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Abstract

CA1 is the main source of afferents from the hippocampus, but the function of

CA1 and its perforant path (PP) input remains unclear. In this thesis, Marr’s model

of the hippocampus is used to investigate previously hypothesized functions, and also

to investigate some of Marr’s unexplored theoretical ideas. The last part of the thesis

explains the excitatory responses to PP activity in vivo, despite inhibitory responses in

vitro.

Quantitative support for the idea of CA1 as a relay of information from CA3 to the

neocortex and subiculum is provided by constraining Marr’s model to experimental

data. Using the same approach, the much smaller capacity of the PP input by com-

parison implies it is not a one-shot learning network. In turn, it is argued that the

entorhinal-CA1 connections cannot operate as a short-term memory network through

reverberating activity.

The PP input to CA1 has been hypothesized to control the activity of CA1 pyra-

midal cells. Marr suggested an algorithm for self-organising the output activity during

pattern storage. Analytic calculations show a greater capacity for self-organised pat-

terns than random patterns for low connectivities and high loads, confirmed in simula-

tions over a broader parameter range. This superior performance is maintained in the

absence of complex thresholding mechanisms, normally required to maintain perfor-

mance levels in the sparsely connected networks. These results provide computational

motivation for CA3 to establish patterns of CA1 activity without involvement from the

PP input.

The recent report of CA1 place cell activity with CA3 lesioned (Brun et al., 2002.

Science, 296(5576):2243-6) is investigated using an integrate-and-fire neuron model

of the entorhinal-CA1 network. CA1 place field activity is learnt, despite a completely

inhibitory response to the stimulation of entorhinal afferents. In the model, this is

achieved using N-methyl-D-asparate receptors to mediate a significant proportion of

the excitatory response. Place field learning occurs over a broad parameter space. It is

proposed that differences between similar contexts are slowly learnt in the PP and as a

result are amplified in CA1. This would provide improved spatial memory in similar

but different contexts.
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Chapter 1

Introduction

1.1 The relevance of CA1

Area CA1 is one of the main subdivisions of the mammalian hippocampus, a part of

the brain held to be important in learning, memory and spatial tasks. It is the prin-

cipal source of output from the hippocampus, so all hippocampal computations can

be understood as processing steps in creating the CA1 code. CA1 is also the most

frequent location of hippocampal recordings. Without an understanding of the contri-

bution of the CA1 processing stage, the behavioural interpretation of the vast amount

of experimental data remains problematic.

The computational importance of CA1 is clear from the anatomy. In the rat, there

are � 5 � 109 synapses in the preceding hippocampal area CA3, and � 1010 synapses

in the projection from CA3 to CA1 (Amaral et al., 1990; Megı́as et al., 2001). The

ratio of the number of cells in CA1 to in CA3 increases from � 1 � 3 in the rat to � 5 � 9

in the human (Amaral et al., 1990; West and Gundersen, 1990). In both humans and

rats, considerable computing hardware is dedicated to the CA1 processing stage.

Understanding how the inputs from CA3 and from the neocortex are integrated in

CA1 has considerable consequences for medical research. As just one example, in

very mild Alzheimer’s disease there is a considerable loss of the cells which provide

the cortical input to CA3, the entorhinal layer II cells (Gomez-Isla et al., 1996). The

cortical input to CA1 is relatively unaffected. Through understanding how these inputs

5



6 Chapter 1. Introduction

interact in CA1, predictions about the cognitive effects of the cell loss could be used

both to develop diagnostic tests and strategies for adjustment.

1.2 The function of CA1

Prominent hypotheses for function of CA1 are that CA1 is a

� Relay: CA1 ensures efficient information transmission from CA3 to the neocor-

tex (Treves and Rolls, 1994; McClelland and Goddard, 1996)

� Novelty detector: CA1 detects novel stimuli by comparing CA3 output and cor-

tical input (Hasselmo and Schnell, 1994; Lisman and Otmakhova, 2001)

� Predictor: CA1 predicts future events or locations, based on previous experience,

by associating sequences of activity in CA3 with cortical input (Levy et al., 1998)

� Component of multiple memory loops: CA1 is engaged in both the recall of

multimodal events from CA3, and of modally segregated events from direct en-

torhinal input (Longden and Willshaw, 2002).

These hypotheses are all problematic. The first three are discussed in detail in

the chapter on models of the hippocampus, chapter 5, and the fourth is explored in

chapter 7. One issue that is hard to reconcile with all the hypotheses is the rate of

plasticity in the cortical input pathway to CA1. The relay hypothesis has no role for the

cortical pathway, and the other models require either one-trial associations of CA1 and

cortical activity, or no plasticity in the cortical pathway at all. It is argued in chapter 7

that the low capacity of the cortical input pathway to CA1, when modelled as an one-

trial associative memory network, makes it unlikely that the observed plasticity in the

pathway support one-trial associations.

The novel claim of the thesis is that plasticity in the cortical input pathway to CA1

is the substrate for the experience-dependent changes in CA1 activity across multiple

environments (Lever et al., 2002; Hayman et al., 2003). The hippocampus has a criti-

cal role in the memory of one-trial events (Nakazawa et al., 2003) and in establishing a

spatial map of an environment (O’Keefe and Nadel, 1978). If the differences in similar
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environments are not initially perceived, the activity corresponding to the memorised

events will be correlated through a shared representation of space. CA1 allows the rep-

resentations of the environments to become uncorrelated, as a function of experience,

whilst maintaining the memory of past events. This strategy allows the hippocampus

to support both the rapid acquisition of memories, and to benefit from experience in

developing perceptions of distinct spatial environments.

1.3 Approach

The proposed function of CA1 arises out of a process of constraining the existing hy-

pothesis space of CA1 function. From Marr (1971) onwards, pioneering models have

taken a top-down approach, stating a function for the hippocampus and then producing

computational and experimental evidence to support the hypothesis. This approach

has been very helpful and influential in establishing a conceptual framework both to

develop the computational ideas, and to interpret experimental results. Over thirty

years later, two major problems exist with the approach. The hypotheses generated by

these models have been very difficult to prove, because experiments must verify the

instantiation of high-level concepts. Secondly, the sheer volume of experimental data

means that very different positions have been maintained with a very slow progress to

resolution. This is particularly true for behavioural experiments, where the results are

exquisitely sensitive to the protocol used (Cohen and Eichenbaum, 1993).

Computational modelling is an appropriate tool for understanding the function of

CA1, because experimental manipulations of CA1 affect the whole hippocampal out-

put. Associative memory models of the hippocampus are the only kind which have

been able to account for the distinct anatomical organisation of the hippocampus.

The existing theories of CA1 function propose very different roles for the two in-

puts to CA1, from CA3 and directly from the neocortex. Using different modelling

approaches, I identify key properties of these pathways. These properties are used to

develop the hypothesis of CA1 function, in a bottom-up approach.
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1.4 Thesis overview

Chapters 2, 3 and 4 present experimental findings which provide the context to the

discussion of the reviewed and proposed models of CA1. The claims and required

implementations of the models are diverse and overlapping. As a result, there are un-

avoidable, multiple narrative threads running through these chapters. Important themes

are

� Justification for associative memory models of the hippocampus

� Initial memory formation controlled by CA3 or cortical input

� Key features of CA1 and the cortical input assumed by current models, and

outwith current models.

Chapter 2 establishes the anatomy of the hippocampus relevant to the thesis. The

extrinsic connections of the hippocampus support an assumption of associative mem-

ory models, that the hippocampus associates patterns of activity from many cortical

areas. The intrinsic connections of CA1 constrain the mechanisms for generating pat-

terns of activity in CA1. It is also emphasised that the cortical input pathway is diver-

gent rather than the point-to-point mapping presumed by many models. Finally, the

organisation of the intrinsic entorhinal connections maintains the topographic organi-

sation of information modality, required by the hypothesis of multiple memory loops

through CA1.

Chapter 3 reviews the physiological properties of the cortical input pathway. It

was only recently established that long-term potentiation (LTP) and depression (LTD)

can be induced in the pathway (Remondes and Schuman, 2002; Dvorak-Carbone and

Schuman, 1999a). The timing of cortical stimulation and the induction of cortical

input LTP/D affect both the efficacy of CA3 stimulation in CA1, and the magnitude of

CA3-CA1 LTP/D in the slice (Remondes and Schuman, 2002; Levy et al., 1998). The

last topic discussed is the evidence for the activation of the cortical pathway, without

activating CA3, in support of the hypothesis for multiple memory loops through CA1.

Chapter 4 presents evidence for the two major behavioural correlates of hippocam-

pal activity in the rat: the memory of one-time experience and spatial learning. The
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origin of the memory hypothesis in human amnesia research is discussed, before re-

viewing attempts to produce experimental verification of a correlate in animals, specifi-

cally in rats. This is an important issue to verify for the associative memory modelling

in this thesis. The hippocampal dependence of spatial learning correlates with the

location-specific activity of hippocampal cells, known as place field activity. Through

observing place field formation, the formation of spatial memories can be observed.

In addition, the spatial activity of CA1 without CA3 activity is the only example of a

functional isolation of the cortical input to CA1 (Brun et al., 2002). Modelling is used

to constrain the mechanisms responsible for the results of Brun et al. (2002) in chap-

ter 9, in order to better understand the function of plasticity in the cortical pathway. In

readiness for that chapter, the spatial correlates of the cortical input and the long-term

changes to place fields are also discussed.

Chapter 5 reviews the computational models of the hippocampus that specify a

computational role for CA1. None of the models provide a compelling computational

reason for the entorhinal input to CA1. A key issue for the models is how patterns of

activity are formed in CA1: whether this process is controlled by Schaffer collateral

input, entorhinal input, or a combination of the two.

Chapter 6 provides a conceptual basis for discussing the formation of spatial mem-

ories in later chapters. The formation of place fields without CA3 (Brun et al., 2002) is

unlikely to be subserved by recurrent excitation or lateral inhibition (chapter 2). These

two mechanisms are utilised by all place field models except McHugh et al. (1996) and

Fuhs and Touretzky (2000). A cellular explanation of CA1 place field formation in the

cortical input pathway is developed in chapter 9.

In chapter 7, the model of Marr (1971) is used to provide evidence that CA1 main-

tains the transmission of information from CA3 to the neocortex (Treves and Rolls,

1994). First, the parameter dependencies of the performance advantage of multiple

layers in the pathways between the hippocampus and neocortex are identified. The

model is then applied to the network relaying activity from CA3 to the cortex and

subiculum. The capacity is quantifiably greater with CA1 than without CA1, over a

broad parameter range. From this it is concluded that CA1 improves the relay of infor-

mation from CA3 to the cortex and subiculum, supporting Treves (1995). The capacity
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of the cortical pathway is calculated to be significantly lower than the CA3 input path-

way. It is concluded that the cortical pathway is unlikely to form associations at the

same rate as the CA3 pathway.

Chapter 8 investigates an algorithm proposed by Marr (1971) for pattern formation

in a partially connected feedforward network. The algorithm selects the output neurons

best connected to the input during memory storage. Analysis shows that networks with

patterns chosen this way have a higher capacity than network with random patterns, for

low connectivities and high memory loads. Simulations demonstrate that the superior

performance is maintained over a wider parameter range than specified by the analysis,

and when a more complex thresholding mechanism is used in the random network. The

possible implementation of the algorithm is the last topic of the chapter.

This position developed so far is difficult to reconcile with the hypotheses of CA1

as a novelty detector, predictor or component of mulitiple memory loops stated above.

The low capacity of the cortical compared to the CA3 input pathway indicates that

the rate of plasticity should be lower (chapter 7). The lower rate of cortical plasticity

is not consistent with recall from one-time events in the cortical pathway, and has an

as yet unspecified function if the cortical pathway establishes patterns of activity in

CA1. In addition, there are advantages of increased capacity and plausible implemen-

tation if CA3 chooses the most highly connected CA1 neurons during memory storage

(chapter 8).

Chapter 9 examines the computational requirements of forming place fields in the

cortical input pathway. Using an integrate-and-fire model of CA1, with a carefully

modelled entorhinal input, place field formation is shown to be robust to parameter

choices. When cortical input is mediated by small, temporally broad excitatory post-

synaptic potentials, place fields form despite an almost exclusively inhibitory response

to synchronous stimulation. It is argued that the high density of N-methyl-D-asparate

(NMDA) receptors at the cortical synapses (Otmakhova et al., 2002) supports the inte-

gration of spatially correlated cortical input.

Narrow place fields with high spatial information are supported by a large number

of cortical inputs with only small amounts of synaptic competition. Computing place

fields this way generates a synaptic weight distribution with limited generalisation of
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inputs in different environments. When this mechanism is combined with a scheme in

which CA3 input initially establishes CA1 activity, and cortical activity maintains this

activity, more decorrelated place maps of similar, distinct environments are formed.

This is consistent with the decorrelation of initially highly correlated spatial maps of

similar environments observed experimentally (Lever et al., 2002).

In the conclusion, chapter 10, the modelling results and their application to un-

derstanding the hippocampus are summarised. The hypothesis that plasticity in the

cortical pathway supports place field divergence in similar environments is discussed

in the light of emerging data indicating that CA1 activity is more likely to generalise

its representations over multiple environments than CA3. It is discussed how CA1 can

both learn the regularities and differences of multiple environments, and experimental

approaches to testing this hypothesis are discussed.





Chapter 2

Anatomy

2.1 Introduction

The emphasis of this review is on anatomical issues relevant to the models discussed

and developed in later chapters. Fundamental to the idea of associative memory mod-

els is the idea that the hippocampus is in an anatomical position to associate a diverse

set of sensory and non-sensory inputs. Within the hippocampus, establishing the con-

nectivity of CA1 is important for constraining the computational models. In particular,

the divergent nature of the temporoammonic input is discussed and the lack of recur-

rent collaterals in CA1 is discussed. Finally, the organisation of intrinsic entorhinal

connections is briefly discussed as an important component of the idea that activity

may reverberate through the entorhinal-CA1 network (Iijima et al., 1996; Longden

and Willshaw, 2002). Anatomical terminology that will recur throughout the thesis

has been labelled in bold font, for the ease of backreferencing. For clarity, anatomical

acronyms have not been used in the thesis.

2.2 Overview

The rat hippocampus is a prominent structure in both hemispheres of the brain, separat-

ing the neocortex and the lateral ventricle. Its distinctive banana shape has evoked im-

ages of seahorses and ram’s horns, inspiring the respective anatomical tags of the hip-

13



14 Chapter 2. Anatomy

pocampus in Greek (Aranzi, 1564) and cornu ammonis in Latin. Pioneering anatom-

ical surveys were performed by Schaffer (1892), Ramon y Cajal (1911, 1995) and

Lorente de Nó (1933, 1934) which immensely inspired subsequent research. Their

anatomical observations were refined using more modern techniques by Blackstad

(1956) and White (1959), heralding a new ‘golden age’ of hippocampal anatomy

(Amaral and Witter, 1995).

Locations along the hippocampus are tricky to describe because the anatomical

descriptions operate on linear axes. Two systems are in common usage, the septotem-

poral axis and the dorsoventral axis. The dorsal end closest to the septum, the dorsal

or septal pole, can be distinguished by its connection to a fibre bundle called the fornix.

The other end, ventrally located nearer the temporal cortex is the ventral or temporal

pole.

The transverse axis is perpendicular to the long axis, and it is in this plane that

the different anatomical regions of the hippocampus can be identified, on the basis of

different staining patterns. Lorente de Nó (1934) subdivided the hippocampus into the

area dentata and the cornu ammonis regions 1-4, the latter since abbreviated to CA1-4.

Area CA2 is small and usually ignored in the rodent literature, but ignored less often

in the primate literature. The area dentata is now called the dentate gyrus; older papers

refer to it as the fascia dentata (e.g. Marr, 1971). Blackstad (1956) identified CA4 as

part of the dentate gyrus, and defined it the hilus, the hilar region of the dentate gyrus.

Following Amaral and Witter (1995) I use the term hippocampus to refer to the

dentate gyrus and areas CA1, CA2 and CA3. Neighbouring the hippocampus are the

subiculum, presubiculum and parasubiculum. Like the hippocampus, these areas are

distinguished from the neocortex by having fewer than six layers.

2.3 Extrinsic connections

The major source of cortical afferents to the hippocampus is from the superficial layers

of the entorhinal cortex (Witter et al., 2000). Layer II neurons project to the dentate

gyrus and CA3, whilst layer III neurons project to CA1. Both of the projections are

collectively referred to as the perforant pathway. The fibres travel from the entorhinal
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Figure 2.1: Diagram of the cortical inputs to the hippocampal formation (defined here as the hip-

pocampus (HPC), subiculum (Sub) and the dentate gyrus (DG)), perirhinal cortex (areas 35 and 36) and

postrhinal cortex (POR) of the rat. The thickness of the connections represents their estimated magnitude

based on labelling studies. A double line represents a known but unquantified connection. Remaining

acronyms: LEA, lateral entorhinal area; MEA, medial entorhinal area; ACA, anterior cingulate cortex;

AId, v, and p, dorsal, ventral, and agranular insular cortices; Aud, primary auditory cortex; AUDv, audi-

tory association cortex; GU, gustatory granular insular cortex; MOp and MOs, primary and secondary

motor areas; Pir, piriform cortex; RSP, retrosplenial cortex; SSp and SSs, primary and supplementary

somatosensory areas; VISC, visceral granular insular cortex; VISl and m, visual association cortex; VISp,

primary visual cortex. Figure taken from Burwell (2000), c
�

The New York Academy of Sciences.
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cortex in a bundle that perforates the pyramidal layer of the subiculum.

In order to distinguish the perforant pathways throughout this thesis, I will refer to

the entorhinal-CA1 projection as the temporoammonic pathway, following previous

usage (Nadler et al., 1980; Maccaferri and McBain, 1995; Barbarosie et al., 2000; Re-

mondes and Schuman, 2002), and to the entorhinal-dentate gyrus and entorhinal-CA3

projections as the perforant pathway. The reader is warned that the term temporoam-

monic pathway is not yet established nomenclature, as very occasionally the term tem-

poroammonic pathway has been used to refer to the perforant path input to CA3 as

well (e.g. Tsukamoto et al., 2003).

The superficial entorhinal layers receive a large input from olfactory areas, includ-

ing the olfactory bulb and piriform (olfactory) cortex. The predominant cortical input

is to the superficial layers from the neighbouring perirhinal and postrhinal cortices.

The perirhinal and postrhinal cortices receive many cortical inputs, but especially from

differing regions of sensory association cortex (figure 2.1; Burwell, 2000). As a first

but accurate approximation, the hippocampus is the receiving peak of a pyramid of

sensory input.

The entorhinal cortex is also the principal cortical recipient of hippocampal output.

CA1 is the first and only hippocampal area to project back to the entorhinal cortex, to

the deep layers, predominantly layer V. The entorhinal cortex projects to a wide range

of cortical targets, but by far the most to the perirhinal cortex (Insausti et al., 1997).

The perirhinal cortex projects widely to many association and other cortices, including

the postrhinal cortex (figure 2.1).

CA1 is the major source of outputs from the hippocampus. It is a mistake to think of

the projections from CA1 simply as a relay back to the neocortical association areas,

as subcortical areas receive major projections from the hippocampus (fig. 2.2). The

biggest projection of CA1 is to the subiculum (Amaral and Witter, 1995). The main

projection of the subiculum is to subcortical areas, particularly the septal complex, the

mammillary nuclei, and the anterior thalamic complex (O’Mara et al., 2001). CA1

itself projects to subcortical areas, principally the lateral septum, receiving a lighter

return projection than the heavily septally innervated CA3. Other subcortical inputs

include the amygdala to the temporal third, and the thalamic nuclei.
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Figure 2.2: Diagram of the connections of the hippocampus and the entorhinal cortex. The anatomical

connections indicate that cortical activity is transferred from the superficial layers of the entorhinal cortex,

through the dentate gyrus (DG), CA3, CA1 and subiculum. CA1 is the first hippocampal area with a

non-negligible projection back to the entorhinal cortex. The function of the projections from the deep to

superficial entorhinal cortex remain unknown.

A final reason to avoid viewing CA1 outputs as a relay to association cortices is

that the hippocampus and parahippocampal areas are intimately connected with the

prefrontal cortex (Delatour and Witter, 2002). A small but significant population of

CA1 and neurons project to the lateral and medial prefrontal cortex (Verwer et al.,

1997), and the subiculum projects heavily to the medial prefrontal cortex (Amaral and

Witter, 1995). The prefrontal cortex does not significantly project to the hippocam-

pus or subiculum directly, but enjoys reciprocal connections with the entorhinal and

parahippocampal cortices (Insausti et al., 1997; Delatour and Witter, 2002).

2.4 Intrinsic organisation

The granule cells, the excitatory cells of the dentate gyrus, project to CA3 via the

mossy fibres. The mossy fibres contact characteristically few CA3 pyramidal cells,
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� 46 (Amaral et al., 1990), and these synapses are very large. Some collaterals form

synapses with mossy cells, which provide a limited form of feedback to the granule

cells.

The pyramidal cells in CA3 receive the mossy fibre and perforant path input, and

form a large number of recurrent collaterals. The overall connectivity is � 4% (Li et al.,

1994), but because the collateral projections are spatially organised, every CA3 pyra-

midal cell can contact every other CA3 cell through 2-3 synaptic contacts (Amaral,

1993). The CA3 pyramidal cells also project ipsilaterally to the hilus, CA1, and con-

tralaterally to CA3 and CA1 (Li et al., 1994). The collaterals to CA1 are named the

Schaffer collaterals after Schaffer (1892).

One striking feature of CA1 is the low number of recurrent collaterals, certainly

compared to CA3 (Thomson and Radpour, 1991). Traub and Whittington (1999) es-

timate the probability of a connection to be � 1%, based on the data of Deuchars and

Thomson (1996) who recorded from 989 pairs of CA1 pyramidal cells and found that 9

pairs were monosynaptically connected. Only the local connectivity can be estimated

to be � 1% because this is in the slice. There is little quantitative data on the number

and spatial distribution of pyramidal cell recurrent collaterals because there are so few.

In a study of the CA1 axonal projections using an anterograde tracer, only ‘meager’

recurrent collateral staining is found, and this is mainly adjacent to the injection site

(Amaral et al., 1991). Closer inspection reveals recurrent collaterals that cover � 2

mm of the septotemporal axis of CA1. Given a septotemporal length of � 10 mm,

this would reduce the estimate to � 0.2%. Similarly, the number of CA1 contralateral

connections is low compared to CA3 (Amaral and Witter, 1995).

The recurrent collaterals project to the stratum oriens, where proportionately few

of the excitatory inputs to parvalbumin positive basket and chandelier cells are located

(Gulyás et al., 1999). After ischaemia, stratum oriens interneurons are revealed to

be the principal targets of the degenerating recurrent collaterals, which are the most

vulnerable to damage (Blasco-Ibanez and Freund, 1995). During sharp wave ripples

(140-200 Hz activity), CA1 pyramidal cells are synchronously highly active and the ac-

tivity of interneurons in the strata pyramidale and oriens follows 1-2 ms later (Csicsvari

et al., 1998). This indicates that basket, chandelier and stratum oriens interneurons can
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Figure 2.3: Diagram of the laminar organisation of inputs to CA1, not to be confused with the lamellar

flow of activity through the hippocampus hypothesised by (Andersen et al., 1971).

be activated by pyramidal recurrent collaterals. But during θ-activity, the 5-10 Hz

oscillatory observed in the hippocampus during exploratory movement and sleep, the

basket and chandelier cell population activity coincides with the trough of pyramidal

cell activity, and stratum oriens interneurons is coincident with the peak (Csicsvari

et al., 1998; Klausberger et al., 2003).

A second striking feature in CA1 is the spatial segregation of inputs into different

layers the length of the septotemporal axis (figure 2.3, Ishizuka et al., 1995). The

pyramidal cell bodies are located in the stratum pyramidale. The basal dendritic tree

sinks into the stratum oriens which receives a light Schaffer collateral input and is the

exclusive projection zone of the CA1 recurrent collaterals. The apical dendrite passes

through the stratum radiatum, the principal locus of Schaffer collateral input. The

apical dendrite ends in the stratum lacunosum-moleculare where it forms synapses

with the temporoammonic pathway. There are very few Schaffer collaterals in the

stratum lacunosum-moleculare. Projections from basolateral nucleus of the amygdala

and the thalamic nucleus reuniens also selectively innervate the stratum lacunosum-

moleculare (Amaral and Witter, 1995).
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2.5 Topographic organisation of CA1 inputs and out-

puts

There is a recurring, strong assumption in the modelling literature that the temporoam-

monic pathway is a highly ordered, ‘point-to-point’ mapping (Hasselmo and Schnell,

1994; McClelland and Goddard, 1996; Lisman, 1999; Lőrincz and Buzsáki, 2000).

The original idea of point-to-point mappings in the hippocampus was introduced by

Andersen et al. (1971). They orthodromically and antidromically stimulated the per-

forant path projection to the dentate gyrus, the mossy fibre pathway, and the Schaffer

collaterals. The spatial locations of the population spikes indicated that information

flowed around the trisynaptic loop in narrow transverse slices, stacked along the long

axis. This arrangement of essentially independent units is referred to as the ‘lamellar

organisation’ of the hippocampus (Amaral and Witter, 1989).

Whilst the mossy fibre projection does indeed appear to be lamellar, subsequent

anatomical work has taken great pains to point out that the perforant path projections

to the dentate gyrus and the Schaffer collaterals are far from lamellar (Amaral and

Witter, 1989). The perforant path is highly divergent, with � 10% of the length of the

entorhinal cortex (along its corresponding medial-lateral axis) projecting to � 40% of

the length of the dentate gyrus, densely over 25% of the length (Amaral and Witter,

1989; Dolorfo and Amaral, 1998a). The divergence of the Schaffer collaterals is even

greater: one cited example contacted � 90% of the length of CA1 from staining � 10%

of the septotemporal length of CA3 (Ishizuka et al., 1990), but the average length is
� 60% of the longitudinal axis of CA1 (Li et al., 1994; Ishizuka et al., 1990). This

kind of divergence is sufficiently large that it is unlikely to be explained by the need

for projections to support wide field inhibition around an excitatory peak.

These results set up a dialectic between the ideas of a lamellar and a highly diver-

gent projection. In truth there is a graded spectrum: the mossy fibres are lamellar, the

perforant path to the dentate gyrus is divergent, and the Schaffer collaterals are highly

divergent. In this context, the topographical organisation of the projections from CA1

to the subiculum and deep entorhinal cortex has recently been emphasised (Tamamaki

and Nojyo, 1995; Burwell, 2000; Witter et al., 2000; Naber et al., 2001). The topo-
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graphic mapping is along the transverse axis: the medial entorhinal cortex projects to

CA1 proximal to the dentate gyrus, whilst the lateral entorhinal cortex projects to CA1

distal from the dentate gyrus. Retrogradedly labelled entorhinal cells in CA1 covered

approximately one third of the proximodistal axis (Tamamaki and Nojyo, 1995). This

is consistent with the projection, for instance, from CA1 to the subiculum: the prox-

imal third of CA1 projects to the distal third of the subiculum, and the distal third of

CA1 projects to the proximal third of the subiculum (Witter et al., 2000).

This organisation is maintained throughout the connections between the hippocam-

pus, subiculum, entorhinal cortex, and parasubicular areas (Burwell, 2000; Naber et al.,

2001). As discussed above, the perirhinal and postrhinal cortices receive different

modalities of sensory input. In principle, these connections create loops that could

preserve the modality of transmitted activity. In contrast, the Schaffer collateral pro-

jection is organised such that any CA3 pyramidal cell can contact any CA1 cell (Li

et al., 1994). The CA1 cells therefore receive modality mixed information from these

pathways. This lack of topographical organisation was also believed to apply to the

perforant path projection to the dentate gyrus (Amaral and Witter, 1989). Recently

Dolorfo and Amaral (1998b) reported remarkably little spatial overlap in the domains

of entorhinal cells projecting to distinct septotemporal thirds of the dentate gyrus.

The significance of the topography of the temporoammonic pathway is that it al-

lows only restricted combinations of input, and positively not that the projection is

not divergent. The divergency of the temporoammonic pathway at � 33% is roughly

equal to the divergence of the perforant path input to the dentate gyrus at 25% � 40%.

The fact that it is less than the Schaffer collaterals does not imply that it should in any

way be thought of as a ‘point-to-point’. Common references used in support of this

point are the work of Tamamaki and colleagues, culminating in Tamamaki and Nojyo

(1995), as referenced by O’Reilly and McClelland (1994), Lisman (1999) and Lőrincz

and Buzsáki (2000). Tamamaki and Nojyo (1995) explicitly state “...these three fields

[subiculum, CA1, and entorhinal cortex] do not represent a point-to-point topography

but diverge in each direction.”

In order to support claims of a point-to-point mapping, electrophysiological record-

ings would be required to demonstrate a narrow field of excitatory response as found



22 Chapter 2. Anatomy

by Andersen et al. (1971) in the Schaffer collaterals. Recordings at numerous but un-

systematically varied sites along the length of CA1 in vitro reveal uniformly inhibitory

somatic responses (Soltesz, 1995). This does not preclude centre-surround response, as

the excitatory response may have been missed, but certainly does not provide evidence

in support of point-to-point mapping.

2.6 Intrinsic connections of the entorhinal cortex

The predominate pattern of intrinsic projections in the entorhinal cortex is from the

deep to the superficial layers (Dolorfo and Amaral, 1998a). Since the deep layers of

the entorhinal cortex are the primary cortical recipients of hippocampal output, and the

superficial layers are the primary source of hippocampal input, this raises the possibil-

ity that the entorhinal cortex may facilitate hippocampal reverberations (Iijima et al.,

1996; Longden and Willshaw, 2002). The intrinsic deep to superficial entorhinal con-

nections are mostly restricted to three areas defined by the dorsoventral and rostrocau-

dal axes. These areas are partially but not completely in register with the topographic

organisation of the projections between the entorhinal cortex, CA1, subiculum and

parahippocampal areas.

In contrast to the point-to-point hypothesis of the temporoammonic pathway, both

the deep-deep and lighter superficial-superficial intrinsic projections are divergent within

their bands. Axons of cells injected with Phaseolus vulgaris-leuocoagglutinin (PHA-

L) reveal heavy staining within every band, and moderate to light staining between

bands (Dolorfo and Amaral, 1998a). On the basis of this evidence, the entorhinal input

to CA1 contains an admixture of hippocampal output from within the (mildly) segre-

gated entorhinal target zone of the CA1 afferents.



Chapter 3

Physiology of the temporoammonic

pathway

3.1 Introduction

The nature of the temporoammonic input to CA1 lies at the heart of CA1 information

processing. An important issue for understanding the mystery is establishing how

useful information processing can occur in the temporoammonic pathway, when its

stimulation results in a large, widespread inhibitory somatic response. It is argued in

section 9.3 that the recent discovery of high levels of NMDA receptors (NMDARs) in

the temporoammonic synapses of pyramidal cells (Otmakhova et al., 2002) can explain

this inhibitory response.

Brun et al. (2002) observed behaviourally significant location-specific activity in

CA1 without CA3 input. Does this imply that temporoammonic input controls place

field firing in the presence of CA3 input? This intriguing concept is a tenet of most

hippocampal models that include a representation of CA1. Remondes and Schuman

(2002) provide tantalising physiological data as to how this control maybe maintained.

The relative timing of temporoammonic stimulation not only affects Schaffer collateral

efficacy, but plasticity too, and both effects are themselves modulated by temporoam-

monic plasticity. The observation of behaviourally relevant activity in CA1 from tem-

poroammonic input alone (Brun et al., 2002), despite the almost exclusively inhibitory

23
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Figure 3.1: Illustrative diagram of some representative feedforward and feedback inhibitory interneuron

synaptic connections in CA1. After stimulation of the temporoammonic pathway, Pyramidal cells (PC)

receive feedforward inhibitory input mainly from stratum lacunosum-moleculare (LM) interneurons and to

a lesser extent chandelier cells (CC) and basket cells (BC). This results in a strong inhibitory input in the

stratum radiatum (Empson and Heinemann, 1995). Schaffer collateral activation results in feedforward

inhibition from chandelier and basket cells, as well as from layer specific interneurons such as bistratisfied

cells (BS). Furthermore, Schaffer collateral stimulation can result in feedback inhibition, mediated mainly

by basket cells and stratum oriens interneurons, such as the O-LM interneurons (OLM) (Freund and

Buzsaki, 1996).

response to stimulation in the slice, highlights the caution necessary in interpreting

these results.

In section 7.4.3 I consider the idea that the temporoammonic pathway operates as

an associative memory network independent of the Schaffer collaterals. This is an

intriguing idea for models, as it runs against the grain of the tri-synaptic loop descrip-

tion of hippocampal processing, but for the same reason, it requires credible evidence.

Within the model, the low capacity of such an entorhino-CA1 network is argued to

indicate a low rate of temporoammonic plasticity.

3.2 Response to electrode stimulation

Basket and chandelier cells are contacted by the temporoammonic pathway (figure 3.1),

as confirmed by labelling and electron miscroscopy (Kiss et al., 1996). In particular,

chandelier cells have a large dendritic tuft in stratum lacunosum moleculare (Li et al.,
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Figure 3.2: Representative field potentials recorded after temporoammonic stimulation (TA stim) and

Schaffer collateral stimulation (SC stim). (A) Diagram of electrode locations. Recording electrodes are

in the stratum radiatum (SR) and stratum lacunosum-moleculare (SLM). (B) Despite the large SLM field

EPSP after TA stimulation, a positive-going field is recorded in SR. Scale bar: 0.2 mV/30 ms. Figure

taken from Dvorak-Carbone and Schuman (1999a), c
�

The American Physiological Society.
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1992). Their short response latencies, large and fast perisomatic inhibitory postsy-

naptic currents (IPSCs) contribute to the control of sodium channel-dependent activ-

ity in CA1 (Miles et al., 1996). Meanwhile, the main inhibitory response to tem-

poroammonic stimulation is feedforward inhibition in the stratum radiatum (Empson

and Heinemann, 1995).

In the rabbit (Yeckel and Berger, 1990) and the guinea pig (Doller and Weight,

1982), it is possible to elicit CA1 pyramidal cell activity in response to electrode stim-

ulation of the temporoammonic path inputs in slice preparations. As pointed out by

Buzsaki et al. (1995), no such monosynaptically discharging CA1 pyramidal cells have

been observed in the rat, despite many studies. The principal response is a large feed-

forward IPSP in the stratum radiatum (Empson and Heinemann, 1995). This inhibition

swamps the respectable EPSPs recorded in stratum lacunosum-moleculare, and record-

ings at the soma mainly consist of a small long IPSP (Colbert and Levy, 1992). The

somatic PSP shape is consistent with the propagation of the summed PSPs along a pas-

sive cable model of the neuron (Leung, 1995). There has been no systematic study of

how the response varies along the longitudinal axis of CA1, but numerous studies have

used multiple recording sites. None of these studies have found a channel of excitatory

responses consistent with the centre-surround responses observed in the visual cortex.

There has been at least one report of in vivo recordings in the rat, under anaesthesia,

which also recorded purely inhibitory somatic fast latency PSPs (Soltesz, 1995).

Electrode stimulation excites a random subset of fibres. Would excitatory re-

sponses be observed if an appropriate, naturally occurring stimulus was applied (Buzsaki

et al., 1995)? Superficial entorhinal activity contains information about the past, cur-

rent and future locations of the animal, and about the task being performed (Barnes

et al., 1990; Quirk et al., 1992; Frank et al., 2000, 2001). They express very little in-

formation about these variables compared to CA1 pyramidal cells (Frank et al., 2000,

2001). CA1 pyramidal cells receive � 2,000 temporoammonic inputs, certainly very

few compared to the � 30,000 Schaffer collateral inputs (Megı́as et al., 2001). If a spe-

cific subset of inputs need to be coincidentally active to ensure an excitatory somatic

response, that subset must convey information about an uncommon event. In this case,

significant information about so far unidentified variables should be expressed by en-
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torhinal neurons.

It is possible that the appropriate level of stimulation is required. Feedforward in-

hibition at fast latencies is recruited by even very low stimulation intensities. With

strong stimulation at θ frequencies and above, the inhibitory response decreases, de-

pendent on GABAB receptor activation (Remondes and Schuman, 2003). The tem-

poroammonic pathway is activated by low frequency stimulation in the guinea pig in

vivo and in the rat slice (Bartesaghi and Gessi, 2003; Iijima et al., 1996), and entorhi-

nal layer III projection cells respond to increasing stimulation strength with long after

hyperpolarisations.

The temporal structure of temporoammonic input is likely to affect its efficacy.

With the main inhibitory response targeting the stratum radiatum, stratum lacunosum-

moleculare EPSPs can temporally and spatially cooperate, possibly activating dendritic

spikes. What is the appropriate timescale of distal dendritic integration? Given the low

information content of entorhinal input, one would expect that a long integration time

would be effective.

Empson and Heinemann (1995) report slow NMDA-dependent EPSPs uncovered

on bath application of the GABAA antagonist bicuculline, in the rat slice. These EP-

SPs are notable for their size. From one set of 24 cells, the mean peak value was 4.15
�

0.42 mV, recorded with a resting membrane potential of -65 mV and using 0.10-

0.03 Hz stimulation in stratum lacunosum-moleculare. Colbert and Levy (1993) estab-

lished that NMDA-dependent temporoammonic LTP could occur in the rat, but only if

GABAA-mediated inhibition was blocked. Previously, Doller and Weight (1985) had

reported tetanus induced temporoammonic LTP in the guinea pig, but as already men-

tioned, the pathway is more excitable in the guinea pig. Soltesz (1995) believed that

there was a low density of NMDARs in the temporoammonic pathway compared to the

Schaffer collaterals, presumably due to the difficulty of inducing LTP in the presence

of GABAA-mediated inhibition, and used the NMDAR blocking anaesthetic ketamine

during the in vivo study. Certainly the other slice studies do not report significant

NMDAR-mediated EPSPs (Colbert and Levy, 1992; Levy et al., 1995; Buzsaki et al.,

1995).

Recently Remondes and Schuman (2002, 2003) induced NMDA-dependent LTP
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Figure 3.3: NMDA/AMPA area ratio of temporoammonic (here perforant path, PP) EPSPs is � double

the ratio for Schaffer collateral (SC) EPSPs. Results of a cell body patch clamp experiment in slices in

artificial cerebrospinal fluid either with magnesium (control) or without (Low Mg2
�

. Picrotoxin (PTX) is

added to block GABA receptors, and APV is an NMDAR antagonist. (A) Averages of 10 EPSPs. (B)

Total area of EPSPs from 11 cells. Asterisks denote significant difference from the previous condition

(*p � 0.05, **p � 0.01). Figure taken from Otmakhova et al. (2002), c
�

Society for Neuroscience.
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in the temporoammonic pathway using both a θ-burst stimulation protocol (4-5 pulses

at 100 Hz, every 200ms) and high frequency stimulation (100 pulses 100 Hz, every

20-30 s), as measured by changes in the field EPSP slope in the stratum lacunosum-

moleculare. Previously, Dvorak-Carbone and Schuman (1999a) had induced NMDA-

dependent LTD in the stratum lacunosum-moleculare in the entorhinal-CA1 slice us-

ing low frequency stimulation (1 Hz for 10 minutes). Dvorak-Carbone and Schuman

(1999a) had been unable to induce LTP with either high frequency stimulation or the

θ-burst protocol, but induced LTD was recovered by high frequency stimulation af-

terwards. Remondes and Schuman (2003) suggest that both their method of cutting

slices, and the angle at which they cut them, ‘spares more fibres that run along the

longitudinal axis of the hippocampus’. This reduces the amount of inhibitory input

(Lacaille and Schwartzkroin, 1988). If this angle increases the amount of excitation, it

supports the idea of spatially unfocussed, if restricted, temporoammonic projections.

The possibility that the stratum lacunosum-moleculare is rich with NMDARs was

recently confirmed by Otmakhova et al. (2002). They integrated the amount of charge

passed by the EPSC with and without the presence of the NMDA blocker APV during

whole-cell patch clamp recordings at -20 mV. At this voltage, they judged the NMDA

channel to be maximally open. From these measurements, they calculated the ratio of

charge transfered through NMDA synapses to AMPA synapses. The NMDA/AMPA

ratio in response to temporoammonic stimulation was twice that in response to Schaffer

collateral stimulation. This ratio was maintained in a variety of experiments designed

to check against confounds (figure 3.3). The technically complex result is corrobo-

rated by the observations of Megı́as et al. (2001) that stratum lacunosum-moleculare

synapses are more often perforated and larger than stratum radiatum synapses.

3.3 Control of the Schaffer collaterals

How does temporoammonic activation affect the response of CA1 to Schaffer collateral

activity? In the slice, when the temporoammonic pathway is stimulated with a brief

100 Hz burst, Schaffer collateral stimulation that previously only elicited an EPSP

now can evoke a spike if it follows 20-80 ms later (Remondes and Schuman, 2002).
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In contrast, when Schaffer collateral stimulation just strong enough to consistently

evoke a spike follows by 200 ms or more, the probability of evoking a spike is signif-

icantly reduced (Dvorak-Carbone and Schuman, 1999b). This ‘spike-blocking’ has a

time course consistent with GABAB receptors, and indeed is itself blocked by GABAB

receptor antagonists. Unfortunately, due to the complex localisations of presynaptic,

postsynaptic and extrasynaptic GABAB receptors around Schaffer collateral synapses

(Colbert and Levy, 1992; Scanziani, 2000; Pham et al., 1998), the mechanism remains

unknown. In turn, it is difficult to predict whether or not it occurs during the rhythmic

discharge of interneurons during θ-activity.

The relative timing of temporoammonic and Schaffer collateral stimulation also

affects the induction of LTP in the Schaffer collaterals. When stimulated at the same

time with brief, high frequency spike trains, the change in the slope of the field EPSP

was significantly less than when the Schaffer collaterals were stimulated alone (Levy

et al., 1998). This reduction in LTP is blocked by the GABAA antagonist bicuculline

(Remondes and Schuman, 2002).

The GABAB receptor anatagonist CGP blocks temporoammonic LTP (Remondes

and Schuman, 2003). Similar effects have been reported at Schaffer collateral synapses

(Davies et al., 1991), and at perforant path synapses to dentate granule cells (Mott and

Lewis, 1991), where presynaptic GABAB receptors on inhibitory synapses are autoac-

tivated. Without the resulting disinhibition, LTP induction is blocked. The Schaffer

collateral synapses also have presynaptic GABAB receptors, whereas the temporoam-

monic synapses do not (Colbert and Levy, 1992). The unknown factor is what levels

of inhibitory activity are required to activate these presynaptic GABAB receptors and

facilitate LTP.

Once induced, temporoammonic LTP has fascinating implications for Schaffer col-

lateral activation. After the induction of temporoammonic LTP using the high fre-

quency protocol, the magnitude of both spike-blocking and enhancing of Schaffer col-

lateral stimulation by appropriately timed temporoammonic stimulation were signif-

icantly increased (Remondes and Schuman, 2002). Meanwhile, after the induction

of LTD, the magnitude of the spike-blocking and enhancement were significantly de-

creased. Furthermore, after temporoammonic LTP, the magnitude of the reduction
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in Schaffer collateral LTP was increased when the pathways were stimulated simul-

taneously. Likewise, after temporoammonic LTD, the magnitude of the decrease in

Schaffer collateral LTP was itself reduced.

It is not clear how plastic changes in temporoammonic transmission result in changes

in the GABAB-dependent spike-blocking and GABAA-dependent reduction in Schaffer

collateral plasticity. Spike-blocking is mediated by feedforward inhibition (Dvorak-

Carbone and Schuman, 1999b). Temporoammonic potentiation changes the slope of

the field EPSP, but does not change the inability of the pathway to evoke CA1 pyrami-

dal spikes. CA1 interneuron LTP has only been observed in stratum oriens interneurons

(Perez et al., 2001) and stratum radiatum interneurons (Christie et al., 2000). The LTP

of stratum radiatum interneurons required stimulation at 200 Hz, and did not occur at

100 Hz, the frequency used by Remondes and Schuman (2002). The stratum oriens

interneurons studied in Perez et al. (2001) are principally driven by pyramidal cell re-

current collaterals, and also passively propagate Schaffer collateral LTD, disinhibiting

temporoammonic input (Maccaferri and McBain, 1995).

Both the changes in spike-blocking and the blocking of Schaffer collateral plas-

ticity would appear to require the potentiation of feedforward inhibition from tem-

poroammonic activation (or a hidden dependency on the protocol used). The prece-

dent for hippocampal feedforward interneuron plasticity is at mossy fibres synapses

in CA3 (Alle et al., 2001; Lei and McBain, 2004). The mossy fibres are an essential

source of sensory input to CA3 for spatial learning (Lassalle et al., 2000; McNaughton

et al., 1989), argued to orthogonalise entorhinal input (Treves and Rolls, 1992). If the

temporoammonic input provides an input that to some degree controls CA1 activity, it

may use the same mechanisms used in the mossy fibre pathway.

3.4 Independent activation

Iijima et al. (1996) used optical imaging to observe activity in entorhinal-hippocampal

slices. They observed reverberating activity in the entorhinal cortex. This had been

first proposed as a mode of operation for the entorhinal cortex by Deadwyler et al.

(1975), who were inspired by the excitatory projections from deep to superficial en-
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torhinal cortex. Excitingly, Iijima et al. (1996) also observed frequency dependent

transmission of activity to the hippocampus. This latter observation was repeated in

rat slices (Gloveli et al., 1997b). The entorhinal layer II projections to CA3 and the

dentate gyrus are preferentially activated by stimulus frequencies above 5 Hz, and re-

main inactive for lower stimulus frequencies. In contrast, entorhinal layer II neurons

are preferentially activated by frequencies below 10 Hz, and are strongly inhibited at

higher frequencies. In anaesthetised guinea pigs, Bartesaghi and Gessi (2003) found

that for 1-4 Hz stimuli, a current sink was observed in CA1 alone in the hippocampus.

In anaesthetised rats, 0.15 Hz stimulation of CA3 resulted in a current sink in the mid-

dle molecular layer of the dentate gyrus, corresponding to the projection zone of the

medial perforant path (Canning et al., 2000).

These findings are consistent with the electrophysiology of entorhinal layer II and

III projection neurons. In layer II projection neurons, postsynaptic NMDARs facilitate

an increased probability of an action potential with repeated stimulation (Heinemann

et al., 2000). In contrast, repetitive stimulation results in a long hyperpolarisation in

layer III projection neurons (Gloveli et al., 1997a).

If activity can reverberate in a frequency dependent manner either through the trisy-

naptic circuit, or through the temporoammonic pathway, one would expect the two

reverberatory loops to have differentiable functions. Sybirska et al. (2000) used 2-

deoxyglucose imaging to observe metabolic activity in the hippocampi of rhesus mon-

keys during delayed match-to-sample and oculomotor delayed-response tasks. The

method preferentially labels the activity in active axonal arbourisations. In all tasks,

they observed intense activity in the stratum lacunosum-moleculare of CA1, but little

activity in CA3. The authors infer that the temporoammonic pathway is recruited in

preference to the trisynaptic circuit for these tasks.

The delayed match-to-sample task is hippocampally dependent, but hippocampal

blood flow correlates negatively with performance in the oculomotor delayed-response

task (Inoue et al., 2004). Low activity in CA3 is theoretically desirable, but there is no

data of CA3 activity for comparison. With 2-deoxyglucose imaging it is impossible to

discriminate between excitatory or inhibitory synaptic activity, or indeed glia activity.

Since there is no discussion of how hippocampally taxing these tasks are, it is not clear
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that strong conclusions can be drawn from the results.





Chapter 4

Behaviour

4.1 Introduction

The goal of identifying the computational function of CA1 is to explain its role in

hippocampus dependent behaviour. Studies of the pathologies of amnesia were the

original inspiration for associative memory models of the hippocampus, and explain-

ing the memory deficits in amnesia remains their most important application. Because

the focus of the thesis is on the rat hippocampus, I discuss current animal experiments

into the nature of episodic memory with an emphasis on rats. The results of these ex-

periments, demonstrating the hippocampus dependent rapid learning of complex tasks

within one trial, are the experimental justification for associative memory models of

the hippocampus.

Despite the role of the rodent hippocampus in a variety of computationally taxing

one-shot learning paradigms, its foremost behavioural characteristic is spatially cor-

related activity. Hippocampal cells which respond when the animal is in a particular

part of an environment are called place cells, and the area of the environment in which

they are active are known as place fields (O’Keefe and Dostrovsky, 1971). Place field

activity in novel environments provides the physiological expression of new spatial

memories being formed. Whether the formation of spatial memories is a special case

of memory formation remains is debated (O’Keefe, 1999; Eichenbaum et al., 1999).

How patterns of activity are formed in CA1 is the focus of chapter 8, and material pre-

35
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sented here forms an essential context. In addition, the data on the long term changes

in CA1 place fields (Lever et al., 2002) provide the inspiration for the final thrust of the

thesis in chapter 9. The modelling in that chapter is crucially underpinned by recent

data on the spatial correlates of entorhinal activity (Frank et al., 2000, 2001).

O’Keefe and Nadel (1978) interpreted the existence of hippocampal place-related

activity as meaning the role of the hippocampus is to provide a spatial map for nav-

igation. This is an intuitively attractive idea, but it has been intriguingly difficult to

correlate place field activity with successful performance of spatial tasks. A striking

example of how normal CA1 place field activity belies an impaired performance in

a spatial task is provided by Nakazawa et al. (2002). Their experiment appears to

show that CA3 plasticity is required for pattern completion, a prime computational

motivation of associative memory models. In a separate example, the almost normal

individual CA1 place fields observed in the absence of CA3 (Brun et al., 2002) pro-

vide a unique chance to probe the contribution of temporoammonic input to CA1 (if in

unnatural circumstances) and is the inspiration for chapter 9.

The full scope of hippocampus behaviour is beyond the scope of a review of this

length. Notable omissions include the role of the hippocampus in both trace and con-

text conditioning (Sanders et al., 2003), novelty detection (Vinogradova, 2001) and

consolidation (Rosenbaum et al., 2001).

4.2 Episodic memory

The role of the hippocampus in memory was noted by von Bechterew (1900) after

studying a patient with medial temporal lobe damage (Zola-Morgan et al., 1986). De-

spite this, the hippocampus was generally perceived to be just one component of the

limbic system in the first half of the twentieth century. In 1957, an experimental oper-

ation was performed on a patient to ameliorate his highly incapacitating temporal lobe

epilepsy. The medial temporal lobe and parts of associated subcortical structures were

surgically removed, including two thirds of the hippocampus and half the amygdala.

It was very quickly apparent that the patient, referred to as H.M., was unable to form

particular kinds of memories (Scoville and Milner, 1957).
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In particular, H.M.’s inability to form declarative and episodic memories is very

striking. As long as he is not distracted, he can maintain an image, word or thought, but

within a few minutes, as his attention wanders, he forgets that he has even been asked

to perform the task. H.M.’s preoperative vocabulary has remained unaffected, but he

is unable to acquire new words (Kensinger et al., 2001). H.M.’s procedural memory

appears to be in tact for tasks that do not depend on temporally extended strategies. For

instance, he learnt to trace a star accurately in a mirror over many trials, despite being

unable to remember previous trials (Corkin, 1968). H.M. is still alive, still the subject

of experimental studies and enjoying crosswords (Corkin, personal communication).

The studies on H.M. have played a prominent role in popularising the idea that the

hippocampus plays a central role in declarative memory acquisition. The Scoville and

Milner (1957) paper has become the ‘most cited paper in the field of brain and be-

haviour research’ (Squire and Kandel, 1999). In all ten patients discussed by Scoville

and Milner (1957), significant parts of the temporal lobes or amygdala were removed.

This has made it hard to make firm conclusions about the role of the hippocampus in

amnesia.

Zola-Morgan et al. (1986) present the patient R.B. with visible damage limited to

the hippocampus, including the entire CA1, and regions not previously associated with

memory function (the somatosensory cortex, cerebellum, and globus pallidus). R.B.

exhibited severe anterograde amnesia and an average or above average performance in

all the components of intelligence tests in all but one task. The anterograde amnesia

was tested using a variety of recall tests, including the recall of a list of unrelated pairs

of words, recall of a heard story, and the reproduction of a figure after a 10-20 minute

delay (figure 4.1). Four years later, the anterograde amnesia was still present, as evi-

denced by recall and recognition tests. Finally, R.B. showed no conclusive evidence of

retrograde amnesia. The tests included recalling and recognising public events, famous

faces and television programs from the past as well as controls. These findings were

developed by tests on a further three patients with damage limited to the hippocampus

or areas not associated with memory performance (Rempel-Clower et al., 1996). Like

R.B. all three patients showed extensive and severe anterograde amnesia. In addition,

two had retrograde amnesia affecting the 15 and 25 years respectively prior to their



38 Chapter 4. Behaviour

Figure 4.1: The performance of patient R.B. and a control in the Rey-Osterreith complex figure test.

The original figure is shown in the small box (bottom left).Subjects are asked to copy the figure (top),

and then asked to reproduce it unseen 10-20 minutes later, without warning (bottom). Left : R.B.’s per-

formance 6 months after the onset of amnesia. Middle: R.B.’s performance 23 months after the amnesia

onset. Right : performance by a control matched for age and education. Figure taken from Zola-Morgan

et al. (1986), c
�

Society for Neuroscience.

injuries.

Amnesia is a medically defined condition with diverse pathologies. For instance,

chronic alcohol abuse can lead to an amnesia resulting from damage to regions includ-

ing the thalamus, hypothalamus, mamillary bodies (and not primarily the hippocam-

pus), a condition known as Korsakoff’s syndrome (McEntee and Mair, 1990). The

problem of identifying the contribution of hippocampal damage to amnesia can be

simplified by attempting instead to identify its role in a framework of memory pro-

cesses. The high level taxonomies of memory systems are widely agreed upon, for

instance the distinction between declarative and procedural memory, although differ-

ent researchers have favoured taxonomies. Declarative memories are the facts and data

acquired from experiences, whereas procedural memories are the adjustments to the

neural systems generating these experiences (Cohen and Eichenbaum, 1993, chapter

3).

More controversially, Tulving (1972) has proposed that declarative memory is di-
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visible into semantic and episodic memory. As originally proposed, episodic memories

are the memories of personally experienced events, the memories of what happened,

where and when, whereas semantic memories are knowledge independent of spatial

and temporal contexts. The idea of episodic memory has since been developed to em-

brace the conscious awareness of an event either remembered from the past or planned

in the future (Tulving, 2001). This distinction is useful in humans to distinguish be-

tween strategies used to perform recognition memory tasks: if recall is used to perform

a recognition task, the subject will be aware of it.

Associative memory models of the hippocampus have, since Marr (1971), pro-

posed that sensory and internally generated experiences result in an hippocampal input

which is associated together on a fast time scale, for the future reference of the an-

imal to that experienced event (chapter 5). The specific details are diverse, with the

input activity either referencing or representing sensory and internally generated brain

activity (Teyler and DiScenna, 1986), and the rapidly acquired memory either being

consolidated outside the hippocampus or maintained permanently in the hippocampus

(Alvarez and Squire, 1994; Nadel and Moscovitch, 1997). This function corresponds

most closely to the idea of episodic memory.

The idea that the hippocampus performs episodic memory function is contested.

For instance, Cohen and Eichenbaum (1993) develop a compelling case that the hip-

pocampus has a ‘critical role’ in the acquisition of declarative memories, and that this

is not contained by the idea of the hippocampus as an episodic memory store. This

view has been subsequently developed, particularly focussing on how the hippocampus

forms linked episodic representations that together form a memory space supporting

inference (Eichenbaum, 2001).

Within the still hotly contested debate as to the exact function of the hippocampus

in the declarative memory system, the implications of each theory have only limited

consequences for associative memory models of the hippocampus. I will take the view

that the hippocampus performs the least computations consistent with experimental

data. For instance, the hippocampus may form flexible, relational representations, as

argued by Cohen and Eichenbaum (1993), but it may perform this by associating the

appropriate, as yet unspecified inputs that provide this structure to the memory. This
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is in contrast to the hippocampus computing the structure of the relationships between

the inputs itself. As an example, the parietal cortex is preferentially active when infor-

mation is available to disambiguate the relationships between multiple visual objects

(Shafritz et al., 2002). As another example, a common function argued for the hip-

pocampus is that it detects novel stimuli, or combinations of stimuli (Vinogradova,

2001, reviewing a lifetime’s work). Recognition memory is supported by extrahip-

pocampal regions (Brown and Aggleton, 2001), and the encoding of novel stimuli as

an episode is indistinguishable from detecting the novel stimulus. Therefore the default

assumption in this thesis is that hippocampal activity can assist in many memory tasks

by providing recalled episodes, but that the hippocampus itself does not extrapolate

further information from them.

A fundamental criticism of the position that the hippocampus operates as an asso-

ciative memory store is the rejection of the idea of multiple memory systems. Gaffan

(2002) argues that the memory deficits attributed to medial temporal lobe damage,

as exemplified by H.M., are equally consistent with the effects of disconnecting the

temporal cortex from brainstem and basal forebrain afferents. These fibre bundles are

connected to the temporal lobes in the fornix and next to the amygdala. They are

therefore likely to be damaged in H.M.. It is unlikely that this argument can be used

to explain the deficits exhibited by patients such as R.B., whose damage appears to be

restricted to the hippocampus.

4.2.1 Episodic-like memory in animals

If the hippocampus is responsible for episodic memory storage in humans, can this the-

ory be tested in animal models? There are numerous problems to this approach. The

first is the refined definition of episodic memory to include conscious awareness of the

recalled memory. If animals lack consciousness, then by construction animals cannot

have episodic memory. The importance of conscious awareness is to distinguish be-

tween familiarity recognition and recall. Computationally, the representation used in

recall will be a reduced representation of the original event experience, and the repre-

sentation used to judge familiarity can be viewed as a highly reduced representation

of this experience, reduced to a binary variable. If a task can be solved that cannot be
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solved using familiarity alone, and the task requires the hippocampus, then evidence

for an equivalent hippocampal function in our animal is achieved. Because any such

task only tests a restricted part of the definition of episodic memory it is referred to as

‘episodic-like’ memory (Clayton and Dickinson, 1998).

A more serious problem is whether the hippocampus performs the same or similar

functions in different species. The anatomical organisation is similar between the rat,

primates and humans, although the ratio of the numbers of cells in every area signif-

icantly changes (Rosene and Van Hoesen, 1987). Meanwhile, the invasive nature of

electrophysiological recordings in rats and primates can rarely be performed in hu-

mans. For example, the nature of the θ-rhythm in humans is only just beginning to be

explored, and its behavioural correspondence to the rodent θ-rhythm remains uncon-

firmed (Kahana et al., 2001).

The apparent role of the hippocampus in the human amnesia literature has trig-

gered a large body of experimental work searching for a hippocampal dependence of

an episodic-like memory for animals. Ultimately these findings will not directly trans-

fer between animals. The limited success of these experiments, some of which are dis-

cussed below, present compelling evidence for the kind of one-shot learning memory

systems well served by associative memory models. The ultimate focus of this thesis

is on identifying the role of CA1 in the rat, and how it performs its computations. It is

believed that this is interesting in its own right. In addition, our understanding of the

human hippocampus may be increased through understanding a parallel, similar but

different system.

The most successful experiments in examining the existence and nature of episodic-

like memory in animals have adapted the food caching behaviour of particular bird

species. Clayton and Dickinson (1998) presented scrub jays (Aphelocoma coerulescens)

with either wax worms or peanuts for 15 minutes, and allowed them to cache each food

type in the sand wells of different, visually distinctive food trays. The trays were then

removed and returned either 4 or 124 hours later. After the 4 hour delay, fresh wax

worms were placed in the wells where the wax worms had been cached, but after the

124 hour delay, decayed worms were placed in them. This pre-training was designed

to teach the scrub jays that the wax worms, their preferred food, decayed after 4 hours.
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During the test experiments, the birds were allowed to cache one food type in one half

of a tray, then to cache the other food type 120 hours later in the other half of the tray.

After a further delay of 4 hours, the scrub jays were allowed to feed from the tray.

When the peanuts were cached first, the scrub jays maintained their preference for wax

worms by preferring to search the side of the tray where the wax worms had been

stored. When the wax worms were cached first, the scrub jays preferred to search the

peanut side of the tray. This is consistent with the birds knowing the three components

of episodic memory: what they searched for depended on when the food was cached,

and they knew where to look.

The results of Clayton and Dickinson (1998) are the only convincing demonstration

of an animal being able to correctly perform a task on the basis of the temporal, spatial

and identity information after one learning trial. The encoding is binary: peanut vs wax

worm, left vs right, and 4 hours vs 124 hours ago. A highly reduced representation of

the event is therefore sufficient to perform the task. Clayton et al. (2003) examined

the temporal component in a little more detail by varying the interval after which the

birds were tested. In this experiment, the scrub jays learnt during training that cached

crickets were fresh after 1 day, but had decayed by 4 four days. When tested at in-

termediate intervals of 2 or 3 days after caching, the scrub jays searched the side of

the tray with cached crickets, rather than the side with cached peanuts. On the fourth

day, their preference switched to peanuts. The scrub jays’ learnt response to 4 day

old crickets can therefore be discriminated to an accuracy of 1 day from 4, indicating

some temporal specificity. In addition, it indicates that the performance in Clayton and

Dickinson (1998) is unlikely to be explained by differential forgetting rates triggered

by a learnt uncertainty in the wax worm longevity, as this would predict a gradual shift

in preference from crickets to peanuts over the 4 days.

In the rodent literature, the search for episodic-like memory storage has focussed

on one-trial learning. In particular, the focus is on one-trial learning in which changes

in behaviour as a result of the recall of an event can be distinguished from changes in

behaviour simply because a prior event has happened (Morris, 2001). For instance, poi-

son aversion can be learnt within one trial, but the subsequent recognition and avoid-

ance of the poison does not require recall.
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One class of tasks that has proved illuminating is paired associate learning. Exper-

iments have been designed that pair what and where information (Day et al., 2003),

what and when information (Fortin et al., 2002), and where and when information

(Kesner and Novak, 1982). Both Fortin et al. (2002) and Kesner and Novak (1982)

will be discussed later in relation to evidence that the hippocampus is involved in se-

quence learning. In the paradigm developed by Day et al. (2003), the rat has only one

trial to find a scented food pellet in one of 49 sand wells, before returning home. The

rat has a second trial 2 minutes later in which to find a differently scented pellet in a

different well. In the test trial, the rat is given a recall cue in the start box of a small

pellet of one of the trial scents. When the start box is opened, there is a pellet corre-

sponding to the recall cue scent in the same position as in the trial. The rats rapidly

learnt the task within days, as judged by the time spent digging at correct and incorrect

sandwells. When the hippocampi were infused with the NMDAR antagonist D-AP5

15 minutes before the sample trials, performance was at chance levels. When infused

in the 20 minutes between the second sample trial and the test trial, the performance

was not significantly affected.

The results of Day et al. (2003) show that NMDAR-dependent plasticity is required

for a task that appears to require the recall of a single odour-location pairing event. It is

difficult to explain how this task could be performed without some form of event mem-

ory recall. There is no requirement to recall the temporal component of every trial, so

the task cannot demonstrate episodic-like memory. The stimuli are more finely grained

than the binary coding required by the task in Clayton and Dickinson (1998). Day et al.

(2003) do not disaggregate the performance in terms of the spatial distances between

the choice sand wells, but it would indicate the accuracy of the spatial component. If

the rats can distinguish neighbouring sand wells, this would indicate a considerable

level of detail in the memory.

One caveat is that paired associate learning has been argued to require a spatial

(where) component. Gilbert and Kesner (2002) tested the ability of rats to learn paired

associations between a visual object and a location, an odour and a location, and be-

tween a visual object and an odour. Rats with hippocampal lesions were unable to

learn the object-location and odour-location pairings, but were able to learn the object-
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odour pairing. If the hippocampus is only involved in generating the spatial map of

the environment, as proposed by O’Keefe and Nadel (1978), then the dependence of

the hippocampus is only a result of the hippocampus cognitive map being unavailable.

That the performance in Day et al. (2003) was unaffected by D-AP5 infusions after

the sample trials, suggests that the presence of the spatial component in the one-trial

pair associations is not sufficient to explain the hippocampal dependence, despite the

spatial components of Fortin et al. (2002) and Kesner and Novak (1982).

The one-trial paired associate paradigm was developed by Day et al. (2003) in

response to criticism of previous work investigating episodic-like memory using the

delayed match to place task investigated by Steele and Morris (1999). In these exper-

iments, the rats were given 4 trials per day to find the location of a hidden platform in

a water maze, from different start locations. The platform location was held constant

every day, and moved between one of 9 locations between days. The rats learn the task

sufficiently quickly that after 5 days of pretraining, there is no performance difference

between the second, third and fourth trial escape latencies: after the first trial the rat

is escaping as quickly as it can. When rats were given hippocampal injections of D-

AP5, the escape latency in the second trial was significantly longer, when the interval

between the first and second trial was 20 minutes or more.

This result can be explained by the NMDAR-dependent storage of the first trial

event and subsequent recall in the second trial. It could also be explained by famil-

iarity: the rat swims towards the most familiar location. Despite this shortcoming, the

paradigm was used by Nakazawa et al. (2003) to test the speed of learning in mice with

NMDA NR1 receptor subunit gene knocked out in CA3 pyramidal cells. The escape

latency of the knockout mice in the second trial was significantly longer, despite com-

parable performance during training. The hippocampal NMDAR-dependence of the

task may then be further identified with plasticity in CA3 specifically.

4.2.2 Temporal order

Inspired by studies on the performance of human amnesiacs in temporal order tasks,

Kesner and Novak (1982) investigated the ability of rats with hippocampal lesions to

perform a primacy task. The rats were trained to explore the arms of an eight-arm maze
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in a controlled random order, and then, after a 20 second delay, to choose the arm they

had visited first from a test pair. Control rats performed well in choices between the

earliest arms visited, and between the most recently visited. Lesioned rats performed

as well as controls in the choices between recently visited arms, but at chance levels

for the first visited. When the delay was extended to ten minutes, controls performed

at chance levels except for choices between the most recently visited arms. The le-

sioned rats performed at chance levels for all choices. These results are consistent with

the literature on some amnesiacs with hippocampal damage, where performance in re-

cency discrimination tasks without delays is relatively unimpaired, despite significant

impairment in content discrimination tasks (Sagar et al., 1990).

The experimental design in Kesner and Novak (1982) involved a strong spatial

component which could explain the hippocampal dependence. Fortin et al. (2002)

trained rats to dig in sandwells with odours mixed in, and then discriminate the earliest

occurring odour of a pair from the sequence. Each trial occurs in the same location,

implying that the spatial context does not need to be remembered to perform the task

successfully. Consistent with the results of Kesner and Novak (1982), hippocampus

lesioned rats performed significantly less well than controls.

The experiment of Fortin et al. (2002) shows that the hippocampus is required to

correctly recollect temporal order information. The results are consistent with the idea

that the hippocampus associates discontiguous events, such that recall of the first event

results in the replay of the whole sequence (Levy, 1989; Wallenstein et al., 1998), as

suggested by Fortin et al. (2002). Alternatively, discriminating the primacy of an event

from a sequence out of a pair of events could require recalling the memories of the

unlinked choice events from the hippocampus.

4.2.2.1 CA1 and temporal order

Gilbert et al. (2001) trained CA1 lesioned and control rats to explore all eight arms of

an eight-arm maze in a predetermined random order, and then choose the arm visited

the earliest out of a choice of two. The CA1 lesioned rats were significantly impaired,

performing only marginally better than at chance levels. Spatial recognition was also

assessed, using a delayed matching to sample task. Random objects marked vari-
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ously spaced choice foodwells in a circular environment with multiple foodwells, and

the rats were trained to return to a baited foodwell when returned after a delay. The

CA1 lesioned rats’ performance showed no evidence of their impairment. In contrast,

dentate gyrus lesioned rats were highly impaired. For the largest choice separation dis-

tances � 60 cm, the increase in errors was not significant, but as the distance decreased

the significance increased. For separations of 15 cm, the dentate gyrus lesioned rats

performed little above chance. At this distance, the CA1 lesioned rats performed sig-

nificantly worse than the controls, but still within the criteria of successful pretraining.

Gilbert et al. (2001) claim that CA1 in particular is required for temporal order

tasks. They propose that CA1 temporally decorrelates CA3 representation. The only

anatomically distinguished projections from CA3 are to CA1 and the lateral septum

(Amaral and Witter, 1995). If CA1 is completely removed, then hippocampal output

can only be mediated through the lateral septum, presumably to the medial septum

which heavily projects to the subiculum. This is possible, given the existence of spatial

information in the lateral septum (Bezzi et al., 2002), but the lack of spatial activity in

the medial septum makes this theory highly speculative.

CA1 was not completely removed. 17% of ventral CA1 remained by volumetric

analysis. Moser et al. (1995) examined how the size of a dorsal or ventral lesion

affected the ability to acquire a spatial recognition water maze task. With only 20-

40% of dorsal hippocampus, the speed of acquisition was not affected. With only 20-

40% of ventral hippocampus, the task acquisition was severely disrupted. The broad

place fields in the ventral hippocampus (Jung et al., 1994) indicate that the dorsal

hippocampus is more involved in spatial learning, as supported, but dorsally lesioned

animals can still learn the task if trained appropriately (de Hoz et al., 2003). The

extensive postoperative testing in Gilbert et al. (2001), consisting of 2 blocks of 80

trials over 2 weeks, are unusual and could have allowed the rats to acquire the task

given their prior training.
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Figure 4.2: Example activity of a CA1 hippocampal place cell, recorded in a round chamber. The

average activity in every 2 � 5 � 2 � 5 cm square is coded in Hz using the scale on the right. Figure taken

from Muller (1996), c
�

Cell Press.

4.3 Place fields

4.3.1 Overview

Place cells typically have one location at which the probability of an action potential

is maximal, but sometimes more than one (Muller, 1996; Best et al., 2001). The peak

probability decreases to a baseline level in the surrounding area, and the place field is

where the probability is above a designated threshold (figure 4.2). Like many sensory

neurons, place cells can express additional information, such as direction of motion

(McNaughton et al., 1983), and the future direction at a junction on a linear track

(Ferbinteanu and Shapiro, 2003).

Unlike sensory receptive field neurons, there is no topographic organisation of the

inputs. This results in neighbouring place cells with uncorrelated place fields (Redish

et al., 2001). Further differences lie in the speed of formation, and in remapping. Place

cells can form their receptive place fields in minutes or hours (Tanila et al., 1997), yet

remain stable for months (Thompson and Best, 1990). Whereas visual cortical neurons
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adapt over days to changes in stimuli, after a behaviourally significant change in the

environment place cells appear to randomly remap their place field location (Bostock

et al., 1991).

The discovery of place cells was a surprising example of an internal representation

of the external environment (O’Keefe and Dostrovsky, 1971). Places fields are located

in an allocentric (world-centred) coordinate system defined by cues in the environment.

O’Keefe and Nadel (1978) specified this internal representation as the ‘cognitive map’

by which the rat could perform spatial navigation. In the ‘strong interpretation’ of the

cognitive map theory the hippocampus only computes the animals’ location within a

representation of the environment (O’Keefe, 1999), and navigation decisions are made

extrahippocampally on the basis of this information. In ‘softer’ interpretations, further

computations are performed by the hippocampus, such as the addition of a temporal

component to form temporal spatial memories.

Place cells are found throughout the hippocampus (Barnes et al., 1990). The most

spatially specific are found in dentate gyrus granule cells (Jung and McNaughton,

1993) and dorsal CA3 and CA1. Place fields in the ventral hippocampus are larger

(Jung et al., 1994). CA3 and CA1 interneurons convey some, but relatively little spatial

information (Kubie et al., 1990). Most of the cortical areas that receive hippocampal

outputs exhibit significant place field activity, including the subiculum, parasubicu-

lum, perirhinal cortex and the deep layers of the entorhinal cortex (Barnes et al., 1990;

Taube, 1995; Burwell et al., 1998; Frank et al., 2001). The lateral septum is an out-

put area as it receives input from the entorhinal cortex, CA3, CA1 and subiculum, but

only weakly projects back to the hippocampus (Jakab and Leranth, 1995). It has re-

cently been shown to exhibit place specific activity, in contrast with the reciprocally

connected medial septum, whose activity appears to correlate with the generation of

hippocampal rhythms (Zhou et al., 1999; Leutgeb and Mizumori, 2002). The medial

prefrontal cortex receives a projection from CA1 but so far there have been no reports

of prefrontal place field activity (Poucet, 1997).
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4.3.2 Activity in novel environments

When a rat is placed in a novel environment, the average CA1 pyramidal cell rate in-

creases (Wilson and McNaughton, 1993) by 43% over an initial period of 10-20 min-

utes (Nitz and McNaughton, 2004). Within 2-3 minutes place field activity occurs, and

after about 10 minutes, stable place fields are observed (Bostock et al., 1991; Wilson

and McNaughton, 1993). At the same time, CA1 interneuron activity decreases (Wil-

son and McNaughton, 1993; Fyhn et al., 2002): by 16.6
�

6.5% over 33 interneurons

from all layers (Nitz and McNaughton, 2004).

If the now familiar environment is sufficiently adjusted, the place fields ‘remap’

(Bostock et al., 1991) as though the environment is novel. Environmental changes that

can elicit remapping include the removal, introduction or relocation of behaviourally

relevant objects. The behavioural relevance of environmental manipulations is very

important. If a landmark cue is added to an arena once the spatial location of the

goal has been learnt with respect to existing landmark cues, rats perform at chance

levels when only the new landmark cue is used in tests (Biegler and Morris, 1999).

Alternatively, if the visual cues are consistent with two different orientations of a four

arm maze, then the place field map is consistent with one of these options, and the

rats will search in the goal location consistent with this map (O’Keefe and Speakman,

1987).

Particular manipulations of the environment often result in partial remappings,

where the place fields of only a subset of cells change. These include introducing

a barrier, or changing the proportions of the arena (Muller and Kubie, 1987; O’Keefe

and Burgess, 1996). When the location of a behaviourally relevant object is changed

in a familiar environment, activity similar to a partial remap is observed. Fyhn et al.

(2002) trained rats in the water maze task, then in test trials recorded the activity when

the hidden platform location was changed. In the new platform location, the activity

of a subset of interneurons decreased. Previously silent pyramidal cells became highly

active, but their activity levels decayed over ‘tens of seconds’. In subsequent trials,

when the new platform location is maintained, place field centres at other locations

were not significantly changed. This activity is consistent with ‘misplace’ cells de-

scribed by O’Keefe and Nadel (1978); cells whose activity is spatially modulated, but
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whose rate is maximal when unexpected objects or goals are found, or expected objects

or goals are not found.

NMDAR manipulations demonstrate a role of NMDAR-mediated plasticity in the

successful initial formation of place fields. Mice lacking the NMDA NR1 receptor

subunit in CA1 show no significant LTP in the Schaffer collaterals in the slice, and are

unable to learn the Morris hidden platform water maze task (Tsien et al., 1996). De-

spite this, their place fields are only � 30% larger, a result possibly explained by home-

ostatic mechanisms adjusting the threshold of every CA1 pyramidal cell (McHugh

et al., 1996). Place fields can form in the presence of NMDA antagonists, but when the

lights are turned off for five minutes and then turned back on, the fields remap (Shapiro

and Eichenbaum, 1999).

Meanwhile, Nakazawa et al. (2003) examined place field formation in mice with

the NMDA NR1 receptor subunit gene knocked out in CA3 pyramidal cells. The mice

were familiarised with a linear track by running back and forth for 15 minutes, and

CA1 place field activity was recorded for 15 minutes the next day. Both the mutant

and control mice had statistically inseparable firing rates and field sizes. A partition

was then removed at one end of the track to reveal another linear track, and the mice

explored it. Over the first 15 minutes in this linear track, the place field sizes of the

mutant mice increased by � 50%, where the place field sizes of control mice remained

unchanged. By the next day, the mutant place field sizes had returned to the size of

the control place fields. Nakazawa et al. (2003) state that the larger place field sizes on

entering a novel environment is consistent with CA1 cells being principally driven by

temporoammonic input. This is illogical: if temporoammonic input predominates dur-

ing place field formation, then this will reduce the effect of differences in CA3 between

mutants and controls. More plausibly, the mutant CA1 place fields are larger because

their CA3 place fields are larger, but the influence of Schaffer collateral plasticity and

temporoammonic input compensate for this over one day.

The Schaffer collaterals are highly plastic during the early excitatory CA1 activity

in response to spatial novelty. Weak stimulation (at 0.033 Hz) does not produce signifi-

cant LTP in the stationary rat in a familiar environment, but produces significant LTP 5

minutes after the rat had returned from 5 minutes of exploring a novel environment (Li
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Figure 4.3: Measures of long-term place field separation used in Lever et al. (2002), as functions of

the recording day. Left: RD denotes ‘Rate Divergence’, indicating differences in peak firing rates of cells

between two environments (1.0 represents identical peak rates, � 5.3 indicates unrelated peak rates).

Centre: PD denotes ‘Peak Divergence’, indicating differences in the locations of peak firing in the two

environments (1.0 represents identical peak locations, � 5.3 indicates unrelated peak locations). Right:

FD denotes ‘Field Divergence’, indicating the percentage of fields with statistically random distances

between peak rate locations in the two environments (0% represents identical peak locations, � 95%

indicates unrelated peak locations). Figure taken from Lever et al. (2002), c
�

The Nature Publishing

Group.

et al., 2003). If the rat explores for 15 minutes and is stimulated 5 minutes later, again

no LTP is observed, consistent with the time course of the increased excitability. Inter-

estingly, this LTP is blocked by dopamine D1/D5 receptor antagonists (Li et al., 2003).

In CA1, dopamine D5 receptor activation is required to transform NMDAR-dependent

early LTP into persistent late LTP (lasting longer than 4 hours) through protein syn-

thesis (Frey and Morris, 1998). In addition, application of dopamine or D1-receptor

agonists results in increased population activity after a delay (Frey and Morris, 1998).

4.3.3 Long-term changes

Once formed, place field properties can change over time. These changes are subtle

compared to the initial place field formation. Perhaps most interestingly, the place

field centre can move to a new location. When rats are placed in a round or a square

arena the place maps are highly similar (Lever et al., 2002). To compare the place field

locations, the rate was calculated at points the same proportion of the radial distance

from the centre to the walls. The mapping between the two environments is consistent

with place field activity being controlled by the distance from the arena walls (O’Keefe
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and Burgess, 1996). With repeated sessions, the similarities of the place field maps in

the two arenas significantly diverge: individual fields either gradually move, disappear,

or develop a subfield which comes to predominate (figure 4.3).

The actual shape of the place field also changes. If the rat runs in one direction

along a linear track, the place fields become asymmetric such that the rate is low as the

rat enters the field, and high in the latter part of the field (Mehta et al., 2000). At the

same time, the fields increased by � 20% in width and the place field centres moved
� 2.5 cm in the direction opposite to the direction of motion (Mehta et al., 2000, 1997).

Place fields formed with NMDARs blocked are initially stable over hours, but when

the rat returns to the environment the next day, a new map is established (Kentros et al.,

1998). The long-term stability of place fields is equivalently blocked by anisomycin,

an inhibitor of the protein synthesis triggered by NMDA plasticity (Agnihotri et al.,

2004). The asymmetric place field expansion is also prevented by NMDA blockers

(Ekstrom et al., 2001). NMDA mediated spike time-dependent plasticity has been

observed in the Schaffer collaterals in vitro (Nishiyama et al., 2000), consistent with

the theoretical models of sequence learning in CA3 that predicted the phenomenon

(Levy, 1989; Abbott and Blum, 1996; Tsodyks et al., 1996).

4.3.4 Spatially correlated activity in the entorhinal cortex

If place fields are generated in the hippocampus, what information are they generated

from? Barnes et al. (1990) were the first to record the spatial correlates of entorhi-

nal activity. They made recordings of entorhinal, hippocampal and subicular neurons

while the rat performed a task in an eight-arm maze. The spatial correlate of the activ-

ity was quantified as the ‘specificity’, the mean activity along an arm with the highest

mean activity divided by the mean activity elsewhere. The specificity of the entorhinal

cells is approximately equal to that of CA1 interneurons. The authors point out that

this measure does not identify spatially consistent firing in multiple locations.

Quirk et al. (1992) were interested in identifying whether or not remapping is a re-

sult of changes upstream from the hippocampus. They found that the ‘patchiness’ (the

number of continuous regions of high rate activity) of entorhinal cells is highly cor-

related between the two environments, whereas the patchiness of hippocampal cells
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is highly uncorrelated. This difference is statistically significant, and indicates that

changes in the spatial distribution of entorhinal activity are not the cause of hippocam-

pal remapping.

An unfortunate consequence of their experimental approach (for the modeller!) is

that their questions are addressed without providing much raw quantitative data on

the spatial characteristics of entorhinal activity. The correlations in the patchiness for

the two environments are given, but not the values from which the correlations are

calculated. The existence of reliable ‘patches’ of activity is consistent with multiple

entorhinal place fields, later confirmed in the linear track (Frank et al., 2000) and a

two-dimensional arena (Fyhn et al., 2003, personal communication), but Quirk et al.

(1992) assert the unimodality of entorhinal activity as a qualitative fact.

By the time of Frank et al. (2001), the electrophysiological properties of entorhi-

nal cells had been better characterised (Gloveli et al., 1997a; Heinemann et al., 2000).

This, and the practice of Frank et al. (2000), allowed the authors to perform unit classi-

fication where Quirk et al. (1992) and Barnes et al. (1990) had considered all their cells

as a single group. The reported mean and standard deviation rate fell from 7 � 12
�

9 � 0

Hz (Quirk et al., 1992) to 2 � 0
�

1 � 2 Hz, with an average interneuron rate of 27 � 3
�

11 � 0

Hz. This indicates that the original data of Quirk et al. (1992) was taken from a popula-

tion that included a significant proportion of interneurons, roughly one in five, biasing

the results. Frank et al. (2001), with supporting details and data in Frank et al. (2000,

2002), provide relatively unprocessed comparative data on entorhinal and CA1 spatial

firing characteristics. The average field length accounts for half the average length

of total place field activity, and the spatial information is low at 0 � 46
�

0 � 26 bits per

spike, compared to 2 � 34
�

1 � 25 bits per spike for the CA1 pyramidal cells. The spatial

properties of entorhinal cells are given again in more depth in section 9.2.4 where the

numerical values are important constraints for a model of place field formation.

4.3.5 Place fields and spatial learning

Recordings of place cells clearly indicate that the hippocampus is involved in spa-

tial processing and memory, but is place cell activity the substrate for this function?

When place cells are manipulated genetically, there is an equivalent relationship be-
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tween place field properties and spatial competence. In mice without CA1 NMDA r1

subunit receptors, directional and stable place fields form in a linear track environment

(McHugh et al., 1996). The fields were 32% larger on average, and overlapping place

fields had significantly less correlated activity than controls. Testing in the hidden

platform water maze task revealed a strong performance deficit in the knockout mice,

compared to the controls, despite no performance deficit in a taxon navigation task

(Tsien et al., 1996).

Alternatively, knockout mice that lose the NMDA r1 receptor subunit only in CA3

after postnatal week 5 have normal CA1 place fields during open foraging. There are

no observable differences in CA1 place cell field size, peak rates or in the correlated

firing of overlapping pairs (Nakazawa et al., 2002). The only observable differences

are in the lack of CA1 pyramidal cell bursting, and in a decreased CA1 putative in-

terneuron firing rate. Indeed, the mice learnt the hidden platform water maze task

indistinguishably from controls. When 3 of the 4 extramaze cues were removed, the

knockout mice performed significantly less well, searching incorrect quadrants. CA1

place cell activity was then examined in a familiar environment defined by 4 cues, after

3 cues had been removed. The burst rate, firing rate and field size were all significantly

decreased, corresponding to the behavioural deficits.

These genetic manipulations of place fields appear to be hippocampus specific,

but still reflect abnormal behaviour. Recently, a number of attempts have been made

to dissociate place cell activity and spatial performance through experimental design.

The progenitor of these experiments are O’Keefe and Speakman (1987), who linked

place cell activity to the uncued but predicted goal location, as described above. The

requirements of an experiment to prove the issue are quite subtle. Arolfo et al. (1994)

impaired spatial recognition performance in a hippocampal dependent task by turn-

ing lights on and off, which leaves the place fields unaltered. It is possible that the

manipulation disrupted subsequent processes (Bures et al., 1997).

Studies disrupting place field activity using cue manipulations have provided ap-

parently inconsistent results. Lenck-Santini et al. (2002) investigated the effect of

rotating the single wall card visual cue in a cylindrical environment. In the crucial

task, the rats were trained to go to a location that was constant in relation to the cue.



4.3. Place fields 55

Figure 4.4: Examples of place field activity of CA1 cells after the lesion of dorsal CA3 by ibotenic acid

Brun et al. (2002). The firing rate of the cells is colour coded: dark red indicates the maximum rate (left

to right: 9, 11, 3, 12, 6, 11, 2 Hz); dark blue is the minimum rate, close to 0 Hz for all cells. Figure taken

from Brun et al. (2002), c
�

The American Association for the Advancement of Science.

Rotating the cue card with the rat outside the environment typically rotated the place

map, and did not affect performance. Rotating it with the rat inside typically did not

cause a map rotation. This meant the map was specified by the environment, not by the

cue that referenced the goal location, and there was a corresponding significant drop

in performance.

In contrast, literally, Jeffery et al. (2003) trained their rats to perform an hippocam-

pus dependent spatial task in a black box, and then tested them in a white box. The new

environment caused the place cells to remap, in a way that was unrelated to the goal

location, but task performance was unimpaired. This result potentially poses a strong

challenge to the cognitive map theory, since hippocampal learning is required, but not

as evidenced by place cell activity. The study did not investigate subicular place field

activity. Sharp (1997) demonstrated that subicular place fields are much less likely to

remap to at least some manipulations of the environment. When a square environment

was expanded or contracted in size by a factor of 4, the majority of subiculum place

cells tended to expand or contract respectively, whereas the majority of hippocampal

cells remapped (Sharp, 1999). It should be noted that other manipulations do cause

remapping in the subiculum, for instance when walls partially separated the new ex-

panded area. In the experiment of Jeffery et al. (2003), the remapping may still acti-

vate the same subicular representation. The majority of hippocampal output putatively

passes through the subiculum, so it is this representation that has been used to perform

the task.
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4.3.6 CA1 in spatial tasks

What can place cell recordings tell us about how information is processed in CA1?

There have been no reports of differences between the properties of CA3 and CA1

place fields (Muller, 1996; Best et al., 2001). Numerous experimental manipulations

indicate, however, that CA1 place fields do not depend on CA3 activity. Mizumori

et al. (1989) investigated the role of the septal system in place cell activity during a

radial 8 arm maze task. The rats were trained to visit every arm once, with 1 min

delays between visiting the arms. A spatial selectivity measure was computed by com-

paring the rate in the preferred direction of the preferred arm for the cell against the

rate in the rest of the maze. After training, a canula was inserted so that the anaesthetic

tetracaine could be applied and reversibly disable the medial septum. There is a dense

cholinergic and GABAergic projection to CA3, mainly to interneurons, but the similar

projection to CA1 is much lighter (Amaral and Witter, 1995). Application of the tetra-

caine substantially reduced activity in CA3 and abolished the θ-rhythm. Meanwhile,

CA1 activity was not significantly decreased. Moreover, the spatial selectivity of CA3

cells was highly impaired, yet for CA1 cells it remained unchanged.

Despite the astonishing preservation of CA1 activity, spatial behaviour is severely

impaired. For the two trials before the tetracaine injection, errors were minimal, but

for the two trial afterwards, 12 errors were made on average per trial. After the rat had

recovered from the injection, performance returned to the preinjection levels, with 1.5

errors per trial. Interpreting these behavioural results is difficult, not least because the

medial septum projects heavily to the subiculum (Mizumori et al., 1989; O’Mara et al.,

2001), so that even if CA1 was operating perfectly, the hippocampal output would

presumably be highly disrupted. Brazhnik et al. (1996, Society for Neuroscience

Abstracts) have found extremely reduced CA1 place cell activity after injection of

tetracaine in the medial septum.

The discovery that despite the loss of CA3 activity, CA1 activity could be main-

tained with gross spatial and temporal characteristics unchanged, was surprising and

accidental. A direct exploration of the artefact was performed in an amazingly intricate

lesion study by Brun et al. (2002). First, ibotenic acid was used to bilaterally lesion

CA3, leaving CA1 largely spared. Then, in an attempt to ensure that any remaining
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CA3 was completely disconnected, the contralateral hippocampus was removed and

cuts were made between CA3 and CA1. Post-operative fluorescent retrograde tracing

identified a small number of neurons still connected at the septal pole. With this le-

sion performed on 11 rats, stable directional place fields and normal θ-activity were

observed. The peak place cell rates were slightly reduced, but overall firing rates were

not significantly different and nor was the average place field size. The sparseness in-

creased, indicating a loss of neurons with the greatest spatial information (Treves and

Rolls, 1991).

The behavioural relevance of the remaining CA1 activity was first tested with a

spatial recognition task (figure 4.4). The rats were trained to find the hidden escape

platform at a constant location in an annular water maze. Rats with full hippocampus

lesions swam significantly less in the target quadrant than those with CA3 lesions, who

in turn performed equivalently to sham lesion controls. In a more demanding task, the

rats had to swim a lap before the platform became available, still hidden. Rats with

CA3 lesions learnt this task much more slowly than controls, during which time their

escape latencies were significantly longer.





Chapter 5

CA1 and models of the hippocampus

5.1 Introduction

This section is intended to be an exhaustive review of models of the hippocampus that

explicitly model CA1, not including articles in press. Numerous researchers have pur-

sued the consequences of a particular viewpoint in series of models. Within each series

of papers by an author, pivotal models of these series have been chosen to exemplify

the approaches, with important developments or changes in viewpoint discussed under

the same banner.

Given the large number of hippocampal models, it is surprising that only a few

specify a role for CA1. Many models are concerned with the role of the hippocampus

in a larger system, with the hippocampus acting as a homogenous network. Notable

systems include the consolidation of cortical memories (Buzsaki, 1989; Alvarez and

Squire, 1994; Murre, 1996; Kali and Dayan, 2004), navigation (Muller and Stead,

1996; Redish and Touretzky, 1998; Foster et al., 2000; Arleo and Gerstner, 2000;

Gaussier et al., 2002; Koene et al., 2003), and conditioning (Gluck and Myers, 1993;

Buhusi and Schmajuk, 1996; Rodriguez and Levy, 2001). These models do not make

any requirement for the differentiation of CA3 and CA1. At the other extreme, there

are numerous models of synaptic integration in CA1 pyramidal cells that make no

claim for their function (Granger et al., 1994; Graham, 2001; Migliore, 2003; Poirazi

et al., 2003). The models concerned with place field formation, discussed in section 6,

59
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either model CA3 or are uncorrelated with hippocampal anatomy.

All the models reviewed, with the exception of Lőrincz and Buzsáki (2000), are

associative memory models. Their primary focus is the potential of CA3 to autoasso-

ciate (Treves and Rolls, 1994; McClelland and Goddard, 1996) or to associate activity

in sequences (Levy et al., 1998; Lisman and Otmakhova, 2001). The role of the tem-

poroammonic pathway is particularly difficult for the models to explain. As an extreme

argument, the suggested functions such as novelty detection and prediction do not ne-

cessitate CA1, as they can be performed just as well in (one of) the receiving layers.

The anatomy of the hippocampus indicates that a particular computation has to be

performed on the output from CA3 before it is disseminated to the rest of the brain.

Treves and Rolls (1994) argue that CA3 activity benefits from being recoded into a

more robust code. McClelland and Goddard (1996) suggest that CA3 and entorhinal

rates are too high for direct association. These arguments necessitate CA1, but not the

temporoammonic input: the claim of McClelland and Goddard (1996) for an invertible

code confounds the superficial and deep layers of the entorhinal cortex.

5.2 Treves and Rolls (1994)

Inspired by Marr (1971), Treves and Rolls developed a detailed associative memory

model of the hippocampus (Rolls, 1989; Treves and Rolls, 1991, 1992, 1994; Treves,

1995). Following McNaughton and Morris (1987), Marr’s hazy hippocampal anatomy

is refined to identify CA3 as the locus of the recurrent collaterals, vital for pattern

completion in associative memory recall. Further, the binary neurons are replaced by

the more physiologically faithful linear threshold neurons.

The parameter dependence of the capacity of a partially connected, recurrent model

of CA3 is calculated using an energy function analysis (Treves and Rolls, 1991). In

keeping with results from binary networks, low activity levels are crucial for large

capacities, and the capacity has an approximately linear relationship with the connec-

tivity. When new inputs are presented to the network, recurrent collateral activity dom-

inates the dynamics and the pattern is not learnt (Treves and Rolls, 1992). Instead, the

idea is invoked that the large and infrequent mossy fibre synapses on CA3 pyramidal
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cell dendrites act as ‘detonator’ synapses (McNaughton and Morris, 1987), providing

comparatively huge excitatory input. This input is strong enough to prevent CA3 ac-

tivity settling into an already learnt attractor state. These strong mossy fibre inputs

are not associated with the CA3 activity during storage because the synapses exhibit

non-associative, presynaptic LTP. In contrast, the perforant path inputs are presumed

to exhibit associative LTP. During recall from partial cues, the perforant path input is

able to recall the complete pattern of CA3 activity by activating neurons and recurrent

collaterals of the corresponding attractor state, whereas the mossy fibre synapses have

little effect. The function of the dentate gyrus in this model is to create orthogonalized

representations of full-sized patterns of entorhinal activity.

The model has been successful in accounting for behaviour, most sensationally in

the requirement of recurrent collateral plasticity for both one-trial spatial learning and

spatial recall from a reduced number of spatial cues (Nakazawa et al., 2003, 2002).

Equally notable has been the dependence of spatial learning on non-inactivated den-

tate gyrus (Lassalle et al., 2000). The model has provided the conceptual framework

for many experiments, partly because it has persevered with the idea of providing

quantitative data. The model is also attractive in its simplicity: it does not attempt

attribute computations to the hippocampus which could be performed elsewhere, such

as novelty detection, path integration or the organisation of temporal order memory.

Like Marr’s model, it shares the conceptual weakness of being inspired by the data on

declarative memory loss in humans and primates, but being most readily testable on

rodents.

The possible functions of CA1 in the model are discussed at length in Treves and

Rolls (1994). They propose that CA1 must ensure efficient information transmission.

More circumspectly, they also suggest that CA1 acts as a competitive network, re-

ducing the redundancy of the CA3 activity (Rolls, 1989). The recurrent inhibition in

CA1 is weak as evidenced by the lack of recurrent collaterals, and the preponderance

of these collaterals to synapse with dendritically distal projecting stratum oriens in-

terneurons (section 2.4), thus CA1 would seem an unlikely candidate for a competitive

network. Finally, it is suggested that the information rich component of the initial en-

torhinal activity can be integrated with the reduced information but completed CA3



62 Chapter 5. CA1 and models of the hippocampus

representation. This idea assumes that CA3 only performs pattern completion. In the

event of recall from a full but noisy pattern of entorhinal activity, it would significantly

reduce information transmission from CA3 to CA1.

Efficient information transmission is envisaged as benefitting from the recoding of

CA3 activity, such that across the larger CA1 population, every CA1 cell conveys less

information, rendering the code more robust to noise and degradation in the subse-

quent journey back to the neocortex. Expansion recoding is only useful if the process

itself does not lose significant amounts of information. This issue is addressed by

Treves (1995), who calculates the parameter dependence of information transmission

between two populations of rate-based linear-threshold neurons representing CA3 and

CA1. The network uses a covariance plasticity rule, and competition is implemented

using a uniform linear threshold. The network has storage and retrieval modes. In the

storage mode, the CA3 rate coded binary (or ternary) patterns propagate to CA1 via

an incomplete, random synaptic weight matrix. The CA3 and CA1 activity are associ-

ated, but the weight changes do not occur until after all the patterns have been learnt.

In retrieval mode, the synaptic weights consist of the time decayed original weight,

the Hebbian term from the storage of the pattern, and a crosstalk talk. An expression

for the average mutual information of the stored and retrieved patterns is calculated

analytically, and evaluated numerically.

The principal result is that the rate of plasticity in the Schaffer collaterals resulting

in the optimal information transmission is very close to the optimal rate of plasticity

in the CA3 recurrent collaterals for storing a given number of patterns in the network

(Treves and Rolls, 1991). This result appears to hold over a wide range of parameters,

and is argued to be quite general; pathological cases are not presented.

The analysis allows the performance of a full-size CA3 and CA1 network to be

evaluated. Unfortunately, the equations are no more transparent than the operation of

the network. The model makes quantitative evaluations of the parameters, which in

principle can be compared to experiment. The correspondence between the rate of

plasticity in a covariance learning rule and the rate of plasticity in experiments is diffi-

cult to establish because the rate of plasticity depends on the protocol used. The result

about the rate of plasticity becomes a qualitative one, although based on quantitative
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principle of maximising the mutual information.

The parameter exploration also argues that reducing the number of CA1 neurons

in CA1 from twice to 1.5 times the number of CA3 neurons reduces the information

transmitted. This is not a controlled comparison, since the number of synapses is

not held constant. From these results, the information advantage of expansion coding

cannot be fully judged. Schultz and Rolls (1999) continue the parameter search of the

same model, and return to this question amongst others. They consider a continuous

range of sizes of CA1 from nearly zero to 3.5 times the size of CA3. They do not

control for the number of synapses and the amount of information simply increases

with the size of CA1, and little can be usefully concluded. Schultz and Rolls (1999)

also find that topographically organising the Schaffer collaterals either has no effect or

decreases the mutual information. The binary rate coding of CA3 activity results in the

maximum information efficiency (Schultz and Rolls, 1999).

The same model is extended by Fulvi-Mari et al. (1999) to include the entorhinal

cortex and the temporoammonic pathway. The temporoammonic input is presumed

to come from the same entorhinal cells as the perforant path input to CA3, and the ef-

fect of the distal location of temporoammonic synapses with the CA1 pyramidal cells is

approximated by reducing the connectivity. The dynamics in CA3 in recall are approx-

imated by adding a noise term to a perfectly recalled pattern, and the temporoammonic

connections are not plastic. The resulting analytical equations are magnitudes of or-

der more complex than in Treves (1995), and solved numerically with acknowledged

difficulty. Increasing the number of temporoammonic inputs increases the mutual in-

formation of the entorhinal and CA1 activity, but a high level of noise is used in CA3,

so this is not surprising. The model is sufficiently complex that a thorough parameter

exploration has not been forthcoming.

A weakness of the approach taken by Treves (1995) is that the validity of the under-

lying assumption is not addressed, that the function of CA1 is to transfer information

from CA3 to CA1. For instance, there is no control, no examination of the conse-

quences for regions downstream of CA1 if it was not there. The parameter dependence

of CA1 in performing the function is spelt out, but there it is difficult to infer how

well CA1 is adapted to perform it. This is especially true when considering the tem-
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poroammonic input. Treves (1995) states that information transmission and robustly

recoding CA3 activity are not the only functions of CA1, and that this is implied by

the existence of the temporoammonic pathway. When the temporoammonic input is

included, the equations are sufficiently complex to exclude any systematic exploration

of the function of the temporoammonic input. As Treves (2004) puts it, discussing the

role of CA1, the “...simple quantitative advantage of adding one more processing step

does not appear to be a compelling explanation”.

5.3 McClelland and Goddard (1996)

O’Reilly and McClelland (1994) took up the idea in the literature that the dentate

gyrus creates orthogonalised versions of the entorhinal input to CA3 (e.g. Marr, 1971;

McNaughton and Morris, 1987; Treves and Rolls, 1992). They developed an analytical

model of the feedforward connections between the entorhinal cortex, dentate gyrus and

CA3. In this model, every area is composed of implicitly defined binary neurons, and

every layer is partially connected, much in the style of a Marr network. N-winners-

take-all thresholding is implemented using subtractive inhibition, and the synapses

appear to be Brindley synapses in disguise: all the connected synapses have a weight

of 1, except after learning, when they have a weight 1
�

Lr, where Lr is the learning

rate.

Using the binary formalism, the conditional probability that an output neuron is

active in two patterns is calculated. This is used to estimate the expected mean output

pattern overlap as a function of the overlap between the input patterns. By comparing

the ratio of the input and output pattern overlaps, the performance of the network in

pattern separation or in pattern completion is assessed over a large set of parameters.

The competing requirements of pattern completion and separation are argued to be the

motivation behind the dual inputs to CA3, reinforcing the point made by Treves and

Rolls (1992).

In the analysis, the input activity is calculated, rather than dendritic sum distribu-

tions. This simplicity gives clear results. By quantifying the performance advantage of

including the dentate gyrus in pattern separation, the model has been influential in pro-
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moting the idea of the function of the dentate gyrus as orthogonalising the entorhinal

input to CA3.

In the model of O’Reilly and McClelland (1994), the role of CA1 is to overcome

the problem of associating CA3 activity with the original entorhinal activity. Since the

dentate input results in CA3 activity that is decorrelated with the entorhinal activity, the

authors argue that a layer is required to associate the CA3 output with the entorhinal

input in an ‘invertible’ form. They propose that as entorhinal activity is transferred

to CA3 for storage, entorhinal activity also establishes a pattern of activity in CA1.

The existence of CA1 place fields without activity in CA3 (Mizumori et al., 1989) is

cited in support of this idea. The activity in CA3 is then associated with the activity

in CA1. During recall, CA1 activity reactivates the original entorhinal activity, which

is transmitted back to the rest of the neocortex. Reciprocal connections between CA1

and the entorhinal cortex are responsible for the invertible code, and there is no stated

role for plasticity in these pathways.

This idea of invertibility is developed by McClelland and Goddard (1996), who

explore a model in which every CA1 cell returns connections to EC cells which contact

it. This pattern of connectivity is acknowledged as implausible, and various schemes

are mentioned about how it might be achieved in practice. There is no evidence that

activity in the second and third layers of the entorhinal cortex are related, and CA1

projects to the completely different, deep layers of the entorhinal cortex. Even if the

connections can be plausibly arranged, recalled activity evokes activity in a different

set of entorhinal neurons to the entorhinal neurons active during storage. How the

neurons of the deep layers of the entorhinal cortex contact the appropriate cortical

neurons during the reactivation of a memory is a separate, complex issue.

McClelland and Goddard (1996) also mention another motivation for CA1. The

activity of entorhinal cells is relatively high, at � 7% (Quirk et al., 1992), compared

with � 3% in CA3 (Barnes et al., 1990), so directly associating CA3 output with the

entorhinal cortex would result in hippocampal network with a very low capacity. The

implication is that including CA1 between CA3 and the entorhinal cortex increases

the capacity, but exactly how is not investigated. This is potentially an interesting

argument, verified for the case of associations between two layers with high rates in a
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binary associative memory network by Buckingham (1991), and I will return to it in

chapter 7.

5.4 Lisman and Otmakhova (2001)

Lisman (1999) proposes a model of sequence learning in both CA3 and the dentate

gyrus. The three sources of evidence for sequence learning are the hippocampal depen-

dence of temporal order tasks, the replay of sequences during sleep, and the existence

of phase precession. In particular, phase precession is interpreted as the result of cued

sequence recall from a multi-item buffer in CA3. The presence of phase precession in

the dentate gyrus is interpreted as evidence for a functional back-projection from CA3

to the dentate gyrus. Within the field, this functional back-propagation runs contrary

to convention; in the words of Morris (2001), it is ‘somewhat heretical’.

Due to cholinergic stimulation, a depolarizing afterpotential is activated in the

model CA3 pyramidal cells enabling the cells to produce sustain activity (Lisman and

Idiart, 1995). Through associative NMDA-dependent plasticity, input at the beginning

of a θ-cycle initiates a sequence of activity modulated by the γ-rhythm. In the absence

of new stimuli, the CA3 acts as a memory buffer. Meanwhile, the dentate gyrus, the

author asserts, supports the disambiguation of sequences of inputs which share a com-

mon element. The dentate gyrus autassociates the entorhinal input, so when the CA3

backprojection is received, if the CA3 activity has recalled the wrong pattern of activity

in the sequence, the dentate gyrus can correct this error. In contrast to the evidence for

sequence learning by the hippocampus, very little evidence is provided in support of

this complex role for the dentate gyrus, either analytically or computationally through

simulations.

The model makes three claims for the function of CA1. First, CA1 orthogo-

nalises the Schaffer collateral input (Rolls, 1989). Secondly, Lisman states that the

temporoammonic pathway has ‘point-to-point’ connectivity, that allows the CA3 code

to be converted into a ‘cortical code’, in a very similar argument to that of McClelland

and Goddard (1996) for an invertible code. Finally, following the idea that the tem-

poroammonic input allows the Schaffer collateral activity to be directly compared with
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the entorhinal input (O’Keefe and Nadel, 1978), Lisman proposes that CA1 performs

mismatch detection. The strongest example given is that of cells whose activities co-

incide with the absence of stimuli, as recorded by Vinogradova, and best discussed in

her review Vinogradova (2001).

The implementation of CA1 in this model is developed by Lisman and Otmakhova

(2001). They propose that dopamine receptor activation gates the temporoammonic

input activity during the storage of new information in the hippocampus. Dopamine

facilitates the induction of early LTP in the Schaffer collaterals (Otmakhova and Lis-

man, 1996), and strongly inhibits the response to temporoammonic stimulation without

affecting the Schaffer collateral response at the same concentration (Otmakhova and

Lisman, 2000). These two key observations suggest a mode of operation in which the

dopamine signal enhances Schaffer collateral plasticity and prevents the CA3 buffered

activity from disruption by sensory inputs. The need for this protection from disrup-

tion is because the buffered information does not correspond to the current sensory

input that the temporoammonic input would transmit. The putative match or mismatch

signal is hypothesized to trigger the dopamine signal polysynaptically.

The novel contribution of the model is the identification of dopamine as a neuro-

modulator gating temporoammonic input. Assuming the detection of novelty is some-

times assessed from hippocampal activity, and that dopaminergic neurons signal this

novelty, numerous (distributed) regions between the hippocampus and dopaminergic

neurons can perform this novelty function much more efficiently (e.g. Bogacz et al.,

2001). If CA1 does calculate the novelty, it could implement the appropriate response

locally. Proposing that CA1 detects an unstored pattern, signals this polysynaptically

to another population, which then signal CA1 to store (after a delay) the vital novel ac-

tivity of a one trial event cannot be the most parsimonious explanation of the function

of CA1.

In unidentified circumstances, there is a dopaminergic input which preliminary

studies indicate facilitates Schaffer collateral plasticity and blocks temporoammonic

input. What is the function of this dopaminergic gating? The idea that CA1 inputs

are selectively gated to allow buffered CA3 activity to associate with current cortical

input in CA1 can be traced back in models to Levy (1989). As Rodriguez and Levy
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(2001) point out, the problem with this attractive idea is that during, for instance, trace

conditioning, there is no observable delay activity in CA3. In contrast, buffered activity

is observed in the subiculum during delayed non-match to sample task (Hampson et al.,

2000; Hampson and Deadwyler, 2003). In section 8.7 I discuss the computational

advantages of Schaffer collateral activity establishing the initial pattern of activity in

CA1 during memory formation, and the role that dopamine may play in achieving this.

5.5 Hasselmo and Schnell (1994)

Hasselmo and Schnell (1994) propose an implementation of novelty detection in CA1

that gives a pivotal role to acetylcholine (ACh). The authors infer that the compari-

son function requires the association of Schaffer collateral activity with CA1 activity

‘guided’ by temporoammonic input. With these assumptions in place, they argue that

the Schaffer collateral inputs must be suppressed during learning, to allow the tem-

poroammonic inputs to dominate CA1 activity and form associations. Inspired by a

previous model of the piriform cortex (Hasselmo and Bower, 1992), ACh is proposed

as the agent that performs this suppression.

In the model, the level of Ach is inversely proportional to the activity of CA1.

When CA1 activity is low, ACh levels are high and temporoammonic inputs dominate.

As Schaffer collateral synapses are potentiated, the activity increases, reducing the

suppression of the Schaffer collateral input. In supporting physiological experiments,

the cholinergic agonist carbachol reduced the peak and slope of the Schaffer collateral

EPSPs significantly more than the temporoammonic EPSPs.

The model does learn to associate the CA3 activity with the CA1 activity estab-

lished by the entorhinal input. With 3 neurons representing every area, only 2 patterns

stored and in excess of 10 free parameters defining the dynamics of the variables, it

is hard to infer the efficiency of the model for the task it was designed for. The paper

also makes no predictions of the implementation (but see Hasselmo et al., 1996). In-

stead, the belief is that understanding the function of the hippocampus will result from

constraining the model to anatomical and physiological data.

The next model with implications for CA1 is Hasselmo et al. (2002). In this pa-
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per, the authors propose that the θ-rhythm partitions separate phases of storage and

recall in CA3 and CA1. During the θ-rhythm, the prominent current sink due to en-

torhinal input is � 180o out of phase with the Schaffer collateral induced current sink

(Brankack et al., 1993). During the phase of high entorhinal current response, Schaffer

collateral stimulation results in LTP, but when the Schaffer collateral input is strong,

Schaffer collateral stimulation results in LTD (Holscher et al., 1997). Intrigued by this

physiology, Hasselmo et al. (2002) study the ability of a rat to learn a reversal task in

a T-maze.

The rat is trained to turn left at the T-junction to find a food reward. Once this

association has been learnt, the food is located at the end of the right turn. In addition

to learning the new food-location association, the rat has to forget the old association.

Controls quickly learn the new location, but rats with fornix lesions continue to make

a significant number of left turns. Fornix lesions abolish the hippocampal θ-rhythm,

which Hasselmo et al. (2002) take to be the reason for the poor learning.

In the model, CA3 activity represents spatial location and the temporoammonic

input represents the reward. With θ-rhythm activity, when the food is switched to the

new location, the absence of temporoammonically driven CA1 reward activity results

in the association being weakened. When the food is discovered, the new reward-

location association is learnt. At the choice point, the stronger association with the

new location, the rat is more likely to choose the correct turn. Crucially for the model,

without the θ-activity the absence of the reward in the old location does not lead to

the old location-reward association being weakened. Thus the new location-reward

association is of an equal strength to the old location-reward association and in the

next trial the rat does not know which way to turn.

Why is there no depression of the old location-reward association without the θ-

rhythm? The implementation for the no θ-rhythm case is not presented. It is stated

that activity in CA3 causes activity in CA1, reinforcing the preexisting connections,

in the absence of temporoammonic input. This is not a satisfactory answer. A simple

covariance rule would be consistent with the model and prevent this. There are other,

serious problems with the model. There is no evidence that entorhinal layer III input

provides the reward signal. The entorhinal input does contain spatial information,
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which will change the encoding of the goal in CA1. Removing θ-activity can also

abolish CA3 activity (Mizumori et al., 1989). The success of the model is judged by

its fit with the physiological data. Fitting a model to data with liberal assumptions is

not a sound basis for computational function.

Hasselmo and Schnell (1994) and Hasselmo et al. (2002) are well supported mod-

els if one accepts their premises, that CA1 is a novelty detector, and that CA1 activity

needs to be established by entorhinal input. Neither paper explains the computational

motivation as to why this should be the case. As mentioned in the discussion of Lisman

and Otmakhova (2001), claiming that CA1 detects novelty is baroque. Specifically, the

model of Hasselmo and Schnell (1994) has the wrong physiology, since an absence of

activity indicates novelty. Novel environments or encountering a novel stimulus gener-

ates an above average increase in CA1 activity (section 4.3.2). If the temporoammonic

pathway does not support novelty detection, and does not communicate different in-

formation than the perforant pathway, then this theoretical framework has no reason

for CA1. Wallenstein and Hasselmo (1997) present a much more convincing case for

separate phases of encoding and recall in CA3. Schaffer collateral input may indeed

be θ-modulated, but then the network is equivalent to CA3 with one iteration through

CA3 peeled off and laid out as a feedforward network.

5.6 Levy et al. (1998)

Levy (1996) proposed a model in which the CA3 recurrent collaterals facilitate the

storage of sequences. This is achieved by using sparse, asymmetric connections, and

by ensuring the synaptic strength of the recurrent collaterals is sufficiently weak to not

dominate the dynamics. The motivation for the model is the intuition that learning

sequences is computationally useful, an intuition supported by the explanatory reach

of the model, perhaps best reviewed in Levy (1996).

The model views CA1 together with the subiculum and entorhinal cortex as a de-

coder of CA3 activity. Levy (1989) proposes that temporoammonic input establishes

activity in CA1 which is associated with activity in CA3 via the Schaffer collaterals.

Levy (1996) considers that there is insufficient knowledge of CA1 to constrain a model.
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This change in view is motivated by the author’s electrophysiology experiments of the

entorhinal-CA1 rat slice, in which almost exclusively inhibitory somatic responses are

recorded (Levy et al., 1995; Colbert and Levy, 1992).

Levy et al. (1998) raise the possibility that temporoammonic input can decide

which active CA1 cells will be associated with active CA3 cells, by blocking Schaffer

collateral plasticity. This blocking is proposed to be mediated by the feedforward in-

hibitory response to temporoammonic stimulation. Evidence for this idea was found in

slice stimulation experiments presented in Levy et al. (1998), developed by Remondes

and Schuman (2002), and discussed in section 3.3.

The buffer idea of Levy (1989) is not consistent with observed hippocampal activity

(Rodriguez and Levy, 2001), but this is only one implementation of a more general

prediction function of CA1 proposed by Levy (1989). Perforant path input initiates

sequences of activity in CA3, so even without a CA3 buffer, temporoammonic input is

argued to be associated with future states. Levy (1989) predicts a form of spike time-

dependent plasticity in the Schaffer collaterals, subsequently verified by Nishiyama

et al. (2000), to support this function. Whether the addition of CA1 to a sequence

learning CA3 increases the predictive power of CA3 has never, so far as I am aware,

been tested by any sequence learning model. If the extra feedforward layer is viewed

as an extra iteration of activity through CA3, the prediction gained must be small

compared to the prediction gained in the multiple iterations through CA3.

5.7 Lőrincz and Buzsáki (2000)

In a twist to conventional novelty detection models, Lőrincz and Buzsáki (2000) pro-

pose that the entorhinal cortex calculates the mismatch between the hippocampally

recalled event and the current input. The idea is attractive: one would prefer to know

if the input matches previous experience as it arrives. In practice, the paper is a tour de

force of obfuscation.

Activity in CA1 is proposed to reconstruct an expected representation of the input

in layer V of the entorhinal cortex. This representation is compared with the actual

input in layer II, and the difference is calculated. This prediction error is temporally
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deconvolved in the dentate gyrus. In CA3, the principal components of the error are

calculated, expressed as a sequence of activity. The effect of recoding CA3 activity in

CA1 is to transform the principal components into independent components by min-

imising the mutual information. This occurs in two stages. During θ-activity, the input

to CA1 is learnt using the delta rule (Widrow and Hoff, 1960). During sharp waves, the

increased CA1 activity increases the impact of a term in the learning rule that results

in a normalised increase for strong synapses.

Meanwhile, entorhinal activity is transferred to CA1 via a topographic temporoam-

monic pathway. The pathway, it is stated, counteracts delays to create a putative pre-

dictive function for CA1. It also calculates the correlation between CA1 and entorhinal

activity. The transfer of activity is promoted by large reconstruction errors. Once there

is no reconstruction error, CA1 activity will reconstruct the sensory input in entorhinal

layer V that is occurring in layer II. Simulations are presented at the end of the paper

aiming to demonstrate the successful operation of the dentate gyrus component. The

mathematics of the hypothesised learning rules is presented in Lőrincz (1998), but in

this earlier version there is no direct input to CA1.

The insight of the model, that the hippocampus may perform independent compo-

nent analysis, is interesting. The physiological aim appears to be to establish a synaptic

matrix in CA3 so that during the elevated CA3 activity of sharp waves, CA1 broad-

casts accurate reconstructions of input experienced during θ-exploration. How does

cued recall operate? The input to CA3 is the reconstruction error, but during recall,

there is no error to be calculated. The only pathway available is the temporoammonic

pathway, and association with CA1 will not result in pattern completion because the

temporoammonic pathway is ‘topographic’.



Chapter 6

Models of place field formation

6.1 Introduction

This review focusses on the mechanisms proposed to explain place field formation,

rather than judging their success in explaining complex properties of place fields, such

as responses to cue manipulations. It is intended to be a representative review, rather

than exhaustive. The formation of place fields in CA1 when CA3 has been lesioned

(Brun et al., 2002) is considered in detail in chapter 9 to understand the function of

the entorhinal input to CA1. The nature of place field formation in CA1 when CA3

is intact is discussed in section 8.7 as an observable example of hippocampal memory

formation.

The problem of how place fields form has not been well constrained, due to the

paucity of recordings of spatial entorhinal activity, until the data of Frank et al. (2000,

2001) (section 4.3.4). Most models that explicitly model entorhinal activity assume a

broad Gaussian dependence on spatial location. This is consistent with the early opin-

ion that entorhinal spatial activity is unimodal (Quirk et al., 1992). From this starting

point, forming the basic place field activity is a ‘trivial’ computation (Treves et al.,

1992): Hartley et al. (2000) show that recorded place fields can be reconstructed from

the thresholding of 2-4 suitably chosen inputs of this kind. Feedforward competitive

learning and recurrent attractor dynamics are the two mechanisms usually employed

to amplify these entorhinal activity place fields into sharper hippocampal place fields.

73
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The rare exceptions are the cellular models of Fuhs and Touretzky (2000) and McHugh

et al. (1996). These papers are mainly verbal accounts, their relevance is as precedents

to the cellular mechanisms explored in section 9.

6.2 Feedforward network models

The first model of place field formation was the two layer network of Zipser (1985).

Units in the first input layer receive sensory input and their individual activities code

the distance of the rat from a landmark. In one set of simulations, the activities of

the units are either an unnormalised Gaussian or a binary function of the distance to

a landmark. In another set they code the area of the retina subtended by a landmark.

There is a single unit in the second layer whose rate is proportional to the summed

first layer inputs minus a floating threshold. The unit in the second layer is shown to

produce place field activity for both input coding schemes. The size of the second layer

place field decreases as the width of the first layer place fields decrease, and also as the

threshold of the second layer unit increases.

Sharp (1991) introduced learning into a version of the model of Zipser (1985). The

network is extended to three layers representing the neocortex, entorhinal cortex and

hippocampus. Neocortical units code the distance from landmarks by their probability

of being active. The probability either has a Gaussian dependence or a binary depen-

dence on distance. Entorhinal units receive the weighted sum of neocortical input, and

are grouped into winner-takes-all clusters, such that only one unit is active per cluster.

In turn, the hippocampal units receive the weighted sum of entorhinal inputs and are

grouped into a single winner-takes-all cluster. The learning rule implements a weight

increase for pre- and postsynaptically active units, normalised across the postsynaptic

weight distribution. In agreement with experimental results, the place fields formed in

Sharp (1991) are stable and persist even when some cues are removed, demonstrating

pattern completion.

Touretzky and Redish (1996) further developed this competitive learning explana-

tion of place field formation by including input from a path integration system. They

considered the place code within a larger set of systems dedicated to performing navi-
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gation. The path integration system is proposed to both allow the rat to plan a trajectory

from a current location to a goal location, and to correct the place code in the absence

of sensory input, for instance in the dark. The local view information is extended to

six Gaussians of variously the distance from a landmark, the allocentric bearing of the

landmark, the retinal angle between landmarks and the coordinates of the path inte-

grator. The competitive learning mechanism applied to this input produces place fields

with numerous complex experimental features, including crescent shaped fields and

the concomitant movement of the place field with movement of the landmark.

The most recent and persistent application of the approach is the series of mod-

els developed in the O’Keefe lab (Burgess et al., 1994; Burgess and O’Keefe, 1996;

Hartley et al., 2000; Lever et al., 2002). Burgess et al. (1994) modify the model of

(Sharp, 1991) by replacing the continuous synaptic weights with binary weights, and

the entorhinal inputs have broad Gaussian activity distributions which peak at differ-

ent locations from landmarks. In addition, a goal orientated network downstream of

the place cell layer is modelled. The model inspired experiments to test the assump-

tion that place fields are formed from thresholding a summation of broad place fields

(Burgess and O’Keefe, 1996). The size of place fields were recorded as the dimensions

of a rectangular recording arena were systematically varied. They found that place

fields are highly controlled by the rat’s location with respect to the walls, and can be

accurately described as a sum of Gaussian dependencies from this distance (O’Keefe

and Burgess, 1996). The parameterisation of this dependence is consistent with the

place field formation mechanism of summation and threshold of inputs of Gaussian

functions of distance from walls.

Correspondingly, the entorhinal input in subsequent studies (Hartley et al., 2000;

Lever et al., 2002) is expressed as broad Gaussians of distance from landmarks (the

landmarks are walls in O’Keefe and Burgess (1996)), and allocentric bearing to the

landmark. The place cells are threshold-linear neurons with the threshold a free param-

eter. Hartley et al. (2000) use recorded place field activity from O’Keefe and Burgess

(1996) to parameterise the entorhinal inputs. By using a random search of the param-

eter space, they demonstrate that parameter sets can be found from which place fields

formed from a thresholded sum of 2-4 entorhinal inputs can reproduce the distributions
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of place field characteristics, including firing rate, field number and field size.

The history of competitive learning networks illustrates an increasing engagement

with the more complex properties of place fields, dependent on correspondingly more

complex inputs, but the essential computational mechanism remains unchanged since

Sharp (1991). Hartley et al. (2000) provide some evidence that place fields are consis-

tent with a mechanism of summating and thresholding broad, directional place fields.

The result is weakened by being able to specify both the mechanism and the nature

of the input. As principally a physiology laboratory, they can record substantial quan-

titative data on the position information of entorhinal cells directly, as functions of

distance and allocentric bearing from candidate landmarks. The mapping of this in-

formation to hippocampal place field activity can be achieved in a number of different

ways, each way having putatively different consequences for hippocampal properties.

Predicting that entorhinal cells must code for allocentric bearing is an easily falsifiable

prediction of great potential interest.

6.3 Recurrent network models

An alternative mechanism for amplifying the spatial dependency of broad Gaussian

entorhinal place fields into narrow hippocampal place fields is using cooperation, rather

than competition. The recurrent collaterals of CA3 provide a candidate neural substrate

for this mechanism as exploited by numerous models.

An early implementation of this idea was proposed by Hetherington and Shapiro

(1993). In this model, place fields are formed in a hidden, recurrent layer of a three

layer network trained using the back-propagating algorithm. The entorhinal inputs cor-

respond to the retinal area subtended by landmarks, following Zipser (1985). The re-

current collaterals are principally used by the model to explain how place field activity

can persist in the absence of local views, rather than to compute the place fields, since

equivalent place fields form in a purely feedforward version of the network (Shapiro

and Hetherington, 1993).The model is computationally unsatisfactory in that it uses a

supervised learning process to generate place fields from experimentally unconstrained

inputs, and therefore is unable to say much about how place fields are formed, or what
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generates them.

Samsonovich and McNaughton (1997) were perhaps the first to investigate the con-

sequences of attractor states in CA3 for place fields in depth. They view CA3 place

field activity as a product of the cooperative activity of the active cells in an environ-

ment, rather than as coding for a particular combination of local view inputs. They

propose that the subsets of cell active in an environment are pre-wired to be active to-

gether, and call these pre-wired subsets ‘charts’. The recruitment of a chart by dentate

gyrus input on entering an environment is their explanation for the lack of correlation

of place field locations in different environments. The stability and capacity analy-

sis of a network of this kind with rate-based neurons was calculated by Battaglia and

Treves (1998). Samsonovich and McNaughton (1997) could account in simulations

for the changes in place fields observed as a result of the environmental manipulations

performed by O’Keefe and Burgess (1996). It explains the appearance of directional

place fields when the rat is constrained to run between two goals in an open environ-

ment as the recruitment of two different charts for both journeys. The entorhinal inputs

have broad Gaussian place fields and orientation tunings. The model is computation-

ally noteworthy in that the narrow hippocampal place fields form in the absence of

plasticity. In this way, the place fields are the products of cooperative activity.

In recurrent place field models where place field activity is either assumed (Muller

and Stead, 1996) or developed in the absence of plasticity (Samsonovich and Mc-

Naughton, 1997), the synaptic matrix has to have a certain structure if the transitions

in activity between place field locations are to match the continuous changes observed

experimentally. If the connectivity is random, then the attractor states will be local and

place field activity will jump from attractor to attractor. The required synaptic organ-

isation is that the strength of connection between two cells decreases as the distance

between their fields increases (Tsodyks, 1999). Muller and Stead (1996) rightly point

out that Hebbian plasticity will create this synaptic matrix, and this was first demon-

strated by Levy (1996).

The chart network of Samsonovich and McNaughton (1997) is unable to explain

how place fields change from being omnidirectional during random exploration of a

novel environment to directional when the rat is trained to take certain trajectories
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(Markus et al., 1995). Brunel and Trullier (1998) explain this acquired directionality

as the result of a covariance plasticity in a rate-based neuron model of CA3. Again,

they model the entorhinal inputs as broad Gaussians of place and orientation, and em-

phasise that this means that place cells are intrinsically directional. The covariance

plasticity rule amplifies the effects of cooperative activity through synaptic competi-

tion, decreasing place field sizes in addition to the reduction due to cooperative activity

alone. When the rat is stationary, place cells biased by their input to be active will have

this bias reinforced both by cooperative activity, and by the Hebbian plasticity. In

contrast, when the rat randomly explores, the activity of a place field is reinforced by

cooperative activity from cells which, on average, do not share the directional bias, so

the directionality is decreased, an effect again amplified by the plasticity.

The most recent noteworthy place field model was proposed by Kali and Dayan

(2000), which can be viewed as a parallel development of the model of Brunel and

Trullier (1998). The entorhinal inputs have Gaussian dependencies on the distance

from the four walls of the simulated environment, and a Gaussian dependency on the

head direction. These are supplied to threshold-linear rate neurons via the two path-

ways of the mossy fibres and the perforant pathway. The dentate granule cells are given

small place fields (Jung and McNaughton, 1993) which are located in an uncorrelated

location, unless the environments are very similar (O’Reilly and McClelland, 1994;

Treves and Rolls, 1994). Each CA3 cell receives one unmodifiable mossy fibre in-

put, and is connected to all the entorhinal cells with modifiable synapses. Because the

entorhinal inputs are explicitly modelled, the network is able to produce remappings

with uncorrelated place field firing by changing the location of dentate granule place

fields. In novel areas of the environment, transmission in the recurrent collaterals is

suppressed and the perforant path and recurrent collateral synaptic weights are set by

Hebbian learning controlled with weight decay. The magnitude of the weight change

decays exponentially with the time spent exploring the location with a given orienta-

tion. This gating of plasticity by familiarity is implemented to prevent the inevitable

oversampling of one attractor state from corrupting neighbouring attractor states. Al-

lowing learning in the expanded section of a familiar environment allows another ex-

planation of the changes observed by O’Keefe and Burgess (1996), with specific dy-
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namics. In the very similar but different environments of Skaggs and McNaughton

(1998), a path integration variable dependency is added to the entorhinal activity. The

dentate granule place activity is unchanged, so the CA3 place field firing is different

but highly correlated.

Recurrent models all consider entorhinal activity as broad, directional place fields.

This activity is matured into hippocampal activity both by cooperative activation of

cells in the face of a global or widespread inhibition (Samsonovich and McNaughton,

1997) and by competitive Hebbian plasticity (Brunel and Trullier, 1998; Kali and

Dayan, 2000). Kali and Dayan (2000) add considerable sophistication to the range of

phenomena they can explain by adding the dual inputs to CA3, but this does not change

the underlying computation. The gating of learning by familiarity is computationally

interesting, but the mechanism, implemented by some unidentified neuromodulator,

would appear to require a sophisticated regulation mechanism of its own to ensure that

combinations of location and head direction are accorded with even approximately cor-

rect levels of familiarity. A synaptic rule that tended to an uniform weight structure, for

instance the presynaptic covariance rule of Minai (1997) or the spike time-dependent

learning rule proposed by van Rossum et al. (2000) combined with a suitable activity

regulation mechanism could perform the same function.

6.4 Cellular models

Fuhs and Touretzky (2000) attempt to explain remapping as the product of an intra-

cellular mechanism. In the experiments of Bostock et al. (1991), rats are place in a

cylindrical environment with a white cue card on the wall. Once the rats are famil-

iarised with this environment, the white cue card is replaced with a black cue card.

Initially the place field maps are very similar, but within a few recording sessions, the

maps are unrelated. Fuhs and Touretzky (2000) attempt to explain this remapping as

a gradual result of plastic changes. As pointed out by (Bostock et al., 1991), only half

the rats remap and the random exploration the task does not require the hippocampus.

Therefore, the changes are equally attributable to the time scale of the rats’ attention

in noticing the different cue card.
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The authors modelled CA3 with linear rate neurons, and provided the network with

entorhinal inputs with different broad, directional Gaussian distributions of position

and bearing to the cue cards. In the model, CA3 cells have different place fields with

the different cue cards, but some cells have fields in similar locations. They noted the

effects of different plasticity rules in the perforant path input on the locations of these

place fields. The BCM rule (Bienenstock et al., 1982) resulted in place fields being

active in only one of the environments.

McHugh et al. (1996) were intrigued that mice with the NMDA r1 receptor knocked

out in CA1 had place fields only 40% larger than control mice. They wondered whether

activity regulating mechanisms could tune the place fields in the absence of NMDAR-

dependent LTP. Using just activity from modelled CA3 inputs to a CA1 cell with un-

described details, the place fields they observe have a poor spatial specificity.



Chapter 7

Relaying activity in Marr’s model and

the hippocampus

7.1 Introduction

Treves and Rolls (1994) hypothesised that the function of CA1 is to ensure the trans-

mission of information from CA3 to the neocortex. Treves (1995) analysed how this

function constrains the values of specific parameters of the network from CA3 to the

cortex, such as the rate of plasticity in the Schaffer collaterals. However, the analysis

of Treves (1995) is only valid if the original hypothesis of Treves and Rolls (1994) is

valid. The main purpose of this chapter is to examine the hypothesis using a quantita-

tive model of the projection from CA3 to the neocortex. This is achieved by calculating

the predicted performances of associative memory network models of the projection.

The models used are developed from Marr’s model of the hippocampus (Marr,

1971). In Marr (1971), the performances of a 2-layer and a 3-layer network are com-

pared. The networks describe the flow of activity between the neocortex and the hip-

pocampus. In this chapter, the same models are used to describe the flow of activity

from CA3 to the neocortex, with and without CA1 as the third layer. The models are

also used to compare the capacities of the Schaffer collaterals and the temporoammonic

pathway as associative memory networks.

There are a number of outstanding questions about the parameter dependence of

81
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Marr’s model. These questions are: (1) whether extra layers in Marr’s network can

improve the performance (2) how spatially organising the projections between layers

affects the performance and (3) how allowing activity to re-enter the network after the

output layer affects the performance. These questions are addressed before proceeding

to apply Marr’s model to the problem of whether or not CA1 improves the transmis-

sion of information from CA3 to the cortex. The structure of the chapter reflects this

approach: section 7.3 introduces Marr (1971) and examines the performance of Marr’s

2-layer and 3-layer models; section 7.4 examines the performances of these networks

as applied to the hippocampus.

Marr’s model is used because it is analytically tractable (appendix A). This allows

the performance of full-scale hippocampal networks to be predicted. A weakness of

the model is that certain key parameters, such as the number of patterns stored in the

network, are difficult to establish experimentally. The network performances are used

here primarily to quantify the relative advantage of one model over another. How

well the results from Marr’s model generalise to the networks of the hippocampus is

considered in the discussion (section 7.5).

7.1.1 Results overview

Marr (1971) used quantitative reasoning to argue that a third layer improved the perfor-

mance of the 2-layer network. This finding was questioned by Willshaw and Bucking-

ham (1990), who concluded that an extra layer does not improve the performance of

small-scale versions of Marr’s model. I establish that the third layer can significantly

improve performance, and how suitable parameters can be chosen. This is achieved by

using the predicted performances of the full-size networks from Marr (1971).

In the model of Marr (1971), the forward projections from the neocortex to the

hippocampus are spatially organised, to approximate the anatomy. I demonstrate that a

spatial organisation of the projections from the neocortex to the hippocampus in Marr’s

model can improve the performance of the network. The advantage results from the

localisation of the initial recall cue.

The nature of the return projections from the hippocampus to the neocortex is not

discussed by Marr (1971). I show that the spatial organisation of the projections does
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not affect the performance. This is because the recalled activity is distributed through-

out the hippocampal layer.

The performance of a network is examined in which the activity from the return

pathway is allowed to re-enter the network. It is shown that this increases the perfor-

mance of the network. It is also shown that the analysis used to predict the performance

of other networks in the chapter successfully predicts the performance of a simulated

network.

The capacity of the network of the projection from CA3 to the subiculum and cortex

is compared with and without CA1. To achieve this, Marr’s model is re-parameterised

such that the input layer represents CA3, and the output layer represents the cortex and

the subiculum. The 2-layer model does not include CA1, and the 3-layer model does

include a CA1 layer.

I find that including the CA1 layer in the network increases the capacity of the

return projection from CA3 to the neocortex and subiculum. However, if the number

of axonal contacts of CA3 cells is increased by 30%, then the networks perfom equiv-

alently when presented with noiseless cues, with the parameters used. Therefore, the

comparison provides evidence that CA1 improves the capacity of the network to act as

an associative memory network, but not by a margin that presents a clear case for this

being the main function of CA1.

The performance of the temporoammonic pathway as an associative memory net-

work is investigated by suitably parameterising Marr’s 2-layer model. I find that the

capacity of the temporoammonic pathway is significantly lower than the Schaffer col-

laterals as a Marr network. If the entorhinal-CA1 network operates as an associative

memory network, then some mechanism must compensate for this capacity mismatch.

7.2 Marr’s model of the hippocampus (Marr, 1971)

The hypothesis of Marr (1971) is that the mammalian hippocampus operates as a short-

term content-addressable memory network. In the paper, the hippocampal network

stores patterns of neocortical activity, referred to as events. Each event is supposed to

represent both sensory information about the environment and the current internal state
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Figure 7.1: Schematic diagram of Marr’s 2-layer model (Marr, 1971). Layer 1, with N1 neurons, repre-

sents the neocortex, and layer 2, with N2 neurons, represents the hippocampal formation. The forward

connectivity between the two layers is denoted by Z2.

of the animal. These events are automatically stored at a rate Marr estimates to be one

event per second, and the memory of each event is estimated to last for one day. The

task of the network is therefore to be able to accurately store and recall roughly 105

events. When a memorised event is partially activated in the neocortex, the recalled

event in the hippocampus should reinstate the event’s full pattern of activity.

The method of the paper is to identify through analysis the network architecture

and parameters that allow the hippocampus network to store 105 events per day, sub-

ject to identified anatomical and computational constraints (Willshaw and Bucking-

ham, 1990). The anatomical constraints include the number of hippocampal inputs

and outputs, the number of events to be stored, and the number of synapses onto a cell.

The computational constraints aim to minimise the interference between patterns, and

to ensure the complete recall of stored events from partial cues.

The networks discussed by Marr have a storage mode and a recall mode. In the

storage mode, the pattern of activity in the neocortex represents the event to be stored.

This activity is associated with a pattern of activity in the hippocampus using a Heb-

bian plasticity rule. In the recall mode, a partial or noisy version of a stored event is

presented in the neocortex. This provides the input to the network. The output from

the hippocampus is used to assess how well the hippocampus has recreated the pattern

of activity stored with the original neocortical event.

The networks are formed from binary units and are connected with binary synapses.

Their operation differs from the standard binary associative memory network (e.g.
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Willshaw et al., 1969) in two significant ways. First, the activity pattern in a layer

is self-organised when the network is in the storage mode. Activity in the input layer

results in a pattern of activity in the next layer, using a specified algorithm. The ac-

tivity in the input layer is then associated with this activity in the next layer. The

computational advantages of this scheme are explored in chapter 8.

Secondly, there are two thresholds, one subtractive and one divisive, which are used

to set the activity level in a given layer. The layers are partially connected: each cell

receives a specified number of inputs from a random selection of cells in the previous

layer. The partial connectivity results in a distribution of synaptically weighted input

to each cell during recall. Marr introduced the divisive threshold to reduce the varia-

tion in the weighted inputs to each cell, and thus improve the network’s performance.

The implementation of this thresholding strategy is presented in section 7.3.1, and its

computational advantages are examined in the chapter 8.

Two models are considered by Marr consecutively. The first model has two layers

representing the neocortex and the hippocampus (fig. 7.1). Every neocortical cell has

an estimated 104 synapses. Marr infers that there must be 104 hippocampal output

neurons to contact every neocortical cell. Only 10 of these can be active per event

stored, using a calculation from his paper on the cerebellum (Marr, 1969). Marr judges

this too low a number to reliably propagate activity back to the neocortex, and rejects

the first model.

The second model has 105 output neurons and three layers. The layers represent

the neocortex, entorhinal cortex and the hippocampus (fig. 7.2). The hippocampal

layer is distinguished by having extensive recurrent collaterals. The projection from

the neocortex to the entorhinal cortex is spatially organised in the form of blocks.

Through his calculations of the second model’s capacity, Marr identifies the re-

current collaterals as the key anatomical feature of the hippocampus that allow it to

successfully operate as a content-addressable associative memory network. Marr uses

the term ‘the collateral effect’ to refer to the contribution of the recurrent collaterals to

the model’s performance. He explains the collateral effect by conceiving of the flow

of activity through the recurrent collaterals as passing through an indefinite number of

identically sized feedforward layers. The recurrent collaterals therefore allow multi-
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ple steps of pattern completion and noise reduction. This insight and the quantitative

approach used to support it have been the significant scientific legacy of the paper.

Willshaw and Buckingham (1990) noted the unexplained change in the number of

output neurons from 104 in the 2-layer model to 105 in the 3-layer model of (Marr,

1971). They compared the performance in simulations of reduced versions of Marr’s

2-layer and 3-layer networks, designed to meet the computational constraints specified

by Marr. The small-scale networks performed equivalently. Willshaw and Bucking-

ham (1990) explore the parameter dependencies of the results, and one conclusion of

the paper is that Marr’s rejection of his 2-layer model was premature.

7.3 Performance of Marr’s full-size models

If the collateral effect can be explained in terms of providing virtual extra layers to

the network, then a third layer should aid performance in a feedforward network. The

failure of Willshaw and Buckingham (1990) to find a computational advantage of a

third layer in Marr’s model is therefore puzzling. In this section, I re-examine the

performance of the 2- and 3-layer models, but using full-size networks, rather than the

small-scale networks considered by Willshaw and Buckingham (1990). The purpose

is to identify how a third layer can increase the capacity of Marr’s model.

Simulations of the the full-scale networks take a prohibitively long time. Instead

the predicted performances of the networks are calculated using the analysis of Buck-

ingham (1991), presented for convenience in appendix A. Because the purpose is to

identify the computational advantage of the third layer, the recurrent collaterals are not

modelled.

Marr specified the 3-layer network parameters, but never fully specified the 2-layer

network. I present the model and the computational constraints before discussing the

consequences of different parameter choices.

7.3.1 Models

In the storage mode, a randomly chosen pattern of activity is presented in the input

layer. In the 2-layer model, this is associated with a pattern of activity in the second
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Figure 7.2: Schematic diagram of Marr’s 3-layer model (Marr, 1971). Layer 1 represents the neocortex,

and is split into (25) blocks of Nb
1 neurons. Layer 2 represents the entorhinal cortex, and is also split into

(25) blocks, such that every block of Nb
2 neurons only receive a projection from one block from layer 1,

with a connectivity denoted by Zb
2 . All the layer 2 blocks project to layer 3, representing the hippocampal

formation, with a connectivity of Z3. Layer 3 contains the recurrent collaterals, connecting all layer 3 cells

with a connectivity of Zrc
3 . The return projection between the third and first layers is not described in any

detail by Marr.

layer. In the 3-layer model this is associated with a pattern of activity in the second

layer, which is itself associated with a pattern of activity in the third layer. The activity

in all layers is synchronously updated.

In Marr (1971), the patterns of activity in the second and third layers are self-

organised. The algorithm used to self-organise patterns adds a layer of complexity to

the results. The contribution of the self-organisation algorithm is discussed separately

in chapter 8. In this chapter, random patterns of activity are used in all layers.

The input activity is therefore associated with a random pattern of activity in the

next layer. The neurons and synapses are binary, so

xi �
�
0 � 1 � (7.1)

wi j �
�
0 � 1 � (7.2)
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where xi is the state of neuron i, and wi j is the synapse to neuron i from neuron j in

the previous layer.

The learning rule is all-or-none Hebbian plasticity. During the storage of an event

∆wi j � xix j � (7.3)

for an unpotentiated synapse.

In recall mode, a recall cue is presented in layer 1. The recall cue is either a stored

input pattern, or a partial or noisy version of a stored input pattern. The activity in all

layers is again synchronously updated. The recall cue is presented for one time-step in

the input layer then removed.

The state of a neuron in each time-step is calculated by thresholding the dendritic

sum. The dendritic sum, di, of neuron i is

di � ∑
j

ci jwi jx j (7.4)

where ci j denotes whether there is a connection with the input neuron j. All layers

are only partially connected.

Two threshold are used, one subtractive and one divisive. The subtractive threshold,

T , operates on the dendritic sum of all cells:

xi �
�

1 if di � T

0 otherwise �

(7.5)

The divisive inhibition threshold for all cells, f , selects the output units with the

greatest proportion of modified active synapses (Marr, 1971, section 3.1.2). All the

synapses connecting active input and output cells are modified during the storage of a

pattern. Therefore, output cells where the majority of its active synapses are potenti-

ated during recall are likely to have been active during storage.

The divisive threshold operates not only on the dendritic sum but also the input

activity of each cell. The input activity of neuron i, ai, is defined as
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ai � ∑
j

ci jx j � (7.6)

The input activity is therefore the number of active input cells that the cell is con-

nected to, whether or not the synapses are potentiated. The divisive threshold selects

the output cells with the greatest proportion of modified active synapses:

xi �
�

1 if di � f ai

0 otherwise �

(7.7)

The divisive inhibition represents the effects of feedforward somatic inhibition

from a basket cell. Every cell is hypothesised to have its own basket cell which re-

ceives the same input synapses. In this way, the dendritic sum of each cell is divided

by an amount proportional to its input activity. The subtractive threshold represents

dendritic feedforward and feedback inhibition. How the values of thresholds T and f

are chosen is not properly explained (Marr, 1971, section 3.1.3, S5; section 3.3). Marr

implements the threshold cell i, as

xi �
�

1 if di � max
�
T � f ai �

0 otherwise �

(7.8)

The task set by Marr was to be able to recall an event from a recall cue of activity

in just one block of layer 1, when 105 events have been stored in the network.

7.3.2 Methods

In this chapter, unless otherwise stated, all the results are generated by calculating the

predicted performance of a network.

In order to predict the performance of a network, the cells are first classified into

two populations which are treated as homogeneous populations. The cells that were

active during the storage of the pattern being recalled are classed as genuine cells. The

cells that were not active during storage are classed as spurious cells. The probability
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function of the dendritic sum of a genuine neuron, P � dg � , and the probability function

of the dendritic sum of a spurious neuron, P � ds � , are calculated using the analysis

developed by (Buckingham, 1991, appendix A).

The proportion of the probability function of the dendritic sum of each class that

exceeds the subtractive and divisive thresholds, T and f, are used to calculate the ex-

pected number of active genuine neurons, E � Ng � , and the expected number of spurious

neurons, E �Ns � , in layer i:

E �Ng � � P � dg � max � T � f ag ��� � Mi (7.9)

E � Ns � � P � ds � max
�
T � f as � � � � Ni � Mi � (7.10)

(7.11)

where Mi is the number of active neurons in a pattern in layer i, and Ni is the total

number of neurons in layer i.

In order to determine the values of T and f during recall, the values of T and f are

chosen which minimise the hamming distance between the output and the stored pat-

tern. This method of determining T and f is referred to as the ‘omniscient’ thresholding

mechanism, after Buckingham (1991).

The omniscient thresholding mechanism sets all the output units to be inactive

when very noisy recall cues are used. To prevent inactive states in response to recall

from very noisy cues, Mµ
i , the number of active cells in layer i during the recall of

pattern µ, is constrained such that

2 � Mi � Mµ
i � Mi � 2 � (7.12)

where Mi is the number of active cells in layer i during the storage of a pattern.

The output error therefore tends to a maximum of Mi false negatives and Mi � 2 false

positives, a hamming distance of 3Mi � 2.

The performance is calculated using the activity of the output layer, and not by the

activity in layer 1. In Marr (1971), activity is allowed to cycle indefinitely through the

recurrent collaterals before being assessed. The recurrent collaterals are not modelled
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here, so the performance is calculated from the output layer activity in the time step

after activity reaches it from the previous layer. The omniscient thresholding strategy

is used to set the thresholds, as detailed in the previous section. Therefore, the values

of T and f are used which minimise the hamming error of the output during the recall

of a pattern.

The information efficiency can be an appropriate measure for measuring the ca-

pacity. It allows comparisons between networks and patterns of different sizes (e.g.

Frolov et al., 1995a,b). It is also a way of judging how well the network structure is

matched to the task. In this chapter, networks with different numbers of synapses are

compared in their ability to store and recall a set number of patterns, the task specified

by Marr (1971). It is therefore not appropriate to compare their performance in terms

of the synaptic efficiency, since we interested in establishing which network performs

this task better, and not in establishing which is the most efficient. The dot product

of the stored and recall patterns is an appropriate measure for comparing thresholding

mechanisms which favour different strategies for minimising the output error (Graham

and Willshaw, 1995). Only one thresholding mechanism is used in all the networks,

therefore the hamming distance is as informative as the dot product. The hamming

distance is therefore used in this chapter, without any loss of generality.

7.3.3 Parameters

Marr used two computational constraints in establishing the parameters of his 3-layer

network:

� ρ-Constraint: the probability that a synapse has been facilitated should not be

high (Marr, 1971, section 2.3.2).

Marr calculates ρi, the probability that a synapse has been facilitated for a neuron

in layer i as

ρi � 1 � � 1 � αi � αi � 1R (7.13)

� 1 � e
���

αiαi � 1R � � (7.14)
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where αi is the proportion of active cells in the layer, so αi � Mi � Ni, αi
�

1 is

the proportion of cells active in the previous layer, layer i � 1, and R is the total

number of patterns stored in the network. This is the same calculation as that

presented in Willshaw et al. (1969).

To quantify the constraint, ρ is given a arbitrary limit:

αi
�

1αiR � 1 � (7.15)

� Contact constraint: The contact probability, the probability that a cell does not

synapse with an active cell in the next layer, should be less than the arbitrary

small number e
�

20 (Marr, 1971, section 2.3.3).

The contact probability, Pc, is calculated as

Pc � � 1 �

Si

Ni
�

1
� αiNi (7.16)

� e
���

αiSiNi � Ni � 1 � (7.17)

where Si is the number of synapses a cell in layer i receives from a cell in layer

i � 1, and Ni
�

1 is the number of cells in layer i � 1. If Pc � e
� �

20 � , then

SiαiNi � 20Ni
�

1 (7.18)

The contact constraint is acknowledged by Marr as being weak. Clearly one

input is not enough for an output neuron to judge whether it should be active or

not. The criterion should be whether the output neurons receive sufficient input

to reliably discriminate input noise.

Marr (1971) provided the parameters of the full-scale 3-layer network (table 7.1).

Marr (1971) did not specify the parameters of the 2-layer network. They must be

inferred from the parameters of the 3-layer network, and by using the computational
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Parameter Value Description

N1 1 � 25 � 106 No. of L1 cells

N2 5 � 105 No. of L2 cells

N3 105 No. of L3 cells

Nb
1 5 � 104 No. of L1 cells per block

Nb
2 2 � 104 No. of L2 cells per block

S2 104 No. of L1 inputs to a L2 cell

S3 5 � 104 No. of L2 inputs to a L3 cell

Zb
2 0 � 5 L2 block connectivity = S2 � Nb

1

Z3 0 � 1 L3 connectivity = S3 � N2

α1 2 � 00 � 10
�

3 L1 activity level

α2 6 � 05 � 10
�

3 L2 activity level

α3 2 � 17 � 10
�

3 L3 activity level

R 105 No. of patterns stored

Table 7.1: Parameters of Marr’s 3-layer network, taken from (Marr, 1971, tables 1-3). Li

denotes layer i. Layers 1 and 2 are divided into 25 blocks.

constraints. The ρ-constraint is met when the hypothetical 2-layer network is con-

structed from the parameter set given in table 7.2), as Rα1α2 � 0 � 434. However, the

contact constraint is not met. S2 would need to be 115,200 to satisfy it. Alternatively,

with S2 � 50 � 000, the probability of no contact, Pc � e
�

8. I consider a range of values

for S2, 50 � 000 � S2 � 125 � 000 since the value of e
�

20 was arbitrary (figure 7.3).

In the 2-layer network, I restrict the recall cue activity to a section of 50 � 000 layer

1 cells to maintain the block analogy. Marr used a variety of inputs: with R � 105, it

is calculated that 60 cells must be active in one block of layer 1 for successful recall.

For both networks, I use the full activity in one block of layer 1, of 100 genuine active

cells, and no spurious activity.

7.3.4 Results

The 2-layer network performs marginally better for the 105 events that Marr estimated

are stored in the hippocampus every day (figure 7.3). The 3-layer network performance
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Parameter Value Description

N1 1 � 25 � 106 No. of L1 cells

N2 105 No. of L2 cells

S2 5 � 104 No. of L1 inputs to a L2 cell

Scc
2 1 � 25 � 105 No. of L1 inputs to a L2 cell

(satisfying the contact constraint)

Z2 0 � 04 L2 connectivity = S2 � N1

Zcc
2 0 � 1 L2 connectivity = Scc

2 � N1

α1 2 � 00 � 10
�

3 L1 activity level

α2 2 � 17 � 10
�

3 L2 activity level

R 105 No. of patterns stored

Table 7.2: Inferred parameters of Marr’s 2-layer network. Li denotes layer i. There is no block structure,

except in the presentation of the recall cue.

is low, requiring the collateral effect to perform a considerable amount of noise reduc-

tion. In contrast, the error in layer 2 (of the 3-layer net) is very low: after storing 60,000

patterns, the expected error is only 0.77 bits. A similar level of error is predicted for

layer 3 after only 15,000 patterns.

The activity in layer 2 is high. The 3-layer network does not fulfil the ρ-constraint,

since α1α2
� 105 � α2α3

� 105 � 1 � 20. The performance increases for R � 105 when

the activity level in layer 2, α2, is lowered (figure 7.3). The connectivity between the

layer 2 and layer 3, Z3, is only 0 � 1. This connectivity combined with a low number

of active cells in every block of layer 2 results in dendritic sum distributions centred

around very low means. Discriminating the two distributions is difficult because inte-

ger thresholds are used.

The problem is apparent in the performance of Marr’s original 2-layer network.

The curve is bumpy compared to the others, especially at R � 70 � 000, but also at

R � 10 � 000. The mean input activity is only 4 because the connectivity is very low,

Z2 � 0 � 04, and because the number of active neurons in layer 1 is only 100. The

omniscient thresholding strategy reduces the total number of active neurons when the

input is noisy to minimise the hamming distance. This has to be done by increasing
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Figure 7.3: Predicted performances of Marr’s full-size networks. For parameter values, see tables 7.1

and 7.2. For the 2-layer network, Z2, the connectivity in layer 2 is calculated as Z2 � S2
�
N1, so Z2 �

0 � 06 � S2 � 75 � 000, Z2 � 0 � 08 � S2 � 100 � 000, Z2 � 0 � 10 � S2 � 125 � 000. For the default 2-layer

network, S2 � 50 � 000 � Z2 � 0 � 04.

the subtractive threshold, T , which is an integer value, since the dendritic sum is the

input activity for the genuine neurons. The bumps occur as T increases. The effect

is an artefact of using binary neurons and synapses and of the extremely low activity

levels.

The performance increases for all R as the connectivity in the 2-layer network is

increased to Z2 � 0 � 10, the connectivity required to fulfil the contact constraint. The

slow increase in errors with R for Z2 � 0 � 1 indicates that the errors are a result of

the low input activity levels, rather than the catastrophic interference associated with

overlearning and the corresponding over-saturation of the synapses.

In Willshaw and Buckingham (1990), the 3-layer network has Z2 � 0 � 17, and Z3 �
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Figure 7.4: Schematic diagram of the adjusted block structure in the 3-layer model. Multiple blocks in

layer 1 project to every block in layer 2.

0 � 67. Z2 is a quarter of Z3 in order to satisfy the contact constraint. Z2 � 0 � 67 in their

small-scale 2-layer network for the same reason. S2 � 833 � 333 if this value of Z2 is

maintained in the full-size 2-layer network. This value is anatomically implausible,

but likely to produce excellent results.

Marr estimated that the absolute upper limit to the number of synapses onto a cell

to be 105, and that a more reasonable limit was 60,000 (Marr, 1971, section 2.3.4).

These remain good estimates: CA1 cells receive � 30,000 excitatory inputs (Megı́as

et al., 2001), and CA3 cells contact � 60,000 cells (Li et al., 1994). How can both the

anatomical and computational constraints be satisfied?

7.3.5 Parameter dependence

If the layer 1 and layer 3 parameters are fixed, the free parameters are Nb
2 , α2, N2, and

S2. How can these parameters be adjusted to improve the performance with the third

layer?
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Figure 7.5: Output error in layer 3 of the 3-layer network as a function of the block size in layer 2, Nb
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for different activity levels in layer 2, α2.

Block size in layer 2, Nb
2

Increasing Nb
2 reduces the computational demand on layer 3. Layer 3 must perform

recall from, at best, 1/25 of the original layer 2 pattern with only block-to-block pro-

jection between the first layer 1 and layer 2. Multiple blocks in layer 1 project to every

block in layer 2 when the block size in layer 2, Nb
2 � 20 � 000 (figure 7.4). Both N2 and

S2 are kept constant, so as Nb
2 increases, the connectivity, Z2, decreases. The perfor-

mance initially increases to an optimal level as Nb
2 increases (figure 7.5). The reduced

connectivity has a dominating, adverse effect when Nb
2 increases further.
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Figure 7.6: (a) Layer 3 error, from a full input cue in one block of layer 2, as a function of Nb
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block size in layer 2. Different layer 3 connectivities, Z3 are used. Since Z3 � S3
�
N2, and S3 � 50 � 000,

Z3 � 0 � 10 � N2 � 5 � 00 � 105, Z3 � 0 � 12 � N2 � 4 � 17 � 105, Z3 � 0 � 14 � N2 � 3 � 57 � 105, Z3 �

0 � 17 � N2 � 2 � 94 � 105, Z3 � 0 � 20 � N2 � 2 � 50 � 105. In all cases, the activity in layer 2, α2 � 0 � 002,

and the number of patterns stored, R � 105. (b) The data in (a) replotted against Nb
2

�
N2.

Activity level in layer 2, α2

The performance in layer 2 improves when α2 is decreased (figure 7.5). The improve-

ment is increased by successively larger block sizes in layer 2. This is partly due to an

improved ability to perform accurate thresholding, as discussed above. In addition, a

specific proportion of layer 3 inputs must be active in order to achieve a given level of

performance in layer 3, as discussed next.
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size in layer 2. As S2, the number of synapses onto neurons in layer 2 increases, the error decreases. In

all cases, the activity in layer 2, α2 � 0 � 002, and the number of patterns stored, R � 105.

Number of neurons in layer 2, N2

The connectivity with layer 3, Z3, decreases as N2 increases because S3 is fixed. Now

the block size in layer 2, Nb
2 , must increase as Z3 decreases, to maintain a given level

of performance (figure 7.6a). It is clear that the value of Nb
2 must be a determinable

proportion of N2 to produce a given level of performance, when the performance is

plotted against the proportional block size, Nb
2 � Nb (figure 7.6b). This makes intuitive

sense, and allows N2 and Nb
2 to be expressed as functions of one another, simplifying

the choice of parameters.
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Number of synapses with layer 1 neurons in layer 2, S2

The performance in layer 2 decreases as S2 is increased (figure 7.7). This performance

scales linearly with Nb
2 . Each neuron in layer 2 operates independently: the expected

number of errors in a block in layer 2 is Nb
2 times the probability of an error at every

neuron.

The original task set by Marr is recall from a full cue presented in one block of the layer

1. A minimum performance demand on the network is that layer 3 can perform recall

from a full noiseless cue in one block of layer 2, to a given level of error. Nb
2 � 0 � 17 �

N2 if the expected error � 1, when α2 � α3 � α1 � 0 � 002 (figure 7.6). N2
b � 20 � 000

and S2 � 30 � 000 for the expected number of errors in layer 2 � 1, with a full noiseless

cue cue in one block of layer 1, (figure 7.7).

The approach for establishing the network parameters does not depend on the

thresholding strategy used, since it generalises from the discriminability of the genuine

and spurious dendritic sum distributions of an individual neuron to the population. The

parameters generated will vary tremendously as the mechanisms are varied.

7.3.6 The return projection

Marr briefly treated the return from the memory to the neocortex (Marr, 1971, section

3.4). Each neocortical indicator cell has 105 synapses available to receive input from

the short-term memory store (the hippocampus). There are 22 active output cells in the

collateral layer, on average, so Hebbian synapses and a suitable threshold will ensure

perfect transmission. If this prescription is followed, every output neuron has 106 pro-

jection synapses, in addition to its recurrent collateral synapses. This is a factor of 20

greater than the number of cells contacted by CA3 pyramidal neurons (Li et al., 1994).

It also means that there are 1 � 25 � 1011 modifiable synapses in the return projection,

compared with 1 � 1 � 1010 synapses in total in all the other layers put together.

The number of synapses onto a neuron in layer i, Si, was constrained by anatomy

in the forward pathway from the neocortex layer to the hippocampus layer. In the
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In a 3-layer model of the return projections, layer 5 corresponds to the neocortical layer, and every layer

4 block projects to a given proportion of the neocortical layer.

return projection, the constrained parameter is the number of synapses from a neuron.

Let Ai denote the number of axonal synapses for layer i. Si was constrained to be

� 50 � 000. A first estimate of the maximum possible number of synaptic contacts is

therefore also 50 � 000. This value is consistent with the estimated 30-60,000 axonal

synapses of CA3 pyramidal cells (Li et al., 1994). Zi, the connectivity between layers

i � 1 and i, is defined as Zi � Si � Ni
�

1 in the forward projection. The connectivity can

be equivalently calculated as Zi � Ai
�

1 � Ni for the return projection.

The minimum computational task of the return pathway is to be able to transfer a

fully recalled, noiseless pattern of activity from the collateral layer. The connectivi-

ties required to ensure that the error � 1 in a block of layer 4 of size N4
b are plotted

in figure 7.9. Z3 can be expressed as a function of N4 and A3, since the connectivity,

Z3 � A3 � N4. From figure 7.9, it can be seen that N4 is constant for all Nb
4 : the layer

size is independent of the block size. Every neuron in layer 4 discriminates its inputs

independently, and, in contrast with the forward projection, all the neurons in the pre-
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4

�
N4 such that the error is

�
1 � 0 in a block in layer 4 from a full noiseless recall cue in layer 3, for increasing block size in layer 4.

The connectivity is defined to be Z4 � A3
�
N4, where A3 is the number of synapses made onto neurons in

layer 4 by every layer neuron in 3. The minimum connectivity required to support this level of performance

is converted into a value of N4 for value of A3. For all data points, R � 105, α4 � 0 � 002.

ceding layer are equally likely to be active. A3 � 50 � 000 for the return direction to be

direct, with no mediating layer and Nb
4 � 50 � 000.

The size of an intermediary layer 4, N4, is specified for a given value of A3. Each

block in layer 4 will project to Nb
4 � N4 of layer 5, by design (figure 7.8). The values of

A4 required to ensure that the error � 1 in layer 5 from a full noiseless cue in the layer

4 are plotted in figure 7.10.

Marr assumed that the collateral effect would completely restore the pattern of

activity in the third layer to its original state. The connectivities between the layer 3

and layer 4 must be greater if this is not the case.
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1.0 in layer 5, for a full, noiseless

cue in one block of layer 4. Every block in layer 4 will project to the proportion Nb
4

�
N4 of neurons in

layer 5. This proportion is given in figure 7.9 for a given block size, Nb
4 . The number of neurons in layer

5 contacted by every neuron in layer 4 to ensure the minimum error is plotted for the various values of

Nb
4

�
N4 controlled by A3. As before, for all data points, R � 105, α4 � 0 � 002.

7.3.7 Reverberating activity

If information can be usefully transferred back to the neocortex in a modified version

of Marr’s model, what happens if activity continues to pass round the network? The

block structure of the projections will limit the extent of pattern completion, but this is

only one aspect of associative memory recall. Useful noise reduction can still occur,

and the capacity will be greater, but by how much?

Marr explains the ‘collateral effect’, the ability of the recurrent collaterals to per-

form associative memory recall, by imagining that the cells in the third layer, P3,
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back to layer 1 is the first cycle. Network parameters: N1 � N2 � 4000, M1 � M2 � 100, Z2 � Z1 � 0 � 66,

R � 1000

project to an identical set of cells, P3 � (using his notation). The temporal progres-

sion of activity through the network is represented as a series of synchronous updates

through an infinitely layered feedforward network. This straightforward approach has

been used many times since, notably in the analysis of ‘progressive recall’ networks

(Gardner-Medwin, 1976; Buckingham, 1991; Gibson and Robinson, 1992; Bennet

et al., 1994; Hirase and Recce, 1995, 1996).

By the same approach, versions of Marr’s models in which activity is allowed to

reverberate until it reaches a fixed point can be considered as infinite feedforward net-

works composed of units of the original network. In a 2-layer network without any
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spatial organisation of the synapses, and in which the activity continues to reverber-

ate, the performance is fairly successfully predicted by treating every connection as an

independent layer, as illustrated for one parameter set in figure 7.11. The small inaccu-

racy of the predictions for the transmission between every layer is amplified by many

iterations. Also, the performance in simulations is either to convergence or divergence;

in the predictions all patterns perform identically.

In Marr’s calculations, once the input has been presented to the collateral layer,

the input is removed. During progressive recall, the input remains active (Gardner-

Medwin, 1976). With the synchronous update scheme used in the network, this main-

tains the level of noise initially present in the input. The fixed point performance is
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therefore dictated by the level of noise which the network can tolerate being added to

a complete and noiseless input without affecting a perfect output. In response to high

levels of input noise, the error minimisation of the threshold setting reduces the output

activity level. The mean of the genuine dendritic sum distribution will be greater than

the mean of the spurious dendritic sum distribution. The threshold acts to increase the

ratio of genuine to spurious inputs to the next layer where possible. If in the first step

this ratio increases, recall will be successful. This process is illustrated in an exemplar

network in figure 7.12. Re-presenting the initial input on a successful recall trajectory

cannot decrease the ratio of genuine to spurious activity below its original level, and

prolongs the course of the trajectory to a steady state.

7.4 Application to the hippocampus

7.4.1 CA1 as a relay

Marr’s model can be used to investigate whether or not CA1 increases the capacity

of the CA3 projection to the subiculum and entorhinal cortex. In this section, Marr’s

2-layer and 3-layer models are parameterised to represent the projection from CA3

to the cortex and the subiculum, with and without CA1. The performances of these

two networks are then compared to quantify the contribution of the CA1 layer to the

network capacity.

It should be noted that this comparison is not controlled in that the number of

neurons and synapses in each network is not constant. A controlled comparison is

impossible to achieve, because neither the anatomical constraints nor the implentation

costs of neurons are known. I assume that CA3, the subiculum and the deep layers

of the entorhinal cortex are already optimised to perform their functions. Therefore

including the number of CA1 neurons or synapses in these areas would decrease their

performance, nullifying the control.

When Marr’s model is used to model the pathways from CA3 to the entorhinal

cortex and subiculum, the synapses are simplified to binary synapses capable of sup-

porting one-shot learning. The Schaffer collaterals synapses in CA1 are known to be

highly plastic (Bliss and Collingridge, 1993), consistent with this assumption. How-
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ever, it is not clear if the assumption is valid for the synapses in the pathways from

CA1. The CA1 projection to the subiculum exhibits robust LTP (O’Mara et al., 2000),

as do the deep layers of the entorhinal cortex (Yun et al., 2002). It remains to be

determined whether or not this plasticity supports one-shot learning.

The low activity levels of hippocampal neurons have been cited as evidence consis-

tent with the function of the hippocampus as an associative memory network (Barnes

et al., 1990), since sparse activity patterns significantly enhance the memory and in-

formation capacity of such networks (Meunier et al., 1991). If the activity levels in

the subiculum and entorhinal cortex are significantly greater than in the hippocampus,

then, by this argument, this would imply that the pathways from CA1 to the subicu-

lum and entorhinal cortex do not operate as associative memory networks. Recent

experimental recordings indicate that average rates of subicular and deep entorhinal

neurons during hippocampus-dependent tasks are comparable to the average rates of

hippocampal neurons (Hampson and Deadwyler, 2003; Frank et al., 2001). This is in

contrast to earlier studies, which reported average rates an order of magnitude greater

(Sharp, 1999; Quirk et al., 1992).

The pattern completion properties of the recurrent collaterals can be expected to

settle on a pattern of activity. The pathways from CA3 are therefore unlikely to be

required to perform pattern completion. Useful noise reduction can be performed in

the return pathways for noisy, nearly recalled patterns in CA3. The performance of the

network is therefore measured using recall from full-size, noisy cues.

Model parameters

Estimates of the numbers of neurons are given in table 7.3. There are considerable

variations between rat strains (Amaral et al., 1990). Numbers for the Sprague-Dawley

strain have been used here.

The number of ipsilateral cells contacted by every CA3 cell has been estimated

in detail (see table 7.3). The numbers of subicular and entorhinal cells contacted by

every CA1 pyramidal cell are not known. It is assumed that CA1 pyramidal cells can

contact the same number of cells as CA3 pyramidal cells, and that they contact the

subicular and entorhinal neurons equally. I assume that every CA3 pyramidal cell has



108 Chapter 7. Relaying activity in Marr’s model and the hippocampus

Parameter Value Source

NCA3 330,000 Amaral et al. (1990)

NCA1 420,000 Amaral et al. (1990)

NECV � VI 330,000 Mulders et al. (1997)

NSub 250,000 Amaral et al. (1990)

ACA3 30-60,000 Li et al. (1994)

ACA3
�

CA3 10 � 000 Li et al. (1994)

ACA3
�

CA1 35,000 ACA3 � ACA3
�

CA3

ACA1 45,000 ACA3

ZCA3
�

CA1 8.33% ACA3
�

CA1 � NCA1

ZCA1
�

ECV � VI 7.76% ACA1 � � NECV � V I

�
NSub �

ZCA1
�

Sub 7.76% ZCA1
�

ECV � V I

ZCA3
�

ECV � VI 6.03% ACA3 � � NECV � V I

�
NSub �

ZCA3
�

Sub 6.03% ZCA3
�

ECV � V I

Table 7.3: Parameters of the network from CA3 to the Subiculum and EC, either via CA1 or directly.

Notation: NX , number of neurons in layer X; AX � Y , number of neurons contacted in layer Y by a neuron

in layer X; ZX � Y , connectivity between layers X and Y.

the same number of synapses available in the network without CA1. CA3 cells also

project to the contralateral hippocampus via the commissural projection (Blackstad,

1956). In the absence of quantitative data on the proportion of CA3 synapses pro-

jecting contralaterally, I presume that the majority of the CA3 contacts with CA1 are

ispsilateral.

In the model, every cell makes only one contact with every cell in the next layer.

Only � 25% of CA3 cells make multiple contacts with CA1 pyramidal cells (Sorra and

Harris, 1993; Woolley et al., 1996).

Marr estimated that the hippocampus needs to store an event approximately every

second for a day, roughly 105 events. This load, combined with the ρ-constraint, dic-

tates the level of activity that the network can support. The activity levels then, are

the experimentally manifest variables which covary with the capacity. If place field

activity is the neural correlate of spatial short-term memory, an estimate of the activity
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levels can be derived.

Less than a third of hippocampal place fields will be active in a given environment,

roughly � 12% (Thompson and Best, 1989). Those active have a mean rate of � 1.0

Hz (e.g. Frank et al., 2000). If one time step in Marr’s model is equivalent to one

θ-cycle of approximately 100 ms, this is 0.1 spikes per time step. The probability of

successful synaptic transmission is � 0.5 (Rosenmund et al., 1993). The probability of

transmission is perhaps best included as a separate variable (e.g. Gibson et al., 1991;

Graham and Willshaw, 1999), but here I will consider the effect of its mean value on

the firing rate. The resulting order of magnitude estimate for the activity is between

0.015 and 0.001.

The activity levels of the subiculum and entorhinal neurons can be estimated to be

within the upper part of a similar range. During θ-modulated spatial activity, deep en-

torhinal neurons fired at a mean rate of � 2.2 Hz (Frank et al., 2001), and in a delayed

non-match-to-sample task, subicular cells had a mean rate of � 1.9 Hz (Hampson and

Deadwyler, 2003). These sources have been chosen because they also contain compar-

ative recordings of CA1, and are in the lower end of reported values. The probabilities

of synaptic transmission and the proportions of cells active in an environment for deep

entorhinal and subicular neurons remain unknown (Barnes et al., 1990; Sharp, 1999;

O’Mara et al., 2001).

7.4.2 Results

The CA1 network capacity is greater when recall is performed from a noiseless cue

(figure 7.13). 500,000 patterns can be stored with a direct projection and no CA1, and

800,000 can be stored with CA1 for an error � 1. The networks perform equivalently

in this task when A3, the number of axonal projections from CA3, is increased by only

10,000.

It is intriguing that the mean error of the CA1 network increases more rapidly than

the two layer, no CA1 network, when the number of patterns stored exceeds 9 � 105,

resulting in the curves crossing (figure 7.13). This occurs as a result of the process

of error correction or amplification, as illustrated for the recurrently connected rever-

berating network in figure 7.12. The mean error in the second layer of the three layer
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Figure 7.13: Comparison of networks with and without a CA1 layer. The recall cue contains no

noise. Predicted mean error in the subiculum and deep entorhinal layers is shown as a function of R,

the total number of patterns stored. Network parameters are given in table 7.3, except the activities:

αCA3 � αCA1 � αEC � αSub � 0 � 001.

network increases as the number of patterns stored increases. There is a percentage of

noise in the second layer which the transfer to the third layer cannot reduce. When the

mean error in the second layer reaches this level, the three layer network performance

decreases much more rapidly than the performance of the two layered network, as the

errors in the second layer are amplified.

There are two advantages of including CA1. First, ACA3, the number of CA3 axons

available for contacting cells in the next layer, is reduced due to the need to form the re-

current collaterals. A3 in conjunction with an error margin dictates the size of the next

layer. Secondly, a given value of A supports a given rate of expansion between suc-
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Figure 7.14: Comparison of networks with and without a CA1 layer. The recall cue contains 20%

noise. Predicted mean error in the subiculum and deep entorhinal layers is shown as a function of R,

the total number of patterns stored. Network parameters are given in table 7.3, except the activities:

αCA3 � αCA1 � αEC � αSub � 0 � 001.

cessive layers. Through the definitions of the connectivity, Si, the number of synapses

received in layer i, Si � Ai
�

1Ni
�

1 � Ni. Every output neuron will, on average, respond

identically to the same inputs in the previous layer if S is constant across layers with

equal activity levels.

The CA1 layer significantly increases the capacity (figure 7.14) when recall is per-

formed from a noisy cue, and the relative advantage is greater. 500,000 patterns can

be stored with CA1 and the mean error � 1, compared to 90,000 without CA1. The

advantage remains even when the connectivity from CA1 is considerably reduced: the

two networks perform equivalently when the connectivity from CA1 is reduced by
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Figure 7.15: Comparison of networks with and without a CA1 layer. The recall cue contains no

noise. Predicted mean error in the subiculum and deep entorhinal layers is shown as a function of R,

the total number of patterns stored. Network parameters are given in table 7.3, except the activities:

αCA3 � αCA1 � 0 � 001, αEC � αSub � 0 � 01.

2 � 3. Recall from a noisy cue demonstrates the effective ‘collateral’ effect of including

the extra layer, in addition to decreasing the expected error rate for the expansion in

size between CA3 and the subiculum and deep layers of the entorhinal cortex. As with

the return projection in Marr’s model, including a block structure does not affect the

results of the transmission from CA3 to the entorhinal cortex and subiculum.

The least well constrained parameters are the activity levels. If these values are co-

varied in unison, the overall capacities will be affected, but the advantage of including

CA1 will remain. One specific way that the activity parameters can be set in a three

layer network to significantly increase the capacity, is to insert a sparse layer between
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two highly active layers (discussed in Buckingham, 1991, section 6.2.2). Given the

computational demands on low activity levels in CA3, and the lack of any observable

difference in activity levels between CA3 and CA1, CA1 is highly unlikely to be per-

forming any such activity matching. As mentioned in the introduction to this section, it

is most likely that the activity levels in the entorhinal cortex and subiculum are higher

than in CA1 and CA3.

When the activity rates of the subiculum and entorhinal cortex are increased by

a factor of 10, the capacity in recall from a noiseless cue is significantly reduced for

both networks (figure 7.15). The advantage of including CA1 remains, and a greater

increase in A3 is required for the networks to perform equivalently.

7.4.3 Temporoammonic pathway

The contribution of the temporoammonic pathway has been ignored in considering

CA1 as a relay. Physiological evidence was presented in section 3.4 that the entorhinal-

CA1 forward and return projections operate as an independent reverberatory loop, via

the projection from the deep layers of the entorhinal cortex to superficial layers. It was

verified in section 7.3.7 that recurrently connecting a multilayered network increases

performance.

In this section, the entorhinal-CA1 reverberatory network is examined in the frame-

work of Marr’s model, to examine its suitability for the one-shot learning of associative

memories. The network is unlikely to perform pattern completion due to the limited

divergence of the forward and return projections. It could usefully perform noise re-

duction from full-sized cues. The spatial segregation of the parallel loops through

the entorhinal cortex and CA1 could maintain separate information streams (Longden

and Willshaw, 2002). Isolated information in these loops would be integrated in the

projections through the trisynaptic circuit.

Model parameters

The numbers of neurons in every layer of the network are given in table 7.4.3. It is

presumed that the majority of the synapses in the stratum lacunosum-moleculare of
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Parameter Value Source

NECIII 250,000 Mulders et al. (1997)

NCA1 420,000 Amaral et al. (1990)

NECV � V I 330,000 Mulders et al. (1997)

Nb
ECIII

83,000 NECIII � 3

Nb
CA1 140,000 NCA1 � 3

Nb
ECV � V I

110,000 NECV � VI � 3

SECIII
�

CA1 2,000 Megı́as et al. (2001)

ZECIII
�

CA1 0.8% SECIII
�

CA1 � NECIII

Zb
ECIII

�
CA1 2.4% SECIII

�
CA1 � Nb

ECIII

Table 7.4: Parameters of the network from layer 3 of the entorhinal cortex to CA1. Notation: NX , number

of neurons in layer X; Nb
X , number of neurons in one block of layer X; SECIII � CA1, number of neurons in

the layer 3 of the entorhinal cortex contacting every CA1 pyramidal cell; ZECIII � CA1, connectivity between

the entorhinal and CA1 layer; Zb
ECIII � CA1, block connectivity between the entorhinal and CA1 layer.

stained CA1 cells are from the temporoammonic pathway (Megı́as et al., 2001). This

figure, � 2,000 is low in comparison with the number of Schaffer collateral inputs, but

consistent with the � 3,600 entorhinal layer two inputs to CA3 (Amaral et al., 1990).

The connectivity is locally 2 � 4% because the projection is restricted to one third of the

septotemporal length of CA1 (Naber et al., 2001).

Estimates for the activity levels of the CA1 and deep entorhinal cells have been

discussed in section 7.4.1. During a spatial exploration task, the activity of superficial

entorhinal neurons, believed to be layer III neurons from the histology, was 2 � 0
�

1 � 2

Hz (Frank et al., 2001). This is comparable to the mean activity rates of CA1 and deep

entorhinal cells. Superficial entorhinal neurons can partially remap (Fyhn et al., 2003),

indicating that only a proportion of cells are active in an environment, but most likely

a larger proportion than in CA3 and CA1.

7.4.4 Results

Low activity levels result in a poor performance because of the low connectivity in the

temporoammonic pathway. The capacity is reduced in recall from a noisy cue when the
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Figure 7.16: Comparison between the performance of Marr models of the temporoammonic and Schaf-

fer collateral pathways, denoted by TA and SC respectively. Recall is performed from a noisy cue, with

20% noise. The parameter values of the temporoammonic pathway are given in table 7.4.3, and of the

Schaffer collaterals in table 7.3. The activity levels of the entorhinal cortex are reduced and the tem-

poroammonic connectivity increased to try and increase the capacity to the estimate of the Schaffer

collaterals.

activity is reduced from 0 � 010 to 0 � 005, using the estimated connectivity (figure 7.16).

The capacity of the temporoammonic pathway remains considerably lower than the

Schaffer collateral capacity when the connectivity is increased by a factor of 5. 90,000

patterns can be stored in the temporoammonic pathway, for an expected mean error

� 1, versus 200,000 in the Schaffer collaterals. The activity level can be beneficially

reduced with the increased connectivity, but again the low connectivity constrains the

activity level to be greater than the values previously used in CA3 and CA1.

Reverberations could allow the network a greater capacity. An upper limit to this

increased capacity must be the number of patterns that can be recalled from a noiseless
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Figure 7.17: Comparison between the performance of Marr models of the temporoammonic and Schaf-

fer collateral pathways, denoted by TA and SC respectively. Recall is performed from a noiseless cue.

The parameter values of the temporoammonic pathway are given in table 7.4.3, and of the Schaffer col-

laterals in table 7.3. The activity levels of the entorhinal cortex are reduced and the temporoammonic

connectivity increased to try and increase the capacity to the estimate of the Schaffer collaterals.

cue. Using the original connectivity, the capacity of the temporoammonic pathway is

still very low (figure 7.17). With the increased connectivity, the capacity is comparable

to the performance of the Schaffer collaterals from a recall cue with 20% noise, but is

roughly three times smaller in recall from a noiseless cue.

If the rate of plasticity is the same in both pathways, as modelled here, either the

temporoammonic pathway will be saturated, or the Schaffer collaterals will be operat-

ing considerably below capacity. There are no parameters of the model which can be

expected to compensate for the low connectivity. Therefore, if the pathways do both

operate as associative memory networks, then the implementation in each pathway
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must be different to avoid this capacity mismatch. One such implementation would

be when the rate of plasticity in the temporoammonic pathway is slower than in the

Schaffer collaterals.

7.5 Summary and discussion

In Marr’s model, suitably parameterised extra layers improve the performance in both

the forward and return projections. Any confusion over this result has stemmed from

attempting to constrain the connections at the network level, rather than from the cor-

rect perspective of every output neuron. In the forward projection, spatially organising

the connections into blocks improves performance because the cue can originate in an

isolated section of the neocortical layer. In the return projection, this block structur-

ing does not affect the performance as the recall cue is equally present throughout the

collateral layer.

The primary computational benefit of the extra layers is due to the limits of conver-

gence and divergence in neuron numbers between layers, that anatomically constrained

synaptic and axonal synapse numbers respectively can support. The secondary benefit,

for parameters sets operating further from the network capacity, is the collateral effect

of a recurrent network played out in a feedforward network.

The recent reports of plasticity in the pathways from CA1 to the subiculum and in

the deep layers of the entorhinal cortex (O’Mara et al., 2000; Yun et al., 2002) raise the

possibility that these precorticocortical pathways support the one-shot learning present

in CA3 (Nakazawa et al., 2003) and theoretically argued for in the Schaffer collaterals

(Treves, 1995). When Marr’s model is used to model the storage of associative mem-

ories between CA3, CA1 and the principal afferent targets of the hippocampus, the

subiculum and the entorhinal cortex, CA1 improves the capacity. This result provides

quantitative support for the idea of CA1 as a relay (Treves and Rolls, 1994).

The size of CA1 in the rat is well explained by the model. The combined size of

the deep entorhinal cortex layers and the subiculum is � 1.8 the size of CA3 (table 7.3).

The insertion of CA1 replaces this near doubling of neuron numbers with expansions of

1.3 between CA3 and CA1, and 1.4 between CA1 and the afferent target areas. These
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smaller expansion ratios result in a greater capacity for a given error tolerance and

constrained number of axonal synapses, as was discussed in the results of section 7.4.1.

In contrast, the result does not explain neuron numbers in other species. In hu-

mans there are an estimated 2 � 7 � 106 neurons in CA3, 16 � 106 in CA1, 4 � 5 � 106

in the subiculum (West and Gundersen, 1990), and 3 � 8 � 106 neurons in layers V-VI

of the entorhinal cortex (West and Slomianka, 1998a,b). The number of CA1 neurons

amongst the 5 subjects varied considerably, from 11 to 24 � 106. If these numbers are

correct then the large number of CA1 neurons is not adequately explained by ensuring

successful transmission of information from CA3 to the rest of the brain.

Other anatomical aspects of CA1 in the rat remain unexplained, notably the spatial

organisations of the projections to and from CA1. The temporoammonic pathway is

topographically organised, such that to a first approximation, separate thirds of the sep-

totemporal length of the pathway are independent, and this organisation is maintained

throughout the subsequent projections between CA1, the subiculum and the entorhinal

cortex (Naber et al., 2001, see section 2.5). Within the framework of Marr’s model,

this striking organisation serves no purpose. It is possible that the connectivity is an

epiphenomenon, but perhaps unlikely.

The role for the temporoammonic input is not specified by (Treves and Rolls,

1994). The capacity of the entorhinal-CA1 Marr network as a Marr model is much

lower than that of the CA3-CA1 Marr network, over a broad parameter range. It is

therefore unlikely that both pathways operate as one-shot associative memory networks

which associate the same patterns of activity in CA1, (as proposed by Hasselmo and

Schnell, 1994).

The generality of the results gained by applying Marr’s model to the hippocampus

depend on the validity of the model’s simplifying assumptions. In the limit of sparse

coding, the assumption of binary synapses has little effect on the capacity of the net-

work to correctly retrieve patterns. In the Willshaw network (Willshaw et al., 1969),

when the original clipped binary Hebbian learning rule is replaced with an incremental

covariance Hebbian rule, the capacity of the network is reduced from 1/(2ln2) ( � 0.721)

bits per synapse to ln2 ( � 0.693) bits per synapse (Nadal and Toulouse, 1990). The ac-

curacy of the weight changes is not an important factor because sparse coding reduces
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the interference between patterns.

Binary neurons can be considered to be a simplification of a binary rate-coding

scheme. In a recurrent network of threshold-linear neurons with covariance Hebbian

learning, the assumption of a binary distribution of rates has only a small effect on

the capacity (Treves and Rolls, 1991; Simmen et al., 1996). Again, this conclusion

is valid in the limit of sparse coding. The threshold-linear neuron model is a realistic

level of description in that it is able to reproduce the gross characteristics of the graded

response of a neuron to injected currents (Treves and Rolls, 1991). When the binary

rate-coding scheme in the network is replaced by a ternary or exponential distribution

of rates, the effect on the predicted capacity is small (Treves and Rolls, 1991, figure

6(a)).

The critical issue for determining how well the results generalise is the assumption

of sparse coding. The activity levels in the hippocampus are distinctively low (Barnes

et al., 1990). If the coding in the hippocampus is not sparse, then the capacity of the

network is significantly affected, and the fundamental assumption that the hippocam-

pus is an associative memory network has to be reexamined.





Chapter 8

Self-organising activity in Marr’s

model and the hippocampus

8.1 Introduction

How does the activity originate in every layer of Marr’s model? This is a relevant

problem for CA1 when the model is applied to the hippocampus. Excitatory connec-

tions allow input activity to autoassociate in CA3. Recurrent inhibitory connections

allow the dentate gyrus to operate as a competitive network. CA1 cannot rely upon

positive or negative feedback mechanisms to self-organise representations because it

lacks significant feedback connections (section 2.4).

Marr suggested an algorithm for pattern formation. The size of the input decides

whether or not a pattern is to be learnt or recalled. If it is below an activity level, it is

recalled, and if above, it is learnt (Marr, 1971, section 2.2.2). The aim is to choose the

most suitable cells to represent the current input when the pattern is learnt (Marr, 1971,

section 2.2.2). The chosen cells are the ones with the most active input synapses, the

highest input activity, a. The cells are connected by the so-called Brindley synapses

which have an unmodifiable excitatory component, regardless of whether the synapse

has been modified or not (Brindley, 1969). The Brindley synapses potentially allow

the output neurons with the highest input activity to be identified .

The algorithm is guided by a sensible principle, but omits important details. How

121
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does the output neuron sum the Brindley synapses without including the contribution

of the modified synapses? Neurons potentiated in one pattern will be more likely to be

active in the next. This problem is avoided by using a plasticity rule that ensures no net

weight gain. In this case, including the input activity in the dendritic sum biases the

neurons with the highest connectivity to be chosen. Unfortunately, Brindley synapses

are experimentally unsubstantiated. I discuss whether the NMDA component of Schaf-

fer collateral synapses could fulfil the same function at the end of this chapter. Marr

argues that his algorithm chooses the ‘best suited’ cells for representing the output, but

this is never qualified. Marr’s real motivation might have been biological plausibility:

if the position had been verified with private calculations, it is surprising that they were

not included in the paper.

Accurate analytic expressions were used to predict the performance of full-sized

hippocampal networks in the previous chapter. Buckingham (1991) extended the anal-

ysis to the network with self-organised patterns (appendix B), and used it to investigate

the performance of the ‘guess-s’ thresholding mechanism developed in the thesis. In

the guess-s mechanism, every output neuron adjusts its threshold to minimise its out-

put error. The estimate of the noise in the cue is gradually lowered across the network,

changing the threshold of the neuron (Buckingham and Willshaw, 1993). The guess-s

strategy was used to show that a self-organising network outperforms a competitive

network, proposed by Rolls (1989) to best describe the Schaffer collaterals (Bucking-

ham, 1991, section 5.4). Buckingham (1991) argued that networks storing random

and self-organised patterns perform equivalently. The reasoning was that the chosen

neurons have a higher connectivity, increasing performance, and have a higher propor-

tion of modified synapses, decreasing performance. This point is supported by a graph

of equivalent performances as a function of the noise in the cue (Buckingham, 1991,

figure 5.10).

Signal-to-noise analysis is used in this chapter to investigate the capacity of net-

works storing random or self-organised patterns. I show analytically that self-organising

networks have a higher capacity than networks storing random patterns with a higher

connectivity, in the arguably hippocampally relevant regime of low connectivity and a

high memory load, by considering the signal-to-noise ratio of the predicted dendritic
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Figure 8.1: Performance of a self-organising network, as a function of R, the number of patterns stored,

for different proportions of input noise. Network parameters: N1 � N2 � 4000, α1 � α2 � 0 � 03, Z � 0 � 5.

Data points are averages over 100 trials.

sum distributions. This finding is supported by simulations exploring the parameter

space. The two important contributing factors to the increased performance are the

low signal variance of the dendritic sum distribution, and the increased separation of

the means of the signal and the noise. The performance with dendritic sum thresh-

olding in self-organising networks is also superior in simulations to random networks

with input activity-dependent thresholding. It is concluded that it would be computa-

tionally advantageous for CA1 to self-organise its activity, both in terms of capacity

and the simplicity of the required thresholding implementation.
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Figure 8.2: Comparison between self-organised and random network performances, as functions of

R, the number of patterns stored, and for different proportions of input noise. Data points and error bars

denote the mean and standard deviation of the error over 100 trials. Network parameters: N1 � N2 �

4000, α1 � α2 � 0 � 03, Z � 0 � 5.

8.2 Methods

The results are generated by calculating the signal-to-noise ratio (SNR) of a 2-layer

Marr network. The SNR of the dendritic sum distributions is a measure of their dis-

criminability. It is defined as

SNR � � µg � µs � 2
1
2 � σ2

g
� σ2

s � (8.1)

where µg and µs are the mean values for the genuine and spurious dendritic sum

distributions respectively, and σ2
g and σ2

s are their measured variances. The SNR is a
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Figure 8.3: Comparison between self-organised and random network performances, as a function the

size of the (noiseless) input cue, for different R, the number of patterns stored. Network parameters as

in figure 8.2

useful measure of performance as it is independent of the thresholding strategy used.

The SNR has often been used to understand the mechanics of associative memory

networks (Palm, 1988; Willshaw and Dayan, 1990; Rolls and Treves, 1998). The issues

involved in implementing the technique correctly are discussed in depth by Dayan and

Willshaw (1991).

The expected SNRs of networks storing self-organised or random patterns are cal-

culated from the predicted dendritic sum distributions, outlined in section 8.2.1. The

results from this analysis are then checked against the results from simulations. All

the data in the graphs in this chapter are generated by simulations. The details of the

simulations are given in section 8.2.2.
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8.2.1 Methods: Analysis

The equations from Buckingham (1991) are used to calculate the expected mean and

variances of the dendritic sum distributions. The equations central to the analysis are

presented below. The derivations of equations 8.2- 8.5 are given in the appendices,

with an error from Buckingham (1991) corrected (equation B.8).

Consider recall from a noiseless recall cue, size M1, in a random network and

in a self-organised network. Parameters from the two networks are differentiated by

superscripts: the genuine dendritic sum is denoted by drnd
g in the random network, and

by dso
g in the self-organised network. Likewise, the spurious dendritic sum is denoted

by drnd
s in the random network, and dso

s in the self-organised network. Buckingham

(1991) previously established that

P � drnd
g � x

�
a � r � � B � x;M1 � Zrnd � (8.2)

P � dso
g � x

�
a � r � �

�
1

α2
B � x;M1 � Zso � if a � T

0 otherwise �

(8.3)

P � drnd
s � x

�
a � r � � B � x;a � ρrnd � r � � (8.4)

P � dso
s � x

�
a � r � �

�
1

1
�

α2
B � x;a � ρso � r � � if a � T

0 otherwise
(8.5)

where a is the input activity, r the ‘unit usage’ (Buckingham, 1991), the number of

times a neuron is active in a pattern, M1 the size of the input cue, Z the connectivity,

α2 the activity level in the second layer, T the input activity threshold used in self-

organising the patterns, ρ � r � the probability that a synapse has been modified in the

storage of r patterns, and B denotes a binomial distribution.

In the pattern self-organisation algorithm, the neurons with the highest connectivity

are chosen to be associated with the input pattern. This is incorporated in the analysis

by assuming the genuine neurons have a higher effective connectivity, Zso
g . The neu-

rons not chosen have a lower average connectivity, Zso
s , and the two connectivities are

related to Zso by

Zso � α2Zso
g

� � 1 � α2 � Zso
s � (8.6)
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The modification of their synapses results in a higher proportion of modified synapses,

ρ � r � :

ρrnd � r � � 1 � � 1 � α1 � r (8.7)

ρso � r � � 1 � � 1 �

Zg

Z
α1 � r (8.8)

as verified by Buckingham (1991), where α1 is the activity level in the first layer.

8.2.2 Methods: Simulations

The network parameters for each simulation are given with every figure. The random

networks are implemented as described in section 7.3.1. The only difference is in the

implementation of the omniscient thresholding strategy: the output activity is not con-

strained to be greater than M2 � 2. Hence the mean error tends to M2 as the performance

decreases, rather than 3M2 � 2 as before.

When the output patterns are self-organised, the neurons with the highest input

activity are chosen. Of those exactly at the threshold value, some are randomly not

chosen so that the activity level of the output patterns is constant.

8.3 Results: Increased capacity of self-organised pat-

terns

The performance of a self-organising network is shown in figure 8.1, for an increasing

number of patterns stored, R. The asymptotic performance for the noiseless input con-

dition is perhaps initially surprising, but easily understood. The output neurons were

chosen on the basis that they had the largest input activity for that pattern. When all

the synapses have been potentiated after the storage of an infinite number of patterns,

they will still have the largest dendritic sums because the dendritic sum cannot exceed

the input activity. In the simulations during pattern formation, there was no threshold

value at which exactly M2 output neurons were active. At the threshold value used,

16 extra output neurons, on average, were randomly eliminated and this is the source
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of the residual error. Consistent with this explanation, the errors are exclusively false

positives.

During recall from noisy cues, the mean error remains lower for the self-organised

patterns than for the random patterns (figure 8.2). This advantage increases with R,

and decreases with greater levels of noise in the input.

When partial cues are used in the absence of noise, there is no difference in perfor-

mance for low values of R (figure 8.3). This indicates that the pattern selection process

is the variable affecting the performance as a function of noise, rather than some other

factor. For instance, the unit usage, the number of patterns a neuron is active in during

storage, is an important parameter of performance (Buckingham and Willshaw, 1992,

see the appendix A). If variations in the unit usage were responsible for the improved

performance, it would also affect the performance with partial cues. Indeed, in the

simulations supporting figure 8.3, the mean
�

the standard deviation of the neuron us-

age is 30.00
�

5.34 with random patterns, and 30.00
�

5.33 with self-organised patterns.

The expected values are approximately 30
�

5.39, calculated from the binomial distri-

bution, but this must be adjusted to account for the constant level of activity in every

pattern.

As R increases, the performances of the self-organised and random networks be-

gin to differ, no doubt in ways specific to the parameter set used. Finally, for very

high loads, the random network mean error is consistently near maximum as expected.

Meanwhile the self-organised error returns from a maximum error for small cues to a

near zero level for full-sized cues, consistent with the results in figure 8.1.

8.4 Results: Analysis

The infinite capacity of the self-organised network in recall from a full-size noise-

less cue is a trivial artefact. The increased performance for recall from noisy and

partial cues provides support for Marr’s informal arguments that the self-organisation

algorithm chooses the best output units. Analysis allows us to identify the parameter

regimes under which this advantage is maintained, and perhaps allow the advantage to

be quantified.
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Figure 8.4: (a) Square root of the signal-to-noise ratio (SNR) as a function of the size of the recall cue.

(b) � SNR as a function of noise in a full-size recall cue. For the random network, � SNR decreases

nearly linearly with increasing noise. Data points are the mean and error bars the mean standard devia-

tion over 100 trials. Network parameters: N1 � N2 � 4000, α1 � α2 � 0 � 03, Z � 0 � 5, R � 1000.

The dependence of � SNR on the noise level in a random network is very nearly

linear for the fairly high load indicated by the high average proportion of modified

synapses, ρ � 0 � 60 (figure 8.4b). Consider a full-size recall cue, with the proportion g

of genuine neurons active and s spurious active, such that g
�

s � 1. A first approxima-

tion to the mean of the dendritic sum of the genuine output neurons is µrnd
g

� a � g �
sρ � ,

and the mean of the spurious dendritic sum is accurately given by µrnd
s � aρ, where a is

the input activity (Buckingham, 1991; Graham and Willshaw, 1995, see appendices).

As the proportion of noise increases, the difference between these means decreases

linearly to zero. That the � SNR also decreases linearly for the random network as
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Figure 8.5: (a) Dendritic sum distributions when Zso
g � Zrnd , requiring Zrnd � 0 � 61 and Zso � 0 � 50 in this

example. (b) Close up of the same distributions. Network parameters: N1 � N2 � 4000, α1 � α2 � 0 � 03,

R � 1000.

the means converge indicates that the dendritic sum variances do not vary significantly

with the level of noise. The � SNR for the self-organised network in figure 8.4 also de-

creases monotonically with increasing noise. Generalising from figure 8.4, the differ-

ence in the SNR for the random and self-organising networks will itself monotonically

decay with increasing noise or decreasing cue size.

Now consider a self-organising network that is identical to a random network,

except that its connectivity is lower, such that the effective connectivity in the self-

organising network equals the connectivity in the random network. That is

Zso
g � Zrnd

� (8.9)
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For our noiseless, full-sized recall cue, the means of the dendritic sum distributions

are easy to predict. Zg is the average connectivity of the genuine units in the self-

organised network, so this allows µso
g to be accurately predicted. For the spurious

output neurons in the self-organised network, a is distributed B � M1 � Zso
s � . By including

this lower connectivity in a, the spurious dendritic sum distribution, P � dso
s � x

�
a � r � , is

well approximated by B � a � ρso � r � � . Accordingly,

µrnd
g � M1Zrnd (8.10)

µso
g � M1Zso

g (8.11)

µrnd
s � r � � M1Zrndρrnd � r � (8.12)

µso
s � r � � M1Zso

s ρso � r � (8.13)

The relative magnitudes of µso
s and µrnd

s are not obvious since Zso
s � Zrnd , but

ρso � r � � ρrnd � r � . By induction, it can be shown that µso
s � µrnd

s . When r � 1,

µrnd
s � 1 � � M1Zrndα1 (8.14)

µso
s � 1 � � M1

Zso
s Zso

g

Zso α1 � (8.15)

By design, Zso
g � Zrnd , and also Zso

s � Zso (equation 8.9), so µso
s � 1 � � µrnd

s � 1 � . For

any given r,

µrnd
s � r � � µrnd

s � r � 1 � � 1 � α1 � �
M1Zrndα1 (8.16)

µso
s � r � � µso

s � r � 1 � � 1 �

Zso
g

Zso α1 � �
M1

Zso
s Zso

g

Zso α1 � (8.17)

Now Zso
g � Zso, so � 1 �

Zso
g

Zso α1 � � � 1 � α1 � . As was the case for calculating the

inequality of µs � 1 � , Zso
g � Zrnd and Zso

s
Zso � 1, so M1Zrndα1 � M1

Zso
s Zso

g
Zso α1. Therefore if

µrnd
s � r � 1 � � µso

s � r � 1 � , then µrnd
s � r � � µso

s � r � . Since µrnd
s � 1 � � µso

s � 1 � , by induction

µrnd
s � r � � µso

s � r � � (8.18)
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Indeed, as r � ∞, µrnd
s � M1Zrnd and µso

s � M1Zso
s , so µrnd

s � ∞ � � µso
s � ∞ � .

Since r is distributed identically for both the networks,

µrnd
s � µso

s � (8.19)

The variances require a little more attention. The variance of a genuine neuron’s

dendritic sum in the self-organised network is intuitively small, as the variance of the

upper tail of the input activity distribution must be less than across the whole distri-

bution. Indeed, the majority of genuine neurons have an input activity equal at the

threshold during selection. The dendritic sums from illustrative networks are shown in

figure 8.5. In this example, σso
g is clearly very low. In general, the genuine dendritic

sum variance can be calculated explicitly:

� σrnd
g � 2 � M1Zrnd � 1 � Zrnd � � (8.20)

� σso
g � 2 � 1

α2
∑

a � T
B � a;M1 � Zso � � a � M1Zso

g � 2 � (8.21)

The variances of the spurious dendritic sums are tricky to calculate analytically.

Calculating the propagation of σa and σr through B � a � ρ � r � � results in an unwieldy ex-

pression. Instead, I consider parameter ranges of ρ � r � and Z that constrain the relative

magnitudes of σrnd
s and σso

s .

The variance of the self-organised spurious dendritic sum is well approximated by

aρso � r � � 1 � ρso � r � � , since α2
�

1. The random spurious variance is aρrnd � r � � 1 �

ρrnd � r � � . If the random network is operating with low output error rates and maximal

information efficiency, then ρrnd � 0 � 5 (Willshaw et al., 1969; Canning and Gardner,

1988). When ρrnd � r � � 0 � 5, ρrnd � r � � ρso � r � (equations 8.7 and 8.8), so for given

values of a,

σrnd
s � r �

a � � σso
s � r �

a � when ρrnd � r � � 0 � 5 (8.22)

How does this inequality vary over the distribution of a? The input activities

are distributed binomially, B � M1 � Zso
s � and B � M1 � Zrnd � , so the variances are σso

a �
M1Zso

s � 1 � Zso
s � and σrnd

a � M1Zrnd � 1 � Zrnd � . Since Zso
s � Zrnd , when Zrnd � 0 � 5
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µrnd
a � µso

a (8.23)

σrnd
a � σso

a when Zrnd � 0 � 5 � (8.24)

If σa is increased, it seems intuitively true that this can only increase σs � r �
a � . This

is borne out analytically:

σ2
s � r � � �����

� � d2
s � E2

a � ρ � ds � �
E2

a � ρ � ds � � P � ds
�
a � ρ � P � a � P � ρ � dadρd � ds �

��� ����� ds P � ds
�
a � ρ � P � a � P � ρ � dadρd � ds ��� 2

(8.25)

� ���
� aρ � 1 � ρ � �

a2ρ2 � P � a � P � ρ � dadρ

��� ��� aρP � a � P � ρ � dadρ � 2

(8.26)

� µaµρ � µa � σ2
ρ

�
µ2

ρ � � � σ2
a

�
µ2

a � � σ2
ρ

�
µ2

ρ � � µ2
aµ2

ρ (8.27)

� σ2
ρ � µ2

a � µa � �
µa � µρ � µ2

ρ � � σ2
a � σ2

ρ
�

µ2
ρ � (8.28)

where E2
a � ρ � ds � is the expected value of the spurious dendritic sum, ds, conditioned

on a and ρ. From equation 8.28, it is clear that σs must increase when σa is increased.

In addition, increasing µa must also increase σs, because µa � 1. Therefore

σrnd
s � r � � σso

s � r � when ρrnd � r � � 0 � 5 and Zrnd � 0 � 5 � (8.29)

Putting all this together,

µrnd
g � µso

g (8.30)

µrnd
s � µso

s (8.31)

σrnd
g � σso

g (8.32)

σrnd
s � r � � σso

s � r � if Zrnd � 0 � 5 and ρrnd � r � � 0 � 5 (8.33)

On the basis of these inequalities,
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Figure 8.6: (a) Comparative performance with noiseless recall cues: α1 � α2 � 0 � 03 and R � 1000, so

ρrnd � 0 � 60. Self-organised network performances are paired with performances of the random networks

with a higher connectivity, where Zrnd � Zso
g . All data points are means and error bars are the mean

standard deviation over 100 trials. Remaining network parameters: N1 � N2 � 4000.

SNRso � SNRrnd if Zrnd � 0 � 5 and ρrnd � r � � 0 � 5 � (8.34)

There are a number of informalities in this argument. In calculating σ2
g, I have

made the approximation that the variance is described by the predicted variance. In

fact, the appropriate measure is the dispersion (Dayan and Willshaw, 1991). Due to

the large number of output neurons used during simulations, the correlations in genuine

output activity between patterns are very small and have been neglected. Secondly,

the validity of the inequalities takes for granted the high accuracy of the predicted

distributions, but they are ultimately approximations. For instance, the connectivities

of the genuine and spurious units are treated as averages rather than distributions.

In the limit of sparse output activity, ρ � r � � 1. In this circumstance the advantage

of self-organisation remains. As the output activity tends to zero in addition the units

become perfectly discriminable: there is no change in the maximum possible capacity.
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Figure 8.7: (a) Comparison under a low load condition: α1 � α2 � 0 � 03, R � 250, so ρrnd � 0 � 20.

(b) Comparison under a low activity condition: α1 � α2 � 0 � 015, R � 1000, so ρrnd � 0 � 20. All data

points are means and error bars are the mean standard deviation over 100 trials. Remaining network

parameters: N1 � N2 � 4000.

8.5 Results: Simulations

From the analysis, the performance of a self-organising network is better than an

equivalent random network with a greater connectivity of Zrnd � Zso
g for high loads

ρrnd � r � � 0 � 5 and low connectivity Zrnd � 0 � 5 when simple, neuron-specific den-

dritic sum thresholding is used. This result is supported for one parameter set with

ρrnd � 0 � 60 in figure 8.6. For low Z, the performance is dramatically greater as pre-

dicted, even when the random connectivity is equal to the higher effective connectivity

of the genuine neurons in the self-organising network. The self-organising network

with a connectivity of 10% outperforms the random network with 70% more connec-
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Figure 8.8: Zso
g varied by changing the input activity threshold during pattern formation. All data

points are means and error bars are the mean standard deviation over 100 trials. Network parameters:

N1 � N2 � 4000, R � 1000, Zso � 0 � 5, α1 � α2 � 0 � 03.

tions. As Z increases, a performance advantage remains until as Z � 1, the random

and self-organising network STNs tend to the same values as expected.

The value of ρrnd can be decreased by decreasing the activity levels or the number

of patterns stored. These changes increase the STN for both networks, but do not

significantly change their qualitative relationship (figure 8.7).

Are the results affected by the accuracy of the pattern formation process? This

was tested by altering the input activity threshold, T , during pattern formation. When

T � 0, all the output neurons can be potentially active, and the required number M2

are chosen at random. In this regime, the self-organised and random networks are

equivalent, and the STN of the self-organised network (figure 8.8) is consistent with
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Figure 8.9: Recall with 20% noise in the full-size cue. The same axes as figure 8.6 have been used to

aid the comparison. All data points are means and error bars are the mean standard deviation over 100

trials. Network parameters: N1 � N2 � 4000, R � 1000, α1 � α2 � 0 � 03.

the random network value (figure 8.6). As T increases, the effective connectivity of

the genuine neurons increases and the STN increases to a value consistent with the

self-organised value in figure 8.6. At the maximum T , the difference between the two

networks is that the potentially active neurons are chosen randomly, whereas in the

implementation elsewhere, only those at the threshold are randomly eliminated.

The superior STN of self-organised networks over random networks does not de-

pend on the recall cue being noiseless (figure 8.9). The overall STN values are lower

than in figure 8.6. The proportional change increases marginally as Z decreases, but

the improved performance is not sensitive to noise in the recall cue.
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8.6 Results: Thresholding dependence

In a binary associative memory network storing random patterns, partial connectivity

results in a distribution of input activities. Variations in the input activity to each cell

result increase the variance of the dendritic sum distribution. The capacity of the net-

work is significantly lower than is predicted when this effect is not taken into account

(Buckingham, 1991). Thresholding mechanisms have been proposed that improve the

network performance by reducing or compensating for variations in the input activity

distributions (Marr, 1971; Buckingham and Willshaw, 1993; Graham and Willshaw,

1995). However, none of these mechanisms has satisfactorily explained how the input

activity to each cell can be measured.

Marr (1971) uses an inhibitory cell to measure the input activity to each pyramidal

cell. This requires as many interneurons as pyramidal cells. This is unlikely because

only � 10% of hippocampal neurons are inhibitory interneurons (Freund and Buzsaki,

1996). Furthermore, the basket cells proposed to mediate the divisive inhibition con-

tact more than 1500 pyramidal cells (Sik et al., 1995). Buckingham and Willshaw

(1993) assume that the input activity is known. Graham and Willshaw (1995) propose

a scheme in which NMDARs communicate the dendritic sum and AMPA receptors

(AMPARs) communicate the input activity of the cell. The AMPA signal puts the cell

into a state such that the subsequent NMDA response is integrated to result in a somatic

potential equal to the dendritic sum divided by the input activity. This scheme is not

consistent with the large variation in the number of AMPA receptors and the relatively

low variation in the number of NMDA receptors in Schaffer collateral synapses (Racca

et al., 2000).

If input activity information is not available during recall, how can the effects of

partial connectivity on the capacity be reduced? In the self-organising network, there

is little variation in the input activity of the genuine neurons by design. Therefore a

divisive threshold will not improve the performance (figure 8.10). In this section, it is

shown in simulations that a self-organising network with a dendritic sum threshold out-

performs a random network with both an dendritic sum and an input activity threshold

of the omniscient thresholding strategy.

It should be noted that the omniscient strategy is not the optimal input activity-
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dependent thresholding rule, simply the most optimal that has been published. One

could specify another bilinear thresholding mechanism, in which two linear thresh-

olds are identified that optimally separate the dendritic sum and input activity distri-

butions with respect to the SNR, a kind of bilinear Fisher discriminant. However, the

point is to demonstrate that an acceptable level of performance can be achieved in the

self-organising network without using input activity information during recall. In this

sense, the performance of a network using an optimal input-activity dependent thresh-

olding mechanism is not relevant. Using the input activity during pattern formation

presents its own difficulties: these are discussed in the next section.

First we consider the effect of a divisive input activity threshold on the predicted

dendritic sum distributions. This is equivalent to dividing the dendritic sum by the

input activity. By the propagation of errors:

µrnd
g � 1 � 0 (8.35)

µrnd
s � ρrnd � r � (8.36)

µso
g � 1 � 0 (8.37)

µso
s � ρso � r � (8.38)

σrnd
g � � 1 � Zrnd (8.39)

σrnd
s � r � � � ρrnd � r � � 1 � ρrnd � r � � (8.40)

σso
g � 1

aα2
∑

a � T
P � a � � a � µso

a � 2 (8.41)

σso
s � r � � � ρso � r � � 1 � ρso � r � � (8.42)

For the random network, the transformation removes any input activity variations

in the means of the dendritic sum distributions (Graham and Willshaw, 1995), but

also in the variances. One would expect that dividing through by a would reduce

the magnitude of the variance, but it is not obvious how this affects the size of the

variance relative to the mean. Consider the expression for the variance of the spurious

distribution in equation 8.28. The transformation sets µa � 1, eliminating the σ2
ρ � µ2

a �

µa � contribution. In addition, the transformation sets σa � 0, removing the σ2
a � σ2

ρ
�

µ2
ρ �

term. In this way, the STN is clearly increased. Indeed, Buckingham and Willshaw
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Figure 8.10: Scattergraphs of dendritic sums as functions of the input activity, a. (a) A divisive thresh-

old is illustrated. (b) A subtractive threshold is illustrated. 105 randomly selected data points from the

spurious neurons and all data points from the genuine neurons are plotted from 100 trials. Network

parameters: N1 � N2 � 4000, R � 1000, α1 � α2 � 0 � 03.

(1993) demonstrate analytically that the threshold that minimises the error has, to a

close approximation for low levels of noise, a linear relationship with the input activity.

In the self-organising network, the spurious dendritic sum variance is similarly

reduced as equation 8.28 applies equally to both networks. The variance of the genuine

dendritic sum is not as greatly reduced in relative magnitude, since the input activity

variance of its distribution was already very low. In contrast, the relative separation

of the means is reduced, as the effect of the higher and lower connectivities of the

genuine and spurious neurons respectively is divided out. In our prototypical case of

recall from no noise, perfect recall is effected by a subtractive threshold on the dendritic
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Figure 8.11: The SNR calculated for the dendritic sum divided by the input activity (‘d/a’ in legend),

for recall from a noiseless cue. Data from figure 8.6 is plotted for comparison (‘d’ in legend). All data

points are means and error bars are the mean standard deviation over 100 trials. Network parameters:

N1 � N2 � 4000, R � 1000, α1 � α2 � 0 � 03.

sum, mimicking the conditions during pattern formation.

Implementing input activity-dependent thresholding greatly improves the STN of

the random network, as expected (figure 8.11). It also decreases the performance of the

self-organised network: the reduction in the difference between the means is greater

than the reduction in the spurious dendritic sum variance for this parameter set. It is

noteworthy that the STN of the random network with input activity thresholding is

consistently lower over the full between extrema range of connectivity. This is consis-

tent with the superior performance of the network in figures 8.2 and 8.3 during recall

with partial and noisy cues respectively.
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Figure 8.12: (a) Low load condition: R � 250 and α1 � α2 � 0 � 03, so ρrnd � 0 � 20. (b) R � 1000

and α1 � α2 � 0 � 015, so ρrnd � 0 � 20. All data points are means and error bars are the mean standard

deviation over 100 trials. Remaining network parameters: N1 � N2 � 4000.

It is difficult to establish analytically the parameter range over which the self-

organised network outperforms the random network with input activity thresholding.

The expression for σso
s is complex, there are different input activity distributions for

the genuine and spurious neurons, and ρso �� ρrnd . Repeating the parameter variations

in section 8.6, when ρrnd is decreased from 0.60 in figure 8.11 to 0.20, either through

reducing the activity levels or the load, the self-organised network with a dendritic sum

threshold outperforms the random network using an input-activity dependent threshold

(figure 8.12). The superior performance is again maintained when a noisy recall cue is

used (figure 8.13).
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Figure 8.13: Recall with 20% noise in the full-size cue. All data points are means and error bars

are the mean standard deviation over 100 trials. Network parameters: N1 � N2 � 4000, R � 1000,

α1 � α2 � 0 � 03.

8.7 Self-organising CA1 activity

There are at least three ways that CA1 activity can be formed, to be associated with in-

coming CA3 activity. The Schaffer collaterals could self-organise a pattern of activity

in CA1, using the algorithm suggested by Marr (1971). Secondly, the temporoam-

monic pathway could impose a pattern of activity on CA1 (e.g. McClelland and God-

dard, 1996). Finally, CA1 could operate as a competitive network, using mutual inhi-

bition to form CA1 activity (Rolls, 1989).

Marr’s pattern formation algorithm produces an analytically supported superior ca-

pacity in comparison with random networks, for low connectivities and high loads. Un-

der a preliminary parameter search, it also appears to provide better or equivalent per-
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formance to random networks that use the more complex and non-local input-activity

dependent thresholding mechanisms. The major remaining difficulty is its implemen-

tation. How can a neuron calculate its input activity during pattern formation? If it uses

Brindley synapses, there is no way for the output neuron to integrate the Brindley com-

ponent without also integrating the modified component of the synapse. Marr proposes

that feedback neurons compensate for the number of modified synapses, so that remov-

ing the inhibition that counteracts the Brindley component allows the input activity to

be calculated (Marr, 1971, section 4.3.2). This set-up would require multiple sets of

dedicated, specific inhibitory connections so far completely unsubstantiated. Finally,

there is no experimental support for Brindley synapses as originally envisioned.

If the temporoammonic inputs impose a pattern of activity in CA1, the result would,

at best, be random activity. The temporoammonic synaptic matrix will result in cor-

relations in activity transmitted to CA1 from hypothetical uncorrelated entorhinal pat-

terns of activity. In practice, entorhinal layer II and III patterns are highly correlated, in

comparison to hippocampal patterns of activity, when small adjustments are made to an

environment’s shape, floor texture and food type (Fyhn et al., 2003). It is possible that

the sparse temporoammonic connectivity, the increased size of CA1 and the observed

plasticity in the temporoammonic pathway (Remondes and Schuman, 2002) individu-

ally or collectively orthogonalise the entorhinal inputs. The occurrence of CA1 place

field activity with CA3 lesioned (Brun et al., 2002) indicates that this may be the case.

Preliminary reports of simultaneous recordings of entorhinal layer III and CA1 in CA3

lesioned rats indicate that entorhinal activity is indeed decorrelated in CA1 (Fyhn et al.,

2003). In the Marr or Willshaw networks, uncorrelated random patterns create consid-

erable demands on thresholding mechanisms to maintain a given level of performance

in comparison with patterns self-organised by Marr’s prescription. Correlated patterns

further decrease performance by increasing crosstalk.

CA1 is least likely to operate as a competitive network. There is a lack of recurrent

collaterals to implement strong feedback inhibition, as discussed in section 2.4. When

rats explore a novel environment, CA1 interneuron activity decreases (Nitz and Mc-

Naughton, 2004). It would be surprising if interneuron activity was crucial in the for-

mation of spatial memories during this period. Marr’s model applied to CA1 requires
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some method of activity regulation, either to maintain an activity level or to minimise

the error. It is envisioned that CA3 performs recall, such that CA1 will receive full

or nearly full-size patterns with only a small amount of noise. Under these circum-

stances, the requirements to maintain activity levels do not require massive feedback

inhibition. In any case, the capacity of a competitive network, using lateral inhibition

or a plasticity rule, has an upper bound of the capacity of a corresponding associative

memory network.

In summary, were there to be a way for the network to implement the Marr al-

gorithm, it would be computationally beneficial. Marr self-organised networks have

a higher capacity than networks storing random patterns, and the latter have a higher

capacity than competitive networks, all other parameters being equal. Finally, at the

cost of an elaborate prior pattern selection algorithm, Marr self-organising networks

require a relatively simple and local implementation. Whilst binary networks exag-

gerate the importance of thresholding by simplifying the activity and synaptic weight

distributions, the issues remain in partially connected associative memory networks

with real valued activities and weights.

8.7.1 CA1 activity in novel environments

What happens during pattern formation in CA1? As discussed in section 4.2, neu-

rophysiological correlates of memories of single events are notoriously difficult to

identify, both conceptually and experimentally. Place fields are the most observable

patterns of hippocampal activity in the rat, and thought to be the substance of at least

spatial memory (discussed in Bures et al., 1997; Nakazawa et al., 2004). By observing

their formation, it is possible to examine one aspect of hippocampal memory forma-

tion.

During the exploration of a novel environment, CA1 pyramidal cell activity levels

are elevated (Wilson and McNaughton, 1993), and the activity levels of CA1 interneu-

rons targeting perisomatic and dendritic regions of pyramidal cells are decreased (Nitz

and McNaughton, 2004), as discussed in detail in section 4.3. What is the function of

the elevated CA1 pyramidal cell activity? Undoubtedly, it indicates an increased rate

of plastic change in the Schaffer collaterals (e.g. Li et al., 2003). This may associate



146 Chapter 8. Self-organising activity in Marr’s model and the hippocampus

CA3 activity with CA1 activity imposed by the temporoammonic pathway.

The altered physiology during place field formation could be indicative of an out-

put neuron selection process, independent of temporoammonic input. Attention, or

behavioural relevance, is required to form place fields with long-term stability (Ken-

tros et al., 2004), and dopamine is required to consolidate LTP (Frey and Morris, 1998).

During the exploration of a novel environment, there is a dopamine-dependent facili-

tation of LTP induction (Li et al., 2003) and dopamine blocks temporoammonic trans-

mission in the slice (Otmakhova and Lisman, 2000).

8.7.2 Brindley synapses reconsidered

The Schaffer collaterals synapses invariably contain NMDARs. In contrast, the distri-

bution of the number of AMPARs per synapse is much broader, including numerous

‘silent synapses’, synapses with no AMPA component (Isaac et al., 1995). In one study

focussing on the stratum radiatum, fewer than 1% of glutamatergic synapses did not

contain NMDARs, but 12% did not contain AMPARs (Racca et al., 2000). In the same

study, the skewness of the distribution of the number of NMDARs per synapse was

half that for AMPARs.

A CA1 pyramidal cell depolarised through lower inhibition, including dendritic

inhibition, can therefore receive two signals in response to brief Schaffer collateral

stimulation. The first is a fast AMPA response, a function of the number of potentiated

synapses. The second is a slower NMDA response, a function of the input activity.

This is a speculative mechanism by which the selection of output neurons, chosen by

virtue of their high dendritic sum input, will be biased towards those with a high input

activity.

Consistent with this idea is data from the expression of the c-fos gene, which im-

ages neuronal activity mainly through calcium influx, during the first 30 minutes of

the exploration of a novel environment (Hess et al., 1995). CA1 activity increased by

a factor of between 3 and 4, whilst CA3 activity increased by a factor of 2. Calcium

levels do not map simply to activity levels, but this level of c-fos activity is roughly

8 times greater than the 43% excitatory activity increase observed by Nitz and Mc-

Naughton (2004). This relatively large influx of calcium could equally be explained
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by the increased back propagation of action potentials, a large source of calcium influx

in CA1 pyramidal cells (Spruston et al., 1995).

The feasibility of the idea rests on the timescale of the dendritic integration. NMDAR-

mediated EPSCs have a rise time of � 10 ms, an order of magnitude longer than the

AMPA EPSCs. The time course of the change in output response to a change in the in-

put activity distribution is governed by the synaptic time constant (Treves, 1993). Sim-

ulations or analysis are required to demonstrate whether a slower NMDAR-mediated

signalling of the input activity would in fact bias the choice of output units to those

with a higher input activity in simple models. The answer is not straightforward, since,

for instance NMDARs have a considerably higher affinity to glutamate than AMPARs

(Hille, 2001).

8.8 Summary and discussion

Marr (1971) proposed an algorithm for an associative memory network to self-organise

its output patterns during storage. The chosen output neurons have the highest connec-

tivity to the active input neurons, for every pattern. The resulting network is trivially

able to relay an infinite number of stored patterns, with a very low error (figure 8.1).

This boundary condition means that the performance is better than a network that has

stored randomly chosen patterns at high capacities, whether the cue is noisy (figure 8.2)

or incomplete (figure 8.3), in a general sense.

The superior performance is supported analytically using signal-to-noise analy-

sis, in the case where dendritic sum thresholding is used. Using very accurate, but

ultimately approximate expressions for the dendritic sums (Buckingham, 1991, see

appendices), it is demonstrated that the signal-to-noise ratio for the self-organised net-

work has to be greater than the random network for low connectivities (Z � 50%) and

high loads (probability of a synapse being modified, ρ � 0 � 5) in the random network.

Further, this is true even when the connectivity in the self-organising network is less

than the random network connectivity, such that only the neurons chosen to be active

in an output pattern have a connectivity (for that pattern) equal to the connectivity in

the random network. This result is verified in simulations, and an exploration of the
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parameter dependence indicates that it is true over a broad range of connectivities and

loads.

Input activity-dependent thresholding improves the performance of a network stor-

ing random patterns: it removes the input activity contributions to the variances of

the signal and noise components of the dendritic sum. When the patterns are self-

organised, the signal variance is already extremely low, as the active units are taken

from the upper tail of the connectivity distribution. In addition, the higher effective

connectivity of the chosen output neurons, and the correspondingly lower average

connectivity of the other neurons, ensures that the mean signal and the mean noise

components of the dendritic sum are further separated than in the random network.

Using input activity-thresholding in the self-organised network reduces the noise vari-

ance, but also eliminates this increased separation of the means. Within the parameter

ranges explored in simulations, the self-organised network using just dendritic sum

thresholding outperformed the random network using input activity thresholding, as

judged by the signal-to-noise ratio.

These results specify a network which is computationally well matched to the

Schaffer collaterals, within associative memory models of the hippocampus. Given

that the CA3 is uniquely adapted to associative memory recall and pattern completion,

the Schaffer collaterals act as a relay of CA3 activity, with the capacity to perform

small amounts of noise reduction or pattern completion. The self-organised network is

ideally suited to act as a relay, and provides better performance than a random network

in noise reduction and partial pattern completion, especially at high loads and observed

connectivities. This superior performance is achieved without recourse to thresholding

schemes in CA1 that require the neuron to divide its dendritic sum by the number of

active synapses, potentiated or not, either intracellularly or via a dedicated interneuron.

Are patterns of CA1 activity formed in this way? The closest analogue would

appear to be spatial memory formation, as manifest by place field formation. If the

elevated CA1 activity levels observed on entering a novel environment are sufficient to

unblock NMDARs, then the CA1 cells with the greatest number of synapses connected

to the active CA3 cells are more likely to be active.

It is too early to say what physiological processes are required for memories to be
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stored. A leading theory is that attended events are automatically stored, whereas unat-

tended events are not (Morris and Frey, 1997). For instance, place fields formed by rats

attending to the environment are stable over days, whereas place fields formed in unat-

tended environments are not stable for more than 6 hours (Kentros et al., 2004). When

behaviourally relevant elements of the environment are discovered to have moved, such

as the hidden escape platform in a water maze, the physiological correlates are remark-

ably similar to those during the exploration of a novel environment: elevated pyrami-

dal cell activity, and reduced inhibitory cell activity (Fyhn et al., 2002). This activity

is only observed, however, in a proportion of cells, not across the population.

A soft application of Marr’s pattern self-organisation algorithm would involve the

short term potentiation of the Schaffer collateral synapses to some fraction of the CA1

cells best connected to the active CA3 cells, on entering the novel environment. Again,

this could be achieved through NMDAR activation. Of these cells, temporoammonic

input could choose which will be active. As illustrated in figure 8.8, the computational

advantages of self-organised patterns is not highly dependent on the accuracy of the

pattern formation process.





Chapter 9

Place field formation in the

temporoammonic pathway

9.1 Introduction

The place cell activity recorded without input from CA3 by Brun et al. (2002) provides

an exciting opportunity to examine the computational function of the temporoammonic

pathway. Numerous electrophysiological studies have established the inhibitory nature

of the pathway in the rat (Colbert and Levy, 1992; Empson and Heinemann, 1995;

Soltesz, 1995; Levy et al., 1995; Buzsaki et al., 1995; Leung, 1995, section 3.2). In

the absence of any significant excitatory somatic response, how can temporoammonic

input result in any kind of activity? I shall show that in an integrate-and-fire neu-

ron model of the pathway, when the entorhino-CA1 pyramidal cell EPSPs are assigned

long time constants, consistent with NMDARs, the response to synchronous slice stim-

ulation is inhibitory. The model pyramidal cells are still functionally active because

they are sensitive to increases in rate without increases in temporal correlation.

Most models of place field formation have used excitatory recurrent collaterals or

n-winners-take-all dynamics to convert entorhinal input into hippocampal place fields

(section 6). The low number of recurrent collaterals mean that these are unlikely mech-

anisms for generating narrow place fields in CA1 (section 2.4). Feedback inhibition

can be expected to refine the place field activity, but is not a striking feature of CA1. All

151
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previous models have used entorhinal inputs with broadly tuned (directional) Gaussian

spatial firing dependencies. I have used the recent recordings of Frank et al. (2000,

2001) to provide more highly constrained inputs to an integrate-and-fire model of the

entorhino-CA1 network.

An exploration of the parameters confirms that place field formation in the model is

successful with the more accurately modelled, multi-field entorhinal input. A combina-

tion of Hebbian plasticity and activity regulation is used to form the place fields. These

mechanisms generate place fields through a summation and threshold mechanism, with

place specificity reinforced and tuned by the competitive Hebbian learning. This is a

similar mechanism to the plastic feedforward mechanism used by Sharp (1991), except

that the competition is intracellular rather than via lateral inhibition.

Hartley et al. (2000) showed that CA1 place fields can be computed from a linear

mixture of 2-4 directional broadly tuned spatial Gaussians (section 6). This indicates

that the computation of place fields is not hard. In the model presented here, place

field formation is robust to extreme parameter choices, confirming the simplicity of

the computation, despite the more detailed modelling of the entorhinal input. In par-

ticular, the distribution of synaptic weight indicates that hippocampal place field ac-

tivity does not require strong synaptic competition. When a place cell is active in two

environments, the relative contribution of synapses active in only one environment is

increased if the synaptic weights are capped. Preliminary results suggest that this re-

sults in more orthogonal representations of different environments, and it is discussed

whether this approach can account for the experience-dependent orthogonalisation of

similar environments reported by Lever et al. (2002) (section 4.3.3).

9.2 Model

9.2.1 Network organisation

The model consists of three populations of cells: entorhinal layer III projection neu-

rons, CA1 pyramidal cells, and CA1 feedforward inhibitory interneurons (figure 9.1).

The interneurons are an amalgam of interneurons that target the perisomatic regions of

the pyramidal cells, such as basket and chandelier cells, and feedforward interneurons
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CA1
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Figure 9.1: Diagram of the network organisation. Entorhinal layer III cells project to CA1 cells with

partial connectivity and no spatial organisation. The CA1 interneurons have lateral connections and

project to the CA1 pyramidal cells. Note the lack of pyramidal cell recurrent collaterals.

of the stratum lacunosum-moleculare that project to the stratum radiatum.

The entorhinal neurons provide the excitatory input to the CA1 pyramidal cells and

inhibitory interneurons. The interneurons provide inhibitory input to one another and

to the pyramidal cells. There are no recurrent connections between the pyramidal cells

or from the pyramidal cells to the inhibitory interneurons.

Connectivity levels are initially set to be 30%, so every neuron receives an input

from 30% of the input population. I assume that there is no spatial organisation in the

temporoammonic projection. There are 900 entorhinal neurons, 100 pyramidal cells,

and 100 interneurons. These numbers are chosen for convenience in the simulations,
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Parameter Value Description

NEc 900 No. of entorhinal cells

NP 100 No. of CA1 pyramidal cells

NI 100 No. of CA1 interneurons

Z 0.30 Connectivity

ALTP 2 � 0 � 10
�

2 Magnitude of LTP change

ALTD 8 � 2 � 10
�

3 Magnitude of LTD change

τLTP 14 ms LTP time constant

τLTD 34 ms LTD time constant

AREG 1.00 Synaptic renormalisation factor

BREG 0.04 ∆AREG

Table 9.1: Network parameters. these are the values used in simulations unless otherwise stated.

rather than to reflect anatomical ratios. The network parameters are given in table 9.1.

Mizumori et al. (1989) reported CA1 place fields without CA3 activity, after the

lateral septum was temporarily inactivated using tetracaine (section 4.3.6). In addition

to abolishing CA3 activity, this also abolished the θ-activity. For this reason, and

for simplicity, the model does not include oscillatory inhibitory activity, despite the

probable but as yet unidentified function of the θ-rhythm.

9.2.2 Neurons

The entorhinal neurons are modelled as independent random processes, described in

detail below in section 9.2.4. The CA1 neurons are leaky integrate-and-fire neurons,

first introduced by Lapicque (1907). Leaky integrate-and-fire neurons were chosen

as a minimal level of description that allows spike time-dependent plasticity to be

implemented. The membrane potential of cell i, Vi � t � , changes as

τ
dVi � t �

dt � � Vi � t � � ∑
j

RIi j � t � (9.1)

where τ is the membrane time constant of the cell, R is the membrane resistance,

and Ii j � t � is the input current to the cell due to a spike in the presynaptic cell j. When
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Parameter Value Description

τP 25 ms Pyramidal cell time constant

τI 10 ms Interneuron membrane time constant

ΘP -60 mV Pyramidal cell threshold

ΘI -49 mV Interneuron threshold

V r
P -84 mV Pyramidal cell resting potential

V r
I -75 mV Interneuron resting potential

τAMPA 2 ms AMPA α time constant

τGABA 5 ms GABA α time constant

τNMDA 20 ms NMDA α time constant

JIEc 1.15 mVms Area under interneuron EPSP

σEc 6 cm Entorhinal place field variance

τECre f 100 ms Entorhinal relative refractory period

γEc 3 � 0 � 10
�

3 Base probability of an entorhinal spike

Table 9.2: Parameters of neuron activity. See text for sources. JPEc is a free parameter.

the membrane potential exceeds the threshold, Θ, an action potential occurs, and the

membrane potential is reset to V r, the resting membrane potential.

The PSPs, RIi j � t � , are independent of the the membrane potential. This indepen-

dence ignores the voltage dependence of the PSP driving force and the voltage depen-

dence of the NMDAR magnesium block (Nowak et al., 1984). The time courses of

the PSPs were found to be the relevant PSP parameters for the model in explaining the

inhibitory response of the network to synchronous stimulation. The voltage dependen-

cies were therefore ignored to keep the number of model parameters to a minimum.

Values for the pyramidal cell membrane potential and threshold were taken from

the patch clamp study of Fricker et al. (1999): V r
P � � 84mV and ΘP � � 60mV . These

values are unusually low, but since the PSPs are voltage-independent, the relevant

quantity is ΘP � V r
P � 24 mV, which is consistent with other reports (e.g. Spruston

and Johnston, 1992). The CA1 pyramidal cell membrane time constant, τP � 25 ms,

following the patch clamp study of Spruston and Johnston (1992). The interneuron

membrane time constant is taken to be τI � 10 ms (Buhl et al., 1995), and the in-
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terneuron resting potential and threshold are also taken from Fricker et al. (1999):

V r
I � � 75mV and ΘI � � 49mV .

The synaptic input potentials are modelled as voltage independent, normalised α-

functions,

RIi j � t � � Ji jWi j

�
t � t j

τ2
i j � e

�
t
�

t j � � τi j � (9.2)

where Wi j is the value of the weight, t j is the time of the last presynaptic spike,

and τi j is the time constant of the synapse. Because the α-function is normalised, Ji j is

the integral of the area of the PSP curve relative to the rest potential, for Wi j � 1. The

time constants of the α-functions are approximate fits to data taken from Hille (2001):

τAMPA = 2 ms, τGABA = 5 ms, and τNMDA = 20 ms. The weights are initially normally

distributed, N � 0 � 5 � 0 � 01 � . Unless otherwise stated, there are no transmission delays.

The Ji j are chosen to set the mean population activity rates. To reduce the parameter

set, JII, the unit area of the interneuron-interneuron IPSP, and JPI, the unit area of the

interneuron-pyramidal cell IPSP, are set equal to the unit area of the EPSP from the

entorhinal cells to the interneurons JII � JPI � JIEc. The interneuron population rate

is therefore set by adjusting JIEc. Then the pyramidal cell rate is set by adjusting the

maximum amplitude of the EPSP from the entorhinal neurons, JPEc.

The interneuron rate was set to 20
�

2 Hz, by adjusting JIEc. Using the initial

weight distribution, JPEc was set so that the mean CA1 pyramidal cell population rate

was 1 � 0
�

0 � 1 Hz. The experimental values of the mean and standard deviation of

the population rate are 1 � 1
�

1 � 1 Hz for the pyramidal cells, and 31 � 5
�

11 � 7 Hz for

interneurons with cell bodies in the stratum pyramidale (Frank et al., 2001). The pa-

rameters defining the integrate-and-fire neurons are given in table 9.2.

9.2.3 Plasticity and activity regulation

The default plasticity rule used in the model is a symmetric spike time-dependent

plasticity (STDP) rule. The rule is in the spirit of Hebb’s postulate (Hebb, 1949), as

synapses linking coincidently active excitatory neurons are potentiated (figure 9.2a):
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Figure 9.2: Spike time dependence of the plasticity rules implemented in the network. ∆Wi j, the weight

change in the synapse from neuron j to neuron i, is plotted against the ti � t j, the spike time difference.

∆Wi j � ALTPe
���

ti
�

t j
� � � τLT P � (9.3)

where ALTP is the maximum magnitude of the weight change, ti is the time of

the last post-synaptic spike, t j is the time of the last presynaptic spike, and τLTP is

the time constant of potentiation. This rule is adapted from the asymmetric STDP

changes observed in hippocampal neurons in culture (Bi and Poo, 1998) and at Schaffer

collateral synapses (Nishiyama et al., 2000) (figure 9.2b):

∆Wi j �
�

�
ALTPe

�
ti
�

t j � � τLT P if t j � ti

� ALTDe
�
t j

�
ti � � τLT D if t j � ti

(9.4)

where ALTD is the maximum weight change of the depression, and τLTD is the

time constant of depression. Later in this chapter, I explore the consequences of using
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the asymmetric rule. By the implementation used, only the first postsynaptic spike

after a presynaptic spike results in LTP, and only the first presynaptic spike after a

postsynaptic spike can result in LTP in the symmetric rule, and LTD in the asymmetric

rule.

In order to prevent unbounded weight growth using the symmetric STDP rule, the

synaptic weights are adjusted by an activity regulation mechanism. After every lap

of the track, or equivalently every 1000 ms, the synaptic weight distribution of every

pyramidal cell i is renormalised and multiplied by a factor AREGi

Wi j �� AREGiWi j
N j

∑
j

Wi j
(9.5)

where N j is the number of presynaptic cells that synapse onto neuron i. The activity

of neuron i is recorded for one complete lap of the track, taking 10 seconds to complete,

and if the average rate in this period, Ri � 10s � , exceeds twice the target rate of 1.0 Hz,

then AREGi is decreased by BREG

∆AREGi �
�

� BREG if Ri � 10s � � 2 � 0 Hz

0 otherwise �

(9.6)

If the activity is expressed as a continuous function, its decay time constant must be

at least of the order of the time taken to complete a lap. Otherwise, activity outside the

place field is encouraged. The approximation of a discrete rate function updated every

10 seconds was made simply to reduce simulation time. The parameters specifying the

learning rule and activity regulation are included in table 9.1.

9.2.4 Behavioural task and the entorhinal input

In the task, the model rat runs along a 1.0 m annular track (figure 9.3). The linear track

is chosen because it is consistent with the recordings of Frank et al. (2000, 2001), so the

entorhinal input can be constrained as closely as possible. In addition, it considerably

reduces the simulation time required to sample all points of space sufficiently to form

reliable spatial activity distributions. Unfortunately, it means the experiment diverges

from that of Brun et al. (2002), who used a two dimensional recording arena.
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0.1 m/s

1.0 m

Figure 9.3: Illustration of the rat running round the track in simulations. The track is 1.0 m long, and

the rat has a constant velocity of 0.1 m/s. In every simulation trial, the rat performs ten laps. The location

of the rat is described as a point.

The rat’s velocity modulates place firing (McNaughton et al., 1983). Brun et al.

(2002) do not provide data on the velocity modulation of place field activity, so in the

model the rat runs at a constant speed of 0.1 ms
�

1, and the rat’s position is updated

every time step. The place fields in Brun et al. (2002) have an unchanged directional

bias, compared to control animals. I consider this directionality to be secondary to the

formation of place fields, and the rat runs in one direction.

The most recent and extensive studies of the spatial properties of superficial en-

torhinal cells are described in Frank et al. (2000, 2001). These papers analyse data

from the same sets of recordings in which the rats were trained to run between food-

wells at the ends of U or W-shaped tracks. The histology indicates that the superficial

recordings are most likely to be of layer III neurons.

The mean proportion of the path covered was � 40%, as read from figure 8b of

Frank et al. (2001). The place field is defined as the parts of the track in which the

cells have � 25% of the maximum firing rate Frank et al. (2000). The paths are di-

rection dependent, so for the U-shaped track there are the two 3 m long paths, from
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EC place field

EC cells

Figure 9.4: An example of a random entorhinal cell’s place field location on the track.

the foodwell at one end to the foodwell at the other end, and back again. Along all

paths, the mean field length is � 70 cm, as read from figure 3a of Frank et al. (2000)

(calculated from the same data as Frank et al. (2001)). From this I have inferred that

every superficial entorhinal cell has, on average, two place fields covering 40% of the

track in one direction (figures 9.4 and 9.5).

Individual superficial entorhinal cells appear to fire independently. In 13 putative

excitatory cell pairs, there was no significant short time (1-3 ms) cross-correlation

(Frank et al., 2001). A lack of a peak in the cross-correlogram is consistent with inde-

pendent firing, but is not sufficient to prove it, since cross-correlograms ignore higher

order correlations than spike pairs and assume the neurons are in stationary states. For

36 superficial cells, the mean positional information was 0.46
�

0.26 bits per spike

(Frank et al., 2000, figure 3b), implying that the cells fire fairly regularly, regardless of

the rat’s location. This is also reflected by the interspike interval distribution, which

peaks between 30 ms and 100 ms (Frank et al., 2001). In contrast, the interspike inter-

val distribution of CA1 pyramidal neurons has peaks
�

10 ms and at � 125 ms.



9.2. Model 161

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

35

Position on the track (m)

R
at

e 
(H

z)

(a)   Activity of an entorhinal cell
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Figure 9.5: (a) Mean rate of a cell with position along the track, over 10 laps (100 s). Error bars denote

the standard deviation. (b) Probability distribution which generated the activity. Dotted line denotes the

threshold for place field inclusion. The effects of the refractory period (equation 9.7) have not been

plotted.

In the network, I assume that the spiking activity of every entorhinal input neuron

in the network is an independent random process. Each input neuron is assigned two

randomly located place fields, such that the track is evenly covered (figure 9.4). There

is no discernible correlation between the anatomical location of a hippocampal place

cell and the location of the place centre in the track (Redish et al., 2001). The same is

assumed to be true in the entorhinal cortex. The initial firing probability distribution

is assumed to be the sum of two Gaussians, both with a standard deviation of 6.0 cm.

The length of the distribution greater than 25% of the maximum covers 20 cm of the

track (figure 9.5).
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Figure 9.6: Entorhinal input firing statistics, drawn from 100 cells over 10 laps (100 s). (a) Total

field lengths are all � 40%. µ � σ � 55 � 0 � 2 � 8% (b) Position information: all values � 0.46 bits/spike.

µ � σ � 0 � 40 � 0 � 02 bits/spike (c) Interspike interval distribution. Median interval � 50 ms and µ � σ �

99 � 8 � 140 � 0 ms, (log10(30) = 1.48, log10(50) = 1.70). (d) Distribution of rates: µ � σ � 9 � 98 � 0 � 19 Hz

Every entorhinal neuron has a relative refractory period, τECre f = 100 ms to cap-

ture the interspike interval statistics. During the period, the probability of a spike is

multiplied by

� t � tEC �
τECre f

if � t � tEC � � τECre f (9.7)

where tEC is the time of the neurons last spike. The constant γEc is added to the

spatial probability distribution so that the average spatial information is less than 0.46

bits per spike, (figure 9.5b). The average rate observed by Frank et al. (2001) is 2.0
�
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1.2 Hz. The activity rate of the entorhinal cells in the model is set to 10
�

1 Hz so that

every pyramidal cell receives enough inputs in my network. The parameters used to

define the entorhinal input are included in table 9.2.

For comparison with the data of Frank et al. (2000, 2001), sample distributions

of the total field length, position information, interspike interval and activity rate of

the entorhinal activity are given in figure 9.6. The parameters used result in entorhi-

nal cells with larger place fields that convey less position information than observed

experimentally (figure 9.6a,b), whilst the interspike interval distribution is consistent

with observed values (figure 9.6c).

9.2.5 Data analysis

As far as possible, the analysis maintains consistency with Frank et al. (2001, 2000),

since these papers directly compare the spatial firing properties of CA1 and superficial

entorhinal neurons. The 1.0 m track is divided into 70 spatial bins of 1.43 cm, consis-

tent with the 4.2 cm bins over the 3 m track in Frank et al. (2000) except that I do not

smooth the rate distribution.

Following Frank et al. (2000), place field size is defined as the width of the activity

distribution greater than 25% of the maximum. The location of the place field centre

is the spatial bin with the highest mean rate. In the event that a cell has multiple place

fields, two fields are considered one large field if the rate does not fall below 12.5% of

the maximum rate between them.

The position information, I � x � , is calculated using the leading term of the expansion

of the mutual information (Skaggs et al., 1993)

I � x � � ∑
x

λ � x �
λ

log2 � λ � x �λ � (9.8)

where λ is the average firing rate of the cell, and λ � x � is the firing rate in the spatial

bin at the position on the track, x.

The CA1 pyramidal firing characteristics must also be compared with the data of

Brun et al. (2002). The comparison is not straightforward, because Brun et al. (2002)

use a two dimensional recording arena. They define the place field size as the propor-
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Figure 9.7: Interneuron firing statistics for 100 interneurons over 10 laps (100 s). (a) Total field length:

µ � σ � 95 � 7 � 6 � 1 % (b) Position information: µ � σ � 0 � 83 � 0 � 04 bits/spike (c) Interspike interval:

µ � σ � 49 � 4 � 36 � 9 ms (d) Activity rate: µ � σ � 20 � 24 � 0 � 46 Hz

tion of 5 � 5 cm pixels with � 20% of the maximum firing rate.

9.2.6 Interneuron statistics

The entorhinal cells are connected to the interneurons in the model with AMPA synapses.

The interneuron-interneuron coupling strength, JII, is viewed as a parameter that allows

the variance in the spatial distribution of inhibitory activity to be adjusted. With its ini-

tial, arbitrary value set to the entorhinal-interneuron coupling strength, JII � JIEc, then

JIEc is set to 1.15 mVms such that the interneuron rate is 20
�

2 Hz (figure 9.7d). With

these coupling strengths, the interneuron activity has a very low spatial specificity. The
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Figure 9.8: Examples of the spatial distribution of activity for two interneurons. (a) Cell with a high

position information rate: field size = 81.4%, position information = 0.17 bits/spike (b) Cell with a low

position information rate: field size = 100%, position information = 0.05 bits/spike

mean field size is 96% of the track (figure 9.7a), and the mean amount of spatial infor-

mation conveyed is 0.8 bits per spike (figure 9.7b). Examples from both ends of the

position information distribution are provided in figure 9.8.

One shortcoming of the spatial information measure of Skaggs et al. (1993) is that

it is not suitable for measuring the contribution of interneurons to place cell activity.

Gaps in inhibitory activity potentially convey as much spatial information as bumps of

excitatory activity (Bezzi et al., 2002). The contribution of the inhibitory input to place

field formation is investigated in section 9.4.



166 Chapter 9. Place field formation in the temporoammonic pathway

90 100 110 120 130 140 150 160
−110

−100

−90

−80

−70

−60
(a)

Time / ms

V
(t

) 
/ m

V

90 100 110 120 130 140 150 160
−110

−100

−90

−80

−70

−60
(b)

Time / ms

V
(t

) 
/ m

V

100 150 200 250 300 350 400 450 500 550 600

−80

−75

−70

−65

−60
(c)

Time / ms

V
(t

) 
/ m

V

AMPA
AMPA + place field formation
AMPA + 14ms delay

AMPA + NMDA
AMPA + NMDA + place field formation

AMPA
AMPA + NMDA

Figure 9.9: Membrane potential changes of CA1 pyramidal cells after synchronous (a,b) and asyn-

chronous (c) stimulation of entorhinal cells. (a) Synchronous stimulation with AMPAR-mediated EPSPs.

The effects of place field learning and a 14 ms delay are also shown. (b) Synchronous stimulation with

AMPAR and NMDAR-mediated EPSPs. The effects of place field learning is also shown. (c) Asyn-

chronous entorhinal activity as the model rat travels round the track.
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Figure 9.10: The synaptic weight distribution of every cell remains nearly symmetric after place field

formation. If the distributions are symmetric, the median synaptic weight = mean symmetric weight.

Histograms of the ratio of the mean:median synaptic weight indicate that for most neurons the median is

just less than the mean, for both (a) AMPAR and (b) AMPA and NMDAR-mediated place field formation.

9.3 Results: response to slice stimulation

In order to simulate slice stimulation, a random set of 200 entorhinal cells were acti-

vated every 100 ms (figure 9.9). This number of active entorhinal cells results in every

interneuron spiking only once with a high probability. In these experiments, JPEc, the

area under the EPSP for synapses from entorhinal cells onto the pyramidal cells, is

set beforehand to establish a pyramidal population activity rate of 1.0
�

0.1 Hz for the

default 10 Hz entorhinal activity.

When the entorhinal-pyramidal EPSPs are mediated by AMPARs in the model, a
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clear excitatory response is observed, followed by a longer hyperpolarizing response

(figure 9.9a). This requires JPEc = 0.51 mVms to set the rate to 1 � 0
�

0 � 1 Hz over

the first second. The excitatory response persists even when an unrealistically large

transmission delay of 14 ms is included, such that the EPSPs peak at the trough of the

inhibitory response, requiring JPEc = 2.0 mVms (figure 9.9a).

The response is biased in that the synaptic weights have initial random and similar

values in the model. After 10 laps of the track, the synaptic weights have functional

significance as place fields have successfully formed (section 9.4). Even so, the synap-

tic distribution is nearly symmetric, indicating that a large proportion of synapses are

responsible for the cells activity (figure 9.10a). The slice stimulus response is indeed

lower, but it still has a large depolarising phase (figure 9.9a). The low position infor-

mation conveyed by every superficial EC neuron means that it is highly unlikely that a

small subset of input weights will govern a cell’s activity. Therefore it is unlikely that

the lack of an excitatory response is due to the random selection of entorhinal activity

rather than a pattern of natural stimuli, as suggested by Buzsaki et al. (1995).

As discussed in section 3.2, it has often been assumed that temporoammonic synapses

lack a significant NMDA component (e.g. Soltesz, 1995). Otmakhova et al. (2002) re-

ported that the area under NMDAR-mediated EPSPs at temporoammonic synapses

is roughly three times that of AMPAR-mediated EPSPs (figure 3.3). Let us define

JPEcNMDA the area under the NMDAR-mediated PSP, and JPEcAMPA, the area under the

AMPAR-mediated EPSP, so that JPEcNMDA � 3 � JPEcAMPA.

When this NMDAR-mediated component is included in the EPSP, and an uniform

delay of 2 ms is inserted in the entorhinal-pyramidal transmission, setting JPEc = 0.14

mVms maintains the pyramidal cell population rate at 1 � 0
�

0 � 1 Hz. Thus the total

area under the unit PSPs is only slightly larger at 0.56 mVms. The PSP response now

consists of a small depolarising phase, followed by a large hyperpolarisation. A small,

extended depolarising tail of the NMDA EPSP is just discernible (figure 9.9b). Once

the place fields have been learnt, the synaptic distribution is also nearly symmetric (fig-

ure 9.10b). Again, random stimulation now results in a more hyperpolarised response,

and the NMDA depolarising tail is no longer visible.

The effect of including the NMDAR-mediated component in the EPSP on the mem-
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brane potential of a pyramidal cell as the virtual rat in the model travels the circular

track is shown in figure 9.9c. The main effect is to temporally smooth changes in

the membrane potential, a result of the extended duration of the EPSPs. However,

the number of synchronous inputs to the cell is low, because the entorhinal cells are

independently active. As a result, the two membrane potential traces with the NMDR-

mediated component is not significantly different to the trace without the NMDAR-

mediated component.

With AMPA and NMDARs mediating EPSPs in the model, the network is excitable

at physiologically reported levels, and performs the desired computation, yet responds

to massive synchronous stimulation with an almost entirely inhibitory membrane po-

tential change. The large, fast AMPAR-mediated responses are suitable for detecting

temporal correlations in the input spike trains. The entorhinal cells in the model con-

tain no temporal structure by design. The important input statistic to detect is the

spatial correlation of the entorhinal activity. The lack of an excitatory response to a

large temporal correlation in the excitatory input is therefore perfectly suited to the

function. Exciting the spatially correct synapses is a factor in explaining the lack of an

excitatory response to afferent electrode stimulation, but in this model, more important

is the integration of spatially correlated activity.

The remaining difficulty is to explain how the NMDARs are activated. This issue

is discussed in section 9.6. In all subsequent simulations, unless otherwise stated,

the entorhinal-pyramidal PSPs are mediated by AMPA and NMDA components, with

JPEcNMDA � 3 � JPEcAMPA, and there is an entorhinal-pyramidal transmission delay of

2ms, as above. Meanwhile AMPARs continue to mediate the entorhinal input to the

interneurons.

9.4 Results: place field formation

Using AMPA and NMDAR-mediated EPSPs in the pyramidal cells, a distribution of

place fields forms within ten laps of the track, or 100 s. Randomly chosen examples

of place field activities over the last 40 s are shown in figure 9.11. Typically, the

fields are unimodal, and less often, bimodal or sparsely firing. The mean and standard
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Figure 9.11: Examples of pyramidal cell firing activity over the last four laps (4 s) of a ten lap (10 s)

trial, with AMPA and NMDAR-mediated entorhino-pyramidal EPSPs. Activity is averaged in bins 1.43 cm

wide, and not smoothed. Mean values are plotted, with error bars expressing the standard deviation.

Statistics of the whole population are given in figure 9.12.
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Figure 9.12: Pyramidal cell firing statistics, with AMPA and NMDAR-mediated entorhinal-pyramidal

EPSPs, after 10 laps (10 s) of the track. The data is taken from the last 4 laps (4 s). Mean � standard

deviation values: (a) Field length, 11 � 99 � 3 � 84%; (b) Position information, 2 � 95 � 0 � 56 bits per spike; (c)

Interspike interval, 457 � 1700 ms, mode = 40 ms (1.6 log10 units); (d) Rate, 1 � 75 � 0 � 94 Hz.

deviation place field length are 11 � 99
�

3 � 84% of the length of the track (figure 9.12).

This is consistent with the value of � 10% in figure 8c of Frank et al. (2001). Brun

et al. (2002) measure the place field sizes as 20% of the peak rate: the mode and mean

place field sizes of their CA3 lesioned rats are � 15% and 28% of the two-dimensional

recording arena. It is not obvious what the expected place field size would be in a

linear track from this result, but using this measure, the mean place field size in the

model is 12 � 84
�

4 � 30%.

The small field size and high average rate within the field are reflected in the high

spatial information distribution (figure 9.12b). The mean and standard deviation values
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Figure 9.13: The position information as a function of the rate, over the last 4 laps (40 s) of 10 laps

around the track, when either AMPA and NMDARs, or AMPARs alone mediate the entorhino-pyramidal

EPSPs. Correlation coefficients: AMPA and NMDA, -0.67, AMPA, -0.70.

are 2 � 95
�

0 � 56 bits per spike. The distribution is somewhat higher and narrower than

the 2 � 34
�

1 � 25 bits per spike reported by Frank et al. (2000). Because the place field

sizes are slightly larger, this implies that the firing rate within the place field is greater

in proportion to the average rate in the model than in Frank et al. (2000)’s data.

Brun et al. (2002) quantify the spatial information of CA1 pyramidal cell activity,

using the sparseness measure introduced by (Treves and Rolls, 1991). Over K spatial

bins, the sparseness of a cell is defined as

� ∑k rk � K � 2
∑k r2

k � K
(9.9)

where rk is the rate of the cell in the spatial bin k, and r2
k is the square of the rate
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Figure 9.14: Locations of the peak firing rate calculated from the last 4 laps, as a function of position

in the array. The correlation coefficient of position on the track and in the array is -0.09.

in that bin.

Brun et al. (2002) measured the median sparseness of CA1 pyramidal cells as 0.46

for CA3 lesioned rats, and 0.30 for the control rats. The mean and standard deviation

sparseness for the CA1 pyramidal cells in the model is 0 � 10
�

0 � 04.

Both of the measures of spatial information are affected by the length of the time

bin. The interspike interval distribution is highly skewed (figure 9.12c). The mode is

40 ms, or 1.6 in log10 units, while the mean and standard deviation are 457
�

1700

ms. There is a second peak at between 4000-4500ms, (3.60-3.65 in log10 units). This

corresponds to events in the secondary peaks. If the locations of the secondary peaks

are randomly located, the interspike interval distribution will be widely distributed with

a maximum, averaging across all cells, on the opposite side of the ring to the primary

peak. The mean place field size is 10 cm, so this is a distance of 45 cm away, or 4500
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ms at 0.1 m/s, and 4000ms when the place field is 20%. The third and final peak occurs

at 9000 ms (3.95 in log10 units), and corresponds to events at the end of one period of

place field activity and the beginning of the next. The interspike interval distribution

of CA1 cells in vivo is highly influenced by burst activity and θ-modulation, neither of

which have been included in this model (Frank et al., 2001).

A spatial bin of 1.43 cm corresponds to a temporal bin of 143 ms during every pass

through the bin along the track. Less than 14% of the interspike intervals are shorter

than 143 ms, so the interval used is fairly large compared to typical interspike intervals.

When the bin size is increased to 2.86 cm, the position information is 2 � 77
�

0 � 45 bits

per spike,and for a bin size of 10 cm, 2 � 38
�

0 � 44 bits per spike. The spatial information

is also affected by the rate distribution when, as here, the rate outside the field is zero.

Low rates can also bias the distribution of field sizes to misleading low values. Over

the last four laps the mean and standard deviation rates are 1 � 75
�

0 � 94 Hz; over the

last lap it is 1 � 45
�

1 � 01 Hz. This gives an average of 10 spikes per spatial bin size

1.43 cm over the last four laps. If all spikes are considered over the 10 laps even as the

place fields form, at an overall average rate of 1.66 Hz giving an average 20 spikes per

bin, the position information is 1 � 83
�

0 � 37 bits per spike.

The position information from the last four laps is plotted as a function of the rate

in figure 9.13. The correlation coefficient is -0.67, so considerable information about

the place fields is lost when simply discussing mean place field sizes. This is partly a

result of the activity regulation mechanism in which there is no force driving values to

the target rate, only a penalty for excessive synaptic efficacy.

Place fields also form when the entorhino-pyramidal EPSPs are only mediated by

AMPARs. The position information of these place fields is also plotted as a function of

the rate in figure 9.13, again over the last 4 laps of a 10 lap trial. For comparison, the

mean and standard deviation values are 13 � 2
�

0 � 4% for the field length, 2 � 74
�

0 � 48

bits per spike for the position information, 1 � 99
�

0 � 81 Hz for the rate.

Finally, a characteristic attribute of place fields is that anatomically neighbouring

place fields have uncorrelated place field locations in the stimulus space (Redish et al.,

2001). From figure 9.14, it can be seen that this is indeed the case in the model.
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Figure 9.15: Spatial distribution of a pyramidal cell’s activity over 9 laps of the track. The activity in

the left-hand location predominates through synaptic competition, such that there is no activity in the

right-hand location in the last 2 laps, despite an overall increases in rate.

9.4.1 Mechanism

How do the place fields form? Given the summed input of many Gaussians, a narrow

peak in the activity distribution is easily formed using a subtractive threshold (Sharp,

1991; Hartley et al., 2000). In the network, every pyramidal cell receives a spatial dis-

tribution of excitatory and inhibitory inputs. Where these spatial variations allow the

cell to be more active, the Hebbian plasticity reinforces that advantage. The synaptic

normalisation in the activity regulation reduces the weights of synapses from entorhi-

nal cells spiking in other locations, reducing the pyramidal cell from firing in other

locations. The process is illustrated in figure 9.15, for one pyramidal cell over nine

laps of the track. In order to refine this explanation, an investigation of the parameter
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Figure 9.16: The position information as a function of the rate, over the last 4 laps (40 s) of 10 laps

around the track. (a) Comparison between when the pyramidal cells receive IPSPs from the inhibitory

interneurons and when they receive a constant inhibition that balances the entorhinal input such that the

initial rate is 1 � 0 � 0 � 1 Hz. (b) Comparison between the default network and when the pyramidal cell

membrane time constant, τP � 16 ms, such that the leak balances the excitatory input.

dependence follows.

9.4.2 Role of the inhibitory input

When the input from the inhibitory interneurons is removed and replaced with a con-

stant subtractive inhibitory input, the place field statistics are not significantly affected.

In fact, the field lengths, at 8 � 94
�

4 � 41% are smaller, and the positional information is

higher at 3 � 6
�

1 � 0 bits per spike. These results do not take into account the biasing ef-

fect of a different rate distribution, and so are not directly comparable to the values for
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Entorhino-pyramidal connectivity CPEc � 0 � 30 CPEc � 0 � 10 CPEc � 0 � 01

Field length (% length of track) 11 � 99
�

3 � 84 11 � 57
�

3 � 70 11 � 29
�

4 � 04

Position information (bits/spike) 2 � 95
�

0 � 56 2 � 94
�

0 � 58 2 � 78
�

0 � 47

Rate / Hz 1 � 75
�

0 � 94 1 � 67
�

0 � 84 1 � 37
�

0 � 53

Table 9.3: Place field statistics when the entorhino-pyramidal connectivity, CPEc is adjusted. Both the

rate and position information decrease as the connectivity decreases, despite the decrease in the mean

field size.
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Figure 9.17: Increasing number of fields as the connectivity is decreased. (a) Default entorhino-

pyramidal connectivity, CPEc � 0 � 30: Most pyramidal cells have 1 field, � 20% having 2 place fields. A

high number of fields indicates sparse activity and low position information. (b) CPEc � 0 � 10 (JPEcAMPA �

0 � 79 mVms) (b) CPEc � 0 � 01 (JPEcAMPA � 6 � 79 mVms): more than 50% of cells having more than 1 field.

the network with the interneuron IPSPs. The position information is slightly increased

across the rate distribution (figure 9.16a). The variance in the inhibitory input from

interneuron IPSPs does not affect activity in the centre of the place field, but reduces

the sharpness of the field at the edges and increases the probability of sporadic activity

outside the field.

Part of the feedforward inhibitory response to temporoammonic stimulation targets

the perisomatic areas. This inhibition is often argued to have a divisive effect on the

sub-threshold membrane potential by increasing the potassium conductance (Staley

and Mody, 1992; Holt and Koch, 1997; Ulrich, 2003). In the integrate-and-fire model,

this is equivalent to reducing τP, the membrane time constant of the pyramidal cell. By
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reducing τP, both the assumption that the inhibition is subtractive, and the dependence

of the place field properties on the integration time are explored.

When τP = 16 ms, the leak current, or equivalently the constant source of divisive

inhibition, balances the excitatory input such that the initial rate is 1 � 0
�

0 � 1 Hz, in

the absence of subtractive inhibitory input. After 10 laps, the resultant place fields

are smaller than in the equivalent network with interneuron IPSPs and τP = 25 ms

(figure 9.16b).

Place field sizes should be larger with divisive inhibition, if they are created by

the summation and threshold mechanism. Divisive inhibition scales down summed

input, and the relative position of the threshold is unchanged. Subtractive inhibition

increases the relative position of the threshold towards the peak of the summed input.

The activity-dependent synaptic scaling is equivalent to an adjustable threshold, which

is subtractive. That the membrane time constant is not a crucial parameter is also

supported by the successful formation of place cells using the EPSPs with the faster

time constants of the model AMPARs.

9.4.3 Numbers of inputs

As the entorhinal-pyramidal connectivity is decreased, the field sizes get slightly smaller

over the last 4 out of 10 laps (table 9.3). The rate distributions are also centred around

lower means, with lower standard deviations. When the position information and rate

are viewed together, the position information decreases as the number of excitatory

inputs is reduced, even though the rates also decrease.

Place fields typically have a unimodal spatial distribution of activity, with a small

proportion having two peaks. As the connectivity decreases, the number of place

fields increases (figure 9.17). In keeping with table 9.3, the distribution of the num-

ber of place fields is not significantly different for a connectivity of CPEc � 0 � 10, or

90 entorhinal inputs, than the default CPEc � 0 � 30. When CPEc � 0 � 01, or a mere 9

entorhinal inputs per pyramidal cell, the number of place fields is noticeably greater

(figure 9.17c).

From the symmetric synaptic weight distribution (figure 9.10b), it is clear that a

large selection of entorhinal cells are responsible for the place field activity in the de-
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Figure 9.18: Effects of different plasticity regimes on place field position information. (a) Asymmetric

spike time-dependent plasticity (STDP) rule results in place fields with low position information relative

to symmetric STDP. (b) With no Hebbian plasticity and only activity regulation, fairly high position infor-

mation is achieved. By comparison, the information of asymmetric STDP place fields is attributable to

activity regulation.

fault case. When unimodal entorhinal activity is used, inputs from cells responsible

for secondary peaks can be weakened. The bimodality of the entorhinal activity in

the model potentially favours bimodal place firing as cells contributing to two initial

peaks will not be weakened by synaptic competition. That 45% of the cells can gener-

ate unimodal place fields with comparable position information from just nine inputs

supports the view that forming place fields in the model is not a computationally de-

manding task.
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Figure 9.19: (a) Distribution of the number of fields from the average rate distribution over the last 4

laps with asymmetric Spike time-dependent plasticity (STDP). Mean � s.d. no. of place fields = 5.4 � 3.4.

Compare with figure 9.17a over the same period. (b) No Hebbian plasticity, just activity regulation.

Mean � s.d. no. of place fields = 7.3 � 3.2. The number of place fields is visibly higher than for asymmetric

STDP.

9.4.4 Plasticity

With no potentiation (ALTP � 0), and only activity regulation to control the place

field activity of the CA1 pyramidal cells, surprisingly information-rich place fields

are formed (figure 9.18b). McHugh et al. (1996) used an activity regulation scheme

to explain the surprisingly small CA1 place fields in CA1 pyramidal-specific NMDA

NR1 gene knockout mice (section 6). CA3 place fields are unimodal and considerably

narrower than CA1 place fields. Therefore, it is possible to compute an almost nor-

mal sized CA1 place field using only a summation and threshold, once the threshold

has been set. In the model, the entorhinal inputs are bimodal, broader than in CA3,

and have lower spatial information. Just activity regulation and no Hebbian plasticity

results in multiple place fields (figure 9.19b).

When asymmetric spike time-dependent plasticity (STDP) is used, the results are

comparable to when there is no Hebbian plasticity. The entorhinal inputs are not tem-

porally correlated, only spatially correlated. Therefore the entorhinal activity is just as

likely to spike before as after the CA1 pyramidal cell during the place field. If the time

dependences for the LTP and LTD were equal, then asymmetric STDP would result,

on average, in no net change in the synaptic weight distribution. Indeed, the position
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information distribution (figure 9.18a) is comparable to the case with no plasticity (fig-

ure 9.18b). There can be a small net gain in synaptic weight at a place field because

τLTD � τLTP. This is reflected in the distribution in the number of fields (figure 9.19a),

which is biased towards a lower number of fields compared to the no plasticity case

(figure 9.19b).

9.5 Place field formation in similar environments

What is the function of the temporoammonic pathway? So far, three positions have

been developed:

� The rate of plasticity in the temporoammonic pathway must be lower than in the

Schaffer collaterals, due to the lower capacity of the temporoammonic pathway

(section 7.4.3).

� It is computationally advantageous for the Schaffer collaterals to form the initial

pattern of activity in CA1 during place field formation, in terms of increased

capacity and simpler thresholding implementation (section 8.7).

� Place field formation in the temporoammonic pathway is robust, and is supported

by low connectivities (section 9.4).

The long-term plasticity of place field locations of similar environments (Lever

et al., 2002, section 4.3.3) is an experimental finding that can potentially be explained

by the plasticity in the temporoammonic pathway.

The finding has an intuitive significance for behaviour. The hippocampus has a crit-

ical role in the memory of one-trial events (Nakazawa et al., 2003) and in establishing a

spatial map of an environment (O’Keefe and Nadel, 1978). When similar environments

are not initially perceived as being different, the representations of stored events will

be correlated through a shared representation of space. CA1 could allow the represen-

tations of the environments to become uncorrelated, as a function of experience, whilst

maintaining the stored record of events. This strategy would allow the hippocampus

to support both the rapid acquisition of memories of attended events, and to benefit
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from experience in developing perceptions of distinct spatial contexts. In the case of a

spatial cue manipulation the perception of difference is sensory, and once noticed, the

environment could be treated as novel if integrated perceptions of localisation are first

formed in the hippocampus.

Lever et al. (2002) report three ways in which the place fields diverge:

� Changes in rate

� Discrete field relocalisation

� Smooth field relocalisation

The first two can be explained by competitive learning. For instance, a presynaptic

covariance rule will orthogonalise the correlated inputs by promoting different cells

to be active in response to different input patterns (Minai, 1997). For two neurons

both initially active to a pair of correlated inputs, one cell will come to represent one

pattern, and the other cell the other pattern. These changes can account for changes in

rate and new fields appearing, but what process supports the same cell being active in

increasingly different locations on the tracks? One candidate is lateral inhibition: the

initial CA3 input established CA1 place map is randomly rearranged to minimise the

lateral inhibition. However, if the place fields have been learnt by Hebbian learning

as in the previous sections, the synapses active in the same locations on each track

will be potentiated at a faster rate than the synapses which are not. This will promote

correlated activity despite the lateral inhibition.

The purpose of the experiments that follow is to explore the consequences of tem-

poroammonic plasticity for place fields formed by CA3 input. The dynamics of CA3

do not directly concern us, so CA3 input is modelled by the spatially consistent activa-

tion of the CA1 pyramidal neurons, in addition to the effects of entorhinal input. The

reduction in the strength of the Schaffer collateral input is modelled by the removal

of the CA3 input. This extreme implementation allows us to identify the effects of

temporoammonic plasticity alone.
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9.5.1 Behavioural task and the entorhinal input

9.5.1.1 Experiment 1: CA3 control of CA1 place field activity

The purpose of this experiment is to check that the temporoammonic synapses can

learn the location of the CA3 controlled place field location, and to observe the changes

in activity that occur when the strength of the CA3 input is reduced. The rat runs 10

laps round the track, as before. In the centre of the track, every CA1 pyramidal cell

now fires 10 action potentials, at 10 Hz. This is the simulated effect of CA3 triggered

activity. All the action potentials occur in the same locations. After these 10 laps, the

rat runs around the track for a further 20 laps, in which there is no simulated CA3

input.

When the CA3 input is removed, the activity of the cells decreases because the cells

have regulated their firing rates to be less than 2 Hz, as before. The activity regulation

mechanism is changed, such that

∆AREGi �
���� ���

� BREG if Ri � 10s � � 2 � 0 Hz
�

BREG � 2 if Ri � 10s � � 0 � 0 Hz

0 otherwise

(9.10)

to prevent cells which are silent after the CA3 input has been removed from re-

maining silent.

9.5.1.2 Experiment 2: diverging place fields on different tracks

The rat runs round two circular tracks alternately. The tracks are identical in dimen-

sions, but the visual cues are slightly different, such that the entorhinal activity is highly

correlated. This is achieved by randomly relocating the place fields of 20% of the en-

torhinal cells on the other track. So on both tracks, the entorhinal place fields are

constant, but the locations of the fields of 20% of the cells are different between the

tracks. This results in two vectors of 1800 place field locations with a correlation co-

efficient of 93.2%. The change from one track to the other happens instantaneously as

the rat finishes one lap of a track.

Half-way round both tracks, all the CA1 pyramidal cells fire 10 action potentials at

10 Hz, as in experiment 1. The cue differences between the two tracks do not induce
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Figure 9.20: Place fields formed during (a) and after (b,c) initial CA3 control of CA1 place field activity.

(a) Fields are centred around stimulation site (top). (b) From t=100 s onwards, there is no CA3 input.

Field activity is centred in the same location (top). Some fields emerge in new locations (peak rate

locations close to 0 or 1). (c) Fields gradually shift from stimulus site (top). Throughout, fields are

unimodal (middle) and with high position (bottom).

a remapping in CA3 between the tracks. CA3 activity over the first 10 laps (5 round

both tracks) therefore occurs in the same locations on both tracks. The CA3 control

of place field activity is removed after these 10 laps. The rats continue to run round

the tracks alternately, but with the temporoammonic input controlling the place field

firing.
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Figure 9.21: Statistics of the place fields formed on both tracks, when the synaptic weights are un-

clipped or clipped to 0.6, for 240 s � t � 300 s, (the last three laps round both tracks).

9.5.2 Results

9.5.2.1 Experiment 1

The CA1 pyramidal neurons consistently spike in the stimulus location over the first 10

laps. The synapses of entorhinal neurons with spatially correlated activity are strength-

ened, whilst the other synapses are weakened. Place fields do not form outside the

stimulation site, as indicated by the distribution of the peak rate (figure 9.20a). When

the CA3 stimulus is removed, the CA1 activity dips, but the recovered place field activ-

ity is still centred around the original stimulation site (figure 9.20b). With time, some

place field locations drift from the stimulus location (figure 9.20c). The excitatory and

inhibitory inputs have spatial distributions, and these provide a gentle force for moving
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Figure 9.22: The mean difference between the location of every place field round both tracks as a

function of the lap number. The field location is the peak rate location for that lap. After lap 5, the CA3

input is removed, so the place fields are free to be active in any location. The rate drops after the CA3

input is removed, accounting for the rapid increase in the field location difference culminating in lap 7.

the place field centre towards preferred locations.

After the CA3 input has been removed, some place fields emerge far from the

stimulus site. Of the outliers in figure 9.20b, 3 have one field and 4 have multiple

fields. By the time of figure 9.20c, all 9 outliers have one field. Some of the fields did

not have entorhinal input whose synapses could be selected to be active at the stimulus

site. This results in the field spontaneously becoming active in another site which

comes to dominate the synaptic competition.
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9.5.2.2 Experiment 2

As in experiment 1, the CA3 place field locations are learnt within the first 10 laps

of the track. Averaging over both tracks, the fields are not significantly different from

those learnt in experiment 1 over the same time range, despite the more variable spatial

correlations in the entorhinal activity. After the CA3 input has been removed, the place

field activity remains unimodal and high in position information (figure 9.21a). The

place fields tend to remain close to the CA3 input stimulation site for both tracks (data

not shown).

The evolution of the mean distance between every cell’s place fields on the two

tracks is shown in figure 9.22 ( ‘unbounded synaptic weights’ in the figure). The place

fields on the two tracks are initially separated by a mean distance of 9.3 cm. This

reflects the different preferred place field locations resulting from the different spatial

distributions of entorhinal input. The mean distance reduces to 2.3 cm by the fifth lap

as the CA3 controlled place locations over the first 100 s are learnt. The CA1 pyramidal

cell rate distribution drops after the CA3 input is removed, and activity regulation takes

a few laps to recover the rate distribution. By the tenth lap, the place fields have been

largely learnt again and the mean separation is 3.56 cm.

The majority of place fields are in similar locations on both tracks. Synapses that

are active in place fields on both tracks are potentiated faster than those only active on

one track. This has the effect of pulling the fields towards the same location on both

tracks. What mechanism can be used to maintain the place fields on both tracks, but

to move them apart? Because the same output cell is active to both sets of inputs, the

mechanism cannot be presynaptic. Ideally, the weights active in both locations would

be weakened, and the less frequently active synapses would be potentiated.

When the weights are clipped, so that they cannot exceed 0.6, the place fields form

by the fifth lap, as indicated by the average separation of 2.6 cm (figure 9.22). The

place fields after 30 laps (15 round both tracks) are further apart at 5.68 cm than with

unclipped Hebbian learning.

The upper limit on the synaptic weight prevents synapses active in the same loca-

tion on both tracks from dominating the place activity. This has the knock on effect of

increasing the potentiation of more infrequently active synapses. As established ear-
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lier, narrow CA1 place fields can be maintained in the model by entorhinal cells with

a symmetric synaptic weight distribution. The larger set of entorhinal cells supporting

the place cell activity mean that the field is more likely to have a different preferred

location.

The clipped network also takes longer to learn the place fields in the absence of

CA3 input: the synapses active only on one track may be potentiated proportionally

more, but this occurs at a slower rate than for the synapses active on both tracks in the

unclipped network. This is reflected in the larger number of place fields and slightly

lower position information over the last 3 laps (figure 9.21b).

9.6 Discussion

The hyperpolarising somatic response to temporoammonic stimulation is consistent

with functional CA1 activity in the model when the polarising response occurs over a

long period of time relative to the inhibitory response. The model provides a demon-

stration of this point. It can be concluded that the hyperpolarizing response does not

imply that temporoammonic input cannot cause CA1 activity (Levy et al., 1995).

The explanation is consistent with the distal location of temporoammonic inputs to

CA1 pyramidal cells, and with the nature of the superficial entorhinal activity. Passive

propagation from the stratum lacunosum-moleculare to the soma will attenuate and

widen an EPSP. In the absence of active ion channels, the time of an input encoded in

a brief, high amplitude EPSP will become noisy. Dendritic spikes may minimise the

loss of this information, and could also signal coincident activity. There would appear

to be no advantage to detecting coincident entorhinal activity, given the low spatial

information and apparent lack of temporal correlation in superficial entorhinal activity.

In contrast, CA3 activity has significant temporal correlations, and many mechanisms

support the encoding of CA3 input spike times. The input spike times are encoded

by brief EPSPs, the synapses are located relatively proximal to the soma, and spike

time-dependent plasticity is observed (Nishiyama et al., 2000).

The contribution of NMDARs to EPSPs is difficult to predict because of their volt-

age dependence. Changes in the local membrane potential are sensitive to the local
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spatial arrangement. In the stratum radiatum, the localisation of Schaffer collateral

synapses on spines allows the effects of individual EPSPs on the local calcium con-

centration and membrane potential to be localised (Sabatini et al., 2002). In the stra-

tum lacunosum-moleculare, the density of spines drops dramatically, and the propor-

tion of asymmetric synapses contacting the dendritic shaft directly increases (Megı́as

et al., 2001). In the absence of localising effects of dendritic morphology, the stra-

tum lacunosum-moleculare NMDARs of a particular cell will be activated by the mean

input rate of the cell.

In the model, the NMDAR-mediated component of the EPSPs was not modulated

by the membrane potential. If the stratum lacunosum-moleculare NMDARs of a cell

do respond as a population to the mean rate of the temporoammonic input, then this

is an acceptable first approximation. The model also assumes that LTP is expressed

as an equal increase in the voltage changes with time of the NMDA and AMPARs.

This is contrary to the proposed implementation of Marr’s self-organisation algorithm

discussed in section 8.7.2. The NMDA component of Schaffer collateral synapses

should remain constant for the implementation of Marr’s algorithm to work. It is not

crucial to the model that NMDA receptors express LTP as place fields are learnt in the

model with AMPARs alone. NMDARs in the stratum lacunosum-moleculare exhibit

inward rectification, unlike those in the stratum radiatum (Otmakhova et al., 2002).

That the NMDARs in the two layers have different properties is consistent with them

having different functions.

Place fields are formed in the model by Hebbian learning strengthening local spatial

correlations of entorhinal input. The ease of the task is partly because the model did

not have to generate many place field properties. For instance, the place fields reported

by Brun et al. (2002) are directional. In the model, the directionality of CA1 place

fields would have to come from the directionality of the inputs. The previous studies

of entorhinal activity do not mention their directionality, so the model is falsifiable on

this issue.

Place field activity can be supported in the model by a large number of entorhinal

inputs. If temporoammonically driven place field activity is associated with a large

number of entorhinal cells, then place fields can be maintained by spatially correlated
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changes in the input rate. Entorhinal neurons conveys little spatial information com-

pared to CA1 pyramidal cells, and their activity is temporally uncorrelated by cross-

correlograms. Place field activity will be more reliable if it is supported by a large

population of entorhinal cells rather than a select few.

In the model, clipped Hebbian learning was used to prevent synaptic competition

from associating the place field activity to a few entorhinal inputs. An alternative im-

plementation would be place fields learnt by LTD, with activity regulation normalising

synaptic weight changes, as before. Low frequency stimulation of temporoammonic

afferents in the entorhinal-CA1 slice results in LTD, which is recovered by a period of

high frequency stimulation (Dvorak-Carbone and Schuman, 1999a, see section 3.2).

The implications and the success of this implementation is one focus of current work.

When the CA1 pyramidal cells spike in a given location regardless of the tem-

poroammonic input in the model, the temporoammonic inputs can learn to support the

place field in that location. If the place fields are active in identical locations on similar

tracks with slightly different entorhinal representations, the place fields on both tracks

are learnt. When the synaptic weights are clipped, associating the place field activ-

ity with the entorhinal input results in place fields further apart at the expense of the

place field location information. Clipping the weights alone cannot account for the in-

creasing decorrelation of place field locations in different environments observed over

a month by Lever et al. (2002). By reducing the extent to which synapses can influ-

ence the location of temporoammonically sustained firing in the model, it increases the

likelihood that changes in the correlation of the place field locations can be explained

by some other mechanism in CA1, such as lateral inhibition. The changes could occur

upstream of CA1, and this possibility can be tested by recording place fields in CA3.
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Conclusion

10.1 Introduction

In this chapter, the modelling results are briefly summarised and applied to the hip-

pocampus, providing the context for predictions of hippocampal behaviour and physi-

ology. The results of the thesis are consistent with the hypotheses that CA1 maintains

information transmission from CA3 to the subiculum and the neocortex (Treves and

Rolls, 1994), and that CA1 maintains the capacity of these pathways, by preventing

direct associations between cells in CA3 and the more active cells of the subiculum

and neocortex (McClelland and Goddard, 1996).

The novel claim of the thesis is that temporoammonic plasticity is the substrate

for the experience-dependent changes in CA1 activity across multiple environments

(Lever et al., 2002; Hayman et al., 2003). This view is discussed in relation to emerging

data on differences between CA3 and CA1 place field activity, which indicate that

CA1 place field activity is more stable over multiple environments than CA3 activity.

It is suggested that it is behaviourally most useful to learn both the regularities and

the differences of multiple environments. How this could be achieved is described

in one focus of the future work. The recent dissociation of Schaffer collateral and

temporoammonic pathway NMDAR subunit composition (Arrigoni and Greene, 2004)

potentially allows the contribution of temporoammonic plasticity to behaviour to be

isolated and the hypothesis to be tested.
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10.2 Summary of results

In full-size 2 and 3-layer Marr models of the hippocampus, the third layer increases

the capacity (chapter 7). The increase is achieved by maintaining levels of connectivity

without violating anatomical constraints, and by allowing further noise reduction and

pattern completion. The organisation of the connections between layers into block

projections improves the performance when the recall cue is spatially localised in the

input layer, but not when the recall cue is distributed throughout the input layer.

The inclusion of a CA1 layer in a Marr network relaying activity from CA3 to

the cortex and subiculum increases the capacity (chapter 7). The number of synapses

required for the network to perform equivalently without CA1 is only 10,000, for a

noiseless cue. The advantage of CA1 is greater when the activity levels are increased in

the cortex and subiculum. However, the information efficiency of the network without

CA1 is much greater, and within the upper reaches of anatomical plausibility. The

capacity of a Marr model of the temporoammonic pathway is low in comparison with

a Marr model of the Schaffer collaterals.

Binary associative memory networks with patterns self-organised according to an

algorithm suggested by Marr (1971) are shown, through analysis, to have a higher

signal-to-noise ratio (SNR) during recall than networks that have stored random pat-

terns, for low connectivities and high loads (chapter 8). In simulations, the higher SNR

is maintained over a larger parameter range. The higher SNR is also maintained when

dendritic sum thresholding is used in the self-organised network and input activity-

dependent thresholding is used in the random network.

In an integrate-and-fire model of the temporoammonic pathway, the hyperpolaris-

ing response to synchronous stimulation of temporoammonic inputs is consistent with

CA1 pyramidal cell EPSPs having a long time course in relation to the feedforward

IPSP (chapter 9). Place fields are learnt in the model using Hebbian learning and

activity-regulating synaptic renormalisation, from multi-field entorhinal activity with

low spatial information. The place fields are learnt over a wide parameter range. Place

fields are not learnt when an asymmetric STDP learning rule is used. The lack of tem-

poral correlation in the entorhinal input results in uniform changes across the synaptic

population, except for a small potentiation of spatially correlated activity due to the



10.3. Interpreting the results in the hippocampus 193

longer time constant of synaptic depression than potentiation.

Place field activity is successfully associated with temporoammonic inputs in the

model when the CA1 pyramidal cell activity is driven in an arbitrary location by an ex-

ternal input (chapter 9). The place field location is maintained when the external drive

is removed, with a small drift in position over limited periods. Place field locations are

also learnt when the place field is located by an external drive in an equivalent place

on two identically shaped, but differently cued tracks. When the Hebbian learning is

capped, the place fields after the external drive has been removed are further apart.

10.3 Interpreting the results in the hippocampus

The results from chapter 7 support the ideas of CA1 as a relay (Treves and Rolls, 1994)

and as an activity-matching layer between the low-activity CA3 and relatively high-

activity subiculum and entorhinal cortex (McClelland and Goddard, 1996). They do

not explain the contribution of the temporoammonic input or the spatial organisation

of the projections from CA1.

The low capacity of the Marr model of the temporoammonic pathway indicates that

it is unlikely to associate patterns at the same rate as the Schaffer collaterals (e.g. Has-

selmo and Schnell, 1994). Meanwhile, if CA3 forms patterns of activity in CA1, there

are the computational advantages of an increased capacity and simpler thresholding

implementation.

Examining the temporoammonic pathway in isolation allows its properties to be

identified. The hyperpolarising response to temporoammonic stimulation is consistent

with the temporoammonic pathway not responding to temporal correlations in the en-

torhinal input. Place fields are easily learnt from temporally uncorrelated input using

plasticity mechanisms that detect spatial rather than temporal input correlations, even

when the place field is located in a random location. Therefore, the formation of place

fields in the absence of CA3 (Brun et al., 2002) does not imply that entorhinal inputs

control place field locations.
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10.4 Predictions: CA3/CA1 differentiation

Temporoammonic plasticity supports associative memory recall, as indicated by the

ability of CA3 lesioned rats to perform spatial recognition (Brun et al., 2002). CA3

plasticity supports behaviourally significant one-shot learning (Nakazawa et al., 2003),

and the rate of plasticity in the Schaffer collaterals should theoretically be as great as

in the CA3 recurrent collaterals to ensure efficient information transmission Treves

(1995). If temporoammonic plasticity is slower than Schaffer collateral plasticity, then

CA3 and CA1 activity should be dissociable on the basis of experience.

Data on differences between the behavioural correlates of CA3 and CA1 pyramidal

cell activity are rare. Preliminary findings suggest that CA1 is less likely to remap than

CA3 (Leutgeb et al., 2003; Lee et al., 2003). In the study of Leutgeb et al. (2003),

50% of CA1 place cells active in one environment were active in a second environ-

ment, compared with only � 10% of CA3 place cells. This effect occurred when either

novel or familiar environments were used. Lee et al. (2003) trained rats to run round a

circular track with both local and distal cues. In alternate recording sessions, the distal

and local cues were rotated in opposite directions. 60% of CA3 versus 20% of CA1

place cells rotated their field, and 18% of CA3 versus 47% of CA1 place cells had

ambiguous responses, such as rotating and gaining a new field at the same time. The

conclusion of Lee et al. (2003) is that the responses of CA3 cells are more coherent

across the population, possibly reflecting attractor dynamics, than CA1 place cells.

The results of Lee et al. (2003) and Leutgeb et al. (2003) are consistent with CA1

place cells learning individual responses to multiple environments, and CA3 place cells

responding as a population to individual environments. This does not mean that CA1

place cells necessarily learn the common features of multiple environments. In another

preliminary finding, Fyhn et al. (2003) report that in a bilaterally CA3 lesioned rat, ac-

tivity in the superficial entorhinal cortex is highly correlated in different environments,

and activity in CA1 is decorrelated compared to the entorhinal activity.

These findings suggest that CA1 activity uses its temporoammonic input to learn

the statistics of multiple environments, but for what behavioural purpose? Section 9.5

began to explore the hypothesis that CA1 generates the experience-dependent decor-

relation of place field maps in similar environments (Lever et al., 2002). It was con-
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cluded that, by limiting the synaptic competition during the associative learning, differ-

ent place field locations could be supported in differently cued geometrically identical

environments. The mechanism for decorrelating similar place fields in different loca-

tions remained unspecified. The results of this section are therefore inconclusive but

consistent with the hypothesis.

Hayman et al. (2003) developed the findings of Lever et al. (2002). The rats ex-

plored identical environments in nearby locations. The walls and floors were regularly

interchanged, so the animals had to learn to distinguish the environments from distal

cues. The colours of the walls and floors were changed, when the place cell maps

of rats in the environments had diverged. The place field maps of the two environ-

ments remapped, such that the acquired divergence of the place maps was lost. The

correlation coefficient of the place field locations in the two environments was 0.23

in the familiar environments and 0.43 in the novel environments. This is significantly

greater, with 0.61 the value between recording sessions in the same environment. It is

concluded that information learnt in one ‘context’ does not transfer to another context.

Hayman et al. (2003) do not provide any data on the timing of these place map

divergences; individual rats showed considerable difference in the rate of divergence.

The position developed here predicts that the correlation coefficient of the place field

locations in the two environments will be greater during the initial exploration of the

familiar environment. This could be judged either as an initial measure, or by the

savings in the time taken for the maps to significantly diverge. Learning from multi-

ple contexts does not require generalising across them, as assumed by Hayman et al.

(2003).

In mice with a CA3 pyramidal cell-specific knockout of the NMDAR1 gene, nor-

mal place fields are observed in a familiar environment even though the mice are im-

paired in some spatial tasks (Nakazawa et al., 2003). The mice were impaired com-

pared to controls in the delayed match-to-place task when the water-maze platform was

in a novel location, but not when the platform was in a familiar location (Nakazawa

et al., 2003). Even if the CA3 place maps generated in one session are unstable (Ken-

tros et al., 1998), behaviourally useful learning occurs in CA1 across sessions. Tem-

poroammonic plasticity is preserved in these mice, so experience-dependent changes
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can be predicted to be observed in CA1. However, it would be impossible to distin-

guish whether the changes were a result of temporoammonic plasticity, as proposed

here, Schaffer collateral plasticity or changes in entorhinal plasticity, as predicted by

Jeffery et al. (2004).

Can the NMDARs in either the temporoammonic or Schaffer collateral pathways

be blocked without significantly affecting NMDAR-mediated transmission in the other

pathway? If so, then the contribution of NMDARs to plasticity and signal transduc-

tion in one of or both the pathways can be directly assessed. Otmakhova et al. (2002)

suggest that the different properties of NMDARs in the two pathways may be due to

differences in the surrounding protein complex, or due to a different subunit composi-

tion.

Arrigoni and Greene (2004) recently reported that temporoammonic NMDARs

contain a lower proportion of the NR2B subunit than Schaffer collateral synapses. NM-

DARs are assembled from a NR1 subunit and one or more NR2A-D subunits (Seeburg,

1993). In the presence of ifenprodil, a selective antagonist of NMDARs containing the

NR2B subunit, the charge passed by a NMDAR-mediated EPSCs induced by tem-

poroammonic stimulation was reduced by 29 � 6
�

4 � 40%, compared to 75 � 1
�

4 � 07% at

Schaffer collateral synapses (Arrigoni and Greene, 2004). Temporoammonic synapses

are also structurally distinguishable from Schaffer collateral synapses. 40% of stratum

lacunosum moleculare asymmetric synapses are perforated, compared to 10% in the

stratum radiatum. Perforated synapses have multiple transmission zones and, in the

stratum radiatum, elevated levels of AMPA and NMDARs (Ganeshina et al., 2004).

A NR2B subunit-selective antagonist focally applied to CA1 will primarily affect

the Schaffer collateral plasticity, as interneurons preferentially express the NR2C/D

subunits (Monyer et al., 1994). The exact consequences are hard to predict. Blocking

NR2B subunits inhibits LTD induction but not LTP (Liu et al., 2004) yet LTP is more

easily induced with the overexpression of NR2B (Tang et al., 1999). If this approach

is feasible, it would allow the specific contribution of the temporoammonic plasticity

to be examined.
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10.5 Future work

In the previous section it was suggested that temporoammonic plasticity may learn

the regularities and differences of multiple environments. One way to achieve this

is to use a plasticity rule that maximises the long-term variance and minimises the

short-term variance, by having LTP and LTD operating on long and short time scales

respectively, as proposed by Stone (1996). This approach increases the contribution

of infrequent inputs, as was attempted by clipping the weights in the model. The rule

can be combined with magnitude-dependent LTD (van Rossum et al., 2000) to result

in a stable, unimodal weight distribution. This work is promising for developing an

understanding of temporoammonic plasticity relevant to behaviour.

The divergence of CA1 place fields in circular and square environments (Lever

et al., 2002) is strikingly apposed to the tendency of subicular place fields to not remap

in the two environments (Sharp, 1997). Given that the subiculum is the major source

of outputs from CA1, the two results seem incongruous. The subiculum has a very dif-

ferent intrinsic structure, with excitatory recurrent connections indicated by anatomy

(Harris et al., 2001), physiology (Harris and Stewart, 2001) and the recording of per-

sistent activity (Hampson et al., 2000). Contrasting the effects of lateral inhibition or

recurrent excitation on place fields formed over multiple environments will provide a

basis from which to understood the function of the subiculum, which has yet to be

modelled despite the behavioural correlates that contrast with hippocampal activity

(O’Mara et al., 2001).

How both long and short-term plasticity in the Schaffer collateral and temporoam-

monic pathways interact to shape CA1 activity is not obvious. The physiological data

on the dependency of Schaffer collateral plasticity and efficacy on temporoammonic

plasticity and stimulation may not have a straightforward explanation, but is consis-

tent with a view that changes in the two pathways are not independent. In particular,

how the spike time-dependent plasticity in the Schaffer collaterals (Mehta et al., 1997;

Nishiyama et al., 2000) combines with gradual changes in CA1 place fields as a result

of temporoammonic plasticity is a problem with a large number of parameters that can

be constrained at the integrate-and-fire neuron level.





Appendix A

Analysis of Marr’s network with

random patterns (Buckingham, 1991)

Marr’s capacity equations assume that every neuron is active in the same number of

patterns. Willshaw et al. (1969) also used this approximation to calculate the capacity

of their related feedforward associative memory network. Buckingham and Willshaw

(1992) later pointed out that the binomial distribution of the ‘unit usage’, the number

of times a neuron is active in a pattern, results in a significant and consistent error

between the predicted and simulation performance. In both Marr’s network and the

Willshaw network, the performance depends on the proportion of synapses that have

been modified. For the network to operate within the performance criteria, the distri-

bution of the proportion of modified synapses has to be below a set level. Using just

the mean to set this level overestimates the number of patterns that can be stored.

Gibson and Robinson (1992) and Bennet et al. (1994) approximate the distribution

of the dendritic sum as a Gaussian. This is a good approximation for the majority of

neurons, but is a poor description of the tails of the distribution. Setting an accurate

threshold depends on being able to integrate the tail of the distribution accurately, and

small errors in the threshold lead to large variations in performance.

Buckingham’s analysis is accurate (fig. A.1). The equations in this section are

valid for a two-layered network in which randomly chosen patterns have been stored.

The input layer is referred to as layer A, and the output layer as layer B. In the next
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appendix I discuss the implications of self-organising patterns in the network.

Consider the recall of a stored pattern. The aim is to calculate the distribution of

the dendritic sum of an output neuron, to which a particular thresholding mechanism

can be applied. In order to judge the performance, the output neurons are labelled. Let

those active during storage of the pattern be ‘genuine’ and the output neurons that were

silent ‘spurious’, with dendritic sum distributions dg and ds respectively.

For both genuine and spurious neurons, the neuron usage, r, is binomially dis-

tributed. It depends on the number of patterns stored, R, and the probability that a

neuron is chosen to be active in a pattern. This probability is the proportion of active

units in the output layer, αB:

P � r � k � �
�

R

k � αk
B � 1 � αB � R

�
k (A.1)

As mentioned above, r changes the probability that a given synapse has been modi-

fied, denoted by ρ. This is one minus the probability that it was not modified (Willshaw

et al., 1969):

ρ � r � � � 1 � � 1 � αA � r � (A.2)

where αA is the proportion of active units in the input layer.

When recall is initiated, a cue of Mc input neurons are active. The number of presy-

naptically active synapses for an output neuron is called the input activity, denoted by

a. In our partially connected network, every output neuron receives inputs from the

same proportion of input neurons. This proportion is the connectivity, Z. On presen-

tation of the recall cue, the input activity a is therefore binomially distributed with a

probability of Z, from Mc trials:

P � a � x � �
�

Mc

x � Zx � 1 � Z � Mc
�

x
� (A.3)

For a spurious neuron with a presynaptically active synapses, the dendritic sum, ds,

depends on the probability that all the synapses has been potentiated during the storage

of the R patterns:
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P � ds � x
�
a � � R

∑
r � 1

�
a

x � ρ � r � x � 1 � ρ � r � � a
�

xP � r � � (A.4)

For the genuine output units, all the synaptic inputs from genuine input neurons

will have been potentiated. Meanwhile, the contribution to dg from the spurious input

neurons will only be potentiated by chance. These two contributions are considered

separately: dgmg denotes the contribution from the genuine input neurons in the recall

cue, and dgms denotes the contribution from the spurious input neurons in the cue. For

a given input activity, a

P � dg � x
�
a � � x

∑
xg � 0

P � dgmg � xg
�
a � P � dgms � x � xg

�
a � � (A.5)

P � dgmg � is just the input activity from the genuine input neurons, since all these

synapses will have been potentiated. Let the input activity from the genuine input

neurons be denoted ag and let the input activity from spurious input neurons be denoted

by as, such that a � ag
�

as. Clearly

P � dgmg � x
�
a � � P � ag � x � P � as � a � x �

P � a � � (A.6)

and the probabilities of the input activities a, ag and as are binomially distributed,

dependent on the number of active input neurons and the connectivity, Z (equation A.3).

Let the number of genuine input neurons in the recall cue of Mc neurons be denoted by

Mg, the number of spurious input neurons by Ms:

P � dgmg � x
�
a � � Bin � x;Mg � Z � Bin � a � x;Ms � Z �

Bin � a;Mc � Z � (A.7)

�
�

Mg

x � �
Ms

a � x ��
Mc

a � �

(A.8)

Meanwhile, P � dgms � , the contribution from the spurious input units, is distributed

as for ds, so
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Figure A.1: The performance of the canonical 2-layer network of Buckingham (1991). in simulations

and as predicted with and without considering the unit usage distribution. Network parameters: N1 �

8000, N2 � 1024, α1 � α2 � 0 � 03, Z � 0 � 6666, R � 1000.

P � dgms � x � xg
�
as � a � xg � � R

∑
r � 1

�
as

x � xg � ρ � r � 1 � x
�

xg � 1 � ρ � r � 1 � � as
�

x � xgP � r �
(A.9)

Finally, combining the expressions for Pgmg and Pgms , equations A.8 and A.9, the

dendritic sum distribution for the genuine neurons is given by
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P � dg � x
�
a � � x

∑
xg � 0

�
Mg

xg � �
Ms

a � xg ��
Mc

a �
R

∑
r � 1

�
a � xg

x � xg � ρ � r � 1 � x
�

xg � 1 � ρ � r � 1 � � a
�

xP � r �

(A.10)

Equations A.10 and A.4 are used to predict the performance of all the networks

considered in chapter 7.





Appendix B

Analysis of Marr’s self-organising

network (Buckingham, 1991)

The output neurons are selected because they have the highest connectivity for that

pattern. Marr calculates the effective connectivity, denoted by Zg, as proportion of the

total number of active input synapses (over all the output neurons) out of the largest

possible number of input synapses, M1
� M2:

Zg �
N2

M1

∑
a � T

B � a;M1 � Z � a
M1M2

� (B.1)

where T is the threshold on the input activity, a, used during pattern formation

(Marr, 1971, sec. 3.1.3.S2). Buckingham (1991, sec. 5.2) believes Marr’s expression

to be unargued and suggests

Zg �
M1

∑
a � T

B � a;M1 � Z � a

M1

M1

∑
a � � T

B � a �

;M1 � Z �
� (B.2)

but since

205
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M1

∑
a � T

B � a;M1 � Z � � α2 (B.3)

� M2

N2
� (B.4)

the two expressions are equivalent. The average connectivity of the spurious neu-

rons, Zs, is then given by

Z � α2Zg
� � 1 � α2 � Zs � (B.5)

The probability that a synapse was adjusted during the storage of r patterns, ρ � r � ,
now has a different value. Accordingly, it is denoted by ρ

� � r � in the self-organising

network:

ρ
� � r � � 1 � � 1 � ZgM1 � r � (B.6)

As for the networks with random patterns, the dendritic sums of the spurious neu-

rons, ds, are distributed binomially B � ds;a � ρ
� � r � � . The neuron usage distribution is

well approximated by the binomial distribution B � Z � R � r � , since every neuron has an

equal chance of being active in every pattern.

As before, let us calculate the distribution of the contribution of the genuine input

neurons to the dendritic sum of the genuine output neurons, P � dgmg � . During the stor-

age of the input pattern, the output neuron had an input activity, a
�

. Now, during recall,

there are Mg genuine input neurons in the recall cue. Any of the Mg genuine input

neurons that were one of the a
�

inputs during storage will contribute to dgmg . There

are M1 choose Mg ways of choosing the Mg genuine inputs out of the M1 active input

neurons. P � dgmg � x
�
a

� � is the proportion of this set of choices where x are drawn from

a
�

and the complementary � Mg � x � are drawn from the � M1 � a
� � input cells active

during storage, but unconnected to the output neuron:



207

P � dgmg � x
�
a

� � �
�

a
�

x � �
M1 � a

�

mg � x ��
M1

mg � � (B.7)

Averaging P � dgmg � x
�
a

� � over P � a � � gives an accurate approximation to P � dgmg � :

P � dgmg � x � � M1

∑
a � � T

P � dgmg � x
�
a

� � B � a �

;M1 � Z � (B.8)

contrary to the formula given by Buckingham (1991, page 141).

During recall, the output neuron will have an input activity, a, distinct from the

input activity during storage, a
�

. Of the a active inputs, ag are genuine and as are

spurious. All ag will have been modified, so the distribution of ag is P � dgmg � , while as

is binomially distributed, dependent on Ms and Zs:

P � a � � min
�
a �mg �
∑

ag � 0
P � ag � P � as � a � ag � (B.9)

� min
�
a �mg �
∑

ag � 0
P � dgmg � ag � B � a � ag;Ms � Zs � � (B.10)

Combining equations B.8 and B.9,

P � dgmg � x
�
a � � P � dgmg � x � P � as � a � x �

P � a � (B.11)

� P � dgmg � x � B � a � x;Ms � Zs �
P � a � � (B.12)

As for the storage of random patterns, the contribution to the dendritic sum of the

genuine output neuron from spurious input neurons, ds, is distributed B � ds;as � ρ � r �

1 � � . Combining P � ds � with equation B.11, and averaging over all dgmg and r,

P � dg � x
�
a � � x

∑
xg � 0

P � dgmg � xg
�
a � P � dgms � x � xg

�
a � (B.13)

� x

∑
xg � 0

P � dgmg � xg
�
a �

R

∑
r � 0

B � x � xg;a � xg � ρ
� � r � 1 � � P � r � � (B.14)
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Figure B.1: The performance of the canonical 2-layer network of Buckingham (1991), predicted and in

simulations, with neurons at threshold during storage selected randomly, and by choosing those with the

least unit usage. Network parameters: N1 � 8000, N2 � 1024, α1 � α2 � 0 � 03, Z � 0 � 6666, R � 1000.

Performance

The correspondence between the analysis and simulations is by inspection as good as

for the network with randomly chosen patterns (fig. B.1)

In his simulations Buckingham added an extra detail. If the threshold on the input

activity selects more than the desired number of active neurons, the neurons with the

lowest unit usage are chosen of those at the threshold value. This results in a more nar-

row neuron usage distribution, and better performance. The analysis is more accurate

without this detail, and I choose the output neurons randomly.
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