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Abstract 
 

The rapid development in perovskite solar cells (PSC) has generated a tremendous 

interest in the photovoltaic community. The power conversion efficiency (PCE) of 

these devices has increased from 3.8% in 2009 to a recent certified efficiency of over 

20% which is mainly the product of the remarkable properties of the perovskite 

absorber material. One of the most important advances occurred with the replacement 

of the liquid electrolyte with a solid state hole conductor which enhanced PCE values 

and improved the device stability. Spiro-OMeTAD (2,2′,7,7′-tetrakis(N,N′-di-p-

methoxyphenylamine)-9,9′-spirobifluorene) is the most common hole transport 

material in perovskite solar cells. Nevertheless, the poor conductivity, low charge 

transport and expensive synthetic procedure and purification have limited its 

commercialisation. Triphenylamines (TPA) like Spiro-OMeTAD are commonly 

employed due to the easy oxidation of the nitrogen centre and good charge transport. 

Other triarylamines have similar properties to Spiro-OMeTAD but are easier to 

synthesise. The aim of this doctoral thesis is to investigate different types of hole 

transport materials in perovskite solar cells. Three different series of triphenylamine-

based HTM were designed, synthesised, characterised and studied their function in 

perovskite solar cells.  

 

A series of five diacetylide-triphenylamine (DATPA) derivatives (Chapter 3) with 

different alkyl chain length in the para position  was successfully synthesised through 

a five step synthesis procedure. A range of characterisation techniques was carried out 

on the molecules including; optical, electrochemical, thermal and computational 

methods. The results show that the new HTMs have desirable optical and 

electrochemical properties, with absorption in the UV, a reversible redox property and 

a suitable highest occupied molecular orbital (HOMO) energy level for hole transport. 

Perovskite solar cell device performances were studied and discussed in detail. This 

project studied the effect of varying the alkyl chain length on structurally similar 

triarylamine-based hole transport materials on their thermal, optical, electrochemical 

and charge transport properties as well as their molecular packing and solar cell 
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parameters, thus providing insightful information on the design of hole transport 

materials in the future. The methoxy derivative showed the best semiconductive 

properties with the highest charge mobility, better interfacial charge transfer properties 

and highest PCE value (5.63%). 

 

The use of p-type semiconducting polymers are advantageous over small molecules 

because of their simple deposition, low cost and reproducibility. Styrenic triarylamines 

(Chapter 4) were prepared by the Hartwig-Buchwald coupling followed by their 

radical polymerization. All monomers and polymers were fully characterised through 

electrochemical, spectroscopic and computational techniques showing suitable 

HOMO energy levels and desirable optoelectrochemical properties. The properties and 

performance of these monomers and polymers as HTMs in perovskite solar cells were 

compared in terms of their structure. Despite the lower efficiencies, the polymers 

showed superior reproducibility on each of the device parameters in comparison with 

the monomers and spiro-OMeTAD. 

 

Finally, star-shaped structures combine the advantages of both small molecules, like 

well-defined structures and physical properties, and polymers such as good thermal 

stability. Two star-shaped triarylamine-based molecules (Chapter 5) were synthesised, 

fully characterised and their function as hole-transport materials in perovskite solar 

cells studied. These materials afford a PCE of 13.63% and high reproducibility and 

device stability. In total this work provided three series of triarylamine-based hole 

transport materials for perovskite solar cells application and enabled a comparison of 

the pros and cons of different design structures: small-molecule, polymeric and star-

shaped. 
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 Introduction 

 The Energy Crisis 
 

Energy has always been the main motor for the development of human society. Energy 

is never created but only converted from one form to another one more flexible and 

convenient for human use. Chemical energy in coal can be transformed successively 

into thermal and mechanical energy and finally into electricity. It was basically coal 

that powered the Industrial Revolution and transformed the living conditions of the 

world population. Nowadays, humanity faces an enormous energy problem. The growing 

world population and the increase of living standards are raising the energy demand 

day by day. The International Energy Outlook 2016 has estimated that the global 

energy requirements will increase 48%  by 2040 in reference to 20121. In order to 

maintain our modern lifestyle a significant change in the current energy system is 

needed. 

 

Currently, more than 80% of the primary energy supply used by humans heavily 

depends on fossil fuels like oil, coal and natural gas (Figure 1.1)2. Fossil fuels are 

organic compounds formed millions of years ago through the lengthy anaerobic 

decomposition of dead organisms submerged under the sediments, containing energy 

from photosynthesis3. The dilemma is that humans consume these fossil fuels more 

rapidly than photosynthesis produces them. Therefore, they are considered a non-

sustainable energy source. As the energy demand increases, the easy-to-access fossil 

fuel reserves deplete. Many industries are taking higher risks moving into deposits  

that are harder to extract and employing unconventional methods such as offshore 

drilling deep into the ocean. These methods are not only dangerous but also have a high 

energy cost and potential environmental damage like the Deepwater Horizon oil spill in 

the Gulf of Mexico in 2010.4–6
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Figure 1.1 Total world energy consumption in 2016.2 

 

Furthermore, fossil fuels are unevenly distributed over the earth which, in addition to 

other political and economic aspects has led to a noticeable disproportion of the quality 

of life around the world, where more than 1 billion of the global population still do not 

have access to electricity6. Additionally, the combustion of fossil fuels produces 

harmful pollutants such as sulfur-containing compounds and the so-called greenhouse 

gases. Greenhouse gases are gases in the atmosphere such as water vapour, carbon 

dioxide, nitrous oxide and ozone that absorb and emit radiation in the infra-red range 

of the electromagnetic spectrum, delaying heat from escaping and causing the 

greenhouse effect7. Over the last decades, human activities, in particular from burning 

fossil fuels, have increased the concentration of atmospheric carbon dioxide (CO2) by 

more than a third since the beginning of the Industrial Revolution, modifying the 

natural greenhouse process, increasing global temperature and causing global 

warming8. Higher temperatures lead to higher concentrations of water vapour, which 

increase the water cycle. Even a small increase in the global temperature can originate 

an enormous impact on the environment. The effects of global climate change are 

already observable: glaciers are shrinking, weather patterns are changing, oceans are 
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becoming more acidic, and sea levels are rising year by year. Although the exact 

consequences of altering the environment are uncertain, it is evident that the effects of 

human activities in the environment are noticeable on a scale never seen before and 

the indications for an immediate climate change are undeniable.9 

 

Global awareness of climate change and the energy problem have increased in the last 

couple of years and have become central topics of discussion amongst people from 

different backgrounds and professional interest (science, art, politics and more). They 

are all recognizing the need to shift to a de-carbonized energy system and develop 

affordable, reliable and sustainable energy technologies that can meet the global 

energy demand and also secure the development and future of the world population. 

On the 15th December 2016, at the 21st Conference of the Parties of the United 

Nations Framework Convention on Climate Change (UNFCCC), representatives of 

194 countries, including China, India and the EU in unanimity, signed the Paris 

Agreement to take actions and reduce the effect of global warming. This accord targets 

to moderate carbon emission and has a long-term goal for net zero emission and 

effectively phase out fossil fuels10. Alternative energy resources to fossil fuels that 

have been considered to tackle the energy problem include nuclear power and 

renewable energy resources. A nuclear power plant uses a reaction called nuclear 

fission. In this process, the nucleus of a radioactive element such as uranium split into 

lighter nuclei releasing a large amount of heat that can be converted into electricity. 

Several unsolved issues have limited the expansion of nuclear power such as cost, 

availability of uranium, disposal of nuclear waste and safety, in particular after the 

accident caused by a 9.0 magnitude earthquake involving four reactors at the 

Fukushima Daiichi power plant in Japan on March 20114,11. The safest method is to 

use renewable energy resources. In contrast to fossil fuels, renewable sources can be 

found over vast geographical areas around the earth, and as their environmental impact 

is minor, they could help to mitigate several health and pollution issues associated with 

burning fossil fuels. Furthermore, the use of renewable energies will also provide 

energy security because there is no need to depend on one single resource6. The 

mainstream of renewables includes solar, wind, hydropower, geothermal and biomass 
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and it is likely that in the future electricity will be obtained by a combination of them. 

Among all, solar energy is one of the best ways to fulfill the world’s growing thirst for 

energy. In just one hour of light the sun can produce more energy onto Earth than the 

world energy requirements for an entire year. The maximum theoretical power of the 

sun (<120,000 TW) is around 10000 times the energy demand.12–14 The challenge now 

is to develop technologies to capture and utilize this resource. 

  Solar Energy 
 

The energy of the sun reaches the earth as radiation across the electromagnetic 

spectrum from infra-red to ultraviolet. The energy of this radiation can be transformed 

into chemical energy, heat or electricity by using different technologies. In a solar 

fuel15, light is converted into chemical energy by the photochemical production of 

hydrogen. A solar fuel enables stored solar energy in the form of chemical bonds that 

can be later utilised when sunlight is not available. Concentrated solar power 

technologies (CSP) use mirrors or lenses to concentrate sunlight into heat which then 

can be converted into electricity16. One of the most conspicuous approaches to utilise 

solar energy is the direct conversion of solar energy into electricity using photovoltaic 

devices (PVs). Currently, PV is the most widely deployed solar technology in the 

world due to its flexibility and cost of installation. As CSP only works with direct 

irradiation and large plants, the areas for installations are restricted. On the other hand, 

PV technologies can operate even with diffuse light and therefore can be installed in 

almost any location covering residential and industrial sectors.12  

 Photovoltaic Solar Cells 
 

A photovoltaic solar cell is a device that converts sunlight directly into electricity. 

When semiconductor materials are exposed to electromagnetic radiation such as 

visible light, they absorb some of the photons of light and release a significant number 

of electrons. These electrons can be captured to generate electricity17,18. The field of 

photovoltaics started almost 180 years ago with the discovery of the photovoltaic 

effect. In 1839, Edmund Becquerel first observed this phenomenon when a voltage 
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and a current were produced by illuminating a silver chloride electrode immersed in 

an electrolytic solution19,20. During the following years, scientists were focused to 

understand the photoconductivity of different metals like selenium. Then, in 1883 

Charles Fritts developed the first working solid-state photovoltaic device with 1% 

power conversion efficiency (η), using selenium coated with a thin layer of gold (Au). 

Four years later, Heinrich Hertz discovered the photoelectric effect when two different 

metals where exposed to visible and UV light21. The photovoltaic effect is associated 

with the photoelectric effect. The difference is that in the photoelectric effect the 

electrons are emitted to a vacuum while in the photovoltaic effect the electrons move 

into a new material. In 1901, Max Planck published the relationship between frequency 

and energy with his famous equation 1.1. 

E= hν                                                 Equation 1.1 

Where h represents the Planck’s constant and ν is the frequency of the light22. The 

principle of how light could create electricity remained poorly understood until the 

interpretation of the photoelectric effect was proposed by Albert Einstein. In 1905, 

Albert Einstein explained the photoelectric effect by assuming that the light is formed 

by packs of energy or energy quanta, called photons. The energy of such photons 

depends on the frequency of the light and some of them have enough energy to eject 

electrons from some materials. These free electron can move and create a current23. 

For the elucidation of the photoelectric effect and the nature of the light, Albert 

Einstein was awarded the Nobel Prize in Physics in 1921.24 

 

Photovoltaic technologies are based on three important principles: 1) Light absorption 

and generation of charge carriers, 2) Charge separation and 3) Collection of the free 

carriers. In PV devices, light is absorbed above a certain minimum onset energy called 

the “band gap” Eg that depends on the properties of the light-absorbing material used. 

According to the energy band theory, in an inorganic semiconductor the energy levels 

are no longer discrete like in free atoms, but form continuum bands of permitted energy 

values25. The valence band (Ev) is the nearly filled band containing electrons with the 

highest energies, and the conduction band (Ec) is the lowest nearly empty energy band. 
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In an ideal semiconductor, there are no allowed energy states between those two bands 

and the energy difference between them is called the bandgap, Eg=Ec-Ev.  

 

When photons are absorbed by semiconductor materials, the energy is used to promote 

electrons from the valence band to the conduction band. Only photons with energies 

above the band gap can be absorbed. The excitation of an electron to higher energy 

levels leaves behind a void with a positive charge called a hole in the valence band and 

frees an electron to move in the conduction band. In a solar cell, the photo-generated 

electrons and holes move to opposite sides of the cell where they are collected by an 

electrode to generate electricity. The efficiency of charge separation and collection 

modulates the photo-current whereas the energy difference between the electron and 

holes at the final stage before reaching the contacts determines the voltage of the solar 

cell.17,18,26 

 

 

Figure 1.2: Left: Semiconductor band structure, Right: Illustration of the absorption of 

photons in a semiconductor. 

 

Photovoltaic solar cells are typically named according to the light-absorbing material 

that can be either inorganic semiconductors, organic materials or a combination of 

both. Solar cell technologies can be classified into first, second and third generation 

cells. First generation solar cells are centred on crystalline silicon wafers. The second 
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generation cells are called thin-film solar cells and include amorphous silicon, CdTe 

and CIGS cells. Third generation solar cells are often described as emerging 

photovoltaics and cover all new technologies such as organic photovoltaics, multi-

junction solar cells, perovskite solar cells and more. Later in this section, we will give 

a brief explanation of the most important PV technologies to date.17,18 

 

1.3.1  Silicon Solar Cells 
 

Crystalline silicon PV is at the moment the leading PV technology with more than 80% 

of the PV market share27. In 1954, at Bell Laboratories in New Jersey, Gerald Pearson 

and Calvin Fuller developed the first practical silicon photovoltaic device with an 

efficiency of about 6%28. Considering the high cost of production, the first silicon solar 

cells were mainly used for space application to power satellites. Later, the development 

of better processing technologies helped to significantly reduce the cost of fabrication 

of silicon solar cell making possible their application in the public sector. In this PV 

technology, the silicon is n-doped with phosphorus and p-doped with boron. When 

these two semiconductors form a junction, the free carriers diffuse in opposite 

directions across the junction creating an electric field at the interface between these 

materials, known as the depletion zone (Figure 1.3). At present, silicon-based 

laboratory cells have reached record power conversion efficiency (PCE) of over 25% 

for single-crystal, over 20% for multi-crystalline cells and around 14% for amorphous 

silicon cells, and the majority of commercial single crystalline silicon solar cells reach 

efficiencies of 13-19%.29,30 

 

The maximum theoretical power conversion efficiency for a single p-n junction device 

with a band gap of 1.34 eV is around 33.7% noted as the Shockley-Queisser (SQ) 

limit31. This limit was first calculated by William Shockley and Hans Queisser in 1961 

by examining the total amount of electricity produced per photon of light in a single 

junction solar cell and assuming no light concentration. Silicon is an indirect band gap 

material with a band gap (1.12 eV) that is slightly narrow for an optimum solar cell. 

Therefore, a relatively thick absorption layer from high purity grade silicon and 

controlled doping levels are used to absorb enough sunlight. The thickness of the 
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absorber layer increases the cost of the solar modules and makes them rigid and fragile 

which limit their application in the portable market. Although silicon is one of the most 

abundant elements on the earth, the fabrication of silicon solar cells is considerably 

energy intensive and expensive primarily due to the purification and crystallisation of 

silicon.27,32 In fact, some studies estimated that the energy payback for the current 

multi-crystalline silicon PV modules is four years.33 Therefore, research is focused to 

reduce the energy cost without sacrificing efficiency. 

 

 

Figure 1.3: Formation of the depletion layer in silicon solar cells (top) and charge separation 

across the p-n junction. 

 

1.3.2 Thin-Films Solar Cells 
 

Solar energy seeks to prove to be a reliable, cost-effective and sustainable source to 

compete with other conventional sources. To that end, photovoltaic reseachers aim to 

reduce the energy cost and diminish the waste produced by the first generation 

photovoltaics. Thin-film technologies, also known as the second generation PV, bring 

valuable advantages that allow an extended market penetration of solar electricity. In 

comparison to silicon wafer technologies, thin film solar cells reduce the material 

usage and shorten the energy payback time. Thin-film technologies use a direct band 

gap semiconductor that allow reduction of the thickness of the absorber layer without 

reducing device efficiency. Furthermore, because of the properties of the 

semiconductor material, thin-film solar cells perform better than silicon solar cells, 
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under low light conditions. To this family belong thin-films solar cells based on 

amorphous silicon, CdTe and Cu(In,Ga)(S, Se)2 (CIGS). From these, amorphous 

silicon (α-Si), CIGS and CdTe solar cells are the most popular in the PV market. In 

fact, for decades α-Si solar cells have been used to power consumer electronics such 

as calculators. Initially, thin-film solar cells were expected to be less expensive than c-

Si-based solar modules. Nevertheless, due to the price decline in the production of 

silicon wafers through economies of scale, low cost is no longer the main advantage 

of these technologies.34–36 

 

Up to now, amorphous silicon solar cells have reached 14% power conversion 

efficiency. Both CdTe and CIGS have higher absorption coefficient than silicon hence 

performance of 22.1% for CdTe and 22.6% for CIGS have been achieved.30,37 

However, despite offering numerous advantages over the previous generation, it has 

been difficult to produce highly-efficient large-scale thin film modules. Furthermore, 

the low natural abundance of indium, tellurium and selenium and the toxicity levels of 

cadmium have limited their application. Most recently copper zinc tin sulphide 

Cu2ZnSn(S,Se)4
38 commonly named CZTS has been proposed as a less-toxic and more 

abundant alternative with the highest efficiency of 12.6% achieved in 2014.39 

 

1.3.3 Tandem Solar Cells 
 

One of the strategies to exceed the Shockley-Queisser limit is with tandem cells or 

multi-junction cells which comprise a stack of multiple solar cells on top of each other 

using semiconductor materials with different band gaps. The use of various 

semiconductor materials, each covering different region of the solar spectrum, 

improves the absorption of light and reduces energy losses which leads to better energy 

conversion efficiencies. GaInP2 (1.85 eV) is usually the preferred material for the top 

cell converting the short-wavelength region of the solar spectrum. The next solar cell 

is made of GaAs (1.42 eV) which captures near-infrared (IR) light. Finally at the 

bottom of the structure, a solar cell based on germanium (0.67 eV) absorbs some of 

the lower photons of the IR region. It is also common to incorporate light concentrator 

systems with the multi-junction cells to further increase the efficiency of the solar 
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cell40,41. Multi-junction solar cells with light concentrators have reached efficiencies 

of 46%30,42. However, the high efficiencies come along with an increase of the 

complexity of the structure and the manufacturing price which limit their application. 

Currently, this technology is employed in aerospace where high efficiencies are more 

important than cost. 

 

1.3.4 Dye Sensitised Solar  Cells 

 

Figure 1.4 Schematic structure of liquid dye-sensitised solar cells. 

 

Dye-sensitised solar cells (DSSCs) were popularised by Brian O’Regan and Michael 

Grätzel in the early 1990s.43,44 A dye sensitised solar cell has in essence a ”sandwich” 

arrangement formed by six key components: 1) a glass with a transparent conductive 

oxide layer (TCO), 2) a compact TiO2 layer, 3) a nanocrystalline semiconducting 

oxide, 4) a dye, 5) a redox electrolyte and 5) a TCO coated glass with platinum as a 

counter electrode. A schematic of the device structure is shown in Figure 1.4. The 

working principle of dye sensitised solar cells mimics naturally occurring 

photosynthesis. Visible light is absorbed by dye molecules that are anchored to a wide-
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band gap mesoporous semiconductor oxide (typically TiO2) of around 10 µm thick to 

increase the surface area for maximum light absorption. The most common dyes are 

ruthenium-based complexes which are attached onto the TiO2 nanoparticles’s surface 

through carboxylate groups.45,46 When light is absorbed the dye is excited from the 

ground state to its electronically excited states. The molecule in the excited state can 

decay back to the ground state or continue injecting electrons into the conduction band 

of the titanium dioxide. The injected electrons diffuse through the mesoporous TiO2 

(mp-TiO2) to reach the contact electrode and pass through the external circuit until 

they reach the counter electrode. The oxidised dye molecules are reduced rapidly to 

the ground state by a redox electrolyte, usually an iodide-triiodide redox couple in an 

organic solvent.  

 

Figure 1.5: Summary of the working principle of dye-sensitised solar cells. 
 

A summary of the working operation and loss mechanisms of a DSSC is illustrated in 

Figure 1.5. Ideally, light absorption, electron injection, dye regeneration and charge 

transport should be kinetically favoured over loss pathways of excited-state decay to 

ground state and electron recombination processes.47 The conducting substrate acts as 

a current collector, a support structure and a sealing layer to the cell. Currently, fluoride 

doped oxide (FTO) is the most common substrate in dye-sensitised solar cells and can 

be deposited on a wide variety of substrates including polymer-based plastics, glass 
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and thin metal foils. The compact TiO2 film underneath the mesoporous layer acts as 

a blocking layer to recombination of electrons in the FTO substrate and the 

electrolyte.48,49 

 

Figure 1.6: Schematic structure of solid state dye-sensitised solar cells. 
 

 

To date, 14% efficiencies have been achieved for DSSCs at lab scale using a carboxy-

anchor organic dye coded as LEG4 and co-photosensitized  with an alkoxy silyl-anchor 

dye with an optimized cobalt(III/II) redox electrolyte solution.50 Although these 

efficiencies lag behind other technologies, DSSCs offer a number of advantages 

including low cost, ease of fabrication, non-toxic materials and good response under 

low light intensities. Moreover, one of the characteristics that distinguish DSSCs from 

other technologies is the range of colours that can be used in the devices, which makes 

them attractive in architecture and building design. Nevertheless, stability concerns 

due to solvent leakage, corrosion and volatility of the liquid electrolyte have limited 

the large-scale commercialization of DSSCs. These concerns led to the development 

of all-solid-state dye-sensitised solar cells (ssDSSCs).51,52 Figure 1.6 illustrates the 

device architecture of solid-state DSSCs. The working mechanism is similar to the 
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previous liquid-based solar cells. However, here the liquid electrolyte is replaced by a 

solid hole conductor known as the hole transport material (HTM) for dye regeneration 

and hole transfer. The limitation in ssDSSC comes from the insufficient filling of the 

mp-TiO2 with the solid-state HTM. To solve this, researchers proposed to reduce the 

thickness of the mp-TiO2 to an optimum of 2 µm that facilitates pore filling of the 

HTM for efficient hole transfer and minimum recombination. However, the thickness 

restrictions in ssDSSCs limits light absorption. Since the absorption coefficient is 

proportional to the thickness of the mesoporous TiO2, the available dyes that can be 

used in ssDSSCs must exhibit a very high absorption coefficient to efficiently harvest 

light. Thus, research has been focused in the design and synthesis of new light absorber 

materials for ssDSSCs including recently a group of organic-inorganic halide 

perovskite materials.48,53 

 

 Methylammonium lead halide perovskite solar cells 
 

In the strictest sense of the word, perovskite - bearing the name of Russian mineralogist 

L. A. Perovski - is simply the calcium titanium oxide mineral (CaTiO3), discovered by 

Gustav Rose in 1839.54 Perovskite also refers to the group of compounds sharing the 

same crystal structure of calcium titanate, known as the perovskite structure with the 

general chemical formula of AMX3, where A and M are two cations of different sizes 

(A larger than M), and X is an anion. Ideally, the perovskite structure has a cubic 

geometry. Nevertheless, in nature they are usually pseudo-cubic or distorted cubic. In 

an ideal perovskite structure, M and X form an octahedral arrangement MX6 that 

consists of the cation M in the centre of the octahedron surrounded by six anions X. 

This arrangement extends to form a three-dimensional network. Each cation A is in a 

12-fold cuboctahedral coordination site shared with twelve X anions and balances the 

charge of the whole system.55 The crystal structure of perovskite is depicted in Figure 

1.7. 
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Figure 1.7: Top-left: Unit cell of basic crystal structure of perovskite with the chemical 

formula ABX3. Top-right: Extended perovskite structure. Bottom: Unit cell of organic-

inorganic halide perovskite. 

 

In the organic-inorganic halide perovskite materials, the larger A cation is typically 

methylammonium ion. The anion 𝑋− is a halogen. In general iodide is the most 

common one, but both bromide and chloride are also used in a mixed halide perovskite 

and the cation 𝑀2+ is generally 𝑃𝑏2+(Figure 1.7 bottom)56. This class of materials has 

been studied for decades. In 1978, Weber first reported the physical properties of 

organic-inorganic lead halide perovskite CH3NH3PbI3
57 and in the following years 

research was focused on the properties of perovskite materials for organic light-

emitting diode (OLED) and thin film transistor (TFT) applications58,59. It was not until 

2009 that Miyasaka and co-workers first reported organo-lead halide perovskite as 

light absorbers in dye sensitised solar cells in which the molecular dye was replaced 

by CH3NH3PbBr3 and CH3NH3PbI3 reaching efficiencies of 2.2% and 3.8% 

respectively. An electrolyte solution containing lithium halide was used as the redox 

couple60. These devices however showed very low stability and degraded very quickly. 

Later in 2011, using similar structures, Park reported an efficiency of 6.5% when using 

perovskite nanoparticles of approximately 2.5 nm in diameter61. Due to the ionic nature 

of the perovskite materials, they dissolve easily in polar solvents generally used for the 
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liquid electrolyte in DSSC. Concerns about the stability of the perovskite devices 

motivated the use of a solid-state hole-conductor instead of liquid electrolytes. In 2012 

Kanatzidis and co-workers reported a metal halide perovskite CsSnI3 as p-type hole 

transport material in a ssDSSC configuration using a ruthenium complex called N719 

as the light absorber62. These devices reached efficiencies of 10.2%, a big 

improvement in performance for ssDSSCs whose previous best-reported device 

reached just over 7% efficiency63. Later in 2012, Park, Grätzel and colleagues used 

CH3NH3PbI3 as the light absorber in the original ssDSSCs architecture and replaced 

the liquid electrolyte with spiro-MeOTAD (2,2’,7,7’-tetrakis(N,N-di-p-

methoxyphenylamine)-9,9’-spirobifluorene), an organic hole conductor originally 

developed for OLED applications64. In comparison to the previous reports by 

Miyasaka and Park, these devices not only showed better stability but also exhibited 

efficiencies of 9.7%.65 

 
Another big breakthrough came also in 2012 when Henry Snaith and collaborators 

replaced the n-type mesoporous TiO2 with an insulating scaffold Al2O3, on top of 

which CH3NH3PbI3-xClx was used as the light absorber and spiro-MeOTAD as the 

HTM66. Surprisingly, these devices showed efficiencies of over 10% and higher open 

circuit voltage (Voc) in comparison to the mp-TiO2-based devices.  Since Al2O3 is an 

insulator  the injection of electrons from the perovskite is blocked due to the higher 

conduction band which explain the increase in the Voc values. These results led to the 

hypothesis that the scaffold was also not needed, which was later proved correct when 

over 10% efficiencies were achieved with planar structure perovskite solar cells with 

no mesoporous scaffold67. Almost simultaneously, Etgar and collaborators proposed a 

HTM-free heterojunction device structure in which CH3NH3PbI3 was used as a p-type 

semiconductor and a 500 nm mesoscopic layer was deposited as an n-type 

semiconductor. These devices showed 5.5% power conversion efficiency (PCE)68. All 

these previous findings demonstrated the great potential of the perovskite material as 

more than just a sensitizer as they were able to transport both electrons and holes. Later 

in 2013, Docampo fabricated an inverted solar cell architecture with up to 10% 

efficiency. The perovskite CH3NH3PbI3-xClx was deposited on top of the hole transport 

material, followed by the electron collector in a planar film.69 This work showed the 
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potential and versatility of the perovskite absorber to be applied in photovoltaic 

technologies. These discoveries showed that perovskite-based solar cells can no longer 

be seen as dye-sensitised solar cells but as a new type of photovoltaic system. 

 
The extensive research in the perovskite field and consequently improvement in device 

fabrication and deposition techniques in the following years, led to a quick increase in 

device efficiencies. Initially, the perovskite material was deposited in a single step 

process, but in 2013 a sequential deposition method was introduced for perovskite 

fabrication which gave a PCE of 15%70. In this work, a mesoporous-TiO2 perovskite 

structure was fabricated in which a high concentrated solution of lead iodide (PbI2) 

was first introduced into the TiO2 nanopores by spin-coating to obtain a high loading 

into the mesoporous film followed by a brief dip into a dilute CH3NH3I solution. The 

perovskite crystallized quickly within the pores resulting in an increase in the device 

performance70. After that, the vapour deposition method for the fabrication of planar 

perovskite solar cells showed 15.4% PCE67. Following that a sequence of striking 

improvements of the PCE values were reported. To date perovskite solar cells have 

reached efficiencies over 20%30 surpassing values of the commercialised 

polycrystalline silicon solar cells. This rapid development is mainly the product of the 

remarkable properties of the perovskite absorber materials, such as high panchromatic 

absorption, large carrier diffusion length, low non-radiative recombination and easy 

processability, leading to great potential for low-cost and large-scale technologies.55,71 

 Structure and Mechanisms of Perovskite solar cells 
 

Perovskite solar cells can be divided into four groups based on their architecture and 

components: a)mesoporous active structure such as mp-TiO2 or similar oxides, 

b)mesoporous-superstructure (Al2O3 and others) c)planar structure and d)inverted 

configuration. Figure 1.8 gives a broad overview of the various configurations of 

PSCs. Among the different PSC architectures, the mesoscopic device configuration of 

FTO/c-TiO2/mp-TiO2/Perovskite/HTM/Au is the most widely used due to the ease of 

fabrication and high efficiencies obtained. FTO is the fluorine-doped tin oxide layer 

deposited on glass, c-TiO2 is a compact layer of titanium dioxide (around 50 nm), mp-
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TiO2 is the mesoporous layer (450 nm), HTM is an organic hole transport material and 

the metal contact used is gold. 

 

 

Figure 1.8: Diagram of the device assembly of each group in PSCs. Top-left: mesoporous 

active structure. Top-right: Mesoporous-superstructure. Bottom-left: Planar configuration. 

Bottom-right: Inverted structure.  

 

The working mechanism of PSCs has some key differences to dye-sensitised solar cells 

(see Figure 1.9). Light is absorbed in the perovskite layer and generates free electrons 

and holes. In dye molecules, electrons and holes are tightly bound together as excitons. 

To dissociate excitons into free electron and hole pairs, these excitons need to 

overcome its binding energy. The small binding energy of halide perovskite leads to 

an efficient generation of free carriers upon light absorption in comparison to dye 

molecules. The free electrons formed at the perovskite/HTM interface need to diffuse 

through the absorber layer before being extracted at the mp-TiO2/perovskite interface. 

Charge separation occurs by the injection of the electrons into the conduction band of 

the electron transport material or the hole transfer into the HOMO orbital of the HTM. 

It is crucial that these steps are kinetically faster that the recombination process at the 

interfaces TiO2/perovskite/HTM. The injected electrons then travel through the 
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mesoporous particles to reach the electrode and pass through the external circuit until 

they reach the counter electrode72. Interfacial properties largely determine the device 

performance. The use of mesoporous TiO2 leads to faster charge collection due to the 

large interface between the TiO2/perovskite which leads to better efficiencies in 

comparison to the mesosuperstructure and planar configuration. In order to improve 

both device performance and stability, there has been extensive research to optimise 

each component of the perovskite structure. Here we will review some of these 

developments. 

 

 

Figure 1.9  Left: Schematic view of the perovskite solar cell configuration of FTO/c-TiO2/mp-

TiO2/Perovskite/HTM/Au. Right: Energy band diagram and main process of the solar cell: 1. 

Absorption of light and generation of free carriers, 2. Charge collection and 3. Charge 

extraction. 

 

1.5.1 Electron Transport Material (ETL) 
 

 Compact Layer 

For the typical mesoscopic perovskite cell configuration a thin and dense layer is 

deposited between the transparent conducting oxide (TCO) layer and the mesoporous 

scaffold. The compact layer facilitates the electron transport through the FTO layer 

and acts as a blocking layer to avoid direct contact between the conducting substrate 

and the HTM layer which minimises charge recombination. The most widely used 

blocking layer is TiO2 which is generally deposited by spin-coating methods or spray 
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pyrolysis73,74 and often requires high temperature sintering to obtain a dense structure. 

Because the blocking layer can significantly affect the device performance, there has 

been numerous studies to optimize it. Interface engineering such as TiCl4 and UV(O3) 

treatment has been employed to further improve stability and power conversion 

efficiency of perovskite solar cells75,76. The TiCl4 treatment increases the quality of the 

compact TiO2 film which minimises charge recombination. On the other side, the 

UV(O3) treatment removes organic contaminants from the surface and enhances 

wettability of the TiO2 surface which reduces the defects at the interface and improves 

contact with the perovskite layer. Doping strategies have also been employed to 

improve the properties of the compact layer. For instance the use of F-doped TiO2
77 

and Mg-doped TiO2
78 as blocking layers in perovskite solar cells led to an increase of 

the PCE from 13% to 14.12% for F-doped TiO2 and from 9.16% to 12.28% for Mg-

doped TiO2. The superior properties of the doped TiO2 including higher conductivity 

and improved electron transfer process originated the better device performances. 

 

Low temperature sintering is important to construct flexible substrates and reduce cost 

of device fabrication. Therefore, there have been several strategies to reduce the high 

temperature process required for TiO2. One approach is the use of low temperature 

techniques for TiO2 deposition79–83 such as spin coating followed by low temperature 

annealing79, ultrasonic spray coating81 and dip coating83. For example, 

Wojciechowski, et al. 2014 successfully developed a low-temperature (<150 ℃) route 

to process the TiO2 compact layer reaching a PCE of 15.9%79. Another approach is 

replacing TiO2 with other materials. Zinc oxide (ZnO)84,85, tin oxide (SnO2)86, caesium 

carbonate (Cs2CO3)87, graphene88, fullerene89 are some of the alternative materials 

proposed as blocking layers that have demonstrated considerable device performance. 

 

 Mesoporous Scaffold Layer 

Among other metal oxides, TiO2 nanomaterials have received greater attention due to 

chemical stability, non-toxicity and low cost. The main function of the mp-TiO2 is 

transporting the photo-generated electrons from the perovskite layer. The mesoporous 

layer is usually deposited by screen-printing or spin-coating on top of the compact 
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layer followed by a high temperature sintering treatment. The quality of the 

mesoporous TiO2 film affects the crystallisation of the perovskite material. For high 

device performance, an efficient infiltration of the perovskite precursor into the pores 

of the mesoporous layer is crucial90. Research has been focused on studying the impact 

of the mesoporous scaffold on device performance. In 2013, Kim91 and collaborators 

reported the influence of the TiO2 film thickness on the device parameters. A 9.7% 

PCE was achieved by using CH3NH3PbI3 as the light absorber which was deposited 

on a mesoporous TiO2 film (0.6 µm). Increasing the thickness of the TiO2 did not 

significantly affect the current density (Jsc) mainly due to the large optical absorption. 

However, upon increasing the thickness of TiO2, FF (fill factor) and Voc (open circuit 

voltage) values decreased matching the drop in PCE to 5.9% (1.58 µm) which is 

mainly attributed to an increase of the electron transport resistance in the film. As a 

result, studies have found that the optimized thickness for mesoporous TiO2 is in the 

range of 400-600 nm.92 

 

The size and shape of the TiO2 nanoparticle (NP) also impacts the device performance 

of perovskite solar cells. On one hand, smaller TiO2 nanoparticles are required for 

larger surface area at the interface perovskite/TiO2 which led to efficient electron 

injection from the perovskite to the TiO2. On the other hand, larger nanoparticle size 

facilitates the infiltration of the perovskite which is crucial for blocking the direct 

contact between the HTM and TiO2 and reducing charge recombination. Furthermore, 

a larger TiO2 NP size is beneficial to minimise grain boundaries in the TiO2 layer for 

efficient electron transport93,94. Han and collaborators studied the effect of the TiO2 

NP size on a hole-conductor-free mesoscopic perovskite device structure. It was found 

that the size of the TiO2 nanoparticles influenced the infiltration of the perovskite 

sensitizer into the pores and the charge transfer kinetics between the perovskite and 

the TiO2. The highest PCE of 13.41% was obtained with a diameter of 25 nm TiO2 

NP93. In a different study, Sung and colleagues prepared spherical TiO2 nanoparticles 

of different diameters (from 30 to 65 nm) and used them in mesoporous perovskite 

solar cells. The results demonstrated that the 50 nm TiO2 nanoparticles exhibited the 

best morphology (pore size, shape and pore size distribution) for mesoscopic solar 
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cells providing better device performance (17.19%) and a highly reproducible PCE 

attributed to an efficient infiltration of the perovskite sensitizer into the mesoporous 

TiO2.
94 

 

Titanium dioxide is a wide-band gap semiconductor with three crystallographic forms 

in nature:  anatase (tetragonal), rutile (tetragonal) and brookite (orthorhombic).  The 

band-gaps of the crystalline forms are 3.2 eV for anatase and 3.0 eV for rutile. Rutile 

is thermodynamically the most stable form of TiO2. However, anatase is the most 

common structure used for solar cells applications due to its higher conduction band 

edge showing lower charge recombination95,96. The crystal structure of TiO2 can also 

influence device performance of PSCs. Incomplete infiltration of the perovskite 

absorber into the pores of the mesoporous layer and inefficient electron mobility are 

the main complications of the 3D mesoporous layer. Therefore, different forms such 

as one-dimensional (1D), three-dimensional (3D) and hierarchical structures have been 

examined in perovskite solar cells. One-dimensional nanostructures provide a direct 

route for electron transport and better perovskite infiltration which is beneficial for 

device performance. Some 1D nanostructures studied in perovskite solar cells include 

nanowires97, nanorods91,98, nanofibers99 and nanotubes100. Hierarchical structures101,102 

and other 3D nanostructures103,104 have also been examined to increase the low surface 

area presented in the 1D nanostructures105. Furthermore, interface engineering and 

elemental doping have been important to improve the electronic properties of the mp-

TiO2  and enhance the stability and device performance of perovskite solar cells106–109. 

Other oxide semiconductors that have been employed in the fabrication of perovskite 

devices include SnO2
110,111, ZrO2

112, SiO2
113,114 and ZnO115. SnO2 has a higher band 

gap (3.8 eV than TiO2 (3.2 eV) which improves device stability under UV light (a 

common problem with TiO2). Additionally, the larger electron mobility and deeper 

conduction band of SnO2 facilitate electron transport. Furthermore, SnO2 is compatible 

with flexible substrates due to the lower temperature sintering required in comparison 

with TiO2. Devices of 17.21% have been achieved using SnO2 as an electron transport 

layer with CH3NH3PbI3 as the light absorber111. ZnO has a similar band gap to TiO2.  

The higher conductivity  and lower temperature processing required for ZnO in 
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comparison to TiO2 makes it an ideal candidate for flexible solar cells115. A PCE of 

15.7% on PSC was obtained based on ZnO nanoparticles as the ETL with a planar 

layer of CH3NH3PbI3-xClx (MAPbI3-xClx or MAPIC) as the absorber layer85. For 

mesosuperstructure architectures, SiO2
113,114 and ZrO2 112 are some of the 

nanostructured oxides examined. A PCE of up to 12.4% for SiO2 and 10.8% for ZrO2 

have been reported. 

 

1.5.2 Light absorber perovskites 
 

Methyl ammonium lead iodide (CH3NH3PbI3, MAPbI3 or simply MAPI) has been the 

most studied hybrid perovskite for solar cell applications and it is commonly referred 

to as the “standard perovskite” material. Ideally a good light absorber should have a 

panchromatic absorption covering all visible light as well as the near infrared region 

of the solar spectrum with high absorption coefficient. MAPbI3 is a direct band gap 

semiconductor with an absorption coefficient of 1.5 x 104 cm-1 measured at 550 nm 

which makes it an efficient light absorber material. Nevertheless, MAPbI3 presents 

relatively weak absorption over 800 nm due to its band gap of 1.55 eV71. Band gap 

engineering is one of the strategies to modulate the optoelectronic properties of the 

perovskite absorber. For instance, by decreasing the atomic size of the halide from 

iodide to bromide or chloride, the band gap increases from 1.55 eV for CH3NH3PbI3 

to 2.39 eV for CH3NH3PbBr3 (or MAPbBr) and 3.17 eV for CH3NH3PbCl3 (or 

MAPbCl). This is due to an increase of the covalent interaction between the halide 

anion and lead. Because of the lower band gap, it is expected that both MAPbBr and 

MAPbCl show lower performance in perovskite solar cells116. In the case of perovskite 

structure with mixed halides, CH3NH3PbI3-xClx has been used in several studies 

showing a similar band gap to MAPbI3 but longer carrier diffusion length66,69. 

Additionally, by increasing the composition of Br in MAPb(I1-xBrx)2 ( 0≤x≤1) the 

absorption band shifts to shorter wavelengths which causes a decrease of the 

photocurrent density.116,117 

 

The organic cation MA in MAPbI3 has also been exchanged with other cations like 

formamidinium HC(NH2)2
2+. This modification caused a slight decrease of the energy 
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band gap to 1.5 eV and the absorption wavelength extended by about 40 nm118,119. 

Moreover, the mixed-organic cation perovskite MA0.6FA0.4PbI3 exhibited an even 

smaller band gap (1.48 eV) producing a higher PCE and less hysteresis than 

MAPbI3
120. Another approach to tune the band gap is by replacing the metal cation. 

The bandgap decreases from 1.55 eV to 1.17 eV when Pb+2 in MAPbI3 is mixed with 

Sn+2. Perovskite solar cells with MASn0.5Pb0.5I3 as the light absorber showed 4.18% 

PCE. This material can absorb light up to 1060 nm which might be beneficial for 

tandem solar cells121. The use of mixed cations and halides in perovskite not only 

enhanced the optoelectronic properties, but also has helped to improve the stability of 

the perovskite material. Although currently the best efficiency devices are achieved 

with mixed ion perovskites, MAPbI3 is still widely used due its ease of synthesis and 

high efficiencies.122
 

 

One of the major concerns is the toxicity of lead in perovskite solar cells. Thus, to 

solve this problem, extensive research has been done to find other non-toxic metal 

cations123,124. Attention has been focused mainly on tin perovskites showing up to 6% 

efficiencies for MASnI3
125,126. Nonetheless, the poor stability of the perovskite 

material is the major problem due to the easy oxidation of Sn2+ to Sn4+. Additionally, 

some studies have pointed out that tin might be as harmful to humans and the 

environment as lead127. Therefore more recently, Bi-based compounds have been 

studied due to the excellent stability and non-toxicity128,129. Nevertheless, lead-free 

perovskites give significantly lower efficiencies. Another route to not only avoid 

leakage of lead but also improve stability is better encapsulation and recycling of the 

perovskite solar cells.130,131 

 

1.5.3 Counter  Electrode 
 

The counter electrode is the place where the holes from the oxidised perovskite are 

transported and where they recombine with the electrons which travel around the 

circuit. Usually, for perovskite solar cells, a thin layer of precious metal such as gold 

or silver is deposited on top of the hole transport material as the back contact. Both 

silver and gold have good conductivity and their work function matches with the 
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perovskite absorber and the hole transport layer. In order to replace the expensive gold, 

various alternatives have been investigated in perovskite solar cells132,133. Subodh G. 

Mhaisalkar and colleagues fabricated perovskite solar cells using laminated films of 

carbon nanotubes (CNT) as a hole collector with 6.87% efficiency. The efficiency was 

later improved to 9.90% by the addition of the hole transport material134. Compared to 

Ag and Au, carbon counter electrodes are much cheaper and easier to deposit 

especially for large-scale modules. 

 

 Hole-Transport Materials 
 

The HTM plays an important role in the mechanism of perovskite solar cells and is a 

key component in almost all device architectures. The HTM extracts the photo-

generated holes from the perovskite and transports them to the back contact electrode 

improving the hole transfer efficiency. The HTM also serves as an energetic barrier 

between anode and perovskite layer  minimising charge recombination  at the 

TiO2/perovskite/HTM interface which leads to better device performance135–137. 

Similarly, the HTM influences the open circuit voltage138,139 and reduces the 

degradation at the Au/perovskite interface140,141. For efficient solar cells, the HTM 

should meet a list of desirable properties: 1) compatible HOMO energy level layout 

with the valence band of the perovskite for efficient charge extraction, 2) good 

solubility in organic solvents, 3) sufficient hole mobility and conductivity, 4) good 

thermal and photochemical stability 5) minimal absorption in the visible and near 

infra-red region of the solar spectrum. 

 

1.6.1 Inorganic Hole Transport Materials 
 

Inorganic materials are a good choice for the HTM because of their intrinsic stability, 

low cost and high conductivity. Kamat and collaborators reported copper iodide (CuI) 

as the first inorganic HTM in mesoscopic PSC showing a modest 6.0% PCE. The poor 

performance was attributed to the high recombination measured by impedance 

spectroscopy. However, due to the higher conductivity in comparison to spiro-

OMeTAD better fill factors were obtained with CuI devices142. Later, CuI was 
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introduced in a planar inverted perovskite structure showing an impressive PCE of 

16.8%. The unsealed CuI devices showed higher air stability than the reference cells143. 

Later, the Ito group reported CuSCN as HTM using a mesoscopic inverted structure 

with only 4.85% of PCE144 which was later improved to 12.4%145 by using a low-

temperature solution-process deposition method. 

 

Moreover, Cu2O and CuO were deposited as HTMs in PSCs by spin-coating and gave 

power conversion efficiencies of 13.35% and 12.16% respectively146. Previously, 

nickel oxide was used in DSSCs and now it is one of the most relevant inorganic HTMs 

in PSCs showing efficient (16.1%) and stable solar cells147. In order to further improve 

the stability of the perovskite solar cells, Grätzel, Han and colleagues reported the 

addition of Li and Mg in the NiO layer to create Li0.05Mg0.15Ni0.8O and achieved a 

15.0% PCE in a 1.017 cm2 device.148 

 

The distinct properties of quantum dots have also attracted interest for application as 

HTMs in PSCs obtaining a maximum PCE of 8.4% using a CuInS2/ZnS core-shell 

structure in mesoscopic perovskite solar cells. The good solubility of CuInS2 in polar 

solvents makes it compatible with solution processing techniques149. Although 

inorganic materials offer relatively high efficiencies, these are still lower than organic 

HTMs and bring problems about stability in humid air. Furthermore, there are concerns 

about methods of deposition for inorganic HTMs such as solution processing where 

the solvent can also dissolve the perovskite.150 

 

1.6.2 Organic Hole Transport Materials 
 

Organic molecules have been extensively studied due to their unique advantages such 

as high solubility in organic solvents, suitable hole mobility, thermal and 

photochemical stability and tunability of the electronic properties via molecular 

engineering. Organic HTMs can be divided in two major categories: small organic 

molecules and polymers. Numerous alternative organic HTMs with different motifs 

has been studied for photovoltaic applications. Carbazoles,151,152 triazatruxenes,153 

azulenes154 and triphenylamines155 are some of the structures that have been 
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investigated as HTMs in perovskite solar cells among others156,157.  Figure 1.10 

displays some HTMs with different structural cores studied previously. Among all the 

molecular motifs used for HTMs, triarylamines are one of the best candidates for high 

efficient solar cells as a result of their good charge transport and thermal stability. 

Triarylamine derivatives are well-known photo-conducting materials and have been 

used extensively in the xerographic industry. Triphenylamines are good electron 

donors as a result of the easy oxidation of the nitrogen centre and their capacity to 

transport positive charges via radical cations. The triphenylamine (TPA) unit can be 

used to build a wide variety of both low molecular weight compounds and 

polymers.158,159 

 

 

Figure 1.10 Representatives molecular structures of hole transporting materials used before. 
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Figure 1.11 Molecular structure of Spiro-OMeTAD. 
 
 

Small organic molecules are usually more efficient that polymer-based HTMs and 

have attracted most attention due to their simplicity, ease of purification, batch-to-

batch consistency and easy modification. Spiro-OMeTAD (Figure 1.11) is the most 

studied HTM and is often used as a reference to compare other HTMs in photovoltaic 

devices. In 1998, it was first introduced as a HTM in a ssDSSC delivering a PCE of 

just 0.7%52.  To   date, spiro-OMeTAD is widely employed in perovskite solar cells 

when high efficiency is required. Nevertheless, spiro-OMeTAD in its pristine form has 

poor conductivity causing high series resistance (Rs) in the devices due to poor charge 

transport. This leads to the need to use p-type dopants such as tert-butylpyridine (TBP) 

and lithium bis(trifluoromethylsulfonyl)imide (Li-TFSI) to enhance the conductivity 

and improve device performance160. The use of additives increases the cost of 

fabrication and induces device instability. 

 

One strategy to tune the properties of spiro-OMeTAD is to change the position of the 

methoxy groups (-OCH3). Depending on the substitution, the methoxy group can 

exhibit a electron-withdrawing effect in the meta position and an electron-donating 

effect in the para position. Meanwhile, the ortho position influences the oxidation 

potential by steric effects. Seok and collaborators altered the optoelectronic properties 
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of Spiro-OMeTAD by changing the position of the methoxy groups. The ortho-

substituted derivative exhibited better device performance than the para- and meta-

substituted analogues with an overall PCE of 16.7%161. Despite offering high 

efficiencies, Spiro-OMeTAD is expensive due to its lengthy synthetic procedure and 

problematic purification which have limited its commercialisation. Therefore, 

researchers have focused on replacing Spiro-OMeTAD with cheaper alternatives that 

can provide similar efficiencies and better stability in perovskite solar cells. Recently, 

Maciejczyk and colleagues reported a low cost synthesis of four novel triarylamine-

based HTMs using the spiro[fluorene-9,90 -xanthene] (SFX) core coded as SFX-TAD, 

SFX-TCz, SFX-TPTZ and SFX-MeOTAD (Figure 1.12). The solubility of SFX- TCz, 

SFX-TPTZ and SFXTAD was too low to test them in solar cells. Nevertheless, SFX-

MeOTAD demonstrated a high efficiency of 12.4% in which 13.0% was obtained with 

Spiro-OMeTAD.162 

 

 

Figure 1.12 Molecular structures of spiro-based hole transport materials. 
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Other molecules have similar properties to spiro-OMeTAD but they are smaller and 

easier to synthesize and purify. There has been extensive research on the synthesis of 

new small organic molecules for HTMs. For instance, Songtao and co-workers 

reported two triphenylamine-based HTMs with butadiene derivatives noted as HTM1 

and HTM2 (Figure 1.13) in perovskite solar cells. These HTMs are easier to synthesize, 

exhibited higher hole mobility and very close PCE (11.34% for HTM1 and 11.64% for 

HTM2) to that achieved with spiro-OMeTAD making them promising alternatives163. 

In another example, Hairong also reported a low cost synthesis of new HTMs by using 

the available EDOT (3,4-ethylenedioxythiophene ) unit as the core structure. PCEs 

were comparable with solar cells using spiro-OMeTAD.164 

 

 

 

Figure 1.13 Molecular structure of simple hole transport materials. 
 

One of the mains concerns in the fabrication of perovskite solar cells is the stability of 

the HTM. The morphology of the HTM film, which depends on the molecular 

structure, can significantly affect the stability of devices. An amorphous glassy state 

is the most beneficial for PSCs due to the easy formation and absence of grain 

boundaries. The stability of the morphology of any HTM is given by the glass 

transition temperature (Tg). A relative high Tg is required because devices usually work 

at higher temperatures than room temperatures and it is crucial that the deposited HTM 

film sustains the amorphous glassy state throughout those temperature changes 156. 
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One of the problems with small organic molecules with low molecular weight is that 

they crystallise easily with some crystals forming below the melting point which leads 

to the formation of grain boundaries. Polymers present some improved properties 

compared to their low molecular weight equivalents such as excellent film formation 

which allows an easy and low-cost manufacture of large scale technologies. One of the 

most notable improvements is that polymers have higher Tg and do not crystallise 

easily bringing an important potential advantage for the stability of the devices. 

Furthermore, the hydrophobic properties of polymers act as a protecting layer for the 

perovskite film to the ambient which enhances the solar cell stability. Previous studies 

of polymers as promising HTMs in PSCs include (Figure 1.14): poly(3- 

hexylthiophene)(P3HT)165, poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-

b;3,4-b’]dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)] (PCPDTBT)166, poly[N-9’-

heptadecanyl-2,7-carbazole-alt-5,5-(4’,7’-di-2-thienyl-2’,1’,3’-benzothiadiazole)] 

(PCDTBT)167, poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine] (PTAA)168 and 

others.156,157 

 

Figure 1.14 Molecular structures of most representatives polymers used as HTM. 

 



CHAPTER 1. INTRODUCTION 

31 

 

 Research Proposal 
 

As discussed previously, spiro-OMeTAD is the most common HTM in perovskite 

solar cells largely due to its extensive research as an HTM in OLEDs and solid state 

dye-sensitised solar cells. Nevertheless Spiro-OMeTAD is expensive because of its 

lengthy synthetic procedure, low yielding synthesis and problematic purification. 

These issues have hampered the commercialization of efficient, low cost perovskite 

solar cells. Therefore, it has become important to design and develop more economical 

alternative HTMs. Triphenylamine (TPA) like Spiro-OMeTAD are widely used due to 

the easy oxidation of the nitrogen centre and good charge transport.  Other 

triarylamines have similar properties to Spiro-OMeTAD but are easier to synthesise. 

The purpose of this work is to analyse different HTMs in perovskite solar cells. 

Therefore, three series of triphenylamine-based HTM were designed, synthesised and 

characterised for application in perovskite solar cells.   

 

Triarylamines with lower molecular weight than spiro-OMeTAD, are easier to prepare 

and present similar properties making it relatively easy to create a series of HTMs with 

parallel structures via molecular engineering. A new series of diacetylide-

triphenylamine (DATPA) derivatives with five different alkyl chains in the para 

position MeO, EtO, nPrO, iPrO and BuO was synthesised, fully characterised and their 

function as hole-transport materials in perovskite solar cells (PSC) studied. Their 

thermal, optical and electrochemical properties were investigated along with their 

molecular packing and charge transport properties to analyse the influence of different 

alkyl chains in the solar cells parameters. The alkyl chain length of semiconductive 

molecules plays an important role for achieving high performance perovskite solar 

cells.  

 

Another option for HTMs is the utilization of p-type conducting polymers. These 

polymers are advantageous over small molecules due to their low cost, good device 

stability, simple device fabrication and easy preparation of designable structures. 

Styrenic triarylamines (Chapter 4) were prepared by the Hartwig-Buchwald coupling 

followed by their radical polymerization. All monomers and polymers were fully 
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characterised through electrochemical, spectroscopic and computational techniques 

showing suitable HOMO energy levels and desirable optoelectrochemical properties. 

The properties and performance of these monomers and polymers as HTMs in 

perovskite solar cells were compared in terms of their structure. Despite the lower 

efficiencies, the polymers showed superior reproducibility on each of the device 

parameters in comparison with the monomers and spiro-OMeTAD. 

 

Finally, star-shaped structures (Chapter 5) combine the advantages of both small 

molecules, like well-defined structures and physical properties, and polymers such as 

good thermal stabilities. Two star-shaped triarylamine-based molecules were 

synthesised, fully characterised and studied for their function in perovskite solar cells. 

In total this work provides three series of triarylamine-based hole transport materials 

for perovskite solar cells application and enables a comparison of the pros and cons of 

different design structures: small-molecule, polymeric and star-shaped. 
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 Experimental Methods 

 Characterisation methods 
 

To confirm the structural identity of each novel hole transport material synthesised, a 

variety of techniques was required, principally NMR spectroscopy, mass spectrometry 

and elemental analysis. 1H and 13C NMR spectra were recorded on a Bruker Advance 

500 spectrometer (500 MHz). The deuterated solvents are indicated in the synthesis 

description. Chemical shifts, δ, are given in ppm, using the solvent residual as an 

internal standard. MS were recorded on Micro-Tof using electrospray ionisation (ESI-

MS) and Electron Ionization (EI-MS) techniques. Elemental analyses were carried out 

by Stephen Boyer at London Metropolitan University. 

 

 Electronic Absorption Spectroscopy 
 

Hole transport materials with poor absorption in the visible to near infrared region (400 

to 800 nm) bring additional benefits and flexibility in their application in inverted and 

tandem configurations where any absorption in the visible range of light is undesirable 

to avoid competition with the absorber material. Electronic Absorption Spectroscopy 

is a powerful technique to study the optical properties and gain understanding about 

the electronic energy states of molecules.  

 

When molecules absorb radiation, the energy from the incoming photons are used to 

excite electrons from the ground state to higher electronic states. Only photons with 

the exact frequency can cause transitions from one electronic state to another one. 

Depending on the frequency of the radiation, different processes within the molecules 

can be studied. The total potential energy of a molecule is the sum of all the electronic, 

vibrational and rotational energies (Equation 2.1)169.  

          𝐸𝑇𝑜𝑡𝑎𝑙 = 𝐸𝐸𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑖𝑐 + 𝐸𝑉𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 + 𝐸𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙                       Equation 2.1



CHAPTER 2. EXPERIMENTAL METHODS 

34 

 

Within the electronic states (n=1,2,3…) are vibrational energy levels (v=1,2,3...) and 

within these are rotational levels (j=1,2,3...). A given excitation/transition process 

should give rise to a sharp absorption line. Nevertheless, for molecules, excitations to 

different vibrational and rotational levels overlap, such that upon absorption of light 

many transitions with different energies occur and a broad band of wavelengths is 

obtained. Additionally, in solution this effect is even greater due to intermolecular 

interactions169.  

 

Figure 2.1 Schematic representation of the typical set-up of an absorption experiment. A 

polychromatic light  passing through a sample where some of the light is absorbed and causes 

excitation of electrons. I0 is the incident light, I is the light transmitted light through the 

samples, l is the length of the cell.  

 

A UV-visible spectrometer is used to measure the absorbance of UV or visible light 

by a sample at a single wavelength or over a scan range in the spectrum. The UV region 

ranges from 190 to 400 nm and the visible region from 400 to 750 nm. In this technique 

usually the sample is fully dissolved in an appropriate solvent and the solution is held 

in an optically transparent cuvette. The reference cell contains the solvent used to 

dissolve the sample and it is commonly referred to as the blank.  A beam light is passed 

through the sample (Figure 2.1) . The intensity of light passing through the sample (I) 

is compared to the intensity of the incident light (I0) measured with the reference cell.  

It is assumed that the portion of the light not transmitted by the samples has all been 

absorbed by the sample. The transmittance is given by the following equation:  
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𝑇 =
𝐼

𝐼𝑜
                                          Equation 2.2 

The absorbance (A) of the sample is related through the following equation:  

𝐴 = − log10 𝑇                                Equation 2.3 

A UV-visible absorption spectrum expresses the absorbance as a function of 

wavelength. The higher the absorbance, the more of that particular wavelength is 

absorbed. The wavelength most strongly absorbed is usually referred to as the “lambda 

maximum” (λmax). The intensity of light that can be absorbed is specific for each 

material and varies with its chemical structure. The absorption of light by a sample is 

directly proportional to the concentration of absorbing molecules (for dilute solutions) 

and the thickness of the cuvette holding the sample in the light path. This relationship 

is given by the Beer-Lambert Law (Equation 2.4)169,170.  

𝐴 = 𝜀𝑐ℓ                                      Equation 2.4 

Where c is the concentration of the sample, ℓ is the path length and ε is the molar 

absorption coefficient. The molar absorption coefficient determines how strongly a 

substance reduces the intensity of light when passing through the sample which is 

constant for a particular sample.  

 
Figure 2.2 Example of the Beer-Lambert plot. 
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The molar absorption coefficient for a material can be calculated by measuring the 

absorbance of a series of sample solutions of known concentration and drawing a graph 

of absorbance versus concentration (Figure 2.2).  The Beer-Lambert plot should be 

linear and the gradient of the resulting line gives the molar absorption coefficient. 

Deviation away from the linear dependence of the absorbance on concentration of the 

Beer-Lambert Law may be due to aggregation effects at high concentrations or the 

presence of undissolved species. This issue can be solved by using lower 

concentrations and a better choice of solvent. 

 

Some transitions are more likely to happen than others. Allowed transitions typically 

have high probability of occurring  and forbidden transitions are less probable. 

Theoretically, the allowed transitions should follow three main selection rules171:  

1) Spin Selection Rule (ΔS=0): The overall spin state must not change during an 

electronic transition. Theoretically,  a transition of an electron in a singlet state 

(S=0) to a triplet state (S=1) is forbidden.  

2) The Laporte selection rule: In a molecule with centre of symmetry, transitions 

between the same parity (inversion symmetry) are forbidden. For instance, d 

orbitals have inversion symmetry, therefore d-d transitions (g→g) are forbidden, 

but transitions from d and p orbitals are allowed (g→u) because p orbitals are 

antisymmetric to inversion. 

3) Δl=±1: Thus transitions involving Δl=±1 are allowed.  For instance electrons can 

jump from 2p orbitals to 3s orbitals but the electron cannot jump between the three 

2p orbitals because in that case Δl=0. Therefore, s→s, p→p, d→d and f→f 

transitions are forbidden.  

 Photoluminescence  
 

Once a molecule is excited to  higher energy levels (S1, S2….Sn) by absorption of light, 

it can return back to the ground state by non-radiative decay (heat) or radiative decay 

(photoluminescence). A fluorimeter spectrometer is used to measure the 
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photoluminescence of a molecule by determining the energy of an emitted photon. The 

instrument comprises four basic items: a source of light, a monochromator, a sample 

holder and a detector (Figure 2.3). The two representative spectra obtained from a 

fluorimeter are the emission and excitation spectra.  The emission spectrum is 

produced by exciting the sample at a fixed wavelength and monitoring the photons 

emitted across a range of wavelengths. The excitation scan is obtained by exciting the 

sample across a range of wavelengths and monitoring only the emitted radiation at a 

fixed emission wavelength. Generally, the excitation spectrum should be similar to the 

absorption spectrum of the molecule measured by UV/Vis spectroscopy. Upon 

excitation to higher vibrational levels of an excited state, the molecules loses the excess 

vibrational energy and relaxes back to the lowest vibrational level of the excited state. 

Therefore, the emission spectrum is usually a mirror image of the excitation spectrum 

at a wavelength longer than the exciting spectrum.172,173  

 

 

Figure 2.3 Schematic representation of a typical emission spectroscopy experiment. 

 

When a molecule is excited to higher electronic states, not all the energy absorbed is 

re-emitted as radiative decay. Some of the energy is released via non-radiative decay. 

Non-radiative decay usually take place in two ways. The first one comprises 

intramolecular redistribution of the energy between electronic and vibrational states 

called internal conversion and vibrational relaxation respectively.  In vibrational 
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relaxation, the molecule relaxes back to the lowest vibrational level before emission 

without any change in the electronic state. However, if there is a change in electronic 

state, the process is called internal conversion. The second way for non-radiative decay 

to take place is called ‘inter-system crossing’. Inter-system crossing involves a change 

in the spin multiplicity from an excited singlet state to an excited triplet state which 

has a lower energy than the singlet. Then the electron can relax back by radiative decay 

by  phosphorescence. In phosphorescence, the process involves a transition from a 

triplet excited state to a singlet ground state. The other non-radiative process is called 

external quenching and is where the excited molecule loses energy by interaction with 

another molecule in the surroundings and relaxes back to the ground state without 

emission. The interaction could be with the solvent, an impurity or oxygen.  The 

possible process occurring in a photoluminescent molecule following absorption of a 

photon is illustrated in the Jablonski diagram (Figure 2.4).174 

 

Figure 2.4 Jablonski diagram174. 
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 Electrochemistry 
 

Electrochemistry is very important in material characterisation because it helps to 

estimate the position of the HOMO and LUMO energy levels of materials. This 

information is relevant for assessing the success or failure of a particular material in 

its desired application.  For perovskite solar cells, a proper energy alignment with the 

HOMO energy level of the HTM and the valence band of the perovskite is crucial for 

effective hole transfer and efficient solar cells. Furthermore, electrochemistry 

techniques are also used to evaluate the reversibility and stability of the redox process. 

The oxidation involves an electron extraction from the HOMO level and is commonly 

correlated to the ionization potential, whereas the reduction is linked with electron 

affinity and gives information on the LUMO level. 

 

 

Figure 2.5 The three-electrode system. 

 

The three-electrode system which comprises a working (WE), a counter (CE) and a 

reference electrode (RE), is the most common experimental setup used in 

electrochemistry (Figure 2.5). The reference electrode consists of a half-cell with a 

stable and well-defined potential. The reference electrode used in this work is the 
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silver/silver chloride electrode (Ag/AgCl) that is composed of a silver wire coated with 

a layer of silver chloride (AgCl) immersed in a saturated solution with LiCl. The half 

reaction is: 

𝐴𝑔𝐶𝑙(𝑠) + 𝑒_ ↔ 𝐴𝑔(𝑠) + 𝐶𝑙−                               Equation 2.5 

The working electrode is where the redox reaction of interest takes place. Common 

working electrodes are made of inert materials such as gold, silver, platinum or glassy 

carbon. In this work, a platinum wire with a small surface area was used.  A counter 

electrode is used to close the circuit in the system and it is also commonly made of an 

inert material such as platinum, gold, graphite or glassy carbon. The surface area of 

the counter electrode is generally larger than the working electrode to ensure that the 

process at the CE will not be a limiting factor in the kinetics of the redox process of 

interest occurring at the WE. In this work a platinum (Pt) rod was used as the counter 

electrode.  The working and counter electrode must be constructed with inert materials 

to avoid interference with the redox process under investigation.  The potential is 

applied across the WE and the CE and the overall voltage is measured between the RE 

using Equation 2.6.  

∆𝐸 = 𝑉 = 𝐸𝑊𝐸 − 𝐸𝑅𝐸                             Equation 2.6 

The current flows between the counter electrode and the working electrode. The three 

electrodes are immersed in the electrolyte solution which consists of the active species 

(usually at low concentrations) dissolved in a solvent (such as acetonitrile or 

dichloromethane) with a high concentration of an ionised salt. The redox process 

occurring at the WE typically involves three steps: 

1. Mass transport: The reactants move from the solution to the electrode.  

2. Electron transfer: The reaction at the interface 

3. Mass transport: The product moves away from the electrode surface to the bulk 

solution.  

Commonly the electron transfer depends upon the potential applied. There are three 

types of mass transfer regimes which are convection, migration and diffusion.  

Electrochemical experiments are usually set up to neglect one or two of the mass 
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transfer regimes. Convection can be removed by avoiding stirring, gas bubbling or any 

vibration in the cell.  The migration component can be neglected by the addition of an 

inert electrolyte at a higher concentration than the active species. The electrolyte also 

increases the conductivity to avoid resistance through the solution.175  

 

2.4.1 Cyclic Voltammetry 
 

Cyclic voltammetry (CV) is one of the most common techniques in electrochemistry. 

This technique is performed by sweeping the potential of the working electrode at a 

fixed rate in cyclical segments from an initial potential to a maximum and then back 

to the initial potential as illustrated in Figure 2.6. A cyclic voltammogram is obtained 

by plotting the resulting current as a function of the potential during the scan process.  

The shape of the graph can be explained by understanding the different processes 

happening at the proximities of the working electrode.  

 

Figure 2.6 Cyclic voltammetry waveform 
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Figure 2.7 Cyclic voltammogram for a reversible one-electron process. 

 

In Figure 2.7, the oxidation process occurs from point (a) to (d). Initially, the current 

is very small as the potential applied is insufficient to oxidise the active species (point 

a). As the scan continues, the potential becomes sufficient to induce oxidation and 

leads to an exponential increase of the current (point b). The current increases until it 

reaches a peak where all the species at the surface of the working electrode have been 

oxidised (point c). This resulting current is called the anodic peak current (ipa) and the 

corresponding peak potential is called the anodic peak potential (Epa). As the 

concentration of the non-oxidised species depletes and the oxidised species 

accumulates between the working electrode and the bulk, a diffusion layer is formed 

which increases the distance that the non-oxidised species have to travel to reach the 

electrode and restricts further oxidation processes. During this step, the current begins 

to decline as mass transport become the limiting factor and fewer non-oxidised species 

approach the working electrode (point d). Once the direction of the scan is reversed, 

initially the oxidation process continues until the potential becomes sufficient to 

reduced the oxidised species and a negative current increases exponentially until a 
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peak is reach (point e). This peak is characterised by the cathodic peak current (ipc)  

and the cathodic peak potential (Epc). The  steps of the reduction process resemble that 

of oxidation but with opposite sign (point f).176,177  

 

The experiment is repeated at different scan rates to check that the process is 

chemically and electrochemically reversible. If the compound studied and their 

respectively oxidised/reduced species are stable throughout the experiment and the rate 

of electron transfer is sufficiently fast on an electrochemical timescale, then the process 

can be thought of being chemically and electrochemically reversible. These are 

confirmed using certain well-defined criteria:  

i. The position of the current peaks, Epa and Epc  should be approximately: 

𝐸𝑝𝑎 − 𝐸𝑝𝑐 =
59

𝑛
𝑚𝑉                                Equation 2.7 

Where 𝑛 is the number of electrons transferred  

ii. The ratio of the current peaks should be one. 

|
𝐼𝑝𝑎

𝐼𝑝𝑐
| = 1                                       Equation 2.8 

iii. The position of Epa and Epc should not change with the scan rate.  

iv. The current maxima are proportional to the square root of the scan rate  

𝐼𝑝 ∝ √𝑠𝑐𝑎𝑛 𝑟𝑎𝑡𝑒                                 Equation 2.9 

This means that the plot of the peak current (𝐼𝑝𝑎 or 𝐼𝑝𝑐) versus √𝑠𝑐𝑎𝑛 𝑟𝑎𝑡𝑒 should give 

a straight line.  

 

If the position of Epa and Epc vary with the scan rate it means that the rate of electron 

transfer is slower than the experiment scan and the reaction is electrochemically 

irreversible. If  there is no reverse peak in the process, then the reaction is chemically 

irreversible. This means that the electrochemically species formed has reacted to form 

a new compound such that the reverse scan cannot return the species to its original 

state.175  
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2.4.2 Differential Pulse Voltammetry 
 

Instead of a linear sweep experiment, in differential pulse voltammetry (DPV)  a series 

of potential steps is used to measure the current. The waveform of the process (Figure 

2.8) consists of a series of small pulses with constant amplitude which have been 

placed on a staircase waveform. The potential of the working electrode is stepped 

between two values. The current is measured twice during a single step, before (i1) and 

after (i2) the pulse period (the time required for one potential cycle). The 

voltammogram is obtained by plotting the current difference (i2-i1) against the average 

potential producing a Gaussian peak (Figure 2.9). For DPV symmetric peaks indicate 

reversible reactions whereas irreversible reactions show asymmetrical peaks.   

Figure 2.8 The waveform for differential pulse voltammetry 

 

The peak potential is equal to E1/2 in cyclic voltammetry and the peak current depends 

on the concentration of the species under investigation. This technique has better 

resolution than cyclic voltammetry and is very useful to elucidate the exact potential 
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of overlapping peaks found in CV experiments.  Nevertheless, the technique requires 

more time than cyclic voltammetry as the scan rate is usually measured at 0.02 Vs-1 

which could lead to complications when the material studied produces unstable species 

during the electrochemical process. 

          
Figure 2.9 Differential pulse voltammogram of one reversible process. 

 

2.4.3 Square Wave Voltammetry  
 

The square wave voltammetry (SWV) technique combines a staircase potential 

waveform with a series of potential pulses (Figure 2.10). The current is measured 

twice, one at the end of the forward pulse and the other one at the end of the reverse 

potential pulse. This process is repeated at each step of the staircase ramp throughout 

the experiment.  This technique is not only more sensitive but also faster than 

differential pulse voltammetry. The shape of the curve is similar to DPV as shown in 

Figure 2.9.178,179  
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Figure 2.10 The waveform for square wave voltammetry. 

 X-Ray Diffraction 
 

The crystal structure (the arrangement of atoms in a given crystal) plays an important 

role in determining the properties of a material. X-rays have a wavelength comparable 

with the spacing of the atoms in a molecule which causes the X-rays to diffract in all 

directions. X-ray diffraction is a non-destructive analytical technique which provides 

information about the entire crystal structure.   

 

When X-rays are directed onto a crystalline solid which has a regular distribution of 

atoms, a characteristic diffraction pattern is observed in the photographic film (Figure 

2.11). The Bragg’s Law gives an explanation of this process. Consider two beams with 

identical wavelength approaching a crystalline solid and scattering off two different 

atoms within the crystal as illustrated in Figure 2.12. One beams strikes point A and 

the other travels an extra distance BC and strikes point D on the lattice plane below.  

The additional distance travelled by the lower beam is equal to BD + CD. Using basic 

trigonometry, it is found that this distance is equal to 2𝑑 sin 𝜃 where θ is the angle 

between the incident beam and reflecting plane and 𝑑 is the interplanar distance. If the 
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path length difference (BD + CD) is equal to an integer multiple of the wavelength of 

the radiation, then the reflected waves are in phase (constructive interference) and 

diffracted X-rays will be observed. However, if this path length difference is not an 

integer number of wavelengths then the reflected X-rays will be out of phase and they 

will partially cancel one another (destructive interference). This is known as the Bragg 

condition and is given by the following equation.180 

𝑛𝜆 = 2𝑑 sin 𝜃                              Equation 2.10 

Where 𝑛 is an integer and λ is the wavelength of the X-rays. This model can be 

extended to 3D to solve the complete structure.181   

 

 

Figure 2.11 Scattering of X-rays by points A & D on parallel lattice planes. 

 

In a typical XRD experiment for single crystals, the sample is rotated in the beam (so 

the angle θ changes).  The diffracted X-rays are recorded using a detector onto a 

photographic film producing a series of bright spots and dark regions corresponding 

to conditions of constructive and destructive interference (Figure 2.12). The position, 

intensity and pattern symmetry of the spots provide information in the crystal structure. 

From the diffraction pattern obtained, a unit cell is first found. The X-ray intensity can 

be plotted against the angle θ (usually reported as 2θ) and then by using the Bragg 

equation, the angle 2θ for each diffraction peak can be converted to d-spacing. A 

crystal is treated as a collection of atoms and each peak is attributed to the scattering 

from a specific set of parallel planes.  One can then work out the crystal structure and 

associate each of the diffraction peaks with a different atomic plane in terms of the 
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Miller Index for that plane (hkl), where h, k and l are coordinates defining the crystal 

plane.  The entire structure can be solved using one of two methods. The first one is 

the Patterson method that finds the heavy atoms first and then works out the structure 

on a trial and error basis. The second one is the direct methods and it is the one used 

by the crystallographer Dr. Gary S Nichol to solve the crystal structures in this work.  

 

Figure 2.12 Schematic representation of the simplified experimental set-up for studying X-

rays diffraction by single crystals. 

 

All structures reported in this thesis were determined by Dr. Gary S Nichol.  A suitable 

crystal was selected and mounted on a MITIGEN holder in Paratone oil on a Rigaku 

Oxford Diffraction SuperNova diffractometer. The crystal was kept at T = 120.0 K 

during data collection. Using Olex2, the structure was solved with the ShelXS 

structure solution program, using the Direct Methods solution method. The model was 

refined with a version of ShelXL. 

 

Powder diffraction is a fast analytical technique in which the diffraction pattern is 

obtained from a powder or polycrystalline sample rather than a single crystal. This 

technique is easier than single crystal diffraction because of the minimal sample 

preparation required (no single crystal needs to be grown). A powder or polycrystalline 



CHAPTER 2. EXPERIMENTAL METHODS 

49 

 

material is composed of an enormous number of randomly oriented tiny crystals. Each 

crystallite will diffract in a different direction which depends on its particular 

orientation. As there are many orientations of the crystal, multiple spots are produced 

forming a ring of different 2θ values. The result is a plot of the intensity of the signal 

versus 2θ. The shape of the diffraction peaks is related to the crystallinity of the 

sample. More crystalline materials in a sample give rise  to a sharp intense peak 

whereas less crystalline materials result in broad and less defined peaks. Powder 

diffraction is usually used to determine the phase purity of a polycrystalline sample by 

comparing with the diffraction pattern obtained in single crystal X-ray diffraction.182 

 

In this work, powder diffraction was performed on a Bruker Discover D8 with 

CuKa1/2 source and a scintillation detector. The powder diffraction patterns reported 

in this thesis were determined by Dr. Gary S Nichol. 

 

 Charge Mobility 
 

Carrier mobility is an important parameter in determining device performance in 

photovoltaics as it characterises how fast an electron or hole can move in the 

material.The application of an external voltage in a semiconductor produces an electric 

field across the material that causes charge carries to move with an average velocity 

called the drift velocity. The mobility µ is then defined as the ratio between the drift 

velocity 𝑣𝑑 and the applied electric field E as noted in Equation 2.11.  

𝜇 =
𝑣𝑑

𝐸
                                              Equation 2.11 

In the absence of an electric field charge transport is simply described by diffusion of 

charges. The charge mobility of a material depends on many factors including 

molecular properties, impurities, temperature and molecular packing.183 

 

In organic materials the transport is intermolecular and is also referred to as hopping 

transport. In other words, charge transfer occurs from HOMO to HOMO or LUMO to 

LUMO between individual molecules and not via delocalised bands like in a metal or 

inorganic materials. A polaron hopping model has been suggested for the charge 
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transport mechanism184. When an electron is taken or added into an organic material, 

this changes the spatial distribution of electrons. This adjustment leads to a 

polarization locally centred on the charge carrier. The combination of the charge with 

the geometric distortion of the molecule is referred to as a polaron. If the interaction 

of the polaron with the surrounding molecules is strong enough, the charge may 

become trapped  and move via thermally induced hopping with charges jumping 

between interacting molecules. This means that charge mobility increases with 

temperature.184 

 

The efficiency of charge transport is associated with the position of the interacting 

molecules and therefore to crystal packing. Therefore the analysis of the molecular 

packing is important to understand charge transport in a semiconductor. The packing 

of a molecule can be modified by using molecular engineering by changing side groups 

without modifying the position of the frontier orbitals.   

 

The charge mobility is also influenced by the presence of charge traps in the 

semiconducting material which can arise from grain boundaries in thin films or 

impurities, hence  decreasing the mobility.  

 

Charge mobility can be measured by several techniques including time-of-flight 

(TOF), Field-Effect Transistor configuration and diode configuration. In this work 

charge mobilities were obtained using the Field-Effect Transistor configuration due to 

its simplicity.185  
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2.6.1 Organic Field Effect Transistors  
 

 

Figure 2.13 Schematic of a bottom-gate & bottom-contact field effect transistor. 

 

The FET (field-effect transistor) is a three-terminal transistor that uses an electric field 

produced by one electrode to control the current flow between the two others. A typical 

design of a FET comprises a semiconductor layer which is separated from a gate 

electrode by the insulating layer. Two electrodes, the source and the drain of width 𝑊 

(channel width) separated by a distance L (channel length) are in contact with the 

semiconducting layer (Figure 2.13). There are four existing device configurations: 

1)top-gate/top-contact, 2)bottom-gate/top-contact, 3)top-gate/bottom-contact and 

4)bottom-gate/bottom contact. In this work, pre-fabricated devices with the 

configuration bottom-gate/bottom-contact were used and a layer of the semiconductor 

material was deposited on top.  The voltage applied between the source and gate 

electrodes, produces an electric field which causes the energy levels (HOMO and 

LUMO) to either shift down and accumulate electrons or shift up and accumulate 

holes. The minimum potential necessary to induce mobile charges between the drain 

and source is called the threshold voltage (𝑉𝑇).  

 

In a typical experiment, the source/drain current (𝐼𝑆𝐷) is monitored in response to the 

voltage between the drain and the source (𝑉𝑆𝐷) and the potential applied at the gate 

electrode (𝑉𝐺). For a given voltage 𝑉𝑆𝐷, the current 𝐼𝑆𝐷 strongly depends on the 

potential 𝑉𝐺 applied to the gate.  
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Figure 2.14 Transfer (left) and output (right) curves of an FET device. 

 

Typically, two types of experiments can be performed to characterise FETs. In the first 

one, the voltage 𝑉𝐺 is kept constant, and the potential 𝑉𝑆𝐷 is swept. This is commonly 

referred to as the output curve (Figure 2.14, right). The second way is keeping 𝑉𝑆𝐷 

constant and sweeping 𝑉𝐺. This is usually referred as the transfer curve (Figure 2.14 

left).186  

 

Output Characteristic 

Linear Regime                       𝐼DS = (
𝑊

𝐿
) 𝜇lin𝐶i(𝑉G − 𝑉T)𝑉DS                  Equation 2.12 

Saturation Regime                  𝐼DS = (
𝑊

2𝐿
) 𝜇sat𝐶i(𝑉G − 𝑉T)2                      Equation 2.13 

Transfer Characteristic 

Linear Regime                        𝜇lin = (
𝜕𝐼DS

𝜕𝑉G
) ∙ (

𝐿

𝑊𝐶i𝑉DS
)                             Equation 2.14 

Saturation Regime                 𝜇sat = (
√𝜕𝐼DS

𝜕𝑉G
)

2

∙ (
2𝐿

𝑊𝐶i
)                               Equation 2.15 

 

Where W is the width channel, L is the length channel, 𝐂𝐢 is the capacitance of the 

insulator, 𝐈𝐃𝐒 is the drain-source current, 𝐕𝐃𝐒 is the drain-source voltage, 𝐕𝐆 is the gate 

voltage and 𝐕𝐓 is the threshold voltage. 
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When a small source-drain voltage in applied (𝑉𝑆𝐷 ≪ 𝑉𝐺) a linear regime is formed in 

which the current  𝐼𝑆𝐷 is directly proportional to 𝑉𝑆𝐷 (Equations 2.12 and 2.14). As 𝑉𝑆𝐷 

increase and approaches the value of the gate voltage (𝑉𝐺 − 𝑉𝑇) a depletion region is 

formed giving a space-charge-limited saturation (𝐼𝑠𝑎𝑡) flow across the channel 

(Equation 2.13 and 2.15). At this point any further increases in source-drain voltage 

will not significantly increase the current 𝐼𝑆𝐷 in the device. Mobilities can be extracted 

from both the output or transfer characteristic curves in the linear or saturation regime 

using the corresponding equations presented above. The mobility in the linear regime 

is referred as μlin and the mobility in the saturation regime as μsat.186 

 

 Differential Scanning Calorimetry 
 

The stability of the morphology of amorphous, glassy  HTM is given by the glass 

transition temperature (Tg). Solar cells work usually at higher temperatures than room 

temperature (~80 ℃ ) and can undergo temperatures changes depending on the time, 

location and season. Therefore,  it is important that the deposited HTM film maintains 

its morphology  throughout those temperature changes. 

 

Differential scanning calorimetry (DSC) is a thermal analysis technique in which the 

heat capacity of a material is measured as a function of temperature and time. The heat 

capacity of a system is defined as the amount of energy needed to increase the 

temperature of the system. In a DSC experiment, there are two pans. In one of them, a 

sample of known mass is placed and the other one is empty. Both pans are heated at 

the same time using the same rate (usually 10 ℃ /𝑚𝑖𝑛). The empty pan serves as a 

reference. The pan with the sample will require more heat to increase the temperature 

and therefore it is possible to compare this with the empty one by measuring this extra 

heat needed. This measurement provides quantitative and qualitative information 

about physical and chemical changes including melting point, boiling points, glass 

transition temperature, crystallization  temperature, purity and others. This technique 

allows us to study the thermal transitions of a sample.187,188  
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One of the most important properties that we can measure for a glassy or amorphous 

material is the glass transition temperature which is the temperature where an 

amorphous material (e.g. a polymer) changes from a hard and rigid state to a more 

flexible or “rubbery” state.  When a hard and rigid material is heated, at some point 

there is enough energy in the material that it can be mobile (more flexible). This point 

appears as a step change in the instrument baseline.189  

 Solar Cells 
 

2.8.1 Fabrication 
 

The solar cells were fabricated at Swansea University by Dr. Joel Troughton. A 

fluorine doped tin oxide (FTO) coated glass (7 Ω/sq) was cut into 1.4 x 1.4 cm2, and 

etched with zinc powder and HCl 2M to remove the FTO in the desired electrode 

patterning. The substrates were cleaned in a solution of detergent and deionised water 

before sequential sonication in deionised water, acetone and isopropanol and a 10 

minute oxygen plasma treatment to remove the last traces of organics. A compact TiO2 

layer was deposited on the glass substrate through spray pyrolysis of a 0.2M solution 

of titanium diisopropoxide bis(acetylacetonate) in isopropanol at 450 ℃. Upon 

cooling, a mesoporous layer of TiO2 nanoparticles was spin-coated from a 2:7 wt 

suspension of Dyesol 30NR-D paste in ethanol (4500 rpm for 30 seconds), followed 

by sintering at 550 ℃ for 30 minutes. A CH3NH3PbI3 perovskite precursor solution 

was prepared by dissolving 576 mg PbI2, and 199 mg CH3NH3I in a 4:1 vol solution 

of DMF:DMSO. The perovskite precursor solution (100 µL) was deposited onto the 

TiO2 films and spin-coated at 4000 rpm for 30 seconds, with 200 µL of ethyl acetate 

dripped onto the spinning substrate 10 seconds prior to the end of the spin-coating 

process. Perovskite films were annealed at 100 ℃ for 10 minutes. The hole transport 

materials were dissolved in chlorobenzene with the corresponding additives and spin 

coated on top of the perovskite layer after which a 80 nm thick gold electrode was 

evaporated at 10-4 Torr. 
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2.8.2 Testing the efficiency 
 

 
Figure 2.15 Example of current-voltage characteristics of a solar cell under illumination 

 

The efficiency (ƞ) of a solar cell is given by the ratio of the power generated by the 

cell (𝑃𝑜𝑢𝑡) to the optical power entering the cell (𝑃𝑖𝑛) as described in Equation 2.16. 

The power input (𝑃𝑖𝑛) is determined by the light intensity of the lamp employed for 

testing.  The solar cells are tested by scanning an applied voltage across the cell and 

measuring the current generated. To consider the surface area of the cell, current 

density (J/A cm-2) is calculated and then plotted against voltage to produce a  J-V curve 

(Figure 2.15). The efficiency of the solar cells depends on the incident light used and 

the temperature of the solar cell. Therefore, for reliable comparison between solar 

cells, the measurements are performed under standard test conditions (STC) using an 

AM1.5 spectrum with an incident light intensity of 100 mW cm-2. 

ƞ =
Pout

Pin
× 100%                                  Equation 2.16 

The four main parameters used to characterise the performance of solar cells are the 

open-circuit voltage (𝑉𝑜𝑐), the short-circuit current density (𝐽𝑠𝑐), fill factor (𝐹𝐹) and 
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the power maximum (𝑃max ). These parameters can be obtained from the J-curves and 

are used to determine the power conversion efficiency (ƞ).  

 
Figure 2.16 Example of power-voltage characteristics of a solar cell under illumination. 

 

The open-circuit voltage 𝑉𝑜𝑐 is the maximum voltage that a solar cell can deliver at 

which the current is zero. The short-circuit current density 𝐽𝑠𝑐 is the current that flows 

through the circuit when the voltage across the solar cell is zero (solar cell is short-

circuited). The fill factor 𝐹𝐹 is the ratio between the maximum power (𝑃max = 𝐼𝑚𝑝𝑝 ×

𝑉𝑚𝑝𝑝) generated by a solar cell  to the product of  𝑉𝑜𝑐 and 𝐽𝑠𝑐 (Equation 2.17).  

FF =
Pmax

Jsc×Voc
=

Impp×Vmpp

Jsc×Voc
                           Equation 2.17 

Where 𝑚𝑝𝑝 denoted the maximum power point of the solar cell, the point on the J-V 

curve at which the solar cell has the maximum power output (Figure 2.16).190 
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 Transient Absorption Spectroscopy  
 

 

Figure 2.17 Schematic representation of the transient absorption principle. 

 

Transient absorption spectroscopy is a time-resolved spectroscopy method which we 

used to provide quantitative information of the charge transfer of the HTM in 

perovskite solar cells. In this technique, a laser (pump laser) is used to promote a 

fraction of the molecules to an electronically excited state. A second laser (the probe 

laser) is passed through the sample with a delay t with respect to the pump laser. It is 

then possible to calculate the difference in absorbance (ΔA) between the species 

created following the laser pulse and the ground state species. By changing the time 

delay t between the pump and the probe, a ΔA profile as a function of time is obtained. 

The difference in absorbance is given by: 

∆𝐴(𝜆) = 𝐴𝑝𝑢𝑚𝑝 − 𝐴𝑢𝑛𝑝𝑢𝑚𝑝 = log
𝐼𝑝𝑢𝑚𝑝(𝜆)

𝐼𝑢𝑛𝑝𝑢𝑚𝑝(𝜆)
                  Equation 2.18 

Where 𝐴𝑝𝑢𝑚𝑝 correspond to the absorbance when the pump passes through the sample 

and 𝐴𝑢𝑛𝑝𝑢𝑚𝑝 is the absorbance without any pump. 𝐼𝑝𝑢𝑚𝑝 and 𝐼𝑢𝑛𝑝𝑢𝑚𝑝 are the light 

transmitted through an excited and non-excited sample.191   

 

These measurements were performed at Imperial College London by Dr. Irene 

Sanchez Molina from the Haque group.  A sample containing the titanium working 

electrode with the perovskite species and the HTM was initially measured by varying 

the probe wavelength to determine at which wavelength the signal had the highest 
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intensity. Measurements were then performed at that wavelength with or without HTM 

on mesoporous TiO2 or Al2O3 electrodes. The decay rate of the signal provides 

information of the kinetics of electron transfer between the perovskite and HTM or 

TiO2.  
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 Small molecule [DATPA] HTMs 

 Introduction 
 
In order to address the limitation of the expensive synthetic procedure of Spiro-

OMeTAD52, smaller triarylamines have attracted most attention due to their 

comparable optoelectronic properties, simplicity, ease of purification and batch-to-

batch consistency159. The chemical structure of the HTM can significantly affect the 

hole transfer kinetics between the HTM and the perovskite and the HTM and the metal 

contact in perovskite solar cells135,192.  The length of alkyl chain for instance, can 

influence the solubility, molecular ordering and charge transport of the HTMs thus 

affecting the performance of the solar cell193,194.  Although the large majority of 

triarylamine HTMs include methoxy groups to tune the redox potential, little research 

has been done to study the effect of the alkyl chain on the properties of the HTM. In 

previous studies Hagfeldt193 and co-workers demonstrated the importance of the 

substituents by tuning the position and length of the alkyl chain in four triphenylamine-

based organic HTMs. In a different study, Nazeeruddin195 and co-workers studied the 

influence of alkyl chain length on the power conversion efficiency of a series of hole 

transport material. Such reports are rare however, and there are still limited 

comprehensive studies of the effect of alkyl chain length on material and device 

properties. In the case of organic photovoltaics, studies have shown both increases and 

decreases in power conversion efficiency through increasing the length of alkyl 

chains194,196–198, therefore more systematic understanding of this effect for HTMs in 

PSCs is important to acquire. In previous work reported by our group, a series of 

triphenylamine-based HTMs having two diacetylide-triphenylamine (DATPA) 

moieties was prepared by a simple synthetic route which allows easy tuning of 

electrochemical and other properties through varying the substituent R groups in the 

para position199. These materials were studied as HTMs in solid state dye-sensitised 

solar cells and showed promising properties in comparison with Spiro-OMeTAD.
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In this project, a new series of diacetylide-triphenylamine (DATPA) derivatives with 

five different alkyl chains in the para position MeO, EtO, nPrO, iPrO and BuO (Figure 

3.1) was synthesised, fully characterised and their function as hole-transport materials 

in perovskite solar cells (PSC) studied. Their thermal, optical and electrochemical 

properties were investigated along with their molecular packing and charge transport 

properties to analyse the influence of different alkyl chains in the solar cells 

parameters. The alkyl chain length of semiconducting molecules plays an important 

role for achieving high performance perovskite solar cells.  

 

 

Figure 3.1 Chemical structure of HTMs used in this study. Each molecule is comprised of two 

triphenylamine moieties bridged with a diacetylene group.
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 Results and Discussion 
 

3.2.1 Synthesis 
 

The synthetic procedure reported for MeO-DATPA in previous work199 in the 

Robertson group was revised and optimised to improve yields and reduce reactions 

times. The general synthetic route for the synthesis of the DATPA derivatives is shown 

in Scheme 3.1. Apart from EtO-DATPA, the method of synthesis involves five stages. 

The first step is a simple SN2 reaction (Figure 3.2).  1-Ethoxy-4-iodobenzene is 

commercially available, and this step was not required for that example. 

 

 

Scheme 3.1 Synthetic procedure for all HTMs. Reaction conditions:  a) K2CO3, 18-crown-6, 

R-Br, DMF, 100 oC, 4hrs, N2 b) CuI, 1,10-phenanthroline, KOH, MePh, 4-bromoaniline, N2, 

120oC; c) C8H16Si, CuI, piperidine, (PPh3)2PdCl2, PPh3,PhMe, N2, 90 oC; d) 1 M TBAF, DCM, 

rt, N2; e) CuCl, TMEDA, Molecular Sieves, DCM, air. 
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Figure 3.2 Mechanism for SN2 reaction. 

 

The triarylamine group with electron donating groups in the para position were formed 

using the copper catalysed Ullmann coupling. The “classic” Ullmann200 reaction has 

many downsides including high copper loadings, high temperatures and long reaction 

times. Later, it was found that with addition of bidentate ligands lower copper loading 

and milder reaction temperatures were needed201. Although this method has been 

studied for a long time, the modified copper-mediated Ullmann still presents some 

downsides. The reaction is somehow unpredictable and generally affords modest 

yields of product as there are side products formed in the process. A non-polar solvent 

like toluene was used in which copper(I) was used as a catalyst, 1,10-phenantroline as 

ligand and KOH was used to quench the HI acid formed.  Although such Cu-catalysed 

couplings have not reached the high levels that characterise the analogous palladium-

catalysed chemistry, it is one of the most practical and economical methods for the 

synthesis of triarylamines.  

 

The exact mechanism of the copper-catalysed amination remains under debate. There 

are several mechanism proposed, however the most recognised mechanism is a 

catalytic cycle that involves the oxidative addition of the aryl C–X (X=halogen) bond 

to Cu(I).202–204A rough picture of the possible catalytic cycle for the modified Ullmann 

coupling is displayed in Figure 3.3. This is an approximate representation of what may 

happen rather that a mechanism. The details of these general steps however remain 

uncertain, especially regarding the order of the oxidative addition and transmetallation 

steps. 
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Figure 3.3 Proposed Catalytic Cycle for the Modified Ullmann coupling.203,204 

 

In the third step, the acetylene was attached with a silyl protection group via 

Sonogashira cross coupling reaction205. This method is widely used for the coupling 

of a sp2 hybridized carbon of a vinyl or aryl halide with a terminal sp carbon from an 

alkyne. The reaction is usually performed using a palladium complex as catalyst, 

copper iodide as co-catalyst and an amine as solvent or in large excess. The reaction 

also employed phosphine ligands to increase the efficiency of the reaction.206  

 

Some uncertainty remains regarding the mechanisms of the Sonogashira coupling as 

it is difficult to isolate the organometallic intermediates from the reaction mixture to 

validate the process beyond any doubt. The proposed mechanism takes place through 

two independent catalytic cycles207 (Figure 3.4).  
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Figure 3.4 Proposed mechanism for the copper co-catalysed Sonogashira reaction 

 

The first cycle starts with the species Pd0(PPh3)2. This can be formed from Pd(0) 

complexes like Pd(PPh3)4 or from Pd(II) complexes such as PdCl2(PPh3)2 through 

reductive elimination. The Pd(PPh3)4 reactant is air sensitive and requires to be stored 

in an inert atmosphere to avoid degradation over time. Thus, the more stable 

PdCl2(PPh3)2 complex was used instead. The species Pd0(PPh3)2 containing Pd in its 

zero oxidation state and coordinatively unsaturated with 14 electrons is very reactive. 

Therefore, the reaction was carried out under nitrogen atmosphere. After the reductive 

elimination, the oxidative addition of the organohalide to the Pd(0) formed the 

[Pd(II)R’(PPh3)2Br] adduct which was later transformed into [Pd(II)(PPh3)2R’(CCR’’)] 

after transmetalation with the alkynyl-copper reagent formed in the second catalytic 

cycle. The final product is obtained through reductive elimination, after cis alignment 

of the adduct [Pd(II)(PPh3)2R’(CCR’’)] takes place. 

 

In the next step the silyl group was removed using TBAF (tetrabutylammonium 

fluoride) leaving the triarylamine unit with a terminal alkyne. The final product was 
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obtained through the oxidative homocoupling of the terminal alkyne under the 

presence of copper catalyst and an oxidising agent like air. The addition of nitrogen 

ligands such as TMEDA (N,N,N’,N’- tetramethylethylenediamine) increased 

solubility of the Cu catalyst allowing the reaction to be carried out under mild 

conditions. This technique is commonly named Hay-Glaser coupling. The Hay-Glaser 

coupling is particularly appealing because only water is formed as the by-product of 

oxidation208,209. More recently it was found that the use of molecular sieves to remove 

the water generated during the reaction led to best results210. The details of  the 

mechanism of copper-mediated oxidative homocoupling are still under discussion211. 

Of the several mechanisms proposed, the most broadly accepted was published in 1964 

by Bohlmann212 and the general picture is displayed in Figure 3.5. The process begins 

with the addition of the triple bond to the copper(I) species which enhances the acidity 

of the C-H bond and facilitates the deprotonation by an external base. The reaction is 

performed under air or oxygen to oxidise Cu(I) to Cu(II). After protonation, the 

acetylide formed a copper(II)-acetylide complex and the final product is formed after 

a reductive elimination.  

 

 
Figure 3.5 Bohlmann mechanism for Hay-Glaser coupling of acetylenes (B = Nitrogen 

ligand).212 
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3.2.2 Optical and electrochemical properties 
 

The UV-Vis absorption spectra of the DATPA derivatives (EtO, iPrO, nPrO, BuO), 

measured in dichloromethane (DCM), are shown in Figure 3.6.  All compounds exhibit 

an absorption peak at 389 nm independent of the substituent. Molar extinction 

coefficients were calculated for each compound using the Lambert-Beer law and 

results are displayed in Table 3.1. Additionally, photoluminescence (PL) spectra were 

recorded (dashed line, Figure 3.6). The results show similar PL spectra for all DATPA 

derivatives with a maximum emission at 493 nm.  

 
Figure 3.6 Normalized UV-Vis absorption (solid line) and emission (dashed line) of each 

DATPA derivative. EtO-DATPA (black line), iPrO-DATPA (red line), nPrO-DATPA (purple 

line) and BuO-DATPA (green line). 

 

Optical gaps were determined from the intersection of the excitation and the emission 

spectra. Cyclic voltammograms (CV) of the DATPA series are displayed in Figure 3.7. 

The redox peaks of all HTMs are chemically and electrochemically reversible, 

indicating excellent stability and rapid electron transfer. 
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These materials present two oxidation peaks corresponding to one electron oxidation 

for each triarylamine unit. However, in cyclic voltammetry, the two oxidation 

processes are strongly overlapped because of their similar potentials. 

 

 
Figure 3.7 Cyclic voltammetry at different scan rates of EtO-DATPA, iPrO-DATPA, nPrO-

DATPA and BuO-DATPA. 

 

To distinguish both oxidation processes, square-wave voltammetry (SWV) was carried 

out (Figure 3.8). The similarity of the two redox potentials suggests a small interaction 

between the two triarylamine units.  The HOMO energy level is of most importance 

for hole transfer from the perovskite and HTM and from molecule to molecule. The 

HOMO energy levels were calculated from the CV data using the following equation 

EHOMO=-5.1-(Eox), where Eox is the oxidation potential of the HTM with reference to 

ferrocene. The extracted values are listed in Table 3.1. Overall these results indicate 

that the hole transfer from CH3NH3Pbl3 (-5.43 eV) to the HTM is energetically 
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favourable. Spiro-OMeTAD has a HOMO of -5.13 eV, which is at a higher energy 

than the materials reported here. 

 
Figure 3.8 Square-wave voltammetry of EtO-DATPA (black line), iPrO-DATPA (red line), 

nPrO-DATPA (purple line) BuO-DATPA (green line). 

 

Density Functional Theory (DFT) calculations were performed to predict the 

electronic properties of all HTMs using Gaussian 09 with B3LYP 6-31G(d) level of 

theory. Figure 3.9 shows the position of the HOMO–LUMO energy levels and their 

electron density on the molecules of all DATPA derivatives. The calculated trend of 

HOMO and LUMO matches the experimental data, and no significant difference was 

found among the DATPA series. The HOMO is delocalized over the π orbitals of the 

triphenylamine unit and the diacetylene bridge. The alkyl groups do not contribute to 

the HOMO energy level, therefore any change beyond the oxygen does not affect the 

optoelectronic properties, which coincides with the electrochemistry results.  The 

LUMO electron density is localised on the diacetylene bridge and is also not 

significantly influenced by the substituents of the triphenylamine unit.  
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Figure 3.9 Molecular Orbital distribution of HOMO (bottom) and LUMO (top) for DATPA 

derivatives at B3LYP/6-31G(d) level of theory. 

 

A summary of the optical and electrochemical properties of all DATPA derivative is 

presented in Table 3.1. As expected, different alkyl substituents do not significantly 

modify the optical and electrochemical properties of the hole transport materials. This 

confirms that this series is appropriate to compare the structural, morphological and 

interface effects of differing alkyl chains without any complicating changes to the 

optoelectronic properties. 

 
Table 3.1 Summary of the optical and electrochemical properties of the DATPA derivatives 

HTM λmax 

(nm) 
ε           

(cm-1 M-1) 
λem 

(nm)a 
Egap 

(V)b 
Eox (1st)    
(V)c 

Eox (2nd)    
(V)c 

EHOMO   

(eV)d 
EtO-DATPA 389 60300 504 2.85 +0.28 +0.33 -5.38 

nPrO-DATPA 389 69200 504 2.85 +0.26 +0.30 -5.36 

iPrO-DATPA 389 64280 508 2.84 +0.28 +0.33 -5.38 

BuO-DATPA 389 65990 495 2.85 +0.26 +0.30 -5.36 

Spiro-OMETAD 385 - 424 3.05 +0.03  -5.13 
aExcitation at λmax. bEgap is the optical gap determined from the intersection of absorption and emission 

spectra. cFrom SWV and CV measurements and referenced to ferrocene. dEHOMO(eV)= -5.1- (Eox)213 
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3.2.3 XRD Analysis 
 

 

 

Figure 3.10 The asymmetric portion of the molecular structure of EtO-DATPA, nPrO-

DATPA and  BuO-DATPA. 

 

Single crystals of the new molecules were grown by the slow solvent evaporation 

method to resolve the crystal packing by X-ray diffraction (XRD). The compounds 

were found to crystallize in the monoclinic space group P21/n (EtO-DATPA, nPrO-

DATPA), monoclinic space group P21/c (BuO-DATPA) with half of the formula unit 

present in the asymmetric unit and the other half consisting of symmetry equivalent 

atoms (Figure 3.10); iPrO-DATPA crystallizes in the triclinic space group P-1 showing 

two independent molecules in the asymmetric unit (Figure 3.10).  In every case the 

molecule crystallises without the presence of any solvent of lattice. The EtO-DATPA 
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molecules are packed in a layer-by-layer configuration with molecules arranged in a 

herringbone motif characterised by edge-to-face contacts (Figure 3.11). The 

intersection angle between two adjacent fragments is measured to be 72.18o. The 

distance between parallel fragments is too large to induce co-facial π⋯ π interactions. 

The molecules interact mainly via C-H⋯ π (3.154 Å) and C-H⋯HC formed by the CH 

groups of phenyls (dCH⋯HC=2.554 Å, 2.634 Å). The EtO-DATPA molecules also form 

intermolecular H-bonding interactions in the crystal lattice formed by the oxygen and 

the hydrogen atom of the aromatic rings (dC-H⋯O-R=2.715 Å, 2.804 Å, 2.916 Å).  

 

 
Figure 3.11 Crystal packing of EtO-DATPA. 

 

The crystal structure of nPrO-DATPA also exhibits a layer-by-layer herringbone 

pattern (Figure 3.12). The T-shaped edge-to-face and the parallel-displaced stacking 

arrangement predominate. Although similar, the structure of nPrO-DATPA is 

stabilised via π⋯π interactions. The distance between two parallel fragments and the 

intersection angle of adjacent molecules were measured to be 3.44 Å and 46.63o 
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respectively. The nPrO-DATPA molecules also interact via C-H⋯ π (3.086 Å) and C-

H⋯O-R (shortest distance found 2.725 Å). 

 

 

Figure 3.12 Crystal packing of nPrO-DATPA. 

 

A more complex packing is observed for iPrO-DATPA (Figure 3.13). The X-ray 

crystal structure reveals three crystallographically unique molecules in the asymmetric 

unit (Figure 3.10). Two lie on crystallographic inversion centres while the third lies 

entirely in general positions. Each unit is surrounded by six molecules arranged in an 

alternating layered pattern with an intersection angle of 77.59o. The interactions arising 

in the structure of iPrO-DATPA are mainly C-H⋯ π (3.034 Å, 2.813 Å, and 2.875 Å) 

and C-H⋯O-R (shortest distance found 2.712 Å). Furthermore, C-H⋯O-R contact is 

also observed between the CH group of the alkyl chain and the oxygen atom (2.788 

Å). The aromatic cores of the iPrO-DATPA are aligned with a very strong slipped π-

stacking configuration such that no π⋯ π interactions are observed.  
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Figure 3.13 Crystal packing of iPrO-DATPA. 

 

In the case of BuO-DATPA, the molecules are arranged in a zig-zag largely slipped 

stack packing (Figure 3.14). Similar to iPrO-DATPA, the aromatic cores have a very 

strong slipped π-stacking with an average distance of 4.820 Å which it is too large to 

induce π-orbital overlap in the crystalline structure. The bulkiness of the alkyl chain in 

the para position largely impacts the overlapping of the aromatic moieties resulting in 

the absence of face to face stacking. The crystal lattice shows C-H⋯O-R (2.665 Å), 

C-H⋯HC (2.270 Å, 2.304 Å) formed between one hydrogen atom of the alkyl chain 

and CH group of an aromatic ring. The molecules also interact via C-H⋯ π (2.720 Å) 

formed between an aromatic centroid and the alkyl chain.  
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Figure 3.14 Crystal packing of BuO-DATPA. 

 

The crystal packing of MeO-DATPA was reported and discussed in more detail in 

previous work within the Robertson group, showing a herringbone pattern, with one 

molecule in the asymmetric unit and a regular stacking distance between the 

molecules. Overall, it was observed that as the alkyl chain increases, the number of 

van der Waals interactions between alkyl chains also increases while the H-bonding 

contacts decrease.  Among all of the examples, MeO-DATPA and EtO-DATPA 

showed the strongest and highest number of intermolecular interactions (H-bonding) 

while fewer H-bonds were found in the crystal lattice of BuO-DATPA but stronger 

van der Waals interactions within the alkyl chains. Longer alkyl chains result in the 

poorer stacking of the molecule and therefore weaker intermolecular interactions. 

Furthermore, it is known that closer molecular arrangements can facilitate charge 

transport in thin film devices214. A summary of the crystallographic data is depicted in 

Table A.1 in Appendix A2. 
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The X-ray powder diffraction patterns were experimentally obtained and compared 

with those calculated from their single-crystal data (Figure 3.15). The powder pattern 

of all DATPA derivatives showed some crystallinity, and were in agreement with the 

calculated pattern from single-crystal data.  

 
Figure 3.15 XRD powder patterns: simulated from single-crystal structures (red) and 

experimental (black). 
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3.2.4 Thermal properties 
 

Thermal properties of the HTMs were evaluated by Differential Scanning Calorimetry 

(DSC), and the results are presented in Appendix A3. The DSC results showed a glass 

transition temperature (Tg) of 76.9 oC, 69.5 oC and 70.7 oC for MeO-DATPA, EtO-

DATPA and iPrO-DATPA. nPrO-DATPA and BuO-DATPA however do not present 

Tg. On the other hand, lower melting points were observed for longer alkyl chains. 

These observations can be explained by the difference in the crystal packing, and their 

intermolecular interaction observed in the XRD analysis.  

 

Longer alkyl chains presented poorer stacking as the molecules are more disordered 

which results in weaker interactions. This explains why the BuO group led to the 

lowest melting point. The MeO and EtO groups led to the highest melting points and 

the strongest intermolecular interactions. We can also observe that branched iPrO has 

a higher melting point than the straight chain nPrO, although nPrO-DATPA (2.080 

Å3/molecule) has a more compact structure than iPrO-DATPA (2.212 Å3/molecule). 

The iPrO chain typically has a smaller surface area which leads to weaker van der 

Waals interactions. However as we can observe in the crystal packing, iPrO leads to 

shorter C-H⋯O-R interactions, which likely explains the higher melting point in 

comparison to nPrO. A summary of the thermal properties is given in Table 3.2. 
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3.2.5 Hole Mobility 
 

Charge mobility is an important parameter to evaluate the properties of hole-transport 

materials in photovoltaic devices. To investigate the hole mobilities, OFETs (Organic 

Field-Effect Transistors)215,216 were fabricated for four of the compounds reported here 

(MeO-DATPA, EtO-DATPA, nPrO-DATPA and BuO-DATPA) and the mobilities 

were extracted from the saturation regime of the transfer characteristic curves (Figure 

3.17). Details of the device fabrication and measurement are found in the Experimental 

section. It was not possible to fabricate a high-quality thin film for iPrO-DATPA. In 

general, the molecules with the shorter alkyl chains presented higher mobilities which 

can be attributed to stronger intermolecular interactions in the XRD analysis. A 

summary of the estimated hole mobilities is presented in Table 3.3.   

 

 

Figure 3.16 Transfer Characteristic Curves of MeO-DATPA, EtO-DATPA, nPrO-DATPA 

and BuO-DATPA (left to right) on a bottom gate/bottom contact organic field effect transistor. 
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Table 2.2 Charge transport and thermal properties 

HTM Hole Mobility µFE (cm2/Vs)a Tg 
 (oC)b Tm (oC) 

b 

MeO-DATPA 1.90x10-4 76.9 197.3 

EtO-DATPA 1.45x10-4 69.5 149.4 
iPrO-DATPA x 70.7 160.8 
nPrO-DATPA 1.11x10-4 x 148.0 

BuO-DATPA 8.81x10-5 x 118.9 
aEstimated from OFET measurements. bDetermined from differential scanning calorimetry (DSC). 

 

3.2.6 Transient Absorption Spectroscopy 
 

 

Figure 3.17 Normalized Transient Absorption spectra. 

 

To further probe the performance in PSCs, the charge transfer dynamics occurring in 

an mp-TiO2/CH3NH3PbI3/HTM arrangement for all DATPA derivatives were 

obtained by ultrafast absorption spectroscopy (TAS). Samples were prepared by spin-

coating of the perovskite onto a mesoporous TIO2 layer and with the HTM on top. 

Details of the sample preparation and measurements are described in the experimental 
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section. The corresponding steady-state absorption spectra are shown in Figure 3.19, 

where all samples show the dominant spectral features of the perovskite layer 

CH3NH3PbI3, with the onset at 800 nm and the bands corresponding to the oxidised 

HTMs (at 1600 nm). Figure 3.18  shows the TAS time profiles following 510 nm 

excitation probed at 1600 nm. All signals have a negative feature that arises from some 

charge separation already happening in the ground state, and the intensity of these 

bleaches correlates with the intensity of the band of the oxidised HTMs observed in 

the steady-state absorption spectra. The analysis of the normalised TAS time profiles 

also displays a hint of the lifetimes of the charge-separated states. From the results, 

MeO-DATPA presents the most long-lived signal indicating a greater charge-pair 

separation. Among the other DATPA derivatives, no significant differences of the 

lifetimes of the charge separation states were found. 

 
Figure 3.18 UV-Vis spectra of mp-TiO2/CH3NH3PbI3/HTM for all DATPA derivatives. 
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3.2.7 Solar Cells Studies  

 
Figure 3.19 J–V curves of the champion PSCs with the DATPA series and Spiro-MeOTAD 

HTMs. 

 

To investigate the effect of the alkyl chain of these HTMs in perovskite solar cells, a 

set of PSCs in the configuration FTO/bl-TiO2/mp-TiO2/CH3NH3PbI3/HTM/Au was 

fabricated. All DATPA HTMs were doped using two times the concentration of 

additives typically used for Spiro-OMeTAD which include 

bis(trifluoromethylsulfonyl)imide lithium salt (Li-TFSI), 4-tert-butylpyridine and 

tris(2-(1H-pyrazol-1-yl)-4-tert-butylpyridine)-cobalt(III)tris(bis(trifluoromethylsulfo-

nyl)imide) (FK209). Full details of the solar cell fabrication are given in the 

experimental section. Current-voltage scans were recorded using an AAA-rated solar 

simulator calibrated against a KG5 global (AM 1.5 G) solar irradiation. All devices 

were fabricated in a single continuous study over 7 repeat cells for each HTM to 

facilitate comparison.  Figure 3.21 shows the box plots with the mean and standard 

deviation of the solar cell parameters and a summary can be found in Table 3.5. The 

J-V graphs of the champion cells are shown in Figure 3.20 and the results are 

summarised in Table 3.4 (champion cell).  
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Table 3 Summary of device performance for champion cells 

HTM PCE (%) Jsc (mA cm-2) Voc (V) FF (%) 

MeO-DATPA 5.63 10.84 0.83 62.25 

EtO-DATPA 1.02 4.10 0.77 32.19 
nPrO-DATPA 4.83 10.33 0.79 59.22 
iPrO-DATPA 3.24 9.89 0.80 41.11 

BuO-DATPA 3.29 7.02 0.77 61.19 

Spiro-OMeTAD 15.34 19.67 1.00 78.13 

 

 

Despite the identical backbone structures and HOMO energy levels, the difference in 

the alkyl chain length had an effect on the photovoltaic device performances.  Among 

the DATPA series, MeO-DATPA shows the highest performance with a PCE of 

5.63%. Upon increasing the length of alkyl chain the performance of the devices 

decreases to 4.83% for nPrO-DATPA, 3.24% for iPrO-DATPA and 2.54% for BuO-

DATPA. Also noticeable is the decrease in the short circuit current values (Jsc) for 

DATPA derivatives with longer alkyl chains from 10.84 mA cm-2 for MeO-DATPA 

to 7.02 mA cm-2 for BuO-DATPA. The methoxy substituent leads to the best 

semiconducting properties in comparison with the longer alkyl chains. The variance in 

PCE values can be attributed to the differences in the photocurrent density and fill 

factor which may have resulted from the higher hole mobility, greater charge-pair 

separation and optimal morphology. This is sustained by the results from the hole 

mobility data, transient absorption spectroscopy studies and XRD analyses discussed 

previously.   
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Figure 3.20  Solar cells parameters over 7 repeats for each HTM. 

 

Table 4 Summary of the solar cell parameters 

HTM PCE (%) Jsc (mA cm-2) Voc (V) FF (%) 

MeO-DATPA 4.87±0.82 10.79±0.56 0.84±0.0054 54.10±8.01 

EtO-DATPA 0.77±0.22 3.13±0.82 0.79±0.022 31.83±1.01 

nPrO-DATPA 4.07±0.54 10.07±0.65 0.78±0.021 51.98±6.19 

iPrO-DATPA 2.46±0.51 7.99±1.27 0.79±0.0079 38.41±2.50 

BuO-DATPA 2.43±0.47 5.88±0.87 0.75±0.024 56.59±8.01 

Spiro-OMeTAD 14.51±0.87 19.19±0.71 0.99±0.0079 73.74±4.13 

 

Our results are in agreement with the studies reported previously by Hagfeldt and 

Nazeeruddin. Previously, Hagfeldt and collaborators designed a series of 

triphenylamine-based HTMs by tuning the position and length of the alkyl chains 
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substituent on the molecular structure to study their effects on the photovoltaic 

parameters of perovskite solar cells. They found that the alkyl chain length influenced 

the solubility, molecular packing structure and charge transport. Simultaneously, 

Nazeeruddin and co-workers studied the effect of the alkyl chain length in small-

molecule HTMs based on an anthra[1,2-b:4,3-b′:5,6-b′′:8,7-b′′′]- tetrathiophene (ATT) 

core on the performance of PSC devices. By replacing the methoxy groups with longer 

alkyl chaing lengths (butoxy, hexoxy and decoxy) an improvement of solubility was 

observed. Nevertheless, the device performances were significantly inferior than the 

MeO substituents. They concluded that the alkyl chain improves the stacking of the 

ATT core but decreases the hole-transport properties and therefore the device 

performance of the solar cell.   

 

 Conclusions 
 

In summary, we have presented the synthesis and characterisation of a new series of 

diacetylide-triphenylamine (DATPA) derivatives to study their function in PSCs.  

These molecules have the same backbone structures but different alkyl chain length in 

the para position, i.e., ethoxy (EtO), propoxy (nPrO), isopropoxy (iPrO) and butoxy 

(BuO), compared also to the known MeO species. Although the length of the aliphatic 

side chain does not influence the optoelectronic properties of the molecules such as 

the HOMO levels, it strongly affects the charge transport properties and transfer 

dynamics of the molecules as well as the morphology and photovoltaic performance 

in PSCs. The molecules with shorter alkyl chains have a more ordered and compact 

structure which facilitates charge transport in the thin films. These results are in 

agreement with the previous work found by Hagfeldt and Nazeeruddin. The methoxy 

substituent shows the best semiconductive properties and PCE of 5.63% compared 

with the longer side chain. This is due to the molecular packing and faster charge 

transport. These findings provide insight information for the design of organic 

semiconductor for photovoltaic application in the future.  
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 Experimental details 
 

3.4.1 Chemical characterization 
1H and 13C NMR spectra were recorded on a Bruker Advance 500 spectrometer (500 

MHz). The deuterated solvents are indicated in the synthesis description. Chemical 

shifts, δ, are given in ppm, using the solvent residual as an internal standard. MS were 

recorded on Micro-Tof using electrospray ionisation (ESI) technique. Elemental 

analyses were carried out by Stephen Boyer at London Metropolitan University. 

 

3.4.2 Synthesis 
 

 Materials and Synthesis 

All reagents were purchased from either Sigma-Aldrich or Alfa-Aesar, and they were 

used as received without further purification unless otherwise stated. The synthetic 

procedure was based on the previous work199 in the Robertson group with some 

modifications to improve yields and reduce reactions times.  Appart from EtO-

DATPA, the syntesis procedure required five steps.  The reaction conditions are very 

similar for all the compounds, therefore an example of the experimental procedure is 

given for iPrO-DATPA. 

 

1) 1-iodo-4-alkoxybenzene 

4-iodophenol (22.73 mmol, 5 g), K2CO3 (68.19 mmol, 9.4 g), 18-crown-6 (0.227 

mmol, 0.6 g) and DMF (40 ml) were all added into a round bottom flask and stirred 

under N2 to which 2-bromopropane (45.19 mmol, 4.26 mL) was added. The mixture 

was stirred and refluxed for 4 hrs under N2 at 90 ℃. A silica plug (PE/DCM 90/10) 

was run to afford the product. 

 
a) 1-iodo-4-isopropoxybenzene   

Product: transparent oil (6 g, 97% yield) 
1H NMR (500 MHz, Chloroform-d) δ 7.45 – 7.42 (m, 2H), 6.46 – 6.43 (m, 2H), 4.04 

(hept, J = 6.0 Hz, 1H), 1.07 (d, J = 6.0 Hz, 6H). 
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b) 1-iodo-4-propoxybenzene   

Product: transparent oil (11.07 g, 93% yield) 
1H NMR (500 MHz, Benzene-d6) δ 7.38 – 7.35 (m, 2H), 6.42 – 6.33 (m, 2H), 3.38 (t, 

J = 6.5 Hz, 2H), 1.55 – 1.44 (m, 2H), 0.79 (t, J = 7.4 Hz, 3H). 

 

c) 1-iodo-4-butoxybenzene 

Product: transparent oil (5.57 g, 94% yield) 
1H NMR (500 MHz, Benzene-d6) δ 7.41 – 7.33 (m, 2H), 6.39 – 6.36 (m, 2H), 3.42 (t, 

J = 6.4 Hz, 2H), 1.51 – 1.41 (m, 2H), 1.25 (dq, J = 14.7, 7.4 Hz, 2H), 0.79 (t, J = 7.4 

Hz, 3H). 

 

2) 4-bromo-N,N-bis(4-alkoxyphenyl)aniline 

4-Bromoaniline (8.14 mmol, 1.4 g), CuI (0.4 mmol, 78 mg), 1,10-phenantroline (0.4 

mmol, 72 mg), KOH (40.7 mmol, 2.3 g) were added into a Schlenk tube and dried 

under high vacuum for 30 min. A degassed solution of dried toluene (20 ml) and 4-

iodoisopropoxybenzene (20.35 mmol, 5.33 g) were added into the previous mixture 

via cannula transfer. The reaction mixture was heated at 120 ℃ overnight under N2. 

The cooled reaction mixture was washed with 5% HCl and 5% NaOH solution 

respectively, dried with MgSO4   and solvent evaporated under vacuum. The residue 

was passed through a short silica in DCM and solvent removed under vacuum. The 

crude product was purified by column chromatography. 

 

a) 4-Bromo-N,N-bis(4-ethoxyphenyl)aniline 

Purification: Silica plug in DCM, column chromatography (SiO2, Hexane/EtA 90/10) 

Product: Pale yellow oil (1.2 g, 42% yield) 
1H NMR (500 MHz, Benzene-d6) δ 7.00 – 6.94 (m, 4H), 6.79 – 6.75 (m, 2H), 6.73 – 

6.70 (m, 4H), 3.57 (q, J = 7.0 Hz, 4H), 1.11 (t, J = 6.9 Hz, 6H). 

 

b) 4-Bromo-N,N-bis(4-isopropoxyphenyl)aniline 

Purification: Silica plug in DCM, column chromatography (SiO2, Hexane/EtA 90/10) 

Product: Pale yellow oil (1.3 g, 36% yield) 
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1H NMR (400 MHz, Benzene-d6) δ 7.16 (d, J = 4.0 Hz, 9H), 6.99 – 6.94 (m, 2H), 6.80– 

6.73 (m, 2H), 6.77 – 6.70 (m, 4H), 4.12 (h, J = 6.0 Hz, 2H), 1.11 (d, J = 6.0 Hz, 12H). 

 

c) 4-Bromo-N,N-bis(4-propoxyphenyl)aniline 

Purification: Silica plug in DCM, column chromatography (SiO2, Hexane/EtA 90/10) 

Product: Pale yellow oil (3.5 g, 50.7% yield) 
1H NMR (500 MHz, Benzene-d6) δ 7.19 – 7.17 (m, 2H), 7.00 – 6.97 (m, 4H), 6.82 – 

6.77 (m, 2H), 6.75 – 6.72 (m, 4H), 3.53 (t, J = 6.4 Hz, 4H), 1.60 – 1.53 (m, 4H), 0.85 

(t, J = 7.4 Hz, 6H). 

 

d) 4-Bromo-N,N-bis(4-propoxyphenyl)aniline 

Purification: Silica plug in DCM, column chromatography (SiO2, Hexane/EtA 90/10) 

Product: Pale yellow oil (2.97 g, 55% yield) 
1H NMR (500 MHz, Benzene-d6) δ 7.19 – 7.16 (m, 2H), 7.01 – 6.97 (m, 4H), 6.80 – 

6.74 (m, 6H), 3.60 (t, J = 6.4 Hz, 4H), 1.61 – 1.51 (m, 4H), 1.34 (h, J = 7.4 Hz, 4H), 

0.82 (t, J = 7.4 Hz, 6H). 

 

3) 4-alkoxy-N-(4-alkoxyphenyl)-N-(4-((triethyllsilyl)ethynyl)phenyl)anili-

ne (PPh3)2PdCl2 (81 mg, 0.12 mmol), CuI (0.46 mmol, 88 mg), PPh3 (0.18 

mmol, 48 mg) were added into a Schlenk tube and dried under vacuum for 30 

minutes. 4-bromo-N,N-bis(4-isopropoxyphenyl)aniline (2.3 mmol, 1 g), 

piperidine (1.8 mL), triethylsilylacetylene (4.6 mmol, 0.83 mL) and toluene 

(15 mL) were all degassed and added to the previous mixture via cannula 

transfer. The solution was stirred under N2 at 90 ℃ overnight. The cooled 

reaction mixture was passed through a short silica plug in DCM and solvent 

was removed. The crude was purified by column chromatography.  

 

a) 4-Ethoxy-N-(4-ethoxyphenyl)-N-(4-((triethyllsilyl)ethynyl)phenyl)aniline 

Purification: Silica plug in DCM, column chromatography (SiO2, Hexanes/EtA 95/5) 

Product: yellow oil (1.3 g, 95% yield) 
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1H NMR (500 MHz, Benzene-d6) δ 7.45 – 7.38 (m, 2H), 7.00 – 6.96 (m, 4H), 6.90 – 

6.86 (m, 2H), 6.72 – 6.68 (m, 4H), 3.56 (q, J = 6.9 Hz, 4H), 1.18 – 1.07 (m, 15H), 0.72 

(q, J = 7.9 Hz, 6H). 

 

b) 4-Isopropoxy-N-(4-isopropoxyphenyl)-N-(4-((triethyllsilyl)ethynyl)phenyl)aniline 

Purification: Silica plug in DCM, column chromatography (SiO2, Hexanes/EtA 95/5) 

Product: yellow oil (1.06 g, 92% yield) 
1H NMR (500 MHz, Benzene-d6) δ 7.43 – 7.37 (m, 2H), 7.02 – 6.94 (m, 4H), 6.92 – 

6.85 (m, 2H), 6.80 – 6.68 (m, 4H), 4.11 (hept, J = 6.0 Hz, 2H), 1.13 (t, J = 7.9 Hz, 9H), 

1.10 (d, J = 6.0 Hz, 12H), 0.71 (q, J = 7.9 Hz, 6H). 

 

c) 4-Propoxy-N-(4-propoxyphenyl)-N-(4-((triethyllsilyl)ethynyl)phenyl)aniline 

Purification: Silica plug in DCM, column chromatography (SiO2, Hexanes/EtA 95/5) 

Product: yellow oil (3.22 g, 95% yield) 
1H NMR (500 MHz, Benzene-d6) δ 7.43 – 7.40 (m, 2H), 7.01 – 6.98 (m, 4H), 6.91 – 

6.88 (m, 2H), 6.74 – 6.70 (m, 4H), 3.52 (t, J = 6.5 Hz, 4H), 1.56 (dtd, J = 13.7, 7.4, 6.4 

Hz, 4H), 1.13 (t, J = 7.9 Hz, 9H), 0.85 (t, J = 7.4 Hz, 6H), 0.72 (q, J = 7.9 Hz, 6H). 

 

d) 4-Butoxy-N-(4-butoxyphenyl)-N-(4-((triethyllsilyl)ethynyl)phenyl)aniline 

Purification: Silica plug in DCM, column chromatography (SiO2, Hexanes/EtA 90/10). 

Product: yellow oil (2.63 g, 93% yield). 
1H NMR (400 MHz, Benzene-d6) δ 7.48 – 7.38 (m, 2H), 7.02 – 6.98 (m, 4H), 6.92 – 

6.88 (m, 2H), 6.75 – 6.72 (m, 4H), 3.59 (t, J = 6.4 Hz, 4H), 1.61 – 1.49 (m, 4H), 1.41 

– 1.26 (m, 4H), 1.14 (t, J = 7.9 Hz, 9H), 0.82 (t, J = 7.4 Hz, 6H), 0.72 (q, J = 7.8 Hz, 

6H). 

 

4) 4-ethynyl-N,N-bis(4-alkoxyphenyl)aniline 

4-Isopropoxy-N-(4-isopropoxyphenyl)-N-(4-((triethyllsilyl)ethynyl)phenyl) aniline 

(1.6  mmol, 0.8 g) and 10 ml of DCM were placed into a round bottom flask, and the 

mixture was stirred under N2 for 10 minutes.  TBAF (2.5 mL) was then added to the 

previous solution, and the reaction was stirred for 2 hours under N2 at room 



CHAPTER 3. SMALL MOLECULES [DATPA] HTMS 

88 

 

temperature. The reaction was washed three times with a solution of 10% ammonium 

chloride (20 mL), dried with MgSO4 and the solvent removed under vacuum.  The 

crude product was purified by column chromatography. 

 

a) 4-Ethynyl-N,N-bis(4-ethoxyphenyl)aniline 

Purification: Silica plug in DCM, column chromatography (SiO2, PE/DCM 90/10) 

Product: yellow oil (0.86 g, 95% yield) 
1H NMR (500 MHz, Chloroform-d) δ 7.49 – 7.38 (m, 2H), 7.07 – 7.03 (m, 4H), 6.96 

– 6.92 (m, 2H), 6.80 – 6.77 (m, 4H), 3.64 (q, J = 7.0 Hz, 4H), 2.85 (s, 1H), 1.18 (t, J = 

7.0 Hz, 6H). 

 

b) 4-Ethynyl-N,N-bis(4-isopropoxyphenyl)aniline 

Purification: Silica plug in DCM, column chromatography (SiO2, PE/DCM 90/10) 

Product: yellow oil (0.57 g, 94% yield) 
1H NMR (500 MHz, Benzene-d6) δ 7.36 – 7.33 (m, 2H), 6.99 – 6.96 (m, 4H), 6.88 – 

6.84 (m, 2H), 6.75 – 6.68 (m, 4H), 4.11 (h, J = 6.0 Hz, 2H), 2.77 (s, 1H), 1.10 (d, J = 

6.1 Hz, 12H). 

 

c) 4-Ethynyl-N,N-bis(4-propoxyphenyl)aniline 

Purification: Silica plug in DCM, column chromatography (SiO2, PE/DCM 90/10) 

Product: yellow oil (2.22 g, 95% yield) 
1H NMR (500 MHz, Benzene-d6) δ 7.38 – 7.35 (m, 2H), 7.03 – 6.96 (m, 4H), 6.91 – 

6.85 (m, 2H), 6.74 – 6.70 (m, 4H), 3.52 (t, J = 6.4 Hz, 4H), 2.77 (s, 1H), 1.61 – 1.50 

(m, 4H), 0.85 (t, J = 7.4 Hz, 6H). 

 

d) 4-Ethynyl-N,N-bis(4-butoxyphenyl)aniline 

Purification: Silica plug in DCM, column chromatography (SiO2, PE/DCM 90/10) 

Product: yellow oil (1.82 g, 92% yield) 
1H NMR (400 MHz, Benzene-d6) δ 7.40 – 7.34 (m, 2H), 7.03 – 6.97 (m, 4H), 6.91 – 

6.85 (m, 2H), 6.76 – 6.69 (m, 4H), 3.59 (t, J = 6.4 Hz, 4H), 2.77 (s, 1H), 1.59 – 1.51 

(m, 4H), 1.39 – 1.28 (m, 4H), 0.82 (t, J = 7.4 Hz, 6H). 
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 5) 4,4'-(buta-1,3-diyne-1,4-diyl)bis(N,N-bis(4-alkoxyphenyl)aniline)  

CuCl (0.15 g, 1.5 mmol) was weighed out directly into a round bottomed flask, 

TMEDA (0.7 mL) was combined in one portion and later DCM (15 mL) was added 

slowly while stirring. 4 Å molecular sieves (3 g) were added to the mixture and  after 

5 min of stirring, a solution of 4-ethynyl-N,N-bis(4-isopropoxyphenyl)aniline (0.57 g, 

1.5 mmol)  in DCM (5 mL) were added  to the previous solution and the mixture stirred 

for 1.5 hours at room temperature. The reaction was washed three times with a solution 

of 10% ammonium chloride (10 mL) , dried with MgSO4 and the solvent remove under 

vacuum. The crude product was purified by column chromatography. 

 

a) 4,4'-(Buta-1,3-diyne-1,4-diyl)bis(N,N-bis(4-ethoxyphenyl)aniline) 

(EtO-DATPA)  

Purification: Column chromatography  (SiO2, PE/EtA 98/2), recrystallization 

(Hexane/DCM) 

Product: yellow powder (0.62 g. 73% yield). 
1H NMR (500 MHz, Benzene-d6) δ 7.35 – 7.30 (m, 4H), 6.98 – 6.94 (m, 8H), 6.85 – 

6.78 (m, 4H), 6.75 – 6.67 (m, 8H), 3.56 (q, J = 7.0 Hz, 8H), 1.10 (t, J = 6.9 Hz, 12H). 

13C NMR (126 MHz, Chloroform-d) δ 155.91 , 149.35 , 139.69 , 133.26, 127.33 , 

118.52 , 115.39 , 112.07 , 82.16 , 73.10 , 63.68 , 14.89. 

MS EI (m/z): [M]+ 713.3348. Anal. Calcd for C48H44N2O4: C. 80.87; H: 6.22; N. 3.93 

analysed C, 80.83; H, 6.15; N, 4.04. 

 

b) 4,4'-(Buta-1,3-diyne-1,4-diyl)bis(N,N-bis(4-isopropoxyphenyl)aniline)            
iPrO-DATPA 

Purification: Column chromatography  (SiO2, PE/EtA 98/2), recrystallization 

(Hexane/DCM) 

Product: yellow powder ( 0.48 g, 84% yield)  

1H NMR (500 MHz, Benzene-d6) δ 7.33 – 7.30 (m, 4H), 6.98 – 6.95 (m, 8H), 6.83 – 

6.80 (m, 4H), 6.73 – 6.70 (m, 8H), 4.12 (p, J = 6.0 Hz, 4H), 1.10 (d, J = 6.0 Hz, 24H). 

13C NMR (126 MHz, Chloroform-d) δ 154.82, 149.36, 139.57, 133.25, 127.33, 118.55, 

116.75, 112.03, 82.19, 77.22, 73.09 , 70.18 , 22.13. 
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MS EI (m/z): [M]+ 768.3911. Anal. Calcd for C52H52N2O4: C. 81.22; H: 6.82; N. 3.64 

analysed C, 81.09; H, 6.90; N, 3.48. 

 

c) 4,4'-(Buta-1,3-diyne-1,4-diyl)bis(N,N-bis(4-isopropoxyphenyl)aniline) 
nPrO-DATPA 

Purification: Column chromatography  (SiO2, PE/EtA 98/2), recrystallization 

(Hexane/DCM) 

Product: yellow powder (2 g, 91% yield) 

1H NMR (500 MHz, Benzene-d6) δ 7.37 – 7.30 (m, 4H), 7.00 – 6.95 (m, 8H), 6.84 – 

6.80 (m, 4H), 6.74 – 6.70 (m, 8H), 3.52 (t, J = 6.4 Hz, 8H), 1.56 (h, J = 7.3 Hz, 8H), 

0.85 (t, J = 7.4 Hz, 12H). 
 13C NMR (126 MHz, Chloroform-d) δ 156.12 , 149.38 , 139.64 , 133.26 , 127.33 , 

118.48 , 115.40 , 112.02 , 82.17 , 77.21 , 73.09 , 69.76 , 22.64 , 10.55 . MS EI (m/z): 

[M]+ 768.3887. Anal. Calcd for C52H52N2O4: C. 81.22; H: 6.82; N. 3.64 analysed 

C, 81.05; H, 6.95; N, 3.72. 

 

d) 4,4'-(Buta-1,3-diyne-1,4-diyl)bis(N,N-bis(4-butoxyphenyl)aniline) 

BuO-DATPA 

Purification: Column chromatography  (SiO2, PE/EtA 98/2), recrystallization 

(Hexane/DCM) 

Product: yellow powder (1.5 g. 88 % yield). 

1H NMR (500 MHz, Benzene-d6) δ 7.38 – 7.30 (m, 4H), 7.00 – 6.97 (m, 8H), 6.85 – 

6.81 (m, 4H), 6.76 – 6.71 (m, 8H), 3.60 (t, J = 6.4 Hz, 8H), 1.61 – 1.51 (m, 8H), 1.40 

– 1.28 (m, 8H), 0.82 (t, J = 7.4 Hz, 12H). 13C NMR (126 MHz, Chloroform-d) δ 156.14, 

149.38, 139.62, 133.26, 127.33, 118.47, 115.39, 112.01, 82.18, 77.22, 73.10, 67.93, 

65.86, 31.39, 19.27, 15.29, 13.86.  

MS EI (m/z): [M]+ 824.4507. Anal. Calcd for C56H60N2O4: C. 81.52; H: 7.33; N. 3.40 

analysed C, 81.39; H, 7.40; N, 3.42. 
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3.4.3 Optical characterization 
Solution UV-Visible absorption spectra were recorded using a Jasco V-670 

UV/Vis/NIR spectrometer controlled with SpectraManager software. 

Photoluminescence (PL) spectra were recorded with a Fluoromax-3 fluorimeter 

controlled by ISAMain software. All samples were measured in a 1 cm cell at room 

temperature in DCM as solvent. Concentrations of 2.5x10-5 M and 1x10-6 M were used 

for UV/Vis and PL respectively.  

 

3.4.4 Electrochemical characterization 
All cyclic voltammetry measurements were carried out in freshly distilled CH2Cl2 

using 0.3M [TBA][BF4] electrolyte in a three-electrode system with each solution 

being purged with N2 prior to measurement. The working electrode was a Pt disk, the 

reference electrode was Ag/AgCl, and the counter electrode was a Pt rod. All 

measurements were made at room temperature using a µUTOLAB Type III 

potentiostat, driven by the electrochemical software GPES. Cyclic voltammetry (CV) 

measurements used scan rates of 100 mV/s: square wave voltammetry (SWV) was 

carried out at a step potential of 4 mV, square wave amplitude of 25 mV, and a square 

wave frequency of 10 Hz, giving a scan rate of 40 mV/s. Ferrocene was used as the 

internal standard in each measurement. 

 

3.4.5 Thermal characterization 
Differential scanning calorimetry (DSC) was performed on NETZSCH STA 449F1 at 

a scan rate of 5 K min -1 under a nitrogen atmosphere in DSC/TG aluminium pan. The 

measurement range was 25 ℃ to 250 ℃. 

 

3.4.6 Computational details 
All calculations were carried out using the Gaussian 09217 program with Lee Yang–

Parr correlation functional (B3LYP) level of theory. All atoms were described by the 

6-31G(d) basis set. All structures were input and processed through the Avogadro218 

software package.  
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3.4.7 Organic Field-Effect Transistors 
The Ossila low-density pre-fabricated substrates (channel length 0.1 mm width 0.03 

mm) with a bottom gate/bottom contact were used to fabricate OFET devices. The 

substrates were treated with HMDS (Hexamethyldisilazane) to optimise the silicon 

surface property. A solution of the HTM (5 mg/mL) in dichlorobenzene was stirred at 

room temperature. The Ossila substrate was covered with the solution by drop-casting. 

The electric characteristics of the fabricated OFETs were measured using a Keithley 

2612A System SourceMeter. Mobilities were calculated using the following equation 

𝜇𝐹𝐸 = (
√𝜕𝐼𝐷𝑆

𝜕𝑉𝐺
)

2

. (
2𝐿

𝑊𝐶𝑖
) 

Where Z is the channel width, L the channel length, Ci the capacitance, VG the gate 

voltage and IDS is the drain current and √𝜕𝐼𝐷𝑆 𝜕𝑉𝐺⁄ , the slope of the Transfer 

Characteristic Curves in the saturation regime.215,216 

 

3.4.8 Transient Absorption Spectroscopy  
Transient Absorption Spectroscopy were measurement by Dr. Irene Sanchez Molina 

at Imperial College London. 

Sample preparation 

A solution of mesoporous TiO2 in terpineol (Dyesol 30 nm TiO2, weight ratio 1:2) was 

spin coated on a 10 mm by 10 mm glass square, with an acceleration of 2000 rpm for 

30 s. The subtrates were cleaned with isopropanol (IPA) in a sonicator for 5 minutes 

before spin coating.  After spin coating, the substrates were placed into a 450 ℃ oven 

for 1 hour and cooled down to room temperature before deposition of the perovskite 

layer. For the deposition of the perovskite layer 1M solution of PbI2 and CH3NH3I in 

DMSO was prepared. This solution was spin coated onto the glass slides covered with 

the mesoporous oxide via a 3-step spin coating process: (i) 1000 rpm, 10s, 2000 acc; 

(ii) 5000 rpm, 20 s, 2000 acc; (iii) 6000 rpm, 20 s, 2000 acc. Toluene (300 µL) was 

dropped on the substrates by the end of the second step. The films were then annealed 

at 50 ℃ for 20 min and at 100 ℃ for 25-30 min and cooled down to room temperature. 



CHAPTER 3. SMALL MOLECULES [DATPA] HTMS 

93 

 

A 20 mg/mL solution in chlorobenzene of the corresponding HTM was spin-coated 

onto the perovskite layer at 2000 rpm for 30 s, with an acceleration of 2000 rpm.  

Measurements 

UV-Vis was performed on a PerkinElmer UV/VIS Spectrometer Lambda 25. 

Photoluminescence spectra were recorded on a Horiba Yobin-Ybon Fluorolog-3 

spectrofluorometer, using an excitation wavelength of 450 nm and slit widths of 10 

nm. For pump-probe micro to millisecond transient absorption spectroscopy, films 

were excited by a dye laser (Photon Technology International GL-301, sub-

nanosecond pulse width) pumped by a pulsed nitrogen laser (Photon Technology 

International GL-3300). A quartz halogen lamp (Bentham IL1) was passed through a 

monochromator and used to probe changes in the absorption characteristics of the film 

as a function of time after the laser excitation. The probe light was detected using 

home-built silicon (≤1000 nm) or InxGa1-xAs (>1000 nm) photodiodes and an 

oscilloscope. Unless otherwise stated, films were kept under flowing N2 during the 

measurements. All micro to millisecond transient absorption spectroscopy 

measurements were conducted employing 450 nm laser pulses (25 µJ/cm2). 

 

3.4.9 Perovskite Solar Cells and Characterisation 
Perovskite solar cells were fabricated by Dr. Joel Troughton at Swansea University. 

Etched FTO glass substrates (NSG Pilkington, TEC7) were cleaned sequentially in 

detergent, deionised water, acetone and ethanol, before undergoing 10 minutes of O2 

plasma treatment. A compact TiO2 layer was deposited on the FTO glass substrates 

thtough spray pyrolysis of a 0.2M solution of titanium diisopropoxide 

bis(acetylacetonate) in isopropanol at 450 ℃. Upon cooling, a mesoporous layer of 

TiO2 nanoparticles was spincoated from a 2:7 wt suspension of Dyesol 30NR-D paste 

in ethanol (4500 rpm, 30 s), followed by sintering at 550 ℃ for 30 minutes. A 

CH3NH3PbI3 perovskite precursor solution was prepared by dissolving 576 mg PbI2, 

and 199 mg CH3NH3I in a 4:1 (volume ratio) solution of DMF:DMSO.  The perovskite 

precursor solution (100 µL) was deposited onto the TiO2 films and spincoated at 4000 

rpm for 30 seconds, with 200 µL of ethyl acetate dropped onto the spinning substrate 

10 seconds prior to the end of the spincoating process. Perovskite films were annealed 
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at 100 ℃ for 10 minutes. In the case of the spiro-OMeTAD, a 85 mg/mL solution of 

spiro-OMeTAD in chlorobenzene was prepared with dopants including 

bis(trifluoromethylsulfonyl)imide lithium salt (Li-TFSI) (20 µL/mL of a 520 mg/mL 

solution in acetonitrile), 4-tert-butylpyridine (tBp, 30 µL/mL) and tris(2-(1H-pyrazol-

1-yl)-4-tertbutylpyridine)-cobalt(III) tris(bis(trifluorome-thylsulfonyl)imide) (FK209, 

10 µL/mL of a 300 mg/mL solution in acetonitrile). For the other HTMs, the same 

weight of material was dissolved in chlorobenzene with 2 times the volume of 

additives. The HTM solution was spincoated onto the perovskite films at 4000 rpm for 

30 seconds before 80 nm thick gold (Au) contacts were thermally evaporated onto 

devices. Current-voltage measurments were performed using a AAA-rated solar 

simulator (Oriel Sol3A) calibrated against a KG5-filtered reference diode (Oriel 

91150-KG5). Solar cells were masked to 0.1 cm2 and scanned both from forward to 

reverse bias and viceversa at 100 mV/s. 
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 Polymeric HTMs with triarylamine 
side chains 

 Introduction 
 
Polymeric triphenylamines  present some improved properties compared to their low 

molecular weight equivalents such as excellent film forming which allow an easy and 

low-cost manufacture of large scale technologies.219–221 One of the most notable 

improvements is that polymers have higher glass transition temperatures (Tg) and do 

not crystallise easily bringing an important potential advantage for the stability and 

reproducibility of the devices. Furthermore, the hydrophobic properties of polymers 

act as a protecting layer for the perovskite film to ambient which enhance the solar cell 

stability.219,220  

 

Polymeric materials have been widely employed as promising HTMs in OLED and 

OPV technologies for many years and by the time perovskite solar cells222 were 

introduced, there was already many available polymers including: poly(3- 

hexylthiophene)(P3HT)192, Poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-

b;3,4-b’]dithiophene)-alt-4,7(2,1,3-benzothiadiazole)] (PCPDTBT)166, poly[N-9’-

heptadecanyl-2,7-carbazole-alt-5,5-(4’,7’-di-2-thienyl-2’,1’,3’-benzothiadiazole)] 

(PCDTBT),223 poly-triarylamine (PTAA)224 and others.156 These materials were not 

designed for perovskite solar cells and they absorb light, therefore they can compete 

with the perovskite absorber in the inverted solar cell architecture.  

 

Electronic functional polymers are typically divided into two groups: main-chain and 

side chain. Most polymers used in perovskite cells are main chain polymers. Side-

chain polymers have been studied before in organic electroluminescence devices  

(EL)225 and organic field effect transistors (OFET)226,227 because they are comparable 

with their low molecular weight analogues in terms of the electronic properties 

presenting also high solubility and good thermal properties.  Nevertheless, to the best 
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of our knowledge side-chain polymers haven’t been studied before in perovskite solar 

cells. Furthermore, there is no report comparing the effect of the corresponding 

monomers and polymers in solar cell performance. Here we investigate two different 

monomers namely M:OO and M:ON with their corresponding side-chain polymer 

coded as P:OO and P:ON (Figure 4.1). Two different substituted Styrenic 

triarylamines were prepared followed by their radical polymerization using AIBN to 

study their properties and function as HTMs in perovskite solar cells. 

 

 

Figure 4.1 Chemical structure of the HTMs used in this study. 

 Results and Discussion 
 

4.2.1 Synthesis 
 

In a previous study, Jager228 and co-workers synthesized similar triarylamines with 

different substituents which were later polymerized by nitroxide-mediated 

polymerisation (NMP) to prepared block copolymers for directional charge transfer. 

In this work the P:OO and P:ON were prepared by the free radical polymerization of 

4-ethenyl-N,N-bis(4-methoxyphenyl)benzenamine (M:OO) and 4-ethenyl-N,N-bis(4-

Methoxy,4-(dimethylamino)diphenyl-amine (M:ON) respectively. Triarylamines 
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containing a styrene unit were synthesized by the palladium catalysed Buchwald-

Hartwig229 coupling due to its adaptability for multigram scale. The synthetic route  is 

shown in scheme 4.1 and detailed synthetic procedures can be found in the 

experimental section. All materials were characterised in detail by nuclear magnetic 

resonance (NMR) (1H and 13C), elemental analysis and mass spectrometry (MS).  

 

 

Scheme 4.1 Schematic representation of the synthesis of triarylamines by Hartwig-Buchwald 

coupling and preparation of the polymers by radical polymerization. Reaction conditions: i) 

Pd2(dba)3, phosphine ligand, NaOtBu, toluene, 18 hrs, 80 ℃, N2 ii) Pd2(dba)3, phosphine 

ligand, bromostyrene, NaOtBu, toluene, 12 hrs, 110 ℃  iii) AIBN, toluene, 120  (See 

Experimental section for details). 
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4.2.2 Optical and electrochemical properties 

 
Figure 4.2 Normalized UV-Vis absorption (solid line) and emission (dashed line) of 

monomers and polymers. 

 

The optical properties of monomers and polymers were investigated by UV/Vis and 

photoluminescence (PL) spectroscopy in solution with dichloromethane. The UV-Vis 

absorption spectra are presented in Figure 4.2 (solid line). All compounds exhibit a 

strong absorption around 300 nm almost independent of the substituents. The 

absorption peaks are located around 300 nm. Absorption peaks of the investigated 

polymers and monomers are located in the UV region with no significant absorption 

in the visible region. Transparent HTMs with no absorption in the visible region 390 

to 700 nm provide additional advantages and flexibility as they can be used in other 

solar cells architectures such as inverted and tandem structures where it is important 

that there is not competition with the perovskite layer. The monomers exhibit two 

adjacent bands corresponding to π-π* and n-π* absorption, while for the polymers one 

single band from n-π* absorption is observed. Photoluminescence spectra are 

illustrated in Figure 4.2 (dashed line). In contrast to UV-Vis, the emission energies are 

significantly influenced by the substituents. The symmetric substitution (M:OO and 

P:OO) leads to emission at 457 and 395 nm respectively whereas the emission maxima 

are shifted to longer wavelength for the asymmetric substitutions (M:ON and P:ON) 
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and are found at 424 and 530 nm. This trend could be explained as an effective S1 

energy stabilisation due to the presence of electron-donating groups of various 

strengths, likely linked with rotation around the N-aryl bond after excitation. 

Moreover, a hypsochromic shift is observed upon polymerization, which can be 

attributed to both the loss of the conjugated double bond and the steric shielding effect 

(solvent exclusion). The polymers have a more rigid and compact structure, which 

leads to steric shielding of the interior units. Hence, lower interaction with the solvent 

molecules leads to less stabilisation of the emissive state explaining the observed blue-

shifted emission. The optical band gaps were determined from the intersection of the 

excitation and the emission spectra and are presented in Table 4.1   at the end of this 

section. 

 

Figure 4.3 Cyclic voltammetry traces at different scan rates of M:OO, P:OO, M:ON and 

P:ON. 

 



CHAPTER 4. POLYMERIC HTMS WITH TRIARYLAMINE SIDE CHAINS 

100 

 

The oxidation potential and derived energy levels of the HTMs are fundamental 

parameters for constructing high-performance PSCs. The electrochemical properties 

were investigated by cyclic voltammetry (CV) and square-wave voltammetry. From 

the CV measurements (Figure 4.3), it can be noted that the redox peaks of all the HTMs 

are highly chemically and electrochemically reversible, indicating excellent chemical 

stability and rapid electron transfer.  

 

 
Figure 4.4 Square-wave voltammetry of the monomers and polymers. M:OO (blue line), 

M:ON (pink line), P:OO (green line) and P:ON (purple line). 

 

The HOMO energy levels of the compounds were estimated from the half-wave 

potential using ferrocene/ferrocenium as an internal standard in square-wave 

voltammetry (Figure 4.4) experiments. The four compounds show an oxidation 

process assigned to the oxidation of the triarylamine moiety. The influence of the 

substituents is reflected by a shift in the potential of the redox couple. The oxidation 

of M:OO and P:OO occurs around +0.22 V and +0.19 V, whereas the electron donating 

Me2N- substituent of M:ON and P:ON causes a shift to lower potentials (-0.1 V and -

0.15 V) thus increasing their HOMO energy level to -5.0 eV and -4.95 eV respectively. 

This makes M:ON and P:ON significantly stronger donor molecules than M:OO, P:OO 
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and Spiro-OMeTAD. These observations were explained with Density Functional 

Theory calculations using Gaussian 09217 with B3LYP 6-31(d) level of theory in DCM.  

 

 

Figure 4.5 Molecular Orbital distribution of HOMO of monomers and polymer model 

derivatives at B3LYP/6-31G(d)level of theory. 

 

For the polymers, a model of the monomer fragment with saturated alkyl chain was 

used to calculate their electronic properties. The calculated trend of HOMO energy 

levels matches the experimental data. The HOMO energy levels delocalized over the 

π orbitals of the triphenylamine unit and the peripheral substituents. The delocalisation 

of the HOMO onto the peripheral substituents (Figure 4.5) explains the large shift in 

the oxidation potential upon changing the substituent from MeO- to Me2N-. A 

summary of the optical and electrochemical properties of these materials is presented 

in Table 4.1. These results indicate an energetically-favourable hole transfer from the 

perovskite (MAPbI3) to the HTM in all cases (Figure 4.6). 
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Figure 4.6 Energy diagram for perovskite (CH3NH3PbI3), monomers and polymers. 

 

 
Table 4.1 Summary of the optical, electrochemical and thermal properties 

HTM 
λmax 

(nm) 

ε                

(cm-1 M-1) 

λem 

(nm)a 

Egap 

(V)b 

Eox 

(V)c 

EHOMO 

(eV)d 

M:OO 308*,336 22500 457 3.15 +0.22 -5.32 

M:ON 309*,334 23500 424 3.29 -0.10 -5.00 

P:OO 300* 19000 395 3.39 +0.19 -5.29 

P:ON 307* 23000 511 2.99 -0.15 -4.95 

Spiro-OMeTAD 385 - 424 3.05 +0.03 -5.13 

aExcitation at λmax*. bOptical gap, determined from the intersection of the excitation and emission 

spectra.cFrom SWV measurments and referenced to ferrocene. dEHOMO(eV)=-5.1-Eox. 213 
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4.2.3 Thermal properties 
 

Thermal properties of the monomers and polymers were determined by Differential 

Scanning Calorimetry (DSC), and the results are displayed in the supporting 

information (Figure 4.7). Both polymers (P:OO and P:ON) showed the same glass 

transition temperature of 253 ℃. On the other hand monomers M:OO and M:ON, do 

not present Tg. The M:OO exhibit a melting point of 75 ℃ and no melting point was 

found for M:ON. These results confirm that the polymers form a more stable 

amorphous glassy state and higher thermal stability. 

 

 

Figure 4.7 Differential scanning calorimetry curves. 
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4.2.4 Transient Absorption Spectroscopy 

 

To investigate the ability of the monomers and polymers to extract holes, we measured 

steady-state and transient photoluminescence (PL) decay. Samples were prepared by 

spin-coating of the perovskite onto a mesoporous Al2O3 layer with the HTM on top. 

Details of the sample preparation and measurments are described in the experimental 

section. The perovskite exhibited a strong PL peak near 760 nm as shown in Figure 

4.8 and PL is largely quenched when any of the HTMs (M:OO, P:OO, M:ON and 

P:ON) were coated onto the perovskite, indicating an effective charge extraction into 

the HTM. From the transient PL decays (Figure 4.9), it was found that monomers 

reduce the lifetime of the perovskite emission more effectively than polymers, 

indicating more effective charge extraction.
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Figure 4.8 Steady-State Photoluminescence in a Al2O3/MeNH3PbI3/HTM architecture. AM 

is M:ON, SM is M:OO, AP is P:ON and SP is P:OO. 
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Figure 4.9 Transient PL decay of monomers and polymers. 

 

4.2.5 Solar Cells Studies 
 

 
Figure 4.10 J-V curves of the champion PSCs of the new HTMs and spiro-OMeTAD. 
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We prepared a set of perovskite solar cells in the configuration FTO/bl-TiO2/mp-

TiO2/CH3NH3PbI3/HTM/Au. All HTMs were doped using similar concentrations of 

additives [LiTFSi] and tBP (tert-butylpyridine) as described in the supporting 

information. The current density-voltage (J-V) characteristics were measured under 

simulated air mass 1.5 global (AM 1.5G) solar irradiation. Figure 4.10 shows the J-V 

curves characteristic of the champion devices and results are summarised in Table 4.2. 

All devices were fabricated in a single continuous study over 15 repeat cells for each 

HTM to facilitate comparison between the reported HTMs and Spiro-OMeTAD. 

Spiro-OMeTAD presented the highest efficiency of 15.09 %. The corresponding 

values for M:OO, P:OO and P:ON of 7.48%, 5.28% and 5.14% are reasonably good 

considering that this work represents the first solar cells study with these HTMs and 

that Spiro-OMeTAD has gone through extensive optimisation of doping and 

processing procedures for many years. 

 
Table 4.2 Summary of  photovoltaic parameters of the champion cells 

HTM PCE (%) Jsc (mA cm-2) Voc (V) FF (%) 

M:OO 7.48 12.81 0.89 65.54 

P:OO 5.14 10.61 0.85 57.17 

M:ON 3.52 6.79 0.68 76.19 

P:ON 5.28 12.49 0.65 64.73 

Spiro-OMeTAD 15.09 20.56 0.95 63.81 
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Figure 4.10 shows the box plots with the mean and standard deviation of the solar cell 

parameters and the results are summarised in Table 4.3. 

 

 

Figure 4.11 Box plot of photovoltaic parameters of PSCs over 15 repeats for each HTM. 

 

There is a small increase in the average short circuit current (Jsc) values upon 

increasing the electron donating character of the polymers from 9.58±0.63 mA cm2 for 

P:OO to 10.68±1.11mA cm-2 for P:ON. On the other hand, the HOMO levels of P:ON 

and M:ON are higher than P:OO and M:OO leading to smaller open circuit voltage 

(Voc) values; 0.84±0.054 V and 0.78±0.035V for M:OO and P:OO and 0.38±0.28 V 

and 0.62±0.023 for M:ON and P:ON. Comparing M:OO and P:OO, the variance in 

PCE values is attributed to the differences in the photocurrent density which may have 

resulted from the more efficient charge extraction sustained by the result from the 

transient PL decay. 
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Table 4.3 Summary of the mean and standard deviation of photovoltaic parameters measured 

over 15 repeat cells. 

HTM PCE (%) Jsc (mA cm-2) Voc (V) FF (%) 

M:OO 4.24±2.03 10.74±1.71 0.84±0.054 44.67±15.54 

P:OO 3.94±0.68 9.58±0.63 0.78±0.035 51.31±6.41 

M:ON 1.03±1.23 3.29±1.99 0.38±0.28 43.67±19.98 

P:ON 4.22±0.48 10.68±1.11 0.62±0.023 63.24±1.71 

Spiro-OMeTAD 11.71±2.96 20.37±0.80 0.93±0.038 62.92±14.67 

 

As can be seen from the box plot (Figure 4.11), in comparison with both monomers 

and Spiro-OMeTAD, the polymers exhibit photovoltaic parameters with significantly 

smaller standard deviation, leading to average PCE 3.94%± 0.68 for P:OO and 

4.22%±0.48 whereas for spiro-OMeTAD, M:OO and M:OO average values are 

11.7%±2.96, 4.24%±2.03 and 1.03%±1.23. The difference in FF values are even 

greater with polymers showing 51.3%±6.4 for P:OO and 63.2%±1.7 and spiro-

OMeTAD, M:OO and M:ON presenting 62.92%±14.67, 44.67%±15.54 and 

43.67%±19.98. These result can be attributed to the difference in the morphology. The 

polymers form more stable amorphous state and have higher thermal stability which 

result in a more homogenous film deposition during the device fabrication. 

 Conclusions  
 

In conclusion, we present the synthesis and characterisation of two styrenic 

triphenylamine-based monomers and their corresponding side-chain polymers for use 

as HTMs in perovskite solar cells. The structures contained different electron-donating 

groups in the para-position. The effect of the substituents on the redox potential result 

in a potential window from -0.15 to 0.22 V.  The optical, electrochemical, thermal 

properties and device performance of the monomers and polymers were compared in 

terms of their structure.  From this study, it was found that despite offering lower 
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efficiencies in comparison with spiro-OMeTAD and monomers, the polymers 

presented higher reproducibility in the solar cells parameters. The polymers have 

significantly smaller standard deviation in the power conversion efficiency and fill 

factor data which is mainly due to the better and more stable amorphous films resulting 

in a more homogeneous film. The results found in this work may encourage further 

efforts on polymeric HTMs with redox side groups for perovskite solar cells which 

may have advantages in manufacture and scale up due to enhanced reproducibility.  

 Experimental details 
 

4.4.1 Chemical characterization 
1H and 13C NMR spectra were recorded on a Brucker Advance 500 spectrometer (500 

MHz for 1H and 124 MHz for 13C). The deuterated solvents are indicated in the 

synthesis description. Chemical shifts, δ, are given in ppm, using the solvent residual 

as an internal standard. MS were recorded on Bruker ESI Micro-Tof equipped with 

LC using electrospray ionization (ESI). Elemental analyses were carried out by 

Stephen Boyer at London Metropolitan University. 

4.4.2 Synthesis 
 

 Materials and Synthesis 

All reagents were purchased from either Sigma-Aldrich or Alfa-Aesar and they were 

used as received without further purification unless otherwise stated. 

 

4-Ethenyl-N,N-bis(4-methoxyphenyl)benzenamine  Pd2(dba)3 (1.31 mmol, 1.2g), 

tri-o-tolylphosphine (6.5 mmol, 2 g), 4,4' Dimethoxydiphenylamine (43.62 mmol, 10 

g) and NaOtBu (50 mmol, 4.8 g) were added into a Schleck tube and dried under 

vacuum for 30 minutes. 4-Bromostyrene (5.8 mmol, 0.7 g) and toluene (30 mL) were 

all degassed and added to the reaction mixture and the contents heated at 110 ℃ 

overnight under N2. The crude material was purified first by an extraction with water 

following by a silica plug (70:30 Hex/EtA) of the organic phase. Solvent was removed 

from the solution under vacuum and the product purified by flash column 

chromatography (SiO2, Hexane/EtOAc 80:20) to afford a yellow powder (5.3 g, 52.5% 
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yield). 1H NMR (500 MHz, DMSO-d6) δ 7.31 – 7.24 (m, 2H), 7.05 – 6.98 (m, 4H), 

6.96 – 6.88 (m, 4H), 6.76 – 6.69 (m, 2H), 6.61 (dd, J = 17.6, 11.0 Hz, 1H), 5.61 (dd, J 

= 17.6, 1.2 Hz, 1H), 5.08 (dd, J = 10.9, 1.3 Hz, 1H), 3.75 (s, 6H). 13C NMR (126 MHz, 

DMSO-d6) δ 119.65, 115.43, 111.73, 55.72 , 39.77 , 39.59. Anal. Calcd for 

C22H21NO2: C, 79.73; H, 6.39; N, 4.23; found: C, 79.81; H, 6.50; N, 4.34. ): [M]+ 

calcd 331.42 found 331.16. 

 

4-Methoxy-4'-(dimethylamino)diphenylamine 4-bromo-N,N-dimethylaniline (5 g, 

25 mmol), p-anisidine (3.7 g, 30 mmol), Pd2(dba)3 (115 mg, 0.125 mmol), JohnPhos 

ligand (74 mg, 0.250 mmol) and NaOtBu (3.35 g, 35 mmol) were were added into a 

Schlenk tube and dry under high vacuum for 60 minute. Previously degassed dry 

toluene (66 mL) was added and the mixture was stirred at 80 oC for 48 hrs under N2. 

The crude material was purified first by an extraction with water/DCM and a silica 

plug (70:30 Hex/EtOAc). Solvent was removed from the solution under vacuum and 

the product was purified by flash column chromatography (SiO2, hexane/EtOAc/ 

9.9:0.10) to afford a yellow powder (5.3 g, 52.5% yield). 1H NMR (500 MHz, 

Benzene-d6) δ 6.97 – 6.90 (m, 2H), 6.83 – 6.74 (m, 4H), 6.65 – 6.60 (m, 2H), 4.73 (s, 

1H), 3.37 (s, 3H), 2.56 (s, 6H). 

 

4-Ethenyl-N,N-bis(4-Methoxy-4’(dimethylamino)diphenylamine Pd2(dba)3 (0.25 

mmol, 0.23 g), tri-o-tolylphosphine (1.24 mmol, 0.38 g), 4-Methoxy-4'-

(dimethylamino)diphenylamine (8.26 mmol, 2 g) and NaOtBu (9.5 mmol, 0.9) were 

added into a Schlenk tube and dried under vacuum for 30 minutes. 4-Bromostyrene 

(5.8 mmol, 0.7 g) and toluene (15 mL) were all degassed and added to the reaction 

mixture and the contents heated at 110 °C overnight under N2. The crude material was 

purified by an extraction with water following by a silica plug (70:30 Hex/EtA). 

Solvent was removed from the solution under vacuum and the product purified by flash 

column chromatography (SiO2, Hexanes up to Hexanes/EtOAc 80: 20) to afford a 

thick yellow oil (1.6 g, 80% yield). 1H NMR (500 MHz, DMSO-d6) δ 7.28 – 7.21 (m, 

2H), 7.05 – 6.97 (m, 2H), 7.00 – 6.91 (m, 2H), 6.94 – 6.86 (m, 2H), 6.77 – 6.66 (m, 

4H), 6.60 (dd, J = 17.6, 11.0 Hz, 1H), 5.58 (dd, J = 17.6, 1.2 Hz, 1H), 5.05 (dd, J = 
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10.9, 1.2 Hz, 1H), 3.74 (s, 3H), 2.88 (s, 6H). 13C NMR (126 MHz, DMSO-d6) δ 

148.93, 148.11, 140.62, 136.72, 136.47, 128.92, 127.48, 127.35, 126.79, 118.83, 

115.30, 114.02, 111.27, 55.71, 40.82, 39.7. Anal. Calcd for C23H24N2O: C, 80.20; H, 

7.02; N, 8.13; found: C, 80.05; H, 7.16; N, 8.05. ): [M]+ calcd 344.46 found 345.196. 

 

The polymers were synthesised bv Dr. Ben Lake from Professor Michael Shaver group 

at the University of Edinburgh using the following procedure: 

 

P:OO was synthesised via free radical polymerisation (FRP). An ampoule was 

charged with 4-methoxy-N-(4-methoxyphenyl)-N-(4-vinylphenyl)aniline (1.0 g, 3.0 

mmol), AIBN (5.0 mg, 30 μmol) and anhydrous toluene (2 ml). The resulting solution 

was heated at 120°C for 20 hours. After this time, the reaction mixture was cooled to 

ambient temperature. The reaction mixture was added dropwise to methanol (75 ml), 

inducing the precipitation of the polymer, which was collected by filtration. It was 

necessary to re-dissolve (in a minimum of THF) and re-precipitate (in methanol) the 

collected polymer to ensure that all remaining monomer was removed. Finally, the 

purified polymer was dried in vacuum, yielding an off-white solid (0.55 g). 1H NMR 

(500 MHz, DMSO-d6) δ 1.4 – 1.6 (chain, 3H), 3.5 – 3.8 (OMe, 6H), 6.3 – 7.0 (aromatic, 

12H). 

 

P:ON was synthesised using the same procedure described above. The purified 

polymer was dried in vacuum, yielding a yellow solid (0.50 g). 1H NMR (500 MHz, 

DMSO-d6) δ 1.5 – 1.7 (chain, 3H), 2.7 – 3.2 (NMe2, 6H), 3.5 – 3.8 (OMe, 3H), 6.5 – 

7.3 (aromatic, 12H). 

4.4.3 Thermal Characterisation 
Differential scanning calorimetry (DSC) was performed on NETZSCH STA 449F1 at 

a scan rate of 5 K min-1 under nitrogen atmosphere in DSC/TG aluminium pan. The 

measurement range was 25 ℃ to 300 ℃. 
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4.4.4 Optical characterization 
Solution UV-Visible absorption spectra were recorded using a Jasco V-670 

UV/Vis/NIR spectrometer controlled with SpectraManager software. 

Photoluminescence (PL) spectra were recorded with a Fluoromax-3 fluorimeter 

controlled by ISAMA software. All samples were measured in a 1 cm cell at room 

temperature with dichloromethane as solvent. Concentrations of 5 x 10-5 M and 2 x 10-

6 M were used for UV/Vis and PL respectively. 

 

4.4.5 Electrochemical characterization 
All cyclic voltammetry measurements were carried out in freshly distilled CH2Cl2 

using 0.3 M [TBA][BF4] electrolyte in a three electrode system, with each solution 

being purged with N2 prior to measurement. The working electrode was a Pt disk. The 

reference electrode was Ag/AgCl and the counter electrode was a Pt rod. All 

measurements were made at room temperature using a µAUTOLAB Type III 

potentiostat driven by the electrochemical software GPES; square wave voltammetry 

(SWV) was carried out at a step potential of 2 mV, square wave amplitude of 25 mV, 

and a square wave frequency of 25 Hz. Ferrocene was used as the internal standard in 

each measurement. 

 

4.4.6 Computational details 
All calculations were carried out using the Gaussian 09 program with Lee Yang–Parr 

correlation functional (B3LYP) level of theory. All atoms were described by the 6-

31G(d) basis set. All structures were input and processed through the Avogadro 

software package.  

 

4.4.7 Time resolved photoluminescence  
Time resolved photoluminescence measurmenrs were performed by Dr. Irene Sanchez 

Molina at Imperial College London. A 35 % dilution of an AI-7 Al2O3 paste in H2O 

was made up and stirred overnight. Squares of VWR super premium microscope slides 

were rinsed in IPA in a sonicator for five minutes prior to spin coating. The solution 

of alumina was pipetted onto the microscope slides while on the vacuumed O-ring. 
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The paste was spun at 4500 rpm, for 30 seconds. The films were then placed in a 150 

℃ oven for 1 hour and left to cool for 20 minutes. For the deposition of the perovskite 

layer 1M solution of PbI2 and MeNH3I in DMSO was prepared. This solution was 

spin-coated onto the glass slides covered with the mesoporous oxide via 3-step spin 

coating process: (i) 1000 rpm, 10 s, 2000 acc; (ii) 5000 rpm, 20 s, 2000 acc; (iii) 6000 

rpm, 20 s, 2000acc. Toluene (300 µL) was dropped on the substrates by the end of the 

second step. The films were then annealed at 50 ℃ for 20 min and at 100 ℃ for 25-30 

min and cooled down to room temperature. A 20 mg/mL solution in chlorobenzene of 

the corresponding HTM was spin-coated onto the perovskite layer at 200 rpm for 30 

s, with an acceleration of 2000 rpm. UV-Vis was performed on a PerkinElmer UV/VIS 

Spectrometer Lambda 25. Photoluminescence spectra were recorded on a Horiba 

Yobin-Ybon Fluorolog-3 spectrofluorometer, using an excitation wavelength of 450 

nm and slit widths of 10 nm. Time-correlated single-photon counting was recorded 

using a Deltaflex spectrometer (Horiba Yobin-Tbon), using an excitation of 404 nm 

and measuring the emission of the perovskite at 770 nm. 

4.4.8 Perovskite Solar Cells and Characterisation 
Perovskite solar cells were fabricated by Dr. Joel Troughton at Swansea University. 

FTO substrates (7 Ω/sq) were etched with zinc powder and HCl (2M aqueous solution) 

to give the desired electrode patterning. The substrates were cleaned in a solution of 

detergent and deionised water before sequential sonication in deionised water, acetone 

and isopropanol and a 10 minute oxygen plasma treatment to remove the last traces of 

organics. The FTO substrates were subsequently coated with a compact layer of TiO2 

(50 nm) by spray pyrolysis deposition using titanium diisopropoxide 

bis(acetylacetonate) in anhydrous ethanol as precursor solution (Volume ratio 1:9). 

After cooling from 450 ℃, a dilute suspension of TiO2 nanoparticles (2:7 wt, Dyesol 

30NR-D: ethanol) was deposited by spin coating (4500 rpm, 30 seconds). The samples 

were then heated at 150 ℃ for 10 minutes, followed by sintering at 550 ℃ for 30 

minutes. Upon cooling, samples were immediately transferred to a N2-filled glovebox 

(H2O and O2 levels < 0.5 ppm). The perovskite (CH3NH3PbI3) layer was deposited by 

spin-coating a solution containing 576 mg of PbI2 and 199 mg of MAI in a mixture of 

0.8 mL DMF and 0.2 mL of DMSO (4000 rpm, 30 seconds), with 100 µL of ethyl 
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acetate deposited 10 seconds before the end of the spin cycle. The substrates were then 

annealed at 100 ℃ for 10 minutes in the glovebox.  The HTMs were dissolved in 

chlorobenzene (75 mg/mL) with the standard additives 5-tert-butylpyridine (32 µL) 

and lithium bis(trifluoromethanesulfonyl) imide (20 µL, 520 mg/mL solution in 

acetonitrile). Hole transport solutions were spin-coated at 4000 rpm for 30 seconds, 

after which a 80 nm thick gold electrode was evaporated at 10-4 Torr. For measuring 

the performance of the solar cells, simulated sunlight was generated using an AAA-

rated solar simulator (Newport) calibrated with KG-5 filtered Si reference cell 

(Newport).  
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 HTMs based on star-shaped 
triarylamine molecules 

 Introduction 
 
Small organic molecules and polymers semiconductors have both been widely used in 

optoelectronic devices. There are several advantages in using polymers over small 

organic molecules. One of the most important advantages is that usually polymers 

present high glass transition temperatures providing high morphology stability which 

result in more reproducible devices. Polymeric materials usually form smooth and 

uniform thin films which allow an easy control and low cost manufacture of large scale 

technologies. Because polymers can be designed to have high solubility, it is possible 

to used cheap deposition methods (such as spin-coating, doctor blading, screen 

printing) without sacrificing the quality of the film.  Furthermore, the hydrophobic 

nature of polymeric materials serves as a protection for the perovskite film to humidity 

improving the stability of the solar cell.221,230 Nevertheless, polymeric hole transport 

materials usually present lower efficiencies than their low molecular weight 

equivalents. Small molecules have a number of advantages over polymeric materials 

and generally present improvement in devices efficiencies. Small molecules have a 

uniform and well-defined composition and they are usually easy to purify by standard 

techniques (recrystallization, column chromatography, etc). In comparison to 

polymers, the synthesis of small molecules is highly reproducible and it is relatively 

easy to tune their properties by conventional molecular engineering. Although small 

molecules are usually soluble in common organic solvent, however these can 

significantly influence the packing in the thin-film.  Therefore, one of the greatest 

challenges of small molecules is the stability and control of their morphology in the 

solid state221. 

 

One of the strategies to overcome the problems of both small molecules and polymers 

is the use of  star-shaped molecules as HTM . The star-shaped molecules have a central 
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aromatic core with multiple “arm” functional units attached to the core. These 

molecules combine the best of both groups i.e. well-defined structures and  physical 

properties, high thermal stability, good solubility and good film-forming 

properties.230,231 

 

These materials have been widely used in organic field effect transistors232 and organic 

light-emitting diodes233 and more recently they have attracted attention as hole 

transporting materials in organic solar cells234. There are some star-shaped HTMs that 

have been used in perovskite solar cells (PSCs)235–237. Ko236 and co-workers reported 

a hole transporting material with a planar central amine coded as OMeTPA-FA and 

compare this with the non-planar structure. The planar structure showed better charge-

separation and higher hole mobilities which result in an overall power conversion 

efficiency in perovskite solar cells of 13.63%. More recently, Grätzel237 and 

collaborators reported two new dopant-free star-shaped TPA-based hole transporting 

material for perovskite solar cells. However, these reports are limited especially for 

triphenylamine-based hole transport materials. Here we report new types of star-

shaped TPA-based hole transporting materials for perovskite solar cells coded as STR1 

and STR0. These molecules contain a central triarylamine unit and three TPA units in 

the peripheres linked with the core by an acetylene bridge. In STR0 we incorporate a 

partially bridged triphenylamine in the central unit of the star-shaped structure. These 

result in a quasi-planar structure, where the phenyl groups of the central TPA are 

constrained by two oxygen bridges.  The chemical structures of STR1 and STR0 are 

illustrated in Figure 5.1. These structures have never been studied and to the best of 

our knowledge there are no reports of star-shaped TPA-based hole transporting 

materials containing oxygen bridged in the central core. Kaji238 and colleagues studied 

the properties of partially oxygen-bridged triarylamine dimers as hole transport 

materials. These compounds formed an on-top π-stacking arrangement in their crystal 

structure which led to high carrier mobilities.  Kuratsu238–240 and co-workers reported 

the synthesis of 2,2′:6′,2′′:6′′,6-trioxytriphenylamine (label as TOT) and 2,2′:6′,2″-

dioxytriphenylamine (label as DOT) and their magnetic properties. These reports 

inspired the design of STR0.
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 Results and Discussion 

 

5.2.1 Synthesis 
 

 

Figure 5.1 Chemical structure of HTMs used in this study. 

 

The molecular structure of the two HTMs coded as STR1 and STR0 is illustrated in 

Figure 5.1. The synthesis of STR1 is outlined in Scheme 5.1. Triphenylamine (1a) was 

brominated with n-bromosuccinimide (NBS) in DMF to give 1, followed by a 

Sonogashira coupling with 3 (4-ethynyl-N,N-bis(4-methoxyphenyl)aniline) to afford 

STR1. The synthesis of 4-ethynyl-N,N-bis(4-methoxyphenyl)aniline (3) illustrated in 

Scheme 5.1 is identical to the procedure described in Chapter 3. For the synthesis of 

STR0 (Scheme 5.2), 2,6-difluoronitrobenzene (2b) was first prepared by oxidation of 

2,6-difluroaniline (2a) using sodium perborate tetrahydrate (PBS-4) in acetic acid. 

Compound 2c was prepared by an aromatic nucleophilic substitution reaction of 2b 

with 2-bromophenol. The reduction of the nitro group of 2c using iron powder in acetic 

acid gave 2d in good yield. The intramolecular cyclization of 2d under Pd(0)-mediated 

cross-coupling was performed to yield 2e in moderate yield which was later 

brominated using pyridinium tribromide to yield 2. Finally a Sonogashira coupling 

reaction of 2 with 3 was performed to afford the final product STR0. The analytical 

and spectroscopic data of both HTMs are consisted with the formulated structures. 
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Scheme 5.1 Schematic diagram of the synthesis of the HTMs 

 



CHAPTER 5. HTMS BASED ON STAR-SHAPED TRIARYLAMINE MOLECULES 

119 

 

5.2.2 Optical and electrochemical properties 

 
Figure 5.2 Normalized UV-Vis absorption (solid line) and emission (dashed line) of STR1 

(green line) and STR0 (pink line). 

 

The optical properties of the two HTM were investigated by UV/Vis and 

photoluminescence spectroscopy. The absorption and emission spectra of STR0 and 

STR1 were measured in dichloromethane. The spectra are shown in Figure 5.2. The 

absorption spectrum of STR1 exhibits an intense peak at 392 nm whereas STR0 shows 

a strong absorption band at 419 nm. The emission spectra of STR1 and STR0 show a 

similar red-shift from 454 nm for STR1 to 464 nm for STR0. Once the central unit is 

replaced for the bridge triphenylamine unit, there is a large red shift of 27 nm in the 

maximum wavelength for the absorption spectra and 10 nm in emission spectra. The 

red-shift of STR0 can be explained by the more planar configuration of the central 

triarylamine due to small torsion angle of the phenyl units and the more delocalized π-

conjugation  which reduce the energy gap between HOMO and LUMO. Additionally, 

molar extinction coefficients were calculated for each compound using the Lambert-

Beer law and results are displayed in Table 5.1 at the end of the section. 
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Figure 5.3 Square-wave voltammetry of STR1 (green line) and STR0 (pink line). 

 

The HOMO energy levels were estimated experimentally from square-wave 

voltammetry (Figure 5.3) using ferrocene/ferrocenium as an internal standard. The 

results were calculated using the following equation EHOMO= -5.1 –(Eox), where Eox is 

the oxidation potential of the HTM with reference to ferrocene. The results show that 

the HOMO energy levels of both HTM is at -5.40 eV which is slightly lower than 

spiro-OMeTAD (-5.13 eV). The oxidation potential of spiro-OMeTAD was obtained 

from a previous report in the Robertson group.199 These outcomes indicate an 

energetically favourable hole transfer from the perovskite (CH3NH3Pbl3) to the HTM. 

 

Density functional theory (DFT) method with the Gaussian 09217 program at 

B3LYP/6-31G(d) level was used to predict the electronic properties of STR1 and 

STR0. The electron density of the optimized structures of the HOMO and LUMO 

energy levels are shown in Figure 5.4. The HOMO energy level determined by 

computational studies are similar for both hole-transport material. The HOMO is 

delocalized mainly over π orbitals of central triphenylamine core, the acetylene bridge 
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and the adjacent aromatic rings of the peripheral units. The LUMO is located over the 

part of two of the peripheral triphenylamine units and it is extended to part of the 

triphenylamine core. The calculated HOMO energy values of STR1 and STR0 are 

similar which coincides with the experimental results. ( EHOMO= -4.614 eV for STR0 

and EHOMO= -4.652 eV). 

 

 
Figure 5.4 Molecular Orbital distribution of HOMO of STR1 and STR0 at B3LYP/6-

31G(d)level of theory. 
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5.2.3 Hole Mobility 
The hole mobilities were determined by fabricating organic field effect transistor 

(OFET) of STR1 and spiro-OMeTAD. It was not possible to obtain reliable results for 

STR0 due to the poor compatibility of STR0 in these type of devices. The hole 

mobilities were extracted from the saturation regime of the transfer characteristic 

curves (Figure 5.5). Details of the device fabrication and measurements are provided 

in the experimental section.  The hole mobility of STR1 was found to be 7.13 x 10-5 

cm2/Vs at a constant drain-source voltage of -60 V. This value is significantly higher 

than that of pristine spiro-OMETAD (4.36 x 10-6 cm2/Vs) under the same conditions.  

 
Figure 5.5 Transfer Characteristic Curves of STR1 and spiro-OMeTAD on a bottom 

gate/bottom contact organic field effect transistor. 
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5.2.4 Thermal properties 
 

 

Figure 5.6 Differential scanning calorimetry curves. 

 

Usually solar cells can work at temperatures of up to 80 ℃. The glass transition 

temperature (Tg) of STR1 estimated by differential scanning calorimetry (DSC) 

measurements is 127 ℃ suggesting good morphology stability. The result is depicted 

in Figure 5.6.  A summary of the optical, electrochemical, charge transport and thermal 

properties of the HTMs  are depicted in Table 5.1. 
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Table 5.1 Summary of the optical, electrochemical, charge transport and thermal propertoes 

of STR1 and STR0. 

HTM λmax       

(nm) 
ε             

(cm-1 M-1) 
λem*  

(nm)a 
Eox 
(V)b 

EHOMO 

(eV)c 
Tg   

(℃)d 
Hole Mobility     

(cm2/Vs)e 

STR1 391* 150000 454 0.30 -5.40 127 7.13 x 10-5 

STR0 347,419* 97000 465 0.30 -5.40 x x 

Spiro-
OMETAD 385     x 4.36 x 10-6 

aExcitation at λmax. bFrom SWV measurments and referenced to ferrocene. cEHOMO(eV)=-5.1 Eox.
213 

dDetermined from differential scanning calorimetry (DSC).eEstimated from OFET measurements. 
 
 

5.2.5 Solar Cells Studies 
To investigate the performance of STR0 and STR1 as hole transport materials, a set of 

perovskite solar cells were fabricated. The device architecture adopted in this study 

was FTO/bl-TiO2/mp-TiO2/CH3NH3PbI3/HTM/Au. For comparative analysis, devices 

with spiro-OMeTAD as HTM were fabricated. The HTMs were doped using identical 

steps and similar concentrations of addives (Li-TFSI, 4-terbutylpyridine and FK209) 

For reliable comparative analysis, all devices were fabricated in a single continuous 

study over 8 repeat cells for STR1 and STR0 and 16 repeat devices for spiro-

OMeTAD. Figure 5.7 show the photocurrent density-voltage (J-V) curves of the 

champion cells and Table 5.2 gives the corresponding photovoltaic parameters.  
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Figure 5.7 J–V curves of the champion PSCs with  STR1, STR0 and Spiro-MeOTAD as 

HTMs.  

 

The best cell of STR0 gave an open-circuit voltage (Voc) of 1.02 V, a short-circuit 

current density (Jsc) of 16.35 mA cm-2 and a fill factor (FF) of 77.81%, affording a 

PCE of 13.32% under illumination. Under the same conditions the best STR1-based 

device gave  Voc of 0.95 V,  Jsc of 17.35 mA cm-2 and FF of 66.90 %, yielding a PCE 

of 11.52 %. These results are comparable to the PCE pf 15.23% obtained with the best 

spiro-OMeTAD-based cell. Figure 5.8 shows the box plots with the mean and standard 

deviation of the solar cell parameters and the results are summarised in Table 5.3. 

 
Table 5.2 Summary of the photovoltaic parameters of the champion cells. 

HTM PCE 
(%) 

Jsc (mA 
cm-2) 

Voc 
(V) 

FF 
(%) 

STR0 13.32 16.35 1.02 77.81 

STR0 no additives 3.98 16.00 0.93 26.03 

STR1 11.52 17.35 0.95 66.90 

STR1 no additives 0.64 5.31 0.82 14.27 

Spiro-OMeTAD 15.23 19.88 1.03 71.96 
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Figure 5.8 Box plot of photovoltaic  parameters of PSCs with STR1, STR0 and spiro-

OMeTAD measured just after fabrication. 

 

Table 5.3 Summary of the solar cell parameters measured just after fabrication 

HTM PCE (%) Jsc (mA cm-2) Voc (V) FF (%) 

STR0 No additives 3.02±0.90 15.12±1.79 0.82±0.10 22.77±3.33 

STR0 additives 11.71±1.11 15.17±1.06 0.99±0.03 75.09±2.47 

STR1 no additives 0.33±0.19 3.26±1.54 0.56±0.12 19.44±7.59 

STR1 additives 7.91±3.27 15.53±2.13 0.93±0.02 51.13±16.08 

Spiro-OMeTAD 13.68±1.02 19.09±1.03 1.02±0.02 68.42±3.04 
 

Solar cells using STR1 and STR0 as HTM without dopants were fabricated for 

comparative analysis. The results are shown in the box plot (Figure 5.8) and in Table 

5.3 the average values of the photovoltaic parameter along with their standard 

deviation are presented. Both HTMs present better device performance with the 
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additives. However, it was interesting to find that STR0-based cells afford a maximum 

PCE value of 4%, an impressive maximum Jsc of 16.63 mA cm-2 and a close 

distribution of the device parameters. The high values could be possible attributed to 

the reduced grain boundaries  due to the good film forming properties of STR0. From 

the box plot it is possible to examine the reproducibility of the cells performance. The 

data indicate good device reproducibility in particular for STR0 and spiro-OMeTAD 

which show small standard deviation values in all the photovoltaic parameters. Despite 

offering similar Voc and Jsc, the PCE values of STR1-based cells are lower than that of 

STR0 and Spiro-OMeTAD which can be attributed to the significant lower fill factor. 

On the other side it is important to note the high fill factor of the STR0-based cells 

which are considerably higher than that of spiro-OMeTAD.  The fill factor is a 

parameter that measures the quality of the solar cells and high values usually indicate 

low series resistance, good interfacial morphology, high charge transport and uniform 

films241,242. These results suggest that STR0 form more homogenous films during the 

device fabrication. The close distribution of the Jsc, Voc and PCE values gives also a 

hint of the good homogeneity of the films.  

 
Figure 5.9 Box plot of photovoltaic  parameters of PSCs with STR1,STR0 and spiro-

OMeTAD after two weeks of storing. 
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To compare the stability of the STR0, STR1 and spiro-OMeTAD -based solar cells, 

the devices were tested after two weeks storing at room temperature without 

encapsulation. For better comparison the results are presented in the box plot (Figure 

5.9) and the extracted average values with their standard deviations are presented in 

Table 5.4. The devices based on doped STR1 and STR0 showed a relatively small 

decrease of the photovoltaic parameters, however it is important to notice that the 

standard deviation did not significantly change. For spiro-OMeTAD a couple of the 

devices presented an improvement in the fill factor due to a slightly increase in the Jsc. 

However, on average the device parameter for spiro-OMeTAD-based cells decrease. 

It is especially noticeable the lower reproducibility of the fill factor values and the 

increase of the standard deviation values.  

 

 For devices without additives, STR1 presented a slightly better efficiency due to an 

increase of both Voc  and Jsc. More important is to note that after two weeks storing, 

the devices based-on STR0 with no additives showed a significant improvement of the 

device performance, showing a maximum PCE value of 6.63% in comparison with 

their initial values (max PCE of 4%). 

 
Table 5.4 Summary of the solar cell parameters measured after 2 weeks storing 

HTM PCE (%) Jsc (mA cm-2) Voc (V) FF (%) 

STR0 No additives 5.62±1.17 13.06±1.45 0.90±0.01 47.97±12.76 

STR0 additives 7.93±1.84 12.53±2.06 0.92±0.05 67.03±2.02 

STR1 no additives 1.01±0.20 6.06±1.29 0.81±0.08 20.50±1.05 

STR1 additives 5.66±0.86 10.81±1.45 0.88±0.03 58.14±4.37 

Spiro-OMeTAD 12.28±3.10 16.59±2.6 0.99±0.07 70.01±8.93 
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These results are consistent with the studies reported previously. Hyeju Choi and 

collaborators243 designed a star-shaped hole-transporting material with a planar amine 

named OMeTPA-FA and compare it with the non-planar structure. The planar 

triphenylamine demonstrated better charge-separation, higher hole mobility, superior 

photovoltaic performance in perovskite solar cells and better device stability which 

were similar to spiro-OMeTAD. The superior stability of the planar HTM over the 

non-planar analogue was attributed to the well packing structure on the MAPbI3 due 

to its planar configuration.  

 

 Conclusions 
 

In conclusion, we present the synthesis and characterisation of two novel star-shaped 

triphenylamine (TPA) based hole transporting materials STR1 and STR0 for 

application in perovskite solar cells. The structure contains a central TPA unit as core 

and three TPA units in the peripheral. The core unit in STR0 is an oxygen-bridged 

TPA. The optical, electrochemical, thermal properties and device performance of 

STR1, STR0 and Spiro-OMeTAD were compared. In presence of STR0 as HTM, a 

PCE of 13.32% was achieved which is comparable to that devices based on the well-

known doped spiro-OMeTAD (15.23%). After two weeks of storing, it was interesting 

to find that although the average photovoltaic performance of STR1 and STR0 

decrease, the distribution of the device parameters were consistent in comparison with 

spiro-OMeTAD where a significant increase in the standard deviation of the fill factor 

were found. Furthermore, it is also important to notice the high photocurrent density 

found for the STR0-based solar cells without additives and the improvement of the 

device parameters after two weeks of storing.  From this study, it was found that STR0 

showed superior device parameters than STR1 and better reproducibility and stability 

than spiro-OMeTAD. STR0 showed higher fill factor and smaller standard deviations 

in the power conversion efficiency and fill factor data after two weeks of storing which 

is mainly due to the better and more stable amorphous resulting in a more 

homogeneous film sustain by its higher glass transition temperature (145 ℃) presented 

previously.  
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 Experimental details 
 

5.4.1 Chemical characterization 
1H and 13C NMR spectra were recorded on a Brucker Advance 500 spectrometer (500 

MHz and 124 MHz). The deuterated solvents are indicated in the synthesis description. 

MS were recorded on Bruker ESI Micro-Tof equipped with LC using electrospray 

ionization (ESI). Elemental analyses were carried out by Stephen Boyer at London 

Metropolitan University. 

 

5.4.2 Synthesis 
 

 Materials and Synthesis 

All reagents were purchased from either Sigma-Aldrich or Alfa-Aesar, and they were 

used as received without further purification unless otherwise stated.  

 

Tris (4-bromophenyl) amine To a solution of triphenylamine (2g, 8.16 mmol) in 

DMF (15 mL), NBS (4.64g, 26.11 mmol) in DMF (10 mL) was added drop-wise at 

0℃ and the mixture was stirred for 12 hrs at room temperature. 10 mL of distilled 

water was added to the reaction mixture, which was extracted with dichloromethane. 

The organic layer was washed with 10 % solution of Na2S2O3 and 5 % solution of 

KOH, dried over anhydrous MgSO4 and the solvent evaporated under vacuum. The 

crude was purified by column chromatography (SiO2, hexanes/DCM 90/10) to afford 

the product as white powder.  1H NMR (500 MHz, chloroform-d) δ 7.40 – 7.36 (m, 

6H), 6.97 – 6.93 (m, 6H). 

 

4-Bromo-N,N-bis(4-methoxyphenyl)aniline A mixture of 4-bromoaniline (58.13 

mmol, 10 g), 1-iodo-4-methoxybenzene (145 mmol, 34g), 1,10-phenantroline (11.63 

mmol, 2.1g) in toluene (200 mL) was heated and stirred under nitrogen atmosphere. 

CuI (11.63 mmol, 2.21g) and KOH (465 mmol, 26g) were added quickly at 110 ℃. 

The mixture was stirred for 12 hrs at 135 ℃ under N2 atmosphere. The cooled reaction 

was washed with 5% solution of HCl and 5% solution of KOH, dried over MgSO4 and 

solvent evaporated under vacuum. The crude was passed through a quick silica plug 



CHAPTER 5. HTMS BASED ON STAR-SHAPED TRIARYLAMINE MOLECULES 

131 

 

in DCM and the product purified by column chromatography (SiO2, hexanes/DCM 

from 100 to  80: 20) to obtain a white powder (12g, 55%). 1H NMR (500 MHz, 

benzene-d6) δ 7.19 – 7.16 (m, 2H), 6.97 – 6.93 (m, 4H), 6.77 – 6.73 (m, 2H), 6.70 – 

6.66 (m, 4H), 3.29 (s, 6H). 

 

4-Methoxy-N-(4-methoxyphenyl)-N-(4-((triethyllsilyl)ethynyl)phenyl)aniline 4-

bromo-N-N-bis(4-methoxyphenyl)aniline (31.25 mmol, 12g), (PPh3)2PdCl2 (1.56 

mmol, 1.1g), CuI (6.25 mmol, 1.2g), PPh3 (2.5 mmol, 0.66g) were added into a rount 

bottom flask and dried under vacuum for 30 minutes. At the same time, a solution of 

piperidine (250 mmol, 25 mL) and triethylsilylacetylene (56 mmol, 10 mL) in toluene 

(200 mL) were stirred and degassed for 30 minutes, added to the first mixture and the 

mixture stirred at 100 ℃ for 12 hrs under nitrogen atmosphere. The reactions was 

stopped by the addition of 50 mL of NH4Cl and washed with a 10% solution HCl and 

10% solution KOH. The crude was passed through a quick silica plug in DCM and the 

product purified by column chromatography(SiO2, hexane/DCM from 100 to  70:30) 

to obtain a orange oil (13 g, 93%).1H NMR (500 MHz, benzene-d6) δ 7.44 – 7.40 (m, 

2H), 6.98 – 6.94 (m, 4H), 6.89 – 6.85 (m, 2H), 6.68 – 6.64 (m, 4H), 3.27 (s, 6H), 1.14 

(t, J = 7.9 Hz, 9H), 0.72 (q, J = 7.9 Hz, 6H). 

 

 4-Ethynyl-N,N-bis(4-methoxyphenyl)aniline A mixture of 4-methoxy-N-(4-

methoxyphenyl)-N-(4-((triethyllsilyl)ethynyl)phenyl)aniline (29.1 mmol, 12.91g) in 

DCM (150 mL) was stirred under nitrogen for 10 minutes. TBAF (44 mL) was added 

to the previous solution and the mixture was stirred for 3 hrs under nitrogen 

atmosphere. The reaction was stopped by the addition of a saturated solution of NH4Cl 

and the organic phase was extracted with DCM and dried over MgSO4. The crude was 

passed through a short silica plug and DCM and the solvent removed under nitrogen 

to obtained a white powder (8.91g, 93%).1H NMR (500 MHz, Benzene-d6) δ 7.38 – 

7.34 (m, 2H), 6.99 – 6.91 (m, 4H), 6.86 – 6.83 (m, 2H), 6.69 – 6.65 (m, 4H), 3.28 (s, 

6H), 2.77 (s, 1H). 
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STR1 A mixture of tris(4-bromophenyl)amine (2.07 mmol, 1 g), (PPh3)2PdCl2 (0.456 

mmol, 0.29 g), CuI (0.09 mmol, 16 mg), PPh3 (0.414 mmol, 0.108 g) and piperidine 

(30 mL) in toluene (20 mL) were stirred and degassed for one hour. A degassed 

solution of 4-ethynyl-N,N-bis(4-methoxyphenyl)aniline was added drop-wise over 5 

hours at 100 ℃ under nitrogen atmosphere and the mixture stirred for 12 under the 

same conditions. The reaction was stopped by the addition 20 mL of NH4Cl and 

washed with a 10% solution HCl and 10% solution KOH. The crude was passed 

through a quick silica plug in DCM and the product purified by column 

chromatography (SiO2, Hex/DCM from 100 to  20:80) to obtain a yellow powder (0.85 

34 %). 1H NMR (500 MHz, Benzene-d6) δ 7.53 – 7.49 (m, 6H), 7.41 – 7.38 (m, 6H), 

7.03 – 6.98 (m, 12H), 6.98 – 6.94 (m, 6H), 6.82 – 6.78 (m, 6H), 6.70 – 6.67 (m, 12H), 

3.28 (s, 18H). 13C NMR (126 MHz, Benzene-d6) δ 156.55, 148.89, 146.37, 140.37, 

132.60, 127.97, 127.07, 127.57, 124.01, 119.61, 118.75, 114.87, 90.37, 88.66, 54.66. 

MS EI (m/z): [M]+ 1227.46. Anal. Calcd for C84H66N4O6: C: 82.20; H: 5.42; N: 4.56 

analysed C: 82.12; H: 5.37; N: 4.63. 

 

1,3-Difluoro-2-nitrobenzene was synthesised on large scale by Yaroslav Zems from 

the Robertson group. Sodium perborate tetrahydrate (3.90 mol, 600 g) and glacial 

acetic acid (4500 mL) were added to a 10000 mL flask equipped with a magnetic stir 

bar. The suspension was stirred vigorously and slowly (over 3 hours) brought to 65 ℃. 

The mixture became clearer until the contents of the flask were completely transparent. 

A solution of 2,6-difrluoroaniline (0.774 mol, 100 g) in glacial acetic acid (500 mL) 

was added dropwise to the solution over 4 hours. The contents were brought to 70℃ 

and stirred for an additional 2 hours. The flask was brought back to room temperature 

and was allowed to stand overnight. The cooled reaction was filtered over Celite 545 

(1 inch) to remove borate and unreacted perborate. The solvent was removed under 

reduced pressure (approx. 4L) and the rest was poured onto 3L of deionized water and 

extracted with diethyl ether (4 X 500 mL). The solvent was once again removed under 

reduced pressure and the residual oil re-dissolved in DCM (400 mL), dried over 

sodium sulphate (50 g). The whole mixture was filtered over Celite 545 (2 inch) and 

the solvent removed under reduced pressure to yield a brown/dark yellow oil which 
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was fractionally distilled (76 ℃, 756 microns) to afford a bright yellow oil which 

solidifies in the receiving flask into a bright yellow/white solid (86 g, 70%). 1H NMR 

(500 MHz, Methylene Chloride-d2) δ 7.56(tt, J=8.7, 5.9 Hz, 1H), 7.18-7.09(m, 2H). 
13C NMR (126 MHz, Methylene Chloride-d2) δ 156.32, 156.30, 154.25, 154.23, 

134.01, 133.93, 133.85, 113.71, 113.68, 113.56, 113.52, 54.43, 54.22, 54.00, 53.78, 

54.57). 

 

2,6-Bis(2-bromophenoxy)nitrobenzene NaH (223 mmol, 9 g, 60% in oil) was 

weighted directly in a round bottom flask and dried under vacuum for 30 min. Dry 

DMSO (160 mL) was added to the previous flask and the solution were heated at 66℃ 

for 1 hour under nitrogen. 2-bromophenol (22 mL, 203 mmol) was added to the NaH 

solution with a syringe and the mixture heated for 1 hour at the same temperature.  

After cooling to room temperature, 2,6-difluoronitrobenzene ( 14 g, 88 mmol) was 

added and the reaction was heated at 130 C for 3 hours under nitrogen. The cooled 

mixture was poured in a saturated solution of ammonium chloride and mixture 

extracted with dichloromethane. The organic phase was dried over sodium sulphate, 

filtered and the solvent remove under reduced pressure. The crude solid was 

recrystallized in ethanol to obtain the product as white crystals (22 g, 55%).1H NMR 

(500 MHz, Benzene-d6) δ 7.22 (dd, J = 8.0, 1.5 Hz, 2H), 6.70 – 6.62 (m, 4H), 6.49 

(ddd, J = 8.0, 7.2, 1.7 Hz, 2H), 6.41 (t, J = 8.5 Hz, 1H), 5.98 (d, J = 8.5 Hz, 2H). 13C 

NMR (126 MHz, Chloroform-d) δ 151.67, 149.97, 134.19, 133.88, 130.92, 129.03, 

126.91, 122.22, 115.73, 110.94. 

 

2,6-Bis(2-bromophenoxy)aniline A solution of 2,6-bis(2-bromophenoxy)nitro-

benzene (26.8 mmol, 12.5 g) in  glacial acetic acid (250 mL)  and ethanol (250 mL) 

was added Fe powder (140 mmol, 7.7 g) at 0℃. The reaction was allowed to stir at 

70℃ for 2 hrs. The reaction was concentrated under reduced pressured and the 

resulting material was diluted in distillate water and washed with a saturated solution 

of NaHCO3 until the pH was basic. The mixture was extracted with ethyl acetate 

(3x300 mL), dried over MgSO4 and the solvent removed under reduce pressure to give 

an oily product (10.57 g, 90%).1H NMR (500 MHz, Chloroform-d) δ 7.65 (dd, J = 7.9, 
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1.6 Hz, 2H), 7.29 – 7.26 (m, 2H), 7.02 (td, J = 7.7, 1.5 Hz, 2H), 6.97 (dd, J = 8.2, 1.5 

Hz, 2H), 6.66 (d, J = 3.8 Hz, 3H), 4.06 (s, 2H). 13C NMR (126 MHz, Chloroform-d) δ 

153.62 , 144.11 , 133.77 , 130.77 , 128.68 , 124.59 , 118.59 , 116.98 , 114.96 , 113.61. 

 

2,2’:6’2’’-Dioxytriphenylamine A mixture of tris(dibenzylideneacetone)dipalladium 

(0.262 mmol, 0.272 g), sodium t-butoxide (34.5 mmol, 3.31 g), tri-t-butylphosphine 

(1.15 mmol, 1.2 mL 0.1 M solution in toluene) and toluene (30 mL) was stirred under 

nitrogen atmosphere for 60 minutes. A solution of 2,6-bis(2-bromophenoxy)aniline 

(11.5 mmol, 10 g ) in toluene (30 mL) was degassed and added to the previous solution. 

The reaction was stirred for 12 hrs at 120 ℃ under nitrogen atmosphere. The cooled 

reaction was passed through Celite 545 (1 inch) and a short silica plug using 

dichloromethane. The crude was recrystallized in hexane/DCM to afford a pale yellow 

powder.  

 

Tris-4-bromo(2,2’:6’2’’-dioxytriphenylamine) Dioxytriphenylamine (0.94 g, 3.44 

mmol) was dissolved in a mixed solvent of benzene (150 mL) and ETOH (100 mL) at 

refluxing temperature. Pyridinium bromide perbromide (33 g, 103 mmol) was added 

to the solution and the mixture was stirred for 3 hrs at refluxing temperature. During 

the first reaction a mixture of the tri-substitution and di-substitution product was 

obtained, therefore the reaction was done again under the same conditions. The crude 

product was recrystalized in ethanol to obtained a white powder (1.3 g, 74%).1H NMR 

(500 MHz, Benzene-d6) δ 6.79 (d, J = 2.2 Hz, 2H), 6.67 (dd, J = 8.6, 2.2 Hz, 2H), 6.40 

(s, 1H), 6.36 (d, J = 8.6 Hz, 2H). 

 

STR0 A mixture of tris-4-bromo(2,2’:6’2’’-dioxytriphenylamine (0.98 mmol, 0.5 g), 

(PPh3)2PdCl2 (0.10 mmol, 72 mg), CuI(4 mg), 4-ethynyl-N,N-bis(4-

methoxyphenyl)aniline (3.43 mmol, 1.98 g) and piperidine (30 mL) in toluene (20 mL) 

were degassed by freeze-pump thaw and mixture stirred for 72 hrs nitrogen 

atmosphere. The reaction was stopped by the addition 20 mL of NH4Cl and the product 

extracted with DCM. The crude was passed through a quick silica plug in DCM and 

the product purified by column chromatography (SiO2, Hex/DCM from 50:50 to  
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10:90) to obtain a pale yellow powder (0.35g 28 %). 1H NMR (500 MHz, Acetone-d6) 

δ 7.44 (d, J = 8.4 Hz, 2H), 7.34 – 7.30 (m, 6H), 7.19 (dd, J = 8.4, 1.9 Hz, 2H), 7.14 – 

7.09 (m, 12H), 7.06 (d, J = 1.9 Hz, 2H), 6.98 – 6.93 (m, 12H), 6.81 – 6.77 (m, 6H), 

6.71 (s, 2H), 3.81 (d, J = 0.8 Hz, 18H). MS EI (m/z): [M]+ 1255.46. Anal. Calcd for 

C84H62N4O8: C. 80.36; H: 4.98; N. 4.46 analysed C, 80.27; H, 4.95; N, 4.56. 

 

5.4.3 Optical characterization 
Solution UV-Visible absorption spectra were recorded using a Jasco V-670 

UV/Vis/NIR spectrometer controlled with SpectraManager software. 

Photoluminescence (PL) spectra were recorded with a Fluoromax-3 fluorimeter 

controlled by ISAMain software. All samples were measured in a 1 cm cell at room 

temperature in dichloromethane as solvent.  

 

5.4.4 Electrochemical characterization 
All square-wave voltammetry measurements were carried out in freshly distilled 

CH2Cl2 using 0.3 M [TBA][BF4] electrolyte in a three-electrode system with each 

solution being purged with N2 prior to measurement. The working electrode was a Pt 

disk, the reference electrode was Ag/AgCl, and the counter electrode was a Pt rod. All 

measurements were made at room temperature using a µUTOLAB Type III 

potentiostat, driven by the electrochemical software GPES. Ferrocene was used as the 

internal standard in each measurement. 

 

5.4.5 Thermal characterization 
Differential scanning calorimetry (DSC) was performed on NETZSCH STA 449F1 at 

a scan rate of 5 K min -1 under a nitrogen atmosphere in DSC/TG aluminium pan. The 

measurement range was 25 ℃ to 250 ℃. 

 

5.4.6 Computational details 
All calculations were carried out using the Gaussian 09217 program with Lee Yang–

Parr correlation functional (B3LYP) level of theory. All atoms were described by the 
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6-31G(d) basis set. All structures were input and processed through the Avogadro218 

software package.  

 

5.4.7 Organic Field-Effect Transistors 
The Ossila low-density Pre-fabricated substrates (channel length 0.1 mm width 0.03 

mm) with a bottom gate/bottom contact were used to fabricate OFET devices. The 

substrates were treated with HMDS (Hexamethyldisilazane) to optimise the silicon 

surface property. A solution of the STR1 (10 mg/mL) in chloroform was stirred at 

room temperature. The Ossila substrate was covered with the solution by drop-casting. 

The electric characteristics of the fabricated OFETs were measured using a Keithley 

2612A System SourceMeter. Mobilities were calculated using the following equation: 

𝜇𝐹𝐸 = (
√𝜕𝐼𝐷𝑆

𝜕𝑉𝐺
)

2

. (
2𝐿

𝑊𝐶𝑖
) 

Where Z is the channel width, L the channel length, Ci the capacitance, VG the gate 

voltage and IDS is the drain current and √𝜕𝐼𝐷𝑆 𝜕𝑉𝐺⁄ , the slope of the Transfer 

Characteristic Curves in the saturation regime.215,216 

 

5.4.8 Perovskite Solar Cells and Characterisation 
Perovskite solar cells were fabricated by Dr. Joel Troughton at Swansea University. 

Etched FTO glass substrates (NSG Pilkington, TEC7) were cleaned sequentially in 

detergent, deionised water, acetone and ethanol before undergoing 10 minutes of 

O2 plasma treatment. A compact TiO2 layer was deposited on the glass substrates 

through spray pyrolysis of a solution of titanium diisopropoxide bis(acetylacetonate) 

(0.2M in isopropanol) at 450 ℃. Upon cooling, a mesoporous layer of 

TiO2 nanoparticles was spin-coated from a 2:7wt suspension of Dyesol 30NR-D paste 

in ethanol (4500 rpm for 30 seconds), followed by sintering at 550 ℃ for 30 minutes. 

A CH3NH3PbI3 perovskite precursor solution was prepared by dissolving 576 

mg PbI2, and 199 mg CH3NH3I in a 4:1 vol solution of DMF:DMSO. The perovskite 

precursor solution (100 µL) was deposited onto the TiO2 films and spin-coated at 4000 

rpm for 30 seconds, with 200 µL of ethyl acetate dripped onto the spinning substrate 
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10 seconds prior to the end of the spin-coating process. Perovskite films were annealed 

at 100 ℃ for 10 minutes.  A solution in dichlorobenzene for each HTM was prepared 

with  dopants including bis(trifluoromethylsulfonyl)imide lithium salt (Li-TFSI) (20 

µL/mL of a 520 mg/mL solution in acetonitrile), 4-tert-butylpyridine (tBP, 30 µL/mL) 

and  tris(2-(1H-pyrazol-1-yl)-4-tertbutylpyridine)-cobalt(III) tris(bis(trifluorome-

thylsulfonyl)imide) (FK209, µL/mL of a 300 mg/mL solution in acetonitrile). The 

HTM solution was spin-coated onto perovskite films at 4000 rpm for 30 

seconds before 80 nm thick Au contacts were thermally evaporated onto devices. 

Current-voltage measurements were performed using a AAA-rated solar simulator 

(Oriel Sol3A) calibrated against a KG5-filtered reference diode (Oriel 91150-KG5). 

Solar cells were masked to 0.1 cm2 and scanned both from forward to reverse bias and 

vice versa at 100 mV/s. 
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 Conclusions 
 
Since their emergence in 2013, organic-inorganic perovskite solar cells have reached 

impressive efficiencies exceeding 22% making them the rising star in the photovoltaic 

field and creating an enormous interest to the academic community.  Such rapid 

development of this technology over a short period has been possible due to the 

knowledge and experience from previous research in dye-sensitised solar cells 

(DSSC), organic photovoltaic (OPCs), light emitting diodes (OLEDs) and other related 

fields but also due to the unique properties of the perovskite materials, including high 

panchromatic absorption, large carrier diffusion length and low non-radiative 

recombination. Nevertheless, despite offering high efficiencies, perovskite solar cells 

suffer from stability, reproducibility and durability problems. One promising approach 

to solve these issues is by modifying the hole transporting material.  

Triphenylamine derivatives have been widely used as hole transporting materials due 

to their physical and electrochemical properties.  To investigate the influence of HTMs 

on PSCs three different types of triphenylamine-based HTMs have been studied, 

namely small molecules, polymer and star-shaped molecules. These novel hole 

transporting materials were fully characterised through thermal, electrochemical, 

spectroscopic and computational techniques, showing suitable properties for 

application in perovskite solar cells. 

  

A new series of diacetylenetriphenylamine (DATPA) derivatives with five different 

alkyl chains in the para position (MeO, EtO, nPrO, iPrO and BuO) were used as HTMs 

in perovskite solar cells (Chapter 3). The length of the alkyl chain did not modify the 

HOMO levels but it strongly impacted on the hole transport properties as well as the 

morphology  and device performance in perovskite solar cells. Shorter alkyl chains 

showed more ordered and compact structure which resulted in higher charge transport 

and better device performance. It was found that the molecule with the methoxy 

substituent gave the best semiconductive properties in comparison with the longer 

aliphatic chain, affording a PCE of 5.63%.
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Two monomers (M:OO and M:ON) and their corresponding side-chain polymers 

(P:OO and P:ON) containing styrene units were studied as hole transporting materials 

in perovskite solar cells and compared in terms of their structure (Chapter 4). The 

polymers formed more stable amorphous glassy states and showed higher thermal 

stability than the monomers. Power conversion efficiencies of 7.48% for M:OO, 

5.14% for P:OO, 5.28% for P:ON and 3.52 for M:ON were obtained. Despite the lower 

efficiencies, the polymers showed superior reproducibility in comparison with Spiro-

OMeTAD and the monomers.   

 

Two star-shaped triphenylamine-based molecules (STR1 and STR0) were used as hole 

transport materials in PSCs. These materials presented higher power conversion 

efficiencies in comparison with the small molecules and polymers in the previous 

sections. When STR0 was used as the HTM a PCE of 13.32% was obtained which is 

comparable to the devices based on spiro-OMeTAD. Furthermore, these materials also 

showed good reproducibility and stability in the devices.  

 

In total this work provides three series of triarylamine-based hole transport materials 

for perovskite solar cell application and enables a comparison of the pros and cons of 

different design structures: small-molecule, polymeric and star-shaped.  Although, the 

small molecules presented the highest device performance in comparison with 

polymers, the reproducibility and stability of the devices were very poor. Polymers on 

the other hand showed high reproducibility but low device efficiencies. Device 

performance, reproducibility and stability are important for commercialisation 

purposes. Therefore, we approached these issues by designing star-shaped molecules 

which combine the advantages of both groups of small molecules and polymers. The 

star-shaped molecules presented the best properties for an ideal hole transport material 

affording a PCE of 13.63%  and high reproducible and stable devices. These outcomes 

are significant for the future design of organic semiconductors for photovoltaic 

applications.
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Appendix 
 

A.1 Computational Studies 
 

Computational calculations can be employed to support the experimental data and 

improve our understanding of the system under investigation. They can also be used 

to predict the properties of new material and in the design of novel systems. In the case 

of hole-transport-materials for perovskite solar cells, computational calculations were 

performed to approximate the energy values and distribution of the highest occupied 

molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO).  

  

The methodology used in this work is ab initio molecular theory which is a quantum 

mechanics approach. The energy and other related properties of a molecule  that do 

not change with time can be calculated by solving the time independent Schrödinger 

(Equation 2.10) 

Ĥ𝛹 = 𝐸𝛹                                           Equation A.1 

Where Ψ is the wavefunction. The wavefunction is a function of the positions of all 

fundamental particles in the system.  E (scalar) is the total energy of the system. The 

Hamiltonian Ĥ is an operator that comprises all the terms that contribute to the energy 

of a given system244,245.  

Ĥ = 𝑇𝑒̂ + 𝑇̂𝑛 + 𝑉̂𝑛𝑛 + 𝑉̂𝑛𝑒 + 𝑉̂𝑒𝑒                       Equation A.2 

Where 𝑇̂𝑖  and 𝑉̂𝑖𝑗 are the corresponding kinetic and potential energy operators, n 

denoted nuclei and e denotes electrons. Nevertheless, the exact solution of the 

Schrödinger equation can only be solved for the hydrogen atom and it is impossible to 

extend for systems with more than one electron. For this reason, a series of 

mathematical approximations have been adopted to compute solutions of the 

Schrödinger equation that are commonly described as ab initio methods.
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The Hamiltonian (Equation 2.11) contains the nuclear and electronic correlation terms 

implying that particles are not moving independently of all the others. The Born-

Oppenheimer246 approximation is the assumption that the nuclear and electronic 

motions can be separated (Equation 2.12).  

𝛹𝑇𝑜𝑡𝑎𝑙 = 𝛹𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑖𝑐 ∙ 𝛹𝑛𝑢𝑐𝑙𝑒𝑎𝑟                            Equation A.3 

This approximation is reasonable because the mass of a typical nucleus is about 2000 

times that of an electron and therefore moves much slowly with respect to the 

electrons. The electrons respond instantaneously with respect to any motion of the 

nuclei. In other words the nuclei is fixed in reference to the electrons and the electronic 

motion is assumed to depend only on the position of the fixed nuclei. Therefore, for a 

given nuclear arrangement it is possible to neglect the nuclear kinetic energy term 

(𝑇̂𝑛 = 0) and the internuclear attraction potential energy term is a constant (𝑉̂𝑛𝑛 =

𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡). The Hamiltonian can be reduced to an electronic Hamiltonian:  

 Ĥ = 𝑇𝑒̂ + 𝑉̂𝑛𝑒 + 𝑉̂𝑒𝑒                                        Equation A.4 

By making this assumption the nuclear-electron potential energy can be calculated 

with relative ease as the electrons just see a fixed set of positive charges. Even with 

the Born-Oppenheimer approximation it is not possible to solve the Schrödinger 

equation for systems larger than 𝐻2
+. This is because the electron-electron interactions 

are difficult to calculate. The electronic field of one electron will influence the position 

of a second and so on and both charge and spin need to be considered.247  

 

One method used to deal with the electron-electron interactions is the Hartree-Fock 

(HF) theory. The HF theory reduces the multi-electron problem by ignoring 

instantaneous interaction of the electrons and assuming that each electron feels an 

average field of all the other electrons in the system. The electrons are then seen as 

separate entities which are described by individual one-electron wavefunctions and the 

overall energy term is assumed to be a sum of each individual wavefunction. The 

individual one-electron wavefunctions are called molecular orbitals. All electrons are 

characterised by a spin number (up or down) and so far this factor has been neglected. 

To take into account the spin of the electron and Pauli’s exclusion principle (stating 



APPENDIX 

142 

 

that two electrons with identical spin cannot occupy the same orbital), a Fock operator 

is used instead of the Hamiltonian. The Fock operator comprises the one-electron 

Hamiltonian, an operator to take account of coulombic repulsions and a modification 

to the coulumbic repulsions to account for the Pauli exclusion principle. By 

considering this, a fairly good approximation of the total energy of the system can be 

calculated. Nevertheless, Hartree-Fock theory neglects electron correlation by 

considering that each electron feels an average electron density and completely ignores 

instantaneous interaction of electron pairs with opposite spin. These considerations 

cause the results to be less accurate for some systems.247,248 

  

A.1.1 Density Functional Theory 
 

Density Functional Theory (DFT) is one of the most popular methods in computational 

chemistry. In comparison with Hartree-Fock methods, in DFT there are less 

parameters to calculate because the electron density is a function of only three 

positional variables (x,y,z) and is independent of the number of electrons in the system 

whereas for the electronic wavefunction in the Hartree-Fock method the position of 

each electron has parameters associated with it.  In principle DFT is similar to the ab 

initio methods. It requires to have individual equations for each electron using the so-

called Kohn-Sham (KS) equations. The density then can be calculated in terms of a set 

of N non-interacting one-electron orbitals (Equation 2.14).248,249 

𝜌(𝑟) = ∑ |𝛹(𝑟)|2𝑛
𝑖=1                                  Equation A.5 

The energy of the system is given by the functional E(ρ): 

𝐸(𝜌) = 𝐸𝑇 + 𝐸𝑉 + 𝐸𝐽 + 𝐸𝑋𝐶                           Equation A.6 

Where ET is the electronic kinetic energy term, EV is the potential of the nuclear-

electron attraction, EJ is the electron-electron repulsion term (Coulomb interaction) and 

EXC is the exchange and correlation energy. The exact form of EXC is unknown, 

therefore approximations must be used. The three approximations used are: Local 

Density Approximation (LDA), Generalised Gradient Approximation (GGA) and 

Hybrid Density Functional Theory. The LDA approximation assumes that the electron 
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density is constant at any given point and can be treated as a uniform electron gas. This 

approach is especially useful for metallic systems. An improvement to the LDA 

approximation is possible by taking into account the gradient of the electron density 

using the GGA calculations. Most GGA functionals contain a modified term which is 

added to the LDA functional. Hybrid DFT methods combine DFT and HF theory to 

compute the exact value of the electron-electron functional and approximate the 

electron correlation functional. By doing this, higher accuracy calculations can be 

obtained. In this work, calculations were carried out using an hybrid functional noted 

as B3LYP (Becke, three-parameter, Lee-Yang-Parr)250 which is one of the most 

accurate functions for the study of organic compounds.249,251,252  

 

For both DFT and HF methods, the equations are solved by an iterative procedure 

called the self-consistent field calculation (SCF). The idea is to start by proposing a set 

of trial wavefunctions (electron density) and from this to obtain a new set of 

wavefunctions (electron density). These new wavefunctions are then used in the next 

calculation and the process is repeated until the results converge and the energy is 

minimised.  

 

As the nuclei are fixed, generally the wavefunction (Ψ) describe the spatial portion of 

the electrons. The wavefunction (Ψ) is defined by a basis set used to describe each 

atom. A basis set uses a linear combination of a series of functions (basis functions) to 

generate wavefunctions for molecular orbitals. Usually, a sum of Gaussian functions 

with varying exponents is used to define this basis set and approximate the atomic 

radial function252.  

𝛹 = ∑ 𝐶𝑖𝑖 𝜑𝑖                               Equation A.7 

In this case, solving complicated wavefunctions is not required and the calculations 

are simplified to find the best coefficients to describe the orbitals.  Thus the values of 

the weighting coefficients are varied until the wavefunction generated minimises the 

energy of the given system. It is important to remember that basis sets are optimised 

for atoms not molecules. When an atom become part of a molecule, the size, charge, 

shape might change significantly. Therefore, it is important to add polarisation and 
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diffusion functions on the basis set noted as ‘*’ and ‘+’ respectively.  Some popular 

basis sets include 3-21G*, 6-31G*, 6-311G*. The larger the basis sets (with higher 

numbers) are, the more accurate the calculations will be. Nevertheless, larger basis sets 

also require higher computational time and cost. The basis set used in this work was 

6-31G*253 which is a split-valence basis set where G stands for gaussian-type orbitals 

and a polarisation function is added, noted as ‘*’. The core and the valence electrons 

are modelled separately. One basis function consisting of six gaussian-type orbitals 

(GTOs) is used for the core and two basis functions (one comprising three GTO and 

the other one GTO) are employed for the valence electrons.252,254  

 

A.1.2 Geometry optimisation and solvent effect 
 

In a geometry optimisation calculation the structure of a molecular system is iteratively 

adjusted until a stationary point on the potential energy surface is found.  A potential 

energy surface (PES) is a mathematical function that describes the energy of a 

molecular system in terms of its structure. Generally, the calculation of the entire 

potential energy surface is complicated as this would require immense computational 

time and cost. Therefore, the first derivative of the energy known as the gradient is 

calculated and when this value is zero it is identified as a stationary point (Equation 

2.17). In other words, a point on the PES where the forces acting on the atoms are zero 

is called a stationary point.  

𝑑𝐸

𝑑𝑥
= 𝑘𝑥                                      Equation A.8 

All successful geometry optimisations always reach a stationary point. Nevertheless, 

this might not always be the one we are looking for. This can be a minimum, a 

maximum or a saddle point. To determine if the structure is the minimum energy a 

frequency calculation is carried out after the structure is optimised. This is computed 

with the second derivative of the energy (Equation 2.18).  

𝑑2𝐸

𝑑𝑥2 = 𝑘                                     Equation A.9 
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The minimum stationary points are of interest for the purpose of this work. A minimum 

on the PES can be characterised by curvatures that are all positives which means there 

are no negative frequencies (k positive).  

 

All the experiments presented here were performed in a solvent (UV, electrochemistry, 

emission, etc). Therefore, in order to compare the computational calculation more 

accurately with the experimental results, the geometry was optimised in the presence 

of a solvent. This is achieved by using a polarizable continuum model (PCM) in the 

calculation. This method modelled the solvent as a medium with a constant dielectric 

constant rather than discrete molecules. The magnitude of the dielectric constant 

depends on the nature of the solvent252,254.  

 

All molecular structures were drawn using the software Avogadro to obtain the initial 

coordinates, and optimised under vacuum. Then the structures were optimised using a 

dichloromethane polarisable continuum model. All calculations were carried out using 

the Gaussian 09217 program with Lee Yang–Parr correlation functional (B3LYP) level 

of theory. All atoms were described by the 6-31G(d) basis set. The molecular orbital 

isosurfaces were generated with the software Avogadro218 which illustrates where the 

HOMO and LUMO are located on the molecule. 
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A.2 X-ray crystallographic data 
 

Table A.1 Summary of X-ray crystallographic data for DATPA derivatives 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 EtO-DATPA nPrO-DATPA iPrO-DATPA BuO-DATPA 

Formula C48H44N2O4 C52H52N2O4  C52H52N2O4  C56H60N2O4  

Dcalc./ g cm-3 1.233 1.228  1.154  1.181  

/mm-1 0.078 0.077  0.072  0.572  

Formula Weight 712.85 768.95  768.95  825.06  

Colour, shape Yellow,block yellow  orange  orange  

Shape block plate  block  block  

Max Size/mm 0.24 0.55×0.29×0.09  0.51  0.25  

Mid Size/mm 0.16  0.23  0.24  

Min Size/mm 0.14  0.10  0.14  

T/K 120.0 120.0 120.0  120.0  

Crystal System monoclinic monoclinic triclinic  monoclinic  

Space Group P21/n P21/n P-1  P21/c  

a/Å 9.8398(3) 12.0510(4) 12.4603(2)  11.82431(7)  

b/Å 18.2197(5) 10.2594(3) 14.8711(4)  13.11889(7)  

c/Å 10.8932(3) 17.3214(5 24.3863(6)  14.97854(9)  

/° 90 90 100.569(2)  90  

/° 100.468(3) 103.750(3) 90.6323(17)  93.5009(5)  

/° 90 90 94.7035(18)  90  

V/Å3 1920.41(10) 2080.17(12) 4425.56(18)  2319.16(2)  

Z 2 2 4  2  

Z' 0.5 0.5 2  0.5  

min/° 3.071 0.71073 2.992  3.745  

max/° 29.756 MoK 28.282  76.172  

Measured Refl. 34735 43687  88294  56181  

Independent Refl. 5021 4742  21939  4833  

Reflections Used 4479 3662  16792  4563  

Rint 0.0308 0.0557  0.0382  0.0378  

Parameters 332 367  1061  320  

Restraints 0 0  0  45  

Largest Peak 0.249 0.208  0.565  0.472  

Deepest Hole -0.216 -0.173  -0.259  -0.389  

GooF 1.080 1.051  1.059  1.028  

wR2 (all data) 0.1211 0.0994  0.2062  0.1559  

wR2 0.1174 0.0943  0.1920  0.1536  

R1 (all data) 0.0540 0.0578  0.0996  0.0598  

R1 0.0475 0.0405  0.0783  0.0578  
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A.3 Differential Calorimetry Curves of the DATPA 
derivatives 
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