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Abstract 

The poultry industry has successfully applied breeding and production 

programmes to meet growing consumer demands for chicken meat and eggs. Over 

the last four decades, poultry breeders have selected birds not only for productivity, 

but also for improved health, welfare, fitness and environmental robustness. 

Intensive production settings contribute to faster spread of diseases and greater 

losses in production due to increased morbidity and mortality of the flock. 

Traditional methods of disease treatment and prevention have played a critical role 

in control of disease. However, growing resistance of pathogens to therapeutic 

measures and consumer concerns led to the withdrawal of antibiotics as growth 

promoting additives in chicken feed. In addition, some vaccines have been 

overcome by increasing variation and virulence of pathogens and are no longer 

successful in disease prevention. The emergence of virulent and drug resistant 

pathogens have emphasised the need to focus on other solutions to disease, 

particularly natural genetic resistance. Genetic loci or gene expression patterns 

associated with the differential resistance of lines to specific pathogens have been 

identified, providing valuable markers for selective breeding. However, to date 

relatively few of these have been successfully incorporated into commercial lines. 

An ability to suppress or resist multiple pathogens, by selection for improved innate 

immune robustness has also been studied but it has not been introduced in 

commercial production, partly as the phenotype is ill-defined. Previous studies that 

focused on pro-inflammatory cytokines and their mRNA levels expressed by innate 

immune effector cells (heterophils and macrophages) identified differences 

between resistant and susceptible chicken lines, with the former producing stronger 

responses, supporting efforts to select poultry with an efficient early innate 

response. Here, small-scale qPCR screening and cellular techniques were evaluated 

with the conclusion that a more rapid, cheaper and reproducible method needs to 

be applied.  
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The main objective of this project was therefore to design and validate a 

diagnostic tool that could be used to phenotype the immune responses of chickens 

at the level of innate immunity. For this purpose, a panel of 89 genes was selected 

based on previously published infection studies and on RNA-seq results obtained 

from stimulation of heterophils, macrophages and dendritic cells with 

lipopolysaccharide (LPS). Target genes were cloned and sequenced to optimise the 

design of qPCR reactions and primers. A multiplex qPCR platform, the Fluidigm 

96.96 Dynamic Array, was selected as the tool of choice with the capacity to 

measure transcription of 96 genes of interest in 96 samples simultaneously. The 

preamplification reaction was optimised and the platform validated using a 

commercial line of chickens housed in clean or pathogen-challenged environments. 

Lymphoid tissues, including bursa of Fabricius, spleen, ileum with Peyer’s patches, 

caecal tonsils, and blood leukocytes were isolated and transcript levels for immune-

related genes defined between organs, birds and farms. For qPCR analysis, a panel 

of reference genes was normalised and TBP, ACTB and GAPDH genes were selected 

and validated as the most stable. The high-throughput qPCR analysis identified 

peripheral blood leukocytes as a potentially reliable indicator of immune responses 

among all the tissues tested with the highest number of genes significantly 

differentially expressed between birds housed in varying hygienic environments.  

The research described here could potentially aid the selection of poultry for 

improved immune robustness. The technical optimisation and validation of a new 

tool to simultaneously quantify expression of tens of relevant immune-related 

genes will prime research in many areas of avian biology, especially to define 

baseline immune gene expression for selection, the basis of differential resistance, 

and host responses to infection, vaccination or immuno-modulatory substances. 
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Lay summary 

Over the last four decades poultry breeders have selected birds not only for 

productivity, but also for improved health, welfare, fitness and environmental 

robustness. However, with the intensification of production some traits have been 

compromised. Traditional methods of disease treatment and prevention have 

played a critical role in control of disease. However, growing resistance of 

pathogens to therapeutic measures and consumer concerns led to the withdrawal 

of antibiotics as growth promoting additives in chicken feed. The emergence of 

virulent and drug resistant pathogens have emphasised the need to focus on other 

solutions to disease, particularly natural genetic resistance. 

Previous attempts to describe immune robustness in poultry have focused on early 

responses in chicken immune cells (heterophils and macrophages) and found 

stronger responses in resistant lines compared to susceptible ones. These 

experiments suggest that selection of chickens that are characterised with early and 

efficient immune responses is possible. Popular techniques that are commonly used 

to characterise immune responses at the level of gene expression were evaluated in 

this thesis with a conclusion that more rapid, reproducible and cheaper methods 

need to be applied.  

The main objective of this thesis was to design and test a tool that would allow us to 

assess the levels of expression of many immune-related genes in many samples at 

once. This would allow for easier and faster characterisation of the ability of 

chickens to mount immune responses. A group of 89 genes was selected based on 

previous studies and analysis of genes induced in chicken immune cells upon 

stimulation with a bacterial agonist of early responses. To confirm the existence of 

selected genes in chicken genome they were cloned and sequenced. The Fluidigm 

96.96 Dynamic Array platform was chosen as the diagnostic tool. This platform can 

run 9,216 reactions at once. Chicken organs involved in immune responses (spleen, 

bursa of Fabricius, caecal tonsils, ileum and blood) were sampled from birds raised 

on two farms that differed in levels of hygiene. To normalise the results from 
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Fluidigm platform a set of reference genes that show stable expression across a 

range of conditions was selected. Among all the different tissues tested, blood cells 

showed the highest number of genes that were differentially expressed between 

birds from clean and pathogen-challenged farms, suggesting that blood tests to 

analyse expression of immune-related genes may be useful. The research described 

here could potentially aid the selection of poultry for improved immune robustness. 

The technical optimisation and validation of a new tool to simultaneously quantify 

expression of tens of relevant immune-related genes will prime research in many 

areas of avian biology, especially to define baseline immune gene expression for 

selection, the basis of differential resistance, and host responses to infection, 

vaccination or immuno-modulatory substances.  
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 Introduction Chapter 1

 Background 1.1

Poultry are reared in most parts of the world and are vital to global food 

security. Since domestication around 4000 years ago, chickens were first bred in 

Europe by the Romans around 500 B.C. (Parkhurst and Mountney, 2012; page 3). 

Nowadays the poultry industry is the dominant and fastest growing supplier of high 

quality and inexpensive animal protein worldwide. Many aspects have contributed 

to the intensification of chicken farming, for example affordable feed, efficiency of 

feed conversion relative to other farmed animals, changes in housing and better 

disease control. In the period of 12 years, between 2000 and 2012, the number of 

slaughtered chickens increased from 40,635 million to 59,861 million, and the meat 

weight per bird increased from 1.44kg to 1.55kg (Global Poultry Trends, 2014). It is 

estimated that these numbers will increase substantially due to global population 

growth and rising affluence. By the end of this decade, 124 million tons of poultry 

will be consumed worldwide, with Asia and Africa as the leaders (Meat Atlas; 

Heinrich Böell Foundation and Friends of the Earth).  

To sustain market requirements, most poultry are raised in large operations, 

which can lead to rapid transmission of diseases and zoonotic pathogens among the 

flock. Intensive rearing conditions may also lead to stress and injury, making birds 

more vulnerable to diseases. The chicken immune system is challenged by diverse 

viral, prokaryotic and eukaryotic pathogens. Some of these microbes can infect both 

chickens and humans, for example, Gram-negative bacteria such as Salmonella and 

Campylobacter and avian influenza. Such agents are sometimes carried in the 

absence of symptoms, making carriers difficult to identify and enabling agents to 

spread undetected in flocks and through the food chain. The spread of pathogens is 

affected not only by host factors but environment and housing. Changes from caged 

to enriched cages and non-cage system housing regulations for laying hens in EU 

countries were implemented in 2012. Reports from countries that introduced new 

housing systems earlier showed an increase in the incidence of bacterial infections 

(Fossum et al., 2009; Kaufmann-Bart and Hoop, 2009). Conventional battery cages 
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limited the contact of hens with their faeces and provided less opportunity for 

stress or injury associated with formation of a social hierarchy.  

The most prevalent foodborne pathogens are Campylobacter and 

Salmonella species. According to a UK Government report on zoonotic diseases 

during 2013, Salmonella was responsible for 8,459 laboratory-confirmed cases of 

gastrointestinal infections in humans, whereas Campylobacter caused 66,575 cases 

in United Kingdom in 2013. The increase in the number of reported enteric and non-

enteric infections related to Campylobacter in part can be attributed to better 

outbreak surveillance systems, which have resulted in infections being more readily 

identified. National-scale genotyping was used to quantify the contributions of 

different sources of human Campylobacter infection. The study revealed that the 

main source of campylobacteriosis in Scotland in 2005-2006 was contaminated 

chicken meat (Sheppard et al., 2009). Also many Salmonella serovars, such as 

Heidelberg, Enteritidis, Infantis, Typhimurium, linked to human infections have 

been isolated from poultry, eggs and egg-containing products (Dutil et al., 2010; Yim 

et al., 2010; Cloeckaert et al., 2007). These pathogens are the main bacterial agents 

causing food-borne illnesses in developed countries.  

Losses in poultry production can be caused by diverse pathogens, some of 

which cause serious outbreaks with high mortality. In some cases it is necessary to 

slaughter entire flocks to prevent the infectious agents from spreading. Low 

pathogenic avian influenza virus (AIV), high pathogenic AIV and Newcastle Disease 

Virus (NDV) are the most common viruses, which have reservoirs in wild birds, and 

hence are difficult to control. Despite Infectious Bronchitis Virus (IBV) not having 

other hosts apart from the chicken, it can cause significant losses in production due 

to poor weight gain, mortality and reduced egg production. Avian pathogenic 

Escherichia coli (APEC) causes diverse respiratory and systemic diseases (collectively 

termed colibacillosis) in chickens and other avian species. Infected birds often show 

lower growth rates and feed conversion efficiency and have inflammation 

associated with one or more visceral organs. Colibacillosis also leads to higher 
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mortality causing losses to the industry. Outbreaks of parasitic infections with 

Eimeria species can cause high morbidity and mortality and can persist in chicken’s 

environment in faeces and litter as oocysts. Infected birds often exhibit increased 

intestinal colonisation by Clostridium perfringens leading to necrotic enteritis and 

with Salmonella species, which intensifies the risk to food security and spread of 

foodborne pathogens (Qin et al., 1996; Collier et al., 2008). 

Good husbandry practices together with support from vaccines and 

coccidiostats make poultry production on industrial scale achievable (Blake and 

Tomley, 2014). There are vaccines available against many pathogens, for example 

NDV, IBV, AIV, infectious bursal disease virus (IBDV), Marek’s Disease Virus (MDV), 

fowl pox, Infectious Laryngotracheitis (ILTV), Salmonella Enteritidis, S. Typhimurium 

and Eimeria species. However, such vaccines can be expensive and time-consuming 

to administer and in some cases require updating to cover circulating strains. 

In the past, the role of genetic disease resistance was limited due to 

extensive application of antibiotics (Zekarias et al., 2002). The prophylactic 

administration of antibiotics, as well as the use of in-feed antibiotics at sub-

therapeutic doses as growth-promoters, was prohibited in the European Union 

from 2006 (reviewed in Castanon, 2007) in the light of increasing antibiotic 

resistance of many pathogens and understandable concerns from consumers . 

Therapeutic use is still allowed, but is increasingly hindered by transmissible drug 

resistance and restrictions on antibiotic residues entering the food chain. Despite 

the availability of vaccines for most of the common poultry diseases, there are still 

regular breaks where disease can cause devastating problems for the commercial 

production flock. Numerous factors can contribute to these disease outbreaks. The 

factors include failure of vaccines to protect against a new or highly virulent form of 

the pathogen. A recent report by Read et al. (2015) established that imperfect viral 

vaccines that do not result in clearance might select for the occurrence of escape 

mutants and more virulent strains by allowing a longer period for virus to mutate in 

the host. In addition, loss of vaccine function due to incorrect storage or use, or the 
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disease challenge itself may be so high that it overwhelms vaccine-induced 

immunity (Fulton, 2004). Although recovery after such outbreaks can be observed, 

production efficiency rarely achieves the levels before the disease occurred.  

Given the diversity of infectious threats to poultry health and challenge of 

preventing and treating diseases, improved immune function would be 

advantageous for chicken breeders. In this context, selection of more resistant 

chicken lines offers much potential. The first selection experiments happened in 

1935 and were aimed to decrease disease occurrence, which was mainly caused by 

Salmonella enterica serovars Pullorum and Gallinarum that cause severe systemic 

disease in birds (reviewed in Jie and Liu, 2011). For many decades, poultry breeders 

focused their breeding schemes on phenotypic traits, which led to production of 

chickens with increased body weight. The last 60 years of selective breeding in 

broilers led to decrease in days required to reach processing weight. Nowadays it 

takes 42 days compared to 84 days in the 1950s. In 1957, a 42-day-old broiler 

weighed on average 591 g (Havenstein et al., 2003) whereas the avergage slaughter 

weight of modern broilers is approximately 2672 g. Breeding programs directed 

towards accelerated growth and feed conversion efficiency may unintentionally 

reduce the responsiveness to the plethora of immune challenges (Swaggerty et al., 

2009).  

While it has been possible to improve poultry by genetic selection for 

resistance to specific diseases (Star et al., 2008), achieving a general increase in 

immunological competence is considered challenging because of low heritability 

and the difficulty of measuring this trait. In addition, progress in vaccination and use 

of antibiotics repressed the requirement to generate immune protection through 

breeding programs. Although the heritability estimates of disease resistance are 

reported to be low, phenotypic variation is high in populations and genetic selection 

can be used to complement improvements in vaccination practices to support 

poultry in the “arms race” between pathogens and their host (reviewed in Hocking, 

2010). The selection based on immune function has no effect on growth promotion, 



5 

therefore it could be possible to select for immune responsiveness without causing 

a decline in weight gain abilities (van der Most et al., 2011). Selection for host 

responses to individual pathogens is achievable and has been used in breeding 

programmes (Zekarias et al., 2002) but it is not desirable.  

Few lines selected for resistance to specific pathogen have been tested for 

susceptibility to other pathogens. Hartmann et al. (1984) showed correlation of ALV 

resistance with MD resistance in two pairs of strain, where a third pair presented 

lower MD mortality rate. This demonstrates that the susceptibility spectrum to 

pathogens other than the one used for selection has different outcomes in different 

populations. Approaches to directly select for a single trait by creating divergent 

populations have been performed in the past. Multi-determinant and non-

pathogenic antigen – sheep red blood cells (SRBC), was first used in mice (Biozzi et 

al., 1979) and resulted in great differences in the magnitude of antibody responses. 

The application of selection for SRBC responses in chickens led to a long-term 

experiment using a White Leghorn population. The offspring of divergent lines (high 

antibody – HA, low antibody – LA) differed in antibody titer to Newcastle Disease 

Virus, mites, Mycoplasma gallisepticum, Eimeria necatrix and splenomeglia virus, 

with HA chickens characterised by better humoral responses. On the other hand, LA 

chickens were shown to be less susceptible to Escherichia coli and Staphylococcus 

aureus (Gross et al., 1980; Dunnington et al., 1991). Resistance of high antibody 

chickens to parasitic and viral pathogens was confirmed in experiments with 

Eimeria tenella (Martin et al., 1986) and Marek’s Disease (Dunnington et al., 1986). 

The susceptibility of the HA line to bacterial infections may lie in differential genetic 

regulation and negative correlation between immune responses to wide spectra of 

pathogens (Lamont et al., 2003). 

Genes involved in adaptive immune responses control resistance to specific 

pathogens. Therefore, selection based on adaptive immunity may be highly specific 

against one particular pathogen and unlikely to give resistance to even closely 

related pathogens. In addition, it can lead to susceptibility to other pathogens. 
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Breeding chickens for growth traits revealed its negative association with some 

aspects of immune system performance. Another problem associated with this 

approach is the difficulty to predict the specific types of microbes that may be 

present in the commercial poultry environment and thus genetic selection for 

resistance to a particular pathogen will not ensure infection-free chicken stocks 

(Lamont et al., 2008).  

A well-developed immune system that responds adequately to pathogens is 

necessary to reduce disease occurrence. The generation of more robust lines of 

birds with improved liveability would prevent major economic losses or 

contamination of food products (Swaggerty et al., 2009). In order to do this there is 

a demand for diagnostic tools that could rapidly and precisely evaluate avian 

immune responses associated with innate immunity and disease resistance. The 

innate immune response directs the adaptive response. Before this discovery, 

immunological research had been focused on clonal expansion of T and B cells by 

specific antigens (Parish and O’Neill, 1997). Since then many laboratories focused 

their research on evaluating various aspects of the innate immune response in 

poultry (Ferro et al., 2004; Wigley et al., 2006; Swaggerty et al., 2008). Kramer et al. 

(2003) performed experiments with various breeds of chickens and their abilities to 

fight the infection with innate or adaptive immune responses. The study showed 

that Old Dutch breeds were characterised by higher production of nitric oxide (NO), 

lower Salmonella survival in splenic leukocytes and higher total IgM and IgY 

antibody concentrations compared to a commercial broiler group. These 

experiments concluded that many aspects of the immune system should be 

included in the selective breeding program. Focusing on only one branch of immune 

system does not reliably indicate general responsiveness or immunocompetence. 

Therefore, better understanding of avian immunology is crucial in determining 

disease robustness in chickens. 
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 The immune system 1.2

All living organisms have evolved defence mechanisms against invading 

pathogens. Apart from commensal microflora that reaches homeostasis, the 

immune system is constantly challenged with a broad spectrum of microorganisms. 

Similar to mammalian species, chicken have developed two arms of defence: innate 

and adaptive immune responses (Figure 1.1). 

 

Figure 1.1. The components of innate and adaptive immune system in mammals. The cells 
(granulocytes, dendritic cells, macrophages, natural killer cells, mast cells) and soluble molecules 
(complement proteins) of the innate immune response act as the first line of defence against 
infection. The adaptive immune response is triggered by innate components, and it is highly 
characterised with high antigenic specificity and memory. The components of adaptive immune 
system include antibodies, B cells, and CD4+ and CD8+ T lymphocytes. Natural killer T cells and γδ T 
cells are cytotoxic lymphocytes that interact and bridge the innate and adaptive immunity (Adapted 
from Dranoff, 2004). 

 

The innate immune component generates responses immediately after the 

recognition of pathogen-associated molecular patterns (PAMPs). Adaptive 

immunity starts as a second line of defence and is highly specific to the invading 

organism(s). It requires time to design responses against invaders and to avoid 
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damaging of host tissues. The establishment of immunological memory by the 

adaptive branch of the immune system allows responses to be generated faster 

when the infection reoccurs. An important aspect of activation of adaptive immune 

responses is the presentation of foreign antigen to the T cell or B cell receptor by 

cells from the innate immune system that encountered pathogens via phagocytosis. 

The Major Histocompatibility Complex (MHC) is essential for such antigen 

presentation. The genes involved in MHC encode for glycoproteins that, after 

antigen processing and degradation, present small peptides to the cell surface and 

present them to the T or B lymphocytes. Naïve B cells can be activated by follicular 

dendritic cells (FDCs) after presentation of unprocessed antigen in secondary 

lymphoid organs (Batista and Harwood, 2009). B and T cells have major roles in the 

development and organisation of adaptive immunity, respectively producing 

antibody or targeting infected cells for killing. In the adaptive immune response, 

antigen is recognised by two distinct sets of highly variable receptors, the B cell 

receptor (BCR) and the T cell receptor (TCR). To protect against pathogens, the host 

needs to generate a diverse pool of BCR that will recognise a broad range of 

antigens and initiate the antibody production. TCR diversity has evolved as a result 

of the arms race with emerging pathogens to cover most of the antigen diversity 

(Nikolich-Zugich et al., 2004). In the chicken, mechanisms of somatic DNA 

recombination to create variability in the TCR are identical as in mammals (Jung et 

al., 2006). A vital part of immunity and control of infections with extracellular and 

intracellular pathogens are the T helper 1 (Th1) and T helper 2 (Th2) cells. The 

components of Th1 and Th2 responses required in mammals, including signature 

cytokines and transcription factors, have been identified in the chicken genome 

(Kaiser et al., 2005).  

The avian immune system differs from those of mammalian species at the 

genetic, molecular, cellular and organ level. Birds have different repertoires of Toll-

like receptors (TLRs) involved in pattern recognition, as well as different antibodies. 

They also lack draining lymph nodes and the sites of antigen uptake, processing and 

immunological priming are relatively poorly defined (reviewed in Kaiser, 2010). 
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Birds have an avian-specific primary lymphoid organ, the bursa of Fabricius, which is 

the site of development of the B-cell repertoire (Glick et al., 1956). At the cellular 

level, the avian functional equivalents of mammalian neutrophils are heterophils 

(Kogut et al., 2005). The chicken eosinophils appear to be non-functional (Maxwell, 

1987) and the components that control migration of eosinophils, for example 

eotaxins, eotaxin receptor and chemokines, are missing in the chicken genome 

(Kaiser, 2012). Similar to eosinophils, the numbers of basophils and mast cells, all 

typical cells of Th2 responses, are much lower compared to mammalian species 

(Schijns et al., 2014). The chicken Major Histocompatibility Complex (MHC) genes 

differ in the structure, function and architecture from the mammalian MHC 

(Kaufman et al., 2013). The chicken MHC is more compact, containing only 19 genes 

within the 92 kb region of the B locus on the chromosome 16. The 20-fold smaller 

size compared to human MHC has been termed “the minimal essential” MHC 

(Kaufman et al., 1995). 

 Avian Pattern Recognition Receptors (PRRs) 1.2.1

Similar to mammals, the chicken innate immune system depends on the 

recognition of pathogens or pathogen-associated molecular patterns through 

Pattern Recognition Receptors (PRRs) including TLRs, retinoic acid-inducible gene-1 

(RIG-I) like receptors (RLRs), nucleotide-binding oligomerisation domain (NOD)-like 

receptors (NLRs) and C-type lectin receptors (CLRs) family members. A RIG-I 

orthologue is present in both the duck and goose genomes (Barber et al., 2010; Sun 

et al., 2013) but it has not been identified in the chicken (Karpala et al., 2011). The 

most studied family are TLRs. This family consists of transmembrane glycoproteins, 

expressed on the cell membrane or intracellularly. The extracellular domain consists 

of leucine-rich repeats (LRR) responsible for pathogen recognition. The 

transmembrane domain and intracellular region containing Toll/interleukin (IL)-1R 

homology domains (TIR) recruits adaptor proteins, which then activate signal 

transduction cascades. A core signalling pathway is engaged by surface TLRs and 

leads to activation of transcription factors involved in pro-inflammatory gene 

expression (O’Neill and Bowie, 2007). 
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Avian TLR family members comprise mammalian orthologues and avian 

specific TLRs and their ligands, where known, are listed in (Table 1.1). The 

mammalian TLR1 family can form heterodimers with TLR2, which increases the 

capacity to detect PAMPs (Ozinsky et al., 2000). Tandemly duplicated genes, TLR1A, 

TLR1B and TLR2A, TLR2B represent the chicken TLR1 family (Boyd et al., 2001; Fukui 

et al., 2001). Similar to mammalian TLR2, chicken TLR1 and TLR2 families can form 

heterodimers and detect PAMPs (Higuchi et al., 2008). Orthologues for TLR3 

(Schwarz et al., 2007), TLR4 (Leveque et al., 2003), TLR5 (Iqbal et al., 2005) and TLR7 

(Philbin et al., 2005) are present in the chicken genome. TLR4 detects 

lipopolysaccharide and is associated with early regulation of Salmonella infection 

(Leveque et al., 2003). TLR5 detects flagellated Salmonella serovars (Iqbal et al., 

2005). Detection of viral RNA is mediated by intracellular TLR3 and TLR7 (Schwarz et 

al., 2007; Philbin et al., 2005). Chicken TLR8 is a pseudogene disrupted by a chicken 

repeat-1 (CR1) retrovirus-like element (Philbin et al., 2005). Although TLR9 gene is 

absent from the chicken genome, chickens are able to detect CpG motifs via TLR21 

(Brownlie et al., 2009; Keestra et al., 2010). Avian-specific TLR15 have been shown 

to detect range of PAMPs from various pathogens, for example Salmonella 

Typhimurium, S. Enteritidis, Escherichia coli, B- and C-type CpG oligonucleotides 

(ODN), tripalmitoylated lipopeptide (PAM3CSK4), LPS, virulence-associated fungal 

and bacterial proteases, yeast-derived agonist and Eimeria tenella sporozoites  

(Higgs et al., 2006; Shaughnessy et al., 2009; Nerren et al., 2010; Ciraci and Lamont, 

2011; De Zoete et al., 2011, Boyd et al., 2013, Zhou et al., 2013). 
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Table 1.1. TLR family members and their agonists in humans and chickens  

Human Chicken Agonists Pathogen 

TLR1/6/10 
TLR1A 
TLR1B 

Lipoprotein Mycobacteria 

TLR2 
TLR2A 
TLR2B 

Peptidoglycan Bacteria 

TLR3 
Present 

 
dsRNA Viruses 

TLR4 
Present 

 
LPS Gram- bacteria 

TLR5 
Present 

 
Flagella Gram- bacteria 

TLR7 
Present 

 
ssRNA Viruses 

TLR8 
Pseudogene 

 
ssRNA Viruses 

TLR9 
TLR21 

 
CpG Bacteria and viruses 

Absent TLR15 
LPS 

Lipoprotein 
CpG 

Gram+/- bacteria, viruses 
fungi 

 

 Non-cellular components of innate immune system 1.2.2

Cytokines and chemokines play an essential role in the immune response. 

These small regulatory molecules act as extracellular signals between cells during 

the course of an immune response. Knowledge of the cytokine repertoire in the 

chicken radically changed after the chicken genome sequence became available 

(Hiller et al., 2004). Due to very low (25-35%) identity with their mammalian 

orthologues there are only few cross-reactive monoclonal antibodies or bioassays 

(reviewed in Kaiser and Staeheli, 2008). The repertoire of chicken cytokines includes 

interferons (IFNs), interleukins (ILs), transforming growth factors (TGFs), tumour 

necrosis factors (TNFs), colony stimulating factors (CSFs) and chemokines (Kaiser et 

al., 2005). Many studies focus now on expression of pro-inflammatory cytokines in 

effector cells upon stimulation with TLR agonists. Pro-inflammatory cytokines and 

chemokines are involved in responses to various pathogens challenges and 

increased resistance against disease have been shown to be associated with strong 

pro-inflammatory cytokine and chemokine responses (Coussens et al., 2004, Ferro 

et al., 2004). 
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 Role of the effector cells 1.2.3

Various cells of both arms of the immune system have been described in the 

chicken. The activity of dendritic cells, macrophages, heterophils, natural killer cells  

(NKT), γδ T cells against invading microbes is considered a part of the innate 

immune response. In the context of this study, dendritic cells (DCs), macrophages 

and heterophils will be reviewed. Dendritic cells and macrophages phagocytose the 

encountered pathogen and present degraded peptides in the context of MHC 

molecules. MHC molecules play crucial role as a restriction element presenting 

antigens to T cells. MHC class I and II molecules have similar functions, both present 

the antigens to T cells, CD8+ and CD4+, respectively. The difference lies in the origin 

of the antigen. Generally, MHC class I molecules present peptides originated from 

intracellular pathogens whereas MHC class II molecules present exogenous peptides 

(reviewed in Vyas et al., 2008). In some circumstances, extracellular-derived 

antigens can be presented via MHC class I molecules to CD8+ T cells. The 

phenomenon of cross presentation has been described 30 years ago (Bevan, 1976) 

and is still a “hot topic” as it is not yet fully elucidated. The migratory CD103+ DCs 

have been shown to be most efficient in cross-presentation in mammals (Joffre et 

al., 2012). It is now known that the immune system uses this mechanism to monitor 

tissues and phagocytic cells for the presence of antigens.  

Since Metchnikoff first used the “macrophage” term to describe phagocytic 

leukocytes in 1884, the knowledge about these cells has grown hugely. Their role in 

innate and adaptive immunity, inflammation as well as in tissues homeostasis is 

well established in mammals (reviewed in Gordon, 2003). The macrophage 

repertoire consists of heterogeneous cells located in different tissues throughout 

the body in both vertebrates and invertebrates (Gordon and Taylor, 2005). They 

function as phagocytes and stimulate immune responses of other cells by 

expression of cytokines and chemokines, and therefore play primary roles in both 

innate and adaptive immunity. Carrell and Ebeling first described the isolation of 

macrophages from chicken blood in 1922. The adherence abilities of macrophages 

have been used to develop a protocol of selecting monocyte-derived macrophages 
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from peripheral blood (Peck et al., 1982). It is now possible to culture chicken bone 

marrow-derived macrophages with colony-stimulating factor 1 (Garceau et al., 

2010). Mammalian dendritic cells (DCs) have been identified over 30 years ago 

(Steinman et al., 1975) and have become the basis of immune responses studies in 

mammalian species since. Unlike macrophages or B cells, DCs are much more 

effective at inducing a primary immune response in resting naive T lymphocytes, 

and are called professional antigen-presenting cells (APCs) (Nakayama, 2015). Apart 

from phagocytosis and antigen processing, macrophages and dendritic cells also 

produce cytokines and chemokines and express MHC Class II molecules on their 

surface after recognition of PAMPs. The level of knowledge and availability of 

diagnostic tools to study avian effector cells is limited compared to the mammalian 

field. The populations of both types of effector cells are heterogeneous. Several 

different subtypes of dendritic cells have been identified and characterised in the 

chicken – bursal secretory DCs, follicular DCs, thymic DCs, Langerhans cells and 

bone marrow-derived DCs (Igyarto et al., 2006; Igyarto et al., 2007; del Cacho et al., 

2008; Wu et al., 2010, Olah and Nagy, 2013). Recent studies have characterised 

bone marrow-derived DC during viral infections with AIV and IBDV (Vervelde et al., 

2013; Liang et al., 2015). The advent of transgenic chickens in which all cells of the 

myeloid lineage express a fluorescent protein under the control of the CSF-1 

receptor promoter has begun to shed light on the spatial organisation and function 

of macrophages in the chicken (Garceau et al., 2015).  

Heterophils, the avian equivalent of mammalian neutrophils, have not been 

reported as APCs. However, several genes involved in the MHC class II system 

(CD80, MHC II β chain, c-KIT) were reported to be upregulated in Salmonella 

Enteritidis-stimulated heterophils derived from a resistant line of chickens (Chiang 

et al., 2008). Heterophils are useful biomarkers for measuring the innate immune 

response as they act early (within an hour) to engulf and destroy pathogens via 

phagocytosis (Swaggerty et al., 2003). Pathogens are then entrapped inside 

phagosomes that begin to fuse with cytoplasmic granules with microbicidal 

substances. Similarly to neutrophils, heterophils have evolved specific tools to 
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prevent pathogens from spreading. They are capable of producing reactive oxygen 

species (ROS) but the process of oxidative burst differs from the process observed in 

human neutrophils. The lack of myeloperoxidase, catalase and alkaline phosphatase 

enzymes distinguish them from neutrophils (Brune et al., 1972).  

Apart from intracellular phagocytic killing, heterophils are equipped with 

extracellular killing mechanisms. Heterophils have granules whose contents are 

released into the external environment upon contact with pathogens . The release 

of networked extracellular fibres made up of DNA, histones and granular enzymes 

has been shown in chicken heterophils stimulated with pathogens or their products . 

These heterophil extracellular traps (HET) are independent of phagocytosis, making 

heterophils the most equipped effector cells (Chuammitri et al., 2008). Association 

of HET production with variation at the locus associated with salmonellosis and 

SLC11A1 gene has been revealed in studies on two intercross lines of chickens 

challenged with S. Enteritidis (Redmond et al., 2011), indicating that it may be 

under genetic control. Antimicrobial proteins, peptides, enzymes and adhesion 

molecules are among the potentially toxic substances found in chicken heterophil 

granules. An antimicrobial cationic peptide, cathelicidin-2, has been shown to be 

released from heterophil granules upon stimulation with S. Enteritidis (van Dijk et 

al., 2009). Heterophils are able to release the granule contents at the infection site 

in a controlled manner to avoid damaging surrounding tissues (Genovese et al., 

2013). Phagocytosis has been shown to be associated with degranulation processes. 

Similar to phagocytosis, various microbial substances were found to stimulate 

degranulation (Kogut et al., 2005).  

 Adaptive immune response 1.2.4

The adaptive immune response is activated after the presentation of antigen 

to lymphocytes (Medzhitov and Janeway, 1998), in the context of the MHC, by 

antigen-presenting cells, especially DCs. CD8+ T cells and/or CD4+ T cells are 

stimulated and activated depending on the nature of the pathogen. Stimulation of 

naive T helper cells, expressing CD4 molecules, with IFN-γ, IL-12 or IL-18 secreted by 
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innate immune system effector cells initiates the differentiation of Th1 cells . In 

contrast, IL-4 and IL-13 trigger the differentiation of Th2 cells (Figure 1.2).  

Th1 cells enhance cell-mediated immunity against intracellular pathogens, 

whereas Th2 cells are important for control of extracellular pathogens via humoral 

responses. They are also responsible for activation of B cells (Lebman and Coffman, 

1988). Markers of these Th cell subsets are the transcription factor Tbet, the cell 

surface marker TRANCE and the signature cytokine IFN-γ for Th1 cells and, for Th2 

cells, GATA-3, Tim1 and IL-4 and IL-13 (reviewed by Zhu and Paul, 2008).  

Until recently, the Th1/Th2 paradigm (Mosmann and Coffman, 1989) has 

been used to describe the different adaptive responses triggered by various 

pathogens. Evidences of Th1/Th2 polarisation in the chicken have been shown 

based on infection studies with viruses and helminths (Eldaghayes et al., 2006; 

Degen et al., 2005). The Th1/Th2 paradigm does not explain many complicated 

pathological situations. The discovery of a third subset of Th cells (Th17) has 

expanded the Th1/Th2 paradigm (Ouyang et al., 2008). The primary function of 

Th17 cells is to handle pathogens that have not been cleared by Th1 or Th2 cells . 

Differentiation of Th17 cells is triggered by a combination of TGF-β, IL-6 and IL-23 

(reviewed in Korn et al., 2009). Th17 cells express the transcription factor RORγt, 

the receptor IL-23R on their surface and the signature cytokines IL-17A and IL-17F 

(Ivanov et al., 2006). The chicken IL-17 family consists of five members that have 

been identified in the genome: IL-17A, IL-17B, IL-17C, IL-17D and IL-17F (Kaiser et 

al., 2005). After successful clearance of the pathogen, some T cells, which 

previously encountered antigen, remain in the system as memory cells (reviewed in 

Korn et al., 2009). The immune system developed a mechanism that control the 

damage caused by immune responses. Regulatory T cells (Treg) are a subset of T 

cells that specialises in immune suppression. The disruption of regulatory function 

of immune system causes the autoimmune diseases. One of the unique markers of 

Treg is Foxp3 (Li et al., 2008b) which has not yet been identified in the chicken. The 

Treg family consists of Th3 cells, CD8+Foxp3+ cells, γδT cells, NKT cells and CD4-CD8-
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TCRαβ+ cells. Chicken CD4+CD25+ cells have been shown to have similar suppressive 

functions as mammalian Treg cells (Shanmugasundaram and Selvaraj, 2011).  

 

Figure 1.2. Differentiation of helper T cell subset in mammals.  Antigen –activated dendritic cells 
(DCs) interact with naïve CD4+  T cells which leads to polarisation into different effector T cell 
subsets — T helper 1 (Th1), Th2, Th17 and regulatory T (Treg) cells.Distinct sets of transcription 
factors control differentiation of each effect T cell type. Naïve T cells can differentiate into Th17 cells 
in the presence of interleukin-6 (IL-6) and transforming growth factor-β (TGFβ). Th17 cells express 
the transcription factors retinoic acid receptor-related orphan receptor-γt (RORγt) and signal 
transducer and activator of transcription 3 (STAT3). FOXP3 - forkhead box P3; GATA3 - GATA-binding 
protein 3; IFNγ - interferon-γ; TCR - T cell receptor (Adapted from Zou and Restifo, 2010). 

The humoral response is a part of the adaptive branch of immunity and 

involves activity of B lymphocytes. In mammals B cells develop in bone marrow 

from pluripotent haematopoietic stem cells that give rise to common lymphoid 

progenitor cells. Progenitor B cells undergo rearrangement of the immunoglobulin 

(Ig)-heavy chain and light chain genes. This process results in immature B cel l 

population that express the membrane-bound IgM. B cells migrate to lymphoid 

organs as naïve cells, meaning they have not yet been exposed to antigen. Activated 

B cells differentiate to plasma cells, express and secrete different classes of Ig. The 

switch between IgG, IgA, IgD, IgE and IgM is orchestrated by cytokines. In contrast 

to bone marrow B cell development in mammals, chickens unique lymphoid organ, 
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the Bursa of Fabricius is the site where B cells originate and differentiate (Barnes, 

2001; Glick, 1988). The B cells mature inside the bursa’s follicles and develop 

antigenic diversity after exposure to antigens by APCs (Glick, 1977; Ratcliffe, 1989). 

Humoral responses are maintained by matured B cells that migrate from bursa to 

spleen and lymphoid tissues (Pope, 2001).  

Avian immunoglobulins are classified into three groups: IgA, IgG and IgM 

(Hodek and Stiborova, 2003). Because of the structural differences between 

mammalian IgG and avian IgG, it was suggested to rename it to IgY (from yolk) 

(Leslie and Clem, 1969). Activation of mature B cells occurs when it recognises 

antigen in conjunction with signals from Th2 cells, which triggers proliferation and 

differentiation of B cells into a plasma cells. Plasma cells can be classified as 

antibody-producing cells or memory cells that survive for many years with the 

ability to produce antibody against specific antigen. Immunoglobulins consist of 

dimerised heavy and light chain with constant (C) and variable (V) regions. Somatic 

recombination of families of gene segments – V and joining (J) genes, produce light 

chains, and diversity (D) genes in case of heavy chain. The V(D)J recombination 

leads to great diversity in antigen recognition. Further changes in antigen 

recognition are manipulated by mutations occurring in the V, D, J genes, called 

somatic hypermutation. The Ig genes in avian species undergo rearrangement like 

their mammalian counterparts, but antibody diversity is primarily generated by 

gene conversion, which usually occurs after initial recombination of the single VJ or 

VH genes and surface expression of the B cell receptor. Single copies of VL and JL 

genes encode light chain and VH and JH genes encode heavy chain, which limits the 

diversity and the V(D)J rearrangements occurrence (Ratcliffe and Jacobsen, 1994; 

Reynaud et al., 1985). The recombination with clusters of pseudogenes upstream of 

the heavy and light chains loci increases the diversity of the Ig V region (Reynaud et 

al., 1987; Reynaud et al., 1989).  
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 Chicken breeding for improved immune robustness 1.3

Improvements in the poultry industry can be achieved by development of 

chicken lines with better immune responsiveness. To accomplish this, improved 

understanding of chicken immunology is necessary. Every aspect of the acquired 

immune response has its beginning in the innate response of effector cells. Stronger 

and more rapid innate responses to infection lead to higher resistance in particular 

chicken lines (Swaggerty et al., 2009). Over the years, many studies have shown 

that commercial broiler lines have distinct immune function parameters, due to 

differences in their genetic make-up, which results in disease resistance and/or 

susceptibility. Poultry breeders and producers should co-select for both immune 

competence and growth traits (Cheema et al., 2003). Disease resistance is generally 

a polygenic trait (Cavero et al., 2009). Before the chicken genome became available, 

the genetics of complex traits had been studied without identifying the genes 

involved. The basis for selection was estimated breeding values calculated from 

phenotypic records and pedigrees, and knowledge of the heritability of each trait. 

However, this process is slow and, in the case of disease resistance, measuring the 

trait is expensive. Identification of genes controlling this trait would be 

advantageous in selection of animals carrying the desirable alleles (Goddard and 

Hayes, 2009). Early studies of immunological traits were limited to measurements 

of antibody levels to a defined antigen. These biomarkers are still relevant because 

they are easy to assess and relatively cheap. However, over the past 20 years, the 

methods available for identification of DNA variation have changed and costs of 

these assays decreased (reviewed in Lamont et al., 2008). The early methods used 

to discover the genes were a candidate gene approach and gene mapping to a 

chromosomal location (reviewed in Jie and Liu, 2011).  

 Inbred lines 1.3.1

Toward the genetic improvement of poultry, a number of inbred lines of 

varying phenotypes have been created in the chicken from a selection of breed 

stocks (Crawford, 1990). First experiments with inbreeding started in 1939 at the 

Regional Poultry Disease Laboratory, now known as the Avian Disease and Oncology 
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Laboratory (ADOL). The natural variability inherent in a chicken population was 

explored with the use of individual cages, artificial insemination and brother-sister 

mating. Families with inherent high resistance or susceptibility to avian leukosis 

were formed with carefully selected source stocks. This resulted in production of 

several specific lines (Stone, 1975). Using inbred lines to identify sources of 

variation is advantageous, as the level of biological variance of the trait is very low 

compared to outbred lines. The phenotypic variance decreases in backcross 

populations. This allows the mapping of genomic regions associated with the trait of 

interest, termed quantitative trait loci (QTL) by association of the genotype of the 

backcross progeny with the phenotype under study. In addition, backcrossed 

populations maintain the non-random association of alleles at different loci, 

therefore the power to identify a QTL is maintained (Soller et al., 2006). The 

identification of QTL associated with a trait could lead to greater examination in 

order to find the causative gene or linked marker that can be used for marker-

assisted selection (MAS) in breeding programmes. 

 Microsatellites markers and QTL mapping 1.3.2

With the development of the polymerase chain reaction, amplification of DNA 

in a rapid inexpensive manner became available to detect variation. PCR techniques 

were used to identify short repetitive sequence length variations – microsatellites. 

Their many characteristics, such as codominance, high polymorphism and 

multiallele dispersion in the genome were used as DNA-based markers for breeding 

selection. This approach produced microsatellite-based genomic maps, which were 

then applied in studies on experimental crosses for identification of genomic 

regions influencing commercially important traits. With the use of genomic maps of 

the location of specific microsatellites, the identification of genomic regions 

responsible for quantitative traits became possible.  

Many of the studies utilised the inbred lines and their crosses characterised 

with resistance and susceptibility to certain pathogens in identification of QTL. 

Instead of reviewing all literature on how immune function has been implicated in 
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genomic studies on heritable resistance to infection I will focus on selected 

pathogens as examples. As of August 2015, the animal genome QTL database 

reported 224 publications identifying more than 4,676 QTL for 319 traits, including 

those for specific disease resistance (www.animalgenome.org). The QTLs associated 

with MDV resistance have been studied in resistant and susceptible inbred lines, 

which were developed in ADOL. Several potential QTL have been determined from 

backcrosses between these lines. Vallejo et al. (1998) used inbred lines that differ in 

their susceptibility to Marek’s Disease Virus (MDV) to produce intercross progeny in 

order to map QTL affecting MDV susceptibility. With the use of 78 microsatellites 

markers, six QTL were mapped with significant and suggestive association with 

Marek’s Disease (MD) traits. Following these experiments Yonash et al. (1999) 

genotyped all birds used in the previous study and added 49 new microsatellites 

markers. McElroy et al. (2005) reported identification of the same QTL for MD 

resistance in commercial layers, showing that the experimental inbred lines and 

their crosses are useful tool for commercial populations. In addition, Heifetz et al. 

(2007), using microsatellites markers, confirmed localisation of previously reported 

QTL significantly associated with resistance to MD in commercial lines. 

Mariani et al. (2001) used microsatellite markers in low density QTL mapping 

of a substantial component of resistance to systemic salmonellosis (SAL1) to chicken 

chromosome 5. These experiments were performed on a highly susceptible inbred 

line and highly resistant inbred line to Salmonella infection and their progeny from 

the backcross with the parental line. Separately, Beaumont et al. (2003) 

demonstrated the importance of genomic region carrying gene SLC11A1 in 

Salmonella resistance. Populations derived from inbred lines were used in the 

identification of several QTL for resistance to carrier state using selective 

genotyping approach (Tilquin et al., 2005). The bacteria count of S. Enteritidis and S. 

Typhimurium from cloacal swabs in backcross and F2 progeny determined which 

individuals were characterised by extreme phenotype and selected birds were 

genotyped. Studies on Salmonella carrier state QTL in commercial lines confirmed 

that the locus carrying the SLC11A1 (Nramp1) candidate gene is significantly 
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associated with carrier state resistance variations in different chicken lines. In 

addition, a QTL associated with Salmonella gut colonisation has been identified on 

chromosome 2 (Calegne et al., 2009).  

 High-density single nucleotide polymorphism (SNP) panels 1.3.3

Together with the first chicken genome assembly in 2004 a 2,8 million single 

nucleotide polymorphism (SNP) map was produced (International Chicken 

Polymorphism Map Consortium, 2004) which further allowed identification of many 

QTL and determined many disease-related genes, e.g. MHC, SLC11A1 (Nramp1), 

IFN, TLRs, IRAK-4, MyD88, NFκB, TNFSF, using various molecular technologies 

(reviewed in Kaiser et al., 2008).  

The SNP number and density has been increasing since the first published SNP 

map (Wong et al., 2004). Re-sequencing of divergent chicken lines provides 

additional SNP (Rubin et al., 2010). With the use of high-density SNP panel, Fife et 

al. (2009) refined the location of SAL1 locus and two potential candidate genes 

were identified (SIVA1 and AKT1). The SNP panel was used in studies on 

identification of Salmonella colonisation QTL. The four QTL, mapped to 

chromosome 2, 3, 12 and 15, are significant at either the genome-wide or the 

chromosome-wide level (Fife et al., 2010). However, to identify causative genes 

higher density SNP panels are needed. Genomic analysis of advanced intercross 

lines responses to Salmonella has supported the importance of the SAL1 QTL that 

contains AKT1 and SIVA1 genes as candidates that control resistance to systemic 

salmonellosis (Redmond et al., 2011). The fine-mapping of QTLs is limited by poor 

precision in gathering phenotypic data and reliability of these assessments. The 

development of new technologies such as RNA-seq, microarray expression analyses 

and high density SNP genotyping should expedite the search for mechanisms of 

genetic resistance (reviewed in Calenge et al., 2010).  

Other causes of genetic variation, in addition to SNPs, are emerging and can 

be associated with disease resistance. Copy number variations (CNVs) are difficult 

for most mapping approaches and for sequence assembly and were therefore 
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largely ignored in the search for QTL (reviewed in Dodgson et al., 2011). CNVs are a 

type of genomic structural variation involving deletions, insertions and duplications 

and range from kilobase to megabases. Now it is clear that CNVs are involved in 

phenotypic differences such as late feathering (Elferink et al., 2008). The number of 

nucleotides affected by CNVs has been shown to exceed the number of SNPs 

(Conrad et al., 2010). Wang et al. (2010) observed 96 CNVs in 10 sampled birds. 

Among those CNVs, fifteen involved functional genes. Recently the number of CNVs 

and CNV regions (CNVRs) increased to 130 with the use of an Agilent 400k array 

CGH (comparative genomic hybridisation) platform (Wang et al., 2012). 

 Combination of gene expression and genomic markers 1.3.4

By considering gene expression as a quantitative trait or phenotype and 

combining with other genetic markers, the genomic location(s) that control 

variation can be revealed (Cogburn et al., 2007). The combination of gene 

expression studies and marker genotypes has a great promise for studies of 

complex traits. By comparing gene expression data with the location of QTL 

previously associated with MDV traits in inbred lines, the IRG1 gene was identified 

as having a potential role in MD susceptibility (Smith et al., 2011). Heams et al. 

(2011) used gene expression with comparison with mapped QTL region to study 

Eimeria tenella infections. This approach highlighted potential candidate genes that 

are positioned within significant QTL for Eimeria lesions. The QTL associated with 

variation can be either cis or trans to the gene of interest. The cis-eQTL could be 

interpreted as the sequence flanking gene, hence regulating its expression. The 

trans-acting eQTL could modulate the expression by transcription factors. The 

former are more difficult to identify, even with a complete genome sequence 

(Cogburn et al., 2007).  

 Studies on differences in gene expression between chicken lines 1.4

As stated in the previous section, over the years, genetic resistance to 

diseases in chickens has been studied in context of various pathogens. In this 
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section, examples of mRNA gene expression and functional studies will be reviewed 

in context of heritable natural genetic resistance. 

Divergent chicken lines were used to study immune responses to Salmonella 

species, Eimeria species, and Campylobacter jejuni. Studies by Wigley et al. (2002) 

on resistant inbred birds showed lower mortality and morbidity when infected with 

Salmonella Gallinarum. Subsequent in vitro comparison of macrophages from 

resistant and susceptible lines revealed that innate immunity played a role in 

responsiveness to S. Gallinarum with better clearance of bacteria in the former line. 

Increased expression of pro-inflammatory cytokines in the resistant line suggested 

efficient initiation of innate and adaptive immune responses that is pivotal in 

immunity to systemic salmonellosis (Beal et al., 2004). The results were confirmed 

in studies on the same lines monocyte-derived macrophages stimulated with S. 

Gallinarum and S. Typhimurium (Wigley et al., 2006) where higher and more rapid 

mRNA gene expression of cytokines and chemokines was observed in macrophages 

from resistant line.  

In addition to macrophages, heterophils from resistant and susceptible lines 

have been shown to respond differently to infection with S. Enteritidis (Swaggerty 

et al., 2003). Commercial lines and their reciprocal crosses were evaluated based on 

heterophil degranulation, phagocytosis and oxidative burst responses when 

challenged with Salmonella. The results showed that the ability of heterophils to 

efficiently react to infection is genetically transferred to the progeny. A study on 

systemic infection with S. Enteritidis administered into the abdomen of day-old 

chickens from the parental line and reciprocal crosses showed heterophil influx to 

the site of infection to be much higher in the resistant line and the progeny 

compared to susceptible line (Swaggerty et al., 2005). These studies were 

supplemented with experiments on mRNA gene expression after stimulation with S. 

Enteritidis in the same commercial lines and their reciprocal crosses (Ferro et al., 

2004; Swaggerty et al., 2004). The upregulation of pro-inflammatory cytokines was 

observed in heterophils isolated from the resistant chickens and their F1 progeny. 
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Similar responses in more resistant lines were observed when birds were 

challenged with the Gram-positive bacterium Enterococcus (Swaggerty et al., 2005).  

Swaggerty et al. (2008) continued the evaluation of commercial broiler line 

immune responses where mRNA expression of pro-inflammatory cytokines and 

chemokines from sires and generated progeny were assessed. The RNA from 

peripheral blood leukocytes (PBL) was used in quantitative PCR reactions where 

expression of IL-1β, IL-6, CXCLi2 and CCLi2 was tested. Gene expression profiles of 

pro-inflammatory cytokines and chemokines in leukocytes from high expression 

sires led to higher expression of the selected genes in generated progeny. In 

addition, the results showed that progeny from sires characterised with low gene 

expression had also lower immune performance. The highest values of gene 

expression from those birds were much lower compared to the lowest values from 

high expression sires progeny. This approach allowed for identification of sires with 

higher/lower than average expression of proinflammatory cytokines and 

chemokines. The progeny produced from the selected sires carried similar immune 

responsiveness without losing the desired growth qualities.  

The same lines, parental and F1 reciprocal crosses were challenged with 

Campylobacter jejuni and evaluation of cloacal swabs revealed that again, resistant 

lines and their sires progeny had significantly fewer C. jejuni colonies. These results 

indicated that paternal effects influenced the resistance to bacterial colonisation (Li 

et al., 2008c). The continuation of testing commercial lines and their F1 crosses 

confirmed that resistant lines and paternal progeny managed to enhance the 

responses to coccidial infections accompanied by higher gain weight (Swaggerty et 

al., 2011; Swaggerty et al., 2015), proving that the efficient innate responsiveness 

guards against not only bacteria but broader range of pathogens, including 

parasites. Transcriptome analysis of splenic gene expression in parental lines 

challenged with Campylobacter revealed differences in molecular regulations during 

infection. Moreover, different defence mechanisms were involved in the 

Campylobacter resistant line where genes involved in apoptosis and cytochrome c 
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release from mitochondria were activated compared to susceptible line (Li et al., 

2012). 

Schokker et al. (2012) studied immune responses of three commercial broiler 

lines after infection of newly hatched birds with S. Enteritidis. The results showed 

that different lines differed in their response to systemic spread of bacteria possibly 

due to variation in intestinal development. Another study on responses to S. 

Enteritidis in broiler, layer and Fayoumi lines showed differences in mRNA gene 

expression in the spleen which suggest that divergent genetic lines use different 

components of immune responses in the response to Salmonella infection (Coble et 

al., 2011). Redmond et al. (2009), obtained similar results with a Fayoumi native line 

showing higher expression of selected innate immunity-related genes in heterophils 

stimulated with S. Enteritidis. Wang et al., (2014) performed RNA-seq analysis on 

lungs from Leghorn and Fayoumi chickens samples and showed the latter to be 

more resistant to AIV infection with haemoglobin family genes playing a pivotal 

protective role. The studies where immune responses of indigenous Fayoumi 

chickens were compared to those of commercial broilers and layers show that 

native lines, without genetic selection, may provide biodiversity to improve 

breeding programmes for the innate immunity in commercial birds. 

 Transcriptomics tools for immune gene expression analysis 1.5

Gene expression triggered by infection is a trait that can be measured in both 

in vitro and in vivo studies on varied tissues and cells in the organism. This approach 

leads to understanding the regulation of genes and pathways during the disease 

and the discovery of biomarkers. To study gene expression, transcriptomics 

methods need to be applied. The transcriptome comprises the complete set of 

transcripts in a cell. Transcriptome profiles in response to biological stimuli, i.e. 

pathogen invasion, provide data to interpret functional elements of the genome 

and understand disease processes (Wang et al., 2011). The transcription process is 

the first step of gene expression. Not every transcript will be translated into 

functioning protein, therefore gene expression cannot be interpreted as 
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corresponding protein levels. In chicken studies, where availability of tools and 

reagents lags behind the mammalian field, experiments with the use of 

transcriptomics methods offer relatively inexpensive way to identify eQTL and 

biomarkers for selection.  

 Microarrays 1.5.1

Microarrays have been used as a genomic tool since 1990 and rapidly 

became the platform of choice in transcriptomics studies in model organisms, 

including the chicken. The principle is based on comparison of transcript levels 

between two samples. Data are generated based on the cDNA reverse transcribed 

from the purified mRNA transcriptome of a sample (Murphy, 2002). The cDNA 

generated from test and control samples are separately labelled with different 

fluorescent dyes and hybridised to an array containing DNA probes for different 

genes. The intensity of the fluorescent signal resulting from hybridisation to a 

specific probe depends on the amount of hybridised cDNA from a given sample, and 

in turn reflects the abundance of the transcript from which it was reverse 

transcribed. The differences in the signals from both samples are analysed and 

interpreted as differential expression. This technology has been useful in many 

aspects of science, including potential biomarkers discovery or drug targets .  More 

than a dozen microarrays, either cDNA- or oligonucleotide-based have been 

developed for chicken gene expression (reviewed in Cogburn et al., 2003).  

A commercial microarray for analysis of the chicken transcriptome with 44k 

probes (Li et al., 2008a) is available from Agilent (http://www.genomicS. 

agilent.com). This new whole genome microarray was designed based on the 2004 

chicken (Gallus gallus) v1.0 draft assembly and it has been widely used to measure 

mRNA levels. For example, Chiang et al. (2008) used this technique to profile 

differential gene expression in heterophils from two genetically distinct lines 

infected with Salmonella Enteritidis. It has been recently used to evaluate gene 

expression in liver of S. Enteritidis infected broilers (Coble et al., 2013) and in 

leukocytes from APEC infected broilers (Sandford et al., 2012). Other chicken arrays 
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were customised for measurement of gene expression in specific cell types (Bliss et 

al., 2005) or gene sets (Smith et al., 2006). The global view of gene expression 

produced by microarrays can identify candidate genes or pathways that are 

associated with differences in phenotype between the test and control systems (or 

animal lines) studied. As the probe set on the microarray is set for known cDNA 

sequences, this technology does not allow the detection of novel transcripts or 

sequence variants (Mortazavi et al., 2008). 

 RNA sequencing 1.5.2

An alternative to microarrays is the use of next generation sequencing of 

cDNA derived by reverse transcription from mRNA (also termed RNA-seq). In this 

technique, the RNA population is converted to a library of cDNA fragments with 

adaptors attached to one or both ends. After amplification, each molecule is 

subjected to massively-parallel sequencing to obtain short sequences of 30-400 bp. 

The reads of sequenced fragments are then aligned to a reference genome (Wang 

et al., 2009). This identifies the transcripts present, whereas the abundance of the 

sequence reads for a specific gene reflect the relative abundance of the transcript in 

the sample. The microarray approach is still preeminent for large numbers of 

samples in regard of costs, but RNA-seq techniques have the advantage that no 

assumptions are made as to which genes are likely to be transcribed. In addition, 

RNA-seq is more sensitive due to its massively-parallel ‘deep sequencing’ nature 

and it is more accurate because the quantification is based on digital counts of the 

sequence reads corresponding to each transcript. RNA-seq is competing to replace 

microarrays for analysing the transcriptome in an unbiased and comprehensive 

manner (Wang et al., 2011). The ability to measure allele-specific expression (ASE) 

in heterozygotes using RNA-seq is advantageous over microarrays technique in 

which the same probe set targets both alleles (Sun, 2012). RNA-seq also provides 

tools for the discovery of new un-annotated genes of interest (Dodgson et al., 

2011).  
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The advantages of RNA-seq over microarrays have advanced progress of 

transcriptomics field producing great amount of data. Since 2008, when RNA-seq 

technology became available, more than a thousand research articles on gene 

expression were published in the PubMed database, including chicken studies .  This 

includes published work on necrotic enteritis (NE) and differential gene expression 

(DEG) in inbred lines (Truong et al., 2015), AIV infection in Fayoumi and leghorn 

lines (Wang et al., 2014), and caecal tissues responses to Campylobacter jejuni 

(Connell et al., 2012). 

 Quantitative polymerase chain reaction (qPCR) 1.5.3

In addition to high-throughput transcriptome analysis tools, quantitative 

PCR (qPCR) has been used for more than two decades to quantify transcription of 

specific genes. It is a technique where amplification and simultaneous quantification 

of targeted DNA molecules is possible. Transcripts are first reverse transcribed to 

cDNA, for example using oligo dT targeting polyA tails and random hexamers. The 

abundance of cDNAs is assumed to mirror that of template transcripts. Specific 

cDNAs can then be detected in PCR reactions using primers that anneal to the 

target sequence. Two main approaches exist to detect amplification. The first uses a 

labelled nucleotide that is incorporated into the cDNA, thus the amount of labelled 

product reflects the abundance of the target transcript. The second uses a probe 

that hybridises to the target cDNA between the primer annealing sites and which 

has a 5’ fluorophore and 3’ quencher. During PCR with flanking primers, the 

fluorophore is removed by the 5’-3’ exonuclease activity of advancing polymerase. 

The quencher no longer inhibits fluorescence of the released fluorophore and the 

fluorescence intensity proportional to the amount of product made in exponential 

phase of PCR (threshold value). Comparison of number of amplification cycles that 

reached particular quantification threshold fluorescence signal allows the initial 

amounts of cDNA template to be quantified. Therefore, fewer PCR cycles are 

needed for the detection if more copies of cDNA molecules are present at the 

beginning of the reaction. Compared to previously described transcriptome 

platforms, qPCR is useful in studies where gene expression of only a subset of 
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transcripts of interest is evaluated during infection or stimulation. This type of 

targeted expression is beneficial when genes involved are known to be responsible 

for different outcomes and it has been widely used in chicken immune responses 

studies (Kaiser et al., 2006; Abasht et al., 2009; He et al., 2012). QPCR analysis does 

not involve complex bioinformatics analysis of the output and is considered straight 

forward relative to RNA-seq. After the cautious selection of primers and 

optimisation of reaction, qPCR delivers results within hours.   

In recent years, emphasis has been placed on selection of reference genes 

for qPCR to permit comparison between samples that may differ in composition and 

integrity. The lack of consensus in reagents, protocols and analysis methods used 

for qPCR, and the high-profile retractions of manuscripts, for example from Science 

(Bohlenius et al., 2007), have forced qPCR experts to provide guidelines for authors, 

reviewers and editors with specification for the minimum information that must be 

included in the manuscript methods. As discussed in Chapter 5, the selection of 

reference genes needs to be more stringent and properly normalised before their 

use in qPCR reactions (Bustin et al., 2009).  

 The BioMark System 1.5.4

The BioMark system from Fluidigm is a platform to run multiple qPCR 

reactions against multiple RNA samples at once. It relies on microfluidics to perform 

qPCR reactions on a nanolitre scale and was made possible by advances in micro- 

and nanofabrication. There are four high-throughput qPCR platforms that use 

microfluidics currently on the market: the BioMark system, the OpenArray from Life 

Technologies, the LightCyclerTM 1536 from Roche and SmartchipTM from 

Wafergen, that allow for parallel gene expression analysis. Only the BioMark System 

is relevant for this project, therefore other platforms will not be discussed here. The 

Dynamic Array Integrated Fluid Controller is a microfluidic chip for the BioMark 

system that allows for amplification of single molecule in the microfluidics chip that 

consists of matrixes of chambers and valves (Figure 1.3). The dynamic array chip 

exists in two formats: 48.48 and 96.96. The 48 (or 96) samples are simultaneously 



30 

used in qPCR with 48 (or 96) assays which results in 2,304 (or 9,216) reactions from 

one run. The use of a dynamic array greatly reduces the volume of reagents and 

pipetting and is a reliable and rapid method for high-throughput gene expression 

analysis (Spurgeon et al., 2008). 

a)

 

b) 

 

Figure 1.3. Structure of 96.96 Dynamic Array IFC for gene expression. a) 96 assays and 96 samples 
with qPCR master mix are loaded in different dimensions. The IFC controller mix both samples and 
assays in 9,216 contained chambers, each with volume of 6,7 nl; b) The mixing of assays and samples 
is possible with the use of network of control lines and fluid lines that transfer liquids into the 
reaction chambers where qPCR reaction occurs. 

The statistical power of an experiment increases when in a single run greater 

number of replicated reactions can be performed (Weaver et al., 2010). Therefore, 

from biomarker screening perspective, high-throughput qPCR is beneficial with 

additional sensitivity, reproducibility and possible detection of very low abundant 

targets.   

 96 assays                                   96 samples 

9,216 
reactions 
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 Aims and objectives 1.6

For decades, breeding selection has focused on overall livability and 

phenotypic traits, such as weight gain and feed conversion efficiency, rather than 

targeting the immune system directly. The widespread use of vaccines and 

antibiotics has meant that relatively little emphasis has been placed on selection for 

disease resistance. A danger exists that breeding for resistance to particular 

pathogen may increase susceptibility to other pathogens. In this context, selection 

for birds with elevated innate immune function is desirable given the non-specific 

nature of the response. Selection of lines with improved immune robustness could 

solve the problems of greater variation of pathogens and emergence of new 

resistant strains and reduce the need for antibiotic use. 

The overarching hypothesis for this study is that disease resistant birds are 

inherently primed to produce a stronger innate immune response, and hence 

control invading pathogens better by killing and mounting stronger adaptive 

immune response. This hypothesis is supported by previous studies, which showed 

that effector cell function and pro-inflammatory gene expression was stronger and 

more rapid in resistant lines compared to susceptible lines. I therefore aimed to: 

1. Evaluate existing cellular and molecular assays as tools for swift and 

accurate determination of immune robustness in the chicken, with emphasis on 

analysis of heterophil, macrophage and dendritic cell phenotypes.  

2. Generate a list consisting of approximately 100 genes of interest that are 

involved in immune responses to a plethora of infections caused by bacteria and 

bacterial components, viruses and parasites.  The gene list will be created based on 

published challenge studies in chicken and mammalian species as well as an RNA-

seq analysis of chicken effector cells (bone marrow-derived dendritic cells (BMDC), 

bone marrow-derived macrophages (BMDM) and heterophils) stimulated with 

lipopolysaccharide (LPS). For novel genes identified by this approach I aimed to 

clone and sequence the genes to aid the design of assays of gene expression. 
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3. Select a platform for gene expression analysis, optimise and validate it 

with the use of an Aviagen broiler line housed in low biosecurity, resembling 

commercial settings (sibling test farm) and high biosecurity (pedigree farm) 

environments. Primers will be designed for selected genes and used in high-

throughput qPCR reactions with tissues and blood RNA as template.  

The ultimate goal was to evaluate if peripheral leukocytes isolated from 

blood could be used to detect changes in the level of immune robustness between 

chickens raised in different environments and within the same farm.  
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 Materials and Methods Chapter 2

 In silico materials 2.1

 Basic Local Alignment Search Tool (BLAST) 2.1.1

 Sequences of all cloned DNA fragments ,presented in Chapter 4, were 

compared with the chicken genome database (Gallus_gallus-4.0) using BLAST 

software. This heuristic algorithm finds similar sequences by locating short matches 

between the query and target sequence. This method allows observed and 

expected sequences to be compared and can identify single nucleotide changes or 

insertion/deletion events (Altschul et al., 1990).  

 ClustalX 2.1 2.1.2

 ClustalX is a general purpose multiple sequence alignment tool for DNA or 

proteins. Differences, similarities and identities can be visualised after the best 

matches are calculated and lined up for the selected sequences. ClustalX uses 

colour coding where the darkest shading indicates highest conservation (Larkin et 

al., 2007). 

 GeneDoc 2.1.3

GeneDoc provides tools for visualising multiple alignments of nucleic acid 

sequences. GeneDoc displays sequence alignments with different shading modes, 

that depend on the level of conservation between observed and expected 

sequences (Nicholas et al., 1997). Both, ClustalX and GeneDoc were used to present 

alignments of cloned genes (Appendix 2, electronic file). 

 Bowtie 1.0.0 2.1.4

Bowtie software was used in RNA-seq analysis pipeline (Appendix 1, Figure 

1). Bowtie is an ultrafast short-read aligner that employs a Burrows-Wheeler index 

and full-text minute-space (FM) index. Reverse permutation of the characters in 

text, as in the Burrows-Wheeler algorithm, is applied in Bowtie to allow large data 

of text to be searched efficiently while keeping the memory footprint small. FM 

index is the exact-matching algorithm and Bowtie uses two extensions to match the 
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sequencing errors or genetic variations. Bowtie input data can be in FASTQ and 

FASTA formats. Bowtie forms the basis for other tools, including TopHat and 

Cufflinks (Langmead et al., 2009). 

 TopHat 2.0.9 2.1.5

 TopHat is a script that aligns RNA-Seq reads to a genome in order to identify 

exon-exon splice junctions. Bowtie cannot align reads that span introns. TopHat was 

created to address this issue of large gaps in alignments. It uses Bowtie as an 

alignment tool and breaks up reads into smaller pieces called segments. Many of 

these segments align contiguously which results in build-up of an index of splice 

junctions (Trapnell et al., 2009). 

 Cufflinks 2.1.1 2.1.6

 Cufflinks uses output data from TopHat to assemble aligned RNA-seq reads 

into transcripts. Multiple splice variants may be present for a given gene, therefore 

to overcome this issue Cufflinks reports a parsimonious transcriptome assembly of 

the data. Only few full-length transcripts fragments (transfrags) are defined by 

Cufflinks to sufficiently explain all the splicing event outcomes in the input data. To 

derive a likelihood of abundance levels and filter out artificial transfrags Cufflinks 

uses a statistical model of paired-end sequencing experiments. The software then 

computes the overall likelihood by multiplying these probabilities. The outcome of 

properly normalised RNA-seq fragment counts can be used as a measure of relative 

abundance of transcripts. Cufflinks uses Fragments per Kilobase of exon per Million 

fragments mapped (FPKM) to present expression of each transcript. Cufflinks 

contains a program (Cuffcompare) that can support comparison of assembled 

transfrags and reference annotation. Cufflinks also includes a script called 

Cuffmerge that allows merging of several Cufflinks assemblies. Differential 

expression of transcripts can be verified using Cuffdiff 2 that tests the observed log-

fold change in gene expression against the null hypothesis of no change. Cuffdiff 2 

predicts how much variance is in the number of reads originating from a gene or 

transcript. It is completed in the form of a table that is keyed by the average reads 
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across replicates. The table is queried to retrieve the variance from the number of 

reads. By simulating assignment to a locus and to the splice isoforms for that locus, 

Cuffdiff 2 accounts for probable errors in gene mapping. At the end of the 

estimation procedure, Cuffdiff 2 obtains an estimate of the number of reads that 

originated from each gene and transcript, along with variances in those estimates. 

The read counts are reported along with FPKM values and their variances. Change in 

expression is reported as the log fold change in FPKM, and the FPKM variances 

allow the program to estimate the variance in the log-fold-change itself. Genes with 

highly variable expression will have highly variable log-fold change between two 

conditions (Trapnell et al., 2010). 

 BestKeeper software 2.1.7

 BestKeeper is an Excel-based programme that is used to compare expression 

levels of reference genes and target genes in up to one hundred biological samples. 

BestKeeper input data is in form of raw Cq values which are plotted in an Excel 

table. Pairwise correlation analysis and the geometric mean determine the ‘optimal’ 

reference genes (Pfaffl et al., 2004). The BestKeeper software was used in Chapter 5 

to select most stable gene. 

 NormFinder 2.1.8

 NormFinder is an algorithm for identifying the optimal reference gene 

among a set of candidates. It ranks a set of genes according to their expression 

stability in a given sample. The software uses a model-based approach of gene 

expression and statistical framework to estimate variation in overall expression and 

variations between subgroups. NormFinder automatically calculates the stability 

value for all candidate genes (Andersen et al., 2004). The Normfinder software was 

used in Chapter 5 to select most stable genes. 

 geNorm 2.1.9

 GeNorm is an algorithm that determine the most stable reference genes 

from a set of tested candidate genes in a given sample panel. A gene expression 



36 

normalisation factor can be calculated for each sample based on the geometric 

mean of a user–defined number of reference genes. Pairwise variation of each gene 

is determined as standard deviation of the logarithmically transformed expression 

ratios. An M value is calculated for a particular gene as the arithmetic mean of 

pairwise variation with all other genes in the same panel. Genes that are stably 

expressed are characterised by the lowest M value. Stepwise exclusion of the least 

stable genes results in combination of two constitutively expressed reference genes 

(Vandesompele et al., 2001). The geNorm software was used in Chapter 5 to select 

most stable genes. 

 Molecular cloning 2.2

 E. coli JM109 competent cells 2.2.1

 E. coli JM109 strain {endA1, recA1, gyrA96, thi, hsdR17 (rk–, mk+), relA1, 

supE44, Δ(lac-proAB), [F´, traD36, proAB, lacIqZΔM15]} has a mutation in the recA 

gene to improve plasmid stability and reduce scope for unwanted recombination 

events. The JM109 strain also carries the endA1 mutation that inactivates a 

nuclease that might co-purify with plasmids. This mutation allows purification of 

higher quality plasmids. JM109 bacterial cells are classified as an E. coli K strain 

based on the presence of the restriction and modification system that functions 

around EcoK I. JM109 cells carry the hsdR17 (rκ-, mκ+) mutation that inactivates the 

EcoK I restriction enzyme but leaves the methylase intact. Therefore, this strain 

does not degrade plasmid DNA isolated from K strains but does methylate it.  

 pGEM-T Easy  2.2.2

pGEM-T Easy is a 3015 bp linear vector used for cloning of PCR products 

(Figure 2.1). The plasmid contains a single thymidine extension at the 3’-ends that 

are complementary to the non-template-derived 3’-adenosine residues that are 

added to double-stranded DNA products by Taq DNA polymerase. The 3’-end 

thymidine also prevents the vector from recircularisation during ligation. This high-

copy-number vector contains T7 and SP6 RNA polymerase promoters flanking a 

multiple cloning site located within a truncated lacZ gene that encodes the α-
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peptide coding region of the enzyme β-galactosidase. The host E. coli strain carries a 

partial lacZ deletion (lacZΔM15) which encodes the ω-peptide. Neither, α- or ω-

peptide is functional by itself. Transformation of plasmid containing lacZ α sequence 

into the lacZΔM15 cells causes the formation of functional β-galactosidase enzyme. 

A molecular mimic of allolactose - Isopropyl β-D-1-thiogalactopyranoside (IPTG) is 

added to the agar to induce the lac promoter that drives α-peptide synthesis. The 

presence of a functional β-galactosidase is detected by galactose linked to a 

substitute indole, called X-gal (5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside) 

added to the agar. X-gal is cleaved by β-galactosidase to formo 5-bromo-4-chloro-

indoxyl, that spontaneously forms the insoluble pigment 5,5’-dibromo-4,4’-dichloro-

indigo resulting in blue colour in cells containing functional enzyme. The process of 

rescuing function of β-galactosidase by the α-peptide, called α-complementation, is 

used in the blue/white screening method. White colour of JM109 colonies 

transformed by pGEM-T recombinants indicate that formation of an active β-

galactosidase was disrupted by the insertion of a gene of interest into lacZα.  

 

Figure 2.1. Map of pGEM-T EASY vector 
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 Cell cultures 2.3

 Resurrection and passage of COS-7 cells. 2.3.1

COS-7 cells were used to produce of recombinant chicken proteins, which 

were used to generate bone marrow-derived cells, as presented in Chapter 3. COS-7 

[CV-1 (simian) in Origin, carrying the SV40 genetic material] is a fibroblast-like cell 

line derived from African Green Monkey Cercopithecus aethiops. COS-7 cells were 

removed from liquid nitrogen storage and defrosted in a water-bath at 37°C. 

Dulbecco’s Modified Eagle’s Medium (DMEM) supplemented with 10% (v/v) heat-

inactivated foetal calf serum (FCS), 200 mM L-glutamine, 100X non-essential amino 

acids, 1 U/ml of penicillin and 1 µg/ml of streptomycin was used to resuspend the 

cells. After washing and pelleting cells at 1,200 x g for 5 min the supernatant was 

discarded, cells resuspended in 15 ml of complete DMEM in 75 cm2 culture flask 

(Thermo Scientific) and incubated at 37°C, 5% CO2. After 72 hours, cells were 70-

80% confluent and ready to passage. The cell layer was washed twice with pre-

warmed phosphate-buffered saline (PBS). To lift the cells from the flask 5 ml of PBS 

containing 10% (w/w) trypsin/versene solution was then added. After 5 min in 5% 

CO2, at 37°C the flask was tapped several times to detach any remaining cells from 

the surface and complete DMEM was added to quench the trypsin enzymatic 

activity. The cell suspension was pelleted at 1,200 x g for 5 min in a 30 ml Universal 

container. The supernatant was removed and cell pellet resuspended in 10 ml of 

complete DMEM. Cell number was determined using a haemocytometer and trypan 

blue, for exclusion of dead cells. Cells were seeded at 7.5 x 105 cells/ml in 75 cm2 

culture flasks. All cell culture reagents were sourced from Sigma-Aldrich Ltd (Dorset, 

UK). 

 Transfecting cells with plasmid DNA 2.4

 DEAE-dextran transient transfection method for COS-7 cells 2.4.1

Transfection mediated by diethylaminoethyl (DEAE)-dextran works very 

efficiently with the COS-7 cell line. Negatively charged plasmid DNA complexes with 

positively charged DEAE-dextran to create aggregates, which then bind to 

negatively charged surface structures on cell membranes and uptake via 
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endocytosis occurs. Addition of chloroquine prevents endosome acidification and 

inhibits lysosomal degradation of the DNA.  

 COS-7 cells were passaged and seeded in complete DMEM media at 2 x 106 

cells/ml in 25 cm2 flasks. After twenty-four hours DMEM media were replaced by 

serum-free media containing chloroquine (0.1 μM), plasmid DNA (37.5 μg), DEAE-

dextran (30 µg/ml) and cultures were incubated for 3.5 hours at 37°C, 5% CO2. After 

incubation, cells were treated with dimethyl sulphoxide (DMSO) (10% (v/v) in PBS) 

for 2 min to enhance uptake of adsorbed plasmid DNA by increasing the 

permeability of cell membranes. DMSO solution was replaced with complete DMEM 

media and cells were incubated for further a 24 hours at 37°C, 5% CO2. Complete 

media was replaced with serum-free media and recombinant protein-containing 

supernatant was harvested after 72 hours. To remove any cell debris the 

supernatant was centrifuged at 1,200 x g and then stored at 4°C until needed.  

 Production of recombinant chicken IL-4, GM-CSF and CSF-1 2.4.2

Recombinant chicken IL-4, GM-CSF (CSF-2) and CSF-1 proteins were produced 

in the COS-7 transient expression system described in section 2.4.1 for generation 

of bone marrow-derived dendritic cells and macrophages. Plasmids containing CSF-

1, IL-4 and GM-CSF inserts were available in E. coli strains as glycerol stocks. To 

reach a single colony bacterial glycerol stocks were streaked out on LB agar plates 

containing 100 μg/ml of ampicillin (LBAMP100) and incubated overnight in 37°C. Single 

colonies were placed in 5 ml of LBAMP100 Broth and incubated at 37°C, 200 rpm for 

24 hours. LBAMP100 Broth, in volume of 250 ml, was used to subculture bacteria (2.5 

ml) for an additional 18 hours in 37°C, 200 rpm. Bacterial suspensions were 

centrifuged at 3,000 x g for 30 min and pellets were used in a modified plasmid 

extraction protocol (EndoFree Plasmid Maxi Prep, Qiagen; section 2.8.2). 
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 Primary cell experiments 2.5

 Generation of bone marrow-derived dendritic cells (BMDC) and 2.5.1
bone marrow-derived macrophages (BMDM) 

All the animals used in the work reported in this thesis were handled and 

killed in accordance with the Animals (Scientific Procedures) Act 1986. The chickens 

used in the following experiments were Brown Leghorn-J line birds housed by the 

National Avian Research Facility at The Roslin Institute.  

Immediately after death by cervical dislocation, both femurs and tibias were 

removed aseptically from 4-6 week old birds and placed in phosphate-buffered 

saline (PBS) on ice until further use. Using sterile scissors both ends of each bone 

were cut off. Bone marrow was flushed from the bone using a 0.8 x 40 mm 

diameter needle (21G x 1.5 Terumo) and syringe with 10 ml of PBS. Cells 

suspensions were passaged through 70 μm nylon mesh strainers (Fisher Scientific) 

into 50 ml Falcon tubes. Cells were pelleted at 500 x g for 10 min at room 

temperature and resuspended in 10 ml of PBS. Histopaque 1.077 was used to 

separate mononuclear cells (MNCs) by underlying the bone marrow cell suspension 

and centrifugation at 1,200 x g for 20 min with the brake switched off. The enriched 

MNC fraction between the plasma and Histopaque layers was carefully removed by 

aspiration with a Pasteur pipette and placed in 30 ml Universal tube. Cell 

suspensions were washed in PBS by centrifugation at 500 x g for 10 min at 4°C. Cell 

pellets were resuspended in 10 ml of pre-warmed Roswell Park Memorial Institute 

(RPMI) 1640 medium. Cell viability was assessed by Trypan blue staining and live 

cells were counted and adjusted to 1 x 106 cells/ml concentration in RPMI medium 

supplemented with 10% (v/v) chicken serum (CS) (in BMDC cultures) or 2% (v/v) CS 

+ 3% (v/v) foetal calf serum (FCS) (in BMDM), 200 mM L-glutamine, 1U/ml of 

penicillin and 1 μg/ml of streptomycin. To culture BMDC, cells were placed in 6-well 

plates (Thermo Scientific) in a volume of 3 ml with appropriate dilutions of 

recombinant chIL-4 and (1/20) GM-CSF (1/20) (exCOS-7) and incubated at 41°C, 5% 

CO2. After two and four days of culture 75% of the medium was replaced with fresh 

complete RPMI with addition of chIL-4 and chGM-CSF. To culture BMDM cells 
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concentration was adjusted 1.5 x 107/ml in 15 ml complete media with appropriate 

CSF-1 dilutions, placed in square Petri dish and incubated at 41°C, 5% CO2. For 

BMDM culture in 6-well plates, the same concentrations were used as for BMDC. 

Complete medium with cytokines was replaced at day four of culture.  

 Optimising LPS concentrations for stimulating BMDC and BMDM 2.5.2

Primary bone marrow cell cultures were used to determine the 

concentration of lipopolysaccharide (LPS) (Escherichia coli 055:B5, Sigma Aldrich) to 

induce maturation of antigen-presenting cells (APCs). BMDC and BMDM were 

cultured in 6-well plates, as described in section 2.5.1. Stimulation of cells was 

performed on day 6 of culture with various amounts of LPS: 20, 200 and 250 ng/ml 

LPS (20 min, 1 h and 4 h) for BMDM or 20 ng/ml and 200 ng/ml LPS (4 h and 24 h) 

for BMDC. Cells were removed from wells by pipetting and pelleted for 5 min at 500 

x g. RLT buffer from RNeasy Mini Kit (QIAGEN) was used to lyse the cells. The lysate 

was stored at - 20°C until use. Total RNA was purified from each sample following 

the manufacturer’s protocol as described in section 2.6.1. The amount of LPS used 

in stimulation of heterophils was previously optimised (Farnell et al., 2003) and 

10 μg/ml for 1 h was used. LPS stimulated bone marrow-derived cells were used in 

Chapter 3 (evaluation of cellular methods) and in Chapter 4 (RNA-seq). 

 Isolation of heterophils from chicken blood 2.5.3

 Peripheral blood was collected by cervical dislocation and decapitation of 

day-old chickens from Hy-Line W36, Aviagen broilers or RI-J line into Spray-coated 

K2  ethylenediaminetetraacetic acid (EDTA) tubes (BD Diagnostics, USA). The blood 

from Novogen breed was collected from embryos at day 20 into Universal tubes 

containing 5 mM EDTA. Blood from approximately 100 chickens was pooled and 

mixed 1:1 with 1% (w/v) methylcellulose (Sigma Aldrich, Poole, UK), prepared in 

RPMI medium. The mix was centrifuged at 25 x g for 15 min at 4°C. The supernatant 

was carefully removed to a fresh 50 ml Falcon tube. Ca2+- and Mg2+-free Hanks 

balanced salt solution (HBSS, Sigma Aldrich) was added to the supernatant to a final 

volume of 50 ml. A discontinuous Histopaque gradient (Sigma Aldrich, specific 
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gravity 1.077/1.119) was prepared by adding 10 ml of Histopaque 1.077 to a Falcon 

tube and carefully under layering 15 ml of Histopaque 1.119. The supernatant (25 

ml) was then layered over the gradient solution and centrifuged at 250 x g for 1 h at 

room temperature. The mononuclear cells appeared between the plasma and 

gradient phases, whereas heterophils were suspended in the 1.119 gradient phase. 

Heterophils were collected into a new tube and mixed with RPMI to dilute the cell 

solution and centrifuged at 425 x g for 15 min at 4°C. The cell pellet was then 

resuspended in RPMI. Cells were counted, diluted to the desired concentration and 

stored on ice before use. The RNA isolated from heterophils (Novogen, Aviagen, RI-J 

lines) was used in RT-qPCR reactions, as described in Chapter 3. In addition, RI-J 

heterophils RNA was used in RNA-seq analysis, as described in Chapter 4. 

 Isolation of peripheral leukocytes from chicken blood 2.5.4

 Blood was collected from three-week-old male Aviagen broilers into tubes 

containing 5 mM EDTA. Peripheral blood leukocytes were separated from 1 ml of 

whole blood sample and red blood cells removed, as described above in section 

1.5.3. PBS was combined with blood to a total volume of 4 ml. A Histopaque 

1.077/1.119 (Sigma Aldrich, Dorset, UK) discontinuous gradient was prepared by 

underlying 4 ml of Histopaque 1.077 with 4 ml of Histopaque 1.119 in 15 ml Falcon 

tube and overlying 4 ml of blood/PBS mixture. The gradient mixture was centrifuged 

at 700 x g with brakes off for 30 min at room temperature. Cells were removed 

from plasma/1.077 Histopaque interface (mononuclear cells) and from the 

1.077/1.119 Histopaque interface (heterophils). Cells were combined and washed 

twice with an equal volume of PBS by centrifugation at 600 x g for 10 min at room 

temperature. Cells were counted and 107 cells/ml was pelleted and lysed with 

buffer RLT with β-mercaptoethanol for further total RNA extraction. The RNA from 

PBL was used in optimisation of 96.96 Dynamic Array, as decribed in Chapter 6. 

 Phagocytosis assay 2.5.5

Live Salmonella Enteritidis (SE, #97-11771 strain; 107 cells/ml) was 

suspended in normal chicken serum (CS) and opsonised for 30 min at 39°C on a 
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rotary shaker. Bacterial suspension was washed twice with Ca2+, Mg2+ - free HBSS 

and stored in 4°C until used. Heterophils from W36 Hy-Line were diluted to 5 x 106 

cells/ml. A combination of 2 ml of heterophils and 2 ml of SE was centrifuged in 

sterile conical tubes for 15 min at 1,500 x g at 4˚C. Heterophils with the SE 

suspension were then incubated at 39˚C, 5% CO2 for 1 h. The sample was 

submerged in an ice bath for 15 min to stop phagocytosis. Cells were washed with 

ice-cold RPMI and centrifuged for 15 min at 1,500 x g, 4˚C. The pellet was 

resuspended in 2 ml ice-cold gentamicin (100 μg/ml) and diluted in RPMI without 

phenol red. Cells were incubated for 1 h at 37˚C to kill extracellular bacteria and 

then centrifuged at 1,500 x g for 15 min, at 4˚C. The pellet was washed three times 

in ice-cold RPMI, for 15 min at 1,500 x g. Phagocytosis of SE by heterophils was 

evaluated microscopically. For each treatment group, five cytospin slides were 

prepared using 200 μl of cell suspension. Results were recorded as the phagocytosis 

index: PI = (number of heterophils that contain bacteria x the average number of 

bacteria per ingesting heterophil) x 100. Results are presented in Chapter 3. 

 Oxidative burst 2.5.6

Production of reactive oxygen species (ROS) by chicken heterophils during 

oxidative burst was measured by oxidation of 2’7’ dichlorofluorescein-diacetate 

(DCFH-DA) to fluorescent DCF. Chicken heterophils isolated from W36 Hy-Line (900 

μl; 1 x 107 cells/ml) were incubated with Salmonella Enteritidis (#97-11771 strain) 

(90 μl; 1 x 108 cfu/ml) and DCFH-DA (10 μg/ml) for 1 h at 37˚C. Phorbol A-myristate 

13-acetate (PMA) (2 μg/ml), a well-known agonist that activates protein kinase C 

(PKC) was used as a positive control. Aliquots of cell cultures (150 μl) were placed in 

a black 96-well CoStar flat-bottomed plate and the relative fluorescent units (RFUs) 

were measured at excitation wavelength 485 nm and emission wavelength 530 nm 

using a GENios Plus Fluorescence Microplate Reader (TECAN US Inc, Research 

Triangle Park, NC). Results are presented in Chapter 3. 
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 Degranulation assay 2.5.7

Degranulation was monitored by quantifying the levels of β-D-glucuronidase 

in culture medium following stimulation of heterophils with opsonised Salmonella 

Enteritidis (1 x 108 cfu/ml). The heterophils from W36 Hy-Line were adjusted to 1 x 

107 cells/ml and incubated with stimulants for 1 h, at 39˚C in a 5% CO2 incubator. 

The reaction was stopped by transferring the tubes containing the cells to an ice 

bath for 5-10 min. Cell suspensions were then centrifuged for 10 min at 250 x g, at 

4˚C. The supernatants were removed from each sample and used for the assay. 

Each sample (25 μl) was added to non-treated, black CoStar flat-bottomed ELISA 

plate and incubated with 50 μl of freshly prepared substrate buffer (10 mM 4-

methylumbelliferyl-β-D-glucoronide, 0.1% Triton X-100 in 0.1 M sodium acetate 

buffer) for 4 h at 41˚C. The reaction was stopped by adding 200 μl of stop solution 

(0.05 M glycine and 5 mM EDTA; pH 10.4). Liberated 4-methylumbelliferone was 

measured fluorimetrically (excitation wavelength of 355 nm, emission wavelength 

of 460 nm) with a GENios Plus Fluorescence Microplate Reader (TECAN US Inc, 

Research Triangle Park, NC). Results are presented in Chapter 3. 

 Purification of nucleic acids  2.6

 Purifying total RNA from chicken cells 2.6.1

Total RNA from cells (BMDC, BMDM, PBL, heterophils) was extracted using 

the Qiagen RNeasy Mini Kit following the manufacturer’s instructions. The cell 

lysate was mixed by pipetting with one volume of 70% (v/v) ethanol. The mix was 

placed in an RNeasy spin column housed in 2 ml collection tube and centrifuged for 

15 s at 8,000 x g. The flow-through was discarded and 700 μl of RW1 buffer was 

used once to wash RNA bound to the silica membrane for 15 s at 8,000 x g and RPE 

buffer, diluted in absolute ethanol, was used twice (15 s and 2 min) at 8,000 x g. 

After washing steps, the RNeasy column was placed in a new collection tube and 

centrifuged at 16,000 x g for 1 min to remove any RPE buffer residues. Columns 

were moved to 1.5 ml collection tubes, 30 μl of RNase-free water was placed onto 

the membranes and centrifuged for 1 min at 8,000 x g. The eluate was re-applied to 

the silica membrane and centrifugation repeated in order to increase the RNA yield. 
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 Purifying total RNA from chicken tissues  2.6.2

 Total RNA from chicken tissues (spleen, bursa, caecal tonsils, and ileum), for 

experiments in Chapter 5 and Chapter 6, was extracted using an RNeasy Mini Kit 

(Qiagen) according to manufacturer’s instructions. Tissues were stored in RNA later 

(Ambion) solution at 4°C. Stabilised tissues were removed from the reagent using 

sterile forceps. No more than 30 mg of tissues was used for RNA extraction. 

FastPrepTM Lysing Matrix tubes containing ~30 mg of tissues were filled with 600 μl 

of RLT buffer. To disrupt and homogenize tissues the FastPrep® FP120 Cell Disrupter 

was used. Each sample was homogenized for 45 sec at speed of 6.5 m/sec. The 

lysate was centrifuged for 3 min at 16,000 x g to remove any remaining insoluble 

material. Cleared lysate was mixed by pipetting with 1 volume of 70% (v/v) ethanol. 

The mix was placed in an RNeasy spin column placed in a 2 ml collection tube and 

centrifuged for 15 sec at 8,000 x g. The flow-through was discarded and 350 μl of 

RW1 buffer was used once to wash RNA bound to the silica membrane for 15 sec at 

8,000 x g. DNase I stock solution was prepared by dissolving the lyophilised DNase I 

(1500 Kunitz units) in 550 μl of RNase-free water. The DNase I stock solution (10 μl) 

was mixed with buffer RDD (70 μl) and 80 μl of the mix was placed directly onto the 

column for 15 min at room temperature. After the incubation, an additional 350 μl 

of buffer RW1 was added and the column was centrifuged for 15 sec at 8,000 x g. 

RPE buffer, diluted in absolute ethanol, was used twice (15 sec and 2 min) at 8,000 x 

g. After washing steps, the RNeasy column was placed in a new collection tube and 

centrifuged at 16,000 x g for 1 min to remove any RPE buffer residues. Columns 

were moved to 1.5 collection tubes, 30 μl of RNase-free water was placed onto the 

membranes and centrifuged for 1 min at 8,000 x g. The eluate was re-applied to the 

silica membrane and centrifugation repeated in order to increase the RNA yield. 

 DNA and RNA amplification  2.7

 Oligonucleotide primer design 2.7.1

 Oligonucleotides for cDNA amplification were designed based on predicted 

sequences available from Ensembl (ensembl.org) or NCBI 

(http://www.ncbi.nlm.nih.gov/gene) databases. The design of primers for cloning of 

http://www.ncbi.nlm.nih.gov/gene
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full length sequences of target gene (Chapter 4) was performed manually by 

comparing candidate oligonucleotides melting temperatures and GC content in 

OligoAnalyzer 3.1 online tool 

(http://eu.idtdna.com/analyzer/applications/oligoanalyzer/default.aspx). 

 First-strand reverse transcription using SuperScript III 2.7.2

 Complementary DNA (cDNA) was used as a template in gene cloning 

experiments (Chapter 4). Various mRNA samples were used to generate cDNA 

panels using SuperScript III (Invitrogen) following the manufacturer’s instructions. 

First strand cDNA synthesis required mixing 10 pg - 5 μg total RNA, 1 μl of 

oligo(dT)20 (50 μM) and 1 μl of 10 mM dNTP Mix with 10 μl of sterile, distilled water. 

The mixture was incubated at 65°C for 5 min and then placed on ice for 1 min. Next, 

4 μl of 4X First-Strand Buffer, 1 μl of dithiothreitol (DTT) reducing agent, 1 μl of 

RNaseOUT (Promega) and 1 μl of SuperScript III reverse transcriptase were added. 

The final mixture was incubated at 50°C for 60 min. The reverse transcription 

reaction was inactivated by heating to 70°C for 15 min. Complementary DNA was 

ready to use and could be stored at -20°C.  

 To synthesise template cDNA for qPCR with EvaGreen fluorescent dye for 

experiments presented in Chapter 5 and Chapter 6, random primers (250 ng) were 

used instead of oligo(dT)20 which modified the second part of reaction. Additional 5 

min incubation at 25°C was performed before temperature increased to 55°C for 60 

min for the reverse transcription phase. Inactivation of enzymatic reaction was the 

same.  

 First strand reverse transcription using High Capacity Reverse 2.7.3
Transcription Kit 

The High Capacity Reverse Transcription Kit was used to generate cDNA for 

experiments described in Chapter 6. The reverse transcription kit (Applied 

Biosystems) contains reagents that when combined form a 2X reverse transcription 

(RT) master mix (Table 2.1).  
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Table 2.1 High Capacity Reverse Transcription Master Mix components 

Component Volume [μl] 

10X RT Buffer 1 

25X dNTP Mix (100 mM) 0.4 
10X RT Random Primers 1 
MultiScribe™ Reverse Transcriptase 0.5 
RNase Inhibitor 0.5 
Nuclease-free water 1.6 
Total 5 

 

The RNA sample was diluted to a concentration of 100 ng/μl and 5 μl of RNA was 

mixed with 5 μl of master mix. The sample was centrifuged briefly and placed in a 

thermocycler with set temperatures as follows: 25°C for 10 min, 37°C for 120 min 

and 85°C for 5 min. Complementary DNA (cDNA) was stored at -20°C until further 

use. 

 DNA amplification by PCR 2.7.4

Candidate gene cDNA sequences predicted to reflect transcripts were 

collected from both Ensembl and NCBI databases. Primers were designed using full -

length and/or common regions if there were differences in the predicted sequences 

between databases or transcripts. Gene list with transcripts accession numbers 

used to design primers is presented in Appendix 1, Table 4. If needed, more than 

one primer pair was designed and tested. For longer cDNAs, partial sequences were 

used to design primers. To clone full or partial sequences, a panel of c DNA was 

generated by reverse transcription PCR (RT-PCR) of separate RNA samples isolated 

from caecal tonsils and spleen from a Campylobacter trial, bursa from an infectious 

bursal disease virus (IBDV) trial, spleen from IBDV and Marek’s disease virus (MDV) 

trial, HD11 cells stimulated with LPS, heterophils stimulated with Salmonella 

enterica serovar Enteritidis, or BMDM, BMDC and heterophils stimulated with LPS. 

Polymerase chain reactions were performed in 20 μl and 50 μl volumes. For each 

reaction, the following components were added: 1X PCR buffer (-Mg), 0.2 mM of 

each dNTP, 1.5 mM of MgCl2, 0.5 μM of primers, 1U of Taq DNA Polymerase and 
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100 ng of template cDNA. All PCRs were performed using an MJ Thermal Cycler (MJ 

Research).  

Thermal cycling conditions (35 cycles): 
95°C for 5 min 
95°C for 30 sec 
X°C/ for 30 sec * 
72°C for 1 to 3.5 min ** 

72°C for 10 min 
*Annealing temperatures were dependent on the Tm of the each set of primers and ranged from 50-
69°C; **The length of the elongation steps was dependent on the size of the product. For every kb, 1 
min was added.  
 

For difficult to amplify regions touchdown PCR was designed with the following 

cycling conditions: 

95°C for 5 min 
95°C for 30 sec 
X°C/ for 30 sec * 
72°C for 1 to 3.5 min ** 

 

95°C for 30 sec 
X°C/ for 30 sec * 
72°C for 1 to 3.5 min ** 

 

95°C for 30 sec 
X°C/ for 30 sec * 
72°C for 1 to 3.5 min ** 

 

72°C for 10 min Final extension 

*Annealing temperatures were dependent on the Tm of the each set of primers and ranged from 50-
69°C. 
**The length of the elongation steps was dependent on the size of the product. For every kb, 1 min 
was added.  

 

 Quantitative PCR – hydrolysis probe-based gene expression 2.7.5
analysis 

Quantitative PCR (qPCR) is a dominant tool for the quantification of gene 

expression. Both hydrolysis probe(TaqMan)-based RT-qPCR and dye-based qPCR 

detection methods were used in this project to detect and measure very small 

amounts of nucleic acids in a range of chicken tissues and cells. In hydrolysis probe-

based RT-qPCR, normalisation using r28S ribosomal RNA as a reference was 

performed to correct the differences between compared samples. This method was 

8 cycles 

8 cycles 

25 cycles 
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used in Chapter 3. For each gene, a primer pair and hydrolysis probe were designed 

based on the template target gene sequence using Primer Express software 

(Applied Biosystems). Primers were synthesised by Sigma Aldrich (Poole, UK) and 

probes by Eurogentec (Southampton, UK). The 5’ end of each probe was labelled 

with 5-carboxyfluorescein (FAM) fluorophore and the 3’ end with 

tetramethylrhodamine (TAMRA) quencher dye.  

Primer design was performed with consideration of general guidelines. The 

melting temperature of all primers was set between 58°C and 60°C, with probes 

being 10°C higher. Both probes and primers default length was no longer than 30 

nucleotides and GC content in the range of 30-80% where amplicon length did not 

exceed 150 bp. The last five nucleotides at the 3’ end of each primer consisted of ≤ 

3 guanines or cytosines and preferably no triplicates of the same base. At least one 

of the primers or the probe overlapped a predicted intron-exon boundary to 

increase specificity of reaction.  

The 5’-3’ exonuclease activity of Taq DNA polymerase is the driving force 

behind the RT-qPCR method. During the RT-qPCR the probe anneals to the target 

template. Fluorescence from the FAM moiety is quenched by the nearby TAMRA 

moiety at this stage. If Taq polymerase extends the 3’ end of primer annealed to the 

template it encounters the FAM fluorophore at the 5’ end of the probe uses its 5’-3’ 

exonuclease activity to displace the 5’ end and degrade the probe. Separation of the 

fluorophore and quencher at this stage results in emission of fluorescence. The 

temperature of probe hybridisation is usually set at 8-10°C above the melting point 

of the primers to ensure attachment to the template and extension is performed at 

a lower temperature than normal for PCR to guarantee maximum 5’-3’ exonuclease 

activity of the enzyme. These reaction conditions reduce Taq polymerase 

processivity, hence to ensure maximum efficiency short amplicons are designed. 

The number of cycles at which the fluorescence levels of the probe passes the 

background of detection is called quantification cycle (Cq) and this value is used to 

present the raw data. The set of primers used in RT-qPCR were previously 
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optimised: r28S rRNA, IL-1β, IL-6 (Kaiser et al., 2000); IL-18 (Kaiser et al., 2003); 

CXCLi1 and CXCLi2 (Kogut et al., 2005). All RT-qPCR reactions were performed using 

TaqMan FAST Universal PCR Master Mix and One-step RT-PCR MultiScribe (Applied 

Biosystems). For each sample 10 μl reaction mix consisting of 5 μl 2X Fast Master 

Mix, 0.5 μl of primer mix, 0.25 μl (125 nM) of probe, 0.25 μl 40X MultiScribe 

enzyme, 1.5 μl of DEPC treated-H2O and 2.5 μl of diluted RNA. RNA samples were 

diluted 1:500 for r28S rRNA analysis and 1:5 for target gene detection. All assays 

were performed in triplicate wells. For standard curve and slope analysis in r28S 

rRNA assay RNA from HD11 cells stimulated with LPS (200 ng/ml for 6 h) was used. 

In IL-1β, IL-6, IL-18, CXCLi2, RNA derived from transfected COS-7 cells was used. The 

Applied Biosystems 7500 Fast Real-Time PCR System was used to amplify and detect 

products. The thermal cycles were set for reverse transcription steps: 48°C for 30 

min, 95°C for 20 sec followed by PCR steps: 95°C for 3 sec, 60°C for 30 sec repeated 

for 40 cycles. Primer and probe sequences and concentrations for all target genes 

tested are given in Appendix 1, Table 2. To calculate levels of expression for all 

target genes standard curves were created using Cq values of the serially diluted 

standard RNA for specific gene. The slope of the standard curve (y = mx + c) was 

used to determine efficiency of the reaction using formula E = (10(-1/slope)). To correct 

for differences between RNA levels in samples within the experiment, the 

difference factor was calculated by dividing the mean Cq value for r28S rRNA 

specific product from the same sample. Normalised Cq values were calculated using 

the formula Cq + (N’t – C’q) * S/S’, where N’t is the mean Cq for r28S rRNA among 

all samples, C’q is the mean Cq for r28S rRNA in the sample and S and S’ are the 

slopes of the regressions of the standard plots for the cytokine/chemokine mRNA 

and the r28S rRNA, respectively. Results are expressed as fold-difference from levels 

in control samples.  

 Fluorescent dye-based qPCR 2.7.6

EvaGreen dye is a green fluorescent nucleic acid dye used in several 

applications including qPCR. Excitation and emission spectra of EvaGreen are very 

close to those of fluorescein (FAM) or SYBRGreen I, therefore EvaGreen is already 
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compatible with instruments equipped with visible light excitation with wavelengths 

in that region. The dye is nonfluorescent by itself, but becomes highly fluorescent 

upon binding to DNA. Compared to SYBRGreen, EvaGreen dye is non-mutagenic and 

non-toxic as it is impermeable to cell membranes. It is also less inhibitory towards 

qPCR and less likely to cause nonspecific amplification. Similarly to SYBRGreen, 

EvaGreen binds to double stranded DNA (dsDNA). With every PCR cycle the amount 

of dsDNA increases which results in fluorescence intensity. The Applied Biosystems 

7500 Fast Real-Time PCR System was used to amplify and detect products. The 

reaction mix was prepared using the following components for each of the samples: 

10 μl ABI TaqMan Gene Expression Master Mix (Applied Biosystems), 1 μl 20X 

EvaGreen (Biotum, VWR-Bie & Berntsen), 2.3 μl 20 μM specific primer pair (forward 

and reverse) and 4.7 μl nuclease-free water. Each reaction contained 2 μl of cDNA 

diluted 1:5 in nuclease-free water. The following cycle parameters were used: 2 min 

at 50°C, 10 min at 95°C, followed by 40 or 30 cycles with denaturing for 15 sec at 

95°C and by annealing/elongation for 1 min at 60°C. Melting curves were generated 

after each run to confirm a single PCR product (from 60°C to 95°C, increasing 1°C/3 

sec). The EvaGreen-based qPCR was used in reference gene normalisation 

experiments (Chapter 5) and in 96.96 Dynamic Array optimisation in Chapter 6, 

following the sample and assay mix preparation protocols as described in section 

2.10.6. 

 Agarose gel electrophoresis  2.7.7

To determine presence and size of DNA in PCR and qPCR, agarose gel 

electrophoresis was performed. Agarose gels were prepared by mixing agarose 

powder at a (w/v)%, which was dependent on the size of expected PCR product, 

with 1X Tris Acetate-EDTA (TAE) buffer. TAE is a mixture of 

tris(hydroxymethyl)aminomethane (tris base), glacial acetic acid and EDTA, that 

works to sequester divalent cations. Compared to TBE buffer, TAE is less stable but 

double-stranded DNA runs faster through agarose dissolved in TAE buffer. The mix 

was heated until the agarose powder dissolved completely. An intercalating dye, 

SYBR Safe® (Invitrogen), was added to the gel solution in order to visualise any DNA 
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molecules amplified by PCR. The molten agarose was poured into a plastic tray with 

appropriate comb sizes inserted. 

 Gel extraction 2.7.8

Agarose gel electrophoresis was used to detect and visualise products of 

PCRs. To extract products a QIAquick Gel Extraction Kit (QIAGEN) was used 

according to the manufacturer’s instructions, as follows. Agarose gel containing 

amplified DNA of interest was excised with a clean, sharp scalpel on a UV 

transilluminator. The gel slice was weighted in a 1.5 ml Eppendorf tube. QG buffer 

was added at 3 times the volume of the excised gel fragment (300 μl; QG buffer/100 

mg of gel) and incubated at 50°C for 10 min with frequent vortexing to liquefy it. 

The QG buffer contains a pH indicator allowing easy determination of the optimal 

pH for DNA binding. QG buffer of yellow colour indicated pH is <7.5 which is ideal 

for DNA adsorption. Sodium acetate (3 M, pH 5.0) was added to the sample when 

needed to adjust for the optimal pH. To increase the yield of DNA fragments <500 

bp, 1 volume of isopropanol was added to the mix. To bind DNA, the sample was 

placed in the QIAquick column with 2 ml collection tube and centrifuged at 10,000 x 

g for 1 min. The flow-through was discarded and an additional 500 μl of QG buffer 

was added to remove all traces of agarose and centrifuged for 1 min. The flow-

through was discarded and the silica membrane was washed by adding 750 μl of PE 

buffer to the column and centrifugation for 1 min. The flow-through was discarded 

and dry spin was applied to remove residual ethanol from PE buffer. The column 

was then placed in a clean 1.5 ml microcentrifuge tube. DNA was eluted by adding 

30 μl of EB buffer (10 mM Tris Cl, pH 8.5) to the centre of the column and incubated 

at room temperature for 1 min followed by centrifugation at 13,000 x g for 1 min. 

Samples were used immediately in ligation reactions. Remaining samples were 

stored at -20°C. 

 Ligation 2.7.9

Ligation is a process to create recombinant DNA molecules by joining DNA 

fragments together. The DNA ends are joined together by the formation of 
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phosphodiester bonds between the 3’-hydroxyl of one DNA terminus with the 5’-

phosphoryl of another. The ligation reaction buffer contains adenosine triphosphate 

(ATP), which is required as the energy source for T4 DNA ligase. This enzyme is 

derived from Enterobacteria phage T4 and its ability to repair nicks in double 

stranded DNA with 3’ OH and 5’ phosphate ends is used in connecting DNA 

fragments with plasmids. Cohesive end ligation was carried out at 16°C to maintain 

good balance between annealing of ends and activity of the enzyme. All ligation 

reactions were carried out using 2X ligation buffer (80 mM Tris HCl, 20 mM MgCl2, 

20 mM DTT, 2 mM ATP), pGEM-T Easy Vector, T4 DNA ligase (Promega) and 

nuclease-free water. 

 Transformation  2.7.10

Transformation was performed using high-efficiency chemically competent 

E. coli cells (≥ 1 x 108 cfu/μg DNA). Escherichia coli JM109 cells (Promega) were 

removed from -80°C storage and defrosted on ice for 5 min. A 50 μl aliquot of the 

cell suspension was added to 1.5 ml Eppendorf tube containing 2 μl of ligation 

reaction, mixed by gently flicking the tube and incubated on ice for 20 min. Sample 

was then heat-shocked for 50 s at 42°C and immediately placed on ice for additional 

2 min. The heat-shock approach creates small holes in the cell wall of the bacteria 

allowing the uptake of DNA. Super Optimal Broth media (SOB) was added in 950 μl 

volume and incubated for 1.5 h at 37°C with shaking (~180 rpm) to allow 

transformants to recover and express plasmid-encoded antibiotic resistance. Cells 

were pelleted by centrifugation for 10 min at 1,000 x g and resuspended in 200 μl of 

SOB media. LB agar containing 100 μg/ml ampicillin (LBAMP100), 100 μl isopropyl β-D-

1-thiogalactopyranoside (IPTG) and 20 μl X-gal (BCIG, 5-bromo-4-chloro-3-indolyl-β-

D-galactopyranoside) was used to plate out transformation reactions in duplicate 

(100 μl each). 

 Screening bacterial colonies by colony PCR 2.7.11

In colony PCR, gene-specific primers or plasmid-specific primers flanking the 

multiple cloning region (Appendix 1, Table 1) were used to examine for presence of 
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inserted DNA of expected size. Single white colonies were picked using a pipette tip 

and streaked in numbered areas of an LBAMP100 agar plate. The same pipette tip was 

used to inoculate 50 μl of dH2O for 1 min. The bacterial suspensions were then 

heat-shocked for 5 min at 95°C and centrifuged for 10 min at 9,000 x g. Supernatant 

was used as a template DNA in PCR. Amplicons were analysed by agarose gel 

electrophoresis. The streaked LBAMP100 agar plates were incubated for 24 h in 37°C. 

The positive colonies identified by colony PCR were used to inoculate 5 ml of 

LBAMP100 broth for 24 h in 37°C with shaking at 200 rpm for plasmid purification. 

 Plasmid DNA purification 2.8

 Small scale plasmid purification  2.8.1

To confirm cloning of genes (Chapter 4), recombinant pGEM-T Easy plasmids 

were sequenced. To prepare samples for sequencing, DNA from Escherichia coli 

pGEM-T Easy–containing cells was purified using QIAprep Spin Miniprep Kit 

(QIAGEN) as follows. After inoculation of LBAMP100 broth with a single colony of a 

putative recombinant the bacterial suspension was pelleted for 15 min at 3,000 x g. 

Supernatant was discarded and cells were resuspended in 250 μl of P1 buffer with 

added RNase A for sufficient digestion and LyseBlue as a colour indicator for visual 

identification of optimum buffer mixing. The sample was moved to a 1.5 ml 

Eppendorf tube and 250 μl of lysis buffer P2 was added. The solutions were mixed 

by inverting the tube 4-6 times without vortexing to avoid genomic DNA shearing. 

To neutralize the lysate and adjust to high-salt binding conditions, 350 μl of N3 

buffer was added and mixed by inverting the tube 4-6 times or until the solution 

became cloudy and without visible localised precipitation. The sample was then 

centrifuged for 10 min at 17,900 x g to pellet denatured proteins, chromosomal 

DNA and cellular debris. Supernatant containing smaller plasmid DNA was applied 

to the QIAprep spin column by pipetting and centrifuged for 1 min at 17,900 x g to 

capture DNA in the silica matrix. A brief wash step with 500 μl of PB buffer was 

performed to efficiently remove endonucleases and prevent plasmid DNA 

degradation. A second wash step using 750 μl of PE buffer was applied to remove 

salts. The flow-through was discarded and the column was centrifuged for an 
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additional 1 min to remove residual wash buffer, which could inhibit subsequent 

enzymatic reactions. The QIAprep column was placed in a clean 1.5 ml Eppendorf 

tube and 50 μl of elution buffer EB was added to the centre of the spin column for 

centrifugation for 1 min followed by 1 min, at 17,900 x g. The plasmid DNA yield 

was examined using NanoDrop™ 1000 Spectrophotometer. 

 Large scale endotoxin-free plasmid purification  2.8.2

To obtain a high yield of plasmid DNA for transfection and recombinant 

protein production an EndoFree Plasmid DNA Purification Maxi Kit was used 

according to the manufacturer’s instructions with minor modifications as follows. 

Previously sequenced plasmids containing genes of interest were stored as glycerol 

stock of bacterial cells (i.e. JM109, DH5α). Single colonies were used to inoculate 

5 ml of LBAMP100 broth and samples were incubated at 37°C with shaking at 200 rpm 

for 12 h. Larger volumes (250 ml) of LBAMP100 broth were inoculated with 2.5 ml of 

the bacterial starter culture and incubated for 24 h at 37°C with shaking at 200 rpm. 

Bacterial cells were pelleted in 50 ml Falcon tubes for 30 min at 2,465 x g. 

Supernatant was discarded and the pellet resuspended completely by vortexing in  

10 ml of P1 buffer containing RNase A and LyseBlue. To lyse the cells 10 ml of buffer 

P2 was added and mixed by inverting the tube 4-6 times. The lysate was incubated 

at room temperature for 5 min. During the incubation, a QIAfilter Cartridge was 

prepared by screwing the cap onto the outlet nozzle of the QIAfilter Maxi Cartridge 

and placing in a convenient tube. Precipitation was enhanced by adding 10 ml of 

chilled buffer P3 to the lysate and inverting the tube 4-6 times. Precipitated 

material (genomic DNA, proteins, cell debris) forms fluffy white material. The lysate 

was moved immediately into QIAfilter Cartridge and incubated at room 

temperature for 10 min. After this period, the precipitate floated and formed a 

layer on top of the solution. The outlet nozzle was opened on the QIAfilter Cartridge 

and a plunger inserted to filter the lysate into the 50 ml tube. The endotoxin 

removal (ER) buffer that prevents LPS molecules from binding to the resin in the 

QIAGEN tips was added in 2.5 ml volume to the filtered lysate and allows 

purification of DNA. The solution was incubated on ice for 30 min, when the 
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QIAGEN-tip 500 was being equilibrated by applying 10 ml of buffer QBT and 

allowing the column to be emptied by gravitational flow. After the incubation on ice 

the filtered lysate was applied to the QIAGEN-tip and allowed to enter the resin by 

gravity flow. The tip was washed twice with 30 ml of QC buffer. DNA was eluted 

using 15 ml of buffer QN and precipitated by addition of 10.5 ml of isopropanol. The 

solution was mixed and centrifuged immediately at 3,220 x g for 1 hour. 

Supernatant was carefully removed and the pellet was washed with 5 mL of 70% 

(v/v) ethanol and collected by centrifugation at 3,220 x g for 1 h, 4°C. Supernatant 

was carefully removed without disturbing the pellet. The DNA was left to air-dry for 

5-10 min and redissolved in appropriate volume of TE buffer for 5 min at room 

temperature. The DNA solution was vortexed for several seconds and its 

concentration was measured using NanoDrop™ 1000 Spectrophotometer. 

 Sequencing plasmid DNA 2.8.3

To confirm gene cloning, recombinant plasmids were sequenced using 

plasmid-specific primers and analysed using Sanger ABI 3730xl (GATC Biotech, 

Germany). Expected and observed sequences were aligned using ClustalX (section 

2.1.2). 

 RNA-seq 2.9

 Sample preparation and sequencing 2.9.1

The BMDC, BMDM and heterophils were cultured as described in Chapter 2, 

section 2.5. For RNA sequencing, BMDM were stimulated with 250 ng/ml of LPS 

(Escherichia coli O55:B5, Sigma Aldrich) for 4 h, BMDC with 200 ng/ml for 24 h (Wu 

et al., 2010) and heterophils with 10 μg/ml for 1 h (Farnell et al., 2003). Total RNA 

was extracted as described in Chapter 2, section 2.6.1 with additional steps. The 

cells were lysed with 600 μl of buffer RLT with added β-mercaptoethanol (β-ME) 

and on-column DNase digestion was performed. Total RNA extracted from BMDC, 

BMDM and heterophils (control and LPS stimulated) was diluted to 100 ng/μl in 20 

μl of RNase-free water. The sample preparation was performed by Edinburgh 

Genomics facility (Roslin Institute, Midlothian, UK) using a Tru-Seq total RNA Sample 
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Preparation v2 kit as per the manufacturer's protocol. Resulting libraries were 

quality-checked on an Agilent DNA 1000 Bioanalyzer (Agilent Technologies, South 

Queensferry, UK) and then clustered onto a paired end flowcell using the Illumina 

TruSeq® Rapid PE Cluster Kit at a 8 pM concentration. The paired-end sequencing, 

consisting of 100 cycles, was carried out on the Illumina HiSeq 2500 using an 

Illumina TruSeq® Rapid SBS Kit (Illumina, Little Chesterford, UK).  

 Transcriptome alignment and differential expression analysis 2.9.2

The RNA-seq pipeline is presented in Appendix 1, Figure 1. The raw reads 

were subject to quality control measures, including the removal of remaining 

sequence adapters. The cleaned, paired-end 100 bp reads were aligned to the 

chicken reference genome (Galgal4) assembly from the Ensembl database 

(http://ensembl.org) with TopHat (v2.0.9) splice junction mapper, which aligned 

reads using Bowtie aligner (v1.0.0). Cufflinks software (v2.1.1) assembled reads into 

transcripts that were used as input data together with aligned reads in Cuffdiff to 

determine expression levels by calculating the Fragments per Kilobase per Million 

mapped reads (FPKM) and the differential expression between conditions using 

default options. 

 Quantitative PCR (qPCR) using 96.96 Dynamic Array Integrated 2.10
Fluidic Circuits. 

The BioMark System 96.96 Dynamic Array is a high-throughput platform that 

allows combining 96 samples with 96 primer pairs into 9,216 qPCRs in one 

integrated fluidic circuit (IFC). The system includes optical, thermal cycling and 

software components to perform quantitative PCR. The Dynamic Array IFC is a 

nanofluidic network that allows to run 24-fold more reactions compared to 384-well 

plate. The liquid handling steps, number of pipetting and volumes of reactions are 

greatly reduced. The high-resolution CCD camera that covers whole chip area 

images all reactions simultaneously. The quantification cycle (Cq) values from each 

reaction chamber in the chip are visualised as an easy to analyse heat map. The 

values behind the heat map can be exported and further analyse using gene 

expression analysis software.  
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 Primer design and optimisation 2.10.1

Primers for qPCR using 96.96 Dynamic Array were designed in the same 

manner as primers for RT-qPCR outlined in section 2.7.5. At least one primer was 

designed to overlap intron-exon boundaries of a gene, where possible. Optimisation 

of primers was performed to assess their specificity in binding to a single template 

at a working concentration of 1.15 μM. Primer amplification efficiencies and 

dynamic range were acquired from standard curves constructed from dilution series 

of highly responding samples. Melting curves were inspected for all primer assays. 

Agarose gel electrophoresis and sequencing of selected amplicons were performed 

to ensure primer specificity. To prepare qPCR products for sequencing DNA bands 

were excised from an agarose gel using sterile scalpel and products were cleaned-

up using Nucleo-Spin Gel and PCR Clean-up kit (Macherey-Nagel, UK) following 

manufacturer’s instructions. For every 100 mg of gel fragment, 200 μl of buffer NTI 

was added and incubated at 50°C for 10 min. Completely dissolved samples was 

then placed in Nucleo-Spin Gel and PCR Clean-up Column with collection tube and 

centrifuged for 30 s at 11,000 x g. The flow-through was discarded and column was 

washed with 700 μl of buffer NT3 with added 96-100% ethanol, by centrifugation 

for 30 s at 11,000 x g. The silica membrane was dried by centrifugation for 1 min at 

11,000 x g to remove buffer NT3 completely. The column was placed into a new 1.5 

ml microcentrifuge tube and 30 μl of buffer NE was added. The column was 

incubated at room temperature for 1 min and centrifuged for 1 min at 11,000 x g. 

Cleaned-up qPCR product was sent for direct sequencing. 

 Reference gene normalisation 2.10.2

 The stability of reference genes was examined using BestKeeper, 

NormFinder and geNorm outlined in sections 2.1.7, 2.1.8 and 2.1.9. More detail is 

provided in Chapter 5. 
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 RNA extraction and cDNA generation for 96.96 Dynamic Array 2.10.3
IFC 

RNA for high throughput qPCR was extracted as described in paragraph 

2.6.2. The cDNA was reversely transcribed using SuperScript III Kit and High Capacity 

Reverse Transcription Kit as described in section 2.7.2 and 2.7.3, respectively. 

 Preamplification 2.10.4

Preamplification was performed using TaqMan PreAmp Master Mix (Applied 

Biosystems, PN 4391128). A stock of 200 nM primer mix was prepared combining 

equal concentration of all primers used in the following qPCR. TaqMan PreAmp 

Master Mix (10 μl) was mixed with 5 μl of 200 nM stock primer mix and 5 μl of 

cDNA in concentration of 185 ng/μl. Reaction tubes were vortexed and centrifuged 

briefly before PCR. Samples were incubated at 95°C for 10 min followed by 14 cycles 

of 95°C for 15 sec and 60°C for 4 min. Preamplified cDNA was stored in -20°C until 

further use. Steps taken to optimise preamplification are discussed in Chapter 6, 

section 6.3.3. 

 Exonuclease I treatment 2.10.5

A clean-up step using Exonuclease I (E. coli) (New England Biolabs; M0293S) 

was performed to remove unincorporated primers from preamplified cDNA. 

Exonuclease I was diluted to 4 U/μl by mixing 1.4 μl of water, 0.2 μl of Exonuclease I 

Reaction Buffer and Exonuclease I (at 20 U/μl). For each 5 μl of preamplified cDNA a 

total volume of 2 μl Exo I reaction solution was added and incubated at 37°C for 30 

min. The reaction was stopped by heating at to 80°C for 15 min. Reactions were 

held at 4°C until storage at -20°C. 

 Quantitative PCR assay and sample master mix preparation 2.10.6

Assay mix was prepared by mixing 2.5 μl 2X Assay Loading Reagent 

(Fluidigm, PN 85000736), 2.3 μl of primer pair mix and 0.2 μl low EDTA TE buffer 

which combined gave 5 μl of assay mix. Sample mix was prepared by mixing 2.5 μl 

TaqMan Gene Expression Master Mix (Applied Biosystems; PN 4369016), 0.25 μl 
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20X DNA Binding Dye Sample Loading Reagent (Fluidigm; PN 100-388), 20X 

EvaGreen DNA binding dye (Biotum; PN 31000) and 2 μl of preamplified cDNA 

which combined gave 5 μl of sample mix.  

 Chip priming 2.10.7

96.96 Dynamic Array IFC was primed by injecting 150 μl of control line fluid 

into each accumulator on the chip followed by placing the chip into the Integrated 

Fluidic Circuit (IFC) controller and running the Chip Prime (138x) script. 

 Chip loading 2.10.8

Assay mix and sample mix solutions (5 μl) were pipetted into the inlets on 

the chip after priming. Using IFC controller software, Load Mix (138x) script was 

applied. After loading finished, the chip was removed from IFC controller and any 

dust particles or debris were cleaned from the chip surface using scotch tape. 

 qPCR and data analysis 2.10.9

Quantitative PCR was performed in the BioMark HD instrument using the 

Data Collection Software. The loaded chip was placed into the reader. After barcode 

verification, application was set as Gene Expression (GE), passive reference as ROX, 

probe as single probe and probe type as EvaGreen. Thermal cycling protocol was 

chosen for 96.96 chip: GE 96x96 PCR+Melt v1.pcl. Auto Exposure was confirmed 

and the program was verified.  

Thermal conditions for GE 96x96 qPCR: 

Thermal mix 50°C for 2 min 
70°C for 30 min 

25°C for 10 min 
Hot start 50°C for 2 min 

95°C for 10 min 

PCR cycle (x30) 95°C for 15 sec 
60°C for 60 sec 

Melting 60°C for 3 sec to 95°C 
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Real-Time PCR Analysis software was used to visualise results. Analysis 

settings were as follows: quality threshold was set to 0.65, baseline correction to 

linear (derivative) and Cq threshold method to auto (global). Data from the qPCR 

were analysed under these settings and a heat map was generated to visualise the 

results. Sample names and assays symbols were assigned to each row/column using 

template documents in .xls format. Melting curves and amplification graphs were 

examined for each gene. Data from the heat map view were exported as .csv file 

that was used as an input data in GenEx5 software. 

 GenEx5 pre-processing 2.10.10

Data from 96.96 Dynamic Array runs was examined in Real Time PCR 

Analysis software and handled in GenEx5 software before statistical analysis. Data 

exported from heat map views were arranged with the measured genes in columns 

headed with gene symbols and samples in rows. Additional classification columns 

were included with labels: #tissue, #bird, #farm. A classification column for #repeats 

was added automatically by the GenEx5 software. Validation of data in pre-

processing included removal of columns/rows with less than 50% values. Gene 

quality graphs were produced to examine the number of empty values. The missing 

data were either filled with the mean of replicates or by imputation based on a 

tissue. Data were corrected for reaction efficiency for each primer assay individually 

before normalisation with the reference genes: ACTB, GAPDH and TBP as selected in 

Chapter 5. Normalised dataset repeats were averaged and further normalisation to 

maximum Cq value for a given gene was performed. Relative quantities were 

transformed to logarithmic scale (log2) before statistical analysis. 

 GenEx statistical analysis 2.10.11

Groups for comparison were created using GenEx5 Data Manager. Data were 

grouped depending on the farm (pedigree, sibling test), bird (1-8), tissue (bursa, 

spleen, caecal tonsils, ileum, PBL) and tissue/farm (e.g. bursa/sib, bursa/ped). 

Groups were compared in bar graphs using descriptive statistics. Each comparison 

generated a table with data values sorted by gene and group. Statistical analysis 
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was performed using a t-test. For principal component analysis (PCA), a trial version 

of GenEx Enterprise was used. Gene expression was considered highly significant (p 

value ≤ 0.0005) and significant (p value ≤ 0.05) for fold change values lower than -1 

and higher than 1. 

 Statistical analysis 2.11

Chapter 3 oxidative burst and degranulation data were analysed by the 

Student’s t-test using SigmaStat software (Jandel Scientific, USA) and expressed as 

the mean ± SD. RT-qPCR data in Chapter 3 were checked for normality and 

statistical analyses were carried out using Mann Whitney-U in Minitab 16.1.0 (State 

College, USA). Statistical significance was determined as p≤0.05 (significant) or 

p≤0.001 (highly significant). Mann-Whitney-U test (GenEx5) was used in validation 

of the arrays expeiment.  
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 Evaluation of cellular and molecular methods Chapter 3

as diagnostic tools for immune robustness  

 Introduction 3.1

The main aim of this study was to evaluate the practicality of widely used 

cellular and molecular methods for measuring immune robustness in chickens. This 

work was completed to answer the question if in vitro cultured bone marrow-

derived macrophages (BMDM) and dendritic cells (BMDC) and heterophils isolated 

from blood provide an inexpensive, swift and informative tool for predicting 

immune robustness that could be used in wider selection programmes. Evaluation 

was based on BMDM and BMDC from Roslin Institute J line (RI-J) birds and on 

heterophils isolated from blood samples of RI-J line, Novogen layers and Aviagen 

broilers. A panel of proinflammatory cytokines and chemokines, known to be 

differentially expressed during the regulation of immune responses, was examined 

in effector cells stimulated with a lipopolysaccharide. The phagocytosis, 

degranulation abilities and production of reactive oxygen species (ROS) was 

examined in heterophils isolated from W36 Hy-Line and stimulated with opsonised 

Salmonella Enteritidis. 

In the animal breeding sector, genetic selection can increase resistance to 

specific pathogens (Janss and Bolder, 2000) but genetic or phenotypic markers for 

resistance to the wide spectrum of viral, bacterial and protozoan pathogens are 

lacking. Disease resistance is often a polygenic trait therefore genetic selection for 

the immune robustness is complex. It is therefore of interest to explore phenotypes 

that may be predictive of the response to infection. There have been studies on 

chicken immune responses to infections which showed that the number and types 

of effector cells and the timing and magnitude of effector cells of their responses 

influences resistance and susceptibility to diseases (Chapter 1). 

The bone marrow, as the source of the myeloid lineage of white blood cells, 

can be used to develop functional macrophages and dendritic cells, which can be 

screened for phenotypes associated with the response to infection. The use of 
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primordial cells to derive effector cells results in broad representation of the 

immune repertoire that has not influenced by cytokines and other features of 

immune system (Sun et al., 2015). Studies on the effector cells and their 

performance during stimulation with TLR ligands and/or live pathogens suggest that 

the increased resistance to Salmonella correlates with the increased levels of 

transcripts encoding proinflammatory cytokines and chemokines (Swaggerty et al., 

2003; Ferro et al., 2004, Wigley et al., 2006). Such molecules orchestrate the nature, 

strength and kinetics of later stages of immunity. Hence, stronger and more rapid 

innate defences can not only influence the first line of defence against pathogens 

but also trigger more effective adaptive immune responses.  

In chickens, the degranulation process of heterophils is closely associated 

with phagocytosis (Kogut et al., 2001). Not only live bacteria but also various 

microbial components have been shown to stimulate degranulation (Kogut et al., 

2005). The ability of heterophils to degranulate and produce an oxidative burst was 

examined in vivo after CpG ODN treatment or Salmonella stimulation (He et al., 

2007; Kogut et al., 2005) and in vitro in two F1 reciprocal crosses (Swaggerty et al., 

2006). Chicken macrophages cell line (HD11), monocyte-derived macrophages and 

heterophils isolated from blood have been used in many studies where immune 

gene expression was evaluated upon stimulation with antigens in different breeds 

(Iqbal et al., 2005; Smith et al., 2005, Lavric et al., 2008; Nerren et al., 2009). The 

macrophages isolated from a Salmonella-resistant inbred line expressed 

proinflammatory cytokines and chemokines more rapidly, and at greater levels, 

compared to a susceptible line (Wigley et al., 2006) and could be used as 

biomarkers. Since the first report on generation of the chicken bone-marrow 

derived dendritic cells was published (Wu et al., 2010) recent studies have focused 

on the nature of interactions between BMDC and various antigens/pathogens (Liang 

et al., 2013; Vervelde et al., 2013; Rajput et al., 2014). The finding of differential 

responses to the pathogens between resistant and susceptible inbred chicken lines 

and the studies on the nature of gene expression in effector cells isolated or 
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differentiated from such lines suggest that it may be feasible to find biomarkers of 

the innate response that are predictive of resistance to disease.   
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 Materials and methods 3.2

 Generation and stimulation of bone marrow-derived dendritic 3.2.1
cells and macrophages 

Chicken macrophages and dendritic cells can be derived from the bone 

marrow cells by differentiation driven by recombinant CSF-1 or IL-4 and GM-CSF 

(CSF-2), respectively. The recombinant chicken proteins were produced by 

transfecting the COS-7 cells with plasmids containing chicken CSF-1, IL-4, GM-CSF 

gene inserts, as described in Chapter 2, section 2.4.2. The bone marrow cells from 

4-6 week old RI-J line chickens were differentiated into dendritic cells (BMDC) and 

macrophages (BMDM) after six days of cultures, as described in Chapter 2, section 

2.5.1.  

 Phagocytosis, oxidative burst and degranulation assays 3.2.2

The peripheral blood was used to isolate a heterophil population as 

described in Chapter 2, section 2.5.3. Live Salmonella Enteritidis, opsonised with 

normal chicken serum was used to stimulate phagocytosis, oxidative burst and 

degranulation of heterophils after 1 h incubation. All three experiments were 

performed during a visit to the USDA facility in College Station, Texas using 100 one 

day old Hy-Line W36 chickens. The protocols are described in Chapter 2, section 

2.5.5, 2.5.6 and 2.5.7.  

 Assessment of cytokine and chemokine expression using 3.2.3
reverse transcription quantitative polymerase chain reaction (RT-
qPCR) 

The total RNA from unstimulated and stimulated BMDM, BMDC and 

heterophils was used in RT-qPCRs to determine the levels of expression of cytokines 

and chemokines. Primers and probes used in this experiment are listed in Appendix 

1, Table 2. The amplification and detection was carried out using fluorescent 

hydrolysis probes in the Applied Biosystems 7500 Fast Real-Time PCR System as 

described in Chapter 2, section 2.7.5.  
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 Results  3.3

The populations of macrophages and dendritic cells in chicken body tissues 

are generally vast but difficult to isolate, therefore to evaluate their immune gene 

expression levels, cells were differentiated from bone marrow for analysis of 

responses to different stimuli ex vivo. If such assays prove reliable they could be 

used to understand the basis of differential resistance and/or as predictive tools for 

selection of immune robustness. 

 Bone marrow-derived macrophage and dendritic cell cultures 3.3.1

 In this study, addition of CSF-1 and GM-CSF and IL-4 to bone marrow cells 

generated clumping formation of adherent colonies. On day six, cells were 

stimulated with LPS to induce immune gene expression. LPS is a strong stimulator of 

innate immunity. For the purpose of this experiment 250 ng/ml was added to 

BMDM. Dendritic cells were stimulated with 200 ng/ml of LPS, a concentration 

previously described as optimal to trigger immune response in BMDC (Wu et al., 

2010). The stimulation with LPS triggered changes in the appearance of both BMDM 

and BMDC + LPS cultures (Figure 3.1b and Figure 3.1c) compared to the 

unstimulated control cells (Figure 3.1a). In BMDC culture, larger colonies of cells 

decreased in numbers and single cells became more visible. BMDC that underwent 

maturation during LPS stimulation displayed long veils or dendritic appearance 

(Figure 3.1d). The BMDM population after stimulation with LPS was characterised 

by colonies of spindle shaped strongly adherent cells (Figure 3.1b). 
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c) 

 

d) 

 

Figure 3.1. Morphology of chicken bone marrow cells from RI-J line. a) control cells; magnification 
60x; b) cells cultured for 7 days in presence of CSF-1and stimulated with 250 ng/ml LPS for 24 h; 
magnification 60x; c) cell aggregates at day 7 of culture with presence of GM-CSF and IL-4 and 
stimulated with 200 ng/ml of LPS; magnification 60x; d) single cell from BMDC culture after 
stimulation with 200 ng/ml of LPS for 24 h, showing apparent long veils; 100x. 

 Isolation of heterophils from blood 3.3.2

A technique described by Kogut et al. (2001) was followed to isolate 

heterophils, initially using blood from four to eight birds of 3-6 weeks age. The 

number of circulating heterophils drastically drops from ~70% of total blood cells at 

the first week to ~25% at the third week of life (reviewed by Maxwell and 

Robertson, 1998). The age of the chickens and the small amount of blood (~8 ml) 

used affected the final yield of heterophils. The purity and number of the isolated 

cells was low (Figure 3.2a and Figure 3.2b). The population consisted of different 

cells with very few heterophils detected. It can be observed that mature circulating 

a) 

 

b) 
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heterophils are round, although it has been reported that their shape may be 

distorted because of a polar distribution of the specific cytoplasmic granules or 

lobulation. They have two nuclear lobes, faintly pink cytoplasmic matrix, brick-red 

rod-shaped granules with the May-Grunwald and Giemsa combination of stains, as 

reported by Lucas and Jamroz (1961) (reviewed by Maxwell and Robertson, 1998). 

To undertake any heterophil functional assays the number of cells has to be at least 

1 x 106 per ml. The use of ~100 day-old chickens increased the yield and purity of 

isolated heterophils with approximately 95 % pure cells in 107 – 108 cells/ml (Figure 

3.2c). 

a) 

 

b)

 
                                   c) 

 
Figure 3.2. Leukocytes isolated from blood using a discontinuous gradient. Cells were 
cytocentrifuged and stained with May-Grunwald Giemsa stain (a and b) and with Hematology 3-step 
stain (c); a) and b) heterophils isolated from blood of three-six week old RI-J line chickens; (b) 
heterophils isolated from blood of W36 Hy-Line day-old chickens, magnification with immersion oil 
100x. 
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 Induction of heterophil phagocytosis, degranulation and 3.3.3
oxidative burst by Salmonella Enteritidis 

The ability of live opsonised Salmonella Enteritidis to induce phagocytosis, 

degranulation and oxidative burst was measured in heterophils isolated from blood 

of day-old W36 Hy-Line chickens after 1 h incubation. Phagocytosis in heterophils 

was evaluated microscopically (Figure 3.3). Not all heterophils contained bacterial 

cells but those that did phagocytose Salmonella, on average, contained more than 

two bacterial cells. For every 100 heterophils on a cytospin slide, 63 contained 

Salmonella Enteritidis. Rarely, heterophils were observed with a large number of 

internalised bacteria. The results are presented as phagocytic index (Chapter 2, 

section 2.5.5.). Data are expressed as mean ± standard deviation (Table 3.1). 

 
 

 
Figure 3.3. Phagocytosis of S. Enteritidis by heterophils isolated from day-old chickens. Cytospin 
smears were stained with Hematology 3-step stain and examined by light microscopy with the oil 
immersion objective (100x). 

 

 



71 

Table 3.1. Phagocytic index.  Phagocytosis of opsonised S. Enteritidis (107 cfu/ml) by heterophils (106 
cells/ml) isolated from day-old chickens. The numbers are from two independent studies, each 
consisting of five technical replicates. 

% heterophils containing 
S. Enteritidis 

Average number of 
bacteria per heterophil 

Phagocytic Index (PI) 

63 ± 2.94 2.62 ± 0.38 165.17 ± 23.10 

 

Live, opsonised S. Enteritidis and phorbol A-myristate 13-acetate (PMA) were used 

to evaluate production of reactive oxygen species (ROS) by heterophils using an 

oxidative burst assay. The levels of ROS production were indicated by the amount of 

fluorescence caused by oxidation of DCFH-DA to DCF. PMA gave the strongest 

stimulation to the oxidative burst. Although bacteria were a less effective stimulant 

than PMA, the level of ROS produced by heterophils in the presence of S. Enteritidis 

doubled after 1 h incubation compared to control cells (Figure 3.4).  

 

Figure 3.4. Ability of heterophils to generate an oxidative burst response following stimulation with 
opsonised S. Enteritidis and the inflammatory agonist phrorbol A-myristate 13-acetate. Reactions 
contained 1 x 107 cells/ml, 10 μg DCFH-DA/ml and 108 cfu/ml of opsonised S. Enteritidis. Samples 
were incubated at 37˚C for 1 h. The control relative fluorescence units (RFU) value was obtained 
from unstimulated cells at the same time point. Data represent the mean ± standard deviation (SD) 
of three independent assays. C - control cells, SE - cells stimulated with S. Enteritidis, PMA - cells 
stimulated with . phorbol A-myristate 13-acetate; *p ≤ 0.05. 

 

The levels of enzymatic processes of degranulation was measured in 

heterophils incubated with S. Enteritidis. The presence of bacteria triggered the 

release of granule contents, which was detected by quantifying the levels of β-D-

* 
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glucuronidase, an enzyme that cleave the glyosidic bond of glucoronide. This is 

detected owing to the fluorescence of 4-methylumbelliferone liberated from the 4-

methylumbelliferyl-b-D-glucuronide complex, which is highly fluorescent in alkaline 

solution and proportional to the enzyme activity present in a sample. The 

degranulation ability of heterophils following stimulation with bacteria was 

compared with that of unstimulated cells. The level of bactericidal intracellular 

granules released after stimulation of heterophils with live, opsonised S. Enteritidis 

doubled at 1 h timepoint (Figure 3.5).  

 

Figure 3.5. Effect of opsonised S. Enteritidis on degranulation by heterophils.  Degranulation of 
heterophils (107 cell/ml) induced by stimulation with opsonised S. Enteritidis (108 cfu/ml). Data 
represent the mean±standard deviation (SD) of two biological replicates, each with four technical 
replicates; H + SE – heterophils stimulated with S. Enteritidis; ** p ≤ 0.001. 

 

The phagocytosis triggers the release of bactericidal components in a form 

of degranulation and reactive oxygen species and all three processes often occur 

simultaneously. Based on the above experiments, heterophils are a good indicator 

of early immune responses when stimulated with live bacteria or mitogen. The 

presented assays can be performed within minutes after isolation of heterophils 

from blood. However, the isolation process itself and the high cell yield required for 
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the experiments make these methods not useful for screening older and larger 

populations of birds.  

 Pro-inflammatory cytokine and chemokine expression upon 3.3.4
stimulation with lipopolysaccharide (LPS) 

The value of bone marrow-derived cell cultures in evaluating immune 

robustness was examined by testing BMDC and BMDM responses to LPS as an 

example. The mRNA levels of the pro-inflammatory cytokines IL-1β and IL-6, and of 

the Th1-associated cytokine IL-18, were studied in BMDM and BMDC + LPS after six 

days of culture. Additionally, transcript levels for the pro-inflammatory chemokines 

CXCLi1 and CXCLi2 were quantified. The BMDC cultures were stimulated with 200 

ng/ml of LPS for 24 hours and the BMDM with 250 ng/ml of LPS for 4 hours. The 

timepoints were selected based on the published data. 

The level of transcription varied greatly between cell types. For some 

transcripts, there was also a large variation observed between replicates. The 

highest induction of expression was observed for IL-6 transcripts, in both BMDC and 

BMDM. The IL-1β transcript was upregulated in both cell types with higher levels in 

BMDM after 4 h stimulation. The Th1-associated cytokine IL-18 was also 

upregulated in both cell types but the level of expression was much lower in BMDM 

when compared to IL-1β and IL-6. The mRNA expression of CXCLi1 in BMDC was 

detected at 24 hours but the levels were much lower compared to BMDM. The 

mRNA expression of CXCLi2 chemokine in BMDC was upregulated reaching 20 fold 

change, where in BMDM expression of CXCLi2 was not detected at 4 h timepoint 

compared to the unstimulated control cells. Data are presented in Figure 3.6. 
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Figure 3.6. Evaluation of expression of proinflammatory cytokine genes in BMDM and BMDC 
stimulated with LPS a) IL-1β; b) IL-6; c) IL-18 and chemokines d) CXCLi1; e) CXCLi2; in bone marrow-
derived dendritic cells (BMDC), stimulated for 24 h with 200 ng/ml of LPS and in bone marrow-
derived macrophages (BMDM), stimulated for 4 h with 250 ng/ml of LPS. Data are presented as fold 
change compared to unstimulated control cells, each bar represent average of three biological 
replicates ± SD; *p ≤ 0.05.  

The transcript levels for proinflammatory cytokines (IL-1β, IL-6 and IL-18), 

proinflammatory chemokine (CXCLi2) and anti-inflammatory cytokine (TGF-β4) 

were also examined in heterophils upon LPS stimulation (Figure 3.7). Three different 

breeds were used to isolate heterophils from blood of day-old chickens. The highest 
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level of expression of IL-1β was observed in the Novogen line heterophils. In the 

same line IL-6 mRNA expression was the lowest compared with other lines tested, 

where the RI-J line showed the highest level of mRNA expression. The IL-18 cytokine 

was differentially expressed compared to the control cells in all lines tested but the 

levels were low. In the case of CXCLi2, Aviagen line and RI-J line exhibited similar 

level of expression with Novogen line demonstrating higher upregulation. The anti -

inflammatory cytokine TGF-β4 showed little or no consistent change in expression 

across the lines studied. 

 

Figure 3.7. Evaluation of proinflammatory gene expression in heterophils as measured by RT-qPCR.  
Level of mRNA expression of cytokines: IL-1β; IL-6; IL-18; chemokine CXCLi2 and anti-inflammatory 
cytokine TGF-β4 in heterophils isolated from three breeds; heterophils were stimulated with 
10 μg/ml of LPS for 1 h. Data are presented as fold change compared to unstimulated control cells, 
each bar represent average of three technical replicates ± SEM. 
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 Discussion  3.4

Commercial broiler lines have distinct immune function parameters, due to 

differences in their genetic make-up, which results in a disease resistance and/or 

susceptibility (Lakshmanan et al., 1997). Disease resistance is a complex trait, which 

is influenced by genetics, environment, diet and other factors. Enhancing innate 

resistance to pathogens in chickens is of increasing interest as an alternative to 

antimicrobial use. There are widely used laboratory-based assays that could be 

implemented to test chicken’s responsiveness to different stimuli. Their usage in 

screening chickens, as a diagnostic tool, has been evaluated here in pilot studies. 

Studies on regulation of innate immune cells are important as effector cells direct 

the adaptive immune response. Although studies of cytokine expression in primary 

cells provide comprehensive data, culturing dendritic cells and macrophages from 

bone marrow is time-consuming and the quality of cell culture will vary depending 

on breed type and the age of the birds. More rapid, cheaper and reproducible 

techniques will have to be applied for assessment of differences in immune 

robustness in chicken lines. 

Heterophils act early in response to invading microorganisms and have 

evolved many mechanisms to clear pathogens. They are therefore useful functional 

biomarkers for evaluating innate immune competence in poultry (Swaggerty et al., 

2003). Recognition of PAMPs of foreign microorganisms stimulates phagocytosis, 

degranulation and generation of oxidative burst (Kogut et al., 2003; He et al., 2005) 

that was also shown in current study in which heterophils were stimulated with S. 

Enteritidis. Similar results were obtained by He et al. (2003) where S. Enteritidis-

stimulated heterophils increased production of oxidative burst. The above data and 

other studies show that functional comparisons of heterophils, using phagocytosis, 

degranulation and oxidative burst assays, provide comprehensive data on the 

performance of the early immune response. Heterophils were also used in mRNA 

expression experiments and similarly to published studies (Swaggerty et al., 2003) 

there were great differences observed in cytokine expression between different 

breeds of chickens. The RT-qPCR experiment showed that, although most of the 
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genes tested were expressed in heterophils stimulated with LPS, there were great 

differences in level of expression between broiler (Aviagen) and layer (Novogen and 

RI-J) lines. There have been few reports on differences in immune responses 

between layers and broilers in studies on LPAI H7N2 strains (Ladman et al., 2008), 

after IBV infection (Smith et al., 1985) and on cellular and humoral responses to 

antigens (Koenen et al., 2002; Parmentier et al., 2010). 

An alternative method could involve assessment of the number and activity of 

heterophils and the measurement of differences in levels of proinflammatory 

responses. It has been shown that the number of heterophils that migrate to the 

site of infection is associated with increased resistance against systemic S. 

Enteritidis (Swaggerty et al., 2005). Together with the correlation between 

resistance to S. Enteritidis and differences in expression of innate immune genes, 

these methods could be used to select for increased resistance to other pathogens 

but their role as diagnostic tool would be limited considering high number of 

heterophils needed to perform the experiments. Insufficient numbers can be 

obtained in blood to permit analysis of heterophil function as a screening tool. 

Without the need for culture, they are able to phagocytose, degranulate and 

produce ROS, but those functions can be deficient in newly hatched birds (Wells et 

al., 1998). Although using heterophils to study differences in responses to 

pathogens is faster than using bone marrow-derived effector cells, the isolation of 

sufficient number of cells requires bleeding of at least 100 day-old chicks.  

Quantitative PCR was performed to determine whether pro-inflammatory 

cytokines (IL-1β, IL-6), the Th1-associated cytokine IL-18 and pro-inflammatory 

chemokines (CXCLi1, CXCLi2) were induced upon stimulation of BMDM and BMDC 

with LPS. Upregulation of IL-1β, IL-6 and CXC chemokines by Salmonella has been 

shown in various tissues, including ileum and liver (Withanage et al., 2004), spleen 

(Cheeseman et al., 2007), heterophils and macrophages (Kaiser et al., 2006; Kogut 

et al., 2006; Swaggerty et al., 2008). Bone marrow-derived macrophages and 

dendritic cells have been proven a good source for studying mRNA gene expression 
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triggered by pathogens and mitogens (Wigley et al., 2006; Wu et al., 2010; Vervelde 

et al., 2013). In the current study, LPS stimulation of BMDM and BMDC from 

outbred, vaccinated chickens has shown the mRNA levels of cytokines markedly 

different in magnitude compared to unstimulated cells and between biological 

replicates.  

In the current study, the mRNA gene expression varied greatly between cell 

types, timepoints and LPS concentrations. Depending on the time of stimulation 

and LPS concentration, some genes may not be detected leading to a conclusion 

that they are not expressed, but the real reason may be that this particular cell 

culture has responded and is in homeostasis. As the bone marrow-derived cells 

have to be in culture for six days, their responses may differ due to differences in 

developmental stages and maturity at the time of stimulation. Therefore, the 

selection of stimulant concentration and the timepoints would have to be well 

thought through as the improper choices may lead to false conclusions. 

The cited studies confirm that different types of microbes and different 

strains trigger varied levels of response of the genes tested in presented 

experiments not only in in vitro studies but also in tissues from infection studies. It 

is difficult to agree what genes and at what level of expression are perfect 

signatures of immune responsiveness. The bone-marrow derived macrophages and 

dendritic cells are not a good choice for determination of immune resistance or 

susceptibility. As the current study and previous reports show, the differences in 

the speed and the magnitude of gene expression depend on a time of stimulation, 

type of antigen/pathogen used and antigen/pathogen load. The use of progenitor 

cells, their culture outside the body in simulated settings and stimulation with one 

pathogen or antigen does not mimic the real environment of broilers. The culture of 

BMDM and BMDC are a standard technique in chicken mRNA gene expression 

studies where immune responses are evaluated. They may be informative and 

useful to further characterise cell populations but the selection of birds that 

supposed to have a robust immune response, based on expression of few genes 
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produce less information compared to high-throughput techniques. Although a 

small number of immune-related genes could be practical in distinguishing which 

line of chickens have better early immune response to particular pathogen, a bigger 

panel of genes would return a broader view.  
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 Generation of gene list - selection and cloning Chapter 4

of genes involved in early immune responses. 

 Introduction 4.1

The cellular and molecular assays described in the previous chapter were 

dismissed as being effective and rapid tools for testing immune robustness in 

chicken lines. To screen the immune performance of greater number of birds, a new 

high-throughput qPCR platform, the 96.96 Dynamic Array with BioMark System 

from Fluidigm, will be tested as alternative (introduced in Chapter 6). This type of 

qPCR platform allows the expression of up to 96 genes across 96 samples to be 

tested simultaneously. Therefore, it is necessary to select a panel of ~100 immune-

related genes of interest to test their expression in commercial lines of chickens.  

There have been many studies performed on various chicken lines, 

susceptible and resistant to particular pathogens and on cells isolated from chickens 

and stimulated with antigens and/or pathogens. These types of studies are 

important to examine the immune response to the particular pathogen of interest 

but they do not reflect immune responses in the commercial environment where 

birds are exposed to multiple pathogens and stressors. Many of those 

microorganisms act simultaneously on the chicken’s immune system. As the 

screening tool should be suitable for testing birds reared under both clean and 

commercial circumstances, selected genes have to reflect immune responses to 

different antigens and/or pathogens. A list of genes was compiled from studies 

using resistant and susceptible chicken lines as well as cell lines and primary cells  

challenged with a range of pathogens or constituents thereof. Studies with similar 

agents but using mammalian species were also included to determine if there are 

conserved immune responses across species to different stimuli. Additionally, RNA-

seq analysis was performed on effector cells stimulated with LPS and the results 

were compared to the panels of genes differentially expressed (DE) in previous 

studies to increase the number of genes of interest.  
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The selected genes have their sequences available in the latest chicken 

genome assembly (Galgal4). With the use of Ensembl and NCBI databases each gene 

sequence can be compared and used as a template in primer design for future qPCR 

applications. As the chicken genome sequence is still under development and the 

published studies based their studies on preceding genome release, there is a need 

to confirm the sequences using molecular cloning followed by sequencing. This 

approach will allow the design of qPCR assays for use in Chapter 6 and by the wider 

research community. 
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 Materials and methods 4.2

 Selection criteria for creation of gene list 4.2.1

The articles were collected by searching the NCBI database with the queries 

‘innate immune response’, ‘gene expression infection’ in both chicken and 

mammalian species, and by doing searches of cited references in selected articles. 

The publications used to select the genes had to contain an analysed differential 

expression (DE) dataset in the body of text and/or in the supplementary data 

available online. Infection studies on various pathogens and their interactions with 

the host as well as in vitro studies on stimulated primary cells and/or cell lines were 

included in this collection. Each article’s differential expression (DE) dataset was 

compared with other studies and the genes that were upregulated in two or more 

studies were considered a good candidate for the gene list.  

 RNA sequencing of BMDC, BMDM and heterophils 4.2.2

Sample preparation and RNA sequencing methods are described in Chapter 

2, section 2.9.1. The analysis of sequencing results was performed as described in 

Chapter 2, section 2.9.2. The RNA-seq pipeline is shown Appendix 1, Figure 1.  

 Comparison of RNA-seq data between analyses and published 4.2.3
studies for further gene selection 

The three lists of significantly DE genes obtained from RNA-seq analysis of 

BMDC, BMDM and heterophils stimulated with LPS were compared between each 

other. The genes that were common for two or more lists were selected. The genes 

with significant differential expression in one cell type in the RNA-seq results were 

screened against the lists of genes from the articles used in the first selection 

(Chapter 4, 4.3.1). Genes that were present in two or more lists (RNA-seq results 

and published studies lists) were placed on the final gene list. 

 Amplification, cloning and sequencing of candidate gene cDNA 4.2.4

Amplicon lengths, primer sequences and genes IDs are described in Appendix 

1, Table 3 and Table 5. PCR was performed as described in Chapter 2, section 2.7.4. 

PCR products were separated and visualised by agarose gel electrophoresis 



83 

(Chapter 2, section 2.7.7) and amplicons of the expected size were excised DNA 

extracted and ligated into the pGEM-T Easy vector (Chapter 2, section 2.7.8 and 

2.7.9). Transformation of highly competent JM109 cells with ligated PCR products 

was performed as described in Chapter 2 section 2.7.10. Blue/white screening of 

transformed bacterial cells helped to distinguish putative recombinants, which were 

then confirmed by dideoxy chain termination (Sanger) sequencing. The results were 

assembled and visualised using the DNASTAR® SeqMan Pro application. Cloned and 

reference sequences were aligned by ClustalX (Chapter 2, section 2.1.2). Alignments 

were visualised by using GeneDoc software (Chapter 2, section 2.1.3). Alignments of 

all cloned genes and their master sequences are shown in Appendix 2 (electronic 

file). 
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 Results 4.3

 Creation of innate immune gene list 4.3.1

The data from 16 infection studies on different chicken lines and cells and 

the data from 13 studies on mammalian species were collected. By selecting the 

upregulated genes from each study, a file consisting of 29 separate lists was 

created. The results of PubMed search queries: ‘innate immune response’, ‘gene 

expression infection’ in chickens, humans and other mammalian species are shown 

in Table 4.1. 

Table 4.1. Results of search queries for creation of the gene list. 

Authors Studies Type of platform used 

Bliss et al., 2005 Chicken PBL-derived macrophages 
stimulated with LPS 

Microarray; GEO accession 
GSE1794 

Chaussabel et 
al., 2003 

Human macrophages and dendritic cells 
stimulated with parasites 

Affymetrix HU95A microarray; no 
accession number 

Chiang et al., 
2008 

Chicken heterophils from two distinct 
parental meat-type broiler lines stimulated 
with S. Enteritidis 

44 K Agilent microarray; GEO 
accession: GSE9416 

Ciraci et al., 
2010 

Chicken HD11 macrophage-like cell line 
stimulated with S. Typhimurium endotoxin 

Affymetrix GeneChip; GEO 
accession GSE23881 

Connell et al., 
2012 

Caecal response of Barred Rock chickens to 
C. jejuni infection 

RNA-seq; raw data as 
supplementary file 

de Kleijn et al., 
2012 

Human neutrophils stimulated with LPS Affymetrix Human ST 1.0 exon 
array; GEO accession GSE35590 

Gou et al., 2012 Chicken PBMCs response to S. Enteritidis 
infection 

qPCR 

Guo et al., 2012 Chicken bursal response to IBDV infection Agilent microarray; no accession 
number 

Huang et al., 
2001 

Human monocyte-derived dendritic cells 
stimulated with E. coli, Candida albicans, 
influenza virus 

Human oligonucleotide 
microarray, no accession number 

Jensen et al., 
2006 

Bovine PBMC stimulated with LPS 5 K bovine macrophage 
specific cDNA microarray; no 
accession number 

Kapetanovic et 
al., 2012 

Pig macrophages stimulated with LPS Affymetrix GeneChip Porcine 
Genome Array; GEO accession 
GSE30956 

Killick et al., 
2011 

PBL from Mycobacterium bovis infected 
and non-infected Holstein-Friesian cattle 

Affymetrix GeneChip Bovine 
Genome Array; GEO accession 
GSE33359 

Kim et al., 2011 Chicken duodenal response to primary and 
secondary infections with Eimeria 
acervulina 

9.6K avian intestinal intraepithelial 
lymphocyte cDNA 
microarray (AVIELA); GEO 
accession GSE16230 

Lavric et al., 
2008 

In vitro studies on monocyte-derived 
macrophages responses to M. synoviae and 

Avian macrophage microarray 
(AMM) and the avian innate 
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Authors Studies Type of platform used 

E. coli stimulation immunity microarray (AIIM); GEO 
accession GSE1794 

Lee et al., 2010 Chicken embryo lung cells infected with 
ILTV 

44 K Agilent custom microarray; 
GEO accession GPL6413 

Li et al., 2010 Caecal response to C. jejuni infection in two 
commercial broiler lines 

44K Agilent microarray; GEO 
accession GSE10257 

Martins et al., 
2013 

Mesenteric lymph nodes (MLN) from 
piglets infected with S. Typhimurium 

qPCR 

Mellits et al., 
2009 

Human colonocyte line (HCA-7) incubated 
with C. jejuni 

Affymetrix Human Genome U133A 
array; no accession number 

Munir et al., 
2004 

Chicken embryo cells infected with avian 
metapneumovirus 

cDNA microarray; no accession 
number 

Nau et al., 2002 Human macrophages stimulated with 
multiple bacteria and bacterial components 

Affymetrix Hu6800 GeneChip; no 
accession number 

Reemers et al., 
2010 

Chickens infected with avian influenza 
H9N2 

Gallus gallus Roslin/ARK CoRe 
Array Ready Oligo Set V1.0; 
accession numbers: E-TABM-771 
and E-TABM-772 

Roach et al., 
2007 

Human peripheral blood-derived 
mononuclear cells stimulated with LPS 

HG-U133 Plus2 GeneChip; GEO 
accession GSE5504 

Ruby et al., 
2006 

Chickens infected with IBDV Microarray; accession number E-
MEXP-756 

Rue et al., 2011 In vitro studies on chicken splenocytes 
responses to NDV stimulation 

Agilent microarray; no accession 
number 

Sanz-Santos et 
al., 2011 

Neutrophils from Iberian pigs stimulated 
with LPS 

Affymetrix Porcine GeneChip; no 
accession number 

Schokker et al., 
2012 

Chicken jejunal response to S. Enteritidis 
infection 

ARK-genomics Gallus gallus 20 K; 
GEO accession GSE27069 

Schreiber et al., 
2006 

Human U937 cells stimulated with LPS custom DNA microarray; accession 
number E-WMIT-6 

Wang et al., 
2012 

Porcine alveolar macrophage responses to 
Haemophilus parasuis 

Affymetrix GeneChip Porcine 
Genome Array; GEO accession 
GSE30172 

Zaffuto et al., 
2008 

Chicken embryo cell lines infected with 
avian influenza virus 

Agilent complete chicken genome 
(42K) microarray;  

 

A list of 12 immune-related genes was generated from the studies on infected 

chicken cells and tissues by selecting the significantly upregulated genes that were 

present in two or more separate studies. The same selection method was used 

when comparing the 16 panels of DE genes from chicken studies with the 

mammalian gene expression studies. This approach resulted in the additional 

twenty genes of interest (GOI). The final list consisted of 32 genes upregulated 

during in vitro and in vivo infections in mammalian species and in the chicken (Table 

4.2). 
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Table 4.2. A list of genes of interest upregulated upon stimulation with pathogens or agonists based 
on published studies.  

Chicken and mammalian species Chicken only 

CCL20; CCL4;CCL5; CD83; CXCL13; IL12B; IL18; IL1B; 

IL8; IRAK2; IRF1; MYD88; NFKBIA; NFKBIZ; NLRC5; 

SOCS1; SOCS3; TIMD4; TLR4; TNFAIP3 

CD80; CXCLi1; IFIT5; iNOS; IRF7; IRF10; 

JUN; LYZ; PPARG; TIRAP; TOLLIP; 

TRAF3IP2 

 

The accession numbers of genes with different symbols were compared to confirm 

that the same transcript was differentially expressed in the selected studies. The 

gene ID’s from the chicken studies with known differences in sequences were 

compared to clarify which transcript was upregulated in a particular study. The 

chemokine CCL4 (C-C motif ligand 4) was present in five chicken panels (Chiang et 

al., 2008; Ciraci et al., 2010; Lee et al., 2010; Rue et al., 2011; Guo et al., 2012). The 

accession numbers for genes that were used to either design the probe for a 

microarray or that were a result of a RNA-seq alignment analysis differed. The 

transcript with accession number NM_204720 was chosen, as it was differentially 

expressed in two studies. This transcript sequence is identical with the sequence of 

chicken CCLi3. The chemokine CCL5 (C-C motif ligand 5), also known as CCLi4 or 

ah294, was upregulated in two chicken studies and both of the transcripts had 

different accession numbers assigned (Lavric et al., 2007; Guo et al., 2012). Guo et 

al. (2012) study used ENSGALT00000001405 Ensembl identification number, which 

is no longer present in gene set, therefore the sequence under the NM_001045832 

number, was used in further studies. The chicken K60 gene, also known as IL-8-like 

1 or CXCLi1, was upregulated in two studies where commercial and customised 

microarrays were used and probes were designed based on the same sequence – 

NM_205018 (Chiang et al., 2008; Connell et al., 2012). A third study did not include 

accession numbers for studied genes. Interleukin 8 (IL-8 or CXCLi2) was present in 

six panels and the same sequence (NM_205498) was used in probe design. One of 

the studies used RNA-seq platform for DE and the assembled transcripts aligned to 

region of a genome where IL-8 is annotated (Connell et al., 2012). 
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 RNA-seq analysis 4.3.2

The genes selected, based on previous studies, resulted in a small list 

consisting of 32 genes involved in immune response to pathogens or agonists. To 

increase the number of the genes of interest, an RNA-seq analysis was performed 

on RNA from chicken primary cells (BMDC, BMDM and heterophils) stimulated with 

LPS. The Illumina HiSeq 2500 platform generated 14.1-18.6 million RNA-seq tag 

pairs per sample (95.8 million in total) each 100 nucleotides in length resulting in 

19.7 Gb of data. The Cufflinks program containing Cuffdiff algorithm was used to 

find significant changes in transcript levels between LPS-treated and control cells. 

The DE genes were determined by using the fold change >1 (Figure 4.1a). Among 

the differentially expressed genes, there was only one gene, TGM4, upregulated in 

all of the three cell types. Between BMDC and BMDM, 30 DE genes were common 

and each cell type shared only nine DE genes with the heterophils (Figure 4.1b). The 

DE analysis revealed that many of the significantly expressed genes have not been 

annotated in chicken genome. For further analysis, only the annotated genes were 

taken under consideration. The reads for four differentially expressed genes 

assembled into transcripts that spanned the location of two closely annotated 

genes. It has resulted in pair of genes assigned to the same genomic location with 

shared fold change value. Therefore, 24 genes significantly differentially expressed 

in two or more cell types were chosen as genes of interest. 
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a) 

 
b) 

 
Figure 4.1. RNA-seq results a) Number of significantly differentially expressed genes in chicken 
primary cells stimulated with LPS. Abbreviations: BMDC, bone marrow-derived dendritic cells; 
BMDM, bone marrow-derived macrophages; DE- differentially expressed compared to 
unstimulated cells; b) Venn diagram showing the number of transcripts significantly DE; A) in 
heterophils; B) in BMDM; C) BMDC; D) common DE gene for three cell types; E) shared 
between BMDC and BMDM; F) shared between BMDM and heterophils; G) shared between 
BMDC and heterophils; numbers of unannotated genes are presented in brackets. 

 Comparison of RNA-seq results with previous studies 4.3.3

The criteria for genes to be ranked as genes of interest were as follows: 

candidate gene had to be differentially expressed in any of the cell type tested from 

the RNA-seq analysis and at least once in the previous studies used to generate the 

initial list of 32 genes. Against this criterion, 17 genes qualified. A further 15 genes 

were added to the list, based on their overexpression in more than one of the 

previous studies analysed. From the RNA-seq data, 44 genes were added to the list 
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as they were differentially expressed in at least two cell types stimulated with LPS. A 

flow chart visualising the pathway of gene selection is presented in Figure 4.2a. 

Based on these, the final list consisted of 104 genes of interest (Figure 4.2b). The 

type of cell and treatment that caused the differential expression of the selected 

genes are shown in Table 4.3. 

a) 

 
 
b) 

 
Figure 4.2. Comparison of published studies and RNA-seq gene lists ; a) flow chart representing the 
criteria for selection of GOI based on RNA-seq data and published studies; b) the Venn diagram 
showing the number of genes selected from different analyses and the final number of genes of 
interest (GOI). 

 

 

 

Total 
104 
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Table 4.3. Genes of interest and the type of studies with differential expression in mammalian 
species and the chicken. 

Gene symbol Type of study with differential expression 

ABCG2 BMDM and BMDC + LPS RNA-seq 

ADM BMDM and BMDC + LPS RNA-seq; hNEUT + LPS; bMph + LPS; 

hMph + bacteria and bacterial components 

ATF3 HET +LPS RNA-seq; hMph + LPS 

BATF3 BMDM and BMDC + LPS RNA-seq; ELC + ILTV; hNEUT + LPS 

BCL2A1 HET and BMDM + LPS RNA-seq; hMph and hDCs + parasites; 
hDCs + E. coli, C. albicans, influenza virus 

C3ORF52 BMDM and BMDC + LPS RNA-seq 

CCL19 BMDM + LPS RNA-seq; chicken intestines + C. jejuni 

CCL20  ELC + ILTV; chicken intestines + C. jejuni; chMph + LPS; HCA-7 C. 

jejuni; hNEUT + LPS; bMph + LPS 

CCL4 HET + S. Enteritidis; chPBMC + S. Enteritidis; HD11 + S. 

Typhimurium; ELC + ILTV; Chicken spleen + NDV; hNEUT+ LPS; 
hMph + LPS; pMph + LPS 

CCL5 bursa + IBDV; chMph + APEC; hMph + LPS; bMph + LPS; pMph+ 
LPS; hMph and DCs + parasites 

CD40 BMDM and HET +LPS RNA-seq; bMph + LPS; chPBMC + S. 
Enteritidis 

CD72 BMDM and BMDC + LPS RNA-seq; chicken intestines + C. jejuni 

CD80 Chicken jejunum + S. Enteritidis; chPBMC + S. Enteritidis; bMph 
+ LPS 

CD83 HET + LPS RNA-seq; mMph + LPS; Chickens + IBDV; bMph + LPS; 
hNEUT + LPS; HD11 + S. Typhimurium; chMph + APEC; chicken 
intestines + C. jejuni; hMph + bacteria and bacterial 

components; hMph and DCs + parasites 

CSF1 BMDC RNA-seq ; pMph + LPS 

CXCL13 BMDM and BMDC + LPS RNA-seq; Chicken spleen + NDV; pMph 

+ LPS 

CXCL13L2 BMDM and BMDC + LPS RNA-seq; chicken intestines + C. jejuni 

CXCLI1 HET + S. Enteritidis; chicken intestines + C. jejuni; CE cells 
infected with avian metapneumovirus 

CXORF21 HET and BMDM + LPS RNA-seq 

DLG3 BMDM and BMDC + LPS RNA-seq 

DTX2 HET and BMDM + LPS RNA-seq; chicken intestines + C. jejuni 

EAF2 BMDM and BMDC + LPS RNA-seq 

EDN1 BMDM + LPS RNA-seq; pMph +LPS; bMph + LPS; hMph and DCs 
+  parasites 

EGR1 HET + LPS RNA-seq; mMph + LPS; chicken intestines + C. jejuni 

ENSGALG00000002955 BMDM and BMDC + LPS RNA-seq 

ENSGALG00000005747 BMDM and BMDC + LPS RNA-seq 

ENSGALG00000011172 BMDM and BMDC + LPS RNA-seq 
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ENSGALG00000015395, 

ENSGALG00000027419 

BMDM and BMDC + LPS RNA-seq 

ENSGALG00000022324 BMDM and BMDC + LPS RNA-seq 

ENSGALG00000025905 BMDM and BMDC + LPS RNA-seq 

ENSGALG00000026592 HET and BMDC + LPS RNA-seq 

ETS2 BMDM + LPS RNA-seq; bMph + LPS; hMph + LPS; hNEUT + LPS; 
hMph + bacteria and bacterial components 

F3 BMDC + LPS RNA-seq; bMph + LPS 

G0S2 HET and BMDC  + LPS RNA-seq; hNEUT + LPS; hMph and DCs + 
parasites 

GABRA5 BMDM + LPS RNA-seq ; chicken intestines + C. jejuni; 

GCH1 BMDM + LPS RNA-seq; HD11 + S. Typhimurium; hNEUT + LPS; 

hMph + bacteria and bacterial components 

GLUL BMDM and BMDC + LPS RNA-seq 

HPS5 BMDM and BMDC + LPS RNA-seq 

IFIT5 Chicken spleen + NDV; chMph+ APEC; chicken intestines + C. 
jejuni; Chickens +  IBDV 

IL10RA HET ; hNEUT + LPS 

IL12B HET + LPS RNA-seq; PMph + LPS; HET + S. Enteritidis; chPBMC+ 
S. Enteritidis; hMph + bacteria and bacterial components 

IL13RA2 BMDC + LPS RNA-seq; chMph+ APEC 

IL17REL HET and BMDM + LPS RNA-seq; chicken intestines + C. jejuni 

IL18 Chicken spleen + NDV; Chickens + IBDV; pMph + LPS; hNEUT + 
LPS; bMph + LPS; Chickens + AIV 

IL19 BMDM and BMDC + LPS RNA-seq 

IL1B BMDC + LPS RNA-seq; hNEUT + LPS; bMph + LPS; hMph + LPS; 
pMph + LPS; chMph+ APEC; HD11 + S. Typhimurium; ELC+ ILTV; 

chPBMC+ S. Enteritidis; chMph+ LPS; HET + S. Enteritidis; hMph 
and DCs +  parasites; hDCs +  E. coli, C. albicans, influenza virus 

IL1R2 HET + LPS RNA-seq; hNEUT + LPS 

IL20RA BMDM + LPS RNA-seq ; chicken intestines + C. jejuni 

IL4I1 HET and BMDC + LPS RNA-seq 

IL6 HET and BMDM + LPS RNA-seq; bMph + LPS; HET + S. 
Enteritidis; ELC+ ILTV; chPBMC+ S. Enteritidis; hMph + bacteria 
and bacterial components; hMph and DCs +  parasites; hDCs + 

E. coli, C. albicans, influenza virus 

IL8 HD11 + S. Typhimurium; ELC+ ILTV; chPBMC+ S. Enteritidis; 

chicken intestines + C. jejuni; HET + S. Enteritidis; ELC+ ILTV; 
Chickens +  IBDV; hMph + LPS; HCA-7 C. jejuni; pMph + LPS; 

bMph + LPS; hMph + bacteria and bacterial components; hMph 
and DCs + parasites; hDCs +  E. coli, C. albicans, influenza virus 

iNOS  chMph+ LPS; Chicken spleen + NDV; ELC+ ILTV; chMph+ APEC; 

Chickens +  IBDV 

IRAK2 HD11 + S. Typhimurium; hNEUT + LPS; bMph + LPS 
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IRF1 chPBMC+ S. Enteritidis; chicken intestines + C. jejuni; Chicken 

spleen + NDV; Chickens +  IBDV; hMph + LPS; pMph + LPS; 
hMph + bacteria and bacterial components; hMph and DCs + 
parasites; Chickens +  AIV 

IRF10 Chicken spleen + NDV; chPBMC+ S. Enteritidis; Chickens +  AIV 

IRF7 Chicken spleen + NDV; chicken intestines + C. jejuni; chPBMC+ 

S. Enteritidis; hMph + LPS; pMph + LPS; hMph and DCs + 
parasites 

IRG1 HET RNA-seq ; chicken intestines + C. jejuni; ELC+ ILTV 

JUN  HD11 + S. Typhimurium; chPBMC+ S. Enteritidis; hMph + 
bacteria and bacterial components 

LYG2 BMDM + LPS RNA-seq; chicken intestines + C. jejuni; ELC+ ILTV 

LYZ Chicken spleen + NDV; ELC+ ILTV; chicken intestines + C. jejuni 

MADPRT BMDM and BMDC + LPS RNA-seq; chicken intestines + C. jejuni 

MAFA BMDM and BMDC + LPS RNA-seq 

MAFF BMDC + LPS RNA-seq; hMph + LPS 

MARCKSL1 BMDM and BMDC + LPS RNA-seq; chicken intestines + C. jejuni 

MYD88 ChPBMC+ S. Enteritidis; pMph + LPS; hMph and DCs + parasites; 

Chickens +  AIV 

NDNF BMDM and BMDC + LPS RNA-seq 

NFKB2 BMDC + LPS RNA-seq; chPBMC+ S. Enteritidis; chicken intestines 
+ C. jejuni; hMph + LPS; hNEUT + LPS; hMph and DCs + parasites 

NFKBIA HD11 + S. Typhimurium; hNEUT + LPS; bMph + LPS; pMph + LPS; 
hMph + bacteria and bacterial components; hMph and DCs + 
parasites 

NFKBIZ chPBMC+ S. Enteritidis; ELC+ ILTV; hNEUT + LPS; PMph + LPS 

NLRC5 BMDC + LPS RNA-seq ; HD11 + S. Typhimurium; hNEUT + LPS 

NR4A3 HET + LPS RNA-seq; chicken intestines + C. jejuni; bMph + LPS 

PFKFB3 BMDM and BMDC + LPS RNA-seq; bMph + LPS 

PKD2L1 BMDM and BMDC + LPS RNA-seq 

PLA2G5 BMDM + LPS RNA-seq ; chicken intestines + C. jejuni 

PLK3 BMDM and BMDC + LPS RNA-seq; hNEUT + LPS 

PPARG ELC+ ILTV; HET + S. Enteritidis: chicken intestines + C. jejuni 

PTGS2 BMDM and BMDC + LPS RNA-seq; bMph + LPS; HET + S. 
Enteritidis; hMph and DCs + parasites 

RASD1 HET + LPS RNA-seq; chicken intestines + C. jejuni; ELC+ ILTV 

RNF19B BMDC + LPS RNA-seq ; chicken intestines + C. jejuni 

SAAL1 BMDM and BMDC + LPS RNA-seq 

SDC4 BMDM + LPS RNA-seq; HCA-7 + C. jejuni; hMph + bacteria and 
bacterial components; Chickens + AIV 

SELE BMDC + LPS RNA-seq; pMph + LPS; chicken intestines + C. jejuni 

SERPINE2 BMDM and BMDC + LPS RNA-seq 

SLC39A8 BMDM + LPS RNA-seq; bMph + LPS 
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SLCO6A1 BMDM and BMDC + LPS RNA-seq 

SNX10 HET + LPS RNA-seq; ELC+ ILTV 

SOCS1 BMDC and BMDM + LPS RNA-seq; Chicken spleen + NDV; 
chPBMC+ S. Enteritidis; ELC+ ILTV; pMph + LPS; Chickens + AIV 

SOCS3 BMDC + LPS RNA-seq ; Chicken intestines + C. jejuni; ELC+ ILTV; 
chPBMC+ S. Enteritidis; bMph + LPS; pMph + LPS; hNEUT + LPS; 

hMph and DCs + parasites 

SPTSSB BMDM + LPS RNA-seq; chicken intestines + C. jejuni 

STEAP1 BMDM and BMDC + LPS RNA-seq 

STEAP4 HET and BMDC + LPS RNA-seq; pMph + LPS 

TGM4 HET, BMDM and BMDC + LPS RNA-seq; chicken intestines + C. 

jejuni; CE cell lines + AIV 

TIMD4 HET + S. Enteritidis; pMph + LPS 

TIRAP chPBMC+ S. Enteritidis; HET + S. Enteritidis; bMph + LPS 

TLR15 HET + LPS RNA-seq; chPBMC+ S. Enteritidis 

TLR4 HET + LPS RNA-seq ; ChPBMC+ S. Enteritidis; PMph + LPS; 

BMph + LPS 

TNFAIP3 Chicken intestines + C. jejuni; HD11 + S. Typhimurium; bMph + 

LPS; HCA-7 C. jejuni; hNEUT + LPS; pMph + LPS; hMph + bacteria 
and bacterial components; hMph and DCs + parasites 

TNIP2 BMDM and BMDC + LPS RNA-seq 

TOLLIP ChPBMC+ S. Enteritidis; ChPBMC+ S. Enteritidis 

TP53I11 BMDM + LPS RNA-seq ; hNEUT + LPS 

TRAF3IP2 ELC+ ILTV; ChPBMC+ S. Enteritidis 

UPP1 BMDC RNA-seq ; hNEUT + LPS 

WDR24 HET + LPS RNA-seq; chicken intestines + C. jejuni 

Legend: hNEUT – human neutrophils; bMph – bovine macorphages; chMph – chicken macrophages; 
hMph – human macrophages; pMph – pig macrophages; chPBMC – chicken peripheral blood 
mononuclear cells; HET- heterophils; ELC – embryonic lung cells; hDC- human dendritic cells; CE – 
chicken embryo; + LPS – stimulated with LPS; Genes symbols highlighted in red – genes not cloned in 
this study; blue – downregulated genes in selected studies 

 
 Molecular cloning and sequencing of candidate genes 4.3.4

Among the 32 candidate genes selected based on analysis of published 

literature (Table 4.1), 12 were cloned and confirmed by other group members. From 

the 20 remaining genes, 19 were cloned and sequenced in this study. In order to 

design the primer pairs for molecular cloning, the sequences for the candidate 

genes were searched in both the Ensembl (www.ensembl.org) and the NCBI 

(www.ncbi.nlm.nih.gov/) databases. The primer pairs were designed to clone either 

http://www.ensembl.org/
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full or partial sequence of the gene in cases were more than one transcript was 

available and either 5’ or 3’ end sequence differed.  

The same approach was used to clone the mRNA coding sequences of genes 

selected based on the RNA-seq results. Out of 104 genes of interest, six were cloned 

previously by other members of the group. From the remaining number of genes, 

72 were cloned in this study and their sequences were confirmed. The cloned 

sequences for all the genes are shown in Appendix 2 (electronic file). Examples of 

agarose gel images for selected amplicons are shown in Figure 4.3.  

 

Figure 4.3. Examples of agarose gel images of amplicons of cDNAs for selected genes of interest. 
Primers for each gene were used in PCR reactions with cDNA from BMDC + LPS, HD11 cell line + LPS 
and CD40L, heterophils + LPS, BMDM + LPS (left to right for each amplicon A-L). Panel A - 
ENSGALG00000005747 (1056 bp), B - C3ORF52 (700 bp), C - MADPRT (891 bp), D - STEAP1 (759  bp), 
E - ETS2 (1440 bp), F - LYG2 (541 bp), G - EDN1 (618 bp), H - BATF3 (292 bp), I - SDC4 (545 bp), J -
 MARCKL (no band), K - MAFA (861 bp), L - PFKFB3 (1189 bp); Ladder - GeneRulerTM DNA Ladder Mix 
10kb. 

  

A               B                   C               D                   E               F 

G                H                  I                J                     K               L 
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An example of agarose gel electrophoresis to confirm cloning of amplicons by 

colony PCR is shown in Figure 4.4. Though in most cases amplicons of the expected 

size were obtained, rarely amplicons of an aberrant number or size were detected 

(e.g. amplicons from clones E2, G2, I3 and K1) .

 

Figure 4.4. Examples of agarose gel electrophoresis to validate pGEM-T clones of selected amplicons 
by PCR. Panel A - ENSGALG00000005747 (1056 bp), B - C3ORF52 (700 bp), C - MADPRT (891 bp), D - 
STEAP1 (759 bp), E - ETS2 (1440 bp), F - LYG2 (541 bp), G - EDN1 (618 bp), H - BATF3 (292 bp), I - 
SDC4 (545 bp), J - MAFA (861 bp), K - PFKFB3 (1189 bp); Ladder - GeneRulerTM DNA Ladder Mix 10kb. 

  

G                 H                     I                   J                       K 

A                  B                      C                  D                      E                F 
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 Discussion 4.4

The aim of this study was to select ~100 genes involved in innate immune 

responses in chickens that represent immune robustness/performance. Their 

expression will be examined using a high-throughput qPCR platform 96.96 Dynamic 

Array from Fluidigm. Many genes are repeatedly used in qPCR experiments on 

immune responses, such as proinflammatory cytokines and chemokines. These 

genes are proven to be important markers in immune-related studies but there are 

many additional genes which may assist in estimation of the immune robustness. To 

create a broader view of immune performance, a list of genes of interest was 

generated by scrutiny of available literature and RNA-seq analysis of primary cells 

stimulated with bacterial LPS.  

The use of whole transcriptome platforms, such as microarrays, or the use of 

RNA-seq would be more informative as a screening tool but these techniques could 

not be used for screening a larger number of birds in a rapid and cost-effective 

manner. In addition, analysis of the sequencing data would be complex and time-

consuming. To be included in the list of genes of interest, the corresponding 

transcript had to be upregulated at least twice in two different studies. This 

instruction allowed selection of more genes, as many of the DE genes were only 

characteristic to one of the experimental settings. The published studies were 

performed with a number of pathogens infecting different organs or cell types. The 

genes selected from those studies were upregulated in early timepoints suggesting 

their involvement in the innate immune responses. Addition of the data from RNA-

seq studies performed on primary chicken cells stimulated with LPS expanded the 

list of genes.  

Molecular cloning was performed in order to confirm the sequences of 

selected genes of interest as many of them have few mRNA transcript sequences 

available in the databases. Therefore, the primer design had to include only the 

common part of the transcript to avoid difficulties with molecular cloning. As a 

result, many genes were detected in numerous cDNA samples used as a template, 

which means that they were involved in immune responses to different 
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pathogens/antigens used in a particular study. There were also amplicons that were 

only obtained in one of the cDNA templates used in the cloning panel and few were 

not obtained at all. The reason behind this may lie in the primers not being optimal 

for the qPCR reactions but also the design could have been based on an incorrectly 

assembled or annotated sequence. The first release of the chicken genome draft in 

2004 has proven to be an important tool in avian genomic research but since then 

many changes have been introduced to improve the annotation. The main tools for 

building predicted annotations were based on the homology with sequences from 

human and mouse full-length cDNA making this approach successful for protein-

coding genes. This method was not effective when translated across to birds which 

are evolutionary distant from mammals. This has proven to be even less useful for 

the annotation of rapidly evolving innate immune genes or non-coding genes. The 

Ensembl gene annotation protocol now incorporates the RNA sequencing data to 

expand the prediction of chicken genes (Flicek et al., 2014). The gene list was 

created before the update of Ensembl chicken genome with the RNA-seq results, 

which could lead to changes in the mRNA sequences of the selected innate immune 

genes. When genes were selected from previous studies, the gene symbols along 

with the annotation IDs were examined to ensure that all studies reported 

upregulation of the same mRNA fragment. Many genes have multiple names but 

also mammalian nomenclature is often assigned to genes, which cause confusion 

when used interchangeably with chicken names. By carefully selecting the gene 

accession numbers and sequences behind them, the final list of cloned genes of 

interest consists of transcripts that were confirmed to be overexpressed in various 

studies.  

Before high-throughput qPCR assays can be used to evaluate transcription of 

the immune-related genes selected here, careful consideration of the reference 

genes for normalisation of data is required. This is the subject of the next Chapter.  
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 Reference gene normalisation Chapter 5

 Introduction  5.1

The aim of this study was to select a set of genes that could serve as internal 

controls in chicken immune-related tissue mRNA expression studies. The expression 

levels of 7 reference genes: β-actin (ACTB), β-2-microglobulin (B2M), 

glyceraldehyde-3-phosphate dehydrogenase (GAPDH), β-glucuronidase (GUSB), 

TATA box binding protein (TBP), α-tubulin (TUBAT), r28S ribosomal RNA (r28S) were 

measured in tissues (spleen, bursa, caecal tonsils, ileum and blood) isolated from 

Aviagen male broilers reared on pedigree and sibling test farms. In order to identify 

the most stable reference genes across the tested samples, the expression 

stabilities of the reference genes were examined using three algorithms: 

NormFinder, Best Keeper and geNorm. NormFinder and geNorm software recognise 

the most suitable control genes by determining their stability value whereas 

BestKeeper uses descriptive statistics and the Pearson correlation coefficient to 

evaluate the most stable reference gene. The use of three algorithms to calculate 

reference gene stability will guide the selection of the most reliable reference 

gene(s) to avoid misinterpretation of expression studies. 

Over the decades, different techniques have been applied to study 

transcriptional regulation in infection studies from northern blotting, cDNA 

microarrays, in situ hybridisation to quantitative PCR (qPCR) (Matulova et al., 2013; 

Sandford et al., 2012; Bojesen et al., 2004). High sensitivity and potential for high 

throughput and enhanced specificity makes qPCR the most exploited molecular 

technique in host-pathogen interaction studies. These characteristics are very 

important in immunological research where genes of interest frequently have many 

splice variants and very low expression levels (Huggett et al., 2005). It is therefore 

an especially useful technique in chicken immunology where not many species-

specific antibodies are commercially available (de Boever et al., 2008). Although it is 

the most relevant method for many experiments, there are still many problems 

associated with its use, mainly inherent variability of RNA samples and differences 

in efficiencies of reverse transcription (RT) and PCRs (Bustin, 2002). An efficient 
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normalisation strategy is needed to collect reproducible and relevant qPCR results 

corrected for non-biological sample-to-sample variations (Andersen et al., 2004). 

Several strategies are available to correct experimentally introduced variation, each 

with their own advantages and considerations (Huggett et al., 2005). Not all the 

sources of variation can be completely reduced, therefore control along the entire 

workflow of qPCR analysis is very important. Lack of standardisation of each step 

and application of normalisation at the final step cannot eliminate errors (Ståhlberg 

et al., 2003). Similar sample sizes for RNA extraction with DNase treatment and 

reverse transcription are recommended together with use of standard curves using 

samples spiked with known quantities of RNA molecules (Gilsbach et al., 2006). 

These are the methods to indicate the efficiency of reverse transcription and qPCR 

inhibition. All these aspects were discussed at the 3rd London qPCR Symposium in 

April 2005 and the agreement was that the reference gene concept is the favoured 

technique for normalisation of qPCR data. The Minimum Information for Publication 

of Quantitative Real- Time PCR Experiments (MIQE) guidelines (Bustin et al., 2009) 

describes the necessary information that should be included in evaluation of qPCR 

experiments and publication of the work. The guidelines emphasise the need to use 

more than one reference gene and the need to report the method of determination 

of reference gene stability.  

Several commercial companies provide optimised reference gene panels for 

many species. The idea of using a housekeeping gene as an internal control is 

attractive as those genes are affected by the same experimental variations as the 

tested genes but are predicted to show stable constitutive expression. Quantitative 

PCR results for a gene of interest are then normalised by using the housekeeping 

reference gene that is measured using the same methods (Vandesompele et al., 

2009). To minimise inaccuracies there are several rules that can be followed, for 

example: uniform sample size, RNA extraction method, reduction of gDNA 

contamination and internal controls. These guidelines are not mutually exclusive 

and can be all included in the protocol (Huggett et al., 2005). In theory, mRNA 

expression levels of any reference gene are stable due to the permanent function 
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that they play in cellular processes (Zhu et al., 2008). Ideal reference genes show 

consistent expression in varying experimental and environmental conditions. 

Expression of genes of interest can then be normalised with internal control genes 

in samples that vary in qualities and quantities of starting RNA. Differences in 

enzymatic efficiencies are compensated when reference genes are used as 

normalisers because they undergo the same preparation steps and are exposed to 

the same treatments as the gene of interest.  

So far an ideal reference gene has not yet been identified (Bär et al., 2009). 

Many authors suggest that definite or universal internal control gene for every 

condition in different tissues and cells does not exist (Vandesompele et al., 2002; 

Coulson et al., 2008; Maltseva et al., 2013). There is an increasing number of studies 

on widely employed reference genes that prove many of them are not resistant to 

changes in the experimental environment (Bas et al., 2004; Yin et al., 2011; Sugden 

at al., 2010; Yang et al., 2013; Schmittgen and Zakrajsek 2000; Lupberger et al., 

2002; Dheda et al., 2004; He at al., 2008; Yue et al., 2010). Based on these and 

many other studies that prove there is no universal internal control for gene 

expression analyses it has been suggested that determination of appropriate 

reference genes should be performed for every qPCR experiment (Riemer et al., 

2012). Most frequently used reference genes are: ACTB, GAPDH, r18S or r28S. 

GAPDH is a catalytic enzyme in glycolysis and it participates in DNA repair (Meyer-

Siegler et al., 1991). In the early years of qPCR technique, the use of GAPDH as a 

reference gene was shown to be constant (Edwards and Denhardt 1985; Winer et 

al., 1999). There have been many reports of GAPDH instability in gene expression 

induced during the experiment (Lin et al., 2009; Sudgen et al., 2010). An 

investigation of IL-4 and Toll-like receptors expression in TB patients has shown that 

normalisation to inappropriate reference gene (GAPDH and ACTB) changed the 

significance of results (Dheda et al., 2005). Earlier, Suzuki et al. (2000), Stűrzenbaum 

and Kille (2001) established that GAPDH mRNA expression levels could be 

influenced by experimental conditions, both in vivo and in vitro. Mozdziak et al. 



101 

(2003) also established that in chickens, nutritional manipulations can alter 

transcription of GAPDH and its levels are upregulated with age.  

Yin et al. (2011) evaluated the stability of expression for 11 genes in mouse 

and 8 genes in chicken under different experimental conditions. Results have shown 

that practice of use of popular reference genes without prior stability normalisation 

could lead to inaccurate and divergent qPCR data. The conventional use of a single 

reference gene was also demonstrated to introduce large errors (Vandesompele et 

al. 2002). Often the decision which gene should be included as reference in 

particular study is based on past experiments. The published studies on evaluation 

of mRNA expression levels in different tissues or cells, under different treatments 

and from various species use similar reference genes to normalise the data 

(Banskota et al., 2015; Ji et al., 2014, Xiao et al., 2015). A literature search has also 

shown that no single gene has been consistently used as reference gene in studies 

related to chicken immune system (Abasht et al., 2009; Adams et al., 2009, Brisbin 

et al., 2010).  

RNA extraction techniques do not guarantee the total exclusion of genomic 

DNA (gDNA), which in consequence could give false-positive readings unless reverse 

transcription is designed to span exon-intron boundaries. Genomic pseudogenes 

retain introns, thus their size is bigger (Smith et al., 2001). There are also intronless 

pseudogenes that have arisen by retrotransposition. They resemble target 

sequences and have 3’ polyA tail, therefore, designing primers that span intron-

exon boundaries is not applicable as these DNA structures cannot be distinguished 

from cDNA (Mighell et al., 2000).  

Researchers have used many methods to identify reference genes. The most 

popular strategies are the use of algorithms such as GeNorm (Vandesompele et al., 

2002), BestKeeper (Pfaffl et al., 2004) and NormFinder (Andersen et al., 2004). As 

the statistical methods behind these programs differ in their assumptions, many 

researchers use more than one program to assess stability of candidate reference 

genes (Chang et al., 2012; Ledderose et al., 2011; Perez et al., 2008).  
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Vandesompele et al. (2002) suggests using an expression stability index (M 

value) that would be calculated based on mean pair-wise variations between the 

gene and the other candidate genes across all samples. The underlying principle for 

software is that the expression ratio of two reference genes is constant across all 

samples. geNorm calculates pairwise variation for each gene with all other genes as 

the standard deviation of the logarithmic transformed expression ratios. Next, the 

stability value (M) is calculated as the pairwise variation of particular reference 

gene with all other tested candidate genes. The software performs additional 

variation analysis of normalisation factors calculated for an increasing number of 

reference genes to determine the minimal number of reference genes for accurate 

normalisation (Vandesompele et al., 2009). The NormFinder algorithm, developed 

by Andersen et al. (2004), identifies the most stable gene (pair of genes) with the 

use of mathematical model supported by a statistical framework. It ranks the 

candidate genes in a given sample and given experimental design based on their 

expression stability value. Mathematical, ANOVA-based model uses statistical 

framework to determine the overall expression variation of the genes but also the 

variation between subgroups. NormFinder relies on Q values to estimate the 

stability of each gene. Quantities are first log-transformed and then used in an 

ANOVA model-based approach to calculate expression variation where intra- and 

inter-group variations are estimated. The two sources of variation represent 

systematic error that will occur when the given gene will be used (Andersen et al., 

2004). The gene with the lowest M value is the most stable in expression and the 

gene with the highest M value has the least stable expression. BestKeeper 

calculates the gene expression variation for the chosen reference genes based on 

the collected Cq values. The examination consists of two steps: first is the 

descriptive statistics analysis: geometric mean (GM), arithmetic mean (AM), 

minimal (Min) and maximal (Max) value, standard deviation (SD) and coefficient of 

variance (CV). Using CV and SD values, in a second step, pairwise correlation 

analysis is performed using BestKeeper Index (BKI). The most stable genes have the 

lowest CV and where the SD value is below 1. Internal controls with SD higher than 
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1 are regarded as unreliable. All the candidate genes showing stable expression are 

combined into BKI values for the individual sample using geometric mean of Cq 

values for each of the reference genes using the Equation 1. BestKeeper also 

analyses inter-HKG relations by Pearson correlation coefficient (r) and the 

probability (p) value.  

𝐵𝐾𝐼 = √𝐶𝑞1 𝑥 𝐶𝑞2 𝑥 𝐶𝑞3 𝑥 … 𝐶𝑞𝑧𝑧
 

Equation 1.  BestKeeper Index calculation 

The Pearson correlation coefficient (r) and the p-value are then used to describe the 

correlation between each candidate gene and the index. Comparison of each gene 

using pair-wise correlation analysis and the BKI gives the optimal reference genes in 

terms of their stability (Pfaffl et al., 2004).  
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 Materials and methods 5.2

 Tissue collection 5.2.1

Samples were collected from broiler chickens reared at an Aviagen high 

biosecurity pedigree farm and a farm where environment aimed to resemble 

broader commercial conditions - sibling test farm. The 3-week-old birds (n=10) 

came from the same hatch. Bursa of Fabricius, spleen, caecal tonsils and part of the 

gut (ileum) were collected and stored at 4°C in RNAlater until further use. Blood, in 

a volume of ~1 ml, was collected into EDTA containing tubes and isolation of white 

blood cells was performed the same day, as described in Chapter 2, section 2.5.4.  

 RNA extraction and cDNA synthesis 5.2.2

To perform EvaGreen-based qPCRs for reference gene normalisation, total 

RNA was isolated from collected tissue and blood samples and reversely transcribed 

to generate cDNA, which was then used as a qPCR template. Total RNA was isolated 

using an RNeasy Mini Kit (Qiagen, Crawley, UK), as described in Chapter 2, section 

2.6.1 and 2.6.2 with an additional DNase step. The quality and quantity of extracted 

total RNA was evaluated by spectrophotometry using a NanoDrop™ 1000 

instrument. First-strand cDNA synthesis was performed using a SuperScript III 

reverse transcription kit (Paisley, UK) containing random primers (Sigma-Aldrich, 

Poole, UK), as described in Chapter 2, section 2.7.2. The same amount of total RNA 

(1 μg) was used to generate cDNA from the tissues and blood collected. The cDNA 

was stored in -20°C until further use.  

 Gene selection and quantitative PCR 5.2.3

Seven genes commonly used as reference genes in quantitative PCR (qPCR) 

gene expression experiments were selected and are briefly described in Table 5.1. 

All qPCR primers were designed using Primer Express Software 3.0 (Life 

Technologies) and synthesised by Sigma Aldrich (Poole, UK). Primer sequences and 

amplicons length are shown in Appendix 1, Table 6. Quantitative PCR, using 7500 

Fast Real-Time PCR System was performed as described in Chapter 2, section 2.7.6. 
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For each primer pair internal standard curves (serial dilutions of pooled cDNA 

samples for all tissues) were used to assign relative concentrations to the samples. 

Table 5.1. Reference genes selected for evaluation and the function of the encoded products. 

Gene 
symbol 

Gene name Function 

ACTB β-actin 

Essential component of the cytoskeleton, critical roles in a wide 

range of cellular processes, including cell migration and cell 
division 

B2M β-2-microglobulin Associated with the heavy chain of MHC class I 

GAPDH 
glyceraldehyde-3-

phosphate 

dehydrogenase 

Catalytic role in the oxidative phosphorylation of glyceraldehyde 
3-phosphate to 1,3-bisphospoglycerate during glycolysis and in 

gluconeogenesis 

GUSB β-glucuronidase Catalytic role in breakdown of complex carbohydrates 

TBP 
TATA box binding 

protein 

Subunit of the transcription factor TFIID, first protein to bind to 
DNA during the formation of the pre-initiation transcription 

complex of RNA polymerase II (RNA Pol II) 

TUBAT α-tubulin Part of the microtubule forming system, binds to GTP 

r28S r28S ribosomal RNA 
Structural RNA for the large component of eukaryotic 
cytoplasmic ribosomes 

 

 NormFinder, geNorm and BestKeeper analyses 5.2.4

To select suitable internal controls, the stability of each gene was statistically 

analysed with three software tools: GeNorm (Vandesompele et al., 2002; section 

2.1.?); NormFinder (Andersen et al., 2004; section 2.1.8) and BestKeeper (Pfaffl et 

al., 2004; section 2.1.7). All three packages were used according to the 

manufacturer’s instructions.  
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 Results 5.3

 Validation of reference gene primers 5.3.1

Primer pairs for seven reference genes were designed against the template 

using Primer Express software 3.0 and following six strict conditions described in 

Chapter 2, section 2.7.5. Primers pairs span exon-intron boundaries for the ACTB, 

B2M, GAPDH, GUSB and TBP gene. The r28S ribosomal RNA does not carry coding 

sequence and the TUBAT gene primer pair does not cross exon-intron boundaries, 

as attempts to optimise previously designed oligonucleotides were unsuccessful. 

Primer pair specificity was tested in qPCR by examining the melting curve 

performed at the end of the reaction (Figure 5.1a). The single peak with no 

shouldering suggested the specificity of primer annealing. Primer pairs that 

produced more than one peak and/or shoulder were tested again and, when 

needed, redesigned. Amplicons from qPCR reactions were confirmed by agarose gel 

electrophoresis, where a single band suggested a single amplicon. Results of melting 

curve analysis are shown in Figure 5.1b.  
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Figure 5.1. Specificity of qPCR reaction with reference gene primers ; a) melting curve analysis to 
define the specificity of reference gene qPCR; b) agarose gel electrophoresis of the corresponding 
qPCR amplicons. 
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 Expression profiles of reference genes 5.3.2

Expression profiles of each reference gene were examined by calculating 

quantification cycle (Cq) value, which represents the cycle number at which the 

fluorescence generated in the reaction crosses the fluorescence threshold above 

the background signal. It usually is the middle of exponential phase of reaction. The 

expression levels of the seven reference genes tested varied widely between the 

genes studied with Cq values ranging from 9 to 38 cycles (Figure 5.2) and most of 

the Cq values were between 18 and 31 cycles. The r28S gene was most abundantly 

transcribed with Cq values of less than 17 cycles and ACTB, B2M and GAPDH were 

moderately expressed with average Cq values between 18 and 23 cycles. GUSB, TBP 

and TUBAT showed average Cq values between 27 and 31 cycles. The lowest 

expression level was observed in TUBAT with Cq value as high as 38 cycles. The 

inspection of raw Cq values alone is not sufficient for determining gene expression 

stability. The data obtained from qPCR were further analysed using NormFinder, 

geNorm and BestKeeper. Only the last algorithm allows for input of raw Cq data 

from qPCR. For the others, data was transformed into relative quantities. The 

transformation process is described in paragraph 5.3.3. 

 

Figure 5.2. Quantification cycles (Cq) values reflecting expression levels of seven reference genes in 
all tissues tested. Data points represent single sample (n=50, 10 birds, 5 tissues) Cq value for 
particular reference gene. 
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 Transformation of Cq values to quantities (Q) 5.3.3

Quantification cycle values were generated in qPCRs for each gene tested 

and in each tissue sample derived from birds reared on the pedigree and sib ling test 

farms. In order to optimise qPCRs for each reference gene, 10-fold serial dilutions of 

pooled cDNA samples (n=50) were tested on the same plate to avoid run-to-run 

differences and results were used to generate standard curves. To calculate the 

efficiency of reaction, the slope value was calculated from serial dilutions for each 

gene, which was then used to determine the efficiency of reaction (Equation 2). 

Complete calculations for all reference genes are presented in Appendix 1, Table 7 

for the sibling-test farm and Table 8 for the pedigree farm. In order to obtain 

accurate and reproducible results, reactions should have efficiency close to 2 

(100%), which means that the template doubles with each cycle during exponential 

amplification. A slope of - 3.32 indicates optimal PCR efficiency. 

𝑬 = 𝟏𝟎(− 𝟏/𝒔𝒍𝒐𝒑𝒆) 

alternative                        [%] 𝑬 = (𝟏𝟎(−𝟏/𝒔𝒍𝒐𝒑𝒆) − 𝟏) x 100 

Equation 2. Calculation of efficiency (E) of reaction 

Mean quantification cycle (Cq) values were transformed into quantities (Q) by the 

deltaCq (ΔCq) method where the Cq value of a particular sample was related to the 

control/calibrator. In this experiment, the control/calibrator was the sample with 

the highest expression (lowest Cq value). Relative quantities were generated by the 

ΔCq formula for transforming Cq values to relative quantities with the highest 

expression level set to one (Equation 3).  

𝑸 = 𝑬−𝜟𝑪𝒒 

Equation 3. Relative quantities formula 

The ΔCq method generated raw, non-normalised expression values, which required 

normalisation if used for gene expression studies, by dividing with the normalisation 
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factor. The Q values were used as input data in NormFinder and geNorm 

programmes.  

 NormFinder analysis 5.3.4

The analysis with NormFinder software identified ACTB and TBP as the best 

combination of genes for all tissues with a stability value across all tissues of 0.076, 

where TBP (0.110) was ranked the most stable gene. The TUBAT gene (0.596) was 

ranked the most unstable gene in tissue panel tested. The stability of the genes 

varied depending on the tissue tested. Analysis was also performed for each tissue 

type separately. TBP was ranked the most stable gene in bursa (0.188), spleen 

(0.052) and caecal tonsils (0.157). In the Peyer’s patches region of the ileum, GUSB 

(0.220) was ranked the most stable. In blood samples, GAPDH (0.137) was selected 

as the best gene. In spleen and blood TBP was paired with GUSB (0.037 and 0.147), 

in bursa samples with GUSB (0.171), in caecal tonsils with r28S (0.125) and in ileum 

with ACTB (0.194) as the best pair of genes. Results showing the most stable genes 

and their stability values as predicted by NormFinder are shown in Table 5.2.  

Table 5.2. NormFinder (NF) analysis of the most stable reference genes and their stability values for 
all sample tested. 

Tissue Best gene NF stability value Combination of two genes NF stability value 

Bursa TBP 0.188 GUSB, TBP 0.171 

Spleen TBP 0.052 GAPDH, TBP 0.037 

Caecal tonsils TBP 0.157 r28S, TBP 0.125 

Ileum GUSB 0.22 ACTB, TBP 0.194 

Blood GAPDH 0.137 B2M, GAPDH 0.147 

All tissues TBP 0.11 ACTB, TBP 0.076 

Legend: ACTB - β-actin; b2m - β-2-microglobulin; GAPDH - glyceraldehyde-3-phosphate dehydrogenase; GUSB - 
β-glucuronidase; TBP - TATA box binding protein; TUBAT - α-tubulin; r28S - r28S ribosomal RNA. 

Overall, the TBP gene was selected as the most stable gene in most of the 

tissues either as the best gene or paired with a second gene as the best reference 

gene combination in given tissue panel. When samples from two different farms 
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were examined separately, TBP was selected as the best gene for tissues from birds 

raised on the pedigree farm and the best combination of two genes was TBP and 

GAPDH (0.154). For the sibling test farm GAPDH was paired with GUSB (0.096) and 

GUSB was ranked the most stable.  

 geNorm analysis 5.3.5

Reference gene normalisation was also performed using geNorm, a visual 

basic application (VBA) for Excel. The analysis of all samples from both farms using 

geNorm identified TBP and B2M (M = 0.73) as the most stable pair of genes (Table 

5.3). Similar to analysis with NormFinder, ranking of genes was performed on 

separate tissues. For both bursa and spleen tissues GAPDH and TBP were selected 

the best pair of genes with stability M values of 0.4 and 0.34, respectively. Ileum 

and blood tissues shared B2M as one of the most stable genes that was paired with 

TBP (M = 0.79) and GAPDH (M = 0.4), respectively. Caecal tonsils analysis resulted in 

ACTB and r28S (M = 0.42) being the best pair of reference genes. Results are shown 

in Table 5.3. 

Table 5.3. geNorm analysis showing the pairs of most stable reference genes for each tissue sample 
tested and their stability expression M value. 

Tissue Combination of two genes geNorm M value 

Bursa GAPDH, TBP 0.4 

Spleen GAPDH, TBP 0.34 

Caecal tonsils ACTB, r28S 0.42 

Ileum B2M, TBP 0.79 

Blood B2M, GAPDH 0.4 

All tissues B2M, TBP 0.73 

Legend: ACTB - β-actin; b2m - β-2-microglobulin; GAPDH - glyceraldehyde-3-phosphate dehydrogenase; GUSB - 
β-glucuronidase; TBP - TATA box binding protein; TUBAT - α-tubulin; r28S - r28S ribosomal RNA. 

The geNorm algorithm proposes the optimal number of reference genes in 

studied samples. The levels of variation in average reference gene stability are 
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calculated based on the stepwise inclusion of a subsequent gene or genes. The 

geNorm software calculates normalisation factor (NF) from at least two genes. The 

pairwise variation (V) between two sequential NFs is determined. The additional NF 

for reference gene should decrease the variation, preferably below the cut-off point 

of 0.15 in order to include it in the panel of final reference genes for given samples. 

In this study, addition of a fourth gene caused the decrease in variation in stability 

in all types of tissues. For bursa and spleen tissues, ACTB and B2M were included, 

which decreased variation in stability to 0.13 and 0.14 respectively. For caecal 

tonsils, TBP and GAPDH addition had similar effect (V = 0.14). In case of ileum ACTB 

and r28S, decreased variation in stability from 0.25 to 0.22 and in blood ACTB and 

TBP reduced the variation to 0.17. When all tissues were analysed together, 

addition of ACTB and GAPDH to the calculation caused the decrease in variation to 

an almost ideal point of 0.16 (Figure 5.3). 

 

Figure 5.3. The pairwise variation (Vn/Vn + 1) between the normalisation factors NFn and NFn+1 to 
determine the optimal number of reference genes for normalisation. 
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 BestKeeper analysis 5.3.6

In this study, Cq values of all tissues for each reference gene tested were 

combined. The first step of analysis showed that none of the genes passed the 

ranking based on standard deviation (SD) and coefficient of variance (CV) levels. 

According to BestKeeper developers, the standard deviation for any given gene 

should be below value of 1. Genes with this parameter higher than 1 can be 

considered inconsistent. Standard deviations for all of the analysed genes were 

higher than 1, with TUBAT SD of 3.03. The lowest SD were calculated for ACTB 

(1.27) and r28S (1.22). Based on the results from descriptive statistics for all tissues 

combined, ranking of reference genes using BestKeeper was impossible.  

The Cq values for tissues were tested separately. Results are presented in 

Table 5.4. Standard deviation of Cq values from bursa (Table 5.4a) were below value 

of 1 for ACTB, GAPDH, TBP and r28S. The lowest CV was calculated for TBP. Based 

on those rankings B2M, GUSB and TUBAT were excluded from the analysis. 

BestKeeper Index calculated based on the remaining four reference genes was then 

correlated with each gene separately. The highest correlation was for ACTB, 

followed by GAPDH, TBP and r28S.  

The same approach was used to analyse Cq data from caecal tonsils (Table 

5.4b). Standard deviation for B2M and TUBAT were above 1 and genes were 

excluded from the analysis. This resulted in high correlations, with p values lower 

than 0.001, for all remaining genes: r28S, TBP, GUSB, GAPDH and ACTB. 

In BestKeeper analysis of ileum tissues (Table 5.4c) three reference genes 

(B2M, TUBAT and r28S), were excluded from further calculations based on their 

high SD. Further analysis with four remaining genes showed the highest correlation 

for TBP, GUSB and ACTB, with GAPDH having the lowest correlation among tested 

genes. 

Based on descriptive statistics calculations performed on Cq values from 

spleen, TBP and TUBAT did not pass the ranking (Table 5.4d). After exclusion of TBP 

and TUBAT from the analysis, calculations of correlation showed that ACTB was the 

most stable gene, followed by GAPDH, B2M, r28S and GUSB. 
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Table 5.4. BestKeeper analysis results. SD, CV values and pair-wise correlation with BestKeeper Index 
describing stability for tested reference genes. Genes with SD > 1 (red) were excluded from the pair-
wise correlation analysis. The most stable genes for each tissue are highlighted in green. 

a) Bursa ACTB B2M GAPDH GUSB TBP TUBAT 28S 
Standard 
deviation [± Cp] 

0.79 1.05 0.74 2.05 0.79 3.65 0.43 

Coefficient of 
variance[% Cp] 

4.25 5.16 3.22 7.95 2.82 12.90 3.88 

Pair-wise correlation with BestKeeper Index (n = 4) 
 
BestKeeper  vs. ACTB B2M GAPDH GUSB TBP TUBAT 28S 
Coefficient of  
correlation [r] 

0.959 - 0.929 - 0.856 - 0.802 

p-value 0.001 - 0.001 - 0.002 - 0.005 

b) Caecal tonsils ACTB B2M GAPDH GUSB TBP TUBAT 28S 

Standard 
deviation [± Cp] 

0.51 1.22 0.58 0.79 0.71 1.59 0.49 

Coefficient of 
variance[% Cp] 

2.78 6.07 2.53 2.85 2.51 4.88 4.45 

Pair-wise correlation with BestKeeper Index (n = 5) 
 
BestKeeper  vs. ACTB B2M GAPDH GUSB TBP TUBAT 28S 
Coefficient of  
correlation [r] 

0.906 - 0.916 0.939 0.972 - 0.984 

p-value 0.001 - 0.001 0.001 0.001 - 0.001 

c) Ileum ACTB B2M GAPDH GUSB TBP TUBAT 28S 
Standard 
deviation [± Cp] 

0.69 1.23 0.85 0.76 0.93 2.29 1.27 

Coefficient of 
variance[% Cp] 

3.54 5.82 3.63 2.69 3.18 6.96 10.99 

Pair-wise correlation with BestKeeper Index (n = 4) 
 
BestKeeper  vs. ACTB B2M GAPDH GUSB TBP TUBAT 28S 
Coefficient of  
correlation [r] 

0.825 - 0.719 0.836 0.940 - - 

p-value 0.003 - 0.019 0.003 0.001 - - 

d) Spleen ACTB B2M GAPDH GUSB TBP TUBAT 28S 

Standard 
deviation [± Cp] 

0.97 0.88 0.93 0.82 1.02 2.15 0.67 

Coefficient of 
variance[% Cp] 

5.50 4.35 4.14 2.97 3.72 6.95 6.32 

Pair-wise correlation with BestKeeper Index (n = 5) 
 
BestKeeper  vs. ACTB B2M GAPDH GUSB TBP TUBAT 28S 
Coefficient of  
correlation [r] 

0.920 0.846 0.917 0.680 - - 0.756 

p-value 0.001 0.002 0.001 0.031 - - 0.011 

Legend: ACTB - β-actin; B2M - β-2-microglobulin; GAPDH - glyceraldehyde-3-phosphate dehydrogenase; GUSB - 
β-glucuronidase; TBP - TATA box binding protein; TUBAT - α-tubulin; r28S - r28S ribosomal RNA. 
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Blood samples Cq values were also tested in BestKeeper. Results were similar 

to the test performed on all tissues. All reference gene standard deviation values 

were higher than one, which excluded them from analysis.  
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 Discussion 5.4

The present study simultaneously investigated a panel of seven commonly 

used reference genes in order to establish their expression stability in varied tissue 

samples and birds. NormFinder and geNorm results differed slightly. BestKeeper 

ranking only agreed with NormFinder when caecal tonsil samples were analysed. 

The results for all tissues combined in one analysis were available only from 

NormFinder and geNorm. Three out of four most stable genes were common for 

both analyses: TBP, GAPDH and ACTB. In separate tissues, TBP was the most 

common gene selected by NormFinder and geNorm. There are no published studies 

that use TBP as a reference gene in chicken mRNA expression experiments. Recent 

investigation of five candidate genes in tissues related to growth and fat deposition 

showed that TBP was the most stably expressed in chicken thigh muscle and second 

most stable in liver but its expression varied in breast muscle and fat tissue (Bages 

et al., 2015). TBP was stably expressed together with B2M in bovine granulosa cells 

subjected to different plating densities, oxygen concentrations and follicle 

stimulating hormone (FSH) stimulation (Baddela et al., 2014). The geNorm software 

selected B2M and ACTB as the most optimal reference genes in qPCR studies on 

human mesenchymal stem cells where other programs did not agree and ranked 

ACTB, GAPDH and TBP as the most unstable for that type of cells (Li et al., 2015). 

The variation of expression of a particular candidate gene may be due to its role in 

the tested tissue which has been shown in case of GAPDH where 72 human cells 

and tissues where used. The results exposed up to 14-fold difference of expression 

between some of the samples used (Barber et al., 2005). In this study, GAPDH and 

ACTB surprisingly were ranked as the second or third stable reference genes in 

some chicken lymphoid tissues. A different study on human bone marrow-derived 

mesenchymal stromal cells showed that TBP is the most stably expressed together 

with TFRC and HPRT1 (Rauh et al., 2015).  

There are few published studies on results of reference gene normalisation in 

chicken tissues or cells but all of the existing results differ in ranking of the genes. 

Most of the studies focused on chicken embryo fibroblasts (CEFs) as a virus 
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infection model. Yin et al. (2011) indicated ACTB as the most stably expressed gene 

in CEFs infected with Newcastle disease virus (NDV) and GAPDH with 18S as the 

least stable genes based on their transcriptional profiles only. Yue et al. (2010) used 

CEFs infected with avian influenza virus (AIV) and showed in cell response studies 

that YWHAZ is the most stable gene, where in virus replication studies ACTB and 

RPL4 were most reliable controls according to geNorm calculations. The same 

software was used to determine the best reference gene in CEFs infected with 

subgroup J avian leukosis virus (ALV-J). The geNorm ranked RPL30 and SDHA as the 

best candidates and ACTB and GAPDH as the least stable genes (Yang et al., 2013). 

Studies by the de Boever et al. (2008) on LPS inflammation in chickens resulted in 

GAPDH and UBC being the best pair of internal controls. In duck and chicken 

primary lung cells, infected with low pathogenic AIV and high pathogenic AIV, 

GAPDH was ranked as the second best reference gene after 18S (Kuchipudi et al., 

2012). The use of ribosomal RNA as normaliser has been controversial based on its 

technical limitations and led to exclusion from the analysis (Lu et al., 2013). 

Nevertheless, ribosomal RNA, including r28S and r18S has been shown to be a 

stably expressed reference (Wang et al., 2011; Roge et al., 2007). Li et al. (2007) 

reported that r28S was among few genes with stable expression in chicken embryo 

cells (CEs) infected with infectious bursal disease virus (IBDV) but in the same 

experiment, B2M and TBP were the least stable according to gene fold changes. In 

in vitro stimulation of human blood cells, TBP was shown to be good reference gene 

in studies on T lymphocytes, neutrophils and total blood leukocytes (Ledderose et 

al., 2011). In the current study r28S ranked as the most stable gene in caecal tissues 

together with TBP according to NormFinder and geNorm. After including additional 

genes to the best combination in geNorm analysis, r28S was the fourth most stable 

reference gene in ileum tissue. Although all tissues were normalised with genes 

selected by analysing values from all samples together it would be advantageous to 

select different panel for each tissue in separate calculations.  
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This study is the first report of reference gene normalisation in chicken 

lymphoid tissues. These results demonstrate the need to carefully select reference 

genes for immune gene expression studies as the frequently used genes and 

ribosomal RNA are not always appropriate internal controls. Although this 

experiment showed that TBP, GAPDH and ACTB are the suitable gene expression 

normalisers it is strongly recommended to test internal controls as a first 

experiment in gene expression studies. The selected reference genes will be used in 

the high-throughput qPCR experiment described in Chapter 6. 
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 Optimisation and validation of 96.96 Dynamic Chapter 6

Array as a diagnostic tool 

 Introduction 6.1

The main objectives for this chapter were to develop and validate a custom 

Fluidigm qPCR array for analysis of the transcription of immune-related genes as a 

tool for rapid screening of immune robustness in chickens. Working with our 

partners in Aviagen, the aim was to compare gene expression in related birds in 

high biosecurity clean housing (‘pedigree farm’) and an environment with lower 

biosecurity akin to commercial broiler farms (‘sibling test farm’), as well as to define 

the extent of variance between animals in a given environment. A further goal for 

this study was to compare responses in peripheral blood compared to internal 

organs as a predictor of the robustness of immune responses in the chicken, as non-

lethal methods would allow selective breeding from the live birds screened.  

Immune responses to encountered microorganisms are coordinated on 

cellular and molecular levels. The most exhaustive analysis of tissues and cells can 

be achieved by studying RNA expression. For many years researchers focused their 

efforts on nucleic-acid based tools to detect transcripts, with microarrays being the 

most widely used tool (Germain et al., 2011). Although the levels of mRNA inside 

the cells do not always correspond with the amount of proteins that will be 

produced, exploring immune responses at transcript levels is more accessible. 

Large-scale gene expression analyses are widely used in biological and medical 

studies (Zhong et al., 2008; Nie et al., 2010; Zheng-Bradley et al., 2010). Depending 

on the aim of the study, different tools can be implemented, such as RNA 

sequencing, microarrays or qPCR-based platforms, to analyse changes in the 

transcriptome (Svec et al., 2013). Screening hundreds of targets and samples in 

parallel qPCR for gene expression is possible with high throughput qPCR tools, for 

example the 96.96 Dynamic Array from Fluidigm (Spurgeon et al., 2008). This type 

of gene expression platform supports the effort of broad, unbiased explorations of 

biological systems in comparison to studying a single component in much detail 

with previously set hypotheses (Benoist et al., 2006).  
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The Fluidigm chip has been used to study mRNA and miRNA gene expression 

in different species, for example in pig lung tissues infected with influenza virus 

H1N2 (Skovgaard et al., 2013) or bovine mammary epithelial cells from mastitis 

infections (Sorg et al., 2013). There are also Fluidigm platforms available for single-

cell gene expression analysis (Pieprzyk and High, 2009). The Fluidigm 96.96 chip 

produces data for 96 transcripts in each of 96 total RNA samples (9,216 reactions in 

total). Optimisation of primers, reverse transcription and preamplification, prior the 

use of chip is essential in order to obtain reliable data. The integration of results 

from such a high-throughput qPCR platform with confirmed biological networks is a 

useful approach for gene expression studies.  

In this study, transcription of immune-related genes defined in Chapter 4 was 

compared in a genotypically similar commercial line of chickens housed separately 

at two different levels of biosecurity. The organs that were sampled included: gut-

associated lymphoid tissues (caecal tonsils, ileum part with Peyer’s Patches), bursa, 

spleen and peripheral blood leukocytes. All of these tissues are well known to play a 

role in immune responses. Gene expression responses to viral infections have been 

studied in the bursa (Smith et al., 2015; Rasoli et al., 2015; Smith et al., 2014). Gene 

expression in caecal tonsils has been studied in response to bacterial infections, 

mainly with Salmonella and Campylobacter (Akbari et al., 2008; Shaughnessy et al., 

2009) but also to viral (Heidari et al., 2015) and parasitic infections (Wils-Plotz et al., 

2013). The spleen is very important in mounting both innate and adaptive immune 

responses and is crucial for immune regulation, therefore its responses to different 

stimuli, including parasites and viruses, have been widely studied (Pleidrup et al., 

2014; Lian et al., 2012; Hong et al., 2012). The most frequently studied chicken 

blood cells are lymphocytes but heterophils and peripheral blood leukocytes as a 

whole population were also examined during infections (Chiang et al., 2008; 

Sandford et al., 2012).  

The high-biosecurity ‘pedigree’ farm sampled herein resembles a specific-

pathogen free setting and the ‘sibling-test’ farm mimics the commercial farm 
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environment. The populations received different vaccines (in detail 6.2.1 section). It 

cannot be said with precision what types of pathogens and microflora were acting 

on the immune system of birds in the different environments but there were 

certainly pathogens present on sibling-test farm, including E. coli and Eimeria 

species. From a breeder point of view, identifying transcriptional signatures 

associated with immune robustness in a basal state, or improved responses to 

exposure to pathogen challenge, would only be valid if birds with desirable 

characteristics could be further used in breeding programme, hence a blood test 

would be the ideal tool. 
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 Materials and methods 6.2

 Tissue collection and sample preparation 6.2.1

 Tissues and blood samples were obtained from eight Aviagen broilers from 

the same hatch. Four birds were raised in a high-biosecurity environment (the 

pedigree farm), and four birds were raised in an experimental, pathogen-

challenged, sibling-test farm. The pedigree farm birds were vaccinated at hatchery 

against MDV and IBV then against coccidiosis at day 5, against avian rhinotracheitis 

(TRT) at day 11 and against IBDV at day 15. Birds housed at the sibling-test farm 

were vaccinated against TRT, NDV and IBV at hatch and only received IBDV vaccine 

at day 19. The samples were collected at three weeks of age. Fragments 

(0.5 x 0.5 cm) of four tissues (bursa, spleen, caecal tonsils and ileum with Peyer’s 

patches) were collected aseptically from the same locations in each bird and stored 

in RNAlater until further use. Peripheral blood (1 ml) was collected into tubes 

containing EDTA. Peripheral blood leukocytes (PBLs) were isolated on the same day, 

as described in Chapter 2, section 2.5.4. RNA extractions for PBLs and tissues were 

performed as described in Chapter 2 section 2.6.1 and 2.6.2 with an additional 

DNase digestion step in the cell extraction protocol. 

 cDNA synthesis  6.2.2

 Reverse transcription was performed using SuperScript III (Invitrogen) as 

described in Chapter 2, section 2.7.2. In the first strand reaction, one μg of total 

RNA was used. Synthesised cDNA was diluted 1:5 in nuclease-free water prior to 

preamplification. Reverse transcription using a High Capacity Reverse Transcription 

Kit (Applied Biosystems, UK) was performed as described in Chapter 2, section 2.7.3.  

 Primer design and optimisation 6.2.3

The qPCR primer design is described in Chapter 2, section 2.7.5. Final primer 

sequences are presented in Appendix 1, Table 5. The primer pairs were tested in 

qPCR reactions with serial dilutions of pooled cDNA obtained from RNA isolated 

from tissues and cells from various infection studies. A melting curve step was 

performed to evaluate the specificity of primer pairs. The selected products were 
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purified using Nucleo-Spin Gel and a PCR Clean-up kit (Macherey-Nagel, UK) before 

sequencing. The primer pairs were screened for potential cross-reactivity using the 

AutoDimer algorithm. 

 The BioMark System qPCR 6.2.4

The BioMark System with 96.96 Dynamic Array platform allows to 

simultaneously perform 9,216 reactions, as described in Chapter 1, section 1.5.4 

and Chapter 2, section 2.10. A stock of primer mix was prepared by mixing one μl of 

each primer pair, excluding r28S and ENSGALG00000015395 primers, to the final 

concentration of 200 nM. Preamplification was performed as described in Chapter 

2; section 2.10.4. Unincorporated primers were digested with exonuclease I 

enzyme, as described in Chapter 2, section 2.10.5. To optimise the preamplification, 

different volumes of PreAmp Master Mix and different dilutions of template cDNA 

were used to test optimal concentrations. The qPCR was performed using the 

Applied Biosystems 7500 Fast Real-Time PCR System. Thermal cycling conditions are 

described in Chapter 2, section 2.7.6. Sample and assay mixes were prepared as 

described in Chapter 2, section 2.10.6 and stored in 4°C until further use. The 

priming and loading of 96.96 chip was performed as described in Chapter 2, section 

2.10.7 and 2.10.8. The BioMark HD system Data Collection Software was used to 

perform the qPCR as described in Chapter 2, section 2.10.9.  

 Data analysis settings and visualisation 6.2.5

To analyse the data from 96.96 Dynamic Array Real-Time PCR Analysis 

Software was used as described in Chapter 2, section 2.10.9. The raw Cq values in a 

.csv file were used as an input data in GenEx5 software. Pre-processing, statistical 

analysis and visualisation was performed as described in Chapter 2, section 2.10.10 

and 2.10.11. 
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 Results 6.3

 Primer optimisation 6.3.1

The designed primer pairs were tested in qPCR using serial dilutions of pooled 

cDNA samples isolated from tissues from various infection studies as a template. 

The same cDNA pool was used throughout. The melting curve of each primer pair 

was examined to evaluate their specificity. Examples of melting curves and their 

interpretation are shown in Figure 6.1. Each primer pair in this study was set to 

work efficiently at the concentration of 1.15 μM in the final reaction mix to avoid 

mistakes in the qPCR workflow. 

a) 

 

b) 

 

c) 

 
CCL19 IL19 NOS2 

d) 

 

e) 

 

f) 

 
CD40 STEAP1 TLR4 

Figure 6.1. Examples of optimisation of primer pairs based on melting curve analysis.  The melting 
curves for each primer pair were investigated; a) two peaks reflects two amplicons; b) one distinctive 
peak corresponds to a single amplicon and additional peaks to genomic DNA products; c) one peak 
with a shoulder corresponds to genomic DNA amplification; d) no peak corresponds to no 
amplification; panels e) and f) show further examples of the desired melting curve. 
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The use of DNA binding dye – EvaGreen, as an amplification detector, instead of 

internal oligonucleotide probes, allowed to design and test several primer pairs 

around the transcript of interest. The design of primer pairs was considered 

successful once the melting curve analysis showed a single sharp peak with no 

additional peaks or shoulders and when single band was visualised by agarose gel 

electrophoresis. The qPCR products with many peaks in the melting curves 

presented in Figure 6.1 produced multiple species on agarose gels, as shown in 

Figure 6.2. 

                 

Figure 6.2. Examples of primer specificity confirmation by agarose gel electrophoresis. Selected qPCR 
products were tested; 1 – CCL19; 2 – IL19; 3 – CD40; 4 – NOS2. 

Amplicons from a subset of 10 qPCR reactions that produced only a single species 

were excised from the agarose gel, cleaned-up and sequenced. Results for selected 

alignments are shown in Figure 6.3. 

 

 

 

 

 

1 

2 

3 4 
100 bp 

100 bp 

100 bp 

2 



126 

ACTB________________________________________________________________ 
ACTB : CCAGACATCAGGGTGTGATGGTTGGTATGGGCCAGAAAGACAGCTACGTTGGTGATGAAGCCCAGAGCAA :  70 

FWD  : CCAGACATCAGGGTGTGATGGTTGGTATGGGCCAGAAAGACAGCTACGTTGGTGATGAAGCCCAGAGCAA :  70                                                                                    

                                                                                                                                                                                                                                                                                                                                                                                                                

ACTB : AAGAGGTATCCTGACCCTGAAGTACCCCATTGAACACGGTATTGTCACCAACTGGGATGATATGGAG    : 137 

FWD  : A.GAGGTATCCTGACCCTGAAGTACCCCATTGAACACGGTATTGTCACCAACTGGGATGATATGGAG    :  70 

 
 

r28S_________________________________________________________________ 
r28S    : GGCGAAGCCAGAGGAAACTCTGGTGGAGGTCCGTAGCGGTCCTGACGTGCAAATCGGTCGTC : 62 

FWD     : .....................CGTAGAGATC.GTAGCGGTC.TGACGTGCAA.TCGGTCGTC : 38 

                                                                            

 

IL4I1________________________________________________________________ 
IL4I1  : GCCCTGCAGTCGGCTGTCAAGGAGTTCCAGACCATGAACTGCAAGGAGTATCTGGCTAAACACGACTCCT :  70 

FWD    : ...................................................CTGGCTAA.CACGACTCCC :  18 

                                                                                                                                                                                                                                                             

IL4I1  : TTC.CACCAAGGAATATCTGATTAAAGTCGGGAATCTGAGCCGAGGAGCTGTGCAGATGATCGGAGATTT : 139 

FWD    : TTCTCACCAAGGAATATCTGATTAAAGTCGGGAATCTGAGCCGAGGAGCTGTGCAGATGATCGGAGATTT :  88 

                                                                                                                                                   

IL4I1   : GCTGAACGAGGACTCG. : 155 

FWD     : GCTGAACGAGGACTCGA : 105 

 

 

IL17REL______________________________________________________________ 
IL17REL: CTTTGCATTGAGGGTTGGCTGGCAATTCCAGATGCCAGGAGGTTACAACTTTGTCCCTTTGAAAATGATA :  70 

FWD    : ................................................CTTTGTCCTTT..GAAATGATA :  20                                                                                                                                                                  

                                                                            

IL17REL : CAAAGGCATTATGGGATAATATTGTTTATAATCCAGTGACACAAACCCTAGCTTGGGAA : 129 

FWD     : CGAAGG.ATTATGGGATAATATTGTTTATAATCCAGTGAC.CAAACCCTAGCTTGGGAA :  77 

 

 

IL18_________________________________________________________________                                                                           
IL18  : GTGAAATCTGGCAGTGGAATGTACTTCGACATTCACTGTTACAAAACCACCGCGCCTTCAGCAGGGATGC :  70 

FWD   : .............................................................CAGGGATGC :   9 

                                                                                                                                                                                                                                                   

IL18  : CTGTTGCATTCAGCGTCCAGGTAGAAGATAAGAGTTACTACATGTGTTGTGAGAAAGAGCATG.. : 133 

FWD   : CTGTTGCATTCAGCGTCCAGGTAGAAGATAAGAGTT.CTACATGTGTTGTGAGAAAGAGCATGAG :  73 

                                

 

IRF1________________________________________________________________ 
IRF1  : GATCTGGATCAACAAGGATAAGATGATATTTCAGATCCCATGGAAACATGCAGCTAAGCATGGCTGGGAC :  70 

FWD   : .....................................................................C :   1 

                                                                                                                                                                                                                                         

IRF1  : ATGGAGAAGGACGCCTGCCTCTTCCGGAGCTGGGCCATCCATACAGGAAGATATAAAGT. : 129 

FWD   : ATGGAGAAGGACGCCTGCCTCTTCCGGAGCTGGGCCATCCATACAGGAAGATATAAAGTA :  61 

                                                                           

 

UPP1_______________________________________________________________ 
UPP1  : TCAGTCAGTCACGGTATGGGCATTCCTTCTATTTCAATCATGTTGCACGAGCTGATCAAACTGTTGTATC :  70 

FWD   : .......................TCCTTCTATTTCA.TCATGTTGCACGAGCTGATCAAACTGTTGTATC :  46 

                                                                                                                                                                                                                                                             

UPP1  : ATGCCAAGTGTTCCAACATAACCATTATTCGCATTGGCACCTCGGGTGGAATAGGTCTGGAACCAGGCTC : 140 

FWD   : ATGCCAAGTGTTCCAACATAACCATTATTCGCATTGGCACCTCGAA........................ :  92 

                                                                                                                               

UPP1  : AGTGGTT : 147 

FWD   : ....... :   - 

                                                                               

Figure 6.3. Sequence alignments of selected qPCR products. 

 

 Optimisation of the 96.96 qPCR Dynamic Array via pilot studies 6.3.2

For the first test run, cDNA samples were generated using SuperScript III 

reverse transcription kit where 2 μg of RNA was used. Complementary cDNA was 

diluted 1:5 prior to preamplification. A reaction volume of 5 μl was prepared 
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comprising 2.5 μl of PreAmp Mix and 2.5 μl 200 nM primer mix stock which included 

primers for r28S and ENSGALG00000015395 genes. The thermal reaction consisted 

of 16 cycles. Preamplified cDNA was diluted 1:4 in low EDTA-TE buffer without 

Exonuclease I treatment. Results are presented as a heat map in Figure 6.4. 

  

Figure 6.4. Heat map view of qPCR results from first optimisation of 96.96 Dynamic Array. Reactions 
were performed with 95 genes including 6 reference genes, in columns and 40 samples from Aviagen 
broilers in rows (technical duplicates). Each square represents one of the 9,216 chambers with 
contained qPCR reactions with colour-coded level of Cq values.  

Examination of amplification curves for all genes indicated that many target 

transcripts were only detected very late in the qPCR cycling programme, (around 

26-27 cycles, which is near the completion of qPCR reaction), as indicated by navy 

blue colour on the heat map. In case of genes that were amplified early in the qPCR 

reaction (e.g. r28S, ENSGALG00000015395) the melting curve examination showed 

specific amplification. For most of the genes with an amplification signal, melting 

Cq value 
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curve analysis showed non-specific products caused by residual primers. The first 

96.96 Dynamic Array run using preamplified cDNA did not produce positive results 

in the case of most of the genes tested, as it was not properly optimised. Although 

the preamplification step was performed as described in Rødgaard et al. (2012), 

where PreAmp mix volume was 5 μl and DNA used was diluted 1:5, not many genes 

were expressed.  

Several changes in sample preparation were applied to resolve the problems 

encountered during first run. In the next pilot study, the complementary DNA was 

reversely transcribed from not more than 100 ng/μl of total RNA. Newly made cDNA 

was not diluted before preamplification. The primer mix (200 nM) did not contain 

primers for r28S and ENSGALG00000015395 transcripts, as these genes proved to 

be highly abundant and could bias the efficiency of the preamplification reaction. 

The crucial step in multiplex PCR is the removal of unincorporated primers. In this 

study exonuclease I, from Escherichia coli (Lehman and Nussbaum, 1964) was used 

to digest primers that were not incorporated into newly made amplicons. The 

changes in sample preparation in this second pilot study did not result in useable 

qPCR data. Only r28S and ENSGALG00000015395 transcripts were amplified, 

despite absence of their primer pairs in the preamplification mix (data not shown). 

To test the hypothesis of preamplification inhibition, a third test run was performed 

where cDNA without preamplification was used. The cDNA from samples predicted 

to have high levels of the target transcripts was selected to make serial dilutions, 

specifically from the HD11 cell line stimulated with LPS and CD40 ligand, heterophils 

stimulated with Salmonella Enteritidis, or spleens from IBDV and MDV infected 

birds and splenocytes stimulated with LPS. The results of the third pilot trial are 

presented in Figure 6.5. Non-preamplified cDNA qPCR resulted in stronger 

fluorescence signals than preamplified samples in previous tests. Although this third 

pilot experiment confirmed that the RNA is reverse transcribed there was a need to 

confirm if different samples from infection studies would yield similar results with 

and without preamplification.  
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Figure 6.5.Heat map view of the third pilot study using serial dilutions of samples predicted to have 
high levels of the target cDNA. Samples were not preamplified prior the use in 96.96 Dynamic Array 
chip. Chambers containing higher concentrations of cDNA have detectable levels of fluorescence.  

The fourth test run was performed using archived samples (cDNA and 

preamplified cDNA), specifically spleen and thymus from MDV infected birds; spleen 

and bursa from IBDV infected birds; spleen and caecal tonsils from Campylobacter 

colonisation studies; duodenum infected with Clostridium perfringens (CP4 virulent 

strain); spleen and Harderian gland from IBV infected line N birds; HD11 cell line 

stimulated with LPS and CD40 ligand; jejunum infected with Eimeria maxima and 

caeca infected with Eimeria tenella. RNA samples were reverse transcribed as 

previously described. The preamplification protocol was modified where 2.5 μl of 

PreAmp master mix was combined with 1.25 μl of cDNA or preamp cDNA (not 

diluted) and 1.25 μl primer mix (200 nM). Archived preamplified cDNA samples 

were not amplified in the qPCR. Neither archived samples results in positive qPCR, 

apart from r28S and ENSGALG00000015395 cDNA. The majority of the tested genes 
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were not amplified in selected samples from infection studies and most of the 

fluorescence signal recovered was very weak (data not shown). 

The preamplification step is claimed to be crucial for use of 96.96 chip as the 

volumes of the reactions are very small (6 nl) and low expressed genes may not be 

detected. The qPCR performed on cDNA returned positive results but only in case of 

genes with high mRNA levels. Preamplified cDNA produced positive outcomes only 

for genes that were not included in preamplification primer mix. Therefore, there is 

a need to optimise the protocol for preamplification, as the recommended 

guidelines did not yield positive results.  

 Preamplification optimisation 6.3.3

The preamplification or specific target amplification is a multiplex PCR with a 

limited number of cycles where simultaneous gene expression of many targets 

occurs (Mengual et al., 2008). As only primers for genes of interest are used in the 

PCR, no other target is amplified and the relationship between targets is preserved 

(Korenkova et al., 2015). Although is it the essential part of the workflow in these 

type of applications it is the least studied step in qPCR. Preamplification should 

increase the yield of qPCR and highly expressed samples should have Cq ~ 5-15 

cycles, where low expressed targets are characterised by Cq values around cycle 20. 

The cDNA for two samples – caecal tonsils and bursa from Aviagen broilers were 

prepared using 500 ng of total RNA and the SuperScript III kit. β-actin (ACTB) mRNA 

gene expression was examined in selected samples. Three preamplification mixes 

ranging from 2.5 μl (Mix 1), 5 μl (Mix 2) to 7.5 μl (Mix 3) of PreAmp master mix and 

different concentrations of cDNA were tested in conventional qPCR machine. Two 

cycle numbers for thermal cycling were tested and preamplified cDNA was diluted 

ten times after exonuclease I treatment. Results are shown in Figure 6.6. Non-

preamplified cDNA was amplified earlier in reaction cycle compared to preamplified 

cDNA. Both caecal tonsils and bursa samples preamplified in three different 

reactions resulted in Cq values higher than 25 for 15-cycle PreAmp and Cq equal or 
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higher than 30 for 18-cycle PreAmp. The lowest Cq values was observed for 15-cycle 

mix 3 where the highest volume of PreAmp master mix was used.  

a) 

 

b) 

 

Figure 6.6. Preamplification test in 5 μl performed using a standard qPCR machine ; expression of 
ACTB in a) cDNA of caecal tonsils and b) cDNA of bursa. Three master mixes tested in two reactions 
using bursa and caecal tissues. Non-preamplified cDNA (1/5 dilution) used as a control in qPCR. The 
error bars represent SD from three technical replicates. 

The next optimisation attempt involved increasing the volume of PreAmp Master 

mix to 20 μl and decreasing cycle numbers to 10. Samples were treated with 

exonuclease I. Different concentrations of RNA were used in reverse transcription 

reaction. Results are shown in Figure 6.7. Increasing the reaction volume to 20 μl 

resulted in positive preamplification despite the lower number of thermal cycling. 

Preamplified samples, reverse transcribed from 250 ng of total RNA and both neat 

and diluted 1/10 were amplified earlier than non-preamplified cDNA. Only bursa 

cDNA made from 125 ng of total RNA, preamplified and diluted 10 times resulted in 

a Cq value being higher than non-preamplified cDNA.  

According to the manufacturer’s description the PreAmp Master Mix was 

optimised on total RNA reverse transcribed using a High Capacity Reverse 

Transcription Kit. The next step was to use the same RT kit and test newly made 

preamplified cDNA and diluted 10 times in qPCR. The test was performed using 

cDNA made from 100 ng/μl RNA, as recommended by the manufacturer. Two RT 

reaction volumes were made, 10 μl and 20 μl, to test the same RNA concentration. 
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Preamplification mix consisted of 2.5 μl PreAmp Master Mix, 1.25 μl of primer mix 

(200 nM) and 1.25 μl of neat cDNA. Samples were treated with exonuclease I. 

Results are shown in Figure 6.8. 

a) 

 

b) 

 
Figure 6.7. Preamplification test in 20 μl reaction volume and 10-cycle PCR ; expression of ACTB in 
a) caecal tonsils cDNA; b) bursa cDNA. Two concentrations, 250 ng and 125 ng, of RNA were used to 
make cDNA. Non-preamplified cDNA (1/5 dilution) was used as a control in the qPCR. The error bars 
represent SD from three technical replicates. 

There was no difference observed in Cq values between different volumes of RT 

reactions. Both, 10 μl and 20 μl reactions resulted in similar Cq values and 

concentrations of cDNA (~2400 ng/μl). The mRNA expression of ACTB in both 

samples was at similar levels when cDNA and preamplified cDNA was used as 

template in qPCR. Preamplified cDNA had higher Cq values than non-preamplified 

cDNA but lower than previously reversely transcribed samples using SuperScript III 

kit, as shown in Figure 6.6 (Mix 1). Therefore, the High Capacity Reverse 

Transcription kit was used in further experiments to generate cDNA.  
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Figure 6.8. Preamplification test of cDNA made using a High Capacity Reverse Transcription Kit and 
100 ng/μl total RNA in 10 ul and 20 ul reactions. Ceacal tonsils (CT) and bursa (B) tissue RNA was 
tested. Non-preamplified cDNA was diluted 1/5. The error bars represent SD from replicates (n=3). 

The next step was to examine if standard RNA isolated from COS-7 cells 

transfected with plasmids containing IL-1β, IL-6, IL-8, IL-12β, IL-18 and CXCLi2 

inserts will produce positive signals with and without preamplification when tested 

using 96.96 Dynamic Array. To make cDNA, High Capacity Reverse Transcription in 

10 μl reaction, using 100 ng/μl was performed. Newly synthesised cDNA, in final 

concentration of 5 ng/μl of reaction, was used in 5 μl preamplification reaction. 

Preamplified cDNA was then serially diluted (1:2) and used as a template in 96.96 

Dynamic Array along with non-preamplified cDNA in serial dilutions.  
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a)

 

b) 

  
Figure 6.9. Heat map view of a) non-preamplified cDNA and b) preamplified cDNA corresponding to 
control transcripts. Samples were reverse transcribed from standard IL-1β, IL-6, IL-8, IL-12β, IL-18 
and CXCLi2 RNA, serially diluted 1:2. Increase in dilution caused decrease in detected fluoresce of 
qPCR reaction in non-preamplified samples (a). Preamplified samples did not resulted in positive 
qPCR for most of the genes, apart from IL-12β (b). 

As shown in Figure 6.9a, serial dilutions of cDNA without preamplification resulted 

in specific and efficient detection of the target cDNAs with decreasing fluorescence 

signal in qPCRs with each two fold serial dilution, which is characterised by change 

in colour that corresponded with higher cycle number. Amplification of 

preamplified cDNA in 96.96 Dynamic Array qPCR was unsuccessful, as shown in 

Figure 6.9b. For most of the samples tested the concentration of cDNA after 

preamplification was too low due to possible inhibition of reaction. It can be 

therefore concluded that use of higher concentrations of cDNA in higher than 

recommended volumes of PreAmp master mix would give positive results. 

 A very important aspect of PCR setup is a dilution of the original sample. 

Lowering the concentration of a template is common practice in single-template 

assays but in the case of mixed templates, dilutions may lead to loss of low or 

Cq values 
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moderately concentrated targets. Another test of the preamplification reaction was 

performed using final concentration of cDNA in the preamplification reaction 185 

ng/μl in 20 μl volume. Ten samples from two chickens, each representing a different 

farm, were selected and pooled for cDNA synthesis using High Capacity Reverse 

Transcription Kit where 100 ng/μl of total RNA was used. As the RT reaction 

produces ~2500 – 3500 ng/μl of cDNA, samples were diluted 1:5 before the 

preamplification reaction. Results are shown in Figure 6.10. The increase in volume 

of the reaction and concentration of cDNA resulted in successful preamplification. 

In the preamplification optimisation, both template dilutions and concentration of 

PreAmp master mix were changed in order to eliminate inhibition. The greater 

reaction volume with appropriate cDNA concentration worked but the reason for 

inhibition of reaction in previous optimisation attempts is unknown.  Having 

optimised the reaction, the next step involved testing the same settings in 96.96 

Dynamic Array chip. 

 

Figure 6.10. Preamplification test with the use of higher cDNA concentration and higher reaction 
volume.  The mRNA expression of ACTB in ten samples from sibling test and pedigree farms was 
tested. Higher concentrations of cDNA (185 ng/μl) were used in 20 μl preamplification reactions. 
Non-preamplified cDNA used as a control. The error bars represent SD from four replicates. 
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 Application of the optimised qPCR protocol to RNA from tissues 6.3.4
from Aviagen broilers on pedigree and sibling test farms 

Having optimised the preamplification protocol (Figure 6.10), samples from 

the remaining Aviagen broilers were prepared in the same manner to be used as a 

template in 96.96 Dynamic Array qPCR. Samples were treated with exonuclease I 

before qPCR in 96.96 Dynamic Array. Results are shown in Figure 6.11. The 

expression of 89 genes related to immune responses, as well as 6 reference genes 

was detected, as shown in the heat map based on colour coding of the expression 

level before pre-processing. The majority of the data fell in the of range about Cq = 

5 – 23. Melting curves for all the primer pair were examined. Melting curves for ‘no 

template’ controls, for reference genes, for genes where primers did not span exon-

intron boundaries are shown in Appendix 1, Figure 2-5. The same reaction settings 

were implemented in an additional 96.96 Dynamic Array to confirm whether all 

steps, from RNA extraction, reverse transcription to preamplification, results in 

reproducible data. RNA from eight tissues (four per farm) was isolated and reversely 

transcribed as previously described. Newly synthesised cDNA was preamplified in 

20 μl reactions using 185 ng/μl of the template.  
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Figure 6.11. Heat map view of 96.96 Dynamic Array qPCR for immune-related genes in broilers on 
pedigree and sibling test farms.  cDNA (185 ng/μl) preamplified in 20 μl was used as a template. 
Samples (blood, spleen, bursa, caecal tonsils and ileum) were collected from 8 chickens (4 per farm). 
40 samples were used in a duplicate as the templates for amplification of 89 genes of interest and 6 
reference genes. The bottom part of the heat map corresponds to serial dilutions for standard curve 
calculation, no template control (NTC) and positive control chambers. 

PBL samples were not available for RNA extraction. Whole PBL samples were used 

in RNA extraction for the first run in Figure 6.11. Preamplified cDNA from eight 

tissues was tested in quadruplicates on the 96.96 Dynamic Array chip. Results of 

this experiment are shown in Figure 6.12. Most of the genes were amplified 

similarly to the previous run (Figure 6.11). Only the column designated for IL-12β 

did not show amplification as the primer pair for this gene was missed in 

preparation of assay mixes. All replicates of the same sample showed Cq values 

reaching the same level with minimal differences (~0.5 Cq) between individual 

repeats. Missing data were likely to be a result of the genes being expressed at very 

Cq values 
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low levels, which can be seen as lack of fluorescence detection in most of the 

replicates. The last column of the chip did not produce results as water, instead of 

primers, was added to the assay mix as a negative control. Overall the data from 

this repeated study show that the optimised protocol and qPCR platform is capable 

of reliably reporting transcript levels across repeated studies.  

 

Figure 6.12. Heat map view of 89 genes mRNA expression detected by 96.96 Dynamic Array qPCR in 
8 tissue samples tested in quadruplicates. The test established the reproducibility of the settings 
used. The maximum difference between quadruplicate Cq values did not exceed ~0.5 Cq confirming 
accuracy of measured mRNA gene expression within the chip. 

 

 Data pre-processing  6.3.5

Data that did not give rise to any Cq value was represented by 999 which 

was then translated to NAN (not a number) by GenEx software. Missing data were 

rare, as evident from the reliable repetition of values across Figure 6.11 and Figure 

6.12, however rarely failed reactions were detected, possibly owing to the nano-

scale volumes handled, bubbles in microfluidic channels or issues with the quantity 

or integrity of the samples or reagents loaded. Missing data due to PCR failure were 

restored based on replicate information. Out of 9,216 reactions, 84 were filled in 

with replicate mean value. The rest of the missing (54 reactions) data were filled in 

with values calculated by imputation. 

Cq values 
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 The analysis of tissue gene expression from Aviagen broilers 6.3.6
raised in two hygienic settings 

The normalised data were analysed in GenEx software using principal 

component analysis and t-test statistical methods to explore the differences in gene 

expression between two housing environments (pedigree and sibling test farms) 

and within farms based on gene expression between organs. 

Principal Components Analysis (PCA) is a useful, explanatory technique for 

simplifying complex and multivariable data sets (Basilevsky, 1994; Pearson, 1901). 

The whole data set from both farms was analysed using PCA statistical test in GenEx 

Enterprise to compare the global gene expression profiles of five chicken tissues. 

The preliminary PCA plot indicated broad differences between the PBL samples and 

the rest of the tissues (Figure 6.13). 

 
Figure 6.13. Principal component analysis indicating broad similarities and differences in 
transcription of immune-related genes in analysed tissues.  Data points represent individual samples 
of sibling test and pedigree farms; A – bursa (circles), caecal tonsils (diamonds), spleen (squares), 
ileum (up-pointing triangles) from sibling test and pedigree farms; B – PBL (down-pointing triangles) 
collected from chickens raised on sibling test farm; C – PBL collected from chickens raised on 
pedigree farm. 

The PCA results of the whole data showed the difference between PBL 

samples from two farms (zones B and C in Figure 6.13). The rest of the samples 

were clustered together and there were no clear sets consisting of tissues from a 

particular farm but there was visible grouping of samples depending on the tissue 

type. PCA was also performed on the same data set with PBL samples removed. This 

second analysis showed heterogeneity within the subset where bursa and spleen 

A 

B 

C 
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samples grouped together and caecal tonsils group slightly overlapped with ileum 

group but there was no separation based on the farm type (Figure 6.14).  

 

Figure 6.14. Principal component analysis of qPCR data for immune-related genes across tissues of 
birds reared on the pedigree and sibling test farms without PBL samples ; bursa (dark blue), spleen 
(orange), caecal tonsils (green), ileum (red). Circles represent samples from sibling test farm and 
squares represents samples from pedigree farm. 

Differences in gene expression between and within the farms 

The data from the 96.96 dynamic array was analysed in GenEx to explore the 

differences in expression of the selected immune-related genes between farms. 

When comparing the levels of gene expression between the farms where all tissues 

were taken under consideration, only 13 genes out of 92 tested proved to be 

significantly differentially expressed (P ≤ 0.05). The expression levels of all genes 

tested at both farms are shown in Figure 6.15.
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Figure 6.15. Relative expression (mean ± SEM) of genes expressed in tissues collected from pedigree (green) and sibling test (blue) farms. The significantly 
differentially expressed genes are indicated with * P ≤ 0.05 or ** P ≤ 0.0005; the data point represents all 20 tissue samples per farm type. 
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To explore the differences between farms, individual tissues were analysed and 

compared. As PCA results previously showed, the biggest differences between the 

two farms were observed in PBL samples. When PBL samples from pedigree (n = 4) 

and sibling test (n = 4) farms were compared, 51 genes were shown to be 

significantly differentially expressed (DE) with 10 genes highly significantly DE 

(P ≤ 0.0005) and 41 significantly DE (p ≤ 0.05) (Figure 6.16).  

 

Figure 6.16. Volcano plot of genes expressed in chicken blood (PBL) collected from pedigree and 
sibling test farms.  Scattered points represent genes; the x-axis is the log2 fold change for the ratio 
sibling test vs pedigree farm, whereas y-axis is the log10 p-value. Green colour represents genes that 
are highly significantly DE (p value ≤ 0.0005) and yellow colour represents gene that are significantly 
DE (p value ≤ 0.05). 

The number of differentially expressed genes was substantially lower in other 

tissues tested. The same analysis which compared gene expression between the 

two farms resulted in 19 genes significantly DE with 2 highly significantly DE in the 

bursa (Figure 6.17a), 12 genes significantly DE with 1 highly significantly DE in the 

spleen (Figure 6.17b), 9 genes significantly DE in the caecal tonsils (Figure 6.17c) and 

23 genes significantly DE with 1 highly significantly DE in the ileum (Figure 6.17d). 

Based on the number of genes that are differentially expressed at different levels of 

biosecurity in housing environment, PBL could potentially be used as the indicator 

of immune functions.  
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Figure 6.17. Volcano plot of immune-related genes expressed in tissues collected from chickens raised on pedigree and sibling test farms ; a) bursa, b) spleen, c) 
caecal tonsils, d) ileum. Scattered points represent genes; the x-axis is the log2 fold change for the ratio sibling test vs pedigree farm, whereas y-axis is the log10 p-
value. Green colour represents genes that are highly significantly DE (p value ≤ 0.0005) and yellow colour represents gene that are significantly DE (p value ≤ 0.05). 
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The analysis of tissues from different farms showed that samples of bursa, spleen, 

caecal tonsils and ileum (Figure 6.18 a-d) were highly positively correlated between 

farms whereas PBL responses were characterised by a lack of correlation (Figure 

6.18e). 

  

  

 

 

Figure 6.18. Correlation of the magnitude and direction of gene expression in tissues from chickens 
raised on pedigree (y axis) and sibling test (x axis) farms  a) bursa, b) spleen, c) caecal tonsils, d) 
ileum and e) blood (PBL). 

 

a) b) 

c) d) 

e) 
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The variation between birds within an organ was analysed to determine whether 

the differences seen in an organ originates from particular bird being higher 

responder to pathogens present in the environment. Out of 92 genes expressed at 

different levels, 25 were significantly DE with five of them being highly significant 

(Figure 6.19). The significance of gene expression was due to the differential 

response of just one or two of birds regardless of farm type they were housed in. In 

many cases the level of expression of a particular gene varied significantly between 

the birds from the same farm, for example expression of DTX2 gene was very high 

in birds 7 and 8, both from pedigree farm whereas bird 5 and 6 showed a level of 

expression similar to their siblings raised on sibling test farm (birds 1-4). Another 

example is the CD80 gene, which was expressed on higher levels in birds 2, 3, 4, 6, 7 

and 8 but not in birds 1 and 5 which were housed in different environments. The 

three reference genes that were not selected as normalisers (ribosomal r28S, B2M 

and GUSB), had levels of mRNA expression that were significantly different across 

birds, confirming that they were not a good control of gene expression in this 

sample set. For the bird vs bird analysis all tissues were combined therefore the 

differences seen between birds stem from differential responses detected in 

particular tissues.  

Overall, the sample group (four birds per farm) is not enough to overcome 

variance within the group (environment). There was no clear variation in gene 

expression observed between birds. The gene expression resulted is small number 

of differentially expressed genes and the level of variation changed within and 

between farms. 
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Figure 6.19. Relative expression (mean ± SEM) of significantly DE genes between birds from the sibling test farm (1-4) and pedigree farm (5-8) ; ** p ≤ 0.0005.  
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PBL gene expression analysis 

The PBL proved to have the highest number of differentially expressed genes 

and differed between farms (Figure 6.20). Among the 51 genes with expression 

significantly different between farms, 46 had higher mRNA levels in PBL samples 

collected from birds from the sibling test farm. The lower level of biosecurity at the 

sibling test farm may be associated with the observed upregulation of genes 

involved in immune responses: e.g. toll-like receptors (TLR4, TLR15), cytokines (IL-

1β, IL-6,IL-12β, IL-18), and chemokines (CCLi4, CXCLi2, CCL20). Other genes that 

were expressed at significantly higher levels are also known to be regulated during 

infections.
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Figure 6.20. Relative expression (mean ± SEM) of genes expressed in PBL collected from pedigree (blue) and sibling test (green) farms.  Genes expressed significantly 
different (* p ≤ 0.05; ** - p ≤ 0.0005)
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 Validation of differentially expressed genes by qPCR 6.4

To validate the 96.96 Dynamic Array results, three transcripts (DTX2, IRG1, SAAL1) 

were analysed by qPCR in a conventional 96 well format. These genes were selected 

because of their significantly different regulation (DTX2 downregulated and IRG1 

upregulated) and no change in expression (SAAL1) when gene expression in all 

tissues from both farms was compared. Results showed that SAAL1 and IRG1 

exhibited a similar transcriptional profile to that of 96.96 array. The down-

regulation of DTX2 was not detected, as it was observed in data generated using the 

96.96 Dynamic Array. Comparison of both 96.96 array and qPCR statistical test is 

shown in Figure 6.21. 

 

a) 

 

b) 

 
Figure 6.21. Validation of 96.96 Dynamic Array qPCR results for selected 3 transcripts : DTX2, SAAL1, 
IRG1; a) fold change in expression of three genes tested between sibling test and pedigree farm in 
96.96 Dynamic Array, b) results of fold change calculation for three genes of interest, as measured in 
conventional 96 well format; each bar represent average of 40 biological replicates ± SEM * - level of 
significance p ≤ 0.05. 
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 Discussion 6.5

Poultry breeders have to overcome many challenges caused by diseases that 

lead to decreased yield and bird welfare. Chickens with improved innate resistance 

could be introduced in breeding programs to minimise the losses but there are no 

methods available that would select the chickens with superior immune 

responsiveness to pathogens. Therefore, the idea to develop a cost-effective and 

rapid technique to select birds characterised with higher level of immune 

performance seemed reasonable. The work presented in this chapter was 

performed in order to develop and validate a new diagnostic tool for immune gene 

expression in the chicken. The 96.96 Dynamic Array from Fluidigm was selected as 

the platform of choice.  

As with any qPCR method, each step for the BioMark System had to be 

optimised. Without intensive quality control, several steps in qPCR workflow could 

influence the accuracy of the results. The use of a dye-based technique of DNA 

detection required extensive primer design and optimisation. Although the design 

of primers to span intron-exon boundaries is recommended (Wang and Seed, 2003) 

it does not guarantee that pseudogenes as intronless copies will not be amplified. In 

this study, contamination with DNA was avoided by applying the DNase treatment 

during the RNA extraction process. This is the most efficient strategy to remove or 

decrease the number of gDNA copies (Derveaux et al., 2010) to the level where 

abundance of gDNA does not interfere significantly with quantification of mRNA 

(Bustin and Nolan, 2013). Melting curve analysis was performed at the end of the 

PCR cycles and confirmed the specificity of primer annealing with perfect melting 

curves having a single sharp peak (Taylor et al., 2010). All of the primers used in this 

study were successfully validated. The stability of reference genes selected in 

Chapter 5 was also confirmed based on the Cq values generated during high-

throughput qPCR. 

The use of the Fluidigm platform requires a preamplification step. The 

samples need to be highly concentrated to ensure the template DNA for 
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amplification is present in the mix. This method of enrichment of samples has been 

used in many studies (Noutsias et al., 2008; Sindelka et al., 2010). The process of 

preamplification should be optimised before the main experiment using high 

throughput qPCR platforms (Rusnakova et al., 2013). In experiments presented in 

this chapter, samples were tested with and without preamplification where 

different concentrations of cDNA were used with various volumes of TaqMan 

PreAmp master mix. Three cycle numbers of PCR reactions were tested to 

determine if the length of reaction changes the amount of amplification. As 

described in Korenkova et al. (2015), different concentrations of RNA, number of 

cycles and dilutions of cDNA were all very crucial for the preamplification reaction. 

These studies using various combinations showed that for the BioMark System 

preamplification works most efficiently in 15-18 reaction cycles and with higher 

concentrations of cDNA samples diluted either 20x or 40x. In experiments 

presented in this chapter, neither higher number of cycles of PCR reaction nor the 

different concentrations of cDNA used resulted in preamplified samples having 

lower Cq values that non-preamplified cDNA. Korenkova et al. (2015) observed that 

increase of number of cycles (21 and 24) caused exhaustion of primers and reagents 

by high abundant templates and lower level of success of reaction, therefore it is 

not recommended, especially if the targets have unknown level of abundance.  

To validate the utility of 96.96 Dynamic Array chip as a diagnostic tool a 

number of samples from Aviagen broilers were used. In this study, the differences 

in immune responses between chickens raised on two farms with high and low 

levels of biosecurity were analysed. Detection of differences in immune 

performance between birds within and between the farms, were performed to 

establish which tissue delivers the most informative data.  

The study consisted of two different farms, where four birds were random 

selected from the population and five tissues were sampled. PCA analysis of the 

qPCR results transformed the data into easily visualised two-dimensional plots. 

Although birds were not infected with any particular pathogen, they were 
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vaccinated, the hygiene levels differed between farms with presence of common 

pathogens such as Campylobacter, Eimeria species and E. coli was known at the 

sibling test farm. The difference in gene expression profiles were most obvious in 

blood samples when the complete data sets, including all tissues from both farms, 

was analysed in PCA. The lists of genes that were significantly differentially 

expressed in individual tissues were not common for all tissues. Most of the genes 

DE in blood were also DE in other tissues but there was no pattern characterised by 

the same profile of expression with any particular tissue. That is the reason why 

blood samples were separated from other tissues when visualised in the PCA. The 

analysis of the data set with exclusion of the blood samples revealed the similarities 

between the gene expression profiles in bursa and spleen and between caecal 

tonsils and ileum. Surprisingly a stronger concordance was observed between bursa 

and spleen. The caecal tonsils and ileum are closely related and are part of the gut-

associated lymphoid tissue (GALT) system together with the bursa of Fabricius 

(Befus et al., 1980). Nevertheless, gene expression profiles in caecal tonsils and 

ileum separated from bursa samples that were assembled in cluster with the 

spleen. All tissues were equally exposed to the same biotic stimuli, yet there in no 

indication that any of the tissues showed significant changes in the transcription of 

immune-related genes. 

The birds used in this experiment were three-weeks of age and their 

immunological responses were coordinated by a nearly mature immune system. As 

the birds were sampled at only one timepoint it is difficult to speculate if the gene 

expression observed at this particular level was triggered by matured cells and 

organs involved and if the response would differ if the birds were sampled earlier 

and later in their life. The cytokine expression in the caecum was studied 

throughout the chicken’s life span in the experiments done by Crhanova et al. 

(2011) which revealed that IL-8, IL-17 and partially IFN-γ expression changed with 

gut flora development. The relative expression of other genes tested IL-1β, IL-18 

and iNOS was unstable up to day 25 after which the low levels of expression 

continued to be unchanged. The same study involved infections with Salmonella 
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Enteritidis and showed that the level of response to the pathogenic bacteria was 

dependent on the age of the birds infected. The stimulation of younger chickens 

caused higher levels of cytokine gene expression and although those levels 

continued to decrease they were higher at day 42 compared to the gene expression 

in birds infected later in their life. The patterns of immune response to gut 

microflora and pathogenic microorganisms may include overlapping pathways, 

therefore it is difficult to say whether the responses observed in sibling test farm 

birds were activated by only commensal microbes. The levels of the gene 

expression may not give the clear answer as the microflora of the environment is 

unknown but it could be speculated that the responses triggered at the sibling test 

farm reached higher levels compared to pedigree farm owing to presence of 

common pathogenic microorganisms.  

It could be expected that PBL and spleen tissue gene expression would have 

more genes in common, as the spleen is very rich in blood. Spleen accumulates 

leukocytes and is the main site of antigen presentation and processing. However in 

the present study principal component analysis reliably found differences in the 

profile of expression of the immune-related genes expressed at these sites. A 

microarray study by Nie et al. (2010) on basal expression of genes in eight tissues, 

including bursa and small intestine, found that nearly half of the genes were 

expressed in all tissues and small percentage were tissue-specific. 

It is difficult to establish if the blood is the best estimator of immune vigour 

compared to other tissues, based on the initial data. The PBL showed the highest 

number of the DE genes that included genes with proinflammatory functions. In the 

same samples, many significantly DE genes were involved in diminishing the 

inflammation by regulating the overexpression of the proinflammatory genes. The 

PBL consist of many cells programmed to confer microorganisms as the first line of 

innate defence, where cell populations in other tissues are also involved in later 

stages. It would be preferential to select the PBL for developing a diagnostic test for 
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immune robustness in chickens as the circulating cells detect inflammatory state in 

whole organism.  

The test of mRNA gene expression in samples from both farms was not 

performed using whole transcriptome gene expression platform and only eighty-

nine genes were included. Many of the immune-related genes, listed in Chapter 4, 

were selected based on upregulation during infection or stimulation with 

constituents of pathogens. Therefore, it is difficult to differentiate between immune 

responsiveness of healthy chickens and chickens responding to infection using the 

selected genes, as the phenotype of immune robustness at mRNA level are not 

known. It could be assumed that the selected panel of genes was not appropriate to 

detect differences in immune responses in other tissues, apart from blood 

leukocytes. It would be feasible to test the same hypotheses in additional 

timepoints and examine the outcomes from different immune/colonisation stages. 

The low numbers of significantly expressed genes between individual birds from 

both farms could suggest that the level of variation did not depend on the level of 

biosecurity. This could be explained by the individual ability of bird to detect the 

invading microbes but also by the unequal level of immune responses within the 

bird, between organs. Another obstacle in interpretation of the results is the 

differences in the vaccination schemes used at the two farms. The differences in the 

gene expression in PBL may plausibly be due to different vaccines and times of 

administration. Therefore, the farm settings are not adequately controlled for 

measuring the innate immune robustness of healthy birds.  

The results showed that there are differences in immune responses between 

farms but the number of birds used in this experiment was too low to select the 

birds characterised by improved immunity. The PBL isolated from the blood showed 

to be promising indicator of immune gene expression differences between farms 

but the variation between birds, based on only the blood samples, was impossible 

to estimate. Nevertheless, the Fluidigm chip with the proposed set of genes could 

be a convenient diagnostic tool for measuring the differential responses in the 
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future experiments. It has been optimised and verified in the field experiment but 

the experimental setup needs to be adjusted to avoid future problems with the data 

interpretation.  
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 General discussion Chapter 7

 Overview of this study 7.1

The main aim of this project was to design and optimise a diagnostic tool for 

assessing innate immune responses in commercial chickens. All objectives stated in 

Chapter 1 were met and the tool has been optimised and validated. The 96.96 

Dynamic Array IFC within the BioMark system (Fluidigm Corporation) was used in 

preliminary experiments involving 89 innate immune-related genes. Lymphoid 

tissues and blood were isolated from an Aviagen broiler line housed on their 

pedigree and sibling test farms that differ in levels of hygiene. The test validated the 

usability of the chip and evaluated immune performance based on expression of 

selected genes. Crucial steps in the workflow were also optimised. The optimisation 

of preamplification reaction was the first major challenge, as the recommended 

and/or published protocols did not produce useable data. Reference gene 

normalisation was also performed before the final high-throughput qPCR analysis 

and the data from the Fluidigm chip confirmed the stability of transcription of the 

selected reference genes across animals and tissues. The importance of proper 

selection and validation of reference genes has been underlined several times in 

Chapter 5 and supported with numerous published examples.  

Supplementary to the studies presented, a first author manuscript has been 

accepted for publication in the Journal of Veterinary Immunology and 

Immunopathology to select reference genes for qPCR analysis of chicken gene 

expression, this time using lymphoid tissue isolated from the RI-J line. This study 

confirmed that TBP is the most stable gene in bursal cells, thymocytes and 

splenocytes, consistent with findings presented in Chapters 5 and 6. The selection 

of genes used in Chapter 6 was performed based on published studies and the RNA-

seq analysis of chicken effector cells stimulated with LPS. The cloning and 

sequencing of selected candidate genes confirmed their presence in the chicken 

genome and made the design of assays more accurate. The design and validation of 

a new diagnostic tool has been performed successfully and according to the MIQE 

guidelines for qPCR analysis. 
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 Challenges and limitations of the study 7.2

The project started by evaluating effector cell phenotypes and their mRNA 

gene expression as screening methods for innate immune function to be used in 

breeding programmes. The techniques presented in this work involved weeklong 

cell cultures. These methods were confirmed to be time-consuming and together 

with the requirement for greater number of birds to perform heterophil 

experiments, they were not considered as viable future diagnostic tools. Although 

previous studies on commercial and inbred lines showed that resistance to one 

pathogen could be associated with resistance to other pathogens, the birds used in 

the experiments presented in this thesis were not challenged with multiple 

pathogens simultaneously as occurs in commercial settings. The mRNA levels of 

only a few cytokines and chemokines is unlikely to be sufficient to select birds with 

higher immune responsiveness. Therefore, the decision was made to select genes 

that are involved in innate immune responses to a plethora of infections and 

implement them in new high-throughput qPCR diagnostic tool. 

The selection of genes to be used in the qPCR platform was based on 

published experiments with widely different design. Most of the studies used to 

generate the list utilised microarray platforms to distinguish the genes significantly 

differentially expressed in infected cells or tissues. The comparison of the data from 

different platforms is difficult as they are based on diverse protocols, from 

manufacturing, hybridisation and final analysis (Brazma et al., 2001). Therefore, 

direction, magnitude and significance of gene expression in a particular infection 

study may differ when analysed using different platforms. 

The current study design did not result in detection of birds characterised 

with overall greater responses in any of the farms tested. The intensity of immune 

responses differed between farms as shown in Figure 6.15, which is not surprising 

as the level of hygiene varied greatly. The analysis of all datasets showed that the 

greatest difference between farms is visible in blood samples (Figure 6.13). The 

analysis of immune responses based on lymphoid tissues did not show any of the 
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organs to be more responsive to the environmental challenges. Therefore, it 

suggests that the blood would yield the most information about the immune state 

of each bird sampled. That hypothesis needs to be tested in future experiments 

with larger numbers of birds and more defined challenge at a given timepoint.  

The genes used to characterise immune function in this study were selected 

based on their activation upon infection or stimulation of effector cells with 

pathogen-associated molecular patterns. This makes the analysis of results 

problematic. The elevated expression of particular genes may not be a result of a 

high state of innate immune readiness in healthy birds, but rather could be a 

reflection of disease. Moreover, it is not possible to fully interpret the meaning of 

responses detected when the nature of pathogen challenge, time of measurement 

relative to time of infection and the relative exposure (pathogen load) is not 

precisely controlled.  

A further challenge in evaluating immune responses is interpretation of gene 

expression as a being indicative of robustness, resistance or tolerance. The 

definition of robustness in farm animals was explained by Knap (2005) as “the 

ability to combine high production potential with resilience to stressors, allowing 

for unproblematic expression of high production potential in wide variety of 

environmental conditions”. Disease resistance could be defined as the ability to 

reduce the pathogen occurrence by inhibiting infection and pathogen growth (Best 

et al., 2008). Tolerance to pathogen may be described as the ability to limit the 

damage by counteracting the detrimental impact (Rohr et al., 2010). The tolerant 

animal would be able to maintain productivity despite increasing load of pathogens. 

For breeders, both, maintenance of productivity and ability to reduce pathogen 

burden, are equally important. Previous studies on lines selected for higher 

heterophils mRNA gene expression showed that the parental and F1 progeny with 

higher resistance resulted in fewer Campylobacter jejuni colonies from cloacal 

swabs (Li et al., 2008c). This could suggest that selection based on mRNA gene 

expression levels may lead to generation of a line that is robust, as it not only 
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maintains the expected phenotype but also reduces the prevalence of pathogens. 

The use of gene expression data simultaneously with information about other traits, 

for example weight gain and feed conversion ratio, could help to refine the 

phenotype of robustness and ensure it does not come at the expense of other 

production-relevant traits.  

 Future applications 7.3

In addition to previously used pro-inflammatory cytokines and chemokines to 

evaluate innate immune responses of inbred and commercial lines (Wigley et al., 

2006; Swaggerty et al., 2008) the panel of immune-related genes selected for this 

project includes various genes involved in downstream signalling after 

pathogen/agonist recognition. The additional carefully selected genes in the panel 

could result in more precise selection of chickens based on their immune responses, 

once the immune robustness phenotype is better understood. Collection of samples 

at different timepoints would be practical to examine different maturity stages of 

immune system and changes in responses. This approach could clarify if the 

expression of the selected panel of genes is dependent on the age of the birds. In 

the future, when the chip is used as a diagnostic tool, only one appropriate time-

point may be necessary to predict the robustness. Apart from additional time-

points, vaccination schedules would have to be standardised. Birds used in the 

preliminary chip test, housed on the pedigree farm or sibling test farm received 

different vaccines at hatch and on different days throughout their lives, which had 

the potential to change the nature and magnitude of immune responses and 

explain some of the differences detected.  

The chip could also be used as a tool to study immune readiness at the point 

of hatch or even during late stages of embryo development. Mortality in the first 

week post-hatch is an important aspect of chicken breeding and is used as an 

indicator of the occurrence of welfare problems. The transitional period from 

embryonic stage to the post-hatch chick and further to the broiler farm is a major 

challenge to the digestive, immune and thermoregulatory systems. The 
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performance of the newly hatched chickens in the first days is indicative of the 

performance during rearing weeks at the farm (Yassin et al., 2009). Therefore, the 

gene expression screening of newly-hatched chicks, yet to have significant contact 

with pathogens or acquired microbiota could help to predict how the flock will 

perform in later stages.  

The value of the multiplex PCR platform for immune-related genes could also 

be tested in a wider range of environmental settings, for example on test farms 

using birds of the same genotype but reared in cold and hot environments, at 

different stocking densities, intensive indoor vs. outdoor free-range systems and so 

on. This will be important to improving the performance of poultry to meet fast 

increasing demand owing to growth of the human population and rising affluence 

and urbanisation in developing countries. Expansion of breeding under hot 

temperatures is also very important because of global climate change. Heat stress is 

known to result in decreased productivity and increased mortality (Turnpenny et al., 

2001). It has been shown that diverse lines demonstrate different, heritable 

responses to chronic heat exposure (Lu et al., 2007). Several heat shock proteins 

and genes responsible for glucose transportation have been shown to be involved in 

responses to heat stress (Garriga et al., 2006; Lei et al., 2009; Yan et al., 2009). 

These, and many other expression quantitative trait loci (eQTL) associated with 

heritable resistance to other production-relevant phenotypes, could be added to 

the qPCR panel to test differences in transcript expression between farms as a guide 

to selection.  

Apart from commercial lines tests, the optimised diagnostic tool could be 

applied in studies of inbred lines when challenged with pathogens. That could help 

to select genes that carry the information about resistance or susceptibility to 

disease, for example in the inbred lines housed by the National Avian Research 

Facility that differ in resistance to Eimeria, Salmonella, Campylobacter and other 

agents. Results could narrow down the list of candidate genes associated with 

differential resistance. The limited number of genes tested, compared to whole 



161 

transcriptome analysis, would lower the costs of experiments even further. 

However, it would not allow for the discovery of novel genes or transcript variants 

associated with resistance, as happens in RNA-seq differential expression studies. 

Projects involving a vaccine challenge or infection could also benefit from applying 

this platform by adding to knowledge of the nature, magnitude and timing of 

responses to vaccination and pathogen challenge. Gene expression studies offer 

very exciting avenues for solving the problems of existing and emerging diseases. 

Blood transcriptome analysis as a diagnostic tool has been successfully used to 

profile human patients with sepsis, where candidate transcriptional signatures of 

differential diagnosis were identified (Pankla et al., 2009). Microarrays and other 

gene expression platforms that measure host responses to infections could serve as 

a disease progression monitoring systems. It has become obvious that genomic and 

transcriptomics approaches cannot elucidate all the problems but play a part in 

selection programs. The complexity of biology and host interaction with the 

environment make the selection for immune robustness difficult. In-depth 

information of fields such as epigenetics, alternative splicing, miRNA regulation 

would add to knowledge of candidate biomarkers at multiple levels. The Chicken 

genome is still in draft version and lacks much genetic and functional annotation, 

therefore it would be advantageous to annotate the genome at similar levels to that 

of human (Cheng et al., 2013).  

 Future challenges of poultry breeding 7.4

Breeding for disease resistance in farmed animals has made remarkable 

progress. Despite the advances, difficulties still exist (Jie et al., 2011). The costs of 

breeding for disease resistance are still high as challenging chicken flocks with 

pathogens to select resistant individuals leads to death of susceptible birds and the 

number of birds used need to be very high. Identification of the disease resistance 

phenotype can also be problematic, as the disease may not affect each bird to the 

same level. Therefore, susceptible animals may not have been identified as they are 

not exposed to the pathogen, resistant birds may have sub-clinical infections and 

play a role of pathogen reservoir/carrier. In addition, the interaction between 
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pathogens makes the breeding of multi-resistant lines difficult and secondary 

infections can cause higher mortality than the primary infection (Jie et al., 2011).  

Knowledge of genes involved in disease resistance can be implemented in 

creating transgenic chickens, e.g. inactivating viral receptors or introducing or 

upregulating resistance-associated genes. Recently, genetically modified chickens 

able to suppress avian influenza A virus transmission have been generated by 

constitutive expression of a decoy RNA resembling a viral vRNA segement to 

interfere with virus replication (Lyall et al., 2011). The creation of birds resistant to 

AI could lead to reduced costs of production caused by AI outbreaks and lower risk 

of transmission of the virus to human population. The chickens resistant to AI 

phenotypes do not show significant differences in hatching weights. Future 

transgenic chicken lines overexpressing particular immune-related genes, or indeed 

birds given immuno-modulatory substances to boost immune function,  could be 

screened using the qPCR panel with Fluidigm chip to understand the basis of any 

beneficial phenotypes. For decades it has proved challenge to introduce disease 

resistance by selection without affecting other production traits, therefore 

transgenesis may aid the fight against the diseases (Whitelaw and Sang, 2005).  

 Conclusions 7.5

The research described here could potentially aid the selection for improved 

immune robustness. The technical optimisation and validation of a new tool to 

simultaneously quantify expression of tens of relevant immune-related genes will 

prime research in many areas of avian biology, especially to define baseline immune 

gene expression for selection, the basis of differential resistance, and host 

responses to infection, vaccination or immuno-modulatory substances. The chip 

with the selected panel of genes now needs to be tested at different time-points in 

experiments where genotypically identical chickens are placed in different 

environments in which more variables are defined and controlled. Results from 

mRNA gene expression studies, together with information about other phenotypes  

could help to distinguish birds that are more robust.  
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Appendix 1 

Table 1. Primers for sequencing cDNA inserts in pGEM-T. 

 

Table 2. Probes and primers used in RT-qPCR 

 

 

 

 

 

 

Primer name Plasmid name Sequence (5'-3') 

T7 (forward) pGEM T-Easy TAATACGACTCACTATAGG  

Sp6 (reverse) pGEM T-Easy ATTTAGGTGACACTATAG 

RNA target Probe/primer sequence (5’-3’) 
Accession 
number 

r28S 

Probe: (FAM)-AGGACCGCTACGGACCTCCACCA-(TAMRA) 

F: GGCGAAGCCAGAGGAAACT 

R: GACGACCGATTTGCACGTC 
FM165415 

IL-1β 

Probe: (FAM)-CCACACTGCAGCTGGAGGAAGCC-(TAMRA)  

F: GCTCTACATGTCGTGTGTGATGAG 

R: TGTCGATGTCCCGCATGA 
AJ245728 

IL-6 

Probe: (FAM)-AGGAGAAATGCCTGACGAAGCTCTCCA-(TAMRA)  

F: GCTCGCCGGCTTCGA 

R: GGTAGGTCTGAAAGGCGAACAG 

AJ309540 

IL-18 

Probe: (FAM)-CCGCGCCTTCAGCAGGGATG-(TAMRA) 

F: AGGTGAAATCTGGCAGTGGAAT 

R: ACCTGGACGCTGAATGCAA 

A3416937 

CXCLi1 

Probe: (FAM)-TCGCTGAACGTGCTTGAGCCATACCTT-(TAMRA) 

F: TGGCTCTTCTCCTGATCTCAATG 

R: GCACTGGCATCGGAGTTCA 

Y14971 

CXCLi2 

Probe: (FAM)-TCTTTACCAGCGTCCTACCTTGCGACA-(TAMRA)  

F: GCCCTCCTCCTGGTTTCAG 

R: TGGCACCGCAGCTCATT 

AJ009800 

TGF-β4 

Probe: (FAM)-ACCCAAAGGTTATATGGCCAACTTCTGCAT-(TAMRA) 
F: AGGATCTGCAGTGGAAGTGGAT 
R: CCCCGGGTTGGTTGGT 

M31160 
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Figure 1. RNA-seq differential expression pipeline (Trapnell et al., 2012) 
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Table 3. Primers designed to clone genes of interest 

Gene Forward Tm [°C] Reverse Tm [°C] length (bp) 

ABCG2 ATGGGAACTGCTCAAAACAACAG 56.1 TTATGTGAACTTCCTCATAAACCGGAG 56.6 2106 

ATF3 GAGGAACTTAGATTCGCCATC 53 TTAACCTTGTAATGTTCCTTCTTTGATC 53.8 419 

BATF3 GAGCCACGAAGAAGACGATAAGAAGG 58.8 TCATCTGGGCAGGCAGC 58.2 292 

BCL2A1  ATGGAAACTGCTGAGTTCTATTACG 54.9 TCAGTGGTACTCTCTGAACAAG 53.9 524 

C3ORF52 ATGAGCTGGCTCCGTGC 58.4 CATGTTGATGTGAGAGAAACTGGGTC 57.6 700 

CD40 ATGGGGCGGCTCGGGC 65 TCACAGCTGCTCCTGCTCGGC 64.5 831 

CD72 ATGGCCCAGAGCGTGCTCTAC 61.8 TCACCCTTCGGCCAGCAGA 61.6 972 

CD80 ATGAAGATGGGGTGCCTGAAGAG     58 TCATAGAGATGACATTTCACATGTCAATTTACAGC 58 950 

CD83 ATGGCTTCAGCAGCCTAC 53 TTAGATAGAACTTGAAGTAAGTCCAC 52 648 

CXORF21  ATGCTGTCAGAAGGTTACCTTTACAG 56.7 CTATGCATTAGTGTTGCTATACTGAGAAATATG 57 870 

DTX2 ATGGCAGCAGCTCAGGGAGCAG 64.2 CTGTTCCAGGCCACCTTCAGGAGCTC 64.7 1475 

EAF2 ATGAACGGGATGGCCCCG 60.8 TCAGTCATCACTATCGCTTCCAGATTCAC 59.6 795 

EDN1 ATGGATTGCAGCCGCCTG 58.9 CTAGAATGTTTTCAGGCTTTTCCAGATGC 58.2 618 

EGR1  ATGGCTGCGGCCAAG 56.5 TTAGCAAATCTCAATTGTCCTTGGAGA 56.5 1532 

ENSGALG00000002955 ATGAAGATGTTCAGGTGGAGGTG 56.8 CAAGTCTATCCTTTCCCTGGAGATC 56.4 1167 

ENSGALG00000005747 ATGACTCGCTGCCAGGTG 57.8 TCATTCATTCTGGCAGCTTTTATAGTCC 57 1056 
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Gene Forward Tm [°C] Reverse Tm [°C] length (bp) 

ENSGALG00000011172 ATGCACCAGAGCAGCATCAATGG 60.2 GGTCCAGGCACTCCGC 59.3 1315 

ENSGALG00000015395 ATGCTTCTGCTTCAGGCCTGC 60.6 TCAGTGTTCCTCTGGACTTGTAGAGACAG 60.5 1056 

ENSGALG00000022324 ATGAGGATGCCGCTTCC 55.1 TTAAACATTCACTGTGCTTTCTTGTGG 56.4 1008 

ENSGALG00000025905 ATGAAGATGGAGACAGGGGAT 55.3 TTAAATTTGTGATATCATTCTCAGTGCAGG 55.9 933 

ENSGALG00000027419 ATGATGGTTACTTGCCTGCTCCTCTC 60.3 TCACGTGTTGGGCACTGCAG 60.7 918 

ETS2 ATGAGTGAATTTGCGATCAGAAACATG 56.3 TCAGTCCTCGGTGTCAGG 56.2 1440 

G0S2 ATGGAAACCATGCACGAGCTG 58.3 TTAGGATGCATGCTGCCTGG 57.8 299 

GCH1 TACGCACGGCGGGAGGG 63.5 TCAGCTCCTGATGAGCGTCAAGAACTCTTC 62.6 711 

GLUL ATGGCCACCTCGGC 55.5 TTAGTTCTTGTACTCAAAAGGCTCGTC 56.8 1122 

HPS5 ATGAGGCTCTGTATCTGCTTCGTG 58.6 TCAGTATTTGTTAGGAAGTCCTGCGG 58.4 384 

IFIT5 ATGAGTACCATTTCCAAGAATTCC  53 TCAGCTTGAGAGGGAAAGTCG  52 1440 

IL10RA  ATGGCCCTCTGCGCTGC 61.9 CTTCTGGCACAGGAACAGCTGCT 61.8 900 

IL17REL ATGATAAGTGTTCATGTTCTGATTCTTC 53.7 GTGGAACTGAATAATCTACATCTGTC 53.3 1266 

IL1R2 ATTTCAAGACACTTTCCCTCGCTCTTC 58.9 CCTGCCAGGATGACACAGG 58.1 1149 

IL4I1  ATGGCTGCGATGGTTCTCTTCC 59.7 TCAGAGCTCTCCCTTCTCCACG 60.1 1572 

IRAK2 GTGTGGTCTTAGCAGAGATA  51 TTATCTACATTTACCTTGGGATG  50 803 

IRF1 ATGCCCGTCTCAAGGATGCG  65 TTACAAGCTGCAGGAGATGGC  60 942 
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Gene Forward Tm [°C] Reverse Tm [°C] length (bp) 

IRF10 ATGGCGGAGCCGGGGTC  63 GCCAGCAGTCTGAGTGATTGACATCCTCA  63 620 

JUN (AP1) ATGGAGCCTACTTTCTACGAGGATG  58 TCAAAACGTTTGCAACTGTTGTGTTAG  58 932 

LYG2 GAACATAGCAAATGTTGAAACAACTGG 55.5 TCAGTATCCATTTCTCTGAAAGAACTTG 55 541 

LYZ ATGGGTCTTTGCTAATCTTGGTGCTTTGC 62 TCACAGCCGGCAGCCTCTG  63 444 

MADPRT ATGGAGCACGCCATTCTGG 58.1 CACGGAAGACATTGTGGCATCG 58.2 481 

MAFA ATGGCCTCGGAGTTGGCC 60.7 TCACATGAAGAAGTCAGCGGCAGTAG 60.4 861 

MAFF ATGGCTGCGGATGGGCTG 61.4 CTAGGAGTAGGCGGCCTGGTTG 61.5 450 

MYD88 ATGGCTACGGTACCCGTGGGTG  64 TCACCAAGTGCTGGATGCTATTGCTCGC  64 1131 

NDNF ATGCAGAAGCTGCCTACC 55.1 CTAACAGAACTTCCTCGTTTTCACC 55.7 1651 

NFKB2 ATGGTGGAGCAGAAGGAGCC 59.6 GCTTGTCGCTGACGTCCC 59.1 2646 

NFKBIZ ATGGGGGGAGGAAAGCAGCACA  58 TCAAAACAGCGACGCTCTCTGC  65 1192 

NLRC5 CTGGCAGAACTAGATCTCTCCAGGAATCAG 60.8 TCACTCAATCTTCCGGAGGTGCTC  60.5 1263 

NOS2 ATGCTGTGCCCATGGCAG  59 TTATATTCTTTTGACTTCATGTGGGAACACAG  57 3411 

NR4A3 ATGCCCTGTGTGCAAGCGCAG 63.6 TCAGAAGGGCAAGGTGTCCAGAAACAGC 64 1829 

PFKFB3 GCCAATTCCCCCACTGTGATAG 57.9 CGGCAGCCATAAGCCACTG 59.2 1189 

PKD2L1 ATGGAGGGGAAGTGCTGCTTCTAC 60.7 GCTGCAGCTCATCCTTCTGGC 61 1558 

PLA2G5 ATGAATGCTCTCCTTGCATTGGC 58.3 TCACCTGCACTTGCACCTG 58.2 417 



197 

Gene Forward Tm [°C] Reverse Tm [°C] length (bp) 

PLK3 ATGACGGACCTCTCCAGCAACAAAAC 61.1 CTAGGCATCAGCCCACTCCTGG 61.6 1734 

PPARG ATGGTTGACACAGAAATGC  51 CGCCATTAATATAAGTCTTTATAGATTTC  51 1433 

PTGS2 ATGACAACAGGATTTGATCGGTATG 55.2 CCTGGATACAGTTCCATAGCATCTAT 55.8 1379 

RASD1  ATGAAACTGGCAGCGATGATCAAGAAG 59.4 CTAGCTGATCACACAGCGGTCC 59.7 836 

SAAL1 ATGGATCGCAACCCCTCGC 60.6 TTAGGTAGGGACCTTCAGGCTCGG 61.7 1407 

SDC4 ATGCCGCTGCCCCGC 63.6 CCAAGGTCGTAGCTGCCCTCGTC 63.6 545 

SELE ATGGTGAATTGTTGGACATACC 53.2 TTAGACATTCTGGCATTCAGTAGT 53.8 1562 

SERPINE2 ATGAACTGGCACTTCTCGC 55.5 TCAAGGTTTGTTTATTTGTCCCATAAAC 54.6 1329 

SLCO6A1 ATGAAGGGCAACGACGGTAT 56.6 TTACGCATGTATAGCAGATACCATTTCTG 56.7 2037 

SNX10 ATGACACCAAAACACGAA 49.5 TCACGATTCTTCAGAAGC 49.4 606 

SOCS1 ATGGTAGCGCACAGCAAGGTGTCAGC  61 TTAGATCTGAAACGGGAAGGATT  59 624 

SOCS3 ATGGTCACCCACAGCAAGTTCC  63 TTAGAGGGGGGCATCGTACTG  61 626 

STEAP1 ATGGAGAAGAGAGAAGGTGATAGTC 55.3 GAACTCTCTCCAGGTCAAAGAG 54.5 759 

STEAP4 ATGAATAAAAATTCTTCCAACATAATGGC 53.4 TTACACAGCAGACTTGTTGATAAC 53.3 1418 

TGM4 ATGAGCCAAGACAGCGACCTGAAAG 61.1 CTAGTGGGTGACCGTGATGGCC 61.9 2129 

TIRAP ATGGCCGGATGGTTTAGGCGG  62 CTACTGCATTCCACTCGTGGAGCTCC  62.5 666 

TNFAIP3 ATGGCTGGCCAACACATCCT 59.7 CTAGCCGTAGATCTGGGGGAACTG 60.4 2421 
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Gene Forward Tm [°C] Reverse Tm [°C] length (bp) 

TNIP2 ATGCACCTGGCCGG 55.8 TCATACAGTGAGGACATCTAAGTTCAC 55.9 1506 

TOLLIP ATGGCGACCACCGTCAGTAC  59 CTATGATTCTTCAGTCATCTGAAGCAAGGAG  58 824 

TRAF3IP2 ATGGCTTCTGTGTCAGGCACTTTTGTG  61.5 TCATAACGGCACAACCTGGAGTGTTG  61 1598 

UPP1 ATGGCTCCTGGTGTCT 52.8 TTATACTTTCCCAAGACTTTTCTTAATG 51.9 942 

WDR24 ATGGATGAGAACCTGCTGGCC 59.8 TCAGGTGTACTCGCAGAGGTGG 60.6 2118 
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Table 4. Gene symbols and transcripts accession numbers for the final 89 genes. 

 
Gene symbol Database number 

1 ABCG2 ENSGALT00000009304 

2 ATF3 XM_004935334.1(X1) XM_419429.4 (X2)  

3 BATF3 XM_004935335.1; XM_419428.4 

4 BCL2A1  ENSGALG00000006511 

5 C3ORF52 XM_004938298.1 (x4); XM_416636.4 (x3); XM_004938299.1 (x5) 

6 CCL19 XM_424980.4 

7 CCL20 NM_204438.2 

8 CCL4 (CCLi3) NM_204720 

9 CCL5 (CCLi4; ah294) NM_001045832.1 

10 CD40 ENSGALT00000039105 NM_204665.2 

11 CD72 ENSGALT00000003752 

12 CD80 NM_001079739 

13 CD83 XM_418929.3 

14 CSF1 NM_001193295.1 

15 
CXCL13L2 

XM_420474.4 (X3); XM_004941025.1 (X5); XM_004941024.1 (X4); 
ENSGALT00000016832 

16 CXCLi1 ENSGALT00000019072; NM_205018 

17 CXORF21  ENSGALG00000016286 

18 DTX2 XM_415763.4 

19 EAF2 NM_001006525.1 

20 EDN1 XM_418943.4 

21 EGR1  ENSGALG00000007669 

22 ENSGALG00000002955 ENSGALT00000004669 

23 ENSGALG00000005747 ENSGALT00000009229 

24 ENSGALG00000011172 ENSGALT00000018214 

25 ENSGALG00000015395 ENSGALT00000030421 

26 ENSGALG00000022324 ENSGALT00000035899 

27 ENSGALG00000025905 ENSGALT00000042716 

28 ENSGALG00000027419 ENSGALT00000046220 

29 ETS2 NM_205312.1 

30 G0S2 ENSGALG00000023933  NM_001190924.3 

31 GCH1 NM_205223.1 

32 GLUL NM_205493.1 

33 HPS5 XM_004941433.1 (X4); XM_421011.4 (X3); ENSGALT00000010127 

34 IFIT5 XM_421662.3 

35 IL10RA NM_001039597.1 

36 IL12B NM_213571.1 

37 IL13RA2 ENSGALT00000032399 

38 IL17REL XM_001232492.3 (X1); XM_004937501.1 (X2)  

39 IL18 ENSGALG00000007874 

40 IL1B ENSGALG00000000534 
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Gene symbol Database number 

41 IL1R2 XM_416914.4 

42 IL4I1  ENSGALG00000000081 

43 IL6 ENSGALG00000010915 

44 IL8 (IL8L2; CXCLi2) ENSGALG00000026098 

45 IRAK2 NM_001030605.1 

46 IRF1 NM_205415.1 

47 IRF10 NM_204558.1 

48 IRF7 ENSGALG00000014297 

49 IRG1 ENSGALG00000016919 

50 JUN (AP1) NM_001031289.1 

51 LYG2 ENSGALT00000027062; XM_416896.4 

52 LYZ NM_205281.1 

53 MADPRT NM_001033646.1 

54 MAFA NM_205025.1 

55 MAFF ENSGALT00000020063 

56 MYD88 NM_001030962.1 

57 

NDNF 

ENSGALT00000019508; XM_004941227.1; XM_004941228.1; 

XM_004941225.1; XM_420627.4; XM_004941226.1 

58 NFKB2 ENSGALT00000009068 

59 NFKBIZ NM_001006254 

60 NLRC5 XM_003641889 

61 NOS2 NM_204961.1 

62 NR4A3 XM_419081.4 

63 
PFKFB3 

XM_004937473.1 (x11); XM_416472.4 (x7); XM_004937470.1 (x8); 
XM_004937472.1 (x10); XM_004937471.1 (x9) 

64 PKD2L1 ENSGALT00000009261 

65 PLK3 ENSGALG00000010129 

66 PPARG NM_001001460.1 

67 PTGS2 NM_001167718.1; ENSGALT00000008125; ENSGALT00000044290 

68 RASD1  ENSGALG00000004860; NM_001044636.1 

69 SAAL1 ENSGALT00000045705 

70 SDC4 NM_001007869.1 

71 SELE NCBI XM_422246.4 

72 SERPINE2 NM_001083920.1 

73 SLCO6A1 ENSGALT00000044226 

74 SNX10 NM_001030986.1  

75 SOCS1 NM_001137648.1 

76 SOCS3 NM_204600.1 

77 STEAP1 XM_418642.3 (X4); XM_004939274.1 (X6); XM_004939273.1 (X5 

78 STEAP4 ENSGALG00000008997; XM_001235256.3 

79 TGM4 ENSGALG00000011888 

80 TIMD4 NM_001006149.1 

81 TIRAP NM_001024829.1 
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Gene symbol Database number 

82 TLR15 NM_001037835.1 

83 TLR4 NM_001030693.1 

84 TNFAIP3 XM_003640919.2 

85 TNIP2 NM_001031166.1 

86 TOLLIP NM_001006471.1 

87 TRAF3IP2 XM_419782.2 

88 UPP1 ENSGALT00000031003 

89 WDR24 ENSGALT00000003862; NM_001030628.1 
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Table 5. Primers, alignment site and amplicon length for qPCR detection of transcripts of genes of interest using the 96.96 Dynamic Array in BioMark System 

(Fluidigm). 

Gene Forward Reverse exon-intron 

amplicon 

length (bp) 

ABCG2 GGAGTAAGGTGCTCTGGTGAAGA TCTCCCACATTGCCATGTTAGT fwd 13-14 ex 73 

ATF3 CATGAAAACGGAGTTTTCTCCTG GTCTCCAGCTTTTCTGATTCTTTCTG fwd 1-2 ex 141 

BATF3 GGACAAACTTCACGAGGAATATGAAT CCTTGGTATGGTCACAAAGTTCAT fwd 1-2 ex 169 

BCL2A1  ACCATATTTACTTTTGGAGGTCTTCTCA ACCGTTTTCCCAGCCACC fwd 1-2 ex 159 

C3ORF52 GCAACGAGCAAGGAGAGAGATC AGAGCTAGACTGATGAGAATGACCAG fwd 1-2 ex 128 

CCL19 TGAGATGTGTCCTGCATGTGTATG GCCATGGGATGGGCTTCT not ex-in 80 

CCL20 AGCTGTCTGGTGAAGTCTGTGATATT AGGATTTACGCAGGCTTTCAGT rev 1-2 ex 77 

CCL4 (CCLi3) CTCTGCCCCAGTGGGACC GACTTCGCGCTCCTTCTTTGT fwd 1-2 ex 151 

CCL5 (CCLi4; ah294) CTCCGTTTGGGGCTGATACA TGCTGCCTGTGGGCATTT rev 2-3 ex 113 

CD40 AAAACTGAGCCATGCCACTTCT CCGGCTTGACTCACAGATCAC fwd 1-2 ex 102 

CD72 GCATGTCTGTCTGAACGGAGACT AAGATGCACTTGCCATGGTAGA fwd 4-5 ex 66 

CD80 CCCTCTTTGTTACCGCTGACTT CACACGTTCGTCGTTGAGGA fwd 1-2 ex 152 

CD83 ACCTGAGTGGCATCATCACATTAA CACGTACAGGTAAAGAAGATGAGCAG rev 3-4 ex 142 

CSF1 TCGTCTGCAGCATCCATGAG GTGCCGCTCGGTGATGAT not ex-in 65 

CXCL13L2 CCAACGGCAACCTGAACTG CATATTTCCGCAAGGGAATGA not ex-in 66 

CXCLI1 AAGAGATCATCCTCACCCTGAAGA GCTTCTTTTTTGCTGACATCCG fwd 2-3 ex 115 

CXORF21  CGCAGATATCACGAGAGAGGAA TGCAAGAAGCGGCTGATG one exon gene 70 

DTX2 AATGGAGTCAGTGCTCTAAACCTCC CCTCATCCACAGGAGTACCCTTC fwd 2-3 ex 138 

EAF2 AGGAGACCTTGAAGTTGGCA GTGGAGTCGAGCCCTCAATA not ex-in 71 
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Gene Forward Reverse exon-intron 

amplicon 

length (bp) 

EDN1 CGTGTATTTCTGCCACCTGGAT AGGGCCTCCAAGACCATAGG not ex-in 76 

EGR1  CCTTGCGGCAGACACTTTTC CTACCATTTGGGGCTGGCT fwd 1-2 ex 141 

ENSGALG00000002955 GGAAACGCTCATCTGGGCTAT TTTTTTCCGTTCCACTATCTGGAT fwd 6-7 ex 81 

ENSGALG00000005747 TGGATCCGGAGCCTCAAC GGTCTGCGCAGCTCCAAA one exon gene 65 

ENSGALG00000011172 GGGAGACCTGCACGAAGCT GCCAATGTTGGTGTAGATGTTACC rev 1-2 ex 79 

ENSGALG00000015395 GGAGACAACTGCAGAAACACAGAG GAAGATCCTGGTGTCTGCCTCT fwd 4-5 ex 148 

ENSGALG00000022324 TCTCCCCACCGATGCTAGTG GGCTAAACCAGAGAGAATGAGGAT one exon gene 77 

ENSGALG00000025905 TGACACTGCTTGTTCATCATTTCTT GCCTCACAGTCTCCTGATTTAATTG rev 4-5 ex 75 

ENSGALG00000027419 GCATCAGGCTCTGTGCAGG GTTGTCTTCAGCCCCATCCAT fwd 1-2 ex 144 

ETS2 GGAATGCTCAAGCGGCAA TTCACAGTTGTTGGACTCGTAAGAAG fwd 1-2 ex 150 

G0S2 GAAGGGAATATAGAGGAGGAGAAGAGA CTCCCGCTTCCGAGGAA one exon gene 69 

GCH1 GACTACAAGTCCAGGAACGCCT TACCCCACGCATTACCATACAC not ex-in 122 

GLUL GCCAGTCTGCAGACACAAATCT GCCAGCCAAACGGATGAC fwd 2-3 ex 132 

HPS5 TCTGTATCTGCTTCGTGTTGCTCT GCGCCTCCAGCTGCAT fwd 1-2 ex 100 

IFIT5 ATGAGTACCATTTCCAAGAATTCCTT CAATCTGATCCTCTATTGATTCTTCCA fwd 1-2 ex 127 

IL10RA CACAAAATCTATGGCACCAACAG GTGCCCGTGGATCTTCATG fwd 1-2 ex 66 

IL12B TGGGCAAATGATACGGTCAA CAGAGTAGTTCTTTGCCTCACATTTT not ex-in 83 

IL13RA2 CTGCAAGGGAAACTGGAATCC CGTGTGCTCCAGACCCTCATA fwd 2-3 ex 150 

IL17REL  CTTTGCATTGAGGGTTGGCT TTCCCAAGCTAGGGTTTGTGTC fwd 7-8 ex 129 

IL18 GTGAAATCTGGCAGTGGAATGTACT CATGCTCTTTCTCACAACACATGTAG fwd 2-3 ex 133 

IL1B CAGCAGCCTCAGCGAAGAG CTGTGGTGTGCTCAGAATCCA fwd 1-2 ex 86 

IL1R2 CCAAGAATCTGGGCAAAAGG CTGGTACAGATATACACTCCTGAGTCTTC rev 6-7 ex 69 
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Gene Forward Reverse exon-intron 

amplicon 

length (bp) 

IL4I1  GCCCTGCAGTCGGCTGT CGAGTCCTCGTTCAGCAAATCT fwd 3-4 ex 155 

IL6 GCTTCGACGAGGAGAAATGC TGAATTCCAGGTAGGTCTGAAAGG fwd 2-3 ex 72 

IL8 (IL8L2; CXCLi2) CTGTCGCAAGGTAGGACGCT GCTATGATTTCAACATTCTTGCAGTG fwd 1-2 ex 149 

IRAK2 TGGAAGAGGTTGCCATTGATT TGTTTCCATAATTTCCAGTACCTCTGT rev 2-3 ex 95 

IRF1 GATCTGGATCAACAAGGATAAGATGATAT ACTTTATATCTTCCTGTATGGATGGCC fwd 1-2 ex 129 

IRF10 GGGATGCAGAGAAGGATGAGAA GCTCTCCTCGGCCACATG fwd 2-3 ex 83 

IRF7 GCCTGAAGAAGTGCAAGGTCTT TGCAAAACACCCTGAAGTCG not ex-in 123 

IRG1 AGTGGCTGTGCACTCAATGG CACATTGAAAGCTAAGAGCAGGTC fwd 2-3 ex 151 

JUN (AP1) CGAGCCCCCGGTGTATG TTGTAGTTGGGTGCAGAGTTGAG one exon gene 69 

LYG2 GTTTAATGCAGGTTGACAAACGG TGCTGTTCCTTACTCCATGTTGG fwd 2-3 ex 142 

LYZ TACAGCCTGGGAAACTGGGT TTCCTGGAGCCTGGGGTC fwd 1-2 ex 155 

MADPRT ATAAAGGAGGTGGCGATGGA GTGGATGCAGCCCTGGTACT one exon gene 66 

MAFA GCAGAACAGGAGGACCTTGAAG TCTGCTGGACCCGCTTGTAG one exon gene 68 

MAFF AGCAGAAGATGGAGCTGGAATG CTGCAGGGCCTCGTACTTG fwd 1-2 ex 150 

MYD88 GGCAGCGTGGAGGAGGA TCCATGCCCATACGGATCAT fwd 1-2 ex 150 

NDNF CACCCTGTGATGCTCCCCT GTTCTCCTGAACCTTCTCCACTG rev 2-3 ex 81 

NFKB2 TGAGGTGCGGTTCTATGAGGAT GGACGGTCAATTTTGGGCTT not ex-in 132 

NFKBIZ GGAGCTCATCCGTCTCTTCTTG GTTGCCATTGTAAGCCTTTGC rev 9-10 ex 74 

NLRC5 AGAGCCCTGGGTATGTAAGTTGAG TTGCATATCATGATCGCAGTGA rev 6-7 ex 90 

NOS2 CAGCGGAAGGAGACAAACAGAG AACTCTTCCAGGACCTCCAGG not ex-in 109 

NR4A3 CCAGCTTCAGCACCTTCATG GAGGCGGATTGCATTTGG not ex-in 82 

PFKFB3 AACAAAAGTTTTCAATGTAGGGGAGT CATCCCTCAGGGCAGCC fwd 1-2 ex 134 
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Gene Forward Reverse exon-intron 

amplicon 

length (bp) 

PKD2L1 GTTCTGAGGTTAGTGGTTGAGTTTCC CGTATAAGCTTGACTGTCCGGATT fwd 5-6 ex 80 

PLK3 AAGGCCAAGAAGGGCTCTCT CGGCAGATGGACGTCTTCA fwd 7-8 ex 80 

PPARG TTTCAAGCATTTCTTCACCACACT TGATTGCACTTTGGCAATCCT fwd 1-2 ex 111 

PTGS2 CTGTACAACACCGGAATTCTTCAC GGAAATGTTGTTGATGATGTTCCA fwd 1-2 ex 118 

RASD1  TCACAGGTGACGTTTTCATCCT GACCAGCGGCACCTCG fwd 1-2 ex 143 

SAAL1 GCAGCCAAACAAGTCCGC GGAGCCTGCACAATAGCCTG fwd 7-8 ex; rev 8-9 110 

SDC4 AAACCTGTCCAACAAGATCTCCAT CTGCAATGAGAGCTGTAAGAACTTCT rev 4-5 ex 86 

SELE GCCGGGTTGTGAATTTGTTGA CATTGAGCTGTGCATGACGA fwd 1-2 ex 117 

SERPINE2 ACACAACACCGCTCTCTGCTATC ACCTGCACTCTTTTGGCTACCAT not ex-in 91 

SLCO6A1 TGGAACAGGCATGCTACATAACTT ATCTCTGCCACAAACAGGGTAGTAT fwd 8-9 ex 91 

SNX10 GGTACGAGACCCCAGAACACA ACAAATTCTCGGAAGCGTCG not ex-in 132 

SOCS1 GCACGCACTTCCGAACCTT AAGCCGCAGGCATCCA one exon gene 82 

SOCS3 ACCCCAAACGCACCTACTACA TGCCCGTTGACAGTCTTACG one exon gene 121 

STEAP1 GTCGCCAATCCACCAGAAGTA CACCTGGGGAACAAATCCTG not ex-in 113 

STEAP4 GGATGCAAGTCGGCAGGT CAGCCAAGAGAGATCCTTGATCTAA fwd 1-2 ex 116 

TGM4 GTCAAGGTACTTTCCAGTGTGGC GCGTTCACTTCCGCGTACA fwd 8-9 ex 103 

TIMD4 CCTTCATAGTGCACACCATGTCA TGCACTTGGAGTTTGGGCA fwd 1-2 ex 147 

TIRAP CTGAAGGACATTGACAGGAAGGAT TCTTCCAGGTAGCGCAGCA rev 2-3 ex 122 

TLR15 TTCAGACAAAGAAGAACAGAGGAAAA TCGGTGCTCCACACAAGTCA one exon gene 79 

TLR4 GTCCGTGCCTGGAGGTCAT CAATTTCAGACTGTTGAAACTGAGGT fwd 1-2 ex 125 

TNFAIP3 CAGATCCCACAGAGCCTCCTT GGCGGCTCATTGCAGTTG fwd 1-2 ex 157 

TNIP2 GTAGCTCATGTGGAAGACTTAAATGC GTGCTGAAGGTATGCTGTGCTG fwd 3-4 ex 136 
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Gene Forward Reverse exon-intron 

amplicon 

length (bp) 

TOLLIP TGATGAGCGAGCCTTTTCAAT CCTTCTTTGTCATCACCCTGC fwd 3-4 ex 132 

TRAF3IP2 ATTTGCCGGAAGAGTTGCG GCAGGAAGTTCACAAATTTCATGAC not ex-in 84 

UPP1 CATGTACAAAGTGGGACCCGT CGAGGTGCCAATGCGAATA not ex-in 139 

WDR24 CTCTGGCCAGTCGGAGAGTG GCCGTTGTGGGCTGTGA fwd 1-2 ex 148 
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Table 6. Primers designed for seven reference genes used in BioMark System (Fluidigm). 

 

 

Gene symbol Sequence 
exon-
intron 

Amplicon 
length [bp] 

Accession 
number 

ACTB 
F: CCAGACATCAGGGTGTGATGG 
R: CTCCATATCATCCCAGTTGGTGA 

FWD 
1-2 exon 137 AJ719605 

B2M 
F: TACTCCGACATGTCCTTCAACG 
R: TCAGAACTCGGGATCCCACTT 

REV 
2-3 exon 150 AB162661 

GAPDH 
F: GAAGGCTGGGGCTCATCTG 
R: CAGTTGGTGGTGCACGATG 

FWD 
3-4 exon 150 AF047874 

GUSB 
F: GGCAGACTGGTCCTGTTGTTG 
R: GGGTCCTGAGTGATGTCATTGA 

FWD  
1-2 exon 64 AJ720880 

TBP 
F: AGCTCTGGGATAGTGCCACAG 
R: ATAATAACAGCAGCAAAACGCTTG 

REV 
3-4 exon 134 AF221563 

TUBAT 
F: CAGCTCTCAGTGGCTGAAATCA 
R: CCTTGTTGCGGGTCACACTT 

Do not 
span ex-in 

boundaries 
77 M16030 

r28S 
F: GGCGAAGCCAGAGGAAACT 
R: GACGACCGATTTGCACGTC 

Ribosomal 
RNA 62 FM165415 
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Table 7. Slope and reaction efficiencies for reference genes tested in tissue samples from birds reared on the pedigree farm. 

 Mean quantification cycle (Cq) values 

ACTB Bursa Spleen CT I leum Blood  Dilution factor Cq Log10 (dilution factor) Slope Efficiency 

Bird 1 19.9 16.2 18.3 19.6 23.6  1 19.5 0 -3.92 1.80 

Bird 2 18.1 16.4 18.9 19.4 22.4  0.1 23.4 -1 

  Bird 3 17.4 16.6 18.1 18.8 21.7  0.01 26.5 -2 

  Bird 4 19.8 18.8 18.4 20.1 22.0  0.001 30.2 -3 

  Bird 5 19.3 17.0 18.4 19.9 22.1  0.0001 35.8 -4 

  B2M Bursa Spleen CT Ileum Blood  Dilution factor Cq Log10 (dilution factor) Slope Efficiency 

Bird 1 22.4 20.0 18.9 21.0 26.0  1 21.3 0 -3.58 1.90 

Bird 2 20.8 19.4 21.0 21.4 24.8  0.1 24.9 -1 

  Bird 3 19.4 19.5 20.4 20.3 25.0  0.01 28.7 -2 

  Bird 4 20.7 21.5 20.6 22.2 24.8  0.001 32.3 -3 

  Bird 5 21.4 20.3 21.0 21.8 25.5  0.0001 35.5 -4 

  GAPDH Bursa Spleen CT Ileum Blood  Dilution factor Cq Log10 (dilution factor) Slope Efficiency 

Bird 1 24.0 21.0 22.6 22.4 28.1  1 23.5 0 -3.60 1.89 

Bird 2 22.7 21.5 22.7 22.4 27.5  0.1 27.4 -1 

  Bird 3 22.5 21.8 22.4 21.8 26.9  0.01 30.8 -2 

  Bird 4 23.7 23.8 22.7 23.5 26.9  0.001 34.4 -3 

  Bird 5 23.8 21.9 23.1 23.0 27.4  

     GUSB Bursa Spleen CT Ileum Blood  Dilution factor Cq Log10 (dilution factor) Slope Efficiency 

Bird 1 23.0 26.2 27.7 28.3 31.9  1 27.2 0 -3.36 1.98 

Bird 2 23.1 27.3 27.7 28.0 34.0  0.1 30.6 -1 

  Bird 3 24.0 27.1 27.0 28.2 32.7  0.01 34.0 -2 

  Bird 4 25.5 28.4 27.5 28.8 32.6  0.001 

 
-3 

  Bird 5 22.9 27.7 28.1 28.5 35.5  
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TBP Bursa Spleen CT Ileum Blood Dilution factor Cq Log10 (dilution factor) Slope Efficiency 

Bird 1 28.7 25.7 28.0 28.9 33.3  1 28.9 0 -3.83 1.82 

Bird 2 27.3 26.3 28.2 29.0 32.6  0.1 32.8 -1 

  Bird 3 27.1 26.7 27.9 28.1 31.5  

     Bird 4 28.4 28.7 28.0 29.5 31.7  

     Bird 5 28.4 26.7 28.5 29.2 32.1  

     TUBAT Bursa Spleen CT Ileum Blood  Dilution factor Cq Log10 (dilution factor) Slope Efficiency 

Bird 1 24.7 28.6 33.0 34.2 36.5  1 28.5 0 -3.23 2.04 

Bird 2 23.9 31.5 33.9 34.2 38.1  0.1 31.8 -1 

  Bird 3 25.2 31.3 33.7 33.8 35.3  0.01 35.0 -2 

  Bird 4 27.0 32.6 31.9 35.2 36.0  

     Bird 5 23.7 31.7 33.6 34.2 38.2  

     r28S Bursa Spleen CT Ileum Blood  Dilution factor Cq Log10 (dilution factor) Slope Efficiency 

Bird 1 11.9 9.8 10.8 10.5 16.6  1 11.7 0 -3.67 1.87 

Bird 2 10.8 9.8 10.9 10.9 15.5  0.1 15.5 -1 

  Bird 3 10.7 10.0 10.8 10.4 14.6  0.01 18.9 -2 

  Bird 4 11.7 11.2 11.0 12.2 15.3  0.001 22.9 -3 

  Bird 5 11.8 10.3 11.1 10.7 14.5  
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Table 8. Slope and efficiencies for reference genes tested in tissue samples from birds reared on the sibling test farm. 

 
Mean quantification cycle (Cq) values      

ACTB Bursa Spleen CT Ileum Blood 
 Dilution 

factor Cq 
Log10 (dilution 
factor) Slope Efficiency 

Bird 1 18.4 17.7 18.3 20.4 17.6  1 19.4 0 -3.29 2.01 

Bird 2 17.7 18.2 18.5 18.0 16.2  0.1 22.5 -1 
  Bird 3 18.7 18.7 18.0 18.6 19.9  0.01 26.2 -2 
  Bird 4 18.5 16.9 16.6 19.5 16.8  0.001 29.9 -3 
  Bird 5 19.7 19.3 20.1 21.2 18.7  0.0001 32.6 -4 
  

      

 0.00001 35.6 -5 
  

B2M Bursa Spleen CT Ileum Blood 
 Dilution 

factor Cq 
Log10 (dilution 
factor) Slope Efficiency 

Bird 1 18.9 18.9 19.2 21.3 19.3  1 20.9 0 -3.96 1.79 

Bird 2 19.7 20.7 20.0 19.1 18.7  0.1 24.5 -1 
  Bird 3 19.4 19.6 18.5 19.9 21.6  0.01 28.3 -2 
  Bird 4 19.4 19.6 18.0 19.3 19.3  0.001 32.9 -3 
  Bird 5 22.1 22.9 23.8 25.3 22.9  

     

GAPDH Bursa Spleen CT Ileum Blood 
 Dilution 

factor Cq 
Log10 (dilution 
factor) Slope Efficiency 

Bird 1 22.5 23.2 22.3 22.9 21.9  1 23.6 0 -3.07 2.11 

Bird 2 22.7 22.7 21.7 35.4 22.0  0.1 27.1 -1 
  Bird 3 22.6 21.8 22.8 24.3 23.9  0.01 35.9 -2 
  Bird 4 21.9 21.9 22.3 23.2 21.1  0.001 33.4 -3 
  Bird 5 24.7 24.7 25.3 25.7 24.6  0.0001 35.9 -4 
  

GUSB Bursa Spleen CT Ileum Blood 
 Dilution 

factor Cq 
Log10 (dilution 
factor) Slope Efficiency 

Bird 1 27.9 27.3 26.9 27.2 26.4  1 26.9 0 -3.26 2.03 

Bird 2 26.4 26.2 27.0 27.7 26.7  0.1 30.5 -1 
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Bird 3 27.1 26.8 28.2 28.2 28.7  0.01 33.6 -2 
  Bird 4 27.4 27.6 26.6 26.5 27.0  0.001 36.7 -3 
  Bird 5 30.1 30.3 30.8 31.4 29.2  

     

TBP Bursa Spleen CT Ileum Blood 
 Dilution 

factor Cq 
Log10 (dilution 
factor) Slope Efficiency 

Bird 1 27.1 27.9 27.8 29.8 26.6  1 29.1 0 -3.24 2.03 

Bird 2 27.3 28.4 28.1 26.9 26.7  0.1 32.1 -1 
  Bird 3 27.7 27.5 26.9 28.3 29.3  0.01 35.5 -2 
  Bird 4 27.5 27.0 26.9 29.3 27.4  

     Bird 5 30.3 30.1 31.3 32.6 31.3  

     
TUBAT Bursa Spleen CT Ileum Blood 

 Dilution 
factor Cq 

Log10 (dilution 
factor) Slope Efficiency 

Bird 1 32.5 32.5 30.1 27.3 27.7  1 28.4 0 -3.68 1.87 

Bird 2 26.9 27.0 27.7 30.2 31.2  0.1 31.8 -1 
  Bird 3 30.2 26.9 33.5 33.3 33.9  0.01 35.7 -2 
  Bird 4 33.2 30.1 32.8 29.6 30.0  

     Bird 5 35.5 36.4 35.4 36.6 34.4  

     
r28S Bursa Spleen CT Ileum Blood 

 Dilution 
factor Cq 

Log10 (dilution 
factor) Slope Efficiency 

Bird 1 10.7 10.7 10.9 13.4 11.0  1 11.7 0 -3.67 1.87 

Bird 2 10.8 12.7 11.2 10.6 10.4  0.1 15.5 -1 
  Bird 3 10.8 11.0 10.5 10.8 12.8  0.01 18.9 -2 
  Bird 4 10.6 10.1 10.0 13.4 10.7  0.001 22.8 -3 
  Bird 5 10.8 11.2 13.4 13.8 10.3  
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Table 9. Transformation of Cq values into quantities by ΔCt method - samples from pedigree farm.  

ACTB   Bursa Spleen CT Ileum Blood 
 

Bursa Spleen CT Ileum Blood 

ΔCq Bird 1 -2.52 0 -0.16 -0.86 -1.84 E-ΔCq 0.23 1 0.91 0.60 0.34 

 

Bird 2 -0.69 -0.23 -0.81 -0.62 -0.63 

 

0.67 0.87 0.62 0.69 0.69 

 
Bird 3 0 -0.39 0 0 0 

 
1 0.79 1 1 1 

 
Bird 4 -2.34 -2.62 -0.30 -1.32 -0.31 

 
0.25 0.22 0.84 0.46 0.84 

 
Bird 5 -1.90 -0.88 -0.33 -1.17 -0.37 

 
0.33 0.60 0.83 0.50 0.80 

B2M   Bursa Spleen CT Ileum Blood 
 

Bursa Spleen CT Ileum Blood 

ΔCq Bird 1 -2.92 -0.64 0 -0.62 -1.15 E-ΔCq 0.15 0.66 1 0.67 0.48 

 

Bird 2 -1.39 0 -2.11 -1.02 0 

 

0.41 1 0.26 0.52 1 

 
Bird 3 0 -0.15 -1.48 0 -0.17 

 
1 0.91 0.39 1 0.89 

 
Bird 4 -1.23 -2.12 -1.66 -1.82 -0.01 

 
0.45 0.25 0.34 0.31 0.99 

 
Bird 5 -1.99 -0.91 -2.03 -1.46 -0.67 

 
0.28 0.56 0.27 0.39 0.65 

GAPDH   Bursa Spleen CT Ileum Blood 
 

Bursa Spleen CT Ileum Blood 

ΔCq Bird 1 -1.46 0 -0.22 -0.63 -1.21 E-ΔCq 0.39 1 0.87 0.67 0.46 

 

Bird 2 -0.17 -0.58 -0.32 -0.63 -0.59 

 

0.90 0.69 0.82 0.67 0.69 

 
Bird 3 0 -0.81 0 0 0 

 
1 0.59 1 1 1 

 
Bird 4 -1.19 -2.81 -0.30 -1.69 -0.04 

 
0.47 0.17 0.83 0.34 0.97 

 
Bird 5 -1.30 -0.91 -0.76 -1.17 -0.51 

 
0.44 0.56 0.62 0.47 0.72 

GUSB   Bursa Spleen CT Ileum Blood 
 

Bursa Spleen CT Ileum Blood 

ΔCq Bird 1 -0.13 0 -0.71 -0.27 0 E-ΔCq 0.92 1 0.62 0.83 1 

 

Bird 2 -0.18 -1.15 -0.69 0 -2.03 

 

0.88 0.46 0.62 1 0.25 

 
Bird 3 -1.06 -0.90 0 -0.19 -0.76 

 
0.48 0.54 1 0.88 0.59 

 
Bird 4 -2.63 -2.27 -0.48 -0.80 -0.63 

 
0.16 0.21 0.72 0.58 0.65 

 
Bird 5 0 -1.48 -1.14 -0.45 -3.54 

 
1 0.36 0.46 0.74 0.09 

TBP   Bursa Spleen CT Ileum Blood 
 

Bursa Spleen CT Ileum Blood 
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ΔCq Bird 1 -1.66 0 -0.13 -0.79 -1.76 E-ΔCq 0.37 1 0.92 0.62 0.35 

 

Bird 2 -0.17 -0.65 -0.33 -0.93 -1.04 

 

0.90 0.68 0.82 0.57 0.54 

 
Bird 3 0 -0.95 0 0 0 

 
1 0.56 1 1 1 

 
Bird 4 -1.28 -3.03 -0.10 -1.45 -0.20 

 
0.46 0.16 0.94 0.42 0.88 

 
Bird 5 -1.31 -1.02 -0.64 -1.13 -0.60 

 
0.45 0.54 0.68 0.51 0.70 

TUBAT   Bursa Spleen CT Ileum Blood 
 

Bursa Spleen CT Ileum Blood 

ΔCq Bird 1 -1.08 0 -1.13 -0.41 -1.23 E-ΔCq 0.46 1 0.45 0.75 0.42 

 

Bird 2 -0.26 -2.88 -1.95 -0.39 -2.89 

 

0.83 0.13 0.25 0.76 0.13 

 
Bird 3 -1.56 -2.65 -1.76 0 0 

 
0.33 0.15 0.29 1 1 

 
Bird 4 -3.35 -3.92 0 -1.41 -0.74 

 
0.09 0.06 1 0.37 0.59 

 
Bird 5 0 -3.02 -1.68 -0.33 -2.98 

 
1 0.12 0.30 0.79 0.12 

r28S   Bursa Spleen CT Ileum Blood 
 

Bursa Spleen CT Ileum Blood 

ΔCq Bird 1 -1.20 -0.01 -0.05 -0.10 -2.08 E-ΔCq 0.47 0.995 0.97 0.94 0.27 

 

Bird 2 -0.13 0 -0.17 -0.53 -0.99 

 

0.92 1 0.90 0.72 0.54 

 
Bird 3 0 -0.19 0 0 -0.07 

 
1 0.89 1 1 0.96 

 
Bird 4 -1.00 -1.40 -0.22 -1.77 -0.76 

 
0.54 0.41 0.87 0.33 0.62 

 
Bird 5 -1.08 -0.58 -0.34 -0.24 0 

 
0.51 0.70 0.81 0.86 1 
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Table 10. Transformation of Cq values into quantities by ΔCt method - samples from sibling test farm. 

ACTB   Bursa Spleen CT Ileum Blood 

 

Bursa Spleen CT Ileum Blood 

ΔCq Bird 1 -0.63 -0.87 -1.69 -2.40 -1.39 E-ΔCq 0.65 0.545 0.31 0.19 0.38 

 
Bird 2 0 -1.27 -1.93 0 0 

 
1 0.41 0.26 1 1 

 
Bird 3 -0.83 -1.87 -1.43 -0.56 -3.72 

 
0.56 0.27 0.37 0.68 0.07 

 

Bird 4 -0.73 0 0 -1.51 -0.60 

 

0.60 1 1 0.35 0.66 

 

Bird 5 -1.94 -2.38 -3.50 -3.12 -2.49 

 

0.26 0.19 0.09 0.11 0.18 

B2M   Bursa Spleen CT Ileum Blood 
 

Bursa Spleen CT Ileum Blood 

ΔCq Bird 1 0 0 -1.19 -2.21 -0.61 E-ΔCq 1 1 0.50 0.28 0.70 

 
Bird 2 -0.82 -1.79 -1.94 0 0 

 
0.62 0.35 0.32 1 1 

 

Bird 3 -0.43 -0.69 -0.44 -0.87 -2.88 

 

0.78 0.67 0.78 0.60 0.19 

 

Bird 4 -0.44 -0.76 0 -0.29 -0.60 

 

0.77 0.64 1 0.85 0.70 

 
Bird 5 -3.16 -4.01 -5.80 -6.30 -4.23 

 
0.16 0.10 0.03 0.03 0.09 

GAPDH   Bursa Spleen CT Ileum Blood 
 

Bursa Spleen CT Ileum Blood 

ΔCq Bird 1 -0.62 -1.44 -0.58 0 -0.88 E-ΔCq 0.69 0.42 0.70 1 0.59 

 

Bird 2 -0.75 -0.91 0 -1.11 -0.90 

 

0.63 0.58 1 0.51 0.58 

 
Bird 3 -0.72 0 -1.09 -1.46 -2.84 

 
0.65 1 0.52 0.41 0.18 

 
Bird 4 0 -0.15 -0.58 -0.31 0 

 
1 0.91 0.70 0.83 1 

 
Bird 5 -2.77 -2.90 -3.59 -2.80 -3.56 

 
0.19 0.17 0.11 0.18 0.12 

GUSB   Bursa Spleen CT Ileum Blood 

 

Bursa Spleen CT Ileum Blood 

ΔCq Bird 1 -1.51 -1.09 -0.29 -0.74 0 E-ΔCq 0.34 0.46 0.81 0.59 1 

 
Bird 2 0 0 -0.39 -1.24 -0.28 

 
1 1 0.76 0.42 0.82 

 
Bird 3 -0.68 -0.61 -1.66 -1.72 -2.23 

 
0.62 0.65 0.31 0.30 0.21 

 
Bird 4 -0.97 -1.46 0 0 -0.57 

 
0.50 0.36 1 1 0.67 

 

Bird 5 -3.69 -4.08 -4.25 -4.88 -2.75 

 

0.07 0.06 0.05 0.03 0.14 

TBP   Bursa Spleen CT Ileum Blood 

 

Bursa Spleen CT Ileum Blood 

ΔCq Bird 1 0 -0.80 -0.93 -2.83 0 E-ΔCq 1 0.57 0.52 0.13 1 

 
Bird 2 -0.22 -1.38 -1.18 0 -0.19 

 
0.86 0.37 0.43 1 0.87 
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Bird 3 -0.65 -0.50 -0.06 -1.31 -2.72 

 
0.63 0.70 0.96 0.39 0.14 

 
Bird 4 -0.40 0 0 -2.38 -0.84 

 
0.76 1 1 0.18 0.55 

 

Bird 5 -3.24 -3.09 -4.40 -5.63 -4.76 

 

0.10 0.11 0.04 0.02 0.03 

TUBAT   Bursa Spleen CT Ileum Blood 

 

Bursa Spleen CT Ileum Blood 

ΔCq Bird 1 -5.61 -5.56 -2.38 0 0 E-ΔCq 0.03 0.03 0.23 1 1 

 
Bird 2 0 -0.07 0 -2.89 -3.58 

 
1 0.96 1 0.16 0.11 

 
Bird 3 -3.24 0 -5.81 -5.95 -6.19 

 
0.13 1 0.03 0.02 0.02 

 

Bird 4 -6.26 -3.23 -5.08 -2.31 -2.29 

 

0.02 0.13 0.04 0.24 0.24 

 
Bird 5 -8.63 -9.44 -7.68 -9.24 -6.77 

 
0.00 0.00 0.01 0.00 0.01 

r28S   Bursa Spleen CT Ileum Blood 
 

Bursa Spleen CT Ileum Blood 

ΔCq Bird 1 -0.07 -0.59 -0.87 -2.81 -0.67 E-ΔCq 0.96 0.69 0.58 0.17 0.66 

 

Bird 2 -0.14 -2.57 -1.14 0 -0.09 

 

0.92 0.20 0.49 1 0.94 

 

Bird 3 -0.20 -0.87 -0.52 -2.39 -2.43 

 

0.88 0.58 0.72 0.22 0.22 

 
Bird 4 0 0 0 -2.75 -0.36 

 
1 1 1 0.18 0.80 

 
Bird 5 -0.13 -1.10 -3.35 -3.14 0 

 
0.92 0.50 0.12 0.14 1 
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a) 

 
Reference genes NTC 

b) 

 
All test genes NTC 

Figure 2. Melting curves for No Template Control (NTC) samples from qPCR analysis using 96.96 

Dynamic Array platform; a) for reference genes, b) all genes tested. 
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ACTB B2M 

  
GAPDH GUSB 

  
TBP r28S 

Figure 3. Melting curves for all reference genes for all conditions from analysis using 96.96 Dynamic 

Array. 
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C3ORF52 CCL19 

  
CSF1 CXCL13L2 

  
CXORF21 EAF2 

Figure 4. Melting curves for genes where primers do not span exon/exon boundaries and with 
introns < 500 bp. 

 



   

 219 

  
EDN1 ENSGALG00000005747 

  

ENSGALG00000022324 G0S2 

  

GCH1 IL12B 
Figure 4 continued 



   

 220 

  

IRF7 JUN 

  

MADPRT MAFA 

  

NFKB2 NOS2 

Figure 4 continued 
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NR4A3 SERPINE2 

  

SNX10 SOCS1 

  

SOCS3 STEAP1 
Figure 4 continued 
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TLR15 TRAF3IP2 

 

 

UPP1  

Figure 4 continued 
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DTX2 CXCLi1 

  

ENSGALG00000011172 IRF1 

Figure 5. Unusual melting curves with additional peaks at lower temperatures from qPCR analysis 

using 96.96 Dynamic Array. 
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IL12B MAFA 

  

STEAP4 GUSB 

Figure 5 continued 
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