D]) n(r)=(t in [Env->ii])(, ) 

_(X r. t in D) (rn) 

=(t in D) 

=(t in [Erin-->D]) (x') 

.2.7. 

I do induction on n,m. 

If n=0 or m=O then rni J =r0yrmin{n,m) 
If n>O, m>0 and r(n-1 )(m1)" min n®1 then 

rnm= X z. X r' . r. (z) (r' ) (by extensionality) 
X z. X r'. rn(z)(r_1) (by Env5) 

Xz. Xr'. r(z)(rm--1)(n-1)) (by Enr5) 

= Xz. Xr'. r(z)(rrin{(ni-1),(rA-1)}) (by induction) 

X z. X r'. r(z)(rin{n,m}_1) 

= Xz. Xr'. 

`rmin{n,m} 

r mxnn,m{(z)(r') 

(as Min {(mm1),(n-) wmi:i{n,rn} ) 

(by Env5) 

(by extensionality) 

Q.E.D. 

5.3 Extended LISP (ELISP) and extender. AI,°-;T F4L:FST 

I am now going to extend LISP and ALIST to bigger languages ELISP 

and FAUST, these bigger languages contain the smaller ones and on 

these 
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these [.,,J and -> are the same as before. To avoid running out of 

symbols I am going to extend the metavariabl o conventions to range 

over expressions from ELISP and EALIST - in what follows the sets 
<form>, <function> and <alist> are bigger than they were pre i ears 1y 

The new metavariable conventions are: 

variable rarIZe 

A <S-expression> (as in 37615 above) 

x,f,z <identifier> (as in 3.7.15 aboir:) 

e <form> (as in 5.3.1 below) 

fn <function> (as in 5.3.1 belo°.) 

P <standard function> (i.em r,c r9 cons atom,c 

t S (where S-flat(<S-expression> 

r Env (as in 5.3.1 below/ 

v 

a 

P 

[Env->D] (as in 5.3.1 below) 

<alist> (as in 5.3.2 belor) 

<term> (as defined by p a;=- A (e,a)) 

w <bound exp> (as in 5.3.2 below) 

The expressions of ELISP and EALIST are like those of LISP and ALIST 

except that they can contain indices at various points. The purpose 

of these indices is to finitise programs by converting 'circles' or 

'knots' which could lead to unending computations into 'spirals' which, 

as one traverses them, eventually 'wind down' to J This remark is 

designed/ 
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designed to demystify some of the definitions and results which follow 

if it does not do this ignore it: 

5.3.1 ELISP 

Syntax 

e ::= A i x fn[e1;...;en] 
[e11--' e12;.e*;en1-+ en2I 

fn ::- F, f I X [[x1 ;...;xn];e] j Lahelm[f;fn] 
i I [f;fn] (U:.°n< 00) 

Semantics 

Denotations: Ik=S+FUTN 

S=flat(<S-expression>) 

FUN=[S*-->S] 

Environments: Env an a list model (as in 5.2.1) 

Semantic functions: e.->[eJ: <form>->[ Env->S] 

fni-> [fn] : <function>-> [Env->FUN] 

Semantic equations: 

(S1) [Ai(r)-A 

(S2) xl(r)=r(x)I S 

(S3) ffn[e1;...;enill(r)=Ifr](r)(le1l(r)....vfen)(r)) 

(S4)[[ei11- e12;...;en1tl' en2]1(r)=([e111(r)- [e12l(r),...sFen1l( 

(SW 
2= 

x 
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(S5) [car](r)car(t) 
[cdr](r)= t.cdr(t) 

[cons](r) =t1t2.cons(t1 

atom] (r) =Xt.atom(t) 

[eq](r) =t1t2.ecl(I,t2) 
(s6) [f] (r)=r(f) (r) ! PUN 

(S7) o C+ 5 f I X [[x1;...;xn];e]](r) .t :$, [&1((t1f x1)oo. t /xn) n 

(S8) [Labelm[f;fn]](')= rn m(( fig]%f')r) (wee ncta 1 be+_ow) 

(s9) m[f;fn]](r)- ICI (v:[Env>]. +a r,ar,'aa] 

Or/f -Q Z) 

(see note 2 below) 

Notes 

Ncde 1 : If m<& then [fn]m= X r. [fn] (rm) (cf. definition 5.2.6) if 
m=cO I define [fn];,, =[fn] 

Thus Label [f;fn] denotes in ELISP the same as Label[f;i'n. doca 

in LISP. 

Note 2: Notice that the meaning of / [f;fn] in ELISP is the same is 

the meaning of / [f;fn] in LISP and that.- 

(S10) {m[f3fn]](r)- 
l[fn](1/ 

m-1 

if r0 
[f;fn]]ff)r) if m>0 

In view of these notes an expression of ELISP in which all the indices 

are 00 can be identified with an expression of LISP. Thus ELISP 

'contains' LISP and I make the notational conventions that: 

Labe]J 
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00 
Label [f;fn]=Label[f;fn] 

µ [f; fn]= P [f; fn] 

Notice that Note 1 above and conventions 3.11.4 imply thatz 

([fm]m in [F3nv->D] )= ([fnl in [Env >D] )m 

5.3.2 EALIST 

S,Tntax 

a ::= NIL I (w/z)a 

t ::- A I fnm 11 (a<m<cx ) 

Remark: I may omit writing NIL in alists e.g. (A/x)(fnnIf) means 

(A/x)(fnm/f)NIL. 

Semantics 

Semantic functions: a->[a1:'<alist>->Env 

wO[v] : <bound exp>-> [Env-> D] 

Semantic equations: 

(AS1) [NILJ= 1 

(AS2°4) [(w/z) aj-([wjf") aj 

(AS2) [A]-(A in [Env->D]) 

(AS3) [fn m]=([fnjm in [Env->D] ) 

(AS4) III _ 1 [Env >D] 

Remark 
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Remark: The funny numbering of these equations is designed so that it 

is in harmony with that of the semantic equations in 4.2. 

Each expression of AbIST corresponds to an expression of FALIST with 

infinite indices (though not vice, versa), hence I shall. use (fn/z) to 

mean (fns,/z) and thus regard ALIST as a subset of MIST, 

Notice that in view of definition 3.11.3 `Y' ia. [aI 41.)= -L 

5.4 The extension of -> to ,ISP and FA:i 

In order to simplifyr extending -> to deal with terms (e a) where 

e E <form> (of ELISP) and a E <alist> (of FIST) I ma's't; some 

definitions. 

5.4.1 Definition 

If a E <alist>, z E <identifier> define a(z) E <bound exp> by: 

NIL(z)= 1 

((w/z')a)(z)= if z=z' then w else a(z) 

This definition makes sense in view of the following lemma. 

5.4.2 Lemma 

[a}J(,)=[a(z)] 

Proof 

Structural/ 
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Structural induction on a: 

[NIL](z)= 1 =[NIL(z)]. Assume result for a then: 

[(wf z' )aj (z)==((Iwj/z') [aj) (z) and z' L by the definition of <alist> 
=if z= -L then 

=if z=z' then 

=if z=z' then 

I. elseif z=z' then FT] else [a] (z) 

(by definition 3.11 ,3) 

bTI else la1a(z) (since V a[aj( )= - and 

Iwl else [a(z)] (by induction) 

4if z=z' then w else a(z) J 

=[((w/z')a)(z)j 

z 

Q.E.D. 

The following definition is designed to make lemma 5.4.4 (belor) true. 

5.4.3 Definition 

For w E <bound exp>, 0<n<Co define wn <bound ezp> by: 

0<n< : A -A 
-° n 

(fn m)n =fnmin{m,n) 

1=1 
n 

n=r : we--w 

5.4.4 Lemma 

EwnI=1w1n 

Proof 
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Proof 

0<n< 00 : [An]=[A]= (A in [Pnv_>D]) (by .x.52 of 5.3.2) 

_ X r. (A in D) 

=(X r. (A. in D) )n (by definition 5.2.6) 

=[A] n 

[(fn 
M)n ]=[fn min{n, m1 ] 

([f11]man{n,ni 
i 

in [Env >D]) (by AS3 of 5.3.2) 

-([fn] in [Env_>D])inZn,m} 

=( [fn" j in [ 'nv_>D]) (by definition 5.2.6 and 5-2-7-5) 

=([f'n] in [I av->D] ) 

=EfnmIn 

1-L]=[L1= -L = -L=111 

n= co : [ wj=[w]=[w]ay 

Q.E.D. 

The next definition is designed to make lemma 5.4.6 (below) true. 

5.4.5 Definition 

For a E <alist>, 0<n< O.' define an E <alist> by: 

n=0: NIL0=NIL 

((w/z)a)0=(1 /z) ao 

0<n« : NIL =NIL - n 

((w/z)a)n=(wn-1/z)an 

5.4.6/ 
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5.4.6 Lemma 

[anj=[a]n 

Proof 

n=O: 
[a01= 1 =[a] 0 (by definition 5.4.5 and a quick structural 

induction on a) 

0 <n< 9tt : I do structural induction on a. 

[NIL n]=[NIL]= J- = -L =[NIL] 

[((w/z)a)nj=[(wn-1/z)an] 

=(twn-1]/z)[an] 

=([w},,-1/z) [aln 

=(([wj/z)[a])n 

=[(w/z)aj, n 

(by definition 5.4.5) 

(by definition 5.4,5) 

(by A32-4 of 5.3,2) 

(by 5.4.4 and inductiono) 

(by 5.2-7.2) 

(by AS2-4 of 5.3.2) 

Q.E.D. 

Here now is the extended definition of ->. 

5.4.7 Definition 

Define ->, I> by: 

P1/ 
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P1 (A,a)->A 

P2 a(x)=A 

(x, a,)->A 

P3 F(I ,...,An)=.k 

(F[A1';...;An1,a)->A 

P4 Vi.(ei,a) :>Ai and 3 mx.e!A 

(fn[e1;...;en],a)->(fn[A1;...;An]9a) 

P5 (em1,a) 
>T and Vi<m.(e.,a)'a> 

([e11- e12;.o.;en1-" en2],a)->(e a) 

P6 a(f)=fnm 

(f[Al;...;An],a)->(fn[A1;...;An],am) 

P7 m<n 

(X [[x1;...;xm];e][Al;.oc;'n]9a)->(a,(A1/x1)...(A C .i )a) 

P8 (Labelm[f;fn][A1;...;An],a)->(fn[A1;...,An], ((fr./f)o-.;n:) 

1 m ° ) . _ " 
P9 ( [f9fn][A19...:A]9a)->(fn[A1,w..;A J,(µ f;f"i]I Ia) n .) 

L: t 

P10 1->2_>..._>P 
n 

(1<n) 

ki I>Pn 

I hope it is clear that definition 5.4.7 reduces to definition 4.2.2 

if all the expressions are from LISP and ALIST (i,e. have infinite 

indices). LISP-induction extends to the near -> painlessly. Define 

<* as in definition 4.4.1, but u;,ing -> as defined in 5.4.7. If 

>, 4> are defined as in definition 4,,4'-P but u ing the new extended 

P1,P2,P3,P6,P79P8, of 5.4.7 (instead of those of 4.2.2) then the 

proof 
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proof of 4.4.3 goes through. Thus LISP-induction is valid, I shall 

now use it to prove the following lemma which generalises 4.5.1 and 

says that -> is a sound conversion rule. First let the range, 

,<term>, of the metavariable p be given by: 

p `_ A I (e,a) 

and for p E <term> define [p] E S by: 

[a]=A 

[,(e,a)}=[el([a') 

5.4.8 Lemma 

pI>A => [P]=A 

Proof 

Same as proof of lemma 4.5.1 except replace 6, 8 and 9 of that proof 

by 6', 8' and 9' below: 

6'.p=(f[A1;...;An],a) and a(f)=fnm 

Then by LTH R((fn[A1;...;An],am),A) [fn]([am])(A...,A11)=A 

so/ 
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so [p]=[f]([a])(A1,...,An) 

=Ea](f)([a]) 11'<UN(A1,...,An) 

=[a(f)](ja]) iFUN(A1,...,An) (by lemma 5.462) 

=([fn]m in [.Rnv->D])([a])I MI (A1,...,A) (by AS3 of 543.2) 

=[fn]([aM ])(A1,...,An) (by 3.11.4 and 5.4.6) 

-A 

8'. p=(Labelm[f;fn][A1;...;An],a) 

Then by LII-T R((fn[A1;...;An],((fn/f)a)m),A) 

i.e. [fn]([((fn/f)a)m])(A1,...,An)-A 

so [p,]=[Labelm[f;fn]]([a])(A1,...,An) 

=[fnjm(([fn]/f)[a])(A1,...,An) (by 38 of 5.3.1) 

=[fn](R(fn/f)a]m)(A1,...,An) (by Note 1 of 5.3.1) 

=Jfn]([((f-n/f)a)m])(A1,...,An) (by lemma 5.4.6) 

=A 

9'. p=(m+1 [f;fn][A1;...;An],a) 

Then by LII R((fn[A1;...;An],(µm[f;fn]/f)a),A) 

i.e. [fn]([( 
)-m[f;fn]/f])(A1,.II..,An)=A 

so Ep1=E Jm+1[f;fn]](Ea])(A1,...,An) 

=[fn](([m[f;fn]]/f)[a])(A1,...,A (by S10 of Note 2 of 

=[fn]([(IUI" [f;fn]/f)a])(A1,...,A (by AS2.-4 of 5.3.2) 

-A 

Q.E.D. 

Examination/ 
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Examination of the proof of this lemma shows that in fact it 

essentially proves the stronger result: 

5.4.9 p->p' "`> IP1-Ep' 1 

I need to use this fact in proving leimna 5.9.2 b-1:)Tir. I will not 

prove 5.4.9 here as it is utterly straightforwaru to ver. 5fy it by 

direct calculation (one just considers the ve.rir,as cases of p; 5,4.8 

is needed when p is an application or condit.icnal) - the details 

occur in the proof of 5.4.8. It would be possible to generalize 

LISP-induction so that the proof of 5.4.8 would (more or loos) 

constitute a proof of 5.4.9. I have not done this beca a I cannot 

see how to do it so that the generalized LISP-induction is not messy 

and ad hoc looking. I am not happy about this situation - I feel 

that the essence of "induction on the size of con utatibn" has not 

been adequately captured in LISP-induction, but I cannot put my 

finger on exactly what is needed. There is something lurking arou-n 

here which I need to understand and it has escaped capture so far. 

5.5 Approxir .nts and the relation 

For e', e E <form>, a', a E <alist> I an going to define what it means 

for e' <e and a' <a. Roughly e' <e, a' <a means that e' , a' are 'finite' 
approximants to e, a respectively. Here is the precise 1efinitior4 

5.5.1/ 
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5.5.1 Definition 

Define e'<e,fn'<fn,a'<a and p'<p by: 

5.1.1 on <f os> 

5.5.1.1.1 A<A 

5.5.1.1.2 x<x 

5.5.1.1.3 fn'<fr_,el<e,...,e'<e 

fn'[e,;.2.;en]<fn[e1;...;e ] 
n 

5.5.1.1.4 e, <011'e12<e12'...eI 
<Ini, en2<en2 ii ni 

[e11- e12;...;en1- 6n2]<[e11-'e12;...;en1° en2] 

5.5.1.2 on <function> 

5.5.1.2.1 F<F 

5.5.1.2.2 f<f 

5.5.1.2.3 

X [Ex1;...;x 

5.5.1.2.4 

e' <e 

;el]< X[[x1;...;xm];e] 

m« , fn' <fn 

Labelm'[f;fr' ]<Tabel[f;fn 

5.5.1.2.5 m<r D , fn' <fn 

} [f;fn']< 1, t[f;fn] 

..1. 
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5.5.1.3 on <alist> 

5.5.1.3.1 NIL<NIL 

5.5.1.3.2 a'<a 

(A/z)a'<(A/z)a 

5.5.1.3.3 a'<a 

(J-/z)d<(A/z)a 

5.5.1.3.4 a'<a,fn'<fn,m< t 
(fn'm/z)a'<(fn/z)a 

5.5.1.3.5 A'-<-a-,-fn is a LISP function (i.e. all indices in fn are t) 
(1/z)a'<(fn/z)a 

5.591.3.6 a'<a,fn'<fn,m< CO 

( m[f;fn']/f)a'<( ,[f;fn]/f)a 

5.5.1.4 on <term> 

5.5.1.4.1 A<A 

5.5.1.4.2 e'<e,a'<a 

(e',a')<(e,a) 

Remarks: (1) Note that the four f's in 5.5.1.3.6'are all the same. 

(2) From 5.5.1.1 and 5.5.1.2 it is clear that e'<e,fn'<fn C..>. 

(2.1) All indices in e,fn are infinite and all indices 

in e',fn' are finite. 

(2.2) e',fn' can be got from e,fn by replacing all 

infinite indices in e,fn by finite ones. 

The/ 
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The next lemma shows that the denotation of an expression is the 

limit of the denotations of its 'finite' approximants. 

5.5.2 Lemma 

5.5.2.1 *e= a ;<e fell 

5.5.2.2 fn= 
fn'- 

<f[fn'I 

5.5.2.3 a=a<a[a'J 

5.5.2.4 P= 
Pw<p 

1p') 

Proof 

Since [fn]= m 0 [fnjm 
[Label[f;fn]1= 4 [Labelm[f;fn]1 and 

[ JJ [f;fn]J= m._,0 [m[f;fn]} 

The result follows by structural induction, the continuity of the 

(denotations of the) expression building operations and the directedness 

of fell e'<e}, {fn'' fn'<fn}, [all a'<a}, Ip') p'<p] (all these being 

straightforward to check). 

Q.E.D. 

5.5.3 Lemma 

a' <a, 0<r< cb => am <a 

Proof 

If/ 
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If m=0 then result follows from 5.5.1.3.1, 5.5.1.3.3 and 5.5.1.3.5. 

If 6<m< co then 
amI 

can be got from a' by reducing some (perhaps none) 

of the subscripts (not superscripts) hence by 5.5.1.3.4 the result 

follows. 

Q.E.D. 

The next lemma shows that if a 'finite' approximant converts to an 

S-expression then so does the term it approximates. 

5.6 Lemma 

p' >A,p'<p => pt>A 

Proof 

Let R(p',A) <=> V p.p'<p => p->A 

Then I need to show that: 

p'1>A => R(p',A) 

I prove this by LISP-induction. 

BASE: 

R(A,A) <=>(V p.A<p => pt>A) <=> AI>A which is true. 

INDUCTION: 

Auwume as ME.* (V p"<(e',a'). p"I>A" => R(p",A")). Let 

p'=(e',a') >A then to show R(p',A) I need to show that (p'<p => p#>A); 

so' 
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so assume p' <p and also e' <e, fn <fn, a' <a etc. - I verify that 

p'±>A by cases on p' 

p'=(A,a') 

Then p=(A,a) so pa>A. 

2. p'=(x,a') and al(x)=A 

3. 

Then p=(x,a) and by 5.5.1.362 a(x)=A so p >k. 

p'=(F[A1;...;An],a') and F(A1,...,An)=A 

Theft p=(F[A1;...;An],a) so p-,>A. 

4. and, V i.(ei,a)->Ai 

Then p=(fn[e1;...;en],a), 

by LIH V i.R((ei,a'),A.) and R((fn'[A;...;nna'),A) 
so V i.(ei,a)A>A- and (fn[A1;...;An],a)A>A 

hence p_>(fn[A,;...;An],a)I>A. 

5. p'=([e11, e12;..,;en1--* e,n2],a'), Vi<m.(ei1,a')a>F and (enl,a',)- >T 

p - - ( [ e 
1 1 ' zil 

N en2]'a)' 

by LIH V i<m.R((eil'a'),F),R((e1,a'),T) and R((e2.,a),A) 

so V i<m,(eil,a)..>F,(en1,a)A>T and (em2,a)A>A 

hence p.->(e m2,a)>A. 

6. p'=(f[A1;-;A nilal) 

There are two cases to consider.. 

6.1 a'(f)=fnI and m<(Y) 
m 

Then p=(f[A.1;...;An],a') and by '5.5.1..3.4 

a(f)=_'n. By LIH R((fn'[A1;...;An]:am),A) 

hence by lemma 5.5.3. 

P/ 
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p->(fn[A1;...;An],a)I>A 

6.2 a'(f)= fA' [f;fn']a /4m[f;fn'], and 'm<00 

Then p-(f[A1;...;A],a') and by 5.5.1.3.6 

a(f)- d[f;fn]. By LIH R(( P m[f;fn'][A1;...;An],a'),A) 

hence p->(p [f';fn] [A1 ; ...;A11],a.)->A. 

7. p'-(X m];e'][A1;...;A1],a') and m<n 

1 Then p( [[x1;.;xm;;ei][A1;...;An],a), 

by LIH R((e',(A1/x1)...(Am/:rm)a'),A) so by 5.5.1.3.2 

P-> (e, (A1/x1)... (AT1/xM )a)t>A. 

8. p'=(Labelm[f;fn'][A1;...;An],a') and m<(X) 

Then p=(Label[f;fn][A1;...;An],a) 

by LIH R((fn'[A1;...;An],((fn`/f)a')m),A) 

so by lemma 5.5.3, 5.5.1.3.4 (if m>O) and 5.5.1.3.5 (if m=0) 

p->(fn[A1;...;An],(fn/f)a)>A. 

9. p,-( 
m+1[f;fn'][A1;...;An],a') 

and m<0 

Then p=(p[f;fn][ ,;...;A11],a) 

by LIH R((fn'[Al;...;A n],(fJY'[f;fn]/f)a'),A) so by 5.5.1.3.6 

p-> (fn[A1 ; ...;A11], (j& [f; f n ]/f)a)1>A. 

Q.E.D. 

5.7 Some Lerminol o.y 

The definitions below confer rigour upon certain phrases which, up to 

now/ 
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now, I have used in an informal and intuitive sense. 

5.7.1 Definition 

If e'<e,fn'<fn,a'<a,p'<p then 

e',fn9a',p' are finite 

e,fn,a,p are in LISP 

e',fn',a',p' are spproximants of e,fn,a,p respectivel 

5.7.2 Definition 

p terrinates <=> there does not exist an infinite sequence p1 
such that p=p1->p2->p3 

>.. 

5.7.3 Definition 

p] (read "p is stuck") <=> p A and for no p' does p->p'. 

pA>p'] <=> pg>p' and p']. 

5.7.4 Lemma 

p terminates <,> p>A or pA>p'] for some A or p'. 

Proof Trivial. Q.E.D. 

5.8 Proof that all finite terms terminate 

The goal of this section is to show that if p is finite then p 

terminates. To do this I shall define the ranks rk(p) E N, of p - I 
had initially hoped to arrange things so that p >p' a.=.> rk.(p)>rk(P1), 

unfortunately! 
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unfortunately this is not quite true, but something similar which is 
good enough, is. I could have altered the definition of -> to 

make p->p' => rk(p);rk(p') however doing that would stop the new .-> 

from being a nice ample extension of the old one. I feel the 

course I'have taken is the lesser of the two evils. The definition 

of rk given below is the first one I came across which had the 
desired properties; there is no uniform intuition which will render 

each clause in its definition meaningful (although thinking of rk(1)') 

as being a bound or. the number of conversions which can be done on p 

might help). It should be intuitively plausible that finite terms 

terminate though. 

5.8.1 Definition 

For e E <form>, fn E <function>, w E <bound exp>,, z E <identifier># 

a E <alist> and p E <term> define rk(e),rk(fn),rk(w,z),rk(a),rk(p) E ?v f of 

by structural induction as follows: 

5.8.1.1 rk(e) 

5.8.1.1.1 rk(A)=O 

5.8.1.1.2 rlc(x)=1 

5.8.1.1.3 rk(fn[e1;...;en])-1+rk(fn)+rk(e1)+...+rk(en) 

) 5.8.1.1.4 rk([e 11a 12;...;e n1a n2 ])=1+rk(e 11 
)+rk(e12)+...+rk(e.)+r:.(e 

r.2 

5.8.1_.2 rk fn)/ 
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5.8.1.2 rk fn 

5.8.1.2.1 

5.8.1.2.2 

5.8.1.2.3 

5.8.1.2.4 

5.8.1.2.5 

rk(F)=0 

rk(f) =1 

rk(X [[x1;...;x ],eD-1+rk(e) 

rk(Labelm[f;fn])=(m+1)(rk(fn)+1) 

rk(m[f;fn])=(m+1)(rk(fn)+1) 

5.8.1.3 rk(w.z) 

5.8.1.3.1 rk(A,z)=O 
rk(fn) 

5.8.1.3.2 rk(fn ,z)= 
m L(m+1)(rk(fn)+i) 

5.8.1.3.3 rk(1 ,Z)=0 

5.8.1.4 rk(a) rk(a)= j.rk(a(z),z) 
z 

5.8.1.5 rk(p) 

5.8.1.5.1 rk(A)=O 

5.8.1.5.2 rk((e,a))=1+rk(e)+rk(a) 

Remark: A binding of the form: 

( pm[f;fn]/f) 

if In is of 

othenti*ise 

same 

arises from conversion on a finite team of the form 

(/ 

oz dl[z; zg 
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( & [f;fn][A1,...;An1,a) and I want it only to make a 

finite contribution to the rank of any alist in which it 

occurs. Bindings of the form 

( tm[f; fn]/g) 

different 

do not arise in this manner and do not need to be treated so 

subtly. This is the reason for 5.8.1.3.2 and why I do not 

define rk(w) and then set rk(a)= .rk(a(z)). 
z 

The following lemma collects together some trivial (but messy") 

consequences of the definition of rk. These are needed to prove that 

finite terms terminate, I suggest that you skip the lemma initially 

and only refer to it when it is invoked later on. 

5.8.2 Lemma 

Suppose fn E <function>, a E <alist> and m E N are finite then: 

5.8.2.1 p finite => rk(p) finite 

)<rk(a)) 5.8.2.2 V z. 0<n< c. rk(an(z),z) < rk(a(z),z) (hence rk(a 
n -' 

5.8.2.3 rk(a)+rk(a') > rk(a,a') 

5.8.2.4 (r+1)(rk(fn)+1)+rk(a) > _rk((fnm/f)a) 

5.8.2.5 a(f)=fnm where fn not of the form [tn[f;frf] 

_> rk(f)+rk(a) > rk(fn)+rk(aa) 

5.8.2.6/ 



-176- 

5.8.2.6 a(f)=: 1u [f:fn] ,0<q<;v ,0< 
n. 

n< - , 

=> rk(a) > rk(fn)+rk((p. "Lrf;f.nl/f)a n) 

5.8.2.7 rk(Labelm[f;fn])+rk(a) > rk(fn)+rk(((fn/f)a)m) 

5.8.2.8 

Proof 

rk( 
I 

m+1 f ;fn])+rk(a) > rk(fn)-t-rkI [ ((J.m[f;fn]/f)a) 

5&8.2.1 

If all indices in p are finite then clearly so is rk(p) 

If p is finite (as defined in 5.7.1) then the only way p, could contain 

infinite indices would be if p=(e,a) and for some z. a(z)= Iu'[z,; f n] 
0.1 

but then by 5.8.1.3.2 this infinite index gets ignored by rk, hence 

rk(p) is finite. 

5.8.2.2 

If n=0 then for all z. a0(z)= 1 so rk(a0(z),z)=O < rk(a(z),z). 

If 00 then if a(z)=A or a(z)=-L then an(z)=a(z) 

so rk(an(z),z)=rk(a(z),z) and, if a(z)=fnm then a n(z)`f 
minfn--l,m 

so rk(an(z),z) < rk(a(z),z). 

.8.2. 

rk(a)+rk(a')= Z rk(a(z),z)+ rk(a' (z'),z') (by 5.8.1.4) 
z 

> -7 rk((a.a')(z),z) (by 4.8.11) 
z 

=rk(a.a1) 

8.2.4 
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5.8.2.4 

rk((fnjf)a)=rk(fnm,f)+ E rk(a(z),z) 

<(m+1)(rk(fn)++1)+ rk(a(z),z) 
z 

(m+1)(rk(fn)+1)+rk(a) 

8.2. 

If a(f)=fnm and a,fn and m are finite and fn 

then rk(f)+rk(a)=1+ Z. rk(a(z),z) 
z 

=1+rk(fnm,f)+ Z rk(a(z),z) 
Zf 

(by 5.8.14) 

(by 5.8.1.3.2) 

(by 5.8.1.4) 

is not of the form kz,[f '. fl, 

(by 5.8.1.2.2sni5,t3'3 ) 

=1+(m+1) (rk(fn)+1)+ I rk(a(z),z) (by 5.8.1.;.2 zf 
>rk(fn)+m(rk(fn)+i)+ tlE rk(a(z),z) 

2rk(fn)+m(rk(fn)+1)+ 
f 

rk(a (z),z) (by 5.8.2.2) 

=rk(fn)+rk(am) 
z,f m 

(consider m=0 and m>O cases separately) 

5.8.2.6 

If a(f)= s[f;fn]n and s,fn,a are finite and s>O then: 

rk(a)=rk( s[f;fn]n,f)+ " rk(a(z),z) (by 5.8.1.4) zf 
"MEf rk(a(z),z) (by 5.8.1.3.2) 

=(s+1)(rk(fn)+1)+ z1rk(a(z),z) (by 5.8.1.2.5) 

>rk(fn)+s(rk(fn)+1)+ 5 rk(an(z),z) (by 5.8.2.2) 
zkf 

Us-1[f;fn]/f)a ) =rk(fn)+rk(( , n 

j 

8.2. 
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5.8.2.7 

If m,fn,a are finite then: 

rk(Labelm[f;fn])+rk(a) 

=(m+1)(rk(fn)+1)+rk(a) (by 5.8.1.2.4) 

>rk(fn)+r,:(rk(fn)+1)+rk(a) 

rk(fn)+rk((fnr1/f )a) if m>0 (by 5.8.2.4) 

rk(fn)+rk (s) if m=0 

>rk(fn)+rk(((fn/f)a)m) (by 5.8.2.2 and definition 5.4.5) 

5.8.2.8 

If m,fn,a are finite then: 

rk(m+1 [f;fn])+rk(a) 

=(m+2)(rk(fn)+1)+rk(a) (by 5.8.1.2.5) 

=rk(fn)+(m+1)(rk(fn)+1)+rk(a) 

>rk(fn)+rk(( &m[f;fn]/f)a) (by 5.8.103.2) 

Q.E,,D. 

An easy corollary of the next lemma is that finite terms terminate. 

5.8.3 Lemna 

If p is finite then: 

p->p' => rk(p)>rk(p' ) 

exce t 
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except when p is of the form: (f[A1;...;An],a) where a.(')-°a j=s[f;f'nj 

and then 

p->p t_>p" => rk(p)>rk(p"). 

Proof 

I consider the various possible cases of p. Assume pm->p' thon s 

be of the form (e,a). 

easel: p=(A,a) 

Then p'=A and rk(p)=1+rk(a)>O=rk(p') 

case2: p=(x,a) and a(x)-=,A 

Then p'--A and rk(p)=1+1+rk(a)>C,--rk(p') 

esse p=(F[A1;...;An],a) and F(A,,...,An)=A 

Then p'=A and rk(p)=1+1+rk(a)>O=rk(A) 

case4: p=(fn[e1;...;en],a), V i.(ei,a') >Ai and e Am 

Then p'=(fn[A1;...;An],a) 

and rk(p)=1+1+rk(fn)+rk(e1)+...+rk(en)+rk(a) 

>1+1+rk(fn)+O+...+O+rk(a) (as rk(em)>O) 

=1+rk(fn[A1;...;An])+xk(a) 

=rk(p') 

case :/ 
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cases. p--([e 1-' e1,;en1-' en2I,a)!(emlpa) 
}T and V i<,.(t?,-i 

'Then p'=(em2'a) and rk(p)=1+1+rk(e11)+...+rk(en2)+rk(A; 

>1+rk(e2)+rk(a) 

=rk(pv) 

case6.1: p=(f[A1;.mnla1]!a)tia(y1-=fn,'m< b and .n r'ot Of form jts[f;fn5] 

Then p'=(fn[A1;...;An],a'Al 
I 

and rk(p)=1+1+rk(f)+rk(a) 

>1+1+rk(fn)+rk(am) (by 5.8.2.5) 

=rk(p,) 

case6.2: p=(f[A1;...;Ani,a),a(f)= rs[f;fn]. and p->p4->p" 

Then pt=( tils[f;fn][A1;...;Ari],am) 

so p"=(fn[A1 ;...;An]! (s 1 [f;fn]/f)a) (if p->-p'->p'" then -,>r,) 

hence rk(p)=1+1+rk(f)+rk(a) 

>1+1+rk(f)+rk(fn)+rk[f;fn]/f)a) Nr 5.8.26 - 

i i firnite azzs p 

>1+1+rk(fn)+rk((ls-1[.f;fn]/f)a) (a. ak(f)w1) 

=rk(p") 

case :/ 
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case : p=( X [[x1;...;xm];e][A1;...;A],a) and r<n 

Then p'=(e,A1/x1)...(Am/xm)a) 

and rk(p)=1+1+1+rk(e)+rk(a) (by 5.8.1.1.3 and 5.8.1.2.3) 

>1+rk(e)+rk(a) 

>1+rk(e)+rk((A1/x1)...(Am/xin)a) (by 5.8.1.4) 

=rk(p') 

case8: p=(Labelm[f;fn][A1;...;An],a) and m.<03 

Then p'=(fn[A1;...;An],((fn/f),a)m) 

so rk(p)=1+1+rk(Labelm[f;fn])+rk(a) 

>1+1+rk(fn)+rk(((fn/f)a)m) (by 5.8.2.7) 

=rk(p') 

case : p=9am+1[f;fn][A1;...;An],a) and m<00 

Then p'=(fn[A1;...;An],( j&m[f;fn]/f)ea) 

so rk(p)=1+1+rk('U.m+1[f9-fn])+rk(a) 

>1+1+rk(fn)+rk((;m[f;'n]f")a) (by 5.8.2.8) 

=rk(p') 

Q.E.D3. 

5.8.4 Lemma 

If p is finite then p terminates. 

Proof 

If/ 



-182- 

If p is finite there so is rk(p) (5.8.2.1) hence by the previous lea m 

there cannot be any infinite sequences: 

p=p 1->p2--> .. . 

Q.E.D. 

5.9 Terms which lead to an error denote 1 

The goal of the section is to prove that if p eventually gets stuck 

then [p]= 1 . If p is stuck (i.e. p] ) then it is in ?, sort of 

'error' state and the action of the 'interpreter' (i.e. ->) is not 

defined; I explained why I model this kind of undefinednoss by 1 in 

3.16. The next lemma shows that 'errors' propagate nicely: 

5.9.1 Lemma 

If fn,a are finite then ffn]([a])(... 1 ...)_ J_ 

Proof 

I do induction on rk(fn)+rk(a) which is finite as fn and a are. 

.rk(fn)+rk(a)=0: 

Then rk(fn)=rk(a)=0 so fn-P, bat by the definitions of the standard 

functions car,cdr,cons,atom,eq if F is one of them then F(... I ...)w.L 

hence [fn]([a])(... J....)-F(... .L ...)_ .L 

rk(fn)+rk(a)>0: 

I consider the various cases of fn: 

casel:/ 
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easel: fn=F; 

Then [fnj([a])(...,1 ..o)=F(... .L ..o)= 1 (as above) 

case2: fn=f 

Then [fJ([a])=[aJ(f)([aJ) I FUN (by S6 of 5.3.1) 

=[a(f)]([' ) i 
FrJ1V (by 5.4.2) 

case2o1: a(f)Ifn' for any fn', then [a(f)j([s])I FUN=,.L 
m 

so [f]([al)(... 1 ...)= 1 

case2.2: a(f)=fn' 

Then [fl([a])(... l ...)=[fnm (a) 
j 

UN(... 1 ...) 
[fn'l([am1)t.oo ...) (by leimna 5.4.:.x) 

case2.2.1: fn' not of the form f"A n[f; fn"] then by 5.8.2.5 

rk(f)+rk(a)>rk(fn')+rk(am) 

J_ ... )= .l so by induction [fn' l ([am1)( ... 

case2.2.2: fn'= 0[f;fn"] 
Then [fn']([am)(... 1...)-[ .°[f;fn"]]([am )t... J ...) 

I 

(as [1 [f; fn"j]= i ) 

case2.2.3: fn'= 
1 

s[f;fn"],0<s< 00 

s gav3 

Then [fn']([am})(.. )t.a..L e..) 

=[fnt°1(([ 
µs- [f;fn"]1,'f)[aal)(... i..r. 

(by Note 2 of 5.3.1) 

=[fn")([t s-1[f;fn"]/fiainJ)(...J....) 

(by A82--4 of 5.3.2) 

= 1. (by 5.8.2.6 and induction) 

case3i/ 
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se : fn= X[[c1;...;xm];e] 

Then [fn]([a])(... 1 ...)=( t1...t.[el((t1/x1)...(tm ) )(... 
1 (by definition of - 3.11.2) 

case4: fn=Labelm[f;fn'],m< 

Then [fnl([al)(... 1 ...)=[fn'jm(([fn'l/f)[a])(... -L...) (by 5.3.1 

=[fn']([(fn'ff)al m)(... 1 ...) (by 5.3.1 

=[fn' l l" [ ((fn'/f)a)m]) (....i....) (bY 5.4. 

=-L (by 5.8.2.7 and induction) 

case : fn= µm[f;fn'],m< fib 

If m=0 then [fnl([al)(... 1 .,.)= 1 (as [fn]= 1 - S9 of 5.3.1) 

If m>O then [fn]([al)(... 1 ...)=[fn'l(([,ttm 1[f;fn']l/f)[al)(... 
(by 5.3.1 Note 2) 

=[fn'j ([(" [f;fn']/f)a]){....L .®.. 

(by AS2-4 of 5.3.2) 

1 (by 5.8.2.8 and induction) 

Q.E.D. 

This lemma enables corollary 4.3.4 to be proved without invoking the Main 

Theorem. A 'limiting' argument is needed - we first prove the result 

for finite terms and then take the limit over all such terms. I'fn,a 

are in LISP then: 

[fn]/ 
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[fn]([a])(... _L ...) 
"fn fn aPla [fn']([a'])(....1....) (bay lemma 5.5.2) 

= -L by previous lemma. 

I can now show that errors denote 1 

5.9.2 Lemma 

If p is finite and pA>p'] then [p1:i 

Proof 

I do induction on rk(p) which is finite as p is 

rk(p)=0: 

Then p=A and clearly there is no p' such that pA>p' ] so there is nothing 

to prove. 

rk(p)>0: 

Assume as induction hypothesis that: 

V p1.(rk(p1)<rk(p) and pj.p1->pj]) => [pl]= 1 

I show that: pl>p'] => [p]= 1 

easel p] 

Ecanination of the definition of -> (5.4.7) shows that the only cases 

that can arise are: 

caseW 
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casel®1 p=(x,a),a(x) <S-expression> 

Then 61=[xj(FaJ) =[a](x)([aj)j S (by S2 of 5¢3.1) 

=[a(x)j([aj) , S (by 5.4.2) 

-1 

casel.2 p=(P[A1;...;An],a),F(.?1,...,An) 
, <S-e pression> 

Then as F(A1,...,AY1) E S=<S-e", ression> ti {1) it fotlot that 

[pj,=F(A1,...,An)=.L 

cases. p=(fn[e1;...;en],a) and for some m.(em,a)z>pm] 

(I have used 5.8.4 and 5.7.4 here.) 

Then rk(p)=1+1+rk(fn)+rk(e,)+...+rk(en)+rk(a) 

>rk((em, a)) 

so by induction [(em,a)]=[em]([a])" 1 

hence by lemma 5.9.1 

MPj=jfnj([aj)([e1n]([a]))=_L 

casel.4 p=([e11`' e12"°';en1-b en2],a) and for no m do we have: 

(em1,a)1>T and V i<m.(ei,a)t>F 

Now if there existed an m such that: 

[eml]([al)=T and 

Then as T L , .L and since H im.rk((ei1,a))<rk(p), it would 

follow by induction that for no pi1 (i<m) could we have (ei1,a) >Pi1] 

(i/ 
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(i<m). But by lemma, 5.8.4 each (ei1,a) (i<m) terminates ,nd as by 

lemma 5.7.4 there exist Ai (i<m) such that (ei1,a)A>A. (1,.<m) - but 

then by lemma. 5.4.8 we would have to have Am=T and V i<m,.Ai=F which 

contradicts the assumption of this case, Thus there cannot exist an 

m such that: 

[em1I([al)=T and V i<m®[ei1I([al)=F 

and so [p1=([e111([a])-'e1 (a ),...s er19{ s) [en2l([a])) 
= 1 (by definition 3.7.17) 

easel. p=(f[A1;...;An],a) and a(f)-Ifnm for any fn 

Then [p}=[f]([a})(A1,..,An) 

=[a](f)([a]) IFUN(A1,....An) (by S6 of 5.3.1) 

=[a(f)}([a;)) Ft7N(A1,...,An) (by 5.4.2) 

= 1 (A. ,...,An) 

=1 

casel.6 p=( X[[xl;..e;xm];e][Ai;...;An],a) and m>n 

Then [p]=(2t1...tm.Ee1((t1/x1)...(tm/xM.)[al))(A,,...,An) 

= X (by definition of X - 3.11.2) 

easel. p=( a0[f;fn][Al;...;n],a) 
Then 101= pIO[f;fm]j([aj)(A1,...gAn) 

= .L (A1,...vAn) (by S9 of 5.3.1) 

=1 

cam 
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case2 p->p'g>p"] 

As long as p is not of the form (f[A1;.,.;A1],a) where a( )- 
then by lemma 5.8.3 rk(p) <rk(p') and so by induction and. 5.4.9 

[p]-[p']=-L . If p is of the form (f[A1;...;An],a) where 

a(f)=1.,ts[f; fn]m then if s-=0 then [p]-E j10[f; fn] ]m([a]) (A a , ... , .1 

and if s>0 then p->p'->p1o=(fn[A1;...;An],(ivls-1[f;fn]/f)am) and o, 

by 5.4.9 and induction [p]=]p']= 1 . 

Q.' E.D. 

5.10 Final step in the goof of the Main Theorem 

Collecting together previous lemmas yields the following which 

entails the Main Theorem by the deduction described in 5.1.4 above. 

5.10.1 Lemma 

5.10.1.1 fp]=pt' 
zp 

61 1 

5.10.1.2 p'<p => p' terminates 

5.10.1.3 pI<P,p'1>p"] _> [p']= 1 

5.10.1.4 pI>A => [p]=A 

5.10.1.5 p' <p, p'4>A => pt>A 

Proof 
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Proof 

5.10.1.1 follows directly from lemma 5.5.2. 

5.10.1.2 n 
°t 

to is 5.8.4 and 5.7.1 

5.10.1.3 " it " 5.9.2 and 5.7.1 

5.10.1.4 " tt it " 5.4.8 

5.10.1.5 tt to to of 5.6 

Q.E.L. 

All that now remains to be done is for me to render the Main Theorem 

significant by showing that F,nv1-Env5 are consistent (i.e. showing 

that there is something that the Main Theorem applies to!) 
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6. UNIVERSAL SPACE U 

The goal of this chapter is to construct a 'universal space' U and 

to show how it can be used 

(1) To construct an alist model Env 

(2) To fit syntax equations (BNF) into the theory of semi-domains 

in a clean way. 

(1) is the most important use of U here since BY F is alw ady very well 

understood and known to be consistent; I shall only sketch out W. 
The idea of universal spaces and their uses such as (1), (2) above is 

due entirely to Scott. The details described here differ in trivial 

ways from him though e.g. I use semi-domains rather than domains and, 

interpret BNF in a way which yields finite (rather that possibly 

infinite) expressions. 

In the next section I shall briefly discuss the known ways of solving 

equations such as Env=Id-->[Env-->D] and indicate why I think using U 

is the best approach. 

6.1 Solving semi-domain Pquations 

There are (to my knowledge) two methods of solving semi-domain 

equations such as Env=Id-.>[Env->D], each of these is due to Scott. The 

first method is to 'classical' inverse limit technique. This is the 

method/ 
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method originally used to construct mathematical models of the (type 

free) X -calculus and it receives it; fullest exposition in [17]. 

The second method uses the algebra of retracts of a suitably 

constructed 'universal' space. 

The first of these techniques, when applied to Env- Id->[Env->D], 

works by embedding Envn in Envm for nor. (where Envn is defined in 

5.2.2) and then closing (via An inverse limit) U Env rider directed 
n=O n 

unions. Although this method works perfectly well (in fact it is the 

one I, at first, used) it has two defects: firstly it confuses general 

processes common to the solving of all equations with processes 

particular to the solving of Env=Id->[Env >D] and secondly it fails to 

clairfy the an1ogy between semi-domain equations and ordinar- recursion 

equations - the latter being solvable with Y. The second method 

overcomes both these defects, one starts by choosing a special universal 

space U (which must be suitable) and then to solve an equation like 

Env=ld->[Env->D] one represents Id, D as elements of U, -> as a binary 

operation on U and then treats the equation as an ordinary recursion 

equation so that the desired solution is (represented by) 

Y(X e.Id_;[e->D]). This obviously overcomes the second defect 

mentioned above, it overcomes the first because the general processes 

common to the solving of all equations are factored out in the 

construction of U which only has to be done once. 

There 
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There are several universal spaces around, the older ones (e.g. 

"logical space") are built via inverse limits whilst the newest one 

is just the power set of the integers, 2N, interpreted in a subtle 

way. This interpretation of 2N is based on an idea of Gordon 

Plotkin ['15) (rediscovered in a slightly different form by Scott) 

and although it seems to be the most pr omisi.." approach, at present, I 
shall not adopt it. The reason for this ii nainl;r that it has core 

on the scene too late for me to fully digest it in time for incor- 

poration here, but also its details are still in a state of flux. 

The actual use made of the universal space is rather independent of 

which one it is; for the algebra of retracts, which is the rain tool 

I use, looks (more or less:) the same regardless of which space the 

retracts are of. It should, I hope, be quite easy to construe most 

of what follows as being about the near-fanglec. thing if' that emerges 

the winner. 

6.2 Specification of the universal space U used here 

Before constructing the particular U I use,I shall characterize it up 

to isomorphism Me kind of "isomorphism" I mean here is not just 

continuous bijection but rather a bijection which preserves all the 

structure postulated on U (see definition 6.5.1 below) this structure 

is described in the following axioms. These axioms have useful 

consequences, they are not particularly interesting in themselves. 

6.2.1/ 
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6.2.1 Axioms 

A universal space is a semi-domain U, tog&ier with mappings 

x -> xn E [U->U], for each n>O, such that: 

(U1) Tj=-[U >U] 

(U2) U contains two members tt, if such that tt ! ff, if tt and 

{x I x=x01 IL,tt,ff} 
(U3) x0 E x 1 c ... E xn E ... '= x 

(U4) x= 
xn 

(tJ5) (xn)n=xn 

(U6) x0- X y.x0-x(1)0 

(U7) xna-1= XY'x(Yn)n 

Remarks: (1) In view of (U1) there are isomorphisms 

f: U->[U-->u] 

g: [u >u]->U 

I identify u E U with f(u) E [u >U] and F E [U->TJI -with 

g(F) E U thus for x,y E U x(y) means f(,-,)(y) and so 

X Y.x(y)=g(\ y.f(x)(y))=g(f(x))=x. I have exploited 

this convention in U6 and U7. 

(2) A universal space, as defined above, is the semi-dozra..n 

analogue of Scott's "logical space". There are other 

spaces around (e.g. 2N) that do not satisfy these 

axioms which one might want to call "universal", to 

avoid/ 
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avoid confusion from now on whenever I refer to a 

universal space I mean a structure as defined in. 

6.2.1 above. 

6.3 Existence of universal spaces 

The following proposition shows that universal spaces exist, its 

proof consists in the obvious generalization to semi-domains of 

Scott's inverse limit construction. Readers already familiar with 

inverse limits will find nothing now or interesting in the proof and 

they are advised to skip it. 

6.3.1 Proposition 

There exists a universal space U 

Proof 

I construct U as a straightforward inverse limit. 

Let U0=flat(}tt,ff}) 

Un+1"[Un >Un] 

What follows roughly consists in embedding Un in Un+1 and then 

closing n Un under directed unions. 

Let in: Un->Un+1 

.1 n: Uni-1'°>Un 

be; 
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be defined by: 

i0(f)=\y: UO.f, in+1(£)=iri gojn 

j0(F)=F(J-), jn+1 (F)=j n Fein 

6.3.1.1 Lemma 

in, in are continuous and jn(in(f))=f 

in(jn(F) E F 

Proof 

in, in are obviously continuous. I show jn(in(f))=f, in(jn(F) E F 

by induction on n: 

n=0: 0(i0(f))=j0( X y.f)=( X y.f)(1)=f 

0(j0(F))=iO(F(1))= X y®F(1)E Xy.F(y)=F 

n>0: Assume true for n-1 then: 

n(in(f))=jn(ln-1° f-j n-1) (by definition of in) 

=jn-1cin_1O f -jn_1" in_1 (by definition of jn) 

=f (by induction) 

in0n(F))=in(jn_1° F°in-,1) (br definition of jn) 

=i j j (by definition of i ) n1 °n--1 F`in-1 ° n-1 n 

E F (by induction) 

Q.E.D. 

I/ 
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I shall write an infinite sequence (x0 ,x 
1 ,x`',...) as (xn) 

n__0 
or 

just (xn) . Now let TT,» be the inverse limit of the sequence: 

i0 11 

.. . 

In 1n+1 

Ur 
> f n+1 F--- - 

in n+1 

.. . 

i.e. let U"-{(xn)O Vn>0.xn E 
Uz 

and xn=jn(xn+1)} 

order UW by (xn)n--0 E (yn) 
0 

<"> \J n>O.xn S y 
U n 

I claim UW is a universal space, but it takes some work to show it. 

6.3.1.2 Lemma 

U is a semi-domain and UX:.( UU ixinI (xn) 00 
E 

X})m-00 

-0 
m 

Proof 

If X is directed then for each m>0 so is {xmI (,n)110 
E X} 

hence 
(HI 

x 
m 

I (xn)n=0 E 
X}) O0 is defined, if it is in U00 then it is 

clearly the least upper bound of X, but it is in U, rr f 

jm(U {xm+1 
I (xn) 

E X} )= LJ I 
jm(xrn+1) I (xn) Xl 

U I X 
m 

I (xn) E X) 

Q.E.D. 

6.3.1.3/ 
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6.3.1.3 Definition 

For 0 <p, q < 00 define kpg: Up->Uq by: 

P 
(1) If p,q< ao then kpq= iq-10.000ip 

jq' ... 0jp-1 

(2) If P<00 then kp(x)=(kPq(x))° q0 

(3) If q<' then kOOq((xn);=O)=xq 

(4) kac (x)=x. 

6.3.1.4 Lemma 

For O p,q,r< X 

(1) kqr kpq E kpr 

(2) q>p or q>r => kqr 
k pq kpr 

00 

(3) k = U k 0 k 
q=O qr pq 

Proof 

if 'p--q 

if p<q 

if p>q 

There are a large number of separate cases to consider, each follows 

straightforwardly (but tediously!) from the definitions and lemma 

6.3.1.1, I shall just do the hardest case viz. 

00 

k U k k 
a;-q=0 q00 oq 

To/ 
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To prove this I need to show 

(xP) 00 W 
k (xq) (as k ((xp) 0' ) =xq) 

p= Orq u aco aq p=O 
00 4 but U 

O 
kqv(xq)=q I(kgp(zq)) Q (by definition of kqw) 

X-1 

1 =(q Q kgp(xq))p 
(by 6.3.1.2) 

(xq))...)=xP and (...( (since o => k (xq)=j =(xp) gw1 p 0O 

q<p => kgp(xq)=kq ((xp) 
p 

Ek ((xp) ©) (by (1) of 6.3.1.4) 

=xp) 

Q.E.D. 

Now I can show U,-O satisfies (U1) 

6.3.1.5 Lemma 

Uaa ^'[U, - >UA] 

Proof 

Define is U >[U->U] 

j: [U->U]->U 

by i(x)_ X Y: U,,, 
` 

(k0 
a(n+1) 

(X) ( xn(y)) )n=0 

j(f)=(jn( Xy:Un.k (f(kn(y)))))Q 

Clearly i,j are continuous, also: 

i/ 
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i(J(f))(y)=(k0.;(n+1)(j(f))( (.7)))n (by definition of i) 
(M O 

=(j 1( Xy:Un+1.ka n+1)(f(k(n+1)co(yf)))(n(:9))) 

(by definition of j and k(n+1)) 

=((J (X y:n+1'kx(n+1)(f(k(n+1)c,(y))))-in) 

(definition of Jn+1) 

=(3n(k(n+1)(f(k(n+1) (in()l,(y))))))) Q 
00 

=((Jnnk.(n+1),fck(n+1)ctao in k n)(y)' 

=((kwn f knx rn) (y) )n -0 

(by lemma 6.3.1.4 2) -) 

=ri 0 (kna kcnn f d k keonxy) 

O 

k an(y)) )n=0 

(by lemma 6.3.1.4 - (3)-) 

=k00a7° f`'k(y) (by lemma 6.3.1.4 - (3) 

=f(y) 

Thus ioJ=I[1->Uj 

Now: 

J(i(x))=J(Xy.( x(n+1)(x)(kon(y))) n01 (by definition of i) 

=(jm(X y:Um.k m(( (n+1) (x) (k (km (y)))) ) )m0 (by definition. of j) 
IXI 

=(Jm( Xy:Um.k%(m+1) (x) (k(k (y)))))"O (by definition of 1 gym) 
moo 

=(Jm( Xy:UMk 0 (by 'Lemma 6.3.1.4 - (2) 

-=(3 ( ( )))O0 (y extensionality) 
M a(m+1) x 

m=-0 b 

=e 
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=(kcum(x)) 0 (by lemma 6.3.1.4 -- (2) -) 
00 

_ k ,(k (x)) (by lemma 6.3.1.4 - (3) -) 
moo Wr 

=x (by lemma 6.3.1.4 - (3) -) 

so Joi =II 

Thus i,j are isomorphisms. 

Q.E.D. 

To show that U.,satisfies U2-U6 define 

xn=knco(a)n(x) ) 

Then {x Ix=x0}={(xn)n 
1 

(xn) 
I)o eOW(x0)) 

{(xn) o IV/n>0.xn=k0ri(x0)1 

{(k0n(x0)) Ix0 E { 

={k 0(x0) I x0 E U01 

Now -LU,,=k0OG,(-1-UO) (as V n. -1- Uri kOn( -L UO) ) 

and if ttco =k0 (tt),ff =k0,4ff) then as tt V ff and if %- tt 
(by definition of UO) tt,,,, ff, ff% t+ and 

{x I x=x0}={.L ttz ff;,. { so U2 holds. From now on I shall identify 

tt with tt, and ff with fff . 

To show U3 we have 

xn+1/ 
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xn+1=k(n+1)auo kW(n+1)(x) 

knwo k(n+1)n kn(n+1)G .(x) 
nro 

(k 
oon 

(x)) 

(by lemma 6.3.1.4 - (1) 

(by lemma 6.3.1.4 - (2) * ) 

n 

00 
U4 follows directly from ko==nUO knco, 

kwn 
of lemma 6.3.1.4. 

To show U5 we have 

k ° k B k (x (xn) n r (k no a 
oon nor) bon 

=knoDo kWn(x) (by lemma 6.3.1.4-(2) -) 

=x n 

U6 and U7 are a bit more tricky. Here is a lemma to help with U5. 

6.3.1.6 Lemma 

V x e UO. V y E Un . k0(n+1)(x)(Y)=kOn(x) 

Proof 

Induction on n: 

n=0: 

k01(x)(y)=iO(x)(y)=x=i0o(x) 

n>0/ 
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n>O: Assume true for n-1 then: 

k0(n+i) (x) (S')=in(kOn(x)) (Y) (by definition of k0(n+1) 
- 6.3.1,3) 

=(irm10 
k0n(x); Jn_1) (Y) (by definition of in) 

_in-1(k0(n-41) 
(x)) (by induction) 

=kOn(x) (by definition of kOn - 6.3.1. 

Q.E.D. 

Now to show U6 holds of Ua, let x=(x21) 
' 

Y--(Y") '0 then n=0 n=O 

xek0 (ka;0(x) ) 

=k.O (x0) (by definition of k 0 - 6.3.1.3) 
b =(kkn(x0))n° (by definition of k0w .- 6.3.1.3) 

so x0(y)=(k0( n+1) (xO) orr1)) =O 
tox0(Y)" means i(xO)(Y)) 

=(kOn(x0))n 
O 

(by lemma 6.3.1.6) 

=x0 (by definition of x0) 

and x(1)O=kOz(kwO(x(-1-) )) 

=k0 ;(x1(-10)) (as "x(J-)" means (xn+1(-n)) G 
=kOro(JO(x1)) (by definition of ji0) 

--kO,,,(x0) (as bn. xn-;jr (xn+1) 
) 

=x0 

hence U6. 

To verify U7 holds another lemma is'needed: 

6.3.1.7/ 
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6.3.1.7 Lemma 

Let x--(xn) Oo0, 7--(yn) ' F Uco then: 

(1) 

(2) 

n21-in -> 
k(n+1) (m+i) 

(xn+1) 
(Y) S k (xn+1(yn) 

) rim 

n<m => k(n+1)(m+1)(xn+1)(V'm)=k1m(xn+?(yn)) 

Proof 

If n-m then both sides of (1) are equal to xn+1(yn) 

If n>m then: 

k(n+1)(m+1)(xn+1)(yM)=(jm+1o..rojn)(xn+1)(jm°...ajn-1(yn)) 

(by definition of k(n+1)(m+1) and V n.vn-jn(;s"n+1; 

=(0m°oo<'jn-1°x n+1 °1n-10...Cio j .o.`jn-1)(yn) 

(by definition of j ,.g,1'j 
m+1 n 

c(jm ...0 in- 1' 
xn+1) (Yn) 

(by repeated use of 6.3.1.1) 
=k (x n+1 n ) 

nm (y )) (by definition of ire 
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so 

x(yn)n=(knm(k, (x(yn)))) 'Q 
(by definition of knoo ) 

=(krm(xm+1(knn(yn)))) 

(by previous calculation and definition 
(kr (xm+1(77n))) 

Z M=O 

(by definition of knn) 

of kin) 

hence it follows from lemma 6.3.1.7 that xn+1(y)=x( n)n 

Thus Ti satisfies U1-U7 and so is a universal space. 

6,4 Properties of universal spaces 

Q.E.D. 

The knowledge that universal spaces exist makes properties of them 

more interesting than they would otherwise bee The next few lemmas 

give some useful properties, some of these are needed to prove that 

(in a strong sense) there is only one universal space. 

6.4.1 Lemma 

If U is a universal space and x e U then: 

xnm xmin{n,m} 

Proof. 

I/ 
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I do induction on n and m. 

n=m=O:- x00=x0 by U5 

n>O: suppose v x E U. x(n-'1)0-x0 

xnO=xn(1)0 (by U6) 

-x( 
nh1)(n-1)0 

=x(1)0 

=x0 

(by U7) 

(by induction) 

(by U6) 

m>O: suppose b x E U. XO(m-1)=X0 then: 

xOm= X YxOm(Y) (by extensionality) 

= X Y.xO(Ym-1)m-1 (by U7) 

= Xy.XO(m-1) (by U6: x0(Yy-1)=x0) 

= X Yx0 (by induction) 

=x0 (by U6) 

So by induction d n.xOn^xnO=xO 

n>O,m>O: suppose v X E U. x(n-1)(m-1)-xmin{(r_-1),(m-1) 

xnm X y.xnm(Y) (by extensionality) 

= X y.xn(ym 
1)m-1 (by U7) 

= X y.x(y(m1)(n-1))(m-1)(n-1) (by U7) 

= Xy°x(ymin{(m-1), (n-.1) })min{(rsm-1), (n-1) { 

= 
XYx(min.{ (m-1), (n-1) {+1) (v) (by U7) 

=xmin{n,m{ 

then: 

(by induction) 

(by extensionality and min{n,m}-min{(m-1),(n-1)j+1) 

Q.E.D. 

6.4.2/ 
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6.4.2 Lemma 

If. U is a universal space and x E U then: 

X= x ,y. x <=> x--x0 

Proof 

By U6 .,x=x0 => x--x0= X y. x0= x y. x 

I show the converse by proving by induction on n that. 

d x E U. X-- X Y. X => Zn=X0 

For n=0 this is trivial, suppose it is true for n and x- Xy.x. 

Then xn+1= 
Xy`x(yn)n 

= xy.xn 

= xy. x0 

=x0 

(by U7) 

(by assumption on x) 

(by induction) 

(by U6) 

Thus x= Xy.x => Vn>O. xn=x0 =>1n xn=x0 => x=x0 (by U4) 

6.4.3 Lemma 

If U is a universal space and x E U then: 

tt/ 
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tt E x => tt=x 

ff = x => ff=x 

(i.e. tt,ff are maximal) 

Proof 

I prove by induction on n that: 

IV x e U. tt = x => tt=x 

n=0: 

tt G x => tt0 = x0 => tt = x0 (by U2: 

=> tt=x0 (by U2) 

tt=tt0) 

n>0: Assume true for (n-1) then as tt=tt0"_: ... = t t2, = a.. tt ( b by TJ3) 

tt = x => tt(yn--1)n-1 x(yn-1)n-1 
=> ttn(Y) c x(Yn_1)n_1 (by U;) 

=> tt = x(yn_1)n_1 (as ttn(y)=tt(y)=tt) 

=> tt Vx(yn-1)(n-1)(n-1) (by induction) 

=> tt =X 
n(y) 

(by U5 and U7) 

=> tt =xn (as Xy. tt(y) =tt) 

Thus the induction goes through. Now: 

tt = x => V n.tt=xn => tt= r xn=x 

Q.E.D. 

Remark/ 
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Remark: This lemma is not true about "logical space" (T,) for in 

that we have tt E T but tt7 T . As a result of this 

the conditional (see definition 6.6.1) has a less pleasant 

definition in "logical space" than that in its semi-domain 

analogue. 

6.4.4 Lemma 

If U is a universal space and x e U then: 

x0=tt => x=tt 

x0=ff => x=ff 

Proof 

x0=tt => tt=x0 E x => x=tt (by lemma 6.4.3) 

x0=ff => ff=x0 E x => x=ff (by lemma 6.4.3) 

Q.E.D. 

6.4.5 Definition 

Let U6=flat({tt,ff}) 

Unf1=[Un->U"1 

Remark: Un is the same as in the proof of proposition 6.3.1. 

6.4.6 Lemma 

If U is a universal space then for each 00 1X I x=x'nt is a sub 

semi-/ 
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semi-domain of U isomorphic to U. In fact there exist isomorph.isms: 

fn: Un->{x I x=xn} 

gn: {x I x==xnl->U 

such that': (1) V X E n+1 ° V y U. fn(x(y)))=f z+1(x) ('n(y) ) 
(2) V x e {x 

I x=xn+i V y E {x I :=xn} p g 1(x(y)n)=gn,1(x) ( "n or) 

Proof 

By U2 we can take f0,g0 to be the identity mappings. Then define 

fn+1' gn+1 
inductively by: 

fn+1(x)=(X u:U.fn(x(gn(un))))n+1 

gr_+1 (x)= Xu:Un.gn(x(fn(u) )n) 

Clearly f0, g0 are isomorphisms. Assume fn, gn are isbmopphisma. 

I show fn+1' 
gn+1 are also: 

fn+1(gn+1(x))(u)=(X u:U. fn(gn+1(x)(gn(un))))(un)n (by U'7) 

=fn(gn+1(x)(gn(unn)))n 

_fn(gn+1(x)(gn(un))) (by U5) 

=f n(gn(x(fn(gn(un)))n)) (by definition of g 

=x(ur.)n (by induction) 

=_ 
n+1 

(by U7) 

=x (u) if x {x I x=xn+1 } 

also 
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also: 

6n+1(fn+1(x))(u)=gn(fn+1(x)(fn(u))n) 

°gn((Xu:U. fn(x(gn(un))))(fn(u)n)n) (by U7) 

=gn(fr(x(gn(fn(u)nn)))n) 

=gn(fn(x(gn(fn(u))))) (bY U5) 

=x(u) (by induction) 

Thus V n, fn, gn are semi-domain isomorphisms. 

To show (1) calculate as follows: 

fn-1(x)(fn(y))=fn(x(gn(fn(Y)n)))n (by definition of fn+1 and U'`7) 

=f n(x(gn(fn(Y)))) (by U5) 

=fn(x(Y)) 

To shcw (2) we have: 

gn+1(x)(gn(y))wgn(x(fn(gn(y)))n) (by definition of gn+1) 

=gn(x(Y)n) 

Q.E.D. 

6.4.7 Definition 

An element x of a semi-domain is finite <=> 

Z directed, x E U$ => 3 z e Z. x E z 

Remark 
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Remark: This is an abstract notion of finiteness which is analogous 

to the usual one; it generalizes that since in the semi- 

domain of subsets of a set (ordered by inclusion) a subset 

is finite in the above sense iff it is finite in the usual 

one. Intuitively definition 6.4.7 makes an element not 

finite if it is a rjon-trivial limit. Notice that every 

member of a finite semi-domain is finite. 

6.4.8 Lemma 

If U is a universal space and x c U then: 

x is finite G=> 3 n. x=x n 

Proof 

If x is finite then as x- 1. 1 xn definition 6.4.7 implies that x E xn 

and hence x=xn by U3. Conversely if x-=xn E.- UZ where Z U is 
directed then x=xn E (HZ)n= L1{zn I z e Z}, Thit the sub semi-dowain 

{x E U x=xnI is finite (by 6.4.6) so each xn is finite in It; now 

1z I z E ZI is directed so xn E zn z E Z for some z E {z I P', E Z} 
n n 

thus x is also finite in U. 

Q.E.D. 

6.5/ 



-213- 

6. 5 Uniqueness of universal space 

The axioms of 6.2.1 were chosen so that anything satisfying them 

would essentially 'be' Upa to make this precise here is a definition, 

6.5.1 Definition 

A mapping f: U'->U" between two universal spaces U', Uh in a 

homonorphism <=> (1) f is continuous 

(2) d x',y' E U'.f(-7'(y'))=f(x')(f(y')) 

(3) d x' E U'. V n>O.f(xn)=f(x') 

Two universal space U', U" are isomorphic <=> there exist homomorphisms 

f: U'->U", g: U"->U' which are inverse to each other (i.e. 

f°g=Iut,.g ° f=IUI). 

Remark: Thus a homomorphism from one universal space to another is a 

mapping which preserves directed unions, the applicati. e 

structure and the projections (i.e. x H-> xn). isomorphic 

universal spaces are isomorphic as semi-domains (as in 

definition 3.7.2) but they are related in a stronger sense 

than just this. 

6.5.2 Proposition 

if U', U" are universal spaces then they are isomorphic. 

Proof 
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Proof 

Let fn :I -> x'- E IT' 
j 

x'=x t f": U <-> {x" E Ur l x =x" 
{ n ' n n n 

61: {x' E U' I x'=x'-.>U 
n' 

gn: {x" E U" ! x"=xn )->U 
n 

f. 

be the mappings of lemma 6.4.6. Then define: 

f : U' -->U" 

g:U"->U' 

by f (x)= U f" (g' (x') ) n n n n 

g(x)= ft1(g"(x")) 

I claim that f,g are homomorphisms inverse to each others To show 

that they are well defined I need to show that the unions defining 

them are over directed sets. 

Now fi(g1(x1))(u)=f0(61(x1(g0(uo0)))o (by definition of Vl 

hence fl(g0(x0)) 

=fo(go(x1'(fo(go(u0)))o)) 

=f"(go, (x'N (g"(u0)))0)) 

2f"(go, (x' (i.)0) ) 

=f0"(gg(x6)) (by U6) 

=f0'l(g6(x6))(u) (by U6) 

f'(g(x1)) 

and U7) 

(by definition of gI and U5) 

(by U7 and U5) 

Now suppose, 

that: V '°f'(gn(xn)) frid(gnu-1(xn+1)) then: 

as induction hypothesi9, 

f" 
n+ 1 
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fn+1(gn+1(xn+1)) (u) =fri(gn+1(xn+1) (gnnn)) )n (`'u definition of f°l+ srsdlJ7) 

=fn(gn(xI 1(fn(gn(un)))rs)) (by definition of g +1 and U5) 

=f' n(gn(x' (fn(gn(u,d) )n)) (by 1J7 and T75) 

S? 11 

n+1(gn+i (x' (fn+1(gn+1(un+1)) )na1)) (1 in uctiort) 

'f 
n 
n+2 

gn+2(xn,+2))(u) (reverse first 3 1H.nes of this 

calculation with n+1 for n) 

Hence by induction on n: 

V 
X- 
V n.fn"(gn(xn)) G 

fn+1(gn+1(xn+i)) (1) 

and by symmetrq: 

bx. Vn.f(gn"(x")) E f (g" (x"n+1)) (2) n n n+1 n+1 

Thus the unions defining f,g are over directed sets (in fact over 

chains) and so these functions are well defined. They are the limits 

of continuous functions and hence are continuous. To show that they 

are inverses of each other we have: 

f(g(x"))= n fn(gn(g(x")n)) (by definition of f) 

- Lffl 

a 
fn(gn(frs(gms(xm) )n)) (by definition of U) 

= LfJ f"(gn(fn(gn(x"))n)) (by (1), (2) and a cofinality argusent) 

n fn(gn(fn(gn(x")))) by U5) 

= LJx" (by 6.4.6) 

=x" (by 14) 

and! 
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and by symmetry g(f(x'))=xt. 

f,g preserve the applicative structure on U for: 

l, 1 (gn(yn))) W fn+1(gn+1(xn+1))(fn 

f(x'(y'))= n fn(gt(x'(y')n)) (by definition of f) 

f21(gn(X,'I1 (yn)n)) (by U7, U4 and a cofinality argument 

- lhJ fn(gn+1(xn+1)(gn(yrt))) (by 6.4.6 - (2) -) 

-f(x)(f(y')) (by definitions of f,g and cofinali.ty) 

and by symmetry g(xtr(y"))`g(xI')(g(ytt)) Thus to complete the proof 

I'just have to show that 

V x' E U'. V n>0. f(xn)=f(x')n 

dx E U". d n>O. g(x")=g(x")n 

. 

By symmetry I need only verify one of these, say f(xn)-f()1)n, I do 

this by induction on n. 

n=0: 

I must show f(x0)-f(x')0 

Now f(x)(f(y'))=f(x'(y')) 

=f(x6) (by U6) 

so f(x')= Xy".f(xl) (as f is onto) 

so by lemma 6.4.2 f(x0)=f(x 
)0 

E f(x,)0 

f(x')O1 

and hence by U2 
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f(x')0, f(xo) E -L,tt,ff}. if f(x')0=.L then f(xo) E f(x')0 j_ 

so f(x0')=.1 =f(xl) and if f(x')0=tt then by lemma 6.4.4 

f(x')=tt so x'=g(tt) 

=> xp=g(tt)O 

=> f(x6)=f(g(tt)0) 

by symmetry f(x')0=ff => f(x0t)=f(g(fi)0). But I shall show below 

that f(tt)=tt, g(tt)=tt and so f(g(tt)0)-tt, f(g(ff)0)=ff and this 

will complete the proof of the n=0 case. 

Now f(tt)=W f(gn(ttn)) (by definition of f) 

= f"(gn(tt)) (as tt=tt0 E ttn E .U-t,) 

Suppose fri(gn(tt))=ff(gO(tt)) then 

fn+1(gn+1(tt))(u)=fr'(gn(tt(fn(gri(uM)))n)) (h,' the calculation used to 

=fri(gn(tt) ) (by U6) establish (1) with tt for x), 
=f8(g6(tt)) (by assumption) 

Thus by induction on n: n>O.fn(gn(tt))=f0(g0(tt))=tt 

hence f(tt)=tt and by symmetry g(tt)=tt. 

n>O: 

Assume V X' E U'. f(x' )=f(x')n-1 then 
n-I 

f(xn)/ 



-218- 

f(xn)(f(y))=f(xn('r)) (as shown above) 

=f(x' (yt_1)n-1) (by D7) 

=f(x"(Tir--1))n-1 (by induction) 

=f(x")(f(yn-1))n_1 (as shown above) 

=f(x") (f(y)n-1)n-1 (by induction) 

=f(x')n(f(y)) (by U7) 

hence as f is onto f(xn)=f(x')n. 

Q.iLD. 

In vi3w of this lemma it makes sense to talk about the universal 

space, or simply just "universal space" 'a. 

6.6 Representing things in universal Vace 

In this section I shall show how to represent various useful kinds 

entities as elements in U. 

6.6.1 Definition 

6.6.1.1 (z a x, y)= 

if z=tt 

if z=ff 

other rise 

.E.6.1.2 (x,y)= Xz. (z :)rc,y) 

6e6. 1 o fst= Xu.u(tt) 

snd= Xu.u(ff) 

er31e4' 
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6.6.1.4 def(x)= 
tt if x 1 

1 otherwi se 

6.6.1. <x,y>=(def(x) D (def(y)-D (x,y),-L),..) 

Remarks:. (1) read "(z x,y)" as "if z then x else y". 

(2) fst((x,y))=x, snd((x,y))=y 

6.6.2 Lemma 

The expressions defined in 6.6.1 are continuous in all their variables. 

Proof 

6.6.1.1: 

Let Z C' U be directed I show (U Z x,y)=z (z a x,y) by cases 

easel: 

If U Z=tt then as tt is finite tt E z for some z c Z and so b7 lemma 6.4.3 

tt=z E Z. If ff E Z then ff E U Z_tt which is impossible by U2, so 

ff A Z. Hence (UZ D x,y)=x~zq (zD x,y). 

case2: 

If UZ=ff then proceed as in easel above with tt replaced by fry', 

case3: 

If U Z tt and UZZff then by lemma 6.4.3 tt , 
Z and ff i Z so 

(UZJx,y)= 1=LEZ (zx,y). 

Shot ing/ 
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Showing (z x,y) is continuous in x and y is trivial. 

6.6.1.2: Trivial. 

6.6®1.3: Trivial. 

.E.6.1.4: 

If Z is directed then U Z&..L f=> 3 z E Z.zL L hence def(LJZ)= def(z) 

6.6.1. : Trivial. 

Q.E.D. 

Recall that one of the purposes of introducing U was to get a space 

in which semi--domains could be represented as elements so that semi- 

domain equations could be solved with Y. 

If u E U what semi-domain does u represent? Well, with u is naturally 

associated the equation 

and if x 'belongs' to u in the sense of being a solution to this then 

I shall write x E u and then take the semi-domain represented by u to 

be {x Ix E u}, I shall call this semi-domain fix(u) so that in general: 

If U E U then fix(u)-{xI x-u(x)} 

6.6.3/ 
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6.6.3 Lemma 

If u E U then fix(u) is a semi-domain and least upper bounds in U and 

fix(u) coincide. If u is strict (i.e. u(1)= 1 ) the fix(u) is a 

sub semi-domain of U. 

Proof 

Let Z fix(u) be directed then u(UZ) ZLJ u(z)=01 z,=UZ 

so UZ E fix(') and clearly it is the least upper bound (in both U 

and fix(u)) of Z. 

If u is strict then 1 E fix(u) and so fix(u) is a sub semi-domain of U. 

Q,E.D. 

If we think of applying u to x as 'pushing' x into its 'best 

approximation' in fix(u) then we would intuit u(x) E 4p i.e. 
Vx.u(u(x))=u(x) or u=uou. Now this way of thinking works wonders 

(I cannot yet quite put my finger on why - it still seems magic to me!) 

so I shall always use us such that u=uvu to represent semi.-domains. 

Hence the next definition. 

6.6.4 Definition 

u E U is a retraction G--> u=uouo 

If a semi-domain D is isomorphic to fix(u) for some retraction u then 

D is a retract of U. 

6.6.5 
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6.6.5 Lemma 

Jul u is a retraction) is a sub semi-domain of U. 

Proof 

{u j u is a retraction)=fix(Xu.uou). And since ..L =1.d_(,, this is a 

sub semi-domain of U by lemma 6..6.3. 

Q.E.D. 

In view of lemma 6.6.3 it would be nice if we could always &scu:Ue 

that the retractions we use to represent semi-domains are str:..ct. 

This can be done without loss of generality since if we make the 

following definition 

6.6.6 Definition 

If u E U then define u by: 

f1 if u(x)=u(1) 

.a(x)= 

[u(x) otherwise. 

Then we have: 

6.6.7/ 
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6.6.7 Lemma 

1. uEU=>uEU 

2* u a retraction => u a strict retraction. 

3. u a retraction => u=uauou and u=uouou 

4. u a retraction => fix(u)-'fix(u) 

Proof 

1: I need to show u is continuous. Let Z S. U be directed. 

If u(UZ)=u(L) then cl u(z)=u(L) ;o V Z E Z.u(z) L= u(L) hence as 

J.. z we have V Z E Z.u(L) E U(7) E u(L) i.e. u(z)=u(J)4 Hence 

u(Uz)= -L =Z u(Z) 

1.2: 

If u(UZ)Iu(1) then for some z e Z.u(z)u(-L) so Z± {z E Z >,1(z)Wu(.j..)) 

is non-empty. As Z is directed so is Z+ for if x,y E Z' then 

x E z,y E z for some z E Z, but then z E Z+ (otherewrise 

u(x),u(y) E u(z)=u(L) so x,y A Z+). Thus 

u(LJZ)=u(L Z)w LJZ u(z)=L+ u(z)= L I + u(z)= LA u(2) 
ZE ZE ZEI ZEL 

1.1 and 1.2 show u is continuous and s: is in U. 

2: Suppose u=ucu then 

u(1)= 1 =u(x) 

u(lhc))= 

u(u(x)) -'u(u(x))=u(x)=la(x) 

if u(x)=u(.L) 

if u(x)iu(L) 

so/ 
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so u is a retraction, it is clearly strict. 

3: Suppose u-uou then 

3.1: 

If u(x)=u(±) then u(u(x))=u(u(.L))=u(.L) so 

u(u(u(x)))=u(1)=u(x) 

u(u(u(x)))=u(u(-L))= 1=u(x) 

3.2: 

If u(x)A(1) then u(u(x))=u(x)u(-L) so 

u(u(u(x)))=u(u(u(x)))=u(x) 

u(u(u(x)))=u(u(u(x)))=u(u(x))=u(u(x))=u(x)=u(x) 

4: By 3 above u:fix(u)->fix(u),u:fix(u)->fix(u) are isomorphisms. 

Q.E.D. 

This lemma shows that any retract of U is isomorphic to fix(u) where 

u is a strict retraction, by lemma 6.6.3. It follows that any 

retract of u is isomorphic to a sub semi-domain of u. 

6.6.8 Definition 

If A is a semi-domain then a E U represents A <=> 

(1) a is a strict retraction 

(2) A fix(a) 

Remark: Any retract of U can be represented by an element of U. 

Given/ 
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Given elements a,b E U representing A,B what elements represent 

[A->B1,AXU,APO, A+B,MB...etc. The answer to this is given in 

definition 6.6.10 below, first another definition. 

6.6.9 Definition 

If A is a semi-domain then define the semi-domain AA by 

e --A u {1} (U =disjoint union) 

and for x,,y E A .x E y <=> x= ..L or x, y E A and x 
EA 

,y. 

Remark: The element 1A E A+ is not 1A+ but is just 'above' it. 

6.6.10 Definition 

For a,b E U define: 

6.6.10.1 

6.6.10.2 

6.6.10. 

6.6.110.4 

6.6.10. 

6.6.10.6 

a->b=X u.bmuoa 

axb= Xu.(a(fst(u)),b(snd(u))) 

aOb= Xu.<a(fst(u)),b(snd(u))> 

a+b- Xu. (fst(u) D (tt,a(sxi(I(u))), (ff,b(and(u)))) 

alb- Xu.(fst(u)D <tt,a(srd(u))>,<ff,b(snd(u))>) 

a+= Xu. (fst(u) D (tt,a(snd(u))),-I ) 

6.6.11 Lemma 

If a,b are strict retractions then so are a->b, axb, aft, a+b, alb, a+ 

and: 

6.6.11.1 
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6.6.11.1 f E a->b <_> fo a=b and V X E a. f (z) E b 

6.6.11.2 x E axb <_> x=(u,v), u E a, v E b 

.6.11® x E a&b <_> x=1 or x=(u,v), J_(u e a, .1.,Lv e b 

6.6.11.4 x E a+b <=> x--1 or x=(tt,u),u E a or x= (ff,v), v E b 

6.6.11. *x E a®b <=> x= 1 or x=(tt,u), ! lu E a or x=(ff,v), :L /v E b 

6.6.11.6 x E a+ <_> x=.1 or x=(tt,u), u E a 

Proof 

If u is a retraction then x E u <=> x=u(x), the lemma follows from 

this by tedious,but utterly straightforward, calculation. I omit the 

details. 

Q.E.B. 

6.6.12 Lemma 

Suppose a represents A and b represents B then: 

6.6.12.1 a->b represents [A->B] 

6.6.12.2 axb 

6.6.12. a&b 

6.6.12.4 a+b 

6.6.12.5 a4)b 

6.6.12.6 a+ 

it 

It 

m 

it 

ft 

AxB 

AQB 

A+B 

AN 

A+ 

Proof 
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Proof 

Follows directly from the previous lemma. 

Q.E.D. 

I still have to represent Id, S, S* and Fav in U. To represent Id 

and S notice that they are isomorphic to the integeis N where 

N=flat({o,1,2,...}) 

Remark: Previously I used N for the set {0,1,2,...}, context should 

make clear when I use N for this and when I use it for 

flat({0,1,2,...}). 

6.6.13 Definition 

Let o=(tt,tt) 

n±1=(ff,n) 

The next lemma shows that 

6.6.14 Lemma 

n C m <=> n=m 

Proof 

Clearly n=m -> n r= m to see the converse we have: 

n-cm => snd(n) L and(21) 

=> n-1 c m-i 
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=> 0 = m-n (otherwise tt=fst(0)=fst(m-n =ff) 
=> Q_+n = m-n+n 

_> n 

Q.E.D. 

6.6.15 Definition 

Let N=Y( X-00®u) E U 

Remarks This use of N will be distinguished from the others by context. 

By the fixed point property of Y we have: 

N---0N 

By lemma 6.6.5 and 6.6.11 N= 

n 
(A u.08u)n(1) is a strict retraction. 

6.6.16 Lemma 

xEN<=>x {1,01...} 

Proof 

x e N <_> x=N(x)=Y( X u ̂0®u)(x) 

AL b (\u.() u)n(L)(x) 

=n3p(n) (x) where N(n)=(X u.oeu)n(1) 
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I show by- induction on n that x E N(n) <=> x r { 1 ,Q,...,n-1} 

n- 
-0:-x E N(0) <_> x=1 

Assume X E N(n) _> x E {-L,0,...,n-1} then: 

x E Nn;-1 
<=> x=N(n+1) (x ) 

<=> x=(CDN(n))(x) 

<=> x=1 or x=(tt, u) , -L u E 0 or x=(ff,v) , -L ,v E N( 

(by 6.6.11-5) 

<_> x= 1 or x=0 or x c {1,..B,n} 

(by induction and fact that u E 0 <=> x E {1 ,tt}) 

<=> x E {,L,O,...,n} 

To finish the proof I shall show x E N <=> V n.x N(n), This is 

clearly true if x= -L so suppose ..L x E N then x= Lri N(n) (x) so 3 n 

such that N(n)(x)? -L , but then N(n)(x) E now for m>rj 

we have N(n) (x) C N(,,) (x) and 1 N(m) (x) E N(m)={.L ,0,,.,,m-,1 } so 

by lemma 6.6.14 N(n)(x)=?N(m)(x) and hence: 

x=L1N(m)(x)=N(n)(x) E {0,...,n-1} 

Conversely supposex E N(n) then x--r1 for some m (<n) 

Now N(d) =(09T1) (0) (as N=00N) 

=(oM)(,(tt,tt)) (Ps o=(tt,tt)) 

=<tt,0(tt)> (by 6.6.10.5) 

(tt,tt) (by 6.6.1.5 and tt=0(tt)/ -L ) 

=0 

so0 EN 

Also/ 
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Also if n e N then N(n+1)_(O N)((ff,n)) (by 6.6.13) 

=<ff,N(n)> (byy 6.6.10.5) 

=(ff,n) (by 6.6.1.5 and n E N) 

=n+i (by 6.6.13) 

so n+1 

hence by induction V n>O.n E N. So in particular x=m E N. 

6.6.17 Lemma 

There are elements id, s E U which represent Id, S respectively. 

Proof 

Just take disjoint copies of N e.g. let id=ttxN 

s--ffxN 

(these work by 6.6.7 and 6.6.11.2) 

Q.E.D. 

I shall now show how to represent A* given a representation of A. 

6.6.18 Definition 

Define inductively: 

+ 11 
()=0, (x1,...,$n)=(ff,(x1,(x7,...,xn))) 

,...,x n 
>=<ff,<xi,<X:2 ,...,xn >>> 

i 

Remark/ 
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Remark: When n=2 this definition clashes with definition 6,6.1, 

context should always disambiguate things. 

6.6.19 Lemma 

(Y.1,..., n) C (y1,...,ym) <_> n=m and V i<n.xi E yi 
<x1,...,xn> t <y1,...,ym> <=> 3 i.xi= 1 or (n=m and V i<n.xi E 

Proof 

Clearly (V i<n.xi c yi) => (x1,...,xn) E (Y1,...,Yn) 

Now suppose (x1,...,xn) 
(yi''',Ym) 

If n<m then (x1,,,.,xn) E (Y1,.,Ym) (x2 ...,xn) E (Y2,O®,Ym) 

=> (xn) S (Yn,...,ym) 

=> 0 (Yn+1,...,ym) 

=> tt E ff 

which is impossible. 

Similarly if n>m then (x1,,xn) E (Y1'.,Ym) => if E tt which is 

also impossible hence n=m. 

Then (x1,s..,xn) c (Y1,...,yn) => 1 Y1 and (x2,...,x3) (3r2,A.,Yn) 

=> X. S y1,...,xn c yn 

The result for <x1,.00,xn> follows since if xi= 1 for some i then 
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<x1,...,xn>= 1 otherwise <x1,...,xn>=(x1,...,xn) (and similarly for 

<y1,..., m>). 

Q.E.D. 

6.6.20 Definition 

For a E U define: ak=Y( X u.0®(a&u) ) 

Remark: a*=00 (a 

6.6.21 Lemma 

If a is a strict retraction then so is ag and 

x E a 

Proof 

x E a 

<=> x= 1 or x=() or x=(x1,...,xn), 1xi E a 

=> x=a*(x)= n U ()1u.00(a 
&U))n(-L)(x) 

_ c i a* (n) (x) where aO(n)=( Xu.Q (afu))n(-L) 

By lemmas 6.6.5 and 6.6.11 0 is a strict retraction. 

Now clearly x E a6'(0i <--> x- --L , I show by induction on n that: 

x c a* (n+1) <=> xr 1 or x-() or x-41,...,xm) 11gxi E a, 1<j<m<n} 

n=0:/ 
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n=0: 

(1) 

<_> x=(00(aaal;(0)))(x) 

<_> x= .1. or x=(tt,u), 4,u E 0 or x=(ff,v), ( 
) 

(by 66.11.5) 

<_> x- --L or x=O or x=(ff,(w,y)), -L w E a, .L.p y E 
a (0) 

(by 6,9.11.3) 

<=> x=1 or x=() (as 1 py E 
aa(0) 

is inmossible) 

Now assume true for n, I show it's true for (n+1): 

x E aw(n+1) 

<=> x= J- or x=() or x=(ff,(w,y)), 1 /wEa, ? ly E 0 (n) 
(by a calculation like that above) 

<_> x- -j- or x=() or x=(ff,(w,())), 1 w E a 
or x e I (ff, (w, (x1 ..,xm/) / I J-/-W E a, 1. /x E a, 1 <i<ir 

(by induction) 

<=> x=1 or x=() or x e { (x1, ... , xn) I .L xi E a, 1 <i<in<n+1 } 

To complete the proof I show that: 

x c a1v G> S n.x E 
aO(n) 

This is clearly true for x= 1 , suppose J x E as then 

x--a,&/ 
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x=a*(x)= W a* 
(n)(4. 

Then there exists an n>0 such that 

1 0(n)(x) E 
aO(n) 

and by lemma 6.6.19 V m>n.aO(n)(x)=aO(m)(x) so 

x=ae(n)(x) E at'(,). 

Conversely suppose ..L x E aa(n) then x=(x1,.,,xm) (m<n), I show 

x E 01 by: induction on m: 

m=0: 

x=-0:aG(())--aZ'(o) 

=(tt,tt) 
=0 

_() 

Suppose true for m I show it is true for m-e-1. 

8((x1,...,xm+1))=(oE9(afa))((ff,(x1,(x2,...,xm1)))) (by 6.6.18) 

=(ff,a a.&((x1,(x2,...,xa+1)))) (by 6.6.10. 

=(ff,(a(x1),aIR,((x2,...yxm+1)))) (by 6.6.10.3) 

=(ff,(x1,(x2,...,xm+1))) (by induction. and x1 E a± 

=(x1'gxm+1) (by 6.6.18) 

Hence V m>O.(x1,...,xm) E as (if V i<n..xi E a) 

Q.E.D. 

6.6.22/ 
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6.6.22 Definition 

For a EUlet a'=(a+)® 

6.6.23 Lemma 

If a represents A then a* represents A* 

Proof 

By lemma 6.6.21: 

x c a* => x- --L or x=() or x=(x1,...,xn), J. xi c a+ 

Now A?'{x I --L ,xE , +I and so 

An={(x1,...,xn) I 1 
i"xi 

E A+} 

The result follows from 6.6.19. 

Q. E. D. 

6.6.24 Definition 

Let s represent S (as in 6.6.17) then define: 

fun=s '->s 

d=s+fun 

6.6.25/ 
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6.6.25 Lemma 

fun represents FUN=[S*->S 

d represents D=S+FDN 

Proof 

By lemmas 6.6.12, 6.6.17 and 6.6.23. 

Q.E.D. 

It is now easy to represent the alist model Env, full details follow., 

6.7 Representinf,Env in universal space 

6.7.1 Definition 

Let env--Y(X e.id->(e->d)) 

env=id->(env->d), so env represents a semi-domain Ernv which satisfies 

EnvL_--[Id->[Env->D]] (i.e. satisfies Envl). Thus by proposition 5.2.5 

this Env contains an alist model as a sub semi-domain and so alist 

models exist. In fact Env itself is an alist model as the nezt r,.er,=& 

proves, 

6.7.2 Lemma 

env represents an alist model. 

Proof 
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Proof 

env=Y(Xe.id-->(env >d))=rim env(n) where env(n)=( Xe.id->(e->d) )n(-L) 

6.7.2.1 Lemma 

bn>O.env(n)oenv-envoenv(n)-env(n) 

Proof 

Induction on n: 

n=0: env(0)= 1 so env(0)oenv=envoenv(0)= 1 

Now assume true for n then: 

(env(n+1)oenv)(x)=env(n+1)(env(x)) 

=(env(n)->d)cenv(x)eid (by 6.6.10.1) 

=(env(n)->d)o(env->d)oxoidoid (by 6.6.10.1) 

=(env(n)_>d)o(env->d)wxoid (as --d is a retraction) 

now (env(n)->d)c (env->d)= Au.de((env->d) (u) )O env(n) (by extensic::nai,ity 

and 6.6.10,1) 

= Xu.dodcuoenvoenv(n) 

= Xu.dou,env(n) (by induction) 

=(env(n)->d) (by extensionality and 6.6.10,1) 

so/ 
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so (env(n+1)`env)(x) =(env(n)->d)cxoid 

=(id->(env(n)->d))(x) (by 6.6.10.1) 

=env(n+1)(x) (by 6.6.10.1) 

similarly (envoer_v(n+1))(x)=(env->d)o(env(n)->d)-xosd 

and (env-5d) o(env(n)->d)= Xu.dedouaenv(n)oenv 

= >u.doucenv(n) 

so envoenv 

=env(n)->d 

n+1)(x)=(env(n)->d)oxoid 

=env(n+1)(x) 

Q. E. D. 

Thus if for r E env we let r(n)=env(n)(r) then r(n) E env. 

I now show that r t-> r(n) satisfies Env2-Env5. 

Env2: 1 =env(,) c env(1) E ... Si env(n) E ... ` env 

hence r E env => 1=r(,) E r(1) E ... E r(n) E ... E r 

Env3: env-- L j env(n) 

hence r E env => r= l 1 r(n) 

Env4: r E env => (r(n))(n)=env(n)(env(n)(r)) 

=env(n)(r) (as env(n) is a retraction) 

`(n) 
Env5: env(n+1)(r)(x)(env(r'))=((env(n)->d)Lrci.d)(x)(env(r`)) 

=(dcr(id(x))oenv(n))(env(r')) 

=(dor(id(x))Uenv(n))(r') (by previous lemma) 

also 
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also env(r)(x)(env(n)(r')) _((env>d)-roid)(x)(envjn)(r')) 

=(dor(id(x))oenv)(env(n)(r')) 

=(dcr(id(x))oenv(n))(r') (by previous lemma) 

hence r,r' E env,x E id => r(n})(x)(r')=r(x)(rn)) 

It follows that env represents an alist model. 

6.8 BNF as recursion equations in universal space 

I shall now show how the apparatus described in 6.6 can be used to 

'solve' BNF syntax equations within the theory of semi-domains. The 

point of doing this is to make things more uniform so the sane theory 

can be applied to syntax equations, semantic equations and recursive 

definitions. We would like to say that what gets defined by e.g. 

a ::= NIL 
I 

(A/z)a 
I 

(fnAz)a 

is Y(X a.NIL I (A/z)a I (fn/z)a) 

To achieve this it is first necessary to make the primitive syntactic 

classes into semi-domains and then to interpret the BNF svmbc-ls ::_,I 

and concatenation in such a way that BNF definitions become recursion 

equations. A primitive syntactic class <prim> has naturally 

associated with it the flat semi-domain prim flat (<prim>) and if we 

interpret and concatenation as =, a and Q respectively things 

work out. Thus the NO 

a/ 
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a ::= NIL I (A/z)a 
I 

(fn/z)a 

becomes the recursive definition 

a=NIL ®( r( s-expression Q 
r/'R identifier P 9 a) 

8( 
r(,Gt function r/ 9 identifier Qr)-I 

Gr a) 

where: 

NIL=flat({NIL}) 

("=flat ({ (" } ) 
7=flat 

ry=flat ({',) } ) 

s-expression=flat(<S-expression>) 

identifier=flat(<identifier>) 

function=flat(<function>) 

using the methods of proof of lemmas 6.6.16 and 6.6.21 it is straight- 

forward to show that this equation (when solved with Y) defines a so 

that 

U E a <=> U=J. or U=(n(nAtn/'Zn)tta) where .L AA, E:-vpsession 

1 z E identifior 

.La E a (two different 

a's here!) 

or U=("(,fn',Z9II)II,a) where l/fn E function 

1 /z E identifier 

14 r a (two diffe,terzt 

a's here!) 

i.e./ 
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i.e. fix(a)=flat(<alist>) so a represents flat(<ali.st>). 

Of course the symbols rr (rr'rr/rr, rr )rr need not occur in the abstract 

syntax so we could have got a to represent flat(<alist>) by the 

neater definition: 

a=NIL @ (s--expression R identifier Q a) 0 (function R identifier 0 a) 

I put the extra symbols in just to show that doing it presents no 

problems. The reason that R, ( are used rather than x.+ is to 

exclude infinite expressions (such as an a which satisfies a=(.A;z)a) - 

this is easentiai if structural induction is to be a valid mode of 

reasoning. If we think of all BNF in this way then the semantic 

functions e h> [e] etc. become members of [faxin->[Lnv-->_rj].i etc. (where 

form=flat(<form>))and so the theory of continuous functions can be 

brought to bear on them (e.g. semantic equations can be solved with Y). 

Although this extra rigour does not seem useful in the cases discussed 

in this report, it can be, especially if one does want to admit 

infinite expressions (i.e. use +.x) as well as finite ones (e.g. as 

in [211). Such infinite programs cannot be defined in 131F but can be 

using recursive semi-domain equations, thus by regarding in the 

above way we got both the benefit of its undoubted lucidity pigs the 

ability to extend it to deal with infinite expressions when needed. 
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7. EXTENSIONS OF THE SIIai&NTICS TO MORE OF LISP 1.5 

The semantic equations described so far only deal with pure LISP, 

Unfortunately very few interesting LISP programs lie iri that subset. 

Until there is a fully debugged semantics of most of LISP 1.5 one 

cannot know for sure whether the approach adopted here is a dead end 

or the tip of a useful iceberg. In this chapt ;r J. do;ie..ribe 

semantic equations which purport to handle more of LT-P 1.5 #:han just 
pure LISP; I have done no analirsis of these equations and so their 
superficial plausibility may turn out to be ill-founded, 1 w all 

give a sequence of three sets of equations, each set hard] i:-E rlc;Ne 

than its predecessor. I shall not describe the cor°re;or:aiz,g 

extensions of -> as it is fairly straightforward (I thin..; r to express 

the algorithm implicit in the extended eval fuiction (g5.vakn in 

appendix B of the LISP 1.5 Manual [6 ] in 'calculus form' - f' this 

is not straightforward I do not know how to do it. I thin; it is 

important that -> be extended and compared with the souantic equatiort 

below so that one can know whether 'higher type' operational and 

denotational intuitions about LISP are consicnt with one another. 

Chris Wadsworth has investigated an analogous problem for the 

X-calculus [25] and Gordon Plot-kin [1.61 has adapted that work to cope 

.fith a 'strictness test' approach to call-by-value in the X -calculus. 

7.1 Functional arguments (furargs) 

Functional arguments or "furargs" are a very useful. feature of LISP; 

they 
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they (among other things) enable "canned loops" such as maplist to 

be defined. The obvious way to handle them semantically is to 

change D from S+[S*_>S] to S+[D*->S]; I believe this works but care 

is needed as the examples below show. Consider e= X[(,f];NIL][Label[g;g]], 

this shoVld evaluate to NIL so the following calculation must not be 

valid: 

[e](r)=[ X[[f];NIL]](r)([Label[g; ]](r)) (1) 

=Q f.NIL) (1) (2) 

=1 (bv definition of -. 3.11,2) 

However if e'=X[[f];NIL][Label[g;g][NIL]] we do want: 

[e'j(r)=[X [[f];NIL]I(r)([Label[g;g]](r)(NIL)) (1') 

=&.NIL) (L) (2') 

=-L (3') 

In the semantics below these examples come out right because I have 

arranged that only 15 is identified with ..L D whilst 1 T .1-D 

To do this here is a definition 

7.1.1 DAfi.nition 

If D1,D2 are semi-domains and D=D1+D2*then for xi E D (i=1,2) define 

(xi in D) E D by: 
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(xi in D) = 
(xi in D) otherwise 

Remark: This definition should be compared with that of (x. in D) 

viz. definition 3.7.9 the difference i9 just that 

I=(.1D in D) but 1 D.,`"(-[`D in D). i 2. i 
It is easy to see that x{-> (x in D) is continuous. 

7.1.2 Semantics 

Syntax 

New metavariable: arg ranges over <argument> 

Syntactic equations: 

e ::= A Ix Jfn[arg,;***;argnJJ [e ii-,%e 
12 

;,,,;e 
n1 

-.e 
n?-1 

'fn.::= F I fIX[[z1;...;zn];e] 
I 

Label[f;fn] Ir[f;fn] 

arg ::= e Ifn 

Semantics 

Denotations D=S+FUN 

S=flat(<S-expression>) 

FUN=[D'_>S] (see Note 1 below) 

Environments: Env=Id,_>[Env->D] - an alist model (5.2.1) 

Semantic 
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Semantic functions: e i-> [e]: <form>->[Ersv-->S] 

fn !-> [fn]: <function>->[Env->Ff7N] 

arg --> A[arg] : <argument>-> [Env-> D] 

Semantic equations: 

(S1) [AI(r)=A 

(S2) lx](r)=r(x)(r)J s 

(s3) [fn[arg1;...;argn]](r)=Ifn](r)([arg1](r),..,[argn](r)) 

en2](l) (S4) [e11~ e12,...;en1-en ](r)=([e11](r)-+ [12(i ..,[en1]tr)- 

(s5) [car](r)= t:D.car(t, S) 

[cdr](r)= t:D.cdr(tl s) 

[cons r)= t1t2:D.cons(t1 I 
S,t2 

I 
s) 

[atomlr)= t:D.atom(t I S) 

[eq ')= t1t2:D,eq(t11 S,t2 I S) 

(S6) [f r)=r(f) (r) I FUN 

(S7) [[71;...;z ];e]](r)= t...tn:D.W((t117,)...(tn/zn)r) 

(see Note 2 below) 

(S8) [Label[f;fn]](r)=-4fn](([fnl/f)r) 

(s9) [/J.[f;fn]](r)=Y( v:[Env->FUi?;.),ri.[fn (("!f)r )(_ ) 

(S10) A[e](r)=([e](r) in D) 

(S11) A[fn](r)=([fn](r) in D) 

Note 1: Further specification of the solution of D=S+[D*->S] is 

required (cf. 5.2.1 and 6.2.1) - I have not investigated 

this further. 

Note 2/ 
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Note 2: If t E FUN, Z E Id, r E F,nv then (t/z)r means 

((A r'. (t in D))/z)r. 

7e1.3 Exw-ri fI e calculation of denotations 

7.1.3.1:' fn= µ[g;g] 

Then [fn] (r) L' [g;g] 1(r) 

=Y(Xv. X r' . k i ( (\T/g)r' ))(r) 

=y(Xv. Xr'.v((v/g)r')) (r) 
=1 

FUIT 
(as( Xv. Xr'.v((v/g)r'))(1)= r'.1. =J ) 

'7.1.3.2: e=X[[f';"3IL][ .)Lg;g]] 

Then e(r)- [[fI;NIL](r)(AI[g;) 

=(Xt.NIL)(-LF, in D) 

=NIL 

7.1.3-3: e1 XEf];NIL][[g;g'][NIL]] 

Then [e'](r)=[ X [[f];NIL]](r)(A[ µ[g;o][NIL11) 

=(Lt.NIL) ([ J 
[NIIL] 

in D) 

=(Qt.NIL)(1.S in D) 

=(Lt.NIL) (J.D) 

Thus assuming and Label are appropriately related, the exa pies 

mentioned above get handled correctly. 

7.2/ 
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7.2 Functional results 

Having coped with functional arguments the obvious thing to do next 

is functional results, this presents no obvious difficulties - one 

just allows a function to be a form. Here are the details. 

Syntax 

e : : = A I X I 
fn I fn[e1;...;en] 

I 
[e11- e12;...;en1-' en2] 

fn F I fIX[[z1;...;zn];e] 
i 
Label[f;fn] I f;fn] 

Semantics 

Denotations: D=S+FUN 

S--flat(<S-expression>) 

FUN=[D*->D] (see Note 1 below) 

Environments: Env=Id->[Env->D] - an alist model (5.2.1) 

Semantic functions: e a-> V[e]: <form>->[Env->D] 

fn t-> W[fnl: <function>->[Env->FUN] 

Semantic equations: 

(31) V[A1(r)°(A in D) 

(S2) V[x](r)=r(x)(r) 

(33) V[fn1(r)=(W[fn](r) in D) 

(34) V[fn[e1;...yen]](r)-;1[fn](r)(V[eii(r),...,V[en](r)) 

(S5) 
V[[e11-4 

e12;...;en1!'en2]1(r)=(V[e11 (')'V['12](r),...,V[eni r)_ 

(see Note 2 below) 

(S6)/ 
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(S6) W[carl(r)= Lt:D.(car(t i S) in D) 

W[cdr1(r)=: t:D.(cdr(tI S) in D) 

W[consl(r)= Xt1t2:D.(cons(t1 I "31 t2 
S) in D) 

W[atom}(r)= t:D.(atom(t i S) in D) 

W[eql(r)° t1t2:D.(eq(t1 
I 
S,tj S) in T)'; 

(S7) WEf1(i) =r(f) (r) I FUN 

08) W1 X[[z1;...;zn];e] (;°)= +1 ...to:M[ejj((t.i/z1)...(r, 5 

(see Note 3 below) 

(S9) W[Label[f;fn]](r) WW[fnJ((W[fn'/f)r) 

(S10) Wu[f;fn]1(r)=Y( Xv:(Env->FUN]. \.r'.'r fn]((v,1:4)r' 

Note I: Further specification of the solution of p=S+LD '->D] i 

required, again I have not investigated this further. 

Note 2: For tip E D (t11" t12;...;tn1- t.2) -Leans 

((t11 .S- 
t121 

51000,tn1 f S-. tn2I S) in I,) 

Note 3: If t E FUN then (t/z) means ((X r'.(t in D))/z)r.. 

7.3 QUOTE' d arguments 

Up to now (i.e. in 7.1, 7.2) I have only con:dered functional arguments 

formed with TTTTCTIOit (i.e. closures). An important and usebu" property 

of LISP 1.5 is that one may keep the free variables of functional 

arguments fluid to allow the meaning of a function to depend on its 

activation environment as woll as its definition. environment (see [13]). 

To cope with this in the senantics is straightforward. 

Stmtax 
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Syntax 

e ::= A 
I 

x I fn 
I 
fn[arg1;...;argr1] 

I [e11' e12;...;en1-+ en2] n 

fn ::= F I f IX[[z1;...;z ];e] I Label[f;fn] I f;fn] 

arg ::= e, I QUOTE(fn) 

Semantics 

Denotations: ]IrS+FUN 

S=flat(<S-expression>) 

FUN=[[Env->D]*->D] (see Note 1) 

Environment: Env=-Id->[Env->D] - an alist model (5.2.1) 

Semantic functions: e0V[e1: <form>->[Fnv->D] 

fni->w[el: <function>->[Env->FtJN] 

arga>A[arg]: <argument>->[Env->[1nv->D], 

Semantic equations: 

(S1) 

(S2) 

(s3) 

(S4) 

(s5) 

V[A1(r)=(A in D) 

VIx](r)=r(x)(r) 

V[fn1(r)=(Wjfn1(r) in D) 

V[fn[arg1 ; ... ; ark',,] } (r)= 4fn1(r) (Alarg11' (r) , ... ,A [ar 

121(x),...,V ei1](r) V[[e11-0 e12;...;en1-' en2]J(r)=(V[e111(r)w Vie 

(see Note 2) 

u -2 

(s6)/ 
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(S6) W[car] (r)=.t: [Env->D]. (car(t(r) I S) in D) 

WEcdr](r) =t:[Fnv->D].(cdr(t(r)J S) in D) 

W1conS,(r)=nt1t2:[:Vnv->D].(cons(t,(r) 
I S,t2(r) I S) in D) 

W[atom' (r)-=t:[Env >D].(atom(t(r)P S) in D) 

[egj(r)= tlt2:[Env >D].(eq(t1(r) S,t2(r) 1 s) in D) 

(S7) WM(r)=r(f)(r°) I FUN 

(S8) dX[[z1;...;z ];e11(').,\t1..otn:[Fn-r-->D1.V[e,((t1/z1) ,..(tn/xn)r) 

(S9) W[LPbei[f; fn] 1(x)=w[fni ((W[tri]/f)x ) 

(510) W[l [f; fn] H (r)=Y( Xv: [a nv->I,'UI1]. X r' .W[fn] ((v/f)r')) (r) 

(511) A[ei(r)= X r'.V[e](r) 

(S12) A[QUOTE(fn)](r)=(W[fn] in [Env->D]) 

Note 1: I have not investigated the further specification of D. 

Note 2: Here (t11 t12;...;tn1 tn2) means ((`11 I s4' t12 1 S ,... 

Here is an example to show the difference between ftunarg: 

arguments. 

Let fn=X[If ]; X[[x];f[x]][NIL]] so that 

W[fn](r)=Xt1.V[)\[[x];f[x]][NIL]]((t1/f)r) 

= t1.(xt2.Vlf[x]]((t2/x)(t1/f)r))(Xr'.(IITIL in D)) 

=t1.V[f[x]]((NII,/x)(t1/f)r) (by convention 3.11.4 - 

=t1.t1((NIL/x)(t1/f)r)(X rf.(NIL in D))' 

QUOTrI4 

in. 

Then/ 
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Then (1) V[fn[ \ [[y];x]]](r)=',i[fn](r)(A[A[[y];x]](r)) 

_(Xr'.V[ X [[y];x]I(r))(...)(Xr'.(NIL in D)) 

=(t.V[x]((t/y)r))( X r .(NIL in D)) 

=V[x]((NIL/y)r) 

=r(x)((NIL/y)r) 

but (2) V[fn[QUOTE(\[[y];x])]](r) 

=N[fn](r)(A[QUOTE( 3v[[y]px.])s(r)) 

=N[ X[[y];x]$((NIL/x)(t1/f)Y')O r'.(JfT in D)) 

=V[x]((NIL/y)(NIL/x)(t1/f)r) 

=NIL (where t1=(W[ \ in D)) 

In (2) x gets looked up 'later' than in (1) as intended. 

7.4 further extensions 

So far I have been able to avoid having to simulate sequencing 

mechanisms in the semantic equations. Call-by-value is es3entially 

a sequential notion - in essence it consists in evaluating ar;rume'ts 

before passing them, however, I have been able to cope hecatuse (in 

simple cases) all the conclusions that this sequea.cing entails can 

be deduced from just one of them - namely that [X[[x;.4.;xT3;e]a()(... 

i.e. strictness. Unfortunately this simple approach (which, to my 

knowledge, first appeared in [ 2 ]) no longer works when evaluations can 

have side effects which record the time at' which things 
occurrada in 

such/ 
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such cases one has to build sequencing in. Portunatel.y the-.gh, 

doing this is well understood, and it is another achievement of 

Chris Wadsworth 14 ] (see [18] also) to show how, using "continuations", 

one can make semantic equations just 'operational enough' to cope 

with this and other sequential notions such as jumping. 

Because I do not want to go into the theory of continuations I shall 
not describe how side effects (e.g. assignment) PROG's and GOTC's are 

handled - in any case I have done absolutely no work on the analysis 

of the resulting equations ( which I have not even written down!). 

Another practically useful facility in LISP is the ability to construct 

function definitions at run time and then interpret them. Doing this 

is very operational and I do now know how best to handle it with 

denotational semantics, however, even if an operational 'semantics' 

essential this should still be doable within the theory of semi-domains 

(see [18 ]). 

I hope that the extensions described in this chapter show that there 

is still lots to be done before we can conclude that Env=Id->[Env-;.i3] iN, 

a useful equation for handling fluid varities. 
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8. SUGGESTIONS FOR FUTURE RESEARCH 

During the course of this work many problems have come up which I 
have not investigated, in this section I shall list some of them, My 

future plans are suc-li that I doubt if I shall do any work on them. 

8.1 Analysis of more sophisticated semantic e4-rations 

The semantic equations given in chapter 7 need to be examined to see if 
they are in accord with reality (as defined by existing interpreters). 

I, think that, given a suitable extension of .->, the main theorem should 

be extendable to cope with funargs, QUOTEd arguments and functional 

results. If the proof idea used here is to work for the extended 

semantics a more subtle set of approximants will be needed. This i 

because there are more possibilities for ronate,ninating corputati.on.;. 

(e.g. X[[f];f[f]][ X[[f];f[f]]]) so to render approximantw terminating 

a denser sprinkling of indices is called for. I think one will have to 

combine the 'classical' kind of approximants used by Wadsworth [25], 

with the kind I have used; the 'classical' approxi_mants bein used to 

finitize those parts of computations which are really X -calculus 

reductions, and my approximants unitizing those parts which manipulate 

alists in an essential way. 

There is also a need to investigate the relation between Label and 
J 

t 

for these extended semantics, I suspect that the best way to do this 

might not be via a generalized LISP-induction, but rather using the 

techniques of Robert Milne [8]. 

8.2/ 



-254- 

8.2 Pluid variables at higher ti e: a calculus 

In order to help with the study of QUOTEd argrnents I give below an 

extension of the X-calculus which has them. The hope is that this 

calculus exhibits the central features (and difficulties) of fluid 

variables in a form which makes their investigation easier. There 

is a considerable danger, when studying such abstract calculi, Chat- 

one will ignore difficult problcmo because one has left them behind 

in the abstracting process, There is some evidence that calm a,y-value 

suffered this fate: it is only recently, with the study of reel 

languages, that the differences between the X--calculus and higher 

order programming languages have come to light (see e.g. [181), 

Nevertheless study of the X-calculus did lead to extra ordinary 

insights so I do not feel too irresponsible in describing the caiculu: 

below: 

8.2.1 The q_- X-calculus 

Syntax 

Metavariables: x ranges over <identifier> 

e " it <exp> 

arg it it <argument> 

Syntax equations: 

e x I e(arg) I X x.e 

arg ::= e IQ(e) 

Semantics 
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Semantics 

Denotations: D=[Env->D]->D 

Environments: Env=Id->[Env->D] (Id=flat(<identifier>)) 

Semantic functions: V: <exp>->[Env >D] 

A: <argument>->[Env-->[Env >D]] 

Semantic equations: 

(S1) V[x](r)=r(x)(r) 

(S2) V[e(arg)j(r)=V[c](r)(A[arg](r)) 

(S3) VXx.el(r)= X t:[Env >D].V[el((t/x)r) 

(S4) A[e](r)= X r':Env.V[e](r) 

(S5) A[Q(e)](r)=V[e] 

Some questions which naturally arise about the Q -X-calculus are; 

1. If no expressions are quoted (i.e. of the form Q(e)) does the 

Q- X-calculus essentially collapse to the ordinary X-ca'lculus` 

2. What relation obtains between: 

V[(X x.x)(Q(e))](r)=V[x]((V[e]/x)r)=V[e]((V[e]/x)r) 

and Y( Xv:[Env->D]. A r':Env.V[e]((v/x)r'))(r) ;r 

3. What does the paradoxical combinator 

Y= Xf.(Xyf(y(y)))(XYf(y(y))) 

denote? 

These/ 
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These questions may be trivial or uninteresting - I have not given 

them much thought. 

8.3 The true relation betweenk and Label 

I proved in 4.6 that for all r of the form [a] 

[ [f;fn]1(r)=[Label[f;fn]1(r) 

It would be interesting to know more about the set of is for which 

this is true. Is there some mathematically definable subset of Env 

which includes {[aJ j r- E <alist>} and whose members make the equation 

true? The answer to this may be found in Robert Mi.lne's work - 

perhaps there exist 'self-referential' predicates such that the is 

that satisfy these constitute the desired subset of Env? 

My counterexample in 4.6 does not rule out the possibility that 

[ p[f;fn]1 E [Label[f;fn]1, I suspect this may be true (though my 

intuition here is weak) and it would be nice to know if it is. 

8.4 Axioms to aislarabi-.gate semi-domain equations 

In section 5.2 I showed how the equation Env=ld->[Env->D] could be 

rendered unainbi uou , by requiring Exnv to satisfy Env2-' nv5. These 

axioms characterize the semi-domain corresponding to the minimal 

solution obtained by regarding Env=Id->[Env->D] as a retraction 

equation in U (see 6.7). An interesting problem is to work out hcw 

to/ 
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to move uniformly from semi-domain equations in general to axioms 

which characterize that solution which is obtained by regarding the 

equations as being about retractions of U. 

8.5 Rules of inference for LISP: LLSP loZic 

LISP-induction is an inference rule which I found ul, it is not 

clear though that my fomuw.ation is as general or as convenient to 

use as possible. To investigate thi., lots of ea mii pies need to be 

examined. It would be interesting to develop a logic specially 

tailored for reasoning about LISP. To design the formulae of such 

a logic one needs to know the 'shapes' of the theorems that one wants 

to prove - this requires lots of field work. Is it convenient to 

develop such a logic within LCF [10] or LAMBDA [23]? Perhaps one 

should start ab initio to prevent preconceived ideas warping things? 

8.6 Fixpoint treatment of simultaneous recursion definitions 

As mentioned in 3.10 and 4.8 T have not izriestigated. the sol,ui ion, via 

Y. of sets of mutually recursing definitions (e.g. those of spp1yt,evai, 

..,etc); I feel that theorem 4.6.4 should be extendable to ccv)v with 

this though the details might get messy - perhaps cate:gor.y-thecretic 

notation would help here? It would be interesting if it di.d beecau3o 

it might help to show the rationality of the worship of algebraic 

theories and other high-power tools by the adherants of the category 

theory cult. 

8.7/ 
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8.7 When does the naive semantics work? 

Presumably for suitably simple programs (e.g. with no free variables 

or non-terminating sub-expressions) the semantics of 3.8 would wo.rkf 

I thought for a time that proving this was trivial but I am not so 

pessimistic now and I think it raises interesting problems. (`rs 

approach would be to develop a calculus appropriate to the sem .ntice 

of 3.8, say define ->> analogous to ->, so that an analogue of the 

Main Theorem held for ->>. Then one could try and show by is., .c.ctior> 

on the size of computation that 

p->A <=> p->>A 

Another approach would be to use Robert Milne's techniques, I rather 

suspect that in fact this will be the best way to do it. 
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A'pendix 1 

"It is vain to do with more what can be done with fewer" 

William of Occam. 

In this report I have worked entirely with semi-domains rather than 

domains (i.e. complete lattices). I have found that this has made 

the theory much simpler and less messy (in an earlier version I 

worked with domains). Using semi-domains is, of course, not a new 

idea, and a number of people are toying with the pros and cons of it. 

In this appendix I list some of the advantages I have found, as yet 

no disadvantages have come to light. I do not feel that the 

advantages given below constitute conclusive evidence in favour of 

semi-domains and I should like to see a list of advantages of domains 

for comparison. 

Advanta-es of semi-domains over domains: 

There is no need to have a top element T , so there is no problem of 
intuiting the meaning of T . Standari functions do not have to 

manipulate T so problems such as: what does "car(cons( T, J'_))" mean? 

do not arise. Also the absence of T can eliminate from proofs 

special ad hoc arguments needed to deal with it. 

2:/ 
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2: 

There is only one contender for the conditional function and this has 

the obvious definition viz. 

I 
x :-=t 
y z=ff 

1 1 otherwise 

In logical space (the domain version of UQ tt, ff are not maximal and 

consequently both of the two possible conditionals have opaque 

definitions viz. 

(ZD x,y)= 

(z:? x,y)= 

x u y t=T 
x tt Ez/ T 

y ffez/T 
1 otherwise 

T z= T 
x ttl:: z/ T 

y ffezT 
I. otherwise 

Then one also has the problem of when to use. and when to use :--> 

.: 

The construction of UU,is simpler than' that of logical space because to 

prove Vs a semi-domain we only need to show it is closed under 

directed unions and this is easy in view of the formula: 

LJ (x' )/ 
1 
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n) OJ n 00 

i (x in=0`i xi)n=0 

which tells the whole story for semi-domains (i.e. directed unions) 

but does not work for arbitrary unions. 

4: 

It is easy to show that the set of fixed points of f E [D->D] is a 

semi-domain since for all directed X c D f(U X)=LJf(X). This formula 

does not hold for arbitrary X and so cannot be used to prove that the 

set of fixed points of f is a domain - the proof of this is t_r5 ck7,r. 

Also in semi-domains Llfix(f)= LiD which is not true for domains. 

Every retract of U is isomorphic to a sub semi--domain of U (see 6.6.7) - 
I do not know if this is true for logical space. Thus we only need 

one symbol W (of. 4 above). The set of retractions of U is a sub 

semi-domain of it and so when working with retractions we do not need 

to distinguish H X from 
Ufix( X u.u u) X as they are the same. 

6: 

The coalesced sum, G, and coalesced product, R, have natural 

definitions as retractions in U and this makes some standard semi- 

domains easy to represent e.g. (see 6.6.16) 

N--CAN 

I/ 
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I cannot see how to do this in logical space. I found a.# pretty 

hard to define in logical space (several complex auxiliary functions 

seemed needed), in U we have the lucid definition 

a*=O (a4 a*) 

The coalesced sum of two continuous semi-domains is a continuous 

semi-domain. That fact that the coalesced sum of continuous domains 

need not be continuous has been taken as evidence that the separated 

sum is what is needed (see e.g. [17]). I feel that boi;h are useful 

(see 6.6.15, 6.6.20 and 6.8 for uses) and if one uses semi-domains then 

one can have both the continuity axiom and G. 



-263-- 

References 

[1] de Bakker, J.W. and de Roever, W.P. A calculus for recursive 

program schemes. Proc._ IRIA SMosium on Automata.. Formal 

Languages and Programming Amsterdam: -North Holland. 

[2] Cadiou, J.M. Recursive definitions of partial functions and 

their computations. 

131 

Stanford Artificial Intelli&ence Pro, ect 

no. AIM-163. STAN-CS-2666.72. (1972). 

Gordon, M.J.C. An investigation of lit: where 

lit((A1...A 
n 
),A n+1,f)=f(A1,f(A 21?...,f(A n 

A 
n+1 

))). Research 

Memorandum IMP--R-101. Edinburgh: School of Artificial 
Intelligence, University of Edinburgh. (1973). 

[4] Lakatos, I. Proofs and refutations. Brit. J. Phil. of Sci. 14. 

(1963-4). 

[5] Landin, P.J. A X -calculus approach. Advances in Prozrnm.n 

and Non-numerical Computation. Pergamon Press. (1966). 

[6] McCarthy, J. et. al. LISP 1.5 Proora? ors Tams 1. MIT Pa°ess. 

(1969). 

[7] McGowan, C. Correctne:;s results for lambda calculus interpreters. 

Ph.D. Thesis. Cornell University. (1971). 

[8]/ 



-264- 

[8] Milne, R. The formal semantics of programming languages and 

their implementations. Ph.D. Thesis. Cambridge University 

(to appear). 

[9] Milne, R. Private communication. 

[10] Milner, R. Implementation and applications of Scott's logic 

for computable functions. Proceedings of an ACM Conference 

on Proving- Assertions about Prorams. ACM (1972). 

[11] Milner, R. An approach to the semantics of parallel programs. 

Internal Memorandum. Edinburgh: Department of Computer Science, 

University of Edinburgh. 

[12] Morris, J.H. Jr. Lambda calculus models of programming languages. 

MAC-TR-57, MIT Project MAC, Cambridge, Massachusetts. (1968). 

[13] Moses, J. The function of FUNCTION in LISP or why the FUNARG 

problem should be called the Environment Problem. MAC-M-428, 

MIT Project MAC, Cambridge, Massachusetts. (1970). 

[14] Mosses, P.D. Forthcoming ProRrammmin Rese.rch Groin Technical 

Monograph, Oxford University Computing Laboratory. 

[15]/ 



-265- 

[15] Plotkin, G.D. A set-theoretical dyfinition of application. 

Research Memorandum MIP-R-95` Edinburgh: School of 

Artificial Intelligence, University of Edinburgh. (1972). 

[16] Plotkin, G.D. Forthcoming Research Memorandum, School of 

Artificial Intelligence, University of Edinburgh. 

[17] Reynolds, J.C. Notes on a lattice-the6retic approach to the 

theory of computation. Systems and Information Science 

Syracuse University. (1972). 

[18] Reynolds, J.C. Definitional interpreters for higher-order 

programming languages. Proc. 25th National ACM Conference, 

Boston. (1972). 

[19] Reynolds, J.C. On the interpretations of Scott''s domains. 

Convegno d'Informatica Teorica. Instituto Nazionale di Alta 

Matematica (cittA Universitaria), Rome, Italy. February 6,(1973). 

[20] Scott, D. Outline of a mathematical theory of computation. 

Proc. Fourth Annual Princeton Conf. on Information Sciences and 

Systems. (1970). 

[21]/ 



-266- 

[211 Scott, D. The lattice of flow diagrams. Tnna zi.ztr ran 

eSe;,antiEMs o r.". sari hmi. T aza (erg.. E. E,n;eiex) Springier 

Lecture note Series No, 188, Spring er-Verl-gig, Heidelberg. (1971). 

[22] Scott, D. and. Strachey, C. Tocrarc s a ma ;he ati cal semantics 

for computer land ages. Pros, cs a ;rz t° i;uters raci 

Automata. Microwave Rep ch .tnst i t"j' fte Sorm- series, a 

Vol 21, Pot; rtechnic Institute of Br ooklyjn. (1972) . 

[23] Scott, D. Data types as lattices. Notes. J sterdam. (1972). 

[24] Wads orth, C.P. Notes on Continuations. Private communication. 

[25] 'Wadsworth, C.P. The relationship between lambda-expressions 

and their denotations in 1 ̂ ott l s models for the larabdia-ca? e ulus. 

Proceegin. S of -he Orlean Con.fercnce (ads. Calais, Denick- and 

Sabbagh). To appear. 


	PhD coversheet April 2012.pdf
	EDI-INF-PHD-73-002

