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ABSTRACT 

This thesis considers three major quantitative genetic topics characteristic of growth 

and reproductive traits in broiler breeding, i.e. (I) the estimation of maternal effects 

in juvenile body weight (JBWT), (2) selection for food conversion into growth 

defined as a ratio (FCR), and (3) non-normality and curvilinearity of heritability of 

egg production distributions and the genetic relationships of those reproductive traits 

with juvenile growth. Restricted maximum likelihood (REMIL) methods based on the 

individual animal model were utilised in the estimation of variance components to 

make optimum use of the data and take account of selection. 

Estimates of the maternal additive genetic variation were small relative to the 

direct additive genetic variation of JBWT for two broiler populations investigated. 

The negative estimates of the direct-maternal genetic correlation (r) were 

unexpected and prompted the investigation of more appropriate and detailed 

statistical models taking account of direct-maternal environmental covariation, 

estimated either as the covariance between the environmental maternal and the 

environmental residual effects or as a maternal phenotypic effect through regression 

on the mother's phenotype. Whilst the goodness-of-fit of these alternative models 

was superior, the estimates of rAm  were not much affected. The choice of the fixed 

effect structure was shown to be paramount in the estimation of maternal effects. 

Thus far, maternal effects were lumped together into a single component. Next, the 

results were described of an experiment conducted to identify individual pathways 

related to the egg causing maternal variation in JBWT and to establish their effect on 

offspring-parental regressions. Antagonistic maternal pathways of egg weight at the 

start and at the 18th day of incubation were observed. Their effects largely offset 

each other and hence biased the offspring-dam regression only slightly. A high loss in 

egg weight during incubation, indicative of poor egg shell quality, was identified as 

the likely cause for the negative estimates of r. 

Direct versus indirect selection for FCR after selection for JBWT, a 

sequential scheme often applied in broilers, was considered. It was shown that, with 
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large differences in heritabilities or genetic and environmental correlations of food 

consumption (FC) and weight gain (WG), selection for a linear representation of 

FCR, with weights for FC and WG based on statistical differentiation, can lead to 

additional progress in FCR. Similar heritabilities for FC and WG in the literature 

suggest a small loss by direct selection for the ratio. REMIL proved robust to the non-

normality in FCR and hence transformation does not seem necessary to enable 

accurate selection and estimation of response using best linear unbiased predicted 

(BLUP) breeding values. 

A marked skewness in egg production distributions of female line broiler hens 

was observed. A mixture model of two Gaussian distributions with different 

dispersion and location fitted the phenotypic data best. Sexual maturity closely 

followed a log-normal distribution after a shift in location. Elimination of outliers, on 

the basis of either outlier theory on the phenotypic mixture model or the hypothetical 

underlying genetic variability, and/or data transformation improved normality of 

errors and linearity and size of heritability. In spite of appreciable decreases, 

curvilinearity of heritability was still significant after transformation by comparison of 

effective heritabilities in the up and down direction of selection. The genetic 

relationships among these reproductive data and JBWT revealed substantial 

differences in comparison to earlier literature estimates. This illustrates the 

importance of contemporary, population specific estimates for the optimal 

construction of selection indices or multivariate BLUP breeding values and indicates 

possible effects of changes in management on genetic relationships. 

These studies demonstrate the scope for more efficient broiler breeding 

programmes and indicate important areas for further research. 
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CHAPTER 1 

GENERAL INTRODUCTION 

Broiler growth and maternal effects 

The primary demand of broiler growers in attempting to satisfy market demand has 

always been rapid growth, with a maximum weight for age, or a minimum number of 

days to the desired market weight (Hunton, 1990). A high selection pressure and 

reasonable accuracy of selection decisions for growth to a fixed age provided rapid 

and consistent gains over the years. Progress was facilitated by the introduction of 

family indices after Osborne (1957). Unfortunately, these gains were not without 

cost, particularly in terms of traits concerned with reproduction. For instance, 

negative relationships have been observed for high body weight with egg production, 

fertility and hatchability of fertile eggs as a result of impaired egg shell quality 

(Marks, 1985; Siegel and Dunnington, 1985; Robinson et al., 1993). Chambers 

(1990) summarised heritability estimates for body weight based on the analysis of 

variance components in nested mating designs. Average estimates based on dam 

components were considerably higher than the estimates based on the sire (0.70 

versus 0.41), and although non-additive and sex-linked genetic variation might be 

partially responsible, both environmental and genetic maternal effects should not be 

underestimated. The genOtype of the dam might affect the phenotype of her progeny 

through a sample of half her direct additive genes for growth as well as through her 

genotype for maternal effects on growth (Willham, 1963; Koch, 1972; Meyer, 

1992a). Potential maternal pathways involved might be the size of the egg and its 

shell quality. Depending on their relationship with the direct genetic variation in body 

weight, partitioning of the variance into direct and maternal components might be 

required to achieve optimum progress in body weight and these reproductive traits 

(Baker, 1980; Meyer, 1992a). In Chapter 2 the estimation of maternal effects for 

juvenile body weight (JBWT) data of two meat-type chicken populations was 

considered assuming unknown maternal performances. Standard analyses (Meyer, 
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1989) based on the (reduced) biometrical model of Wiliham (1963) were performed. 

Extension of these models with an environmental dam-offspring covariance was 

investigated. Furthermore, the goodness-of-fit of a model assuming a phenotypic 

maternal effect through regression on the dam's phenotype as proposed by Falconer 

(1965), and integrated Falconer-Wiliham models were investigated in a mixed model 

setting. The present sizeable data sets possibly increase the scope for these detailed 

genetic models to partition several highly correlated components. 

Lande and Kirkpatrick (1990) advocated identification and inclusion of individual 

networks of maternal effects, rather than combining all non-Mendelian inheritance 

into a single maternal effect. Therefore, Chapter 3 presents the results of an 

experiment that was conducted in order to identify individually observed maternal 

pathways relating to the egg which might be responsible for the heterogeneous 

offspring-sire and offspring-dam regression estimates of JBWT. Additional direct 

selection for those traits with sufficient genetic variation could improve JBWT more 

effectively; and could prevent sometimes unfavourable genetic changes in response to 

selection for only JBWT. 

Efficiency of broiler growth defined as a ratio 

Food represents about 70% of the costs of broiler production (Pym, 1990). 

Therefore, efficient conversion of food into growth, often expressed as a ratio (food 

conversion ratio, FCR), is paramount from an economic point of view. The higher 

efficiency of birds selected for JBWT mainly originates from the decrease in energy 

needed for maintenance due to the shorter growing period (Hunton, 1990). Pym 

(1979; 1983; 1985) showed that substantial scope exists for improvement of FCR 

independent of JBWT, which prompted breeding companies to select for this trait 

directly. The feed efficiency can be defined in several different ways, but FCR is 

probably most commonly used. Although FCR is only a measure of gross efficiency 

(Pym, 1985), a breed's commercial efficiency is generally judged by this measure 

which makes it the efficiency trait of direct economic importance. Selection for a 

ratio might be sub-optimal. Linear selection for the component traits allows us to 
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take into consideration their covariation resulting in extra accuracy, but increases 

genetic evaluations by one dimension (two components instead of a ratio). In Chapter 

4 these two alternative selection methods were compared in predicted response 

considering both single- and two-step selection for JBWT and FCR. The effects of 

differences in heritabilities and/or correlations of the component traits were 

investigated. Genetic and phenotypic (co)variances of FCR with the other traits were 

approximated by statistical differentiation (Pearson, 1897), which makes the present 

study more straightforward in its approach than Gunsett's (1984) comparison of 

selection for ratio and linear index. 

Reproductive ability of broiler parents 

The downward trend in reproductive performance of broiler parents was initially 

compensated for by managemental changes in nutrition and lighting. However, as the 

industry progressed and competition intensified, most breeders began to develop 

specialised male and female lines (Hunton, 1990). The loss in reproductive 

performance could be (partially) counterbalanced by direct selection for those traits, 

although the scope was limited due to their sex-limited character and low 

heritabilities. Furthermore, selection was hampered by the non-normality of the egg 

production distributions (Clayton, 1975). The and Hill (1988) and Besbes el at 

(1993) suggested a power-transformation due to Box and Cox (1964). This 

transformation procedure substantially improved normality and linearity of 

heritability, which are prerequisites for the efficient use of selection index and BLUP 

methods. It was not clear, however, whether Box-Cox transformation was sufficient 

to bring us back on "usual grounds". Prior to analyses, The and Hill (1988) made an 

arbitrary decision as regards the elimination of potential outliers, whereas Besbes et 

al. (1993) failed to report the statistical reasoning behind the identification and 

subsequent elimination of outliers. Chapter 5 considered identification of outliers 

more formally on the basis of outlier theory (Barnett and Lewis, 1994) and the 

hypothetical underlying genetic variability of egg production distributions. Further, 

Chapter 5 investigated whether elimination of outliers and data transformation, were 
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able to restore fully the usual assumptions by testing curvilinearity of heritability, 

which can be indicative of several potential problems in the data (Robertson, 1977). 

The success of specialised female lines in providing sufficiently prolific broiler 

parents, yet with acceptable broiler characteristics very much depends on the genetic 

antagonism between those traits. Contemporary, population specific estimates of 

their genetic relationships are relevant for the optimal construction of selection 

indices or multivariate BLUP breeding values. Also, our understanding of changes in 

genetic correlations due to differences in environments (eg. restricted versus ad 

libitum feeding regimes) is of the utmost importance, as this can have direct bearing 

on (underlying) genetic trends of economic traits. Therefore, in Chapter 6 genetic 

relationships between reproduction traits and JBWT and among the reproduction 

traits were studied (with or without data transformation) for a modern meat-type 

female line, and were compared to earlier literature estimates. 

Scope of this thesis 

In summary the aim of this thesis was to investigate the quantitative genetic problems 

of both scientific and commercial interest characteristic of three economically highly 

important traits in broiler breeding (I) the estimation of maternal genetic and 

environmental effects in JBWT (Chapters 2 and 3), (2) selection for food conversion 

into growth defined as a ratio (Chapter 4); and (3) non-normality and curvilinearity of 

heritability of egg production distributions (Chapter 5) and the genetic relationships 

of those traits with JBWT (Chapter 6). All Chapters are preceded by a more detailed 

introduction specific to the respective topic. 



CHAPTER 2 

MODELS TO ESTIMATE MATERNAL EFFECTS 

ASSUMING UNKNOWN MATERNAL PERFORMANCES 

APPLIED TO JUVENILE BODY WEIGHT IN BROILER CHICKENS 

INTRODUCTION 

At present, estimation of maternal genetic variances in animal breeding is mainly 

based on the biometrical model suggested by Wiliham (1963). This model of maternal 

inheritance assumes a single (unobserved) maternal trait, inherited in a purely 

Mendelian fashion, producing a non-Mendelian effect on a separate trait in the 

offspring. For instance, the dam's milk production and mothering ability might exert a 

combined non-Mendelian influence on early growth rate of beef cattle (Meyer, 

1992a). The practical application of such models has been greatly facilitated and 

hence encouraged by derivative-free IAM-REM1L programs of Meyer (1989), in 

which estimation of genetic maternal effects according to Wiliham (1963) forms a 

standard feature. Meyer (1989), however, uses a 'reduced' model by assuming 

absence of an environmental dam-offspring covariance, which is likely to improve the 

precision of the often highly confounded components to be estimated but which 

might at the same time lead to biased estimates of the correlation between the direct 

and the maternal genetic effects (r um) in particular (Koch et al., 1972; Thompson, 

1976; Meyer, 1 992a,b). Often the types of covariances between relatives available in 

the data do not have sufficiently different expectations to allow all components of 

Willham's (1963) model to be estimated (Thompson, 1976; Meyer, 1992b). For a 

data set (of size 8 000) based on a genetic parameter structure typical to a growth 

trait in beef cattle, Meyer (1992b) found that the environmental dam-offspring 

covariance should amount to at least 30% of the permanent environmental variance 

due to the dam before a likelihood ratio test would be expected to distinguish it from 

zero. Greater data sets, however, including multiple generations of observations and 
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a variety of types of covariances between relatives might provide sufficient contrast 

for the higher number of components in an extended model to be estimated more 

precisely. 

Falconer (1965) considered the case where the phenotypic value of the 

mother for the character in question influenced the value of the offspring for the same 

character, which results in an environmentally caused dam-offspring resemblance. To 

account for this resemblance statistically, he included a partial regression coefficient 

in the model which related daughters' to mothers' phenotypic values in the absence of 

genetic variation among the mothers. The genetic basis of the maternal effect is 

ignored in such a model. Thompson (1976) investigated Falconer's (1965) approach, 

using maximum likelihood methods, as an alternative to Willham's (1963) model with 

low precision and high sampling covariances between some estimates. 

Lande and Kirkpatrick (1990) showed that Willham's (1963) model fails to 

account for cycles of maternal effects as in Falconer's (1965) model. Robinson (1994) 

demonstrated by simulation that a negative dam-offspring covariance, as in Falconer's 

model with a maternal coefficient of -0.2, was fitted by Willham's model partially as a 

negative rAm  and as a permanent environmental effect using Meyer's IAM-REML 

programs. Consequently, she argued that maternal action according to these, 

Falconer-type, models might explain the often disputed negative rAM estimates. 

Because of these mutual limitations it might be interesting to integrate 

Falconer's and Willham's models in a mixed model setting to enable consideration of 

both the genetic basis of the maternal effect and the maternal action through 

regression on mother's phenotype (corrected for Best Linear Unbiased Estimator 

solutions of fixed effects). 

A great amount of work has been carried out on the estimation of maternal 

effects among domestic livestock, in particular for mammals (for reviews see 

Willham, 1980; Mohiuddin, 1993). In poultry, however, where maternal (egg) effects 

on juvenile broiler body weight (JBWT) are apparent (Chambers, 1990), no major 

attempts have been made to partition this maternal variance into genetic and 

environmental components. Also the sign and magnitude of rAM  has not been 

estimated according to Willham's (1963) model. Many studies, however, have shown 
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a positive (phenotypic) effect of egg weight on JBWT (Chambers, 1990). Poultry 

data may be suitable for the estimation of maternal genetic variances due to their size 

and structure with many offspring per dam and often many recorded generations 

available. 

The objectives of the present study were to investigate 1) the effect of 

estimation of the environmental dam-offspring covariance on the other (co)variance 

components and resulting parameters (particularly r) and on the likelihood of the 

sizeable data sets for JBWT in two meat-type chicken populations by IAM-REML 

methods and 2) the goodness-of-fit of Falconer-type and integrated Falconer-Wiliham 

models to simulated data and these JBWT data and the resulting estimated 

components and parameters. 

MATERIAL AND METHODS 

Data 

Field data The data on JBWT originated from two commercial broiler populations. 

Summary statistics are illustrated in Table 2.1. The data on strain A and B 

represented approximately 6 and 3 overlapping generations, respectively. Male and 

female JBWT SDs were somewhat heterogeneous, presumably due to a scale effect. 

Some heterogeneity of raw CVs was apparent, but disappeared after correction for 

effects of hatch week and age of the dam. Some data structure aspects are shown in 

Table 2 2 

Simulated data Data was simulated to study the goodness-of-fit of the various 

models to estimate maternal effects (see following) and the differences between 

simulated and estimated (co)variance components. The genetic model was similar to 

the one assumed by Robinson (1994), with a direct genetic effect, a maternal genetic 

effect and a temporary environmental effect, sampled from N(0,100), N(0,20) and 

N(0,280), respectively. Furthermore, a regression of -0.1 on the dam's phenotype was 

assumed. The base population consisted of 110 animals. Ten sires were mated to a 

hundred dams in a nested design with ten full sib offspring produced by each sire-dam 
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combination. Parental candidates were randomly chosen from these thousand 

offspring to generate the next generation. This hierarchical mating scheme was 

repeated for eight generations. 

Models of analyses 

Effects of location Fixed effects fitted were hatch week (198 and 90 levels for strain 

A and B, respectively), sex (2 levels) and age of the dam when the egg was laid in 3-

week intervals (7 levels) representing effects on eggs (eg. size). 

Considering male and female JBWT as separate traits Table 2.1 gave some 

evidence that the differential SDs of both sexes are due to the dependence of variance 

and mean, since adjusted CVs were homogeneous. To fully justify evaluation of male 

and female JBWT as one trait in the analysis of maternal effects, however, the two 

sexes were considered as separate traits in a bivariate analysis in order to investigate 

the genetic relationship between these traits and hence the importance of segregation 

of sex-linked genes affecting JBWT in the present broiler populations. In matrix 

notation the bivariate model can be presented as: 

ra, 
1 

r'i 
[XI 	0 lrb1[Za 0 Zp,°1 a2

L
[el] 

Y2J0 x2 J[b2 j[o Za2  0 Zp2 J1p 	e2 	 [2.1] 

LP2j 

where, for trait i (i = 1,2 ; representing JBWT on males and females), Yi is a vector of 

observations; b1  is a vector of fixed effects; a1  is a vector with random additive 

genetic animal effects; Pi is a vector with random maternal permanent environmental 

effects; e1  is a vector with random residual effects; and X1, Zai and Zpi are incidence 

matrices relating the observations to the respective fixed and random effects. The 

assumed variance-covariance structure is: 
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a1  Ac: 1 	Aaa12 	0 	0 0 	0 
a2  AYa12 	Ac42 	0 	0 0 	0 

V[U] [ul pI  = 0 	0 	11a'1BcYp12  0 	0 

Lej  p2 0 	0 	Ba 12 	I2a 2  0 	0 
e1  0 	0 	0 	0 I1a 2 	0 el 
e., 0 	0 	0 	0 0 	I2ae2  

where a2ai, a2  Pi and a2ei are the additive genetic, the maternal permanent 

environmental and the residual environmental variances for trait i; aa12 and ap12 are 

the corresponding covariances between the male and female JBWT; A is the 

relationship matrix; L is an identity matrix; and B is a rectangular incidence matrix 

linking male and female progeny records to the dam. The algorithm of Thompson et 

al. (1995) was used. Their method reduces the model to univariate forms by scaling 

and transformation, which diminishes dimensionality and speeds up convergence. 

A 'reduced' Wiliham model Initially six different genetic models, optional in 

Meyer's (1989) programs, were considered for both strains. Table 2.3 exhibits the 

random effects fitted and the (co)variance components estimated in each model. 

Model 1 was a purely direct additive model, while model 2 (with sub-models a,b and 

c) allowed for dams' permanent environmental effects in addition. This environmental 

maternal component was slightly expanded by distinguishing between a covariance of 

maternal half sibs (model 2a) and liii! sibs (model 2b). Fitting both simultaneously 

was considered also (model 2c). Model 3 included a maternal genetic effect in 

addition to the animals' direct genetic effects, assuming zero direct-maternal 

covariance (a). Model 4 was as model 3 but allowed for a non-zero a. Models 

5 and 6 (a, b and c) corresponded to models 3 and 4, respectively, but included 

maternal permanent environmental effects in addition (on maternal HSs and/or FSs). 

The sub-models (1 to 5) follow from the full mixed linear model (model 6), which in 

matrix notation is: 

y= Xb+  ZA UA + ZM UM + ZC+ e 
	

[2.2] 

where y, b, UA, 11M, c and e are vectors of observations, fixed effects, direct breeding 

values, maternal breeding values, random maternal permanent environmental effects, 
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and random environmental residual effects, respectively; and X, ZA, ZM and Zc are 

incidence matrices relating the observations to the respective fixed and random 

effects. The variance-covariance structure is 

UA Ac AcYAM  0 0 

	

UM AYAM  Ac 	0 0 
var 	= 

c 	0 	0 	icy, 	0 

e0 0 0 ICY 
 

An 'extended' Wiliham model Throughout the previous models a zero direct-

maternal environmental covariance (cYEC)  was assumed, which is commonly 

practiced. However, the possibility of a non-zero o EC   is real. The existence of a 

negative a, for example, has been suggested (eg. Koch, 1972). Ignoring a (non-

zero) cYEC  is likely to bias the parameters involved in the estimation of maternal 

effects. In particular O 4  might be biased in a downward direction when ignoring a 

cY Ec  that is negative. Therefore, o was included in all models in a second series of 

runs to study changes in estimated components and parameters and goodness-of-fit. 

The (co)variance structure now is 

	

UA 	Ac 	AY AM 	0 	0 

uM Ac Ac 
var 

	

	
0 	0 

= 

	

C 	 0 	0 	kr C 	EC 

	

e 	0 	0 	EC kY E  

Consequently, three maternal environmental covariances were conceivable, a 

covariance amongst maternal half sibs, a covariance amongst full sibs and a 

covariance between dam and offspring. 

	

The (direct) Falconer model 	Falconer (1965) suggested that a model for the 

phenotype of an individual, y, might be expressed as 

	

y= A+ Fy'+ D+ C+ E 	 [2.3] 

where A is the individual's breeding value; Fmy' is the maternal effect as linear 

function Fm of the mother's phenotype y' ; D is the individual's dominance deviation; 

C is the effect of environmental factors common to full sibs that are not included in 

the maternal effect; and E represents all other environmental effects. The coefficient 
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Fm is a partial regression coefficient relating daughters' to mothers' phenotypic values 

in the absence of genetic variation among the mothers. When D, C and E are ignored 

and mother's phenotype is represented by Y'A'+Fm Y", the expectation of the dam- 

offspring covariance is 

cov(y,y')= cov(A, y')+ Fm  var(y') 

= cov(A, A')+ Fmcov(A,y")+ Fm cY 

Cr +Fm  cov(A,y")+Fa 

where 

Fm  cov(A,y")= Fm (cov(A,A")+ Fm  cov(A,y fir  )) 

= Fm  (cov(A, A")+ Fm  (cov(A, A")+ cov(A, y"))) 

= Fm  cov(A, A")+ F cov(A, A")+ F, cov(A, A")+ .... etc. 

=( F +'F2 +--F3 +....) Fm 8 m 16 m 

which is a geometric series with common ratio i Fm  that can be summed as 

and hence cov(y,y')= f+ 2(2Frn)aA+  F&p  (Falconer, 1965; 

Thompson, 1976). Table 2.4 exhibits the expectations for Cr'and a in terms of Fm 

for the sources of (co)variation frequently used for animal breeding data making 

inferences about y rather than (y-Fmy'). The variance of y in model 2.3 (ignoring 

dominance) can be described as 

var(y)= c= 	+ 2Fcov(A,y')+ F,var(y')+ o+ 

where 

cov(A,y')= cov(A, A')+ Fm  cov(A, A")+ F, cov(A,A")+ .... etc. 

etc.) C72  

--- - 1-F,/2 	2-Fm  

and thus 

2F 2 
cr= o+ 2FA+ F+ a+ y 

(1— F,)o= a+ 21,, 2 2-FA 
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= [+ 	-o+ 	+ 	J 1(1— F) 

In a mixed model setting the Falconer model (ignoring the dominance 

component) can be formulated in matrix notation as 

y=Xb+ Fm(Yp  Xb)+ ZAUA+ Zcc+ C 	 [2.4] 

where yp is a vector with the dams' observations and Xp is the incidence matrix 

relating these observations to the respective fixed effects. Two complications may 

arise when considering estimation of the Falconer parameter (Fm): i) some (non-base) 

dams may have their records missing and ii) offspring of base animals with missing 

values have different variance. The first complication can be resolved by filling in the 

missing values prior to any REML analyses. Healy and Westmacott (1956) use an 

iterative approach in which they are initially setting the missing values to the grand 

mean whereafter the analysis is repeated with the estimate for each missing value 

adjusted each time to set its residual to zero. By insertion of a dummy factor in X for 

every dam with a missing record, the Falconer parameter estimate remains unaffected 

by these Ordinary Least Squares (OLS) expected values. The second complication is 

due to the offspring of base animals being uncorrected for Fm(yp - Xpb) since their 

dams' observations are unknown, which creates extra noise among these individuals. 

These animals' residual variances need to be scaled to produce constant variance 

across all individuals. The residual variance of those individuals is 

	

I I 	1 	2 CT= cy— a— 

	

{ 2 	2F 2 	2 
= 	2Fm A 	+ a— (1— F)a— (1— F)cfl 1(1— F,,) 

2 ,,, = [FM2 (Y2  + 2F
2-FA Fm2 

2  
c+ 2 EI 1(1— F) 

= U (F + --)-+ F2 	I
J  / (1— F)] m 2 F 	mOE   

from which the scaling factor (SF) emerges as a function of the variance components 

and the parameter Fm: 

SF_[ (Frn+)T+  m 
2F,, 	F2 	iJ / (1— F) 	 [2.5] 

Without C in model 4 the term Fa/ cancels out. 
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An integrated Falconer- Willham model To account for possible maternal pathways 

through the dam's phenotype as well as the genetic origin of maternal effects an 

integrated approach was investigated. The matrix representation of the full linear 

integrated Falconer-Wiliham model that was considered is 

y= Xb+ Fm(Yp  Xb)+ ZA UA + ZMU M + Zc+ e 	[2.6] 

which is model 2.2 and model 2.4 amalgamated. The variance of y amounts to 

= 2 + a + a + 2Fm  cov(A, y') + 2Fm  cov(M, y') + Fc +a2 
 + 

where 

cov(A,y')= cov(A,A')+ Fm  cov(A,A")+ Fm2  cov(A,A ... )+ .... etc. 

+ cov(A,M')+ Fm  cov(A,M")+ F.2  cov(A,M ... )+ .... etc. 

= (+ -F + 	+ .... etc.) c 

	

+ (+ k1Z'm  + 	+ .... etc.) 

- 	

16 

1I2+ 114AM - 2+ CAM 
- 	 - 	2(2- Fm ) 

and 

cov(M,y')= cov(M,A')+ Fm  cov(M,A")+ Fm2  cov(M,A")+ .... etc. 

+ cov(M,M')+ Fm  cov(M,M")+ Fm2  cov(M,M ... )+ .... etc. 

= 0+ -F + --F + .... etc.) (YAM 

+ (-+ 'F 4 m + 'F2  + 	etc.) a 8 	m 

4aAM+20 
- 	1Fm /2 - 	2(2-F) 

and hence 

1 	
2 = [CY  2 + Cr  2 	 2  cYA2  +5  CFAM  +  2aM2  FM  + CF 2 + CT 2 	 2 Cr P 	A 	M +(TAM + f 
	2-F. 	 C 	E /(1—F) 

The factor (SF) to scale the residual variances of the individuals with their dams' 

observations missing becomes 

SF =  [F.+ F,-+ F+ { 22} 
i-+ F+ 1] 1(1— F,)

M2 L2, 	
2 	[2.7] 

For models with a maternal effect the fraction of the selection differential that would 

be realised if selection were on phenotypic values (h +M ), i.e. the regression of the 
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sum of direct and maternal genotypes on the phenotype was calculated as (Wiliham, 

1963): 

h +M = (a+ 15  AM O.5a)Ia 

where C72  is the direct additive genetic variance, 	is the maternal additive genetic 

variance and (Y 2  is the phenotypic variance. 

Methods of analyses 

Henderson-Ill and offspring-parent regression Henderson's Method III was applied 

to the data to produce estimates of variance due to sires (patHS) and sire-dam 

combinations (FS). A weighted average of the individual generation estimates was 

obtained by weighing them inversely proportional to their sampling variances. 

Covariances between offspring and sire and dam, respectively, were obtained by 

weighted regression analyses (with the degrees of freedom as weights) of average 

offspring on parental performances which were both deviated from OLS expectations 

based on the effects of location. The sources of (co)variation were equated to their 

expectations (Table 2.4) and the resulting system of linear equations was solved by 

multiple regression for a series of values for Fm, thereby locating the Fm that resulted 

in minimisation of the Mean Square Error or rather maximisation of the likelihood 

and the 'best' estimates for a, 2  and 	and a residual component (a). 

/.4A/R1-.A-f1. lAM estimates of the (co)variance components for both data sets were 

obtained by a derivative-free REML algorithm based on programs written by Meyer 

(1989). The programs were adapted to include an environmental dam-offspring 

covariance component and to enable the estimation of Falconer's maternal phenotypic 

regression, either on its own or integrated in Willham's model. Equations in the mixed 

model matrix (MIM1vI), the coefficient matrix and the RHS's augmented, were 

reordered using a multiple minimum degree reordering (George and Liu, 1980) to 

minimise fill-in, before Gaussian elimination was performed on MIMIM. The Downhill 

Simplex method was used to locate the maximum log-likelihood (log L). 

Convergence was assumed when the variance of the function values (-2log L) in the 
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Simplex was less than 10-'. The Falconer parameter Fm maximising the likelihood was 

localised by quadratic approximation of the marginal log-likelihood surface of Fm. 

The first run was performed with a scaling factor (SF) of unity since SF is a function of 

the Fm and the (co)variances to be estimated. A second run was performed 

incorporating a scaling factor for the residual variances of animals with missing 

maternal observations as deduced from the estimated (co)variance components and 

Fm (see equations 2.5 and 2.7). In this second run the likelihood was remaximised and 

adjusted for the changes in the projected data and the variance component estimates. 

Likelihood ratio tests, with error probability of 5%, were carried out to 

determine whether maternal genetic or permanent environmental effects contributed 

significantly to the phenotypic variance in JBWT for both strains. On the logarithmic 

scale, twice the difference between the log-likelihood of the null hypothesis and the 

log-likelihood of the alternative hypothesis approaches a x2  distribution with the 

number of degrees of freedom equal to the number of parameters tested. 

Furthermore, the asymptotic sampling variances of a 	(models 6c and 12c) 

and cr El  (model 12c) were obtained by fitting quadratic Taylor polynomials to their 

marginal log-likelihood profiles (Smith and Graser, 1986). The marginal likelihoods 

were Ll( 	 L( 	 and 	iMi   

L1(,1,M11 	 a, CrEin  aEC, y) for 	in the models 6 and 12 and for EC 

in model 12, respectively, where i  represents the fixed point for which the marginal 

log-likelihood was maximised. 

RESULTS 

Sex-linked variation in JBWT 

Results of the bivariate analyses considering male and female JBWT as different traits 

are shown in Table 2.5. Differences in male and female phenotypic variances were 

substantial as might be expected because of the large differences in mean 

performances of both sexes (Table 2.1). Although not significant, the female 

heritabilities were somewhat greater than the male heritabilities. In birds the females 
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are the heterogametic sex. Female offspring get their sex-linked genes only from their 

fathers. Therefore, if significant sex-linkage is present, higher male heritabilities might 

be anticipated which was not the case. Also, genetic relationships might be expected 

to deviate markedly from unity. However, the correlations were very high, although 

statistically just different from unity. We can now with more confidence say that sex-

linked genes did not notably contribute to the differential variation of male and female 

JBWT in the present populations. Logarithmic transformation was considered to 

alleviate the variance-mean dependency. The comparison of genetic parameters of 

several models involving maternal effects did not reveal any important discrepancies 

between the data on the arithmetic and the geometric scales. Hence, analyses of the 

data on the arithmetic scale will be presented. 

Conventional estimation of (co)variances, heritabilities and the Falconer 

parameter 

Heritability estimates based on between sire variances (paternal HS) were equal for 

both populations (0.21) and very similar to the offspring-sire regression estimates 

(0.20 and 0.19 for populations A and B, respectively) (see Table 2.6). The heritability 

estimates based on FSs and offspring-dam regression were considerably higher. For 

population A the FS estimate was somewhat higher than the offspring-dam estimate, 

whereas population B showed the reverse. The components were equated to their 

expectations for several Fm values (Table 2.7). The 'optimum' Fm estimates were 

positive with 0.03 and 0.07 for populations A and B, respectively. The derived 

heritability estimates were 0.21 and 0.19 for populations A and B, respectively. 
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IAM-REML estimation of maternal genetic parameters 

Simulated data The goodness-of-fit of Willham, Falconer and integrated models 

were tested to simulated data based on a genetic model assumed before by Robinson 

(1994). The results are shown in Table 2.8. The appropriate model to be fitted was 

an integrated Falconer-Willham model with a direct and maternal genetic effect with 

zero covariance and a maternal phenotypic effect (model I in Table 2.8). The 

likelihoods were deviated from this model. The estimated components were close to 

simulated components for model 1. Model 2, representing a Willham model with 

direct and maternal genetic effect with non-zero covariance and a maternal 

environmental component, estimated a c2  -effect of 0.03 and a significantly negative 

estimate for a AM   resulting in a negative rAm  of -0.56 which was observed also by 

Robinson (1994). The likelihood ratio test adjudged the fit to be significantly worse 

than model I at a confidence level of 99%. The likelihood of the Falconer model, 

ignoring the genetic basis of the maternal effect, was greater than model 2 but 

significantly less than model I with P < 0.05. The 'full' Falconer-Willham model 

(model 4), assuming a non-zero o, appeared to fit better than the true model, 

although the difference was not significant at P0.05. The 'extended' Willham model 

(model 5) 'picked up' most of the negative environmental covariance between dam 

and offspring as such. However, the effect was partially fitted as a negative CY AM  

leading to an r value of -0.22. The goodness-of-fit of model 5 was similar to the 

true model. 

Field data Estimated phenotypic variances and genetic parameters for JBWT of both 

strains under a series of different genetic models together with their likelihoods are 

summarised in Tables 2.9 and 2.10. Clearly, very significant increases in log-

likelihood (over model 1) demonstrate that both environmental and genetic maternal 

effects exist for both strains. Generally, genetic parameters were quite similar for 

both strains. 

Fitting a maternal permanent environmental effect (with the pertaining 

variance component as proportion of o, being referred to as c 3  for maternal half 

sibs (HSs) and FS for full sibs (FSs) in model 2 resulted in highly significant 
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increases of the likelihood for both strains (251 and 170 over model I for model 2a in 

strain A and B, respectively). The h2 estimates decreased to nearly 60% of their 

original values in model I for both strains and the c2 estimates amounted to 5% and 

4% for strains A and B, respectively. Estimating a c2 for HSs and FSs simultaneously 

resulted in a significantly better fit with the effect of FSs being about a factor 2 

greater. 

The presence of a maternal heritability (m2 ) in addition to h2 (model 3) was 

much more likely than model 1, but fitted the data not as good as model 2. The m2 

estimate was higher for strain A (0.07) than for strain B (0.05). The fraction of the 

selection differential that would be realised, in direct plus maternal additive genetic 

merit, if selection were on phenotypic values (h 2 ,M) was, obviously, somewhat 

higher than the h2 estimate in model 3 assuming a zero covariance between direct 

and maternal additive genetic variance. Allowing for a non-zero direct-maternal 

genetic covariance (presented as proportion of (Y: c,) in model 4 just increased 

the likelihood significantly (over model 3) for strain A. The likelihood of model 4 for 

strain B was, however, not significantly different from model 3 based on a likelihood 

ratio test (P > 0.05). As a consequence, the associated direct-maternal genetic 

correlations (r) were close to zero with -0.17 (strain A) and -0.11 (strain B) and, 

although h2 estimates were somewhat higher, h~M estimates were essentially the 

same as in model 3. 

In addition to model 3 the c2 components were estimated in model 5. This 

model provided a further significant increase in log L compared to the previous 

models for both strains. Compared to model 3, m2 estimates in model 5a decreased 

substantially for strain A (from 0.07 to 0.03) and for strain B (from 0.05 to 0.01); and 

thus the maternal variance seemed to be more of a (permanent) environmental than 

genetic origin. The overestimation of m2, while assuming a zero c2 (model 3), was 

observed in other studies also (eg. Meyer, 1992a). Both the estimates for h2 and 

h +M were lower than in model 3. Estimating 	in addition to model S (model 6) 

showed a similar pattern for both strains in terms of the reduction in m2 compared to 

model 4. Most noticeable, however, was that this smaller m2 parameter was 

accompanied by a much more negative cAm and consequently r,,a, relative to model 4. 
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Allowing for a non-zero cyAm  led to an increase in the h2  estimates in model 6a of 6% 

for strain A and 5% for strain B relative to model 5a. However, the hl , M estimates 

were lower, especially for strain A. As for model 2, the permanent environmental 

maternal effects for FSs in the models 5 and 6 were significantly greater than the 

effect for maternal HSs which is illustrated by the substantial increases in likelihood 

of sub-model c compared to sub-model a. 

Models 7 to 12 were as models I to 6, but allowed for a non-zero direct-maternal 

environmental covariance (presented as proportion of o: cEc) in addition. 

Likelihoods increased considerably by adopting CEC. All the CEC estimates were 

positive and consequently the estimates of rAm  tended to be more negative and 

heritability estimates dropped somewhat. For the models 12a and 12c the m2  estimate 

increased by a factor of 1.5 to 2 (from 0.04 (0.04) to 0.07 (0.06) in population A and 

from 0.03 (0.02) to 0.05 (0.04) in population B). Assuming a zero cAm  and a non-

zero CEC (model 11) fitted the data of population B better than the reverse 

assumption, a non-zero cAm  and a zero CEC (model 6). This was not the case for 

population A. However, the highest likelihood for both populations was attained by 

assuming both these covariances to be non-zero (in model 12). 

In addition to the effects fitted in the models 1 to 6 and as alternatives to the models 

7 to 12, the models 13 to 18 considered the estimation of an environmental dam-

offspring resemblance fitted as a regression on the dam's phenotype (Falconer 

parameter, Fm) in the mixed model. The models 13 and 14 are Falconer models, 

whereas the models 15 to 18 represent integrated Falconer-Willham models, 

considering both the m2  effect and the Fm parameter. Except for model 1, all the Fm  

values were positive as were the CEC estimates in models 7 to 12 shown before. The 

models without a c2  effect (models 13, 15 and 16) fitted not as well as their 

counterparts fitting CEC (models 7, 9 and 10, respectively). Fm estimates were 

generally smaller for population A and improvements in likelihood relative to the 

models 7 to 12 were greater than for population B. The Fm  estimates for model 14b 

were identical to the estimates based on multiple regression of the analysis of 

21 



variance components (Table 2.8). Generally, m2  and cAm  estimates increased 

somewhat and led to more negative rAm  values compared to the models including cEc. 

Estimation of sampling variation of cAm and cEC  

Approximate marginal likelihood profiles and (derived) sampling variances for CAM  

(in models 6c and 12c) and cEC  (in model 12c) were investigated to get a better 

insight into the accuracy of cA,, in model 6c (assuming zero cFEC)  compared to the 

accuracy that could be attained when the potentially highly confounded components 

cAm  and cEC  (Meyer, 1992b) were estimated together (model 12c), using the present 

sizeable data sets. 

Figure 2.1 depicts the quartic Taylor polynomial fitted to 7 points of the 

profile likelihood for c 	(with R2  = 100%). The resulting approximate marginal 

likelihood profile shows that cAm  is highly unlikely to be positive for both strains. 

The approximate marginal likelihood profiles for cAm  and CEC (both quartic as well 

with R2  = 100%) in model 12c are shown in Figure 2.2a and 2.2b, respectively. Once 

again, profiles show a similar pattern for both strains and also the profiles for cAm  and 

cEC act fairly similarly to the images (with opposite sign for the values) of CEC and 

c, respectively, which pointed towards the presence of a high negative sampling 

covariation between these components. The figures illustrate the low likelihood of a 

positive cA,, on the one hand and the very low likelihood of a negative cEC on the 

other hand. 

The sampling errors approximated from the above profile likelihood curves are 

exhibited in Table 2.11. Generally, the direct-maternal covariance components were 

accurately estimated for both strains, with the sampling error of CCC being roughly 

twice as low as the approximation for c. The accuracy of the cAm  estimates for 

models 6c and 12c were similar, hence the sampling correlation of cAllwith CEC (in 

model 12c) did not hinder much the precise estimation of these components for the 

present data. Approximate sampling errors were also similar for both strains, which 
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was illustrated by the similar curvatures of the marginal likelihoods for strains A and 

DISCUSSION 

Sex-linkage 

The segregation of sex-linked genes affecting JBWT was found to be small which 

agrees with results summarised by Chambers (1990). Due to their hemizygous form 

these genes are likely to be driven towards fixation, especially in meat-type poultry 

with a long and extensive selection history for growth traits. The genetic correlation 

between male and female JBWT performance was just significantly different from 

unity, but this could easily be attributable to endocrine differences between both 

sexes. 

Analysis of variance 

The estimates of IF,, found while equating the (co)variance components to their 

expectations and minimising MSE, were small (0.03 and 0.07) and identical to the 

values found for its equivalent in a mixed model setting, model 14b. The conventional 

h2  estimates were, however, substantially lower (0.21 vs. 0.32 and 0.19 vs. 0.24 for 

the populations A and B, respectively). The difference in estimates was larger for 

population A. The data on population A represented six generations (3 more than 

population B) and hence the numerator relationship matrix accounted for more 

selection in this longer time period. 

Maternal effects estimation in a mixed model setting 

It was shown that inclusion of a maternal permanent environmental effect provided a 

much better fit to the data (over model 1) and that inclusion of any more effects, 

although statistically significant, gave relatively a much smaller additional increase in 

log L (over model 2). This was reflected by the direct heritability estimates, which 

fluctuated within a rather narrow range for models 2 to 18 (except for model 13) 

compared to the heritability estimates for model 1. Consequently, the smaller 
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additional increases in log L (over model 2) originated primarily from a 'reshuffle' of 

the maternal variance over environmental and genetic maternal (co)variances, 

although some cross-substitution of the direct additive genetic variance and hence the 

direct heritability with the direct-maternal genetic covariance, in particular, was likely 

to occur (Thompson, 1976; Meyer, 1992b). 

REMIL combines information on various collateral relatives and various 

offspring-parent regressions in order to obtain one efficiently pooled estimate for h2  

with minimum variance (Thompson, 1977; Hill, 1988). The large reduction of the h2  

estimate in model 2 compared to model 1, accompanied by relatively small c2  

estimates, suggested a high weighting of the between dam family h2  estimate, relative 

to the between sire family h2  estimate. This, might have been expected with such a 

large number of, on average, large dam families in the data (Table 2.2), leading to 

very accurate estimates on between dam family variance. A lower weighting of dam 

family information is expected for domesticated species in general and for beef cattle 

in particular, where dam families are much smaller (eg. Meyer, 1992a). The h2  

estimates in model 2 should in expectation be closer to the Henderson-Ill sire 

component h2  estimates. Chambers (1990) pooled 53 sire component h2  estimates 

from 23 studies resulting in an average value of 0.41. The present smaller h2  

estimates might be explained by the much longer and more extensive selection period 

the present broiler populations have undergone in comparison to the populations used 

in many experiments, bearing in mind that the far majority of these studies was 

conducted two to three decades ago. The smaller variance for strain B might, beside 

genetic strain differences, be due to the lesser extent of correction for reduction in 

variance caused by selection as only 3 generations were available for this strain 

compared to 6 generations for strain A. Furthermore, Chambers' (1990) summarised 

estimates were often based on weights at older ages (8, 9 or 10 weeks). It is not 

uncommon for heritabilities to increase with age of weight due to the diminishing 

maternal influences. 

Allowing for 	resulted in a rAm  that was considerably negative in model 

6. This was somewhat surprising since we expected a positive genetic correlation 

between JBWT and egg weight (Kinney, 1969; Chapter 6), which is believed to 
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increase the offspring's JBWT. Fitting both aAm  and CFEC  (model 12), to account for 

possible downward bias of aAm  (Koch, 1972; Meyer, I 992a,b), resulted in slightly 

more negative rAm  estimates due to positive estimates OfaEC Cantet et al. (1988) 

also obtained large negative estimates of crAm  accompanied by positive estimates of 

aEC for growth traits in beef cattle. However, Cantet el al. (1988) found negative 

estimates for Fm (in the range of -0.15 to -0.25), whereas our estimates of Fm were 

positive just like crEc estimates and led to even more negative rAm  estimates. Cantet 

et al. (1988) had a small data set and used conventional methods, equating separately 

estimated covariances between relatives to their expectations and solving the 

resulting system of linear equations. This ignores the fact that the same animal might 

have contributed to different types of covariances and that different observational 

components might have different sampling variances, i.e. combining information in a 

non-optimal way (Cantet etal., 1988; Meyer, 1992b). 

For our JBWT data, the genetic variance of maternal origin could, for the 

greater part, relate to egg (shell) quality rather than egg size, which could explain the 

negative sign of o. In Chapter 3, following suggestions by Lande and Kirkpatrick 

(1990), individual maternal pathways related to the egg were fitted as covariates in an 

offspring-parental regression model, to investigate their importance in causing 

maternal variation in JBWT. Those results implied a negative partial maternal effect 

of egg weight loss between the start and the 18th day of incubation, which would 

agree with Robinson el al. (1993) who reported a negative relationship between body 

weight and egg (shell) quality, an inferior quality giving rise to more loss of weight. 

However, this negative partial effect was offset by a positive partial maternal effect of 

egg weight at the 18th day of incubation, and hence the aggregate maternal effect on 

JBWT was found to be small (Chapter 3). 

A negative aAm  would decrease the efficiency of phenotypic selection for 

JBWT as expressed by the low h +M  estimates for the models 12 and 18 with overall 

superior log L. Selection on maternal breeding values for JBWT may, however, not 

be very effective due to the small maternal heritability. Moreover, it might not be the 

preferable approach since egg (shell) quality characteristics can readily be selected for 

directly with higher accuracy and predictability (Chapter 3) and less delay, because 
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the expression of the maternal effect, although occuring later in life, would not lag a 

generation behind the direct effect as is normally the case (Wiliham, 1980). 

Nevertheless, the presented amalgamation of Falconer and Wiliham models in a 

mixed model setting might offer attractive alternatives to Meyer's (1989) models for 

eg. beef cattle as was illustrated by results based on simulated data (Table 2.8). 

Meyer (1 992b) studied the sampling behaviour of REML estimates of 

(co)variance components due to additive genetic and environmental maternal effects. 

She showed that sampling correlations between estimates were high and that sizeable 

data sets are required to allow reasonably accurate estimates to be obtained. Results 

in the present study, using large data sets, illustrated the possibility of good sampling 

proporties for both the genetic and environmental direct-maternal covariance 

components. Hence, these poultry data sets might also increase the scope for the 

application of more detailed models, eg. estimating dominance variance and variance 

due to new mutation in addition to genetic and environmental maternal effects, yet 

providing sufficient contrast for the often highly correlated genetic parameters 

involved, to be estimated precisely. 

The effect of more detailed fixed effect structures 

Robinson (1994) showed that additional variation (eg. sirexyear) unaccounted for in 

the model affected estimates of maternal effects. Differences in results from 

Mackinnon et al. (1991) and Meyer (1992a) for the same data suggested sensitivity 

of maternal effects to different fixed effects models. In our data different parental 

flocks of different ages and farms contributed offspring to the same hatch week. The 

age difference was accounted for in the model, but more specific maternal 

environmental flock effects were ignored. The parental flocks contributing to every 

hatch were identified. The effect of flock nested within hatch on the genetic 

parameters in models 1 and 2 was small (not presented). The effect on the genetic 

parameters for the more comprehensive models (5c, 6c, 1 ic, 12c, 17c and 18c) was 

investigated for both populations (see Table 2.12). The phenotypic and direct and 

maternal genetic variances were reduced considerably and were accompanied by rAM  

estimates much closer to zero. The' h2  estimates were now very similar to the 
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estimates of h +M . Such limited importance of maternal effects exerting a non-

Mendelian influence on JBWT is in closer agreement with the results obtained in 

Chapter 3. The choice of the fixed effects model appears to be paramount for detailed 

maternal effects models, but the increase in computing time (four-fold increase per 

likelihood evaluation for the present data) might often restrain more refined fixed 

effect structures to be occupied. 

SUMMARY AND CONCLUSIONS 

The estimation of genetic and environmental maternal effects by restricted maximum 

likelihood was considered for juvenile body weight (JBWT) data on 139534 and 

174668 broiler chickens of two populations. Of the biometrical models usually 

assumed in the estimation of maternal effects ('reduced Willham' models), a genetic 

model allowing for direct and maternal genetic effects with a covariance between 

them and a permanent environmental maternal effect provided the best fit. The 

maternal heritabilities (0.04 and 0.02) were low compared to the direct heritabilities 

(0.32 and 0.27), the direct-maternal genetic correlations (r) were negative and 

identical for both strains (-0.54) and environmental maternal effects of full sibs (0.06 

and 0.05) were about a factor two greater than of maternal half sibs (0.03 and 0.02). 

A possible environmental dam-offspring covariance was accounted for in the mixed 

model by 1) estimation of the covariance between the environmental maternal and the 

environmental residual effects (CEC) and 2) a maternal phenotypic effect through 

regression on the mother's phenotype (Fm, 'Falconer' model). Whilst increasing the 

likelihoods considerably, these extended models resulted in somewhat more negative 

rAm  values due to positive estimates of cEC (0.04 to 0.08 and 0.03 to 0.09) and Fm 

(0.03 to 0.17 and 0.07 to 0.20). A more detailed fixed effects model, accounting for 

environmental effects due to individual parental flocks, reduced estimates of rAM(-

0.18 to -0.33). Results suggested a limited importance of maternal genetic effects 

exerting a non-Mendelian influence on JBWT. 

The present integrated 'Falconer-Willham' models allowing for both maternal 

genetic (co)variances and maternal action through regression on the mother's 
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phenotype in a mixed model setting might offer attractive alternatives to the 

commonly used 'Wiliham' models for other domesticated species (eg. beef cattle) as 

was illustrated by their superior goodness-of-fit to simulated data. 
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TABLE 2.1 

Summary statistics for juvenile body weight (kg/i 00) in two broiler populations with raw and 
corrected SDs and CVs. 

strain sex # records mean SDrawa CV,, (%) SDcort CVcor  (°") 

A combined 139 534 224.9 29.9 13.3 19.6 8.7 

male 68 334 241.7 27.3 11.3 21.1 8.7 

female 71 200 208.8 22.6 10.8 17.9 8.6 

B combined 174 668 195.3 25.4 13.0 15.6 8.0 

male 85 325 211.4 21.8 10.3 16.9 8.0 

female 89 343 179.9 18.0 10.0 14.2 7.9 

cx raw data 

data corrected for hatch and age of dam effects; combined data corrected for sex effect in 
addition 

TABLE 2.2 

Some structural aspects of the data for juvenile body weight in the two broiler 
populations. 

number of 

strain 	records 	animals 	sires 	dams 	sire-dam 
combinations 

A 	139 534 	140 983 	856 	5879 	8337 

B 	174 668 	177 294 	698 	5318 	6819 
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TABLE 2.3 

Fitted random effects and estimated (co)variance components in the six initial models of 

analysisa. 

model 	 Fittedl3 	 Estimated 

No 	a m CHS CFS 	 AM O 	
2 
 a2 cFs 

1 V V 
2a V V V / V V 
2b V V V V V 
2c V V V / / V V 
3 V V V / V 
4 V V V V V V 
5a V V V V V V 
5b V V V V V / 
5c 

6a V V V V V V V V V 
6b V / V V V V V V 
6c V V V V V V V V V V 

a 
 revised after Meyer (1989); 0 a direct additive genetic effect; in maternal additive 

genetic effect; c : maternal environmental effect on maternal half sibs (HS) and full sibs (FS); 
o: direct additive genetic variance; a: maternal additive genetic variance; aAM: direct-

maternal genetic covariance; o: maternal permanent environmental variance on maternal 

HSs and FSs: and a: error variance 
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TABLE 2.4 

Coefficients of covariances between some frequently used relatives and solutions 
for Falconer's (1965) model as derived by Thompson (1976). 

source of 

(co)variation G 
2 

CY 
2 (F/2(2 -Fm)) 

paternalFiS 0 1/4 0 	 0 

FS Fm2  1/2 4 	 1/4 

withinFS 1- F -1/2 -4 	 -1/ 4  

Offspring-Dam m 1/2 1 	 0 

Offspring-Sire 0 1/2 1 	 0 

TABLE 2.5 

Bivariate IAM-REML phenotypic variance (in kg2x 10'4) and dispersion 
parameter estimates for male and female juvenile body weight considered as 
separate traits. 

strain A 	 strain B 

variance 	male 	female 	 male 	female 

phenotypic 	475 	 342 	 296 	 204 

sex 

malea 	0.33±0.02 	 0.26±0.02 

female 	0.95±0.01 	0.36±0.02 	0.92±0.03 	0.30±0.02 

maleP 	0.03±0.01 	 0.03±0.01 

female 	0.95±0.02 	0.03±0.01 	0.91±0.04 	0.03±0.01 

Cc : heritabilities with SE on the diagonal and genetic correlations with SE below the 
diagonal 

13  : maternal permanent environmental variances proportional to the phenotypic 
variances with SE on the diagonal and maternal permanent environmental 
correlations with SE below the diagonal 
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Covariance component (in kg2 x 10-4) and heritability estimates based on 
Henderson-Ill and offspring-parental regressions for both populations. 

source of strain A strain B 

(co)variation (co)variance heritability (co)variance heritability 

paternalHS 20.13 0.21 13.19 0.21 

FS 57.30 0.30 34.37 0.28 

withinFS 334.70 210.90 

Offspring-Dam 53.86 0.27 41.16 0.32 

Offspring-Sire 41.12 0.20 24.22 0.19 

TABLE 2.7 

Estimated variance components (in kg2x 104  and resulting heritabilities for a series of 
values for the Falconer parameter (Fm) and their respective Mean Square Errors (MSE) 
with the optimum' results printed in bold-face for both populations. 

Fm  strain A 

h2  MSE Cr 
2 

strain B 

CY 
2 h2  MSE 

-0.20 372 172 0.46 2302.0 231 114 0.49 1181.0 
-0.10 386 133 0.34 766.0 241 89 0.37 472.2 
0.00 392 93 0.24 46.4 245 64 0.26 76.2 
0.03 392 82 0.21 0.3 246 57 0.23 23.5 
0.05 392 74 0.19 13.1 246 52 0.21 5.5 
0.07 391 67 0.17 60.3 245 47 0.19 1.1 
0.08 390 63 0.16 96.6 245 45 0.18 4.0 
0.10 389 56 0.14 194.2 244 40 0.16 19.7 
0.20 378 23 0.06 1150.0 238 19 0.08 286.5 
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TABLE 2.8 

Estimateso,  of dispersion components and natural log-likelihoods and their significance (P) 
relative to model I for Falconer, Willham and integrated Falconer-Wiliham models fitted to 
data simulated according to model I assuming a direct and maternal genetic effect with zero 
covariance and a regression on the dam's phenotype (Fm  = 0.l). 

model6 	F. 
4 	AM 	cY: 	aEC 	 (y, - log L 	P 

lintegrF-W -0.11 100 16 290 406 0.00 
2Willham 98 35 -33 11 295 406 -7.91 <0.01 
3Falconer -0.12 106 8 291 405 -2.91 <0.05 
4integrF-W -0.11 109 15 -Il 4 290 407 1.68 >0.05 
S extend W 109 15 .-9 6 -32 	322 411 0.87 >0.05 

input values -0.10 100 20 - 0 0 0 	280 400 

a results represent averages of 20 replications 
P similar to the model assumed by Robinson (1994) 

models are 1) integrated Falconer-Willham model with 	2) Willham model, 3) Falconer model, 
4) integrated Falconer-Willham model with c#0, and 5) extended Willharn model with aEC#O 
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TABLE 2.9 

Estimates of phenotypic variances, genetic parameters and the relative (natural) log-
likelihoods under models 1 to 18 for juvenile body weight on population A. 

model CY 
2 h2  m2  CAM r J  C C 	CEC Fm 	h+M log L 

1 451 0.50 0.50 0 
2a 417 0.30 0.05 0.05 0.30 251 
2b 421 0.33 0.00 0.05 0.33 298 
2c 414 0.28 0.03 0.06 0.28 322 
3 429 0.31 0.07 0.34 232 
4 429 0.33 0.08 -0.03 -0.17 0.33 236 
5a 416 0.27 0.03 0.04 0.04 0.29 286 
5b 416 0.28 0.03 0.00 0.03 0.29 346 
5c 413 0.26 0.02 0.02 0.04 0.27 352 
6a 414 0.33 0.04 -0.06 -0.54 0.05 0.05 0.26 311 
6b 416 0.33 0.05 -0.05 -0.38 0.00 0.04 0.28 361 
6c 412 0.32 0.04 -0.06 -0.54 0.03 0.06 0.25 376 

7 414 0.27 0.06 0.06 0.06 0.27 255 
Ba 414 0.27 0.06 0.06 0.04 0.27 260 
Bb 411 0.25 0.04 0.06 0.04 0.25 333 
Bc 411 0.25 0.04 0.07 0.04 0.25 333 
9 413 0.24 0.03 0.04 0.04 0.04 0.26 301 

10 409 0.29 0.06 -0.08 -0.64 0.06 0.06 0.06 0.20 341 
ha 413 0.24 0.03 0.04 0.04 0.05 0.26 301 
llb 411 0.24 0.02 0.03 0.05 0.03 0.25 363 
lic 410 0.22 0.03 0.02 0.05 0.05 0.24 369 
12a 409 0.29 0.07 -0.09 -0.64 0.06 0.06 0.08 0.19 343 
12b 407 0.29 0.05 -0.07 -0.63 0.04 0.07 0.04 0.21 399 
12c 407 0.27 0.06 -0.08 -0.64 0.04 0.07 0.08 0.18 409 

13 440 0.50 -0.12 0.50 38 
14a 418 0.28 0.06 0.06 0.05 0.28 279 
14b 421 0.32 0.00 0.05 0.03 0.32 312 
14c 418 0.26 0.04 0.07 0.08 0.26 362 
15 434 0.26 0.09 0.07 0.31 265 
16 432 0.31 0.21 -0.19 -0.72 0.17 0.13 307 
17a 419 0.25 0.03 0.04 0.04 0.07 0.27 329 
17b 419 0.25 0.04 0.00 0.04 0.06 0.27 383 
17c 416 0.24 0.03 0.02 0.05 0.07 0.26 401 
18a 416 0.32 0.08 -0.12 -0.75 0.05 0.05 0.13 0.18 379 
18b 417 0.30 0.11 -p12 -0.65 0.00 0.04 0.13 0.18 426 
18c 413 0.30 0.07 -0.11 -0.72 0.03 0.06 0.12 0.17 442 

a O,: phenotypic variance in kg2x 10; h 2 : direct heritability; m2 : maternal heritability; CAM: direct-
maternal genetic covariance as proportion of; rAM : direct-maternal genetic correlation; C2 : maternal 
environmental variance as proportion of O,; CEC: direct-maternal environmental covariance as proportion 
ofCy2

,; Fm:  Falconer parameter representing the regression on the dam's phenotype; h +M : regression of 
direct plus maternal genotypes on the phenotype and log L: natural log-likelihood deviated from model 1 
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TABLE 2. 10 

Estimates of genetic parameters and the relative (natural) log-likelihoods' under models 1 to 
10 for juvenile body weight on population B. 

model CY 
2 h2  m2 CAM  rJ cHS C} 5 	cEC Fm 	h+M log L 

1 271 0.42 0.42 0 

2a 255 0.24 0.04 0.04 0.24 170 

2b 255 0.26 0.00 0.04 0.26 256 
2c 253 0.23 0.02 0.05 0.23 265 
3 261 0.27 0.05 0.29 135 

4 261 0.28 0.05 -0.01 -0.11 0.29 136 
5a 255 0.23 0.01 0.03 0.03 0.24 180 

5b 254 0.23 0.02 0.00 0.03 0.24 270 
5c 253 0.22 0.01 0.01 0.04 0.23 273 
6a 255 0.28 0.03 -0.05 -0.54 0.04 0.04 0.24 197 
6b 255 0.28 0.03 -0.03 -0.38 0.00 0.03 0.24 280 
6c 254 0.27 0.02 -0.04 -0.54 0.02 0.05 0.22 288 

7 253 0.21 0.05 0.05 0.05 0.23 191 
8a 253 0.21 0.05 0.05 0.06 0.22 192 
8b 252 0.21 0.03 0.05 0.03 0.21 280 
8c 252 0.20 0.03 0.06 0.06 0.21 291 
9 253 0.21 0.01 0.04 0.04 0.04 0.22 203 

10 253 0.25 0.03 -0.06 -0.65 0.05 0.05 0.05 0.19 230 
ha 253 0.19 0.02 0.04 0.04 0.07 0.22 209 
lib 252 0.20 0.01 0.02 0.05 0.02 0.21 285 
llc 252 0.18 0.02 0.02 0.05 0.07 0.21 304 
12a 252 0.24 0.05 -0.07 -0.64 0.05 0.05 0.09 0.18 239 
12b 252 0.25 0.03 -0.05 -0.66 0.03 0.06 0.03 0.19 309 
12c 251 0.23 0.04 -0.06 -0.63 0.03 0.06 0.09 0.17 330 

13 267 0.39 -0.09 0.39 21 
14a 257 0.23 0.05 0.05 0.09 0.23 193 
14b 257 0.24 0.00 0.04 0.07 0.24 275 
14c 256 0.22 0.02 0.05 0.10 0.22 292 
15 263 0.22 0.07 0.10 0.26 145 
16 265 0.33 0.20 -0.21 -0.82 0.20 0.12 150 
17a 258 0.21 0.02 0.04 0.04 0.11 0.22 206 
17b 257 0.21 0.03 0.00 0.03 0.11 0.23 295 
17c 256 0.20 0.02 0.01 0.04 0.11 0.21 303 
18a 259 0.30 0.07 -0.12 -0.81 0.04 0.04 0.17 0.16 224 
18b 259 0.29 0.10 -0.13 -0.78 0.00 0.03 0.18 0.15 300 
18c 258 0.29 0.07 -0.12 -0.86 0.02 0.05 0.18 0.15 311 

see Table 2.9 for abbreviations 
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TABLE 2.11 

Asymptotic sampling errors for the direct-maternal genetic covariance component (c) (in 

models 6c and 12c) and for the direct-maternal environmental covariance component (CEC) (in 
model 12c) both expressed as proportion of the phenotypic variance. 

	

strain 	 model 	 CAM 	 CEC 

A 	 6c 	 0.018 	 - 

	

12c 	 0.019 	 0.009 

B 	 6c 	 0.016 	 - 

	

12c 	 0.018 	 0.008 

TABLE 2.12 

Estimates of genetic parameters and the relative (natural) log-likelihoods under the most 
comprehensive models using a more detailed fixed effect structure for juvenile body weight on 
both population?. 

	

model 	cy 2 h2 	m2 	CAM 	rAM 	 c S 	cEC 	Fm 	h+M log L 

Strain A 
5c 	373 0.20 0.02 0.02 0.05 0.21 0 
6c 	373 0.20 0.02 0.00 0.04 0.02 0.05 0.21. 0 

lic 	370 0.15 0.03 0.04 0.06 0.09 0.17 47 
12c 	369 0.15 0.04 -0.02 -0.21 0.04 0.07 0.10 0.14 49 
17c 	375 0.17 0.03 0.03 0.05 0.08 0.1.9 70 
18c 	378 0.17 0.04 -0.02 -0.18 0.03 0.06 0.14 0.16 98 

Strain B 
5c 	237 0.21 0.01 0.02 0.04 0.22 0 

6c 	237 0.22 0.01 -0.01 -0.17 0.02 0.04 0.21 1 

llc 	235 0.15 0.01 0.03 0.06 0.10 0.16 59 

12c 	235 0.16 0.02 -0.02 -0.39 0.04 0.06 0.11 0.14 64 

17c 	233 0.15 0.02 0.02 0.05 0.20 0.16 68 

18c 	233 0.17 0.03 -0.02 -0.33 0.02 0.05 0.18 0.16 76 

a see Table 2.9 for abbreviations 
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Fig. 2. 1. The approximate marginal log-likelihood profile for the direct-maternal genetic 
covariance component expressed as proportion of the phenotypic variance (c) in model 6c. 
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Fig. 2.2a and 2.2b. The approximate marginal log-likelihood profiles for the direct-maternal 
genetic covariance component (c) and the direct-maternal environmental covariance 

component (CEC) both expressed as proportion of the phenotypic variance in model 12c. 
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CHAPTER 3 

A GENETIC ANALYSIS OF EGG QUALITY TRAITS AND THEIR 

MATERNAL INFLUENCE ON OFFSPRING-PARENTAL REGRESSIONS 

OF JUVENILE BODY WEIGHT PERFORMANCE IN BROILER 

CHICKENS 

INTRODUCTION 

Broiler production operations often make the assumption that I gram difference in 

egg weight (EWT) is reflected in about 10 grams difference in juvenile body weight 

(JBWT). This relationship was quantified by Goodwin (1961), and later confirmed by 

Al-Murrani (1978). The latter author identified it as a maternal effect which is only 

partially true. Due to the positive genetic correlation between JBWT and EWT 

(Kinney, 1969; Chapter 6), heavy eggs are likely to originate from dams with high 

JBWT. Obviously, a large portion of the offsprings superior JBWT can be explained 

by their dams' high direct additive genetic merit for JBWT rather than their EWT. 

Consequently, Al-Murrani's (1978) estimate of the maternal effect of EWT on JBWT 

is much inflated. 

This illustrates a general problem inherent in the estimation of maternal 

effects; the confounding of the maternal (indirect) effect with the contribution of the 

dam to the direct effect (Willham, 1980). Separation of the direct additive genetic 

component and the maternal genetic component of JBWT, assuming maternal 

performance to be unobserved (Willham, 1963; Meyer, 1989), was attempted in 

Chapter 2, using Restricted Maximum Likelihood (REML) methods applied to an 

Individual Animal Model (JAM). Significantly negative estimates were found for the 

genetic correlation between the direct additive and the maternal genetic effect (r 
AM 

-0.6), which was surprising since the maternal effect was expected a priori to 

represent EWT. The environmental covariance between offspring and dam, possibly 

biasing r when non-zero and ignored (eg. Koch et al., 1972), was fitted in the 
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mixed model, but did not affect the value of r much. It was argued, however, that 

the maternal genetic effect could, for a major part, relate to egg (shell) quality which 

would explain the negative sign of r,. Robinson et at (1993) reported a negative 

relationship between body weight and egg (shell) quality and described the potential 

detrimental effects on the offspring. Nevertheless, the results in Chapter 2 add to the 

general scepticism with respect to the negative values of r as frequently obtained in 

other species like beef cattle (Robinson, 1994). 

Although these REML analyses on JBWT, presumably, give us an indication 

of the size of some intrinsic aggregate maternal genetic effect and its relation with the 

direct additive genetic component, they cannot identify specifically the maternal 

characteristics involved and their relative importance. Identification of such maternal 

traits affecting JBWT is important as additional direct selection for those traits with 

sufficient genetic variation could improve JBWT more effectively; and could 

sometimes prevent unfavourable genetic changes in response to selection for only 

JBWT. For instance, selection for JBWT may lead to deterioration in egg shell 

quality, i.e. eggs may be poorly calcified resulting in increased shell porosity and high 

weight loss during incubation, which can lead to increased embryonic mortality 

(Robinson et at, 1993). In mammalian species in particular maternal performances 

are often difficult to measure, whereas maternal characteristics relating to egg quality 

in bird species are easily observable (for examples see below; and eg. Fairfull and 

Gowe, 1990). 

Falconer (1965), studying maternal effects in litter size of mice, used the 

weight of the adult female as a measure of the maternal effect acting on that female 

through the litter size of her mother. He performed a bivariate regression analysis of 

daughter's litter size on mother's litter size and daughter's adult body weight. The 

partial regression coefficients allow a separation of the overall regression of 

daughters on dams into two parts, one associated with the daughter's weight and the 

other independent of the daughter's weight giving a more reliable estimate of the 

heritability. Although Falconer (1965) identified only one source of maternal 

variation, the method 'naturally' extends to partitioning of the overall regression of 

offspring on parent(s) into multiple partial maternal regressions in addition to the 
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direct genetic transmission through both the sire and the dam (Lande and Kirkpatrick, 

1990). 

The objectives of this study were to investigate 1) the genetics of various egg 

quality characteristics of female line meat-type chickens and 2) the importance of 

those traits in exerting maternal influence on JBWT and their effect on (bias of) the 

offspring-parental regressions of JBWT. 

MATERIALS AND METHODS 

Data 

The 6072 eggs of 221 pedigreed female line meat-type hens, descending from 39 

different sires and 77 different dams, were used in this experiment. These females had 

undergone some selection for JBWT and egg production and were mated to 28 

cockerels in a nested design. The following traits were measured on the eggs: width 

(WID), length (LEN), shape (SHA, defined as half the difference between WID and 

LEN), weight at set (EWT), specific gravity (SG, by the flotation method using seven 

salt solutions with SGs in the range 1.06 - 1.09 increasing in intervals of 0.005), 

weight at transfer from the setter to the hatcher at the 18th day of incubation (WIT), 

weight loss from set to transfer (WTL) and WTL as a percentage of EWT (WTL%). 

These traits were measured at 28, 29, 33, 34, 38 and 39 weeks of age and were 

recorded to individual egg within dam. The total number of eggs per hen ranged from 

2 to 42 The eggs were set on a weekly basis and as a consequence the maximum age 

of the eggs was 7 days. The chicks were weighed to individual wingband at hatch 

(CHWT) and after growing to 6 weeks of age (JBWT). Every chick could be traced 

back to the egg it hatched from. Descriptive statistics of these traits are summarised 

in Table 3.1. 

Estimation of genetic parameters for the maternal egg traits 

Raw phenotypic correlations between dam averages of the same traits at different 

ages (28 vs. 38 and 29 vs. 39 weeks) were reasonably high, ranging from about 0.35 

for SG to 0.55 for EWT and WTT. Also, from Fairfull and Gowe (1990) one can 
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deduce that the genetic correlations between these traits at different ages are high. 

Therefore, it is probably justified to assume a repeatability model with a genetic 

correlation of unity between the same trait observed at these different ages. 

Estimation of the additive genetic, the permanent environmental and the temporary 

environmental residual variances was performed, using the derivative-free REML 

algorithm of Meyer (1989), applied to the following linear JAM with repeated 

records: 

[3.1] 

where Yd is the phenotypic record on the mth  egg of animal 1; t is the grand mean; 

DAY1  is the fixed effect of the ith  day (i = 1 ... 7), representing the effect of age of the 

egg in days on arrival at the hatchery; HATCHJ  is the fixed effect of the jth  hatch (j = 

1... 3), representing the effect of the hens' flock during the growing (1-6 weeks) and 

rearing (6-18 weeks) period; AGEk  is the fixed effect of the kth  age of the dam (k = 

1... 6); a1  is the random additive genetic effect of the lth  animal; p1  is the random 

permanent environmental effect of the lth individual; and eijkl. is the random 

temporary environmental residual effect associated with the egg record Y1fr ,. Three 

generations of pedigrees (the hens, their parents and grandparents) were included in 

the relationship matrix. The Downhill Simplex method was used to locate the 

maximum log-likelihood (log L). Analyses were considered converged when the 

variance of the function values (-2xlog L) was less than 10 10. Approximate sampling 

errors of the heritabilities were based on a Taylor series expansion about the 

maximum log L (Smith and Graser, 1986). Sampling errors of genetic and permanent 

environmental correlations were approximated according to Robertson (1959). 

However, the errors were shrunk when the 95% confidence interval exceeded the a 

priori known maximum range of -1 to 1, which occured for some permanent 

environmental correlation estimates. A series of bivariate analyses (28 combinations 

of the 8 traits) were performed with the univariate estimates as starting value. 

Average heritabilities and permanent environmental effects proportional to the 

phenotypic variance from the various bivariate runs were presented. 
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Regression on the maternal traits 

Falconer (1965) suggested that a model for the phenotypic value of an individual, P, 

might be expressed as 

PA+mP'+D+C+E 	 [3.2] 

where A is the individual's breeding value; mP' is the maternal effect as linear function 

m of the mother's phenotype P; D is the individual's dominance deviation; C is the 

effect of environmental factors common to full sibs that are not included in the 

maternal effect; and E represents all other environmental effects. This model was also 

considered by Thompson (1976) as an alternative model to the detailed biometrical 

model by Willham (1963). The coefficient in is a partial regression coefficient relating 

daughters' to mothers' phenotypic values in the absence of genetic variation among 

the mothers; and in Falconer's (1965) case represented the weight of the adult 

daughter acting on her own litter size through litter size of her mother. This method 

could be referred to as the direct method. The indirect method estimates the 

coefficient of the maternal effect (m) by means of the daughters' weights. The 

estimate for in is obtained by multiplying the regression of daughter's weight on the 

mother's litter size by the partial regression of daughter's litter size on daughter's 

weight (with mother's litter size constant, Falconer, 1965). 

This indirect approach, which readily extends to multiple maternal effects, 

was used for our data with several potential candidates causing maternal variation in 

JBWT. The full model considered was 

'offsprmg = b1 1sire  + b2 'dam  + m1 'WID  + m2 LEN  + m3PE  + 

m 4P 0  + M5PWTT  + m 6P %  + C + E 	 [3.3] 

where Poffspring,  1sire and Pdam  were the JBWT deviations from the Ordinary Least 

Squares (OLS) expectations based on fixed effect estimators of grand mean, hatch 

week, sex, and age of the dam when the egg was laid; PWID  and others were 

deviations from their OLS expectations based on the fixed effects in model 3.1; b1  

and b2  were the partial regressions of offspring on sire and dam, respectively, 

representing the direct genetic transmissions through both sexes; and m1  to m6  were 

partial regressions on the maternal traits. Regressions on single parents, their average, 
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and their interaction component to test for dominance in model 3.3, were considered 

in addition. The sirexdam interaction term was considered also in the polynomial 

approach to offspring-parent regression analysis by Gimelfarb and Willis (1994). The 

changes in offspring-sire and offspring-dam regression estimates due to the 

introduction of covariates on the maternal egg quality effects and a common 

environmental variance component in the model were studied. In order to describe 

the expectations of offspring-dam and offspring-sire covariances, we introduce a 

more general representation of the phenotype of an individual according to 3.3, its 

parents and the phenotype of the maternal traits, which are assumed to be purely 

direct additive genetic, ignoring the C and E terms. 

YO  = A., +mX 

Y. =A Y +mXGP 

X = A 

where Y0  and Y represent the offspring and parental phenotype, X and XGP  are 

scalars or vectors with single or multiple (grand)parental phenotypes of traits exerting 

maternal influence on trait Y and m is a scalar or a vector with the respective partial 

regressions of Y on X. The offspring-dam covariance is: 

cov(Y0,Y)= cov(A ,Y)+mco v(X,Y) 

= 

=-cy +m -TQ, 	Cr+mPXY 
	 [3.4] 

where(YA.Y and 	are the genetic and phenotypic covanances of X with Y. The 

offspring-sire covariance is not affected by the term 	but is biased if the 

maternal characters are heritable as previously shown by Wiliham (1963), Eisen 

(1967) and Lande and Price (1989). 

Prior to any multivariate regression analysis, however, ordinary regressions of 

JBWT on the individual maternal effects were performed to get an impression of the 

effect of each trait on JBWT, since the non-zero covariance structure among the 

multiple maternal traits makes interpretation of partial regressions more complex. 

In the multivariate analyses SHA and WTL were not included as they were 

linear combinations of WID and LEN, and EWT and WTT, respectively. The 
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importance of the maternal effects was tested (for CHWT and JBWT) by stepwise 

regression analysis minimising the Mean Square of the Error (MSE). Thereafter, 

REMIL (GENSTAT, 1993) was used to compare likelihoods of the various models 

and to allow for estimation of a second variance due to common environment of full 

sibs (C). With C in the model the significance of the maternal effects was tested by 

constraining them to zero one at a time and testing the changes in log L, of the 

resulting sub-model compared to the full model, for significance using the likelihood 

ratio test (Welham and Thompson, 1992). This procedure was also utilised to test the 

loss in likelihood for these data by considering a single maternal pathway, as Falconer 

(1965) did, rather than multiple maternal pathways. 

In addition to these offspring-parent regression based models, analysis of 

variance (AOV) was performed (for both CHWT and JBWT) with sire and dam as 

random effects and the maternal traits as covariates using REML. AOV forms 

another useful way to study asymmetry of hentabilities based on sire and dam 

variances, especially when only one generation of data is available (as for CHWT). 

The expectation of the paternal half sib-covariance is 1/4 a' and is thus not affected by 

maternal characters. 

RESULTS 

Estimation of genetic parameters for the maternal egg quality traits 

Genetic parameters are presented in Table 3.2. Heritability (h2) estimates generally 

had intermediate to high values (28 - 55%). Both genetic and phenotypic correlations 

between EWT and WTT, and between WTL and WTL% were close to unity. The 

genetic relationship of SG with WTL(%), both measures of the shell quality, was 

moderately negative. 

The permanent environmental variances as percent of the phenotypic variances (p2) 

had low to intermediate values (11 - 21%) and were often not significantly different 

from zero due to large sampling errors (see Table 3.3). Repeatabilities (h2+p2) were 

high, ranging from 44% for WTL to 70% for EWT. 
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Regression on sire, dam and the maternal traits 

Simple regressions of CHWT and JBWT on the maternal traits are shown in Table 

3.4. All the regressions, except on WTL, were significant (P<0.001) for CHWT and 

showed highly variable R2  values (0.0% to 82.5%). An increase in SG and WTL% 

had a negative effect on the CHWT while increasing the others had a positive effect. 

The signs of the regressions were identical for JBWT, however, SHA, SG and WTL 

did not affect JBWT significantly. The R2  values were low (0.0% to 2.3%). 

A stepwise regression procedure of CHWT on the maternal traits, to pinpoint the 

effects that minimise MSE, retained (in order) WTT, SG, WTL% and WID in the 

model resulting in a coefficient of determination (R2) of 85.7%. The univariate 

regression on WTT explained 82.5% of the variance in CHWT (Table 3.4). REMIL 

analysis of variance (AOV) was performed with these maternal effects as covariates 

in the model (see Table 3.5). WTT, WTL% and WID had a positive effect on 

CHWT, whereas SG had a negative effect. Although very significant on an ordinary 

basis, partial EWT was not significant at the 5% level. Introduction of the dam 

variance in model 2 (in Table 3.5) led to a large increase in likelihood. Further 

introduction of the sire variance did not significantly increase the likelihood as this 

variance component was not statistically different from zero. The heritability 

estimates of CHWT based on sire and dam variances were very close to zero and 

one, respectively. Incorporating dam's JBWT deviation in the model as covariate did 

not change the likelihood significantly; the partial regression estimate was effectively 

zero. 

A similar stepwise regression procedure for JBWT on the maternal traits retained, in 

order of importance, WTT, EWT, WTL%, WID and LEN in the model. Results of 

regression analyses and AOV for JBWT, assuming a number of different models and 

using REML, are shown in Table 3.6. A straightforward regression of offspring on 

sire and dam showed these estimates to be different at the 5% level (see model I and 

5 or model 13). Inclusion of the common environmental variance component (c2) due 
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to the dam increased the likelihood significantly in models 2, 6, 10 and 14. The 

regression estimate of the sire rose and the dam estimate dropped somewhat. 

Consequently, the estimate on the mid-parent remained unaltered. Introduction of the 

maternal effects in the models 11 and 15 further increased the likelihoods and the sire 

regression coefficient, resulting in a somewhat greater mid-parent regression 

estimate. For the models 3 and 7, including the maternal covariates instead of the c2  

effect reduced the relative likelihoods. The partial maternal regression coefficient was 

significantly negative for EWT and positive for the others. Inclusion of both the c2  

effect and the maternal effects (models 4, 8, 12 and 16) led to the highest relative 

likelihoods. Once again, the sire estimate increased and the dam estimate decreased, 

leading to similar estimates of 0.23 and 0.24, respectively, and a heritability 

coefficient of 0.47 based on the mid-parent. The effects of WTT, EWT and WTL% 

increased by taking account of the variance due to common environment, whereas 

the relevance of WID and LEN diminished. For the models 13 to 16 the sirex dam 

interaction term was tested and found insignificant (P>0.30). 

Analysis of variance, with sire and dam as random effects (model 17), resulted 

in much lower heritabilities of 0.14 and 0.29 based on sire and dam components, 

respectively. Consideration of the maternal effects (model 18) increased the 

likelihood and changed the sire and dam heritability estimates to 0.16 and 0.27, 

respectively. The partial maternal regression coefficients were similar to the estimates 

for WTT, EWT and WTL% in the models 4, 8, 12 and 16 and somewhat smaller for 

WID and LEN. 

Table 3.7 shows the significance of the maternal effects under various (regression or 

AOV) models with or without common environment taken into account. Changes in 

residual likelihood, the likelihood of the data after projection into the residual space, 

were considered and tested for significance by successively dropping the maternal 

effects from the full model. Model 15 could also be analysed directly by regression 

analysis as only one source of variation (the error) was present. Inclusion of the c2  

effect, in model 16, markedly increased the significance of WTT, EWT and WTL% 

to P<0.01 and made WID and LEN insignificant at the 1% and 5% level, 
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respectively. For AOV (model 18) WID and LEN were insignificant at P0.05. 

WTT, EWT and WTL% were paramount in determining maternal effect on JBWT. 

The changes in the sire and dam regression estimates, the maternal regressions, the 

common environmental and residual variances and the likelihoods, by omitting 

subsequently all but one maternal pathways, were presented for the models 15 and 16 

(see Table 3.6) in Table 3.8. The likelihood losses were significant in all cases. 

However, losses were restricted mostly with WTT or EWT in the model, which 

indicates that these are the most important univariate maternal pathways, ignoring 

any covariance structure. The fit of the model to the data was somewhat better 

including a regression on WTT rather than on EWT. The relevance of the remaining 

individual maternal effects, ignoring any covariances between them, decreased in the 

order of WID, LEN and WTL%, both with and without a c2  effect in the model. The 

models with the best fit showed a smaller heterogeneity of sire and dam regression 

estimates, although differences were insignificant at P=0.05 in all cases, and smaller 

common environmental and residual variances. Note that these individual maternal 

regressions were similar to the ordinary regressions in Table 3.4. Accounting for the 

covariances amongst the maternal traits in the multivariate analyses (as in models 15 

and 16 in Table 3.6) changed the sign of the regressions for EWT and WTL%, 

thereby increasing the monomial importance of WTL% as the character exerting 

maternal influence on JBWT. 

Simple regressions of the maternal egg quality effects on maternal JBWT were 

performed (Table 3.9). These estimates allow us, after returning to the JBWT scale 

by multiplication with the partial regression coefficients of the offspring's JBWT on 

the respective maternal traits (Falconer, 1965), to determine both the partial and the 

summed effects of these traits on the total offspring-dam regression estimates and to 

compare the relative importance of the egg traits on an identical scale. These indirect 

partial regression estimates on the egg traits, describing the biological maternal 

effects, were presented for the models 8 and 16 in Table 3.10. WIT, EWT and 

WTL% (in model 8) had significant regression estimates only, which was largely in 
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agreement with the tests in Table 3.7. WTT and EWT appeared to be most 

influential, a higher WTT increasing and a higher EWT decreasing the offspring's 

JBWT performance. The effect of WTL% reduced to zero in model 18. The 

aggregate maternal effect was positive (0.01) and explained the differences between 

the offspring-dam regression estimates in models 8 and 6 and 16 and 14, respectively. 

DISCUSSION 

The genetics of the egg quality traits 

Selection on JBWT and egg production might have affected egg quality dispersion 

parameters somewhat. For instance, in Chapter 6 a heritability of 0.55 was estimated 

for EWT in a univariate REML analysis, which is similar to the present estimate of 

0.52. Consideration of all the JBWT data in a bivariate analysis, however, increased 

the heritability to 0.64. Nevertheless, the present heritability estimates are generally 

substantial and the other traits are probably not as strongly correlated to JBWT as 

EWT (Kinney, 1969). The prolonged extensive selection might have driven gene 

frequencies in a particular direction, and thus making parameters unique to this 

individual population. 

Discrepancies in heritability coefficients based on sire or dam regression or variance 

component estimates have frequently been observed. Often, these differences can be 

attributed to characters exerting maternal influence on the trait of direct interest (see 

eg. Lande and Kirkpatrick (1990) for references). As a consequence, the dam 

estimate, or both the sire and dam estimate, as well as their average may be biased 

(Willham, 1963; Falconer, 1965; Eisen, 1967; Lande and Price, 1989). In the present 

study, a number of maternal pathways relating to the egg, possibly exerting non-

Mendelian influence on JBWT performance in the offspring, were evaluated for their 

relevance and their (aggregate) effect on the offspring-sire, the offspring-dam and 

their average regressions. It was shown that the existence of multi-dimensional 

antagonistic maternal pathways explained the significant difference between the 

ordinary offspring-sire and offspring-dam regression coefficients. The traits WTT and 
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EWT had large positive and negative partial maternal effects, respectively, on the 

offspring's JBWT. The WTL% of the egg had a smaller positive effect on the 

offspring's performance. The relative importances of these factors agreed with the 

analysis of principal components (GENSTAT, 1993), showing, after a factor 

rotation, that the original variability contained within all the maternal traits could 

largely be displayed in two linear combinations, the first consisting of mainly WTT 

and EWT explaining 95.8% of the variance and a second including WTL%, WTT and 

EWT accounting for a further 4.1% of the variance. Although the antagonistic partial 

effects of these traits on the dam regressions were appreciable (see Table 3.8), the 

aggregate bias was only small (0.01). The offspring-sire regression estimates were 

also affected by the covariates on the maternal phenotypes (mu,,) in the present data 

(with a summed effect of -0.02), which is not expected theoretically since the 

expectation of the offspring-sire covariance is 1/4aA2 + ¼ma (compare model 3.4). 

However, the effect was not statistically significant and probably represented 

sampling. The term 	must on aggregate be very close to zero, and hence 

negligible, in this case because i) the partial regressions on WTT and EWT are of 

similar size with opposite sign, and ii) the genetic covariances of those traits with 

JBWT are similar due to their genetic correlation of 0.96 (see Table 3.2) and their 

similar variances. The effect on the mid-parent regression was minimal, changing 

from 0.46 to 0.47. 

By testing the sirex dam interaction component, the importance of dominance 

variation in causing differential heritabilities was found to be negligible. Another 

possible cause of asymmetry is sex-linkage, which was ignored in the analyses 

performed here. The similarity of the sire and dam regression after accounting for 

maternal effects and common environment, however, suggests that sex-linked 

variation in JBWT is not of great importance, which is in agreement with Chapter 2 

where similar heritabilities for male and female JBWT and genetic correlations close 

to unity (0.92 to 0.95) were found. 

Analysis of variance resulted in similar maternal effect coefficients, but much 

lower heritability estimates that were still notably different for sire and dam (0.16 and 

0.27, respectively) after accounting for these maternal traits. The much lower 
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heritabilities were due to the parental variance component estimates being affected 

considerably by the selection of the parents for JBWT-index, whereas offspring-

parent regressions are unaltered by such selection (Robertson, 1977). The remaining 

asymmetry of sire and dam heritabilities was caused by the common environmental 

variance component being confounded with the dam variance component resulting in 

an overestimation of the dam heritability. In the regression model, however, this 

common environmental variance component and the direct genetic transmission 

through the dam were separated. Analysis of variance on CHWT also showed 

substantial variation due to the dam, independent of the maternal traits included. The 

negligible variation among sires demonstrated that the direct heritability of CHWT is 

close to zero, and hence the dam variance component must have been of a maternal 

environmental or a maternal genetic rather than a direct genetic type. The majority of 

variation in CHWT was already accounted for by maternal variation in egg weight 

(see Table 3.4). The presence of a common maternal environmental component is 

easily comprehended when one considers the hatching environment, with full siblings 

sharing the same micro-environment of one hatching basket. Further evidence of the 

substantial effect of the (pre- and post-) hatching environment was provided by an 

insignificant partial regression (P>0.90) of JBWT on CHWT, which is perhaps 

surprising from a developmental viewpoint. Nevertheless, the maternal traits were 

affecting CHWT and JBWT in similar directions. However, in contrast with CHWT, 

the maternal variation in JBWT was only minor relative to the direct variation. 
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Scope for improvement of progress in traits of direct and maternal importance 

In recent years an exhaustive amount of research effort has gone into the estimation 

of maternal effects for beef cattle in particular (see eg. Mohiuddin, 1993). The 

majority of these studies has been based on the models of Willham (1963), in which 

maternal performance is assumed to be unobserved. The application of such models 

has been greatly facilitated and hence encouraged by derivative-free REML programs 

of Meyer (1989), in which estimation of genetic maternal effects according to 

Willham (1963) forms a standard feature. There is an abundance of evidence, 

however, showing that separation of these highly confounded components is difficult 

without direct observation of the maternal traits (Eisen, 1967; Thompson, 1976; 

Willham, 1980; Meyer, 1992a,b). Although the simplification of Wiliham's (1963) 

model by assuming a priori a zero environmental dam-offspring covariance in 

Meyer's (1989) programs is likely to result in improvement of precision of the 

estimated components (Thompson, 1976), it may not always be warranted and can 

lead to biased estimates of the correlation between the direct and maternal genetic 

effect (r) in particular (Koch et al. ,1972; Thompson, 1976; Meyer, 1992a,b). 

Also. Lande and Kirkpatrick (1990) showed that cycles of maternal effects as in 

Falconer's (1965) model cannot be accounted for by Willham's models. Maybe, a 

striking example of this was given by Robinson (1994), who demonstrated by 

simulation that a negative dam-offspring covariance, as in Falconer's (1965) model 

with a maternal coefficient (m) of -0.2, was fitted by Wiliham's model partially as a 

negative r and as a permanent environmental maternal effect using Meyer's (1989) 

RE\IL programs. Consequently, Robinson (1994) argued that maternal action 

according to these, Falconer-type, models might explain the often disputed negative 

estimates. 

Instead, single or multiple observed maternal effects, like the egg quality traits 

in this study, can readily be accounted for using a Falconer-type model. Application 

of this model in IAM-REMIL programs is straightforward by fitting the (deviations of 

OLS expectations of) maternal observations as covariates and assuming, for instance, 

a direct additive genetic and a common permanent environmental variance 

component due to the dam. Inefficiencies in selection due to the presence of maternal 
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variation in the direct trait of interest can thus largely be avoided, if the relevant 

maternal pathways have been identified and included. The identification and inclusion 

of individual networks of maternal effects, rather than combining all non-Mendelian 

inheritance into a single maternal effect, has been advocated before by Lande and 

Kirkpatrick (1990). For the present JBWT trait in broilers, however, the antagonistic 

effects of the maternal traits, largely offsetting each other and hence only biasing the 

heritabilities slightly, makes inclusion less urgent (the Pearson correlation coefficient 

of uncorrected and corrected JBWT deviations was 0.98). 

The present maternal effects were very significantly heritable (see Table 3.2) 

and might be expected to have moderate to high correlations with JBWT. For 

instance, in Chapter 6 a genetic correlation of 0.63 between JBWT and EWT was 

found. In dam lines, in particular, the inevitable correlated responses to selection for 

JBWT are not always desirable and therefore specific selection pressure on the egg 

quality traits may be required. This can be established, as for any other trait of 

economic relevance, by including it in the selection index or BLUP analyses and 

selecting for the direct breeding value (often based on maternal performance) of the 

individual maternal egg quality effects. This enables precise prediction of the 

expected as well as estimation of the realised responses per individual trait, whereas 

the biological meaning of the response to selection for a single combined maternal 

breeding value can really only be speculated upon. Therefore, the maternal traits can 

have two explicitly different appearances, i) as nuisance parameter, i.e. a covariate to 

correct for maternal variation in a trait of direct interest (eg. JBWT), and ii) as 

another direct trait of economic interest (eg. EWT or WTL%) being part of a 

combined index to improve the aggregate genotype of female lines. Presumably, one 

might want to consider solely i) for male lines. 

These procedures might, of course, have less scope for traits with crucial 

maternal effects being difficult and/or costly to measure. Dam's milk production, 

mothering ability and uterine environment (Meyer, 1992a), in mammalian species in 

general and beef cattle in particular, might be appropriate examples. When economic 

values of such traits are high, however, and genetic correlations with other traits of 

high economic interest are unfavourable, the measurement costs might be far 
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outweighed by a higher economic output especially when genetic selection is 

centralised in small nucleus-type populations as opposed to large scale (national) 

selection programmes. More straightforward indirect Falconer-model analyses, like 

JBWT in broilers with only EWT as maternal component (see Table 3.8) or (birth) 

weights of beef calves with the dam's mature body weight as the maternal component 

or the sow's litter size with her mature body weight as the maternal component could 

also be of interest to breeders. 

SUMMARY AND CONCLUSIONS 

The maternal egg characteristics, length, width, weight at set (EWT), specific gravity 

(SG), weight at transfer (WTT) and weight loss from set to transfer (WTL) were 

measured for female line meat-type chickens to investigate 1) the genetics of these 

egg quality characteristics and 2) the effect of these maternal traits on (bias of) the 

offspring-parental regressions for JBWT performance and the significance of their 

regressions. Animal model REMIL heritability estimates of the egg traits had 

intermediate to high values, ranging from 28% for SG to 55% for WTT. Simple 

regression coefficients of offspring on sire and dam for JBWT were significantly 

different (0.20 and 0.26, respectively). Extension of this single regression model with 

covariates on all the maternal egg quality phenotypes as well as a second variance 

component due to common permanent environment of full siblings alleviated the 

asymmetry in offspring-sire and offspring-dam regressions (0.23 and 0.24, 

respectively). EWT and WTT had significant antagonistic partial effects on the dam 

regression (-0.06 and 0.07, respectively). The antagonistic effects of these maternal 

pathways largely offset each other, and hence biased the offspring-dam regression 

only slightly (0.01). The scope for application of these types of models, assuming 

observed maternal performances, in animal breeding to improve the progress in traits 

of direct and maternal importance was discussed. 
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TABLE 3.1 

Descriptive statistics of the traits measured on the eggs originating from 221 hens 
(with units in parentheses), width (WID), length (LEN), shape (half the difference of 
LEN and WID, SHA), weight at set (EWT), specific gravity (SG), weight at transfer 
(WTT), weight loss from set to transfer (WTL), WTL as percentage of EWT 
(WTL%) and weights of the chick at hatch (CHWT) and at 6 weeks (JBWT). 

trait # records mean min max SD CV (%) 

WID (mm) 6072 43.1 38.0 48.0 1.38 3.21 

LEN (mm) 6072 55.7 48.0 65.0 2.37 4.26 

SI-lA 6072 6.3 3.0 12.0 1.12 17.82 

EWT (g) 6072 58.3 42.0 76.6 4.91 8.43 

SG 6040 5.7 1 8 1.14 19.77 

WTT(g) 4353 51.7 30.0 70.4 4.62 8.95 

WTL(g) 4348 6.5 1.6 25.1 1.41 21.82 

WTL% 4348 11.2 3.2 45.4 2.44 21.83 

CHWT(g) 3720 38.7 25.7 52.1 3.67 9.47 

JBWT (kg/10) 2930 22.9 12.0 29.7 2.46 10.75 
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TABLE 3.2 

Estimates of the heritabilities (on the diagonal ± SE), the phenotypic correlations (above the 

diagonal) and the genetic correlations (below the diagonal ± SE) in percent for the maternal 
egg quality traits. 

WID LEN SHA EWT SG WTF WTL WTL% 

WID 48± 14 15 -37 81 -11 72 11 -13 

LEN 28 ±20 38± 13 86 67 01 64 03 -17 

SHA -33 ±20 81±08 34± 11 23 06 23 -02 -09 

EWT 83 ±06 75 ±09 24 ±20 52± 14 -00 94 07 -23 

SG -15 ±23 44 ±20 47± 19 20 ±21 28± 10 10 -39 -37 

WiT 81±07 73± 10 24±20 96±01 30±20 55± 14 -27 -55 

WTL -06 ± 22 -01 ± 24 06 ± 24 -09 ± 21 -51 ± 19 -31 ± 19 32 ± 11 95 

WTL% -37± 19 -26±22 -02 ±23 -43±17 -54± 17 -63± 12 93 ±03 35± 11 

see Table 3.1 for abbreviations 

TABLE 3.3 

Estimates of the permanent environmental variances as percentage of the phenotypic 
variances (on the diagonal ± SE) and the correlations in percent between these permanent 
environmental components (below the diagonal ± SE) for the maternal egg quality traits. 

WID LEN SHA EWT SG WiT WTL WTL% 

WID 16±11 

LEN 17±42 21±11 

SHA -30±35 89±06 21±10 

EWT 88±11 64±18 20±38 18±12 

SG -16±37 -60±20 -49±24 -40±30 21±09 

WTF 74±27 63±19 23±39 96±05 -33±34 	13±13 

WTL 78±20 10±43 -30±35 57±22 -37±32 	24±38 	12±09 

WTL% 42±29 -19±41 -40±30 12±44 -22 ±39 	-22±39 	89± 11 	11 ±09 

see Table 3.1 for abbreviations 
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TABLE 3.4 

Univariate regressions and their SE, significance (P) and coefficient of determination (R2  in 
%) of CI-IW1' and JBWT on the maternal egg quality traits. 

CHWT 	 JBWT 

egg trait 	b ± SE (/10) 	P 	R2 	b ± SE 	 P 	R2  

WID 19.45±0.35 <0.001 52.1 20.69±2.81 <0.001 1.8 

LEN 8.82 ± 0.22 <0.001 35.6 8.59 ± 1.54 <0.001 1.0 

SHA 5.27 ±0.51 <0.001 3.6 4.21 ±2.92 0.150 0.0 

EWT 7.29 ± 0.07 <0.001 80.7 7.08 ± 0.84 <0.001 2.3 

SO -4.42±0.55 <0.001 2.1 -2.30±3.15 0.465 0.0 

WTF 7.52±0.06 <0.001 82.5 7.16±0.86 <0.001 2.3 

WTL 0.89±0.26 0.103 0.1 3.25±3.11 0.296 0.0 

WTL% -5.61 ± 0.30 <0.001 11.0 -4.08± 1.78 0.022 0.1 

see Table 3.1 for abbreviations 
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TABLE 3.5 

Analysis of variance on CHWT with the maternal egg traits (and maternal JBWT, mDL) as covariates, with the 
respective log-likelihoods (log L) relative to model 1. 

model 	aSIRE2 CTDAM2*MWTT 	MSG 	mWTL% 	mWID 	mDf 	aE2 	log L 

1 7.55±0.10 -4.61±0.22 0.77±0.15 0.78±0.31 129.8±3.4 0 

2 37.42±4.50 	7.58±0.13 -4.33±0.25 0.87±0.18 0.72±0.35 94.5±2.6 278 

3 2.33±2.23 	35.31±4.51 	7.57±0.13 -4.33±0.25 0.86±0.18 0.71±0.35 94.4±2.6 279 

4 2.08±2.17 	35.50±4.54 	7.58±0.13 -4.33±0.25 0.87±0.18 0.70±0.35 -0.006±0.005 	94.4±2.6 280 

see Table 3.1 for abbreviations; *m1  is the partial regression on trait i 
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TABLE 3.6 

Regression analyses (model 1-16) of offspring JBWT on parental JBWT and on the maternal egg traits, with or without common maternal 
environment (C) as second variance; and analysis of variance (AOV, model 17-18) on JBWT with sire and dam as random effects and the 
maternal egg traits as covariates, with their respective log-likelihoods (log L) relative to models 1 (for I to 4), 5 (for 5 to 8), 9 (for 9 to 12), 
13 (for 13 to 16) and 17 (for 17 and 18). 

regression bSIRE bDAM bs+D MWTT mEWT mWTL% mWlD mLEN cY2 E2 log L 

model 1 0.20±0.03 28751±751 0 
2 0.21±0.05 2796±474 25981±703 57 
3 0.22±0.03 44.5±15.7 -38.1±14.2 23.4±9.1 16.1±7.5 5.38±3.46 27863±730 45 
4 0.23±0.04 55.7±16.1 -46.6±14.6 29.3±9.4 15.9±7.7 4.15±3.65 2574±450 25369±688 96 
5 0.26±0.03 28600±747 0 
6 0.25±0.05 2632±457 25995±703 52 
7 0.25±0.03 40.0±15.7 -36.0±14.2 21.1±9.1 19.3±7.6 7.16±3.47 27830±729 40 
8 0.24±0.05 54.5±16.1 -46.4±14.6 28.4±9.4 16.8±7.7 4.77±3.65 2532±446 25387±688 88 
9 . 0.46±0.04 28141±735 0 

10 0.46±0.06 2160±408 26003±703 39 
11 0.47±0.04 37.5±15.5 -33.4±14.1 19.1±9.1 19.3±7.5 6.75±3.43 27298±715 44 
12 0.47±0.06 50.9±16.0 -43.4±14.5 26.2±9.3 17.4±7.7 5.00±3.61 1964±387 25400±688 78 
13 0.20±0.03 0.26±0.03 28134±735 0 
14 0.21±0.04 0.25±0.05 2165±409 26005±703 39 
15 0.22±0.03 0.25±0.03 37.2±15.5 -33.2±14.1 18.9±9.1 19.5±7.5 6.88±3.43 27302±715 44 
16 0.23±0.04 0.24±0.05 50.9±16.0 -43.4±14.5 26.2±9.4 17.4±7.7 5.02±3.61 1980±390 25401±688 77 

AOV CTSIRE2  DAM2 
 

MWTT mEWT mWTL% mwID mLEN CTE2 log L 

model 17 1032±444 	2138±431 25998±704 0 
18 1114±467 	1944±409 53.1±16.2 -43.7±14.7 27.5±9.5 14.4±7.7 2.72±3.63 25377±688 38 

see Table 3.1 for abbreviations 
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TABLE 3.7 

The change in likelihood (A log L) and its significance (P) based on the likelihood ratio test, 
constraining the maternal traits to zero one at a time. 

maternal egg trait 	model 15 	 model 16 	 model 18 

- 	constrained to zero 	A log L 	P 	A log L 	P 	A log L 	P 

WTT -2.86 <0.05 -5.03 <0.01 -5.30 <0.01 

EWT -2.78 <0.05 -4.47 <0.01 -4.36 <0.01 

WTL% -2.17 <0.05 -3.90 <0.01 -4.15 <0.01 

WID -3.39 <0.01 -2.56 <0.05 -1.73 >0.05 

LEN -2.01 <0.05 -0.97 >0.05 -0.28 >0.05 

see Table 3.1 for abbreviations 
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TABLE 3.8 

Regression analyses of offspring JBWT on parental JBWT and on the individual maternal egg traits, with or without common 
maternal environment (C) as second variance with their respective log-likelihoods (log L) and their significance (P) relative to models 
15 (for iSa to 15e) and 16 (for 16a to l6e) in Table 3.6 with all relevant maternal pathways included. 

model 	bSIRE 	bDAM 	MWTT 	mEWT 	mWTL% 	mWID 	mLEN 	cy 
C  2 
	cy 

E  2 
	log L 	P 

15a 0.22±0.03 0.25±0.03 7.3±0.8 	
- 27426±717 -6 <0.05 

15b 0.22±0.03 0.25±0.03 7.2±0.8 27407±717 -7 <0.01 
15c 0.21±0.03 0.26±0.03 -4.8±1.7 28023±733 40 <0.01 
15d 0.21+0.03 0.25±0.03 21.3±2.8 27543±721 -14 <0.01 
15e 0.21±0.03 0.26±0.03 8.7±1.5 27799±727 -28 <0.01 
16a 0.22±0.04 0.25±0.05 8.2±1.0 	 1925±383 25558±691 7 <0.01 
16b 0.22±0.04 0.24±0.05 8.0±1.0 	 1897±380 25566±692 -9 <0.01 
16c 0.21±0.04 0.25±0.05 -5.8±2.0 	 2157±409 25912±702 34 <0.01 
16d 0.22±0.04 0.25±0.05 23.2±3.3 	 1943±385 25644±694 -14 <0.01 
16e 0.21±0.04 0.25±0.05 8.5±1.8 	1957±388 25882±701 -28 <0.01 

see Table 3.1 for abbreviations 



TABLE 3.9 

Umvariate regressions and their SE (x 10-4) and significance 
(P) of the maternal egg quality traits on maternal JBWT. 

maternal egg trait 	bDAM± SE 	 P 

WID 2.13 ±2.14 0.321 

LEN 2.20±3.91 0.574 

EWT 14.19±7.12 0.046 

WYF 12.82 ± 6.98 0.066 

WTL% 1.76 ± 3.42 0.607 

see Table 3.1 for abbreviations 

TABLE 3.10 

The partial and aggregate (m101) maternal effects of the egg characteristics acting 

on the progeny's JBWT through JBWT of their mothers and the resulting total 
regression of offspring on dam (bTOT  bdarn  + mIOT) for the models 8 and 16. 

model 	mW.fl 	mEWT 	mWTL% 	mWID 	mLEN mTOT bToT 

8 0.07±0.01 -0.07±0.01 0.01±0.00 0.00±0.00 0.00±0.00 0.01 0.25 

16 0.07±0.01 -0.06±0.01 0.00±0.00 0.00±0.00 0.00±0.00 0.01 0.25 

see Table 3.1 for abbreviations and Table 3.5 for bd estimates and other details on models 
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CHAPTER 4 

PREDICTED REPONSE IN FOOD CONVERSION RATIO FOR GROWTH 

BY SELECTION ON THE RATIO OR ON LINEAR COMPONENT TRAITS, 

IN A (SEQUENTIAL) SELECTION PROGRAMME 

INTRODUCTION 

Conversion of consumed food into weight gain (FCR) is a trait of high economic 

importance. For this reason, numerous researchers have studied the implications of 

selection for a ratio trait in general and FCR in particular (eg. Turner, 1959,-

Sutherland, 

959;

Sutherland, 1965; Pym and Nicholls, 1979; Lin, 1980; Gunsett, 1984; Essl, 1989). 

Linear approximations to avoid problems of selection for FCR appear to have risen in 

popularity since Lin's (1980) selection index approach. Often, however, linear 

approximations of a ratio of two component traits are applied without having 

knowledge of the (size of) ratio-related problems that might occur. 

Anticipated problems with direct selection for a ratio are two-fold. (1) Traits 

are combined in a fixed nonlinear fashion, independent of the variance-covariance 

structure of the component traits. The ratio can be seen as a linear index of the 

logarithms of the component traits with fixed index coefficients of I for the 

numerator and -1 for the denominator. Implied relative economic values (Gibson and 

Kennedy, 1990) for the (logarithmic) component traits, and therefore selection 

responses, depend on their variance-covariance structure. (2) Nonlinear combination 

of two normally distributed traits results in deviation from normality. The size of this 

non-normality is dependent on the coefficients of variation of the component traits. 

Quantification of these problems is important in deciding how to select for a 

ratio trait, because they might counterbalance the higher costs associated with 

dispersion parameter and breeding value estimation when using a linear combination 

of traits. For example, direct selection for FCR by Best Linear Unbiased Predicted 

(BLIJP) breeding values requires univariate analysis, whereas indirect selection for a 
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linear combination of component traits would require bivariate analysis (or 

alternatively, but less efficiently, two univariate analyses followed by the combination 

of information on single traits by means of selection index methodology) for food 

consumption (FC) and weight gain (WG). 

Selection for ratio traits only in single step selection structures has been 

considered in the literature. In broilers, however, selection for FCR is typically 

performed after some selection for juvenile body weight (JBWT). This may 

complicate the quantification of ratio-related problems as JBWT is correlated to the 

ratio and its component traits. Furthermore, it also complicates (co)variance 

component estimation since selection on JBWT can not be ignored when bias on ratio 

(component) traits is to be prevented. Under such a sequential selection programme, 

unbiased covariance estimates between ratio component traits in particular, necessary 

when combining those traits in an index, are difficult to obtain. Once again, 

considering whether the extra effort in estimating dispersion parameters and breeding 

values outweighs the anticipated loss in selection response due to direct selection on 

the ratio seems to be appropriate. 

The first objective of this study was to compare direct selection for a ratio 

with indirect selection for a linear combination of component traits for a (broiler) 

population under both single- and two-step selection for JBWT and FCR. For this 

purpose selection index methodology was used. Secondly, the effects of non-

normality of FCR on (co)variance component estimation were investigated. 

MATERIALS AND METHODS 

The population 

A population of 600 animals under sequential selection was assumed. The 

infinitesimal model was assumed, i.e. the limiting case of a genetic model with a very 

large number of unlinked loci, each having a very small additive effect on the traits of 

interest, i.e. JBWT, FC, WG and FCR. After selection for JBWT, 60 males and 120 

females were retained for FCR-testing. From these individuals the best 3 males and 

30 females were selected as parents based on direct or indirect phenotypic 
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performance for FCR. As a comparison, a single-step selection programme was also 

studied, with all animals having observations on all traits. 

Approaches to selection for FCR 

Three approaches to selection for FCR were considered. They were all based on 

manipulation to linear selection for either the ratio trait or its components in order to 

use standard selection index theory (Hazel, 1943). 

Lin's (1980) approach. By following the definition of genetic change in a ratio trait 

Lin (1980) derived the weighting factors for FC and WG to maximise genetic 

response in the ratio. The weighting factors for FC and WG proved to equal the 

population mean for WG and minus the population mean for FC. These weighting 

factors do not necessarily lead to maximisation of economic efficiency, for they are 

not the relative economic values of the traits, but rather to maximisation of the gross 

efficiency (i.e. minimisation of FCR) (Pym, 1985). 

Turner's (1959) approach. Turner (1959) used the fact that a fraction can be 

linearised by taking its logarithm. For FCR this can be formulated as: 

log(FCR) = log(FC/WG) = log(FC) - log(WG) 

A similar transformation was applied to product traits by Simm et al. (1987). The 

standard deviations of the transformed traits equal the coefficients of variation (CVs) 

of the untransformed traits if natural logarithms are used, which follows from first 

order statistical differentiation. The (co)variance components Turner (1959) derived 

for the ratio trait and its components using this linearisation were identical to the 

approximations given by Pearson (1897) (Sutherland, 1965). Assuming that the more 

cumbersome estimation of dispersion parameters and breeding values of component 

traits can be circumvented by direct selection for the ratio, the log transformation 

method was not further used. 
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Pearson's (1897) approach. Pearson (1897) derived a formula to approximate 

correlations between two ratio traits, say x1/ x2  and x3/ x4  with means t1 to 44. The 

formula follows from the first order Taylor's approximation 

cov(x1 /x2 ,x3 / XI) 	21c0vi,x2)+cov3,x4)_covi,x4)_cox2,x3 

12 	4344 	4414 	23 I 

This formula is a good approximation if CVs are small, is very flexible and can also 

be used for approximating genetic and phenotypic correlations between ratio 

component traits (eg. FC and WG), a ratio component trait and the ratio (eg. WG 

and FCR), ratio component trait and another trait (eg. FC and JBWT) or the ratio 

and another trait (eg. FCR and JBWT). Selection can now be performed on FCR 

treated as a linear trait and correlated responses in component traits can be predicted 

either assuming FCR or component traits FC and WG (with weighting factors 

according to Lin (1980)) to form the aggregate genotype. 

Studied selection indexes and aggregate genotypes 

Response in the component traits can readily be compared using selection index 

theory when only FCR (or a linear function thereof) is in the selection index and 

aggregate genotype. In a sequential selection programme, however, JBWT is part of 

the selection index and/or the aggregate genotype. Table 4.1 shows the combinations 

of selection indexes and aggregate genotypes studied. The same combinations were 

investigated for 1-step and 2-step selection. Selection in the first step of the 

sequential structure was always for JBWT, whereas selection in the second step (and 

the only step in the 1-step alternative) was for one of these indexes. The 

combinations of selection indexes and aggregate genotypes can be partitioned into 

three stages when based on the use of Lin's (1980) or Pearson's (1897) methods. 

These stages, with the first stage containing component traits in both the aggregate 

genotype and the index, represent the possible increase in loss of genetic response 

due to using FCR as a linear trait, firstly only in the index (stage 2) and thereafter 

both in the index and aggregate genotype (stage 3). It is the latter stage that is. of 
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main interest because of the possible savings in estimation of (co)variance 

components and breeding values, particularly for the sequential selection structure. 

Defining the relative weighting factor for JBWT 

Addition of JBWT to the aggregate genotype depends on its economic weight 

relative to FCR or components. To do this the specific sequential structure of the 

breeding programme (60/120, 60 males and 120 females retained after the first 

selection step) was utilised and assumed implicitly to maximise response in the 

aggregate genotype. Weighting factors for the ratio trait components were assigned 

according to Lin (1980) and were kept constant. The weighting factor for FCR as a 

linear trait was put to -1 since only proportionality matters. Over a range of relative 

weighting factors for JBWT, response in the aggregate genotypes, comprising either 

JBWT, FC and WG or JBWT and FCR, was investigated for the current breeding 

programme (60/120) as well as for structures with more selection pressure on JBWT 

(50/100) or more selection pressure on FCR or its components (70/140). The 

assumed optimum weighting factor for JBWT was chosen on the basis of the 

maximum conditional sum of (AH601120  - A.H50,lOo) and (AH601120 - AH701140), the 

conditions being both (i\H601120  > AH50,ioo) and (AH601120  > AH70,140) in order to satisfy 

the implicit assumption of maximisation of AH under the present sequential structure 

(60/120) where Al-I is the change in the aggregate genotype due to direct and 

correlated responses of the contributing traits. 

Genetic parameters 

Genetic parameter values (see Table 4.2) were based largely on Pym's selection 

experiment (Pym and Nicholls, 1979; Pym, 1983). Heritabilities of the ratio 

component traits WG and FC were similar. A second and third set of parameters 

were used to investigate whether or not the presumed superiority of selection for 

components over direct selection on the ratio when hentabilities of the component 

traits are different (Gunsett, 1984) holds under the present sequential selection 

programme. In these cases, genetic and phenotypic correlations were identical to 



alternative 1, whereas heritabilities of WG and FC were assumed to be 0.5 and 0.2 

respectively for alternative 2 and vice versa for alternative 3. 

The sensitivity of differences in response between direct selection for the ratio 

and indirect selection for its components to differences between the genetic and 

environmental correlation was investigated by successively changing the 

environmental correlation to 0.25, 0.0 and -0.5, while holding the other parameters at 

their base values. Typically, the information given by the second trait depends on the 

difference between the phenotypic and genetic regressions of one trait on the other 

and thus, if assuming equal heritabilities, on the difference in correlations rather than 

on the absolute values (Sales and Hill, 1976). 

Asymptotic responses 

Genetic parameters and expected responses to selection are reduced as a 

consequence of gametic phase disequilibrium, induced by selection, until an 

equilibrium is approached after a few generations (Bulmer, 1971). Comparisons 

among different selection strategies should therefore be made by using asymptotic 

rather than single generation responses. Wray and Hill (1989) presented selection 

index methodology based algorithms to predict asymptotic response rates using a 

BLUP animal model and Villanueva et al. (1993) focused on the prediction of 

asymptotic rates of response from selection on multiple traits. These methods were 

used to predict asymptotic responses for multivariate (sequential) phenotypic 

selection on JBWT and FCR or its components. 

Non-normality of FCR 

The extent and effects of skewness and kurtosis of the distribution of phenotypic 

FCR and of (natural) logarithm transformed FCR were studied by Monte Carlo 

simulation of 50 data sets of 20,000 randomly drawn phenotypes for FCR assuming a 

range of coefficients of variation of the normally distributed component traits FC and 

WG. Consequences for estimation of (co)variance components were studied by 

comparing estimates for FCR and transformed FCR. For this purpose a multivariate 
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method based on the derivative-free REMIL algorithm, which assumes normality of 

the data in the calculation of the likelihood, was used (Thompson and Hill, 1990). 

RESULTS 

Relative weighting factors for JBWT 

Derived relative weighting factors for JBWT with FC and WG in the aggregate 

genotype were 0.46, 0.40 and 1.18 for intermediate, high and low heritability for FC, 

respectively. These values were 1.10, 0.96 and 2.55, respectively, with FCR in the 

aggregate genotype. The weighting factor for JBWT dropped somewhat going from 

intermediate to high heritability for FC. The same response for JBWT was achieved 

in the first step but less in the second step because of the higher (negative) response 

in FC, which is positively correlated with JBWT. Therefore, the importance of JBWT 

is somewhat lower under the presently assumed sequential selection scheme (60/120). 

Response in JBWT was, however, high in both the first and the second step and its 

weighting factor increased substantially when the heritability for WG was high. 

Subsequently, standard selection index theory was applied to aggregate genotypes 

consisting of FC, WG and JBWT or FCR and JBWT. 

Varying the heritabilities of the ratio component traits 

Selection index results for various alternatives both under 1-step and 2-step selection 

are shown in Table 4.3. Alternatives were partitioned into two components; the first 

representing the addition of JBWT to the index (i-) or both the index and aggregate 

genotype (ia) and the second representing the transition in selection on the ratio 

components FC and WG (--) to selection on FCR directly (ia). The alternatives 

JBWT--/FCRia and JBWTi-/FCRia were identical to JBWT--IFCRi- and JBWTi-

/FCRi-, respectively. Response in the aggregate genotype (H) was expressed in terms 

of FC and WG (as well as JBWT if part of H). 

Adding JBWT to the index (alternative -- to i-) generally had very little effect, 

although under alternative FCRi- (FC and WG in the aggregate genotype and FCR in 

the index) it added somewhat more information than under alternative FCR-- (FC and 



WG both in the aggregate genotype and index). JBWT compensated for some loss in 

information due to selection for FCR. 

Differences in response in H between selection for FC and WG or FCR 

(going from alternative FCR-- to FCRi- to FCRia) were negligible when heritabilities 

for component traits were similar, whereas responses in the components were 

different. These results were in agreement with Gunsett (1984). Differences between 

direct selection for FCR and the linear combination of component traits appeared 

when heritabilities differed. The reduction in response was greater when FC had a 

high heritability than when WG had a high heritability as a result of a much higher 

correlation between FCR and WG than between FCR and FC (based on statistical 

differentiation as in Pearson's (1897) formulae). Loss of response in H due to direct 

selection for FCR was reduced when JBWT was part of H, and the relative 

importance of FCR (and components) then decreased. 

Relative responses in H were similar for I-step and 2-step selection. The 

actual responses were higher in 1-step selection as all information on FC and WG, 

and thus on FCR, was available. When the heritability for FC was high and JBWT 

was not part of H, JBWT decreased in the first selection step (not presented). 

The aggregate genotype H linearly approximates the genetic value of FCR. 

Differences between rH and rFCR for alternatives JBWT-- and JBWTi- are likely to 

be due to a mere arithmetic phenomenon that reducing the numerator by x% is more 

effective in reducing a ratio than increasing the denominator by an identical 

percentage. The linear approximation H does not account for this property that is 

inherent to selection for a reduced ratio. This is, for example, illustrated by 

alternative JBWT--/FCR-- under intermediate and high heritability for FC. With a 

heritability of 0.5 response in H was lower whereas FCR was higher (5.240 and 

0.131, respectively) compared to a heritability of 0.3 (5.496 and 0.127, respectively). 

Relative asymptotic responses were similar to relative first generation 

responses and thus were not presented. The unchanged ranking of various selection 

strategies was observed also by Wray and Hill (1989) and shown by Dekkers (1992). 

The absolute asymptotic response rates were, however, significantly lower 
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(approximately 27%) as the high selection intensities induced considerable gametic 

phase disequilibrium. 

The effect of the difference between genetic and environmental correlations 

Table 4.4 shows 2-step selection responses for various indexes based on the ratio or 

its components with or without JBWT in index and H under small and large 

differences between the genetic and environmental correlation. The loss of 

information under direct selection for the ratio is negligible when the genetic and 

environmental correlation are somewhat different. Considerably lower responses are 

expected when these correlations are wide apart. 

Non-normality of FCR 

Monte Carlo simulation results of variable CVs for FC and WG are given in Table 

4.5. It can clearly be seen that deviation from normality is reduced when the CVs of 

the components are closer to each other and smaller. The (natural) logarithm 

transformed FCR is more nearly normal. Of main interest were the consequences of 

non-normality for the estimation of (co)variance components on FCR and related 

traits (JBWT, FC and WG). Simulated data were based on random mating without 

missing values, CVs for FC and WG were 8.66% and 13.15% respectively, and 

heritabilities were 0.3 for all traits. The expected skewness and kurtosis for FCR in 

these data were 0.690 and 1.152, respectively (see Table 4.5). Logarithm 

transformed FCR, which was much closer to normality, was also evaluated to check 

robustness of REML for deviations from normality. All parameter estimates (Table 

4.6) for FCR and logarithm transformed FCR were very similar. REML appears to be 

robust for non-normalities of this kind. Furthermore, the effect of ignoring higher 

moments in the formulae of Pearson (1897) could be tested empirically. Table 4.6 

shows that results are generally very close to REML estimates, which illustrates the 

minor significance of the higher moments in this situation. 
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DISCUSSION 

It was shown that, in some cases, selection for a linear representation of FCR, with 

weights for FC and WG based on statistical differentiation (as in Lin, 1980), can lead 

to additional progress in FCR. However, it is not these weights as such that result in 

this extra response, but rather the linear independent form of FC and WG, which 

allows us to take into consideration their covariation resulting in extra accuracy, 

especially when differences in heritabilities and/or correlations of FC and WG are 

large. When heritabilities and correlations are identical no extra information becomes 

available (Sales and Hill, 1976) by this linearisation and therefore direct and indirect 

selection give equal response in FCR. The large differences between heritabilities of 

FC and WG simulated in the present study (0.2 vs. 0.5) may be unrealistic (eg. Pym, 

1990), and a difference of 0.1 in heritabilities gave only 1-3% extra response. 

In practice, selection index weights are based on estimates of (co)variances in 

place of the true population parameters used in the present study, and there is an 

inevitable loss in selection response when using an index with weights obtained from 

estimates of genetic and phenotypic parameters rather than the population parameters 

(Hayes and Hill, 1980). Under the present sequential selection structure it is difficult 

to estimate covariances between FC and WG, which are needed when selection is on 

a linear index rather than the ratio. The use of inaccurate estimates of these genetic 

and phenotypic covariances is likely to overestimate the presumed superiority of 

selection on the index. As published estimates of the heritability of FC and WG tend 

to be similar, one may be worse off by applying indirect selection based on inaccurate 

covariances than by selection on FCR. 

The usual assumption of normality is likely to be violated for FCR, which is a 

nonlinear function of FC and WG, and which was assumed to be controlled indirectly 

by many genes affecting its component traits directly. However, REML, based on a 

BLIJP animal model, was shown to be robust to such deviations from normality. 

Hence, transformation of FCR does not seem necessary to enable accurate selection 

and estimation of response based on BUJP breeding values. In addition, although it 

might seem intuitively correct to assume indirect control of FCR through genes 
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affecting its components, we have no exact knowledge of this. FCR, a gross measure 

of efficiency, may be partially driven by genes coding for products which regulate 

efficiency directly. As such, non-normality of FCR could be even less a problem. 

In conclusion, direct selection for FCR is very likely most effective and 

practical for a broiler breeding operation, in terms of the expected genetic response 

and the simplicity of the genetic evaluation of selection candidates. 

SUMMARY AND CONCLUSIONS 

Direct versus indirect selection for food conversion ratio of growth (FCR) after 

selection for juvenile body weight (JBWT), a sequential scheme often applied in 

broilers, was considered. In the present study loss of response in either FCR or 

aggregate genotype (H) when JBWT was included was investigated under selection 

on a linear index of ratio component traits (and JBWT) or FCR (and JBWT) by 

selection index methodology. Relative responses in FCR and H were generally very 

similar under single-step and sequential selection. Without JBWT in H, selection for 

linear index or ratio gave similar responses in FCR when heritabilities of components 

were equal. With large differences in heritabilities (0.2 vs. 0.5) or genetic and 

environmental correlation (>0.6) significant differences in response (5-12%) in FCR 

emerged. Therefore, whether additional costs are justified for parameter and breeding 

value estimation when using a linear index in place of selection for the ratio depends 

on the difference in heritabilities and correlations of the ratio component traits. With 

JBWT in H, loss of response in FCR was partially or entirely offset by response in 

JBWT. The non-normality of FCR and consequences for (co)variance component 

estimation were studied in terms of the coefficients of variation of the component 

traits of FCR. Restricted Maximum Likelihood (REML) estimation of (co)variance 

components for both FCR and logarithm transformed FCR (closer to normality) 

showed the robustness of REML to such deviations from normality. 
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TABLE 4.1 

Studied combinations (marked by x) of selection indexes and aggregate genotypes both 
under single and two-step selection for juvenile body weight (JBWT) and food conversion 
ratio (FCR) or alternatively the component traits food consumption (FC) and weight gain 
(WG). 

selection index 	 aggregate genotypes 
elements 

FCR 	JBWT, FCR 	FC, WG 	JBWT, FC,WG 

FCR 	 x 	 x 
JBWT, FCR 	 x 	 x 	 x 	 x 
FC, WG 	 x 
JBWT, FC, WG 	 x 

TABLE 4.2 

Assumed values of the parameters for JBWT, WG and FC. 

trait 

JBWT 	 WG 	 FC 

JBWT 	31  (.0375) 	 32 	 3 
WG 	53 	 .3 (.0140) 	 .5 
FC 	.5 	 .64 	 .3 (.0300) 

heritabilities, with phenotypic variances (k g2)in parentheses, on the diagonal 
2 environmental correlations above the diagonal 
3  genetic correlations below the diagonal 

73 



TABLE 4.3 

Comparison of genetic response in JBWT (BWT), computed only when part of the aggregate 
genotype), FC, WG, H and FCR after one round of selection under various hentabilities (h), indexes 
and aggregate genotypes with FCR defined as a ratio or as a linear combination of component traits, 
using selection index theory and assuming single or two-step selection. 

genetic response 

alternative 	 single-step selection two-step selection 

BWF 	FCR 	BWT(kg) 	FC(kg) WG(kg) rH1' 3  rFCR2' 3 	BWT(kg) FC(kg) WG(kg) rH1,3  rFCR2'3  

h Fc = 0.3 	h
2 WC;

= 0.3 

- 	- 	- 	.010 .060 1.00 1.00 	- .031 .062 1.00 1.00 
-- 	i- 	- 	-.003 .054 0.99 1.00 	- .024 .059 1.00 1.00 

-- 	- 	.011 .060 1.00 1.00 	- .032 .062 1.00 1.00 
i- 	I- 	- 	.003 .056 1.00 1.00 	- .025 .059 1.00 1.00 

ia 	-- 	.108 	.053 .068 1.00 1.00 	.103 .051 .067 1.00 1.00 
ia 	1- 	.106 	.039 .061 0.99 1.00 	.101 .036 .060 0.99 1.01 
ia 	ia 	.105 	.038 .061 0.99 1.01 	.100 .036 .060 0.99 1.01 

h2 
FC =  0.5 	

h2 
WG =  0.2 

-- 	-- 	- 	-.141 -.011 1.00 1.00 	- -.145 -.025 1.00 1.00 
- 	I- 	- 	-.056 .020 0.87 0.84 -.087 -.004 0.87 0.85 
i- 	-- 	- 	-.140 -.010 1.00 1.00 	- -.144 -.025 1.00 1.00 
I- 	I- 	- 	-.068 .016 0.88 0.85 	- -.089 -.005 0.87 0.85 

ia 	- 	.083 	-.012 .026 1.00 1.00 	.078 -.015 .025 1.00 1.00 
ia 	I- 	.091 	.019 .035 0.98 0.85 	.085 .015 .034 0.98 0.87 
ia 	ia 	.089 	.017 .035 0.98 0.88 	.084 .014 .034 0.98 0.88 

h2 
FC =  0.2 	h2 

WG0.5 

- 	- 	- 	.057 .128 1.00 1.00 	- .062 .119 1.00 1.00 
- 	s- 	- 	.031 .111 0.94 0.96 	- .045 .107 0.95 0.96 

- 	- 	.057 .128 1.00 1.00 	- .062 .119 1.00 1.00 
i- 	i- 	- 	.037 .114 0.95 0.96 	- .046 .108 0.96 0.97 

ia 	- 	.125 	.067 .114 1.00 1.00 	.121 .066 .114 1.00 1.00 
ia 	1- 	.124 	.052 .103 0.97 0.95 	.119 .050 .103 0.97 0.96 
ia 	ia 	.122 	.052 .104 0.97 0.97 	.118 .050 .104 0.97 0.97 

response in H was expressed as weighted response in FC and WG (and JBWT if part of H) 

response in FCR expressed as 	- where jt is the initial mean and AG is the genetic 

response 
relative responses in H and FCR to that of the first alternative for every subgroup 
-- = BWT not in index or aggregate genotype : -- = FCR not in index or aggregate genotype 
I- = BWT in index but not in aggregate genotype 	i- = FCR in index, FC and WG in aggregate genotype 
ia = BWT in both index and aggregate genotype 	ia = FCR in both index and aggregate genotype 
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TABLE 4.4 

Comparison of relative genetic response in H, to that of the first alternative for each 
subgroup, under various differences between the (fixed) genetic (r=0.64) and (variable) 
environmental correlation (re) assuming equal heritabilities of 0.3 for all traits. 

alternative' 	 re (difference between rg  and re  in parentheses) 

JBWT FCR 	.50 (.14) 	.25 (.39) 	1 .00 (.64) 	-500 14 

-- 	-- 1.00 1.00 1.00 1.00 
-- 	i- 1.00 0.97 0.94 0.83 
i- 	-- 1.00 1.00 1.00 1.00 
i- 	i- 1.00 0.98 0.94 0.84 

ia 	-- 1.00 1.00 1.00 1.00 
ia 	i- 0.99 0.97 0.94 0.87 
ia 	ia 0.99 0.97 0.94 0.87 

'see Table 4.3 for indexes and aggregate genotypes 

TABLE 4.5 

Skewness' and kurtosis' of FCR and IogFCR under various simulated population means 
and coefficients of variation (CV) for FC and WG, which were normally distributed. 

mean (kg) CV (%) skewness kurtosis 

FC WG FC WG FCR 10gFCR FCR logFCR 

2.00 .90 8.66 13.15 .69 (.08) .29 (.05) 1.15 (.37) .30 (.13) 
2.00 1.20 8.66 9.86 .37 (.06) .08 (.05) .37 (.16) .11 ('.09) 
1.75 1.20 9.90 9.86 .30 (.05) -.00 (.05) .29 (.14) .11 (.09) 
2.40 .90 7.22 13.15 .76 (.08) .36 (.06) 1.34 (.41) .35 (.14) 
2.40 1.20 7.22 9.86 .44 (.06) .17 (.05) .48 (.19) .13  
2.40 1.65 7.22 7.17 .21 (.05) -.00 (.04) .14  .05 (.08) 

2  (E(x-.t)4/c 4 - 3) 
empirical SDs of 50 replicates in parentheses 
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TABLE 4.6 

Estimates of the hentabilities of FCR and 1ogFCR and correlations with other traits using 
REML, and approximations from Pearson's (1897) formulae for simulated data'. 

REML 
	

Pearson's formulae 

parameter 	correlated 
trait 
	

FCR 	1ogFCR 
	

FCR 

genetic JBWT -.20(13) -.20(13) -.22 
correlation FC .04 (.10) .05 (.09) .02 

WG -.72(.07) -.71 (.07) -.75 

phenotypic JBWT -.14(.02) -.14(.02) -.14 
correlation FC .12 (.02) .13 (.02) .14 

WG -.75(01) -.75(01) -.76 

heritability .22 (.03) - 	.22 (.03) .25 

'empirical SDs of 20 replicates in parentheses 
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CHAPTER 5 

NON-NORMALITY OF EGG PRODUCTION DISTRIBUTIONS 

IN POULTRY AND THE EFFECTS OF OUTLIER ELIMINATION 

AND TRANSFORMATION ON SIZE AND CURVILINEARITY 

OF HERITABILITY 

INTRODUCTION 

In standard analyses of variance the model specifies that the effects of the different 

factors are additive and the residuals from the model are normally and independently 

distributed with constant variance (Snedecor and Cochran, 1989). In a quantitative 

genetic context, the requirements of additivity and normality of random family or 

group effects and linearity of heritability are usually to be satisfied in addition when 

using selection index or BLIJP methods (Abplanalp, 1961; Nishida and Abe, 1974; 

Robertson, 1977; The and Hill, 1988). Tests of linearity of heritability can, for 

instance, be performed by regression of offspring on (mid) parent (Kempthorne and 

Tandon, 1953). Strictly speaking, however, no assumption needs to be made of 

linearity of the offspring on parent regression, for a curvilinear model can be fitted or 

the regression computed on,  only a selected set of parents (Hill, 1978). For instance, 

in a genetic selection programme, where parents are directionally selected and thus 

often within a narrow phenotypic range, the genotypic value of offspring might be 

linearly estimated from the phenotypic value of the parent without being biased by 

concavity of the heritability of the trait of interest. Nishida and Abe (1974) give a 

practical way to use the curvilinear heritability by dividing the data into an 

appropriate number of groups and fitting a linear heritability in each group separately. 

They provide a worked example for a sigmoid-shaped heritability. 

Nowadays, decision-making on selection candidates is mostly based on 

estimates of genotypic value combining parental and collateral information using 

selection index or BLUP methods. These methods become less efficient when 
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normality, linearity of heritability and homogeneity of variance are not satisfied (Ibe 

and Hill, 1988). The idea of Nishida and Abe (1974) might be extended to selection 

index or even BLUP methods, weighting relatives differently dependent on their 

phenotypic value and the amount of genetic information they are likely to contain. 

This makes the methods more robust against non-linearity of heritability but does not 

tackle overestimation of individuals from groups with extreme variance (Ibe and Hill, 

1988) or overestimation of predicted genetic response (Clayton, 1975; Rao and Jam, 

1981). 

The and Hill (1988) and Besbes el al. (1993) have studied the scope of Box-

Cox power transformations (Box and Cox, 1964) to reduce deviations of the usual 

assumptions for egg production data on laying hens. These transformations 

simultaneously handle heterogeneity of variance, non-additivity and non-normality to 

some degree (Snedecor and Cochran, 1989) and as a result improve linearity of 

heritability (Robertson, 1977). The and Hill (1988) and Besbes et al. (1993) use the 

multi-step approximate transformation model suggested by Hinkley (1985). The 

initial transformation was based on maximisation of the likelihood of the error 

variance treating sire and dam as fixed (Ibe and Hill, 1988), whereas further 

transformation was considered when either normality or homogeneity of error 

variance was not established initially. In addition, coefficients of determination of the 

regression of half sib average on individual, a method introduced by Abplanalp 

(1961) and revisited and clarified by Hill (1978), were monitored in both studies to 

measure the goodness-of-fit of the data to linearity of this genotypic regression. 

Offspring-parent regression could not be used by The and Hill (1988) as data were 

available on only one generation. Besbes et al. (1993), although having multiple 

generations of data available, did not perform offspring-parent regressions. Intense 

selection of parents for egg number leading to decreased statistical power to detect 

curvilinearity could have been a reason. In a recent study Gimelfarb and Willis (1994) 

did find significant curvilineanty of offspring-parent regression for a number of 

quantitative traits in an experimental Drosophila melanogaster population; and 

further references on various species are given by Hill (1978). 
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Prior to analyses, The and Hill (1988) made an arbitrary decision to omit all 

records less than 10 eggs, whereas Besbes el al. (1993) checked for outliers without 

reporting the statistical reasoning behind their identification or the limit at which 

records were eliminated. Formally, as pointed out by Barnett and Lewis (1994), 

potential outliers need to be statistically tested for discordance based on a working 

hypothesis expressing some basic probability model for the generation of all the data 

with no contemplation of outliers and an alternative hypothesis expressing a way in 

which the model may be modified to incorporate or explain the outliers as a reflection 

of contamination. If any outlier is adjudged to be discordant the working hypothesis 

is implicitly rejected and replaced by some alternative hypothesis, including La. 

(Barnett and Lewis, 1994), (i) the inherent alternative where outliers have appeared 

in the data merely as a reflection of a greater degree of inherent variability than 

initially anticipated (eg. upper outliers may reflect, say, that an initial assumption of a 

gamma distribution is best replaced with a log-normal distribution), (ii) the mixture 

alternative where the outliers reflect low-level contamination from a (foreign) 

population other than that represented by the basic model and (iii) the slippage 

alternative, by far the most common, which states that all observations apart from 

some prescribed small number k (1 or 2, say) arise independently from an initial 

model (say F) defined by location and dispersion parameters, t and CY 
2  whilst the 

remaining k are independent observations from a modified version of F in which jt or 

cr 2 
 have been shifted in value. In much published work F is a normal distribution (eg. 

Grubbs, 1950; Dixon, 1950; Anscombe, 1960; Grubbs, 1969 and Stefansky, 1972) 

and numerous tables have been constructed to guide the investigator as to how rare 

an extreme observation, not a product of slippage, would be if the data were normal 

and followed the assumed model (Snedecor and Cochran, 1989). Barnett and Lewis 

(1994) emphasise that we must know what alternative hypothesis is being adopted, 

for any assessment of the power of the prevailing discordancy test depends on the 

form of the alternative hypothesis. Hence, investigation of possible underlying 

probability distributions for egg production characters can be useful to assist in the 

choice of a suitable alternative hypothesis. 
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The objectives of this study were to investigate 1) the goodness-of-fit of some 

'standard' probability distributions to the phenotypic reproduction data of female line 

meat-type chickens by maximum likelihood in order to identify outliers on a 

phenotypic level using the distribution with the best fit, and 2) the effect of outlier 

identification and subsequent elimination and/or Box-Cox power-transformation of 

the data on non-normality and curvilinearity and on the size of the heritability. 

MATERIALS AND METHODS 

Data 

Data were available on approximately eight overlapping generations of a broiler-type 

female line. Traits included: the age at the first egg in days (AFE) indicative of the 

point of sexual maturity; the number of eggs until 48 weeks of age, hen housed 

production (HI-IP); and the rate of lay in the period from AFE to 48 weeks, hen day 

percentage (HD%). Descriptive statistics of these traits are summarised in Table 5.1. 

The skewness provides a measure of the degree of asymmetry of a distribution 

around its mean and the kurtosis measures the relative thickness of the tails of a 

distribution. Both measures are zero for a normal distribution. The traits show 

deviation from normality as observed in many studies. Both HHP and HD% are 

negatively skewed, whereas AFE is positively skewed. All three traits are leptokurtic, 

i.e. peaked. Frequency histograms (Fig. 5.1) display the various features of the 

observations. 

Probability distributions fitted to reproduction data 

The distribution directive in GENSTAT (1993) was used to test the goodness-of-fit 

of various 'standard' probability distribution functions to the raw phenotypic data on 

reproduction traits. An iterative Gauss-Newton optimisation method is used to 

estimate the parameters of the distribution and convergence was assumed when the 

change in log-likelihood was less than 10.8.  The data were grouped in evenly spaced 

intervals of 5 eggs, 5% and 5 days for HHP, HD% and AFE, respectively. This 

grouping strategy takes into consideration the importance of the tail cells, often with 
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small expected frequencies, and is likely to be more powerful in detecting non-

normality, compared to GENSTATts default method with groups of equal frequency 

and thus based on unevenly spaced intervals. The choice of the density functions to 

be tested was facilitated by the descriptive statistics in Table 5.1 and the frequency 

histograms in Fig. 5.1. For all traits the (single) normal distribution, the double-

normal distribution (a mixture model of two normal distributions Ni(t1, 1) and N2( 

2, c72) with different variances and locations and with compound density function f(x) 

= p x t(x;p.j;a1) + (l-p) x (I(x;42;a2) where p is the proportion of observations in 

N1) and the binomial distribution were tested. Due to the proportional character of 

the trait, I-ID% was also exposed to logit and angular transformation before fitting a 

Gaussian density function. For the positively skewed AFE the log-normal distribution 

(with or without a change of a in location) was tested additionally. The double-

normal was exposed to an additional grid-search in the 5-dimensional parameter 

space 	, p, L2 and 2)  to ensure localisation of the global maximum of the 

likelihood function, since clear bimodality was absent (see Fig. 5.1). See GENSTAT 

(1993) for more details and further references on the method. Strictly speaking, the 

log-likelihoods might not always be directly comparable across all these 

distributions, therefore a further indication of goodness-of-fit was provided by the 

coefficient of determination of the regression (without intercept) of observed on 

expected frequency of observations. 

Genetic model 

The genetic model used throughout was the additive individual animal model (lAM): 

Yik = t + h1  + a + elJk 	 [5.1] 

where y,  is an untransformed or transformed, continuous or discrete observation; jt 

is the grand mean; h, is the fixed effect of hatchweek i; a is the breeding value of 

animal j and e,Jk  is the random error term. 

Estimation of variance components and heritabilities was performed by the 

derivative-free REML programs of Meyer (1989). 
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Outlier identification 

Investigation for outlying observations was based on egg number (HHP). One way of 

identifying potential outliers was based on a discordancy test applicable to the 

distribution with the best fit to the raw phenotypic data following from the previously 

described maximum likelihood estimation method. 

An alternative quantitative genetic approach based on partitioning of the total 

phenotypic data distribution into one part with heritability equal to zero, and another 

part with heritability greater than zero was considered. All-or-none genetic analysis 

was performed by dividing the data into two parts (0 and 1) representing rejected 

(possibly outlying) records and accepted records. This analysis was repeated at 

various zero-one thresholds in order to localise the point of separation between some 

'foreign nuisance' data population (with h2 0) and the main population of 

observations (with h2>0). The transformation of Robertson and Lerner (1949), which 

is p(l -p)/z2, where p is the population incidence and z is the height of the ordinate of 

a standardised normal at the threshold point corresponding to p, was used to convert 

heritability estimates onto a hypothetical underlying continuous scale. Mercer and 

Hill (1984) showed by simulation, with incidences in the range of 0.59/o to 5%, that 

this transformation is accurate when true heritabilities on the continuous scale are 

low. 

Transforming the data 

Maximising the likelihood 

The approximate transformation model suggested by Hinkley (1985) and applied by 

The and Hill (1988) and Besbes et al. (1993) was used to determine an optimum 

transformation producing near linearity, normality of errors and homogeneity of error 

variance. The power transformation method due to Box and Cox (1964) produced 

standardised transformed variates, z(t): 

z(t)= yt-1 
tG 1  

[5.2] 

where y is an original untransformed observation; G is the geometric mean of the 

original observations and t is the power of transformation with t#0. A power of zero 
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(t0) represents a log transformation. A series of REIvIIL runs with different values 

for .t were performed to produce the profile log-likelihood for t and pinpoint the first-

stage optimum t, where the natural log-likelihood function for an additive JAM (see 

Meyer, 1989) was maximised. This is a more classical approach than the Bayesian 

approach suggested by Gianola et al. (1990) with joint estimation of t and the 

dispersion parameters of interest. Hereafter, if necessary, the likelihood was 

compromised somewhat (<10%) to attain a more homogeneous error variance and 

normality of the errors. 

Considering curvilinearity and non-normality 

The linearity of the genotypic regressions of hatch-corrected mean offspring 

performance on corrected dam performance (Kempthorne and Tandon, 1953) and of 

hatch-corrected average performance of half sibs of an individual, itself and full sibs 

excluded, on the corrected performance of the individual (Hill, 1978) were both 

checked on the original and the t-transformed scale. Quadratic and cubic terms were 

tested for significance and the increase in the coefficient of determination of non-

linear regression compared to linear regression was investigated. Plots were drawn to 

enable visual assessment of non-linearity. 

Normality of the residuals was studied on the untransformed and t- 

transformed scales by looking at skewness. Markedly skewed errors illustrate the 

non-normality and imply heterogeneity of error variance. The heterogeneity of error 

variance amongst environmental groups (hatches) was not investigated explicitly. 

Two types of residuals were considered, the residuals from both linear genotypic 

regressions and the residuals from the mixed model BLTJP analyses calculated as the 

observations minus the fixed effect estimators (BLUEs) and the breeding value 

predictors (BLT.JPs). 
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RESULTS 

Likelihood of some probability distribution functions 

For all traits the (single) normal distribution could be rejected as a function 

explaining the raw phenotypic data (see Table 5.2). HI-IP was best represented by a 

double-normal density function. Logit and angular transformation of HD% led to 

significant increases in the log-likelihood and R2. The highest likelihood was, 

however, achieved by fitting a double-normal density function. Although the double-

normal showed a very good fit to AFE, it was outperformed by the log-normal 

distribution after a change of a in location. The log-likelihood values were closely 

followed by the coefficients of determination and were very high for all 'best' fits. 

Outlier identification and elimination 

Based on the previous analyses, the mixture model consisting of two normal 

distributions differing in both location and scale was chosen as the alternative 

hypothesis to explain the data of the trait FIHP. This model is depicted in Fig. 5.2 and 

the relevant parameter estimates are in Table 5.3. The proportion of data in the left-

hand normal distribution was similar for 1-JI-IP and HD% (29.2% and 27.8%, 

respectively). Consider now the extreme, perhaps unrealistic, assumption that the 

contaminated outlying observations are not of interest. The applied test for 

identification of these outliers consisted of the observations beyond three times the 

SD of the mean of the main distribution (normal 2 in Fig. 5.2). Records of sixty eggs 

or less were eliminated on this basis, representing about 11% of the data. 

The alternative quantitative genetic approach based on partitioning of the total 

phenotypic data distribution into one part with heritability equal to zero and another 

part with heritability greater than zero resulted in the much lower limit of outlying 

records at 25 eggs H-IP, representing 2.5% of the data. Up to the HHP level of 25 

eggs the adjusted all-or-none heritability equals zero to two decimal points. Rejecting 

records up to 30 eggs HHP led to a substantial increase in heritability compared to 

the 25 eggs HHP level of rejection. Higher levels of rejection result in higher 
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converted all-or-none heritabilities as might be expected. Heritabilities on the 

continuous scale kept increasing throughout the exhibited rejection limits for HHP of 

eggs (see Table 5.4). 

The effect of outlier elimination and Box-Cox transformation of the data on size 

and linearity of heritability and normality of errors 

Linear estimation of heritability of all untransformed data by offspring on dam and 

half sib average on individual regression was performed and compared to JAM-

REMIL estimates (see Table 5.5). Estimates of offspring-dam regression were highest, 

those for half sib average-individual regression were low and IAM-REML estimates 

had intermediate values. Skewness of the errors of regression was considerable for 

the reproduction traits HHP, HD% and AFE. Deviation of normality of errors based 

on BLTJP-analyses were similar to the deviations shown by the residuals of 

regression. 

Goodness-of-fit of the data to the quadratic regression model was better (see Table 

5.6), in particular for the traits I-ID% and HI-IP. Generally, increases in R2  were 

substantially greater for regression of half sib average on individual. All quadratic 

regression coefficients were significant at the 5% level. The cubic relationships (not 

in table) did not significantly improve the R2  of the quadratic regression model. 

The following plots (Fig. 5.3) illustrate the superior goodness-of-fit of the curvilinear 

regression models to the data. To give the reader some impression about the data, 

they were depicted in a compressed format by ranking them on merit of dam and 

individual, respectively, and splitting them into 5 equal groups. The (non-) linear 

regression plots were, however, based at all times on all the individual data points as 

presented in the tables. Non-linearity of heritability was most obvious under 

regression of half sib average on individual for HD% and HHP, which was expected 

since increases in the R2  were greatest (see Table 5.6). Both these hentabilities were 

concave upwards. For AFE the heritability was slightly concave downwards. It can 

be observed in the graphs that dams must have been exposed to some directional 
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selection for HET and HD% as their phenotypic range is much narrower and shifted 

compared to the scale of individuals. 

Results of estimation of the heritability by linear regression and IAM-REML analysis 

after omission of potential outliers identified by the all-or-none quantitative genetic 

approach or according to outlier theory ignoring any underlying genetic variability 

are given in Table 5.7. Both the R2  and the heritability increased considerably, 

particularly for regression of half sib average on individual for which heritabilities 

were most concave (see Fig. 5.3). The IAM-REML estimates for FIHP and HD% 

increased significantly as could also be seen in Table 5.4. Properties of the errors 

improved for HI-IP and I-ID% in particular; less skewness indicates more normal 

errors and implies more homogeneous error variance. Further changes in R2  and 

heritability by increasing the limit of rejection from 25 to 60 eggs were relatively 

small. The skewness of errors decreased further, however. 

Quadratic regression analysis (Table 5.8) showed the increases in R2  compared to 

linear regression to be modest, especially when compared to the regression of half sib 

on individual for the total untransformed data set (see Table 5.6) . Increases were 

very similar for rejection of records up to 25 or 60 eggs and quadratic regression 

coefficients were no less significant for the latter. The plots in Fig. 5.4 assist in visual 

assessment of the consequences of elimination of outliers (records with 25 eggs or 

less) for the non-linearity of the heritability based on half sib average-individual 

regression. 

Consequences of Box-Cox transformation of H-IP and HD% and log transformation 

(after a shift in location) of AFE for the goodness-of-fit of the transformed data to 

linear estimation of the heritability and the skewness of the error terms were 

considered (see Table 5.9). Increases in the percentage of variance explained by both 

linear regression methods for all transformed data were large compared to the 

explained percentages by these methods fitted to all the untransformed data. In 

comparison to exclusion of records up to 25 eggs without transformation (see Table 

86 



5.7), the goodness-of-fit appeared to be better for the offspring-dam regression and 

for the trait AFE. Noteworthy are the increases in heritability resulting from half sib 

average-individual regression and the relatively small changes in heritability from 

offspring-dam regression compared to values in Table 5.5. IAM-REM1, heritability 

estimates also increased relative to analyses of all untransformed data and were now 

more similar to estimates from offspring-dam regression. The residual terms from the 

regression methods and the BLUP analyses were close to normality. 

Transformation of the data as well as exclusion of outlying records up to 25 

eggs HI-IP led to further increases in R2  and heritabilities of 1-IHIP and HD% in 

particular. The properties of the error terms were very similar to the errors of all 

transformed data. The heritability estimates of AFE did not increase after exclusion of 

outliers based on the number of eggs HER 

Fitting a quadratic regression model to the transformed data with or without 

elimination of outliers generally gave only small increases in the coefficient of 

determination (see Table 5.10), despite the quadratic regression coefficients still 

being significant at the 5% level for half sib average-individual regression. 

The plots (Fig. 5.5) exhibit that the relationship between HD% of half sib average 

and individual is clearly still somewhat non-linear and tended towards a sigmoid 

curvature (P<0.05), but the rounded R2  was not higher for the cubic than for the 

quadratic regression analysis. The near perfectly linear relationships of both 

regression methods for AFE is conspicuous and supports the close fit of a log-normal 

density function to the data after a shift in location of AFE. 

DISCUSSION 

Probability distributions to explain the data 

The goodness-of-fit of the double-normal density function to the HE? and HD% data 

was very high. The double-normal probability distribution has been assumed before 

by Gavora et al. (1980; 1982; 1983) to describe egg production data in populations 
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affected by disease, with special reference to lymphoid leukosis virus (LLV) 

infection. They distinguished between test-positive and -negative birds and could 

therefore identify the shift in location and variance of egg production due to this 

disease and furthermore describe the consequences for the egg production 

distribution of the total population. In most cases such specific information is not 

available and also the population egg production performance might be hampered by 

other, sometimes multiple, clinical or subclinical diseases or other (eg. leg or 

nutritional) problems affecting mortality and morbidity. This discrepancy in analysis 

of the data, i.e. evaluation of means and variances within specifically identified 

subsets of the data versus fitting a probability distribution to the total phenotypic data 

without prior knowledge of the 'affected' or 'non-affected' status of birds, is likely to 

account for some of the difference in the estimated proportion of 'affected' birds, 

which was 3.9% for the first (Gavora etal., 1980) and 29.2% for the latter (see Table 

5.3), respectively. In addition, the proportion found by Gavora el al. (1980) was in a 

Leghorn population under specific selection for eggs, whereas the present analysis 

was based on meat-type chickens subject to less genetic improvement for 

reproduction. Intensive selection for egg production generally results in a lower 

incidence of congenitally transmitted diseases and possibly in a lower susceptibility to 

genetically transmitted diseases or more general problems when challenged before 

selection. Gavora et al. (1980) illustrated this with a control strain having a much 

higher proportion of the congenitally transmitted disease (LLV 'affected' birds 

18 5°o) 

The trait AFE had a much smaller percentage of 'affected' birds (12.8%, not 

presented) when fitting a double-normal probability distribution. This might be 

expected since the majority of diseases or problems may occur after the start of the 

egg production. Also the preceding selection step on juvenile body weight prevents a 

high incidence of late sexually maturing very light (possibly ill-conditioned) birds. 

One might expect the trait AFE, describing the response time, to follow an 

exponential distribution, where response rate can be assumed constant, or a Weibull 

distribution with a response rate varying monotonically with time (Johnson and Kotz, 

1970). However, likelihoods of these distributions (not presented) were low. The log 



transformation after a shift in location produced near normality and reflected the 

greater degree of inherent variability than anticipated from a normal distribution. 

Identifying potential outliers 

According to Grubbs (1969), an outlying observation, or 'outlier', is one that appears 

to deviate markedly from other members of the sample in which it occurs. Strictly 

applying this definition, one could argue whether there were any outlying 

observations at all in these data, since the data seem to be more or less continuous 

without a member or block of members deviating markedly from the other members 

(there was no clear bimodality, see Fig. 5.1). However, if a normal probability model 

is assumed, a large number of 'outliers' can be demonstrated and an alternative model 

(eg. a double-normal) needs to be adopted to take account of their existence. The 

association of these 'outliers' with environmental factors (such as disease), as 

suggested by Clayton (1975), could justify the elimination of all outlying 

contaminated observations (60 eggs or less), since these records would be genetically 

non-informative but could seriously distort (genetic) inferences. Several researchers, 

however, estimated non-zero heritabilities for diseases affecting egg production or for 

egg production in the left-hand tail of the distribution (eg. Shalev, 1977; Gavora, 

1990). Separation of the data into one (foreign) population with heritability equal to 

zero and another (main) population with heritability greater than zero by all-or-none 

genetic analysis at several zero-one thresholds largely alleviated this problem and 

considered only 2.5% of the data (instead of 11%) to be non-informative. Still, the 

problem of segregating recessive deleterious genes at low or moderate frequencies 

contributing significantly to the genetic variance (eg. Falconer, 1971; Robertson, 

1977; Al-Murrani and Roberts, 1974) remains since such an effect is not easily 

'picked up' by the preceding heritability analyses. Moreover, this problem might be 

more predominant in meat-type poultry because of the combined selection for, often 

antagonistic, reproductive and broiler characteristics. Therefore, systematic exclusion 

of any 'outliers' from selection decisions could involve the risk of drift towards a 

more negatively skewed egg production distribution with possibly a higher 

proportion of the birds representing the distribution accounting for the left-hand tail 
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(see Fig. 5.3) due either to increased deleterious recessive gene frequency or higher 

susceptibility to some diseases. 

Differences in heritability estimates 

Differences in heritability estimates by the different methods before transformation of 

the data were very substantial. Offspring-parent estimates were high; firstly these 

estimates were likely to be affected by environmental and or genetic dam-offspring 

covariances and secondly this regression was less affected by non-linearity due to 

directional selection of the dams as was expected a priori. Hence, the offspring-dam 

regression was relatively little changed by transformation or outlier elimination. The 

regressions of half sib average on individual were low for untransformed HHP and 

HD% data due both to the substantial curvilinearity (see Fig. 5.4) and the fact that 

this component was not augmented by maternal effects as was the offspring-parent 

regression. The heritabilities resulting from this regression nearly doubled by 

transformation and outlier elimination (compare Table 5.5 and Table 5.9). Finally, 

REMIL estimates were intermediate, which might be expected because both offspring-

parent and collateral information are pooled into one estimate. However, after 

manipulation of the data, these estimates were effectively as high as the estimates 

originating from offspring-parent regressions. Estimates were high as a result of the 

much alleviated curvilinearity, the loss of variance due to selection (over about 8 

generations) being accounted for by the numerator relationship matrix and the full-sib 

correlation, which is most likely to be augmented by environmental and dominance 

effects, forming an important part of the REMIL heritability. 

Despite the increases in coefficients of determination of a quadratic model 

compared to a linear model being small or even zero after transformation and outlier 

elimination, quadratic regression coefficients were still notably different from zero. 

Although relationships between performances might realistically not be expected to 

be purely linear, a further look into the matter was thought useful. Robertson (1977) 

proposed a separate analysis for the top and bottom halves of the population to 

compare effective heritabilities for selection upwards and downwards. Hill (1978) 

illustrated this idea by using the regression method of half sib average on individual, 
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Abplanalp's (1961) 'linear heritability estimate', where the data were ranked on 

individual performance and divided into top and bottom half. Basically, this 

procedure was repeated for the present data on HHP of eggs and HD%, comparing 

changes in heritabilities in the up and down direction after the various data 

manipulations as well as the heritability estimate for the total data (shown before 

without SE in the various tables). Results are exhibited in Table 5.11. Clearly, the 

heritability based on raw data was extremely curvilinear, with the heritabilities in the 

up direction being much greater than the heritabilities downwards. Transformation 

reduced non-linearity substantially by increasing the heritability in the down direction 

and decreasing the heritability in the up direction somewhat. Omission of outliers had 

a very considerable effect on the effective heritability of HD% in the down direction, 

increasing from 0.002 to 0.064. Transformation after outlier elimination reduced 

curvilinearity somewhat more. In spite of these manipulations the heritabilities in the 

up and down direction were still significantly different. 

There were conspicuous differences in sampling errors in the up and down 

direction for the raw untransformed data, which illustrates the heterogeneity of 

variance in the up and down direction. More (environmental) variation, in this case in 

the down direction (compare Fig. 5.3), results in a lower sampling error of the 

regression coefficient. Furthermore, it can be seen how transformation alleviated 

much of this heterogeneity by 'pulling' the low observations back into a Gaussian-

shaped distribution; consequently sampling errors were now similar for top and 

bottom heritabilities. 

Scope for improvement of genetic progress in the number of eggs 

The and Hill (1988) clearly pointed out how transformation of egg production could 

increase efficacy of (BLUP or index) selection through a higher heritability of the 

transformed data and consequently higher accuracy of selection decisions, a more 

linear heritability estimating more precisely responses in the up and down direction 

and a more homogeneous variance making it less likely for an excessive number of 

animals to be selected from the extreme groups. As concluded from Table 5.11 

considerable curvilinearity was present after transformation of the data. The use of 
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the average heritability would thus still lead to biased breeding values (EBVs), with 

high EBVs regressed too little and low EBVs regressed too much from the mean. 

The method of Nishida and Abe (1974) is again relevant. They divided the data into 

an appropriate number of groups and fitted a linear heritability in each group 

separately. If it is assumed that the top and bottom trait have a correlation of unity 

and identical economic importance, it is simple to weight relatives differently in a 

curvilinear index dependent on their phenotypic value. This method can make 

selection more robust against curvilinearity of the heritability. Subdivision of the data 

into more than two parts might further increase response, probably involving a 

function of accuracy or R of the fit to the curvature and the sampling errors of the 

partial heritability estimates. However, the additional benefit is likely to be smaller. 

Koerhuis (1995) looked at the possibility of within-hatch power 

transformation followed by scaling. Simulation of selection from environmental 

groups with a variable degree of skewness and variation demonstrated the potential 

usefulness of this alternative transformation. However, more work would be needed 

as to the statistical correctness of the method, for example to allow for sampling 

error of the within-hatch estimates of skewness it might be necessary to use a best 

weighted combination of the a priori (population) estimate and the sample estimate. 

Furthermore, the underlying genetic variability in the double-normal mixture model 

should be the subject of further study. Individuals could be assigned to one or the 

other data populations based on a probability, and bivariate analysis performed to 

investigate genetic (co)variation of both populations. 

SUMMARY AND CONCLUSIONS 

Egg production data on approximately eight overlapping generations of a female 

meat-type chicken population were available for investigation of 1) possible 

underlying probability distributions of the data, 2) size and non-linearity of 

heritability, and 3) non-normality of errors. A mixture model of two Gaussian 

probability functions with different location and dispersion parameters gave the best 

fit to the phenotypic data for number of eggs or hen housed production (HHP) and 



rate of lay or hen day percentage (HD%). The age at first egg, i.e. sexual maturity, 

closely followed a log-normal distribution after a shift in location. Identification of 

outliers of HT-IP was on the basis of i) outlier theory on the phenotypic mixture 

model or ii) the underlying genetic variability as derived from a series of all-or-none 

genetic analyses, which led to different thresholds for the number of eggs regarded as 

outlying. Elimination of these identified outliers generally improved the properties of 

the data. Consequences of systematic elimination of outliers from selection decisions 

were discussed. Box-Cox power-transformation of the data substantially improved 

normality and (linearity of) heritability, estimated by offspring-parent regression, half-

sib average on individual regression and REML. Additional improvements through 

omission of potential outliers prior to transformation were generally small. In spite of 

appreciable decreases, curvilinearity of heritabilities of HHP and I-ID% was still 

significant after transformation by comparison of effective heritabilities in the up and 

down direction of selection. The use of differential heritabilities was discussed as a 

means to make selection decisions more robust against the remaining curvilinearity of 

heritability. 
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TABLE 5.1 

Descriptive statistics for hen housed production (Fil-IP), hen day percentage (MO/,) and age 
at first egg in days (AFE). 

trait # records mean median min max SD CV skewness kurtosis 

HHP 15038 100.0 106.0 3 167 28.6 28.6 -1.02 .99 

HD% 15038 65.0 68.2 2 94 14.8 22.8 -1.34 2.27 

AFE 15038 182.1 180.0 150 327 14.7 8.1 1.59 8.35 

TABLE 5.2 

Some 'standard' probability distributions fitted to the data on reproduction characters with 
their log-likelihoods (log L) and coefficients of determination (R). 

trait distribution log L R2  (%) 

HHP normal 0.0 80.6 

double-normal 2984.6 99.3 

binomial -406.9 78.6 

HD% normal 0.0 79.7 

double-normal 3920.7 98.1 

binomial -584.7 78.2 

logit-normal 744.8 90.2 

angular-normal 704.1 85.8 

AFE normal 0.0 92.6 

double-normal 2953.2 98.2 

binomial 633.6 93.1 

log-normal(X) 1415.8 94.1 

log-normal (X-a) 3082.3 99.1 
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TABLE 5.3 

Maximum likelihood estimates of the parameters in the double normal density function as 
depicted in figure 5.2. 

distribution 	proportion ± SE 	mean ± SE 	SD ± SE 

normal  0.292 	0.014 70.55 	1.46 30.10 	0.56 

normal  0.708 	0.014 112.13 	0.29 16.53 	0.22 

double normal 1.0 99.97 28.57 

	

mean is PP.i  +(l — P) P2 and SD is 'I[p +(l - p)c + p 	)( (l - P.t1 - 1.12 )2 ] where p is 
the proportion of the data in normal 1 

TABLE 5.4 

Converted all-or-none heritability estimates (h) at various zero-one thresholds and 

continuous heritability estimates (h ) excluding the records below the threshold from the 
analysis. 

1-LI-IP of eggs as threshold for rejection 

- 	 10 	 20 	 25 	 30 	 40 

%rcjccted 	0.0 1.0 2.1 2.5 3.1 4.7 

- 0.000 0.000 0.002 0.068 0.123 

hE 	 0.194 0.231 0.250 0.259 0.268 0.276 

h . all-or-none heritability estimate adjusted for discontinuity according to Robertson and 
Liner (l'49) 
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TABLE 5.5 

Linear regression (and derived heritability) estimates of offspring on dam and half sib average 
on individual compared to IAM-REML heritability estimates for all untransformed data. 

estimation method trait # data points b h2  R2  (%) skewness of e 

regression of offspring HHP 2968 0.157 0.314 1.7 -1.20 
average ondam HD% 2968 0.104 0.208 0.6 -1.47 

AFE 2968 0.216 0.432 4.5 1.62 

regression of half sib HElP 13729 0.032 0.128 0.5 -1.17 
average on individual HD% 13729 0.027 0.108 0.4 -1.43 

AFE 13729 0.065 0.260 1.8 1.68 

IAM-REML HI-il' 15038 0.194 -1.23 

HD% 15038 0.151 -1.44 
AFE 15038 0.371 1.98 

b, linear genetic coefficient of regression; h2 , linear heritability estimate; R2 , coefficient of 
determination; skewness of e, the random error term; 1-11-IP, hen housed production of eggs; 
HD%, hen day percentage or rate of lay and AFE, age at first egg 

TABLE 5.6 

Curvilinear regression estimates of offspring on dam and half sib 
average on individual for all untransformed data. 

estimation method trait 

quadratic regression 

b2 	t-Prob. R2  (%) 

increase. 

in R2  

regression of offspring HHP 0.0014 0.041 1.8 6 
average ondam I-ID% 0.0039 0.029 1.0 43 

AFE -0.0029 0.002 4.8 7 

regression of half sib HHP 0.0006 <0.001 0.8 60 
average on individual HD% 0.0011 <0.001 0.8 100 

AFE -0.0008 <0.001 2.2 22 

see Table 5.5 for abbreviations; increase in R2  compared to the linear 
regression model in the preceding table 



TABLE 5.7 

Linear regression (and derived heritability) estimates of offspring on dam and half sib average 
on individual compared to IAM-REML heritability estimates for the untransformed data after 
elimination of outlying observations. 

estimation method trait # data points 	b h2  R2  (%) skewness of e 

analyses excludink records with 25 es or less 

regression of offspring HHP 2939 0.159 0.318 2.2 -0.83 
average on dam HD% 2939 0.116 0.232 0.9 -1.16 

AFE 2939 0.211 0.422 4.6 1.48 

regression of half sib Hi-IP 13360 0.046 0.184 1.0 -0.64 
average on individual HD% 13360 0.041 0.164 0.8 -1.00 

AFE 13360 0.071 0.284 2.1 1.69 

IAM-REML HJHP 14656 0.259 -0.84 

I-ID% 14656 0.211 -1.05 
AFE 14656 0.375 1.65 

analyses excludin.z records with 60 es or less 

regression of offspring HEll' 2845 0.146 0.292 2.5 -0.35 
average on dam HD% 2845 0.108 0.216 1.2 -0.61 

AYE 2845 0.196 0.392 4.6 1.20 
regression of half sib HHP 12257 0.048 0.182 1.0 -0.16 
average on individual HD% 12257 0.040 0.160 0.8 -0.36 

AFE 12257 0.081 0.324 2.7 1.10 
IAM-REML FIFIP 13509 0.273 -0.36 

I-ID% 13509 0.221 -0.59 
AFE 13509 0.373 1.19 

see Table 5.5 for abbreviations 
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TABLE 5.8 

Curvilinear  regression estimates of offspring on dam and half sib 
average on individual for the untransformed data after omission of 
outlying observations identified in two different ways. 

quadratic regression 	 increase 

estimation method 	trait 	b2 	t-Prob. 	R2  (%) 	in R2  

analyses excluding records with 25 eggs or less 

regression of offspring HHP 0.0012 0.055 2.3 5 
average ondam HD% 0.0046 0.005 1.2 33 

AYE -0.0027 0.003 4.8 

regression of half sib HHP 0.0006 <0.001 1.2 20 
average on individual HD% 0.0010 <0. 001 1.0 25 

AYE -0.0009 <0.001 2.4 14 

analyses excluding records with 60 eggs or less 

regression of offspring HIII 0.0016 0.027 2.6 4 
average on dam I-[D% 0.0051 <0.001 1.6 33 

AFE -0.0024 0.008 4.8 4 
regression of half sib 	HHP 	0.0006 <0.001 	1.1 	10 

	

average on individual HD% 	0.0015 <0.001 	1.0 	25 

	

AYE 	-0.0007 <0.001 	2.8 	4 

see Table 5.6 for abbreviations 
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TABLE 5.9 

Linear regression (and derived heritability) estimates of offspring on dam and half sib average 
on individual compared to IAM-REML heritability estimates for the t-transformed (I-IHP and 
1-ID%) or the log-transformed (AFE) data with and without elimination of outlying 
observations. 

estimation method trait # data points 	b h2  R2  (%) skewness of e 

analyses includin.z all records 

regression of offspring FIHP 2968 0.142 0.284 2.5 -0.06 
average ondarn HD% 2968 0.101 0.202 1.3 0.01 

AYE 2968 0.211 0.422 5.5 0.38 

regression of half sib HHP 13729 0.046 0.184 1.0 0.23 
average on individual FID% 13729 0.043 0.172 0.9 0.33 

AYE 13729 0.077 0.308 2.5 0.45 

IAM-REML FIHP 15038 0.261 -0.08 

HD% 15038 0.231 0.07 
AFE 15038 0.415 0.46 

analyses excluding records with 25 egiL s or less 

regression of offspring HHP 2939 0.147 0.294 2.7 -0.09 
average ondam HD% 2939 0.108 0.216 1.6 0.04 

AFE 2939 0.208 0.416 5.4 0.37 
regression of half sib }IHP 13360 0.053 0.212 1.2 0.19 
average on individual HD% 13360 0.049 0.196 1.1 0.36 

AYE 13360 0.080. 0.320 2.6 0.44 
IAM-REML FilliP 14656 0.283 -0.01 

HD% 14656 0.253 0.01 
AYE 14656 0.413 0.42 

see Table 5.5 for abbreviations; for all data tHHP = 2.5 and tHD% = 3.5 and for data omitting 
outliers tHHP = 2.3 and tHD% = 3.5; the shift in location before log-transformation of AFE was 
140 in both cases [log(AFE-140)] 
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TABLE 5. 10 

Curvilinear regression estimates of offspring on dam and half sib 
average on individual for the t-transformed (1-11-IP and I-ID%) or the log-
transformed (AFE) data with and without elimination of outlying 
observations. 

quadratic regression increase 

estimation method trait b2  t-Prob. R2  (%) in R2  

analyses including all records 

regression of offspring HHP 0.0005 0.376 2.5 0 

average on dam HD% 0.0024 0.068 1.4 8 

AFE -0.0630 0.129 5.5 0 

regression of half sib HHP 0.0005 0.001 1.0 0 

average on individual FID% 0.0012 <0.001 1.0 11 

AFE -0.0223 0.006 2.5 0 

analyses excluding records with 25 eggs or less 

regression of offspring HHP 0.0006 0.365 2.7 0 

average on dam HD% 0.0028 0.031 1.7 6 

AVE -0.0760 0.080 5.5 2 

regression of half sib HHP 0.0004 0.004 1.3 8 

average on individual l-ID% 0.0009 0.002  1. 2 9 

AVE -0.0180 0.047 2.6 0 

see Table 5.6 for abbreviations and Table 5.9 for information on the 
transformations 
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TABLE 5.11 

Linear heritability estimates (with SE in parentheses) based on half sib average-individual 
regression for bottom and top half of the 1-11-IP and HD% data ranked on individual 
performance and the total data, untransformed or t-transformed and with or without 
elimination of outliers. 

trait status of data bottom half top half total 

analyses incIudink all records 

HHP untransformed 0.028 (0.024) 0.285 (0.058) 0.128 (0.015) 

t-transformed 0.084 (0.037) 0.246 (0.038) 0.185 (0.016) 

HD% untransformed 0.002 (0.023) 0.284 (0.058) 0.109 (0.015) 

t-transformed 0.019 (0.039) 0.223 (0.036) 0.172 (0.015) 

analyses excluding records with 25 es or less 

FIHP untransformed 0.084 (0.029) 0.343 (0.052) 0.185 (0.016) 

i-transformed 0.126 (0.038) 0.276 (0.040) 0.211 (0.016) 

HD% untransformed 0.064 (0.026) 0.279 (0.056) 0.164 (0.016) 

t-transformed 0.084 (0.041) 0.236 (0.037) 0.198 (0.016) 

see Table 5:9 for information on transformations 
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Fig. 5.1. Frequency histograms for the reproduction characters. 
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Fig. 5.2. The single (and aggregate double) normal density functions as underlying 
distributions of hen housed production. 
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regression models and all the untransfonned data ranked into five groups. 
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CHAPTER 6 

RESTRICTED MAXIMUM LIKELIHOOD ESTIMATION OF GENETIC 

PARAMETERS FOR EGG PRODUCTION TRAITS 114 RELATION TO 

JUVENILE BODY WEIGHT D BROILER CHICKENS 

INTRODUCTION 

Chambers (1990), in a comprehensive survey on the genetics of growth and meat 

production in chickens, reported that genetic relationships between growth and 

reproduction traits were reviewed by Marks (1985) and Siegel and Dunnington 

(1985). He added that little additional information appeared since their reports, which 

at present still holds true. In fact, the genetic correlations presented by Marks (1985) 

and Siegel and Dunnington (1985) were largely derived from studies performed two 

to three decades earlier (eg. Ideta and Siegel, 1966; Kinney, 1969). Consequently, the 

question arises how population parameters have been affected by prolonged selection 

for performance traits. 

Up to date population specific estimates are of great relevance as many 

generations of extensive selection might well have changed the genetic correlations 

between juvenile body weight and egg production characters due to i) differential 

selection objectives driving gene frequencies in different directions, and thus making 

parameters unique to individual populations (Falconer, 1989) and ii) combined 

selection for broiler and egg production traits (in dam lines), which increases the 

likelihood of fixation of pleiotropic or closely linked genes causing changes in genetic 

covariation among the genes left segregating (Lush, 1948; Lerner, 1950). 

Environmental changes during this time span may also have had an impact on the 

magnitude of genetic correlations. For example, nowadays feed restriction programs 

for broiler parents are routine husbandry practices (Katanbaf et al., 1989), whereas 

in the studies by Ideta and Siegel (1966) and Kinney (1969) parents were fed ad 

libitum. Strong evidence of differential genetic correlations between two traits 
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measured in an ad libitum versus feed-restricted environment was found in pigs 

(Crump, 1992; Cameron etal., 1995). 

Current broiler breeding programs generally have a sequential selection 

structure in which selection for reproduction is typically performed after some 

selection for growth. Multiple trait genetic evaluation may be required to overcome 

selection bias, and possibly depression of genetic progress in such populations (Pollak 

et at, 1983; Koerhuis and van der Werf, 1994). In these cases, estimation of the 

(co)variance matrices, needed for the genetic evaluation, by ANO VA-type methods 

may yield strongly biased results (Rothschild et al., 1979; Meyer and Thompson, 

1984). Restricted Maximum Likelihood (REMIL, Patterson and Thompson, 1971), 

applied to an Individual Animal Model (JAM) (eg. Henderson; 1988), can alleviate 

this selection bias when all the data that selection decisions were based upon are 

included in the analysis, which makes it statistically superior but at the same time 

computationally cumbersome. However, the rapid growth in power of computers 

accompanied by recent improvements of computing algorithms (Thompson and Hill, 

1990; Thompson et at, 1995) have made IAM-REML feasible for solving some of 

the problems described here, involving large numbers of animals. 

In Chapter 5 it was shown that some of the egg production characteristics in 

the present data were very non-normal and that properties could be improved upon 

by either outlier elimination or data transformation of some kind. The resulting 

heritabilities based on the transformed data increased substantially, particularly for 

HIHP and HD%. The changes in correlations among egg production traits and in 

relation to juvenile body weight due to transformation of the data were not 

investigated, but are of interest. 

Objectives of the present study were 1) to estimate genetic (co)variances and 

parameters for egg production characteristics in relation to juvenile body weight and 

genetic (co)variances and parameters among egg production characteristics by 

REML using bi- and multivariate individual animal models in female line meat-type 

chickens and 2) to investigate the effect of transformation of the egg production data 

on the magnitude of heritability and correlations between the egg production traits 

and juvenile body weight and among the egg production traits. 
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MATERIALS AND METHODS 

Data 

Data were available on approximately 8 overlapping generations of a broiler-type 

female line. The traits considered were juvenile body weight (JBWT), recorded at 6 

weeks of age; the age at first egg in days (AFE) indicative of the point of sexual 

maturity; the number of eggs until 48 weeks of age, hen housed production (BE?); 

the rate of lay in the period from AFE to 48 weeks, hen day percentage (HD%); and 

the average egg weight (EWT), recorded at 28 weeks of age. Descriptive statistics of 

all traits are summarised in Table 6.1. Details on the non-normality of the egg 

production traits in these data were given in Chapter 5. The total number of animals 

in the JBWT data was 573 127, from which 2 113 were sires and 16 260 were dams. 

The population was subjected to some selection for secondary traits (eg. 

conformation and leg-defects), however, the vast majority of the selection pressure 

was put on both JBWT and the reproduction characteristics. 

Transformation of data 

HHP and HD% were exposed to a Box-Cox power transformation (Box and Cox, 

1964) to reduce non-normality and curvilinearity of heritability. Transformation 

parameters (t) of 2.5 for 1-11-IP and 3.5 for HD% were used as suggested for these 

data in Chapter 5. AFE was log-transformed after a shift of 140 days in location: 

log((AFE-140]) (Chapter 5). EWT was not transformed since it was normally 

distributed and linear in heritability (tests not presented). 

Genetic models 

The following linear JAM was fitted to the data on JBWT: 

jkIm = l.+SEx, +HW +AGEk  +a1 +Pm+eijklm 	 [6.1] 

where Yijm is the phenotypic record of animal 1 on JBWT; x is the grand mean; SEX, 

is the fixed effect of the ith  sex (i = 1,2); I-IW, is the fixed effect of theit" hatch week (j 

= 1...304); AGEk  is the fixed effect of the kth  class of age of dam (k = 1...7), 
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representing the effect due to size of the egg; a1  is the random additive genetic effect 

of the 1th  animal; Pm is the random permanent environmental effect of the mth  dam; and 

eijklm  is the random environmental effect associated with record Yjj m. 

With the exception of the sex effect, the linear model applied to the 

reproduction traits was identical to 6.1. The number of hatch weeks was slightly 

smaller (Jznax = 284). 

Methods of analysis 

Bivariate estimation. Consider model 6.1 applied to the bivariate (body weight and 

egg production) traits in a more general matrix notation: 

[a 1 
l r, 	0 lrlz, 0 Zp101a2[yI 

y2J=[o x2J[b2][o Za2  0 Z2Jp1 [e2j 	[6,2] 

LP2] 

where, for trait i (i =1,2), Yi is a vector of observations; b1  is a vector of fixed effects; 

a1  is a vector with random additive genetic animal effects; pi is a vector with random 

maternal permanent environmental effects; e1  is a vector with random residual effects; 

and X1, Zai and Zpj  are incidence matrices relating the observations to the respective 

fixed and random effects. The assumed variance-covariance structure is: 

ra, Aaai 	Acy 2 	0 	0 0 	0 

P1 

Aaa12 	Aa0 	0 

0 	0 	I1cy, 	I2 

0 	0 

0 	0 A®G 0 0 1 	
1 

V 	V 
[cJ p ., 

= 
0 	0 	BcYp12 	I2CT 2  0 	0  

ET OR] 
0 	pIoI 

I 	I 	[ 
e, 

o
j [ 	0 	0 R 

0 	0 	0 	0 I1c 	0y12 
e, 0 	0 	0 	0 the,2 	'2e2 

	

[Y])[Zai0 Z, 0 1rza, 0Zp, 01

yJ) 	
0 Za2  0 zjT[ 0 Z 2  0 Z 	

ZTZ'+R 
p2] 

	

where C72.i, 	and &ej are the additive genetic, the maternal permanent 

environmental and the residual environmental variances for trait i; O12, CTp12 and ae12 
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are the corresponding covariances between the traits I and 2; A is the relationship 

matrix; Ii  is an identity matrix; B is an incidence matrix linking progeny records of 

body weight and egg production to the dam; C is an incidence matrix relating body 

weights to egg production records; and ® denotes direct product. 

REML estimation of these (co)variances would yield a 9-dimensional 

maximisation problem. Thompson el al. (1995) proposed scaling and transformation 

models by which the computation can be reduced. The two correlated residual effects 

in R were reparameterised into independent effects 	and 2)  by introducing an 

extra uncorrelated effect (c) common to both traits after appropriate scaling: 

Cr 2 eI = 	+ a 2Cy  b 

= abc 

=+ b2a 

where a (=c1) and b (=a2) are scaling factors. Meyer's (1989) univariate algorithm 

could then be used to evaluate the likelihoods. Further scaling of G and P into G. and 

1 P, respectively, with G = sGs, P 	
0 

= sPs and s = 	 * , allowed 
L 0 	e2] 

estimation of c 	and 	from the respective partial derivatives of the log-likelihood 

(log L) function, given G,, P and o, and thereby reducing the dimension of search 

from 9 to 7. See Thompson et al. (1995) for more details. For the present data this 

algorithm resulted in 1 753 171 equations in the mixed model. The log L values were 

found directly by a derivative-free approach (Meyer, 1989). Equations in the mixed 

model matrix (MIvIIM), the coefficient matrix and the RHS's augmented, were 

reordered using a multiple minimum degree reordering (George and Liu, 1980) to 

minimise fill-in, before Gaussian elimination was performed on MMM. This resulted 

in 9 386 915 non-zero elements in the reordered MINIM. The maximum log L was 

localised by the Downhill Simplex method. Initial runs were performed including a 

threshold-factor (Thompson et al., 1994) with size 10-3  being the operational zero 

for off-diagonal elements in MMM, and convergence was assumed when the variance 

of log L values in the simplex was less than 10.2.  In this way, the multi-dimensional 

likelihood surface was roughly 'scanned' for the maximum with time savings per 
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likelihood evaluation being over 60%. The parameters obtained from the maximum of 

the approximate run were used as priors in the final run, where the operational zero 

was set to 10-' for both diagonal and off-diagonal elements and a convergence 

criterion of 10-' was assumed. This two-step procedure proved to be robust and very 

time efficient for these sizeable data sets, particularly when the initial choice of priors 

was poor. Approximate sampling errors of the hentabilities and the permanent 

environmental variances proportional to the phenotypic variances were based on a 

Taylor series expansion about the maximum log L (Smith and Graser, 1986). 

Sampling errors of genetic and permanent environmental correlations were 

approximated according to Robertson (1959). The bivariate analyses evaluating 

JBWT and the individual reproduction traits (HE?, HD%, AFE and EWT) resulted 

in four estimates of variance components and parameters for JBWT which were 

presented as an arithmetic average. 

Multivariate estimation. In illustration of the applied method consider model 6.2 and 

its variance-covariance structure again, assuming equal design matrices (i.e. X1=X2, 

ZaIZa2 and Z 1=Z 2) for the traits yi  and Y2.  In order to reduce computations 

involved in multivariate equal design estimation of variance components, Thompson 

and Hill (1990) suggested a sequence of univariate analyses based on analysing the 

I 	

IY2 

y1 
transformed traits in z H0y = 0 1 	=y2 to determine G, P (see 

JI I y,+y2 

above) and E (the environmental variance-covariance matrix). Covariance terms in 

G, P and E were estimated using the formula: cov(y1  ,y2) = '/2 [var(y1+y2)-var(yi)-

var(y2)]. A canonical transformation T reducing G and E+P to diagonal and identity 

form, respectively, was identified. Univariate analyses were repeated using the less 

correlated canonical variates zH0Ty. Back transformation of the canonical variances 

to the original scale allows the procedure to be repeated, until T gives approximately 

uncorrelated canonical variates. This algorithm was only applied to the reproduction 

data, including the traits HIHP, HD%, AFE and EWT simultaneously in a 

quadrivariate analysis which involved 10 separate univariate analyses. Each univariate 
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analysis had 21 362 equations and 121 688 non-zero elements in the reordered 

MIMM. A convergence criterion of 10.6  was assumed for the univariate analyses on 

both the original and the canonical scale, locating the maximum log L as described 

above. The iteration procedure was ceased when the mean absolute values of 

correlations on the canonical scale were less than 104  or after 15 iteration rounds. 

Test runs showed that changes in (co)variance estimates were minimal when the 

procedure was allowed to go beyond this point. 

Univariate variance estimation for JBWT and the reproductive traits was considered 

also, as a comparison to the bivariate and multivariate estimates. The maximum log L 

was obtained in the same manner, assuming convergence at 10.8. 

RESULTS 

Estimates of the variances and parameters from the analyses of untransformed data 

are shown in Table 6.2. The bivariate analyses resulted in a somewhat increased 

accuracy for JBWT through correlations with the reproductive traits. There was a 

slight increase in , primarily originating from the inclusion of EWT, and as a 

consequence the h2  increased from 0.28 to 0.29 which was not significant (SE of h2  

was 0.008). Considering all the JBWT records in the bivariate analyses of HHP, 

HD% and AFE did not significantly affect the h2  estimates, which were low for I-IHP 

and HD% and intermediate for APE. The estimates of a2  for HIP and HD% 

increased somewhat (from 712 to 730 and from 204 to 209, respectively), however 

this was due to increases in the cye2  estimates (from 592 to 612 and from 179 to 183, 

respectively). The c2  estimates remained unaltered. The differences between the rg  

and r estimates were not large for HIP, HD% and AFE, and rg  and rp  estimates 

were generally similar to estimates of r and re  respectively. The heritability of EWT, 

on the other hand, was significantly underestimated (P<0.05) when ignoring selection 

on JBWT in the univariate analysis (0.55 vs. 0.64). The bivariate analysis increased 

the CF2  variance component by 31% relative to the univariate estimate. The genetic 
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correlation between JBWT and EWT was high (0.63) and the difference with re ( 

0.14) substantial. 

A multivariate (4-trait) analysis was performed among the reproductive 

characters. The genetic and phenotypic correlation of HHP with HD% were close to 

unity (0.92 and 0.89 respectively). The difference in genetic correlation of AFE with 

FIHP and HD% was considerable (-0.76 vs. -0.45). The cy estimates of HIP and 

ITh%, in particular, were greater relative to either the uni- or the bivanate analyses 

resulting in somewhat greater heritabilities although not significant. The additional 

additive genetic variation observed in HHP and HD% can be attributed to AFE, 

which was highly genetically correlated with 1-IT-lIP (476) especially, and less 

phenotypically correlated (444). The a estimates and the derived c2  parameter 

were not affected. The rg  and r estimates of EWT with HIP, HD% and AFE were 

close to zero, and hence the multivariate variance component estimates of EWT were 

identical to the univariate components. 

Results of the analyses on the transformed reproduction data are presented in Table 

6.3. The bi- and multivariate variance component estimates and the corresponding 

dispersion parameters of the original JBWT and EWT data, respectively, were not 

affected by the transformation of the other reproductive traits. Compared to the 

variances of the untransformed traits, the transformation of HHP and HD% brought 

about a much smaller environmental variance proportional to the estimate of a 

Consequently, the h2  estimates of HHIP and HD% increased considerably (P<0.01) 

from 0.14 to 0.21 and from 0.10 to 0.18, respectively. The increase in h2  of log_ 

transformed AFE was much smaller (0.34 to 0.38), yet significant at P=0.05. As for 

the reproductive traits on the original scale, the bivariate analyses on the transformed 

scale did not affect the dispersion parameter estimates of these traits significantly. 

The genetic correlations between JBWT and the transformed reproductive traits were 

only a little more unfavourable and hence changes were statistically insignificant. The 

estimates of r for HHP and HD% were somewhat closer to zero. The relative 

changes in variance component and genetic parameter estimates of multivariate 

compared to univariate analyses were similar for reproductive data on the original 
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and the transformed scale. Noteworthy are the more negative rg  estimates between 

EWT and HHP and HD%, respectively changing from -0.08 to -0.21 and -0.07 to - 

0.22 with significance at P=0.05. 

DISCUSSION 

Heritability estimates of reproductive traits 

The present IAM-REML heritabilities for the untransformed reproductive traits HHP 

and HD%, accounting for variation due to maternal permanent environment, were 

very similar to estimates for the same data derived from the regression of half sib 

average on individual (0.13 and 0.11 for HHP and FID%, respectively) in Chapter 5. 

The regression estimates were a little lower for the reproductive traits on a 

transformed scale (0.18 and 0. 17 for HHP and HD%, respectively). For AFE the 

differences between this genetic regression and the present IAM-REML estimates on 

the original (0.26 vs. 0.34) and the log scale (0.31 vs. 0.38) were somewhat greater. 

Some difference between these methods is, of course, anticipated as the regression of 

half sib average on individual is equivalent to the analysis of variance of half sibs 

(Hill, 1978), whereas REMIL considers all genetic relationships and offspring-parental 

and collateral information, which is likely to yield a higher pooled estimate of the 

heritability. 

A comparison of the present heritability estimates of reproductive traits was made to 

some frequently cited results in the literature on meat-type poultry (see Table 6.4). 

The estimates of Ideta and Siegel (1966) were based on the realised response in the 

seven initial generations of Siegel's bidirectional selection experiment on juvenile 

body weight. Kinney (1969) summarised the literature estimates on meat-type 

poultry. The estimates of Ideta and Siegel (1966) were atypical for HD% and AFE. 

The authors mentioned that their population had no selection history for egg 

production, which according to them could explain the much higher additive genetic 

variation. However, in that situation one might also then have expected a higher 

estimate for AFE. Consideration of the standard errors in their study (0.13 and 0.06 
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for HD% and AFE, respectively) points towards those estimates being considerably 

affected by chance. Kinney's (1969) summary, in which extreme sampling cases are 

likely to average out, gave h2  estimates much more similar to the present study. In 

spite of the inclusion of eight generations of data and genetic relationships, the 

present h2  estimates are still expected to be somewhat reduced by selection applied 

for many more generations. The distributions of HHP and HD% are best described by 

a double normal mixture model with different dispersion and location parameters 

(Chapter 5). Alternatively, one could argue that in modern meat-type poultry dam 

line populations linear estimates of heritability of egg production are more 

underestimated due to greater non-normality and curvilinearity. This results from the 

'pulling apart' of the true underlying normal distributions due to selection for egg 

production in these lines, with the right-hand distribution showing a greater (genetic) 

shift in location compared to the left-hand distribution. The distribution accounting 

for the left-hand tail is more affected by environmental variability (Chapter 5) 

resulting in a lower genetic response. 

Recently, Besbes el at (1993) and Wei and van der Werf (1993) estimated genetic 

parameters for reproductive traits in layers using IAM-REML methods. The former 

study solely considered an additive genetic effect, whereas the latter included a 

dominance component. Presumably, the c2  effect included in the present study 

accounted for both maternal permanent environmental variation as well as most of 

the dominance variation, since this component largely represented covariances 

between full sibs (the majority of dams was nested within sire) and therefore is likely 

to be highly correlated with dominance. The h2  estimates of Wei and van der Werf 

(1993) were clearly higher and the effect of transformation was smaller (for HHIP in 

26-65 wks the average heritability of 3 populations was 0.23 and 0.26 on the original 

and transformed scales, respectively). The estimates of Besbes et at (1993), ignoring 

any c2  effect, and the sensitivity of the h2  to transformation were somewhat lower 

relative to the present study (for HHIP in 26-54 wks the average heritability of 2 

populations was 0.12 and 0.17 on the original and transformed scales, respectively). 

Our definition of HIP is, however, affected by variation in APE, and therefore the 
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comparison with HD% might be more appropriate. The h2  of HD% rose by 80% 

(from 0.10 to 0.18) due to transformation. The combined selection for broiler and 

reproductive characteristics in these populations might increase the incidence of 

recessive genes with a deleterious effect on reproduction (Chapter 5) and of several 

reproductive complications associated with broiler growth (Siegel and Dunnington, 

1985). As a result transformation might generally have more effect in such meat-type 

populations with possibly a higher proportion of the birds representing the 

distribution accounting for the left-hand tail. 

Correlation estimates between body weight and reproduction 

The rg  between JBWT and percent egg production (HD%) was similar for Ideta and 

Siegel (1966) and Kinney (1969) and notably more antagonistic in this study (see 

Table 6.5). In the former studies selection pressure was on JBWT, whereas the 

present population was subjected to improvement of both JBWT and egg production. 

As a result, this more negative correlation might be explained by the fixation of some 

pleiotropic and/or closely linked genes with a favourable effect on both JBWT and 

HD%. Also, genes with independent desirable effects on either trait are likely to be 

directed towards fixation, while allelic genes with undesirable effects might be lost 

(Lush. 1948; Lerner, 1950). However, in a two-trait selection experiment of 22 

generations on Drosophila melanogaster, changes in genetic correlations were 

variable and unpredictable (Sheridan and Barker, 1974). The differences in 

correlations with AFE and EWT were more profound, the present study showing a 

change of sign for AFE compared to the former ones. 

The possible effect on the genetic correlations of feed restriction applied to the 

present population during the rearing and laying periods, to preclude obesity and its 

negative effects on reproduction (Katanbaf et al., 1989), cannot be ignored. In pigs, 

for instance, feed restriction is known to change the sign of the genetic correlation 

between daily gain and backfat depth. Lean growth requires less energy than fat 

deposition and so at higher levels of restriction the animals which grow faster will be 

those which are depositing muscle rather than fat, while at ad libitum feeding levels 
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energy is not limiting and so the faster growing animals will be producing both lean 

and fat (Crump, 1992; Cameron et al., 1995). Our case, however, is slightly different 

in that JBWT is not affected by restriction of feed but egg production is, since body 

weight is controlled after ad libitum growth to 6 weeks of age. Studies have shown 

that sexual maturity can be achieved only if thresholds of chronological age, body 

weight, and body composition are reached (for references see Katanbaf et al., 1989). 

The lower limit for genetic potential of minimum age of lay should be expressed 

under ad libitum feeding, whereas a restricted feeding regime should allow for 

expression of minimum body weight and body composition requirements (Katanbaf et 

al., 1989). Body weight per se was probably relevant to the start of egg production 

in the populations studied by Ideta and Siegel (1966) and Kinney (1969), resulting in 

a negative correlation with AFE. In the present genetically much heavier and leaner, 

restricted-fed population, body weight per se is not expected to have an effect on 

AFE, except perhaps in the unlikely event where JBWT is considerably negatively 

correlated to body weight at onset of lay (which was unavailable). Hence, the 

relationship of JBWT with body composition is very likely an important determinant 

of the positive rg  between JBWT and AFE. Birds which are genetically superior for 

JBWT are generally more efficient (rg  between weight gain and FCR is -0.50; Pym, 

1990), and might in a feed-restricted environment preferentially partition energy 

towards protein deposition rather than towards fat deposition. As a consequence, the 

heavier juvenile birds probably take a longer time to surpass the threshold for fat 

reserves. This positive effect on AFE is likely to drive the genetic correlation of 

JBWT with 1-11-IP and HD% down, because of the genetic relationship between those 

traits and AFE. 

As stated previously, body weight per se can in some cases accelerate onset 

of egg production through effects on endocrine tissue growth and target organ 

sensitivity (Siegel and Dunnington, 1985). This increased potential to respond in 

heavier birds can only have an effect on age at first egg if the photoreceptors respond 

to photostimulation. The 'photoperiodic drive', describing the response of the bird to 

photostimulation, can be quantified as the number of days to first egg after relaxing 

dietary restriction (Eitan and Soller, 1994). Eitan and Soller (1994) found a negative 
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effect of body weight on the photoperiodic drive, which could contribute to the 

positive sign of the genetic correlation between JBWT and AFE. 

The effects of transformation on the correlation parameters were generally small. 

Besbes el al. (1993) also observed only slight changes in genetic correlations after 

transformation. The estimates of the genetic correlations of HHP and HD% with 

EWT, however, became considerably more antagonistic. The resulting correlations 

were in fact similar to estimates summarised by Kinney (1969). The multivariate 

correlation estimates related to EWT might be somewhat biased due to ignoring any 

selection on the highly correlated JBWT. The correlation parameters involving the 

other reproductive characters are not expected to be affected much due to the 

generally low genetic relationships with JBWT. Consequently, the genetic evaluation 

of reproductive merit in the present population could probably ignore any relationship 

with JBWT, which could lead to substantial savings in computing when applying 

multivariate BLUP. Consideration of selection for JBWT in the genetic evaluation of 

EWT is recommended to preclude large bias in the latter trait. A better understanding 

of the genetic and physiological relationships between these traits can optimise 

selection strategy and management within the selection programme. 

SUMMARY AND CONCLUSIONS 

Juvenile body weight (JBWT) and the reproductive traits, hen housed egg production 

(I-EP), rate of lay expressed as hen day percent (HD%), age at first egg (AFE) and 

egg weight (EWT) on approximately 8 overlapping generations of a broiler-type 

female line were available to study 1) their genetic (co)variances and dispersion 

parameters, and 2) the effect of transformation of the egg production data on the 

magnitude of heritability and the genetic correlation structure. Bi- and multivariate 

animal model REMIL estimations were feasible for the present sizeable data sets 

(including 573 127 animals) by reducing the models to univariate forms using scaling 

and transformation. 
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Heritabilities were low for 1-Il-IP (0.14) and HD% (0.10), intermediate for 

APE (0.34) and high for EWT (0.55). Genetic correlations between JBWT and HHP 

(-0.18), HD% (420) and AFE (0.15) were low, whereas EWT was highly correlated 

to JBWT (0.63) and only the bivariate heritability estimate of EWT was increased by 

including all the JBWT data (0.55 increased to 0.64). Genetic correlations of HIP 

with HD% and AFE were large (0.92 and -0.76, respectively), while HD% and APE 

were less correlated (-0.45). EWT was little correlated to the other reproductive 

characters. Box-Cox transformation of HHP and HD% and logarithmic 

transformation of APE increased the heritability estimates (0.21, 0.18 and 0.38 for 

I-IHP, HD% and APE, respectively), but had generally little effect on the genetic 

correlation estimates. Comparison to earlier literature estimates revealed substantial 

differences in the genetic correlation structure. Possible reasons were discussed. A 

better understanding of the genetic and physiological relationships between these 

traits can optimise selection strategy and management within the selection 

programme. 
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TABLE 6.1 

Descriptive statistics for juvenile body weight in kgx 1 0.2  (JBWT), hen housed production 
(1-Il-IP), hen day percentage (HD%), age at first egg in days (AFE) and egg weight in g 
(EWT). 

trait # records mean SD CV (%) 

JBWT 570 508 185.5 30.1 16.2 

1-fl-lIP 15 038 100.0 28.6 28.6 

I-ID% 15 038 65.0 14.8 22.8 

AFE 15 038 182.1 14.7 8.1 

EWT 13 801 55.4 3.9 7.0 
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TABLE 6.2 

Uni-, bi- and multivariate IAM-REML variance and dispersion parameter estimates for JBWT (kg2x 1 0-i') and the reproductive traits HHP, 
HD%, AFE and EWT (g2/10). 

	

Univariate analyses (IJNI) 
	

IDi\ 
	

Multivariate analysis (MULTI) 

variance 	 JBWT I-{HP HD% AFE EWT jBWT5 H}{P HD% AFE EWT HHP HD% AFE EWT 

additive genetic 	74 	100 	20 	58 	77 	76 	97 	19 	58 	101 	112 	22 	59 	77 
mat. perm.enviromnental 	11 	20 	6 	3 	3 	7 	21 	7 	2 	1 	19 	6 	3 	3 
residual 	 179 	592 	179 	110 	60 	183 	612 	183 	106 	55 	585 	177 	109 	60 
phenotypic 	 264 	712 	204 	171 	140 	266 	730 	209 	167 	157 	716 	205 	171 	140 

trait 

JBWT 	 0.28 	 0.29 -0.11 -0.09 0.09 0.21 
I-il-lIP 	 0.14 	 -0.18 0.13 	 0.16 0.89 -0.44 -0.03 
HD% 	 0.10 	 -0.20 	 0.09 	 0.92 0.11 -0.18 -0.02 
APE 	 0.34 	 0.15 	 0.35 	 -0.76 -0.45 0.35 0.02 
EWT 	 0.55 	0.63 	 0.64 -0.08 -0.07 0.07 0.55 

JBWTP 	 0.04 	 0.03 -0.10 -0.08 0.07 -0.14 
HIHP 	 0.03 	 -0.21 0.03 	 0.03 0.88 -0.35 0.01 
FLD% 	 0.03 	 -0.18 	 0.03 	 0.95 0.03 -0.11 0.02 
AFE 	 0.02 	 0.05 	 0.01 	 -0.56 -0.42 0.02 -0.02 
EWT 	 0.02 -0.15 	 0.01 -0.47 -0.47 0.22 0.02 

a: heritabilities (h2) on the diagonal, phenotypic correlations above and genetic correlations (Tg,) below the diagonal; UNI: SE of h2  of JBWT and the average SE 
of the h 2  of the reproductive traits were 8x iø and 0.02, respectively; BI: average SE of the rgs between JBWT and the reproductive traits was 0.03; MULTI: 
average SE of the rgs among the reproductive traits was 0.04. 

maternal permanent environmental variances proportional to the phenotypic variances (c) on the diagonal, environmental correlations above and maternal 
permanent environmental correlations (re) below the diagonal; UNI: SE of c2  of JBWT and average SE of the c2s of the reproductive traits were lx 10-3 and 0.01, 
respectively; B!: average SE of the rs between JBWT and the reproductive traits was 0.06; MULTI: average SE of the rs among the reproductive traits was 0.12. 

variances and parameters of the four bivariate analyses were averaged for JBWT 
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TABLE 6.3 

Uni-, bi- and multivariate [AM-REML variance and dispersion parameter estimates for JBWT and the Box-Cox 
transformed l-IHP (t=2.5) and l-ID% (t3.5). the log-transformed AFE (logAFE-140]) and the original EWT. 

Univariate analyses Bivariate analyses Multivariate analysis 

variance HHP HD% AFEct JBWT Fil-IP HD% pja fill]) HD% pa 	EWT 

additive genetic 95 19 31 76 96 20 30 106 21 31 	77 
mat. perm. 12 3 2 7 11 3 1 12 3 2 	3 
environmental 
residual 345 86 48 183 358 89 46 339 85 48 	60 
phenotypic 452 108 82 266 465 112 77 457 109 81 	140 

trait 

JBWT 0.29 -0.13 -0.11 0.10 
HIT]' 0.21 	 -0.21 0.21 0.23 0.88 -0.47 -0.06 

0.18 	 -0.22 0.18 0.90 0.19 -0.17 -0.06 
AFE 0.38 	0.18 0.39 -0.73 -0.37 0.38 0.04 
EWT -0.21 -0.22 0.09 0.55 

JBWT 0.03 -0.10 -0.08 0.10 
HHP 0.03 	 -0.14 0.02 0.03 0.88 -0.37 0.04 
HD% 0.03 	 -0.13 0.03 0.90 0.03 -0.09 0.04 
AFE 0.02 	0.04 0.01 -0.55 -0.21 0.02 -0.00 
EWT -0.36 -0.21 0.28 0.02 

See Table 6.2 for definitions and layout of the genetic parameters and sizes of SEs 
variances of log (AFE-l40) multiplied by 10' 
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TABLE 6.4 

Some literature heritability estimates of reproductive traits in meat-type poultry 
compared to the univariate estimates on the original data in the present study. 

heritability estimates 

trait 	Ideta and Siegel (1966) 	Kinney (1969) 	present study 

Hi-IP 	 - 	 - 0.14 
HD% 	 0.48 	 0.15 0.10 
AYE 	 0.19 	 0.39 0.34 
EWT 	 0.53 	 0.57 0.55 

TABLE 6.5 

Some literature estimates of genetic correlations between JBWT and the reproductive 
traits in meat-type poultry compared to the bivariate estimates on the original scale in the 
present study. 

Genetic correlation estimates with JBWT 

trait 	Ideta and Siegel (1966) 	Kinney (1969) 	present study 

HHP 	 - 	 - -0.18 
-0.14 	 -0.12 -0.20 

AYE 	 -0.24 	 -0.10 0.15 
EWT 	 0.23 	 0.26 0.63 
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CHAPTER 7 

GENERAL DISCUSSION 

Methodology and computing 

Traditionally, the need to use REML (co)variance component estimation (Patterson 

and Thompson, 1971) has been less for poultry than for other domestic species 

(Hartmann, 1992). However, broiler breeding schemes have become increasingly 

complex with the introduction of additional traits like FCR and reproduction. Their 

sequential selection structure inevitably causes ANOVA-type methods to produce 

biased dispersion parameters (Rothschild el al., 1979; Meyer and Thompson, 1984). 

REML can alleviate this selection bias when the data that selection decisions were 

based upon are included in the analysis. Therefore, REML applied to individual 

animal models has been used throughout in this thesis. 

To allow REML analysis of poultry data including large numbers of animals, 

subsetting of the data has been applied in the literature (eg. Besbes et al., 1992). 

Population estimates can be found by pooling the results of the subsets of data. 

Empirical sampling errors (/"In, where n is the number of subsets) can be derived 

simultaneously. Disadvantages of this method are (1) the simple arithmetic mean of 

the subset estimates do not necessarily maximise the likelihood of the total data, (2) 

for multivariate analysis combined matrices might not be positive semi-definite and 

(3) estimates might be more affected by large sampling (co)variation. Although (2) 

can be circumvented by forcing matrices to be within the bounds of the parameter 

space (eg. by a procedure termed 'bending' (Hayes and Hill, 198 1)) it does not 

guarantee maximum likelihood of the total data given the pooled ('bent') subset 

estimates. Hence, from a statistical viewpoint, REML on total data, as performed in 

the present studies, must be preferred. 
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Despite the large number of animals, comprehensive analyses including several 

random effects (particularly in Chapters 2 and 6) were facilitated by the specific data 

structure of poultry populations with a high ratio of non-parents to parents resulting 

in a relatively low number of additional non-zero off-diagonal elements (fill-in) after 

Gaussian elimination of the reordered equations in the mixed model matrix. Koerhuis 

(1994) showed that, for a purely direct additive genetic animal model, the reordering 

of equations based on the number of off-diagonals (Meyer, 1989) reduced the CPU 

time per likelihood evaluation by a factor of 12 for the JBWT data in Chapter 2 

compared to a factor of 2 to 3 for data that were more typical for other domestic 

species (Meyer, 1991). 

Practical implications and suggestions for further research 

The finding of a negative genetic relationship between the direct additive and the 

maternal additive genetic components (r,) of JBWT using standard models for the 

genetic evaluation of maternal effects due to Meyer (1989) was not expected a 

priori. Various estimates and thoughts presented in the literature, although often at a 

phenotypic level, suggest otherwise (Al-Murrani, 1979; Marks, 1985; Chambers, 

1990). These unexpected results prompted two directions of research (1) the 

investigation of more appropriate and detailed statistical models taking into account 

the possible environmental dam-offspring covariance (Chapter 2) and (2) the 

identification of individual maternal pathways related to the egg and investigation of 

their effect on offspring-parental regressions and their genetics (Chapter 3). 

The models investigated in Chapter 2 might not be the most effective for poultry 

where several maternal performances related to the egg are readily directly observed 

(see Chapter 3). However, for other species (eg. beef cattle) studies on these new 

models for the estimation of maternal effects as alternative to the existing models by 

Meyer (1989) would be of interest. 

In Chapter 2 it is suggested that increased weight loss during incubation can have a 

negative maternal effect on JBWT. The loss in egg weight is often the consequence 
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of poor calcification, high shell porosity and hence inferior specific gravity, which 

impair embryonic survival (Robinson et al., 1993). Weight loss from set to transfer 

and specific gravity are inherently related to egg shell quality. Therefore, direct 

selection for those traits (with intermediate heritabilities of around 0.3, as estimated 

in Chapter 3) in female lines must be seriously considered, primarily to restrict the 

negative trend of embryonic survival, often expressed as hatchability of fertile eggs 

(HOF), in response to selection for JBWT (Robinson el al., 1993), but perhaps also 

to improve JBWT somewhat more efficiently by alleviating the maternal variation due 

to various egg quality related traits although extra gains are unlikely to be great 

(Chapter 3). This might offer an efficient means for indirect improvement of HOF 

since direct selection has often been shown to be insufficient due to extremely low 

heritabilities (eg. 0.03 estimated by Catterall and Pollott, 1995). 

It is likely that weight loss during incubation and specific gravity are curvilinear in 

their relationships with the percentage HOF and thus optimum levels of these traits 

might have to be strived for. The energy for embryonic development is provided by 

metabolism of egg yolk and like all other metabolic processes, requires the supply of 

oxygen and the expulsion of carbon dioxide. Since the weight of the chick is about 

60-65% of the original egg weight, a considerable amount of water is lost during 

embryonic development. The shell, therefore, may be considered to be the respiratory 

organ of the embryo. In the initial stages of embryonic development, it alone is 

responsible for the transfer of gaseous water and carbon dioxide from the embryo and 

oxygen to the embryo by diffusion (Etches, 1993). Extreme shell structure and 

quality in either direction might handicap the egg's respiratory ability and hence the 

embryo's survival rate. Also, it is possible that egg shell quality problems occur only 

later in life. A detailed study on the curvilinearity of the correlations of egg quality 

traits with HOF, and the genetic relationships between egg quality traits over a wider 

age range would be useful. Continual monitoring of the changes in relationships 

between these traits and HOF should prevent overshooting of the possible optima 

from a point of view of maximisation of HOF. 
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Loss of accuracy by selection for a trait defined as a ratio can be especially high when 

differences in heritabilities and/or correlations of component traits are large (Chapter 

4), which is not the case for FCR (Pym, 1990). A potentially more relevant candidate 

for indirect selection on the components is the rate of lay or hen day percentage 

(HD%) of broiler dams. The component traits of HD%, i.e. the number of eggs 

(numerator) and the age at first egg (explanatory of the variation in the denominator), 

differ considerably in heritability even when non-normality of these traits is accounted 

for (Chapters 5 and 6). 

A mixture model of two Gaussian probability functions with different location and 

dispersion parameters gave the best fit to the phenotypic data for number of eggs 

(HHP) and rate of lay or hen day percent (1-ID%) (Chapter 5). Some individuals 

might be affected by disease which hampers their performance and creates a negative 

skewness. Statistically, these individuals' phenotypes are sampled from a 'foreign 

nuisance' population with shifted location and scale. However, in an environment 

with high risk of exposure to pathogens, what is a 'foreign nuisance' population in 

the present data could actually represent the basic model, so that the majority of 

individuals would be sampled from such an 'affected' distribution. 

Breeders are evidently faced with the problem of genotypex environment 

(GxE) interaction. In considering this problem, Bell (1970) suggested that there were 

four alternatives, not necessarily mutually exclusive: 1) to select under a uniform and 

optimum environment, 2) to select under environmental conditions other than 

optimum, 3) to develop specialised strains or genotypes uniquely adapted to specific 

environmental conditions, and 4) to select for general adaptability to a wide range of 

environments. The route to take depends upon the economic importance of the trait 

of interest and the nature of the particular GxE interaction. The further study of the 

underlying genetic variability in the double-normal mixture model (as suggested in 

Chapter 5) can support such decisions. By assigning individuals to one or the other 

data populations, bivanate analysis can be performed to investigate the heritabilities 

and the genetic correlation of egg production performance in a low versus high 

'health risk' environment which should help to model the possible solutions. Most 
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nucleus poultry selection lines are held under isolated quarantine conditions in 

conjunction with disease eradication/limitation programs, which are often atypical of 

practical commercial environments with higher incidences and greater risk of 

exposure to pathogens (Sheridan, 1990). Such approaches might have to be 

reconsidered if the genetic correlation between performances in both environments 

proves to be low or even antagonistic. According to Sheridan (1990) some breeders 

already consider that exposure to pathogens assists in selection for viability in the 

field and are less stringent regarding disease preventative measures. 

The effect of feed restriction applied during the rearing and laying periods, to 

preclude obesity and its negative effects on reproduction, was discussed in Chapter 6 

as a possible reason for changes in genetic relationships between reproduction and 

growth performance in comparison to earlier literature. Commercial broiler parents 

are usually restricted in their growth during the first six weeks also. Hence, ad 

libitum growth of female line hens to six weeks of age, to obtain their JBWT for 

selection purposes, might introduce another important source of GxE interaction 

which could reduce the efficiency of selection for reproductive performance. 

Furthermore, the great length and intensity of the lighting intervals during this ad 

libitum growing period, reducing later responsiveness to photostimulation, could play 

a role. Studies on the genetic relationships between performances under these 

different circumstances are required. Female line hens raised in a restricted feed and 

lighting environment could be selected for ad libitum growth family performances. 

The loss of progress in broiler traits, due to 10-15% lower accuracy of these indices, 

could be counterbalanced by a considerably higher response in reproductive 

performance in commercially relevant environments. Depending on the genetic 

relationship between ad libitum and restricted growth, this loss could be diminished 

by incorporating the restricted growth performances into the selection decisions. An 

additional benefit might arise from a higher selection intensity as a result of better 

reproductive performance after restricted feed and lighting in the juvenile stage. 
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Use of poultry data to test quantitative genetic theory 

Commercial broiler populations have been selected extensively over the past decades, 

particularly for JBWT. Havenstein et at. (1994) assessed the relative contributions of 

genetic selection and dietary regimen on the performance of broilers. Body weights 

were measured in a 1957 randombred control strain of broilers and in 1991 

commercial broilers when fed "typical" 1957 and 1991 diets. The 1991 broilers on 

the 1957 and the 1991 diets were 4.1 and 3.4 times larger than the 1957 broilers at 

six weeks of age, which illustrates the extraordinary impact of genetic selection. As a 

result the additive genetic variation has decreased, the present studies showing 

appreciably lower heritabilities in comparison to earlier literature (0.33 and 0.26 in 

Chapter 2 vs. an  average literature value of 0.41 (Chambers, 1990) although these are 

often based on weights at older ages). Nevertheless, sufficient variation has remained 

making further genetic improvement possible. 

Mutation Frankham (1980) showed that mutations of major effect arising in 

selection lines can have a substantial contribution to genetic variation and hence can 

influence long term selection response. An important parameter determining the 

expected response from fixation of the new mutations is the new mutational variance 

arising per generation, VM , which is usually expressed as a proportion of the 

environmental variance, VM/VE (Falconer, 1989; Keightley and Hill, 1992; Caballero 

et al., 1995). Keightley and Hill (1992) estimated VM/VE for growth rate in the 

mouse using REML based on an individual animal model. The estimate of VM/VE 

maximising the likelihood was localised by approximation of the marginal log-

likelihood surface of VM/VE.  The analyses were based on 3142 records of an initially 

inbred line which had been selected divergently for 25 generations. Caballero el al. 

(1995) obtained an independent estimate of mutation rate for body weight in the 

mouse from that obtained by Keightley and Hill (1992). 

For growth in broiler chickens similar exercises would be of interest and 

could, presumably, be performed with more statistical power despite data not being 

available on experimental divergently selected sublines. Generally, growth data and 

full pedigree structures are available for 10 to 15 generations of chickens. Data on 
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200 000 to 400 000 individuals over such a time range are not exceptional. Even for 

detailed statistical models (eg Chapter 2) highly peaked likelihood curvatures are 

observed, locating maximum likelihood estimates with narrow confidence intervals. 

Keightley and Hill (1992) attempted to distinguish response and variance caused by 

initially segregating alleles (Vg,o, in the base population) from that due to new 

mutation. For such an investigation poultry data might make more powerful statistical 

inference possible, although Vg,o is expected to be much larger in chickens as they are 

not highly inbred as were the mice used by Keightley and Hill. Also, extension to 

bivariate (or even multivariate) cases could be interesting and conceptually 

straightforward, if not computationally, with a mutational dispersion (variance-

covariance) matrix rather than a dispersion scalar. The possibility of pleiotropic 

effects of new mutations affecting genetic relationships between metric characters has 

not been studied. The substantial differences in genetic relationships among JBWT 

and reproductive traits in comparison to earlier literature estimates (Chapter 6) 

might, at least in part, be attributable to mutational covariation differing from the 

existing covariation between those characters in the base population (Cg,o). 

Selection limit Without the creation of (appreciable) new variation by mutation, the 

response to selection cannot be expected to continue indefinitely. Sooner or later the 

genes segregating in the base population will be brought to fixation (or equilibrium if 

there is overdominance) by the selection or the accompanying inbreeding (Falconer, 

1989) The response will therefore slowly diminish and finally cease. Although, 

seemingly, plenty of additive genetic variation has remained in JBWT, investigation 

of the magnitudes of heritabilities in the up and down direction of selection is of 

interest. Some fixation of genes improving the response in the prolonged previous 

upward direction of selection is likely to have reduced this specific directional 

heritability. Also, it is not clear whether downward heritabilities would be negatively 

affected by bad growth performance of stunted birds (compare Chapter 5). If so, the 

heritability of JBWT could actually have a sigmoid shape with the intermediate 

phenotypes exhibiting the greatest heritability. However, if one or more recessives 

with large effect are segregating at the low end of the distribution, the downward 
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heritability and hence the curvature are difficult to predict. Such studies can 

contribute to the general validation of predictions made on the basis of the usual 

"normal" model of genetic and environmental variation for economic performance 

traits in farm animals subjected to prolonged extensive selection. 

132 



REFERENCES 

Abplanalp, H., 1961. Linear heritability estimates. Genet. Res. Camb., 2: 439-448. 

Al-Murrani, WK., 1978. Maternal effects on embryonic and post-embryonic growth in 

poultry. Br. Poult. Sci., 19: 277-281. 

Al-Murrani, WK., and Roberts, R.C., 1974. Genetic variation in a line  of mice selected to its 

limit for high body weight. Anim. Prod., 19: 273-289. 

Anscombe, F.J., 1960. Rejection of outliers. Technometrics, 2: 123-147. 

Baker, R.L., 1980. The role of maternal effects on the efficiency of selection in beef cattle: a 

review. Proc. N.Z. Soc. Anim. Prod., 40: 285-303. 

Barnett, V. and Lewis, T., 1994. Outliers in statistical data. John Wiley & Sons, Chichester, 

584 pp. 

Bell, A.E., 1970. Genotype and environment interaction from a dynamic viewpoint. Proc. 

14th World Poult. Congr., Madrid, pp.  195-197. 

Besbes, B., Ducrocq, V., Foulley, J-L., Protais, M., Tavernier, A., Tixier-Boichard, M. and 

Beaumont, C., 1992. Estimation of genetic parameters of egg production traits of 

laying hens by restricted maximum likelihood applied to a multiple-trait animal 

model. Genet. Select. Evol., 24: 539-552. 

Besbes, B., Ducrocq, V., Foulley, J-L., Protais, M., Tavernier, A., Tixier-Boichard, M. and 

Beaumont, C., 1993. Box-Cox transformation of egg-production traits of laying hens 

to improve genetic parameter estimation and breeding evaluation. Livest. Prod. Sci., 

33: 313-326. 

Box, G.E.P. and Cox, DR., 1964. An analysis of transformations. J.R. Statist. Soc., B26: 

211-243. 

Bulmer, M.G., 1971. The effect of selection on genetic variability. Amer. Nat., 105: 201-211. 

Caballero, A., Keightley, P.D. and Hill, W.G., 1995. Accumulation of mutations affecting 

body weight in inbred mouse lines.  Genet. Res. Camb., 65: 145-149. 

Cameron, N.D., Curran, M.K. and Kerr, J.C., 1995. Selection for components of efficient 

lean growth rate in pigs 3. Responses to selection with a restricted feeding regime. 

Anim. Prod., 59: 271-279. 

Cantet, R.J.C., Kress, D.D., Anderson, D.C., Doombos, D.E., Burfening, P.J. and Blackwell 

R.L., 1988. Direct and maternal variances and covariances and maternal phenotypic 

effects on preweaning growth of beef cattle. J. Anim. Sci., 66: 648-660. 

133 



Catterall, J.H. and Pollott, G.E., 1995. Analysis of meat and reproductive traits in a 

commercial sire broiler line. In: Proc. 51st Meeting Brit. Soc. Anim. Sci. 

Scarborough, U.K. 

Chambers, J.R., 1990. Genetics of growth and meat production in chickens. In: R.D. 

Crawford (Ed), Poultry breeding and genetics. Elsevier, Amsterdam, pp.  599-643. 

Clayton, G.A., 1975. Normality of egg production in poultry. Br. Poult. Sci., 16: 431439. 

Crump, R.E., 1992. Quantitative genetic analysis of a commercial pig population undergoing 

selection. Ph.D. thesis, Univ. of Edinburgh. 

Dekkers, J.C.M., 1992. Asymptotic response to selection on best linear unbiased predictors 

of breeding values. Anim. Prod., 54: 351-360. 

Dixon, Wi., 1950. Analysis of extreme values. Ann. Math. Statist., 21: 488-506. 

Eisen. El., 1967. Mating designs for estimating direct and maternal genetic variances and 

direct-maternal genetic covariances. Can. J. Genet. Cytol., 9: 13-22. 

Eitan, Y., and Soller, M., 1994. Selection for high and low threshold body weight at first egg 

in broiler strain females. 4. Photoperiodic drive in the selection lines and in 

commercial layers and broiler breeders. Poult. Sci., 73: 769-780. 

EssI, A., 1989. Selection for a ratio of two traits: Results of a simulation study. J. Anim. 

Breed. Genet., 106: 81-88. 

Etches. R.J., 1993. Reproduction in poultry. In: G.J. King (Ed), Reproduction in 
domesticated animals. Elsevier, Amsterdam, pp. 493-530. 

Fairfull. R.W. and Gowe, R.S., 1990. Genetics of egg production in chickens. In: R.D. 

Crawford (Ed), Poultry breeding and genetics. Elsevier, Amsterdam, pp. 705-760. 

Falconer. D.S., 1965. Maternal effects and selection response. In: S.J. Geerts (Ed), Genetics 

today. Pergamon press, New York, pp. 763-774. 

Falconer. D. S., 1971. Improvement of litter size in a strain of mice at a selection limit. Genet. 

Res. Camb., 17:215:235. 

Falconer. D.S., 1989. Introduction to quantitative genetics. Longman group, Harlow, U.K. 

Frankham, R., 1980. Origin of genetic variation in selection lines. In: A. Robertson (Ed), 

Proc. Symp. Commonwealth Agric. Bureaux, Farnham Royal, Slough. 

Gavora, JS., 1990. Disease genetics. In: R.D. Crawford (Ed), Poultry breeding and genetics. 

Elsevier, Amsterdam, pp.  805-846. 

134 



Gavora, JS., Chesnais, J. and Spencer, J.L., 1983. Estimation of variance components and 

heritability in populations affected by disease: lymphoid leukosis in chickens. Theor. 

Appi. Genet, 65: 317-322. 

Gavora, JS., Spencer, J.L. and Chambers, JR., 1982. Performance of meat-type chickens 

test-positive and -negative for lymphoid leukosis virus infection. Avian Pathol., 11: 

29-38. 

Gavora, J.S., Spencer, J.L., Gowe, R.S. and Harris, D.L., 1980. Lymphoid leukosis virus 

infection: effects on production and mortality and consequences in selection for high 

egg production. Poult. Sci., 59: 2165-2178. 

GENSTAT, 1993. GENSTAT 5, Release 3, Reference manual. Clarendon Press, Oxford. 

George, A. and Liu, I .W.H., 1980. Computer solutions of large sparse positive definite 

systems. Prentice-Hall, Englewood Cliffs, New York. 

Gianola, D., Im, S., Fernando, R.L. and Foulley J.L., 1990. Bayesian procedures in 

quantitative genetics. In: D. Gianola and K. Hammond (Eds), Proc. Symp. Adv. Stat. 

Methods Genet. Improvement Livest. Springer Verlag, Heidelberg. 

Gibson, J.P. and Kennedy, B.W., 1990. The use of constrained selection indexes in breeding 

for economic merit. Theor. AppI. Genet., 80: 801-805. 

Gimelfarb, A. and Willis, J.H., 1994. Linearity versus non-linearity of offspring-parent 

regression: An experimental study of Drosophila melanogaster. Genetics, 138: 343-

352. 

Goodwin,  K., 1961. Effect of hatching egg size and chick size upon subsequent growth rate in 

chickens. Poult. Sci., 40: 1408. 

Grubbs, F.E., 1950. Sampling criteria for testing outlying observations. Ann. Math. Statist, 

21: 27-58. 

Grubbs, F.E., 1969. Procedures for detecting outlying observations in samples. 

Technometncs, 11: 1-21. 

Gunsett, F.C., 1984. Linear selection to improve traits defined as ratios. J. Anim. Sci., 59: 

1185-1193. 

Hartmann, W., 1992. Evaluation of the potentials of new scientific developments for 

commercial poultry breeding. World's Poult. Sci. J., 48: 17-27. 

Havenstein, G.B., Ferket, P.R., Scheideler, S .E. and Larson, B.T., 1994. Growth, livability, 

and feed conversion of 1957 vs 1991 broilers when fed "typical" 1957 and 1991 

broiler diets. Poult. Sci., 73: 1785-1794. 

135 



Hayes, J.F. and Hill, W.G., 1981 A reparameterization of genetic selection index to locate its 

sampling properties. Biometrics, 36: 237-248. 

Hayes, J.F. and Hill, W.G., 1981. Modification of estimates of parameters in the construction 

of genetic selection indexes ('bending'). Biometrics, 37: 483-493. 

Hazel, L.N., 1943. The genetic basis for constructing selection indexes. Genetics, 28:476-

490. 

Henderson, C.R., 1988. Theoretical basis and computational methods for a number of 

different arfimal models. J. Dairy Sci., 71, suppl. 2 : 1-16. 

Hill, W.G., 1978. Estimation of heritability by regression using collateral relatives: linear 

heritability estimation. Genet. Res. Camb., 32: 265-274. 

Hill, W.G. 1988. Considerations in the design of animal breeding experiments. In: K. 

Hammond and D. Gianola (Eds), Proc. Symp. Adv. Stat. Meth. Genet. lmprov. 

Livest. Springer Verlag, Heidelberg. 

Hinkley, D., 1985. Transformation diagnostics for linear models. Biometrika, 72: 487-496. 

Hunton, P., 1990. Industrial breeding and selection. In: R.D. Crawford (Ed), Poultry breeding 

and genetics. Elsevier, Amsterdam, pp.  985-1028. 

Ibe, S.N. and Hill, W.G., 1988. Transformation of poultry egg production data to improve 

normality, homoscedasticity and linearity of genotypic regression. J. Anim. Breed. 

Genet., 105: 231-240. 

Ideta, G. and Siegel, P.B., 1966. Selection for body weight at eight weeks of age 4. 

Phenotypic, genetic and environmental correlations between selected and unselected 

traits. Poult. Sci., 45: 933-939. 

Johnson, N.L. and Kotz, S., 1970. Continuous univariate distributions. Houghton Muffin, 

Boston, Massachussets. 

Katanbaf, M.N., Durinington, E.A. and Siegel, P.B., 1989. Restricted feeding in early and 

late feathering chickens 2. Reproductive responses. Poult. Sci., 68: 352-358. 

Keightley, P .D. and Hill, W.G., 1992. Quantitative genetic variation in body size of mice 

from new mutations. Genetics, 131: 693-700. 

Kempthome, 0. and Tandon, O.B., 1953. The estimation of heritability by regression of 

offspring on parent. Biometrics, 9: 90-100. 

Kinney, J.B. Jr., 1969. A summary of reported estimates of hentabilities and of genetic and 

phenotypic correlations for traits of chickens. Agnc. Handbook 363, U.S.D.A., 

Washington, Maryland. 

136 



Koch, R.M., 1972. The role of maternal effects in animal breeding. VI. Maternal effects in 

beef cattle. J. Anim. Sci., 35: 1316-1323. 

Koerhuis, A.N.M. and van der Werf, J.H.J., 1994. Um- and bivariate breeding value 

estimation in a simulated horse population under sequential selection. Livest. Prod. 

Sci., 40: 207-213. 

Koerhuis, A.N.M., 1994. Derivative-free REML under an individual animal model for large 

data sets on broilers. In: C. Smith, J.S. Gavora, B. Benkel, J. Chesnais, W. Fairfull, 

J.P. Gibson, B.W. Kennedy and E.B. Burnside (Eds), Proc. 5th World Congr. Genet. 

Appl. Livest. Prod., 18: 422-425. 

Koerhuis, A.N.M., 1995. Transformation and scaling of poultry egg production data to 

improve normality, linearity of heritability, homogeneity of variance and genetic 

progress. In: Proc. 46th Annual Meeting E.A.A.P. Prague, Czech Republic. 

Lande, R. and Kirkpatrick, M., 1990. Selection response in traits with maternal inheritance. 

Genet. Res. Camb., 55: 189-197. 

Lande, R. and Price, T., 1989. Genetic correlations and maternal effect coefficients obtained 

from offspring-parent regression. Genetics, 122: 915-922. 

Lin, C.Y., 1980. Relative efficiency of selection methods for improvement of feed efficiency. 

J. Dairy Sci., 63: 491-494. 

Lerner. I. M., 1950. Population genetics and animal improvement. Cambridge Univ. Press. 

Lush. J . L., 1948. The genetics of populations. Iowa State Univ., Ames. 

Mackinnon, Mi., Meyer, K. and Hetzel, D.J.S., 1991. Genetic variation and covanation for 

growth, parasite resistance and heat tolerance in tropical cattle. Livest. Prod. Sci., 

27: 105-122. 

Marks. H.L., 1985. Direct and correlated responses to selection for growth. In: W.G. Hill, 

.1. M. Manson and D. Hewitt (Eds), Poultry genetics and breeding. Longman group, 

Harlow, U.K., pp.  47-58. 

Mercer. J.T. and Hill, W.G., 1984. Estimation of genetic parameters for skeletal defects in 
broiler chickens. Heredity, 53: 193-203. 

Meyer, K., 1989. Restricted maximum likelihood to estimate variance components for animal 

models with several random effects using a derivative-free algorithm. Genet. Select. 

Evol., 21: 317-340. 

137 



Meyer, K., 1991. DFREML version 2.0 - programs to estimate variance components by 

restricted maximum likelihood using a derivative-free algorithm. User notes. Animal 

Genetics and Breeding  Unit, Univ. of New England, Arnudate, NSW. Mimeograph. 

Meyer, K., 1992a. Variance components due to direct and maternal effects for growth traits 

of Australian beef cattle. Livest. Prod. Sci., 31: 179-204. 

Meyer, K., 1992b. Bias and sampling covariances of estimates of variance components due to 

maternal effects. Genet. Select. Evol., 24: 487-509. 

Meyer, K., and Thompson, R., 1984. Bias in variance and covariance component estimators 

due to selection on a correlated trait. Z. Tierz. Zuechtungsbiol., 101: 33-50. 

Mohiuddm, G., 1993. Estimates of genetic and phenotypic parameters of some performance 

traits in beef cattle. Anim. Breed. Abstr., 61: 495-522. 

Nishida, A. and Abe, T., 1974. The distribution of genetic and environmental effects and the 

linearity of heritability. Can. J. Genet. Cytol., 16: 3-10. 

Osborne, R., 1957. The use of sire and dam family averages in increasing the efficiency of 

selective breeding under a hierarchical mating system. Heredity, 11: 93-116. 

Patterson, H.D. and Thompson, R., 1971. Recovery of inter-block information when block 

sizes are unequal. Biometrika, 58: 545-554. 

Pollak. E.J., van der Werf, J.H.J. and Quaas, R.L., 1983. Selection bias and multiple trait 

evaluation. J. Anim. Sci., 52: 257-264. 

Pearson. K., 1897. Mathematical contributions to the theory of evolution - on a form of 

spurious correlation which may arise when indices are used in the measurement of 

organs. Proc. of the Royal Society (London), 60: 489498. 

Pm. R.A.E..  1983. Selection for lean growth and feed efficiency in broiler chickens. Proc. 

Husbandry Res. Found. Symp., University of Sydney, Sydney, Australia. 

FN-m. R.A.E.. 1985. Direct and correlated responses to selection for improved food efficiency. 

In: W.G. Hill, J.M. Manson and D. Hewitt (Eds), Poultry genetics and breeding. 

Longman group, Harlow, U.K., pp.  97-112. 

Pvm, R.A.E., 1990. Nutritional genetics. In: R.D. Crawford (Ed), Poultry breeding and 

genetics. Elsevier, Amsterdam, pp.  847-876. 

Pym, R.A.E. and Nicholls, P.J., 1979. Selection for food conversion in broilers: direct and 

correlated responses to selection for body-weight gain, food consumption and food 

conversion ratio. Brit. Poult. Sci., 20: 73-86. 

138 



Rao, M.G. and Jam, J.P., 1981. Effect of non-normality on response to selection in small 

populations. Biom. J., 23: 487494. 

Robinson, D.L., 1994. Models which might explain negative correlations between direct and 

maternal genetic effects. In: C. Smith, J.S. Gavora, B. Benkel, J. Chesnais, W. 

Fairfiull, J.P. Gibson, B.W. Kennedy and E.B. Burnside (Eds), Proc. 5th World 

Congr. Genet. Appi. Livest. Prod., 18: 378-381. 

Robinson, F.E., Wilson, J.L., Yu, M.W., Fasenko, G.M. and Hardin, R.T., 1993. The 

relationship between body weight and reproductive efficiency in meat-type chickens. 

Poult. Sci., 72: 912-922. 

Robertson, A., 1959. The sampling variance of the genetic correlation coefficient. Biometrics, 

15: 285-289. 

Robertson, A., 1977. The effect of selection on the estimation of genetic parameters. Z. Tierz. 

Zuechtungsbiol., 94: 131-135. 

Robertson, A., 1977. The non-linearity of offspring-parent regression. In: 0. Kempthorne and 

E. Pollak (Eds), Proc. mt. Conf. Quant. Genet. Iowa State University Press. 

Robertson, A. and Lerner, I.M., 1949. The heritability of all-or-none traits, viability of 

poultry. Genetics, 34: 395-411. 

Rothschild, M.F., Henderson, C.R. and Quaas, R.L., 1979. Effects of selection on variances 

and covariances of simulated first and second lactations. J. Dairy Sci., 62: 996-1002. 

Sales, J. and Hill, W.G., 1976. Effect of sampling errors on efficiency of selection indices. 2. 

Use of information on associated traits for improvement of a single important trait. 

Anim. Prod., 23: 1-14. 

Shalev, B.A., 1977. Reasons for shortfall in response to selection for egg production in laying 

hens. Ph.D. thesis, Univ. of Reading. 

Sheridan, A.K., 1990. Genotypexenvironment interactions. In: R.D. Crawford (Ed), Poultry 

breeding and genetics. Elsevier, Amsterdam, pp.  897-912. 

Sheridan, A.K. and Barker, J .S .F., 1974. Two-trait selection and the genetic correlation II. 

Changes in the genetic correlation during two-trait selection. Aust. J. Biol. Sci., 27: 

89-101. 

Siegel, P.B. and Dunnington, E.A., 1985. Reproductive complications associated with 

selection for broiler growth. In: W.G. Hill, J.M. Manson and D. Hewitt (Eds), 

Poultry genetics and breeding. Longman group, Harlow, U.K., pp.  59-72 

139 



Simm, G., Smith, C. and Thompson, R., 1987. The use of product traits such as lean growth 

as selection criteria in animal breeding. Anim. Prod., 45: 307-316. 

Smith, S.P. and Graser, H.-U., 1986. Estimating variance components in a class of mixed 

models by restricted maximum likelihood. J. Dairy Sci., 69: 1156-1165. 

Snedecor, G.W. and Cochran, W.G., 1989. Statistical methods. Iowa State University Press, 

503 pp. 

Stefansky, W., 1972. Rejecting outliers in factorial designs. Technometrics, 14: 469479. 

Sutherland, T.M., 1965. The correlation between feed efficiency and rate of gain, a ratio and 

its denominator. Biometrics, 21: 739-749. 

Thompson, R., 1976. The estimation of maternal genetic variances. Biometrics, 32: 903-917. 

Thompson, R. 1977. The estimation of heritability with unbalanced data. II. Data available 

on more than two generations. Biometrics, 33: 497-504. 

Thompson, R., Crump, R.E., Juga, J. and Visscher, P.M., 1995. Estimating variances and 

covariances for bivariate animal models using scaling and transformation. Genet. 

Select. Evol., 27: 33-42. 

Thompson, R. and Hill, W.G., 1990. Univariate REML analyses for multivariate data with 

the animal model. In: W.G. Hill, R. Thompson and J.A. Woolliams (Eds), Proc. 4th 

World Congr. Genet. AppI. Livest. Prod. 13: 484-487. 

Thompson, R., Wray, N.R., and Crump, R.E., 1994. Calculation of prediction error 

variances using sparse matrix methods. J. Anim. Breed. Genet., 111: 102-109. 

Turner, H.N., 1959. Ratios as criteria for selection in animal and plant breeding, with 

particular reference to efficiency of feed conversion in sheep. Austr. J. Agric. Res., 

10: 565-580. 

Villanueva, B., Wray, N.R. and Thompson, R., 1993. Prediction of asymptotic rates of 

response from selection on multiple traits using univariate and multivariate best 

linear unbiased predictors. Anim. Prod., 57: 1-13. 

Wei, M. and van der Werf, J.H.J., 1993. Animal model estimation of additive and dominance 

variance in egg production traits in poultry. J. Anim. Sci., 71: 57-63. 

Welham, S .J. and Thompson, R., 1992. REML likelihood ratio tests for fixed model terms. 

In: Abstracts Royal Statistical Society Conference, University of Sheffield, U.K. 

Wiliham, R.L., 1963. The covariance between relatives for characters composed of 

components contributed by related individuals. Biometrics, 19: 18-27. 

Willham, R.L., 1980. Problems in estimating maternal effects. Livest. Prod. Sci., 7: 405-418. 

140 

0 



Wray, N.R. and Hill, W.G., 1989. Asymptotic rates of response from index selection. Anim. 

Prod., 49: 217-227. 

141 




