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ABSTRACT 

The availability of high-density genome panels, comprised of SNP data, for the 

majority of livestock species, has led to considerable growth in the development and 

investigation of association mapping methodology in recent years. Locating  markers that 

are linked to loci affecting genetic variation is thought to be a promising approach to 

identifying genetic control for traits of interest. Whilst initial findings were promising, 

genome-wide association studies have struggled to identify markers explaining high 

proportions of genetic variation for the majority of complex traits analysed. This thesis 

has two main objectives that are complementary to one another. The first is to identify 

QTL associated with susceptibility to ascites syndrome in populations of broiler 

chickens. The second consists of the investigation and development of alternative 

association mapping models and a comprehensive evaluation of the influence of genetic 

architecture on the performance of these models. 

Ascites is a metabolic disorder characterised by the accumulation of fluid within the 

peritoneum and is one of the most common disorders affecting broilers raised in 

commercial conditions. The thesis begins with a QTL analysis aimed at identifying 

genetic loci that influence susceptibility to ascites. The constraints and limitations of the 

methodology are discussed, and alternative methods investigated using real and 

simulated datasets. Amongst the conclusions, is the identification that model 

performance is strongly influenced by localised genetic architecture of the causal 

variants and markers used by the models. Identifying how this architecture influences 
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the performance of models is of considerable importance given its highly variable nature 

across the genome of all species. 

A broad range of genetic conditions were simulated, based on real data, to identify 

their influence on the ability to provide statistical significance for causal loci, using a 

range of regression-based mapping models that differ in their use of marker information 

and parameterization. This work was extended to determine the influence of marker 

numbers, in multilocus models, on performance under different genomic conditions. 

Conclusions drawn from this work are applied in the re-analysis for QTL influencing 

ascites, also identifying the QTL shown in the previous study, as well as additional loci. 

Finally, the thesis provides a perspective on the future research directions regarding 

utilisation of observed genetic information on model choice, and an outline of how 

whole-genome mapping studies can be constructed, in order to maximise the use of 

information present in the genome panel. 
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CHAPTER ONE 

GENERAL INTRODUCTION 

1.1 Association mapping 

In recent years, a wealth of genomic information has become available for the 

majority of livestock and domestic species (e.g. Lindblad-Toh et al. 2005; Wong et al. 

2004) and humans (e.g. Eichler et al. 2007; Kidd et al. 2008). These resources are 

indispensible tools for understanding genetic variation across genomes, and its control of 

phenotypic traits and susceptibility to diseases. Currently, genome-wide association 

studies (GWAS) are the most widely used contemporary approach used to relate genetic 

variation to phenotypic diversity (McCarthy et al. 2008). Broadly, the standard approach 

for GWAS studies is to use statistical tools to identify associations between the alleles of 

genetic markers and the measured phenotypes of a trait. In association studies, LD 

information is used to identify relationships between these markers and causal loci. 

LD refers to the non-random association of alleles at different loci, and for 

association studies is considered at the population wide level. For example, suppose that 

allele A at locus 1 and allele B at locus 2 are at frequencies 7tA  and 2tB,  respectively, in 

the population. if the two loci are independent, then we would expect to see the AB 

haplotype at frequency 2rAJCB.  If the population frequency of the AB haplotype is either 

higher or lower than this, implying particular alleles tend to be observed together, then 

the two loci are said to be in LD. LD can be considered as a way of quantifying the level 

of informativness between different markers and is an important statistical property in 



association mapping studies. The extent of LD in a population depends on, amongst 

other factors, the past effective population size (Haley 1999). Due to domestication and 

breeding strategies, effective population sizes are small for the majority of livestock 

species (Hayes et al. 2003). As a result, the extent of LD can be considerable, with 

useful LD (e.g. useful for the detection of QTL) for up to tens of cM in cattle (Farnir et 

al. 2000), pigs (Nsengimana et al. 2004), sheep (McRae et al. 2002) and chickens 

(Andreescu et al. 2007). This is in sharp contrast to the situation in humans, where 

recent effective population sizes have been large, and consequently LD extends over 

much shorter distances, often only a few 100 kb (Pritchard and Przeworski, 2001; Reich 

et al. 2001). This has led to the suggestion that required marker density for mapping can 

be considerably lower for livestock species (Haley 1999; Hayes et al. 2003). 

1.2 Association mapping methodology 

Nowadays, genetic information available for whole genome mapping studies is 

typically high density SNP panels. These datasets contain genotypes of SNP markers 

that are spaced across the genome of the species of interest. The statistical analysis of 

this information works on the assumption that high levels of LD exists between markers 

and causal loci that are physically close to one another. Differences in the methodology 

of association analyses are normally concerned with the statistical procedures applied to 

information contained by the marker genotypes. 

The diversity of statistical approaches used to infer the relationship between marker 

and trait information is too great a topic to cover in detail here. Instead, I will give a 
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brief introduction to some of the alternative ways to use marker data. In the framework 

of mixed model machinery advocated by Henderson (1975) the matrix of predictor 

variables can be populated with information from either a single marker, or a group of 

markers, leading to the terms single-locus verses multilocus analyses for mapping 

studies. For single-locus models, if we assume an additive mode of inheritance, the 

number of copies of "A" alleles are normally fitted as linear covariates, and tested 

against the null hypothesis in a one DF test. For multilocus models there is a choice in 

the parameterization of the model, depending on how the information contained between 

the markers is used. Fitting N SNPs in a regression analysis, where coefficients are 

constrained to fit just main effects is a natural extension to a single-marker test. In the 

regression model there is now a coefficient fl flN for each SNP, leading to a 

general test with N numerator DF fitted. Using mixed model methodology allows 

additional covariates, such as sex, age, or environmental conditions to be easily 

included. With multilocus approaches, the parameterization normally depends on 

whether genotype or haplotype information is used. Genotype information of markers is 

observed, however, we are often ignorant about the phase of gametes. That is to say, we 

do not know which nucleotides reside together on individual chromosomes. 

In recent years, the availability of large numbers of markers, and projects such as 

HapMap in humans (HapMap consortium 2007), has raised interest in using haplotype 

information in association studies. Haplotype phase is usually inferred using statistical 

procedures (Browning and Browning 2009; Excoffier and Slatkin 1995; Stephens et al. 

2001), unless it can be determined using rule based systems from multigenerational 
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family genotype information. Strategies for performing haplotype analyses are still the 

subject of active debate and research, and are well reviewed in the literature (e.g. 

Balding 2006; Schaid 2004). A popular strategy, based on the block like structure of 

haplotype diversity originally observed in the human genome, is to use haplotypes to try 

and capture the correlation structure of SNPs in regions of low recombination (Gabriel et 

al. 2002). Haplotype blocks are defined as discrete chromosome regions containing 

SNPs in high LD, and consequently a low diversity of haplotypes (Cardon and Abecasis 

2003). However, difficulties in defining LD blocks, the boundaries between them, and 

choices regarding the inclusion of orphan SNPs, has led to the suggestion that using LD 

blocks as units for association may not be the most efficient strategy for haplotype 

analyses (Ding et al. 2005; Zhao et al. 2003). Recently, the development of methods to 

evaluate the association of haplotypes with traits has focused on the use of sliding 

windows, whereby windows of haplotypes from adjacent markers are fitted in a 

sequential manner, and scanned across a genome panel. 

A couple of problems are commonly encountered when using a sliding window 

approach. The first is how many adjacent SNPs should be included simultaneously in a 

particular haplotype analysis. This becomes especially apparent when we consider that 

the potential total number of haplotypes observed is 2', where n is the number of 

makers. At its time of origin, a causal mutation will occur on a single haplotype 

background, with this haplotype extending over the whole chromosome. As 

recombination events are accumulated across generations, the length of the original 

haplotype associated with the mutation shrinks. Thus, long haplotypes may often include 

alleles not associated with the haplotype background of the causal mutation, especially 
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in the case of old mutations. Moreover, as some haplotypes would only be carried by a 

few individuals, there could be statistical problems, owing to small sample sizes, in 

evaluating their effects on the trait (North et al. 2006). The second problem occurs when 

there are large numbers of haplotypes, especially rare ones. This can lead to over 

parameterisation of the model, and difficulties in accurately estimating effects for 

haplotypes with low frequencies (Fallin and Schork 2000). A commonly used set of 

approaches to avoid this problem is to cluster haplotypes, based on some form of 

similarity, in the hope that clusters will reflect a shared ancestry. Thus, the parameter 

space can be reduced while, it is hoped, retaining phase information relevant to the 

causal variant. The concept is that dependency amongst haplotypes will be accounted 

for, whilst reducing the DF of the test and improving power. Alternatively, statistical 

tools can be used to identify haplotypes that have an effect on the trait, and shrink or 

reduce the effects of those that do not. Certain parameter reduction approaches are 

applied specifically to rare haplotypes in an effort to avoid problems associated with 

inaccuracies in estimating their effects. To date there has been no full evaluation of the 

ability of parameter reduction methods to correctly identify between haplotypes with 

effect, and those without. 

A challenge of association mapping is how to identify and optimally parameterize 

the statistical model, in order to explain the greatest amount of trait variance using the 

fewest parameters. There has been considerable debate on the relative advantages of 

single-marker verses haplotypes analyses, and whilst there are a few consensus opinions, 

this is still an area of active research. For indirect association mapping, haplotype based 

methods may be more powerful than single-locus tests, as haplotypes may be able to 
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capture ancestral structure between markers and causal variants (Akey et al. 2001). 

However, single-marker tests are expected to outperform haplotype based analyses 

under scenarios, such as the causal locus being genotyped directly (Zhang et al. 2002). 

The literature on the relative efficiency of analysing haplotypes verses single-markers is 

complicated by differing assumptions about the number of trait loci, the extent of LD 

between markers and trait loci and the use of specific simulated datasets. Most reports 

have compared the maximum single-locus statistic, with bonferroni correction for 

multiple tests, to a global test of haplotype associations (Schaid 2004). The performance 

of a model, relative to another, will be dependent on the localised genomic architecture 

of the markers and trait, and how this interacts with the parameterization of the model. 

Therefore, given the variation in genomic conditions across the genome, no one model is 

expected to perform optimally under all conditions. The difficulty is in identifying how 

the interaction between parameterization and genomic conditions affects model 

performance. 

1.3 QTL mapping in chicken populations 

The chicken is an ideal species for QTL mapping studies because of its high 

reproductive capacity, low generation intervals, breeding structure, and management 

conditions. Additionally, the chicken is almost unique amongst agricultural species in 

that a number of highly divergent selection lines are available (Rabie 2004). In the last 

few years, QTL mapping studies in chickens have identified genetic loci for a wide 

variety of economically important traits (Abasht et al. 2006; Hocking 2005). Identified 
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markers have been used to focus on genomic regions for fine scale mapping, or if they 

have a proven association with a trait, in MAS breeding programmes (Dekkers 2004). 

Experimental crosses, such as between breeds, or lines, that are divergent for the trait of 

interest, are used to increase the probability that the F2 parents are heterozygous for 

QTL, thereby increasing power of the experimental design. Whilst this approach has 

been successful in identifying QTL that explain differences between lines, it provides no 

insight into whether these QTL are segregating within current commercial lines. For a 

particular line, it is likely that any QTL associated with a trait under selection, will be 

fixed for the major alleles, unless there are other mechanisms that maintain variation at 

these loci (De Koning et al. 2004). Consequently, extreme crosses, such as a broiler-

layer cross, are analysed under the assumption that the two lines are fixed for alternative 

alleles at the QTL (Haley et al. 1994). Alternatively, analysis within breeds will shift the 

emphasis towards finding genes that explain differences within a population, offering 

the opportunity of MAS within the breed (Van Arendonk and Bovenhuis 2003). 

1.4 Introduction to the disorder ascites 

The metabolic disorder ascites is associated with the accumulation of fluid within 

the peritoneum, and is one of the most significant metabolic conditions affecting broiler 

chickens. The disorder is strongly linked to pulmonary hypertension and sudden death 

syndrome, with these terms often being used interchangeably in the literature (Julian 

1998; 2000; Odom 1993; Wideman 1988; 2000). When raised in optimal environmental 

conditions, incidence of ascites is typically low. However, when broilers are raised in 
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tougher commercial environments, ascites can be more common, leading to considerable 

economic loses, as mortality usually occurs when birds are close to market weight 

(Hunton 1998; Maxwell and Robertson 1997). Ascites was originally observed in flocks 

reared at high altitudes (Maxwell et al. 1986; Smith et al. 1955), where the partial 

pressure of oxygen is low, leading to right ventricular hypertrophy and the accumulation 

of fluid in the abdominal cavity (Julian 1998). Temperature is also well known to have 

an effect on ascites, with the strong correlation between cold temperature and ascites 

well documented (Bendheim et al. 1992; May and Deaton 1974; Wideman and Tackett 

2000). Stolz et al. (1992) demonstrated that cold temperatures increase incidences of 

ascites by raising the metabolic oxygen requirements of the birds, thereby increasing 

incidences of pulmonary hypertension leading to the development of ascites. 

Management factors such as feed type, air quality, ventilation, and incubator conditions 

have all been implicated in the development of ascites (Bendheim et al. 1992). 

Pulmonary hypertension accounts for the majority of ascites cases in broilers, yet 

hypertension can originate from numerous causes. The events leading to pulmonary 

hypertension, resulting in ventricular failure and build up of fluid in the pericardium and 

abdominal cavity are well understood and have been described in great detail 

(Decuypere et al. 2000; Julian 1990a; 1990b; 2000; Lister 1997; Scheele et al. 1991; 

Wideman 2000). Both the avian respiratory and circulatory systems are important in the 

susceptibility of broilers to ascites; unlike mammals, avian lungs are relatively rigid, 

having limited movement during breathing, with air only passing through them on the 

way to air sacs (Julian 1993). In susceptible birds, an increase in workload to the heart 

can result in right ventricular failure and consequently ascites. Although a variety of 
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different environmental, disease, diet, and management practices are known to trigger 

the condition, it is still observed in flocks where these factors are at near optimal levels. 

1.5 Genetic control of ascites and Sa0 2  as an indicator trait 

It is generally accepted that ascites is genetically linked to productions traits (such as 

growth and breast muscle yield), due to the observation that incidences of ascites have 

increased together with selection for these traits (Havenstein et al. 1994). It has been 

suggested that ascites in modern broilers, reared in commercial conditions, is related to 

the high oxygen requirements of rapid growth, and the inability of the heart and lung to 

deliver sufficient oxygen - to respiring tissue (Julian 1993). Continuous selection for body 

weight and muscle yields, at increasingly younger ages, has affected both growth curves 

and differential growth of organs in broilers (Dunnington and Siegal 1996). Recognition 

of physiological constraints on birds led to the implementation of good management 

practices to reduce oxygen demands, resulting in a significant reduction in ascites 

mortality in commercial flocks in recent years (Baghbanzadeh and Decuypere 2008; 

Balog 2003; Julian 2000). However, such approaches are not ideal, as they compromise 

the efficiency of broiler production. Whilst breeding companies are able to successfully 

improve growth rates, its full genetic potential is limited in order to avoid mortality from 

ascites (Druyan et al. 2007a). 

Genetic variation of ascites has been estimated in several studies, with a range of 

heritabilities from 0.1 to 0.7 (De Greef et al. 2001; Druyan et al. 2007a; Lubritz et al. 

1995; Moghaddam et al. 2001; Navarro 2003). These studies indicate the feasibility of 
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selecting against ascites, although this is only possible through the identification of 

genetically susceptible birds based on phenotypic observations (Druyan et al. 2007b). 

Incidence of ascites is difficult to measure in commercial flocks as an autopsy is 

required for diagnosis. Furthermore, visible signs of the disorder are not normally seen 

until the bird is approaching market weight, causing difficulties in selection of birds 

within breeding programs. Therefore, an indicator trait is required that is highly 

correlated with the incidence of ascites and is cheap and easy to measure in a non-

invasive way. Amongst the candidate indicator traits, blood oxygen saturation (Sa02) is 

commonly used, as it can be measured easily and non-invasively using an oximeter - a 

device that uses spectrophotometer to measure the percentage of haemoglobin saturated 

with oxygen at the time of measurement. Several studies have demonstrated the link 

between 5a02 and ascites, with heritabilities between 0.53-0.63 estimated for Sa0 2, and 

a genetic correlation of -0.5 with ascites susceptibility (Julian and Mirsalimi 1992; 

Druyan et al. 1999). A negative genetic correlation is preferable, as selection resulting in 

a reduction in ascites would be expected to increase 5a02 levels, improving its use as an 

indicator trait. 

1.6 Thesis outline 

The main objectives of this thesis are to explore methodology used in studies to 

identify genetic loci for traits, and investigate how performance of alternative models 

can be affected by genomic architecture observed in genomes. Strategies and tools are 

compared and developed, and utilised to identify QTL affecting susceptibility to ascites 
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in broiler chicken lines. The following paragraphs outline the contents and main 

objectives for each of the subsequent chapters. 

Chapter 2 details a genome-wide association analysis for QTL associated with 

ascites susceptibility using six lines of broiler chickens. This initial mapping study uses 

a standard single-locus  mixed model method, to provide a preliminary analysis of QTLs 

in these populations. Data supplied here is from sire lines used in commercial breeding 

programs, and is provided by Aviagen Ltd. Relationships between the lines are assessed, 

and attempts are made to fit joint line analyses where appropriate. The LD properties of 

the populations are also explored and described here. The chapter concludes with an 

assessment of the experimental design and challenges facing QTL mapping studies in 

livestock species. 

Chapter 3 investigates and contrasts alternative association analysis approaches 

using two datasets. One of these datasets is a single line of broilers, whilst the other is a 

simulated dataset provided as part of a QTL-MAS workshop. Alternative approaches 

considered here, include two multilocus models that parameterize the information 

between markers in different ways. The first fits just main effects, whilst the second 

includes all observed interactions in a haplotype analysis and uses score statistics to 

evaluate the strength of association with the trait. Both these methods are contrasted 

against a single-locus approach. A critical assessment of the uses of models is made, 

along with an evaluation of the likely importance of genomic architecture to model 

performance. 

Chapter 4 investigates how the performance in identifying causal variants, of a 

range of regression based models, is affected by differences in genetic conditions such 
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as allele frequencies, LD patterns and distance between markers and QTL. Optimal 

performance of a model is expected to be influenced by the interaction between its 

parameterization and the genomic information that it is supplied. Thus, models that 

differ in their parameterization are expected to handle genomic information in different 

ways. A comprehensive set of conditions is simulated by using the genotype panel from 

a broiler line dataset, and selecting markers to represent surrogate QTL, and using 

surrounding markers as predictors in a range of models. Models investigated include 

single-locus, main effect multilocus and two haplotype-based approaches. All multilocus 

models are implemented using a three-marker sliding window framework. 

Chapter 5 builds on results shown in chapter four, and aims to determine the 

optimal window length for multilocus approaches under a wide range of genomic 

conditions. Here I focus on the importance of window length for multilocus models, and 

how their performance is affected by localised genetic architecture between markers in 

the windows and QTL. The same approach of using surrogate QTL is utilised here. In 

this chapter 1 identify the possible use of observed data in predicting the optimal model 

to use in a given localised situation. 

Chapter 6 provides an analysis of rates of false positives seen in genome-wide 

associations for the models described in chapters four and five. To provide a 

comprehensive and full evaluation of model performance for genome-wide association 

analyses, rates of false positives are assessed for models described in chapters four and 

five. As before, false positive rates are accessed under a range of different genomic 

conditions. I also simulate a range of heritabilities, in order to determine if rates of false 

positives for models relative to one another are constant when the proportion of genetic 



variance explained by the QTL changes. in this chapter I demonstrate important 

differences between models in their ability to handle high levels of LD between non-

syntenic markers and QTL. 

Chapter 7 shows the results from a re-analysis of the six broiler lines for QTL 

influencing ascites susceptibility, using a haplotype model rather than a single-locus 

analysis. The choice of re-analysis of this data using a haplotype model reflects results 

shown in chapters three - six. The importance, and potential uses of QTL identified here 

are considered in the context of breeding programs that require management of 

metabolic disorders such as ascites, along with progress in production traits. I 

demonstrate the advantages of considering and utilizing alternative models when 

mapping for causal variants affecting ascites susceptibility, and conclude with some 

cautionary advice on considering model choice for mapping using alternative genome 

panels and populations. 

Chapter 8 features a final summary and concluding remarks of the research 

involved in producing this thesis. A critical evaluation of the limitations of this research 

is included to provide a full evaluation of the context of the research presented in this 

thesis. Some perspectives on the future research directions regarding utilisation of 

observed genome information on localised model choice are given, along with some 

thoughts concerning optimal parameterization of models. 
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CHAPTER TWO 

QUANTITATIVE TRAIT LOCI IDENTIFIED FOR ASCITES SUSCEPTIBILITY IN BROILER 

CHICKENS 

SINGLE-MARKER ANALYSIS 

2.1 Introduction 

Ascites is the end result of a pulmonary vascular system being unable to deliver 

enough oxygen to feed the metabolic demands of the broiler (Julian 2000). It is a major 

cause of economic losses to the broiler industry, as it tends to affect birds approaching 

market weight, in which large amounts of labour and feed have been invested, as well as 

contamination in the processing sectors (Maxwell and Robertson 1997). The causes of 

ascites are multifactorial but interactions between diet, environmental and genetic 

factors play an important role. Over the past 4 decades intense selection for growth, feed 

conversion rates (FCR) and breast muscle yield in broilers has led to significant 

physiological changes. One of these changes of particular importance is the increase in 

physiological disorders, such as ascites (Baghbanzadeh and Decuypere 2008; 

Dunnington and Siegal 1996). Ascites syndrome cannot be thought of as a contagious or 

infectious disease, but rather as a progressive disorder starting with pulmonary 

hypertension and developing to congestive heart failure and death (Lister 1997; Mitchell 

1997). 

Both the respiratory and circulatory systems are important in influencing broiler 

susceptibility to ascites. Unlike mammals, avian lungs are relatively rigid, with limited 
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movement during breathing. Instead, air moves through the lungs en route to air sacs 

before moving back through them on expiration. The composition of heart valves is an 

additional problem, making birds very susceptible to disorders relating to valvular 

insufficiency (Julian 1993). Ascites becomes particularly apparent under sub-optimal 

conditions such as high altitude, with low partial pressures of oxygen, or situations 

requiring high levels of oxygen consumption through increases in metabolic demands 

(Julian 2000; Scheele et al. 1992). 

In recent years ascites related mortality in breeding companies' commercial flocks 

has been reduced considerably, or even avoided altogether, mainly through management 

practices such as reduced feed intake and growth rate, that consequently lower metabolic 

rate and demand for oxygen (Julian 2000). Optimisation of the housing temperatures and 

ventilation in cold weather conditions can be helpful practices to decrease ascites 

incidence (Baghbanzadeh and Decuypere 2008). These techniques are designed to slow 

early bird growth, thus not allowing the birds to achieve their full genetic potential 

(Julian 2000; Balog 2003). Therefore, the full expression of gains in genetic potential 

made by breeding companies is limited at the farm level to avoid mortality of ascites 

susceptible birds. This compromise in economic efficiency becomes more of a problem 

as growth rate increases and broilers are marketed at an earlier age. A better solution 

would be the identification of genes affecting ascites susceptibility and reducing the 

frequencies of unfavourable alleles in MAS programmes. Incidences of ascites are 

considerably higher in commercial environments, where birds are raised in sub-optimal 

conditions. 
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The recent development of a genomic map and identification of millions of SNPs for 

the chicken (Wong et al. 2004), combined with advances in statistical methods, have 

stimulated initiation of mapping experiments for a wide variety of traits (Abasht et al. 

2006; Hocking 2005). The chicken is an ideal model organism to use for the dissection 

of complex traits such as ascites, due to a high reproductive rate and relatively short 

generation intervals when compared to other livestock species. Additionally, the chicken 

genome is relatively small (1.2x10 9  base pairs) compared to the mammalian genome 

(3xlO9  base pairs) which is a big advantage for research aimed at the identification of 

characterisation of the genetic architecture affecting quantitative traits. The complexity 

of ascites syndrome, with its effect on a number of organ systems, suggests the potential 

influence of a large number of genetic loci. Large numbers of genetic loci and their 

potential to have small effects on the variation in ascites susceptibility make it a trait 

particularly amenable for a whole genome scan. 

2.1.1 Previous mapping studies for ascites 

A few studies have looked for QTL for ascites related traits using either candidate 

gene approaches, or low-density genome-wide scans. Navarro (2003) conducted a 

linkage study for Sa02 and other ascites related traits using three candidate regions on a 

half-sib population. Unfortunately, no significant QTL were detected in any of the 

linkage groups, aside from a QTL for fleshing score, with suggestive significance (p < 

0.1) at chromosome wide level. This was followed up with a genome wide scan on an F2 

population derived from a broiler layer cross (Navarro et al. 2005). Numerous QTL 
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showing genome-wide suggestive linkage (p < 0.1) were identified, with moderate 

effects for ascites related traits (not Sa02), although these had wide 95% confidence 

intervals. 

Rabie et al. (2005) performed a genome-wide scan with 420 microsatellite markers 

in 456 birds with phenotypes derived from progeny adjusted means. A number of 

genome-wide significant QTL were identified for ascites related traits (not Sa02), 

although these also had extremely wide confidence intervals, making identification of 

candidate regions very difficult. A further analysis of these identified regions was 

conducted using an advanced intercross line (Rabie 2004). To help identify individuals 

that are susceptible to ascites, the birds were reared in a cold stress environment, 

designed to induce incidences of the disease. To increase resolution of QTL positions 34 

additional microsatellite markers were genotyped in QTL regions identified by Rabie et 

al. (2005). Unfortunately, none of the traits analysed reached the (p <0.05) significance 

level in these regions and only body weight at five weeks of age reached suggestive 

significance level (p < 0.1). 

The studies by Rabie et al. (2004; 2005) and Navarro (2003; et al. 2005) indicate 

that some regions of the genome may include loci that affect traits involved in ascites 

susceptibility. The initial mapping experiments using a genome wide approach identified 

several significant and suggestive QTL. However, the estimated map positions of these 

QTL lacked precision, with confidence intervals spanning 20-60 cM, the size of some 

small chromosomes. Attempts at resolution of these locations did not reveal many 

interesting results, despite the inclusion of additional markers and the combination of 

linkage disequilibrium and linkage analysis methodology (Lee and Van der Werf 2004). 
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In these experiments, microsatellite markers were used due to their higher information 

content over SNPs. However, subsequent to this work, the availability of the high-

density SNP marker map (Wong et al. 2004), and the rapidly reducing costs of 

genotyping, has circumvented the use of the more informative microsatellite markers. A 

high-density SNP marker map would be expected to dramatically increase the power of 

a mapping study for ascites related traits (Ardlie et al. 2002). 

2.1.2 Extent of LD 

One requirement for effective use of LD mapping and of LD markers in MAS is that 

marker density is high enough that at least one marker is in sufficiently high LD with 

any putative QTL. With the availability of whole-genome sequences and large numbers 

of SNPs for most livestock species, high-density marker studies have become possible. 

The cost associated with genotyping, however, leads to an interest in using  the smallest 

required number of markers for LD mapping and MAS. Because the required marker 

density depends directly on the extent of LD, which varies between populations, an 

important step prior to any mapping association analysis is to ascertain the extent of LID 

in the population of interest. 

In association analyses combining data across lines or populations is expected to 

increase power, providing lines are closely related to one another. This required 

relationship is essentially a consistency of LD across populations, and so it is of interest 

to ascertain whether patterns of LD in one population extend to related populations 
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(Dekkers and Hospital 2002). The extent and consistency of LD for mapping and MAS 

can be assessed by studying marker-marker LD as an estimate for marker-QTL LD. 

Research on the extent of LD in populations has been conducted for humans and 

several livestock species. Although initial findings in humans have shown LD to extend 

over very short distances (Pritchard and Przeworski 2001), studies in livestock have 

shown high levels of LID over much longer distances in cattle (Farnir et al. 2000; Vallejo 

et al. 2003), pigs (Nsengimana et al. 2004) and sheep (McRae et al. 2002). This is 

thought to be caused by the intense artificial selection to which commercial animal 

breeding populations have been subjected for many generations and the ensuring 

reduction in the effective population size (Hayes et al. 2003). The extent of LD in these 

livestock species has led to the assumption that haplotype mapping may be 

straightforward in livestock breeds (Anderson and Georges 2004). 

In chickens, Heifetz et al. (2005) evaluated LD between microsatellite markers in a 

number of breeding populations of layer chickens using a standardized chi-square (x 2) 

measure. Their results showed appreciable LD among markers spaced by up to 5cM. LD 

within 5cM was strongly conserved across generations, but differed considerably among 

chromosomal regions. Aerts et al. (2007) investigated the extent of LD on chromosomes 

10 and 28 in a white layer and two broiler breeds. They found the extent of LD varied 

dramatically, although this study was only based on 69 SNP markers, across the two 

chromosomes. The most comprehensive study to date used genotype data for 959 and 

393 SNPs on chromosomes 1 and 4 respectively, with 179-244 individuals from nine 

commercial broiler lines (Andreescu et al. 2007). Andreescu et al. (2007) showed that 

whilst there was widespread LD, it only extended over short distances (<1cM), shorter 
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than had previously been reported in other livestock species. This is potentially due to 

differences in the historical effective population sizes of chickens compared to other 

livestock species. These results were consistent with those reported by Wong et al. 

(2004), in which SNP haplotype blocks in their populations were rarely as large as 

0.3cM. These results indicate that there may be very large differences in patterns of LD 

between different chicken breeds and different genomic regions. 

2.1.3 Measures of LD 

Although the principle of LD is fairly simple (i.e. the non-random segregation of 

markers in close proximity), the complex interplay between confounding factors such as 

population subdivisions, bottlenecks and expansions, is not yet completely understood 

and can make interpretation of LD results difficult. As a result, many different statistics 

have been developed to characterise the amount of LD between markers. Of which 

Lewontin's D' (Lewontin 1988) and r2  (Hill and Robertson 1968) are widely used. Both 

range from 0 (no LD) to 1 (full LD), but differ in the interpretation of the intermediate 

values. Intermediate values for D' are not clearly interpretable and are known to be 

biased upwards (Ardlie et al. 2002). In addition, D' is affected by the number of 

individuals used in the calculation (Weiss and Clark 2002). In contrast, intermediate 

values for r2  give an indication of the power to detect association. To have the same 

power to detect association between a disease and marker locus, the sample size must be 

increased by 1r2  when compared with the sample size for detecting the effect of the 

susceptibility locus itself (Kruglyak 1999). Therefore, 'useful LD' is often defined as an 
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r2  value higher than 0.3, which indicates that the sample size has to be increased 3-fold 

(Ardlie et al. 2002). If, for example, 500 individuals were required for an association 

study given a 'perfect LD model' (r2  = 1.0), 500/0.3 individuals would be needed if the 

r2  statistic has a value of 0.3 in the region under study. 

Even though the r2  statistic gives a good impression of the level of LD between two 

markers, SNP discovery strategy and demographic history of the population can 

influence the actual value of the statistic. As a result, two markers that are very close 

together can exhibit a low level of LD, while markers that are very distant can show a 

higher than expected level of LD. It is also known that LD between SNPs with a low 

minor allele frequency is biased upwards (Gaut and Long 2003). In part this can be 

explained by statistical properties of the LD statistics (Dunning et al. 2000), but may 

also have a biological meaning because SNPs with low minor allele frequencies have a 

higher probability of having arisen recently (Nordborg and Tavare 2002). A new SNP is 

in complete LD with all other loci, and therefore, the more recent the SNPs, the less time 

LD will have had chance to break down. 

Compared to other measures of LD such as D', r2  is the preferred measure for 

biallelic loci because it is related to the amount of information provided by one locus 

about another (Ardlie et al. 2002), and is less affected by sample size than D'. Consider 

two biallelic loci on the same chromosome, with alleles A and a at the first locus and 

with alleles B and b at the second locus, where the labelling is arbitrary. The allelic 

frequencies can be written as PA, Pa, PB and Pb,  and the four haplotype frequencies will 

be written aspAB,pAb,p aB andPab. Then, r2 = (PAB PAPB) 2  

PAPaPBPb 



2.1.4 Association mapping 

Standard approaches for association mapping using high-density genotype data 

include the sequential analysis of each SNP marker individually. These genotypes based 

single-marker tests typically fall into least squares or maximum likelihood approaches. 

With single-marker least squares methods, phenotypes of an individual are regressed 

onto its genotype, typically in the framework of a mixed model that accounts for 

variation for fixed and random effects (Fan and Xiong 2002; Long and Langley 1999). 

Although methods are now available to fit all SNPs for breeding value estimation 

simultaneously (Meuwissen et al. 2001), the properties of these methods for QTL 

mapping are not well understood, and most association analyses are based on fitting 

SNPs separately or as small groups in multilocus methods (Dekkers et al. 2006). When 

individuals are related, these analyses must use animal models that include relationship 

matrices to avoid bias of SNP effects and significance tests (Kennedy et al. 1992). 

2.2 Materials and methods 

2.2.1 Source of data 

Genotypic and phenotypic data were provided by Aviagen Ltd. (Newbridge, UK) as 

part of their genomic initiative project. Data included SNP genotypes, mean progeny 

performance, and pedigree information for broilers from six sire lines (10, 11, 12, 14, 28 

and 29) that are part of a commercial breeding programme. The number of sires in each 

line  ranges from 163-189. The mean, minimum and maximum number of progeny per 
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sire for each of the lines is given in table 2.1. Phenotypic data available for each sire 

included mean progeny Sa02 measures, adjusted for fixed effects of age, hatch group, 

mating group, and the random effects of the dam's permanent environmental effects and 

one-half of the estimated breeding value (EBV) of the dam, such that the adjusted trait 

value for a given sire can be shown as; 

Dyi —a 1  —h 1  —mg 1  —c _(0.5*BV dam )) 

Yadj 	
n 

where y, is the trait record for individual i, a1 , hi  and mg1  are the effects of sex, age, 

hatch and mating group respectively for individual i, c, is the random effect 

corresponding to the permanent environmental effect of the dam for individual j. BVdam  

is the estimated breeding value of the dam for individual i and n is the number of 

progeny for the sire. Details of the formula used to determine the phenotypic 

information for each sire are given in appendix one. Using progeny adjusted means 

based on large numbers of progeny for each sire increases the effective trait heritability 

by reducing the amount of residual variance in the model, leading to an increase in the 

power to detect associations (Hassen et al. 2009; Ye et al. 2006). Details of Sa02 as an 

indicator trait for ascites susceptibility are given in chapter 1, section 1.5. Details of the 

mean and variance of Sa02 measures for the six lines are given in table 2.1; in all lines 

the phenotypes were normally distributed (see appendix two for histograms of trait 

distributions). Sires with phenotypic records outside three standard deviations were 

removed from analyses; this amounted to the removal of one sire from line 14 and one 

from 28. Pedigree information included relationships between sires spanning four 
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generations. Sires were genotyped for 12,046 SNP markers across the genome on an 

Illumma DNA test panel (Illumina, San Diego, CA). initial SNP assay development for 

this panel was coordinated by H. Cheng (USDA-ARS, Avian Disease and Oncology 

Laboratory, East Lansing, MI), which resulted in a 3K SNP panel with genome-wide 

coverage, with SNP chosen from those identified by a SNP discovery consortium (Wong 

et al. 2004). A file titled "Database of SNP used in the Illumina Corp. Chicken 

Genotyping Project" that describes the original 3K SNP panel is accessible at 

http://poultry.mph.msu.edu/resources/resources.htm#SNPs  (last accessed April 09, 

2009). To complement the 3K panel, another 9,000 SNP across the genome were chosen 

from the consortium SNP results to fill gaps and to increase the density in some regions. 

Genotyping and genotype scoring was done by Illumina, utilising a custom designed 

BeadChip (Gunderson et al. 2004). Genotype calls with a GenCall score <0.25 were 

excluded, which eliminated <0.5% of SNP genotypes. Over 75% of genotypes had a 

GenCall score > 0.8. Marker positions (given in base or mega base pairs) were those 

reported for the second draft of the chicken genome (http://genome.ucsc.edulcgi -

binlhgGateway?org=Chicken&dbO&hgsid30948908). 
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Line Sires 

Mean 

offspring 

Min 

offspring 

Max 

offspring 

Sa02  

Mean 

Sa02  

Variance 

10 173 21.8 3 96 -0.04 10.3 

11 184 22.8 2 77 0.14 5.4 

12 163 14.1 4 76 0.31 7.2 

14 186 18.7 4 61 0.65 10.2 

28 176 20.8 3 112 0.62 11.2 

29 189 20.4 4 82 0.76 21.3 

Table 2.1 

Sire data available for each line. Sire phenotypes were progeny adjusted means, with 

sires having a wide range in their numbers of progeny. Number of sires represents 

sample size for the given line. Mean number of offspring per sire, along with the 

maximum and minimum numbers are provided for each line. The mean and variance for 

line Sa02 measures are shown. For distributions of Sa02 measure see appendix two. 
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2.2.2 Data analysis 

Lines were initially analysed individually, followed by a joint line analysis, with 

lines combined based on their relatedness to one another. Relationships estimated 

between lines, based on allele frequencies, showed that no close relationship exists 

between all six lines (Andreescu et al. 2007). From Andreescu et al. (2007) two pairs of 

two lines (12 and 28, 14 and 29) showed relatively close relationships with one another, 

but not between groups. These two pairs of lines were combined in a joint line analysis 

with a line by genotype term included in the model. The interaction term was included to 

account for differences in the direction of genotype effects between lines. An indication 

of the extent of line divergence is shown by comparison of marker MAF between lines 

and estimates of Fsr statistics. For each pair wise comparison of lines the MAF of 

markers were regressed against one another. The regression and correlation coefficients 

for each pair of lines is given in table 2.2. To further clarify between line relationships 

Fsr statistics were also estimated for each combination of line pairs. Wright's F-statistic 

FST is a measure of population differentiation based on proportions of heterozygosity 

within a subpopulation relative to the entire population. Here FST statistics were 

calculated for each combination of lines using the equation given by Hudson et al. 

(1992), defined as; 

FsT  =(H — H S ) IH 

where HT  is the mean expected heterozygosity for the two lines combined, and Hs is 

the mean expected heterozygosity within a single line assuming Hardy-Weinberg within 

populations. Between line FST estimates are given in table 2.3. 
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10 	11 	12 	14 	28 	29 

10 X 	0.002 	0.003 0.001 0.002 0.002 

11 0.041 	X 	0.003 0.072 0.004 0.054 

12 0.058 	0.056 	X 0.003 0.193 0.003 

14 0.031 	0.259 	0.049 X 0.002 0.410 

28 0.051 	0.067 	0.443 0.047 X 0.003 

29 0.038 	0.227 	0.054 0.625 0.052 X 

Table 2.2 

Correlation (upper 	triangle) 	and regression 	coefficients 

(lower triangle) from the comparison of marker minor allele 

frequencies between pairs of lines. 
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10 	11 	12 	14 	28 	29 

10 	- 

11 	0.119 	- 

12 	0.014 	0.105 	- 

14 	0.121 	0.005 	0.105 	- 

28 	0.085 	0.034 	0.071 	0.035 	- 

29 	0.125 	0.001 	0.111 	0.001 	0.041 

Table 2.3 

Fsr statistics for line pairs. Mean heterozygosity was calculated 

for all markers within a pair of lines and within each line 

relative to the pair. 
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Markers not segregating within a particular line  were removed. Likewise, for the 

joint line analysis, only markers segregating in both lines were included. The number of 

markers remaining for each line, or groups of lines, is given in table 2.3. In all analyses 

markers with minor allele frequencies below 0.01 were removed to avoid false positives 

caused by spurious associations between rare genotypes and outlying trait values. Line 

specific heritabilities (h2) of sire Sa02 were provided as part of the standard breeding 

programme of the broilers, these are given for each line in table 2.3. 

2.2.3 Models 

At each SNP locus, sire genotypes were assigned values of 0, 1, or 2 based on the 

number of copies of allele "1" they carried. These values were then included as 

covariates in a mixed model analysis to estimate the allelic substitution effect for each 

SNP. These analyses were conducted separately for each SNP. Sires used in this study 

were from a commercial population that is under selection, and evaluation of pedigree 

structures showed that sires within each line belonged to complex pedigrees, with a 

number of half-sib families represented. Therefore, a mixed model that included an 

average relationship matrix (A matrix) among sires was used. The following model was 

used to evaluate the association of each SNP; 

Y=1,ji±Xg+Zu+e 

where Y is the n x 1 vector of 5a02 adjusted progeny means for n sires; 1u is the 

intercept; g is the fixed SNP allele substitution effect; u is the n x 1 vector of random 

sire polygenetic effects; e is the n x 1 vector of random residuals. In the individual line 
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Line 	Sa02 h2 	Segregating markers 	p < 0.05 
Threshold 

10 0.044 8107 4.46 

11 0.064 9632 4.43 

12 0.014 9756 4.45 

14 0.214 10352 4.47 

28 0.141 9131 4.51 

29 0.168 10031 4.59 

12 and 28 0.064 8834 4.33 

14 and 29 0.183 9707 4.29 

Table 2.4 

Heritabilities used in the analyses of each line or pair of lines, along with 

number of segregating markers and genome-wide thresholds of p <0.05. 

Thresholds are determined independently for each line of pair of lines 

using a 10,000 cycle permutation analysis (Churchill and Doerge 1994). 

Heritabilities were estimated using ASRem1 software (Gilmour et al. 

1998). For joint lines heritabilities were estimated from pooled data. 
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analysis X is the vector of allele copies carried by each sire at the SNP. For the joint line 

analysis the X vector also included a line indicator for each sire. For both models the 

following expectations and variance were assumed: 

r1 ri+xg1 U 2 
E u = 	0 	, and 

u 
- 	 u 	0 ] 

Le] L o 
 ] 	

el[
A 

 

where U2  is the sire variance, o is the, residual variance, D is the n x n diagonal 

matrix with the number of progeny for each sire on the diagonal to provide the 

appropriate residual variance for each progeny mean, and A is the additive genetic 

relationship matrix determined from pedigree information. The algorithm used to 

determine the relationship coefficients is given in Lange (1997). The residual variance 

can be expressed as a function of heritability (h2) given as, 072 = (1—h2 I4).r, where 

cr 2 is t 	 a he phenotypic variance and , Io = [(4_h2)1h2] . Association was tested 

against a null hypothesis of H0 = fi = 0, where 8 is the effect of the marker, using an 

F-test with one degree of freedom. 

For the analysis of each line a genome-wide significance threshold was determined 

by permutation analysis (Churchill and Doerge 1994). Permutation procedures are a 

computationally demanding way of determining significance levels empirically that do 

not rely on any distribution assumptions. The following steps describe the use of the 

permutation analyses in determining genome-wide significance thresholds. 

1) Phenotype is randomly shuffled with respect to the genotypes of each individual. 
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The randomized phenotype is used as a Y variable in a genome-wide association 

analysis using the linear model described above. The p-values from this analysis 

are recorded and ranked to determine the smallest p-value (pmin)  from the 

analysis. 

Step 2 is repeated 10,000 times. From each run of step 2 the Pnin  is recorded. 

After 10,000 iterations the Pmin  are ranked and the genome-wide significance 

threshold is determined by taking the value ranked at the 5% level. 

During permutation analyses only the phenotype-genotype relationship is destroyed. 

LD existing between SNPs will remain the same for the original and permuted datasets 

meaning the genome-wide significance threshold should account for correlations 

between markers, providing a more realistic value than that from a bonferroni 

correction. 

The permutation method used here randomizes phenotypes amongst all individuals 

within a line, assuming that individuals are interchangeable under the null. An 

alternative would have been to shuffle within sire groups to control for within family 

components of association. However, the majority of sire groups are represented by only 

a single individual meaning the majority of between family association components 

would be ignored if phenotypes were randomized only within families (Zou et al. 2004). 

2.3 Results 

2.3.1 Marker allele frequencies and LD distributions 
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Figure 2.1 

a) Decline of LD measured by r2  against distance in Mb for each line. Points shown 

are mean pairwise LD for syntenic marker pairs in the whole genome against mean 

distance. The mean and SE of non-syntenic LD measures is also given. b) 

Distributions of MAF for markers in each line, represented as proportions, due to 

different numbers of markers in each line. 
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Estimates of LD for each line were calculated for all syntenic pairs of markers. 

Figure 2.1a illustrates the decline of LD with distance for each of the lines. Both the 

extent and decline in LD are consistent amongst all lines. Values of mean LD beyond 10 

Mb remain constant for all lines. Although the results shown here are the mean for the 

whole genome, the pattern observed, of high LD at short distances with a steep decline 

as distance increases, is common for all chromosomes. The extent of LD for non-

syntenic marker pairs was also determined by calculating r2  values for all non-syntenic 

pairs within a line. The mean pairwise r2  value for non-syntenic pairs is approximately 

constant for all lines and is shown on figure 2.1 a. For each line non-syntenic LD is equal 

to the mean of syntenic pairs separated by greater than 10 Mb. 

The distribution of minor allele frequencies of markers in each line is given in figure 

2.1b. Distributions for all lines follow a similar pattern, showing a roughly uniform 

distribution, but with an over-representation at intermediate frequencies compared to the 

assumed neutral U-shaped distribution. These distributions likely reflect the 

ascertainment bias associated with SNP discovery and marker selection (Solberg et al. 

2008). Differences between lines are expected, due to population genetic parameters 

such as random drift, as well as differential selection pressures. 

The distribution of maximum r2  between a SNP and any other syntenic SNP has 

been used to suggest that SNPs found to be associated with a trait are very likely to be 

near relevant QTL (De Roos et al. 2008). This distribution is examined here for each 

line, separated into bins on the basis of the distance between the SNP and its maximum 

r2  SNP, and shown in figure 2.2. The percentage of SNPs that had a maximum r2  greater 
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Frequency of maximum LD of syntenic SNPs based on r2 . Bins were created on the basis of distance to the SNP for 

which the maximum LD was registered. a) Line 10, b) Line 11, c) Line 12, d) Line 14, e) Line 28,!) Line 29. 



than 0.6 ranged between 42.7-61.6 percent across the lines and between 92.5-95.4 

percent of SNPs with a maximum r2  greater than 0.2. In all lines, for all maximum r2-

value bins greater than 0.2, the shortest-distance bin (< 0.25 Mb) was the most frequent, 

and the vast majority of maximum distances were less than 1 Mb. For SNPs with a 

maximum r2  greater than 0.6, between 2.1-3.4 percent of pairs were separated by 

distances greater than 1 Mb apart. Whilst this provides promising support that 

significantly associated markers will be within 1 Mb of the causal variant, it does not 

exclude the possibility that significant markers may be the results of spurious non-

syntenic or long range syntenic high LD, or caused by random associations leading to 

false positives. 

Figure 2.3 summarizes the frequency distribution of r2  by distance for all syntenic 

pairs and non-syntenic pairs of markers for each line. Between 11.1-19.6 percent of 

marker pairs within 0.1 Mb had r2  values greater than 0.8, across lines. This dropped to 

between 1.1-2.6 percent for marker pairs between 0.5 and 1 Mb apart. Between 28.6-

41.2 percent of markers within 0.1 Mb had r2  values greater than 0.4, this dropped to 

between 13.8-20.7 percent for markers 0.25 - 0.5 Mb and between 2.0-1.3 percent for 

pairs between 1 - 5 Mb. In all lines, markers separated by distances greater than 10 Mb 

have almost 100 percent of r 2  values less than 0.2. The distribution of r2  at distances 

greater than 10 Mb was similar to that of non-syntenic marker pairs with between 99.96-

99.99 percent of values less than 0.2. 
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2.3.2 Genome-wide association results 

Whole-genome analyses for each individual line identified a number of markers for 

association with Sa02 that showed significant associations above the genome-wide 

threshold (p < 0.05) (figure 2.4). Genome-wide thresholds (p < 0.05), as determined 

from permutation analyses are given for each line in table 2.3. Quantile-Quantile plots 

(Q-Q plots) for the GWAS of ascites susceptibility in the six lines and two combined 

line analyses are presented in figure 2.5. All plots indicate that the observed GWAS p-

values lie close to the expectation and suggest that potential technical and stratification 

artefacts had negligible impact on the results. Consistent with this interpretation, the 

genomic inflation factors ranged from ?. = 1 - 1.02 for the six lines indicating little 

inflation of the p-values. QTL were detected in lines 11, 14, 28 and 29, although, their 

positions were different between all lines. Details of markers with significant 

associations are given in table 2.4. In line 11 a single marker with significant 

association, explaining 1.14 percent of the phenotypic variance, was located on 

chromosome two. Analysis of line 14 identified a single marker with association above 

the genome-wide significance on chromosome three that explained 1.56 percent of the 

phenotypic variation. Both of these single markers identify peaks, comprised of 

additional adjacent markers that show high levels of association, but do not reach the 

genome-wide significance threshold. In the line 28 analysis four markers on 

chromosome one show significant associations, explaining between 2.8 - 5.1 percent of 

phenotypic variance. These four markers are positioned close to one another, being 
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Figure 2.4 

-log 10 p-values for association of each SNP with Sa02 from genome-wide 

analysis of each line, a) line 10, b) line 11. c) line 12, d) line 14, e) line 28, f) line 

29. For each analysis genome-wide significance was determined using 10,000 

cycle permutation analysis. p < 0.05 thresholds are shown as the dotted line. 
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separated by less than 0.7 Mb. Analysis of line 29 revealed two markers showing 

significant associations, both located on chromosome four. These markers explain 2.37 

and 1.36 percent of the phenotypic variance of ascites susceptibility in this line, although 

they are in high LD (r2  = 0.66) with one another. Association and LD patterns are shown 

in more detail for the significant region of line 29 (figure 2.6). This figure shows the 

relationship between marker associations and pairwise LD with one another. This figure 

also displays the threshold value for suggestive association at a genome-wide level of p 

< 0.1. Within this region, an additional three markers have associations above the 

suggestive association threshold, providing further support that a locus affecting ascites 

is located close to this region. —log 10 p-values for SNPs common between lines, were 

compared, in order to determine whether any regions exhibited high levels of association 

in more than one line, even if they did not reach genome-wide significance levels. These 

analyses revealed very few regions that showed promising associations in more than one 

line (graphical representation of these analyses is not given due to the number of 

pairwise comparisons produced). This may reflect the high level of divergence between 

lines and the presence of a number of QTL affecting ascites susceptibility, segregating at 

different frequencies between lines. Incidentally, the four lines with significant QTL 

were the four lines with the highest heritability for ascites susceptibility. Combined line 

analyses included a line by genotype interaction term in the model to account for 

differences in direction of effects between lines. Results from genome-wide association 

analyses for joint line analyses are given in figure 2.6. Q-Q plots from the combined line 

GWAS results are shown in figure 2.5. Plots indicate little stratification artefacts, with 

corresponding genomic inflation factors of X = 1.01 for lines 14 and 29 and X = 1.006 for 
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Figure 2.5 

Q-Q plots from the GWAS for ascites susceptibility using single marker models. 

Expected p-values under the global null hypothesis of no association are displayed on 

the x-axis. Observed p-values are displayed on the y-axis. The plots show little evidence 

of stratification. 
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SNP Chromosome Position (Mb)' -log 10 p-value Variance (%)2 

Line 11 

3819 2 119.8 4.64 1.14 

Line 14 

4376 3 13.7 4.87 1.56 

Line 28 

370 1 36.5 4.52 1.61 
371 1 36.5 5.56 1.31 
378 1 36.8 4.52 1.56 
409 1 37.2 5.56 1.81 

Line 29 

5868 4 24.1 4.93 2.37 
5869 4 24.2 4.60 1.36 

Line 14 x 29 

5864 4 24.0 4.47 2.47 
5871 4 24.3 4.49 1.59 
6278 4 73.8 4.82 2.78 
6279 4 73.9 4.71 2.49 

Table 2.5 

Summary of markers identified as significant. 1  is the position of the marker from the 

start of the chromosome. 2  is the percent phenotypic variance explained by the marker. 

No redundancy between markers was removed. 
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Figure 2.6 

Detail of association and LD patterns for the region surrounding markers 

with significant associations in line 29. LD heatmap is composed of 12 

values for pairs of markers. The black dotted line represents the genorne-

wide significance threshold of p < 0.05, whilst the grey dotted line 

represents the suggestive association threshold. Both thresholds are 

determined by a 10,000 cycle permutation analysis. 
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lines 12 and 28. Analyses of line 14 and 29 identified 4 markers (located in two peaks) 

that showed significant associations. Both peaks were located on chromosome four, 

separated by about 50 Mb. 

Markers explained between 1.59 and 2.78 percent of genetic variation and showed 

moderate levels of LD between markers within a peak (0.21-0.24) and low levels of LD 

between the peaks (0.08). The first of these peaks, located at approximately 24 Mb, was 

also identified by the line 29 analysis. No significant markers were detected in the 

analysis of lines 12 and 28. Details of significant markers are given in table 2.4. 

2.4 Discussion 

Here we report results from genome-wide analyses of six lines of commercial 

broilers for markers associated with susceptibility of ascites, measured through the 

indicator trait Sa02. A total of four QTL were identified by markers that showed 

significant association above the genome-wide threshold, although each QTL was only 

identified in a single line. Comparison of results from markers common between lines 

revealed very poor relationships, with significant markers from one line typically having 

low associations in other lines. The identification of a number of QTL spread across 

several chromosomes that explain only a small percentage of phenotypic variance, 

suggests that numerous loci, with small effects, are responsible for the genetic control of 

ascites. It is possible that separation of lines within breeding programs and differential 

selection pressures over many generations may have resulted in QTL segregating at 

different frequencies between lines, or possibly becoming fixed in some lines (Dekkers 
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2004). An example of this line divergence can be seen through the comparison of marker 

MAF between lines, which shows extremely poor relationships for the majority of 

pairwise comparisons (table 2.2). These potential differences in the genetic architecture 

of loci affecting Sa02 values may explain some of the differences in estimated 

heritability between lines (table 2.3). Difficulty in identifying causal variants common to 

multiple lines may also be explained by limited power to detect consistent effects. Aside 

from mutations that occur after line separation, and fixation of loci, QTL that influence 

susceptibility to ascites are expected to be segregating in all lines. Thus, differences 

between lines for factors such as allele frequencies, marker effects, trait heritability and 

sample sizes between lines are expected to influence power to detect associations 

(Weller 2001; Hassen et al. 2009). 

Two pairs of lines (12 and 28, 14 and 29) were combined based on their close 

relationship to one another, reflecting similarities in genetic architecture (tables 2.2 and 

2.3). Despite the increased power from a larger population sizes, the combined analyses 

only identified a single QTL that had also been detected in a single line analysis. 

Furthermore, a significant marker (SNP 4376) from line 14 failed to reach significance 

level in the combined analysis of line 14 and 29. This may also reflect differences in 

segregation frequencies between lines as SNP 4376 has a MAF of 0.44 in line 14 and 

0.18 in line 29. However, the four significant markers identified as significant in line 28 

had very low levels of association in the analysis of lines 12 and 28 despite having very 

similar allele frequencies and patterns of marker-marker LD. 
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Figure 2.7 

-log 10 p-values for each SNP from a genome-wide association analysis of line 

combinations a) lines 14 and 29, b) lines 12 and 28. For each analysis genome-

wide significance was determined using 10,000 cycle permutation analysis. p < 

0.05 thresholds are shown as the dotted line. 
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A number of other studies have identified a few QTL that are related to ascites 

susceptibility, either through linkage studies or low density genome scans (Navarro et al. 

2005; Rabie 2004; Rabie et al. 2005). Despite these QTL having wide confidence 

intervals, none of the significant markers identified here are close to significant regions 

from other studies. Whilst the population and genotype panel studied here represent the 

most comprehensive dataset analysed to date for ascites related traits, differences in 

concordance between studies may represent the divergent selection of study populations. 

This again raises the possibility that ascites susceptibility is influenced by a large 

number of genetic loci that could be segregating at very different frequencies between 

populations. Divergence between populations is exacerbated by the current structure of 

the broiler industry, and their selection for 'product' based lines (Muir et al. 2008). 

A typical extension to a genome-wide scan is to follow up on identified QTL with 

either fine mapping tools or candidate gene studies, both of which require identification 

and genotyping of additional markers in the regions of interest. Given the number and 

locations of identified QTL this may be an unrealistic continuation of this work, 

especially if we assume there are potentially many more loci affecting ascites that are 

undetectable with the methods used here. Exploring alternative approaches to fine map 

loci and uncover genetic control for ascites, such as inclusion of information from 

groups of makers either in localised or whole genome situations, may be a more 

applicable route to take. Using information from a localised set of markers for fine 

mapping and locus detection can potentially have a power advantage over single-marker 

analyses as information contained between markers is included as well as information 

between markers and a QTL. The problem lies in identifying what information to 
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include, as fitting more parameters in the model can potentially lead to an overall 

reduction in power if they do not explain much additional variance (Akey etal. 2001). 

2.5 Conclusions 

Here we identified four QTL regions on different chromosomes that are associated 

with susceptibility to ascites, through the analysis of six lines of broilers from a 

commercial breeding programme using a single-marker regression model. Divergence of 

lines within commercial breeding programmes, resulting in poor relationships between 

marker allele frequencies and LD patterns, is thought to have led to a lack of common 

associations between lines. With the current availability of high density genomic panels, 

and the potential that ascites susceptibility is influenced by a number of loci, the next 

stage will be the investigation of alternative genome-wide mapping strategies. 
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CHAPTER THREE 

INVESTIGATION AND COMPARISON OF MULTILOCUS METHODS FOR GENOME-WIDE 

ASSOCIATION ANALYSIS 

APPLICATION TO ASCITES IN BROILER CHICKENS AND SIMULATED DATA 

3.1 Introduction 

Rapid improvements in high-throughput genotyping technologies have greatly 

reduced the cost of genome-wide analyses, resulting in a huge range of large scale 

genetic association studies of quantitative traits and disease variants. These studies 

typically involve approaches that encompass information spread across the whole 

genome, using SNP-based LD mapping to systematically evaluate associations with 

traits of interest. By approaching comprehensive coverage of complex genetic variants, 

these studies have a statistical power for detecting QTL with moderate effects that is 

much improved over that of previous studies. However, the density of genotype data has 

greatly increased the number of variables that need to be tested within a study, adding to 

computational demands as well as the statistical challenge of accounting for multiple 

testing. 

The majority of association mapping studies use markers individually to detect 

disease loci. A typical approach was outlined in the previous chapter, whereby 

genotypes from individual markers are fitted in a mixed model and tested for association 

with a trait of interest. An alternative approach is to perform the association analysis 

using information from multiple SNPs that are usually adjacent to one another 



(Chapman et al. 2003). Broadly, the advantage of multiple-marker based tests is that the 

LD information contained between markers is included, in addition to any information 

between markers and potential QTL. However, the advantage is offset by the addition of 

extra parameters in the models, reducing power to detect associations. Currently there is 

a huge amount of debate in the literature as to which of these approaches is likely to be 

more powerful for detecting genetic variation (Akey et al. 2001; Chapman et al. 2003; 

Clayton et al. 2004). Whilst there is a lack of consensus opinion on which methods will 

perform best, it is generally expected that optimal performance of models will be heavily 

influenced by localised genetic architectures and LD patterns (Clayton et al. 2004). 

When estimating the effects of a single marker, it is well known that the factors that 

influence power of the test are the size of the effect of the causative genotype on the 

phenotype, the frequency of the causative allele, and level of LD between the causative 

locus and marker and how close the allele frequencies match between a causative allele 

and the marker allele (Weller 2001; Zondervan and Cardon 2004). If we are estimating 

effects from multiple marker loci, the strength of LD amongst the marker loci will also 

influence power. The heuristic reasoning, that the inclusion of between marker 

information conveys an advantage to mapping studies using multiple adjacent markers 

(Akey et al. 2001), has prompted a diverse range of studies that have explored the use of 

information frOm multiple markers as opposed to single-marker tests in LD based 

association studies. If we are interested in fitting multiple markers within a linear model 

framework then there are a number of considerations on how to parameterize the model 

in terms of using the information contained between the set of markers. Fitting just main 

effects is a natural extension to the single-marker model described in chapter two. 
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Beyond this, interaction parameters can be included, where the number of interactions 

will be a function of the number of markers fitted. Fitting haplotype information will 

include all main, interactions as well as phase parameters that are observed between a set 

of markers. 

The majority of studies have focused on comparing single-locus models to those 

formed with haplotypes. Conclusions drawn from these studies are typically constrained 

by simulated genetic parameters under which models are tested. Moreover, contradictory 

results have arisen from empirical data as some studies suggest that haplotype based LD 

methods improve power over single-marker tests (Akey et al. 2001; Calus et al. 2009; 

Guo and Lin 2009; Li et al. 2007; Martin et al. 2000; Morris and Kaplan 2002; Schaid et 

al. 2002; Yu and Schaid 2007; Zaykin et al. 2002), while other studies do not (Fan and 

Xiong 2002; Grapes et al. 2004; Nielsen et al. 2004). 

3.1.1 Obtaining haplotypes 

In genomic studies a traditional method to determine haplotype phase is the 

collection of genotypic information from multi generational pedigree individuals. 

However, this information is often very costly to collect or unavailable in many 

livestock breeding programs and human populations. A solution to this problem is to use 

a population based statistical algorithm to account for ambiguous haplotypes. Several 

rule-based and likelihood-based algorithms have been proposed, including a parsimony 

algorithm (Clark 1990), a Bayesian population genetic model that uses coalescent theory 

(Stephens et al. 2001), and maximum likelihood (Excoffier and Slatkin 1995; Hawley ,  
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and Kidd 1995; Long et al. 1995). An advantage of the likelihood approach is that, in 

addition to the estimated haplotype frequencies, the posterior probabilities of the pairs of 

haplotypes that are consistent with the observed genotypes can be computed for each 

subject. This provides an opportunity for phase uncertainly to be accounted for, 

potentially reducing errors associated with accurately estimating haplotype effects 

(Morris et al. 2004). 

3.1.2 Aims 

Relative performance of these alternative methods are difficult to discern, and are 

expected to be influenced by localised genetic architecture and genetic parameters of the 

causative locus - the effect of these conditions on model performance has been 

investigated in future chapters. Here we have explored alternative approaches to whole-

genome analyses, and their application to map for ascites susceptibility in a line of 

broiler chickens, as well as simulated data supplied as part of the 12th  QTL-MAS 

workshop held in Uppsala, Sweden, 2008. 

3.2 Materials and methods 

3.2.1 Data 

Three alternative mapping approaches were applied to two different datasets. The 

first was a single line of broiler chickens, described in detail in chapter two. The second 

dataset was supplied as part of the 12th  QTL-MAS workshop and was analysed in 

conjunction with a collaborative project (Lam et al. 2009). This dataset was supplied and 
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analysed with no knowledge of QTL effects or genetic parameters. After the workshop 

details of QTL position and effects were released (Crooks et al. 2009; Lund et al. 2009), 

providing an opportunity to fully evaluate performance of models. 

3.2.1.1 Broiler line 

Data included SNP genotypes, mean progeny performance, and pedigree information 

for a single line (14) that is part of a commercial breeding programme, comprising of 

186 individuals. This line was chosen as it had the highest heritability (0.21) for ascites 

susceptibility. Mean and variance of the progeny adjusted Sa0 2  records for sires in line 

14 are given in table 2.1. A distribution is also shown in appendix two. Phenotypic data 

available for each sire included mean progeny Sa02 measures, the formula used to 

calculate the adjusted phenotypic records is given in section 2.2.1, along with details in 

appendix one. Sires were genotyped for the same 12k panel described in more detail in 

chapter two. Pedigree information included relationships between sires spanning four 

generations. 

3.2.1.2 Simulated data 

Simulated data described here was provided by the 12th  QTL-MAS workshop, 

http://www.computationalgenetics.se/OTLMASO8 . This comprised of a simulated four-

generation pedigree of 4,665 individuals. Phased biallelic marker genotypes were 

provided at 0.1 cM intervals for six chromosomes, each 100 cM long. The population 

was simulated with an initial historic population of 50 generations (G hl  to Gh50),  created 
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by 100 founder individuals (50 males and 50 females) in generation Ghl.  For each 

subsequent generation, 50 males and 50 females were produced by randomly sampling 

parents from the previous generation. No phenotype or genotype information was 

generated for individuals in the historic population. The historic population was 

followed by four generations of (G1 to G4),  with both genotype and phenotype records. 

The base generation of the recorded pedigree (G1) had 15 males and 150 females, the 

parents of these were sampled randomly from individuals in Gh50.  Each male was mated 

to 10 females and each mating pair produced 10 offspring. Generations G2 to G4 were 

generated by randomly sampling 10 males and 150 females from the previous 

generation. This created a fullsib-halfsib design, in which each male had 100 progeny 

and each female had 10 progeny. 

3.2.2 Data analysis 

Both sets of data were analysed using three different models; a single-locus analysis, 

a main effects model using three adjacent markers and a haplotype approach also using 

three adjacent markers. Models utilising information from multiple markers were 

implemented in a sliding window approach, whereby overlapping windows of three 

adjacent markers are tested for association, with the window moving forward a single 

marker after each test. This approach maximises the use of information between adjacent 

markers and makes comparison with single-markers analyses easier, as an equal number 

of tests are used. Details of the models fitted are given below. 
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In both datasets markers with minor allele frequencies below 0.01 were excluded 

from further analysis. Individuals with phenotypic values outside three standard 

deviations of the mean in either dataset were also removed from further analysis to avoid 

false positives caused by rare alleles in individuals with extreme phenotypes. Total 

variance and heritability were analysed for both traits using ASRem1 software (Gilmour 

et al. 1998). Heritability of Sa02 in line 14 was estimated at 0.21 (S.E. = 0.03), and the 

simulated trait 0.29. Genome-wide significance thresholds were determined for each 

analysis using a permutation analysis described in detail in section 2.2.3. 

3.2.2.1 Single-locus model 

The single-locus model used here is the same as that described in detail in chapter 

two, section 2.2.3. SNP genotypes were fitted as linear covariates in a mixed model 

analysis to estimate the allelic substitution effect for each SNP. The pedigree structure of 

the two datasets was evaluated to determine family structure. The broiler line showed 

that sires belonged to a complex pedigree, with a number of half-sib families 

represented, whilst the simulated dataset comprised of a number of fullsib-halfsib 

families covering four generations. Therefore, a pedigree based relationship matrix was 

also included in the models for both datasets. The same assumptions regarding model 

variance were made as described in chapter two. Association was tested against a null 

hypothesis of H0  = /3 = 0, where /3 is the effect of the marker, using an F-test with one 

degree of freedom. 
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3.2.2.2 Main effect model 

The main effect model can be considered an extension of the single-locus model 

above. As before, markers remain coded as 0, 1 or 2, according to the number of copies 

of the "1" allele that they carry. For single-locus  models the design matrix of predictor 

variable (X), has the dimensions 1 x n, where n is the number of individuals with 

genotype records, and is composed of marker codes of 0, 1, or 2. Here, this design 

matrix is extended to fit adjacent markers in a multiple regression framework. As three 

markers are fitted together, theX matrix now has the dimensions 3 x n, with each 

column representing the genotype codes of a single marker. The same model 

assumptions made for the single-locus model are applied here. This model is 

implemented as a sliding window, such that a window of three markers is formed, and 

tested for association with the trait. After each test the window is scrolled forward a 

single marker and the process is repeated. Association is tested against a null hypothesis 

ofH0 = = 162 = A = 0, where fl 132 and /J are the effects of the markers, using an 

F-test with 3 degrees of freedom. 

Extending this to include more than three markers is simple. in such a case the 

model can be expressed as; 

Yi = t + 	 + a1  + e 

Where yi  is the "phenotype" for individual i, u is the phenotype mean, /J is the 

substitution effect for SNP n, and x,,i is the number of copies of "1" allele carried by 

individual i at SNP n, a, is the animal effect for individual i. The animal effect was 
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estimated by fitting  an A-matrix of kinship coefficients as a random covariate in the 

mixed model. The A-matrix was determined from the multi-generational pedigree 

supplied with the broiler chicken and simulated dataset respectively. e - N(O, cry) is 

the residual for the i' individual. 

3.2.2.3 Haptotype model 

As genotype information is only available for a single generation of broilers, 

haplotype information is not readably available. In these situations a population based 

haplotyping procedure can be used to statistically infer phase based on observed and 

expected genotype frequencies of individuals. Under this system haplotype analyses are 

conducted in a two-stage procedure. Firstly, haplotype information is inferred for the 

entire dataset using the same principle of overlapping sliding windows. As is used for 

the main effect model, three marker windows are used. Secondly, inferred haplotypes 

from a three-marker window are fitted as linear covariates in an H-dimension regression 

model, where 11 is the number of haplotypes observed for that set of markers and tested 

for association with the trait. 

Phased genotype information was provided in the simulated dataset, however, for 

accurate comparison of methods the same haplotyping procedure was used for both 

datasets. Accuracy of population based haplotyping algorithms is partly dependent on 

the number of individuals with genotype information (Stephens et al. 2001). Therefore, 

any error introduced by phasing the procedure is expected to be small due to the 

considerable sample size of the dataset. 
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Using the sliding window approach, haplotypes were estimated from three adjacent 

SNP markers using the software "haplo.stats" in R (Sinwell et al. 2008). This software 

utilizes a progressive insertion expectation maximization (EM) algorithm that computes 

maximum likelihood estimates of haplotype probabilities based on observed genotype 

frequencies. For individuals with ambiguous phase all haplotype pairs consistent with 

the observed genotypes are provided, along with the posterior probabilities for each pair. 

The EM algorithm makes a couple of assumptions; firstly, individuals are considered to 

be unrelated, and secondly, that marker genotypes are in Hardy-Weinberg equilibrium 

(HWE). The first of these assumptions is certainly untrue given the data analysed here, 

whilst the second is likely to be untrue for a number of markers. The implications of 

deviations from these assumptions are discussed in more detail below. 

Inferred haplotypes are evaluated for association with a trait using a score statistic 

test, which is a computationally efficient alternative to likelihood-ratio or F-test and is 

implemented within the framework of generalised linear models (GLM5). The score 

statistic is asymptotically equivalent to the likelihood ratio test, but avoids the need to 

compute the maximum-likelihood estimates of predictor of haplotype effects, fi, making 

it faster to compute, offsetting some of the time burden associated with inferring 

haplotype phase. When population based statistical algorithms, such as EM, are used to 

infer haplotype phase, a posterior probability of each haplotype pair, consistent with the 

observed genotypes, is provided for each individual with ambiguous phase. As score 

tests are implemented within a GLM framework, a score statistic can be calculated that 

accounts for uncertainty in phase by fitting the posterior probabilities of haplotypes. in 
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this situation the score statistic for the effects of haplotypes can be given as 

Ufi 	 (X gj ) where X is a vector of haplotype codes, /i is the regression 
i=1 	0mse 

parameter of Xg, yi  is the measured trait for subject i, y i  is the sample mean for the trait, 

given the assumption of a normal distribution, N is the number of subjects, cr is the 

mean squared error and E is the expectation over the posterior distribution of genotypes 

under the null hypothesis, given the observed marker data. That is, 

E (X) = gEG 
X g Q(g) where the posterior probability of a genotype for a subject is 

Q(g) = 
P(g) 

Where P(g) are haplotype probabilities obtained from the EM 
g€G 

P(g)  

algorithm. If all individuals for a given window have unambiguous haplotype phase then 

the equation for the score statistic is similar, however, E(X) is replaced by X j, a design 

vector of haplotype pairs for each subject. Association of haplotypes with the trait can be 

tested with a global score statistic against H0 = 8 = 0. The global score statistic is 

computed according to S = UV,8 'Ufl  where 	is the variance matrix of U,3  (Schaid et 

al. 2002). The score statistic has a large chi-squared (x 2) distribution with DF equal to H- 

1, where H is the number of haplotypes. Whilst score statistics avoid estimating the 

maximum likelihood of 8 it still requires the maximum likelihood estimates of 

haplotype probabilities. To avoid the potential of large numbers of haplotypes (Yu and 

Schaid 2007), and risk associated with accurately estimating effects of haplotypes that 

are observed infrequently (Schaid et al. 2002), haplotypes with frequencies of less that 



5% in the population were pooled into a rare haplotype class before fitting haplotype 

effects in the hypothesis test. However, the result is that true associations between rare 

haplotypes and the trait are difficult to pick up, and almost impossible to interpret. The 

implications of this are discussed in more detail below. 

The score statistic framework is fitted in the package "haplo.stats" (Sinwell et al 

2008), and is unable to incorporate any relationship matrices. Therefore, analysis of both 

datasets with the haplotype model assumes individuals are unrelated. The potential error 

introduced in estimating haplotype effects is covered in more detail in the discussion. 

3.3 Results 

3.3.1 Broiler line - ascites susceptibility 

Genome-wide significance thresholds as determined by permutation decline slightly 

as model complexity increases due to increases in correlation structure between tests, 

such that haplotype models have the lowest thresholds, and main effects are lower than 

single-locus models. Differences in thresholds are due to correlation, or lack of 

independence, among tests, which are greater amongst multilocus models that are 

implemented in overlapping sliding windows. Whole-genome analyses using a single-

marker test identified one marker with significant association above the genome-wide 

significance threshold p > 0.05, located at 13.7 Mb on chromosome three. Whilst this 

marker was not included in any significant main effect or haplotype windows (table 3. 1), 

additional markers in close proximately were. Significant windows from the main effect 

and haplotype models are within 1.3 Mb of the marker found as significant from the 
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single-locus analysis (figure 3.1). In addition the haplotype model detected a second 

QTL on chromosome one with a single marker showing significant association, locating 

a clearly defined peak. Q-Q plots for GWAS analyses using the three models are 

presented in figure 3.2. Plots show little evidence for population stratification impacting 

on p-vales from the analysis. Corresponding genomic inflation factors are all close to 1, 

with X = 1, 1.008 and 1.011 for single marker, main effect and haplotype models 

respectively. The main effect and haplotype models are implemented in a three-marker 

sliding window based framework, such that each single marker will be represented in 

three tests for association. Therefore, if a marker shows a high association with a trait it 

could be expected to produce a series of three high test statistics represented as 

association of three adjacent marker windows in a whole-genome scan. Details of 

association results and the LD pattern for the region between 10.4-14.4 Mb on 

chromosome three is shown in figure 3.3. This region contains markers, and marker 

windows that are significant for all analyses. The figure shows a complex pattern of LD, 

with no clearly defined block structure. Furthermore, intermediate values of pairwise r2  

remain for markers separated by considerable distances. individual markers that show 

significant levels of association in the single-locus analysis do not show high values of 

LD with other markers, although LD patterns with causal variants are unknown. 

Likewise, interpreting multilocus model performance on the basis of local pairwise LD 

is also difficult, as high order LD patterns can exist between haplotypes and QTL that 

are not observed in such analyses. Two significant marker windows, adjacent to one 

another, were identified using the main effects model .(SNPs 43 54-5). These windows 

include two markers that are common to both windows, due to the overlapping nature of 
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SNP Chromosome Position (Mb)' -log 10 p-value Variance (%)2 

Single-Marker 

4376 3 13.7 4.87 1.56 

Main effects 

4253 3 4.45 5.36 2.21 

4354 3 10.7 4.59 1.74 

4355 3 10.8 4.96 1.62 

Haplotype 

1484 1 126.8 4.39 2.45 

4253 3 4.45 4.40 2.42 

4355 3 10.8 4.61 1.82 

4360 3 10.9 4.41 1.78 

Table 3.1 

Summary of markers identified as significant in the three analyses of line 14 data. I  is 

the position of the marker in Mb from the start of the chromosome. 2  is the percent 

phenotypic variance explained by the marker. No redundancy between markers was 

removed. 
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Figure 3.1 

-log 10 p-values for association of each SNP with Sa02 from genome-wide analysis of 

line 14 using a) Single-marker, b) Main effects (three marker sliding window), c) 

haplotype (three marker sliding window). For each analysis genome-wide significance 

(p < 0.05) was determined using 10,000 cycle permutation analysis (Churchill and 

Doerge 1994), and shown as the dotted line. 
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Figure 3.2 

Q-Q plots from the GWAS for ascites susceptibility using single marker (a), main 

effects (b) and haplotype (c) models. Expected p-values under the global null 

hypothesis of no association are displayed on the x-axis. Observed p-values are 

displayed on the y-axis. 
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Figure 3.3 

Detail of association and LD patterns for the region between 10.4-14.4 Mb on 

chromosome three. This region includes markers, or marker windows that are 

significant in all analysis. The lines represent —log 10 p-values from each model. 

Results shown for the main effect and haplotype analysis are shown so as to represent 

the position of the first marker within the window. The LD heatmap is composed of r2  

values for pairs of markers. 



the sliding window approach. However, in the single-locus analysis neither of these 

markers reaches the genome-wide significance level (-log 10 p-values 3.18, 2.21 

respectively). Likewise, SNP 4376 is only identified as significant by the single-locus 

analysis, and is not included in any significant windows from the multilocus model. 

Such examples highlight the differential use of genomic information contained within 

and between adjacent markers to provide statistical support for a causative locus. 

3.3.2 Simulated dataset 

At the time of analysis information on QTL position and effects in the simulated 

dataset was unknown. One aim of distributing the dataset to participants of the QTL-

MAS workshop was to evaluate and compare alternative model performance. Although 

conclusions drawn from this are limited, the publication of simulated QTL information 

allowed a more rigorous evaluation of individual model performance and a way of 

assessing the ability of the models to detect loci. in total 50 indirect QTL were 

simulated, split into 15 major and 35 secondary QTL. Major QTL were simulated with a 

pre-defined position and their effects were chosen so that the QTL explained a fixed 

proportion of the genetic variance. The locations and effects of secondary QTL were 

randomly sampled. These QTL were spread across chromosomes 1-5, with none 

simulated on chromosome six (Crooks et al. 2009). However, of the 35 secondary QTL 

simulated only 28 could potentially be detected in the dataset as one was fixed within the 

population and six displayed no allelic substitution effects. 



To evaluate the performance of the models a QTL was considered to be detected if 

either of the two flanking markers were identified as significant. This could be 

considered a conservative criterion to determine QTL detection, as only flanking 

markers are used rather than markers within a certain distance to the QTL location. 

However, it provides a fair comparison of methods and avoids potential inclusion of 

false positives. Details of simulated QTL and their detection by the three models are 

given in tables 3.2 and 3.3 and results from the whole-genome analyses in figure 34. Q-

Q plots of the results for the three models are given in figure 3.5. Here the extreme 

deviations from the expected null likely represent the extent of LD within the dataset 

and the large effect sizes of the simulated QTL. The single-marker analysis detected 

flanking markers of 10 major and 5 minor QTL, with the main order-effects model 

detecting 12 and 7 and the haplotype approach 14 and 12. There were no situations 

where the single-marker analysis identified a QTL that was not detected by the main 

effects or the haplotype models, likewise the haplotype approach identified all QTL 

detected in the single or main effect models. 

Total phenotypic variance explained by the models was estimated jointly using the 

most significant marker within each QTL peak. As a number of markers were detected 

above the threshold for the majority of QTL, taking the most significant marker removes 

some redundancy among those SNPs. The remaining significant markers from the 

single-locus analysis jointly explained 14.4% of phenotypic variance, whilst the main 

effects model explained 18.9% and haplotype approach 24.7%. 
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3.3.3 Comparison of single-locus and haplotype models 

Results from single-marker and haplotype analyses are compared for the two 

datasets in figure 3.6. Genotype panels remain the same for both analyses, allowing 

comparison of results, although p-values from haplotype models represent information 

from three adjacent markers. The results from haplotype analyses correspond to the 

single-locus value of the first marker within the window. Whilst this provides an 

indication of the complementary significant markers between analyses, it does not 

provide a full picture, as a marker can appear significant from the single-locus analysis, 

and not from the haplotype analysis. Likewise, a haplotype window that has a significant 

association includes three markers, but is only correlated with one marker from the 

single-locus model in figure 3.6. Nevertheless, comparison of the two models provides 

an indication of the relationship between the two models, along with their ability to 

identify QTL. 

The correlation of p-values between single-locus and haplotype models (figure 3.6) 

shows a pattern of higher p-values for the haplotype models compared to single-locus 

methods. It is expected that for some sets of markers this observation is an artefact, 

caused by the inclusion of a high association level single marker in position two or three 

in a haplotype window. Nevertheless, it does provide an indication of an advantage in 

the performance of the haplotype model, compared to a single-locus analysis. A possible 

explanation for this relationship is that the haplotype model produces a -larger number of 

false positives results than the single-marker analysis. False positive rates are unknown 

for the broiler dataset and no analyses identified false QTL in the simulated dataset. 
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QTL Chromosome Position (cM) Effect MAF Single Multi Haplo 

Ml 1 20.00 0.62 0.28 . . 

M2 1 40.00 0.56 0.07 0 . . 

M3 1 77.23 0.37 0.29 . . 

M4 2 27.41 0.35 0.44 0 . 

M5 2 30.00 0.33 0.21 . . . 

M6 2 48.62 0.37 0.40 . . . 

M7 2 74.91 0.50 0.18 0 . 

M8 3 14.91 0.30 0.40 0 . . 

M9 3 60.00 0.68 0.07 

M10 4 3.21 0.61 0.39 0 . . 

Mil 4 36.93 0.34 0.24 . 

M12 4 76.06 0.58 0.41 . . . 

M13 4 96.49 0.29 0.19 . . 

M14 5 5.15 0.18 0.21 

MiS 5 93.50 0.75 0.26 . . 

Total 10/15 12/15 14/15 

Table 3.2 

Identification of the major QTL simulated in the Uppsala QTL-MAS 2008 workshop 

dataset by each of the three methods. If markers flanking either side of the QTL were 

identified as significant then the model is deemed to have detected the QTL. This is 

represented by.. 1  is the position of the marker in cM from the start of the chromosome. 

MAF is the minor allele frequency of the QTL. 
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QTL Chromosome Position (cM)' Effect MAF Single Multi Haplo 

Si 1 31.87 0.01 0.44 . . . 

S3 1 50.37 0.06 0.46 . 

S4 1 52.50 0.05 0.40 
S6 1 86.68 0.01 0.30 

S7 1 93.99 0.01 0.47 

S8 2 2.25 0.01 0.39 
S9 2 6.52 0.07 0.38 . 

SlO 2 32.49 0.04 0.41 

Sil 2 45.71 0.01 0.09 

S12 2 48.22 0.04 0.08 . 

S13 2 89.04 0.12 0.22 

S14 2 93.54 0.25 0.32 

S15 2 95.66 0.02 0.29 

S16 2 97.83 0.13 0.41 
S18 3 7.89 0.01 0.46 
S19 3 21.07 0.02 0.26 
S20 3 29.81 0.07 0.29 
S21 4 3.44 0.08 0.32 . . 

S22 4 3.88 0.02 0.23 . 

S23 4 10.00 0.01 0.04 . . . 

S25 4 19.84 0.07 0.47 
S26 4 69.56 0.00 0.08 
S27 5 12.98 0.09 0.44 . 

S29 5 68.39 0.12 0.44 
S32 5 77.02 0.13 0.25 
S33 5 80.00 0.08 0.11 
S34 5 82.14 0.01 0.36 
S35 5 98.32 0.01 0.45 . . 

Total 5/28 7/28 12/28 
Table 3.3 

Identification of the secondary QTL simulated in the Uppsala QTL-MAS 2008 workshop 

dataset by each of the three methods. If markers flanking either side of the QTL were 

identified as significant then the model is deemed to have detected the QTL. This is 

represented by .. 1  The position of the marker in cM from the start of the chromosome. 

QTL fixed within the population, or with no allelic effect are removed from the table. 
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Figure 3.4 

-log 10 p-values for association of each SNP with the quantitative trait simulated in 

the Uppsala QTL-MAS 2008 workshop dataset using a) Single-marker, b) Main 

effects (three marker sliding window), c) haplotype (three marker sliding window). 

For each analysis genome-wide significance was determined using 10,000 cycle 

permutation analysis (Churchill and Doerge 1994). p < 0.05 thresholds are shown as 

the dotted line. 

NE 



Upp"W Smiiated data UppseIe smMt,d data 

C 

/ 

[pc.i - 

Uppait. Sirnuat.d data 

b 

p 

Epecled 

Figure 3.5 

Q-Q plots from the GWAS for ascites susceptibility using single marker (a), main 

effects (b) and haplotype (c) models. Expected p-values under the global null hypothesis 

of no association are displayed on the x-axis. Observed p-values are displayed on the y-

axis. 
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Figure 3.6 

Comparison of p-values (shown on -log 10 scale) from genome-wide association 

analyses using single-marker and haplotype models. Results shown for the haplotype 

analysis are shown so as to represent the position of the first marker within the 

window, a) Broiler data - line 14 b) Simulated data. Genorne-wide thresholds (p < 

0.05) are provided as dotted lines for each model. 
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3.4 Discussion 

3.4.1 Broiler line dataset 

Results from a genome-wide association analysis of broiler line 14 using a single-

marker method were reported in chapter two. Here we investigate the performance of 

main effects and haplotype models using one of the lines from the same dataset. The 

QTL identified by the single-marker analysis was also detected by the main effect and 

haplotype models, strengthening support for the position of a QTL on chromosome 3. 

The marker with an association above the genome-wide significance threshold (SNP 

4376), identified in the single-marker analysis was not included in any of the significant 

windows of the multilocus models. However, windows that included SNP 4376 typically 

showed high levels of association that did not quite reach the significance threshold. 

Instead, the multilocus models identified a number of significant windows that included 

markers in close linkage with the SNP detected by the single-marker analysis. Between 

these three analyses a cluster of markers and marker windows, covering a small region 

of the genome, were identified, lending strong support for the location of a QTL 

affecting ascites susceptibility. The identification of different significant markers and 

marker windows by the methods suggests that information provided by markers is 

utilised differently between models. Support for this conclusion is provided from 

markers that were identified as significant in a given model in that they typically showed 

high levels of association in other models, even if they did not reach the genome-wide 

threshold. 
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3.4.2 Simulated dataset 

Analysis of the simulated dataset provided another opportunity to access differences 

in performance of the three models, with the additional benefit of the subsequent 

publication of QTL effects and locations (Crooks et al. 2009; Lund et al. 2009). 

Simulated QTL were divided into main and secondary groups, based on their original 

allelic substitution effects in generation G0 of the dataset simulation. All three models 

identified a core set of 15 QTL (10 main, 5 secondary), with the main effects model 

detecting an additional four (2 main, 2 secondary). The haplotype model identified 

significant marker windows for all QTL detected by the other two models, as well as an 

additional seven QTL (2 main, 5 secondary). in terms of identification of QTL position, 

in this dataset, the haplotype model clearly performs better than the other models, a 

sharp distinction when performance is contrasted against results from the single-marker 

analysis. However, broad conclusions need to be cautioned against, given that this is 

only the analysis of a single dataset that was simulated using simple, idealised 

conditions. The simulation used is expected to produce overly simplistic patters of IBD, 

and population stratification, as only 50 generations of random mating, with no 

selection, were followed by a few generations of population reduction, also with no 

selection and equal family sizes. Further details of results from analysis of the QTL-

MAS workshop data, are given by Lam et al. (2009) and Crooks et al. (2009). 



3.4.3 Fitting a relationship matrix 

Both the single-marker and main effects models fit markers as linear covariates in a 

mixed model with the inclusion of a relationship matrix derived from pedigree 

information to account for background genetic effects. Currently the R package 

"haplo.stats" (Sinwell et al. 2008) is unable to account for population stratification or 

relationships among individuals, raising the possibility of error in estimating marker and 

haplotype effects (Dekkers et al. 2006) through confounding with polygenetic effects. If 

relationship information is not accounted for it can lead to an increase in the number of 

false positives, a problem that is exacerbated when data from several generations is used 

(Kennedy et al. 1992). Analysis of the simulated dataset using the haplotype model 

identified very few significant markers that were not close to a reported QTL position, 

although, as stated before, drawing broad conclusions from this dataset should be 

cautioned against. 

In line 14 assessment of potential errors introduced by ignoring relationship 

information in the haplotype analysis is much more difficult. Given the complex series 

of family relationships between the individuals it is likely that some error will be 

introduced in estimating haplotype effects through confounding with polygenetic effects. 

Whilst there is strong support for the position of a QTL on chromosome three, the same 

cannot be said for the QTL identified on chromosome one by the haplotype analysis. In 

this situation, interpretations of haplotype results are difficult to make, without 

comparison to results from other methods. To a certain extent, this negates the 

identification of any benefit of haplotype models when polygenetic effects are not 

95 



accounted for, although comparison of results shown in figure 3.64 shows a consistent 

relationship between datasets. 

3.4.4 Assumptions of the EM algorithm 

Without the availability of parental genotype information for data such as line 14, 

inferring haplotype requires the use of a statistical algorithm - such as the EM 

algorithm. The EM algorithm infers haplotype frequencies and posterior probabilities of 

haplotype pairs for a given individual based on observed genotype frequencies and the 

assumptions that individuals are unrelated and markers are within HWE (Excoffier and 

Slatkin 1995; Hawley and Kidd 1995; Long et al. 1995). The accuracy of haplotype 

frequency estimation using EM approaches has been considered in relation to haplotype 

frequency distributions, deviations from HWE, allele frequencies, and LD levels, 

unaccounted for pedigree (Fallin and Schork 2000; Kirk and Cardon 2002; Osier et al. 

1999; Tishkoffet al. 2000). 

Departure from HWE could potentially be a significant source of error in the 

estimation of haplotype frequencies using EM procedures, simply because the algorithm 

relies on assumptions of HWE in its "E" step. However, this assumption is only broken 

for situations of multiple heterozygotes, for other cases the EM algorithm relies on gene-

counting, which is not affected by departures from HWE. However, the influence of 

departures from HWE on estimation accuracy is expected to be dependent on the 

direction of the disequilibrium. Osier et al. (1999) noted that there is a balance between 

loss and gain of accuracy by divergent directions of departures from equilibrium, and 



even large deviations make little difference to the estimation of haplotype frequencies. 

Departures from HWE leading to an excess in homozygosity could decrease the amount 

of missing phase information in the dataset and, as such, lead to improvements in 

estimation accuracy. Fallin and Schork (2000) simulated a series of situations with 

positive (towards homozygosity) and negative (towards heterozygosity) departures from 

HWE and demonstrated that whilst there were small increases in estimation error for 

negative departures, positive departures showed no change in estimation error rates. 

As part of a study specifically looking at haplotype estimation with genotyping 

errors Kirk and Cardon (2002) concluded that little error will be introduced when 

haplotyping a related population using EM procedures, unless the marker map has low 

density. Using the software package PHASE, that uses a Gibbs sampling algorithm, 

Stephens et al. (2001) showed that haplotype phase can be inferred with a very high 

level of accuracy using marker moderate density of 10 markers per cM. 

3.4.5 Score statistics 

The major advantage of score statistics is their computational speed compared to 

regression-based methods and likelihood ratio tests. Moreover, they are theoretically 

expected to be relatively robust to deviations from normality of the trait distribution and 

selected sampling (Bhattacharjee et al. 2008). Within the framework of haplotype 

analyses score statistics can also readily compute a test statistic for each haplotype 

within the Xg  vector which has a standard normal distribution for large samples. Given 

the small number individuals in the line 14 dataset this may be an unrealistic distribution 
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to use for the analysis of this data. If a single haplotype within the Xg  vector has an 

individual test statistic that is considerably greater than all other haplotypes, then taking 

this value, maximised over all evaluated haplotypes, is likely to have greater power than 

the global score statistic (Schaid et al. 2002). Except where several haplotypes are 

associated with the trait, a global score statistic is expected to be a better alternative. 

Unfortunately score statistics can suffer when sample sizes of parameters are small, 

often struggling to obtain reliable estimates of these parameters (Peng and Siegmund 

2006). Within the framework of haplotype analysis these problems are encountered 

when a large number of rare haplotypes are fitted in the model, often leading to over 

estimates of haplotype effects, resulting in false positives. This situation is analogous to 

likelihood-ratio and F tests, but power for score statistics diminishes more rapidly 

(Tishkoff et al. 2000; Schaid et al. 2002). In the package "haplo.stats" one way to avoid 

reduction in power of the global score test, is to pool rare haplotypes into a single 

parameter class. Typically this is achieved by setting an arbitrary threshold that defines 

whether or not a haplotype is considered rare. In the analyses conducted here that 

threshold was set to 5%. Intuitively, this seems a high threshold, meaning that in line 14 

data 18 copies of a haplotype may be observed, and still considered rare. In preliminary 

analyses lower thresholds were investigated but often produced large numbers of false 

positive results. Neither of these situations is ideal, prompting investigation into 

alternative approaches for testing haplotype association. 



3.5 Conclusions 

Results from analysis of both line 14 and simulated data show a high degree of 

concordance between the three models used here. Although it is difficult to quantify 

advantages, it appears that there is some benefit to analysing data using main effects or 

haplotype methods. The decision to use multi-marker mapping methodologies in a 

general linear model framework presents a number of choices in terms of how to use the 

information contained between a set of markers. Information contained between a set of 

markers can be defined in terms of main, marginal and interaction effects, and 

considered as a spectrum of effects, whereby effects can continually be added to a model 

until all possible parameters contained between a set of markers are included. The 

current methods used here are the two extremes of this spectrum. Drawing broad 

conclusions is difficult here, as performance of models is expected to be heavily 

influenced by localised genetic architecture of the QTL and markers. Determining how 

these factors influence model performance is explored in more detail in chapters' four to 

six. 

Whilst the haplotype method utilised here has produced promising results, there are 

some concerns regarding the implementation of the general linear model and score 

statistics in the "haplo.stats" package. Alternative frameworks need to be explored that 

allow the incorporation of relationship information, and avoid the pooling of rare 

haplotypes. 



CHAPTER FOUR 

FACTORS INFLUENCING THE OPTIMUM MODEL FOR THE ANALYSIS OF ASSOCIATION 

DATA 

4.1 Introduction 

Statistical models used for LD mapping can roughly be classified into genotype and 

haplotype based methods, where haplotype methods are differentiated by their 

requirement of marker phase (Dekkers et al. 2006). Within the closed breeding 

populations of livestock, LD is generally limited to closely linked loci due to many 

generations of recombination. Using a measure of LD such as r2  (Hill and Robertson 

1968) will reflect the regression of QTL alleles on marker alleles as the marker 

associated effect is equal to r2(2a), where a is the difference between alternative 

genotypes at the QTL. Therefore, one of the most important factors for designing LD 

mapping experiments is the degree of LD expected between markers and QTL. 

However, there is considerable variation in LD among evenly spaced loci. The high 

variance of the sampling distribution of LD, when based on a single pair of loci, derives 

from the degrees to which marker genotype groups represent groups that are identical by 

decent (IBD) with respect to the linked QTL. Clearly, when mapping with a single-locus 

model, the effective LD between marker and QTL, separated by the same distance, will 

vary greatly also. Therefore, in some cases using haplotypes will provide stronger 

differentiation into the IBD groups with respect to the QTL and, hence, be more 

powerful for LD mapping (Akey et al. 2001). 
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There are broadly two different approaches to inferring haplotype phase for a set of 

individuals. One approach is to use family data to deterministically resolve phase for 

genotypes featuring multiple heterozygous loci. However, this information is costly to 

collect or is sometimes not available. A second approach is to infer haplotypes directly 

from the population data using a statistical procedure such as an EM algorithm (see, e.g. 

Excoffier and Slatkin 1995; Long et al. 1995; Zhao et al. 2003). Although this will 

introduce some uncertainty associated with the inferred haplotypes, Stephens et al. 

(2001) has shown that provided the marker map is sufficiently dense, haplotypes can be 

constructed with a very high level of accuracy in the absence of family data. Fitting just 

main effects by regression of SNP genotypes is easier to implement as marker phase 

does not need to be determined. 

A growing number of studies demonstrate that haplotype-based approaches may 

provide more power and accuracy in locating QTL and causative disease variants than 

single-locus methods (Akey et al. 2001; Martin et al. 2000; Morris and Kaplan 2002; 

Schaid et al. 2002; Zaykin et al. 2002). However, literature on the relative efficiency of 

analysing haplotypes verses single markers is complicated by differing assumptions 

about the number of trait loci, the number of alleles at the trait loci, and the amount of 

LD between markers and trait loci. If the causative variant is a SNP contained within the 

marker panel, single-locus tests are expected to be more powerful than haplotype-based 

tests, when the number of causative SNPs is less than the number of haplotypes (Bader 

2001). Morris and Kaplan (2002) suggest that the power advantage for haplotype-based 

methods is greatest when the marker alleles are not in strong LD with each other, yet 

haplotypes of those markers are in strong LD with the causative alleles. This situation is 
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likely to occur when the ages of the marker variants are much older than the ages of the 

alleles at the causative locus, so that the markers have weak LD by the time of origin of 

the disease susceptibility alleles. How often this occurs is unknown, but the studies 

suggest that haplotype methods may be more powerful for younger, and hence more 

rare, causative variants, in contrast to older more common causative variants (Akey et 

al. 2001; Bader 2001; Slager et al. 2000). Moreover, another advantage of haplotypes is 

increased robustness compared to single-marker tests. Evolutionary forces such as 

random drift, mutation at the marker locus, and varying degrees of initial LD tend to 

increase the variability of the observed magnitude of LD between any single marker and 

disease loci leading to complex patterns of association, even with tightly linked markers. 

In this situation, simultaneous analysis of multiple markers in the form of haplotypes can 

result in comparatively simpler patterns of LD (Akey etal. 2001). 

The comparison of the above examples is limited by the fact that they focus on two 

extremes, either using the maximum single-locus statistic or a global test for all 

interactions between multiple markers. The choice of using multiple markers to test for 

association is made more difficult when the information contained between a set of 

markers to include in a test is considered. Haplotype analyses are the extreme version of 

multi-marker tests in that they fit all main effects, interactions and phase parameters 

(Clayton et al. 2004). This can lead to large numbers of parameters (haplotypes) being 

fitted in a model, which can weaken the power to detect associations. Using multiple 

SNPs in a genotype-based test that simultaneously tests for the main effects of all loci, 

yet without regard to haplotype phase, is a natural extension to a single-locus analysis. 

Clayton et al. (2004) and Chapman et al. (2003) have questioned the value of additional 
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information afforded by haplotyping markers, and suggested that in certain situations 

using a multilocus genotype based test will be more powerful than analyses based on 

haplotypes. If a number of adjacent SNPs are interrupted by a recombination event, then 

some additional information can be gained by looking at the haplotypes rather than 

markers individually. The extent of recombination between these markers is related to 

the amount of additional information gained from haplotypes over single markers. When 

using these markers to test for association, if there is a modest amount of recombination, 

any gain in variance explained by scoring haplotypes of markers will be more than offset 

by the additional DF. In this situation a genotype main-effects model is expected to do 

as well if not better than a haplotype model as the majority of additional variance will be 

explained by the main-effects (Chapman et al. 2003; Clayton et al. 2004). However, if 

we introduce more recombination events into this region, main-effects models will be 

unable to explain large proportions of variance between markers as higher order 

interactions become more relevant. Here a haplotype model is expected to have higher 

power, as the gain in variance explained by enumerating all orders of interactions more 

than compensates for the extra DF fitted. It has also been suggested that when using the 

simplified genotype-based multilocus test, slightly more markers are required to fully 

capture the information of the region (Seltman et al. 2001). Unfortunately, empirical 

values are unknown for these situations, meaning more comprehensive evaluations of 

the relative efficiencies of single-locus, multilocus genotype and haplotype-based 

methods are required to clarify these issues. 

Grapes et al. (2004) and Zhao et al. (2007) compared single-marker regression, 

regression on marker haplotypes and an IBD mapping approach (Meuwissen and 
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Goddard 2000) for power and precision of QTL mapping using simulated datasets. The 

conclusion from these papers was that single-marker regression gave greater power and 

precision than regression on marker haplotypes, and was comparable to the IBD method. 

However, both Grapes et al. (2004) and Zhao et al. (2007) were simulating situations 

where single-markers had very high r2  values with the QTL; the average r2  was 0.41 for 

markers within 0.5 cM and 0.15 for markers within 1.5-2 cM. In situations of high 

marker-QTL LD, haplotypes are expected to add noise to the estimation of the QTL 

effect, and reduce power of the test statistic. Furthermore Grapes et al. (2004) assumed 

that a requirement of haplotype analysis would be the collection of additional marker 

genotypes on relatives, to allow haplotype construction. They therefore compared results 

from single-marker analysis with twice as many markers as used in the haplotype 

analysis. These results contradict those of Hayes et al. (2007), who found that in real 

data (9323 SNPs genotyped in Angus cattle) the increase in QTL variance explained 

from using marker haplotypes more than compensated for the decrease in accuracy of 

estimating a greater number of haplotype effects. Average marker-marker and marker-

QTL r2  values were low in this Angus population, which is a possible explanation for 

contradictory results with Grapes et al. (2004) and Zhao et al. (2007). These studies 

have not differentiated the ability of models to analyse data with different levels of QTL 

MAF and marker-QTL LD. This is expected to make a considerable difference to the 

abilities of models to predict QTL genotypes (Chapman et al. 2003; Clayton et al. 2004). 

In the context of genomic selection, Calus et al. (2008) demonstrated that the advantage 

of haplotypes over single markers, to accurately predict QTL effects, decreased as the r2  
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between adjacent markers increased. At r2  = 0.215 between adjacent markers, the 

haplotype and single-marker approaches gave very similar accuracies. 

The main objectives of the analyses in this chapter were to determine the influence 

of genomic situations such as marker-QTL LD, QTL minor allele frequency and marker 

to QTL distance on the performance of single-marker, main order effect multilocus and 

haplotype models to estimate variance and provide statistical support for a QTL. We 

used the extent of LD in a broiler chicken dataset, consisting of 12046 genome wide 

SNPs genotyped in 200 individuals to simulate LID between markers and a QTL by 

selecting a single SNP to act as a surrogate QTL (sQTL), and then determining the 

ability of models to predict the variance of the sQTL using the surrounding markers. In 

total 6300 sQTL were generated, representing a range of MAF (0-0.5). 

4.2 Materials and methods 

4.2.1 Dataset 

Aviagen Ltd provided genotype data for a single line of commercial broiler chickens 

consisting of 200 individuals. Individuals were genotyped for 12046 SNPs that were 

chosen to cover the genome from the 2.8 million SNPs that were identified in the 

chicken genome-sequencing project (Wong et al. 2004). The SNPs covered the genome, 

but were not spread evenly, with a mean marker spacing of 0.13 Mb, and a standard 

deviation of 0.31. Individuals used in this study were from a commercial population 

under selection, comprising of a complex pedigree structure, with a few small half-sib 

groups. In these cases, care was taken to ensure that no more than three animals were 
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selected from each sire group to avoid over representation of sire haplotypes. These data 

were used to simulate the LD between markers and a QTL by selecting markers to act as 

surrogate QTL (sQTL), and then using the surrounding markers to test for association 

with four different models: a single-marker regression, a main effects genotype model 

using three marker windows and two haplotype methods, also using three marker 

windows. Markers were removed from the dataset if they had any missing genotypes, 

were represented by less than three genotype classes or had MAF less than 0.01. 

To avoid discrete classes representing phenotypes, values randomly drawn from a 

normal distribution were added to genotype of each individual. The variation of this 

distribution in relation to the variation of the sQTL genotypes represents the heritability 

of the "trait". The appropriate heritability of the "trait" to use was determined using a 

series of permutations with the different models, a range of heritabilities and sQTL with 

different MAF. High heritability of the trait can result in inflated permutation thresholds 

for sQTL with low MAF because of the skewed distribution of the phenotype. 

Therefore, heritability needed to be low enough such that the permutation thresholds 

remained constant across the range of sQTL MAF for all models, whilst being high 

enough for models to have a reasonable power to detect the sQTL. A comprehensive 

series of permutation analyses were run for each of the models, using sQTL with a range 

of MAP from 0.012-0.5, and a series of heritabilities from 0.01-1. From these 

permutation analyses a heritability of 0.3 was chosen for the sQTL, as this was the 

highest value at which the permutation threshold remained constant for all models across 

the entire range of sQTL MAF. For a given sQTL the variation of the distribution from 

which values were randomly added to genotypes was determined under the following 
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formula; UiSe  = ( 	a5QTL_ ge  io 	aSQTL geno , where a 2  is the variation of the normal 
0.3 	

noise 

distribution, and c.TSQTL geno is the variation of the sQTL genotypes. Distributions of p - 

values from permutation runs were checked against the expected null distribution for 

each association model. An example of the Q-Q plots is given in appendix three. 

4.2.2 Simulation of sQTL 

Each marker in turn was chosen to represent the sQTL, and 25 markers on either side 

then formed a test region surrounding the sQTL. Test regions of 50 markers were chosen 

to represent the mean distance at which syntenic LD measures reached background 

levels (chapter two). To avoid testing markers against sQTL on different chromosomes, 

the first and last 25 markers on a chromosome were not used as sQTL, meaning that no 

sQTL were chosen on micro chromosomes with less than 50 markers. After removal of 

fixed and two-genotype class markers, this left 6300 markers that were chosen to 

represent sQTL. The four models were tested against each sQTL using the 50 markers in 

the test region for that sQTL. 

The extent of marker-marker LD in the data was used as an indication of the extent 

of marker-QTL LD we would expect in a typical data set. Using a 'real' rather than a 

simulated dataset provides a more realistic pattern of structural genetic variation and 

avoids the difficulty in accurately simulating IBD structures and population genetic 

parameters (Hoggart et al. 2007). The parameter r2  is an estimate of LD that describes 

the proportion of QTL variance that would be explained by a marker if one of the 
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markers were actually a QTL (Hill and Robertson 1968). To determine the extent of LD 

within this population, r2  was calculated (following Hill and Robertson 1968) for all 

possible syntenic marker pairs and plotted as a function of distance (figure 4.1 a and b). 

4.2.3 Single-locus model• 

Within a test region, each individual marker was regressed against the sQTL 

phenotypes using the following model; 

y1  =,i+/3x+e 

Where y, is the "phenotype" of the sQTL for individual i, x, is the number of "1" alleles 

carried by individual i at the SNP; fi is the substitution effect for the SNP and 

e, - N(O,a) is the residual for the ith  individual. Individual markers are fitted in a 

design matrix coded as 0, 1 or 2 for 1-1, 1-2 and 2-2 allele combinations respectively. In 

this model, the effect of the marker is fitted as a fixed effect, assuming an additive 

model of inheritance. Association was tested against a null hypothesis of H0 = fi = 0, 

where fi is the effect of the marker, using an F-test with one degree of freedom. 

4.2.4 Main effect model 

The linear model fitting a single-marker was extended to fit adjacent markers in a 

multiple regression framework. A window of three-markers was scrolled across the test 

region, analysing associations, before moving forward a single marker and repeating the 

process. Markers representing sQTL were "dropped" from the marker panel, and 



therefore were not among the markers within a window when the window covered a 

sQTL position. In the main effects analysis, markers were fitted as linear covariates 

testing the main effects in the flowing model, 

y =J+1/3x +e1 

Where /3 is the substitution effect for SNP n, and Xni  is the number of copies of "1" 

allele carried by individual I at SNP n. Association was tested against a null hypothesis 

ofH0 = 181 = /2 = 163  = 0, where /i , / 2 and fl are the effects of the markers, using an 

F-test with 3 degrees of freedom. 

4.2.5 Haplotype regression model 

Since haplotype data are not readily available for genome-wide LD screens, 

haplotype analyses are conducted in a two-stage procedure; firstly, haplotypes were 

inferred for overlapping three-locus windows using an EM approach. For individuals 

with ambiguous phase all haplotype pairs consistent with the observed genotypes are 

provided, along with the posterior probabilities for each pair. In order to reduce 

parameters fitted in the model one commonly used approach is to take just the highest 

probability pair for an individual and fit those (Niu 2004). An alternative approach is to 

model for haplotype uncertainty by fitting probabilities in the regression analysis. 

Secondly, the probabilities of the inferred haplotypes were fitted as linear covariates in 

an N-dimension regression model, where N is the number of estimated haplotypes in the 

three-marker window, given the observed genotypes. 
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Figure 4.1 

a) The decline in mean r2  for SNP pairs within bins of 100 kb between SNPs. b) 

Distribution of the distances between adjacent SNP pair used as markers and 5QTL 

in the analyses. Distances have been separated into equal sized bins of 0.05 Mb. A 

small proportion (0.02) of markers are separated by greater than 1Mb. c) 

Distribution of r2  values between adjacent SNPs. d) Distribution of r2  values of 

markers in the highest LD with the 5QTL in each test region. Values plotted are the 

proportion of SNP pairs with r2  values in bins of 0.05. 
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4.2.5.1 Forming haplotypes 

The EM algorithm is used extensively to estimate haplotype frequencies and infer 

phase for population based studies (Excoffier and Slatkin 1995; Long et al. 1995 

Stephens et al. 2001). EM estimates population haplotype probabilities based on 

maximum-likelihood given observed genotype frequencies. Across the test region each 

three-marker overlapping window was haplotyped and then those haplotypes used in 

regression analyses. sQTL were not used to estimate any haplotypes, having been 

"dropped" from the marker panel. 

The algorithm described below was written and utilized using the programming 

language R, and is loosely based upon the progressive insertion algorithm implemented 

in the "snphap" software (Clayton 2009). Original code is given for the 2 haplotyping 

approaches are given in appendix four. The algorithm attempts to find the value of 

haplotype frequencies that gives the joint maximum likelihood given observed 

genotypes for n individuals as 

L(G F) = flPr(G1  F) 

where G is the observed genotypes, F is the set of population haplotype frequencies 

and Pr(G I F) is the probability of the it' individual's genotypes given haplotype 

frequencies and assumption of HWE. 

h h 

Pr(G1  I F) = 	cJhfli 
U=1 v=1 
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where G, denotes the unphased genotypes for the i h  individual, F is the haplotype 

frequency, jh and Jh are the frequencies of haplotypes u and v respectively and c is 
UV 

the haplotype-genotype compatibility index for individual i 

c 
UV

- J 1 (h II h, => G,) 

lo (h II h #> G) 

On convergence the probabilities of all pairs of haplotypes for an individual given 

the observed genotypes can be estimated based on the maximum likelihood estimates of 

the haplotype frequencies. During the EM iteration stages pairs of haplotypes with 

probabilities less than the threshold le -9 were dropped from the analysis and the 

frequencies of the remaining haplotypes were recalculated. The posterior probability for 

haplotype pair h u, h, for the ith  individual is given as 

TIL L I f' 	'\ - 	Pr(h , h I G,) * Pr(F) 
rIri , rz I '_i , i- ) - 

	(U,V)Pr(hU , 
	G,) *pr(F) 

where, Pr(F) = Pr(h) * Pr(h,) = 	* J. The second stage is to take the posterior 

probabilities for pairs and fit them in an X matrix of a regression model to test for 

association against the 5QTL. 

Here two different haplotype models were analyzed, using the probabilities of 

haplotype pairs differently to populate the X matrix fitted in this model 

= ji + flNXN + ei  

Where P. is the substitution effect for haplotype N, and XN, i is the probability of 

carrying haplotype N by individual i. Association was tested against a null hypothesis of 
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H0 = fl =)62 fiN = 0, where 81 1162 ' ,8N are the effects of the haplotypes, using an 

F-test with N-i degrees of freedom. The design matrix X relates estimated haplotype 

probabilities for each individual to their value in the Y matrix. The two haplotype 

approaches differ in their formation of the X matrix for individuals with a haplotype pair 

of ambiguous phase. 

4.2.5.2 Hap_highest_prob 

individuals with ambiguous phase have a number of possible haplotype pairs that are 

consistent with the observed data, each of which has a posterior probability. For a given 

individual the pair with the highest probability is considered the most likely and treated 

as an unambiguous pair. Consider the following example of three individuals: 

Individual Haplotype pairs 	Pr 	Phase 

h 1  I h i 	1.0 	Unambiguous 

Y2 	 h 1 /h3 	1.0 	Unambiguous 

3)3 	h 1  1h4 	0.25 	Ambiguous 

h2 1h4 	0.52 

h 1 1h2 	0.23 

For this example the X matrix would be; 

h1  h2  h3 	h4  

Y1 1 0 0 	0 

3)2 0.5 0 0.5 	0 

Y3 0 0.5 0 	0.5 
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for individuals' y and y2  the probability Pr(G 1  I hk hf )is either 0 or 1, and so values for 

the X matrix for haplotypes incompatible with the ith subject genotype are equal to 0, 

and to 0.5 for heterozygous pairs or 1 for homozygous pairs when haplotype 

identification is certain. For individuals with ambiguous phased pairs, such as y3, the 

pair with the highest probability is taken to be observed as unambiguous, and the X 

matrix entries are also 0.5 or 1 for heterozygous and homozygous pairs respectively. The 

remaining haplotypes are given a value of 0 in the X matrix. Haplotype pairs with low 

probabilities are discarded which can reduce the overall number of haplotypes fitted, and 

thus DF, but can introduce some error in estimating haplotype effects through not taking 

into account haplotype uncertainty (Morris et al. 2004). 

4.2.5.3 Hap_allprob 

This method accounts for the uncertainty of ambiguous haplotype phase by fitting 

the sum of probabilities of haplotypes in pairs for each individual (Zaykin et al. 2002). 

This will usually lead to an increase in the N dimension of the X matrix over the 

Hap_highestprob model through the inclusion of rare haplotypes with lower 

probabilities. Using the same example as above the X matrix for this dataset would be 

h1 	h2  h3  h4  

Y1 	1 	0 0 0 

Y2 	0.5 	0 0.5 0 

Y3 	0.24 	0.375 0 0.385 
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For individual y3, more than one pair of haplotypes is consistent with the observed 

genotypes, and values in the X matrix are the posterior probability of pair hk I h. If pair 

hk I hj  is heterozygous then its probability is multiplied by 0.5. If an individual has a 

haplotype that is observed in more than one pair, then its probabilities are summed 

together in the X matrix. Therefore, the sum of probabilities for all haplotypes observed 

for the ith subject is equal to one. 

4.3 Results 

4.3.1 Marker spacing and LD 

The average distance between adjacent SNPs was 130 kb; although there was 

considerable variation in that value, with many SNPs separated by considerably shorter 

distances (figure 4.1a). The uneven spacing of markers reflects the method of SNP 

discovery and factors that governed the design of the marker panel. In this population, 

average LD between adjacent markers is modest and declines slowly with distance 

(figure 4. ib). This slow decline is likely due to the limited effective population size. The 

average value of r2  for adjacent markers is 0.3 1, and the average of the highest sQTL to 

marker r2  within the test region is 0.42. The distribution of r2  values for adjacent 

markers and the highest sQTL to marker within the test region is shown in figures 4.1 c 

and d respectively. 
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4.3.2 Comparison of results under different sQTL MAF 

In traditional mapping studies, allelic frequencies of causal variants are unknown, 

although they are expected to have considerable effect on the power of models to 

provide statistically significant support for genetic associations. To investigate the effect 

of 5QTL allele frequency on the ability of the models to predict their variance, the 5QTL 

were divided into ten MAF bins, ranging from 0 to 0.5. The distribution of 5QTL in each 

bin is given in figure 4.2. The sQTL MAF bins show a roughly uniform distribution, but 

with an over-representation at intermediate frequencies compared to the assumed neutral 

U-shaped distribution, which likely represents the ascertainment bias associated with 

SNP discovery and marker selection (Solberg et al. 2008). 

The ability of a model to provide statistical support for a sQTL is related to the 

interaction between the variance explained and its parameterization. Therefore, p-values 

from the hypothesis test of each analysis are used to evaluate the ability of models to 

predict the genotypes at the 5QTL. The p-value provides an accurate means for assessing 

performance between models that differ in their parameterization, as they account for the 

expected additional variance explained by a parameter, by drawing from distributions 

adjusted for specific DF. 

Across the test region of a sQTL, the markers that provided the smallest nominal p-

value for each model were deemed to have performed best at providing statistical 

support for the 5QTL. The markers that provided these values were termed 'model best'. 

The p-values from 'model best' markers are ranked to determine the model that has 
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Figure 4.2 

The frequency distribution of sQTL within each MAF bin. Each MAF bin had 

an equal range, with the values shown on the x-axis representing the lower 

bound of this range. The total number of sQTL was 6300. 
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performed best for that given sQTL, with these termed "best overall". The proportion of 

times each model is the 'best overall' differs across the sQTL MAF bins (figure 4.3). 

Power of the statistical models is related not just to the amount of variance of a QTL 

that they explain, but also to the number of parameters that they need to explain this 

variance. The proportion of sQTL variance explained  by the markers will increase as 

additional markers or interaction parameters are included in analyses, although each of 

these will add DF fitted in the hypothesis test, thereby reducing the power of the test 

statistic. Performance of a model can therefore be considered along the principals of 

most variance explained using the fewest DF. As you move from single-locus to main 

effect and then haplotype models, the extra effects fitted need to explain enough 

additional variance to compensate for their extra DF. For each of the four models the 

change in mean proportion of variance explained and DF fitted by the 'model best' 

markers across the 5QTL MAF bins is shown in figures 4.4a and b, respectively. The 

mean proportion of variance explained by the 'model best' markers increases as the 

MAF of the sQTL increases, along with the mean DF fitted for the haplotype models. 

However, the ratio of variance explained to degrees of freedom fitted changes 

disproportionately for the four models (figure 4.4d). For 5QTL in the lowest MAF bin, 

the Hap alljrob 'model best' markers explain an average of 0.22 variance with a mean 

of 5.3 DF, a ratio of 0.041 variance explained for each DF. in the highest MAF bin, the 

Hap_allprob variance to DF ratio is 0.037, a decline in the variance that each DF 

explains. For the Hap_highestprob model this ratio remains approximately constant. 

Both the main effect and single-marker models have fixed numbers of DF, therefore, 
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Figure 4.3 

Proportion of times each model provided the 'best overall' p-value for sQTL 

across the MAF bins. Within each MAF bin the proportions for all models will 

sum to one. Values shown on the x-axis represent the lower bound of each MAF 

bin, with the proportions aligned to the median position. 
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Figure 4.4 

a) The mean proportion of sQTL variance explained by the 'model best' markers for each method across the 5QTL 

minor allele frequency bins. b) The mean degrees of freedom fitted in the analyses that produce the 'model best', 

across the 5QTL minor allele frequency. c) The corresponding mean p-values for these analyses. d) Ratio of mean 

variance explained for each DF fitted by the 'model best' markers. This is the ratio of points on figures a and b. 
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their ratios of variance explained for DF fitted increase at a proportional rate to the 

change in mean variance explained at different sQTL MAP (figure 4.4d). 

Unequal ratios of variance explained  to DF fitted for the four models across the 

sQTL MAF bins result in mean p-values for the 'model best' markers changing relative 

to one another. The pattern of unequal ratios is reflected in changes to the mean —loglO 

p-values from the 'model best' markers across the range of 5QTL MAF (figure 4.4c). 

4.3.3 Distance of the 'model best' markers from the sQTL 

In traditional QTL mapping studies we assume that the, markers that provide the 

smallest p-value are closest to the causal variant, or in the case of multi-marker 

approaches, surrounding the causal variant. In reality, because of high variation in LD 

patterns over large distances, our highest test statistic may come from markers some 

distance away from the causal variant. For single-locus tests, there is the possibility that 

this situation could occur more commonly than for multilocus tests, as the highest 

statistic will come from the marker in highest LD with the QTL. For multi-marker 

approaches this may not necessarily be the case as the smallest p-value will be a 

compromise between the amount of variance explained by parameters and the number of 

DF fitted in the model. Knowledge of the sQTL position means the ability of the models 

to provide accurate support for the sQTL location can be assessed by the position of the 

'model best' markers relative to the sQTL. For the single-marker analysis, the most 

accurate mapping of the 5QTL will come from identification of markers flanking the 

5QTL, whilst for the multiple marker methods it will come from windows covering the 
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sQTL (figure 4.5a). Figure 4.5b shows the mean distance of the 'model best' markers for 

each method from the sQTL across the MAT bins. For the multiple marker methods, this 

distance is calculated from the centre of the marker window. 

4.3.4 Variance explained and the LD structures 

Individual markers in high LD with a causative variant will explain a high 

proportion of their genetic variation; therefore, it is expected that adding additional 

markers or parameters to a test will not explain much additional variance as a proportion 

of what has already explained. In these situations, there is the possibility that the 

additional DF added will undermine the power of the test statistic. When markers are in 

low LD with a causative variant adding additional markers and parameters to a test has 

the possibility of dramatically increasing the variance explained compared to the 

proportion explained by a single marker. In light of this, patterns of LD between markers 

and sQTL are expected to have a considerable impact on the performance of the four 

models. This situation is made more complex by the fact that markers in low LD with 

one another are expected to produce a greater variety of haplotypes than markers in high 

LD with each other. To investigate these relationships, for each model the LD between 

markers and the sQTL (for multiple-marker methods the mean of the three pairwise 

measures was calculated) was taken from every analysis against all sQTL and divided 

into 100 equal bins. The average variance explained by analyses in each of these bins 

was calculated and plotted against LD (figure 4.6a). Proportional change in variance 

explained by models varies dramatically across the range of marker-sQTL LD. 
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Figure 4.5 

a) The proportion of times that the 'model best' markers for each method either 

surround the sQTL, in the case of multilocus methods, or are the closest marker 

either side of the 5QTL, in the case of the single-locus method. Both situations occur 

twice across each test region. b) The mean distance of the 'model best' markers from 

the sQTL. Distance for multilocus models is taken from the centre marker in the 

window. 
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This is demonstrated when we look at the frequency distribution for LD between 

markers and 5QTL for the 'best overall' markers across all sQTL (figure 4.6b). The 

haplotype models that performed 'best overall' tend to have low levels of LD between 

the markers and sQTL, whilst the markers from the 'best overall' single-marker models 

are in strong LID with the sQTL. 

Given the differential performance of the models under different genomic situations, 

it was hoped that information that can be observed, such as between marker LD, could 

be used as a predictor of model performance. For each of the multilocus methods the 

mean pairwise LD of the test markers was regressed against the variance that they 

explained. For each of the methods this relationship was very poor, with regression 

coefficients of 0.08, r2 1e 3  (main effect), 0.06, r 2=1.2e 3  (Hap_highestprob) and 0.05, 

r2=3e 4  (Hap_allprob) respectively. These results suggest that using just observed LD 

between pairs of markers cannot be used as an indicator of model performance. 

However, here LD from the whole test region was used rather than just markers close to 

the sQTL. 
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Figure 4.6 

a) Mean variance explained by all each model for every analysis, across the 

range of marker-sQTL LD. For multilocus methods, the measure of LD is 

the mean from the three pairwise measures. b) Proportion of 'best overall' 

analyses' marker-sQTL LD. For multilocus methods, the measure of LD is 

the mean from the three pairwise measures. 
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4.4 Discussion 

Our results shown here clearly demonstrate that when mapping for sQTL across the 

range of MAF the Hap_all_prob model performs best on average, whilst the single-

marker approach has the worst performance relative to other models. Performance of the 

models relative to one another varied considerably when tested against sQTL of 

differing allele frequencies (figure 4.3). When mapping against sQTL with low MAY 

there is a clear advantage of using a haplotype model that accounts for uncertainty in 

phase, such as Hap_all_prob over the other methods tested here. Although this 

advantage remains across the range of sQTL MAF its magnitude diminishes with more 

intermediate sQTL MAF. However, care should be taken when interpreting this figure, 

as performance of the models is relative to one another and does not reflect actual 

differences in statistical significance. In other words, how much difference is there in p-

values between models? The 'model best' markers for all models explain higher 

proportions of variance as the sQTL MAF values increase (figure 4.4a), although, for 

haplotype analyses, this is coupled with an increase in the mean DF fitted by these 

models (figure 4.4b). In order to perform well against single-locus models, those with 

increased parameterization need to explain enough additional variance of the sQTL to 

compensate for their extra DF. Here we show that the ability to meet this compensation 

point is not constant across the range of sQTL MAF (figure 4.4c). Taking the ratio of the 

mean variance explained and DF fitted for the 'model best' markers over the range of 

5QTL MAF (figure 4.4d), and cross-referencing that with the mean —loglO p-values 

from those analyses, provides an indication of the positions of these compensation points 
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for the various models. When mapping against sQTL with MAF between 0-0.05, the 

Hap_all_prob 'model best' markers produce considerably smaller p-values than other 

methods with a ratio of variance explained to DF fitted of 0.044. At intermediate sQTL 

MAF there is little difference between p-values provided by the different methods, 

whilst at low MAF values this difference is very dramatic, suggesting that there is a 

considerable advantage of using the Hap_all_prob model when mapping for QTL with 

expected allele frequencies in this range. 

For the majority of genome-wide association studies the allele frequencies of 

causative variants are unknown. However, under assumptions of neutral mutation or 

stabilizing selection models, the distribution of QTL allele frequencies is expected to 

resemble a U-shaped distribution, producing a high proportion of QTL with low MAF 

(Lynch and Hill 1986; Wright 1935). Therefore, unless prior information of QTL allele 

frequencies is available, the use of a haplotype model that accounts for phase uncertainty 

is a preferable approach to use for genome-wide association studies. 

Detecting genetic variation of causal variants that have uncommon or rare alleles, 

with sufficient power, is currently a problem for the majority of mapping studies in 

livestock and humans (Bodmer and Bonilla 2008). Here we have shown that there is a 

considerable advantage in using a high parameterization model, such as Hap_all_prob, 

to provide statistical support for QTL with low MAF. The same conclusions have been 

drawn from a study of similar design, on a non-pedigreed human population (James 

Floyd, personal communication). This suggests there may be an advantage to revisit 

analyses that have struggled to identify genetic variation using single-locus methods, 

and apply multilocus interaction models instead. 

127 



For the majority of sQTL the proportional increase in variance explained by 

haplotype models more than compensates for the additional DF added (figure 4.4c). 

These results concur with those of Pe'er et al. (2006), who used empirical genotype data 

from the human international Hap-Map project to evaluate the extent to which the sets of 

SNPs contained on three whole-genome genotyping arrays capture common SNPs 

across the genome. They concluded that limited inclusion of specific haplotype tests in 

association analysis can increase the fraction of common variants captured (as evaluated 

by r2  between haplotypes and common variants) by 25-100%. However, these specific 

tests were based on pre-selection of "tagging SNPs" which capture 90% of the variation 

in SNP genotypes in a defined chromosome region. Use of tagging SNPs reduces the 

number of effects that need to be estimated compared with haplotypes, increasing the 

power of the test. De Bakker et al. (2005) compared the power of exhaustive haplotype 

search and single SNP analysis to detect a QTL, where power was a function of r2  

between haplotypes or single marker and the QTL. They found that the use of 

haplotypes only increased power if the MAF of the sQTL was less than 0.05; otherwise, 

the use of haplotypes actually decreased power. Although sQTL were only split into two 

bins, those with MAF below 0.05 and those above 0.05. 

Differences between sQTL MAF thresholds for performance of haplotype models 

shown here and by De Bakker et,  al. (2005) can possibly be explained by two main 

factors. Firstly, the approaches taken by De Bakker et al. (2005) focus on case-control 

situations and the identification of haplotypes that tag SNPs. To determine the haplotype 

that tags a SNP best, haplotypes are sequentially tested individually and their 

performance is set using an empirical threshold. Our multilocus models test for the 
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global effects of markers or haplotypes, which, whilst adding DF, are expected to 

explain more real variance of the 5QTL without imposing an empirical threshold from 

multiple testing, as would be done with a series of 1 -DF tests (Schaid 2004). However, if 

a single haplotype is strongly associated with the trait, testing each haplotype 

individually can potentially be more powerful than a global test that spreads association 

across multiple haplotypes (Schaid 2004). Secondly, in human data the density of SNPs 

is very much higher than in our data. Even accounting for the increased effective 

population size of humans relative to QTL5, the average level of LD between adjacent 

SNPs is very much greater in humans. 

4.4.1 Marker density and LD 

Marker density, or more accurately, the extent of LD between markers, is of 

considerable importance to the performance of different association models. We can 

consider this in terms of the proportional increase in variance explained by models 

across different values of LD between markers and the QTL. Calus et al. (2008) 

suggested that the advantage to using haplotypes, derived using an IBD haplotyping 

method (Meuwissen and Goddard 2001), increased at lower marker densities, although 

when r2  values between adjacent markers were above 0.2 there was little advantage in 

using haplotypes. We have shown an advantage of using haplotypes persists when using 

data with a mean r2  between adjacent markers of 0.31, although the magnitude of the 

advantage is not consistent across the whole range of QTL MAF. Our results are 

consistent with those of Hayes et al. (2007), who also concluded that there was an 
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advantage of mapping with haplotypes composed of four markers, using an approach 

similar to the Hap_highest_prob, in a population with average r2  between adjacent 

markers of 0.1. Zhao et al. (2007) compared several methods for LD-based QTL fine 

mapping: regression of SNP genotypes, regression of SNP haplotypes, and an IBD 

method of Meuwissen and Goddard (2000), across a range of SNP densities. They 

concluded that as marker density is increased, the advantage of haplotypes over single-

markers  would be reduced. However, they only investigated power and precision of 

methods to map QTL with MAF ranging between 0.3-0.5. 

The relationship between LD, variance explained and DF fitted in a model is 

complex, especially when considering haplotype based models, where DF varies 

depending on a number of conditions related to procedures used with inferred 

haplotypes. More work is clearly needed to untangle the relationships between marker-

marker LD, number of haplotypes and variance explained. Here, we found little 

relationship between marker-marker LD and proportion of variance explained for all 

multilocus models, indicating that observed LD would be a poor indicator of model 

performance. With all models, higher LD between the markers and sQTL results in 

greater proportions of variance explained. However, proportional gain in variance of 

models relative to one another will not be constant for levels of marker-sQTL LD (figure 

4.6a). Here we have shown that when LD between markers and the sQTL is low the 

proportional gain in variance from haplotypes more than compensates for the additional 

DF fitted (figure 4.6b). These relationships are expected to change as marker density and 

LD increases. 
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4.4.2 Haplotype uncertainty 

The Hap_highest_prob method makes the assumption that haplotypes were known, 

something that is untrue in practice. This haplotype approach has been commonly used 

in other studies that compared the ability of models to map QTL (Grapes et al. 2004; 

2006; Hayes et al. 2007; Zhao et al. 2007). Discarding low probability haplotype pairs is 

expected to reduce power and precision of these methods, although the degree to which 

this happens will be dependent on the level of uncertainty in haplotyping. Morris et al. 

(2004) showed that assuming the most likely haplotype pair to be true for phase 

ambiguous individuals, results in substantial loss of information compared with 

modeling for the uncertainty by fitting probabilities in the model. Using only the most 

likely haplotypes introduces measurement error into the X matrix, resulting in biased 

estimates of haplotype effects (Zhao et al. 2003). The possibility of large numbers of DF 

fitted by haplotype based models is an often cited criticism, because of the potential 

effect on power. Fitting just highest probability pairs in a regression analysis is a useful 

way of reducing the number of haplotypes fitted in a model. Here we have shown that 

the performance of the two haplotype methods differs when mapping across a range of 

5QTL allele frequencies. Performance of the models is a product of the amount of 

variance they explain for a given number of DF and unequal ratios of these properties 

across the range of sQTL allele frequencies leads to this pattern of performance. The 

slight advantage of Hap_allprob over Hap_highestprob when mapping for sQTL of 

intermediate allele frequencies (figure 4.4c), and the potential inclusion of errors in 

estimating haplotype effects with the Hap_highestprob model (Morris et al. 2004), 
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suggests that approaches such as Hap_highest_prob be avoided for genome-wide 

association studies in the future. 

4.4.3 Accuracy of 'model best' markers 

In genome-wide association studies, accurately predicting the location of a QTL is 

important for both the inclusion of markers in MAS program and fine mapping studies. 

Typically, markers showing the highest statistical support are assumed to be the ones 

closest to the causal variant. Because ancestral recombination events usually weaken 

associations, informative haplotypes normally cover small regions, although this 

distance is dependent on levels of local LD and effective population sizes. Haplotype 

fine mapping methods take advantage of the fact that in the close vicinity of a causative 

locus, haplotypes tend to share close ancestry with causative alleles, with the extent of 

sharing decreasing with distance from the causative locus (Schaid 2004). If haplotypes 

are too long, being composed of many distant loci that have recombined with the 

causative locus, then associations with the trait can be diluted through the inclusion of 

too many random alleles. Here we have shown that multilocus methods, and in particular 

haplotype models, are able to accurately identify the position of sQTL considerably 

more often than a single-locus model. 

4.5 Conclusions 

The potential benefit in the use of haplotypes for genome-wide association analysis 

is still widely debated, and further work is clearly required to unravel the interactions 
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between genomic factors and formation of optimal haplotype structures to use in 

mapping studies. However, here we have demonstrated a clear advantage for using 

haplotype models that take into account phase uncertainly, in mapping for causal 

variants with rare or uncommon alleles. Many genome-wide association studies, 

particularly in humans, have used single-locus approaches and struggled to explain high 

levels of genetic variation, with the significantly identified markers, despite high-density 

panels (e.g. Bodmer and Bonilla 2008; Frazer et al. 2009; Visscher 2008). Given the 

findings shown here, there may be some advantage in revisiting these datasets and re-

applying haplotype based approaches. 

Given the differing performance of models across the range of genomic situations, 

the challenge will be to find adaptive mapping strategies that optimally use genomic 

information that is either observed or inferred in order to detect the position of QTL and 

explain genetic variation for important traits. The variety of models explored here, 

provide a convenient spectrum of parameterization choices, from simplistic single-locus 

additive model, to including all interaction terms, as is done in Hap_allprob. The 

regression-based framework allows for easy extension to include additional covariates, 

and relationship matrices for all models, with the only difference consisting of the 

choice of X matrix. The complementary nature of these models means that 

parameterization decisions based on observed local conditions could easily be 

incorporated into a strategy for whole genome mapping. The key will be identifying how 

well observed local marker information is able to predict the optimal parameterization 

structure of the model. The natural extension to the results shown here is to consider 
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how many markers should be included in multilocus models, and how their 

parameterization influences performance under the range of genomic conditions. 
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CHAPTER FIVE 

OPTIMAL LENGTH OF MARKER WINDOWS IN MULTILOCUS ASSOCIATION MAPPING 

MODELS 

5.1 Introduction 

5.1.1 Adjacent markers 

Strategies for performing multilocus association mapping analyses are still the 

subject of active debate and research. One important issue is how many adjacent SNPs 

should be included simultaneously in a particular model. If we are using haplotype-

based analyses, this issue is of considerable importance when we consider the 

relationship between the number of markers included and the potential number of 

parameters to fit in a model. Early suggestions were to perform haplotype analysis 

within regions of high LD, typically referred to as "LD blocks", where most of the 

genetic variation can be captured by a small number of haplotypes (Gabriel et al. 2002). 

However, difficulties in defining LD blocks, the boundaries between them, and choices 

regarding the inclusion of orphan SNPs, has led to the suggestion that using LD blocks 

as units for association may not be the most efficient strategy for haplotype analyses 

(Zhao et al. 2003). 

Choosing the most appropriate set of markers for haplotype analyses is essential to 

improve their power (Yu and Schaid 2007). It is impractical to analyse haplotypes 

constructed from a large number of markers spanning a wide genomic region because 

the core associated haplotype might be short, yet a longer haplotype region could 
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contain a large number of haplotypes, especially in the presence of weak LD. One 

approach for using multilocus infonnation is based on a sliding-window framework, in 

which a number of adjacent SNPs are grouped together in a window to test for 

association. This sliding-window approach is described in chapters three and four, where 

it is utilised in a step-wise manner, whereby windows move forward a single marker 

after each test. Using a method such as this makes maximum use of the information 

contained between markers and allows easy comparison with single-locus approaches 

(Zaykin et al. 2002). It also provides a choice in how information contained between 

markers is used, such as fitting just main effects, or inferring all interactions - as is done 

for haplotype analyses. Currently, we have investigated windows that fit three adjacent 

markers. However, in theory, the optimal window size should be one that results in the 

maximum amount of trait variance explained using the fewest parameters. Therefore, the 

optimal window size is expected to be influenced by the genetic architecture of the trait 

and local markers. The decision to use a single size of window over the whole genome is 

always a compromise, as LD patterns vary considerably between across regions. 

Therefore, it is impossible to predefine a single optimal window size for a whole-

genome sliding window analysis. 

The effects of the number of markers included in a window on haplotype model 

performance for QTL mapping (Abdallah et al. 2004; Calus et al. 2009; Grapes et al. 

2006; Zhao et al. 2007), marker assisted selection (Hayes et al. 2007) and genomic 

selection (Calus et al. 2009) has been reported, with optimal haplotype length 

determined by criteria specific to the type of study. However, in all cases optimal 

performance was based on the best performance on average, and did not differentiate 
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between genomic conditions. For QTL fine mapping Grapes et al. (2006) used the IBD 

haplotype method developed by Meuwissen and Goddard (2000) to test haplotype 

performance in a series of simulated populations, and concluded that haplotypes 

comprised of four to six markers represented the optimal compromise between power 

and discrimination between successive tested positions. The premise was that whilst 

using large numbers of markers provided the most accurate estimate of IBD 

probabilities, it limited the mapping precision of the model. However, Grapes et al. 

(2006) did not compare IBD to regression based methods in terms of power to detect 

QTL, and also used a simulated dataset that comprised of a small set of evenly spaced 

markers with high average LD to the simulated QTL. Abdallah et al. (2004) showed that 

a haplotype comprised of two markers resulted in more precise estimates of QTL 

position than a haplotype of six markers, using an LD based maximum likelihood 

method. 

Calus et al. (2009) compared the effects of haplotype definition on the precision of 

QTL mapping and accuracy of predicting genomic breeding values using an IBD 

haplotype method similar to that used in Grapes et al. (2006) in a multi-QTL simulated 

dataset. The IBD haplotype method is based on an IBD probability matrix, which is used 

to cluster haplotypes if they share an IBD probability above a certain threshold. This 

meant haplotype definition could be controlled by both the number of markers included 

and the threshold probability. The simulated dataset comprised of 383 SNP markers 

spread across three Morgan with an average r2  value of 0.14 between adjacent markers. 

Calus et al. (2009) concluded that window size has a considerable impact of precision of 

QTL mapping, with windows of six and 12 markers providing the best results, although 
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it made little difference to accuracy of predicting breeding values. This is perhaps not 

surprising when we consider that genomic selection aims to predict total breeding values 

with high accuracy, whilst QTL mapping aims at correctly identifying QTL position 

through contrast with surrounding markers. Therefore, optimal conditions for QTL 

mapping require a trade off between maximum variance explained with the fewest 

parameters, while genomic selection aims at capturing the maximum genetic variance 

explained by models, regardless of localised parameterisation conditions. 

5.1.2 Local LD and haplotype diversity 

The pattern of LD within a population is determined not only by the distribution of 

recombination events but also by demographic factors such as the extent of random drift, 

effective population size, and in localized situations, selection for genetic loci. The idea 

that resultant variation in localized patterns of LD across the genome could lead to 

differences in observed haplotype diversity within and between populations, is 

commonly used as a leading concept in the characterization and identification of 

haplotype blocks (Gabriel et al. 2002). Whilst there is a connection between the 

statistical concept of LD and the biological reality of haplotypes, a distinction is difficult 

as a variety of different haplotype structures can be reflected as a single LD pattern 

(Sawyer et al. 2005). Although the relationships between LD and haplotype diversity is 

complex, a generality of rules exist, such as those applied in the concept of low diversity 

haplotype blocks defined by strong associations between markers (Gabriel et al. 2002). 
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In this chapter I have attempted to show the relationship between haplotype 

diversity, defined as the number of haplotypes observed within a given marker window, 

and the extent of LD between the set of markers for the two haplotype methods. Getting 

an accurate measure of multilocus LD is difficult without the use of phase information 

(Bill Hill, personal communication; Weir 1996). Whilst there are numerous methods to 

calculate multilocus LD, such as chromosome segment homozygosity (Hayes et al. 

2003) or methods based on entropy (Liu and Lin 2005; Nothnagel et al. 2002), these 

require knowledge of marker phase and are therefore counterintuitive for use in 

determining the relationship between LD and haplotype diversity. An alternative is to 

take the mean from the series of pair-wise r2  measures that exist between the set of 

markers. 

5.1.3 Sliding window framework 

Sliding windows-based multilocus methods can also be performed without a fixed 

length window. In this strategy variable sized windows can be used, where the marker 

length at a given position can be determined on a set of conditions. Lin et al. (2004) 

presented an approach that exhaustively exploits haplotype information in a TDT test 

from sliding windows of all sizes. Such exhaustive searches, whilst being 

computationally feasible, do not necessarily make the most efficient use of local 

information and will typically be constrained by very conservative multiple testing 

corrections that will inevitably cause a loss of power. Li et al. (2007) introduced a 

method that fits a variable length sliding window haplotype model where the length of 
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the window is determined by local levels of LD and haplotype diversity. Within the 

determined window a combined analysis of all the haplotypes of different lengths (up to 

the maximum of the window) is performed using a regularised regression procedure that 

adjusts for dependency and complementariness amongst haplotypes. Whilst this is an 

attractive approach it suffers from the exhaustive fitting of all haplotype lengths within 

the window, even if there is some reduction in parameters through regularised 

regression. Yu and Schaid (2007) presented a sequential haplotype scan method based 

on the concept of a reduction in redundancy between markers within a window. The goal 

of the method is to choose appropriate markers to include in haplotypes by adding 

markers sequentially in to a window if they contribute to the association, conditional on 

current haplotypes. Whilst remaining an exhaustive test, it ensures that the power is not 

compromised by increases in DF. Many of the current methods designed to allow 

flexibility in window length have interesting and potentially advantageous uses in 

association mapping (Bahlo et al. 2006; Cheng et al. 2005; Li et al. 2007; Lin et al. 

2004; Yu and Schaid 2007) but, are constrained by the requirement of imposing multiple 

testing corrections caused by exhaustive searches to find the best group of markers or 

haplotypes. Whilst these methods provide some flexibility in marker choice for 

multilocus mapping, they are unable to incorporate any knowledge of model 

performance under different genomic conditions into the choice of window length. 

To date, investigation of optimal haplotype lengths have focused on identifying the 

number of markers that work best the majority of the time. Whilst this is clearly of 

interest, they do not consider that performance of multilocus models will be strongly 

influenced by the genetic architecture of the QTL and local markers. Additionally, these 
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studies have typically used simulated datasets that showed unrealistic patterns of LD 

compared to those found in humans (Pritchard and Przeworski 2001) and the majority of 

livestock species (Farnir et al. 2000; McRae et al. 2002; Nsengimana et al. 2004; 

Vallejo et al. 2003), making conclusions difficult to draw beyond those of the simulated 

conditions. 

Our previous work (chapter four) identified that certain genomic conditions, such as 

QTL allele frequencies and patterns of LD influence the performance of different 

regression-based models. We compared single-marker models to multilocus models that 

fitted either main effects or haplotypes, using only three-marker windows for the 

multilocus models, which was essentially an arbitrary choice in the window length. If we 

consider that performance of a model is dependent on the variance explained by a given 

number of predictor parameters, then optimal performance of a multilocus model will be 

affected by localised genetic architecture and how well parameterisation of a model is 

able to capture available genetic information. Therefore, the optimal number of markers 

to include in a window will be affected by the combination of how the marker 

information is parameterised and the genetic architecture of the QTL and markers. 

Although certain combinations of model and window size will perform best in the 

greatest number of circumstances, no one combination will be optimal across the whole 

genome. 
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5.1.4 Aims 

Our aims were to determine the influence of localized LD architecture on haplotype 

diversity and how this relates to the utilization of between marker information in a 

variety of multilocus models with different window sizes. We show how the optimal 

performance in providing statistical support for QTL under different model 

parameterization and marker window length is dependent on genomic situations such as 

marker-QTL LD, marker-marker LD, QTL MAF and marker to QTL distance. We go on 

to demonstrate the use of observed marker information in predicting optimal model 

performance. We used the extent of LD in a broiler chicken dataset, consisting of 12046 

genome wide SNPs genotyped in 200 individuals to simulate LD between markers and a 

QTL by selecting a single SNP to act as a surrogate QTL (sQTL), and then determining 

the ability of models to predict the variance of the sQTL using the surrounding markers. 

Three multilocus models with window lengths between three and nine markers were 

tested, as well as a single-locus model as a reference comparison. In total 6300 sQTL 

were generated, representing a range of MAF (0-0.5). 

5.2 Materials and methods 

5.2.1 Dataset 

The dataset used here was the same as was described in detail in chapter four, 

comprising of genotypic information from a single line of broiler chickens provided by 

Aviagen Ltd. The same controls, such as removal of missing information and markers 
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represented by fewer than three genotype classes, were placed on the data as described 

in the previous chapter, allowing it to be used in the manner to simulate LD between 

markers and a QTL by selecting markers to act as sQTL. The surrounding markers were 

then used to test for association using a single-marker regression method and three 

multilocus approaches, with the multilocus models adapted to allow them fit a series of 

different window sizes of three, five, seven and nine adjacent markers. 

Random variation drawn from a normal distribution was added to the genotype 

classes of the sQTL producing the sQTL "phenotype". The variation of the distribution 

was chosen such that the 5QTL "phenotype" had a heritability of 0.3. This provides high 

enough power to detect associations in this dataset, whilst avoiding problems associated 

with regressing against discrete classes of sQTL genotypes when the MAF was low 

(Chapter four). 

5QTL were chosen using the same procedures outlined in Chapter four, whereby 

each sQTL was surrounded with a test region of 50 markers which were used in the 

association models. in total the same 6300 5QTL were chosen and analysed with the 

models. As this was the same dataset as previously reported the descriptive statistics of 

patterns of LD and sQTL MAF remain as those described in detail in chapter four 

(figures 4.1 and 4.2). 

5.2.2 Models 

In chapter four we looked at a variety of models that used the information from 

SNPs and between SNPs in different ways, and how their performance was influenced 
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by genomic conditions. Three of the models were multilocus models that were 

implemented in a sliding window framework. One of the difficulties associated with 

using marker windows is the definition of how many markers should be included within 

a window. In the previous chapter only windows of three markers were tested, here we 

have extended this to fit the same models with different length marker windows. To act 

as a comparison we also included the single-marker analysis. 

The following four models were used; single-marker regression, main effects 

regression, Hap_highestprob and Hap_allprob. The later three models were fitted 

using window lengths of three, five, seven and nine markers. The models are described 

in detail in chapter four and are implemented in the same sliding window manner. For 

all models the sQTL was "dropped" from the genotype panel so that it was not included 

as either a marker or in the formation of haplotypes. The parameter r2  was used as a 

measure of LD (Hill and Robertson 1968). 

The first stage of the haplotype analyses is to infer the phase of markers in the 

various size sliding windows which are scanned across the genome panel. This 

information is used to build the X matrices, which differ depending on the haplotype 

model used. For a given model haplotype diversity within a window can be determined 

by the number of unique haplotypes that populate the X matrix. Therefore, the 

relationship between haplotype diversity and genomic conditions such as marker-marker 

LD and marker allele frequencies can be assessed. 
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5.3 Results 

Information on the average distance between adjacent SNPs, marker spacing and 

patterns of LD across the dataset is provided in chapter four (figure 4.1). 

5.3.1 Haplotype diversity 

Localized haplotype diversity is typically given as the number of haplotypes 

identified in the study population for a given set of markers. It is a product of local LD 

patterns, or LD complexity, and sample size. Although sample size does not directly 

influence haplotype diversity, it provides an upper bound to the maximum number of 

haplotypes that can be observed, given as 2N, where N is the number of diploid 

individuals with genotype data provided. High levels of LD between markers results in 

low levels of haplotype diversity through the complementary relationship between 

marker alleles. The length of haplotypes, in number of markers, also provides an upper 

bound on the maximum number of haplotypes observed, as there are only a given 

number of allele combinations and interactions that can exist between biallelic loci. This 

upper bound is given as 2,  where n is the number of markers in the haplotype. For a 

given set of individuals and group of markers the lower of the two upper boundaries 

represents the maximum number of haplotypes that can be observed. For example, in a 

dataset of 200 individuals and nine-marker haplotypes, the maximum number of 

haplotypes observed can be 400, whilst for three-marker haplotypes in the same data set 

the maximum is eight. Here haplotype diversity has been investigated for the models 

that differ in their window size and how haplotypes are inferred. For the haplotype 
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models used here, diversity is an important measure as it defines the parameterization of 

the models, i.e. the number of DF fitted in the Xmatrix. 

The frequency distribution of haplotype diversity in the entire dataset is shown in 

figure 5. 1, for the two models with different window lengths. Across all window 

sizes the Hap allprob method has a distribution shifted to the right of 

Hap_highestprob, which naturally reflects the different process of using inferred 

haplotype information. The relative difference in mean haplotype frequency between 

the two methods reduces as window size increases, although absolute difference 

increases. This is expected to be due, in part, to increases in the upper limit of 

haplotype diversity and the consequential increase in frequency classes. The relative 

difference in haplotype diversity provides an indication the extent of similarity 

between models in how information contained between markers is used. 

146 



2000 

a 
Mc 

1500 	Ha 

Ha 

U 

1000 
a.  
0, 

U- 

500 

- -.- 1-tap_highest_prob --- I-p_aII_prob 

 

0 

2 	 3 	 4 	 5 	 6 	 7 	 8 

Number of haplotypes 

- -.- 1-lap_highest_prob --- Hap_all_prob 
700 

b 
600 

500 

U 400 

Lt 

C 
0, 

300 

200 

100 

0 

1234567891011121314151617181920212223242526272829 

Number of haplotypes 

147 



400 

C 

300 

U 
C 

200 
0 

U. 

100 

0 

1 	5 	9 	13 	17 	21 	25 	29 	33 	37 	41 	45 	49 	53 	57 

Number of haplotypes 

- 	Hap_highest_prob ---- Hap_all_prob 

-.- Hap_highest_prob -.-- Hap_all_prob 
250 

d 

200 

>, 150 
U 
C 
C, 

Cr 
C, 

U. 100 

50 

0 

1 	5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97 

Number of haplotypes 

Figure 5.1 

Frequency distribution of haplotype diversity found across the entire dataset. 

Diversity is measured as the number of haplotypes that occur in a given marker 

window, as determined by the methods Hap_highestprob and Hap_allprob. Figures 

are split by window length: a) three markers, b) five markers, c) seven marker, and 

d) nine markers. The mean of the distributions is given in the tables on each figure. 
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5.3.2 Relationship between local LD and haplotype diversity 

The mean of pairwise r2  values for markers within a window (termed 'window LD') 

is used to show the relationship between the extent of LD and haplotype diversity. 

Figure 5.2 shows mean haplotype diversity from the two models plotted against the 

mean and variance of 'window LD'. For all window lengths, 'window LD' provides a 

good predictor of haplotype diversity, showing an exponential relationship connecting 

high levels of LD with low diversity and low LD with high diversity. The rate of decline 

in mean 'window LD' with haplotype diversity increases as the length of the haplotype 

windows gets longer. There is a considerable decrease in variance of the "window LD" 

measures as the length of windows increases, suggesting that predicting haplotype 

diversity from 'window LD' becomes more practical as window length improves. This 

may possibly be due to a greater differentiation in haplotype diversity across the range 

of LD and improvements in inferring haplotypes correctly as window length increases. 
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Figure 5.2 

Relationship between marker LD and haplotype diversity across the whole dataset. The mean 'window LD' is 

shown for each level of haplotype diversity, as determined by the methods Hap_highest_prob and Hap_a11_prob. 

The second y-axis shows the variance of this mean. Figures are split by window length: a) three markers, b) five 

markers, c) seven marker, and d) nine markers. Note: differences in the scales of the axes and Hap_highestprob 

has been abbreviated to Hap_highprob. 



5.3.3 'Model best' window haplotype diversity 

For each model, there is a marker, or marker window, that provided the highest —log 

10 p-value within each test region. For each model this marker or window is referred to 

as the 'model best'. For haplotype models, diversity within the 'model best' windows is 

shown in figure 5.3. These distributions represent haplotype diversity that provides the 

best statistical explanation of sQTL variance. Compared to distributions for the whole 

dataset (figure 5.1), haplotype diversity of the 'model best' windows is considerably 

lower (figure 5.3). It is clear that certain haplotype windows are 'model best' for a 

number of 5QTL, as can be shown by the frequency of certain haplotype diversities in 

'model best' windows compared to their frequency in the dataset as a whole. This is not 

surprising given the replicated overlapping nature of the experimental design. 

Differences in the distributions of haplotype diversity between those observed in the 

whole dataset and 'model best' reflects the trade off in variance explained by a model 

and its parameterization. In the majority of situations, highly parameterized models are 

unable to explain enough additional variance from the complex interaction parameters to 

account for the DF added, resulting in lower —log 10 p-values. 
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Figure 5.3 

Frequency distribution of haplotype diversity seen in the 'model best' 

windows for the Hap_highest_prob and Hap_all_prob models. The mean of 

these distributions is shown in the table on each figure. Figures are split by 

window length: a) three markers, b) five markers, c) seven marker, and d) 

nine markers. 
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5.3.4 Influence of sQTL MAF on- model performance 

Results presented in chapter four showed the effect sQTL MAF had on the 

performance of models. Here we follow similar procedures to investigate the 

relationship between the causal variant allele frequency and model performance at 

different window lengths. As before, the sQTL were divided into ten MAF bins,  ranging 

from 0 to 0.5. The distribution of sQTL in each bin is given in chapter four (figure 4.2). 

The p-values from the 'model best' markers are used to evaluate the ability of models to 

provide statistical support for the 5QTL. Naturally, each parameter added will explain 

some additional variance, although there will be a trade off with the p-value, if this 

parameter is unable to explain enough additional variance to compensate for the DF it 

adds. p-values provide an accurate means for assessing performance between models 

that differ in their parameterization, as they account for the expected additional variance 

explained by a parameter, by drawing from distributions adjusted for specific DF. 

The mean number of DF fitted by 'model best' markers across each sQTL IVIAF bin 

is shown in figure 5.4, with the corresponding mean variance explained and p-values in 

figures 5.5 and 5.6 respectively. There is a ranking of mean DF fitted across the methods 

based on the number of markers fitted in a window and the complexity of the model 

parameterization. The mean DF fitted by the haplotype-based models reflects the mean 

diversity of 'model best' haplotypes shown in figure 5.3. For all models there is an 

increase in the mean variance explained as the sQTL MAF increases. A similar pattern 

of model ranking for the mean variance explained is seen for mean DF fitted. The 

similarity in ranking is expected, being based on the mean number of parameters fitted 
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Figure 5.4 

Mean DF fitted by the 'model best' windows for each sQTL MAF bin. Figures are split to clarify data points 

into the three major groups of models and finally all models together. Note: model names have been 

abbreviated to fit in the keys. 
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Figure 5.5 

Mean variance explained by the 'model best' windows for each sQTL MAF bin. Figures are split to clarify 

data points into the three major groups of models and finally all models together Note: model names have 

been abbreviated to fit in the keys. 
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Figure 5.6 

Mean -log 10 p-values from the 'model best' windows for each sQTL MAF bin. Figures are split to clarify 

data points into the three major groups of models and finally all models together. Note: model names have 

been abbreviated to fit in the keys. 
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Figure 5.7 

Ratio of the variance explained and DF fitted by the 'model best' windows for each sQTL MAF bin. This 

provides a measure of the amount of variance explained by each DF on average for a given model. Results 

from single-marker models are not shown, as they have only a single DF. 



by the models. Differences in the proportion of variance explained for each DF fitted 

across the models result in a complex pattern of mean p-values, shown on the —log 10 

scale in figure 5.6. The ratio of variance explained to DF fitted is shown in figure 5.7. 

This can be considered the amount of variance explained by each parameter in a model 

on average. For all models there is an improvement in the mean p-value as the sQTL 

MAF increases, indicating that a given model will have higher power to detect common 

variants. Single-marker and main effect models have the greatest rate of improvement in 

p-values across the sQTL MAF compared to haplotype models, suggesting their 

performance is more sensitive to the allele frequency of the causal variant. 

Haplotype models with window sizes of seven and nine-markers have a poor 

performance compared other models, and especially compared to shorter window length 

haplotype models. The advantage of three to five-marker windows for the haplotype 

models reflects the optimal use of localized information  with their parameterization. 

Whilst mean diversity of seven and nine marker haplotypes from 'model best' markers is 

considerably less than the whole genome average, their increases in DF are unable to 

explain enough additional variance, with the result of low —loglO p-values. This is 

reflected by their very low ratios of variance explained to DF fitted (figure 5.7). There is 

very little difference in performance of the two haplotype models when the window 

lengths are seven and nine markers, reflecting similar uses in parameterization and 

utilization of information. For low to intermediate sQTL MAF the Hap_allprob_3 

model performs best, with Hap_allprob_5 best for intermediate to high sQTL MAF. 
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5.3.5 LD patterns and model performance 

The relationship between marker-QTL LD and model performance is critical, with 

all models expected to perform better when the markers are in high LD with the causal 

variant. However, performance of models relative to one another is expected to change 

disproportionally through differences in their abilities to optimally utilize marker-QTL 

information contained in LD structures. During the analyses the mean of the series of 

pairwise LD measures between the markers in a window and the 5QTL was calculated 

for each test. This mean value is termed 'window-sQTL_LD'. Making comparisons 

between different length windows is difficult, due to different numbers of pairwise 

combinations being used to construct the 'window-sQTL_LD' measure. However, we 

are able to compare model performance for equal length windows, as the different 

models use the same set of markers, just using the information contained between them 

in different ways. The entire dataset analysis consisted of a total of 6300 sQTL tested 

against over a 50 marker test region. For the three-marker windows this equates to a 

total of 302,400 individual windows used by each model, whilst for five, seven and nine-

marker window lengths the totals are 289,800, 277,500 and 264,600 respectively. For 

each of these individual windows, the performance of different models was compared 

based on their p-values. For each window a model was deemed to have performed best if 

it produced the smallest p-value from the set of models. The proportion of times each of 

these models performed best across the range of 'window-sQTL_LD' is shown in figure 

5.8. 
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Proportions of times models perform best for each window of markers in the entire set of analyses, split into 

'window-sQTL_LD' bins. The figure is divided by models with equal window lengths; a) models with 3 marker 

windows, b) models with 5 marker windows, c) models with 7 marker windows d) models with 9 marker windows. 



When the 'window-sQTL_LD' is low haplotype based models perform best the 

greatest proportion of the time. From the three marker length window models, 

Hap all_prob performs best 58 percent of the time when the 'window-sQTL_LD' is 

between 0-0.2. This falls to 16 percent of the time when 'window-sQTL_LD' is between 

0.8-1. Main effect models have an opposite pattern of performance to haplotype models, 

with the three-marker main effect model performing best for 18 percent of tests with 

'window-sQTL_LD' between 0-0.2, and 65 percent with 'window-sQTL_LD' between 

0.8-1. Across almost all combinations of window size, and 'window-sQTL_LD' bin, the 

Hap all_prob model performs best in a higher proportion of tests than the 

Hap_highest_prob model. Across the whole range of 'window-sQTL_LD' the main 

effect model performs best an average of 38.5 percent of the time when the window 

length is three-markers, with the same average percent for five-marker window tests. 

When the window lengths are seven and nine-markers this average is 61.2 and 60.3 

percent respectively. 

5.3.6 Predicting model performance from observed information 

One of our aims here was to be able to use observable marker data as a means of 

predicting model performance. Naturally, in order to use this for traditional mapping 

studies, assumptions regarding the position of markers relative to the QTL are required. 

Therefore, information from a set of markers that surround the sQTL position was used 

as predictors of their relationship with the sQTL. The performance of models within that 

set of markers was then assessed. 
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For each sQTL the mean of pairwise LD measures amongst the four markers either 

side of its position was calculated, along with the mean pairwise LD between those eight 

markers and the sQTL. In this way, observed marker information (from a window of 

eight markers) can be used as a predictor of their relationship with an underlying causal 

variant. Amongst the set of eight markers for each sQTL the model that performed best, 

deemed as having the smallest p-value, was recorded. For this prediction stage only the 

performance of models using markers from this set of eight were considered, not the 

performance across the whole test region. This allowed the relationship between 

predictive ability of the markers and model performance to be determined. To reduce the 

number of comparisons amongst models the performance of Hap_highestprob models 

was not considered due to their poor performance relative to Hap_allprob models of 

comparable length. Likewise, main effect and Hap_allprob models using nine-marker 

windows were also not considered. 

Figure 5.9 shows the relationships between mean pairwise LD amongst the eight 

markers, and the mean LD between the markers and the sQTL. The points for the mean 

LD measures are first shown as a scatter plot for the 6300 sQTL. This relationship is 

then represented in a hexagon binning histogram, where the size of the hexagons 

represents the density of underlying points (Carr 1991). The colour of the hexagons 

represents the model that had the best performance for the majority of points 

summarized by that hexagon. Using a hexagon plot provides a clear visualization of the 

ability of using observed marker information, in this case LD, and optimal model 

performance. In a traditional mapping study only marker LD information is available to 

use as a predictor for model performance. Therefore, the proportion of times each model 

163 



CO 	 04 	 015 	00 	 1 0 

Mean Maker to SOIL LD 

a ,.o b 1  
I •1 

COO 

o 	0 OB 

0 
06 	 . 

04 	. •. 

0S 	••.•• 

I 	 I 

0 	02 	04 	06 	08 

Mean Marker to sOTh LD 

Counts 
• 161 
• 151 

• 141 

• 131 

• 121 
• 111 

• 101 
• 01 
• 
• 
• 
• 51 
• 41 

• 	11 

single 	 Main-order effect 3 	Main-order effect 5 --- Main-order effect 7 

C 	-tap all prob 3 	F-tap_all_prob 5 	htap all prob 7 

0.9 

0.8 

0.7 

0.6 

0.5 
C 

0- 0.4 

0.3 

0.2 

0.1 

0 

0-0.1 	0.1-0.2 	0.2-0.3 	0.3-0.4 	0.4-0.5 	0.5-0.6 	0.6-0.7 	0.7-0.8 	0.8.0.9 	0.9-1 

Mean Marker LO bins 

Figure 5.9 

Total set of 6300 sQTL - a) Relationship between the mean pairwise LD from a set of 

eight markers surrounding a sQTL (four either side) and the mean of pairwise LD 

measures of these markers and the sQTL. b) The relationship shown in a) represented as 

hexagon plots, where the size of the hexagon represents the density of underlying 

points. Hexagons are coloured based on the model that has the highest proportion of 

"best" results amongst the points within the hexagon. The model colour key is shown in 

part c). c) Proportion of times each model performs "best" across bins of the mean LD 

between the set of eight markers (observable information). 
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performs best is shown for the range of mean marker LD (values shown on the y-axis of 

the scatter and hexagon plots) divided into ten equal sized bins. Proportions are taken 

from the 5QTL within the bin, thus, will represent different numbers of sQTL tests. The 

hexagon plot shows a clear relationship indicating the optimal model performance given 

certain patterns of LD between the markers and between the markers and the sQTL 

(figure 5.9b). However, model choice becomes more difficult to discern, when we 

consider that only marker LD is observable. The patterns of proportion of times each 

model performs best across observable marker LD (figure 5.9c) indicates that model 

decision would be difficult unless either low or high mean LD is observed. 

Given the difference in the performance of models across the range of sQTL MAF, 

results from a subset of sQTL with MAF < 0.1, and sQTL with MAF > 0.4 are also 

shown in figures 5.10 and 5.11 respectively. The pattern of LD observed between 

markers and between markers and the sQTL is less clear when the sQTL has a low MAF 

(figure 5.lOa) compared to the high MAF sQTL (figure 5.11 a). This likely represents the 

mathematical properties of r2  values when one locus has a low MAF (VanLiere and 

Rosenberg 2008), as here the mean of a series of pairwise measures is calculated. If we 

take just observable information, then the proportions for best model performance are 

markedly different for 5QTL at either end of the MAF scale. When the 5QTL MAF is 

low, single-marker models very rarely perform best and only when mean marker LD is 

at intermediate levels. For 5QTL with low MAF, high levels of marker LD are 

infrequently observed. The overall proportion of times the Hap_allprob 3 model 

performs best is higher when the sQTL has low MAF compared to the proportion from 

high MAP sQTL. 
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Figure 5.10 
sQTL with MAF <0.1 — a) Relationship between the mean pairwise LD from a set of 

eight markers surrounding a sQTL (four either side) and the mean of pairwise LD 

measures of these markers and the sQTL. b) The relationship shown in a) represented 

as hexagon plots, where the size of the hexagon represents the density of underlying 

points. Hexagons are coloured based on the model that has the highest proportion of 

"best" results amongst the points within the hexagon. The model colour key is shown 

in part c). c) Proportion of times each model performs "best" across bins of the mean 

LD between the set of eight markers (observable information). 
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Figure 5.11 

sQTL with MAF> 0.4 — a) Relationship between the mean pairwise LD from a set of 

eight markers surrounding a sQTL (four either side) and the mean of pairwise LD 

measures of these markers and the sQTL. b) The relationship shown in a) represented 

as hexagon plots, where the size of the hexagon represents the density of underlying 

points. Hexagons are coloured based on the model that has the highest proportion of 

"best" results amongst the points within the hexagon. The model colour key is shown 

in part c). c) Proportion of times each model performs "best" across bins of the mean 

LD between the set of eight markers (observable information). 
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5.4 Discussion 

Here we have shown how performance of multilocus models is strongly influenced 

by the number of markers fitted in the analysis, and choices made regarding the use of 

information contained between markers. We have also demonstrated the diversity of 

haplotypes as a product of their marker length and localized LD structures. Given the 

extent of LD observed in this dataset, there is a considerable advantage to using a 

haplotype model that accounts for uncertainty in phase, such as Hap_all_prob over all 

other methods tested here. The choice in the number of markers to include in a window 

is of critical importance, with optimal window length also affected by the allele 

frequencies of the causal variant, marker LD structures and marker-sQTL LD. 

5.4.1 Haplotype diversity 

Diversity of haplotypes within a dataset is a product to local LD variation, sample 

size and the defined length of haplotypes, with considerable variation in diversity across 

the genome. There is a clear relationship between the length of haplotype window and 

range of observed haplotype diversity, as determined under the two different models 

(figure 5.1). Data analysed here is supplied with unknown phase and individuals from a 

single generation, resulting in some uncertainty in phase after the inferring procedure. 

The two haplotype methods handle this uncertainty differently, leading to different 

measures of haplotype diversity for each specific model. In this situation, haplotype 

diversity can be considered a measure of model parameterization, allowing haplotype 

diversity to be viewed in terms of model performance. 
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Accurately measuring and producing a meaningful statistic to explain the pattern of 

LD between a set of multilocus markers is difficult without the use of haplotype 

information (Bill Hill: Personal communication; Hayes et al. 2003). Using the arithmetic 

mean, we summarize the series of pairwise r2  measures between the set of markers 

within a window to provide an indication of the extent of multilocus LD. Here it is 

shown that using the mean of pairwise LD measures provides a useful indicator of 

haplotype diversity, and consequently model parameterization, for the two haplotype 

models (figure 5.2). 

Naturally, given the importance of marker length to haplotype diversity, factors 

such as marker density and effective population size need to be considered given their 

relationship to localized LID patterns. Thus, conclusions drawn here regarding haplotype 

diversity and model performance need to be considered in terms of marker spacing and 

localized LD. Using a measure such as 'window LD' to provide an indication of the 

extent of LD between a set of markers, provides a useful indication of the expected 

haplotypes diversity under the two haplotype models. Variance in haplotype diversity 

for a given level of 'window LD' is likely due, in part, to inaccuracies in estimating 

multilocus LID using a measure such as 'window LD', and the fact that different 

haplotype structures can be reflected by a single LD pattern (Sawyer et al. 2005). As 

marker window length increases, there is a reduction in the variance of haplotype 

diversity. Whilst the reason for this is not fully known, it suggests that more accurate 

predictions of haplotype diversity can be made using larger sets of markers. 
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5.4.2 Identification of optimal window lengths 

The extent of LD between the set of markers within a window clearly has an 

important effect on the ability of a model to provided statistical support for a QTL. For 

haplotype—based models, diversity is increased for lower levels of LD (figure 5.2), and 

hence, the number of parameters fitted in a model is greater. Here we have shown that 

for a specific multilocus model the optimal window length is influenced by the allele 

frequencies of the sQTL (figure 5.6) as well as extent of LD between the markers and 

the sQTL (figure 5.8). As expected there is a ranking of mean variance explained by the 

'model best' markers, based on the average DF fitted amongst the models (figures 5.4 

and 5.5). Differences in the performance of models to provide statistical support from 

the 'model best' markers is reflected in the critical values of the F-tests. The main effect 

model consistently outperforms single-marker analysis across all sQTL MAF and 

window sizes. The greatest difference in performance is when mapping for rare causal 

variants. In this situation a three-marker model performs best on average, although the 

difference between the models narrows as the MAF of the .sQTL increases. When the 

5QTL MAF is greater than 0.3 the five-marker window model performs best on average. 

There is very little difference in the performance of alternative window lengths and 

single-marker analysis when the sQTL has intermediate allele frequencies. 

In theory, optimal window size should be one that results in haplotypes that maintain 

the highest LD with the causal variant. Whilst this is true in principle, situations exist 

whereby a single or small group of haplotypes have a strong association with a causal 

variant, but are located in regions of high diversity. Fitting all haplotypes seen at this 
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locus can weaken the power of the test (Akey et al. 2001; Schaid 2004). A similar 

problem occurs if haplotypes are too long, composed of many distinct loci that have 

recombined with the causative locus. The consequence of large numbers of haplotypes, 

composed of many random alleles, is a weakening of the association with the causal 

loci. Whilst recombination events break up associations between haplotypes and QTL, 

problems associated with long haplotypes are also related to the density of the marker 

panel in the study. Therefore, the term 'long haplotypes' needs to be thought of in 

relation to marker density and mean levels of LD between adjacent markers. in lower 

density panels, such as that used here, including seven or nine markers in a haplotype 

window drastically reduces the performance of the model relative to main effect models 

of comparable length. At these lengths, haplotypes are covering sets of markers that 

have likely accumulated a large numbers of recombination events, destroying 

associations with surrounding markers and producing high diversity that is weakly 

powered in a global test for association. In this situation the maximum test statistic from 

the set of single-marker tests is expected to perform better (Schaid 2004). 

Haplotypes for both Hap_highestprob and Hap_allprob models are coded as 

additive effects in a fixed effects model, with the number of numerator DF in the global 

F-statistic equal to the number of observed haplotypes. When haplotype diversity is 

high, power can weaken due to an inability of parameters to explain enough additional 

variance to compensate for their DF and a more stringent critical value. Igo et al. (2009) 

showed that overall power of both a haplotype score test (HST) and cluster based test 

(Tzeng et al. 2006) dropped uniformly with increasing haplotype diversity, suggesting 

that the genetic architecture in regions of high diversity contains complexity that is 
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neither explained by HST or adequately simplified by the clustering scheme. This 

observation is not surprising, as a causal mutation, whose susceptibility allele has a low 

frequency, in a region of high complexity is expected to occur on several different 

haplotype backgrounds (Igo et al. 2009). 

High levels of parameterization in longer window haplotype models could result in 

an inability to accurately estimate haplotype effects in diverse sequence regions, due to 

small sample sizes of haplotypes (Bardel et al. 2006; Li et al. 2007). One strategy is to 

compute an individual test statistic for each haplotype, and then use the maximum of 

these to test for association, with a correction for multiple testing. Seltman et al. (2003) 

showed that while this approach may be most powerful when only one haplotype is 

strongly associated with the trait, its power is weakened when the association is spread 

across multiple haplotypes. In this situation, a global test, as used here, is expected to be 

more powerful (Schaid 2004; Seitman et al. 2003). An alternative approach could be to 

use a variance component model that uses a likelihood ratio statistic that is not penalized 

by high levels of parameterization. If haplotypes are coded as additive effects in a fixed 

effects model with the number of distinct haplotypes denoted as K, the DF for the global 

F-test is K for the numerator and N-K for the denominator, where N is the number of 

individuals. Whilst high values of K can lead to low power of the test statistic because of 

more stringent critical values, no matter the value of K, the variance component model 

tests the null hypothesis of no association of any haplotypes with the trait, H. :or2  :or =0 

verses the one-sided alternative H0 
:U2 >0 (Schaid 2004). Because of this, the 
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variance component model is likely to be more powerful than the fixed effects model 

when there are many haplotypes. 

Whilst it initially appears counter intuitive, using all available information for QTL 

mapping is not always optimal, given the considerations of model parameterization. 

Abdallah et al. (2004) showed that a haplotype composed of two markers resulted in 

more precise estimates of QTL position than a haplotype of six markers for an LD-based 

maximum-likelihood model that is a generalized method of Terwilliger (1995). Methods 

fitting haplotypes clustered on the basis of IBD probabilities (Meuwissen and Goddard 

20 01) have shown that window size has a strong effect on QTL mapping. Using a 

simulated dataset, Grapes et al. (2006) showed that using haplotypes of four or six 

markers in a sliding window framework resulted in the greatest mapping accuracy. 

Using this IBD approach, fitting single markers resulted in a worse mapping accuracy 

than all haplotype length models, although this is likely due to a very poor accuracy in 

estimating the IBD probabilities from just a single marker (Grapes et al. 2006). Using 

the same IBD approach, Calus et al. (2009) compared the effects of haplotype definition 

and length on the precision of QTL mapping, using a range of window sizes and 

clustering of related haplotypes based on different thresholds of IBD probabilities. 

Under these criteria, window length and probability thresholds had a considerable 

impact on mapping precision, with windows of six and 12 markers providing the best 

results. The discrepancy in optimal window size between these studies is expected when 

we consider the differences in population genetic parameters such as the extent of LD 

simulated in their datasets, and a lack of consideration to differences in model 

performance under the range of genomic architecture. 
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5.4.3 Predicting model performance from observed information 

As we have shown in this, as well as the previous chapter, performance of 

regression-based models is strongly influenced by the localized genomic architecture of 

the markers and QTL. Given the variable nature of this architecture across the genome, 

the ability to predict the optimal choice of model using observable information is a 

considerable advantage for mapping studies. Using observed information as a predictor 

of model performance requires the assumption that the causal variant is located close to 

the markers, a usual assumption in traditional mapping studies. in this chapter, LD 

information from a set of eight markers surrounding a sQTL position was shown to be a 

useful predictor of model choice (figure 5.9). Using this marker information allows us to 

make an informed choice of the type of model to use in a given situation. If we make the 

assumption that the QTL has either a low or high MAF then we gain a more informed 

set of choices. Naturally, knowledge of LD between markers and the sQTL would be the 

ideal situation. 

In genome-wide association studies information available for the prediction of 

model parameterization is typically observed from markers, rather than any knowledge 

of marker interactions with causal loci. As is shown in figures 5.10 - 11 the choice of 

model, based on observed marker LD, can be clarified if prior knowledge of the QTL 

allele frequencies is available. In the absence of prior knowledge assumptions regarding 

the likely distribution of QTL allele frequencies could be applied. For example, under 

assumptions of neutral mutation or stabilizing selection models, the distribution of QTL 

allele frequencies is expected to resemble a U-shaped distribution, with a high 
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proportion of loci with low MAF (Lynch and Hill 1986; Wright 1935). Applying these 

assumptions in a genome-wide mapping strategy that uses observed marker information 

to influence model choice could lead to more efficient use of genomic information and 

consequently improve power of the study, particularly in respect to mapping for rare 

variants. 

Events such as selection criteria and population bottlenecks, that are a reality in 

animal breeding systems, will influence the distribution of QTL allele frequencies away 

from the expected distribution of the neutral model (Zhang et al. 2004), making 

assumptions harder to accept. Likewise, the genetic architecture of an individual trait 

may not adhere to an assumed distribution, especially if it is influenced by a few loci. 

Nevertheless, applying the model choice criteria observed for low MAF sQTL (figure 

5.1 Oh) is expected to improve the ability of a genome-wide mapping study to detect rare 

variants, which is an often cited struggle in association mapping (Andersson and 

Georges 2004; Bodmer and Bonilla 2008; Wang et al. 2005; Zondervan and Cardon 

2004). 

5.4.4 Comparison of haplotype models 

As is shown in chapter four, there are considerable differences in performance of the 

two haplotype based models. Although, there is a reduction in the differences of their 

performance as window size increases (figure 5.6). This reflects the increasing similarity 

in the distributions of haplotype diversity of the two methods as window length 

increases, suggesting that there is little difference in their parameterization. At lower 
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window lengths the Hap all_prob model consistently outperforms Hap_highest_prob, 

across the range of 5QTL MAF, providing consensus results for five-marker windows to 

those shown in chapter four for three-marker windows. 

To account for unphased haplotypes, some investigators have used statistical 

methods, such as the EM algorithm, to infer the most likely haplotype pair per subject, 

and then use these inferred haplotypes as if they are observed (Grapes et al. 2004; 2006; 

Hayes et al. 2007; Zhao et al. 2007), as is done for the Hap_highest_prob method. 

Whilst this reduces the number of parameters slightly, it makes the assumption that 

haplotype pairs are known, something that is untrue in practice. This approach does not 

account for the discarded haplotypes pairs that are possible, and if LD is not strong, 

there can be substantial loss of information (Schaid 2002). Using only the most likely 

haplotypes can introduce measurement error into the X matrix, resulting in biased 

estimates of haplotypes effects (Zhao et al. 2003), and a possible reduction in the 

accuracy of estimating parameters (Tanck et al. 2003). Discarding low probability 

haplotype pairs is expected to reduce power and precision of methods such as 

Hap highest_prob, although the degree to which this happens will be dependent on the 

level of uncertainty in haplotyping (Morris et al. 2004). 

The occurrence of large numbers of haplotypes, especially rare ones, is an often 

cited criticism of the reduced power of haplotype over genotype based models (Clayton 

et al. 2004; Schaid 2004). Using a model such as Hap_highest_prob is a useful way to 

reduce parameters, although the relative reduction compared to Hap_all_prob becomes 

smaller as window size increase, as can be seen from the distributions of haplotype 

diversity (figures 5.1 and 5.3). Here we have shown that the performance of the two 
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haplotype methods differs when mapping across a range of sQTL allele frequencies, and 

that optimal performance is also based on window size. As performance of models is a 

product of variance they explain with a given number of DF, the unequal ratio of these 

properties, across the range of sQTL MAF, leads to the pattern in performance see in 

figure 5.6. The advantage of Hap_all_prob over Hap_highest_prob for window lengths 

of three and five markers (figure 5.6), and the knowledge of a potential errors in 

estimating haplotype effects with the Hap_highest_prob model (Morris et al. 2004; 

Schaid 2002), suggests that approaches such as Hap_highest_prob be avoided for 

genome-wide association studies in the future. This suggestion is supported by the 

results shown in chapter four. 

5.4.5 Optimal parameterization 

The models investigated here have clearly defined parameterization choices. For 

example, main effect models fit just the main effect parameters, whilst Hap_all_prob 

models fit all main effect and interaction parameters contained within a set of markers. 

For a set of multiple markers, these choices represent the two extremes of a spectrum of 

model parameterization. For each given set of markers there would be a clear advantage 

in identifying the individual set of parameters that explains the maximum proportion of 

variance using the fewest DF, rather than relying on the constraints of the two extremes. 

Several approaches have been proposed to tackle this problem, normally referred to as 

parameter reduction methods. 
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in situations of high haplotype diversity, it is typical to observe large numbers of 

rare haplotypes. When this occurs, standard errors of frequency estimates for rare 

haplotypes can be large due to sampling variation. The problems this creates are 

compounded when phase uncertainty is not accounted for (Fallin and Schork 2000; Zhao 

et al. 2003). Rare haplotypes also suffer from a reduction in the ability to accurately 

estimate their regression parameters, often leading to model instability (Schaid 2004). A 

common approach is to remove rare haplotypes from the X matrix, yet this implicitly 

groups them into a baseline category and ignores any information that they contain. An 

alternative strategy is to group rare haplotypes into a single haplotype class. Whilst this 

is an attractive strategy, it requires a frequency threshold to be defined, under which a 

haplotype is considered rare. This procedure drastically reduces power when rare 

haplotypes are associated with the causal variant, and makes interpretation of the 

regression coefficient for this group nearly impossible. A more appealing approach is to 

shrink the estimated effects of each of the rare haplotypes. This shrinkage can be 

towards a common mean, with the effects of rare haplotypes shrunk to a similar degree 

as those haplotypes with which they are most similar (Tzeng et al. 2003). Alternatively, 

the effects of rare haplotypes can be shrunk toward the effects of haplotypes that are 

most similar to the rare one (Tanck et al. 2003). Beyond rare haplotypes statistical 

procedures have been considered to reduce parameterization through the evaluation of 

haplotype dependency and complementariness (Conti and Gauderman 2004; Guo and 

Lin 2009; Li et al. 2007). 

An alternative approach to circumvent the problem of many haplotypes is by 

grouping similar haplotypes in the hope that such similarity will reflect a shared 
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ancestry. Thus the parameter space can be reduced while, it is hoped, retaining that 

phase information relevant to the causal variant. The concept is that dependency 

amongst haplotypes will be accounted for, whilst reducing the DF of the test and 

improving power. The most common form of clustering is based on cladistic analysis 

which uses the concepts of a coalescent history amongst haplotypes (Durrant et al. 2004; 

Seitman et al 2003). Haplotype clustering methods that use cladistic approaches, or 

similarity measures, may encounter problems when the region under study exhibits a 

complex pattern of LD, produced by a series of recombination events. These models 

assume haplotypes are caused by mutation events alone, therefore, if recombination is 

considered these cladistic trees become a network of connected haplotypes, which are 

difficult to model, even using sampling algorithms (Larribe et al. 2002; Nordberg and 

Tavare 2002). 

5.5 Conclusions 

A common finding in genome-wide association studies is that only a small number 

of SNPs exceed the specific significance threshold, with these markers typically only 

explaining a small proportion of the trait variance (Bodmer and Bonilla 2008; Frazer et 

al. 2009; Maher 2008; Visscher 2008). Given the difficulty in explaining genetic 

variance, this raises the possibility that large numbers of markers are linked to causal 

variants but with lower levels of association, unable to reach stringent genome-wide 

thresholds. In most studies these markers are generally ignored because of their lack of 

statistical significance. As shown here, and in chapter four, optimal performance of a 
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model is strongly influenced by the genomic architecture of the trait and markers, 

suggesting that associations are being  missed through a failure to use the optimal model 

for a given marker or set of markers. 

Optimal performance of haplotype models, such as Hap_allprob, is strongly 

influenced by window length. Compared to main effect models, 'model best' marker 

windows from haplotype models typically have lower levels of LD between themselves 

and the sQTL. Whilst this is advantageous for three or five-marker windows, with their 

comparatively low levels of diversity, it leads to poor performance when window size is 

seven or nine markers. This suggests that haplotype models are able to utilize 

information contained in low LD regions, provided overall model parameterization is 

considered. 
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CHAPTER SIX 

FALSE POSITIVE RATES AT DIFFERENT HERITABILITIES FOR SINGLE AND MULTILOCUS 

MODELS 

6.1 Introduction 

6.1.1 Multiple testing 

Whole genome association mapping experiments involve large numbers of multiple 

hypothesis tests. Evaluation of results from such studies now have a strong prior 

assumption that a certain proportion of statistically "true" tests will in fact be caused by 

statistical chance and have no biological meaning. Such examples are called false 

positives, or type I errors. Recognition of this problem has lead to almost all studies 

imposing some form of correction factor, or threshold adjustment, to account for the 

difficulty in identifying true positive results. Ideally, these methods need to identify true 

associations and account for non-independence, or correlations between tests. These 

correlations can be viewed as a product of LD between markers within a dataset, and 

therefore, are difficult to account for, except in circumstances of extremely high, or 

extremely low LD (Lander and Kruglyak 1995). 

The bonfenoni correction is a popular and easy to implement method to correct a 

significance threshold to account for multiple testing (Hochberg and Tamhane 1987). It 

is popular because of its simplicity, as it only requires the adjustment of the significance 

threshold by a,,, Im, where m is the number of tests. However, Bonfenoni's 

method is conservative when tests have some positive correlation, as is the case for 
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markers in LD with one another. More recently, the false discovery rates (FDR) 

introduced by Benjamini and Hochberg (1995) and variations (Efron and Tibshirani 

2002) have gained support, as we may tolerate some type I errors, provided they are a 

small proportion of the rejected hypotheses. FDR is defmed as the proportion of false 

positives among the claimed positives, and involves identifying the top r ranking tests as 

true positives, where r is chosen based on an acceptable level of false positives. 

Re-sampling approaches, such as the permutation based method introduced by 

Churchill and Doerge (1994), estimate a significance threshold value that accounts for 

correlations amongst tests. The quantitative trait data are permuted with respect to the 

marker data a large number of times to effectively sample from the distribution of the 

test statistic under a null hypothesis of no association between the phenotypes and 

genotypes. The great advantage of this approach is that it is intuitive, does not rely on 

distributional assumptions regarding the quantitative trait, and its general applicability in 

different population structures (Piepho 2001). A commonly cited criticism of 

permutation analyses is that they are computationally demanding. For example, to. 

compute a significance threshold for a genome wide type one error rate of 0.05, at least 

1000 permutations are required to obtain a reasonably accurate estimate of the threshold 

(Churchill and Doerge 1994). 

6.1.2 Power and false positives 

Association studies are based on the fundamental assumption that the genetic 

variants underlying a phenotypic trait will co-segregate with the trait of interest in a 
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given population. The statistical analyses are thus aimed at identifying the markers 

whose genotypes correlate best with the trait values across a population of individuals. 

Clearly, factors affecting the characteristics of either or both the phenotypic or genotypic 

data can severely affect the power and accuracy of detection. 

The type I error, defined as a, is the probability that the null hypothesis will be 

rejected, even though it is correct. The probability of not rejecting the null hypothesis 

when the alternative hypothesis is true is called the type II error, /]. Type I and II errors 

are typically called false positives and false negatives respectively. Statistical power of 

an experiment is the probability that the null hypothesis is rejected when it is incorrect, 

hence, is equal to 1— fi. Whilst power is influenced by genetic and phenotypic properties 

specific to a study, it also depends on the rate of type I errors that are accepted. In other 

words power will be influenced by the constraint placed on the false positive rate 

(Weller 2001). To make an estimate of the power of a study design the rate of type I and 

II errors at different significance thresholds need to be determined or estimated. Both 

type I and II error rates will be influenced by the model fitted in the hypothesis test and 

its interaction with characteristics of genetic architecture, such as heritability and allele 

frequencies of the causal variant, although, not necessarily in the same way (Van der 

Beek et al. 1995; Weller 2001). 

If genetic variance explained by a causal variant is small, models will have a lower 

power for their detection, due to increased rates of both false negatives and positives. 

Hassen et al. (2009) showed that heritability of the trait had a limited impact on SNP 

effect estimates, using a single-marker regression model and fitting SNPs as covariates 
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in a mixed model. This is consistent with statistical theory, which shows that, under 

normality, estimates of fixed effects are not biased by the use of an incorrect variance-

covariance matrix for residuals (Searle, 1987). Sorensen and Kennedy (1986) noted that 

when true variances were replaced by values estimated from data, estimates of genetic 

and environmental effects were unbiased. Heritability is expected to have a large impact 

on the SE of SNP effects (Hassen et al. 2009), with the SE of SNP effect estimates 

decreasing as heritability gets larger. As heritability has little influence on SNP effect 

estimates, but a substantial impact on the SE of the estimates, this can result in 

considerable impact on p-values of the test statistic. High values of heritability can lead 

to conservative evaluations of significance of SNP effects, whilst low levels of 

heritability may lead to a high proportion of false positives. 

The examples above have described properties of power using hypothesis tests 

incorporating single-marker regression models. When multilocus tests are used, 

discerning the effect of genetic conditions on power becomes more difficult, partly due 

to alternative uses of information contained between markers, and consequently the 

parameterization of the hypothesis test. It has been suggested that haplotype methods 

would be more powerful than single-marker tests due to their simultaneous use of 

information contained between markers and between markers and a causal variant (Akey 

et al. 2001). However, genetic conditions and parameterization of the models are 

expected to considerably influence the performance. For example, in situations where 

the causal locus is genotyped directly (or in very high LD with a local marker), single-

locus tests are expected to outperform the haplotype-based analyses (Zhang et al. 2002). 
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There are a number of studies that have compared power of haplotype-based tests to 

those of single-marker models, although these typically focus on comparisons using 

case-control phenotypes rather than continuous data (Akey et al. 2001; Morris and 

Kaplan 2002; Pe'er et al. 2006; Zaykin et al. 2002). Whilst these studies have 

demonstrated an advantage in the power of haplotype based tests under a range of 

population genetic parameters, they differ considerably in their methods used to infer 

haplotypes, hypothesis tests, and simulated data. Using regression based haplotype 

models, applied to case-control data, Zaykin et al. (2002) showed that the gain in power 

over single-marker models was greatest in regions of low LD and when the causal 

variant had low MAF. Whilst this supports the results shown in chapters four and five, it 

is difficult to know how the haplotype models would have performed using continuous 

data, given that there is a clearly demonstrated advantage to using haplotypes for case-

control phenotypes (Schaid 2004). Other studies have suggested there is an advantage in 

power for single-marker tests (Fan and Xiong 2002; Grapes et al. 2004; Nielsen et al. 

2004), although conclusions from these are also constrained by the use of specific 

simulated datasets, such as those exhibiting very high levels of LD between markers 

(Grapes et al. 2004). 

6.1.3 Aims 

The previous two chapters have demonstrated how genomic factors such as LD 

patterns and sQTL allele frequencies influence the performance of models that use 

information contained by marker in different ways. We have shown a clear advantage to 
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using models such as Hap_all_prob when mapping for causal variants that are expected 

to have low to intermediate allele frequencies, and that optimal length of a fixed 

multilocus window is dependent on genomic conditions. The use of a localised 50 

marker test region and a relatively high heritability meant that rates of type I errors were 

not investigated for these studies. Here our aim is to determine rates of false positives 

using the models described in detail in chapters four and five, using a variety of 

population genetic parameters, such as allele frequency of the causal variant, LD 

patterns and heritability of the sQTL. A total of 300 sQTL are chosen, assigned a range 

of heritabilities and mapped for in a genome-wide association analysis with a series of 

models representing the full spectrum of model parameterization and length of sliding 

windows. 

6.2 Materials and methods 

6.2.1 Dataset 

The dataset used here is described in detail in chapter four, and comprises of 

genotypes for 12046 SNP markers in 200 individuals in a single line of broiler chickens 

supplied by Aviagen Ltd. Chromosome and positional information were supplied for 

each marker. Markers were spread across the genome, although there is uneven spacing 

between markers. Individuals used in this study were from a commercial population 

under selection, comprising of a complex pedigree structure, with a few small half-sib 

groups. In these cases, care was taken to ensure that no more than three animals were 

selected from each sire group to avoid over representation of sire haplotypes. Markers 
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with missing values and those represented by less than three genotypes were removed 

from the dataset, leaving a total of 7910 markers. These remaining markers constituted 

the genome panel from which a single marker was chosen to represent a QTL (sQTL), 

which was then tested for in a genome-wide association analysis using a series of 

models. In total 300 sQTL were chosen, split into three groups of one hundred based on 

a range of IvIAF, assigned a range of heritabilities and included in a genome-wide 

analysis with each of the models. This allowed us to evaluate the rates of false positives 

under a range of simulated sQTL heritabilities. 

LD between markers in this genome panel was used to simulate the marker-QTL LD 

we would expect in a typical dataset, as markers were removed from the panel and used 

to represent sQTL. LD properties of the genome panel were measured using r2  (Hill and 

Robertson 1968). Whilst this dataset is the same as that used in chapters four and five, 

LD properties are expected to vary slightly as markers at the start and end of each 

chromosome were included along with those on the micro chromosomes. To determine 

the extent of LD within this population, r2  was calculated (following Hill and Robertson 

1968) for all possible syntenic and non-syntenic marker pairs. Measures of LD were also 

calculated for markers or windows that provided false positive associations. 

6.2.2 Formation of the test panel 

In total 300 5QTL were chosen split into three distinct IVIAF bins of 100 sQTL. The 

bins consisted of sQTL with MAF in the ranges of 0-0.05, 0.05-0.1, and 0.45-0.5, in 

other words the two lowest and the highest bins from analyses in chapters four and five. 
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This distribution of MAF was chosen to represent the extremes of the range, with greater 

number of low MAF based on the higher level of differentiation in model performance 

seen in chapters four and five. sQTL were chosen by randomly selecting markers from 

the index of markers within the given MAF range. Therefore, sQTL were distributed 

randomly across the genome panel. The entire genome panel consisted of 7910 SNP 

makers, with at any given time a single marker dropped from it to represent the sQTL. 

As before sQTL markers were not included in the genome panel, or used to infer 

haplotypes. 

6.2.3 Heritability of the sQTL 

For each sQTL a range of heritabilities were simulated by adding a value randomly 

drawn from a Gaussian distribution to the genotype of each individual. The variation of 

this distribution in relation to the variation of the sQTL genotypes represents the 

heritability of the "trait". All sQTL were biallelic, with an assumed additive effect a 

(therefore the difference between alternative homozygotes is 2a) and allele frequencies p 

and q (= 1 - p), the variance of the sQTL (a $QTL geno) is 2pqa2 . For a given sQTL the 

variation of the distribution from which values were randomly added to genotypes was 

determined under the following formula; = (- aS2QTL_ gefl O) - s2QTL_geno , where h 2  

is the heritability value chosen for the 5QTL, and OQTL geno is the variation of the sQTL 

aTL - geno / 
 07 

genotypes. Therefore heritability of the sQTL 'phenotype' is SQTL 	aQ  

where U 2 is the phenotypic variance given as geno + a,ise 

Its'.] 
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Five different heritabilities were simulated for each sQTL, 0.3, 0.2, 0.1, 0.025 and 0. 

Five different heritabilities were simulated for each sQTL, 0.3, 0.2, 0.1, 0.025 and 0. The 

final heritability of 0, assumes no genetic component to variation, therefore, only the 

randomly generated phenotype was included in the y vector. This provides a base-line to 

estimate the 'true' rate of false positives across the genome for each model. The upper 

bound heritability of 0.3 was chosen based on the permutation threshold results 

described in chapter four. A high heritability of the 'trait' can result in inflated 

permutation thresholds for sQTL with low MAF due to the skewed distribution of the 

'phenotype'. High heritability of the sQTL can result in inflated p-values for sQTL with 

low MAF, due to the skewed distribution of the phenotype. 

6.2.4 Models 

Models used in chapters four and five were chosen to investigate the performance of 

methods that represent the spectrum of parameterization from single to multiple 

markers, and then the optimal use of alternative sizes of marker windows. These models 

are implemented here to test their rate of false positive across a range of heritabilities. 

To recap; all models are regression based, with major differences in the composition of 

the X matrix, and the consequential parameterization of the model. Four main models 

were used, a single-marker regression, a main effect multi-marker regression and two 

haplotype based regression models. The main effects and haplotype models fit 

information from a number of adjacent markers implemented in a fixed size sliding 

window design. Window sizes of three, five and seven markers are tested here. Nine 



marker windows were not included in this analysis due to their poor performance across 

a range of genomic conditions (chapter five, figure 5.6), and to reduce the number of 

comparisons between models. The haplotype analyses require marker phase to be 

inferred prior to testing their effects in the hypothesis test. Phase was inferred under the 

two model assumptions (for details see chapter four) for the entire genome using the 

same sized sliding  windows as used by the multi-marker models. Initially all markers, 

including potential sQTL, were included. When the genome-wide association analyses 

were conducted, any haplotype windows that included the 5QTL marker were re-phased 

with the sQTL removed. This increased computation efficiency of the analysis as it did 

not require an entire genome haplotype panel for each sQTL, only the re-analysis of a 

small sub-set of windows per sQTL. Summary details for each model are given in table 

6.1. 

6.2.5 False positive rates 

Empirical genome-wide significance thresholds were determined for each combination 

of model, sQTL heritability, and MAF bin using a permutation analysis. A single sQTL 

in each MAF bin was randomly selected and included in a 10,000 cycle permutation 

analysis for each combination of model and heritability. The permutation analysis is 

described in detail in section 2.2.3. Due to computational demands, we were unable to 

run a permutation analysis for each combination of sQTL, model and heritability. 

Although sQTL were chosen from each MAF bin, differences in their allele frequencies 

are not expected to affect threshold values for the heritabilities used here. In chapter four 
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we established that for heritabilities of 0.3 and below, the threshold values from 

permutation analyses remained constant across the entire range of 5QTL MAF for all 

models. A number of sQTL were chosen to provide a consensus on the threshold value 

for a given model and heritability. In all cases the genome-wide empirical thresholds (p 

<0.05) were identical within 2 decimal places for all sets of models with heritabilities. 

Permutation analyses (see section 2.2.3) were used to provide accurate estimations of 

empirical genome-wide thresholds (p < 0.05) (Churchill and Doerge 1994) for each 

model and 5QTL heritability. These thresholds are expected to change slightly between 

models due differences in the correlation between individual tests. For example, the use 

of overlapping sliding windows in multilocus approaches means that individual tests are 

expected to have a higher degree of correlation than a single-marker analysis. Genome-

wide threshold values for each model and heritability are given in table 6.1. 

For each analysis, any marker or window located on a different chromosome to the 

sQTL with an association above the genome-wide threshold (p < 0.05) was deemed a 

false positive. sQTL simulated with a heritability of 0, have no genetic component or 

marker genotypes included, and therefore no positional information. In these analyses all 

markers and windows in the genome panel that showed association levels above the 

thresholds were identified as false positives. The rate of false positives for a given 

analysis is the sum of the number of such false positives divided by the total number of 

markers either not on the sQTL chromosome (for 5QTL with h2  > 0), or the total number 

of markers in the test panel (for sQTL with h2  = 0). The level of LD between false 

positive markers and the sQTL was estimated using the r2  statistic. 
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p < 0.05 Thresholds 

Markers 	Parameterization 	= 0.3 	h2  = 0.2 	h2  = 0.1 h2  = 0.025 h2  = 0 
Model 

Single 1 
One marker. Genotypes fitted as 4.82 4.81 4.79 4.75. 4.74 

linear covariates 

Main_order_3 3 
Three markers. Just main effects 4.78 4.77 4.76 4.73 4.71 

fitted 

Main order 5 5 
Five markers. Just main effects 4.74 4.71 4.70 4.68 4.67 

fitted 

Main order 7 7 
Seven markers. Just main effects 4.71 4.70 4.69 4.67 4.66 

fitted 

Hap_highest_prob_3 
Three markers. High probability 4.73 4.71 4.68 4.66 4.65 
haplotypes treated as observed 

Hap_highest_prob_5 
Five markers. High probability 4.71 4.70 4.68 4.65 4.63 
haplotypes treated as observed 

Hap _highest_prob_7 7 
Seven markers. High probability 4.70 4.69 4.67 4.65 4.62 
haplotypes treated as observed 

Hap_all_prob_3 
Three markers. Haplotypes 4.72 4.71 4.68 4.65 4.64 

modeled as probabilities 

Hap_all_prob_5 
Five markers. Haplotypes 4.70 4.69 4.67 4.63 4.62 
modeled as probabilities 

Hap_all_prob_7 
Seven markers. Haplotypes 4.68 4.66 4.63 4.59 4.57 

modeled as probabilities 

Table 6.1 

Summary of models and their parameterization along with the empirical genome-wide thresholds derived using a 10,000 cycle 

permutation analysis for each model and heritability of the sQTL. 



Naturally, no estimate of LD can be obtained for false positive markers in analyses 

were sQTL heritability is 0. 

6.3 Results 

6.3.1 Patterns of LD 

Estimates of LD, using r2 , were calculated for all syntenic pairs of markers. Figure 

6.1a illustrates the decline of LD with distance. Results shown here are for the whole 

genome, although the pattern of high LD at short distances with a steep decline as 

distance increases was common for all chromosomes. The extent of LD for non-syntenic 

marker pairs was also determined by calculating r2  values for all non-syntenic pairs in the 

dataset. The mean pairwise r2  value for non-syntenic pairs was 0.035 (SE = 0.00012), 

equal to the mean for syntenic pairs separated by greater than 20 Mb. Figure 6.1b 

summarizes the frequency distribution of r2  by distance for all syntenic pairs and non-

syntenic pairs. About 11 percent of marker pairs within 0.1 Mb had r2  values greater than 

0.8 and this dropped to 1 percent for marker pairs between 0.5 and 1 Mb apart. 91 percent 

of markers between 1-5 Mb had r2  values less than 0.2, with this raising to 97 percent for 

markers 5-10 Mb and nearly 100 percent for markers greater than 10 Mb apart. About 33 

percent of markers within 0.1 Mb had r2  values greater than 0.4, this dropped to about 15 

percent for markers 0.25 - 0.5 Mb and about 2 percent for pairs between 1 - 5 Mb. The 

distribution of r2  at distances greater than 10 Mb was similar to that of non-syntenic 

marker pairs with 99.96 percent of values less than 0.2. The distribution of maximum r2  

of a SNP with all other SNPs (De Roos et al. 2008) suggests that SNPs found to be 

associated with a trait in association studies are very likely to be near relevant QTL. 
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Figure 6.1 

a) Decline of LD measured by r2  against distance in Mb. Points shown are 

mean pairwise LD for syntenic marker pairs in the whole genorne against 

mean distance. b) Frequency distribution of LD (r) for syntenic and non-

syntenic marker pairs for each line. LD proportions are shown for syntenic 

markers dived based on marker distance bins. c) The frequencies of 

maximum LD of syntenic SNPs based on r 2 . Bins were created on the basis 

of distance to the SNP for which the maximum LD was registered. 
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This distribution is shown graphically in figure 6.1 c, and separated into bins on the basis 

of the distance between the SNP and its maximum r2  SNP. About 40 percent of SNPs had 

a maximum r2  greater than 0.6 and 93 percent of SNPs had a maximum r2  greater than 

0.2. For all maximum r2  value bins greater than 0.2, the shortest-distance bin (< 0.25 Mb) 

was the most frequent, and the vast majority of maximum distances were less than 1 Mb. 

For SNPs with a maximum r2  greater than 0.6, only 3 percent were greater than 1 Mb 

apart. 

6.3.2 Rate of false positives 

The rate of false positives, shown as the chance that a single test will be a false 

positive, are given for each combination of model, heritability and 5QTL MAF bin in 

figure 6.2. The rate of false positives seen for sQTL within the high MAF bin is 

consistently lower than the rate observed for sQTL in the lowest bin, for all models and 

heritability combinations. The average false positive rate from the highest MAF bin is 80 

percent of the rate for the lowest bin. No trend, between models or heritability, appears to 

exist in the value of this difference. 

For a given model, heritability of the 5QTL plays an important role in the rate of false 

positives. For all models the highest rates of false positives are observed when the sQTL 

has a h = 0.3. As heritability falls, so does the rate of false positives, reflecting the 

decrease in power of the models to detect associations from markers with spurious levels 

of LD with the sQTL. When the sQTL has a h = 0.3 there is a considerable 
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Figure 6.2 

The rate of false positive tests, shown as a mean proportion of all non-syntenic 

tests. Markers or marker-windows located on a different chromosome to the 

sQTL that show a significant (p < 0.05) associations are termed false positives. 

The proportions of false positives are shown for each model, averaged across 

sQTL in each of the MAF bins, and heritability. Results from are shown for 

sQTL with a) h2  = 0. 3, b) h2  = 0. 2, c) h2  = 0. 1, d) h2  = 0.025, e) h = 0. Note: 

Differences in the scale of the y-axes. 



difference in the rate of false positives between models. There is an increase in false 

positive rate for multilocus methods as markers are added to the windows. The majority 

of this difference between models is a product of using a sliding window approach for 

multilocus methods. False positive windows often occur next to one another in a string of 

false positive windows, indicating that a single marker showing a high level of association 

with the sQTL is causing several adjacent windows to produce significant associations. 

Table 6.2 shows the proportion of false positive tests that include markers found in at least 

one additional false positive window. For the high heritability 5QTL analysis, a very large 

proportion of tests occur in a string of windows that contain at least one marker in 

common. The random nature of non-syntenic LD means that there is a low probability 

that a marker will be in strong LD with the sQTL, and that this marker is unlikely to be 

surrounded by other high LD markers. Thus, whilst in a single-marker analysis this 

marker will only lead to one false positive association, in a multi-marker analysis, this 

marker is included in a number of adjacent over-lapping windows, and produces several 

false positive associations. The number of windows it is included in is a same as the 

length of the window, resulting in an increase in apparent false positive rate as window 

length increases. As the heritability of the sQTL drops this artifact disappears due to the 

lack of power. For lower heritabilities a single marker in high LD with the sQTL is able to 

produce a significant association, but this significance disappears when additional 

markers are included and the parameterization of the model reduces the level of 

association. When the heritability sQTL is high, multilocus models still show a significant 

association despite the burden of their higher parameterization. Under these situations the 

majority of the variance explained by the model is from the main effects of 
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Model 0.3 0.2 

Heritability 

0.1 0.025 0 

Main-order-3 0.92 0.73 0.21 0 0 

Main-order-5 0.93 0.74 0.24 0 0 

Main_order_7 0.98 0.74 0.21 0.01 0 

Hap_highest_prob_3 0.93 0.71 0.14 0 0 

Hap_highestprob_5 0.94 0.69 0.13 0 0 

Hap_highestprob_7 0.89 0.72 0.13 0 0 

Hap_allprob_3 0.91 0.68 0.18 0.01 0 

Hap_allprob_5 0.92 0.69 0.14 0 0 

Hap_allprob_7 0.89 0.74 0.11 0 0 

Table 6.2 

The proportion of false positive tests that have a marker within the window 

that occurs in at least one other false positive window. The proportion is that 

of all false positive tests for a given model and heritability. 
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the marker in high LD with the sQTL, and little if any is added from other parameters in 

the model. As heritability of the sQTL falls, so does the level of significance, to the point 

where the window no longer produces a significant association. 

The trend in different rates of false positives between models is reversed when the 

sQTL have low or zero heritability. In these situations the single-marker model has the 

highest rates of false positives, with the rate decreasing as parameterization of the models 

increases. The rate of false positives for the zero heritability sQTL can be viewed as the 

true baseline rate of false positives, as significant associations are wholly due to random 

associations rather than spurious non-syntenic LD. Given the sample size in this study, 

power to detect a significant association when the sQTL has an h 2 = 0.025 will be very 

low, unless the causal variant is in very high LD with a marker. Therefore, the similar 

pattern of false positive rates for sQTL with h2  of 0.025 to that of analyses with no 

genetic component is also expected to be caused by random associations rather than 

markers showing strong non-syntenic LD with the sQTL. 

The difference in the rate of false positives between the two haplotype models, across 

heritabilities, for windows of comparable length is shown in table 6.3. When the sQTL 

has heritability between 0.3 - 0.1 the rate of false positive between the two haplotype 

models is approximately equal. However, when the heritability is very low, or when there 

is no genetic component to the variance, on average the Hap_allprob model has half the 

rate of false positives of Hap_highestprob models of comparable length windows. The 

difference between the two models is greatest for seven-marker windows. 

In an attempt to account for the overlapping false positive windows seen for 

multilocus models, significant associations occurring in adjacent windows were only 
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Heritability 

Window 	
0.3 0.2 	0.1 	0.025 0 

length 

3 	0.93 1.08 	0.96 	1.84 1.62 

5 	0.98 0.96 	1.18 	1.78 1.81 

7 	0.91 0.99 	1.12 	2.42 2.74 

Mean 	0.94 1.01 	1.09 	2.01 2.06 

Table 6.3 

The proportional difference in the rates of false positives between the 

Hap _highestprob and Hap_allprob models, across the range of 

heritabilities and window lengths. Values shown are the ratio of the false 

positive rate for Hap_highestprob compared to Hap_allprob. 
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counted once, along with all significant independent windows. The rate of false 

positives, adjusted for overlaps, is shown in figure 6.3 for sQTL with heritabilities of 

0.3, 0.2, and 0.1. Adjusted rates are not shown for sQTL with heritabilities of 0.025 and 

0, as the proportions of overlapping windows are extremely low, or non existent (table 

6.2). Whilst this could be considered a conservative estimate, as it assumes each set of 

overlapping false positive windows is caused by a single marker, it provides an 

indication of underlying rates of false positives amongst models when sQTL h2  is high. 

With this adjustment, false positive rates do not show the dramatic increases with 

window length for multilocus models, although, there are slight differences when the 

sQTL has h2  = 0.3. The adjusted rate for sQTL with h2  = 0.1 is similar to the unadjusted 

rate, likely due to the low occurrence of overlapping false positive windows at this 

heritability (table 6.2). 

6.3.3 Level of LD between false positive markers and the sQTL 

Pairwise LD between the sQTL and each false positive marker was calculated. This 

included all markers within a window. For each combination of model and heritability 

the proportion of false positives with different ranges of marker-sQTL LD is shown in 

figure 6.4. For a false positive window, the maximum pairwise LD between a marker 

within the window and the sQTL is given. With all models, the distribution of LD 

between false positive markers and sQTL with h2  = 0.025 closely resembles the 

distribution of background non-syntenic LD (figures 6.2d-e). As heritability of the sQTL 

increases the proportions of false positives with higher levels of LD between the markers 
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and sQTL dramatically increases, such that when models are tested against sQTL with 

= 0.3 between 10.1 - 28.2 percent of markers had LD values greater than 0.5. When 

the 5QTL has h2  = 0.2 the range of the proportion of LD greater than 0.5 is 6.4 - 15.1 

percent, for h2  = 0.1 it is between 2.2 - 7.7 percent and finally when h2  = 0.025 it is 

between 0.0 - 4.4 percent. The difference in the proportion of false positive LD with 

values greater than 0.5 between h2  = 0.3 and h2  = 0.025 is smallest for the single-marker 

test. For multiple-marker methods, there is a trend that larger windows have a higher 

proportion of markers in high LD with the sQTL. This trend disappears as the 

heritability of the sQTL reduces. This also likely reflects that the causation of the 

increase in false positive rates as window length increases for high heritability sQTL is 

due to the inclusion of a single marker in high LD with the sQTL in a number of 

adjacent windows. 

The proportion of false positive tests with a maximum LD between the markers and 

the sQTL between 0 - 0.05 increases considerably as the heritability of the sQTL 

decreases. For a single-marker analysis with sQTL of h2  = 0.3 the proportion of false 

positive to sQTL LD between 0 - 0.05 is 31.6 percent. When the sQTL has h2  = 0.025 

this proportion is 72.1 percent, a difference of 40.5 percent. For the other models this 

difference ranges from 66.2 to 78.1 percent. For all multiple-marker models this 

difference in proportions between high and low h2  increases as window length increases. 



6.4 Discussion 

Quantitative geneticists have struggled to identify genetic markers that explain large 

proportions of estimated genetic variance (Bodmer and Bonilla 2008; Frazer et al. 2009; 

Maher 2008; Visscher 2008), despite the availability of high density genome panels. An 

explanation in part, may be the difficulty in identifying the optimal model to use in 

mapping studies, especially given the variation in performance of a model across the 

genomic landscape of the genome (chapters four and five). Clearly, it is important to 

choose powerful and appropriate statistical methods that are designed to relate genotype 

or haplotype information to the phenotypes of interest. The identification of the 

importance of genetic architecture on performance of a variety of regression-based 

models (chapters four and five) leads to the question of false positive rates of the models 

in genome-wide studies. Difference in the use of LD information contained between 

markers, and between non-syntenic markers and QTL, by the models, is expected to 

result in differences in their rates of false positives. 

Here we have shown that rates of false positives among models are strongly affected 

by the proportion of genetic variance explained by the sQTL. When the heritability of 

the 5QTL is high, rates of false positives amongst the multilocus models are 

considerably inflated, through the inclusion of a spurious high LD marker in multiple 

overlapping test windows (figure 6.2). However, removal of overlapping significant 

windows produces a more even pattern of false positive rates amongst models, when 

heritability of the 5QTL is high (figure 6.3). As heritability falls the true pattern of false 

positive rates are revealed as even high LD non-syntenic markers do not have the power 
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to provide a significant association with the 5QTL. When heritability of the sQTL is 

0.025 the lowest false positive rates are observed for the Hap_all_prob method, with the 

rate declining as the window length increases. Across the range of heritabilities, and for 

all models, there is a lower rate of false positives when the sQTL has a high MAF. Rates 

of false positives for the two haplotype models are approximately equal when the 

heritability of the sQTL is high, although as this falls the Hap_highest_prob method 

shows an average rate of twice that of the Hap_all_prob model. 

6.4.1 Effect of sQTL heritability and window length 

False positives, as defined here, are significant associations between non-syntenic 

markers or marker windows and the sQTL. In this situation false positives can be caused 

by two main factors. The first is caused by a true random association between sQTL 

phenotypes and information contained by the marker or set of markers. Statistical 

models differ in their susceptibility to such associations, and their robustness in 

providing statistical support when a true association exists. The second is caused by high 

levels of non-syntenic LD. Whilst these are true associations in the sense that there is a 

statistical link (LD) between the markers and sQTL genotypes, the cause of this LD is 

expected to be random genetic drift. 

In many livestock species the extent of LD can be considerable, due to recent small 

effective population sizes (Hayes et al. 2003). For syntenic markers, the typical pattern 

of LD observed is high levels that decline with distance. However, the relationship 

between marker distance and LD can be highly variable, and high levels of LD can 
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occur between markers separated by large distances. For non-syntenic markers, LD is 

expected to resemble background levels caused by random drift alone. However, 

spurious, high levels of LD can occur, although these are usually isolated and random 

incidences that are not observed in clusters or high LD regions. In some situations 

selection can cause LD between unlinked loci that contribute to phenotypes undergoing 

selection (Ardlie et al. 2002), although this is not expected to figure in our analyses due 

to the use of randomly selected markers to represent the sQTL, and repetition of the 

number of sQTL included in each class of results. The mean background non-syntenic 

LD in this dataset is low, although some higher pairwise measures of LD exist. 

When the sQTL has a high heritability, false positives are predominantly caused by 

spurious high levels of non-syntenic LD (figure 6.4). Under these conditions false 

positives are essentially a reflection of the ability of a model to provided statistical 

support for an association, as there is an observed genetic correlation between the 

markers and sQTL loci. For single markers, the effect of LD on the level of association 

is well known, although this becomes more difficult to characterize for multilocus 

models, especially haplotypes, where LD structure between additional markers and 

model parameterization are more complex (Zondervan and Cardon 2004). The majority 

of the proportional increase in false positive rates with marker window size is caused by 

single high non-syntenic LD marker in multiple windows. When the genetic variance 

explained by the sQTL is low, a single marker in high LD with the sQTL is able to 

produce a significant association, but this significance disappears when additional 

markers are included and the parameterization of the model reduces the level of 

association. When the heritability sQTL is high multilocus models still show a 
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significant association despite the burden of their higher parameterization. Under these 

situations the majority of the variance explained by the model is from the main effects of 

the marker in high LD with the sQTL, and little if any is added from other parameters in 

the model. The fact that this increase in rate is not directly proportional to the difference 

in window sizes likely reflects more conservative critical values of the test regions with 

the inclusion of additional parameters. The false positive rate for all models changes 

dramatically as the heritability of the sQTL falls. When the sQTL has heritabilities of 

0.2 and 0.1 the proportional increase in false positive rate with window length reduces 

further. Here, high levels of non-syntenic LD still exist, although the power of 

multilocus models to detect these associations is further compromised by reduced 

amounts of genetic variance at the sQTL. When testing for true associations, multilocus 

models benefit from high order LD between haplotype structures located in regions 

physically' linked to causal variants. However, this structure of LD does not exist for 

non-syntenic markers, where spurious associations are typically affected by random 

genetic drift (McKay et al. 2007). 

Results are discussed in terms of proportional genetic variance explained by the 

5QTL, although they can also be considered as a function of power, influenced by the 

sample size of the dataset. Regardless of the heritability of the causal variant, an increase 

in sample size will lead to improvements in power. In the context of this study, a larger 

sample size would lead to a greater number of associations detected between spurious 

non-syntenic markers in high LD with the causal variant. Sample size influences ability 

of markers to detect associations in two, interconnected, ways. For a QTL with a given 

heritability, an increase in sample size means that a lower range of LD between markers 
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and the QTL will yield significant associations. Connected to this, is the improvement in 

the ability of markers to detect associations with QTL that explain smaller proportions of 

genetic variance. As the proportion of genetic variance explained by a marker is a 

product of the genetic variance explained by the causal variant and the extent of LD with 

the marker, increasing sample size could lead to greater numbers of false positives 

amongst non-syntenic markers for all 5QTL heritabilities. It could also lead to the 

pattern of false positive markers being picked up in multiple adjacent windows  being 

observed for sQTL with lower heritabilities. Nevertheless, greater sample size would 

also improve power to detect true associations, amongst markers close to QTL. 

The occurrence of false positives for sQTL where h2  = 0 represent the rate caused by 

random associations between traits values and markers, as no genetic competent, and 

thus LD, exists for these associations. In a sense, these reflect the robustness of the 

models in avoiding significant associations in the absence of any genetic component of 

trait variation. The rate of false positives for all models is low, with levels translating 

into approximately 0.2 false positive associations per genome scan for single-marker 

tests, and 0.04 for Hap_allprob_7, given the number of markers used here. It is difficult 

to identify the causes of differences between models in their ability to avoid significant 

associations with randomly generated traits. A possible cause may be differences in the 

likelihood of marker alleles mimicking the trait distribution by chance. The residual 

variance used in this analysis was drawn from a Gaussian distribution, with the ability of 

random associations to occur if the genotypes or haplotypes of individuals correlate with 

the trait values. This situation is more likely to occur when genotype information is used 

from a marker with low MAF. The random occurrence of value from the tails of the 
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distribution with the rare genotype class for an individual could lead to a significant 

association, partly caused by the inability of the model to accurately estimate the effect 

of the marker. The more complex pattern of genotype and haplotype structures for the 

higher parameterized models may make this less likely to occur, especially when we 

also penalize with a large number of DF. 

6.4.2 Comparison of haplotype models 

The difference in the rate of false positives observed for the two haplotype models 

may be due to the use of information from ambiguous haplotypes. As has been discussed 

in previous chapters, the assumption made for Hap_highestprob models, that 

haplotypes are known without error, can lead to increases in errors for accurately 

estimating haplotype effects (Morris et al. 2004). Here we have shown that the rate of 

false positives for the two haplotype models is approximately constant when heritability 

is high, although the rates are considerably different when the sQTL has very little or no 

genetic variance. When the sQTL h2  = 0 no haplotypes are expected to have any effect 

of the trait. Thus, it is difficult to understand how any errors potentially introduced by 

not accounting for haplotype uncertainly could lead to an increased rate of false 

positives. It has been shown that a loss of power can occur due to haplotype phase 

uncertainty, although this is due to a decrease in the ability of models to accurately 

identify true associations, hence and increase type II rather than type I errors (Schaid 

2005; Zaykin et al. 2002). 
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6.4.3 Implications for mapping studies 

For analyses shown here and in the previous two chapters, an upper bound of sQTL 

heritability of 0.3 was used to provide a sensible level of power for the models, given 

that sample sizes of only 200 individuals were available, in a typical mapping study for 

complex traits, genetic heterogeneity is expected to be extensive, with the genetic effects 

shared across multiple, possibly independent, loci. In this situation we expect the genetic 

variance explained by a single causal variant to be low. Thus, comparison of false 

positive rates amongst models, in relation to the implications for mapping studies, 

should be made from results of sQTL h2  = 0.025. Whilst this still represents a high level 

of genetic variance explained by a single causal variant, it is a more realistic value than 

other heritabilities used here, especially when we consider the sample size. There has 

been some suggestion that variation in the levels of non-syntenic LD is due to a partial 

dependence on marker information content (Farnir et al. 2000). Although the extent of 

the effect is unknown, increasing sample size is expected to decrease the dependence of 

non-syntenic LD measures on marker heterozygosity (Farnir et al. 2000; Khatkar et al. 

2008; McRae et al. 2002). A complication, however, is that these studies used D' as a 

measure of LD, which is known to be upwardly biased for small sample sizes (Lewontin 

1988). 

False positives caused by significant gametic associations were also shown to be 

very common between non-syntenic loci. With this sample size this is not a problem 

when the genetic variance of the causal variant is low, however, this may become a 

problem if larger sample sizes are used. In such situations, the common occurrence of 
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high levels of non-syntenic LD raises serious concerns about the generation of false 

positive results, especially for the multilocus models. Despite the computational 

demands it would be recommended to evaluate the level of such LD patterns prior to 

mapping. Alternatively, mapping methods that combine both linkage and LD 

information could be applied, although this may reduce the chances of finding  true 

positives associations (George et al. 2000; Lee and Van der Werf 2002; Marchini et al. 

2004 Zhao et al. 2007). 

6.5 Conclusion 

The observed differences in model performance, under a range of genomic 

conditions, as shown in chapters four and five, raised the question of differences in the 

rate of false positives between the models. Differences were expected given the 

alternative use of information contained between the markers and sQTL. An evaluation 

of these rates across a range of sQTL heritabilities was deemed necessary to fully 

evaluate the likely performance of models in identifying causal variants in traditional 

mapping studies. The higher levels of false positives seen here when mapping for sQTL 

with h2  = 0.3 reflect differences in the ability of models to provide statistical 

associations, given the majority of these are due to spurious high levels of non-syntenic 

LD. On the other hand, false positives produced by models when mapping for 5QTL that 

have no genetic component to their variation (h2  = 0) represent the true nature of false 

positives caused by random associations between the trait and marker information. 
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We have seen here that the proportion of genetic variance explained by the sQTL 

strongly influences  the rates of false positives amongst the models, with the high 

parameterized and longer window length models showing higher rates than the single-

marker model. However, as this increase is caused by high levels of non-syntenic LD, 

these rates provide further support for the ability of these models to identify significant 

associations when there is a genetic link between markers and the causal variant. When 

heritability of the sQTL is 0 the lowest false positive rates are observed for the 

Hap_allprob method, with the rate declining as the window length increases. Whilst 

little can be done about high levels of non-syntenic LD, the results shown here provide 

comfort that models such as Hap_allprob, are able to correctly identify markers 

genetically linked to QTL, and minimize the levels of significant results caused by 

random associations between trait phenotypes and haplotypes. In typical mapping 

studies, genetic variance of an individual causal variant is expected to be low. Here we 

have shown that under such conditions, a haplotype model such as Hap_allprob has a 

lower rate of false positives than other models tested here, with this rate decreasing as 

window size increases. Whilst other factors, such as the ability to identify true QTL, 

need to be taken into account, the results shown here validate the use of haplotype 

methods over single-marker and main effect models. 
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CHAPTER SEVEN 

MAPPING FOR CAUSAL VARIANTS ASSOCIATED WITH ASCITES SUSCEPTIBILITY IN 

BROILER CHICKENS 

HAPLOTYPE ANALYSIS 

7.1 Introduction 

The last few years have seen extensive efforts to identify genetic variation and 

explain its effect on phenotypic differences in populations. GWAS studies are the most 

widely used approach to locate causal genetic variants, with some major successes in 

livestock species (for review see: Abasht et al. 2006; Ron and Weller 2007) and humans 

(for review see: Altshuler et al. 2008). Often numerous QTL, spread across the genome, 

have been identified for complex traits, suggesting that their genetic control is 

influenced by a number of loci. However, these studies have struggled to replicate 

results in different populations, and to explain large proportions of the genetic variation 

from the identified markers. A well known example of this is height in humans 

(Visscher 2008). Three large scale studies mapping QTL for height identified a total of 

54 loci using whole-genome approaches. Yet, the proportion of variance explained by 

the QTL represents a small fraction of estimated genetic variance of height. Whilst there 

are many possible components of missing genetic variance, a major one is thought to be 

large numbers of rare loci that have a small effect on the trait (Bodmer and Bonilla 

2008). Naturally, identifying such genetic variants is difficult due to their effect sizes, 

and frequency in standard study populations. 
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Many of the factors affecting the inability of a given study to identify rare variants 

are beyond the control of researchers, such as allele frequencies and the genetic effect of 

the causal variant. Increasing sample size is typically cited as the easiest way of 

improving our ability to explain higher proportions of genetic variation for a given trait. 

With the decreasing costs of genotyping this is a reality for many studies, especially in 

humans. However, often this is impractical, or unfeasible, in livestock mapping studies 

where we are constrained by the practicalities of the breeding industries. To maximize 

the use of the information available alternative approaches should be considered when 

the trait under study is expected to exhibit complex patterns of genetic control. 

Results shown in chapters four and five have highlighted the importance of 

considering how variation in the genetic architecture of causal variants and markers will 

influence the performance of a model. We demonstrated that, on average, there is a 

distinct advantage to using haplotype models, such as Hap_allprob over single-marker 

tests. Window length is an important criterion to consider, however, with the optimal 

number of markers depending on, amongst other things, the expected MAF of the QTL 

(chapters four and five). Localized levels of haplotype diversity can be estimated from 

observed pairwise LD measures and have a strong influence on model performance. 

However, it is important to note that no one model will have optimal performance across 

the entire genome. 

Ascites syndrome in broiler chickens is characterized by the accumulation of ascitic 

fluid in the peritoneum, normally caused by metabolic demands of the growing birds 

(Wideman 2000). Pulmonary hypertension accounts for the majority of ascites cases in 

broilers, yet hypertension can originate from numerous causes and affects multi-organ 
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systems (Julian 2000). Our previous mapping study, using a single-marker model, 

identified a number of QTL markers in individual lines, but these did not replicate 

between lines. This is possibly due to the divergent nature of the lines, having been 

separated for numerous generations with different breeding objectives. The complex 

phenotypic nature of ascites, along with the identification of numerous loci spread across 

the genome by our previous study and others (Navarro 2003; et al. 2005; et al. 2006; 

Rabie et al. 2004; 2005;  chapter two), suggests that genetic control may differ between 

different populations. Genetic loci affecting ascites may remain segregating within these 

populations, but differences in their effects and frequencies caused by genetic 

parameters such as drift, selection, and founder effects could lead to difficulties in 

identifying QTL common between populations. 

7.1.1 Combined line analysis 

In chapter two, lines were combined based on their relatedness to one another, in 

joint line analyses. This increases sample size and thus power of the tests, although if 

differences exist in the genetic architecture of causal loci then it can lead to a loss of 

power as effects from one line can become undetectable with the inclusion of individuals 

from other lines. For single-marker models, data from related lines are combined into a 

single dataset and a line effect term is added to the mixed model. Using a similar 

approach for joint line analyses using haplotype models is made difficult when we 

consider that haplotype frequencies and probabilities need to be estimated, using 

statistical algorithms, before the association analysis. Combining line genotype 
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information prior to estimating haplotypes can lead to increased errors in accurately 

estimating haplotype frequencies and probabilities, due to differences in allele 

frequencies, deviations from HWE, and LD patterns of local markers between lines 

(Fallin and Schork 2000; Tishkoff et al. 2000). Alternatively lines could be haplotyped 

individually, and then the information combined in the design matrix. Under this 

scenario differences in haplotype frequencies and frequency distribution between lines 

could result in inflated test statistics due to accumulated divergent genetic properties 

between a set of markers (Liu et al. 2004; Sawyer et al. 2004). Difference in haplotype 

properties between lines could be accounted for in a linear model by including a line by 

haplotype interaction effect; although this has the potential to under power the test 

through the additional inclusion of a large number of DIP. Nevertheless, inclusion of the 

interaction term would circumvent any problems regarding differences in the direction 

of haplotype effects between lines. 

An alternative to parametric approaches outlined above is to perform a meta-analysis 

on results from individual lines. Fisher's combined p method (Fisher 1925; 1948) is a 

commonly used approach for combining the results from independent statistical tests 

that have the same overall null hypothesis. Here, the alternative hypothesis being tested 

is that a QTL exists in a particular region, but the nature of the association with 

particular haplotypes differs between populations. The method combines p-values from 

different studies, in this case the individual lines, into a single test statistic that has a chi-

squared distribution with 2k DF, where k is the number of tests combined. 
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7.1.2 Aims 

Here, we re-analyse data from the six broiler lines, using haplotype methods 

developed and described in chapters' four to six. Ours aims are to attempt to replicate 

the results seen using a single-marker model, and identify any additional QTL using an 

alternative method, shown to perform better under a range of genomic conditions. Based 

on results shown in chapters four to six, the haplotype model described as Hap_allprob 

was used, with three-marker windows. Whilst this model will not be optimal across the 

entire genome, it has been shown to have performed best, relative to other models tested, 

across a range of genomic conditions. Compared to models such as single-marker 

analysis, it has a considerable advantage when the MAF of the causal variant is low. 

7.2 Materials and methods 

7.2.1 Source of data 

Data analysed here consists of genotype, phenotype, and pedigree information from 

six commercial broiler sire lines, described in detail in chapter two and appendix two. 

The number of sires in each line ranges from 163-189, and for each of these individuals 

a phenotypic record is supplied determined from progeny adjusted mean values. The 

indicator trait Sa02 is measured in progeny of each sire, and these are used to calculate a 

progeny adjusted mean values for each sire. The formula used to calculate the progeny 

adjusted means is given in section 2.2.1, with details in appendix one. 

222 



In all lines the phenotypes were normally distributed. Sires with phenotypic records 

outside three standard deviations were removed from analyses; this amounted to the 

removal of one sire from line 14 and one from 28. Pedigree information included 

relationships between sires spanning four generations. For each sire genotype 

information was supplied for 12,000 SNP markers from a genome-wide panel. Details 

of the formation of the SNP panel are given in chapter 2 (section 2.2.1). Likewise, 

information on ranges of progeny numbers for sires in each line is given in table 2.1. 

7.2.2 Haplotype analysis 

Lines were initially analysed individually, followed by a meta-analysis of multiple 

lines. A parametric joint line model was investigated that fitted a line by haplotype 

interaction in the model. This interaction should account for differences in haplotype 

effects between lines. Markers not segregating within a given line were removed. The 

number of markers remaining for each line is given in table 2.2. In all analyses markers 

with minor allele frequencies below 0.01 were removed to avoid false positives caused 

by spurious associations between rare genotypes and outlying trait values. Details of 

heritabilities of sire Sa02 and markers remaining  for specific lines are provided in table 

2.2. 

Each line was analysed using a haplotype model described as Hap_allprob in 

previous chapters, using a three-marker sliding window. The haplotype analysis is a two 

stage procedure. First, haplotypes were inferred in three-marker sliding windows for 

each line individually. Lines were haplotyped individually rather than pooled to avoid 
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errors in the estimated haplotype frequencies due to differences in the allele frequencies 

and deviations from Hardy-Weinberg of markers in different lines (Liu et al. 2004; 

Sawyer et al. 2004). Second, inferred haplotypes were fitted in a regression-based model 

to test for their association with Sa02. 

7.2.2.1 Inferring haplotypes 

Pedigree information supplied here consists of animal records rather than genotype 

information. Therefore, the population based, EM algorithm was used to infer 

probabilities of haplotype pairs for each individual (Excoffier and Slatkin 1995; Long et 

al. 1995). The EM algorithm estimates population haplotype probabilities based on 

maximum-likelihood given observed genotype frequencies. The algorithm is described 

in detail in chapter four, section 4.2.5.1. When phase of the marker genotypes are 

uncertain for an individual, all haplotype pairs, consistent with the observed data are 

provided, along with their posterior probability. For the genome panel of each line, 

three-marker overlapping windows were haplotyped, and the probabilities of each pair 

of haplotypes for each individual were stored. These probabilities are used to form the X 

matrix for the model, such that probabilities of haplotypes are used as predictor 

variables. During the EM iteration stages, pairs of haplotypes with probabilities less than 

1 e 9  were removed from the analysis and the frequencies of the remaining haplotypes 

recalculated. This avoids the problem of large numbers of very low probability 

haplotypes occupying the X matrix and reducing power of the test. The number of 
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haplotypes observed in each window was recorded for each line, and represents diversity 

of haplotypes. 

7.2.2.2 Model fitting 

The analysis was conducted using a sliding-window approach, using haplotype 

information derived in the same manner. For a given window, a matrix of probabilities 

for haplotypes observed in haplotype pairs of each individual is formed. This matrix 

constitutes the design matrix of predictor variables, with haplotypes fitted as linear 

covariates in a mixed model analysis. Sires used in this study were from a commercial 

breeding population under selection. Evaluation of the pedigree structure showed that 

sires belonged to a complex pedigree, with a number of small half-sib families. Thus, an 

average relationship matrix, derived from pedigree information, was included in the 

model and used in fitting a polygenetic variance component. The following model was 

used to evaluate the association of haplotypes within a window with 5a02; 

Y=1,,u±Xg+Zu+e 

Where V is the n x 1 vector of Sa02 adjusted progeny means for n sires and u is the 

intercept. X represents the matrix of haplotype probabilities and g is a vector of 

haplotype effects of length N, where N is the number of haplotypes observed in the 

window. Z is an n x n average relationship matrix of the sires, u a 1 x n vector of 

random sire polygenetic effects, and e is the 1 x n vector of random residuals. The 

following expectations and variance were assumed; 
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Where a is the sire variance, o is the residual variance, and D is an n x n diagonal 

matrix of progeny numbers for each sire. Thus, the variance of the residuals is adjusted 

to account for differences in the numbers of progeny that comprise the adjusted trait 

values for each sire. Expressed as a function of heritability, the residual variance is given 

as, a; = (1_h2 /4)07 2
, hence, o-  Ia = k4_h 2 )1h 2 1, where o is the phenotypic 

variance and h2  is the heritability of Sa02 for a given line. Association is tested in a 

global analysis against the null hypothesis of H0 = A1162 .. J31 ' where /3, is the effect of 

haplotype i, using an F-test with the corresponding p-values drawn from tabulated 

asymptotic F-distributions with N DF (Weir and Cockerham 1977; Zaykin et al. 2002). 

For each individual line, a genome-wide significance threshold of p < 0.05 was 

determined using a permutation analysis with 1,000 cycles (Churchill and Doerge 1994). 

Details of the permutation analysis are given in section 2.2.3. 

7.2.3 Joint line analysis 

7.2.3.1 Meta-analysis 

For joint line analyses, p-values for haplotype windows are require from all lines. 

Thus only markers segregating in all lines can be used to infer haplotype windows and 

test for association. Therefore, for joint line analyses, genotype panels were adjusted to 

remove markers fixed in any one line, prior to being analysed using the haplotype model 
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described above. Results from individual line analyses were combined using Fisher's 

combined p method for joint line meta-analysis (Fisher 1925). The p-values for a given 

window are combined using the following formula; Pconb = — 2 log(p), where p i  is 

the p-value for haplotype association in a given window for line i. Under H0, Pcomb 

thus, the test statistic that has a chi-squared distribution with 2k DF, where k is the 

number of tests combined. For each joint analysis the p-value associated with Pcomb  is 

calculated for each haplotype window. 

As in chapter two, data from line pairs 12 - 28, and 14 - 29 were combined based on 

the relationships estimated between lines (Andreescu et al. 2007; table 2.2). In addition, 

a whole dataset meta-analysis was conducted using combined results from all six lines. 

A total of 8834 markers remain segregating commonly in line 12 - 28, whilst 9707 

remain for 14 - 29, and 6258 for all lines. 

7.3.2.2 Parametric analysis 

Haplotype information determined for each line individually was combined in the 

design matrix rather than estimating haplotypes for the whole set of lines together. Line 

by haplotype interaction terms were then included in the linear model. 

The following model was used; 

Y=1ji+Xg+LHv+Zu+e 

where LH is an indicator matrix for line by haplotype interactions and v is a vector 

of haplotype by line effects. The number of interactions, hence DF fitted, is equal to six 
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times the number of haplotypes fitted in the X matrix. For the joint line  analysis Z is a 

block diagonal matrix composed of sub matrices of nk x flk  average relationship matrix of 

the sires within line k. Sub matrices are inverted independently. The same model 

expectations and variance as described in section 7.2.2.2 were assumed. 

7.3 Results 

Patterns of LD and distributions of marker allele frequencies are given in detail in 

chapter two for the six lines analysed here. Results are given below on the distributions 

of haplotype diversity across the genomes for the six lines, along with summary of 

results from the genome-wide analyses. Results are also shown for the parametric and 

meta joint line analyses. 

7.3.1 Haplotype diversity 

Here, haplotype diversity within each three-marker window is determined by the 

observed number of haplotypes. It is a product of local LD complexity, allele 

frequencies of markers, and sample size, and thus, can vary considerably across the 

genome and between populations. The distributions of haplotype diversity, for the six 

lines are shown in figure 7.1. The distributions are given as proportions due to 

differences in the number of markers between lines. All lines show similar distributions 

of haplotype diversity, particularly amongst proportions of low numbers of haplotypes. 

Figure 7.1 shows the proportions of haplotypes numbers seen across the entire genome 

for each of the six lines. However, it does not give any indication of the relationship in 
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diversity seen amongst common markers between lines. Table 7.1 shows the correlation 

and regression coefficients of observed haplotype diversity between the six lines. 

Differences in population genetic parameters, selection procedures, and accumulation of 

recombination events between lines contribute to variation in allele frequency and LD 

patterns between markers observed in different lines. These factors are expected to 

influence observed haplotype diversity, leading to the poor relationships between lines 

as is shown in table 7.1. This highlights the considerable extent of differences in genetic 

architecture across the genomes of the broiler populations. 

7.3.2 Genome-wide association results 

Whole-genome association analyses were conducted for each line using the 

haplotype method described above. p-values obtained for each sliding window are 

shown for each line in figure 7.2. The genome-wide significance threshold (p < 0.05) 

was determined for the analysis of each line individually and represented as dotted lines 

in figure 7.2. The actual value of the threshold for each line is also provided on figure 

7.2. Q-Q plots for the analyses are presented in figure 7.3. These plots indicate that the 

observed GWAS p-values lie close to the expectation with deviations representing 

associations of haplotype windows with Sa02 measures. The Q-Q plots suggest that 

population stratification artefacts had a negligible impact on the results. This is 

supported by the genomic inflation factors for each analysis which range from X = 1 - 

1.013 for the six lines analysed. This analysis is designed as a follow up study to the 

single-marker analysis of the same datasets, described in chapter two. 
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Figure 7.1 

Distributions of haplotype diversity inferred in three-marker sliding windows for the whole 

genome. The distributions are provided as a proportion, due to differences in the number of markers 

between lines. The mean number of haplotypes inferred in each window is also given for each line. 



10 	11 	12 	14 	28 	29 

10 X 1.2e 4 	1.4e 3  3.2e 5  4.6e 4  3.2e 3  

11 0.001 X 	6.7e 5  4.2e 3.3e 5  7.7e 3  

12 0.007 0.008 	X 5.6e 5  1.1e 2  8.3e 4  

14 0.009 0.023 	0.011 X 3.5e 5  2.3e 3  

28 0.001 0.007 	0.025 0.007 X 5.9e 5  

29 0.003 0.005 	0.004 0.003 0.002 X 

Table 7.1 

Correlation 	(upper triangle) 	and regression 	coefficients 

(lower triangle) of observed haplotype diversity between 

pairs of lines. Only markers segregating in the pair of lines 

were included. 
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Thus, comparisons with results from the previous analysis are made. The haplotype 

analysis identified a total of seven QTL regions in lines 11, 14, 28 and 29. Details of 

windows that show significant associations are given in table 7.2. 

For line 11 a single window (start SNP 3818) had an association level greater than 

the genome-wide threshold. This window is located between 119.7-119.8 Mb on 

chromosome two, and includes the marker identified in the single-locus analysis, shown 

in chapter two. In line 14 two QTL regions are identified. The first consists of two 

windows located on chromosome three (start SNPs 4372 and 4376). These windows are 

very close together, but do not include any common markers. One of these windows also 

contains a marker that was identified as significant in the single-marker analysis. The 

second QTL consists of three significant windows (start SNPS 5946-8), each located 

next to one another and in total covering 38.8-39.7 Mb on chromosome four. No 

markers were identified, or approached significance, in this region using the single-

marker model. Two QTL regions were also identified in line 28. The first consists of a 

total of 12 significant windows (start SNPs 369-71, 377-9, 402-4, 406, 408-9), some of 

which contain markers common to other windows, located between 36.4-37.3 Mb on 

chromosome one. This region has a high marker density, including a total of 40 markers 

spaced within 1 Mb. This region contains a clearly defined peak, consisting of additional 
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Figure 7.2 

-log 10 p-values for the association of each haplotype window with Sa0 2  measures, 

across the whole genorne for each line, a) line 10, b) line 11, c) line 12, d) line 14, e) 

line 28, 1) line 29. For each analysis genome-wide significance was determined using 

10,000 cycle permutation analysis. p <0.05 thresholds are represented as the dotted 

line. 
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Start SNP' Chromosome 	Window 	Start 	-log lOp- Number of 
Distance 	Position 	value 	haplotypes 4  

	

(Kb)2 	(Mb)3  

Line 11 

3818 	 2 	 100 	119.7 	4.62 	4 

Line 14 

4372 3 159 13.3 4.96 2 
4376 3 124 13.7 4.60 5 
5946 4 98 38.8 4.47 5 
5947 4 96 38.9 4.51 6 
5948 4 77 39.0 4.68 6 

Line 28 

369 1 81 36.4 5.14 3 
370 1 79 36.4 4.95 5 
371 1 81 36.5 4.50 4 
377 1 74 36.7 4.88 5 
378 1 73 36.8 4.91 5 
379 1 64 36.8 4.52 7 
402 1 47 37.0 4.81 5 
403 1 26 37.1 4.87 7 
404 1 35 37.1 4.98 4 
406 1 59 37.1 5.58 5 
408 1 103 37.2 5.05 3 
409 1 95 37.2 5.31 6 
9467 12 98 6.8 4.52 5 
9468 12 168 6.9 4.81 6 
9475 12 74 7.3 4.48 5 

Line 29 

5869 4 122 24.2 4.95 6 
5870 4 85 24.3 4.74 7 
7295 5 101 57.9 5.12 5 
7296 5 89 58.0 5.78 3 

Table 7.2 

Summary details of windows identified as significant. ' represents the first SNP within the 

three marker window. 2  is the distance that is covered between the first and last marker 

within the window. 3 is the position of the first marker in the window, from the start of the 

chromosome. the number of haplotypes inferred and fitted for that window. 
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Q-Q Plots for analysis Of' Sa02 using a haplotype model. Expected chi-squarc value 

under the global null hypothesis of no association is displayed on the x-axis. Observed 

chi-square value is displayed on the y-axis. The plots show little evidence of 

stratification 
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windows that show strong levels of association that do not quite reach the genome-wide 

significance threshold. The four significant markers identified from the single-marker 

analysis are included in significant windows from the haplotype analysis. Details of the 

association and LD patterns for this region are shown in figure 7.4. This figure also 

shows the results from the single-marker  analysis (chapter two) of the same region to 

act as a comparison. This figure clearly identifies two distinct peaks, separated by a 

region of low association. Given the close marker spacing, the pattern of peaks could 

possibly represent associations with a single causal variant, with the association patterns 

reflecting the complex nature of the relationship between localised genetic information 

and model performance. Alternatively, this pattern could be due to a single locus with 

two different causative variants segregating without LD between them. Interpreting the 

association pattern of haplotype results in terms of the underlying pairwise LD pattern is 

difficult, as this reflects the relationship between pairs of markers, rather than the 

complex higher order LD amongst haplotypes. However, it provides an understanding 

of how differences in performance occur when compared to less flexible approaches, 

such as single-marker models. The second region identified for this line is located 

between 6.8-7.3 Mb on chromosome 12 (start SNPs 9467-8 and 9475), and is composed 

of three significant windows. This region was not identified as significant in any lines 

when analysed with the single-marker model. A further two QTL regions were 

identified from the analysis of line 29. One of these is also located on chromosome four 

(start SNPs 5 869-70), between 24.2-24.4 Mb. These windows include the markers 

identified as significant from the single-marker analysis. There is a possibility that these 

haplotypes are associated with the same causal variant as the haplotypes in the - 
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Figure 7.4 

Detail of association and LD patterns for the region surrounding windows with 

significant associations in line 28. This region is located between 36.1-37.5 Mb 

on chromosome one. The black dots represent the haplotype windows, as 

defined by the first marker within that window. The blue dots represent the 

results from single-marker analysis (chapter two). LD heatmap is composed of 

r2  values for pairs of markers. The dotted lines represent the genome-wide 

significance threshold of p <0.05 of the haplotype and single-marker models. 

The threshold is determined by a 10,000 cycle permutation analysis. 
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significant windows identified in line 14, although the regions are separated by 14.6 

Mb. This region contains 68 markers segregating within line 14 and 71 within line 29. 

Line 14 and 29 are the most closely related pairs of lines (chapter two), suggesting the 

possibility that a QTL is located between the two significant regions. The second QTL 

regions found for line 29 consists of two adjacent windows (start SNPs 7295-6), 

comprised of markers covering 57.9-58.1 Mb on chromosome five. No significant 

markers were identified in this region in the single-locus analysis. 

To recap - all QTL regions identified as significant from the single-locus analysis 

were included in significant haplotype windows in this set of analyses. in addition, three 

more QTL regions were located on chromosomes four, five and 12. On chromosome 

four, two regions have been identified by significant windows, one is located at 24.2 Mb 

and is found only in line 29, whilst the other begins at 38.8 Mb, and found only in line 

14. This raises the possibility that both regions are linked to a single causal variant. 

7.3.3 Comparison with single-marker analysis 

Results from haplotype analyses were compared to those obtained from the single-

marker analysis shown in chapter two. Figure 7.5 shows the scatter plots of —log iøp-

values from single-marker analysis against those of the haplotype model for each line. 

Genotype panels remain the same for both analyses, although p-values from haplotype 

models represent information from three adjacent markers. The results are aligned such 

that the value from the haplotype window corresponds to the single-locus value of the 

first marker within the window. Genome-wide (p <0.05) thresholds for each analysis are 
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Figure 7.5 

Comparison of p-values (shown on -log 10 scale) from genome-wide association 

analyses using single-marker and haplotype models. Results from single-marker tests 

are shown in chapter two. Results shown for the haplotype analysis are shown so as to 

represent the position of the first marker within the window. Lines are; a) line 10, h) 

line 11, c) line 12, d) line 14, e) line 28, I) line 29. Genome-wide (p <0.05) thresholds 

are provided as dotted lines for each model. 



represented by dotted lines on the figure. Whilst this provides an indication of 

complementary significant markers between analyses, it does not provide a full picture, 

as a marker that is significant from a single-locus test, may be included in a significant 

haplotype window at marker position two or three. Thus, on this graph it is possible that 

a marker can appear significant from the single-locus analysis, and not from the 

haplotype analysis. Likewise, a haplotype window that has a significant association 

includes three markers, but is only correlated against one marker from the single-locus 

model in figure 7.5. In these situations both models can identify the same significant 

QTL region, but the identified positions may appear to not match with each other as 

haplotype models are plotted based on their start SNP. This problem would remain if 

other SNP positions within the haplotype windows were used. Nevertheless, comparison 

of the two models provides an indication of the relationship between the two models, 

along with their ability to identify QTL. 

In all but one case, a single-marker that is shown as significant is also identified as a 

significant window from the haplotype analysis. The one situation where this does occur 

(figure 7.5b) is an artefact of comparing single-locus model results against a haplotype 

test comprised of three markers, as described above. The marker identified as significant 

from the single-locus model is in position two of a significant haplotype window. 

Therefore, any markers identified as significant from a single-locus analysis are also 

picked up in significant windows by the haplotype approach. The regression and 

correlation coefficients from the relationship between the two models are shown in table 

7.3. 
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Line 
Regression 
Coefficient 

Correlation 
Coefficient 

10 0.603 (0.009) 0.339 

11 0.610 (0.011) 0.265 

12 0.552 (0.009) 0.262 

14 0.522 (0.012) 0.187 

28 0.622 (0.008) 0.318 

29 0.586 (0.010) 0.235 

Table 7.3 

Regression and correlation coefficients from the 

regression of p-values from a single-marker 

analysis against those of a haplotype model. 

Standard errors are shown in brackets. 
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7.3.4 Joint line analysis 

7.3.4.1 Meta analysis 

Results from the meta-analysis of lines 12 - 28, 14 - 29, and all lines are shown in 

figure 7.6. For all sets of meta-analyses no marker windows were shown to have a 

significant association above the genome-wide level (p < 0.05). Permutation thresholds 

are not shown on the figures, as they are all above a —log 1Op-value of four. It is possible 

that the lack of significant results from the meta-analyses is due to markers within the 

QTL regions of a given line not segregating amongst all lines for the meta-analysis. 

Thus, QTL regions are not fully represented in the meta-analysis genome panels. To 

investigate this, we determined whether markers from QTL regions for any line within a 

meta-analysis were also represented in the genome panels of the common segregating 

markers. This was done for each set of lines that comprise the three meta-analyses, and 

summarised in table 7.4. For the meta-analyses composed of the pairs of lines, markers 

from all QTL regions were represented in the common genome panel, and all but one 

region was represented for the all line analysis. 

7.3.4.2 Parametric analysis 

Results are shown from the parametric analysis of all six lines in figure 7.7. No 

haplotype windows showed genome-wide significant association. These poor results 

possibly reflect the decrease in statistical power caused by the large number of 

additional DF included in the haplotype by line interaction term. This term corresponded 
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to between 18-48 DF depending on the number of inferred haplotypes within a window. 

A model fitting just line effects was also investigated, although this produced a large 

number of highly significant false positives caused by extreme differences in haplotype 

frequencies between lines. 

7.4 Discussion 

Here we report results from genome-wide analysis, for loci affecting ascites 

syndrome, of six lines of a commercial broiler population using a haplotype method 

implemented in a three-marker sliding window. This study consisted of the re-analysis 

of data presented in chapter two, using a choice of model based on the results shown in 

chapters four - six. Genomic conditions that influence model performance include those 

that are observed, such as LD patterns and marker allele frequencies, as well as those 

that are unobserved, such as QTL MAF and proportion of genetic variance explained by 

the causal variant. Identification of numerous QTL regions using single-marker (chapter 

two) and haplotype models individual to a given population, suggest a complex pattern 

of genetic control for ascites, with effects differing amongst populations. Given the 

unknown properties of the QTL frequencies and surrounding LD patters, using a single 

model for the genome-wide analysis will always involve a compromise. The 

Hap_allprob model, implemented using a three-marker window, provides the best 

choice in terms of overall performance across a range of genomic conditions (chapter 

five). Out of the models investigated in chapters four and five, Hap_allprob_3 was 

shown to have performed best on average when the MAF of the causal variant is low, 
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Figure 7.6 

-log 10 p-values from fisher's combined p method for joint line meta-analysis. Markers 

segregating in all combined lines are analysed for each line individually using the 

haplotype method described in section 7.2.2, and p-values from each window are 

combined for sets of lines. a) lines 12 and 28, b) lines 14 and 29, c) all six lines. 
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QTL Region 	 Segregating in Line Segregating in Line Segregating in 
12 and 28 	 14 and 29 	All Lines 

Line 11 

119.7-119.8 Mb 	 -- -- Yes 

Line 14 

13.3-13.8Mb 	 -- Yes Yes 

38.8-39.1 Mb 	 -- Yes Yes 

Line 28 

Ch 1. 36.4-37.3 Mb 	 Yes -- Yes 

Ch 12 6.8-7.4 Mb 	 Yes -- Yes 

Line 29 

Ch 4 24.2-24.4 Mb 	 -- Yes Yes 

Ch 5 57.9-58.1 Mb 	 -- Yes No 

Table 7.4 

Summarization of markers from individual line QTL regions represented in meta-analysis 

tests. Meta-analysis tests only use markers that are segregating in all lines represented 

within the meta-analysis. "Yes" signifies that markers identified in QTL region from an 

individual line analysis are also included in the respective meta-analysis panel, whilst "No" 

means they were removed due to markers not segregating in all lines. -- means the QTL 

peaks are not applicable for that meta-analysis. 



and almost as well as Hap_all_prob_5 for intermediate to high MAF. The 

Hap_all_prob_3 model has the lowest rate of false positives amongst models with 

marker windows of comparable length when the causal variant has a low heritability 

(chapter six). Compared to the single-locus test used in chapter two, Hap_all_prob 

models perform better on average across the range of QTL MAF, as well as having a 

lower rate of false positives when the heritability of causal variants are low (figure 6.2). 

Between all lines, a total of seven QTL regions were identified by marker windows 

with association levels above genome-wide significance (p < 0.05) levels, although, each 

QTL was identified in a single line only. Two QTL regions on chromosome four, 

separated by 14.6 Mb, were identified in lines 14 and 29. Details of the LD patterns for 

markers in the region between the two QTL positions are shown in figure 7.7. The 

position of these significant windows raises the possibility that a single QTL, common 

to both lines, is being detected by different sets of markers in the two lines, particularly 

when we consider that the two closest related lines are 14 and 29 (Andreescu et al. 2007; 

table 2.2). However, the smallest distance a causal locus could be from identified QTL 

regions is 7.3 Mb, at which distances mean pairwise LD is expected to be very low, 

reaching almost background levels. Whilst high levels of LD are occasionally observed 

between markers separated by long distances, here, we are concerned with the 

association of haplotype structures at marker loci with the causal variant, which is 

characterised by complex high order LD patterns, not readily observed in pairwise 

comparisons (Schaid 2004; Zhao et al. 2007). Haplotypes that have a close ancestry with 

a causal mutation typically occur in close vicinity, as haplotype associations decay 

rapidly with the accumulation of recombination events (Akey et al. 2001). 
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Figure 7.8 

Patterns of LD for markers between the two QTL regions identified as significant in 

lines 14 and 29. Only markers segregating within a given line are shown. The QTL 

regions for each line are indicated with a black line. 
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At the time of mutation, the haplotype background of the causal variant encompasses the 

entire chromosome. Over generations, this association is broken up by accumulation of 

recombination and mutation events, reducing the distance that the haplotype background 

extends. Therefore, the haplotype background length will be a function of the 

recombination rate for that chromosome and the number of generations that have 

occurred since mutation (Hudson 1983; Sved 1971) suggesting that strong associations 

between marker haplotypes and the causal mutation are unlikely to occur at the distances 

observed here, unless the mutation was very recent. This conclusion is supported when 

we consider differences observed between the two lines in the patterns of LD for the 

markers encompassing the QTL regions (figure 7.8). 

7.4.1 Comparison with single-marker analysis 

The seven QTL regions reported here included those identified by the single-marker 

analysis (chapter two). Thus, the haplotype model identified the same QTL regions as 

the single-marker model, as well as an additional three regions. The total number of 

significant haplotype windows, across all lines, was 25, against a total of eight markers 

from the individual line analysis using single-marker model. This difference in the 

number of significant results possibly reflects the inclusion of significant markers in 

multiple adjacent windows. Under this situation, a marker in high LD with a causal 

variant could lead to a single significant result when analysed using a single-locus 

approach, although when analysed using overlapping windows could result in multiple 

significant results. Although, it is worth noting that this situation does not apply in the 
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case of the three new regions identified by the haplotype model here. However, it is also 

likely that haplotype models are able to utilize information contained between a set of 

markers that is not available to single-locus models (Akey et al. 2001; Clayton et al. 

2004), leading to a greater number of significant results. 

Figure 7.5 shows the comparison of p-values (shown on the —loglO scale) from 

genome-wide association analyses using the haplotype and single-marker (chapter two) 

models. This figure shows a relationship whereby low —loglO p-values from single-

marker analyses can be represented by high values from haplotype analysis, although 

low —log 10 p-values from haplotype model do not reach high values with single-marker 

models. The regression coefficients of these comparisons range between 0.522 - 0.622, 

and the correlation coefficients between 0.187 - 0.339 (table 7.3). A possible 

explanation for this pattern is that haplotype models result in a higher rate of false 

positive associations, leading to an increase in the —log 10 p-values. However, as we 

have shown in chapter six, when the heritability of a causal variant is low, as is expected 

here, the rate of false positive association caused by haplotype models are considerably 

lower than the rate observed for single-locus tests (figure 6.2). The alternative is that 

haplotype models are better at providing statistical support, given the conditions of 

sample size, LD patterns and marker density in this dataset, with the result, that they are 

able to replicate the findings of single-locus models, as well as identify additional QTL 

regions. 
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7.4.2 Joint line analysis 

To investigate the identification of common effects amongst lines, a meta-analysis 

using Fisher's combined p method (Fisher 1925) was conducted for two pairs of lines as 

well as for the set of six lines. Additionally, a parametric approach was investigated that 

fitted a line by haplotype interaction term. Unfortunately this produced poor results, with 

no windows approaching genome-wide significance, possibly caused by the large 

number of denominator DF fitted in the model. Results for the meta-analyses (figure 7.6) 

reveal no marker windows approaching the genome-wide significance level in any of the 

combinations of lines. The two pairs of lines were chosen for their relationship to one 

another, based on the allele frequencies of common markers (Andreescu et al. 2007; 

table 2.2). Whilst these pairs were the closest related pairs amongst the possible 

combinations of lines, they still represented populations separated from one another for 

numerous generations in individual breeding programs. It is likely that causal variants 

influencing ascites arose in populations prior to the separation of breeding lines. Thus, 

unless these variants have become fixed within a given line, they are expected to be 

segregating within all lines. A possible explanation for the lack of significant results 

from combined line meta-analyses, is that population genetic parameters such as drift, 

selection, and line specific founder events, have led to markedly different genetic 

architecture between lines. This is reflected by the comparison of allele frequencies from 

markers common between lines (Andreescu et al. 2007; table 2.2). Combining the 

populations of line 14 and 29 for a joint line analysis with the single-marker model 

revealed two QTL regions on chromosome four (table 2.4; figure 2.6). The inability to 
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identify these QTL using a haplotype meta-analysis of the same populations is possibly. 

due to the complex nature of haplotype divergence between lines, caused by the 

accumulation of divergent genetic properties between the set of markers. This 

relationship is expressed in the correlation coefficients of haplotype diversity between 

pairs of lines (table 7.1). 

7.4.3 implications and further study 

The identification of a number of QTL regions, spread across different 

chromosomes, and located in individual lines, suggests a complex pattern of genetic 

control for ascites, with effects differing amongst populations. These results suggest 

that, in broilers in general, ascites is affected by large numbers of causal loci. Given the 

sample size, and the relatively low density genotype panel used here, it is likely that 

there are large numbers of causal variants with small effects on susceptibility to ascites 

that are undetectable using in the current datasets. The continued presence of ascites in 

commercial populations that are controlled by complex breeding programmes suggests 

an interaction or linkage with loci that affect production traits. Within the poultry 

industry, the parents of the next generation are selected using breeding values estimated 

from mixed model analysis of phenotypic records, along with pedigree information. The 

fact that selection programs have been able to sustain rapid genetic progress for growth 

and feed efficiency during the past decades suggests that the traits under selection are 

also affected by many genes (Havenstein et al. 2003; McKay et al. 2000; Pakdel et al. 

2005). 
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Genomic architecture for ascites appears complex, with the heterogeneous nature 

indicating control by a number of loci. The complexity is confounded by line differences 

and the sample sizes available in standard commercial breeding programmes. To further 

investigate the genetic control of ascites, improvements in tools, such as density of 

markers in genome panels, and increases in sample sizes are required. The likely 

occurrence of a number of genetic loci, combined with the expected small effects, will 

limit the potential of approaches such as MAS to combat incidences of ascites (Dekkers 

2004). Alternative techniques such as whole-genome approaches may offer a potential 

solution to further understanding the genetic control of ascites (Goddard and Hayes 

2009). 

7.5 Conclusions 

Here we identified seven QTL regions across six chromosomes that are associated 

with susceptibility to ascites, through the analysis of six lines of broiler chickens using a 

haplotype-based sliding window approach. This study comprised of a re-analysis of data 

previously investigated using a single-marker model that located four QTL regions 

between the six lines. The choice of this haplotype model was made based on results 

shown in chapters four - six, showing it to the best performance on average across a 

range of genomic conditions compared to other models investigated. In this chapter, 

using the haplotype model, the four QTL from the single-marker analysis were identified 

along with an additional three. These results support evidence from previous chapters of 
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using this haplotype model for an improved ability to provide statistical support for 

QTL. 

Results combined from individual lines in a meta-analysis yielded poor results, with 

no haplotype windows identified as significant at the genome-wide association level ofp 

< 0.05. This possibly reflects the divergence amongst lines separated within a 

commercial breeding programme, and the effects of population genetic parameters, such 

as drift, selection and line specific founder effects, on haplotype associations. 
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CHAPTER EIGHT 

GENERAL DISCUSSION 

This chapter features a summary and evaluation of the main contributions to this 

thesis, along with some perspectives on future research directions regarding utilisation 

of observed genomic information for model choice in genome-wide association mapping 

studies. Issues concerning model parameterisation for association mapping models are 

addressed, and finally, the implications of the findings are discussed in relation to 

association mapping for complex traits in livestock species and humans. 

8.1 Summary 

This thesis has two main research components whose objectives interact with one 

another to provide an overview of the understanding of how statistical tools can be 

optimally applied to identify genetic loci affecting complex traits. The thesis began with 

the application of standard statistical tools to locate QTL influencing ascites 

susceptibility in broiler chickens, and addressed the need to understand how association 

model performance needs to be considered in terms of the localised genomic 

information that they use. Lessons learnt from a comprehensive evaluation of the 

interaction between model parameterization and localised marker and QTL information 

were applied in the re-analysis of broiler data to optimise the use of information 

provided across the genome. An overall aim was to be able to improve our ability to 

identify and explain genetic variation for complex traits by considering association 
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mapping strategies that use observed marker information to choose optimal model 

parameterisation in a given localised situation. The following paragraphs outline and 

summarise some of the main conclusions from chapters two - seven. 

The four QTL regions on different chromosomes shown in chapter two were 

previously unidentified in other mapping studies looking at ascites, or ascites related 

traits in broilers. However, the lack of consensus results between the six lines, and with 

other studies, suggested that genetic control for ascites susceptibility is likely complex, 

and spread throughout the genome. The identification of the QTL regions are in 

themselves a pleasing result, although it highlights questions regarding the inability it 

identify loci that explain the remainder of genetic variation as well as the lack statistical 

support for regions between lines. If we expect loci affecting ascites to be segregating in 

multiple lines, then the immediate assumption is that the single-marker regression model 

is unable to handle the differences in the localised genetic architecture that exists 

between lines. Likewise, for complex traits, with a heterogeneous genetic control, loci 

are expected to be located throughout the genome, existing across a broad range genetic 

architecture. To maximise the ability to provide statistical support for these loci both 

within, and between, populations, considerations need to be made regarding variation in 

genomic conditions across the genome, as well as how this information is utilization by 

different association models. 

When measuring a single genetic marker, it is well known that the factors that 

influence power are size of the effect of the causative locus, the frequency of the causal 

allele, the extent of LID between the QTL and the marker and how close the allele 

frequencies match between the causal locus and marker (Zondervan and Cardon 2004). 
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When measuring multiple marker loci, the strength of LD among the marker loci will 

additionally influence power. Although the benefit of haplotype analyses versus multi-

marker tests for association that ignore phase have been widely discussed and debated in 

the literature (Bardel et al. 2006; Chapman et al. 2003; Clayton et al. 2004; Humphreys 

and Iles 2005; North et al. 2006), it appears that the greatest gain in power provided by 

haplotype analyses occurs when linkage disequilibria exist among the marker loci at 

orders higher than pair-wise LD (Nielsen et al. 2004). 

Within a flexible, regression based framework, considering different uses of marker 

information is easy through extension of the X matrix to include information from 

multiple markers. It also provides some flexibility in model parameterization, as a 

choice can be made regarding which main and interaction effects should be fitted in the 

model. Information contained between a set of adjacent markers is broken down into 

main and interaction effects. These effects can be considered as a spectrum of 

parameters of increasing complexity (Clayton et al. 2004), such that effects can be 

continually added to a model until all possible parameters contained between the set of 

markers are included. Likewise, the number of SNPs that are considered jointly in 

models is also an important choice. As has been shown in chapter five, this is especially 

the case for haplotype models due to the rapid increase in the potential number of 

parameters as additional markers are included. In the chapters exploring the use of 

multilocus models, this choice was constrained to the two extremes of parameterization, 

the 'locus scoring model' which includes a main effect for each locus, and the 

'haplotype scoring model' which models an effect for each marker haplotype. Locus- 
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scoring methods are often considered appealing because they do not require haplotype 

phase resolution. 

The concerns regarding the implementation and strategy for fitting multilocus, 

specifically haplotype, models have been discussed throughout this thesis. When the 

choice of model moves beyond using a single-marker test, a number of additional 

decisions present themselves in relation to how multilocus information should be 

utilized within a genome-wide mapping study. Most of these issues are well discussed in 

the literature, and have been addressed and investigated as they have arisen through the 

course of the research covered in the previous chapters. The first main choice when 

using multilocus model is whether to use a block design or a sliding window approach 

(Gabriel et al. 2002; Li et al. 2007). Overlapping sliding windows were applied here 

based on their ease of implementation, lack of requirement in defining blocks, and their 

flexibility in terms of marker length and parameterization of the regression models. An 

often cited problem when using haplotype models is how to handle rare haplotypes. A 

large number of approaches have been proposed that either, pool, cluster or remove the 

effects of rare haplotypes from the hypothesis test with the aim of reducing the number 

of parameters and avoiding errors in estimating their effects. Many of these approaches 

were investigated during the course of the research; although they all rely on the concept 

that rare haplotypes are unlikely to be associated with a causal variant. Given that a 

major strength of haplotype models is the rare allele from causal variants with low MAF 

which are likely to exist in a single haplotype background, discarding effects of rare 

haplotypes is expected to reduce the ability to identify associations with rare alleles. 
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Thus, instead of ignoring rare haplotypes, a hypothesis test that was more robust to low 

frequency parameters was used rather than the score test investigated in chapter three. 

In recent years there have been a number of theoretical and empirical studies that 

identify a particular set of genomic conditions that leads to the optimal performance of a 

given statistical model (Akey et al. 2001; Calus et al. 2008; 2009; Chapman et al. 2003; 

Clayton et al. 2004; De Bakker et al. 2005; Grapes et al. 2004; 2006; Guo and Lin 2009; 

Hayes et al. 2007; Morris and Kaplan 2002; North et al. 2006; Pe'er et al. 2006; Schaid 

2004). These studies provide a huge range of information regarding model choice for a 

given set of genetic and trait architecture, although identifying these conditions in 

traditional mapping studies is normally extremely difficult, or impossible. None of these 

studies investigated how the performance of different models is affected by the range of 

local genomic architecture of the markers and causal variants. 

The comprehensive set of evaluations presented in chapters four to six, provided 

strong evidence of the impact of localised genomic architecture on the performance of 

regression-based models that differed in their use of marker information. The ability to 

provide statistical support for the presence of the sQTL for all models was influenced by 

genetic conditions such as between marker LD, LD between markers and the causal loci, 

and the allele frequencies of the sQTL. These factors affect the performance of models 

relative to one another due to differences in a model's ability to use the range of 

complexities seen in genomic data. Turning this around, we can consider that a model's 

parameterisation is best suited to certain types, or complexities, of information, and that 

there is a reduction in its performance when presented with different forms of genetic 
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information. In this sense, a model would be termed 'robust' if its performance was 

constant across the range of genomic conditions. 

When using multilocus methods for genome-wide association studies the number of 

markers included within a window affects performance. However, the effect on 

performance differs between models due to the influence of marker number on 

parameterization space. For main effect models this relationship is simple, as the effect 

of each marker is only described using a single parameter. For haplotype models the 

parameters include between marker interaction terms, and so, each additional marker can 

raise the number of fitted effects by a power. Unfortunately, this situation is not so 

straight forward, as many of the potential allelic combinations are not observed in 

practice, meaning the actual number of fitted parameters is typically far fewer than the 

theoretical maximum. in chapter five the optimal numbers of markers to fit in a window 

was shown to be specific to each model, as well as being influenced by the localised 

genetic conditions. 

The results from chapters four and five show that, relative to alternative models, 

Hap_allprob with a three-marker window, has the best performance when mapping for 

causal variants with low to intermediate MAF. When the MAF is higher than that, using 

the same model with a five-marker window will provide the best performance on 

average. These results are presented in terms of relative performance between models, 

although all models do better when the MAF of the causal variant is high. The role of 

LD between markers was also shown to affect model performance. As is expected, when 

high LD exists between markers and QTL using a simple model such as the single-

marker regression is best. in situations of low level LD between a set of markers as well 
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as situations of low LD between markers and the sQTL, haplotype models perform best 

relative to other models, although window length has a strong influence on performance 

under these conditions. Such examples highlight the considerations needed to identify 

how models use the information they are provided in different ways. We also need to 

consider the difference between model performance relative to one another, as well as 

the optimal conditions for a given model. Often the optimal conditions for models are 

similar to one another, for example, high LD between markers and the causal variant and 

high QTL MAF. In a genome-wide association study, the genomic landscape seen in the 

genome panel for a given population are fixed within that dataset. Thus, we must think 

in terms of the optimal performance of models relative to one another, and consider that 

the optimal model will change along with the variation in the underlying genomic 

architecture. 

In most population based association mapping studies the absence of family 

genotype data means statistical procedures are required to determine marker phase 

information that provide probabilities for the possible haplotype consistence with the 

observed information. A number of studies using haplotypes have accounted for the 

phase uncertainty by accepting the highest probability haplotype pair from each 

individual as though it were known (Grapes et al. 2004; 2006; Hayes et al. 2007; Zhao 

et al. 2007). The justification for using this approach is usually to reduce the potential 

number of fitted parameters. As has been shown in this thesis, on average fitting a model 

that accounts for the uncertainty in phase by modelling haplotype probabilities in the X 

matrix, leads to better performance. Other studies have shown that ignoring this 

uncertainty can increase errors associated with estimating haplotype effects (Morris et 
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al. 2004; Tanck et al. 2003). Therefore, it is strongly recommended that methods such as 

Hap_all_prob be used over Hap_highest_prob for future genome-wide association 

studies. 

Many large scale mapping studies, particularly in humans, have struggled to identify 

significant markers that are able to explain the estimated genetic variance for a given 

trait, using single-locus models (Bodmer and Bonilla 2008; Frazer et al. 2009; Visscher 

2008). The occurrence of large numbers of rare loci affecting these traits is often cited as 

an explanation for a proportion of this missing heritability (Maher 2008). Although it 

will not be optimal across all genomic situations, applying a model such as 

Hap_all_prob with three-marker windows is expected to improve power, particularly in 

detecting rare variants. This method has also been shown to have a lower false positive 

rate than single-marker models when the heritability of the causal variant is low (chapter 

six). 

For genome-wide mapping studies in general, there is a need to consider that the 

genetic architecture that influences model performance is highly variable across the 

genome and between different complex traits. This suggests that associations are being 

missed through a failure to use the optimal model for a given set of markers when only a 

single approach is used for genome-wide mapping. No one method will be ideal across 

the genome and so using observable information as a predictor of model performance 

may provide a useful strategy to make maximum use of the information available in a 

given dataset. in previous chapters we have seen the use of marker information in 

predicting haplotype diversity and providing support for model choices. Clearly more 
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work is required in order to make full use of observed or inferred information, and some 

of these considerations are discussed below. 

8.2 Use of observed genomic information 

As has been demonstrated in previous chapters, genetic information used by 

association models is highly variable across the genome, and influences the performance 

of the regression-based models. Based on the results shown in chapter three to six, the 

choice of model used to identify causal variants associated with ascites was revised from 

a single-marker to Hap_allprob_3 model. Whilst this improved the performance of the 

mapping study, applying just a single model is not expected to be an optimal mapping 

strategy. We can demonstrate that the Hap_allprob_3 method is expected to be best on 

average, although situations will exist throughout the genome where alternative models 

will have better performance. This is particularly the case when we expect the trait to be 

affected by large numbers of loci; With this premise, considering a flexible strategy, that 

fits the optimal model given the local genetic architecture, will improve power of the 

association study. 

In many ways applying a flexible model approach is one of the ultimate goals in 

genome-wide association studies. There are two main components that need to be 

understood before this can be implemented. The first is to determine the model that has 

optimal performance for a given set of genomic architecture, such as marker LD, QTL 

MAF, and LD between markers and QTL. This has been one of the main aims of this 

thesis, and we now have a comprehensive understanding of the conditions that lead to 
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optimal model performance. The second, and more difficult component, is to be able to 

correctly identify the underlying set of genetic architecture using observed or inferred 

information. Such a strategy would require assumptions regarding the position of causal 

loci, although these assumptions are routinely used in traditional association mapping 

studies. The complexity lies in the variable nature of the relationship between genetic 

parameters between markers such as LD and allele frequencies. This makes it difficult to 

use observed marker information to accurately predict the state of the local genetic 

parameters of loci that are not genotyped. Thus, incorporating the mathematical 

relationships to the genetic parameters may allow a flexible approach to be modeled 

using the available observed information as well as inferred information for the 

unknown parameters. 

As was shown in chapter five (figures 5.9 - 5.11) the optimal performance of a given 

model occupies a clearly defined genetic parameter space. The relationship between the 

mean LD measure of a set of eight markers and the markers and the sQTL can be 

considered as a landscape of parameters over which certain models perform better than 

others. The hexagon plot given in figure 5.9 shows that models occupy a visibly distinct 

position within this landscape based on their optimal performance. Genetic factors other 

than marker and QTL LD patterns affect model performance, as is easily seen when the 

hexagon plots are shown for sQTL with high and low MAF (figures 5.10-5.11). 

Likewise, chapter five showed that a relationship exists between model performance and 

haplotypes observed, and is specific to the length of the marker window used. In this 

situation, haplotype diversity can be estimated using local levels of LD between 

markers, and that information used in the decision process for the length of window to 
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use. Unfortunately information such as QTL allele frequencies and LD between markers 

and QTL needs to be inferred, or alternatively, assumptions of the likely distributions of 

parameters are required. in this thesis we have identified how the landscapes for genetic 

parameters are populated by the optimal performance of models. in other words, if the 

localized genetic architecture is known then the ideal model to use in that situation can 

be identified. It has also been shown that in some cases, observed information can be 

used as a predictor for the underlying genetic parameters, although variation still exists 

within these relationships. Clearly, identifying a useful predictor for model choice will 

need to incorporate numerous sources of information. Future research building on the 

work presented here should aim at identifying how observable and inferred genetic 

parameters interact to produce a meaningful indicator of the optimal model 

parameterization for a given localized situation. incorporating this information into a 

flexible association mapping strategy would undoubtedly improve power over current 

single model approaches, and make maximum use of genomic information within a 

dataset. 

8.3 Mapping for complex traits 

Identifying and understanding the influence of genetic variants on complex traits and 

disease susceptibility is considered the main goal in contemporary genetic research. 

Quantitative genetics has proven to be a useful approach to locating QTL and explaining 

the genetic component of phenotypic variation in both livestock species and humans. 

However, whilst there are numerous success stories, many studies have struggled to 
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identify the genetic variants required to explain large proportions of genetic variation - 

the so-called 'missing heritability' problem (Maher 2008). In this thesis association 

mapping approaches have been applied to identify QTL for ascites susceptibility in 

broiler chickens, although the conclusions ought to be considered in a wider context 

regarding mapping for complex traits in other livestock species and humans. 

Typically, no information is available about the underlying complexity of the 

relationship between the alleles of the causal variant and the phenotype, as can be 

detected by linked markers. This complexity is characterised by the parameterisation of 

models, which include effects normally termed main and interaction effects. Interaction 

effects build in their complexity as they include all combinations amongst a set of 

markers (Clayton et al. 2004). The haplotype models described in previous chapters are 

parameterized to include all main and interaction effects between a set of markers, 

although in reality, it is rare to observe all possible combinations, unless the sample size 

is very large. As their name suggests, main effect models fit just the main effects of 

markers. Therefore, these two groups of models represent the two extremes of 

multilocus parameterization. For a given pattern of LD and marker density, the ability to 

provide statistical support for a causal variant will depend on the nature of the effects as 

is seen in the associations with markers (North et al. 2006). It is often the case that 

fitting all available information between a set of markers is not always optimal given 

considerations of model parameterization. 

Taking the main and haplotype models to be the extremes of the parameterization 

range, we can envisage a spectrum of effects that represent the intermediate ground 

between these two models. For example, a four-marker model could include just the 



main effects and the pairwise interaction terms. Such a model will have a lower 

complexity than a full haplotype model, and hence fewer DF in the hypothesis test. As 

has been shown in previous chapters, situations exist whereby either the main effect or 

haplotype model have optimal performance, it is a natural extension to consider that 

situations occur where optimal performance is supplied by an intermediately 

parameterized model. Chapman et al. (2003) have proposed that the optimal model for 

an association test may have complexity between locus-scoring and haplotype scoring. 

This is certainly expected to be the case in some situations, although this raises the 

question of how to identify the combination of parameters that has the optimal 

performance for a given situation. An approach similar to that outlined in chapters four 

and five could applied, with models representing each combination of parameterization 

being tested to identify the underlying genetic conditions that lead to their optimal 

performance over other models. However, the potential number of parameter 

combinations between a set of markers makes this an unrealistic strategy to follow. 

Clustering approaches are often applied to haplotype analyses as a way of reducing the 

total number of parameters fitted by the model. However, as has been previously 

discussed, clustering approaches often struggle to identify differences in statistical 

effects between haplotypes that are deemed similar to one another (Durrant et al. 2004). 

An alternative approach is to use statistical tools to reduce the parameter space such 

that only effects that contribute to the overall association remain. The difficulty here is 

to correctly identify the contributing effects, and removing or shrinking those that do 

not, without penalising the statistical support of the model. There is a large number of 

parameter reduction and model selection approaches available, although their ability to 
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correctly identify the optimal parameterisation of a model is not fully understood with 

respect to association testing amongst multilocus models. Investigating the ability of 

these approaches to correctly identify genetic effects and provide an accurate model 

choice across the diverse range of genomic architecture would form a natural extension 

to the research provided within this thesis. 
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Appendix one 

Details of the formula to calculate sire Sa02 

The formula given on page 39, section 2.2.1, describes the method used to 

determine the adjusted phenotypic records for each sire. Recorded trait values are 

adjusted to account for variance due to fixed and random effects not associated with the 

breeding value of the sire. The model was tested and the significance of factors 

explored. Since 5a02 was analysed in a multivariate analysis along with early and late 

mortality in pedigree and stress environments, these effects described below were 

important for all the traits. 

As is shown in section 2.2.1, the adjusted trait value for a given sire is calculated 

according to; 

Dyi —a —h —mg 1  —c _(O.5*BV damj  
-

)) 

Yadj 	 ' 

n 

where y, is the trait record for individual i, a,, h, and mg, are the effects of sex, age, 

hatch and mating group respectively for individual i, c, is the random effect 

corresponding to the permanent environmental effect of the dam for individual i. BVda, l  

is the estimated breeding value of the dam for individual i and n is the number of 

progeny for the sire. Details of the components of the formula are given below. 

Age: This is the age of the dam for individual 1. Age of the dam is positively correlated 

with egg size, and therefore weight of chick at hatching. 

Mating Group: Refers to the parents of individual i. It denotes that the parents were 

located on a specific farm and are a contemporary group from the same generation, with 
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laying starting at a specific point in time (i.e. hatch week). The mating group captures all 

environmental factors specific to the parents, such as when they were hatched, farm and 

when they started and when they started laying. 

Hatch: This is the hatch week of individual i. It captures factors associated with 

hatching  and growing of the individual. 

Dam permanent environment: Is a random effect corresponding to the permanent 

environment of the dam for individual i. Among the six lines the ratio of c, over 

phenotypic variance varied a lot, yet log-likelihood tests suggested that it needed to be 

included in the model. 

Breeding value of dam: The breeding value of the dam was also included within the 

model. This breeding value was calculated using a normal multivariate BLUP analyses, 

fitting a full pedigree, so breeding values were calculated having accounted for all 

relationships. Since the breeding value of the dam is determined using a BLUP analysis, 

no genetic effects of sires should be included, since the A-matrix should have accounted 

for those. 
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Appendix two 

Distributions of phenotypic records for each line 

The distribution of the progeny adjusted Sa0 2  measures for each line are shown in 

figures below, individuals with a trait value greater than 3 standard deviations from the 

mean of the line were removed from dataset and not shown on the distributions. 
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Appendix three 

Q-Q plots from permutation analyses 

00-plot for Single Marker Models 	 00-plot for f4ap_highest_prob Models 

- er1 -IripJ Espsueii -kig,fpf 

00-plot for Multiple Marker Genotype Regression Models 	 OQ-plot for f-lap_aIlprob Models 

Cnpr.cte1 -rJ(pf 

Examples of Q-Q plots from a single permutation run for each of the models. Black dots 

represent the p-values from the permutation analysis whilst the red line represents the 

expected null distribution of p-values. Plots show little evidence for population 

stratification impacting on p-vales from the analysis. Corresponding genomic inflation 

factors (A.) are all close to 1. 
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Appendix four 

Code to determine haplotypes (EM - algorithm) and fit linear models 

Syntax: 	R 
# 
# 	Description: 	Script to read in pedigree, match with the # 

data file, 	invert the pedigree and use the output to run # 
a hap highest prob and hap all prob models 

# 4 
4 	Require: Use of haplotype data - EMalgo.R 4 
4 4 
4 	Author: 	Joseph Powell 4 
# 	 joseph.powell@qimr.edu.au  4 
4 # 

# ---------- # 
# 	Section 1: Read in relevent data files and sort 
4----------# 

library (GenABEL) 
genabel.data <- load.gwaa.data(phenofile="genabel.pheno.line29.dat", 
genofile=GenABEL.input.line29.raw", 	force=F, 	makemap=T) 
binary.geno <- as.numeric(genabel.data@gtdata) 

maf.info <- 	read.csv(°maf adj .csv", 	header=T) 
attach(maf.info) 

dim (maf.info) [l]==l2046 
dim(maf.info) [l]==dim(binary.geno) [2] 

pedigree <- read.table("pedline29rtoolsedit.txt", 	skip=l) 
dim (pedigree) 

animal.id  <- read.table("animal.id .txt") 
head (animal 	id) 
dim(animal. id ) 

#----------4 
# 	Section 2: Remove fixed SNP5 + low call rate markers and 
individuals 
4----------4 

# 	Fixed markers 

fixture <- 0 
fixed.snps <- NULL 
for 	(i 	in 	1: (dim(maf.info) [1])) 

fixed <- maf.info[i, 	10] 	> fixture 
fixed.snps <- rbind(fixed.snps, 	fixed) 
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fixed.snps <- as.data.frame(fixed.snps) 
head (fixed. snps) 
table (fixed. snps) 

binary.geno.qc.removed <- binary.geno[, fixed.snps$V1J 
genabel.data.qc.removed <- genabel.data[, fixed.snps$V11 
maf.info.qc.removed <- maf.info[fixed.snps$Vl, I 

Low call rate markers 

marker.call.rate <- 0.95 
bad.markers.tot <- NULL 
for (i in 1: (dim(maf.info.qc.removed) [1])) 

snp <- binary.geno.qc.removed[, ii 
bad.markers <- (sum(table(snp)))/(dim(binary.geno)[1]) 
bad.markers <- bad.markers > marker.call.rate 
bad.markers.tot <- rbind(bad.markers.tot, bad.markers) 

bad.markers.tot <- as.data.frame(bad.markers.tot) 
head (bad.markers .tot) 
table (bad.markers . tot) 

binary.geno.qc.removed <- binary.geno.qc.removed[, bad.markers.tot$Vl] 
genabel .data.qc.removed <- genabel.data.qc.removed[, 
bad. markers. tot$Vl] 
maf.info.qc.removed <- maf.info.qc.removed[bad.markers.tot$Vl, I 

# 	Low call rate individuals 

indi.call.rate <- 0.99 
bad.indi.tot <- NULL 
for (i in 1: (dim(binary.geno.qc.removed) [1))) 

bad.indi <- (sum(table(binary.geno.qc.removed[i, 
])))/(dim(binary.geno.qc.removed) [2]) 

bad.indi <- bad.indi > indi.call.rate 
bad.indi.tot <- rbind(bad.indi.tot, bad.indi) 

bad.indi.tot <- as.data.frame(bad.indi.tot) 
head (bad. mdi. tot) 
table (bad. mdi. tot) 

binary.geno.qc.removed <- binary.geno.qc.removed[bad.indi.tot$V1, I 
genabel.data.qc.removed <- genabel.data.qc.removed[bad.indi.tot$V 1 , 
animal.id  <- animal.id [bad.indi.tot$Vl, I 

# Remove all markers with a missing value left 

missing.tot <- NULL 
for(i in 1:(dim(binary.geno.qc.removed)[2])) 

marker <- binary.geno.qc.removed[,i] 
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num.genotyped <- sum(table (marker)) 
missing <- num.genotyped==(dim(binary.geno.qc.removed) [1]) 
missing.tot <- rbind(missing.tot, missing) 

missing.tot <- as.data.frame(missing.tot) 
head (missing. tot) 
table (missing.tot) 

binary.geno.qc.removed <- binary.geno.qc.removed[, missing.tot$V1] 
genabel.data.qc.removed <- genabel-.data.qc.removed[, missing.tot$Vl] 
maf.info.qc.removed <- maf.info.qc.removed[missing.tot$V 1 , I 

# Finally remove markers with less than 3 genotypes 

geno.len.tot <- NULL 
for (i in 1: (dim(binary.geno.qc.removed) [2])) 

geno <- length(unique(binary.geno.qc.removed[,i])) 
geno.len <- geno==3 
geno.len.tot <- rbind(geno.len.tot, geno.len) 

geno.len.tot <- as.data.frame(geno.len.tot) 
head (geno . len. tot) 
table(geno.len.tot) 

binary.geno.qc.removed <- binary.geno.qc.removed[, geno.len.tot$Vl] 
genabel.data.qc.removed <- genabel.data.qc.removed[, geno.len.tot$Vl] 
maf.info.qc.removed <- maf.info.qc.removed[geno.len.tot$Vl, I 

#---------- 
# 	Section 3: Create haplotype data 
#----------# 

Note: this stage can take a while so save the output and read it 
in for future analysis 
#geno.haplo.qc.removed <- as.hsgeno(genabel.data.qc.removed) 
#write.table (geno.haplo.qc.removed, "geno.haplo.qc.removed.txt", 
quote=F, row.names=F, col.names=F, sep="\t") 

# 	Read haplotype genotype in from here 
geno.haplo.qc.removed <- read.table("geno.haplo.qc.removed.txt", 
header=F) 
attach (geno . haplo . qc. removed) 
dim(geno .haplo. qc. removed) 

-# 
# Section 3.1 EM - algorithm. 
# See Dave Clayton's progressive insertion also 
# + haplo.stats 

- 

EMalgo.fun <- function (geno, locus.label = NA, miss.val = c(O, NA), 
weight = NULL, 

control = haplo.em.controlO) 
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n.loci <- ncol(geno)/2 
n.subject <- nrow(geno) 
subj.id <- l:n.subject 

# Determine data is correct 
if (n.loci < 2) 

stop('Must have at least 2 loci for haplotype estimation!") 
if (any(is.null(weight))) 

weight <- rep(l, n.subject) 

if (any(weight < 0)) 
stop("negative weights not allowed") 

if (length(weight) != n.subject) 
stop("Length of weight != number of subjects (nrow of geno)") 

if (all(is.na (locus.label))) 
locus.label <- pasteY'loc - ", l:n.loci, sep 

if (length(locus.label) != n.loci) 
stop("length of locus.label != n.loci") 

temp.geno <- loci(geno, locus.names = locus.label, miss.val = 
miss .val) 

max.pairs <- geno.count.pairs(temp.geno) 
max.haps <- 2 * sum(max.pairs) 

if (max.haps > control$max.haps.limit) 
max.haps <- control$max.haps.limit 

rows.rem <- numeric(0) 
geno.vec <- as.vector(temp.geno) 
geno.vec <- ifelse(is.na (geno.vec), 0, geno.vec) 
allele.labels <- attr(temp.geno, "unique.alleles") 

if (length(allele.labels) != n.loci) 
stop("Number of loci in alleles list != n.loci") 

n.alleles <- numeric (n.loci) 
a.freq <- vector("list", n.loci) 

for (i in l:n.loci) 
n.alleles[i] <- length(allele.labels[[i]]) 
j <- (i - 1) * 2 + 1 
p <- table(temp.geno[, c(j, (j + 1))], exclude = NA) 
p <- p/sum(p) 
a.freq[[i]] <- list(p = p) 

if (is.null(control$loci.insert.order)) 
control$loci.insert.order <- l:n.loci 

loci.insert.order <- (control$loci.insert.order - 1) 
if (length(loci.insert.order) != n.loci) 

stop("length of loci.insert.order != n.loci") 
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if (sum(abs(sort(loci.insert.order) - (0:(n.loci - 1)))) > 
0) 
stop("A1l loci are not accounted for in loci.insert.order") 

if (control$insert.batch.size > n.loci) 
control$insert.batch.size <- n.loci 

if (!is.null(control$iseed)) 
set. seed (control$iseed) 

else 
runif (1) 
control$iseed <- .Random.seed 

# Set seeds 
seed.array <- runif(3) 
iseedl = 10000 + 20000 * seed.array[1] 
iseed2 = 10000 + 20000 * seed.array[21 
iseed3 = 10000 + 20000 * seed.array[31 
fit <- haplo.em.fitter(n.loci, n.subject, weight, geno.vec, 

n.alleles, rriax.haps, max.iter = control$max.iter, 
loci insert, order, 

min.posterior = control$min.posterior, tol = control$tol, 
insert.batch.size = control$insert.batch.size, random.start = 

control$randorn. start, 
iseedl = iseedl, iseed2 = iseed2, iseed3 = iseed3, verbose = 

control $verbose) 
if (control$n.try > 1) 

for (i in 2:control$n.try) 
seed.array <- runif(3) 
iseedl = 10000 + 20000 * seed.array[1] 
iseed2 = 10000 + 20000 * seed.array[2] 
iseed3 = 10000 + 20000 * seed.array[3] 
fit.new <- haplo.em.fitter(n.loci, n.subject, weight, 

geno.vec, n.alleles, max.haps, max.iter = 
control$max. iter, 

loci.insert.order, min.posterior = 
control$min.posterior, 

tol = control$tol, insert.batch.size = 
control$insert .batch. size, 

random.start = 1, iseedi = iseedl, iseed2 = iseed2, 
iseed3 = iseed3, verbose = control$verbose) 

if (fit.new$tmpl$lnhike > fit$tmpl$lnhike) 
fit <- fit.new 

tmpl <- fit$tmpl 
tmp2 <- fit$tmp2 
u.hap <- matrix(tmp2$u.hap, nrow = trnp2$n.u.hap, byrow = TRUE) 
haplotype <- data.frame(I(allele.labels[[lJ] [u.hap[, 1]])) 
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for (j in 2:n.loci) 
haplotype <- cbind(haplotype, I(allele.labels[[j}I [u.hap[, 

111)) 

names(haplotype) <- locus.label 
hapicode <- tmp2$haplcode + 1 
hap2code <- tmp2$hap2code + 1 
uhapcode <- tmp2$u.hap.code + 1 
nl <- length (uhapcode) 
n2 <- length (hapicode) 
tmp <- as.numeric(factor(c(uhapcode, 
uhapcode <- tmp[ 1 :nh] 

haplcode, hap2code))) 

hapicode <- tmp[ (nl + 1): (nl + n2) I 
hap2code <- tmp[(nl + n2 + 1):(nl + 2 * n2)J 
uhap.df <- data.frame(uhapcode, tmp2$hap.prob, u.hap) 
names(uhap.df) <- c("hap.code", "hap.prob", locus.label) 
indx.subj = tmp2$indx.subj + 1 

if (length(unique(tmp2$indx.subj)) < n.subject) 
unique.subj <- unique(indx.subj) 
rows.rem <- c(rows.rem, which(is.na (match(l:n.subject, 

unique. subj)))) 
warning ("Subject (s) ", paste(rows.rem, sep = ","), " removed in 

trimming steps.\n Try decreasing min.posterior control parameter to 
reduce trimrning.\n") 

subj.used.id  <- subj.id[indx.subj] 
hap.prob.noLD <- a.freq{[l]]$p[u.hap[, 1]] 
df.noLD <- length(a.freq[[lI]$p) - 1 

for (j in 2:n.loci) 
hap.prob.noLD <- hap.prob.noLD * a.freq[[j]]$p[u.hap[, 

ill 
df.noLD <- df.noLD + length(a.freq[[j])$p) - 1 

hap.prob.noLD <- hap.prob.noLD/sum(hap.prob.noLD) 
prior.noLD <- hap.prob.noLD[haplcodej * hap.prob.noLD[hap2code] 
prior.noLD <- ifelse(haplcode != hap2code, 2 * prior.noLD, 

prior. foLD) 
ppheno.noLD <- tapply(prior.noLD, indx.subj, sum) 
lnlike.noLD <- sum(log(ppheno.noLD)) 
ir = 2 * (tmpl$lnhike - lnlike.noLD) 
df.LD <- sum(tmp2$hap.prob > le-07) - 1 
df.lr <- df.LD - df.noLD 

obj <- list (lnlike = tmpl$lnhike, lr = lr, df.lr = df.lr, 
hap.prob = tmp2$hap.prob, hap.prob.noLD = hap.prob.noLD, 
converge = tmpl$converge, locus.label = locus.label, 
indx.subj = indx.subj, subj.id  = subj.used.id , post = 

tmp2$post, 
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hapicode = hapicode, hap2code = hap2code, haplotype = 
haplotype, 

nreps = table(indx.subj), rows.rem = rows.rem, max.pairs = 
max. pairs, 

control = control) 

if (exists("is.R") && is.function(is.R) && is.R()) 
class(obi) <- "haplo.em" 

else 
oldClass(obj) <- "haplo.em" 

return (obj) 

#--------- 
# 	Section 4: em analysis and output packaging 
#--------- 

#--------- 
# Section 4.1 - Hap highest prob 

--# 

win.size <- 3 
num.haplo.tot <- NULL 
haplo.array.final <- NULL 

# Determine window and run em 

for (s in seq(1, dim(geno.haplo.qc.removed) [2]_((win.size * 2)_1), 2)) 
em.geno <- geno.haplo.qc.removed[, s: ( s +(( w i n . s i z e*2)_l))] 

em.out <- EMalgo.fun(em.geno) 
em.out.info <- as.data.frame(cbind(em.out$subj.id, 

em.out$haplcode, em.out$hap2code, em.out$post)) 
num.haplo <- dim(em.out$haplotype) [1] 
haplo.array.tot <- array(O, c(1, num.haplo)) 

# Pick all pairs for individual t 

for(t in 1: (dim(geno.haplo.qc.removed) [1])) 
mdi <- em.out.info[em.out.info$Vl==t, 
haplo.array <- array(O, c(1,num.haplo)) 

# Pick haplotype pair j for individual t 

for (j in 1: (dim(indi) [11)) 
indi.line <- indi[j, I 

# Pick haplotype k from pair j for individual t 

for (k in 2:3) 
haplo <- indi.line[l, kJ 
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# Determine Pr of haplotype k from pair j for individual t 

for (i in l:num.haplo) 

if(i==haplo) 
haplo.array[l, iJ 

<- (haplo.array[l, ii + ( (mdi  [j,4] * Q.5H) 

# Packed into the arrays 

haplo.array.tot <- rbind(haplo.array.tot, haplo.array) 

# Final array of the haplotype Pr 

haplo.array.final <- cbind(haplo.array.final, haplo.array.tot) 

# Final vector of number of colunms in haplo.array.final for each 
window 

num.haplo.tot <- rbind(num.haplo.tot, num.haplo) 

#---------- 
# Section 4.2 - Hap all prob 

#--------- 
Section 4: em analysis and output packaging 

win.size <- 3 
num.haplo.tot <- NULL 
haplo.array.final <- NULL 

# Determine window and run em 

for (s in seq(l, dim(geno.haplo.qc.removed) [21_((win.size * 2)_l), 2)) 
em.geno <- geno.haplo.qc.removed[, s: ( s +(( win.size*2)_l))1 

em.out <- haplo.em(em.geno) 
em.out.info <- as.data.frame(cbind(em.out$subj.id, 

em.out$haplcode, em.out$hap2code, em.out$post)) 
num.haplo <- dim(em.out$haplotype) [1] 
haplo.array.tot <- array(O, c(l, num.haplo)) 

# Pick all pairs for individual t 

for(t in 1: (dim(geno.haplo.qc.removed) [1])) 
mdi <- em.out.info[em.out.info$Vl==t, I 
haplo.array <- array(O, c(l,num.haplo)) 
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# Pick haplotype pair j for individual t 

for (j in 1: (dim(indi) [1])) 
indi.line <- indi[j, 

# Pick haplotype k from pair j for individual t 

for (k in 2:3) 
haplo <- indi.line[l, k] 

# Determine Pr of haplotype k from pair j for individual t 

for (i in l:num.haplo) 

if(i==haplo) 
haplo.array[l, i] 

<- (haplo.array[l,i]+((indi{j,4]*O.5))) 

# Packed into the arrays 

haplo.array.tot <- rbind(haplo.array.tot, haplo.array) 

# Final array of the haplotype Pr 

haplo.array.final <- cbind(haplo.array.final, haplo.array.tot) 

# Final vector of number of colunms in haplo.array.final for each 
window 

num.haplo.tot <- rbind(num.haplo.tot, num.haplo) 

# ---------- # 
# 	Section 5: Apply a level row to the first row 

# 

level.tot <- NULL 

for (p in l:dim(num.haplo.tot) [lJ) 
num.haplo <- num.haplo.tot[p,1] 
level <- rep(p, num.haplo) 
level.tot <- c(level.tot, level) 

length(level.tot)==dim(haplo.array.final) [2] 

haplo.array.final[l, ] <- level.tot 
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# Read in the haplLo.array.final 

haplo.array.final <- read.table("haplo.array.final.txt", header=F) 
dim (haplo array. final) 

#---------- 
# 	Section 6: Function to calculate the Relationship matrix 

A_matrix <- function ( pedigree 

nanim <- nrow(pedigree) 

if (nanirn == 1) 

new <- 1 

else 
#----------# 
# calculating the inverse of A 
#----------# 

new <- matrix(O,nrow=nanim,ncol=nanim) 

for (id in 1:nanim) 

dad <- pedigree[id,l] 
mum <- pedigree[id, 2 ] 

# 	a <- [id,dad,mum] 
# 	a 

if (dad < 0 II  mum < 0 11 dad > id II mum > id) 

error ("Error problem with pedigree") 

if (dad == 0 && mum ==  0) 

both parents unknown 
new[id,id] <- 1 

# 	for (otherid in l:id- l) 

# 	 new[id 	,otherid] <- 0.0 
# 	 new[otherid,id] 	<- 0.0 

#---------- 
# 	sire known dam unknown 
#---------- 
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else if (dad > 0 && mum == 0) 
new[id ,id ] <- 1 
cont dam <- 0.0 
for (otherid in l:id-l) 

cont_sire <- new[dad,otherid]/2.0 

new[id 	,otherid] <- cont sire+cont dam 
new [otherid, Id] 	<- cont sire+cont dam 

#---------- 
# 	sire unknown dam known 
#---------- 

else if (dad == 0 && mum > 0) 
new[id ,id ] <- 1 
cont_sire <- 0.0 
for (otherid in l:id-l) 

cont dam <- new[mum,otherid]/ 2 .0 

new[id 	,otherid] <- cont sire+cont dam 
new [otherid, id] 	<- cont sire+cont dam 

#---------- 
both parents known 

#---------- 
else 

new[id ,id  ] <- 1+(new[dad,mum]/2.0) 
for (otherid in l:id - l) 

cont_sire <- new[dad,otherid]/2.0 
cont_dam <- new[mum,otherid]/2.0 
new[id 	,otherid] <- cont sire+cont dam 
new [otherid, id] 	<- cont sire+cont dam 

#----------# 

new 

#---------- 
# 	Section 7: Apply function, edit the output 
#----------# 

4t Order by the pedigree 

animal in pedigree.index <- which(pedigree$V4 %in% animal.id ) 
animal in pedigree <- pedigree[animal inpedigree.index, 41 

data_sorted. index <- order (animal_in_pedigree) 
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binary. geno . qc. removed, sorted <-
binary.geno.qc.removed[data_SOrted.indeX, I 
genabel . data. qc. removed, sorted <-
genabel.data.qc.removed[data_sorted.indeX, I 

haplo,array.final.sorted <- haplo.array.final[2:200, 
I [data_sorted.index, I 
haplo.array.final.sorted <- rbind(haplo.array.final[1,], 
haplo . array. final, sorted) 

# A matrix forming 

pedigree_A_matrix <- A_matrix (pedigree [, 2  :3]) 

animal _A_matrix <- pedigree_A_matrix [animal_in_pedigree, index, 
animal—in _pedigree, index] 
dim(animalA matrix) [1]==dim(binary.geno.qc.removed.sorted) [1] & 
dim(animal1matrix) [2]==dim(binary.geno.qc.removed.sorted) [1] 

# Calculate the inverse 

animal A matrix invert <- solve (animal A matrix) 

#----------# 
# 	Section 8: Parameters to use in the analysis 
#---------- 

nrecords <- dim(binary.geno.qc.removed.sorted) [1] 
lambda <- 0.00001 

ones—mat <- array(l, c(nrecords)) 
zmat <- diag(nrecords) 
a_mat <- animal_A_matrix_invert 

win.size <- 3 
up.stream <- 25 
down.stream <- 25 
p.value.tot <- NULL 
f.value.tot <- NULL 
mean.within.ld.tot <- NULL 
mean.between.ld.tot <- NULL 
5QTL.cumulative.tot <- NULL 
sQTL.chromosome.tot <- NULL 
5QTL.mycode.tot <- NULL 
window.start.cumulative.tot <- NULL 
window, start .chromosome. tot <- NULL 
window.start.mycode.tot <- NULL 
window.distance.tot <- NULL 
window.to.5QTL.distance.tot <- NULL 
5QTL.maf.tot <- NULL 

x.size.tot <- NULL 
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I 	 L# 

# 	Section 9: Analysis 
I ------- --- # 

for (y in 
(down.stream+l): ((length (unique (as.numeric (haplo.array.final.Sorted[l,] 
)-up. stream) ) 

ymat <- as.matrix(binary.geno.qc.removed.SOrted[,Y]) 

# determine test space about the sQTL 

level.index <- cNy-(down.stream-l)) : (y+up.stream)) 
test.space.index <- (haplo.array.final.sorted[l,] %in% 

level, index) 
haplo.data.region <- haplo.array.final.sorted[, test.space.index] 

I For a given 5QTL run model across the test space 

for (k in level.index) 
haplo.index <- (haplo.data.region[l,] %in% k) 
haplo.data <- haplo.data.region[,haplo.index] 
x_mat <- as.matrix(haplo.data[2: (dim(haplo.data) [1]), 

# Weed out singularities 

fit <- summary(lm(y mat'-x mat)) 
singular.index <- 

as.matrix(fit$aliased[2: (dim(x mat) [21+ 1 ) ]) 
singular.index <- singular.indexF 
xmat <- as.matrix(xmat[ ,singular.index]) 

x.size <- dim(x mat) [2] 

coeff <- array(O, cNnrecords+ 2 +(x.size -1 )), 
(nrecords+2+ (x. size-fl ) 

rhs <- array(O, cNnrecords+ 2 +(x.size -1 )))) 

# Fill coefficient matrix 

coeff[l:l, 1:11 <- t( ones mat)%*%ones mat, 
coeff[l:l, 2:(2+(x.size-1))] <- t(ones mat)%*%x mat 
coeff[l:l, ((2+(x.size-1))+l) : (nrecords+2+(x.size-

1))] <- t(ones mat)%*%z mat 

coeff[2:(x.size+l), 1:1] <- t( x mat)%*%ones mat 

coeff[2: (x.size+l), 2: (x.size+l)] <- t( x mat)%*%x mat 
coeff[2:(x.size+l), (x.size+2):(nrecords+2+(X.siZe 

l))].<- t( x mat)%*%z mat 

coeff[(x.size+ 2 ) : (nrecords+2+(x.size-l)), 1:1] <-
t (zmat) %*%ones mat 

coeff[(x.size+ 2 ) : (nrecords+2+(x.size-l)), 
2:(x.size+l)] <- t(zmat)%*%xmat 
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coeff[(x.size+ 2 ) : (nrecords+2+(x.size-l)), 
(x.size+2):(nrecords+2+(x.size-1))] <- 
(t (zmat) %*% z  mat) + (amat*lambda) 

# Fill rhs 

rhs[1:1] <- t(ones mat)%*%y mat 
rhs[2:(x.size+l)] <- t(x mat)%*%y mat 
rhs[(x.size+2) (nrecords+2+(x.size-l))] <- 

t (zmat) %*%y mat 

# Solve equation 

solution vec <- solve(coeff, rhs) 
mu—hat <- solution vec[l] 

# Get test statistics 
if(x.size==l) 
ghats <- solution vec[2] 
dfl <- dim(x mat) [2] 
cif2 <- dim(x mat) [l] - (dfl+1) 
ymean <- mean (ymat) 
y_hat <- mu—hat + (ghats[l] * xmat[,l]) 
ssql <- sum((yhat-ymean)"2) 
ssq2 <- sum((ymat-yhat)2) 

msql <- ssql/dfl 
msq2 <- ssq2/df2 
f_value <- msql/msq2 
p_value <- l-pf(f value, dfl, df2) 

if(x.size==2) 
g_hats <- solution vec[2:3] 
dfl <- dim(x mat) [2] 
df2 <- dim(x_mat) [l] - (dfl+1) 
ymean <- mean (y_mat) 
y_hat <- mu hat + (ghats[l] * xmat[,l] + 

(ghats[2] * xmat[,2])) 
ssql <- sum((yhat-ymean)2) 
ssq2 <- sum((ymat-yhat)"2) 

msql <- ssql/dfl 
msq2 <- ssq2/df2 
f_value <- msql/msq2 
p_value <- l-pf(f value, dfl, df2) 

if(x.size==3) 
g_hats <- solution vec[2:4] 
dfl <- dim(x mat) [2] 
df2 <- dim(x_mat) [1] - (dfl+1) 
y_mean <- mean (y_mat) 
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y_hat <- mu _hat + (ghats[l] * xmat[,l] + 
(ghats[21 * xmat[,21) + (ghats[31 * x_mat[,3])) 

ssql <- sum((yhat-ymean)"2) 
ssq2 <- sum((ymat-yhat)2) 

msql <- ssql/dfl 
msq2 <- ssq2/df2 
f_value <- msql/msq2 
p_value <- l-pf(f value, dfl, df2) 

if(x.size==4) 
ghats <- solution vec[2:5] 
dfl <- dim(x mat) [2] 
df2 <- dim(x mat) [l] - (dfl+l) 
ymean <- mean (ymat) 
yhat <- mu _hat + (ghats[l] * xmat[,l] + 

(ghats[2] * xmat[,2]) + (ghats[31 * xmat[,31) + (ghats[41 * 
x_mat [, 4]) 

ssql <- sum((yhat-ymean)'2) 
ssq2 <- sum((ymat-yhat)2) 

msql <- ssql/dfl 
msq2 <- ssq2/df2 
f_value <- msql/msq2 
p_value <- l-pf(f value, dfl, df2) 

if(x.size==5) 
ghats <- solution vec[2:6] 
dfl <- dim(x mat) [2] 
df2 <- dim(x mat) [l] - (dfl+l) 
ymean <- mean (ymat) 
yhat <- mu _hat + (ghats[l] * xmat[,l] + 

(ghats[2] * xmat[,2]) + (ghats[3] * xmat[,31) + (ghats[41 * 
x mat[,4])+(ghats[5]*xmat[,5])) 

ssql <- sum((yhat-ymean)"2) 
ssq2 <- sum((ymat-yhat)"2) 

msql <- ssql/dfi 
msq2 <- ssq2/df2 
f_value <- msql/msq2 
p_value <- l-pf(f value, dfl, df2) 

if(x.size==6) 
ghats <- solution vec[2: 7 ] 
dfl <- dim(x mat) [2] 
df2 <- dim(x mat) [l]-(dfl+l) 
ymean <- mean (ymat) 
y_hat <- mu hat + (ghats[1] * xmat[,l] + 

(ghats[2] * xmat[, 2 ]) + (ghats[3] * xmat[,3]) + (ghats[4] * 
xmat[,4]) + (ghats[5] * xmat[,5]) + (ghats[6] * xmat[,6])) 

ssql <- sum((yhat-ymean)2) 

314 



ssq2 <- sum((ymat-yhat)2) 

msql <- ssql/dfl 
msq2 <- ssq2/df2 
f_value <- msql/msq2 
p_value <-- l-pf(f value, dfl, df2) 

if(x.size==7) 
ghats <- solution vec[2:8] 
dfl <- dim(x mat) [2] 
df2 <- dim(x mat) [l]-(dfl+l) 
ymean <- mean (ymat) 
y_hat <- mu _hat + (ghats[l] * xmat[,l] + 

(ghats[2] * xmat[,21) + (ghats[3] * xmat[,31) + (ghats[41 * 
xmat[,4]) + (ghats[5] * xmat[,5]) + (ghats[6] * xmat[,61) + 
(ghats[7] * xmat[,7])) 

ssql <- sum((yhat-ymean)2) 
ssq2 <- sum((ymat-yhat)'2) 

msql <- ssql/dfl 
msq2 <- ssq2/df2 
f_value <- msql/msq2 
p_value <- l-pf(f value, dfl, df2) 

if(x.size==8) 
ghats <- solution vec[2:9] 
dfl <- dim(x mat) [2] 
df2 <- dim(x mat) [l] - (dfl+l) 
ymean <- mean (y mat)-  
yhat <- mu hat + (ghats[l] * x_mat[,l] + 

(ghats[2] * xmat[, 2 ]) + (ghats[3] * xmat[,3]) + (ghats[41 * 
xmat [, 4]) + (gliats [5] * xmat [, 5]) + (g_hats [6] * xmat [, 6]) + 
(ghats[7] * xmat[,71) + (ghats[81 * xmat[,8])) 

ssql <- sum((yhat-ymean)"2) 
ssq2 <- sum((ymat-yhat)"2) 

msql <- ssql/dfl 
msq2 <- ssq2/df2 
f value <- msql/msq2 
p_value <- l-pf(f value, dfl, df2) 

p.value.tot <- rbind(p.value.tot, p_value) 
f.value.tot <- rbind(f.value.tot, f_value) 

# Take LD information 

window.start <- k 
window.geno <- genabel.data.qc.removed[, 

c(window.start: (window.start+2)) 
within.ld <- r2fast(window.geno) 

- 	 mean.within.ld <- mean(within.ld[c(4, 7 ,8)]) 
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between.geno <- genabel.data.qc.removed[, 
c((window.start: (window.start+2)), y)] 

between.ld <- r2fast(between.geno) 
mean.between.ld <- mean(between.ld[c(13,14,15)]) 

mean.within.ld.tot <- rbind(mean.within.ld.tot, 
mean. within. ld) 

mean.between.ld.tot <- rbind(mean.between.ld.tot, 
mean .between . id) 

# Positon and distance info 

window.start.cumulative <-
maf.info.qc.removed[window.start, 111 

window.start.chromosome <- 
maf.info.qc.removed[window.start, 31 

window, start .mycode <- 
maf.info.qc.removed[window.start, 11 

window.finish <- k+2 
window.distance <- maf.info.qc.removed[window.finish, 

11] -window, start . cumulative 

window.to.sQTL.distance <- maf.info.qc.removed[y, 
11] -window. start. cumulative 

window.start.cumulative.tot <-
rbind(window.start.cumulative.tot, window.start.cumulative) 

wjndow.start.chromosome.tot <-
rbind(window.start.chromosome.tot, window.start.chromosome) 

window.start.mycode.tot <-
rbind(window.start.mycode.tot, window.start.mycode) 

wjndow.distance.tot <- rbind(window.distance.tot, 
window, distance) 

window.to.sQTL.distance.tot <-
rbind(window.to.5QTL.distance.tot, window.to.sQTL.distance) 

x.size.tot <- rbind(x.size.tot, x.size) 

# sQTL information 

5QTL.maf <- maf.info.qc.removed[y, 101 
sQTL.cumulative <- maf.info.qc.removed[y, 11] 
sQTL.chromosome <- maf.info.qc.removed[y, 3] 
5QTL.mycode <- maf.info.qc.removed[y, 11 

sQTL.cumulative.tot <- rbind(sQTL.cumulative.tot, 
5QTL. cumulative) 

sQTL.chromosome.tot <- rbind(sQTL.chromosome.tot, 
5QTL.chromosome) 
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sQTL.mycode.tot <- rbind(sQTL.mycode.tot, sQTL.mycode) 
sQTL.maf.tot <- rbind(sQTL.maf.tot, sQTL.maf) 

print (y) 

4t 	Section 10: Turn outputs into matrices 
# 

p.value.tot <- matrix(p.value.tot, nrow=length(level.index), 
ncol=length (unique (as. numeric (haplo . array. final. sorted[l, ] ) ) ) - 
(up.stream+down.stream), byrow=F) 
f.value.tot <- matrix(f.valuetot, nrow=length(level.index), 
ncol=length(unique(as.numeric(haplo.array.final.sorted[1,]H) 
(up. stream+down. stream), byrow=F) 

mean.within.ld.tot <- matrix(mean.within.ld.tot, 
nrow=length (level, index), 
ncol=length (unique (as.numeric (haplo.array. final. sorted[l, ] ) ) )-
(up.stream+down.stream), byrow=F) 
mean.between.ld.tot <- matrix(mean.between.ld.tot, 
nrow=length (level, index), 
ncol=length (unique (as.numeric (haplo.array. final.sorted[1, ] ) ) H 
(up.stream+down.stream), byrow=F) 

window.start.cumulative.tot <- matrix(window.start.cumulative.tot, 
nrow=length (level, index), 
ncol=length(unique(as.numeric(haplo.array.final.sorted[1,]H) 
(up.stream+down.stream), byrow=F) 
window.start.chromosome.tot <- matrix(window.start.chromosome.tot, 
nrow=length (level, index), 
ncol=length(unique(as.numeric(haplo.array.final.sorted[l,]))) -
(up.stream+down.stream), byrow=F) 
window.start.mycode.tot <- matrix(window.start.mycode.tot, 
nrow=length (level, index), 
ncol=length(unique(as.numeric(haplo.array.final.sorted[l,I)))-
(up.stream+down.stream), byrow=F) 

window.to.sQTL.distance.tot <- matrix(window.to.sQTL.distance.tot, 
nrow=length (level, index), 
ncol=length(unique(as.numeric(haplo.array.final.sorted[l,]))) -
(up.stream+down.stream), byrow=F) 
window.distance.tot <- matrix(window.distance.tot, 
nrow=length (level, index), 
ncol=length(unique(as.numeric(haplo.array.final.sorted[l,]))) -
(up.stream+down.stream), byrow=F) 

5QTL.details <- as.data.frame(cbind(sQTL.mycode.tot, 
sQTL.chromosome.tot, sQTL.cumulative.tot, sQTL.maf.tot)) 
names (sQTL.details) [1] <- "sQTL.mySNPcode" 
names (sQTL.details) [2] <- "sQTL.chromosome" 
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names (sQTL.details) [3] <- "sQTL.cumulative" 
names (sQTL.details) [4] <- "sQTL.maf" 

# 	Section 11: Save output files 
#---------- 

write.csv(sQTL.details, "sQTL.details.haplol.pedigree.csv", quote=F, 
row. names=F) 
write, table (window, start. cumulative, tot, 
"window.start.cumulative.tot.haplol.pedigree.txt", quote=F, 
row.names=F, sep="\t", col.names=F) 
write, table (window, start. chromosome. tot, 
"window.start.chromosome.tot.haplol .pedigree.txt", quoteF, 
row.names=F, sep="\t", col.names=F) 
write. table (window . start .mycode . tot, 
"window.start.mycode.tot.haplol.pedigree.txt", quote=F, row.namesF, 
sep="\t", col.names=F) 
write.table(p.value.tot, "p.value.tot.haplol.pedigree.txt", quote=F, 
row.names=F, sep="\t", col.names=F) 
write.table(f.value.tot, "f.value.tot.haplol.pedigree.txt", quote=F, 
row.names=F, sep="\t", col.names=F) 
write. table (window . distance . tot, 
"window.distance.tot.haplol.pedigree.txt", quote=F, row.names=F, 
sep="\t", col.names=F) 
write, table (mean .within. ld.tot, 
"mean.within.ld.tot.haplol.pedigree.txt", quote=F, row.names=F, 
sep="\t", col.names=F) 
write .table (mean . between. id., 
"mean.between.ld.tot.haplol .pedigree.txt", quote=F, row.names=F, 
sep="\t", col.names=F) 
write, table (window.to . 5QTL.distance. tot, 
"window.to.sQTL.distance.tot.haplol.pedigree.txt", quote=F, 
row.names=F, sep="\t", col.names=F) 
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