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Ondřej Mandula

T
H
E

U N
I V E R S

I T
Y

O
F

E
D I N B U

R
G
H

Doctor of Philosophy

Institute for Adaptive and Neural Computation

School of Informatics

University of Edinburgh

2012



Abstract

Fluorescence microscopy is an important tool for biological research. However, the
resolution of a standard fluorescence microscope is limited by diffraction, which makes

it difficult to observe small details of a specimen’s structure. We have developed two
fluorescence microscopy methods that achieve resolution beyond the classical diffrac-
tion limit.

The first method represents an extension of localisation microscopy. We used non-
negative matrix factorisation (NMF) to model a noisy dataset of highly overlapping
fluorophores with intermittent intensities. We can recover images of individual sources

from the optimised model, despite their high mutual overlap in the original dataset.
This allows us to consider blinking quantum dots as bright and stable fluorophores for

localisation microscopy. Moreover, NMF allows recovery of sources each having a
unique shape. Such a situation can arise, for example, when the sources are located in
different focal planes, and NMF can potentially be used for three dimensional super-

resolution imaging. We discuss the practical aspects of applying NMF to real datasets,
and show super-resolution images of biological samples labelled with quantum dots. It

should be noted that this technique can be performed on any wide-field epifluorescence
microscope equipped with a camera, which makes this super-resolution method very
accessible to a wide scientific community.

The second optical microscopy method we discuss in this thesis is a member of the
growing family of structured illumination techniques. Our main goal is to apply struc-
tured illumination to thick fluorescent samples generating a large out-of-focus back-

ground. The out-of-focus fluorescence background degrades the illumination pattern,
and the reconstructed images suffer from the influence of noise. We present a combina-
tion of structured illumination microscopy and line scanning. This technique reduces

the out-of-focus fluorescence background, which improves the quality of the illumi-
nation pattern and therefore facilitates reconstruction. We present super-resolution,

optically sectioned images of a thick fluorescent sample, revealing details of the spec-
imen’s inner structure.

In addition, in this thesis we also discuss a theoretical resolution limit for noisy and

pixelated data. We correct a previously published expression for the so-called funda-
mental resolution measure (FREM) and derive FREM for two fluorophores with inter-
mittent intensity. We show that the intensity intermittency of the sources (observed for

quantum dots, for example) can increase the “resolution” defined in terms of FREM.
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of 3T3 fibroblast cells and Otto Baumann and Eva Simbürger for providing the Cal-

liphora sample. My thanks go to Ingo Kleppe and Gerhard Krampert for providing us

with ZEISS ELYRA-S system with a line-scanning module. I would also like to ac-
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Chapter 1

Introduction

1.1 Optical microscope

A microscope is an instrument allowing us to see objects, which are too small for a

naked eye. An optical microscope (often referred to as a “light microscope”) uses light

in the visible spectral range (wavelength≈ 400−700nm), which makes it particularly

suitable for biological exploration. Visible light is minimally invasive for sensitive

biological samples and allows observation of living specimens. Visible light is also

minimally absorbed by water, which prevents heating of the sample.

The most common optical microscope is a “far-field” microscope, where the light has

to propagate over a distance significantly longer than its wavelength. The specimen

is observed with transmitted, reflected or fluorescent light. Fluorescence microscopy

is discussed further in Sect. 1.5. The focus of this thesis is on far-field fluorescence

optical microscopy.

1.2 Brief historical overview

Optical microscopy has been around for over 400 years. Since the very early versions

of Zacharias Janssen’s or Galileo’s compound microscopes from the beginning of 17th

century, optical microscopy has undergone a long and steady process of development.

1
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Despite the speculation as to who was the actual inventor of the optical microscope,

it was Anton van Leeuwenhoek who largely popularised the use of the microscope as

an instrument for observing the minute details of the specimen. Leeuwenhoek also

introduced his simple instrument into biological research during the 17th century.

An important milestone was the pioneering work of Ernst Abbe [1] in the second half

of the 19th century. Abbe set the theoretical resolution limit for the optical microscope

and mastered the design of objective lenses highly corrected for optical aberrations.

With advances in technology in the 20th century, the manufactures have produced

lenses reaching the theoretical limits of the optical microscope performance. The 1953

Nobel prize in physics was awarded to Frits Zernike for discovery of the phase contrast

[2]. This method allows observation of transparent specimens, and had major impact

on biological research such as in vivo study of cell cycle.

The emergence of new microscopy methods surpassing the classical resolution limit

(super-resolution microscopy) at the end of the 20th century and at the beginning of the

21st century has given another boost to optical microscopy research. The resolution

of the super-resolution optical microscopes has reached the order of ten nanometres

and some researchers have proposed the term “optical nanoscopy” to be used [3, 4, 5].

However, super resolution micro/nano-scopy remains a challenging task, especially

when applied to living biological specimens. While most of the super-resolution tech-

niques require a highly specialised and expensive hardware, some of the techniques,

such as localisation microscopy (discussed in Chapter 2) can be performed with a con-

ventional fluorescent microscope.

The number of scientific publications in recent years shows that even after four cen-

turies of development the optical microscopy remains a vibrant and exciting scientific

domain.
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1.3 Point spread function

An important characteristic of a microscope is the so-called “point spread function”

(PSF). The PSF represents an image of a point source. The image i(x) of a specimen

produced by an optical microscope can be described as a convolution between the

object (specimen) o(x) and the point spread function q(x):

i(x) =
∫

q(x− x′)o(x′)dx′. (1.1)

The PSF therefore defines how much the image of the specimen is “blurred” during

the imaging process. The integration in Eq. (1.1) is over the whole space of acquired

data (typically 2D or 3D). Note, that Eq. (1.1) applies to the situation with spatially

invariant PSF. It also assumes that PSF is fully determined by the optical system. The

influence of the specimen on the shape of the PSF is neglected. In a real experiment,

PSF can be locally distorted by the aberrations introduced by the specimen or by the

imperfections in the optical setup.

Neglecting the effect of polarisation (scalar theory), the two-dimensional PSF of an

optical microscope, known as the “Airy pattern”, is described by [6]

q(ρ) =
1

Z

(

J1(αρ)

αρ

)

, (1.2)

where Z =
∫

q(ρ)dρ is the normalising constant, J1 is the Bessel function of the first

kind of order one and ρ is the distance from the centre of the image. The parameter α

depends on the emission wavelength λem and the numerical aperture of the objective

NA:

α = 2π
NA

λem
. (1.3)

The NA is defined as

NA = nsin(θ), (1.4)

where n is the refractive index of the immersion medium and 2θ is the angle of the light

cone entering the objective. Note that the refractive index is a function of wavelength
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Figure 1.1: Intensity profile of a PSF for 1.2 NA objective using λem = 625 nm emission light.

The blue line represents profile of the Airy pattern, red dashed line shows the Gaussian approx-

imation. Green vertical lines mark the first minima of the Airy pattern at δ = 318 nm. δ corre-

sponds to the radius of the Airy disk. (a) Linear, (b) logarithmic plot of the intensity highlighting

the secondary maxima in the Airy pattern and the differences of the Gaussian approximation at

the periphery of the function.

n∼ n(λ). Dispersion in the sample and in the optics can lead to the PSF corrupted with

spherical aberration when a range of wavelengths is used [7].

An intensity profile of an unaberrated PSF is shown in Fig. 1.1. The Airy pattern is

also compared to the popular approximation of the PSF with a Gaussian function [8]

defined by a standard deviation

σ =

√
2

2π

λem

NA
. (1.5)

1.4 Resolution limit

The ability of an optical microscope to show spatial details in the specimen structure

is fundamentally limited by diffraction [6]. The radius δ of the Airy disk (see Fig. 1.1)

is often considered as the “classical resolution limit”. It is given by [6]

δ = 0.61
λem

NA
, (1.6)
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Figure 1.2: Two PSFs (1.2 NA objective, λ = 625 nm) separated by distance d. Location of the

sources is indicated with red dots. Airy disk is indicated with green dashed circles. The radius

of the Airy disk corresponds to δ = 318 nm. (a) Continuous representation of the PSFs. (b)

Pixelated version with pixel-size 80 nm. (c) Blue lines show the intensity profiles along the line

intersecting the sources’ locations. The profiles of the individual PSFs are shown as red and

magenta dashed lines.

where λem is the wavelength of the emitted light and NA is the numerical aperture of

the objective Eq. (1.4). The resolution limit Eq. (1.6) comes from the empirical ob-

servation: two sources separated by a distance greater than δ can be “resolved” as two

individual objects (see Fig. 1.2c). If the separation is smaller than δ, the point spread

functions overlap significantly and the sources become “unresolved” (see Fig. 1.2a).

The resolution limit defined by Eq. (1.6), sometimes called the “Raleigh resolution



Chapter 1. Introduction 6

limit”, is often taken as the benchmark for different resolution techniques. Note that

the “Abbe resolution limit” δ = 0.5λem/NA related to the passband of spatial frequen-

cies is also used.

The resolution limit Eq. (1.6) relates to the noise-free situation with continuous repre-

sentation of the PSF (the top line of Fig. 1.2). However, the pixelation and noise associ-

ated with the photon-detection process can deteriorate the resolution significantly. The

influence of noise, pixelation or brightness intermittency to the resolution is discussed

in Chapter 3.

1.5 Fluorescence microscopy

The introduction of fluorescence microscopy in the 20th century has revolutionised the

use of optical microscopy in biological and medical science. Fluorescence is generated

by fluorescent molecules or nanostructures (commonly called fluorophores) during the

relaxation of their electronic structure to the ground state. The fluorophores are driven

into higher energetic state with an excitation light of a specific wavelength. The fluo-

rescent light is typically shifted towards the longer wavelengths (Stokes shift), which

allows an efficient filtering of the excitation light from the fluorescence signal. Fluores-

cence microscopy detects the fluorescence from the sample itself (auto-fluorescence)

or more commonly from the fluorophores attached to the specimen [9].

Fluorescence labels can be attached to the structures of interest with high specificity

and provide a strong intensity contrast in the microscopic image of the specimen. Fluo-

rescent proteins (FPs) allow for direct expression of the fluorescent marker by the or-

ganism itself [10]. FPs have further redefined the use of fluorescence microscopy in

cell biology as a nearly non-invasive and highly specific technique.

The first fluorescent protein used in microscopy (green fluorescent protein - GFP) has

been isolated from the jellyfish Aequorea victoria [11]. Nowadays, modified versions

of GFP and a rich variety of fluorescent dyes cover the emission across the whole visi-
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ble spectral range [10]. Photo-activable and photo-switchable fluorescent proteins and

dyes have also been discovered, and are used in specific applications and microscopy

methods, see e.g. [12, 13, 14]. The 2008 Nobel Prize in Chemistry was awarded to

Martin Chalfie, Osamu Shimomura, and Roger Y. Tsien for their discovery and devel-

opment of the GFP.

1.6 Quantum Dots

Quantum dots (QDs), recently used in biological research, are promising fluorescent

labels. QDs are inorganic crystals composed of 100-100,000 atoms of substances such

as cadmium selenide (CdSe), with diameter ∼ 2− 10nm [15]. QDs are often coated

with a zinc sulphide (ZnS) shell conjugated with an antibody molecule. The diameter

of the coated QDs is ∼ 10− 30nm. The emission wavelength can be tuned by the

diameter of the QD core. QDs tend to have a broad excitation spectrum and a narrow

emission spectrum when compared to the standard fluorescent dyes/proteins. This

facilitates the multicolour imaging with QDs. QDs are also exceptionally photo-stable.

It has been reported that QDs illuminated with continuous∼ 50mW laser do not bleach

even after 14h, whereas the standard fluorescent dye “fluorescein” completely bleaches

in less than 20 mins [16]. Moreover, QDs are an order of magnitude brighter than the

traditional fluorophores [17, 18].

Commercially available QDs have a polymer coating with a covalently attached linker,

or are conjugated with an antibody molecule. This allows them to be specifically at-

tached to the structure of interest in the specimen the same way as the standard fluo-

rescent labels. However, coated QDs are relatively big (∼ 10− 30nm) compared to

the fluorescent dyes (fluorescein size is ∼ 1nm) or fluorescent proteins (GFP size is

∼ 5nm). Therefore QDs cannot diffuse through the cell membrane, which complicates

the labelling of the structures in the interior of the cell.

An interesting property of the QDs is that they exhibit “fluorescence blinking” (fluo-
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rescence intermittency) under continuous excitation. QDs switch between the ON

episodes of a rapid absorption-fluorescence cycling and the OFF episodes, where no

light is emitted despite the continuous excitation. Both ON-time (τON) and OFF-time

(τOFF ) probability densities follow an inverse power law P(τON/OFF) ∝ 1/τm
ON/OFF

[19, 20]. A comparison of QDs and the standard fluorescent dyes is described in the

Resch-Genger et al. review article [17].

1.7 Super-resolution

The resolution limit Eq. (1.6) for a far-field optical microscope has been challenged

in the past two decades. Several research teams have reported sub-diffraction resolu-

tion in the fluorescent samples. In fact, the resolution limit is no longer dictated by

diffraction but by the signal-to-noise ratio.

There is a rich variety of super-resolution strategies in fluorescence microscopy. How-

ever, all these methods are based on driving the nearby fluorophores into emitting (ON)

and non-emitting (OFF) states. This allows distinguishing the individual emitters sep-

arated by a sub-resolution distance.

“Selective” activation can be achieved either by spatially structured excitation (struc-

tured illumination) or by stochastic activation of the individual fluorophores. In the

stochastic activation approach, a small random subset of fluorophores is activated for

each acquisition frame. For the conventional methods, the activated subset must be

sufficiently small to ensure that the majority of the activated emitters are separated by

distances larger than the diffraction limit. In this case each acquired frame consists

of several well-separated (non-overlapping) PSFs. The individual fluorophores can be

localised by, for example, fitting each PSF with a Gaussian function. Given enough

detected photons, the localisation precision can be significantly higher than the resolu-

tion limit. The activation-acquisition cycle is typically repeated for several thousands

acquisition frames. Super-resolution fluorescent images are produced by visualisation
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all the estimated fluorophores locations.

Methods based on this simple strategy are called by a general term “localisation mi-

croscopy” (LM). Various names for LM have been proposed: “Photo-Activation Local-

isation Microscopy” (PALM) [21], “fluorescence PALM” (fPALM) [22] or “Stochastic

Optical Reconstruction Microscopy” (STORM) [23].

“Super-resolution Optical Fluctuation Imaging” (SOFI) [24] is a LM related technique.

SOFI is based on higher-order statistical analysis of temporal intensity fluctuations

caused by blinking behaviour of the fluorophores.

The structured illumination based methods modulate the fluorescence behaviour of

the molecules within the diffraction-limited area. The nearby molecules are driven

to either ON or OFF states, which facilitates their discrimination. These methods

include “Saturated Structured Illumination microscopy” (SSIM) [25, 26] and “STimu-

lated Emission Depletion microscopy” (STED) [27].

1.8 Overview of the thesis

In Chapter 2 we discuss a new approach to localisation microscopy. Application of

the machine learning technique non-negative matrix factorisation (NMF) enables us

to computationally separate images of individual blinking fluorophores despite their

high mutual overlap in the recorded data. We show that with this approach we can

use quantum dots (QDs) as extremely bright and stable fluorescent labels for super-

resolution microscopy.

Chapter 3 discusses the resolution criterion for noisy and pixelated data in terms of

so-called fundamental resolution measure (FREM). We show that intermittency of the

sources’ brightness (blinking) can be beneficial and provide higher resolution when

compared to sources with static intensity.

In Chapter 4 we present structured illumination microscopy (SIM) combined with line

scanning (LS). Our goal is to introduce the SIM into more realistic and biologically
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relevant settings. Line scanning reduces the out-of-focus fluorescence background,

which improves the quality of the illumination pattern. The method enables resolution

improvement in relatively thick and densely labelled fluorescent samples. The recon-

structed images reveal high details of the specimen’s inner structure, and suffer less

from the artefacts when compared to the conventional SIM methods.

Chapter 5 gives a short overview of possible extensions of the current work and con-

tains the final summary of the thesis.



Chapter 2

Non-Negative Matrix Factorisation for

Localisation Microscopy

We propose non-negative matrix factorisation (NMF) as a natural model for localisa-

tion microscopy of samples labelled with quantum dots (QDs) or other intermittent

fluorophores. NMF can separate the individual highly overlapping sources with indi-

vidual different shapes. We use the Lee-Seung NMF algorithm [28], which accounts

for Poisson noise in the recorded images. This allows us to recover the individual in-

termittent sources from the noisy recordings. The separated sources can be localised

with uncertainty smaller than the diffraction limit and provide information about sub-

resolution details of the sample structure. We show that for flat (2D) samples the

localised sources can be further processed and used to reconstruct the super-resolution

image of the specimen.

The chapter is divided into the following sections: Section 2.1 introduces the localisa-

tion microscopy (LM) technique and discusses the advantages and challenges of using

quantum dots as fluorescent labels. It also contains a short review of recent methods

dealing with LM data containing overlapping sources.

Section 2.2 introduces non-negative matrix factorisation (NMF). We discuss several

algorithms applying particular constraints during the optimisation. We also show a

11
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generative probabilistic model for NMF.

Section 2.3 shows NMF as a natural model for intermittent overlapping QDs and

Sect. 2.4 discusses the alternative methods used for treating QD data. A link to a

standard deconvolution technique is also mentioned.

We used synthetic data for analysing the performance of the algorithm in different

experimental settings. The main simulations used in this chapter are described in

Sect. 2.5. Section 2.6 explains the evaluation techniques for the comparison of the

results. We used averaged precision (AP) as a quantitative measure of the performance

of different algorithms using simulated data. AP summarises both precision and recall

curves.

Application of the NMF algorithm to real microscopic data is explored in Sect. 2.7.

This includes the comparison of the different techniques for estimation of the num-

ber of sources in the dataset. We also present results on how specific problems with

the use of NMF on real data were overcome. We also propose different methods for

visualisation of the results.

Finally, the NMF reconstructed images of synthetic and real data are presented in

Sect. 2.8. In this section we also compare NMF with two other techniques (CSSTORM,

3B analysis) dealing with a similar problem.

2.1 Localisation microscopy

Localisation microscopy (LM), is a conceptually simple and accessible technique for

super-resolution imaging of fluorescent samples. LM takes as input a stack of images

(102−104 frames) containing an unknown number of fluorescent sources (fluoropho-

res) with time-varying intensity and identifies the locations of these sources. If the

sources are attached to structures of interest (e.g. in biological samples), then this pro-

vides useful information about the target structures. Provided enough photons are

collected, the localisation of an individual source can be an order of magnitude be-
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low the classical diffraction limit Eq. (1.6) [29]. The super-resolution image is usu-

ally produced by visualisation of all estimated positions of the individual fluorophores

(“pointillism” [30]).

LM techniques are based on fluorescent sources with a transition between bright (ON)

and dark (OFF) intensity states. Fluorescent proteins or organic dyes are used as fluo-

rophores in the standard techniques (fPALM [22], STORM [23]). In this case the

density of the ON sources in each captured frame is controlled by photo-switching

and must be optimised experimentally. High density of the ON fluorophores results

in overlapping sources and complicates localisation (overlapping sources are usually

discarded), whereas low density leads to a long total acquisition time [31]. Several

thousands frames are typically required for an image reconstruction. The total acqui-

sition time can exceed ten minutes (17 mins for 104 frames with 100 ms acquisition

time per frame).

2.1.1 Quantum dots for localisation microscopy

There has been interest in using quantum dots (QDs) as sources for localisation mi-

croscopy in recent years [30, 32, 33, 34]. QDs are an order of magnitude brighter and

more photo-stable compared to the organic dyes or fluorescent proteins used in conven-

tional LM [17]. Under continuous excitation QDs exhibit stochastic blinking between

ON and OFF states [19, 20]. Excellent photo-stability, low cyto-toxicity and distinc-

tive spectral properties make QDs very attractive for biological research. However, the

stochastic blinking of QDs is impractical for standard LM techniques because the rate

of switching, and hence the density of ON sources, is difficult to control. Thus QD-

labelled data typically consist of highly overlapping sources, which cannot be localised

with standard techniques.
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2.1.2 Overlapping sources

Several techniques dealing with overlapping sources have been proposed recently [30,

33, 35, 36, 37, 38]. Most of these methods model the LM data using a known image

of a single source, the so called point spread function (PSF), see Sect. 1.3. Often a

single point-spread function (PSF) is assumed to be shared by all sources in the dataset

[33, 35, 36, 37, 38].

There are two main groups of the algorithms addressing the overlapping sources in

the LM data. The first group operates separately on each frame of the LM dataset:

a method proposed by Huang et al. [35] tries to fit multiple PSFs into each frame

of the dataset. The DAOSTORM algorithm [36] applies iterative fitting and subtract-

ing procedure in each frame. CSSTORM [38] makes use of compressed sampling to

recover the sparse vector representing the distribution of the fluorophores’ locations.

CSSTORM is supposed to deal with higher densities than DAOSTORM (see supple-

mentary materials to [38]).

These methods ignore the fact that some sources can stay ON for several successive

frames or can even reappear in different frames due to blinking because each frame

of the dataset is treated independently. Therefore they can generally deal with only

moderately overlapping sources with densities < 10sources/µm2 [35, 36, 38].

The second group of the algorithms models LM dataset as a collection of blinking

sources. They can improve the localisation for higher densities of the overlapping

sources by taking the reappearance of fluorophores into account. However, these algo-

rithms are, in general, computationally more expensive.

Modelling the whole dataset from a known PSF with maximum posterior (MAP) fit-

ting has been proposed by Harrington et al. [33]. Separation of several (up to five)

simulated emitters contained in a disk of 100nm radius has been shown. However, the

technique becomes computationally very challenging for higher numbers of sources.

Bayesian analysis of intermittent sources (Bayesian Blinking and Bleaching (3B) ana-

lysis) has been suggested by Cox et al. [37]. The blinking behaviour of the fluoro-
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phores is modelled as a hidden Markov model with three distinct states: emitting, not

emitting and bleached. Each source is described by its position, size of the PSF, and

intensity. MAP estimates of the positions obtained from different sampling of the state

sequences are used as estimated locations of the fluorophores. While the 3B analysis

adjusts the width of the PSF (Gaussian approximation of the PSF [8]), it cannot deal

with individually different shapes of the sources. This situation can arise, for example,

in three-dimensional samples, where the overlapping sources can be located in differ-

ent focal planes (see Fig. 2.1). Moreover, 3B assumes a mono-exponential decay of

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

(a) Intensity scaled to the in-focus PSF

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

(b) Intensity scaled for each frame

Figure 2.1: Simulated PSF in different depths of focus. The number in each figure indicates

the distance in µm from the in-focus plane. (a) Intensity scaled to the in-focus PSF. (b) Intensity

scaled in each frame. The maximum intensity relative to the in-focus PSF is indicated in the

bars below and corresponds to about 10% at 1µm and 3% at 1.5µm. Scale bar 1µm.

the fluorescence for the individual sources. QDs have a complex blinking behaviour

with power-law distribution of the ON and OFF times [39]. This can possibly compli-

cate the 3B analysis of the QD data. Independent component analysis (ICA) has been

proposed for analysis of overlapping intermittent sources in [30, 32]. However, as we

demonstrate in Sect. 2.4.3, ICA is not a suitable model for noisy QD data.

Yet another approach to the LM data with overlapping sources has been proposed in

a method called SOFI (Super-resolution Optical Fluctuation Imaging) [40]. Instead of

separating the individual emitters, SOFI analyses higher order statistics of the intensity

fluctuation. The intensity values in the SOFI image, however, reflect the fluctuation
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behaviour, rather than the strength of the emitters. The non-linear relation between

the sources’ strength and the intensity in the reconstructed image leads to structural

artefacts such as apparent discontinuities, cavities and holes in otherwise continuous

structures. Sources, which do not blink will not appear in the SOFI image at all.

Recently, this issue has been, to a certain extent, addressed by balanced SOFI (bSOFI)

in [41].

In this chapter we propose non-negative matrix factorisation (NMF) as a model for

overlapping sources. NMF models the whole dataset, taking into account the reap-

pearance of the sources during the acquisition (fluorescence blinking). The intensity in

the reconstructed image can be related to the strength of the individual emitters. NMF

can deal with highly overlapping sources with unknown different shapes and variety of

blinking behaviour. Moreover our algorithm accounts for Poisson noise in the recorded

data.

2.2 Non-negative matrix factorisation

Non-negative matrix factorisation (NMF) solves the approximative factorisation of an

N×T data matrix DDD with non-negative entries:

DDD≈WWWHHH, (2.1)

where WWW and HHH are N×K and K×T matrices, respectively. More explicitly
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Usually K < N,T . The factorisation is constrained to WWW and HHH with non-negative

entries.
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Initial factorisation algorithms (so called positive matrix factorisation) [42] were pub-

lished in 1994. However, it was in 1999 when NMF attracted attention of researchers

after publication of the Nature article by Daniel Lee and Sebastian Seung [43]. NMF

was presented as an efficient and powerful method for approximation of non-negative

data (in their case a database of facial images) by linear combination of non-negative

localised basis vectors (images of the nose, mouth, ears, eyes, etc.) An individual face

from the dataset can be recovered as a non-subtractive composition of individual basis

vectors.

Lee and Seung also proposed simple multiplicative updates [28] for the elements of WWW

and HHH

wxk =
wxk

∑T
t=1 hkt

[

(DDD'WWW HHH)HHH(
]

xk

hkt =
hkt

∑N
x=1 wxk

[

WWW((DDD'WWWHHH)
]

kt
. (2.3)

minimising the (generalised) Kullback – Leibler (KL) divergence (see Eq. (2.7)) be-

tween data matrix DDD and its factorised approximation WWWHHH (see Appendix A for de-

tails). The symbol “'” denotes the element-wise division of matrices.

Equation (2.3) suggests that the complexity of the updates is O(NKT ), or more pre-

cisely O(N(2KT +T +K)). Note that updates Eq. (2.3) automatically ensure that WWW

and HHH remains non-negative if initialised so. Also once they become zero they remain

zero for the rest of iterations. Sufficient conditions for uniqueness of solutions to the

NMF problem have been studied in [44].

Various alternative minimisation strategies have been explored in an effort to speed up

the convergence properties of the Lee & Seung updates. A comprehensive discussion

on the variety of these algorithms can be found in [45].

2.2.1 Additional constraints to the NMF model

Additional constraints can be imposed on WWW and HHH matrices. Imposing a defined

“sparsity” on either columns of WWW or rows of HHH has been proposed in [46] and is dis-
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cussed in Sect. 2.4.2. Enforcing the temporal smoothness of HHH in the analysis of EEG

recordings has been published in [47]. Multiplicative updates for various constraints

have been suggested in [47, 48] (see Appendix A).

2.2.2 Gamma - Poisson model

A generative model for NMF Eq. (2.4) is represented by the gamma-Poisson (GaP)

model. This model has been proposed by John Canny [49] as a probabilistic model for

documents. The entries hkt of the intensity matrix HHH in Eq. (2.5) are regarded as latent

variables generated from a Gamma distribution with parameters αk,βk and the data are

modelled as a Poisson variable with mean WWWHHH. Variables θ = {wwwk,αk,βk};k = 1..K

are then parameters of the GaP model.

2.3 NMF as a natural model for QD data
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Figure 2.2: Reshaping of one nx× ny frame It of the movie {It}T
t=1 into a N × 1 (N = nxny)

column dddt of the matrix DDD by concatenating the columns of the image.

Non-negative matrix factorisation (NMF) [43, 28] is a natural model for QD data.

NMF decomposes a movie of blinking QDs into spatial and temporal parts, i.e., time

independent emission profiles of the individual sources (PSFs) and fluctuating inten-

sities of each source, respectively. NMF imposes non-negativity constraints on both

the spatial and the temporal components, which are natural constraints for the source
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profiles and intensities of blinking QDs.

Consider a N×T data matrix DDD, where N is the number of pixels in each frame, and T

is the number of time frames. The columns of DDD are the individual frames of the movie

reshaped into N×1 vector by concatenating the columns of the image (see Fig. 2.2).

All entries in DDD are non-negative, i.e., dxt ≥ 0. Under the NMF model Eq. (2.2), N×T

matrix DDD is factorised into a N ×K spatial component matrix WWW (images of the K

individual sources) and the K×T temporal component matrix HHH (the intensities of the

sources). In fact, we relax the demand for exact factorisation by factorisation of the

noisy dataset expectation value:

E [DDD] =WWWHHH; wxk, hkt ≥ 0 (2.4)

or in element-wise form

E [dxt ] =
K

∑
k=1

wxkhkt ; wxk, hkt ≥ 0 (2.5)

The predominant noise model in microscopy imaging is Poisson noise [9]. Therefore

the log-likelihood function can be expressed as

log p(DDD|WWW ,HHH) = ∑
xt

(

dxt log
K

∑
k=1

wxkhkt −
K

∑
k=1

wxkhkt

)

+C1, (2.6)

where C1 is independent of WWWand HHH.

The Lee and Seung NMF updates Eq. (2.3) minimise the KL divergence between the

data and the NMF model

KL(DDD ‖WWW HHH) =−∑
xt

(

dxt log
K

∑
k=1

wxkhkt −
K

∑
k=1

wxkhkt

)

+C2 (2.7)

where C2 is independent of WWWand HHH. Comparison with the log-likelihood Eq. (2.6)

shows that the minimum of the divergence with positivity constrains on WWW and HHH is

equivalent to the maximum of the log-likelihood. Note, that there is an alternative ver-

sion of the algorithm minimising the least squares |DDD−WWWHHH|2 =∑x,t

[

dxt −∑K
k=1 wxkhkt

]2

proposed by Lee and Seung [28]. This objective function corresponds to the minimis-

ing the likelihood of the model with respect to data corrupted with Gaussian noise. The
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original Paatero and Tapper ”positive matrix factorisation” [42] used the least square

approach.

There is a scaling indeterminacy between WWW and HHH in the NMF model. We fix this

by setting the L1 norm of each column of WWW to 1. The background fluorescence in the

images is modelled as a “flat” component wwwK = 1/N with corresponding intensity hhhK .

The spatial part of the background component wwwK is not updated during the optimisa-

tion, while the temporal part hhhK is updated to account for changes in background levels

during the data acquisition (due to bleaching or fluctuation of the excitation light, for

example).

The NMF model is fitted to data iteratively using multiplicative updates Eq. (2.3) se-

quentially:

WWW n+1←− (WWW n, HHHn, DDD) (2.8)

HHHn+1←−
(

WWW n+1 ,HHHn, DDD
)

, (2.9)

where n denotes the iteration of the update.

Note that the divergence Eq. (2.7) is convex with respect to HHH and WWW individually, but

not in both variables together [28], leading to local optima.

2.4 Related work

This section points to published work using NMF as a versatile tool for analysis of bio-

logical data in Sect. 2.4.1. It also points to work relevant to the NMF application to QD

data. An algorithm for NMF with sparsity constraints is reviewed and demonstrated on

simulated data in Sect. 2.4.2. Section 2.4.3 discusses the proposed independent com-

ponent analysis (ICA) as a model for QD data and Sect. 2.4.4 shows a link between

NMF and the Richardson – Lucy deconvolution.
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2.4.1 NMF in biological research

NMF has been recently used for analysis of various biological data. A review of NMF

as a data analytical and interpretive tool in computational biology can be found in

[50]. The most common application of NMF in computational biology has been in

the area of molecular pattern discovery, especially for gene and protein expression

microarray studies. NMF is a well-suited method for this problem as there is no a

priori information about the expected expression pattern for a given set of genes. The

N×T data matrix DDD in the NMF model Eq. (2.1) is created from the observation of the

expression levels of N genes (typically thousands) in T different samples (typically less

than 100). The columns of N×K matrix WWW are the linear combination of individual

genes and are often called “metagenes”. The columns of the K×T matrix HHH represent

the metagene expression pattern in the corresponding sample.

NMF has proved to be a successful method in the recovery of biologically meaningful

classes in gene-expression data. For example, Kim and Tidor [51] applied NMF as a

tool to cluster genes and predict functional cellular relationships in yeast, while Heger

and Holm [52] used it for the recognition of sequence patterns among related proteins.

Brunet et al. [53] applied NMF to cancer microarray data for the recovery of tumour

subtypes. They also developed a method for selecting the number of metagenes K:

each sample (total T samples) is placed into a cluster corresponding to the most highly

expressed metagene in the sample. E.g. sample j is placed in cluster i if the hi j is the

largest entry in column j of the matrix HHH. They define a T ×T connectivity matrix

CCC with entry ci j = 1 if samples i and j belong to the same cluster and ci j = 0 if they

belong to different clusters. The consensus matrix C̄CC is computed as an average over CCC

resulting from many (∼ 100) runs of NMF. The entries of C̄CC represent the probability

that samples i and j will cluster together. If the clustering is stable then the values

of C̄CC will be close to either 0 or 1. They proposed a measure of stability based on a

cophonetic correlation coefficient ρK which indicates the dispersion of the consensus

matrix for a given number of components K. In a perfect consensus matrix, where all
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entries are either 0 or 1 the cophonetic correlation coefficient ρK = 1. If the entries of C̄CC

are scattered between 0 and 1 the value is ρK < 1. They compute ρK for a range of Ks

and select the one where ρK begins to fall. However, inspecting the provided figures in

[53] we can observe that ρK drops rather gradually and unambiguous estimation of K

is difficult. Also note that for each value of K the NMF has to be evaluated∼ 100 times

to estimate the consensus matrix C̄CC. This is feasible only for small K (< 5), which is

typically case in the gene expression data. However, this method of K estimation is

prohibitive for our application of NMF to QD data, where the typical Ks are in the

range of 10−100.

Rabinovich et al. [54] has proposed NMF for accurate automated spectral decomposi-

tion of histologically stained tissue sections. The images (N pixels) stained with known

number of colours K are recorded in T spectral channels creating the N×T data matrix

DDD. NMF decomposes this matrix into WWW , with entries wi j indicating the contribution

of the jth the dye into the ith pixel and the rows of the matrix HHH represent the spectra

of each dye. They have found similar performance of NMF and independent compo-

nent analysis (ICA) by comparing the results to the ground truth data. Note, that the

selection of K is dictated by the number of colours used for histological staining and

therefore no algorithm for K estimation is needed. Similarly the NMF has been used

for fluorescence microcopy data by Neher et al. [55]. In this case, the fluorescence im-

ages were recorded under excitation with different wavelength of the excitation light.

The spatial distribution and excitation spectral properties of different fluorescent labels

(K is known) were estimated from the factorised matrices WWW and HHH, respectively.

NMF has also been used in variety of disciplines directly related to optical microscopy.

Pande et al. [56] use NMF for analysis of multispectral time-domain fluorescence

life time imaging (FLIM) data. The spatio-temporal/spectral data were obtained by

measuring the fluorescent decay in different positions (raster scan) of the sample. The

fluorescent decay in three spectral channels has been recorded in each position. The

T columns of the N×T data matrix DDD in Eq. (2.1) has been created by concatenating
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the decays from the three channels into N×1 vector for each pixel (T pixels in total).

Note that the spatial and temporal/spectral domain are reversed when compared to

our application to QD data in Sect. 2.3. The N×K NMF estimated components (WWW

in Eq. (2.1)) were interpreted as spectral signatures of pure components. The K×T

components HHH (see Eq. (2.1)) were interpreted as the quantity of the pure components

in each pixel and therefore provide information about the composition in each position.

The three recovered pure components were identified with the spectral signature (WWW ) as

collagen, lipids and elastin. The spatial matrix HHH then provides information about the

content of each constituent in different positions of the specimen. The recovery of K =

3 components from the measured data was based on the biochemical understanding of

the specimen (histological section of a human coronary artery tissue). The work does

not address the estimation of K in more general cases.

2.4.2 Hoyer’s sparse NMF

The in-focus PSF (see leftmost plots in Fig. 2.1) is a fairly compact structure with

only few pixels of significant values. Constraints on sparsity of the estimated wwwks

(individual PSFs) would likely facilitate the estimation of the credible sources and

might lead to a faster convergence to a better local minimum.

NMF with explicit sparsity constraints has been developed by Hoyer [46]. The “spar-

sity” of a vector xxx was defined as

s(xxx) =

√
n−L1/L2√

n−1
, (2.10)

where L1 = ∑i |xi|, L2 =
√

∑i x2
i and n is the dimensionality of the vector xxx.

Specific fixed constraints on the sparsity of the columns of WWW can be imposed during

the optimisation. After each iteration, the columns wwwks of the estimated matrix WWW are

projected to be non-negative, have unchanged L2 norm, but L1 norm set to achieve the

desired sparseness Eq. (2.10).

Note that the assumption that all columns have identical “sparseness” might be restric-
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tive when out-of-focus PSFs are present. For example, the in-focus PSF in Fig. 2.1 has

Hoyer’s sparsity s = 0.83 while the PSF from 1µm out-of-focus plane has s = 0.4 and

the PSF from 1.8µm out-of-focus plane has s = 0.1.

Hoyer’s sparse NMF algorithm minimises ‖DDD−WWWHHH‖2 rather than the KL divergence

Eq. (2.7). This cost function corresponds to the Gaussian rather than Poisson noise as-

sumption, which can be significant especially for low-intensity images (fast acquisition

time, for example).

(a) 10sources/µm2

(b) 30sources/µm2

(c) 50sources/µm2

Figure 2.3: WWW estimated with Hoyer’s algorithm with no sparsity constraints. This corresponds

to conventional NMF. Evaluation of the simulated data of randomly scattered sources with dif-

ferent densities. Shown first 7 estimated components.

We used simulated data of randomly scattered sources with densities 10−50 µm−2 to

explore the ability of the Hoyer’s algorithm to recover credible sources. The blinking

intensity was uniformly distributed on the interval [0,5000] photons. The background

was set to 100 photons/pixel and data were corrupted with Poisson noise. Prior to the

evaluation with Hoyer’s algorithm, the true background value was subtracted from the

data, clipping negative pixels to zero. The number of components K was set to the

true value used for simulation K = Ktrue. The algorithm was run for 1000 iterations.
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(a) 10sources/µm2

(b) 30sources/µm2

(c) 50sources/µm2

Figure 2.4: Sparsity constraints s = 0.7 on WWW estimated with Hoyer’s algorithm from simulated

data of randomly scattered sources with different densities. Shown first 7 estimated compo-

nents.

Running the algorithm for longer (2000, 5000) iterations did not improve the estimated

results.

Figure 2.3 shows the estimated WWW with Hoyer’s algorithm without sparsity constraints.

This corresponds to conventional NMF. Note that most of the wwwk for higher densities

contain multiple sources Fig. 2.3b,c. Imposing the sparsity constraints s = 0.7 on

the columns of WWW , estimated from the true PSF, gives better estimated sources for

densities< 30µm−2 Fig. 2.4a, however, for dense data the method fails to recover the

individual sources and gives unsatisfactory results, see Fig. 2.4c.

2.4.3 Independent component analysis

The independent component analysis (ICA) algorithm [57] has been used for separat-

ing the overlapping QDs [30, 32]. ICA allows each source to have a different individual

PSF. However, the ICA model allows negative entries in the individual PSFs and does

not account for noise in the measured data, which can make recovery of the individual
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(a) NMF (noise) (b) ICA (noise) (c) ICA (noise free)

Figure 2.5: Comparison of the components separated with (a) NMF and (b) ICA for simulated

noisy data of two blinking QDs separated by 0.5pixel (which corresponds to 50nm or λ/12).

(c) ICA for noise-free data. Blue pixels contain negative values. The true and the estimated

positions are shown as red circles and green crosses, respectively. The airy disk is shown as a

green circle (radius 333nm).
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sources difficult in realistic noise levels (see Fig. 2.5).

Figure 2.5b shows results from 103 simulated frames containing two sources with

blinking intensity uniformly distributed on the interval [0,1500] photons and with

background 100 photons/pixel. The true background level was subtracted (clipping

any negative values to zero) prior to the ICA evaluation. We used ‘tanh’ as a nonlin-

earity option in the fixed-point algorithm [57], and the number of sources was set to

K = Ktrue = 2.

2.4.4 Richardson – Lucy deconvolution

There is a link between NMF and the classical Richardson – Lucy deconvolution al-

gorithm. An observed “blurred” (diffraction limited) image iii (N × 1 vector) can be

expressed as a (discretised) convolution

ix =
N

∑
j=1

o jwx− j, (2.11)

where ooo (N× 1) is the original (unblurred) object which represents locations and in-

tensities of fluorescent sources. www (N×1) is an image of point spread function (PSF)

centred in the middle of the image. Richardson [58] and Lucy [59] published an it-

erative deconvolution technique for astronomical images with known PSF. They used

Bayes’ theorem as a “hint” for an iterative update of ooo. This update is usually referred

to as Richardson – Lucy (RL) deconvolution algorithm and is identical to the Lee –

Seung NMF update with generalised KL divergence objective function [28].

Holmes [60] derived the RL updates based on maximum likelihood estimation of the

model with Poisson noise using the expectation-maximisation algorithm. He also pro-

posed an update for www so that the method can be used as a blind deconvolution algo-

rithm (PSF is not known). This is sometimes referred to as a “blind RL algorithm”.

The updates for ooo and www are technically identical to the Lee and Seung NMF updates

(KL divergence as an objective function). However, (blind) RL deconvolution solves a

different problem than NMF. RL deconvolution estimates one PSF (www), which is shared
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by all sources. The deconvolution is performed for each frame separately, independent

on the rest of the dataset. NMF models the whole dataset as a collection of individual

(and in general different) PSFs (columns of WWW ) each changing intensity over time (rows

of HHH). While one source which appears in n different frames is treated as n different

individual sources by RL, NMF can identify it as a single source.

Modified updates imposing radial symmetry constraints on the PSF were also pro-

posed. There exist several modified updates derived using EM algorithm which impose

some constraints on ooo or www. Joshi [61] gives updates, where Good’s roughness measure

(
∫ |∇ f (x)|2

f (x) dx) on the original image ooo is used as a regularisation term. This biases the

solution towards the smooth images and avoids speckle artefacts in the reconstructions,

that are sometimes experienced in deconvolution methods.

Fish et al. [62] use blind RL algorithm (updates on both ooo and www) but after some

number of iterations they fit an approximation of the PSF to the estimated www and use

this fit as a new www. They claim that in noisy images this “semi-blind” deconvolution

can perform better than the one with known PSF. The comparison of the regularised

RL versions and some other deconvolution techniques has been shown in [63, 64]. RL

usually performs well for noisy images.

2.5 Simulations

In this section we describe how we generated the simulated datasets. Simulated data

were used for testing the performance of the algorithm in different experimental set-

tings.

The parameters of the simulations were chosen to correspond to real experimental data

with quantum dots (QD625, Invitrogen). Table 2.1 summarises the main simulation

parameters. Radius of an Airy disk (classical resolution limit) for parameters from

Tab. 2.1 is δ = 293nm. FWHM of a Gaussian approximation of the in-focus PSF is

260nm (σ = 111nm) [8]. The pixels size in the image plane (80 nm) is below Nyquist
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limit (120 nm) estimated from the Abbe resolution limit in Sect. 1.4.

Parameter Note Value

λem wavelength of the emission light 625 nm

NA numerical aperture 1.3

RI refractive index of the immersion oil 1.5

δ radius of the Airy disk 293 nm

pixel-size size of a pixel in image plane 80 nm

T number of frames 50−1000

mean(nphot) mean intensity 2500 photons / source / frame

max(nphot) max intensity 5000 photons / source / frame

b background 100 photons / pixel / frame

noise - Poisson

Table 2.1: Main parameters used for data simulations.

The blinking behaviour of the QDs was simulated as either:

1. The uniform random distribution between 0 and max(nphot).

2. The telegraph process with the switching rate γ. The telegraph process is a

Markov process, which takes only two values (in our case ON and OFF fluo-

rescence states). The difference between the sampling rate of the experiment

and the blinking of the fluorophores is considered by simulating the blinking be-

haviour on the oversampled time axis followed by averaging over several bins

(see Sect. 2.8.1 for details).

2.5.1 Randomly scattered sources

The ability of the algorithm to separate individual overlapping sources was tested on

simulated data of randomly scattered fluorophores. The true positions of the sources

were generated as a realisations of a homogeneous Poisson process [65]. The density
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of the sources was in a range ρ= 10−50sources/µm2. This density range corresponds

to∼ 3−14 sources in an Airy disk, respectively, for parameters from Tab. 2.1. Several

frames of the simulated dataset for three different densities are shown in Fig. 2.6. The

mean projection of the frames, which corresponds to a wide-field image, is shown in

Fig. 2.7.

(a) density 10µm−2 (14 sources)

(b) density 30µm−2 (43 sources)

(c) density 50µm−2 (72 sources)

Figure 2.6: First eight frames of simulated randomly scattered sources with density 10−

50µm−2. The area of the frame is 1.2×1.2 µm (15×15 pixels).
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(a) density 10µm−2 (b) density 30µm−2 (c) density 50µm−2

Figure 2.7: Mean projection of the simulated frames Fig. 2.6 shows the high overlap of the

individual emitters. The sources’ positions are marked with red dots. The area of the frame is

1.2×1.2 µm (15×15 pixels).
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(a) linear density µ = 7.5µm−1, distance between lines d = 150nm

(b) linear density 15µm−1, distance between lines d = 150nm

(c) linear density 12.5µm−1, distance between lines d = 100nm

Figure 2.8: First eight frames of the simulated dataset. The area of the frame is 1.7× 1.7µm

(21× 21 pixels). Note that sub-resolution features such as double line structure marked with

red dots in Fig. 2.9 cannot be observed.

2.5.2 Artificial structure

A dataset with sources arranged in a shape of a hash symbol (#) was used for testing

the algorithm to recover structural details in the sample. The vertical parallel lines

were aligned with the pixels grid, the horizontal lines were slightly tilted to investigate

the possible effect caused by the geometrical configuration of the sources with respect

to the pixel grid.

(a) µ = 7.5µm−1, d = 150nm (b) µ = 15µm−1, d = 150nm (c) µ = 12.5µm−1, d = 100nm

Figure 2.9: Sum projection of the simulated frames Fig. 2.8. The sources’ positions are marked

with red dots. Scale bar 400nm.
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The distance d between the parallel lines and the linear density of the sources µ were

two main parameters of the structure. The brightness and the background values are

shown in Tab. 2.1. Figure 2.8 shows several frames of the simulated dataset for differ-

ent linear densities µ and distances between parallel lines d. The distance d = 150nm

corresponds to the half of the Airy disk radius. The mean projections of the frames are

shown in Fig. 2.9.

2.6 Evaluation of the results

The performance of the algorithm applied on a simulated dataset can be quantitatively

measured, because the true locations of the sources are known. We used several mea-

sures to compare the performance on simulated datasets consisting of randomly scat-

tered in-focus PSFs (see Fig. 2.6).

Figure 2.10: True positives (TP), false positives (FP) and false negatives (FN) illustration. A red

dot represents the true location with a circle of radius r, a green cross denotes an estimated

position.

The individual estimated sources wwwk were localised by ML fitting of a Gaussian ap-

proximation of the PSF [8]. We used a greedy algorithm to assign the estimated loca-

tions (E) to their nearest true positions (T ). Only one estimated position was assigned

to each true position. If the distance between the estimated and the true position was
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Figure 2.11: There is only one estimated position assigned to each true position. Two estimated

sources in the proximity of one true source are counted as 1TP and 1FP (left). One estimated

source in proximity of two true sources gives 1TP and 1FN (right)

smaller than a threshold r, then the source was consider as a true positive (TP). Each

true position with no estimated source within a disk of radius r was counted as false

negative (FN), whereas an estimated position further than r from any true position was

considered as false positive (FP), see Fig. 2.10. M estimated sources in the proximity

of one true source are counted as 1TP and (M−1)FP (Fig. 2.11, left). One estimated

source in proximity of M true sources gives 1TP and (M−1)FN (Fig. 2.11, right).

We set the threshold r = σ/2, where σ =
√

2
2π

λem
NA is the standard deviation of the in-

focus PSF Gaussian approximation [8]. For the parameters used in our simulations

(see Tab. 2.1) the threshold corresponds to r = 56nm (0.7pixels).

The number of all TP divided by the area of the image gives the estimation of the

sources’ density. This simple measure shows the ability of the method to separate the

individual sources despite their overlap in the original data. The estimation of TP is

independent on the brightness of each source. The localisation precision, however,

scales as 1/
√

N [29]. We can therefore consider the position of bright sources to be

estimated with better localisation precision and therefore higher confidence. We can

compare the ability to recover the individual sources at different “confidence levels”

by considering only the sources localised with certain precision. The average precision
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(AP) [66, 67] summarises both localisation precision and ability to recover the indi-

vidual sources. The estimated positions ek are ranked according to the square root of

the source’s mean brightness

bk =
√

N̄k (2.12)

because the Cramér – Rao lower bound on localisation precision scales as 1/
√

N,

where N is a number of emitted photons (see Chapter 3 for details). For the results

of the NMF evaluation, N is retrieved from the matrix HHH as a mean along the rows

N̄k = mean
t

(hkt). (2.13)

The interval [lmin, lmax] between the dimmest lmin and the brightest lmax source intensity

is divided into a number of intervals (confidence levels) li defined by the steps in the

sorted intensities of all sources. For each confidence level li only the sources with bk

above li are considered. True positives (TPi), false negatives (FNi) and false positives

(FPi) are computed for each confidence level li.

Precision P and recall R are computed from TP(li), FP(li) and FN(li) for each confi-

dence level li:

P(li) =
TP(li)

TP(li)+ FP(li)
, (2.14)

R(li) =
TP(li)

TP(li)+ FN(li)
. (2.15)

An example of precision P(li) and recall R(li) curves for different confidence levels is

shown in Fig. 2.12a.

Following [67], the precision/recall (PR) curve P(R) (Fig. 2.12a) is interpolated for

11 equally spaced recall levels R̃i ∈ [0 : 0.1 : 1] by taking the maximum precision for

which the corresponding recall exceeds R̃i (Fig. 2.12b):

Pinterp(R̃) = max
R;R≥R̃

P(R). (2.16)

The precision/recall (PR) curve is interpolated in order to reduce the impact of “wig-

gles” in the PR curve (see Fig. 2.12b). Note that to obtain a high AP, the method must
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Figure 2.12: (a) Example of the precision P(li) (blue) and recall R(li) (green) curve. (b) The

precision/recall curve P(R) (blue) with interpolated precision Pinterp(R̃) (red).

have precision at all levels of recall. This penalises the methods that can accurately

estimate only few very bright sources.

Average precision (AP) is then defined as the mean of interpolated precision:

AP =
1

11 ∑
R̃

Pinterp(R̃). (2.17)

2.7 NMF for realistic microscopy datasets

NMF becomes challenging when applied to a dataset with large number (∼ 103) of

images, each containing more than 104 pixels and more than 102 QDs. Beside long

computational time (the computational complexity of the NMF updates scales linearly

with the number of pixels - see Sect. 2.2), the local minima in NMF fitting complicate

the optimisation [68].

We address this partly by dividing the data into overlapping patches, so that NMF is

applied to each patch individually (see Sect. 2.7.1). In the end, the results from the

patches are “stitched” back together.
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Several methods for estimation of the number of components in the NMF model is

discussed in Sect. 2.7.2. We have also developed methods to reduce local optima

problems in the fitting procedure (iNMF algorithm discussed Sect. 2.7.3). In Sect. 2.7.4

we show a simple approach to asses the quality of the individual estimated components.

The results of the NMF can be used in two different ways. The separated individual

sources wwwk can be localised and the estimated positions can be used either directly or

to create a sub-resolution image very much like in the conventional LM techniques

(see Sect. 2.7.5). A different approach avoids the localisation step and creates the

super-resolution image directly from the estimated wwwks by combining their “squeezed”

versions (see Sect. 2.7.6).

The whole pipeline for NMF evaluation of a realistic dataset is described in this section.

The individual steps of the procedure are illustrated on simulated data.

2.7.1 Pre-processing

Raw data are calibrated such that the image intensity corresponds to the photon counts.

Each image is divided into patches of nx×ny pixels with o pixels overlap (see Fig. 2.39).

We usually use nx = ny = 25 and o = 5. The overlap has been chosen as the estimated

extent of a single in-focus point spread function. Each time frame of the patch p is re-

shaped into an N×1 vector (N = nxny) by concatenation of the columns (see Fig. 2.2).

All T frames then create a N×T data matrix DDDp.

To detect patches with low signal, the maximum intensity pixel in the time average

of each patch mp = maxi

〈

DDDp(i, t)
〉

t
is compared to the maximum intensity pixel of

the average of the whole dataset m = maxi 〈DDD(i, t)〉t . The patches with mp/m < tm

contain weak signal and are not considered for further evaluation. For our evaluation

we usually set tm = 0.25.
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2.7.2 Estimation of number of sources K

The NMF model requires prior knowledge about the number of sources K to be sepa-

rated. The low rank factorisation of Eq. (2.1) will not hold exactly due to the presence

of noise. This makes estimation of K is a difficult task for noisy datasets with param-

eters set to realistic experimental conditions. In preliminary work we explored this on

simulated data with the NMF model fitted for a range of K values. We used follow-

ing parameters for the simulation: λem = 655nm, NA = 1.2, maximum intensity 1500

photons/source/frame, background 100 photons/frame/pixel. A frame of two sources

with corresponding noise levels are shown in Fig. 3.4. We considered Poisson noise

Eq. (B.1) as a noise model in simulated data. Due to the property var(X)=mean(X) of

Poisson distributed variable X [69] the intensity values in the background pixels fluctu-

ate around the mean value of 100 photons with standard deviation σ=
√

100= 10 pho-

tons while the pixels at the maximum intensity 1500 + 100 photons fluctuate with

σ =
√

1600 = 40 photons.

(a) 2δ, wide-field (b) 1.5δ, wide-field (c) δ, wide-field

Figure 2.13: Sum of the simulated frames. Red marks indicate the locations of the sources.

Green circle shows the Airy disk (with radius δ). Ten sources are randomly distributed on a disk

with radius 2δ (left column), 1.5δ (middle column) and δ (right column). The border of the disk

in (a) and (b) is marked with red dashed circle.

Figure 2.13 illustrates three different simulated datasets with 10 sources randomly scat-

tered within an area of radius 2δ, 1.5δ and δ, where δ was equal to the diameter of an



Chapter 2. Non-Negative Matrix Factorisation for Localisation Microscopy 39

Airy disk (diffraction limit), shown as a green circle in Fig. 2.13c (δ = 0.61λem/NA).

This corresponds to the sources densities of 2.4, 4.4 and 10 sources per Airy disk or

7, 13 and 29 sources per µm2, respectively. From my experience all the methods de-

livered very precise estimate of K for 2δ situation. Therefore I chose this as the upper

limit. For 1δ all the methods more or less failed and therefore I set that value as a

lower limit. I choose 1.5δ as an intermediate value between 1δ and 2δ. The mean of

the simulated frames, which corresponds to a wide-field image, is shown as a grey-

value image. Red marks indicate the true positions of the sources. Ten datasets with

different geometrical configurations of randomly scattered sources were simulated for

each source density.

The likelihood of the model Eq. (2.6) is increasing with higher K, because the noisy

data can always be fitted better with a model containing higher number of components.

The Bayesian Information Criterion (BIC) [69] is a simple model comparison method,

adding a penalty term to the likelihood penalising for the NK parameters contained in

WWW . The models with larger K are therefore more heavily penalised. BIC, however, did

not provide satisfactory results. We therefore tried to estimate the number of sources

K using:

1. Principal Component Analysis (PCA) A crude estimation of K can be obtained

from the position of the “kink” in the plot of sorted principal values Fig. 2.14a-c.

However, the “kink” is not obvious in the presence of noise or for data with high

density of blinking sources, see Fig. 2.14c.

2. A variational lower bound (LB) A variational approximation of the GaP model

Sect. 2.2.2 provides lower bound L on the likelihood p(DDD|K,θ) by approxi-

mately integrating out the latent variables hhhk [70]. To obtain the marginal like-

lihood p(DDD|K) it would be necessary to also integrate out θ, but this is com-

putationally challenging. We show in Fig. 2.14d-f that in fact the lower bound

already underestimates the value of K, so that p(DDD|K) would likely peak at even

lower values of K and thus systematically underestimate the number of sources.
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(e) 1.5δ, lower bound
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Figure 2.14: K estimation for 10 sources contained within a disk with radius 2δ (left column),

1.5δ (middle column) and δ (right column). Lines for three datasets with different configuration

of the sources are shown in different colours. Ktrue is marked with red vertical line.

3. Analysis of correlations in residuals (ACR) An alternative approach for estimat-

ing K is to analyse the residuals (data minus model). The entries of the N×T

residual matrix SSS:

snt =
dnt −∑K

k=1 wnkhkt
√

∑K
k=1 wnkhkt

. (2.18)

The factor 1/
√

∑K
k=1 wnkhkt is applied in order to standardise the residuals (zero

mean and unit variance) of Poisson distributed data. We can then compute the
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N×N correlation matrix

CCCS = SSSSSST , (2.19)

and the N×N matrix of the correlation coefficients RRRS with entries

ri j =
ci j√
ciic j j

. (2.20)

Underestimation of the number of sources (K < Ktrue) leads to correlations be-

tween some pixels as the model tries to explain multiple sources with one com-

ponent. For K ≥Ktrue the correlations are expected to drop to a base level and the

residuals become uncorrelated. We can pick the value of K for which the max-

imum of the residual correlations decreases to a certain level and where further

increase of K does not give any further improvement Fig. 2.14g-i.

A reliable estimation of K is a difficult task for higher source densities. Figure 2.15

shows the histograms of the estimated Ks for ten different geometrical configurations

of the sources with a given density. From the three methods presented in this section

(Fig. 2.15a-c), the analysis of the correlations in residuals (ACR) shows the best per-

formance. However, while ACR shows good performance for simulated datasets, it can

be challenging for analysis of real data if there are correlations that are not captured by

the model. Also note that ACR requires evaluation of NMF for a suitable range of Ks,

which makes the method cumbersome.

Both LB and ACR require evaluation of the model for a reasonable range of possible

Ks. The range can be estimated from PCA (Fig. 2.15c), because the principal coeffi-

cients can be computed directly from the data matrix DDD.

In the following section we will be discussing an iterative procedure of the NMF al-

gorithm (iNMF) which can deal with moderate overestimation of K (estimated from

PCA). The correct number of sources can be estimated additionally by analysing the

optimised matrix WWW and selecting the “credible” sources wwwk. Therefore evaluation

for only one overestimated value of K, rather than a range of Ks, is required. The
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(b) Variational lower bound
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(d) NMF with iterative restarts (iNMF)

Figure 2.15: Histograms of the K estimations (Ktrue = 10) with (a) PCA, (b) variational lower

bound, (c) analysis of correlations in residuals and (d) iterative NMF (discussed further in the

text in Sect. 2.7.3). Histograms are from the evaluation of simulated data of randomly scat-

tered emitters: ten sources within a disk of δ (blue), 1.5δ (green) and 2δ (red). Ten different

geometrical configurations were simulated for each density.
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histogram of the Ks estimated with the iterative algorithm is shown in Fig. 2.15d for

comparison. iNMF gives the most accurate estimates.

2.7.3 Tackling local optima in NMF fitting with iterative restarts

Although the Lee and Seung algorithm is convex with respect to WWW and HHH separately,

it is non-convex in both simultaneously [28]. Multiple restarts can be used to address

the problem of local optima, but we have not found good solutions with this approach.

NMF tends to get persistently stuck in the local optima of the optimisation landscape.

Instead, we exploit some prior knowledge about the problem, namely that the PSFs are

likely to have a fairly compact structure (see Fig. 2.1). As the estimated sources wwwk

are normalised to have the L1 norm equal to one (i.e., ∑ j w jk = 1, see Sect. 2.3), we

use the inverse L2 norm to rank the columns wwwk’s of the matrix WWW . Note that Hoyer’s

sparsity Eq. (2.10) is an L1/L2 measure normalised to the [0..1] interval [68].

This leads to an iterative NMF algorithm (we denote it as iNMF), where on iteration

( j+1) the first j sorted sources {www} j
1 in decreasing manner (and corresponding {hhh} j

1)

are used as initial values for the first j columns of WWW (and the corresponding rows of

HHH). The remaining components are re-initialised from a uniform random distribution.

Initial values of WWW and HHH for the ( j + 1)th iteration are therefore composed of the

j “sparsest” components of the previous iteration and (K − j) randomly initialised

components. The procedure runs until j = K. The iNMF algorithm is summarised in

Algorithm 1.

We used a crude over-estimation of K with PCA because it can be computed directly

from data DDD prior to the evaluation:

1. We compute the sorted principal coefficients λ j of DDD (λ1 > λ2 > ...).

2. K is set to the number of components which satisfy λ j/λ1 > tPCA, where tPCA is

a threshold.

User should be able to test the source estimation procedure on a patch where the num-
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ber of sources can be guessed (e.g. an area with sparse sources) to get a notion about

the threshold. The threshold tPCA should be set such that it slightly overestimates the

true number of sources.

Algorithm 1 Iterative restarts of the NMF (iNMF algorithm).

1. Set WWW init and HHHinit as random positive matrices.

2. Iterate for j = 1 : K, where K is the (over) estimated number of sources.

(a) Run NMF with WWW init and HHHinit as initial values.

(b) Sort columns of WWW according to decreasing L2 norm and permute rows of

HHH correspondingly.

(c) Replace first j columns of WWW init with first j columns of sorted WWW .

(d) Replace last j+1 : K columns of WWW init with positive random vectors.

(e) Replace first j rows of HHHinit with first j rows of sorted HHH.

(f) Replace last j+1 : K rows of HHHinit with positive random vectors.

The motivation for the iterative procedure Algorithm 1 is to progressively exploit the

credible (and therefore sparse) components from the data while keeping full flexibility

of NMF. It should be noted that in contrast to Hoyer’s sparse NMF (Sect. 2.4.2), where

the “sparsity” on the wwwk is imposed as a “hard” constraint, iNMF leads to a “soft”

enhancement of wwwk’s sparsity. The sparse components are preferably reused in the

following iterative restarts but are still allowed to change during the further iterations.

This leads to further refinement of the already estimated sources.

iNMF reduces the redundant sources introduced by overestimation of K. For example,

a single emitter can be represented by multiple components wwwks. The intensity profiles

hhhks of these redundant components will be correlated and their addition will yield the

intensity of the source in each frame. However, iNMF will keep only one component

wwwm from all redundant sources. The source wwwm has already approximately correct
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shape and during the next iterations the algorithm it will be mostly changing the profile

hhhm. The several redundant sources will be therefore replaced by a single sources wwwm.

This mechanism can be observed in the step from Fig. 2.16b to c, for example.

iNMF is illustrated on simulated data of a slanted line with eight attached PSFs in

Fig. 2.16. The parameters of the simulations are discussed in Sect. 2.8. An illustration

of typical frames of the dataset is shown in Fig. 2.35a and the true sources are displayed

in Fig. 2.35b.

For this data we set K = 15, with the last component reserved for background. The

results of the first run (random initialisation) are shown in Fig. 2.16a. The individual

PSFs (see Fig. 2.35b) are spread across all wwwks, and many of them contain a mixture

of multiple PSFs. This is a typical solution corresponding to a local minimum of the

objective function Eq. (2.7). As the iterative procedure progresses, realistic sources

are gradually recovered, see Fig. 2.16b. After eight iterations, the first eight wwwk’s show

credible PSFs, while the rest represent only noise, see Fig. 2.16c. Further iterations do

not have a significant effect on the already estimated PSFs, see Fig. 2.16d.

The iNMF procedure leads to better local minima of the NMF optimisation problem

Fig. 2.17. The L2 norm sorting of the recovered wwwks after every iteration (step 2a

in Algorithm 1) ensures that the sparsest components will be reused in subsequent

evaluation. Gradually increasing number of sparse wwwks with small L2 norm is reused

in subsequent restarts (step 2c in Algorithm 1), whereas the wwwks with large L2 norm

replaced by a random vector after each run (step 2d in Algorithm 1). This “soft”

sparsity enhancement allows for higher flexibility of the evaluated wwwks. It also allows

recovery of the sources with different individual sparsities such as the sources from

different focal depths shown in Fig. 2.16d. This “flexible” sparsity enhancement is one

of the iNMF advantages when compared to the “hard” sparsity constraints used in the

Hoyer’s algorithm (Sect. 2.4.2).

The “good” sources, representing the individual PSFs, can be identified after the ter-

mination of iNMF by analysing the resulting WWW . In Fig. 2.16d only first eight wwwks look
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(a) run 1

(b) run 4

(c) run 8

(d) run 14

Figure 2.16: Illustration of the iterative restart procedure for simulated of Ktrue = 8 sources (see

Fig. 2.35) evaluated for K = 15. Estimated sources after (a) 1, (b) 4, (c) 8 and (c) 14 runs of

the algorithm. While the estimated sources after the first run are spread over all the available

components (a), the number meaningful sources progressively reduces during the runs of the

iNMF procedure (c,d). Note that some components estimated after first run represent multiple

emitters (a). After fourteen runs (d), first eight components correspond to true sources. The rest

of the components are used for representation of noise (see Fig. 2.35 for more details). Bars

below the figures show the maximum of the intensity image wwwk.

like the “credible” PSFs, while rest of the wwwks represent noise (except for the last one,

which models the homogeneous background offset).

Figure 2.19 illustrates the “robustness” of iNMF with respect to the initial number

of estimated sources K. Resulting wwwks of the dataset Fig. 2.35a evaluation for initial

number of sources set to K = 15, 30 and 45 are shown in Fig. 2.19a,b and c, respec-

tively. In all cases, the eight different PSFs shown in Fig. 2.35b were recovered, while

the remaining K−8 estimated wwwks are representing noise (last component models the

homogeneous background offset).
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Figure 2.17: KL divergence of the NMF model Eq. (2.1) for NMF with 72 random restarts (blue

line) and iNMF algorithm (red line). This is an evaluation of randomly scattered sources with

density 50 sources/µm2. The number of sources was set to the true value K = Ktrue = 72. The

minimum of the KL divergence for NMF with random restarts is plotted as the blue dashed line.

The estimated sources corresponding to the minimum of the blue and red curves are shown in

Fig. 2.18a and b, respectively.

To make a fair comparison with standard NMF, we made 15 conventional NMF evalua-

tions (for K = 15) of the dataset with matrices WWW and HHH initialised with random values

every time. Figure 2.20 shows the result of the evaluation with the highest likelihood

Eq. (2.6) (lowest cost function Eq. (2.7)). The “credible” PSFs are distributed across

all the available wwwks and several wwwks (www111, www333 and www555, for example) contain combina-

tion of multiple PSFs. Comparison with Fig. 2.19a demonstrates the superiority of the

iNMF results.

2.7.4 Classification of the estimated sources

The estimated sources can greatly vary in quality. While some wwwk’s are credible repre-

sentation of the PSF, there are often wwwks which contain multiple PSFs or correspond to

background noise. These redundant components are present due to the overestimation

of K (Sect. 2.7.2). Sources located close to the patch border, and therefore partially

missing, should also be identified. These sources will likely appear in the adjacent
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(a) NMF with random restarts (b) iNMF

Figure 2.18: Estimated sources for the randomly scattered sources with density 50

sources/µm2. The number of sources was set to the true value K = Ktrue = 72. The L2 norm

sorted results corresponding to the minimum of the KL divergence from the 72 NMF evalua-

tions with random restarts (see blue dashed curve in Fig. 2.17) is shown in (a). Note that all

components were used for approximation of the sources. Many components contain multiple

sources. iNMF evaluation is shown in (b). Most of the components contain only a single source.

Components in the last two lines were used for approximation of noise.

patch entirely, because the overlap of the patches is set to approximately the extent of

the (in-focus) PSF (Sect. 2.7.1).

If all the sources are expected to be in-focus and therefore have a fairly compact PSF

with one global maximum (left side of Fig. 2.1), we can use a simple procedure for

identification of reasonable wwwks:

1. Each estimated source wwwk is convolved with an in-focus point spread function

(PSF) (generated from the parameters of the experimental setup). This is to

smooth the noise in the results and to enhance the structures at the scale of PSF.

2. The number of local maxima with intensity larger than 50% of the global max-

imum are counted. The threshold 50% is arbitrary and reflects our empirical

experience that the secondary peaks with intensity less than half of the brightest

peak are not very visible in the scaled image of wwwks.
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(a) K = 15

(b) K = 30

(c) K = 45

Figure 2.19: iNMF evaluation of the simulated dataset Fig. 2.35a for different numbers of over-

estimated sources K. Bars below the figures show the maximum of the intensity image wwwks

multiplied with the mean intensity estimated from the corresponding hhhs.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 2.20: Multiple random restarts. Bars below the figures show the maximum of the in-

tensity image wwwks multiplied with the mean intensity estimated from the corresponding hhhs. The

number of components was set to K = 15.

Only the sources with one major local maximum in the images of wks convolved with

the PSF are considered for further evaluation. The distance of the maximum from the

edge can indicate a partially missing source.

The process is illustrated in Fig. 2.21 on wwwk estimated from the simulated dataset of 72

randomly scattered sources with density 50µm−2 (Fig. 2.6c). The wwwks considered as

“credible” are indicated with blue or green frame. The blue frame shows the sources
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with maximum closer than two pixels from the border. The red frame shows the wwwks

with two local maxima of similar strength (at least 50% of the strength of the stronger

maximum).

This approach would, however, fail if used on data with out-of-focus PSF, because the

images of the out-of-focus PSF do not have one compact global maximum (Fig. 2.1

right). To accommodate for the individually different shapes of the PSFs we have to

use a different approach.

One possibility is to compute a set of “features” on each estimated wwwk (and possibly on

the corresponding hhhkkk) and use a linear classifier to identify the class of each estimated

source. The possible “features” can include, for example, the L2 norm, the number of

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64

65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80

Figure 2.21: Selection of the credible wwwks (here ordered by L2 norm). The green and blue

boxes indicate the estimated “credible” sources (with only one major global maximum). The

sources with blue frame have the maximum closer than two pixels to the border and can be

therefore considered as partly missing sources. The sources with red frame have two local

maxima of comparable strength. Bars under the figures show the normalised maximum value

of the estimated wwwk multiplied with mean brightness of the source estimated from the intensity

matrix HHH. The index of the component k is printed in each frame. The true number of sources

in this simulated dataset was Ktrue = 72.

.
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clusters in the thresholded image, the maximum of the cross-correlation with the PSF,

a measure of smoothness of the estimated result, the distance of the global maximum

from the edge, and many others. Each wwwk then represents a point in a high-dimensional

feature space. The linear classifier assumes that the individual classes can be separated

with linear manifolds in the feature space.

However, the linear classifier has to be trained on a set of labelled data. The training

therefore requires a manual labelling of at least several hundreds of wwwks (manual as-

signment of a class to each wwwk). In an ideal world, one training set would be sufficient

for different datasets. The classifier, once trained, would be applicable for results from

different datasets taken in a range of experimental conditions. However, our experi-

ence is that the classification performance varies significantly with the change of the

experimental parameters (size of the patch, pixel-size, background levels). The perfor-

mance, of course, depends on the quality of the features. The development of some

“universal” features might be a topic of future work.

For simulated data we defined a “credibility index” as a maximum of the dot product

between the estimated source and all the true sources normalised to the L2 norm of the

true and estimated sources:

ck = max
l

[

wwwk ·wwwtrue
l

√

wwwtrue
l ·wwwtrue

l

√
wwwk ·wwwk

]

(2.21)

For an ideal estimated source (wwwk = wwwtrue
l ) the credibility index is equal to one. In

Fig. 2.22 we show the correlation between the L2 norm and the “credibility index”

for sources from Fig. 2.21. The sources with high “credibility index” have high L2

norm and L2 norm can be used as a simple measure of “credibility”. For example in

Fig. 2.22 the “good” sources are above the threshold L2 > 0.02. The scattered points

in Fig. 2.22a are colour-coded in the same manner as in Fig. 2.21. We can observe that

the “good” sources (blue and green points) cluster in upper right area of the graph. The

sources with two local maxima of comparable strength (red) cluster together with noise

contributions (black). Figure 2.22b shows the same scatter plot but points are coloured

according to the index k of the components wwwk shown in Fig. 2.21. The sources from
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Fig. 2.21 show the “credibility index” close to one up to approximately k = 45.

2.7.5 Localisation and stitching

The individual estimated sources classified as credible representations of the PSFs can

be localised. Conventional LM techniques often apply the maximum likelihood fitting

of an in-focus PSF (usually the Gaussian approximation) to the estimated images [22].

The localisation precision is typically estimated from the number of photons emitted

by the sources in the frames where the sources were localised. In constrast, the iNMF

estimated intensity matrix HHH gives us access to the entire intensity profile of the source.

We can therefore estimate the number of all photons emitted by the source during the

measurement, maximum intensity of each source or a variance of the blinking over

time.

The sources close to the edge can be problematic to localise. If the source represents an
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Figure 2.22: L2 norm as a function of the “credibility index” Eq. (2.21) for sources from Fig. 2.21.

(a) Colours of the points correspond to the colours of the frames in Fig. 2.21: the green and blue

indicate the estimated “credible” sources (with only one major global maximum). The blue points

correspond to sources considered as partly missing. The red points correspond to sources with

two local maxima of comparable strength. The black points corresponds to “noise” contribution.

(b) Colours of the points codes for the index k of the components in in Fig. 2.21.



Chapter 2. Non-Negative Matrix Factorisation for Localisation Microscopy 53

in-focus PSF, then it should appear entirely in the adjacent patch and can be localised

there. Therefore when dealing with images with mostly in-focus PSFs we can simply

discard the sources classified as “partly missing” (Sect. 2.7.4). More problematic are

the out-of-focus PSFs with extent larger than the overlap area. These sources have to

be first stitched together before further processing.

2.7.6 Visualisation of the results

(a) Gaussian, σ2 ∝ 1/intensity (b) Gaussian, σ2 ∝ 1/intensity (c) True - Gaussian

(d) Powers, p = 30 (e) Powers, p = 30 (f) True - Powers

Figure 2.23: Visualisation of the results. (a,d) shows the results of one iNMF evaluation. (b,e)

shows the sum of ten iNMF evaluations of the same dataset. (a,b) The conventional visualisation

by placing Gaussians located at the positions of the estimated sources (green dots). (d,e)

Powers of wwwks. The true sources’ locations are indicated with red dots. The corresponding

images created from the true locations are shown in (c,f). Scale bar 400nm.

The conventional way for visualisation of the LM results (STORM, PALM) is to sum



Chapter 2. Non-Negative Matrix Factorisation for Localisation Microscopy 54

Gaussian functions placed in the estimated locations. The variance σ2 of each Gaussian

reflects the “uncertainty” of the estimated position. This is usually set to be propor-

tional to the inverse of number of photons N emitted by the source. The motivation

behind this is the Cramér – Rao (CR) lower bound on the localisation accuracy (see

Chapter 3 for details)

σ2
CR ≈ σ2

Airy/N, (2.22)

where the σ2
Airy is the variance of the PSF Gaussian approximation. As the σCR is

typically considerably smaller than the resolution limit, the rendered image can provide

super-resolution information about the specimen’s structure.

In terms of the iNMF procedure, this method replaces the credible estimated wwwks with

ideal, sub-resolution PSFs centred at the estimated source’s location. The intensity

values for each source can be estimated from the intensity time profiles of each source

(rows of HHH).

The conventional visualisation of the iNMF evaluation of the synthetic dataset (illus-

trated in Fig. 2.8) is shown in Fig. 2.23a,b. The data represents an artificial structure (a

hash symbol with µ = 12.5µm−1, d = 100nm, see Sect. 2.5.2). The standard deviation

of each Gaussian was set to σ = 20σCR. Fig. 2.23adisplays the result of one evalua-

tion, while Fig. 2.23bshows the sum of ten evaluations (discussed below) of the same

dataset.

Another way to visualise the result is to use the estimated sources wwwks directly with-

out replacing them with “ideal” PSFs. By taking the pixel-wise power p > 1 of the

estimated sources wwwp we achieve “shrinking” of the individual wwwk while keeping some

characteristics of each source’s shape (elongation along a certain direction, for exam-

ple).

Up-sampling of wwwks is needed before taking the higher powers p. We used bicubic

interpolation of the wwwk’s image. Figure 2.24 shows the original estimated wwwk and the

corresponding up-sampled (by a factor of r = 4) version taken to the power p = 5: www
ppp
kkk .

This approach allows taking into account even the wwwks containing multiple sources
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1 2 3 4 30 32 35 57

(a) Estimated wwwks.

1 2 3 4 30 32 35 57

(b) wwwks up-sampled by a factor r = 4 and taken to the power p = 5

Figure 2.24: Illustration of the wwwks “squeezing”. Eight (out of 60) selected wwwks shown. The

number in the top left corner is the index k in the L2 norm sorted wwwks. (a) shows the iNMF

estimated wwwk, (b) is the “squeezed” version www
ppp
kkk by taking the up-sampled (r = 4) results (a) to

the power p = 5.

(www32 in Fig. 2.24, for example).

If we normalise the L1 norm of wwwp to one (∑x wwwp(x) = 1), we can reconstruct a “super-

resolution” image by summing all www
p
k , weighted by the corresponding mean intensity

mean(hhhkkk).

As we show in Fig. 2.23d, the visualisation of a single iNMF evaluation can lead

to a rather discontinuous image of the underlying structure. This is often the case

for structures with high density of sources because only a subset of the sources is

recovered. An average of multiple iNMF runs with different random initialisation is

required to give smoother representation of the structure, see Fig. 2.23d. The number

of iNMF runs has to be set by user and will depend on desired “smoothness” of the

reconstructed images. The denser labelling requires more iNMF runs (see Sect. 2.9 for

further discussion). Folowing the discussion in Sect. 2.7.4, we can also compute the

“credibility index” Eq. (2.21) for the reconstructed images rather then for the individual

sources by replacing wwwk and wwwtrue by the reconstructed image III and the “true” image

IIItrue, respectively:

c =
III · IIItrue

√
IIItrue · IIItrue

√
III · III

. (2.23)

III are the vectors created by concatenating the columns of the image into a vector.
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The true images computed from the true positions and the true intensities are shown in

Fig. 2.23c and Fig. 2.23f. The computed indices for results from Fig. 2.23 are shown in

one iNMF evaluation mean of ten iNMF evaluations

Gaussian (Fig. 2.23a-c) 0.56 0.73

Powers (Fig. 2.23d-f) 0.65 0.87

Table 2.2: “Credibility index” Eq. (2.23) computed for the results shown in Fig. 2.23.

Tab. 2.2. The mean of ten iNMF evaluation gives 1.12× and 1.34× higher values of the

index compared to the single evaluation for Gaussian and power - based visualisation

(Fig. 2.23).

The power parameter p defines the final “resolution” in the reconstructed image. Larger

values of p give “higher resolution” but the reconstructed structures are more “discon-

tinuous”. Figure 2.25 shows the sum projection of ten iNMF runs for different values

of p. This image can be compared with the conventional visualisation in Fig. 2.23c,d.

(a) Wide-field (b) p = 5 (c) p = 10 (d) p = 30

Figure 2.25: (a) Sum projection of the simulated dataset. (b-d) Visualisation of the sum projec-

tions of ten different iNMF evaluations using wwwp for different values of p. Images of wwwks were

up-sampled by a factor of r = 4. Scale bar 400nm.
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2.8 Results

We used simulated data for exploring the behaviour of iNMF in different experimental

regimes. In Sect. 2.8.1 and 2.8.2 we used the average precision and the estimated den-

sity as a quantitative quality assessments of the algorithm performance on simulated

data.

Section 2.8.3 shows a qualitative comparison of iNMF results with two other tech-

niques (CSSTORM and 3B analysis) dealing with overlapping sources. Average preci-

sion has been used as a quantitative measure of the performance on simulated datasets

consisting of randomly scattered sources with different densities. We also used the

estimated sources’ density as a simple comparison criterion.

The comparison of the three techniques on a simulated dataset of an artificial sub-

resolution structure is shown in Sect. 2.8.4. The results of the RL deconvolution and

second order SOFI are also shown for further comparison.

The ability of iNMF to recover different individual overlapping PSFs is illustrated on

simulated data and on randomly scattered out-of-focus QDs in Sect. 2.8.7.

Section 2.8.8 shows the iNMF reconstruction of a real biological sample labelled with

QDs, revealing sub-diffraction details of tubulin structures.

2.8.1 Effect of the blinking behaviour

The mechanism of the QD blinking is a complex and still not fully understood process

[20]. Both ON and OFF time probability densities follow an inverse power law rather

than an exponential decay observed in conventional fluorophores [19]. The blinking

of different QDs can therefore vary greatly with a large range of ON and OFF time

periods. NMF does not make any assumption about the intensity time profiles (rows of

HHH) and can recover a variety of blinking patterns. As we discuss later, the actual time

ordering of the acquired frames is irrelevant for the iNMF evaluation.

The effect of the different blinking patterns on the performance of the iNMF algorithm
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(b) telegraph (γ = 0.5)

0 10 20 30 40 500

1000

2000

3000

4000

5000

Frame #

In
te

ns
ity

 [p
ho

to
ns

]

(c) telegraph (γ̃ = 0.05) down-sampled
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(d) telegraph (γ̃ = 0.005), a-synchronic

Figure 2.26: Examples of blinking behaviour of one source (50 points out of 1000).

was tested on simulated data. We used randomly scattered sources with different densi-

ties in a range of 10−50µm−2 (Ktrue = 14−72). The simulated datasets are illustrated

in Fig. 2.6 and the parameters of the simulations are in Tab. 2.1.

Four different blinking behaviours with fixed number of emitted photons (equal mean

value) were considered:

(a) Uniform random distribution of intensities between 0 and max(nphot), illustrated

in Fig. 2.26a.

(b) A telegraph process with transition probability γ = 0.5, where the intensity is

switching between 0 and max(nphot), shown in Fig. 2.26b.

(c) A down-sampled telegraph process. The time axis was oversampled q times and
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a telegraph process with a rate γ̃ was generated. Finally, the blinking was under-

sampled q times. Figure 2.26c illustrates the result for γ̃= 0.05 and q= 100, which

corresponds to 10× faster blinking than the sampling frequency of the measure-

ment. This leads to the averaging (smoothing) of the intermittent behaviour.

(d) Similar to (c), but for γ̃ = 0.005. This represents more realistic intermittent be-

haviour than the “binary” telegraph process described in (b), keeping the same

blinking rate. The switching between two states is no longer synchronised with

the sampling, which gives rise to intermediate intensity values, Fig. 2.26d.

The variance of the four different intensity profiles is shown in Fig. 2.27a.
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Figure 2.27: (a) Variance of the intensity time profiles for four different blinking behaviours

shown in Fig. 2.26 and (b) corresponding average precision of the estimated results.

All datasets were evaluated with iNMF. The number of sources K was set to K =

Ktrue +10, where Ktrue is the true number of emitters used for simulation.

The average precision Eq. (2.17) for four blinking behaviours shown in Fig. 2.26 is

plotted in Fig. 2.27b. The mean and the standard deviation of the results from five

different geometric configurations of randomly scattered sources are shown.

Figure 2.27 suggests that the AP is proportional to the variance of the blinking rather

than to the time series structure of the blinking. In fact, NMF updates Eq. (2.3) are
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(a) original data

(b) down-sampled 2×

(c) down-sampled 10×

Figure 2.28: First eight frames of (a) original data and (b-c) down-sampled simulated data.

insensitive to permutations of time frames. The iNMF algorithm therefore does not

take the time-series structure of the data into account. This is a drawback of the NMF

model, because the correlations between the adjacent time frames provide valuable

information. Note that the 3B algorithm [37] exploits this information by modelling

the blinking behaviour of the fluorophores with a Markov chain.

2.8.2 Effect of the number of frames

What is the optimal way of acquiring data when we have a limited total acquisition

time? Is it better to use longer acquisition time per frame to acquire smaller dataset

with better signal-to-noise ratio in each frame? Or rather to record large number of

noisy frames with as fast acquisition as possible?

To address these questions we tested the iNMF algorithm on simulated data of ran-

domly scattered sources (Sect. 2.5.1). The parameters of the simulation were taken

from Tab. 2.1 but the maximum of the sources’ intensity max(nphot) was set to 300.

This represents weak sources recorded with fast acquisition time. The telegraph pro-

cess shown in Fig. 2.26c was used for simulated intensity profiles.
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(b) Average precision

Figure 2.29: (a) Estimated density and (b) average precision as a function of number of down-

sampled frames. The mean and the standard deviation of three different geometrical configura-

tions of randomly scattered sources is shown.

Several frames of the dataset are shown in Fig. 2.28a. From this dataset consisting of

1000 frames we generated four more datasets by down-sampling the data q = 2, 5, 10

and 20 times by summing the q subsequent frames. If we neglect the read-out noise

of the camera, this corresponds to data taken with q times longer acquisition time per

frame. The down-sampled data consist of 1000/q frames. Several frames of the down-

sampled data for q = 2 and 10 are shown in Fig. 2.28b and c, respectively.

Three different densities of the sources were considered. Each dataset was simulated

three times with different geometrical configurations of the sources. Mean values with

standard deviations of the average precision and the estimated density are plotted in

Fig. 2.29.

The down-sampling of the dataset decreases the performance of the iNMF algorithm.

The signal-to-noise ratio increases in each frame, due to down-sampling, however, the

variance of the blinking decreases because the ON and OFF states average out. The

increase of the signal-to-noise ratio does not compensate for the deterioration of the

AP due to decreased blinking variance (Sect. 2.8.1).

Note, that only the blue curve in Fig. 2.29a corresponding to 10 µm−2 reaches the true
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density. Both green and red curves underestimate the true density by a factor of two

and three, respectively, even for data with fastest sampling.

2.8.3 Comparison with other methods - randomly scattered sources

We used simulated data of randomly scattered overlapping sources with densities 10

to 50 sources/µm2 (Sect. 2.5.1) to quantitatively compare performance of iNMF with

CSSTORM [38], and the 3B analysis [37] (discussed in Sect. 2.1.2). The code for both

3B and CSSTORM is freely available.

A margin of three pixels was left empty in each simulated frame to ensure that there are

no partially missing PSFs. The sum projections of the frames for densities 10µm2 and

40µm2 are shown in Fig. 2.31a and 2.32a, respectively. Several individual data frames

are shown in Fig. 2.6, illustrating highly overlapping sources (dataset displayed in

Fig. 2.6 does not contain the 3 pixel empty margin). We used three different geometri-

cal configurations of the randomly scattered sources. The blinking behaviour was sim-

ulated as a telegraph process with asynchronous recording as described in Sect. 2.8.1

(d) and illustrated in Fig. 2.26d.

The true background value of 100 photons per pixel per frame was subtracted (clipping

any negative values to zero) before CSSTORM and 3B evaluation. The true PSF was

provided to both CSSTORM and 3B algorithms.

The estimated density and the AP values obtained from the results of the iNMF algo-

rithm are shown as blue lines in Fig. 2.30. The mean and the standard deviation from

three different configurations of the randomly scattered sources are shown. The visual-

isation of the results (Sect. 2.7.6, p = 4, q = 4) for datasets with four different densities

is shown as a grey-scale image in Fig. 2.31b-2.32b. The green crosses show the maxi-

mum likelihood fit of a Gaussian function to the iNMF estimated wwwk. Only “credible”

wwwks were used. The selection of the “credible” sources is described in Sect. 2.7.4.

CSSTORM processes each input frame individually, independent of the rest of the

dataset. This method tries to recover a sparse distribution of the active (ON) fluoro-
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Figure 2.30: Comparison of the iNMF, CSSTORM and 3B evaluation of the randomly scattered

PSFs. The blue line corresponds to iNMF, green line to the projected CSSTORM image, red

curve to the values estimated from the individual frames of the CSSTORM and cyan line to

the 3B evaluation. (a) Estimated density, (b) average precision. The mean and the standard

deviation from three different configurations of the randomly scattered sources are shown. A

small random offset (±0.5) to the horizontal values was added to each dataset for the sake of

clarity.

phores in each frame considering a known PSF (shared with all sources). The output

for each frame is an image showing the possible positions of the sources on a sub-pixel

grid (8 times oversampled). Following [38], we estimated the position of each source

as a centre of mass of the small clusters formed on a sub-pixel grid. The AP (the mean

of AP from individual frames) and the estimated density (the mean of estimated den-

sities from the individual frames) are denoted as CSSTORMind and are shown as red

curves in Fig. 2.30.

We also processed the sum of all CSSTORM output frames, which summarises all the

estimated sources. The summed image was filtered with Gaussian kernel (σ = 1pixel,

which corresponds to σ = 10nm). The result for different densities of the sources is

shown in Fig. 2.31c-2.32c. The local maxima stronger than 5% of the global maximum

were identified (green crosses in Fig. 2.31c-2.32c). We chose the threshold of 5%
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because for this value the number of local maxima roughly corresponds to the true

number of sources Ktrue. The positions of the local maxima were used as the estimated

sources’ positions for computation of the AP. The true positives were considered for

density estimation (Sect. 2.6). The results are denoted as CSSTORM and are shown as

green curves in Fig. 2.30.

As the last comparison technique, we used the 3B analysis for the simulated datasets.

The prior parameters for the size of the PSF were adjusted to the true values. Also the

true number of sources Ktrue was used as an initial number of spots in the model. The

3B algorithm was run for at least 30 iterations. Following [37], the output coordinates

of the 3B analysis were placed on a 100× oversampled grid (0.8nm pixel-size) and

convolved with a Gaussian (σ = 10pixels, which corresponds to σ = 8nm). The re-

sulting image is shown as a grey-scale image in Fig. 2.31d-2.32d. Similar to analysis

of the projected CSSTORM, we identified local maxima in the images (green crosses

in Fig. 2.31d-2.32d). Only the maxima above a certain threshold were considered for

evaluation. The threshold was set individually for each image, such that the number

of local maxima roughly corresponds to the number of sources considered by the 3B

analysis after the last iteration. The estimated density and the AP are denoted as 3B

and are shown in Fig. 2.30 as cyan lines.

Figure 2.30 suggests that CSSTORM cannot recover enough sources in individual

frames (CSSTORMind, red lines). The density is severely underestimated, which leads

to many false negatives (FN) and therefore low recall values Eq. (2.14), which pe-

nalises AP. However, CSSTORM recovers some subset of the sources in each frame

and the sum projection show dramatically improved AP and density estimation (green

lines in Fig. 2.30).

The AP of the CSSTORM results is comparable with the AP of the iNMF algorithm

Fig. 2.30b. iNMF performs slightly better at the higher densities of the sources (56%

as opposed to 44% at density 50µm−2). However, visual inspection of the results

shown in Fig. 2.31b,c reveals that iNMF can discriminate even very close sources,
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while CSSTORM approximates these sources by one intensity maximum in the middle

(bottom right corner in Fig. 2.31b,c, for example). This is even more pronounced in

the regions with higher densities. For example, in the bottom part of Fig. 2.32b,c

the sources organised in approximately parallel lines are represented by one intensity

“crest” in the middle in the CSSTORM image Fig. 2.31c, whereas iNMF managed to

pick almost all the individual sources Fig. 2.31b.

For this simulated data 3B performs significantly worse than both iNMF and CS-

STORM. The visualisation of the 3B results, shown in Fig. 2.31d, underlines the poor

performance of 3B for this simulated dataset.

It should be noted that the estimated density and AP from the sum projection for CS-

STORM and 3B results are dependent on the threshold for considering local maxima

(see above). There a number of possibilities how to choose the threshold value, but we

tried to relate the number of local maxima to quantities that are possible to interpret in

terms of each algorithm. For CSSTORM we chose the threshold to obtain the number

of local maxima approximately equivalent to Ktrue. For 3B we matched the number of

local maxima to the numbers of sources considered by 3B algorithm after last iteration.

In our opinion, these threshold settings can be used for a fair comparison with iNMF.

2.8.4 Comparison with other methods - artificial structure

The experiments shown above are useful for a quantitative comparison of the differ-

ent methods. The criterion for the quality assessment of the results was the ability

to precisely estimate locations of the individual emitters. Randomly scattered sources

are, however, of little practical interest. The main motivation of super-resolution mi-

croscopy is to recover sub-diffraction details of a sample structure. Therefore we used

simulated data with sources attached to an artificial structure to further compare the

performance of the three methods. The simulated data are illustrated in Sect. 2.5.2

with main parameters shown in Tab. 2.1. The distance between the parallel lines was

set to d = 150nm (1.8pixels), which corresponds to half the Airy disk’s radius (see
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(a) wide-field (b) iNMF

(c) CSSTORM (d) 3B

Figure 2.31: Comparison of the results for simulated of randomly scattered sources with density

10µm−2 (14 sources in total). Sum projection of the dataset with true sources’ positions marked

with red dots is shown in (a). Red circles show the true locations of the sources. The radius

of the circles r = 0.7pixels (56nm) indicates the true-positive threshold distance. For further

information see Sect. 2.6. Scale bar 400nm.
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(a) wide-field (b) iNMF

(c) CSSTORM (d) 3B

Figure 2.32: Comparison of the results for simulated of randomly scattered sources with density

40µm−2 (58 sources in total). Sum projection of the dataset with true sources’ positions marked

with red dots is shown in (a). Red circles show the true locations of the sources. The radius

of the circles r = 0.7pixels (56nm) indicates the true-positive threshold distance. For further

information see Sect. 2.6. Scale bar 400nm.
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Tab. 2.1). The linear density was set to µ = 15µm−1 which corresponds to approxi-

mately 67 nm spacing between adjacent sources. We used the same blinking behaviour

(Fig. 2.26d) as for the randomly scattered sources describe above. The sum projection

of the data frames, equivalent to the wide-field image is shown in Fig. 2.33a.

(a) wide-field (b) iNMF

(c) CSSTORM (d) 3B

Figure 2.33: Evaluation of the artificial structure data with three different methods. The parallel

lines are separated by d = 150nm (1.8pixels). The sources (indicated as red dots in (a)) are

distributed along the lines with a linear density 15µm−1. Arrows in a wide-field image (a) point

at sub-resolution features of the specimen (further discussed in the text). Scale bar 400nm.

To achieve a smoother representation of the underlying structure, we used the sum of
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ten iNMF evaluations (see discussion in Sect. 2.7.6) rather than only one iNMF run

used for the data of randomly scattered sources in the section above. The result is

visualised in Fig. 2.33b. The same dataset was evaluated with 3B and CSSTORM,

shown in Fig. 2.33c and Fig. 2.33d, respectively. Only one run of 3B (24 iterations)

and CSSTORM has been used.

3B completely fails to recover the double parallel lines, replacing them with one in-

tensity crest in between of the lines (blue arrow in Fig. 2.33d). CSSTORM shows the

double line structure of the hash symbol at the periphery of the specimen (green ar-

rows in Fig. 2.33c), however the double lines joins into a single line close to the centre

of the cross (blue arrow in Fig. 2.33c). The hole (150×150nm) in the middle of the

specimen is completely unresolved and is replaced by intensity maximum (red arrow

in Fig. 2.33c).

iNMF shows the double line structure all the way along the artificial specimen (green

arrows in Fig. 2.33b) and the hole in the middle of the structure is clearly visible (red

arrow in Fig. 2.33b). Figure 2.25d demonstrates that the double lines and the hole

in the middle can be observed even for a structure with lines as close as d = 100nm

(1.25pixels).

The results of one evaluation of iNMF did not provide satisfactory representation of the

structure. As shown in an image constructed from the powers of w (Fig. 2.23c), only

several individual PSFs are recovered from the highly overlapping sources (the adja-

cent sources are closer than∼ λem/10). The visualised image consists of disconnected

individual blobs. Several runs of iNMF for the same dataset are needed to gradually

fill the disconnected structure (see Fig. 2.23d and 2.33b).

The dataset was also evaluated with Richardson – Lucy (RL) deconvolution (deconv-

lucy function in MATLAB) with provided known (true) PSF and run for 1000 itera-

tions. The true background offset of 100 photons was subtracted (clipping the negative

values to zeros) before the evaluation.

RL deconvolution of the dataset sum projection (wide-field image) is shown in Fig. 2.34a.
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(a) RL (b) RL ind (c) SOFI 2nd order

Figure 2.34: (a) RL deconvolution of the artificial structure sum projection. (b) Sum of the RL

deconvolutions of the individual frames. (c) Second order SOFI image. Red dots show the

locations of the sources. Scale bar 400 nm.

We also applied RL deconvolution to each frame of the dataset. The sum projection of

deconvolved frames is shown in Fig. 2.34b.

Figure 2.34c shows the application of the second order SOFI image (see [40] and

discussion in Sect. 2.1.2). The second order SOFI corresponds to the variance of the

pixels intensity along the frames.

Neither RL deconvolved images nor the second order SOFI was capable of discrimi-

nating the sub-resolution features of the artificial structure (compare with Fig. 2.33).

2.8.5 Comparison with other methods - computational time

For our computer (Intel(R) Core(TM)2 Duo @ 2GHz processor with 3GB of RAM),

the computational time for the simulated dataset (21×21×1000 frames) was:

iNMF ∼ 20mins for one complete run with K = 50 sources and K restarts.

CSSTORM ∼ 260mins.

3B analysis > 12 hours for 30 iterations.

Note that the iNMF images shown in Fig. 2.33b are results of 10 iNMF evaluation. The

computation time is therefore comparable (∼ 200mins) to the CSSTORM method.
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2.8.6 Comparison with other methods - parameters setting

Each of the method requires a number of parameters to be explicitly set by user prior

to the evaluation. The explicit parameters are summarised in the following table (n.a.

stands for not applicable):

parameter iNMF CSSTORM 3B analysis

PSF description NO YES YES

# of iterations in one run YES NO YES

# of runs YES n.a. n.a.

# of sources estimation YES NO YES

patch size and overlap YES YES YES

For visualisation purposes all methods require setting of the oversampling rate of the

resulting images of the results in addition. There is also a parameter for a slight “blur-

ring” of the results: the variance of the Gaussian kernel for 3B and CSSTORM (see

Sect. 2.8.3) and the “power” parameter p for iNMF (see Fig. 2.25).

Note that these are only the parameters explicitly set by user. There are more parame-

ters within each algorithm that are pre-set to their “optimal” values.

2.8.7 Out-of-focus PSFs

iNMF has a unique capability of recovering sources with different individual PSFs,

because there is no assumption about the shape of the estimated components wwwk in the

NMF updates Eq. (2.3). We demonstrate this interesting feature on simulated data of

eight blinking QDs attached to a bar slanting in depth, see Fig. 2.35a. The individual

simulated sources were separated by 370nm (1.15× radius of the Airy disk δ, 2.6µm

total length) in the projected plane and the axial difference between the tips of the bar

was 1.6µm. Other parameters of the simulation are shown in Tab. 2.1 with edge size

of a pixel in the image plane 100nm, T = 500, mean number of photons per source
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(a) Data

(b) True sources

(c) True sources corrupted with noise

(d) Estimated sources

Figure 2.35: Simulated data of eight sources. (a) Eight frames (out of 500) of the simulated data

set. (b) The true sources. (c) Noisy version of the true sources with their maximum intensity.

(d) The first 8 estimated sources (see Fig. 2.16d for all wwwk ’s.) Bars under the figures show the

maximum of the intensity image of wwwk.
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(a) Data

(b) Estimated sources

Figure 2.36: Real data of randomly scattered QDs. (a) Eleven randomly selected frames (out

of 1,000) of the overlapping PSFs produced by blinking QDs. (b) Estimated sources wwwk sorted

according to their estimated mean brightness. Bars below each figure show the maximum of

the wwwk multiplied by the mean brightness of the source estimated from HHH.

per frame 1500, background photons per pixel per frame 70 and uniform distribution

of blinking (Fig. 2.26a).

The true sources (individual PSFs) are shown in Fig. 2.35b and their noisy versions

(obtained from the frame with the maximum intensity of each source) are shown in

Fig. 2.35c. The iNMF result is shown in Fig. 2.35d (Several steps of the procedure are

illustrated in Fig. 2.16). The correspondence of the estimated sources wwwk (first eight

out of 16 sources form Fig. 2.16) to the true sources shown in Fig. 2.35 demonstrates

the ability of iNMF to recover sources with individually different shapes from noisy

data with highly overlapping emitters (see Fig. 2.35).

To demonstrate the recovery of individual different PSF in realistic experimental set-

tings, we applied iNMF on a movie of real out-of-focus blinking QDs. We analysed

1000 frames acquired with 50ms/frame acquisition time (the total acquisition time
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1 2 3 4 5 6 7 8

Figure 2.37: ICA evaluation of the simulated slanted bar (Fig. 2.35). Blue pixels indicate nega-

tive values.

was ∼ one minute). Several frames of the dataset are shown in Fig. 2.36a. The over-

estimated number of sources K = 33 was estimated from the principal values of the

data as described in Sect. 2.7.2.

The images of evaluated wwwks are shown in Fig. 2.36a. Credible out-of-focus PSFs

from different focal depths (cf. Fig. 2.1) have been recovered (the first two rows in

Fig. 2.36b). The wwwks in the last row of Fig. 2.36b are mostly noise contribution. The

mean brightness of these sources (estimated form HHH) is less than 10% of the brightest

wwwk (see bars under individual images in Fig. 2.36b).

It should be noted that the recovery of different individual PSFs is beyond ability of

either 3B or CSSTORM. Both methods require known PSF, which is shared by all

emitters. 3B can adjust for the size of the PSF, however, the shape (Gaussian) remains

identical for all sources.

In theory, independent component analysis (ICA), discussed in Sect. 2.4.3, allows

recovery of different individual PSFs. However, as we demonstrated in Sect. 2.4.3,

ICA’s performance is poor when applied to noisy data. The results of the ICA eval-

uation (FastICA algorithm [57]) of data from Fig. 2.35 and Fig. 2.36 are shown in

Fig. 2.37 and Fig. 2.38, respectively. The background was subtracted (clipping any

negative values to zero) prior to the ICA evaluation. The number of sources was set

to K = Ktrue = 8 in Fig. 2.37 and K = 20 in Fig. 2.38 (we set K = 20 because this

corresponds to the number of “credible” PSF recovered with iNMF in Fig. 2.36b). We

used ’tanh’ as the nonlinearity option in the fixed-point algorithm.

For the simulated data of slanted bar Fig. 2.35a, ICA completely fails to discriminate

the out-of-focus overlapping sources Fig. 2.37. Only the in-focus PSFs are more or
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less recovered (components 3 and 7 in Fig. 2.37). Other components represent a com-

bination of several PSFs together. All the components contain negative values (blue

pixels in Fig. 2.37).

1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

Figure 2.38: ICA evaluation of the randomly scattered out-of-focus QDs (Fig. 2.36). Blue pixels

indicate the negative values.

For the real data of randomly scattered QDs Fig. 2.36a, some of the ICA estimated

sources resemble the out-of-focus PSFs (for example, components 4 and 7 in Fig. 2.38),

however most of the sources contain large regions of negative values (blue pixels in

Fig. 2.38) and the overall quality is inferior to the iNMF results Fig. 2.36b. Most of

the estimated components clearly combine several overlapping PSFs together (compo-

nents 1, 9 and 12, for example).

2.8.8 Real data: QD stained tubulin fibres

We applied the pipeline described in Sect. 2.7 to a stack of T = 103 frames (128×128

pixels) of α-tubulin fibres of a 3T3 fibroblast cell imuno-labelled with QDs (QD625,

Invitrogen). The experimental parameters are shown in Tab. 2.3.

The time average of the dataset, which corresponds to the wide-field image, is shown

as a grey-valued image in Fig. 2.41a. The quantum dots are attached to the tubulin

creating fine linear structures with sub-diffraction details.

The dataset was divided into 25×25 patches (Fig. 2.39), and only patches with suffi-

ciently strong signal (thick boxes in Fig. 2.39) were considered for further evaluation.

The number of sources within each patch is over-estimated via principal components
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Figure 2.39: Division of the dataset into smaller patches (25× 25 pixels, which corresponds

to ≈ 2× 2µm). Time average of all frames is shown as a grey-valued image. Boxes with thick

lines were used for iNMF evaluation (boxes with thin lines were considered to be empty). The

index of the patches and the (over) estimated numbers of sources (K) are shown in each box.
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analysis (see Sect. 2.7.2). Each patch was evaluated with the iNMF algorithm.

Several time frames of the patch B24 from Fig. 2.39 are shown in Fig. 2.40a. Fig-

ure 2.40b displays the iNMF-estimated wwwks (for K = 56).

(a) Data

(b) Estimated sources

Figure 2.40: Real data - patch B24 from Fig. 2.39. (a) 14 randomly selected frames (out of

103) of the tubulin structure stained with QDs. (b) Estimated sources wwwk sorted according to

their L2 norm (shown all K = 56 sources). Bars below each figure show the maximum of the wwwk

intensity image multiplied with the mean intensity of the source estimated from the matrix HHH.

Each patch was evaluated five times with iNMF. The results were visualised by “squeez-

ing” wwwks, as described in Sect. 2.7.6, using the over-sampling by a factor r = 4 and

power p = 30. The resulting images for five different iNMF evaluations were summed

together to create a sub-resolution image. The final image of the whole dataset was

created by tiling results for the individual patches. The border pixels of neighbouring

patches were removed to avoid overlaps of the results.

Figure 2.41 compares the wide-field (WF) image with iNMF-evaluated results. The

close-up of the highlighted regions in Fig. 2.41a for WF and iNMF is displayed in

Fig. 2.42 (using false colours to enhance contrast of the dim features in the iNMF

results). Sub-resolution details of the tubulin structure such as fibre crossing (left part
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(a) wide-field (b) NMF

Figure 2.41: Tubulin labelled with QDs. Comparison of (a) wide-field and (b) iNMF evaluation.

Details in the highlighted regions are shown in Fig. 2.42. Scale bar 500nm.

Figure 2.42: Wide field (WF) and the iNMF results for regions marked in Fig. 2.41 with coloured

boxes. iNMF results are shown in false colours to enhance the contrast of dim features. Scale

bars 200nm.
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of Fig. 2.42) or twisting of fibres (right part of Fig. 2.42) are revealed in visualised

iNMF results.

(a) wide-field (b) iNMF

(c) CSSTORM (d) 3B

Figure 2.43: Comparison of the evaluation of a patch shown in green box in Fig. 2.41. Arrows

in (b) and (c) point at differences in structure recovered with CSSTORM and iNMF, respectively.

Arrows in (d) point at local maxima of the 3B results, corresponding to the bright pixels in the

wide-field image show in (a). Scale bar 400nm.

We compared performance of iNMF, CSSTORM and the 3B analysis on one patch

of real data. Visualisation of results from 20× 20 patch covering the green box in

Fig. 2.41 are shown in Fig. 2.43. The structure revealed with iNMF and CSSTORM
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(completely unresolved in wide-field image) differs in several places. The arrows in

Fig. 2.43b and Fig. 2.43c point at some differences in iNMF and CSTORM recovered

sample structure, respectively. However, unlike in the simulated artificial structure

(Fig. 2.33), we do not have ground truth for this dataset. Quantitative comparison of the

results is therefore difficult. The 3B analysis (20 iterations of the algorithm) delivered

very poor results Fig. 2.43d and did not provide any further information about the sub-

diffraction structure. Coloured arrows point at local maxima, which correspond to the

bright pixels in wide-field image Fig. 2.43a. These are the only significant features of

the 3B-recovered image.

Parameter Note Value

λex excitation light 405 nm

λem emission light 625 nm

texp exposure time 50 ms

NA numerical aperture 1.4

RI refractive index 1.52

pixel-size size of a pixel in image plane 79 nm

QD quantum dots QD625

T number of frames 103

Table 2.3: Parameters of the experiment.

2.9 Discussion

iNMF can recover individual highly overlapping sources of arbitrary shape. In the

preliminary work [71], we demonstrated on simulated data that iNMF can separate two

sources as close as ∼ δ/7 (∼ λem/15 = 40nm for λem = 625nm, 1000 frames, mean

intensity 500 photons/source/frame and background 100 photons/pixel/frame). The

emitters were simulated with uniformly distributed blinking behaviour (see Fig. 2.26a),
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where both sources are present in almost all frames. However, as we discuss below,

the situation becomes increasingly difficult with larger number of sources in the sub-

resolution area.

Figure 2.32b suggests that it is possible to identify most of the sources for densities

up to ρ = 40µm−2 (46 identified sources out of 58). Further increase of ρ leads to

the significant underestimation of the density (blue lines in Fig. 2.30a). The average

distance r̄ between two nearest neighbours for randomly scattered sources with density

ρ is given by [72]

r̄ =
1

2
√

ρ
. (2.24)

The mean nearest neighbour distance corresponding to the density ρ of randomly scat-

tered sources used for our simulations (see Sect. 2.8.3) is summarised in the following

table:

ρ [ µm−2] 10 20 30 40 50

r̄ [nm] 158 112 91 79 71

Table 2.4: 2D density ρ of the randomly scattered sources and the corresponding mean nearest

neighbour distance r̄.

The density 40µm−2 corresponds to∼ 10 sources within an Airy disk or in other terms

to the mean distance between the nearest neighbours of 79nm (see Tab. 2.4). However,

the probability of the source to appear ON in each frame is 0.5 (see Fig. 2.26d), which

on average reduces the density of the sources in each recorded frame by a factor of

two. For data with simulated density of 40µm−2 the mean distance between the nearest

neighbouring ON sources in each frame is therefore 112nm, (see Tab. 2.4).

Figure 2.23c shows that iNMF cannot separate all the individual sources uniformly

distributed on a line with ∼ δ/3 spacing (80nm, linear density 12.5µm−1 or average

spacing of ON sources 160nm). One iNMF evaluation recovered only a subset of all

sources. In some cases, one iNMF estimated source represents, in fact, several close

emitters. Therefore some of the estimated locations (green dots in Fig. 2.23b) fall in
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between two neighbouring emitters (red dots in Fig. 2.23b). Multiple runs of iNMF

with different starting values can recover varying subsets of sources. Therefore the

sum of these evaluations can provide more complete information about the structure,

see Fig. 2.23b, 2.33b and 2.41.

QDs are characterised by broad absorption profiles and a narrow and a spectrally tune-

able emission spectrum. A range of colours (determined by the size of QD’s core) is

readily available on the market. It is therefore possible to label the specimen with a

mixture of QDs with a variety of colours and record the intermittent sources in several

different spectral channels. This would lead to a reduction in the density of the QDs

in each colour channel and facilitate the separation of the individual sources. On the

other hand, such technique would have to deal with chromatic aberrations.

iNMF does not have any constraints on the shape of the estimated sources. We pre-

sented this as an advantage in Sect. 2.8.7, because such flexibility makes the recovery

of different PSFs possible (Fig. 2.35 and 2.36b). However, there is a lot of information

about PSF (compact and sparse object, circular symmetry), which can constrain the

space of the “credible” wwwks, and therefore make the recovery of the sources easier. The

sparse NMF algorithm, discussed in Sect. 2.4.2, is an example of reducing the exces-

sive degrees of freedom. As we demonstrated in Fig. 2.4, Hoyer’s sparse NMF did not

provide satisfactory results, though. Note that iNMF uses only a “soft” enhancement

of the wwwks sparsity (see discussion in Sect. 2.7.3).

Additional information about WWW or HHH (for example, upper bound on number of emitted

photons) can be used in two different approaches. In the first approach, we specify

the constraints on the WWW and (or) HHH and formulate NMF as an optimisation problem

(minimising Eq. (2.7)) subject to these constraints. Hoyer’s sparse NMF Sect. 2.4.2 is

in this category.

In the other (rather heuristic) approach, we can use the standard unconstrained NMF

and employ the additional information as a quality criterion for the estimated WWW and HHH.

Results, which do not satisfy this criterion can be recomputed. We can, for example,
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randomise the “unsatisfactory” sources or split wwwks with multiple local maxima into

two or more individual components. iNMF belongs to the second category.

The disadvantage of the second approach is that it does not reduce the parameter space

of the optimisation. Instead of reducing the number of local minima, it tries to search

for the “better” ones. On the other hand, all the flexibility of NMF is maintained. It

also reduces the number of parameters, which need to be set by the user.

It should be noted that NMF is applicable to any intermittent fluorescent dyes, such as

blinking fluorescent dyes used in dSTORM technique [73]. Data with high densities of

activated (and therefore overlapping) sources can be processed with iNMF. Such data

require shorter total acquisition time compared to the conventional LM methods, where

the individual emitters are separated physically by keeping the number of activated

sources sufficiently small. However, iNMF is impractical for data with high bleaching

rates. For example, in the standard fPALM techniques [22], each emitter is activated

for one data frame (or few adjacent frames) and then irreversibly destroyed by photo-

bleaching. Even though iNMF is applicable to such data, it does not make use of

the method’s major strength, which is the identification of the sources reappearing

throughout the dataset.

Poor performance of the 3B analysis in Sect. 2.8.3 was surprising. Many of well sep-

arated sources in Fig. 2.32d were completely missed in the evaluation of simulated

data. The method showed weak results even when applied to an artificial structure

Fig. 2.33d or a real dataset of QD labelled tubulin Fig. 2.43d. Despite the ability to

resolve structures on 50nm scale claimed in [37], the double lines separated by 150nm

were completely unresolved (see Fig. 2.33). These data proved to be too difficult for

the 3B method. The 3B method failed despite the fact that the simulated blinking of

the sources was generated with a Markov process (without bleaching), one of the as-

sumptions of the 3B model. The prior parameters (PSF, number of sources, blinking

rates) of the 3B algorithm were set close to the true values. We spent a considerable

amount of time to test different parameters’ prior values, but could not improve the 3B
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performance.

On the other hand, the performance of the CSSTORM was surprisingly high. Average

precision and estimated density curves Fig. 2.30 were only marginally inferior to the

iNMF results, even though we tested the method on sources densities four times higher

than in the original publication [38] (50µm−2 as opposed to 12µm−2). However, iNMF

provided higher details in the recovered artificial structure Fig. 2.33. Comparison of

the CSSTORM and iNMF methods on real data of QD labelled tubulin in Fig. 2.43 is

difficult due the fact that the true underlying structure is unknown.

The computational time for one run of iNMF is approximately 10× faster than for

CSSTORM (Sect. 2.8.3). However, for the visualisation shown in Fig. 2.43 we used the

mean of five evaluations of Algorithm 1 (see Sect. 2.8.4). Therefore the computational

time (about 2 hours for 103 frames with 21×21 pixels) is comparable for both methods.

The ability to recover the individually different overlapping sources makes iNMF

unique when compared with other methods. The only alternative method, ICA, proved

to be unsuitable model for noisy data Fig. 2.5 and 2.37. The recovery of different

shapes of the PSF can be used for the determination of the axial position of the emit-

ters Fig. 2.1. For example, Speidel et al. [74] determines the axial position of the

emitter from the diameter of the outermost ring. However, separation of the overlap-

ping out-of-focus and in-focus PSFs might be problematic due to the large difference

in brightness. Photons in the out-of-focus PSF are distributed over a much larger area

making the PSF considerably dimmer. The maximum brightness of the 1 µm out-of-

focus PSF is only 10% of the in-focus PSF (see Fig. 2.1). iNMF separated components

www6, www7 and www8 in Fig. 2.35d are partially missing in the region of overlap with the

in-focus source. This bright source took over a part of the weaker one. This effect is

apparent in all evaluations shown in Fig. 2.19.

The more promising strategy for determining the axial position of the emitters might

be using a tailored PSF, such as the double helix PSF [75] or the PSF with introduced

astigmatism [76]. Such PSFs specifically change their shapes with the axial loca-
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tion. Moreover, the PSF, however distorted, remains fairly compact over an interval of

several micrometres. The difference in the brightness of the in-focus and out-of-focus

PSFs is less pronounced (the in-focus PSF is less bright than the one in the system with-

out aberrations), facilitating the separation of individual overlapping emitters. Testing

iNMF on data with tailored PSF [76, 75] might be a subject for future work.

Note that iNMF assumes the sources are spatially fixed during the acquisition (∼ 1

min). Significant movement of the specimen during the data acquisition would produce

artefacts. iNMF can therefore be used only to live cells with movement on the scale

of minutes (“slowly” moving cells). The total acquisition time can be shortened by

reducing the number of frames. However, this can make recovery of individual sources

from high density data difficult (Fig. 2.29). As pointed out by Shroff et al. [77] there

is a trade-off between the spatial and the temporal resolution in LM.

2.10 Conclusion

In this chapter we demonstrated the non-negative matrix factorisation (NMF) as a natu-

ral model for microscopic samples labelled with quantum dots. We described a practi-

cal pipeline for the evaluation and the visualisation of realistic datasets. The individual

steps of the pipeline were illustrated on simulated data.

We introduced a procedure of NMF with iterative restarts (iNMF), which leads to bet-

ter local minima in the optimisation procedure and shows robustness in terms of the

estimated number of sources.

We introduced average precision (AP) as a quantitative measure of the algorithm per-

formance and used it for exploring the behaviour of iNMF in different experimental

settings. We also used the AP for quantitative comparison of iNMF with CSSTORM

and the 3B analysis demonstrating the superior performance of iNMF on simulated

data with highly overlapping sources.

The unique ability of iNMF to recover individually different sources from data with
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highly overlapping emitters was demonstrated on simulated three-dimensional object

and on real data consisting of randomly scattered out-of-focus QDs.

Finally, we used iNMF for evaluation of a larger area of a biological sample with

QD labelled tubulin structures. We demonstrated the ability of iNMF to show sub-

resolution features in the specimen.

In conclusion, the non-negative matrix factorisation enlarges the family of localisa-

tion microscopy techniques and enables using quantum dots as fluorescent labels for

localisation microscopy. It is a promising technique with the potential to deliver super-

resolution images of three-dimensional samples.



Chapter 3

Theoretical Limits for LM

In this chapter, we discuss the resolution limit and its application to localisation mi-

croscopy (LM) from the theoretical point of view.

In Sect. 3.1 we compare the classical resolution limit with fundamental resolution mea-

sure (FREM), introduced by Ram et al. [78]. FREM accommodates the resolution

criterion for situation of pixelated data corrupted with noise. Section 3.2 introduces

the Cramér – Rao (CR) lower bound as a theoretical framework for description of the

estimator covariance matrix. In Sect. 3.3 we use the CR lower bound to show the

derivation of the Ram’s original FREM formula. We also discuss the limitations and

problems of the original FREM. In Sect. 3.4 we derive an alternative version of FREM

and demonstrate that this version fixes strange and inconsistent behaviour of the orig-

inal FREM. Throughout the chapter we use our version of FREM. We call the Ram’s

version the “original FREM” and denote it as FREMorig. Our alternative version is

denoted as FREMstatic. In Sect. 3.5 we derive FREMblink for two emitters with inter-

mittent intensity. This expression is relevant to localisation microscopy with blinking

fluorophores, such as QDs (discussed in Chapter 2). The parameters used for data

simulation are discussed in Sect. 3.6. Section 3.7 compares FREM for blinking and

static sources in different experimental conditions and identifies the regions and ex-

perimental parameters setting, where the intermittent behaviour of the intensity allows

87
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considerable higher resolution. The discussion of the results is in Sect. 3.8.

Details of the derivations can be found in Appendix B.

3.1 Fundamental resolution measure (FREM)

The classical resolution limit Eq. (1.6) discussed in Sect. 1.4 relates to an empirical

observation and does not take into account the statistical nature of the photon detection

process. The classical resolution limit applies to a noise-free situation and neglects the

pixelation of data.

Ram et al. [78, 79] revised the resolution limit and defined a new measure, which

considers the statistical process of photon detection on a pixelated grid of a camera.

The so-called Fundamental resolution measure (FREM) refers to the achievable pre-

cision of the estimator on distance between two sources. FREM reflects the fact, that

the “resolution limit” is different for sources with different noise levels. If we want

to “resolve” two sources, the necessary separation must be larger for noisy data (weak

emitters with high background) than for data with high signal-to-noise ratio (bright

sources with low background values).

Ram et al. defined FREM as the Cramér – Rao (CR) lower bound on the standard

deviation of the source separation estimator. FREM therefore does not provide “reso-

lution criterion” such as Eq. (1.6), but gives us a notion about variability we can expect

if we try to measure the distance between two emitters. We can set the “resolution”

limit arbitrarily according to the measurement precision we are willing to accept. A

natural choice for the “acceptable precision” is the distance between the sources. I.e.

the standard deviation of the source separation measurement is equal to the separation

itself. We use this “natural resolution criterion” throughout this chapter.

It is important to note that FREM defined as the CR lower bound does not consider

any specific algorithm for the estimation of the source separation. FREM is derived

from the generative model of the dataset. The standard deviation lower bound can be
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achieved only with the “optimal” algorithm.

3.2 Cramér – Rao lower bound

Cramér – Rao lower bound is a theoretical framework for description of the estimator

covariance matrix. If L(θ) = log p(x|θ) is a log-likelihood function for data X , then a

covariance matrix QQQ of an unbiased estimator of θ̂ is bounded by [80, 81]

QQQ≥ III−1(θ), (3.1)

where the Fisher information matrix III(θ) can be expressed in two equivalent formulas

Ii j(θ) =−E
[

∂2
L

∂θi∂θ j

]

= E

[

∂L

∂θi

∂L

∂θ j

]

. (3.2)

The inequality Eq. (3.1) is in the sense that QQQ− III−1(θ) is a non-negative definite ma-

trix.

3.3 Original FREM formula (FREMorig)

Ram et al. [78] considered two sources separated by a distance d and derived the Fisher

information

I(d) =
1

4

N

∑
k=1

[

Λ1q′k(−
d
2 )−Λ2q′k(

d
2 )
]2

Λ1qk(−d
2 )+Λ2qk(

d
2 )+b

, (3.3)

where Λi is the intensity of the ith source, b is the background level in each pixel,

qk(z) =
∫

Γk
q(x− z)dx is the pixelated version of a point spread function translated by

z with Γk being the region of the kth pixel. The corresponding pixelated derivative is

q′k(z) =
∫

Γk

∂q(x−z)
∂x

dx.

The inverse of the Fisher information bounds the variance of the estimator on d

var(d)≥ I−1(d). (3.4)

FREMorig as a lower bound on the standard deviation is therefore

FREMorig =
√

I−1(d). (3.5)
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A short summary of the derivation is shown in Appendix B.

Closer inspection of FREMorig derived from the Fisher information given by Eq. (3.3)

reveals problematic behaviour of FREMorig in the limits d→ 0 (see discussion in Ap-

pendix B). The limit of very close emitters d → 0 gives, as we would expect, zero

Fisher information I(d)→ 0, and therefore FREMorig→ ∞. However, this is only for

situation, when the sources have equal intensities Λ1 = Λ2. For emitters of unequal

strength Λ1 0= Λ2 the variance remains finite even for sources infinitely close.

Another problem with this expression is that the sources are assumed to be located at

±d/2, which implies the knowledge of the origin. It is therefore not surprising that

the formula Eq. (3.3) gives non-zero Fisher information I(d) 0= 0 (i.e. finite FREMorig)

even when one source is missing (Λi = 0), because, in fact, only one source is needed

to determine the distance d/2.

In the following section we present an alternative derivation of FREM, which resolves

these problems. In contrast to the original FREMorig our version gives diverging FREM

for d → 0 even for sources with different intensities. It also diverges in the situation

when one of the sources is missing. For sources with equal intensities Λ1 = Λ2 our

version and the original version of FREMorig give identical results.

3.4 An alternative derivation of FREM (FREMstatic)

We assume two sources located along a line at positions c1 and c2 with intensities Λ1

and Λ2, respectively. If both sources have identical PSFs (here denoted as q(x)) we can

express the intensity as:

λ(ccc) = Λ1q(x− c1)+Λ2q(x− c2). (3.6)

The distance between the two sources is d = c1− c2, which is a linear combination

aaaT · ccc of the variable ccc = (c1,c2)T , where aaa = (1,−1)T . The variance of d is therefore



Chapter 3. Theoretical Limits for LM 91

given by

var(d) = var(aaaT · ccc)

= aaaT ·QQQ ·aaa, (3.7)

where QQQ is the covariance matrix with lower bound given by the inverse of the Fisher

information matrix (see Eq. (3.1) and Eq. (3.2)):

QQQ≥ III−1(ccc) =
1

I11I22− I2
12







I22 −I12

−I12 I11






. (3.8)

Expressing the elements of the covariance matrix QQQ from Eq. (3.8) and substitution to

Eq. (3.7) gives the expression for var(d) from the elements of the Fisher information

matrix

var(d) = Q11 +Q22−2Q12

≥
I11 + I22 +2I12

I11I22− I2
12

. (3.9)

We assume that the recorded images are corrupted with Poisson noise only (denoted

here as Po(n;λ), or sometimes in a shorter version Po(λ), leaving only the expectation

value λ as an argument). The probability distribution of nk photons detection in the kth

pixel is therefore

p(nk|ccc) = Po(nk;λk(ccc)) , (3.10)

where λk is the expected intensity in pixel k. It is obtained by integration of the inten-

sity distribution λ(x) from Eq. (3.6) over the area of a pixel Γk:

λk(ccc) =
∫

Γk

Λ1q(x− c1)+Λ2q(x− c2)dx+b. (3.11)

The constant b is a homogeneous background in each pixel.

If we suppose uncorrelated noise between pixels, we get the log-likelihood function

for N pixels:

L =
N

∑
k=1

log p(nk|ccc) =
N

∑
k=1

log [Po (nk;λk(ccc))] . (3.12)
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Inserting L into Eq. (3.2), the elements of the Fisher information matrix become (see

Eq. (B.32) in Appendix B for details)

Ii j(ccc) =
N

∑
k=1

1

λk

∂λk

∂ci

∂λk

∂c j
; i, j ∈ {1,2}. (3.13)

By substitution from Eq. (3.11) we get for the individual elements of the Fisher infor-

mation matrix (see Eq. (B.32) in Appendix B for details):

Ii j = ΛiΛ j

N

∑
k=1

q′k(ci)q′k(c j)

Λ1qk(c1)+Λ2qk(c2)+b
; i, j ∈ {1,2}, (3.14)

where qk(ci) and q′k(ci) are the pixelated versions (pixel area Γk) of the PSF and the

derivative, respectively:

qk(ci) =
∫

Γk

q(x− ci)dx

q′k(ci) =
∫

Γk

∂q(x− ci)

∂x
dx.

For equally strong sources (Λ1 = Λ2 = Λ) we get a compact expression for the entries

of the Fisher information:

Ii j = Λ
N

∑
k=1

q′k(ci)q′k(c j)

qk(c1)+qk(c2)+b/Λ
; i, j ∈ {1,2}, (3.15)

and due to the symmetry of the entries (I11 = I22 and I12 = I21) the variance Eq. (3.9)

can be expressed as

var(d)≥
2

I11− I12
. (3.16)

Inserting the matrix elements Eq. (3.15) into Eq. (3.16) shows that for situations where

the background level is considerably smaller than the intensity b/Λ1 1, the lower

bound on variance scales with the sources’ intensity Λ as

var(d) ∝
1

Λ
. (3.17)

However, the exact value depends on the shape of the PSF q(x).

In Appendix B we show the equivalence of the original FREMorig Eq. (3.3) and our

version Eq. (3.14) for sources with equal strength (Λ1 = Λ2). However, as we demon-

strate in Sect. 3.7.1, the expression gives very different results for sources of unequal

intensity.
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FREMstatic computed from Eq. (3.14) have reasonable behaviour in the limits d → 0

and d → ∞ (see Sect. B.4 for details). The limit of very close sources (d → 0) gives

FREMstatic→ ∞ for any value of Λi and Λ j. Also, in contrast to the original FREMorig

expression, our FREMstatic diverges if one of the sources is missing Λi = 0, because

we do not make any assumption about the symmetry with respect to the origin.

For well-separated sources (d→∞) the off-diagonal elements of the Fisher information

matrix vanish (Ii j = 0 for i 0= j) and from Eq. (3.9) we get

var(d)≥
1

I11
+

1

I22
. (3.18)

Fraction 1/Iii is the lower bound on the variance of the single source location ci es-

timator. This can be obtained from the general expression of the Fisher information

for Poisson distributed data (see Eq. (B.16) in Appendix B). The bound on the total

variance is therefore composed from the sum of bounds on variances for localisation

of individual sources, as we expect.

3.5 FREM for blinking sources (FREMblink)

Fundamental resolution measure discussed in the previous section considers only the

total number of photons Λi emitted by each source si. In this section we derive

FREMblink for sources with intermittent intensity and compare it to the “static” FREMstatic

derived above.

To address this question we assume a simple model of Poisson distributed data with

expected pixel values λk (Eq. (3.11)). To account for the intermittent behaviour of the

intensity, we turn the intensity vector ΛΛΛ = (Λ1,Λ2) into a random variable distributed

over four distinctive states (indexed with a superscript α):

{

ΛΛΛα=1 = (Λ1,0), ΛΛΛα=2 = (0,Λ2), ΛΛΛα=3 = (Λ1,Λ2), ΛΛΛα=4 = (0,0)
}

, (3.19)

which is a simple model of, for example, two blinking quantum dots. The expected
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intensity in the kth pixel when ΛΛΛ is in the state ΛΛΛα is then λα
k = λk(ΛΛΛ

α):

λα=1
k = Λ1qk(x− c1) +b,

λα=2
k = Λ2qk(x− c2)+b,

λα=3
k = Λ1qk(x− c1)+Λ2qk(x− c2)+b,

λα=4
k = +b, (3.20)

where homogeneous background b was added to each pixel.

3.5.1 Averaging the Fisher information

The “averaging” of the Fisher Information matrix presented in this section assumes

knowledge of the intensity state (ON/OFF) of each source in every acquired frame.

This information is not accessible in the real situation. However, we show the deriva-

tion to emphasise the difference between this approach and the more realistic situation,

where the intensity states are described by probability distribution (Sect. 3.5.2).

If the intensity states ΛΛΛ were known, we would write the log-likelihood function as

L(θ,Λ) =
N

∑
k=1

log(lk(θ,ΛΛΛ)) . (3.21)

and the expected Fisher information matrix would become an average over the indi-

vidual known states (see Appendix B for details)

I(θ) =
∫

ΛΛΛ
p(ΛΛΛ)I(θ,ΛΛΛ)dΛΛΛ,

where p(ΛΛΛ) is the distribution of the ΛΛΛ states and I(θ,ΛΛΛ) is the Fisher information

computed for a specific value of ΛΛΛ (see Eq. (3.11) and Eq. (3.13)). For discrete states

of ΛΛΛα shown in Eq. (3.20) we get

I(θ) = ∑
α

p(ΛΛΛα)I(θ,ΛΛΛα), (3.22)

where the Fisher Information for every configuration of ΛΛΛα is averaged with weights

p(ΛΛΛα).
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3.5.2 Integrating over the intensity states

However, we assume that the variable ΛΛΛ is fully described by the probability p(ΛΛΛ) over

the states. The exact state in time frame is unknown. Therefore we have to integrate

over ΛΛΛ. The likelihood function is then

l(θ) =
N

∏
k=1

p(nk|θ)

=
N

∏
k=1

∫
ΛΛΛ

p(nk,ΛΛΛ|θ)

=
N

∏
k=1

4

∑
α=1

p(nk|θ,ΛΛΛα)p(ΛΛΛα). (3.23)

This complicates the evaluation of the Fisher information matrix Eq. (3.2) because of

the summation within the logarithm in the log-likelihood

L(θ) = log l(θ) = ∑
k

log

(

4

∑
α=1

p(nk|θ,ΛΛΛα)p(ΛΛΛα)

)

. (3.24)

In Appendix B we show that the Fisher information matrix for uniform distribution

p(ΛΛΛα) = 1
4 over the four intensity states Eq. (3.19) is given by

Irs(θ) =
N

∑
k=1

Ek





(

∑4
α=1

∂Po(λα
k )

∂cr

)(

∑4
α=1

∂Po(λα
k )

∂cs

)

(

∑4
α=1 Po(λα

k )
)2



 , (3.25)

where Ek [.] represents the expectation value with respect to p(nk,ΛΛΛ|θ) (see Eq. (3.24)).

Expressing the derivatives and the expectation value gives

Irs(θ) =
1

4

N

∑
k=1

(

∂λα=r
k

∂cr

)(

∂λα=s
k

∂cs

)

×

× ∑
nk≥0





(

∑α∈{r,3} Po(nk;λα
k )

(nk−λα
k )

λα
k

)(

∑α∈{s,3} Po(nk;λα
k )

(nk−λα
k )

λα
k

)

∑4
α=1 Po(nk;λα

k )



 . (3.26)

In Appendix B we show that the limit d → 0 gives var(d)→ ∞ and the limit d → ∞

gives var(d) ≥ 1
I11

+ 1
I22

. We also show, that for well-separated sources (d → ∞) and

negligible background (b1 Λ) the variance var(d) is identical for both blinking and

static situation, if the total number of emitted photons is kept constant.
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3.6 Experimental parameters and numerical evaluations

We made a comparison of the original FREMorig formula computed from the Fisher

information Eq. (3.3) with our proposed fixed FREMstatic formula computed from

Eq. (3.14), for sources with static intensity. We also compared the static situation

with FREMblink for sources with intermittent intensity computed from Eq. (3.26).

We considered 625nm emission light wavelength and 1.2NA objective. Images were

pixelated with 80×80nm pixels. Various intensities of the emitters Λi and pixel back-

ground levels b were considered.

The pixelated version qk(ci) of the continuous PSF q(x− ci) and the corresponding

derivatives q′k(ci) from Eq. (3.3) and Eq. (3.14) were computed by summing 10× 10

pixels of 10× oversampled images (approximation of the continuous PSF q(x) on the

8×8nm grid). The pixelated λα
k in Eq. (3.25) was computed in a similar manner.

The expectation values in Eq. (3.25) were evaluated using the expression Eq. (3.26).

The set of images for a range nk = [0..nmax] was computed to perform the summation

∑nk≥0. The value of nmax was set such that the Poisson cumulative distribution function

F(n) for the pixel with the maximum intensity satisfies F(n > nmax) > 1− t, with

t = 10−6.

3.7 Results

We computed the FREM for simulated datasets corresponding to different experimen-

tal settings, such as the separation of the sources d, the total number of emitted pho-

tons by each source Λ and the background offset b in the recorded frames. FREM

gives us the lower bound on the standard deviation (
√

var(d)) for the measurement of

the source separation d. The source separation equivalent to FREM (d=FREM) can

be considered as a “natural resolution limit”, which takes the statistical nature of the

photon detection into account.
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3.7.1 Comparison of the original FREMorig and proposed FREMstatic

formula

We compared FREMorig computed from the original Eq. (3.3) and our proposed FREMstatic

Eq. (3.14) formula of the Fisher information for two static sources. It can be shown

(Appendix B), that if the sources have equal strength (Λ1 = Λ2), both formulas give

identical results. However, for unequal sources Λ1 0= Λ2 the FREM values differ sig-

nificantly.
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Figure 3.1: Comparison of the original FREMorig formula computed from Eq. (3.3) (dashed line)

and our proposed FREMstatic formula Eq. (3.14) (solid line) for two sources with unequal inten-

sities Λ2 = 2Λ1 and background b = 100 photons/pixel. The black dotted curve corresponds to

FREM=d (“natural resolution limit”). This would be a straight line with unit gradient in a linear

plot.

The sources si were represented with an in-focus PSF centred at ci. The intensity of s2

was set to double of the intensity of s1: Λ2 = 2Λ1. Three different intensity levels Λ1 =

500, 3000 and 104 photons with homogeneous background b= 100photons/pixel were

considered. Figure 3.1 shows FREM (lower bound on
√

var(d)) for a range of sources

separations d evaluated with the original FREMorig, computed from Eq. (3.3) (dashed

line) and our proposed FREMstatic Eq. (3.14) (solid line).

The FREMorig formula gives consistently lower values then FREMstatic (dashed curves
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are under the solid lines for the whole range of d in Figure 3.1). The original FREMorig

(dashed curves) also tends to finite values even for d→ 0. We discuss this behaviour

further in Sect. 3.8.1.

3.7.2 FREM for static and blinking sources

In order to compare the blinking situation Eq. (3.25) with the static case Eq. (3.14) we

evaluated FREMstatic and FREMblink as a function of the source separation d. For the

blinking situation we considered equal strength of the sources

Λblink
1 = Λblink

2 = 2Λ (3.27)

and the homogeneous background bblink in each pixel of each frame. Because the

sources are “ON” only in 50% of the cases (see Eq. (3.20)), the total number of emitted

photons per source per frame is Λ on average.

For the static case we considered the situation of two sources emitting with equal

intensities. To keep the total number of emitted photons per frame equal to the blinking

case, we set the intensity

Λstatic
1 = Λstatic

2 = Λ. (3.28)

The background values are equal for the blinking and the static case bblink = bstatic.

Comparison of FREM as a function of the separation d for the blinking and the static

case is shown in Fig. 3.2. Three different values of the total number of photons Λ were

considered in the semi-logarithmic plot Fig. 3.2a. All curves are computed for a fixed

background level b = 100 photons/pixel.

The ratio of the FREM curves

r =
FREMstatic(d)

FREMblink(d)
(3.29)

for the blinking and the static case are shown in Fig. 3.2b. The plot shows how many

times is the FREMblink lower when compared to the FREMstatic. Figure 3.2c shows the
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(c) FREM (fixed Λ = 1500 photons)

0 200 400 600 8000

1

2

3

4

5

6

Distance d [nm]

r

 

 

b=500
b=100
b=10

(d) Ratio of the curves form (c)

Figure 3.2: Left: FREM (a) for fixed background b = 100 photons and three different intensities

Λ of the sources and (c) for fixed total number of emitted photons Λ = 1500 and three different

values of background b. Dashed lines correspond to the blinking situation FREMblink Eq. (3.25),

solid lines correspond the static situation FREMstatic Eq. (3.14). Right: Ratio r of the static

(solid) to blinking (dashed) curves showing how many times is FREMblink lower compared to the

FREMstatic. The classical resolution limit δ (radius of an Airy disk) corresponds to δ = 320 nm.

FREM curves for three different background values b. The total number of emitted

photons per source was set to Λ = 1.5 ·103 photons.

FREMblink (dashed curves) is in general lower than FREMstatic. The exception is a
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small region centred at around 300nm (see Sect. 3.8.3 for more discussion). The differ-

ence between the curves is most pronounced for closely spaced sources (d < 100nm)

and data with high signal-to-noise ratio (red curves - bright sources with low back-

ground).
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(c) FREMstatic - top view
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(d) FREMblink - top view

Figure 3.3: Top: FREM for (a) static and (b) blinking situation for two sources separated by

d = 40 nm. Bottom: Top view on the surfaces. Red plane corresponds to situation when FREM

is equal to the separation of the sources d = 40 nm. The region, where the surface is above the

red plane (in black) does not allow precise estimation of d (FREM > d). Examples of the data

frames corresponding to the points in the Λ×b plane are shown in Fig. 3.4.

For further comparison of the static and the blinking FREM, we fixed the separation

between the two sources to d = 40nm and computed FREM for a range of background
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b and intensity Λ values. Figure 3.3 compares the static (left) with the blinking situ-

ation (right). The red plane corresponds to the “natural” resolution limit FREM = d

(see Sect. 3.1), where the lower bound on standard deviation of the distance estimation
√

var(d) is equal to the separation d. In the region, where the black surface is above

the red plane, the distance estimation is very imprecise. This region corresponds to the

sources closer than the “natural resolution limit”. These (black) regions can be easily

observed from the top view shown in the bottom plots of Fig. 3.3 demonstrating the

increase of the “resolution region” for the blinking case.
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Figure 3.4: Illustration of two simulated sources separated by d = 40 nm with intensity Λ (to-

tal number of emitted photons per source per frame) and the background b. Data were cor-

rupted with Poisson noise. The red dots indicate the positions of the sources. The layout corre-

sponds to Fig. 3.3. Numbers at the top and the bottom of each figure state the ratio (in percent)

rB = FREMblink/d×100 and rS = FREMstatic/d×100 for the blinking and the static situation,

respectively, indicating the how many percent of the separation d represents the FREM value.

The smaller the values, the higher the precision of the distance estimator.
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Figure 3.4 shows the noisy images of two sources with parameters b and Λ with layout

similar to the graphs in Fig. 3.3. The black regions from Fig. 3.3c and Fig. 3.3d cor-

respond to extremely noisy data (top right corner) and the high FREM values are not

surprising.

For high signal-to-noise ratio data (high Λ and low b, see bottom-left corner of Fig. 3.3

and Fig. 3.4) the lower bound on the standard deviation of the separation d = 40nm es-

timation can be as low as 7nm for the blinking case FREMblink (Fig. 3.3b). FREMstatic

are approximately three times higher (∼ 20nm, Fig. 3.3a). Note that the FREMblink

surface in Fig. 3.3b for the blinking situation has much steeper increase from the sub

40nm region than the surface for the static case Fig. 3.3a.
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Figure 3.5: FREMstatic and measured standard deviation (
√

var(d)) for the estimation of the

separation between two simulated noisy static sources (Λ1 = Λ2 = 500 photons). A homoge-

neous background of (a) b = 100 photons/pixel and (b) b = 0 photons/pixel was added to each

simulated image before realisation of Poisson noise. FREMstatic is shown as a red dashed line.

Estimated standard deviation from 1000 different realisation of Poisson noise is plotted with blue

circles. (a) FREMstatic curve shows a distinct “dip” at 300nm when background noise is present

in the recorded images. (b) For background-free data FREMstatic curves are monotonically de-

creasing. The measured values are under the FREMstatic curves due to the initialisation of the

maximum-likelihood fitting with ccctrue (see discussion in the text).

The FREMstatic formula for static sources derived from Eq. (3.14) shows an interesting
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Figure 3.6: Two simulated sources separated by distance d [nm] with intensity Λ [total num-

ber of emitted photons per source]. The background was set to b = 100 photons/pixel and

the images were corrupted with Poisson noise. The red dots indicate the positions of the

sources. Numbers at the top and the bottom of each figure state the ratio (in percent)

rB = FREMblink/d × 100 and rS = FREMstatic/d × 100 for the blinking and the static situa-

tion, respectively, indicating the how many percent of the separation d represents the FREM

value. The smaller the values, the higher the precision of the distance estimator. The classical

resolution limit δ (radius of an Airy disk) corresponds to δ = 320 nm.

behaviour for weak sources with large background values. The red dashed curve in

Fig. 3.5a shows FREMstatic for two sources of equal intensity Λ1 = Λ2 = 500 photons

with background b= 100 photons/pixel. This parameter settings corresponds to the top

line in Fig. 3.6. Contrary to our intuition, FREMstatic is not monotonic with separation

d, and the FREMstatic curve shows a “dip” at d ≈ 300 nm.

After careful checking of the derivation and the numerical calculations of the curves
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(see Sect. B.8 in Appendix B for details), we interpret the dip to be a result of two

competing factors. The first factor is the decrease of FREMstatic with increasing sep-

aration d. This is in accordance with our intuition, that the separation between the

sources becomes progressively easier to estimate with increasing distance d between

the sources (reducing their mutual overlap). While this is the case for the background-

free data Fig. 3.5b, the situation is more complicated for data with noisy background.

Weak sources can “disappear” in the strong background noise if they are well separated

(cf. right of the top line in Fig. 3.6). The same sources are easier to detect if they are

close, because their overlapping PSFs create a bright object in the noisy background

(left of the top line in Fig. 3.6). The “visibility” of the sources is the second competing

factor, which decreases with d. The dip in the FREMstatic curves therefore represents

an “optimal separation” d, where the sources are already sufficiently separated to be

localised with good precision but still “visible” due to their overlapping PSFs. Further

increase of the localisation precision with d is not sufficient to compensate for the fact

that sources “disappear” in noise. Note, that for our simulation (λem = 625nm, 1.2NA)

the Abbe resolution criterion is 260nm.

A qualitative confirmation of this counter-intuitive behaviour is shown on simulated

data in Fig. 3.5. We simulated two sources separated with a distance d. The inten-

sity and the background was set to the same values as for the theoretical FREMstatic

curves (Λ1 = Λ2 = 500 photons, b = 100 photons/pixel, see top row in Fig. 3.6). For

each separation d we created M = 1000 images with different realisation of Poisson

noise. Using conjugate gradient optimisation (NETLAB function conjgrad [82]), we

found the maximum-likelihood estimator of the positions cccML = (cML
1 ,cML

2 ) of two

PSFs (see Eq. (3.11)). The initial position for the fitting procedure was set to the true

values ccctrue. The standard deviation of the M estimators dML = |cML
1 − cML

2 | is plotted

with blue circles in Fig. 3.5a and shows a “dip” similar to the one in the theoretical

FREMstatic curve. For zero background (b = 0) FREMstatic is monotonically decreas-

ing (the dashed red line in Fig. 3.5b). Standard deviation of the M estimators is plotted
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with blue circles in Fig. 3.5b. No dip is observed in this case.

Note that the measured values of the standard deviation (blue circles) are lower than

the theoretical lower bound (red dashed curve). This is likely due to the initialisation

of the maximum-likelihood fitting with ccctrue. Random initialisation would be more ap-

propriate, but the measured standard deviation does not provide curves smooth enough

to show the “dip” clearly.

3.8 Discussion

This section contains a general discussion about FREM and the results presented

above. We also discuss and explain the strange behaviour of the original FREMorig

curves.

In Sect. 3.8.1 we give some insight into the behaviour of FREMstatic by visualisation of

the expected log-likelihood surface. We consider the Fisher information as a measure

of the surface’s curvature. Section 3.8.3 compares the difference between the averag-

ing and integrating over the intensity states ΛΛΛααα in the Fisher information matrix for

blinking sources. In Sect. 3.8.4 we comment on the scaling of FREM with background

and the sources’ intensity and in Sect. 3.8.5 we shortly discuss noise in the recorded

images and in Sect. 3.8.6 we make a link to the iNMF results.

3.8.1 Visualisation of the expected log-likelihood surface

In order to understand the behaviour of the Fisher information matrix, we visualised

the surface of the expected log-likelihood Eq. (3.12) as a function of the parameter

ccc = (c1, c2) in Fig. 3.7:

Ep(n|λtrue) [L(ccc)] = Ep(n|λtrue)

[

N

∑
k=1

log p(nk|λk(ccc))

]

=
N

∑
k=1

(

λtrue
k logλk(ccc)−λk(ccc)

)

+A. (3.30)
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Figure 3.7: Surface of the expected log-likelihood Eq. (3.30) as a function of ccc = (c1, c2) for

different separation d between the two sources, located at ccctrue (marked with red dot). The

point where the sources exchange their locations is marked with blue cross. The classical res-

olution limit corresponds to δ = 320 nm. Movement along the “top-left to bottom-right” diagonal

represents moving the points apart (see Fig. 3.8 for details).
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(a) (b)

(c) (d)

Figure 3.8: Illustration of the translation of sources s1 and s2 along line l and the corresponding

movement in the parameter space from Fig. 3.7.

Note that the expectation is taken with respect to the “true” distribution λtrue = λ(ccctrue),

while the log-likelihood L is a function of ccc. A is independent of ccc.

The surface in Fig. 3.7 shows the average log-likelihood for a model with two sources

s1 and s2 located at c1 and c2, respectively, for data generated from a model consisting

of two sources strue
1 and strue

2 located at ctrue
1 and ctrue

2 , respectively, corrupted with

Poisson noise. Parameters of the simulation were Λ = 103, b = 100 and wavelength

625nm.

The correspondence between the (c1,c2) space of Fig. 3.7 and the physical movement

of the sources is illustrated in Fig. 3.8. The coordinates (c1,c2) represent the positions

of two sources on a line l intersecting both sources s1 and s2. The origin o = (0,0)

corresponds to the geometric centre between ctrue
1 and ctrue

2 . Moving along the top-

left to bottom-right diagonal (Fig. 3.8a) represents a symmetrical movement of s1 and

s2 in opposite directions with respect to o, while moving parallel to the top-right to

bottom-left diagonal (Fig. 3.8b) represents the translation of s1 and s2 together along
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l, while keeping their distance from each other constant. Moving along a vertical

line corresponds to the situation, where the position of s1 fixed while s2 is moving

(Fig. 3.8c) and vice versa for horizontal lines (Fig. 3.8d).

For well-separated sources the surface (Fig. 3.7a) has a sharp maximum at ccctrue =

(ctrue
1 ,ctrue

2 ) (red dot in Fig. 3.7a). In fact, there is another equivalent maximum (blue

cross in Fig. 3.7a) as the points are interchangeable and the surface is symmetrical

along top-right to bottom-left diagonal. It is important to note that the surface falls

sharply in all directions around the maximum. In other words, the likelihood of a

model s1 and s2 for data generated from strue
1 and strue

2 drops quickly once the s1 and s2

move anywhere from the “true” locations ccctrue.

Once the true sources strue
1 and strue

2 come closer together (Fig. 3.7b,c), the maximum

of the surface becomes less pronounced, especially along the top-left to bottom-right

diagonal. The likelihood of a model s1 and s2 is not very sensitive to small symmetrical

movement of s1 and s2 with respect to o = (0,0).

Once the sources strue
1 and strue

2 get very close, the saddle point in o disappears and turns

into a flat crest (Fig. 3.7d). The likelihood becomes insensitive to small variations of

s1 and s2.

The Fisher information matrix Eq. (3.2) describes the curvature (Hessian) at ccctrue (red

dot in Fig. 3.7a). For well-separated sources Fig. 3.7a, the curvature is very high in all

directions, resulting in a large determinant of the Hessian matrix, which in turn results

in a small variance var(d) of the distance d =
∣

∣ctrue
1 − ctrue

2

∣

∣ estimation (see Eq. (3.8)).

Once the “true” sources get closer, the curvature at the surface maximum decreases

leading to larger var(d). For very close “true” sources, the determinant of Hessian

becomes zero, and the lower bound on var(d) diverges.

The situation of infinitely close sources ctrue
1 = ctrue

2 , shown in Fig. 3.7d is equivalent

to the situation with one source of double intensity and the second source missing,

resulting in a divergence of var(d) in accordance with our discussion of Eq. (3.14) of

the limit d→ 0 (see Sect. B.4 in Appendix B).
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Figure 3.9: Surface of the expected log-likelihood Eq. (3.30) as a function of ccc = (c1, c2) for

different separations d between two sources of unequal intensity Λ2 = 2Λ1, located at ccctrue

(marked with a red dot). The position where the sources exchange their true locations is marked

with a blue cross.

The symmetry of the surface breaks when we consider two sources with unequal in-

tensity (Λ1 0= Λ2), because such sources are no longer interchangeable. The situation

for Λ2 = 2Λ1 is shown in Fig. 3.9. The displacement of the stronger source (s2), which

corresponds to the movement along the vertical lines in Fig. 3.9e-h (see Fig. 3.8 for

explanation), has a dramatic effect on the likelihood of the model. The surface drops

steeply in the horizontal direction, while it decreases rather slowly along the horizontal

line (displacement of the weaker source s1). For the limit d→ 0, shown in Fig. 3.9d,h,

the flat crest in the origin still exists (which results in a divergence of var(d)), however

it is not aligned with the top-left to bottom-right diagonal as for the equal sources (see

Fig. 3.7d,h). There is a non-zero curvature along this diagonal.

The Fisher information for the original FREMorig formula Eq. (3.3) is derived from

the curvature of the surface along the top-left to bottom-right diagonal (symmetrical

displacement of the sources with respect to the origin cf. Fig. 3.8). For the symmetrical

situation Λ1 =Λ2 the original FREMorig gives the correct results (see Appendix B for a

mathematical explanation), however, for the asymmetrical case Λ1 0= Λ2 the non-zero
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curvature along the diagonal results in finite FREMorig even for the limit d→ 0. Our

proposed derivation of FREMstatic from the Fisher information matrix (see Eq. (3.7))

accommodates for the unequal sources correctly and gives diverging FREMstatic for

this limit.

3.8.2 Blinking vs static sources

Figure 3.2 and Fig. 3.3 suggest that the intensity blinking can facilitate localisation

of closely separated sources when compared to the static situation. The difference is

more pronounced for data with high signal-to-noise ratio (low b/Λ). Quantum dots

with intermittent intensity and an order of magnitude higher brightness than the or-

ganic fluorophores are therefore interesting for localisation microscopy even from a

theoretical point of view.

3.8.3 Integrating out Λ vs averaging
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Figure 3.10: Comparison of FREMblink computed from the Fisher information with integration

over the states within the log-likelihood function Eq. (3.23) (dashed lines) and the averaging of

the Fisher information over different intensity states Λα Eq. (3.22) (solid lines). Background was

set to b = 100 phot/pixel. Dotted black line corresponds to FREMblink= d.

As we pointed out in Sect. 3.5, in the real situation we do not know the intensity states
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ΛΛΛα of the individual emitters in each frame (see Eq. (3.19)). We have to therefore

integrate (sum) over these states within the likelihood function Eq. (3.23), rather than

average the Fisher information over different configurations of ΛΛΛα as in Eq. (3.22).

To further emphasise the difference between the “integrating over states in” and “aver-

aging of” the Fisher information we plot FREMblink as a function of the separation d

for both concepts in Fig. 3.10.

FREMblink computed from the averaged Fisher information is consistently lower for

the whole range of d. It is also lower than the FREMstatic curves for static sources

(solid lines in Fig. 3.2b), which in certain region cross the FREMblink corresponding to

the blinking sources (dashed lines in Fig. 3.2b). In other words, if we knew the intensity

configurations ΛΛΛα of the blinking sources in each recorded frame, we would be able to

reach the highest estimation precision. In the blinking situation with the probabilistic

description of the intensity states, the integration (summation) over all possible states

is required and the estimation precision is lower.

Note, that the averaging approach does not results in divergence of the FREMblink for

the d→ 0 limit (see Fig. 3.10a). This is due to the fact that we assume the configura-

tion of the intensity state in each frame to be known. We can therefore determine the

position of each source individually from the frames, where only one source is emit-

ting (ΛΛΛα=1 and ΛΛΛα=2 in Eq. (3.19)). The averaging Eq. (3.22) fills in the (otherwise

zero) diagonal entries of the Fisher information matrix with non-zero values and we

get a finite precision for the separation estimation even when d = 0.

3.8.4 Scaling of FREM for different levels of intensity and back-

ground

The Fisher information matrix Eq. (3.15) for two sources with equal (static) intensity

Λ1 =Λ2 =Λ suggests that increasing the intensity of the sources by a factor of M, leads

to approximately M times higher Fisher information matrix entries (and therefore a
√

M times lower FREM). More precisely, the dependency of the entries on the intensity
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and the background is as follows

{

Istatic
Λ,b

}

i j
= Λ

A

B+b/Λ
, (3.31)

where A and B are independent of Λ and b. The subscripts Λ, b in IΛ,b express the para-

metric dependency of the Fisher information on the intensity and background values.

Note that the background and the intensity appear as a ratio b/Λ in Eq. (3.31), but the

whole expression is multiplied by Λ. An M fold increase of the acquisition time leads

to an M fold increase of both the total number of emitted photons and the background

b. In this case we get a
√

M fold decrease of FREMstatic. For zero background b = 0

FREMstatic ∝
1√
Λ
. (3.32)

The scaling with Λ and b of the Fisher information entries for the blinking case is more

complicated. In Appendix B we show, that the blinking situation gives results equal

to the static situation (up to a factor of 1/2, accounting for half of the total number of

emitted photons) for the limit of well-separated sources (d→ ∞) and zero background

(see Eq. (B.89) in Appendix B). In the non-zero background situation, b appears within

the arguments of Poisson terms organised in a complicated fraction (see Eq. (B.84)

in Appendix B) and the dependence of the Fisher information matrix entries on the

background is therefore highly non-linear.

3.8.5 A note on noise

The Poisson distribution models noise associated with the photon detection [9]. This

noise, derived from the nature of the signal itself, is often called “shot noise” [83] and is

present even under ideal imaging conditions free of any noise introduced by the sensor.

Noise introduced by the sensor is usually divided into two components: the dark noise

(or dark current), which represents the electrons thermally generated in the detector,

and the read-out noise (or read noise) associated with analogue-to-digital conversion of

the signal. The dark noise (Poisson distributed) is efficiently eliminated by the cooling
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of the sensor and is negligible in high-performance cameras. The read-out noise is

assumed to follow a Gaussian distribution and is characterised by a standard deviation

(often called r.m.s.). The read-out noise depends on the read-out frequency and can

be reduced by optimising the design of the detector’s electrical circuits. The standard

deviation of the read-out noise for a typical scientific CCD camera is 5-10 electrons.

We assume Poisson distributed data throughout this chapter. We therefore neglect the

read-out noise of the sensor and assume only the shot noise to be present in the recorded

images. Ram et al. [78] shows a modification of the Fisher information for a model

combining both Poisson (shot) and Gaussian (read-out) noise.

3.8.6 Comparison to iNMF results

In Sect. 3.1 I mentioned that the standard deviation lower bound can be achieved

only with the “optimal” algorithm. In Sect. 2.9 we discussed on simulated data that

iNMF can separate two sources as close as 40 nm for sources with intensity 500 pho-

tons/source/frame and background 100 photons/pixel/frame. These parameters corre-

spond to the dashed green curve in Fig. 3.2a. The ”natural” resolution limit (intersec-

tion with the blacked dotted line - FREMblink=d) for this parameters is ∼ 20 nm. We

see that iNMF is a somewhat sub-optimal algorithm from this point of view.

3.9 Conclusions

The alternative derivation of the fundamental resolution measure (FREMstatic) provides

correction to the original formula published by Ram et al. [78]. The results presented

in Fig. 3.2 suggest that the blinking sources can significantly increase localisation pre-

cision compared to the static situation if the total number of emitted photons is kept

equal. The increase of the localisation precision for blinking sources is stronger for

close (d < 50nm) and bright (Λ > 1000 photons/source/frame) sources with lower

background levels (b < 100 photons/pixel/frame). For well-separated sources (d→∞)
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the static and the blinking situations give identical results.

Background has a large impact on the localisation precision. It is desirable to keep

background as low as possible. In practice a large proportion of the background in-

tensity comes from the out-of-focus light. Typically TIRF (Total Internal Reflection

Fluorescent microscopy) illumination of the sources is used to reduce the out-of-focus

blur. However, different techniques such as sparse illumination of the sample can be

used.

Note that the Cramér – Rao lower bound approach gives a lower bound for the variance

of the distance d estimator. The actual “localisation precision” depends on the specific

algorithm we use for localising the individual sources. For example, our proposed LM

algorithm discussed in Chapter 2 computationally separates the overlapping sources

before localisation. The ability to separate the individual emitters is the limiting factor

in this case. It is also important to note that the “localisation” becomes much harder

with increasing number of emitters in the sub-diffraction area. The pixellation is taken

into account through Eq. (3.11).

In summary bright sources with low background levels (high signal-to-noise ratio) are

desirable for the LM techniques. In this setting the blinking provides lower FREM val-

ues for closely spaced sources. This makes bright sources with intermittent intensity,

such as quantum dots, an interesting candidate for localisation microscopy.



Chapter 4

Line Scan - Structured Illumination

Microscopy

In this chapter we discuss a combination of structured illumination microscopy with

line scanning. The work has been done in collaboration with Institute of photonic

technology (IPHT) Jena in Germany. The work has been recently published in Optics

Express [84]:

O. Mandula, M. Kielhorn, K. Wicker, G. Krampert, I. Kleppe, and R. Heintzmann,

”Line scan - structured illumination microscopy super-resolution imaging in thick fluo-

rescent samples,” Optics Express 20, 24167 (2012).

G. Krampert, I. Kleppe, and R. Heintzmann has designed the ELYRA setup with scan-

ning head. Martin Kielhorn and I developed the electronic part of the setup synchro-

nising the line scanning with switching of the laser light. I have taken the experimental

data and optimised the acquisition procedure. I evaluated the data together with Kai

Wicker and Rainer Heintzmann, and I wrote the manuscript. All the authors discussed

the manuscript before submission.
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http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-20-22-24167
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4.1 Structured illumination microscopy

Structured illumination microscopy (SIM) is a fluorescence microscopy technique pro-

viding images of biological samples with resolution surpassing the classical diffraction

limit [85, 25]. SIM requires modification of the illumination part of a wide-field fluo-

rescent microscope such that the sample is illuminated with a spatially varying inten-

sity pattern. The most common pattern used in SIM consists of dense stripes with

a sinusoidal profile [86]. This pattern is typically generated by laser light passing

through an optical grating (we denote this as the SIM grating) and focused with an

objective into a sample [87]. The SIM grating is placed in the plane conjugate to the

sample plane and therefore translation and rotation of the optical grating result in trans-

lation and rotation of the illumination pattern. High-resolution information is extracted

by processing images with different translation (henceforth referred to as phase) and

rotation of the illumination pattern [85, 25]. The comprehensive review of the SIM

methods can found in [88].

Despite the capability of producing optically sectioned images [89], SIM becomes

increasingly challenging when applied to thick (> 20µm) densely labelled fluorescent

samples. The wide-field-like (WF) illumination of the SIM system generates a high

intensity of out-of- focus fluorescent light. This homogeneous background is added

to the spatially modulated fluorescent emission and reduces the pattern modulation in

the recorded images Fig. 4.1b. The additive background also increases the noise level,

which further deteriorates the quality of the pattern. As a result, the reconstructed

images are corrupted by strong noise artifacts (Fig. 4.2c,d and Fig. 4.3b).

SIM with sparse illumination patterns [90] in order to reduce the out-of-focus light has

been demonstrated recently [91]. The method was used in conjunction with assigning

detected light (pixel reassignment) to the most likely position of the emitter [92, 93].

The sparse patterns were generated by a digital micromirror device (DMD). In this

chapter, we propose generation of the sparse illumination patterns by combining the

structured illumination with line scanning (LS) microscopy.
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In the LS microscopy, the excitation light is focused into a thin line and swept across

a fluorescent sample. The out-of-focus light is discarded either by a physical confocal

slit (line confocal microscope) or computationally post acquisition [90, 94]. The axial

response of a line confocal system is discussed in [95].

The combination of the LS and SIM methods, which is the focus of this manuscript,

merges the ability of a line scanning system to physically suppress out-of-focus light

with the resolution enhancement of structured illumination. LS-SIM therefore enables

high-resolution imaging in thick fluorescent samples. This idea has been demonstrated

on simulated data [96] and in this article we show LS-SIM reconstructed images of

thick fluorescent sample.

4.2 Experimental methods

4.2.1 Setup

We used a pre-commercial prototype of the ZEISS ELYRA-S inverted microscope

(63× /1.4 N.A. objective) with a line-scanning module (ZEISS LSM DuoScan SL). A

schematic illustration of the setup is shown in Fig. 4.1. A cylindrical lens was used to

focus the laser light (488nm) into a thin scanning line. The line was focused onto a

SIM grating, with bars perpendicular to the scanning line. This produced a sinusoidal

intensity modulation along the scanning line in the sample plane (Fig. 4.1g). The phase

of the fine sinusoidal SIM pattern was controlled by translation of the SIM grating

while the orientation was changed with an image rotator (integral part of the ZEISS

ELYRA-S system) positioned between the SIM grating and the objective. This setup

therefore avoids the physical rotation of the cylindrical lens and the SIM grating.
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Figure 4.1: Illustration of the LS-SIM setup. The black arrows indicate the movement of the

line scan. Upper left inset: (a) one frame of the LS-SIM raw data In,o,p with indicated ON

(illuminated) and OFF (not illuminated) regions (see further explanation in the main text). A

close-up of the red box region is shown as (b) a wide-field SIM image IWF−SIM and (c) a line-

scan SIM ILS−SIM
o,p image. Scale bar (a-c) 2µm. Bottom right inset: Illustration of the LS-SIM

pattern formation. Real space (top row) corresponds to a SIM grating plane. Fourier space

(bottom row) represents the distribution of the intensity in the back focal plane (BFP) of the

objective (h, i, j). The aperture of the BFP is indicated as a red circle. The multiplication (×) of

the images in real space corresponds to the convolution operation (
⊗

) in Fourier space. The

intensity distribution in the sample plane is shown in (g). The Fourier transform of (g) is shown

in (k) with the border of the optical transfer function indicated as a green circle and the position

of the Fourier transformed intensity orders of the grating are indicated with red arrows.
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4.2.2 Data acquisition

During each camera (Andor iXon DU-885K) acquisition frame of 120ms, the line

was swept across the sample. The scanning galvo-mirror was synchronised with an

AOM-based modulation of the excitation laser light such that a sparse periodic pattern

consisting of thin bright (ON) lines separated by wide dark (OFF) areas was gen-

erated in the sample (Fig. 4.1a). The ratio of the ON area to the total area (ON +

OFF), the mark/area ratio (MAR) [86], was set to approximately 1/26 with 32 partially

overlapping scan positions of the line. The fine sinusoidal (SIM) modulation was su-

perimposed on each bright (ON) line creating a pattern resembling beads on a string

(Fig. 4.1a). The synchronisation was controlled with an Arduino microcontroller (MC-

NOVE, MultiComp). An illustration of the trigger signals in the microscope is shown

in supplementary figure (Appendix C).

For each orientation (o) and phase (p) of the SIM grating we acquired N = 32 images

In,o,p with different positions (n = 1..N) of the bright (ON) lines (Fig. 4.1a). The ON

lines were shifted in each image In,o,p, such that when summed over the N images, they

fill the dark areas between the lines. The sum of acquired images therefore corresponds

to a standard wide-field SIM (WF-SIM) raw image with slightly reduced modulation

of the SIM pattern:

IWF−SIM
o,p =

N

∑
n=1

In,o,p. (4.1)

A conventional WF image can be computed by summing all WF-SIM frames IWF ≈

∑o,p IWF−SIM
o,p . However, the instrument can also be switched between the line scanning

illumination and the wide-field mode. We therefore acquired genuine WF-SIM data for

comparison (Fig. 4.1b) with approximately the same total number of photons per pixel

over all necessary images.

We treat the raw data In,o,p in two distinct steps. In the first step, we take advantage

of the line scan to produce background-reduced, optically sectioned images ILS−SIM

(Eq. (4.2)) with improved SIM pattern visibility as compared to conventional WF-SIM.

In the consecutive step, we extract the high-resolution information from the structured
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illumination using conventional WF-SIM treatment of the data.

4.2.3 Data evaluation

A background reduced image with a SIM pattern of superior quality and high modula-

tion (Fig. 4.1c) can be computed from the raw data In,o,p using [90, 97]

ILS−SIM
o,p = max

n
(In,o,p)+min

n
(In,o,p)−2mean

n
(In,o,p), (4.2)

which is known to yield good results for sparse illumination patterns [97] (low MAR).

Equation (4.2) is one of many ways to obtain optical sectioning from the raw data

[89, 90], and this equation has been chosen for simplicity and robustness. Images

ILS−SIM
o,p with different phase translations (p) and orientations (o) of the SIM pattern

are passed to a SIM reconstruction algorithm [98] to produce a final reconstructed

image shown in Fig. 4.2 and Fig. 4.3a.

We used five phases (p= 1..5) and three rotations (o= 1..3) of the SIM pattern (5×3=

15 ILS−SIM images). Each ILS−SIM image requires n = 1..32 individual scan images

In,o,p. Therefore we captured 5× 3× 32 = 480 images for one reconstructed plane.

The total acquisition time was approximately 75s with 120ms acquisition time for

each frame In,o,p.

Corresponding line-confocal images (without SIM) can be computed by summing over

orientations (o) and phases (p) of the SIM pattern using the preprocessed sectioned data

ILS = ∑o,p ILS−SIM
o,p . The LS image is shown in Fig. 4.2e,f.

4.3 Results

A LS-SIM reconstruction of a Calliphora salivary gland stained with Alexa488-Phalloidin

(prepared by Otto Baumann and Eva Simbürger) is shown in Fig. 4.2i. The sample

was ∼ 30µm thick and the section was taken ∼ 5µm below the surface. We chose

this specimen because it is relatively thick and densely stained throughout the vol-
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Figure 4.2: LS-SIM reconstructed image of a Calliphora salivary gland (i). WF image (bottom-

left corner of (i)) shown for comparison. Scale bar 2µm. Selected regions (red, green) reveal

details of the actin structures: (a, b) WF image, (c, d) WF-SIM reconstruction, (e, f) LS image,

(g, h) LS-SIM reconstruction. Intensity profiles along red line in (e) and blue line in (g) is plotted

in (j) in corresponding colours. Scale bar (a-h) 1µm.

ume. This gives lot of out-of-focus fluorescence and makes the standard SIM recon-

struction difficult. The bottom left corner of Fig. 4.2i shows a wide-field (WF) image

for comparison. The out-of-focus light is dramatically reduced in the LS-SIM recon-

structed images, revealing complex structural detail within the sample. The fine actin

structure remains completely unresolved in the WF image Fig. 4.2a,b. Reconstructed

conventional WF-SIM data reveal some structural detail, but the image is severely cor-

rupted by noise artifacts (Fig. 4.2c,d and Fig. 4.3b). The WF-SIM data were taken in

the wide-field mode of the microscope prior to the LS-SIM data acquisition with the

same number of phases and orientations of the SIM pattern. The acquisition time was

120ms/frame and the laser power was adjusted to achieve an approximately similar

number of photons/pixels as for the whole series of LS-SIM data. The appropriate
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adjustment of the laser power was determined from the previous measurement using a

different region of the same sample.

Figure 4.3: Comparison of (a) LS-SIM and (b) a conventional WF-SIM reconstruction of the

blue-framed region from Fig. 4.2. LS-SIM image is less affected with noise artifacts, which

results in cleaner image. Arrows are pointing to the structures revealed in LS-SIM image. Scale

bar 2µm.

The line scan image ILS, corresponds to an image from a line confocal microscope.

It provides optical sectioning with strongly reduced out-of-focus light (Fig. 4.2e,f).

However, when compared with a wide field image, resolution in the lateral direction

has not been improved. In LS-SIM the optical sectioning capability of the line scanning

and the resolution improvement of the structured illumination combine to show very

fine details of the specimen’s inner structure (see Fig. 4.2h and arrows in Fig. 4.3a),

unresolved in WF (Fig. 4.2b) and barely visible in WF-SIM (Fig. 4.2d and arrows in

Fig. 4.3b) and LS mode (Fig. 4.2f). Due to the higher quality of the SIM pattern in

the ILS−SIM
o,p images (Fig. 4.1c), the reconstructed images are less affected by noise

artifacts compared with the conventional WF-SIM reconstruction. Some of the very

dim structures in LS-SIM are completely concealed in the WF-SIM image (magenta

arrow in Fig. 4.3 best visible directly on the screen).
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Figure 4.4: Fourier transforms (a) of a single raw scan frame In,o,p and (b) of a single ILS−SIM
n,o,p

image computed from Eq. (4.2). Red arrows point at five peaks of the illumination pattern (see

Fig. 4.1k). The second diffraction peaks are located at 70% of the cut-off frequency (green

circle). The division of the diffraction lines into several points in (a) stems from the illumination

of a multitude of lines per exposure.

Intensity profiles measured along a cross-section of a fine, vertically oriented structure

revealed in the LS (blue line in Fig. 4.2e) and the LS-SIM image (red line in Fig. 4.2g)

are shown in Fig. 4.2j. The cross-section was measured as an average of a stripe five

pixels (∼ 200nm) in width to provide smoother curves and is plotted with circular

marks of corresponding colour in Fig. 4.2j. Gaussian fits are plotted as smooth curves.

The estimated full width in half maximum (FWHM) of the LS-SIM profile was 1.6

times smaller than the one extracted from the LS image. This ratio is a rough estimate

for the resolution improvement achieved with structured illumination. In our setup,

the second diffraction orders were located at about 70% of the BFP aperture radius

(Fig. 4.4), which corresponds to the expansion of the cut-off frequency border (i.e. the

OTF support) by a factor of 1.7 after image reconstruction Fig. 4.5. This is consistent

with the above stated narrowing of the line by a factor of 1.6.
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Figure 4.5: Fourier transform of the LS image (a) with a green circle marking the cut-off fre-

quency region. The Fourier transform of the reconstructed LS-SIM image (b) shows the ex-

tension of the transferred frequencies. The extended cut-off border is shown as a red circle.

The arrows point at suspicious peaks in the spectrum possibly giving rise to the artifacts in the

reconstructed image.



Chapter 4. Line Scan - Structured Illumination Microscopy 125

4.4 Discussion

The sectioning capability and reconstruction artifact reduction demonstrated in this ar-

ticle are significant advantages of LS-SIM over conventional structured illumination

(WF-SIM). Slit scanning systems are known to be well capable of suppressing out-

of-focus light [95] and can be operated at quite high speed [99]. Even though, when

imaging a fluorescent sheet, the asymptotic intensity decay of slit scan systems is typi-

cally inferior to that of pinhole based systems (1/u vs. 1/u2 for axial distance u), axial

resolutions below a micrometer are achievable as seen in the images presented in [99].

The sectioning performance depends on the size of the illuminated volume - in our case

on the width of the ON lines - and on the mark/area ratio (sparsity) of the line illumi-

nation pattern (Fig. 4.1a). The pattern must be sufficiently sparse to avoid cross talk

between adjacent ON regions, and the ON lines should be sufficiently thin to reduce

the illuminated volume in each frame. However, sparser patterns with thinner ON lines

require more scans, increasing the total acquisition time. There is therefore a trade-off

between the sparseness of the illumination pattern and the acquisition time. In LS-SIM

we have to capture 32 times more frames than in standard WF-SIM. This requires a

highly stable setup as movement of the sample during acquisition (75 seconds for a

single slice) may impair the reconstruction. The LS-SIM reconstruction takes about 3

mins on my laptop computer (Intel R© CoreTM2 Duo @ 2GHz processor with 2GB of

RAM).

Noise artifact reduction is associated with an improvement of the signal-to-noise ratio

in the line-scanned data. Assuming Poisson noise in the CCD camera images, the vari-

ance of the noise is proportional to the signal intensity. Only a small in-focus fraction

of the sample volume is illuminated at any given time during the line scan. The fluo-

rophores in the out-of- focus regions of the specimen are excited less, which reduces

their contribution to the pixels imaging the fluorescence signal collected from the line-

illuminated in-focus region. This physical reduction of the out-of-focus background

decreases the total intensity and hence the noise variance in the detected data, render-
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ing the SIM reconstruction more accurate. A further refinement of optical sectioning

is achieved by application of Eq. (4.2), which has the effect of essentially subtracting

the out-of-focus background estimated from the OFF (not illuminated) regions in the

raw data (Fig. 4.1a).

Despite the image quality improvement, LS-SIM images (like SIM images) are not

always free of artifacts. Arrows in Fig. 4.5b point to suspicious peaks in the recon-

structed Fourier transform of the LS-SIM image. These regions are a likely source of

the reconstruction artifacts and might be caused by non-uniform bleaching of the sam-

ple during the line scanning process as suggested by peaks in the Fourier transform

of the LS image (arrows in Fig. 4.4a) or by fluctuations in laser intensity. We tried to

reduce the bleaching artifacts by shifting the ON lines (Fig. 4.1a) in consecutive scans

not in a natural consecutive order, but in an order maximising the distance between

each two consecutive ON regions.

The illustration of the LS-SIM pattern generation process in Fig. 4.1d-k highlights

specific features and limitations of the LS-SIM method. The diffraction peaks of the

SIM pattern, shown Fig. 4.1h, are smeared into line structures (Fig. 4.1j) due to the

line focusing of the illumination (Fig. 4.1e,i). While the first and zero diffraction or-

ders of the SIM grating lie well within the back focal plane (BFP) aperture, as shown

in Fig. 4.1h (BFP aperture shown as red circle), their line-illumination versions are

spread out along an orthogonally oriented line and then partially blocked (Fig. 4.1j).

The strength of the diffracted orders is therefore reduced, which in turn reduces the

modulation of the illumination SIM pattern in the sample plane. In other words, the

line scanning improves the modulation of the detected pattern (because of optical sec-

tioning) but can reduce the modulation of the actual illumination pattern. This effect

becomes stronger for finer SIM gratings, where the diffracted orders are near the border

of the BFP aperture. Finer gratings are required for further resolution improvement,

but the advantages of LS-SIM become less prominent when the line-shaped diffracted

orders (Fig. 4.1j) are nearly at the edge of the BFP aperture.
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Note that the whole LS-SIM data can be treated by a SIM reconstruction algorithm as-

suming a series of 2D illumination patterns [100]. This might provide better sectioning

and superior performance for noisy data. However, this requires an excessive amount

of computation and therefore we opted for two-step treatment of the data.

The LS and WF images have been up-sampled to the size of the reconstructed images.

This has been achieved by padding the corresponding Fourier transform by zeros. To

reduce hexagonal “knitting artifacts”, a circular window smoothly decaying outside

the support of the original optical transfer function was applied in Fourier space prior

to padding (see, for example, Fig. 4.5a).

In a recent publication [91] the sample was illuminated with a multitude of point fo-

cuses. In this case, the contrast for high illumination frequencies follows the transfer

curve of a wide field system and thus almost no contrast is present for the very high

frequencies. In contrast, the line-scan SIM illumination used in our work conserves

the high-frequency contrast very well up to only shortly below the cut-off frequency.

Therefore an enhanced super-resolution capability can be expected in our case. The

image-processing scheme in our work is also significantly different from the photon

reassignment [93] used in [91].

4.5 Conclusion

LS-SIM provides optically sectioned images of thick fluorescent samples with a sig-

nificant resolution improvement (1.6 times as measured by a line scan) in the lateral

plane. The LS-SIM reconstructed images suffer significantly less from reconstruc-

tion artifacts than conventional structured illumination. LS-SIM reveals fine details

of a biological specimen’s inner structure with higher resolution than line-confocal

microscopy and with image quality superior to conventional structure illumination.



Chapter 5

Conclusions and Future Work

5.1 Conclusion

In this thesis we have made three contributions to super-resolution methods for fluo-

rescence microscopy:

We have shown that non-negative matrix factorisation with iterative restarts (iNMF)

can separate highly overlapping intermittent sources with arbitrary shape. iNMF is

comparable in performance to other recently published methods (CSSTORM and 3B

analysis). We introduced average precision (AP) as a quantitative measure for compar-

ing the performance of the iNMF algorithm. AP can be used for data, with known true

locatins of the sources (e.g. simulated data). We compared iNMF with CSSTORM and

the 3B analysis and demonstrated superior performance of iNMF on simulated data of

highly overlapping sources. We described a pipeline for evaluating and visualising

realistic datasets, and used iNMF to show super-resolution images of experimental

data consisting of tubulin structures labelled with quantum dots. iNMF is a promising

and very accessible technique with the potential to deliver super-resolution images of

three-dimensional samples.

The combination of structured illumination with line scanning (LS-SIM) presented in

this thesis provides images of thick fluorescent samples with resolution improvement
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in the lateral plane. Line scanning reduces the out-of-focus background and the LS-

SIM images suffer less from reconstruction artefacts when compared to conventional

structured illumination. LS-SIM reveals the fine details of biological specimens’ inner

structures with higher resolution than line-confocal microscopy and with the image

quality superior to conventional structure illumination.

In addition we discuss the theoretical resolution limit for noisy and pixelated datasets.

We present an alternative derivation of fundamental resolution measure (FREM), cor-

recting the original formula published by Ram et al. [78]. We show that fluorescence

intermittency (such as quantum dots blinking) can be beneficial for resolution when

compared to the sources with static intensity.

5.2 Future Work

The unique ability of the iNMF algorithm to recover sources with different shapes

discussed in Sect. 2.8.7 allows extension of the super-resolution imaging to three di-

mensional samples. The axial position of a fluorophore can be determined from the

shape of the recovered out-of-focus PSF by, for example, determination of the diam-

eter of the outmost ring [74]. However, the conventional out-of-focus PSF decreases

quickly in brightness when compared to the in-focus PSF (see Fig. 2.1). This makes it

difficult to separate overlapping sources located in different focal planes. The bright-

ness of a tailored PSF, such as the double helix PSF [75] or the PSF with introduced

astigmatism [76] is less sensitive to defocus. The out-of-focus PSF remains compact

over defocus of several micrometres. On the other hand, the in-focus PSF is less bright

than the one in the system without aberrations. The axial position is determined from

the specific changes of the PSF shape. Testing the iNMF algorithm on data with a

tailored PSF is a logical extension of the current work.

We also want to apply iNMF to specimens labelled with standard organic fluoropho-

res dyes. For example, dSTORM [73] exploits the repetitive transfer of conventional
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fluorescent probes between bright ON states and stable and reversible dark OFF states.

This results in blinking of the fluorescent sources. The determination of the overlap-

ping sources with iNMF can significantly speed up the data acquisition.

Separate publications from Chapter 2 and Chapter 3 are in preparation.



Appendix A

NMF Algorithm

The classic NMF updates [28] minimise the generalised Kullback – Leibler (KL) di-

vergence between the data matrix DDD and its factorised version WWW HHH (see Eq. (2.7))

KL(DDD ‖WWWHHH) =−∑
xt

(

dxt log
K

∑
k=1

wxkhkt −
K

∑
k=1

wxkhkt

)

+C, (A.1)

where C is a constant independent on WWW or HHH. In Sect. 2.3 we show that minimis-

ing the KL divergence is equivalent to maximising the likelihood of the model under

assumption of Poisson noise (see Eq. (2.6) and Eq. (2.7)). The optimisation can be

solved by a scaled gradient descent method:

WWW =WWW −αW ∂ f (WWW ,,,HHH)

∂WWW

HHH = HHH−αH ∂ f (WWW ,,,HHH)

∂HHH
, (A.2)

with respect to the objective function f (WWW ,,,HHH)=KL(DDD ‖WWW HHH). The explicit derivation

of the objective function f gives

∂ f (WWW ,,,HHH)

∂wxk
=

T

∑
t=1

hkt −
[

(DDD'WWWHHH)HHH(
]

xk

∂ f (WWW ,,,HHH)

∂hkt
=

N

∑
x=1

wxk−
[

WWW((DDD'WWW HHH)
]

xt
, (A.3)

where the symbol “'” denotes the element-wise division of matrices.
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Lee and Seung [28] proposed

αW
xk =

wxk

∑T
t=1 hkt

αH
kt =

hkt

∑N
x=1 wxk

, (A.4)

which leads to compact multiplicative updates

wxk =
wxk

∑T
t=1 hkt

[

(DDD'WWW HHH)HHH(
]

xk

hkt =
hkt

∑N
x=1 wxk

[

WWW((DDD'WWWHHH)
]

kt
. (A.5)

Penalty terms JW (WWW ), JH(HHH) can be added to the objective function f (WWW ,,,HHH) to en-

force auxiliary constraints [45]:

f (WWW ,,,HHH) = f (WWW ,,,HHH)+βW JW (WWW )+βHJH(HHH). (A.6)

With a choice of

αW
xk =

wxk

∑T
t=1 hkt +βW ∂JW

∂wxk

αH
kt =

hkt

∑N
x=1 wxk +βH ∂JH

∂hkt

, (A.7)

the multiplicative updates change to

wxk =
wxk

∑T
t=1 hkt +βW ∂JW

∂wxk

[

(DDD'WWWHHH)HHH(
]

xk

hkt =
hkt

∑N
x=1 wxk +βH ∂JH

∂hkt

[

WWW((DDD'WWWHHH)
]

kt
. (A.8)



Appendix B

Resolution Limit for Blinking QDs

This is derivation of the Fisher information for Poisson distributed variable X with

mean λ(θ):

X ∼ Po(n;λ) =
λne−λ

n!
. (B.1)

B.1 Likelihood

Likelihood of the Poisson distributed variable with detection nk in K pixels:

l(θ) =
K

∏
k=1

lk =
K

∏
k=1

λnk
k e−λk

nk!
, (B.2)

where lk(θ) = p(nk|θ) to emphasise the dependency on the parameter θ.

Log-Likelihood:

L =
K

∑
k=1

Lk, (B.3)

where

Lk = nk logλk−λk− lognk!. (B.4)
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B.2 Fisher Information

The Fisher information can be expression in these equivalent forms:

I(θ) =−E
[

∂2L

∂θ2

]

= E

[

(

∂L

∂θ

)2
]

= E





(

∑
k

∂ log(lk)

∂θ

)2


= E





(

∑
k

1

lk

∂lk

∂θ

)2


 .

(B.5)

Therefore

I(θ) = E

[(

∑
k

∂Lk

∂θ

)

(

∑
m

∂Lm

∂θ

)

]

(B.6)

= E

[

∑
k

(

∂Lk

∂θ

)2
]

+E

[

∑
k

∑
m 0=k

∂Lk

∂θ

∂Lm

∂θ

]

. (B.7)

Because nk are independent identically distributed (i.i.d.), the second term can be ex-

pressed as

E

[

∑
k

∑
m 0=k

∂Lk

∂θ

∂Lm

∂θ

]

= ∑
k

∑
m 0=k

Ek

[

∂Lk

∂θ

]

Em

[

∂Lm

∂θ

]

, (B.8)

where

Ek [ f (nk)] = ∑
nk≥0

p(nk|θ) f (nk). (B.9)

But

Ek

[

∂Lk

∂θ

]

= Ek

[

1

lk

∂lk

∂θ

]

= ∑
nk

lk
1

lk

∂lk

∂θ
= ∑

nk

∂lk

∂θ
=

∂

∂θ ∑
nk

p(nk|θ) = 0, (B.10)

as ∑nk
p(nk|θ) = 1.

The Fisher Information can then be written as

I(θ) = E

[

∑
k

(

∂Lk

∂θ

)2
]

(B.11)

and expressing the derivatives from Eq. (B.4)

∂Lk

∂θ
=

(

nk−λk

λk

)

∂λk

∂θ
, (B.12)

we get for the Fisher information

I(θ) = E

[

∑
k

(nk−λk)
2

λ2
k

(

∂λk

∂θ

)2
]

(B.13)

= ∑
k

1

λ2
k

(

∂λk

∂θ

)2

E
[

(nk−λk)
2
]

. (B.14)
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We recognise the variance var(nk) = E
[

(nk−λk)
2
]

. For Poisson variable

var(nk) = mean(nk) = λk, (B.15)

and therefore the Fisher Information for Poisson distributed data becomes

I(θ) =
K

∑
k=1

1

λk

(

∂λk

∂θ

)2

. (B.16)

B.3 Two sources separated by a distance d

This section comments on the Fisher Information estimation as described by Ram et

al. in [78].

For two sources separated by a distance d we have the mean value of the intensity:

λ(x) = Λ1 f1(x)+Λ2 f2(x), (B.17)

where fi and Λi is the response function and the intensity, respectively, of the source i.

For translationally invariant PSF and in-focus sources: f1 = q(x− d
2 ) and f2 = q(x+ d

2 )

λ(d) = Λ1q(x−
d

2
)+Λ2q(x+

d

2
), (B.18)

where q is the PSF of the system. For pixelated version (integral over pixel area Γk)

with homogeneous background b in each pixel the intensity can be expressed as:

λk(d) = Λ1

∫
Γk

q(x−
d

2
)dx+Λ2

∫
Γk

q(x+
d

2
)dx+b. (B.19)

By plugging into Eq. (B.16) we obtain expression for the Fisher Information:

I(d) =
1

4

K

∑
k=1

(

Λ1
∫

Γk
∂xq(x− d

2 )dx−Λ2
∫

Γk
∂xq(x+ d

2 )dx
)2

Λ1
∫

Γk
q(x− d

2 )dx+Λ2
∫

Γk
q(x+ d

2 )dx+b
(B.20)

=
1

4

N

∑
k=1

[

Λ1q′k(−
d
2 )−Λ2q′k(

d
2 )
]2

Λ1qk(−d
2 )+Λ2qk(

d
2 )+b

, (B.21)

where we have set qk(z) =
∫

Γk
q(x− z)dx as the pixelated version of the point spread

function translated by z. Γk is the area of the kth pixel, and q′k(z) =
∫

Γk

∂q(x−z)
∂x

dx is the

corresponding pixelated derivative.
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FREM is defined as a lower bound on the standard deviation (
√

var(d)) of the source

separation d estimator

√

var(d)≥ FREM =
√

I−1(θ). (B.22)

Limit d = 0:

If Λ1 = Λ2 then I(d = 0) = 0 which means var(d = 0)→ ∞. However, for unequal

sources Λ1 0= Λ2 this does not hold and the variance remains finite.

Limit d→ ∞:

When the sources are far apart, the mixing term in the nominator in Eq. (B.21) van-

ishes: Λ1Λ2∂xq(x− d
2 )∂q(d + d

2 ) = 0 because ∂xq(x− d
2 ) and ∂xq(x+ d

2 ) do not have

common overlap. Equation (B.21) then decomposes into two individual terms

I(d) =
1

4

K

∑
k=1

[

(

Λ1q′k(x−
d
2 )
)2

Λ1qk(x− d
2 )+b

+

(

Λ2q′k(x+
d
2 )
)2

Λ2qk(x+
d
2 )+b

]

(B.23)

This corresponds to the sum of the Fisher Information for localisation of individual

sources.

Situation with missing source Λi = 0, Λ j 0= 0:

Even if one of the source is missing the Fisher information is strangely non-zero I(d) 0=

0. The variance remains finite even if one of the sources is not present! This is a

consequence of the assumption that the sources are located symmetrically at ±d/2

with respect to the origin. Only one source is then needed to determine the distance

d/2.

B.4 An alternative way to derive FREM

Below we show how to fix the problems with the original FREM. Our FREM gives

infinite variance when one of the sources is not present and fixes the strange behaviour



Appendix B. Resolution Limit for Blinking QDs 137

of the unequal sources for the limit d→ 0.

We consider two sources located at c1 and c2, respectively. The expectation of the

intensity is therefore expressed as (cf. Eq. (B.18)):

λk(ccc) = Λ1qk(x− c1)+Λ2qk(x− c2)+b. (B.24)

The distance between the sources is d = c1− c2. This is a linear combination aaaT · ccc of

the variable ccc = (c1,c2)T , where aaa = (1,−1)T . The variance of d is given by

var(d) = var(aaaT · ccc) = aaaT ·QQQ ·aaa = Q11 +Q22−2Q12, (B.25)

where QQQ is the covariance matrix. The lower bound on QQQ is expressed as the inverse

of the Fisher information matrix

QQQ≥ III−1(θ), (B.26)

where the Fisher information matrix

III(θ) =







I11 I12

I21 I22,






(B.27)

is given by generalisation of Eq. (B.16)

Ii j(θ) =
K

∑
k=1

1

λk

∂λk

∂ci

∂λk

∂c j
. (B.28)

Note that the Fisher information matrix is symmetrical I12 = I21 due to exchangeability

of the derivatives.

The covariance matrix QQQ is therefore

QQQ≥ III−1(θ) =
1

I11I22− I2
12







I22 −I12

−I12 I11






(B.29)

and the variance of d = c1− c2 estimator

var(d) = (1,−1)T ·QQQ · (1,−1) (B.30)

≥
I11 + I22 +2I12

I11I22− I2
12

=
p

r
. (B.31)
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The individual terms of the Fisher Information matrix by using Eq. (B.24) in Eq. (B.28)

Ii j = ΛiΛ j

K

∑
k=1

q′k(ci)q′k(c j)

fk(c1,c2)
, (B.32)

where qk(ci) is the pixelated version (pixel area Γk) of the PSF

qk(ci) =
∫

Γk

q(x− ci)dx (B.33)

q′k(ci) =
∫

Γk

∂q(x− ci)

∂x
dx (B.34)

and fk(c1,c2) = Λ1qk(c1)+Λ2qk(c2)+b.

Then the numerator p = I11 + I22 +2I12 in Eq. (B.31) is given by

p =
K

∑
k=1

1

fk(c1,c2)

[

Λ2
1q′2k(c1)+Λ2

2q′2k(c2)+2Λ1Λ2q′k(c1)q
′
k(c2)

]

. (B.35)

The terms in the denominator r = I11I22− I2
12 in Eq. (B.31) are given by

I11I22 = Λ2
1Λ2

2

K

∑
k,l

(

q′k(c1)q′l(c2)
)2

fk(c1,c2) fl(c1,c2)
(B.36)

I2
12 = Λ2

1Λ2
2

K

∑
k,l

q′k(c1)q′k(c2)q′l(c1)q′l(c2)

fk(c1,c2) fl(c1,c2)
(B.37)

We now consider the limits of very close sources (d→ 0) and well-separated emitters

(d→ ∞) for FREM.

Close sources limit: d→ 0⇒ c1→ c2⇒ qk(c1)→ qk(c2):

p = (Λ2
1 +Λ2

2 +2Λ1Λ2)
K

∑
k=1

q′2k(c)

fk(c,c)
, (B.38)

which can be further simplified by explicitly substituting fk(c1,c2)

p = (Λ1 +Λ2)
K

∑
k=1

q′2k(c)

qk(c)+b/(Λ1 +Λ2)
. (B.39)

qk and (q′k)
2 are strictly positive functions, therefore the sum is not zero and p is non-

zero for any Λ1, Λ2.

The two terms in the denominator in Eq. (B.31) are identical for c1 = c2

I11I22 = I2
12 (B.40)
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and therefore

r = I11I22− I2
12 = det [III(θ)]≡ 0 (B.41)

for any Λi. III(θ) is therefore a singular matrix for d = 0 and inverse III−1(θ) does

not exist for c1 = c2. However, the limit c1 → c2, (d → 0) gives p 0= 0, r → 0 and

FREM= p
r →∞. FREM therefore diverges for sources with any combination of source

intensities Λ1 and Λ2. This is in contrast to the original FREM formula Eq. (B.21)

which gives diverging FREM only for equally strong sources Λ1 = Λ2.

Well-separated sources limit d→ ∞:

The cross term Ii j in Eq. (B.32) vanishes (Ii j = 0, i 0= j) because of the multiplication

q′k(c1)q′k(c2), which is very close to zero for well-separated PSFs. This assumes that

the PSF (and its first derivative) decreases to negligible values for distance far from the

centre of the PSF. Then from Eq. (B.31)

var(d)≥
1

I11
+

1

I22
, (B.42)

which is the sum of bounds on variances for localisation of two individual sources:

Iii = Λ2
i

K

∑
k=1

q′2k (ci)

Λ1qk(c1)+Λ2qk(c2)+b
(B.43)

= Λi

K

∑
k=1

q′2k (ci)

qk(ci)+b/Λi
. (B.44)

We used the fact that the PSFs q(c1) and q(c2) are well-separated and decrease (with

its first derivatives) towards zero in the regions far from their centre. Therefore the

q(c j) is negligible in the region where q′(ci) ( j 0= i) have any significant values. The

term Λ jq(c j) in the denominator can be therefore neglected.

If we use Gaussian approximation of the PSF (see Zhang et al. [8])

q(x− ci) =
1

Z
exp

(

−
(x− ci)2

2σ2

)

(B.45)
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with derivatives with respect to ci

q′(x− ci) =
x− ci

σ2

1

Z
exp

(

−
(x− ci)2

2σ2

)

(B.46)

=
x− ci

σ2
q(x− ci), (B.47)

then from Eq. (B.44) for the situation with negligible background b/Λ1 1

Iii =
Λi

σ4 ∑
k

∫
Γk

(x− ci)
2q(x− ci)dx. (B.48)

Now using

∑
k

∫
Γk

(x− ci)
2q(x− ci)dx =

∫
R2
(x− ci)

2q(x− ci)dx (B.49)

= σ2, (B.50)

we obtain the terms of the Fisher information matrix

Iii =
Λi

σ2
. (B.51)

These terms correspond to the localisation of the individual sources. The “localisation

precision” for one sources si is then bounded by σ/
√

Λi. This corresponds to the

“squeezing” of the initial “ localisation uncertainty” σ by the square root of the source’s

intensity.

For well-separated sources is then the lower bound on the variance give by

var(d→ ∞)≥ σ2

(

1

Λ1
+

1

Λ2

)

. (B.52)

One sources missing: Λi = 0, Λ j 0= 0:

Iii ≡ 0 and Ii j ≡ 0 and so det(III(θ))≡ 0, and the matrix is singular. In the limit Λi→ 0

the variance Eq. (B.31) var(d)→ ∞. This is again in contrast to the original FREM

computed from Eq. (B.21), which gives finite FREM even for one source missing (see

discussion of limits in Sect. B.3).
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B.5 Comparison of the original FREM with our version

For equally strong sources (Λ1 = Λ2 = Λ) the original FREM formula gives identical

results as ours. In this situation Eq. (B.32) gives equality of the diagonal terms I11 = I22

for any c1 and c2. From Eq. (B.31)

var(d)≥
2(I11 + I12)

I2
11− I2

12

(B.53)

≥
2

I11− I12
. (B.54)

Using qk(c1) = qk(−d/2) and qk(c2) = qk(+d/2) we can rewrite the original FREM

expression Eq. (B.21) using Eq. (B.32)

varORIG(d)≥
4

I11−2I12 + I22
, (B.55)

which for Λ1 = Λ2 (I11 = I22) reduces to

varORIG(d)≥
2

I11− I12
. (B.56)

Comparison with Eq. (B.54) shows the equality of the both formulas for the situation

of equally strong sources Λ1 = Λ2.

The expressions leads to different results for sources with unequal intensity. If Λ2 =

αΛ1, then can be shown, that for negligible values of b/Λ2 the ratio between the orig-

inal FREM and our proposed formula for d→ ∞ is 2
√

2/3.

B.6 Time distribution of the intensities - averaging

We assume the likelihood dependent on parameter ΛΛΛ (for example, ΛΛΛ = (Λ1,Λ2) -

intensity of two sources in the recorded frame). If we knew the configuration of ΛΛΛ we

would write the log-likelihood

L(θ,Λ) =
K

∑
k=1

log(lk(θ,ΛΛΛ)) . (B.57)
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Derivatives with respect to the parameter θ:

∂L(θ,ΛΛΛ)

∂θ
=

K

∑
k=1

∂ log(lk(θ,ΛΛΛ))

∂θ
(B.58)

=
∂L(θ,ΛΛΛ)

∂θ
. (B.59)

If we assume a probability distribution p(ΛΛΛ) of the intensity states ΛΛΛ we can express

the Fisher information (see Eq. (B.5)):

I(θ) =
∫

ΛΛΛ
p(ΛΛΛ)IΛΛΛ(θ)dΛΛΛ, (B.60)

where IΛΛΛ(θ) is the Fisher information computed for a specific value of ΛΛΛ (see Eq. (B.5)).

For discrete states of ΛΛΛ, for example

ΛΛΛ =
{

ΛΛΛα=1, ΛΛΛα=2, ΛΛΛα=3, ΛΛΛα=4
}

(B.61)

= {[Λ1,0], [Λ2,0], [Λ1,Λ2], [0,0]} (B.62)

we get

I(θ) = ∑
α

p(ΛΛΛααα)IΛΛΛααα(θ), (B.63)

where the Fisher Information for every configuration of ΛΛΛααα is averaged with weights

p(ΛΛΛααα).

B.7 Time distribution of the intensities - integrating out

Λ

If we do not know the configuration of ΛΛΛααα in each frame, then we have to rely only on

the distribution p(Λ) and integrate over it within the likelihood function:

lk(θ) =
∫

Λ
lk(θ,Λ)dΛ =

∫
Λ

p(nk|θ,Λ)p(Λ)dΛ (B.64)
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We assume four state model of two sources: {(Λ1,0),(0,Λ2),(Λ1,Λ2),(0,0)}:

λα=1
k = Λ1qk(x− c1) +b, (B.65)

λα=2
k = Λ2qk(x− c2)+b, (B.66)

λα=3
k = Λ1qk(x− c1)+Λ2qk(x− c2)+b, (B.67)

λα=4
k = +b, (B.68)

with uniform distribution over these states. We used uniform background intensity b

in each pixel of each frame.

Assuming p(ΛΛΛααα) = 1/4 for α = 1, ..4, then from Eq. (B.64):

lk(θ) =
1

4

4

∑
α=1

Po(λα
k ), (B.69)

with derivatives

∂lk

∂cp
=

1

4 ∑
α

∂Po(λα
k )

∂cp
=

1

4 ∑
α

(

Po(λα
k )

(nk−λα
k )

λα
k

∂λα
k

∂cp

)

. (B.70)

The diagonal entries of the Fisher information matrix are give by:

Ipp(ccc) = E





(

N

∑
k=1

1

lk

∂lk

∂cp

)2


 (B.71)

= E

[{

N

∑
k=1

(

1

∑4
α=1 Po(λα

k )

∂∑4
α=1 Po(λα

k )

∂cp

)}{

N

∑
l=1

(

1

∑4
α=1 Po(λα

l )

∂∑4
α=1 Po(λα

l )

∂cp

)}]

(B.72)

=
N

∑
k=1

Ek







(

∑4
α=1

∂Po(λα
k )

∂cp

)2

(

∑4
α=1 Po(λα

k )
)2






, (B.73)

because the cross terms (k, l) in the sum (2nd row) are zeros:

E









∑4
α=1

∂Po(λα
k )

∂cp

∑4
α=1 Po(λα

k )









∑4
α=1

∂Po(λα
l )

∂cp

∑4
α=1 Po(λα

l )







= Ek





∑4
α=1

∂Po(λα
k )

∂cp

∑4
α=1 Po(λα

k )



El





∑4
α=1

∂Po(λα
l )

∂cp

∑4
α=1 Po(λα

l )





(B.74)

=
4

∑
α=1

∂

∂cp

(

∑
nk≥0

Po(λα
k )

)

4

∑
α=1

∂

∂cp

(

∑
nk≥0

Po(λα
l )

)

(B.75)

= 0 (B.76)
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Expressing the derivatives and the expectation from Eq. (B.73) we can write for the

diagonal entries of the Fisher information matrix:

Ipp(ccc) =
N

∑
k=1

Ek













∑4
α=1

(

Po(nk;λα
k )

(nk−λα
k )

λα
k

∂λα
k

∂cp

)

∑4
α=1 Po(nk;λα

k )







2





(B.77)

=
1

4

N

∑
k=1

∑
nk≥0

{

∑4
α=1

(

Po(nk;λα
k )

(nk−λα
k )

λα
k

∂λα
k

∂cp

)}2

∑4
α=1 Po(nk;λα

k )
(B.78)

For the four states model we have λα=3(c1,c2) = λα=1(c1) + λα=2(c2)− b and so

∂λα=3

∂cp
= ∂λα=p

∂cp
and ∂λα= j

∂cp
= 0, j 0= p for p = {1,2}, j = {1,2,4}; so

Ipp(ccc) =
1

4

N

∑
k=1

(

∂λα=p
k

∂cp

)2

∑
nk≥0

{

∑α={p,3}

(

Po(nk;λα
k )

(nk−λα
k )

λα
k

)}

∑4
α=1 Po(nk;λα

k )

2

(B.79)

The off-diagonal entries of the Fisher information matrix are given by:

Ipq(ccc) =
N

∑
k=1

Ek





(

∑4
α=1

∂Po(λα
k )

∂cp

)(

∑4
α=1

∂Po(λα
k )

∂cq

)

(

∑4
α=1 Po(λα

k )
)2



 (B.80)

=
1

4

N

∑
k=1

(

∂λα=p
k

∂cp

)(

∂λα=q
k

∂cq

)

(B.81)

× ∑
nk≥0

(

∑α={p,3} Po(nk;λα
k )

(nk−λα
k )

λα
k

)(

∑α={q,3} Po(nk;λα
k )

(nk−λα
k )

λα
k

)

∑4
α=1 Po(nk;λα

k )
(B.82)

Limit d→ 0:

If c1 = c2 then λα=1 = λα=2 and
∂Po(λα=1)

∂c1 = ∂Po(λα=2)
∂c2 . Then all entries in Ipq are equal

and the matrix is singular. For the limit d → 0 the determinant det(III)→ 0 and the

variance var(d)→ ∞.

Limit d→ ∞:

Sources are far apart and λα=1 and λα=2 do not have a common overlap. For k′

where
∂λα=p

k′
∂cp
0= 0,

∂λα=q

k′
∂cp
≡ 0 and Po(nk′,λ

α=3
k′ ) = Po(nk′ ,λ

α=1
k′ ). Also ∑α Po(λα

k ) =

2Po(λα=p
k )+2Po(b) in the region where ∂λα=p

∂cp
0= 0.
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From Eq. (B.73) the cross terms vanish (Ipq = 0 because
∂Po(λα=p)

∂cp

∂Po(λα=q)
∂cq

= 0). The

diagonal elements

Ipp =
N

∑
k=1

Ek







(

2
∂Po(λα=p

k )
∂cp

)2

(

2Po(λα=p
k )+2Po(b)
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for b = 0 (Po(b) = 0):

Ipp =
N

∑
k=1
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1

λα=p
k

∂λα=p
k

∂cp
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[
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nk−λα=p
k
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N
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=
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1
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1

2
λα=p
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=
1

2

N

∑
k=1

1

λα=p
k

(

∂λα=p
k

∂cp

)2

(B.89)

which is the expression for the static sources Eq. (B.16), up to a factor 1/2. The factor

1/2 comes from the fact that the source appears only in 50% of the observations. If we

keep the number of photons constant in both blinking and the static case (by reducing

the intensity of the static sources by factor of two) we get identical value of var(d) for

the d→ ∞.

For non zero background b > 0 we cannot simplify Eq. (B.84) due to the background

term Po(b) in the denominator. However, as the term is positive, the element Ipp will be

decreasing with increasing background. The background makes therefore the variance

var(d) bigger as we would expect.
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B.8 Comments on the “dip” in FREM curves for static

sources

These are several comments about the strange “dip” in the FREM curves for static

sources (see Fig. 3.5a). The expression for computing FREM for two sources with

equal intensity is from Eq. (3.16)

var(d) =

[

I11− I22

2

]−1

, (B.90)

and the individual entries of the Fisher information matrix is from Eq. (B.32):

Ii j = Λ
K

∑
k=1

q′k(ci)q′k(c j)

qk(c1)+qk(c2)+b/Λ
; i, j = {1,2}, (B.91)

where qk and q′k are pixelated PSF and derivative, respectively.

For large background values (b/Λ5 max[qk(ci)]) the bottom term is nearly constant

and therefore

Ii j ≈C
K

∑
k=1

q′k(ci)q
′
k(c j), (B.92)

where C is a constant.

From Eq. (B.90)

var(d)≈

[

C/2∑
k

(

q′k(c1)
2−q′k(c1)q

′
k(c2)

)

]−1

(B.93)

For Gaussian approximation of the PSF, the expression can be integrated analytically.

The resulting curve sows the identical “dip” in the curves.



Appendix C

LS-SIM Electronics

Figure C.1: Schematic of the trigger signals in the microscope. The scan-mirror is the master

and triggers the camera when it starts moving in one edge of the field. Upon receiving EXTER-

NAL TRIGGER the camera starts integrating in less than a microsecond and sets FIRE to high.

This triggers an interrupt in the micro-controller and it generates LIGHT ENABLE to modulate

the laser. The initial pi delays determine the position of the scanning lines. The values in the

timing diagram (bottom right) were measured with a logic analyser (Logic16, Salea). These

values correspond to an optimised timing of the LS-SIM system, such that the sum of the 32

line positions imprinted on the sample produced a homogeneous wide-field illumination.
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