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Abstract

Temporal phenomena in a range of disciplines are more naturally modelled in

continuous-time than coerced into a discrete-time formulation. Differential sys-

tems form the mainstay of such modelling, in fields from physics to economics,

geoscience to neuroscience. While powerful, these are fundamentally limited by

their determinism. For the purposes of probabilistic inference, their extension

to stochastic differential equations permits a continuous injection of noise and

uncertainty into the system, the model, and its observation.

This thesis considers Bayesian filtering for state and parameter estimation in gen-

eral non-linear, non-Gaussian systems using these stochastic differential models.

It identifies a number of challenges in this setting over and above those of discrete

time, most notably the absence of a closed form transition density. These are ad-

dressed via a synergy of diverse work in numerical integration, particle filtering

and high performance distributed computing, engineering novel solutions for this

class of model.

In an area where the default solution is linear discretisation, the first major

contribution is the introduction of higher-order numerical schemes, particularly

stochastic Runge-Kutta, for more efficient simulation of the system dynamics.

Improved runtime performance is demonstrated on a number of problems, and

compatibility of these integrators with conventional particle filtering and smooth-

ing schemes discussed.

Finding compatibility for the smoothing problem most lacking, the major theoret-

ical contribution of the work is the introduction of two novel particle methods, the

kernel forward-backward and kernel two-filter smoothers. By harnessing kernel

density approximations in an importance sampling framework, these attain can-

cellation of the intractable transition density, ensuring applicability in continuous

time. The use of kernel estimators is particularly amenable to parallelisation, and

provides broader support for smooth densities than a sample-based representation

alone, helping alleviate the well known issue of degeneracy in particle smoothers.

Implementation of the methods for large-scale problems on high performance

computing architectures is provided. Achieving improved temporal and spatial

complexity, highly favourable runtime comparisons against conventional tech-
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niques are presented.

Finally, attention turns to real world problems in the domain of Functional

Magnetic Resonance Imaging (fMRI), first constructing a biologically motivated

stochastic differential model of the neural and hemodynamic activity underlying

the observed signal in fMRI. This model and the methodological advances of

the work culminate in application to the deconvolution and effective connectivity

problems in this domain.
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Chapter 1

Introduction

In fields as diverse as finance, biology and the physical sciences, dynamical sys-

tems are naturally modelled using continuous-time stochastic processes. Such

equations are a mainstay of stock market prediction, neural modelling, environ-

mental monitoring and other applications. More recently, they have arisen in the

hemodynamics underpinning Functional Magnetic Resonance Imaging (fMRI),

which particularly motivates this work.

Continuous time modelling can provide an expressiveness that discrete time can-

not. The list of notable behaviours more amicable to continuous-time includes

jumps, phase transitions and bistabilities. All of these behaviours are actuated

only by the continual injection of stochasticity into a system. The introduction

of noise at only preset discrete times rarely suffices to capture the onset of these

behaviours effectively.

Stochasticity not only drives these intrinsic behaviours of the phenomena un-

der study, but can also be used to account for uncertainty in the model itself.

Stochasticity introduced to poorly understood components reflects inconfidence

in the model, while limited stochasticity implies firmer knowledge. This is partic-

ularly important in the fMRI application of this work, where an understanding of

the coupling between neural and hemodynamic activity in the brain is limited [1].

Almost surely the same can be said of other application areas, particularly young

fields where computational models are yet to mature.

Given observations and a parameterised model of a continuous-time dynamical

1



2 Chapter 1. Introduction

system, we are interested in estimating the underlying state and parameters of

the model. To do so, some of our most powerful machinery is that of Bayesian

filtering, fundamentally the Kalman filter, and in more recent years Monte Carlo

techniques such as the particle filter. Largely developed for discrete-time systems,

and at most the special case of linear-Gaussian systems in continuous time, the

application of such methods to general non-linear, non-Gaussian continuous-time

models is far from straightforward. Their applicability is important, however,

as such methods can effectively combine a physical model describing system dy-

namics with actual observations. In the case of fMRI, purely statistical methods

such as Structural Equation Modelling (SEM) [2; 3] oppose deterministic meth-

ods such as Dynamic Causal Modelling (DCM) [4]. Bayesian filtering represents

an intermediate between the extremes of these two paradigms.

This thesis identifies and addresses substantial challenges to state and parameter

estimation over the broad class of continuous-time dynamical systems described

by Stochastic Differential Equations (SDEs). It attacks these from all sides by

drawing together a novel synergy of diverse material from the largely disparate

subjects of numerical integration, Bayesian filtering and high performance com-

puting. The methods presented are general, easy to apply and parallelisable.

They do not rely on particular functional forms, model dependent integrations

or similar. Indeed, the methods are Monte Carlo based, and for the most part

compartmentalise the model as a black box.

The work’s major contribution is to the smoothing problem – estimating the

state of a dynamical system across time conditioned on an entire data sequence.

Fast, parallelised, approximate methods are presented in the form of the kernel

forward-backward and kernel two-filter smoothers. Both of these are applica-

ble to the continuous time setting without the serious compromises required of

conventional methods, and are particularly good candidates for distributed com-

puting architectures. Their use of kernel density estimators may also provide

broader support throughout smoothing calculations, potentially alleviating the

degeneracy problem apparent in the reweighting technique of conventional parti-

cle smoothers.

Smoothing is important in a number of situations:

• to accurately perform state estimation across an entire time series by ex-
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ploiting observations as much as possible,

• to assess model fit and perform model comparison, and

• for iterative parameter estimation schemes such as Maximum Likelihood

(ML) estimation using Expectation-Maximisation (EM).

The computational efficiency of these kernel smoothers is particularly important

for the last of these, and their parallel implementation allows them to be scaled

up to large problems. Use of conventional particle smoothers in such an iter-

ated context is untenable owing to their computational expense, all the worse as

dimensionality and data size increase.

While the methods are developed and presented in a general light, they have been

motivated by problems in fMRI and we acknowledge a bias in pursuing matters

most relevant to this case. The peculiarities of this domain include low signal

to noise ratio, sparsity of observations in time, fundamental uncertainty in the

models used and significant scale in terms of both dimensionality and data size.

Despite this, the methods introduced are generally applicable and should find use

in many other domains. While fMRI provides the most compelling demonstration

of these methods, a number of artificial simulation problems have been employed

to demonstrate other points not well illustrated by these.

1.1 Contributions

This thesis tackles a number of outstanding limitations in the applicability of

Bayesian filtering to dynamical systems:

• use of continuous time, and

• scalability with dimensionality.

It attacks these from all sides through the novel synergy of a number of substantial

but separate bodies of work:

• numerical integration of SDEs,

• Bayesian filtering methods, and

• parallel, distributed and high performance computing.

The major contributions of this work are:
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• A substantial review of methodology leading to a clear identification of the

challenges inherent in applying Bayesian filtering methods to continuous-

time problems.

• Introduction of higher-order Runge-Kutta schemes for numerical integra-

tion into a Bayesian filtering and smoothing framework, with demonstrably

improved performance.

• Introduction of the kernel forward-backward and kernel two-filter smoothers,

facilitating efficient assessment of model fit and iterative parameter estima-

tion schemes. These are applicable to a broader range of dynamical systems

than both conventional methods and related work, in particular the general

class of models expressed using stochastic differential equations. By their

construction they facilitate use of higher-order Runge-Kutta methods, and

are computationally more efficient than conventional methods in terms of

both space and runtime resources. In addition, through their use of den-

sity estimators, they provide a handle to address the degeneracy problem

identifiable in all conventional particle smoothing techniques – a means of

generating new samples to support the smooth density rather than merely

reweighting samples that were drawn with the intent of supporting the filter

density only.

• A concrete implementation of these and other approaches suitable for large-

scale, high-performance distributed computing environments. This has cul-

minated in the release and continued development and maintenance of the

open source dysii1 C++ library for probabilistic inference and learning in

continuous-time dynamical systems.

• Extension into the stochastic setting of a biologically motivated determinis-

tic differential model of the neural and hemodynamic activity underlying the

observed Blood Oxygen Level Dependent (BOLD) signal in fMRI, as well

as novel application of this model and the methods above to fMRI analysis,

in particular the deconvolution and effective connectivity problems.

1.2 Impact

This work has contributed to the following publications:

1http://www.indii.org/software/dysii/

http://www.indii.org/software/dysii/
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• Murray, L. and Storkey, A. (2008) Continuous time particle filtering for

fMRI. Advances in Neural Information Processing Systems, 20.

• Storkey, A. J., Simonotto, E., Whalley, H., Lawrie, S., Murray, L. and

McGonigle, D. (2007) Learning Structural Equation Models for fMRI. Ad-

vances in Neural Information Processing Systems, 19.

The implementation of the ideas presented in this work is available as:

• The dysii Dynamic Systems Library, online at http://www.indii.org/

software/dysii/ and on SourceForge at http://www.sourceforge.net/

projects/dysii/. This is a substantial body of code, consisting of approx-

imately 20 000 lines of C++ code.

1.3 Related Work

Very recent work has identified similar issues to those discussed throughout this

work. In this section we review these and contrast our own methods to them.

1.3.1 Continuous-time modelling

In the context of financial modelling, where SDEs are prevalent, [5] presents the

idea of introducing m − 1 latent points between each pair of observations of a

partially observed stochastic process. This corresponds precisely to an Euler-

Maruyama discretisation, with m tuned to control error appropriately. Batch

Markov Chain Monte Carlo (MCMC) may then be performed over the system.

We find such fixed time-step Euler-Maruyama discretisation computationally ex-

pensive, even untenable in the worst cases, and discuss this at length in §4-5. Our

own methods facilitate an adaptive time-step in the first instance, and higher or-

der discretisations than Euler-Maruyama in the second. This potentially delivers

substantially leaner runtimes, which we demonstrate through empirical results.

The batch MCMC approach may also suffer from poor mixing, particularly in high

dimensional systems where we might expect many modes in the posterior. While

the importance sampling techniques of this work also suffer under dimensionality

for other reasons, their sequential approach to inference, involving simulation of

http://www.indii.org/software/dysii/
http://www.indii.org/software/dysii/
http://www.sourceforge.net/projects/dysii/
http://www.sourceforge.net/projects/dysii/


6 Chapter 1. Introduction

the dynamical system, allows them to sample from all modes.

Rather than attempting to maintain tractability of the transition density, [6]

instead constructs an estimator of the density evaluations. The methodology

begins with the exact algorithm [7] for simulating Brownian bridges – trajectories

given fixed start and end points. The exact algorithm is a rejection sampling

scheme built around the Poisson estimator, the acceptance rate of which can be

related to the transition density. This allows arbitrary proposals to be made at

time tn+1 and matched to samples at time tn. The result is an unbiased estimator

of the transition density with various nice theoretical properties. This estimator

can then replace the transition density in the particle filter weight calculation to

obtain the random weight particle filter [6]. One could potentially apply the same

ideas to the smoothing problem.

The main limitation of this methodology, as acknowledged by the authors, is that

the SDE must be transformed into one with gradient drift and additive diffusion

in order to use the exact algorithm. That is, of the form:

dx = a(x, t) dt+B(t) dW , (1.1)

where there exists an A : RN → R such that a(x, t) = ∇A(x, t). Note in partic-

ular that the B term cannot depend on the state x, thus prohibiting correlated

noise structures.

The authors discuss the conversion of any given equations into equivalent equa-

tions of this form, which is always possible in the one-dimensional case. It is

not always possible in higher-dimensional cases, however. This may be stifling,

although it is difficult to judge how significant a limitation it poses in practice.

Even if theoretically tenable, conversion of models into such a form may prove

especially difficult pragmatically.

Furthermore, while numerical integration of the SDE is not required per se, the

authors advocate the use of local linearization [8] or Euler-Maruyama in estab-

lishing an appropriate proposal distribution for the filter. Discretisation error

may therefore be avoided in relegating these schemes to the proposal only, but

the computational expense of these low-order integrators is not.

The methods of this work apply to a more general class of systems, as given by

(3.1). In particular they permit multiplicative or other correlated noise, as in the
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fMRI models that we use experimentally in §7.1, and do not impose constraints

on the drift term. We would highlight that the single kernel treatment of the

kernel forward-backward smoother (§5.4.1) alludes to the use of a single kernel

as an estimator of the transition density also, albeit a much simpler one to that

proposed in [6].

Fundamentally different approaches to Monte Carlo may be considered, in par-

ticular variational methods [9; 10]. These are promising, particularly as param-

eters may be estimated at the same time as the state. As with all variational

approaches, however, there is the practical problem of choosing an appropriate

family of approximate closed-form densities to fit to the true distribution, a de-

cision exponentially more difficult in high dimensional spaces.

1.3.2 Other material

A number of other works are worth noting, although by and large they bear only

superficial resemblance to the methods described here. Nevertheless, they have

levered similar techniques to address some of the issues fringing this work.

In discussing the regularised particle filter, [11] derives an analagous regularised

smoother based on diversifying particle stock using kernel densities. Its derivation

is equivalent to that of conventional smoothers, with the introduction of kernels

over the filter density only providing a regularisation equivalent to that employed

for the forward pass. It is not motivated by the continuous time setting of this

work, and in particular makes no attempt to eliminate the transition density or

establish a scheme for drawing new samples to support the smooth density.

In [12], kd trees are used to improve the performance of a conventional smoother,

as we use them in §6 to speed up kernel density evaluations. This is again not

motivated by continuous-time models and does not attempt to address issues

surrounding the potential intractability of the transition density, or degeneracy.

It is also worth noting a number of other techniques to perform some sort of

interpolation over sample points in a particle filtering context. Similar to kd

trees, [13] makes use of density trees, loosely speaking histograms of heterogenous

bin size, albeit in a discrete state space. Parametric methods such as Gaussian
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mixtures are an obvious alternative to these nonparametric methods also, and

numerous works on Gaussian mixture based filters exist for the discrete-time

case [14; 15; 16]. Variational distribution fits could potentially be coupled in

also.

1.3.3 Summary

This section has reviewed very recent developments in the area and contrasted

the development of our own approach with them ahead of its detailed exposi-

tion. The main advantage of our own methods is their generality, with other

approaches reliant on particular assumptions imposed on the underlying form of

the dynamical system.

1.4 Structure

The work is separated into two parts. Part I develops the Bayesian filtering

aspect of this work in a generalised manner, while Part II specialises this to the

particular case of fMRI.

Part I opens with a technical review of essential material – §2 introducing Bayesian

filtering, smoothing and parameter estimation, and §3 continuous time stochas-

tic processes. The two are fused with emergent challenges in §4, with a number

of working problems introduced for experimental elucidation. §5 represents the

major theoretical contribution of the work, deriving the kernel forward-backward

and kernel two-filter smoothers and demonstrating their application to the models

introduced in the preceding chapter. §6 is the major computational contribution

of the work, discussing implementation for distributed computing.

The developed methods are applied to fMRI analysis in Part II. §7 provides a brief

introduction to essential material in fMRI, before §8 applies the theory developed

in Part I to salient problems in this domain.

§9 provides a final assessment of the work, fruitful avenues for future work and

concluding remarks.



Part I

Bayesian Learning of Continuous

Time Dynamical Systems

9





Chapter 2

Bayesian Learning of Dynamical

Systems

This chapter provides a general mathematical formulation of dynamical systems

(§2.1) and an overview of methods for inference and learning within such systems.

It particularly focuses on the class of sequential Monte Carlo methods commonly

called particle filters, and their application in solving the filtering (§2.2), smooth-

ing (§2.3) and parameter estimation (§2.4) problems.

2.1 Dynamical systems

For an ascending sequence of T time points t1, . . . , tT , we are provided with

measurements y(t1), . . . ,y(tT ) ∈ RM indicative of the latent state x(t) ∈ RN of

a dynamical system across time t. The state of the system transitions according

to a stochastic Markov function f(x,v,θ, t), where v is system noise and θ static

parameters across time. The measurement acquired from the system in any state

may be predicted by a known function g(x,w,θ), where w is measurement noise.

Figure 2.1 provides the graphical model.

Of interest is the learning of the unknown parameters θ, as well as estimating

the state of the latent process x(t) given the observations of the process y(t).

For notational convenience and without loss of generality, we let x0 denote the

11
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y(t1) y(t2) y(t3)

x(t3)x(t2)x(t1)x(0)

f(x,v,θ, t)

g(x,v,θ)

Figure 2.1: Directed graphical model of the dynamical system formulation.

initial state of the system at time t = 0, and denote xn = x(tn) and yn = y(tn).

In referring to sequences, xi:j with i < j will refer to the set {xi, . . . ,xj} and

likewise yi:j to {yi, . . . ,yj}. While this compact notation does suggest discrete

time sequences, we stress that it is simply a shorthand for referring to the original

processes x(t) and y(t) at particular time points. We also particularly note that

t1, . . . , tn need not be equispaced.

The conditional independencies implicit in the structure of Figure 2.1 highlight

the assumed Markovian nature of f(·). A Markov process is one in which the

following property is asserted1:

Property 2.1 (Markov conditional property) For an ascending sequence of

times t1, . . . , tT , a Markov process exhibits the property:

p(xj:T |x1:i) = p(xj:T |xi) ,

for i < j. That is, conditionals on the process depend only on the most recent

state of the process.

By applying the product rule:

p(x1:T ) = p(xT |x1:T−1)p(x1:T−1) (2.1)

= p(xT |xT−1)p(x1:T−1) , (2.2)

1Merely asserted and not derived because it is arguable whether any such process can really
exist outside of mathematical abstraction. See [17] for discussion.
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and expanding recursively, the following corollary holds:

Property 2.2 (Markov joint property) For an ascending sequence of times

t1, . . . , tT , a Markov process exhibits the property:

p(x1:T ) = p(x1)
T∏
i=2

p(xi |xi−1) .

That is, joint densities over states along a time sequence may be factorised as

the product of conditional densities between states at neighbouring times in the

sequence.

These two properties will be critical in the derivation of the methods described

in this chapter.

2.2 Filtering

To solve the filtering problem, we wish to estimate p(xn |y1:n) for all n = 1, . . . , T ,

that is, the distribution over the state at each time point given the measurements

acquired up to that time. We will refer to this as the filter density.

In the simplest case where the filter densities are Gaussian and the transition

and measurement functions linear, the seminal Kalman filter [18] may be used

to obtain the optimal solution to the filtering problem. Extensions of this for

the nonlinear case including the extended, and more recently unscented, Kalman

filters [19; 20]. Extensions of these to the non-Gaussian case include the Gaussian

sum Kalman filter [14] and Gaussian mixture sigma-point particle filter [16],

respectively. We particularly discriminate such methods from those of discrete-

state methods, such as the Hidden Markov Model, which are not applicable in

continuous state settings.

The applicability of these methods requires that simplifying assumptions be im-

posed on the filter densities, and transition and measurement functions. In the

general case of nonlinear functions and analytically intractable densities, sample-

based Monte Carlo methods trump these analytical tools. In the context of

dynamical systems, such methods are commonly grouped under the heading of
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particle filters, in bulk representing the sequential extension of importance sam-

pling. We concentrate our review on this family of techniques.

2.2.1 Particle filter

Rather than assume that the state at time tn is distributed in some closed

form manner, arbitrary filter densities may be admitted by approximating the

state with a weighted set of P samples {(s(i)
n , π

(i)
n )}, where i = 1, . . . , P and∑P

i=1 π
(i)
n = 1, so that p(xn |y1:n) ≈

∑P
i=1 π

(i)
n δ(xn− s

(i)
n ). Given the filter density

at one time, we recursively approximate that at the next by propagating these

samples (“particles”) through time using the transition function f(·) and adjust-

ing their weights using the likelihood of the observation at the next time under

the measurement function g(·).

To motivate the basic idea, we begin with the simplest particle filter, the bootstrap

filter [21]2, before introducing a more general formulation.

Algorithm 2.1 (Bootstrap particle filter) For time tn, and given the weighted

sample set {(s(i)
n−1, π

(i)
n−1)} representing the filter density p(xn−1 |y1:n−1), propagate

each sample s
(i)
n−1 through the transition function f(·) to obtain s

(i)
n and weight

with:

π(i)
n = p(yn |xn = s(i)

n )π
(i)
n−1 (2.3)

Normalise all weights to sum to 1. The weighted sample set {(s(i)
n , π

(i)
n )} then

approximates the filter density p(xn |y1:n).

This basic algorithm suffers from the problem of degeneracy, tending to heap

weight on only a single particle after several iterations and normalisation. To

mitigate this, an additional resampling step is added to eliminate lowly weighted

particles and multiply highly weighted particles. This may simply be a multino-

mial draw from the sample set, with replacement and probabilities commensurate

with weights, producing a new set of equally weighted particles. A stratified ap-

proach [23], motivated by minimising resampling bias, is most common.

2Or condensation algorithm [22].
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We now introduce a more general importance sampling formulation into which

common variants of the algorithm will be fit. This novel formulation is different to

that of other work in the way it considers importance sampling of pairs {s(i)
n−1:n}

rather than single points {s(i)
n }. We have done this to integrate resampling into

the proposal, which will emphasise emergent issues in the continuous-time setting

later in this work.

A recursive factorisation of the filter density proceeds as follows:

p(xn |y1:n) =
p(yn |xn,y1:n−1)p(xn |y1:n−1)

p(yn |y1:n−1)
(2.4)

∝ p(yn |xn)p(xn |y1:n−1) (2.5)

∝ p(yn |xn)

∫
p(xn |xn−1)p(xn−1 |y1:n−1) dxn−1 . (2.6)

In the base case:

p(x1 |y1) ∝ p(y1 |x1)

∫
p(x1 |x0)p(x0) dx0 , (2.7)

where p(x0) is the prior over the initial state of the system. To reduce clutter, we

use proportions (∝) to give densities up to a constant factor. This is a common

feature of the derivations given here and elsewhere, and is justified shortly. We

also particularly highlight the importance of the p(xn |xn−1) term for later in this

work, and will refer to it as the transition density.

Proceeding from (2.6), note the joint density:

p(xn−1:n |y1:n) ∝ p(yn |xn)p(xn |xn−1)p(xn−1 |y1:n−1) , (2.8)

and consider importance sampling from this using a proposal density q′(xn−1:n).

For i = 1, . . . , P , draw s
(i)
n−1:n ∼ q′(xn−1:n) and weight with:

π(i)
n =

p(yn |xn = s
(i)
n )p(xn = s

(i)
n |xn−1 = s

(i)
n−1)p(xn−1 = s

(i)
n−1 |y1:n−1)

q′(xn−1:n = s
(i)
n−1:n)

. (2.9)

Then normalise all weights to sum to 1 by reassigning:

π(i)
n ←

π
(i)
n∑P

j=1 π
(j)
n

. (2.10)

Such normalisation is hereafter considered implicit after any assignment of weights.

Observe that as the p(yn |y1:n−1) term is dependent only on observations, it is the
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same for all particles, and so eliminated during this normalisation. This justifies

the use of proportions introduced above.

In summary, the general algorithm works as follows:

Algorithm 2.2 (Abstract particle filter) Given the weighted sample set

{(s(i)
n−1, π

(i)
n−1)}, representing the density p(xn−1 |y1:n−1), and a proposal density

q′(xn−1:n), sample s
(i)
n−1:n ∼ q′(xn−1:n) and weight with:

π(i)
n =

p(yn |xn = s
(i)
n )p(xn = s

(i)
n |xn−1 = s

(i)
n−1)p(xn−1 = s

(i)
n−1 |y1:n−1)

q′(xn−1:n = s
(i)
n−1:n)

. (2.11)

The weighted sample set {(s(i)
n , π

(i)
n )} then approximates the filter density p(xn |y1:n).

Note that resampling, in this context, is absorbed into the proposal density.

In most cases, the runtime complexity of a particle filter is O(TP ), and memory

complexity O(NP ). This complexity could conceivably increase for particularly

elaborate proposal distributions.

In the following sections we consider alternatives for the proposal q′(xn−1:n), de-

riving some common variants of the basic particle filtering algorithm. In addition

to a derivation of the bootstrap filter in this framework, we focus on the two which

will prove most relevant later in this work, the auxiliary [24] and regularised [25]

particle filters.

2.2.2 Bootstrap particle filter

As p(xn−1 |y1:n−1) is not available in closed form, consider a factorised importance

density of the form q′(xn−1:n) = q(xn)p(xn−1 |y1:n−1), such that:

π(i)
n =

p(yn |xn = s
(i)
n )p(xn = s

(i)
n |xn−1 = s

(i)
n−1)

q(xn = s
(i)
n )

, (2.12)

p(xn−1 |y1:n−1) having been cancelled so as to avoid calculating it explicitly. This

is sufficient if independently drawing each s
(i)
n−1 ∼ p(xn−1 |y1:n−1). This is akin to

a simple resampling scheme, which should preferably remain decoupled from the

main algorithm. In practice the particles {s(i)
n−1} from the previous time point are
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reused deterministically to reduce sampling error. In this case their importance

weights {π(i)
n−1} must also be multiplied in:

π(i)
n =

p(yn |xn = s
(i)
n )p(xn = s

(i)
n |xn−1 = s

(i)
n−1)

q(xn = s
(i)
n )

π
(i)
n−1 . (2.13)

Any resampling strategy can be employed as necessary to combat degeneracy.

The bootstrap filter of Algorithm 2.1 corresponds precisely to the case where

q(xn) = p(xn |xn−1 = s
(i)
n−1), cancelling the transition density in the numerator

of (2.11). While simple and computationally efficient, this proposal critically ne-

glects consideration of the upcoming observation yn, and so is suboptimal in cases

where observations are known ahead of time3. Other proposals attempt to better

fit the target density so as to provide a more lucid representation for any fixed

number of samples. Combined with appropriate resampling strategies, they may

also diversify the particle stock, curtailing myopic loitering in neighbourhoods of

high likelihood.

2.2.3 Auxiliary particle filter

The auxiliary particle filter [24] attempts to incorporate knowledge of the next

observation into the proposal by setting:

q′(xn−1:n) = p(xn |xn−1)p(xn−1 |y1:n) (2.14)

=
p(xn |xn−1)p(yn |xn−1,y1:n−1)p(xn−1 |y1:n−1)

p(yn |y1:n−1)
(2.15)

=
p(xn |xn−1)p(yn |xn−1)p(xn−1 |y1:n−1)

p(yn |y1:n−1)
(2.16)

∝ p(xn |xn−1)p(yn |xn−1)p(xn−1 |y1:n−1) (2.17)

Now consider importance sampling from (2.8) using this as proposal. The weight

calculation reduces to:

π(i)
n =

p(yn |xn = s
(i)
n )

p(yn |xn−1 = s
(i)
n−1)

. (2.18)

The denominator may be expanded to:

p(yn |xn−1 = s
(i)
n−1) =

∫
p(yn |xn)p(xn |xn−1 = s

(i)
n−1) dxn , (2.19)

3Early work on particle filters, including the bootstrap filter, was often motivated by real-
time tracking applications where the next measurement is not available ahead of time (see e.g.
[22]).
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although in practice a single point estimate is usually made, avoiding expensive

calculation of this integral. Combining all this results in the following algorithm:

Algorithm 2.3 (Auxiliary particle filter) For i = 1, . . . , P , draw

s
(i)
∗ ∼ p(xn |xn−1 = s

(i)
n−1) and let:

β(i)
∗ = p(yn |xn = s(i)

∗ )π
(i)
n−1 (2.20)

The weighted sample set {(s(i)
n−1, β

(i)
∗ )} now approximates the density p(xn−1 |y1:n).

Resample the {s(i)
n−1} using the weights {β(i)

∗ } in place of the original weights

{π(i)
n−1}. For each resampled point s

(i)
n−1, of original index j (repetitions likely),

redraw s
(i)
n ∼ p(xn |xn−1 = s

(i)
n−1) and weight with:

π(i)
n = p(yn |xn = s(i)

n )
π

(j)
n−1

β
(j)
∗

. (2.21)

The weighted sample set {(s(i)
n , π

(i)
n )} then approximates the filter density p(xn |y1:n).

Intuitively, this augments the myopic bootstrap filter with an auxiliary process

that provides a one step lookahead, on the assertion that the propagation of parti-

cles important at the current time is not as critical as the propagation of particles

likely to be important in future. Extension to multiple steps is straightforward,

at the risk of degeneration in the auxiliary process as the lookahead increases.

Equivalently, the auxiliary particle filter may be considered a resampling strategy

that favours particles likely to be important at the next time point, with an

importance reweighting to compensate for this bias.

2.2.4 Regularised particle filter

The regularised particle filter [25] attempts to diversity particle stock by introduc-

ing kernel densities. Recall that in the standard particle filter, the filter density

is represented as a weighted mixture of point masses:

p(xn |y1:n) ≈
P∑
i=1

π(i)
n δ(xn − s(i)

n ) . (2.22)
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In order to interpolate this density between sample points, consider replacing the

Dirac functions with a broader kernel K of bandwidth h, obtaining:

pK(xn |y1:n) ≈ 1

hN

P∑
i=1

π(i)
n K(

1

h
‖xn − s(i)

n ‖) . (2.23)

K may be any kernel satisfying a set of weak conditions, of which the univariate

Gaussian is one such case, and used throughout this work. Other possible selec-

tions include uniform, cosine and Epanechnikov kernels, along with a range of

other classes of both finite and infinite extent. Whatever the selection of kernel,

the result is a kernel density estimate [26] of the intractable filter density, from

which it is possible to make approximate density calculations at arbitrary points

in the space.

Selection of an appropriate bandwidth h can be tricky. For this purpose we may

wish to incorporate a standardisation of the sample points:

pK(xn |y1:n) ≈ 1

hN |Ln|−1

P∑
i=1

π(i)
n K(

1

h
‖L−1

n (xn − s(i)
n )‖) , (2.24)

where Ln is the Cholesky decomposition of the sample covariance matrix at time

tn. This is useful as it brings to bear a wealth of guidance as to the setting of h. In

particular, for P samples from a standard N -dimensional Gaussian distribution,

and Gaussian kernel K, the optimal bandwidth is given by [26]:

hopt(N,P ) =

[
4

(N + 2)P

] 1
N+4

. (2.25)

As a rule of thumb, multiples of this are generally an appropriate selection. To

firm intuition of such kernel densities, Figure 2.2 depicts kernel density estimates

of a simple Gaussian mixture density for various bandwidth settings.

To implement the regularised particle filter, the intractable filter density p(xn |y1:n)

is replaced by its kernel density estimate pK(xn |y1:n). Particles are resampled

from the kernel density before proceeding according to the standard bootstrap

filter, so that q(xn) = p(xn |xn−1 = s
(i)
n−1):

Algorithm 2.4 (Regularised particle filter) For i = 1, . . . , P , draw

s
(i)
K ∼ pK(xn−1 |y1:n−1) and s

(i)
n ∼ p(xn |xn−1 = s

(i)
K ), and let:

π(i)
n = p(yn |xn = s(i)

n ) (2.26)
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Figure 2.2: Example kernel density estimation; (top left) original four component

Gaussian mixture in N = 2 dimensions; P = 1000 Gaussian kernel density estimates

of bandwidth (top right) hopt/2, (bottom left) hopt and (bottom right) 2hopt.

Colour scale is equivalent in all cases.

The weighted sample set {(s(i)
n , π

(i)
n )} or kernel density

pK(xn |y1:n) = 1
hN

∑P
i=1 π

(i)
n K( 1

h
‖xn − s

(i)
n ‖) then approximates the filter density

p(xn |y1:n).

To efficiently sample from the kernel density, first draw j ∼ {i = 1, . . . , P} with

probabilities given by the weights {π(i)
n }, then take the sample s

(i)
K = s

(j)
n +k(i)e(i),

where k(i) ∼ K(·) and e(i) is a vector drawn uniformly from the sphere of unit

vectors in RN . The latter may be obtained by exploiting the spherical symmetry

of a Gaussian distribution, drawing an N -dimensional vector and normalising to

unit length.

The main advantage of the regularised particle filter is that its kernels facilitate

greater diversity in particle stock. This becomes particularly useful for parameter

estimation, discussed in §2.4.
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2.2.5 Other considerations

There are several other potentially useful proposals and one can list numerous

possibilities. By way of example, these include the output of a concurrently

running unscented Kalman filter [27], and use of density trees [13] on a similar

vein to kernel densities. While these broad proposals are useful in maintaining

particle diversity, they may require an increase in the number of particles to

provide adequate support for the true density. Finer control can be obtained via

precise application of domain specific transition kernels [28][ch.6], known as the

resample-move strategy. An exhaustive review of published proposals is beyond

the scope of this work. We point the reader to [28] for a handle into the literature.

One additional heuristic is worth mentioning. Because resampling constitutes an

additional source of sampling error, it can be worth regulating so as to perform

only when necessary. A useful measure is that of effective sample size [29] (ESS),

defined as:

Pess =

(∑P
i=0 π

(i)
)2

∑P
i=0(π(i))2

, (2.27)

that is, the inverse of the sum of the normalised weights. Intuitively, this provides

a measure, not greater than P , approximating the equivalent number of indepen-

dent samples corresponding to the weighted particle stock. Observe that if all

weights are equal, as after resampling, Pess = P . The greater the variance of the

weights, the smaller Pess, until one weight dominates and the measure approaches

1.

Effective sample size may be used to trigger resampling. A simple strategy, for

example, is to resample only when Pess < P/2.

2.3 Smoothing

To solve the smoothing problem, we wish to calculate p(xn |y1:T ) for all n =

1, . . . , T , that is, the distribution over the state at each time point given all the

available measurements. We will refer to this as the smooth density.

Unlike filtering, which is often motivated by real-time applications, or at least the
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constraint of observations arriving online, smoothing is usually an offline opera-

tion used to improve the estimates of a filter post hoc. In most cases a smoother

accompanies a compatible filter, and so our focus here will be on techniques

complementary to the methods presented in §2.2.

2.3.1 Filter-smoother

Our first consideration is to apply a filter while preserving whole particle trajec-

tories [23]. Rather than marginalising out the particle history to obtain the filter

density p(xn |y1:n), trajectories are preserved to instead approximate p(x1:n |y1:n)

by {(s(i)
1:n, π

(i)
n )}, where s

(i)
1:n stores the entire trajectory of the ith particle since

the start of the filter. After obtaining p(x1:T |y1:T ) at conclusion of the filter, the

smooth density at any time may be obtained by marginalising out samples from

all other times. We refer to this approach as the filter-smoother.

The main attraction of this method is negligible additional computational cost

over that of a standard filter. Indeed, like a filter, the runtime complexity of the

method is O(TP ). Memory requirements increase to O(TNP ) given the storage

of entire trajectories.

Clearly, if the filter is to avoid degeneracy, a resampling scheme will be employed.

By purpose, resampling deliberately terminates some trajectories while branching

others, and unfortunately this stymies the filter-smoother. After some time, it is

likely that the entire particle stock will descend from a single common ancestor

at some earlier time [30]. Marginalisation to obtain the smooth density at that

earlier time will produce a degenerate estimate heaped on a single particle.

For this reason, despite its computational attractiveness, the filter-smoother is

rarely of practical use.

2.3.2 Two-filter smoother

Consider the following factorisation of the smooth density:

p(xn |y1:T ) =
p(yn:T |xn,y1:n−1)p(xn |y1:n−1)

p(yn:T |y1:n−1)
(2.28)

∝ p(yn:T |xn)p(xn |y1:n−1) . (2.29)
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In this way the smooth density is proportional to the product of a forward looking

likelihood and filter density. Focusing on the likelihood:

p(yn:T |xn) =
p(xn |yn:T )p(yn:T )

p(xn)
(2.30)

∝ p(xn |yn:T )

p(xn)
, (2.31)

so that the likelihood may be obtained through the combination of a prior and

a filter starting at time tT and progressing backward in time. Care should be

taken in the construction of such a filter, in particular noting that the inverse

of the transition function f(·) does not necessarily provide the correct reverse

dynamics [12][§3.2.1], as it may not propagate noise as intended. Nevertheless,

in many cases such a backward filter can be constructed directly. In its absence:

p(xn |yn:T ) =
p(yn |xn,yn+1:T )p(xn |yn+1:T )

p(yn |yn+1:T )
(2.32)

∝ p(yn |xn)p(xn |yn+1:T ) (2.33)

∝ p(yn |xn)

∫
p(xn |xn+1)p(xn+1 |yn+1:T ) dxn+1 , (2.34)

which has so far proceeded as per the forward filter (2.4-2.6). The problem here

is still the presence of the reverse dynamics, assumed unknown, which may be

removed with a simple application of Bayes’ rule:

p(xn |yn:T ) ∝ p(yn |xn)

∫
p(xn+1 |xn)p(xn)

p(xn+1)
p(xn+1 |yn+1:T ) dxn+1 , (2.35)

Clearly the tradeoff here is the requirement for priors p(xn) and p(xn+1) in the

latter case. Observe:

p(xn) =

∫
· · ·
∫
p(x0)

n∏
i=1

p(xi |xi−1) dx1:n−1 , (2.36)

so that for a closed form p(x0) and linear transition function these priors will be

tractable. In this case the problem is solved [23], although in general this will

not be the case4.

To evade this problem we introduce the approximations γn(xn) ≈ p(xn) [12]:

p(xn |yn:T ) ∝ p(yn |xn)

∫
p(xn+1 |xn)γn(xn)

γn+1(xn+1)
p(xn+1 |yn+1:T ) dxn+1 . (2.37)

4And, indeed, if they were, something like a Kalman filter may be more appropriate than a
particle filter.
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Each γn(xn) may, for example, be an approximate analytical distribution fit to a

sample-based representation of p(xn) (see [12] for discussion). By incorporating

a proposal distribution q(xn) to generate samples, we arrive at the following

recursive algorithm for the backward filter:

Algorithm 2.5 (Backward particle filter) Given the weighted sample set

{(s̃(i)
n+1, π̃

(i)
n+1)}, representing the backward filter density p(xn+1 |yn+1:T ), approx-

imate priors γn(xn) and γn+1(xn), and a proposal distribution q(xn), sample

s̃
(i)
n ∼ q(xn) and weight with:

π̃(i)
n =

p(yn |xn = s̃
(i)
n )γn(xn = s̃

(i)
n )

q(xn = s̃
(i)
n )

P∑
j=1

p(xn+1 = s̃
(j)
n+1 |xn = s̃

(i)
n )π̃

(j)
n+1

γn+1(xn+1 = s̃
(j)
n+1)

. (2.38)

The weighted sample set {(s̃(i)
n , π̃

(i)
n )} then approximates the backward filter density

p(xn |yn:T ).

Possible selections for the proposal distribution are akin to those for the forward

filter.

Whether by direct filtering using reverse dynamics or use of Algorithm 2.5, we

have demonstrated that it is possible to perform a filter forward in time, and

a filter backward in time. All that remains is to fuse the results to obtain the

smooth density. Substituting (2.31) into (2.29), we obtain:

p(xn |y1:T ) ∝ p(xn |y1:n−1)
p(xn |yn:T )

p(xn)
(2.39)

≈ p(xn |y1:n−1)
p(xn |yn:T )

γn(xn)
(2.40)

∝ p(xn |yn:T )

γn(xn)

∫
p(xn |xn−1)p(xn−1 |y1:n−1) dxn−1 , (2.41)

which suggests the following algorithm:

Algorithm 2.6 (Two-filter smoother) Perform a filter forward in time, and

a filter backward in time, to obtain weighted sample sets {(s(i)
n , π

(i)
n )} and {(s̃(i)

n , π̃
(i)
n )},

respectively, for each time tn. Then, for time tn, let:

ψ̃(i)
n =

π̃
(i)
n

γn(xn = s̃
(i)
n )

P∑
j=1

p(xn = s̃(i)
n |xn−1 = s

(j)
n−1)π

(j)
n−1 . (2.42)

The weighted sample set {(s̃(i)
n , ψ̃

(i)
n )} then approximates the smooth density p(xn |y1:T ).
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Runtime complexity of the method is O(TP 2) given the all-pairs transition den-

sity calculations in both Algorithms 2.5 and 2.6. Memory requirements are

O(TNP ) for storage of filter results required by the smoother.

The two-filter smoother is substantially more complex than the filter-smoother,

and unfortunately has similar degeneracy issues to it. This stems from the smooth

density being represented by a reweighting of the particles obtained by the back-

ward filter; these samples may not support it adequately. The problem is exac-

erbated for n � T , where the mass of the filter density is likely to be further

from that of the smooth density due to conditioning on fewer observations. In

the extreme, during the backward pass, all weight may be heaped on a single

particle, or even none at all, if there is little overlap in the significant masses of

the forward filter densities and backward likelihoods. Ideally, a smoother would

richly propose samples from this overlapping region, but this is not the case here.

In the absence of reverse dynamics, the potentially heuristic selection of the γn(xn)

densities may also inhibit its practical application.

2.3.3 Forward-backward smoother

Like the two-filter smoother, the forward-backward smoother attempts to reweight

particles already obtained in order to represent the smooth densities. This time,

rather than perform two filtering passes, only the forward filter is performed

and an alternative backward pass provides the reweighting. In contrast to the

two-filter smoother, the forward-backward smoother reweights particles from the

forward filter, not an additional backward filter.
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Consider the following factorisation of the smooth density:

p(xn |y1:T ) =

∫
p(xn:n+1 |y1:T ) dxn+1 (2.43)

=

∫
p(xn |xn+1,y1:T )p(xn+1 |y1:T ) dxn+1 (2.44)

=

∫
p(xn |xn+1,y1:n)p(xn+1 |y1:T ) dxn+1 (2.45)

=

∫
p(xn+1 |xn,y1:n)p(xn |y1:n)p(xn+1 |y1:T )

p(xn+1 |y1:n)
dxn+1 (2.46)

=

∫
p(xn+1 |xn)p(xn |y1:n)p(xn+1 |y1:T )

p(xn+1 |y1:n)
dxn+1 (2.47)

=

∫
p(xn+1 |xn)p(xn |y1:n)p(xn+1 |y1:T )∫

p(xn+1 |xn)p(xn |y1:n) dxn
dxn+1 . (2.48)

After completion of a forward filter, the filter density at each time tn is represented

by the weighted sample set {(s(i)
n , π

(i)
n )}. Reusing these samples and applying

(2.48), the following reweighting emerges:

ψ(i)
n =

P∑
j=1

p(xn+1 = s
(j)
n+1 |xn = s

(i)
n )π

(i)
n ψ

(j)
n+1∑P

k=1 p(xn+1 = s
(j)
n+1 |xn = s

(k)
n )π

(k)
n

, (2.49)

so that the weighted sample set {(s(i)
n , ψ

(i)
n )} approximates the smooth density.

Note that for each pairing of particles across times tn and tn+1 the transition

density between them is calculated twice. These may optionally be precalculated,

although to the detriment of space complexity, arriving at [30]:

Algorithm 2.7 (Forward-backward smoother) Perform a filter forward in

time, at the conclusion of which p(xT |y1:T ) is known and approximated by {(s(i)
T , π

(i)
T )}.

Initialise with ψ
(i)
T = π

(i)
T and proceed recursively as follows:

α(i,j)
n = p(xn+1 = s

(i)
n+1 |xn = s(j)

n ) (2.50)

γ(i)
n =

P∑
j=1

π(j)
n α(i,j)

n (2.51)

δ(j)
n =

P∑
i=1

ψ
(i)
n+1

α
(i,j)
n

γ
(i)
n

(2.52)

ψ(j)
n = π(j)

n δ(j)
n , (2.53)

The weighted sample set {(s(i)
n , ψ

(i)
n )} then approximates the smooth density

p(xn |y1:T ).
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Runtime complexity is O(TP 2) given the all-pairs transition density calculations

– the α
(i,j)
n terms – in each step. Memory requirements are O(TNP ) for storage

of filter results required by the smoother. If α
(i,j)
n terms are precalculated ahead

of both γ
(i)
n and δ

(i)
n calculations, a constant factor gain to runtime is obtained at

the burden of O(NP 2) storage.

Like the two-filter smoother, the forward-backward smoother reuses and reweights

particles already obtained by a filter, and so may suffer from the same degeneracy

issues.

Unlike the two-filter smoother, note that the forward-backward smoother only

requires the measurements y1:T for the forward pass, not for the backward pass.

2.3.4 Other considerations

Beyond the above reviewed methods, other strategies tend to forego the mem-

ory efficient recursive formulation and sample whole or part trajectories [31], or

specialise to a subset of cases under the general state space model introduced in

§2.1. We do not elaborate on these methods here, considering the three methods

given to be the most established and relevant for our purposes.

2.4 Parameter estimation

Parameter estimation within the particle filter framework has been largely ne-

glected until recently, perhaps due to its initial application to object tracking,

where the model is fixed. The Bayesian approach is to simply augment the state

with parameters to form x∗ = {x,θ}. The particle filter may then proceed as

normal, treating the parameters as any other variable.

The problem with this approach is that as the parameters are static, parameter

samples are limited to those from the prior p(x∗0) throughout the duration of the

filter. State variables, on the other hand, vary throughout by virtue of the system

dynamics and noise.

In response, artificial dynamics may be introduced to the parameters for ex-
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ploratory purposes [32], a simple diffusion being the obvious starting point. Cau-

tion is advised, however, as if not chosen carefully, such dynamics may inflate the

variance of parameter samples and retard or reverse convergence.

An attractive alternative form is the regularised particle filter (§2.2.4), where the

kernel density estimate pK(x∗n |y1:t) naturally provides new parameter estimates

whenever samples are redrawn. If the kernel bandwidth is designed to shrink

relative to the sample variance, a refinement of new parameter samples emerges

in harmony with convergence [11]. One way of achieving this is to hold h constant

while standardising as in (2.24). This implicitly introduce artificial dynamics in

the form of a controlled diffusion.

Another drawback to the introduction of artificial dynamics is that, now having

dynamics of their own, parameter estimates vary across time and smoothing is

required in order to incorporate all data into their estimate at all time points.

For truly static parameters, we should expect that estimation is complete at the

conclusion of the filter, where we have p(θ |y1:T ). While the regularised particle

filter introduces implicit dynamics on the parameters also, its more rigorous and

controlled kernel density approach arguably mitigates this problem.

The Bayesian approach to parameter estimation, providing complete posteriors

over estimates, may be forgone in favour of single point estimates. Frameworks

such as EM or gradient ascent [33] may be used to obtain a single ML or other

estimate. In some cases parameter estimates can be updated recursively during

a single filter, but more commonly a smoother is required to provide a complete

likelihood between each parameter adjustment. These schemes may be suscepti-

ble to becoming stuck in local maxima, or be prohibitively expensive given the

iteration of a smoother. They provide little or no assessment of confidence or un-

certainty in the parameter estimate, and may also rely on assumptions such as an

analytically derived derivative of the log likelihood, which may not be available

in practice.
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2.5 Summary

This chapter has outlined the basic framework for recursive Bayesian learning

of dynamical systems. It has defined the filtering (§2.2), smoothing (§2.3) and

parameter estimation (§2.4) problems, and in particular focused on sequential

Monte Carlo methods for the solution of these in the most general case. Filtering

methods surveyed were the bootstrap (§2.2.2), auxiliary (§2.2.3) and regularised

(§2.2.4) particle filters, with accompanying smoothing methods in the form of

the filter-smoother (§2.3.1), two-filter smoother (§2.3.2) and forward-backward

smoother (§2.3.3). Parameter estimation has been considered by taking either a

Bayesian approach or aiming for a single parameter estimate (§2.4). The regu-

larised particle filter was singled out as having particularly elegant properties for

Bayesian parameter estimation.





Chapter 3

Continuous Time Diffusions

We now consider continuous time dynamical systems modelled by the stochastic

differential equation (SDE):

dx = a(x, t) dt︸ ︷︷ ︸
drift

+B(x, t) dW︸ ︷︷ ︸
diffusion

, (3.1)

where dW is an increment of the multivariate Wiener process, a model of simple

Brownian motion. The equation consists of a deterministic drift component and

stochastic diffusion component. Equations such as this arise in a wide range of

domains. They have particular application in the modelling of various physical

phenomena, accounting for uncertainly in the model, as well as in finance and

biology, where stochasticity plays an intrinsic part of the system itself.

We detail the components of such equations in this chapter, along with a practical

methodology to wield them.

SDEs are an arcane art. Rather than tackling them head on, we segway down

the avenue of the ordinary differential equation (ODE) in §3.1. This allows us

to introduce several core concepts early on without the additional complications

of stochasticity. SDEs are then introduced as an augmentation of ODEs in §3.2.

Error control and step size adjustment are considered in §3.3, and finally some

useful properties are surveyed in §3.4.

31
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3.1 Ordinary differential equations

An ODE may be expressed in the form:

dx

dt
= a(x, t). (3.2)

From the outset this is a special case of (3.1) where B(x, t) = ∅. It represents

deterministic drift dynamics only. While lacking stochasticity, it is important

to realise that such deterministic models are successfully applied to a range of

physical phenomenon, in particular where they naturally model position, velocity

and acceleration.

(3.2) describes a first order ODE, in that it specifies first order derivatives only.

Any differential system of higher order may be converted to a first order system

by introducing additional variables, however, so we need only deal with this base

case.

3.1.1 Initial value problems

An ODE is commonly used in defining an initial value problem. Succinctly put,

given the initial state of the system x(0) at time 0, we wish to determine the

state of the system x(t) at some future time t.

Clearly, we could simply integrate (3.2) with respect to t, using x(0) as the

constant term and obtaining the function x(t) to solve the problem at any time t.

For most real problems, however, this analytical integration is either impossible

or impractical, and we do not wish to depart from the most general case.

Instead, a range of numerical schemes are available for obtaining approximate

integrations. By assuming that the system is approximately linear over a short

interval of time ∆t, we arrive at the most basic of these numerical schemes.

Algorithm 3.1 (Euler scheme) Let tn and xn ≈ x(tn) be given. Then, for

time step ∆t:

tn+1 = tn + ∆t (3.3)

xn+1 = xn + a(xn, tn)∆t , (3.4)
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so that xn+1 ≈ x(tn+1).

The result of iterating this step is a sequence of time points tn and approximations

xn ≈ x(tn), tracing a trajectory through the system over time.

The Euler scheme is more formally derived from a first order Taylor expansion of

x(t) about tn:

x(t) = x(tn) + ẋ(tn)(t− tn) +O
(
(t− tn)2)

= x(tn) + a (x (tn) , tn) (t− tn) +O
(
(t− tn)2) ,

and therefore,

xn+1 ≈ xn + a (xn, tn) ∆t+O
(
∆t2
)
. (3.5)

The trailing term O (∆t2) denotes the remainder or error resulting from trunca-

tion of the Taylor series. In this case, second order terms and above have been

truncated, such that the second order term dominates the error and we say it is

of order 2. The local error of the Euler scheme is therefore O (∆t2) and it is of

weak order 2. The number of steps taken to solve the problem over an interval

of time is proportional to 1/∆t, and so the cumulative error across all time steps

is O (∆t) and it is of strong order 1. Weak and strong orders are an important

means of categorising numerical methods for ODEs.

We can consider schemes of higher order.

Algorithm 3.2 (Runge-Kutta scheme) Let tn and xn ≈ x(tn) be given. Then,

for time step ∆t:

tn+1 = tn + ∆t (3.6)

xn+1 = xn +
∆t

6
(k1 + 2k2 + 2k3 + k4) , (3.7)

where

k1 = a(xn, tn) (3.8)

k2 = a(xn +
∆t

2
k1, tn +

∆t

2
) (3.9)

k3 = a(xn +
∆t

2
k2, tn +

∆t

2
) (3.10)

k4 = a(xn + ∆tk3, tn + ∆t) (3.11)
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This represents the classic Runge-Kutta with weak order 5 and strong order

4. Runge-Kutta schemes may be generalised to any order using the following

framework:

Algorithm 3.3 (Abstract Runge-Kutta scheme) Let tn and xn ≈ x(tn) be

given. Then, for time step ∆t:

tn+1 = tn + ∆t (3.12)

xn+1 = xn + ∆t
s∑
i=1

biki , (3.13)

where:

k1 = a(xn, tn) (3.14)

ki = a(xn + ∆t
i−1∑
j=1

ai,jkj, tn + ci∆t) (3.15)

The task is then to select the number of stages s and coefficients ai,j, bi and ci

to satisfy the required order conditions. These are commonly represented as the

tableau:
0

c2 a2,1

c3 a3,1 a3,2

...
...

. . .

cs as,1 as,2 . . . as,s−1

b1 b2 . . . bs

Using this notation, the classic Runge-Kutta of Algorithm 3.2 is expressed as:

0
1
2

1
2

1
2

0 1
2

1 0 0 1
1
6

1
3

1
3

1
6

In general, higher order methods have smaller error than lower order methods

given the same time step. Alternatively, given a fixed error bound, a higher or-

der method may take fewer, larger time steps to arrive at a solution within that

bound. Higher order methods do require additional calculation within each time
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step, but this is generally less than the calculation saved in taking fewer steps. As

a rule of thumb, gains are observed up to an order of about 8 [34]. For some prob-

lems, the nature of the system may be such that a higher order method is unable

to take larger steps than a lower order method while still maintaining accuracy

anyway, so that the increased computational cost at each step is detrimental [34].

3.1.2 Implicit methods

Up to this point, all the methods described are considered explicit in the sense

that xn+1 is expressed as a function of xn. Another important family of methods

are the implicit methods.

To motivate this, consider an alternative derivation of the Euler scheme (Algo-

rithm 3.1), by observing:

ẋ(t) ≈ x(t+ ∆t)− x(t)

∆t
, (3.16)

and rearranging to:

x(t+ ∆t) ≈ x(t) + ẋ(t)∆t , (3.17)

which is the explicit Euler scheme, also known as the forward Euler scheme.

Consider a similar backward derivation:

ẋ(t) ≈ x(t)− x(t−∆t)

∆t
, (3.18)

so that by rearranging:

x(t) ≈ x(t−∆t) + ẋ(t)∆t , (3.19)

or equivalently:

x(t+ ∆t) ≈ x(t) + ẋ(t+ ∆t)∆t . (3.20)

This leads directly to the implicit Euler scheme, also known as the backward

Euler scheme for reasons that the above derivation makes clear:

Algorithm 3.4 (Implicit Euler scheme) Let tn and xn ≈ x(tn) be given.

Then, for time step ∆t:

tn+1 = tn + ∆t (3.21)

xn+1 = xn + a(xn+1, tn+1)∆t . (3.22)
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The scheme is implicit because xn+1 is now expressed in terms of both xn and

itself, such that solving the equation is necessary to advance the scheme. This

may be done numerically using a root finding algorithm such as Newton’s method.

While on the surface implicit methods may seem retrograde, in practice they

have an important role in the solution of stiff systems. Loosely speaking, a stiff

system is simply a system that is difficult to solve numerically due to instability.

This is usually due to fluctuating components at multiple scales that cause rapid

variation in the solution, such that the accumulation of error causes a numerical

scheme to diverge from the true solution. [35] provides detailed treatment.

Like its explicit counterpart, the implicit Euler scheme is of weak order 2 and

strong order 1. Higher order implicit schemes, including implicit Runge-Kutta

schemes, are available.

3.2 Stochastic differential equations

With an appreciation of ODEs as the deterministic drift component of an SDE,

we now introduce a stochastic diffusion term B(x, t)ξ(t) into (3.2) to obtain the

Langevin equation [17]:

dx

dt
= a(x, t) +B(x, t)ξ(t) . (3.23)

This is naive for reasons given below, but is nonetheless an appealing way to first

conceptualise an SDE. Intuitively, the SDE consists of the deterministic drift

component a(x, t) and the stochastic diffusion component B(x, t)ξ(t). The most

salient aspect of the equation is the nature of the stochastic process ξ(t). In gen-

eral, this is a “rapidly and irregularly fluctuating random function of time” [17,

p.80], mathematically idealised by defining ξ(t′) and ξ(t) as statistically inde-

pendent for t′ 6= t. For simplicity, but without loss of generality, we enforce

E(ξ(t)) = 0; a nonzero mean may be absorbed into the drift term.

In practice, one of a number of processes with nice properties are usually chosen

as a basis to approximate ξ(t). The most common of these is derived from the

Wiener process [17, §3.8.1] W(t), a diffusion process where W(t+ ∆t)−W(t) ∼
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N (0, I
√

∆t). Note that this is a Markov process, with continuous but highly

irregular sample paths that are nowhere differentiable, mean approaching zero but

variance approaching infinity as ∆t → ∞. We accept these properties without

further discussion, although point the reader to [17] for detailed results.

The Wiener process is introduced into an SDE by letting:∫ t

0

ξ(t′)dt′ = W(t) (3.24)

We now have the paradox that W(t) is the integral of ξ(t), yet not itself differ-

entiable. This highlights the naivety of (3.23). Noting that by (3.24):

dW(t) ≡ W(t+ dt)−W(t) (3.25)

= ξ(t) dt , (3.26)

rewrite (3.23) as:

dx = a(x, t) dt+B(x, t) dW(t) (3.27)

dW(t) is then usually abbreviated as dW for notational convenience, arriving at

the original form of the SDE given in (3.1).

3.2.1 Initial value problems

Integration of SDEs is intrinsically dependent on discretisation of the stochastic-

ity. Two schemes exist, the Itô [17, §4.2.1] and Stratonovich [17, §4.2.3] integrals,

derived from the forward Euler and trapezoidal discretisations, respectively [36].

These give slightly different results based on their discretised interpretation of

the Wiener process. Fokker-Planck equations may also provide an avenue for

integration [17][ch.5].

As for ODEs, integration of SDEs is attractive in that it provides efficient an-

alytical solutions to initial value problems. Again, however, this integration is

often intractable, and numerical methods are perhaps more fruitful for general

application.

The stochastic equivalent of the forward Euler scheme exploits its linear discreti-

sation to preserve the Gaussianity of the Wiener noise through the time step:
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Algorithm 3.5 (Euler-Maruyama scheme) Let tn and xn ≈ x(tn) be given.

Then, for time step ∆t and Wiener increment ∆W ∼ N (0, I
√

∆t):

tn+1 = tn + ∆t (3.28)

xn+1 = xn + a(xn, tn)∆t+B(xn, tn)∆W . (3.29)

Higher order schemes pose a greater challenge, as each step now squeezes the noise

increment through a nonlinear function, such that Gaussianity is not maintained.

It is therefore not sufficient to simply apply a single step of a Runge-Kutta, say,

then add a noise sample [37].

The general Runge-Kutta framework established for ODEs (Algorithm 3.3) still

stands, but establishing appropriate coefficients for a given order condition is

more challenging due to the diffusion component. A particularly attractive and

practical option is based on the observation that any scheme for ordinary differ-

ential equations (ODEs) can be adapted to SDEs with approximately half the

order [38]. The crux of this relies on converting the Itô equation (3.1) into its

equivalent form under the Stratonovich interpretation of SDEs [35, p157]:

dx =

[
a(x, t)− 1

2

∑
i

∂B(x, t)

∂xi
Bi,∗(x, t)

T

]
dt+B(x, t) dW , (3.30)

where Bi,∗(x, t) is the ith row of B(x, t). The extra term arises as a result of

calculating the derivative at the midpoint of the increment under Stratonovich,

rather than at the beginning as under Itô. Once using the Stratonovich inter-

pretation, the standard chain rule of calculus applies, unlike under Itô, so that

existing solvers for ODEs may be applied to the system. All of this leads to the

following extension of the general Runge-Kutta scheme for Itô SDEs:

Algorithm 3.6 (Abstract stochastic Runge-Kutta scheme) Let tn and

xn ≈ x(tn) be given. Then, for time step ∆t and Wiener increment

∆W ∼ N (0, I
√

∆t), let

h(x, t,∆t,∆W) = a(x, t)− 1

2

∑
i

∂B(x, t)

∂xi
Bi,∗(x, t)

T +B(x, t)
∆W

∆t

where Bi,∗(x, t) is the ith row of B(x, t). Then:

tn+1 = tn + ∆t (3.31)

xn+1 = xn + ∆t
s∑
i=1

biki , (3.32)



3.3. Error control 39

where:

k1 = h(xn, tn,∆t,∆W) (3.33)

ki = h(xn + ∆t
i−1∑
j=1

ai,jkj, tn + ci∆t,∆t,∆W) (3.34)

Using this conversion, it is possible to reapply any method designed for ODEs to

SDEs.

3.3 Error control

To this point, we have neglected the matter of choosing an appropriate step size

∆t. In the simplest case, this is fixed for all time steps to a length that is small

enough to maintain some error threshold, while large enough for integration over

the interval of interest to be computationally tenable. The problem with this

is that the step size will likely be reduced universally by a handful of erratic

regions where the integrator must tiptoe or risk inaccuracy. An adaptive scheme

is preferable – reducing the step size for difficult regions while increasing it where

possible to quickly stride over tame behaviour.

In order to establish such a scheme, we require:

• a means of estimating the error,

• an error bound,

• a means of adjusting the step size, decreasing it and repeating a step if the

error bound is exceeded, and increasing it for the next step otherwise.

We will address each of these in turn in this section.

3.3.1 Error estimation

A simple means of error estimation is to compare the result of a single step of

size ∆t to two steps of size ∆t/2. The difference between the two provides an

approximation of the error in the single ∆t step. While simple, this has been

observed to give unsatisfactory results by at least one author in the particular

case of SDEs [39].
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Another option is to compare the results of two numerical schemes of different

order, using the higher order method to provide error estimates validating the

results of the lower order method. The drawback here, of course, is the need to

perform the integration twice. The family of embedded Runge-Kutta schemes are

attractive here (see e.g. [34; 40; 41]). By sharing coefficients and intermediate

evaluations, such methods efficiently produce two approximations at each time

step, one from a qth order, and one from a lower pth1 order Runge-Kutta.

At time tn, if xn is the estimate of the qth order Runge-Kutta and x̂n that of the

pth order, an approximation of the error is given by:

εn = ∆t|xn − x̂n| , (3.35)

where | · | is simply an element-wise absolute value.

It is worth noting that this is an estimate of local error only, not cumulative

error. Other methods exist for the estimate of cumulative error (see e.g. [39]),

although they are perhaps motivated more by validation than the pursuit of

adaptive step size control. Other recent methods attempt to split error into

separate contributions by the drift and diffusion components [42].

3.3.2 Error bound

The setting of an appropriate error bound is essentially arbitrary, but we outline

a fairly general idea here that incorporates most important considerations. It

includes both an absolute error term, and errors relative to the magnitude of both

xn and its derivative ẋn. It is, in fact, the scheme used by the ODE components

of the GNU Scientific Library2.

Let δabs ≥ 0 be the maximum permissable absolute error in any component of x

and δrel ≥ 0 the maximum permissable relative error. Let βx ≥ 0 and βdx ≥ 0 be

scaling factors. Then, the error bound at time tn is given by:

δn = δabs + δrel(βx|x|+ βdx|ẋ|) , (3.36)

where | · | is again simply an element-wise absolute value.

1Usually q = p + 1
2http://www.gnu.org/software/gsl/
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3.3.3 Step size adjustment

At time tn, given the error estimate εn and error bound δn, let:

γ = ‖εn � δn‖∞ (3.37)

where � is element-wise division and ‖ · ‖∞ the ∞-norm, that is, the component

of the vector with greatest magnitude. If γ > 1 then the error in at least one

component has exceeded the error bound, so the step is rejected and undone. If

γ ≤ 1 the step is accepted and the integration proceeds as normal. In either case,

the step size for the next step is adjusted to:

∆t← ∆t · 9

10
γ−

1
p+1 (3.38)

The 9
10

here is a “safety factor”. In practice, it can be useful to put a lower and

upper bound on the maximum change in step size also.

The only additional point worth making for the stochastic setting is that a Wiener

increment sampled for a rejected time step should be preserved for conditioning

the increment samples for proceeding proposals [39]. This is important to en-

sure that the integration proceeds along the same Wiener trajectory, and that

unlikely Wiener increments are not inadvertently treated as unnacceptable error

and discarded.

3.4 Properties of diffusions

In this final section we pluck out a number of salient properties of diffusion

processes. The list is not meant to be exhaustive, and is biased in favour of those

that will play a significant part later in this work.

3.4.1 Autocorrelation

The autocorrelation R(s, t) of a process is the correlation between its states at two

different times s and t, with t > s. For a Markov process, its properties are only

dependent upon time differences, not absolute times, and so R(s, t) = R(t − s).
For such processes the autocorrelation is calculated across lag times. For a single
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lag time ∆t and a sequence of samples x1, . . . ,xT taken from the process at times

equispaced by ∆t, the autocorrelation may be estimated as:

R(∆t) =

[
1

T

T∑
i=1

(
xix

T
i−1

)
− µµT

]
Σ−1 . (3.39)

Here, µ is the mean of the process and Σ its covariance. If the calculation is

not normalised by Σ it provides the autocovariance. Usually, µ and Σ are not

available analytically, and are calculated using the standard sample formulas,

which provide a biased estimate of the autocorrelation.

In introducing autocorrelation, it is worth mentioning as an aside the alterna-

tive numerical integration scheme of local linearization [8]. Unlike the Euler-

Maruyama scheme, which performs a linear step based on the gradient at time t,

the local linearization scheme performs a linear step based on the autocorrelation

function for a lag time equal to the proposed step size.

3.4.2 Stationarity

A process is considered stationary if its statistics are invariant under time trans-

lation. That is, for any ∆t:

p(x(t1) = s1, . . . ,x(tT ) = sT ) = p(x(t1 + ∆t) = s1, . . . ,x(tT + ∆t) = sT ) . (3.40)

In such a case the one-time probability is independent of time:

p(x(t)) = ps(x) , (3.41)

where ps(x) is the equilibrium distribution of x. Further, the two time joint

probability is dependent only on time differences:

p(x(t1) = s1,x(t2) = s2) = ps(x(t1 − t2) = s1,x(0) = s2) , (3.42)

as is the conditional:

p(x(t1) = s1 |x(t2) = s2) = ps(x(t1 − t2) = s1 |x(0) = s2) . (3.43)

Now, given a stationary process and starting state s0, define the Markov chain:

p(x(t)) = ps(x(t) |x(t0) = s0) (3.44)

p(x(t) |x(t′) = s′) = ps(x(t) |x(t′) = s′) (3.45)

Then, as t→∞ or t0 → −∞:

p(x(t))→ ps(x) (3.46)
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3.5 Summary

This chapter has introduced continuous-time diffusion processes through the for-

malism of stochastic differential equations (SDEs). It eased into the topic in

§3.1 with ordinary differential equations (ODEs), framed as deterministic drift

processes, and described various numerical schemes for their solution. §3.2 then

introduced a stochastic diffusion component to extend these to SDEs. For the

numerical solution of such problems, it advocated the very practical approach

of converting an Itô SDE to its equivalent Stratonovich form, in order to apply

any of the myriad of numerical methods developed for ODEs. §3.3 discussed the

practical matters of error estimation, error bounds and adaptive step size con-

trol, critical for both the accuracy and computational efficiency of these numerical

schemes. Finally, §3.4 presented a number of salient properties that will prove

useful later in this work.





Chapter 4

A Fusion of Sorts

Having introduced Bayesian methods for learning in dynamical systems (§2),

and continuous-time stochastic diffusions (§3), we now attempt to fuse the two,

considering Bayesian learning of continuous time dynamical systems. We find

that the results are unsatisfactory, and in this chapter discuss the outstanding

challenges for a harmonious union of the two. In doing so, this chapter firmly

lays out the context of this work and the problems that it seeks to address.

§4.1 combines the theory of dynamical systems with that of continuous-time

stochastic diffusions to develop continuous-time dynamical systems. Problems

in applying conventional methods to such systems are outlined in §4.2, with a

number of methods known to work, with various shortcomings, provided in §4.3.

Finally, experimental results for these relevant methods applied to a number of

artificial problems are given in §4.4.

4.1 Continuous-time dynamical systems

Consider the general dynamical system formulation of §2.1 in the specific case

where time t is continuous and the transition function f(x,v,θ, t) is known only

by its first order derivatives, given by an SDE:

df = a(x,θ, t) dt+B(x,θ, t) dW . (4.1)

45



46 Chapter 4. A Fusion of Sorts

In contrast to the general SDE definition of (3.1), note the introduction of the

dynamical system’s static parameters θ, and that system noise v is now sourced

from the Wiener process W. The remainder of the dynamical system formulation

is consistent with the use of continuous time and does not change.

This formulation is sometimes referred to as the continuous-discrete model, ac-

knowledging that while the state now transitions continuously, measurements

remain restricted to discrete time points. This is in contrast to the continuous-

continuous model, where the measurement too is a continuous process. In a

practical setting this is arguably irrelevant – a continuous measurement can only

derive from an analog signal, as digitisation alone would constitute discretisation,

making such a model unimplementable on modern computers. The continuous

signal could presumably only arise from some form of interpolation or curve fit-

ting to discrete time samples. We are yet to see a real world application of

the continuous-continuous model, and so do not believe our formulation here is

significantly limited by the assumption of discrete time measurements.

4.2 Challenges

We now consider some of the conflicts that emerge in the combination of these

two ideas.

Firstly and most importantly, consider the transition density p(xn |xn−1). This

will only be available in an exact or approximate analytical form in one of the

following two cases:

1. The SDE is integrable, such as by using Itô or Stratonovich calculus, or

Fokker-Planck equations. In this case f(·) can be determined exactly.

2. A linear discretisation scheme is used, such as Euler-Maruyama or local

linearisation. In this case, p(x(t + ∆t) |x(t)) can be calculated if a single

step of size ∆t is taken by the integrator.

The first of these is too limited in scope to include many real world problems

of interest. The second requires that filtering and smoothing steps are the same

size as steps of the numerical integration scheme. This is because the transition

density is only analytical for a single step of the discretisation, so that multiple
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steps may not be made between each filtering or smoothing step. T , the number

of times at which the filter or smoother is evaluated, increases, and cannot vary

independently of the numerical scheme. This can be extremely expensive, espe-

cially so if measurements are sparse, and many additional filtering steps must be

inserted between measurement times.

The effects of this on a filter are generally not too great, as particles must be

propagated throughout the entire length of time regardless of the number of steps

that the filter takes to achieve this. The same cannot be said for a smoother,

however, where it may not be necessary to perform particle propagations at all,

and the number of its more complex O(P 2) steps must fit within computational

limits.

When one considers that the step size is also being fixed to that of a low-order nu-

merical scheme with necessarily small step size compared to higher-order schemes,

the problem is numbingly apparent. Furthermore, an adaptive step size is hard

to fit into this framework – all particles must progress through a single step of

equal size in order to end at the same time for the calculations at each filtering

step. Either a step size appropriate for all particles is adaptively selected – a

“lowest common denominator” situation where all particles progress as slowly as

the most difficult – or a constant step size is used.

Consequently, we must, except in the most simple of cases, assume that f(·) is

unknown and that the transition density p(xn |xn−1) is analytically intractable.

In fact, even for simple cases, if we wish to make use of our knowledge of faster

higher-order integration schemes we must assume the same.

This is not to say that it is impossible to simulate realisations of p(xn |xn−1).

Indeed, the numerical integration schemes of §3 facilitate precisely this. To do

so, simply construct the initial value problem beginning at some particular xn−1

and simulate for time tn − tn−1. However, for arbitrary xn, calculation of the

transition density given a particular starting point is allusive.

The implications of this are formidable – the general formulation of the par-

ticle filter (Algorithm 2.2), backward particle filter (Algorithm 2.5), two-filter

smoother (Algorithm 2.6) and forward-backward smoother (Algorithm 2.7) all

assume analytical knowledge of this density. At face value, at least, this makes
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them inapplicable to modelling with continuous-time dynamical systems except

when a potentially poor linear discretisation is used.

Another obvious observation to make is the computational cost of simulating re-

alisations from the transition. Compared to discrete-time models which will gen-

erally require only a single function evaluation, propagation of a particle through

the SDEs requires multiple steps of an appropriate numerical scheme. While effi-

cient methods exist, as surveyed in §3, this is still a relatively expensive operation.

Finally, consider the backward particle filter and the use of reverse dynamics.

Naively, reversing the dynamics of an SDE system is a simple negation of deriva-

tives. Unfortunately, this usually results in a divergent system for which the

cumulative error of any numerical scheme causes instability. This precludes use

of the reverse dynamics in, for example, a two-filter smoother.

4.3 Rescuing methods

Having proclaimed what will not work in the continuous time setting, it is of

course worth considering what will. Recall that the simplicity of the bootstrap

particle filter (Algorithm 2.1) is its use of the transition density as proposal.

By letting q(xn) = p(xn |xn−1), it cancels the intractable transition density in

the weight calculation of Algorithm 2.2. The simple bootstrap therefore remains

applicable in the continuous time setting.

We can generalise this to any proposals of the form q′(xn−1:n) = p(xn |xn−1)q(xn−1).

All such proposals cancel the intractable transition density, and observe that

q(xn−1) essentially represents a resampling of the filter density at time tn−1. Any

such proposals, which we will refer to as resampling proposals, are applicable in

continuous time. In addition to the bootstrap, these include the auxiliary (Al-

gorithm 2.3) and regularised (Algorithm 2.4) particle filters previously reviewed.

Proposals which do not take this form, such as the Gaussian of the unscented

particle filter [27] (acquired via the unscented Kalman filter equations [19] rather

than propagation of particles) leave the transition density lingering and so unfor-

tunately remain inapplicable.

The filter-smoother (§2.3.1) remains relevant, requiring no further density calcu-
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lations over its coupling with a workable resampling proposal. Unfortunately, the

two-filter (Algorithm 2.6) and forward-backward (Algorithm 2.7) smoothers can-

not be easily manipulated to relieve their dependence on the transition density1.

They remain applicable only in the two cases identified in §4.2.

4.4 Experiments

We demonstrate these applicable conventional methods using a number of SDE

model examples which will be reused in later chapters as a baseline for com-

parision. The models are introduced in detail here, including discussion of the

particular nuances which make them interesting subjects of study.

4.4.1 Toy

Our first example is a very simple linear model simulating a body moving in

2d space. The interest in this model is that it may be solved exactly using

analytical methods, and so provides a basis to assess sampling and numerical

error in particle methods. The state is given by (a, b, v)T , where (a, b) is the

body’s x and y coordinate, and v its translational velocity in some fixed direction

ϑ. The system dynamics are given by the equations:

da = v cosϑ dt+ σa dW (4.2)

db = v sinϑ dt+ σb dW (4.3)

dv = −γv dt+ σv dW . (4.4)

Exact integration of the equations yields the autoregressive for a lag time of 1:

xn+1 = Axn + Σxw , (4.5)

1Although doing so is one of the main contributions of this work.
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where:

A =


1 0 cosϑ

0 1 sinϑ

0 0 1− γ

 (4.6)

Σx =


σa 0 0

0 σb 0

0 0 σv

 (4.7)

and w ∼ N (0, I).

Measurements are simply a noisy observation of the position, given by:

yn = Cxn + Σyv (4.8)

where:

C =

(
1 0 0

0 1 0

)
(4.9)

Σy =

(
σy 0

0 σy

)
(4.10)

and v ∼ N (0, I).

A Gaussian prior over the state is given by Table 4.1.

An exact solution to the problem, up to accumulated floating point error, may be

obtained using the Kalman filter and Rauch-Tung-Striebel (RTS) smoother [43].

As the system is linear, the transition density is tractable and a solution, up to

sampling and numerical integration error, may be obtained using a particle filter

and forward-backward or two-filter smoother.

We fix ϑ = .8, γ = .1, σa = σb = σv = .1 and σy = 1. Figure 4.1 then plots the

results of the filters and Figure 4.2 the smoothers.

4.4.2 Double well

The double well is a simple one dimensional stochastic differential model of the

form:

dx = 4x(1− x2) dt+ σx dW , (4.11)
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Mean Variance

a 1 2

b 1 2

v 1 .1

Table 4.1: Prior over the variables of the toy model.
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Figure 4.1: Filtered (x, y) position estimates for the toy model. Each point repre-

sents the mean for a particular method at a particular time, with bars indicating two

standard deviations in either direction. The Kalman filter results, being analytical,

may be considered ground truth.
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Figure 4.2: Filtered (x, y) position estimates for the toy model. Each point repre-

sents the mean for a particular method at a particular time, with bars indicating two

standard deviations in either direction. The Rauch-Tung-Striebel (RTS) smoother

results, being analytical, may be considered ground truth.
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1st component 2nd component

Mean Variance Mean Variance

x .893 .107 -.893 .107

lnσx ln 1 .1 ln 1 .1

lnσy ln .2 .4 ln .2 .4

Table 4.2: Prior over the variables and parameters of the double well model.

which, for the purposes of the filtering framework presented here, we will assume

can be observed with some additional error ξ ∼ N (0, 1), diffused by a parameter

σy, so that:

y = x+ σyξ . (4.12)

The system has stable states at x = ±1, shifting between these at a regularity

comensurate with the magnitude of the diffusion parameter σx. The pair of stable

states is the saliency in this otherwise simple system. Stochasticity provides the

sole means of transitioning from one state to the other, without which the system

would settle into one or other of the states, depending on its initial value. In

this way, the double well represents a simple system in which stochasticity is the

essential driver of the dynamics of interest.

To establish intuition, Figure 4.3 plots single trajectories simulated from the

system for various values of the diffusion parameter σx. Note the clear distinc-

tion between the two stable states. Increasing σx produces systems that shift

more regularly between the two stable states. This manifests as a reduction in

autocorrelation (Figure 4.4) and a broadening of the modes of the equilibrium

distribution (Figure 4.5).

A prior is established over x, lnσx and lnσy to scope the system into the range of

interesting dynamics. This takes the form of a two component mixture of Gaus-

sians, with means and covariances as in Table 4.2. The means and variances for

x are obtained by fitting the Gaussian mixture to a sample based representation

of the equilibrium distribution for σx = .8 using Expectation-Maximisation.

With the model now defined, we proceed with methodological aspects, begin-

ning with a comparison of various numerical integration schemes for handling

the system. After this comparison, we apply applicable methods to the filter-
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Figure 4.3: Sample trajectories simulated from the double well system with varying

values of the diffusion parameter σx.
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fusion parameter σx.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

-2 -1.5 -1 -0.5  0  0.5  1  1.5  2

x

σx = .75
σx = 1.0
σx = 1.5
σx = 2.0

Figure 4.5: Equilibrium distribution of

the double well system with varying val-

ues of the diffusion parameter σx.



4.4. Experiments 55

ing, smoothing and parameter estimation problems over this model, presenting

detailed results for later discussion.

4.4.2.1 Numerical integration

Trajectories may be simulated using any one of a number of numerical schemes

adapted to SDEs, as reviewed in Chapter 3. Ultimately we wish to select a scheme

which provides a discretisation capturing the interesting behaviour of the system,

and which is computationally efficient. We investigate the application of seven

different schemes to the double well system:

EM(1) Explicit Euler-Maruyama (order 1),

RK(2) Explicit embedded Runge-Kutta (order 2/3),

RK(4) Explicit embedded Runge-Kutta-Fehlberg (order 4/5) [40],

RK(8) Explicit embedded Runge-Kutta-Prince-Dormand (order 8/9) [41],

EM(1)IMP Implicit Euler-Maruyama (order 1),

RK(2)IMP Implicit Runge-Kutta (order 2),

RK(4)IMP Implicit Runge-Kutta (order 4), and

All methods are implemented as in dysii, which builds these SDE schemes

around the ODE schemes of the GSL. The EM(1) method approximates error

by comparing each step with two half steps, halving or doubling the step size ap-

propriately in response. All other methods use the error control procedure used

in the GSL, outlined in §3.3.

For confidence, it is worthwhile establishing the validity and consistency of these

methods before proceeding. For the remainder of this section we fix σx = 1 and

error bounds δabs = 10−3 and δrel = 10−2.

Figure 4.6 depicts single trajectories drawn using each method. In their own right

these are not particularly useful for comparison, although do serve to demonstrate

at a glance that sensible results are being achieved in all cases. It is not expected

that these trajectories are identical, as each method relies on a pseudorandom

number sequence of different length, despite the use of a common seed.

More telling is a comparison of the properties of the trajectories produced. Figure

4.7 plots the autocorrelation function approximated for each method using a large



56 Chapter 4. A Fusion of Sorts

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5
EM(1)

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5
RK(2)

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5
RK(4)

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 0  10  20  30  40  50  60  70  80  90

t

RK(8)

EM(1)IMP

RK(2)IMP

RK(4)IMP

 0  10  20  30  40  50  60  70  80  90

t

EM(1)FIXED

Figure 4.6: Single sample drawn from the double well model using each numerical

scheme. Each case uses σx = 1.
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Figure 4.7: Autocorrelation of the double well model for each numerical scheme,

approximated at discrete time lags along the x-axis. Each case uses σx = 1 with 104

samples.
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Figure 4.8: Adjusted autocorrelation of the double well model for each numerical

scheme, approximated at discrete time lags along the x-axis. Each scheme uses σx

fixed to the appropriate value in Table 4.3 with 104 samples.

number of samples. The explicit and implicit methods are separated for clarity

in presentation only. We might expect that the autocorrelation function is the

same for all methods, and higher for shorter lag times where the system is more

likely constrained to a single well. We can see that the former is not the case.

The RK(4) method produces greater autocorrelation than the other methods for

all lag times. We may interpret this as the diffusion parameter σx more weakly

permeating the system in this method. This is confirmed in Figure 4.9, where

RK(4), and indeed RK(8), output more peaked equilibrium distributions, more

evidence of a comparitively weaker σx.
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The slight difference in behaviours induced by these methods is not necessarily

a problem in its own right, and besides, there is no ground truth upon which to

base disqualification. We discuss this further at the end of the section. At any

rate, arguably the chosen numerical scheme merely provides a discretisation of the

continuous-time dynamics, and is absorbed amongst the various other assump-

tions and simplifications intrinsic to the model. We argue that the behaviour

of the model, as implemented, is more important than its particular formula-

tion. For a runtime comparison of numerical schemes, however, the difference

introduces a bias that favours some methods over others. Schemes where σx has

less influence benefit from less erratic trajectories, in essence performing easier

integrations than other schemes.

We correct for this by adjusting σx independently to match autocorrelation across

methods. The approach is simple but effective – for each scheme we target a lag

1 autocorrelation of .75 and perform a binary search over σx values to achieve

this within some error bound.

The second column of Table 4.3 provides the results of this search. As expected

from the preceding discussion, a larger σx is required for RK(4) to produce a simi-

lar autocorrelation to the other methods. Figure 4.8 provides the autocorrelation

for each method when using their adjusted σx values. Clearly the situation has

improved, with RK(4) drawn into the other methods. Equilibrium distribution

plots in Figure 4.10 are less satisfying, although do show an improvement over

the universally set σx case. At any rate, we are content enough to proceed with

a performance comparison.

For each scheme, we simulate 5000 trajectories, starting with a conservative step

size of 10−4, allowing each 500 steps burn-in to reach a more regular size, then

taking 50 steps and recording the step size accepted by the error control algorithm.

Figure 4.11 plots a histogram over the step sizes accepted by each scheme. The

fourth column of Table 4.3 provides the total time progressed by each method

during this run2.

The higher-order RK(4) and RK(8) schemes clearly trump the others in terms of

step size and consequently total time progression. This is not an end to the story,

however, as the higher order schemes have computationally more expensive steps.

2The are under the histogram in Figure 4.11.
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Figure 4.9: Equilibrium distribution histogram of the double well system for each

numerical scheme. Each case uses σx = 1 with 2× 104 samples, and burn in time of

100 units with samples taken every 5 units thereafter.
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Figure 4.10: Adjusted equilibrium distribution histogram of the double well system

for each numerical scheme. Each scheme uses σx fixed to the appropriate value in

Table 4.3 with 2 × 104 samples, and burn in time of 100 units with samples taken

every 5 units thereafter.
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Scheme Adjusted σx Runtime Progression Progression
Runtime

Progression
Steps

EM(1) .986 .67 8721 13017 .0174

RK(2) 1.011 .53 2563 4836 .0051

RK(4) 1.117 .78 33229 42601 .0665

RK(8) .986 1.51 31837 21085 .0637

EM(1)IMP 1.030 .55 14303 26005 .0286

RK(2)IMP 1.027 .55 14519 26398 .0290

RK(4)IMP 1.008 .77 14161 18391 .0283

EM(1)FIXED 1.008 .25 5000 20000 .01

Table 4.3: Comparison of numerical schemes, all run for 5 × 105 steps. The second

column gives σx values fixed to give an approximate 1s lag autocorrelation of .75,

as detailed in the text. The third column gives real time taken for the method to

complete its 5×105 steps, and the fourth column the number of seconds in model time

progressed by the integrator in this period. The remaining columns are calculations

based on these figures.

Total runtime must be considered, and this is given in the third column of Table

4.3. Given that the total number of steps has been fixed, the lower order methods

are expected to perform more favourably in terms of raw runtime here. The final

selection is based on the total model time progression per runtime second, given

in the fifth column of Table 4.3.

On the basis of this criterion, the RK(4) method is a clear winner, and we choose

this for our remaining experiments. Without presenting results, we note that the

same conclusion is drawn without the σx adjustment, or indeed, by drawing a

random σx from the prior for each trajectory rather than fixing this parameter.

We can consider the average step size of this method, as in the sixth column

of Table 4.3, as a guide for the suggested step size with which to initialise the

method at the start of each particle propagation.

We acknowledge that the selection of RK(4) on runtime performance grounds is

not without caveats, particularly in light of it being the most maverick in terms

of both autocorrelation and equilibrium, as in Figures 4.7 and 4.9, and precisely

that which prompted the simple σx adjustments for comparison in the first place.

Potentially, the method is arrogantly underestimating its own error and boldly
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Figure 4.11: Time progression histogram for each numerical scheme across 5000 runs,

with 50 steps per run, and 500 steps burn-in to eliminate the effects of an initial time

step suggestion of 10−4.

taking step sizes larger than justified. We do note that in the implementation

of the step size adjustment used here, as in (3.38), RK(4) sets p to its higher

order embedded scheme (5th order) whereas all other methods set this to their

lower order. Such subtle differences in heuristics may improve its performance

significantly, at least in this particular case. On the other hand, we would expect

such a higher-order scheme to obtain more accurate estimates of error, which

may instead call into question the lower-order methods. Ultimately, the lack of

an analytical ground truth makes this difficult to assess, and we leave the matter

as an interesting open question. At the very least it is worth reiterating that the

scheme successfully captures the qualitative behaviours of most interest in this

model, and for that reason we can be satisfied with its results.

4.4.2.2 Data

Fixing σx = .8, the system is simulated to provide artificial data with known

ground truth for testing various filtering and smoothing methods. The sequence

of measurement times begins at t0 = 0, followed by tn = tn−1 +∆tn with ln ∆tn ∼
N (.5, .5), so that measurements arrive at an irregular rate, up to n = T = 500.

A trajectory is then simulated from the system, stopping at each of these times,

with a draw from the measurement function (4.12) used to obtain a data point

from the state. Stopping at specified times is straightforward – simply shorten

any proposed step size that would exceed the specified time.
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Figure 4.12: Simulated data set for the double well model, y, and true underlying

trajectory, x.

Figure 4.12 plots the data set along with the true underlying trajectory of x.

4.4.2.3 Filtering

We now consider the filtering problem applied to the artificial data set. We

investigate four different filtering techniques for this problem:

Bootstrap the bootstrap particle filter using deterministic stratified resampling.

Auxiliary the auxiliary particle filter using deterministic stratified resampling.

Bootstrap + regularised the bootstrap method above followed by the addi-

tion of kernel noise.

Auxiliary + regularised the auxiliary method above followed by the addition

of kernel noise.

In the latter two cases, a Gaussian kernel with bandwidth h = 1
2
hopt is used, so

that at time tn, after stratified resampling, each particle is perturbed with:

s(i)
n ← s(i)

n + Ln(hξ(i)
n e(i)

n ) , (4.13)

where ξ
(i)
n ∼ N (0, 1), e(i) is a unit vector drawn uniformly from the unit sphere

in RN and Ln is the Cholesky decomposition of the sample covariance matrix

at time tn. This is equivalent to a draw from a kernel density. It is efficient
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Method RK(4) EM(1)FIXED

Bootstrap filter 7.05 268.55

Auxiliary filter 6.29 457.46

Bootstrap + regularised filter 6.13 439.98

Auxiliary + regularised filter 6.44 400.85

Forward-backward smoother na 5891.77

Table 4.4: Runtime performance results for smoother and numerical scheme combi-

nations on the double well model. All runs are performed in parallel across 4 processes

on a single quad-core processor. Times are given in wallclock seconds. The forward-

backward smoother is performed over results of the auxiliary filter, with runtime of

the auxiliary filter excluded.

computationally, but also in terms of sample variance by exploiting stratified

resampling.

Given the results of §4.4.2.1, the RK(4) scheme is chosen for numerical integration

in all cases, with an initial step size of .067 suggested from Table 4.3, to be

subsequently adapted by error control. For the purposes of the filtering problem,

we fix σx = .8, its true value, and P = 500. Resampling is performed whenever

Pess < P/2. The task is performed across 4 processes on a single quad-core

processor. Details of such parallel implementation are given in §6.

Figure 4.13 plots the filtered state estimates for each filter along with the effective

sample size (ESS) at each time point.

All methods appear to capture the underlying ground truth of Figure 4.12 ef-

fectively, without significant degeneracy evident from ESS traces. There is no

significant qualitative or quantitative reason to prefer one method over the oth-

ers in these results.

Table 4.4 gives runtime results for each method over a single run. There is little

to differentiate methods here, although we opt for the auxiliary particle filter on

the basis of its slightly faster runtime than the bootstrap, and having no need to

consider kernel bandwidth configuration.
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Figure 4.13: Filter results for the double well model using the RK(4) numerical inte-

gration scheme and various filtering methods, as indicated. Line indicates mean and

shaded region two standard deviations. Corresponding ESS across time is given for

each method as an indication of degeneracy avoidance and resampling regularity.
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4.4.2.4 Smoothing

We now consider the smoothing problem. As already discussed, both the forward-

backward and two-filter smoothers require a tractable transition density. This

can only be achieved using a numerical scheme for the SDE with a linear step.

Furthermore, the time discretisation for the filter and smoother must match that

of the numerical scheme.

We therefore introduce the EM(1)FIXED scheme, an Euler-Maruyama scheme,

as EM(1), with constant time step. No error control can be used in such a scheme,

but in order to restrict error to something reasonable, we target the lower tail of

the distribution over progressions for EM(1) in Figure 4.11 and mandate a step

size of .01. A smaller step will need to be taken immediately preceding each of

the times t1, . . . , tT so that the filter may stop to incorporate measurements.

Figure 4.14 provides the results of the filter in the same manner as Figure 4.13 for

the RK(4) scheme. Note that while T = 500, and only 500 steps of the filter are

required using the RK(4) scheme, tT/.01 ≈ 105 are required using EM(1)FIXED,

precisely the same number as used to integrate each of the particle trajectories.

Clearly, this is significantly slower than using RK(4).

The results may now be smoothed. Results for the forward-backward smoother

over the results of the auxiliary filter are given in Figure 4.15. Performance results

are given in Table 4.4. The smoothing is completed successfully and represents a

significant improvement over the filter result in terms of smoothness and variance.

4.4.2.5 Parameter estimation

We may also consider estimation of the parameter σx. Each of the filter methods

may be applied in turn with this parameter added into the state in a Bayesian

fashion.

The Root Mean Square Error (RMSE) of the parameter estimation as the filters

progress through time is given in Figure 4.16. Given the finite length of the ob-

servation sequence and relatively few number of transitions between stable states

in this time, it is not surprising that the estimation is imperfect and the RMSE

does not quite approach zero. The fluctuations in the regularised methods are
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Figure 4.14: Filter results for the double well model for various methods, as indicated,

using a fixed time step Euler-Maruyama numerical integrator of step size .01. Line

indicates mean and shaded region two standard deviations. Corresponding ESS across

time is given for each method as an indication of degeneracy avoidance and resampling

regularity.
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caused by the generation of new parameter estimations via the implied artificial

dynamic of kernel density approximations. The flatlining of the bootstrap and

auxiliary filter result may be due to a lack of sufficient parameter sample diversity

to progress the estimate any closer to its true value.

4.5 Summary

This chapter has considered the application of conventional Bayesian filtering and

smoothing methods, developed for discrete time, to continuous-time dynamical

systems (§4.1). In attempting to fuse the two it has identified several difficulties,

most particularly (§4.2):

• the unavailability of a closed form transition density p(xn |xn−1) in the

general case,

• the expensive computational cost of particle propagations, and

• the divergence of reverse dynamics.

Given the first of these difficulties, only those particle filters using resampling

proposals are applicable to the continuous time setting (§4.3). These include the

bootstrap, auxiliary and regularised particle filters. Conventional smoothers are

only applicable when a linear discretisation is used, and in this case their rate is

tied to that of this discretisation.

Applicable conventional methods have been demonstrated experimentally on two

artificial problems (§4.4), with satisfactory filtering and parameter estimation

results, but satisfactory smoothing results only with significant computational

burden. These experimental results also demonstrate the significant performance

benefits to be gained from our use of higher-order Runge-Kutta methods over the

common use of low-order methods such as Euler-Maruyama (§4.4).

To these issues we may add the additional problem identified in §2.3:

• degeneracy in the filter-smoother, two-filter smoother and forward-backward

smoother due to reweighting of particles obtained by a filter.

Together, these challenges constitute the major motivation for this work and

firmly establish its context.
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a forward-backward smoother over the results of an auxiliary particle filter.
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Chapter 5

Kernel Smoothers

Having highlighted the problems in combining conventional Bayesian methods for

time-series with continuous-time dynamical systems, we now alleviate them with

two novel solutions to the smoothing problem, the kernel forward-backward and

kernel two-filter smoothers. These methods exploit kernel density estimates and

resampling proposals to establish importance sampling schemes that cancel the

transition density. Consequently, unlike the standard forward-backward and two-

filter smoothers, they are applicable to the continuous time setting and permit

use of higher-order numerical integration schemes for the SDEs of the dynamical

system. In doing so they deliver substantial runtime performance gains over

conventional techniques. Additionally, they facilitate the drawing of new samples

to support the smooth density, rather than being limited to those drawn during

filtering. In this way, the degeneracy problem, even for the discrete time case,

begins to be addressed.

This chapter introduces the general derivation and formulation of these two meth-

ods in §5.1-5.2, as well as discussing some issues related to parameter estimation

under them in §5.3. Some theoretical results are given in §5.4 to relate the meth-

ods to existing work, while experimental results in §5.5 demonstrate their benefits

over conventional methods, particularly with regard to significant runtime per-

formance gains.

71
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5.1 Kernel forward-backward smoother

The kernel forward-backward smoother follows a similar derivation to that of the

forward-backward smoother (§2.3.3), with the introduction of kernel densities to

permit arbitrary proposal distributions for importance sampling.

Factorise the smooth density as follows:

p(xn |y1:T ) =
p(yn+1:T |xn,y1:n)p(xn |y1:n)

p(yn+1:T |y1:n)
(5.1)

∝ p(yn+1:T |xn)p(xn |y1:n) (5.2)

∝ p(xn |y1:n)

∫
p(xn+1 |xn)p(yn+1:T |xn+1) dxn+1 (5.3)

∝ p(xn |y1:n)

∫
p(xn+1 |xn)

p(xn+1 |y1:T )

p(xn+1 |y1:n)
dxn+1 . (5.4)

To eliminate the integral and simplify the derivation, consider the joint:

p(xn:n+1 |y1:T ) =
p(xn |y1:n)p(xn+1 |xn)p(xn+1 |y1:T )

p(xn+1 |y1:n)
. (5.5)

Now consider importance sampling from this with a proposal distribution q′(xn:n+1)

of the form:

q′(xn:n+1) = p(xn+1 |xn)q(xn) , (5.6)

so as to cancel the intractable transition density in (5.5)1. Drawing (s
(i)
n , s′

(i)
n+1) ∼

q′(xn:n+1), the weight calculation is reduced to:

ψ(i)
n =

p(xn = s
(i)
n |y1:n)p(xn+1 = s′

(i)
n+1 |y1:T )

p(xn+1 = s′
(i)
n+1 |y1:n)q(xn = s

(i)
n )

, (5.7)

and the weighted sample set {(s(i)
n , ψ

(i)
n )} represents the smooth density at time

tn.

The filter densities p(xn |y1:n) and p(xn+1 |y1:n) may be obtained through a pre-

ceding filter, and the smooth density p(xn |y1:T ) is known recursively. Depending

on the selection of q(xn), some of these will need to be approximated. Several

techniques could be used for this, such as Gaussian mixtures or variational fits.

We choose to use kernel density estimates for two reasons. Firstly, being non-

parametric, they are generally applicable to all models without knowledge of

internals. Secondly, they provide some nice opportunities for parallelism and

optimisation, which we discuss in the implementation of these methods in §6.

1Note parallels with the resampling proposals for particle filters described in §4.3.
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Note that as all of the approximated densities are conditioned only on measure-

ments, they are the same for all samples {s(i)
n:n+1}. Conversely, the transition

density, a nuisance because of its conditioning on s
(i)
n , has been eliminated.

The algorithm is summarised as:

Algorithm 5.1 (Kernel forward-backward smoother) Perform a filter for-

ward in time, at the conclusion of which p(xT |y1:T ) is known and approximated

by {(s(i)
T , ψ

(i)
T = π

(i)
T )}. Then, for time tn, draw s

(i)
n from some importance dis-

tribution q(xn), draw s′
(i)
n+1 ∼ p(xn+1 |xn = s

(i)
n ) via numerical integration, and

let:

ψ(i)
n =

p(xn = s
(i)
n |y1:n)p(xn+1 = s′

(i)
n+1 |y1:T )

p(xn+1 = s′
(i)
n+1 |y1:n)q(xn = s

(i)
n )

, (5.8)

The weighted sample set {(s(i)
n , ψ

(i)
n )} then approximates the smooth density

p(xn |y1:T ).

The interest now is in selecting an appropriate proposal distribution q(xn). While

theoretically any density where q(xn) > 0 whenever p(xn |y1:T ) > 0, for all xn,

is tenable, in practice some facilitate more efficient sampling than others. We

discuss several options in the following sections.

5.1.1 Filter as proposal

One option is to set q(xn) = p(xn |y1:n). Recall that p(xn |y1:n) is approximated

by the weighted sample set {(s(i)
n , π

(i)
n )}. By preserving these samples and prop-

agating each through the SDEs of the system to obtain {s′(i)n+1}, the smoothed

weight reduces to:

ψ(i)
n =

pK(xn+1 = s′
(i)
n+1 |y1:T )

pK(xn+1 = s′
(i)
n+1 |y1:n)

π(i)
n . (5.9)

The weighted set {(s(i)
n , ψ

(i)
n )} then approximates the smoothed density p(xn |y1:n).

Kernel densities provide approximations at arbitrary points of the two densities of

(5.9). pK(xn+1 |y1:n) is the kernel estimate of the filter density calculated during

the forward pass. pK(xn |y1:T ) is known when the forward pass terminates at

time n = T , and recursively calculated as the smooth density as the backward

pass proceeds.
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Clearly, this will suffer from the same degeneracy issue of the forward-backward

smoother if the filter density fails to adequately support the smooth density. Nev-

ertheless, it is suitable in many situations and worth considering for its potential

efficiency, given that one density evaluation is cancelled.

The algorithm requires two kernel density evaluations at each time step, and

these dominate the runtime complexity. If these are performed using the dual-

tree algorithm [44], runtime complexity is O(T lgP lgP ) in the best case, and

O(TP 2) in the worst. Details of such an implementation are given in §6.

5.1.2 Equilibrium as proposal

For a stationary process, we can consider using the equilibrium distribution as a

static proposal, setting q(xn) = ps(x) for all times. This is a particularly attrac-

tive option, as it allows sensible generation of new particles during the backwards

pass, potentially avoiding the degeneracy problem inherent in the reweighting of

filter particles.

At the beginning of the pass, {s(i)
s } are independently sampled from ps(x), with

corresponding densities β
(i)
s = ps(s

(i)
s ). At each time tn, propagate s

(i)
s through

the SDEs of the system to obtain s′
(i)
n+1. The smoothed weight becomes:

ψ(i)
n =

pK(xn = s
(i)
s |y1:n)pK(xn+1 = s′

(i)
n+1 |y1:T )

pK(xn+1 = s′
(i)
n+1 |y1:n)β

(i)
s

, (5.10)

so that the weighted set {(s(i)
s , ψ

(i)
n )} approximates the smoothed density p(xn |y1:n).

Kernel density estimates are again used to circumvent intractability.

The basic algorithm now requires three kernel density evaluations, potentially

a fourth if the equilibrium distribution itself is approximated in this way. The

runtime complexity is therefore O(T lgP lgP ) in the best case, and O(TP 2) in

the worst. A number of optimisations can significantly reduce this, detailed in

the next chapter (§6).
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5.1.3 Other proposals

As with proposal distributions for particle filters, an endless variety of possibilities

can spring to mind, many exploiting peculiar functional properties, or specialising

to particular problem types.

A few speculative ideas are worth mentioning without elaborating too much on

the details. One option would be to approximate the next smooth density using

the current smooth density. This may be effective if the time difference is suffi-

ciently small that they are likely to be similar. If too dissimilar, a linearisation

of the reverse dynamics applied to the current smooth density may provide a

reasonable approximation. Perhaps more rigorous would be use of the system’s

autocorrelation function over the time interval2. For some models, an easy, but

possibly inefficient option, is to simply use the prior p(x0).

Selection of a proposal distribution is also precisely where domain knowledge and

model-specific structures may be best exploited for the greatest computational or

statistical gain. Resample-move [28][ch.6] transition kernels could be used to sup-

port a mutually exclusive set of different behaviours. The Jacobian could be used

to predict expansion or contraction, perhaps even combined with dimensionality

reduction for large-scale problems with many dimensions (e.g. [45]). There is no

reason why adaptive proposal strategies could not be employed either.

5.2 Kernel two-filter smoother

Like its counterpart above, the kernel two-filter smoother may be compared to

the two-filter smoother (2.3.2), having a similar derivation, and exploiting kernel

densities for applicability to continuous-time dynamical systems. In contrast to

the standard two-filter smoother, however, the approach never involves an explicit

calculation of the backward filter density p(xn |yn:T ), and does not require the

prior p(xn) or its substitute γn(xn).

2This would be similar to the discretisation scheme for SDEs proposed by [8].
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Factorise the smooth density as follows:

p(xn |y1:T ) =
p(yn:T |xn,y1:n−1)p(xn |y1:n−1)

p(yn:T |y1:n−1)
(5.11)

∝ p(yn:T |xn)p(xn |y1:n−1) , (5.12)

expanding the likelihood term:

p(yn:T |xn) = p(yn |xn)p(yn+1:T |yn,xn) (5.13)

= p(yn |xn)p(yn+1:T |xn) (5.14)

= p(yn |xn)

∫
p(yn+1:T |xn+1)p(xn+1 |xn) dxn+1 . (5.15)

Now observe:

p(xn |yn:T ) ∝ p(xn)p(yn:T |xn) (5.16)

∝ p(xn)p(yn |xn)

∫
p(yn+1:T |xn+1)p(xn+1 |xn) dxn+1 ,(5.17)

and consider the joint:

p(xn:n+1 |yn:T ) ∝ p(xn)p(yn |xn)p(yn+1:T |xn+1)p(xn+1 |xn) . (5.18)

Now consider importance sampling from this using a proposal distribution q′(xn:n+1)

of the form:

q′(xn:n+1) = p(xn+1 |xn)q(xn) , (5.19)

so as to cancel the intractable transition density in (5.18). Drawing (s
(i)
n , s′

(i)
n+1) ∼

q′(xn:n+1), the weight calculation for the backward filter is:

π̃(i)
n =

p(xn)p(yn |xn = s
(i)
n )pK(yn+1:T |xn+1 = s′

(i)
n+1)

q(xn = s
(i)
n )

, (5.20)

so that the weighted sample set {(s(i)
n , π̃

(i)
n )} would represent the backward filter

density, if not for the expected unavailability of the prior p(xn). Consider the

weight calculation for the backward likelihood:

β(i)
n =

π̃
(i)
n

p(xn)
(5.21)

=
p(yn |xn = s

(i)
n )pK(yn+1:T |xn+1 = s′

(i)
n+1)

q(xn = s
(i)
n )

, (5.22)

noting that the prior p(xn) has now been cancelled. The weighted sample set

{(s(i)
n , β

(i)
n )} now represents the backward likelihood p(yn:T |xn). This alone is
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sufficient for basing the recursion of the method; the backward filter density is

not required.

Note that pK(yn+1:T |xn+1) gives a kernel likelihood estimate. In terms of im-

plementation, this is, for all intents and purposes, identical to a kernel density

estimate, although need not integrate to one over xn, and indeed may be infinite.

Recalling (2.29), the smooth density weights may be calculated by:

ψ(i)
n = β(i)

n pK(xn = s(i)
n |y1:n−1) , (5.23)

and the weighted sample set {(s(i)
n , ψ

(i)
n )} represents the smooth density at time

tn. The algorithm is summarised below:

Algorithm 5.2 (Kernel two-filter smoother) Perform a filter forward in time,

at the conclusion of which p(xT |y1:T ) is known and approximated by {(s(i)
T , ψ

(i)
T =

π
(i)
T )}. Let:

β
(i)
T =

p(yT |xT = s
(i)
T )

pK(xT = s
(i)
T |y1:T )

ψ
(i)
T , (5.24)

so that p(yT |xT ) is approximated by a kernel likelihood over {(s(i)
T , β

(i)
T )}.

Then, for time tn, draw s
(i)
n from some importance distribution q(xn), draw s′

(i)
n+1 ∼

p(xn+1 |xn = s
(i)
n ), and let:

β(i)
n =

p(yn |xn = s
(i)
n )pK(yn+1:T |xn+1 = s′

(i)
n+1)

q(xn = s
(i)
n )

. (5.25)

The weighted sample set {(s(i)
n , β

(i)
n )} then approximates the backward likelihood

p(yn:T |xn). Now, let:

ψ(i)
n = β(i)

n pK(xn = s(i)
n |y1:n−1) . (5.26)

The weighted sample set {(s(i)
n , ψ

(i)
n )} then approximates the smooth density

p(xn |y1:T ).

Similar options for the proposal s
(i)
n+1 may be used as for the kernel forward-

backward smoother. Note, however, that use of the filter density as proposal

provides no additional cancelling. No other obvious cancelling proposals are avail-

able, partly because unlike the forward-backward smoother, the smooth density
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is calculated as an aside – it is the likelihood calculation that is essential for the

recursion. Even the uncorrected filter density p(xn |y1:n−1), providing cancella-

tion for smoothed weights, needs to be evaluated to recover likelihood weights for

the next step of the recursion.

The algorithm requires two kernel density (likelihood) evaluations. This is fewer

than for the kernel forward-backward smoother, although fewer optimisations are

available also (see §6).

5.3 Parameter estimation

For a Bayesian approach to parameter estimation, ideally a filter should be suf-

ficient to conclude parameter estimates, as the posterior over static parameters

will have absorbed all data at the conclusion of a forward pass. Unfortunately,

in practice an artificial dynamic must be applied to the parameters, either ex-

plicitly or implicitly3, such that smoothing may be required to assess parameter

estimates. One may also wish to smooth to assess the fit or likelihood of the data

under the model, or to utilise an iterative parameter estimation scheme such as

ML using Expectation Maximisation.

If the full posterior over parameters is to be preserved, smoothing may simply be

performed as normal, continuing to treat the parameters as regular state variables.

If parameters are to be fixed and the state estimate smoothed under the selected

values, a number of options are available. The first is to simply fix parameter

values, then filter and smooth over the remaining variables. This is particularly

attractive if working with a stationary system, where fixing the parameters is akin

to fixing the equilibrium distribution, which could then be used as an effective

proposal.

Obviously this approach requires two filter passes, one for parameter estimation

and one to complement the smoother. If for whatever reason this is untenable,

one might consider reconditioning kernels for the backward pass. Take, for ex-

ample, the filter density p(xn,θ |y1:n) over the augmented state x∗n = [xTn ,θ
T
n ]T ,

3As in the case of the regularised particle filter.
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represented by the kernel density:

p(x∗n |y1:n) ≈ 1

hN |L∗n|−1

P∑
i=1

π(i)
n K(

1

h
‖L∗−1

n (x∗n − s∗(i)n )‖) , (5.27)

where K is the Gaussian kernel. Now consider the density p(xn |y1:n,θ). This is

obtained by conditioning each of the kernels individually on the parameters θ.

Kernel i has mean s
∗(i)
n and standard deviation hL∗n, partitioned as:

s∗(i)n =

(
sn

θn

)
(5.28)

L∗n = h

(
Lx Lx,θ

Lθ,x Lθ

)
. (5.29)

By applying the standard conditional rules for Gaussians, a new Gaussian kernel

is obtained with mean and covariance:

ŝ(i)
n = s(i)

n + Σx,θΣ−1
θ (θ − θn) (5.30)

Σ̂n = Σx − Σx,θΣ−1
θ Σθ,x , (5.31)

and standard deviation L̂n given by the Cholesky decomposition of Σ̂n. Note that

this standard deviation is constant for all kernels. The conditioned kernel density

is now:

p(xn |y1:n,θ) ≈ 1

hN |L̂n|−1

P∑
i=1

π(i)
n K(

1

h
‖L̂−1

n (xn − ŝ(i)
n )‖) , (5.32)

which allows the adjustment of filter densities already obtained during parameter

estimation, without the execution of a second filter with fixed parameters.

While the above is specific to the Gaussian kernel, there is no reason that the same

cannot be applied to other varieties of kernel function. For some, it may produce

an interesting scenario where the conditioning produces kernels of a different class

for the smoothing pass.

5.4 Theoretical results

We now derive a number of results regarding the kernel filters presented to tie

them in with existing work. The main result of this section is that the use of
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these kernel smoothers is essentially equivalent to approximating the transition

density using a single kernel.

We first introduce some terminology for clarity of discussion.

Definition 5.1 (Support equivalence) Take two kernel density estimates pK1(x)

and pK2(x), defined over weighted sample sets {(s(i)
1 , π

(i)
1 )} and {(s(i)

2 , π
(i)
2 )}, re-

spectively. Then, pK1(x) and pK2(x) are said to have equivalent support if {s(i)
1 } =

{s(i)
2 }.

Note that an order may be induced over the weighted sample set by ordering

components according to their index i. In such cases the ordered weights may be

denoted as the vector π.

The results of a kernel density evaluation for multiple query points will be repre-

sented in matrix form. Specifically:

Definition 5.2 For a kernel density pK(x) defined over a weighted sample set

{(s(i), π(i))}, and set of query points {s′(j)}, Aπ denotes the result of evaluating

pK(x) at each of the points {s′(j)}, where:

A(j,i) =
1

hN |Ln|−1
K(

1

h
‖L−1

n (s′
(j) − s(i))‖) . (5.33)

5.4.1 Forward-backward smoothing

We now claim:

Proposition 5.1 The kernel forward-backward smoother is equivalent to the forward-

backward smoother when:

• the filter density is used as the proposal distribution,

• the particles supporting this are reused,

• the same standardisation matrix Ln is used for both pK(xn+1 |y1:T ) and

pK(xn+1 |y1:n), or no standardisation is performed, and

• the transition density is approximated by the single point kernel estimator:

p(xn+1 |xn = s(j)
n ) ≈ 1

hN |Ln|−1
K(

1

h
‖L−1

n (xn+1 − s
(j)
n+1)‖) . (5.34)
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We begin by reframing Algorithm 2.7 in the matrix form introduced above:

Algorithm 5.3 (Forward-backward smoother, matrix form) Perform a fil-

ter forward in time, at the conclusion of which p(xT |y1:T ) is known and approxi-

mated by {(s(i)
T , ψ

(i)
T = π

(i)
T )}. Initialise with ψ

(i)
T = π

(i)
T and proceed recursively as

follows:

A(i,j)
n = p(xn+1 = s

(i)
n+1 |xn = s(j)

n ) , (5.35)

then:

γn = Anπn (5.36)

δn = ATn (ψn+1 � γn) (5.37)

ψn = πn ⊗ δn , (5.38)

or equivalently:

ψn = πn ⊗ ATn (ψn+1 � Anπn) , (5.39)

where ⊗ is element-wise multiplication and � element-wise division.

The weighted sample set {(s(i)
n , ψ

(i)
n )} then approximates the smooth density p(xn |y1:T ).

Likewise, the kernel forward-backward smoother with filter density as proposal

may be rephrased. Here, βn+1 indicates the uncorrected filter weights at time

tn+1. Consequently, {(s(i)
n , π

(i)
n )} represents the filter density p(xn |y1:n) at time

tn, and {(s(i)
n+1, β

(i)
n )} the uncorrected filter density p(xn+1 |y1:n) at time tn+1.

Algorithm 5.4 (Kernel forward-backward smoother, matrix form) Perform

a filter forward in time, at the conclusion of which p(xT |y1:T ) is known and ap-

proximated by {(s(i)
T , ψ

(i)
T = π

(i)
T )}. Then, for time tn, draw s′

(i)
n+1 ∼ p(xn+1 |xn =

s
(i)
n ) by propagating through the SDEs of the system, and let:

A(j,i) =
1

hN |Ln|−1
K(

1

h
‖L−1

n (s′
(i)
n+1 − s

(j)
n+1)‖) . (5.40)

Then:

γn = ATnβn+1 (5.41)

δn = ATn (ψn+1 � γn) (5.42)

ψn = πn ⊗ δn , (5.43)
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or equivalently:

ψn = πn ⊗ (ATnψn+1 � ATnβn) , (5.44)

The weighted sample set {(s(i)
n , ψ

(i)
n )} then approximates the smooth density p(xn |y1:T ).

Note that this assumes support equivalence between pK(xn+1 |y1:T ) and pK(xn+1 |y1:n),

implying that the same matrix Ln is used to standardise both. These assumptions

are as listed in Proposition 5.1.

We prove Proposition 5.1 first using a simple proof for a special case, and then a

more elaborate proof for the general case.

Proof 5.1 (Of Proposition 5.1 in the absence of resampling) Observe that

if resampling has not been performed between times tn and tn+1 then βn+1 = πn.

If propagations are additionally reused from the filter, s′
(i)
n+1 = s

(i)
n+1, and the ma-

trix An is symmetric by the symmetry property of the kernel K(‖ · ‖). It follows

that:

ψn = πn ⊗ (ATnψn+1 � ATnβn) (5.45)

= πn ⊗ ATn (ψn+1 � Anπn) , (5.46)

deriving the forward-backward smoother from the kernel forward-backward smoother.

2

In the general case, resampling may have been performed between times tn and

tn+1, such that βn+1 6= πn and propagations may not be reused. The proof in

this case relies on alternative forms for the correction factors γn.

Proof 5.2 (Of Proposition 5.1 in the general case) Consider the calculation

of the correction weight for the kernel forward-backward smoother:

γn = ATnβn+1 . (5.47)

This represents a kernel density estimate for the query points {s′(i)n+1} in pK(xn+1 |y1:n)

over the weighted sample set {(s(j)
n+1, β

(j)
n+1}.

Consider the alternative representation for pK(xn+1 |y1:n) over the weighted sam-

ple set {(s′(j)n+1, π
(j)
n }, given by the proposal distribution propagations, and perform
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a kernel density estimate using {s(i)
n+1} as the query points. Notice that this ex-

changes the query and target points, providing an alternative but equally valid set

of correction factors γn.

We now have:

γn = Anπn , (5.48)

implying:

ψn = πn ⊗ (ATnψn+1 � ATnβn) (5.49)

= πn ⊗ ATn (ψn+1 � Anπn) , (5.50)

deriving the forward-backward smoother from the kernel forward-backward smoother.

2

5.4.2 Discussion

These results are useful to tie the kernel-based smoothers into existing work. In

particular, they hint at the possibility of estimating the intractable transition

density using single point estimators for other methods as well, such as the wider

family of particle filters and smoothers that assume a closed form transition. We

also highlight the similarity between such an approach and the random-weight

particle filter of [6], discussed in §1.3.1.

Note also the significant resource advantage of the kernel forward-backward over

the forward-backward smoother. As the transpose of An is never needed, there is

no need to precalculate An at O(P 2) spatial complexity, or alternatively calculate

its values twice. The space versus runtime tradeoff of the forward-backward

smoother is therefore eliminated with the best result in both time and space.

5.5 Experiments

Now armed with methods capable of efficiently solving the smoothing problem

for continuous-time dynamical systems, we extend the experimental results of the

previous section and provide comparision.
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5.5.1 Toy

The kernel forward-backward and kernel two-filter smoothers may be applied to

the toy model introduced in §4.4.1. In review, as the system is linear, the RTS

smoother provides an exact solution to the smoothing problem up to accumu-

lated floating point error, and the forward-backward or two-filter smoother up to

sampling and numerical integration error.

The proposed kernel forward-backward and kernel two-filter smoothers have an

additional source of error in the form of the kernel density approximations. Figure

5.1 augments Figure 4.2 with the results of these two smoothers. Note that the

forward-backward, kernel forward-backward and two-filter smoothers all use the

same filter results for smoothing calculations.

5.5.2 Double well

For the double well model, both the kernel forward-backward and kernel two-

filter smoothers may be immediately applied to the filter results already obtained

for the double well model. We need only consider selection of an appropriate

proposal distribution.

Use of the filter density is relevant, and as this is a stationary process, the equi-

librium distibution may prove useful too. Because the autocorrelation for this

model must be calculated numerically for each lag time, and because measure-

ments arrive at irregular intervals, use of the autocorrelation function will prove

too inefficient. Likewise, repeating the last smooth density as importance does

not seem attractive, as the system exhibits rapid fluctuations.

We perform the smoothing using P = 500 particles, as for the filter, with the

kernel bandwidth set to hopt. The task is distributed across 4 processes on a

quad-core processor.

Figures 5.2 & 5.3 present results for the kernel forward-backward smoother us-

ing equilibrium and filter proposal distributions, respectively. Figures 5.2 & 5.4

present results for the kernel two-filter smoother using equilibrium and uncor-

rected filter proposal distributions. Recall that the prior is precisely the equilib-



5.5. Experiments 85

 0

 1

 2

 3

 4

 5

 6

 0  1  2  3  4  5  6

y

x

RTS smoother
Forward-backward smoother

Kernel forward-backward smoother
Kernel two-filter smoother

Figure 5.1: Filtered (x, y) position estimates for the toy model. Each point repre-

sents the mean for a particular method at a particular time, with bars indicating two

standard deviations in either direction.
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Method RK(4) EM(1)FIXED

Auxiliary filter 6.29 457.46

Forward-backward smoother na 5891.77

Kernel forward-backward smoother, filter proposal 10.14 1156.02

Kernel two-filter smoother, filter proposal 15.69 1844.72

Kernel forward-backward smoother, equilibrium 27.20 2976.61

Kernel two-filter smoother, equilibrium 39.47 4710.00

Table 5.1: Runtime performance results for smoother and numerical scheme combi-

nations on the double well model. All runs are performed in parallel across 4 processes

on a single quad-core processor. Times are given in wallclock seconds. All smoothers

are performed over results of the auxiliary filter, with runtime of the auxiliary filter

excluded.

rium distribution, and so separate results for use of the prior as proposal distri-

bution are not shown.

Table 5.1 provides runtime performance comparisons for these new methods ver-

sus the forward-backward smoother applied in §4.4.2.4. Substantial gains are ap-

parent via their use in combination with the RK(4) numerical integration scheme.

5.6 Discussion

Results of the kernel forward-backward and kernel two-filter smoothers on the toy

model (Figure 5.1) are close to that of the exact solution provided by the RTS

smoother. The accuracy of the methods for these particular runs is noticeably

less than that for the conventional forward-backward smoother, although recall

the additional source of error in the form of kernel density approximations. This

may not apply in general, particularly for more complex models which may be

undersampled by P , where the kernel density could even improve accuracy.

In any case, performance results for the double well model (Table 5.1) very bluntly

demonstrate runtime gains of over a hundred fold if such an additional source of

error can be tolerated. A conventional forward-backward smoother, forced to use

an Euler-Maruyama discretisation with fixed time step to ensure availability of
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Figure 5.2: Smoothed results for the double well model using the kernel forward-

backward smoother with equilibrium as proposal distribution.

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2 Smooth density

 50
 150
 250
 350
 450

 0  100  200  300  400  500  600  700  800  900

t

ESS

Figure 5.3: Smoothed results for the double well model using the kernel forward-

backward smoother with filter density as proposal distribution.
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Figure 5.4: Smoothed results for the double well model using the kernel two-filter

smoother with equilibrium as proposal distribution.
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Figure 5.5: Smoothed results for the double well model using the kernel two-filter

smoother with uncorrected filter density as proposal distribution.
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a closed form transition density (see §4.2), performs substantially slower than

our kernel methods tailored for the continuous-time case. Of the two, the kernel

forward-backward smoother performs faster than the kernel two-filter. This is

something we observe consistently. The difference is accounted for by more ag-

gressive optimisations for the kernel forward-backward smoother, which are given

in detail in the next chapter (§6).

Results of the kernel smoothers for the double well model (Figures 5.2-5.5), are on

inspection comparable to that for the forward-backward smoother in the previous

chapter (Figure 4.15). Similar effective sample size (ESS) is evident across time

when comparing Figures 5.3 and 5.5 with Figure 4.15. This is to say that the

kernel forward-backward and kernel two-filter smoothers are sampling the pos-

terior as richly as the forward-backward smoother, at least when the filter and

uncorrected filter densities, respectively, are used as proposal.

The equilibrium distribution provides poorer ESS, as seen in Figures 5.3 and 5.4.

This is to be expected given that the equilibrium proposal draws samples equally

from both stable states at any time, rather than biasing in favour of one or the

other in the case of the filter density. Half of all samples are effectively wasted.

Of couse, increasing P , or even h, can improve these results, we do not do so as

this is a point worth demonstrating.

Interestingly, use of the equilibrium distribution seems to better capture transi-

tions between the steady states when using the kernel forward-backward smoother,

as seen by comparing Figures 5.2 and 5.3. By drawing new samples like this to

support the smooth density, rather than being restricted to reweighting filter

particles as in conventional forward-backward and two-filter smoothers, cases of

degeneracy at sensitive points like this can be mitigated. This is one example of

this.

By employing kernel densities to eliminate the transition density, we have decou-

pled the rate of the filter and smoother time scale from the SDE discretisation

step size. This is more general and flexible than methods which rely on a fine

linear discretisation and tie the filter and smoother to this resolution. Of course,

this does not prevent the use of such a fine discretisation, it simply lifts the

mandate of it. These kernel density methods may therefore prove particularly

attractive in situations where measurements are sparse but where state estimates
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are not needed at a resolution as fine as that of the numerical integration scheme.

Smoothing is performed much faster in such situations through the use of these

methods.

As a final point, an interesting property of the methods proposed here is the

ability to draw new samples to support the smooth density during the backward

pass. This is in contrast to the filter-smoother, two-filter smoother and forward-

backward smoother described in §2.3, which merely reweight particles originally

drawn to support filter densities. While these methods may degenerate when

the smooth and filter densities do not overlap significantly, the kernel forward-

backward and kernel two-filter smoothers introduce a proposal distribution which

may be specifically engineered to target this sweet spot. Combined with kernel

estimators, permitting density calculations at arbitrary points, this may help to

alleviate the smoother degeneracy problem in some situations.

5.7 Summary

This chapter has introduced the kernel forward-backward (§5.1) and kernel two-

filter (§5.2) smoothers as methods suitable for solving the smoothing problem in

the continuous time setting. The methods address the issues identified in §4 by:

• cancelling the intractable transition density in smooth weight calculations,

and in doing so

• decoupling the rate of the filter and smoother from the numerical scheme

used to integrate the SDE,

• permitting use of a higher-order numerical scheme for the integration, using

an adaptive time step to permit error control, and

• providing an importance sampling framework for generating new samples

to support the smooth density, providing a handle to address issues of de-

generacy.

The chapter also included a brief discussion of how these methods may be coupled

with a parameter estimation scheme (§5.3), in particular making mention of kernel

conditioning to reduce dimensionality for the smoother when parameter values

are fixed.
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Manipulations in §5.4 tie these methods in with existing theory, while experimen-

tal results in §5.5 demonstrate the major speed advantage of these methods over

conventional techniques.





Chapter 6

Implementation

Preceding chapters have isolated theoretical contributions from their concrete im-

plementation, but actuation is a running theme of this work, not an afterthought.

This chapter addresses the need for such implementation, and the additional chal-

lenges posed by it. It has the flavour of parallel and distributed computing, where

computational power can be as liberating as clever mathematical formulation, and

certainly complementary to it.

Parallelism demands attention throughout method development in the same way

that dimensionality and noise do. Simple but parallelisable methods can – often

do – trump sophisticated but inherently sequential approaches. Intuition can

prove misleading under the intracacies of computer and network architectures.

Implementation cannot be the assumed effortless aftermath of the abstract idea.

The approaches described here are realised in the open source dysii C++ li-

brary1. This chapter presents the design-level ideas of most general saliency,

avoiding code level details that are better left to API documentation. The chap-

ter separates distributed data structures (§6.2) from the algorithms applied over

them (§6.3), first specifying the former to facilitate a clearer treatment of the

latter. These are distilled into method-specific optimisations in §6.4, with some

experimental results in §6.5.

1http://www.indii.org/software/dysii/
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6.1 Introduction

Several code bases are available for particle filtering, and at least one for the inte-

gration of SDEs. On the Bayesian filtering side, the Bayesian Filtering Library2

(C++) and ReBeL3 (MATLAB) provide examples. On SDEs, Gardiner [17] pro-

motes the xmds4 package. Using the method of converting Itô to Stratonovich

SDEs advocated here (§3.2.1), a myriad of implementations of methods for ODEs

become available, including those of the GNU Scientific Library5 (C). All of these

provide serial implementations only.

Any implementation must be targeted to some computing platform. For rele-

vancy, even at risk of fashion, targeting the current state of the art in computer

systems seems the obvious choice. Parallelism seems the way forward in this re-

gard. At the single processor level, multi-core chips capable of concurrent thread

execution have become commonplace. Large scale networks of commodity hard-

ware have eclipsed specialised supercomputers. A distributed memory, coarse-

grain parallel implementation encompasses the trends across this complete range

of scales. We target such an implementation.

Of all the methods of machine learning, particle filters are perhaps some of the

most amicable to parallelisation. Immediately, one can consider propagating

particles in parallel at each time step, synchronising only for the purposes of

resampling. While a cursory search reveals much literature on various parallel

particle filtering strategies, to our knowledge, there is no widely available code

with parallel support available at time of writing. The one exception is the dysii

project spun off from this work.

6.1.1 Assumptions

The implementations described here adopt the Single-Instruction Multiple-Data

(SIMD) paradigm. They are suitable for a single processor up to several hundred,

and indeed have been successfully applied across up to 200 [46]. We assume dis-

2http://www.orocos.org/bfl/
3http://choosh.csee.ogi.edu/rebel/
4http://www.xmds.org/
5http://www.gnu.org/software/gsl/

http://www.orocos.org/bfl/
http://choosh.csee.ogi.edu/rebel/
http://www.xmds.org/
http://www.gnu.org/software/gsl/
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tributed memory, an assumption that encompasses shared memory as a special

case, along with homogeneity of hardware, a more limiting assumption to sim-

plify the algorithms, but one that is usually the case for purpose-built networks.

We otherwise make no assumptions regarding architecture, and do not exploit

particular hardware or network features.

The assumptions are lax enough that the algorithms are broadly applicable, al-

though not necessarily optimised to particular parallel set-ups. In order of in-

creasing scale, they have been tested on solo multi-core machines, networks of up

to seven loosely connected compute servers, and the Eddie system of the Edin-

burgh Compute and Data Facility6. We also note that the methods do not rely

on parallelism, and will work in a serial context also.

6.1.2 Terminology

Throughout our discussion we will make use of some fairly high-level pseudocode

to more clearly articulate ideas. Recalling that the algorithms presented here are

SIMD, in all cases the pseudocode is to be executed by all processes concurrently,

unless otherwise specified.

We will refer to each process as a node, or process node where the interpretation

may be ambiguous. The number of nodes in the parallel environment is referred

to as its size. Nodes are numbered sequentially from 0, . . . , size −1, a number

referred to as node rank . Both size and rank are considered global variables on

each node.

For interprocess communication, we adopt the nomenclature of the Message Pass-

ing Interface (MPI)7, in particular using send and receive to describe point-to-

point communication, and broadcast, gather, reduce and so forth for collective

communication. For the purposes of pseudo-code, these methods are defined as

follows:

• Send sends data to one node.

• Recv receives data from one node.

• Broadcast sends data from one node to all nodes.

6http://www.ecdf.ed.ac.uk/
7http://www.mpi-forum.org/

http://www.ecdf.ed.ac.uk/
http://www.mpi-forum.org/
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• Gather sends data from all nodes to one node, returning a vector of these

data items indexed by rank.

• Reduce sends an aggregation of data from all nodes to one node, such as

a sum of a variable across all nodes.

• All-Gather sends data from all nodes to all nodes, equivalent to calling

Gather once to each node.

• All-Reduce sends an aggregation of data from all nodes to all nodes,

equivalent to calling Reduce once to each node.

• Scan sends an aggregation of data from nodes 0, . . . , rank to each node.

In context, the purpose of these operations should be clear enough without intri-

cate knowledge of MPI.

Our discussion will not reach sufficient depth for synchronous versus asynchronous

messaging to warrant much consideration. As always, however, asynchronous

messaging is preferred where possible to better avoid deadlock, busy wait and

other such undesirable states in a parallel environment.

6.2 Data structures

We first describe essential data structures and the operations defined on them,

from which more complex algorithms will flow easily.

6.2.1 Distributed mixtures

Take any weighted mixture of probability densities:

p(x) =
1∑P
i=1 πi

P∑
i=1

πipi(x) . (6.1)

Note that the weights themselves are unnormalised, so need not sum to 1. In the

context of particle filters, the pi(·) will usually be Dirac δ functions, although in

general may be Gaussians, kernel densities, or any other parametric or nonpara-

metric densities. Let the full set of weighted densities, collectively referred to

hereafter as components, be denoted by P. Each node then adopts an exclusive

subset Prank ∈ P such that
⋃size −1

rank=0 Prank = P, and
⋂size −1

rank=0 Prank = ∅.
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Code 6.1 Redistribution of mixture components across nodes.

Redistribute-By-Size

1 P ← All-Reduce sum of |Prank | across nodes

2 targetSize ← P / size � integer division

3 if rank < P mod size

4 then targetSize ← targetSize +1 � take a leftover

5 excess ← |Prank | − targetSize
6 excesses ← All-Gather excess across nodes

7 while any element of excesses is nonzero

8 do from ← rank of node with greatest excess

9 to ← rank of node with least (greatest negative) excess

10 transfer ← min(|excesses[from]|, |excesses[to]|)
11 if rank = from

12 then Send transfer no. components to rank to

13 elseif rank = to

14 then Recv transfer no. components from rank from

15 excesses [from]← excesses [from]− transfer
16 excesses [to]← excesses [to] + transfer

For most tasks, ideally |P0| ≈ |P1| ≈ . . . ≈ |Psize −1|, as this will provide a

roughly even workload over nodes to minimise waiting at points of synchrony. The

Redistribute-By-Size method (Code 6.1) evens up the number of components

on each node; nodes of rank rank < P mod size adopting an extra component if

necessary. Note that the procedure assumes efficient point-to-point communica-

tion between all pairs of nodes. On architectures where not all pairs of nodes can

efficiently communicate directly, a more sophisticated strategy for pairing than

the greedy strategy given here may be required.

Some tasks require that each node has access to the complete set of components

P. In general, it cannot be assumed that any one node has sufficient memory to

hold the entire set simultaneously, however. The Rotate method (Code 6.2) is
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Code 6.2 Rotation of mixture components between nodes.

Rotate

1 SendPrank to node rank +1 (mod size)

2 Recv new Prank from node rank −1 (mod size)

defined to rotate the subsets around the nodes by rank, allowing each to operate

on a subset of the components in turn. After size calls to Rotate, each node

will be returned its original subset Prank .

Rotate calls may be nested in loops of arbitrary depth for problems requiring

all-pair matching between two sets, or all-combination matchings between more.

One such example is the calculation of the α terms in Algorithm 2.7.

6.2.2 Partition trees

The flat representation of distributed mixtures can be limiting for some opera-

tions, in particular for kernel density evaluations, upon which the methods of this

work rely heavily. For these tasks, a hierarchical tree representation can be more

useful.

The motivation is straightforward. Consider a kernel density built over the set

of samples {s(i)} for i = 1, . . . , P . Now consider the query point x, at which

to evaluate the density. Naively, the solution is obtained simply by evaluating

K(‖x − s(i)‖) for i = 1, . . . , P , then summing and normalising to obtain the

density. This requires P norm and kernel evaluations.

Now consider two samples in the density s(i) and s(j) such that ‖x − s(i)‖ <
‖x − s(j)‖. We expect, therefore, that K(‖x − s(i)‖) > K(‖x − s(j)‖). Such

bounds can be exploited for more efficient approximate density evaluations. In the

first instance, under the rounding approximation of floating point arithmetic, if

K(‖x−s(i)‖) = 0, then immediately K(‖x−s(j)‖) = 0 without further evaluation.

Potentially, this means significantly fewer than P norm and kernel evaluations.

These properties can be harnessed by erecting a partition tree over the com-

ponents of the mixtures introduced in §6.2.1 to provide information on spatial
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Code 6.3 Building a kd tree.

Build-Kd-Tree(P)

1 if |P| = 1

2 then result ← a leaf node containing this one component

3 else select a dimension index

4 select a value along this dimension value

5 L← {x ∈ P : xindex ≤ value}
6 R← {x ∈ P : xindex > value}
7 left ← Build-Kd-Tree(L)

8 right ← Build-Kd-Tree(R)

9 result ← an internal node with children left and right

10 return result

relationships. We employ kd trees [44] for this purpose.

Starting with the complete set of components P, a kd tree is constructed using

the Build-Kd-Tree method of Code 6.3. After construction, the leaf nodes of

the tree each contain a single sample, while the internal nodes envelope a hyper-

rectangle of space enclosing all the samples of their descendent nodes. These

hyper-rectangles may be represented simply by a lower and upper bound. Figure

6.1 visualises this for a particular set of sample points in two-dimensional space.

For the purposes of later discussion, we add to the leaf and internal node classes

the prune node class. A prune node is a leaf node containing more than one

component. It represents a collapsing of all the descendants of an internal node

into a terminating node. This may be needed if it is not possible to split a subset

of points, such as if all points are the same.

Selection of the dimension upon which to split in line 3 of Code 6.3 can follow

any one of a number of strategies, including:

• the dimension of largest variance,

• the dimension of largest range, or

• a random dimension.

This list is certainly not exhaustive, but it does suggest reasonable alternatives.
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Figure 6.1: Example kd tree partitioning in two dimensions; (top left) the root node,

depth 0, with hyper-rectangle enclosing all samples, (top right) the two children of

the root node, depth 1, enclosing a subset of the samples each, (bottom left) nodes

at depth 2, (bottom right) nodes at depth 3. In the latter three cases the space

enveloped by parent node hyper-rectangles has been traced for clarity.

Note the time complexity of these is O(P ), O(P ) and O(1), respectively, in the

number of sample points.

Similarly, the value on which to split in line 4 can be selected according to:

• the mean,

• the median, or

• the midpoint.

Again, this is not exhaustive. Time complexities in all cases are O(P ), although

some savings are made by coupling with a complementary dimension selection

strategy (e.g. the mean is already calculated if using the dimension of largest

variance, the midpoint calculation is O(1) if dimension ranges have already been

calculated).
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A number of other partition trees are available, including ball trees. These may

or may not improve performance, depending on the particular task. Our imple-

mentation is restricted to kd trees, largely due to their simplicity and amicability

to parallelisation.

6.2.3 Distributed partition trees

Naively, it is possible to simply construct a kd tree over Prank independently on

each node to accelerate evaluations on that node. This is not equivalent to build-

ing a single kd tree over all of P, however, and as it does not encode spatial

information between samples on different nodes, is suboptimal. We instead pro-

pose a method for distributing the entire kd tree across nodes in such a way that

spatial characteristics are consistent, and the stripping of norm and kernel evalu-

ations is as aggressive as for a single kd tree. This delivers a linear improvement

in runtime order in the size of the system, rather than a sublinear improvement

in the naive case.

The idea is to construct a kd tree distributed across all process nodes, that has no

leaf nodes, but size number of prune nodes (see above) of a roughly equal number

of components. Components are then redistributed across process nodes so that

each stores all the components of a single prune node, and no other. From this

point, the remainder of the kd tree is rolled out independently on each node, by

the usual construction over its new set of components.

Using any dimension selection strategy, but selecting the nth ordered element

along that dimension upon which to split, an equal (up to leftovers) number of

components can be placed on each node. The nth element along a dimension

may be efficiently selected in O(P ) by using a distributed extension to Hoare’s

algorithm [47], in Code 6.4. During the execution of this algorithm, it is possible

that some nodes have exhausted their entire subset onto one side of the pivot guess

while other nodes have barely depleted any of their elements and are essentially

still working with a full set. In practice this has been found to have no real

detriment, however [47].

Redistribute-By-Space (Code 6.6) and its auxiliary function Distributed-

Build-Kd-Tree (Code 6.5) construct the pruned kd tree and redistribute com-
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Code 6.4 Distributed nth element select across nodes.

Nth-Element(n,P)

� select guessing node

1 guesser ← 0

2 repeat if rank = guesser

3 then if |P| > 0

4 then okay ← true

5 else okay ← false

6 Broadcast okay from rank guesser to all nodes

7 if ¬ okay

8 then guesser ← guesser +1 � pass on responsibility

9 until okay

� guess nth element

10 if rank = guesser

11 then guess ← an element of Prank

12 Broadcast guess from rank guesser to all nodes

� partition

13 partition Prank into Lrank and Rrank on guess , excluding guess from both

� continue search?

14 L = All-Reduce sum of |Lrank | across nodes

15 if L = n− 1

16 then result ← guess

17 elseif n ≤ L

18 then result ← Nth-Element(n,Lrank) � nth is in left partition

19 else result ← Nth-Element(n− |Lrank | − 1,Rrank) � is in right partition

20 return result



6.3. Algorithms 103

Code 6.5 Build pruned kd tree across nodes.

Distributed-Build-Kd-Tree(P, numNodes)

1 if numNodes = 1

2 then result ← a prune node containing all of P
3 else P ← All-Reduce sum of |P| across nodes

4 select a dimension index

5 numLeftNodes = numNodes /2 � integer divison

6 numRightNodes = numNodes − numLeftNodes

7 n← P × leftNumNodes / numNodes � integer division

8 value ← Nth-Element(n,P)

9 L← {x ∈ P : xindex ≤ value}
10 R← {x ∈ P : xindex > value}
11 left ← Distributed-Build-Kd-Tree(L, numNodesLeft)

12 right ← Distributed-Build-Kd-Tree(R, numNodesRight)

13 result ← an internal node with children left and right

14 return result

ponents across nodes based on this. Afterwards, Build-Kd-Tree(Prank) may

be called independently on each node to complete the construction of the tree.

As the number of components is balanced by this point, any partitioning strat-

egy may be used, and no further communication is required between nodes to

complete the task.

6.3 Algorithms

A parallel bootstrap, auxiliary or regularised particle filter can be run almost

entirely independently across nodes. Nodes need only synchronise for the purpose

of normalising weights before resampling. In addition, however, it is desirable
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Code 6.6 Redistribution of components across nodes to facilitate distributed kd

tree.

Redistribute-By-Space

1 Distributed-Build-Kd-Tree(Prank , size)

2 enumerate the prune nodes of the tree 0, . . . , size −1

3 for i← 0 to size −1

4 do Gather the components of the ith prune node to rank i

5 reconstruct Prank from the gathered components

that they also synchronise after resampling to balance their work load as much

as possible.

The Redistribute-By-Size method of Code 6.1 solves the latter of these two

problems. The former requires a distributed resampling strategy, which we discuss

in §6.3.1.

The smoothing problem, as addressed by the kernel and conventional forward-

backward and two-filter smoothers, is most inhibited by all-pairs type problems.

In all cases these may be address using partition trees (see [12] for the standard

methods, this work for others). We therefore concentrate on efficient kd tree

operations for kernel density evaluations, although they remain applicable in

general. These are given in §6.3.2.

6.3.1 Resampling

We begin with the stratified resampling algorithm of [23], commonly cited through-

out the literature. The serial version of this algorithm is given in Code 6.7. This

divides the sequence of weights into P strata of equal width by weight, selecting

one component from each strata to resample.

[23] suggests three alternative strategies for the selection of u in this algorithm:

random strategy where u ∼ U [0,W ],

stratified strategy where u ∼ U [ i−1
P
, i
P

), and

deterministic strategy where u ← i+α
P

for some α ∼ U [0, 1) fixed for all i.
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Code 6.7 Stratified resampling [23].

Resample

1 enumerate all (s(i), π(i)) ∈ P
2 W ←

∑P
i=0 π

(i)

3 for i← 0 to P

4 do u← some number in (0,W ]

5 find k such that
∑k−1

j=0 π
(j) < u ≤

∑k
j=0 π

(j)

6 add (s(k), 1) to Q
7 return Q

Pre-sorting of the components by weight is also considered. The results indi-

cate that the deterministic strategy with sorting is most effective, while also

concluding that, “...considering the significant computational cost in sorting, the

deterministic algorithnm without sorting might be a reasonable choice,” [23].

This computational cost in sorting is additionally confounded in the parallel set-

ting, where complete sorting of the data set may require extensive communication

and thus be inefficient. The deterministic algorithm, without sorting, may be ex-

tended to the parallel setting, as in Code 6.8. The sequence of weights and strata

is set up across all nodes. The main issue is determining which node is to sample

from a strata that overlaps two or more nodes. The deterministic scheme, with

constant α for all strata, allows this to be determined easily.

After resampling, Redistribute-By-Size should be called to rebalance across

nodes. This raises the issue of memory consumption in the imbalanced state

prior to the redistribution, in particular whether one node will have substantive

enough weight that its memory resources will be consumed by an overburden

of resampled particles. One can imagine a number of strategies to combat this.

Redistributing by weight prior to resampling is one, although this reeks of the

NP -hard bin packing problem, and may simply shift the memory issue from

post-resampling to prior. A greedy approach to this has been implemented, but

not found to be particularly effective. A redistribution by both size and weight

would be more effective, although an order of magnitude more difficult also. We

leave these ideas to future work, taking the pragmatic approach of increasing the
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Code 6.8 Distributed deterministic stratified resampling.

Distributed-Resample

1 enumerate all (s(i), π(i)) ∈ Prank

2 Wrank ←
∑P

i=0 π
(i)

3 Wscan ← Scan sum of Wrank across nodes

4 W ← BroadcastWscan from rank size −1 to all nodes

5 P ← All-Reduce sum of |Prank | across nodes

6 if rank = 0

7 then α ∼ U [0, 1)

8 Broadcast α from rank 0 to all nodes � total weight

9 w ← W
P

10 rem ← (Wscan −Wrank) mod w

11 if rem ≥ αw

12 then � another node will sample from this strata

13 u← (1 + α)w − rem

14 else � this node samples from this strata

15 u← αw − rem

16 while u < Wrank

17 do

18 find k such that
∑k−1

j=0 π
(j) < u ≤

∑k
j=0 π

(j)

19 add (s(k), 1) to Q
20 u← u+ W

P

21 Prank ← Q
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Code 6.9 Single tree kernel density evaluation using kd tree.

Single-Tree-Density(x, densityNode)

1 if densityNode is a leaf node

2 then result ← K( 1
h
‖x− s(i)‖)

3 else � densityNode is an internal node

4 s← nearest point to x in space encompassed by densityNode

5 if K(‖x− s‖) > 0

6 then � recurse

7 left ← left child of densityNode

8 right ← right child of densityNode

9 result ← Single-Tree-Density(x, left)

10 result ← result +Single-Tree-Density(x, right)

11 return result

number of nodes if memory issues become apparent.

Auxiliary and regularised resampling are straightforward extensions.

6.3.2 Kernel density evaluation

Kernel density evaluations are performed by exploiting the spatial relationships

encoded in a partition tree. Single-Tree-Density (Code 6.9) calculates the

density at a single point x. Beginning at the root node of the tree, it determines

the nearest point to x in the space enveloped by the node’s bounding box. It

then evaluates the kernel over the distance between this point and x to determine

the maximum density contribution by any point in this subtree. If this is deemed

significant, the algorithm recurses through the subtree. If it is not deemed signif-

icant, the algorithm ceases recursion through this branch of the tree. By ceasing

its recursion in this way, the algorithm is able to perform the density calculation

without exhaustively comparing x to all P components under the tree.

Note that the algorithm assumes floating point precision, such that the zero

comparison in line 5 is meaningful, even for kernels of infinite extent, due to

rounding error. The evaluation represented here is therefore exact up to floating
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point limitations. Note also that as a comparison against zero is used, the weight

of components encompassed by the node is irrelevant.

Multiple density evaluations may be carried out by calling Single-Tree-Density

for each query point, but further gains are made by also constructing a partition

tree from the query points. This leads to the dual-tree algorithm, Dual-Tree-

Density of Code 6.10.

We add to these methods a significant optimisation in the case that the query

and target trees are identical. In this case the symmetry of the kernel may be

exploited to curtail the recursion, combining lines 17 & 18 in Code 6.10 into one

evaluation that adds the calculated density contributions to result for both the

query and target nodes, observing that left1 = left2 and right1 = right2 . We refer

to this modified procedure as Self-Tree-Density.

A number of heuristics for approximate density evaluation are available, trading

off accuracy to speed. These are based on evaluating both the maximum and

minimum density contribution of each node, and pruning the evaluation to the

average of these if they are sufficiently close, rather than recursing down the tree.

We do not discuss such optimisations here, largely because they complicate pre-

sentation of the algorithms, and indeed our implementation does not yet exploit

them. We instead simply point the reader to [44].

In some situations there is cause to evaluate densities for multiple kernel band-

widths over the same query and density trees. In such situations the multi-

bandwidth dual-tree algorithm [48] may be used, allowing multiple density eval-

uations in one pass of the kd tree, in a runtime approaching that of a single

density evaluation. This exploits the fact that for two bandwidths hlow and hhigh,

hlow < hhigh, if K( 1
hhigh
‖ · ‖) is not significant, K( 1

hlow
‖ · ‖) will not be either, as it

is a tighter distribution.

Finally, we can simultaneously perform queries over the same target sample points

with different weight combinations, which we refer to as multi-weight calculations.

Recalling the matrix representation of kernel density evaluations given in Defi-

nition 5.2, this is conceptually equivalent to precalculating the matrix A and

multiplying it with various weight vectors π.
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Code 6.10 Dual tree kernel density evaluation using kd trees.

Dual-Tree-Density(queryNode, densityNode)

1 if queryNode is a leaf node

2 then s← single component of queryNode

3 result ← Single-Tree-Density(s, densityNode)

4 elseif densityNode is a leaf node

5 then s← single component of densityNode

6 result ← Single-Tree-Density(s, queryNode)

7 else

8 � both are internal nodes

9 (s1, s2)← pair of points in queryNode and densityNode with

minimal distance between

10 if K(‖s1 − s2‖) > 0

11 then � recurse

12 left1 ← left child of queryNode

13 right1 ← right child of queryNode

14 left2 ← left child of densityNode

15 right2 ← right child of densityNode

16 result ← Dual-Tree-Density(left1 , left2 )

17 result ← result +Dual-Tree-Density(left1 , right2 )

18 result ← result +Dual-Tree-Density(right1 , left2 )

19 result ← result +Dual-Tree-Density(right1 , right2 )

20 return result
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6.4 Method optimisations

We now discuss optimisations specific to each of the smoothing methods intro-

duced in this work. The applicability of these optimisations is model dependent,

and may require a tradeoff between computational cost and estimation accuracy.

6.4.1 Kernel forward-backward smoother

A number of optimisations can be used to improve performance of the kernel

forward-backward smoother when the filter density is used as proposal distribu-

tion:

Preserve propagations from filter If resampling has not been performed be-

tween times tn and tn+1, each sample s
(i)
n has already been propagated

through the SDE dynamics during the preceding filter. These propagations

may be preserved for use in smoothing, obtaining s′
(i)
n+1 immediately. In

light of the expensive propagation of particles discussed in §4.2, this can

deliver a significant runtime improvement. In this case, observe also that

the samples supporting pK(xn |y1:T ) and pK(xn+1 |y1:n) are identical, with

only weights differing. This facilitates the remaining optimisations.

Share kd tree between densities In the case that the partition function used

in building kd trees is not dependent on their weights, only one kd tree

need be constructed. Partitioning on the midpoint of the longest dimension

satisfies this criterion, for example.

Share kernel between densities If the kernel used for the two unknown den-

sities is also not dependent on weights, and varies only in bandwidth, the

two kernel density calculations may be performed simultaneously in one pass

of the kd tree using the multi-bandwidth algorithm with multiple weights.

If the kernel bandwidth is the same, only the multiple weights need be

considered. We note that this is inapplicable if standardisation is used in

conjunction with the kernel density.

Self dual-tree query If the above two conditions hold, significant gains may be

made by observing that the query points from the propagations are iden-
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tical to the target points in the kernel density. The evaluation is therefore

symmetrical, and may be performed using Self-Tree-Density.

Use of a static importance distribution for all time steps, such as the equilibrium

distribution, opens another potential avenue for optimisation:

Sharing samples In the case that q(xn) is to be the same for all time points

(e.g. the equilibrium distribution), the samples s(i) ∼ q(xn) need only be

drawn once and reused for all time points.

Sharing propagations In the case that the time points t1, . . . , tT are also equidis-

tant and the SDE dynamics independent of time (e.g. it is not input driven),

these shared samples may be propagated through f(·) only once, and these

propagations {s′(i)} may be reused for all time points also.

In the ideal case, where all of these optimisations may be applied, each step of the

kernel forward-backward smoother reduces to a single self-tree density evaluation.

6.4.2 Kernel two-filter smoother

Largely the same optimisations may be applied to the kernel two-filter smoother

as to the kernel forward-backward smoother, so we do not discuss this further.

6.5 Experiments

Experimental results for the proposed methods are difficult to obtain due to

model and distributional dependencies. Nonetheless, we present some simple

results here.

Figure 6.2 provides a comparison of exhaustive versus dual-tree evaluation of a

kernel density. Query and target samples are drawn from randomly generated

Gaussian mixtures. Figure 6.3 similarly compares the dual-tree and self-tree

algorithms for the case that the query and target trees are identical.
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5 dimensions. Areas represent standard deviation across 10 runs for each value of P .
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6.6 Summary

This chapter has provided an optimised implementation of the methods presented

in preceding chapters in a parallel and distributed context (§6.4). The crux of this

is the use of distributed data structures (§6.2.1) and partition trees (§6.2.2), on

which efficient dual-tree algorithms, and more so the self-tree algorithm (§6.3.2),

may be used for fast kernel density evaluations.
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Chapter 7

A Brief Introduction

Functional Magnetic Resonance Imaging (fMRI) poses large-scale and challenging

problems for machine learning research. Before applying the Bayesian filtering

and smoothing methods developed in Part I to problems in this domain, we first

present a brief introduction to essential material in this chapter.

The chapter first introduces fMRI and the imaging data it produces in §7.1. Brain

hemodynamics, essential for the development of plausible biophysical models for

describing the phenomena underlying fMRI imaging, are reviewed in §7.2. We

then consider the typical use of fMRI, including experimental design (§7.3), data

handling (§7.4) and data analysis (§7.5). Our review focuses on effective connec-

tivity studies and the methods used for them, in particular Structural Equation

Modelling (SEM) in §7.5.1 and Dynamic Causal Modelling (DCM) in §7.5.2.

7.1 Functional Magnetic Resonance Imaging

Magnetic Resonance Imaging (MRI) exploits the Nuclear Magnetic Resonance

(NMR) phenomenon in Hydrogen to produce three dimensional images of the

human body, and of particular interest here, the brain. Functional Magnetic

Resonance Imaging (fMRI) is an MRI technique for measuring neuronal activity

in the brain. Two fundamental advances have made this possible. The first

is the ability to use NMR to contrast between oxygenated and deoxygenated

hemoglobin, known as the Blood Oxygen Level Dependent (BOLD) contrast,

117



118 Chapter 7. A Brief Introduction

and the second is fast image acquisition using Echo Planar Imaging (EPI).

Neural activity elicits a hemodynamic response consisting of a localised increase

in blood flow combined with the metabolism of oxygen. Oxyhemoglobin is dia-

magnetic, whereas deoxyhemoglobin is paramagnetic [49]. In addition, the signal

decay rate of deoxyhemoglobin after an RF pulse is faster than that of oxyhe-

moglobin [50]. As a consequence of these different magnetic properties, oxy-

genated and deoxygenated hemoglobin exhibit characteristically different NMR

signals, and this allows an MRI scanner to contrast between them. This is known

as the Blood Oxygen Level Dependent (BOLD) contrast, and allows neural ac-

tivity to be spatially localised.

In order for such a measurement of functional activity to be meaningful, images

must be acquired at a reasonable temporal resolution. While a high spatial reso-

lution allows more precise localisation of neuronal activity, this becomes meaning-

less if the image is overexposured by the several minutes required to acquire this.

EPI is an acquisition method which provides a suitable tradeoff between spatial

and temporal resolution to make BOLD images meaningful representations of

functional activity.

EPI is a single shot technique in that it acquires a complete slice of the brain with

a single RF pulse. In contrast, many methods acquire only a single voxel per pulse.

A slice is therefore acquired very quickly, typically in 30–100 ms. Resolution does

suffer as a result, however, with slices typically having a resolution of only 64 × 64

pixels. This corresponds to individual voxel sizes of the order of a few millimetres

cubed. Whole volumes are acquired slice by slice, with the time taken to acquire

the whole volume directly proportional to the number of slices, typically 2–4s in

total.

Some peculiar properties of EPI are worth mentioning. Firstly, as single slices

are acquired so quickly, each slice has negligible artifacts resulting from subject

movement. This is a reasonable assumption to make during data analysis [51,

ch.5]. Secondly, inaccuracies in slice selection by the gradient coils of the scanner

result in some stimulation of tissue adjacent to the slice being scanned. To avoid

this interfering with subsequent scans, one of two strategies is used. The first is

to leave a gap between slices, typically of 1mm. The second is to interleave the

slice acquisition, so that, for example, all odd numbered slices are acquired first,
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followed by all even numbered slices. The slice acquisition order has important

implications for properly treating the temporal extent of the acquired data.

A primer on the numerous intracacies of image acquisition is beyond the scope of

this review, but there are some general issues worth mentioning. Once a region

of tissue has been scanned, it takes a certain amount of time for the magnetic

field in that region to relax back to baseline. If the region is scanned again before

this relaxation is complete, the resulting NMR signal will be weaker than the

first. It is therefore necessary to wait some time between consecutive scans of the

same location, referred to as the repetition time and abbreviated TR. This limits

the temporal resolution of the data, typically to 2–4s between the start of each

volume acquisition.

See [50] for a great introduction to some of the earlier work in fMRI and its basic

principles. For a more modern and thorough work see [51].

7.2 Hemodynamics

While the BOLD signal is generally accepted as being proportional to some mea-

sure of neural activity, the precise nature of this connection is still the subject

of significant debate. [1] provides a critical review of the debate. The basic un-

derstanding is that neural activity has metabolic demands, such that an increase

in neural activity causes an increase in the Cerebral Metabolic Rate of Oxygen

(CMRO2) in the surrounding capillary bed. The vascular system responds with

a delayed surge of fresh arterial blood, increasing Cerebral Blood Flow (CBF)

through the affected area and consequently Cerebral Blood Volume (CBV). The

response overcompensates for demand, such that the concentration of oxy- com-

pared to deoxy-hemoglobin in the area increases rather than decreases as one

might expect. The BOLD signal, being a contrast between oxy- and deoxy-

hemoglobin, varies accordingly.

While this high level understanding of the system is generally accepted, the pre-

cise form of the coupling is still a significant point of enquiry. Possibilities include

gamma oscillations [52] and local field potentials [53; 54], among others. In addi-

tion are potentially numerous confounding factors not related to neural activity,
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such as transient blood pressure changes [55] and even caffeine intake [56]. One

of the biggest points of contention is over the presence of an “initial dip” – a

brief increase in deoxyhemoglobin immediately proceeding neural activity but

preceding the arrival of the arterial flow.

The basic hemodynamic response is described by the Hemodynamic Response

Function (HRF) [1]. This is a simple fixed function approximating the rate of

change of oxyhemoglobin in the blood vessels neighbouring a burst of neuronal

activity. Immediately following the burst of activity, a brief dip in oxyhemoglobin

is expected as oxygen is consumed from the blood. The hemodynamic system

responds with a surge of bloodflow providing a level of oxyhemoglobin which

overcompensates for the amount of oxygen consumed. This peaks at about 5

seconds after the neuronal activity, returning to baseline after roughly 10 seconds.

In a typical 1.5 T scanner, the BOLD signal increases only 2–5% above baseline

in the event of neuronal activity [50]. The HRF may be convolved with expected

neural activity to generate an approximate BOLD signal.

A more complicated model is the balloon model [57; 58]. This models a venous

compartment as a balloon using Windkessel dynamics [59]. The state of the

venous compartment is represented by its blood volume normalised to the volume

at rest, v = V/V0 (blood volume V , rest volume V0), and deoxyhemoglobin (dHb)

content normalised to the content at rest, q = Q/Q0 (dHb content Q, rest content

Q0). The compartment receives inflow of fully oxygenated arterial blood fin(t),

extracts oxygen from the blood, and expels partially deoxygenated blood fout(t).

The full dynamics may be represented by the differential system:

dq

dt
=

1

τ0

(
fin(t)

E(t)

E0

− fout(v)
q

v

)
(7.1)

dv

dt
=

1

τ0

(fin(t)− fout(v)) (7.2)

E(t) ≈ 1− (1− E0)
1

fin(t) (7.3)

fout(v) ≈ v
1
α (7.4)

where τ0 and α are constants, and E0 the oxygen extraction fraction at rest.

This base model is driven by the independent input fin(t). It may be further

extended to couple in neural activity z(t) via an abstract vasodilatory signal
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Figure 7.1: Example response of the balloon model to a 1s burst of neural activity at

magnitude 1 (time on x axis, response level on y axis).

s [60]:

df

dt
= s (7.5)

ds

dt
= εz(t)− s

τs
− (f − 1)

τf
(7.6)

The complete system, defined by (7.1-7.6), with fin(t) = f , is now driven by

the independent input z(t). From the balloon model, the relative BOLD signal

change over the baseline S at any time may be predicted using [57]:

∆S

S
= V0

[
k1(1− q) + k2

(
1− q

v

)
+ k3(1− v)

]
. (7.7)

Figure 7.1 illustrates the system dynamics. Nominal values for constants are

given in Table 7.1.

Vascular measurements in [61] may refute some of the fundamental oxygen lim-

itation assumptions on which the balloon model is based [62]. Some additional

extensions to the model are also provided by [63], adding O2 concentration into

the surrounding tissue to better correspond to optical imaging data, as well as

better reproduce the controversial initial dip. Some of these issues, as well as

updated parameter estimates, are incorporated into a revised balloon model [64].
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Constant Value

τ0 .98

τf 1/.65

τs 1/.41

α .32

ε .8

V0 .018

E0 .4

k1 7E0

k2 2

k3 2E0 − 0.2

Table 7.1: Nominal values for constants of the balloon model [57; 60].

7.3 Experimentation

During a basic fMRI experiment, a subject is placed in the scanner and asked

to perform some task, such as the Hayling task, Stroop task or a simple finger

tapping exercise. The pattern of brain activity evident while performing this task

is compared to the pattern of activity when the subject is not performing the task.

The objective is to find significant differences between these two brain patterns,

and in doing so establish a correlation between the experimental stimulus and a

particular pattern of brain activity.

Broadly, the objectives of fMRI studies encompass activation, functional connec-

tivity and effective connectivity, in increasing order of complexity. Activation

studies seek to identify the brain regions activated by the experimental stim-

ulus. Functional connectivity studies seek to identify correlations between the

activation of brain regions. Effective connectivity studies seek to identify causal

relationships between the activation of brain regions, assessing the influence that

each region exerts over others. Due to the way in which they relate remote regions

of the brain together, both functional and effective connectivity studies seek to

establish some sort of functional structure to the brain. The latter is of particular

interest in this work.



7.3. Experimentation 123

Effective connectivity is defined as “the influence one neuronal system exerts

over another” [65, p.999]. Effective connectivity studies seek to establish causal

relationships in neural activity in the brain, from the scale of individual neurons

to whole brain regions. Plasticity in the brain gives rise to a constant change

in the strength of effective connectivity between local and remote regions, even

during the course of a single experiment. This is referred to as modulation of

connectivity.

A number of recent studies have successfully performed effective connectivity

analysis on fMRI data. In [66], fMRI experiments using working memory tasks are

conducted to establish differences in connectivity between a group of schizophrenic

patients and a control group. In [67], similar experiments affirm Diffusion Ten-

sor Imaging evidence of white matter damage in patients in the early stages of

multiple sclerosis. Interestingly, this latter study suggests weaker effective con-

nectivity between particular regions compared to healthy controls, as may be

expected given the DTI data. Other effective connectivity studies using fMRI

include [68], [69] and [70].

fMRI data is suited to effective connectivity analysis due to its spatial and tem-

poral resolution. Electroencephalography (EEG) is commonly used for the task

also. EEG does have the advantage of much higher temporal resolution, which

is of particular benefit in determining causation. Its spatial resolution is signifi-

cantly lower, however, so that interacting regions cannot be as well defined. fMRI

provides high spatial resolution for more accurately identifying regions of interest,

and adequate temporal resolution to infer some causation.

7.3.1 Experimental design

fMRI data analysis is heavily dependent on the design of the experiment under

which the data is collected. Preprocessing and analysis of data depends both on

the objectives of the experiment and the way in which it is performed.

Experimental designs are typically classified as either block or event–related de-

signs. Block designs use several iterations of a rest period followed by sustained

activity. Event–related designs use iterations of a brief rest followed by a short

burst of activity, which is measured until the brain returns to its resting state.
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A typical fMRI experiment involves multiple subjects, and possibly multiple

groups. Comparisons may be made between individuals and between groups.

See [71] and [72] for more about experimental design in fMRI.

7.4 Data processing

The experimental design feeds directly into the interpretation of the data ac-

quired during the experimental stage. For block designs, data will consist of a

series of brain volumes acquired at regular intervals over the entire course of the

experiment. The first few volumes are usually discarded to account for saturation

effects. For event designs, volumes will be acquired at different lag times over

shorter periods following the onset of each event stimulus.

The spatial and temporal resolution of the images acquired depends on the im-

age acquisition technique and the scanner hardware. Typically EPI is used for

acquiring images. Note that the individual slices within a volume will have been

acquired at different time offsets, and this may be an important consideration.

Noise is a significant issue with fMRI data. Sources of noise include scanner drift

resulting from gradual changes in ambient and scanner temperature, cardiac and

respiratory activity of the subject, head and eye movement, and swallowing.

Processing of the data after acquisition typically proceeds through the stages of

realignment, normalisation and smoothing before undergoing analysis. These are

explained in great detail in [73], and summarised here.

7.4.1 Realignment

Subject movement while in the scanner is an inevitable part of MR imaging. With

EPI, a single slice is acquired very quickly (30–100 ms), such that movement

artifacts within individual slices can be considered negligible [51, ch.5]. As the

slices constituting a whole volume are acquired sequentially, however, movement

may contribute significantly to inter–slice, and more so to inter–volume variation.

Correction for this problem is referred to as realignment, a specific task in the
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more general area of image registration. Realignment is usually performed by

estimating a rigid body transformation to align each volume in the time series

with a reference volume [74]. As the volumes are three dimensional, six trans-

formation parameters are estimated in total – three translations (in x, y and z

dimensions) and three rotations (pitch, roll and yaw). Estimates are made it-

eratively using a least squares, mutual information or similar metric, and any

appropriate optimisation algorithm.

Parameters are usually estimated for each volume by starting with an initial pass

where the first volume in the time series is used as the reference. The estimated

transformation is then applied to each volume and a mean volume calculated.

Transformation parameters are then estimated for each original volume again

in a second pass that uses the mean volume as the reference. The estimated

transformation from this second pass is then applied to each original volume to

produce the final, realigned time series. This two pass technique tends to give

slightly better results than a single pass [74].

7.4.2 Normalisation

Normalisation of volumes to a standard template may be performed if there is

particular motivation to do so. This is common in multiple subject studies to

allow comparison between subjects. In such cases volumes can be warped to an

arbitrary template [75], such as the average of all volumes or a de facto standard

EPI template such as that provided by the popular software package SPM (Sta-

tistical Parametric Mapping) [76]. An alternative motivation for normalisation

is to locate activation areas relative to well defined anatomical regions, in which

case a warp to a standard template such as Talairach coordinate space or the

Montreal Neurological Institute (MNI) template may be applied.

7.4.3 Smoothing

The data may be smoothed in an effort to increase its Signal to Noise Ratio

(SNR). Both high– and low–pass filtering may be applied to achieve this, in

both spatial and temporal dimensions. The motivation for low–pass filtering is
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to reduce noise in the data. The motivation for high–pass filtering is to reduce

trends and remove low frequency bands with a high proportion of noise, often

from physiological sources such as pulse and respiration, but also from scanner

drift caused by, for example, changes in ambient temperature [77].

Spatial smoothing is usually performed with a Gaussian kernel with a Full Width

at Half Maximum (FWHM) of 4–8 mm, depending on the voxel size. The FWHM

measure corresponds to 2
√

2 ln 2 ≈ 2.355 standard deviations.

Detrending may also be a necessary preprocessing step (see e.g. [78]).

7.5 Data analysis

The methods employed for analysis of the processed data depend on the objectives

of the experiment.

Numerous methods of analysis exist, the most popular of which is Statistical

Parametric Mapping (SPM) [76], with software of the same name, suitable for

activation studies. Analysis of covariance (ANCOVA) is suitable for functional

connectivity studies.

The most commonly used technique for effective connectivity studies to date is

Structural Equation Modelling (SEM) [2; 3], examples including [66; 67]. Dy-

namic Causal Modelling (DCM) [4] has been proposed as an alternative to SEM,

developed specifically for brain imaging data such as fMRI. Examples of studies

employing DCM are [70; 79].

We provide a more detailed review of both SEM and DCM in the following

sections.

7.5.1 Structural Equation Modelling

SEM is a multivariate regression technique where each dependent variable may be

a linear combination of both independent variables and other dependent variables.

It supports both observed and latent variables, assuming a multivariate Gaussian

distribution across all of these. Models are fit by matching the sample covariance
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with the covariance implied by the model parameters.

As applied to effective connectivity analysis using fMRI data, SEM is static and

ignores the temporal dimension of the data. It assumes that all volumes are

temporally independent of each other, and that causal influences between regions

of interest are immediate and wholly evident within individual volumes. Fur-

thermore, it does not distinguish between neural activity, hemodynamic activity

and the measured BOLD signal, in essence only identifying relationships between

observations. This is limiting, as interactions between regions at the neural level

are not necessarily evident at the hemodynamic level [80].

SEM is a confirmatory rather than exploratory technique. It begins with a hy-

pothesised model of the causal influences and correlations between regions of

interest. From this an estimated covariance matrix Σ̂ is calculated and compared

to the sample covariance matrix S to assess the fit of the proposed model against

actual data. Based on this, the estimated covariance matrix is updated and the

process repeated.

An excellent overview of many issues related to SEM is provided by [81], and

some of the issues as they particularly relate to fMRI analysis in [82]. Some of

the shortcomings of SEM in its particular application to effective connectivity

analysis are discussed in [83] and [84].

Despite its shortcomings, SEM is undoubtedly the most popular analysis tech-

nique applied to effective connectivity studies. The studies of [66], [67], [68] and

[69], mentioned in §7.3 all employ the use of SEM.

7.5.1.1 Formulation

A number of formulations exist for SEM. We present here the Bentler–Weeks

model [2], which explicitly distinguishes between dependent and independent vari-

ables [3]. It is the model of choice in the practical introduction to SEM given in

[85, ch.14]. Other formulations include the Reticular Action Model (RAM) [3]

and Linear Structural Relationship (LISREL) model [86; 87], used in one of the

most established of SEM software packages, also named LISREL [86]. The RAM

and Bentler–Weeks formulations may be reduced to LISREL, however [3].
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The Bentler–Weeks model is formulated as:

η = Bη + γξ (7.8)

where η is a size m vector of dependent variables, ξ a size n vector of indepen-

dent variables, B an m×m matrix of regression coefficients between dependent

variables, and γ an m × n matrix of regression coefficients between dependent

and independent variables.

In addition, Φ is an n× n matrix of covariances between independent variables.

Only independent variables have explicit covariances, other covariances are im-

plied. Residuals may be treated as dependent or independent variables as appro-

priate.

Any of the entries in B, γ and Φ may be fixed.

Assuming I−B is non–singular and rewriting (7.8) above, the dependent variables

η may be expressed as a linear combination of the independent variables ξ:

η = Bη + γξ (7.9)

Iη −Bη = γξ (7.10)

(I −B)η = γξ (7.11)

η = (I −B)−1γξ (7.12)

Let q be the number of observed dependent variables, and r the number of ob-

served independent variables. Let Gy be a q ×m selection matrix which selects

the observed dependent variables from η, and Gx be an r × n selection matrix

which selects the observed independent variables from ξ.

7.5.1.2 Model estimation

The task is to estimate the unknown parameters B, γ and Φ, collectively labelled

θ. The estimated matrices are denoted B̂, γ̂ and Φ̂, respectively. The parameters

are estimated iteratively in order to minimise some objective function Q(Θ) be-

tween the covariance Σ̂ implied by the paramters and the covariance of the data

S.

Σ̂ may be calculated in three parts as follows. Firstly the covariances between
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dependent variables:

Σ̂yy = (Gy(I − B̂)−1γ̂)Φ̂(Gy(I − B̂)−1)γ̂)T , (7.13)

then the covariances between dependent variables and independent variables:

Σ̂yx = (Gy(I − B̂)−1γ̂)Φ̂GT
x , (7.14)

and finally the covariances between independent variables:

Σ̂xx = GxΦ̂G
T
x . (7.15)

Q(Θ) may take any form, but a reasonable selection is to use the Maximum

Likelihood function:

Q(Θ) = log |Σ̂| − log |S|+ tr(SΣ̂−1)− (q + r) (7.16)

Other sensible selections include least squares functions, see [85, ch.14,p.696] for

an extensive list. Any optimisation or estimation technique, such as Newton

methods or gradient descent, may be used to search the space of equations for a

minimum to Q(θ).

SEMs are in general unidentifiable, although advocates appeal to the concept

of local identifiability – that is, in the neighbourhood of the parameters there

are no other sets of parameters which give an equivalent value for the objective

function [84]. See [85, ch.14, pp.691-693] for practical issues related to model

identification, and [2] for a more theoretical treatment.

Parameters need to be suitably initialised at the start of the estimation process.

For unknown covariances of observed variables, it is usually reasonable to use

sample covariances for initialisation.

7.5.1.3 Model validation

Once the parameters θ which minimise Q(θ) are found, the fit of the determined

model against the available data may be assessed. This is usually performed

using a χ2 test. A number of specially devised goodness-of-fit indices have also

been developed for SEM, such as the Goodness of Fit Index, Adjusted Goodness

of Fit Index and Parsimony Normed Fit Index. Many of these are described in

[85, ch.14].
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7.5.1.4 Extensions

The SEM methods described here generally fit into the category of Confirmatory

Factor Analysis (CFA). Some extensions to these models are available, such as

Latent Growth Models (LGMs), which can include a non-zero mean structure

as well as covariance structure. Multi-level models for properly dealing with the

independence assumptions of hierarchical data are also available. These are also

appropriate for group studies. [88] describes many of these extensions to CFA.

7.5.2 Dynamic Causal Modelling

DCM [4] is a method developed specifically for effective connectivity analysis

using neuroimaging techniques such as fMRI. Like SEM, DCM requires that a

hypothesised model of connectivity be provided upfront. Unlike SEM, however, it

treats this model as a representation of interactions at the underlying neural level,

not simply interactions at the hemodynamic level. Neural activity is explicitly

modelled, and the output of this model fed into a hemodynamic model which

generates a simulated signal for comparison with the observed BOLD signal.

The experimental design is directly input to the neural level, and all neural ac-

tivity is assumed to be the result of this stimulus. Neural activity feeds into a

layer of hemodynamic activity, from which the BOLD signal at any time may be

predicted. The neural model is a differential model allowing direct inter-regional

excitation, as well as the experimental inputs both directly exciting regions and

modulating the connectivity between them. Noise is introduced only at the ob-

servation level. This is the greatest limitation of DCM – while posing a dynamic

and biologically explainable model, it is entirely deterministic.

While SEMs are linear, static and stochastic, DCMs are nonlinear, dynamic but

deterministic. One DCM study of note is [70], although as modulatory connec-

tions are not used, the model is a simple linear fit that misses out on some of

the more interesting features of DCM. In addition to [4], DCMs are described

thoroughly in [73, ch.52].



7.5. Data analysis 131

7.5.2.1 Model

The neural level model is defined as:

dz

dt
=

(
A+

U∑
i=1

Biui

)
z + Cu (7.17)

where z is a vector of neural activities in the regions of interest, u are experimental

inputs, A is an M ×M matrix of connectivity between regions, B1, . . . , BU are

M×M matrices of input modulations between regions, and C is an M×U matrix

of input efficacies.

Note the two distinct ways in which a particular input ui can affect neural activity.

Firstly, through the matrix C, it may influence activity in the regions z directly

in a linear fashion. Secondly, through its associated matrix Bi, it may influence

the strength of the connections between regions in a linear fashion. This influence

may be at different rates for different regions, and in net constitutes a bilinearity.

Only inputs are able to modulate the strength of connections in this fashion,

the activity in the neural regions z is unable to influence their own or others’

connections.

If no inputs are specified, the model reduces to a simple linear autoregressive

model, as in the case of [70]:

dz

dt
= Az (7.18)

Neural activity in the regions of interest, represented by z in (7.17) is fed directly

into the balloon model to produce BOLD signal estimates y. Gaussian noise is

added to each predicted measurement.

7.5.2.2 Model estimation

The parameters of a DCM are estimated using Expectation-Maximisation (EM) [4],

with priors constraining the space of possible solutions.
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7.6 Summary

This chapter has provided a brief introduction to fMRI in order to better motivate

the real world applications of this work. It has introduced image acquisition, given

a flavour of the data and common preprocessing steps, as well as reviewing the

current state of the art in data analysis techniques.
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Applications

In this chapter we take the methodology developed throughout Part I and apply

it to real world problems in fMRI research. We begin by constructing a model

of the biophysical processes involved in §8.2, combining input (§8.2.1), neural

(§8.2.2) and hemodynamic (§8.2.3) activity into a single continuous-time dynam-

ical system based on the balloon model and DCM. We extend this by carefully

introducing noise to account for model uncertainty and intrinsic stochasticity. A

measurement model (§8.2.4) is then used to couple in noisy observations of the

BOLD signal acquired through fMRI.

In conjunction with the kernel smoothers developed in Part I, the model is em-

ployed for a number of problems, notably to deconvolve the hemodynamic re-

sponse from neural activity in §8.5 and to effective connectivity studies in §8.6.

8.1 Motivation

Temporal analysis of fMRI is significantly confounded by the fact that it does not

measure neural activity directly, but instead does so via hemodynamic activity,

which applies a form of temporal smoothing. For studies of higher level patterns

of activity, such as effective connectivity [65], it becomes necessary to strip away

the hemodynamic activity to reveal the underlying neural interactions. In the

first instance, this is because interactions between regions at the neural level are

not necessarily evident at the hemodynamic level [80]. In the second, analyses

133



134 Chapter 8. Applications

increasingly benefit from the temporal quality of the data, and the hemodynamic

response is itself a form of temporal blurring.

Unfortunately, the relationship between neural activity, hemodynamic activity

and the BOLD signal is still not thoroughly understood. There is, of course, the

argument that a biological understanding and associated biophysical models are

entirely unnecessary. Empirically derived curves of the response are available,

such as a canonical hemodynamic response function that may be convolved with

expected neural acitivyt, as in SPM [76]. Generative models are attractive for

two reasons, however. Firstly, the hemodynamic response is known to vary across

regions of the brain. Generative models provide parameters which allow the

response to be tuned in meaningful and constrained ways across regions rather

than arbitrarily in the case of a simple response curve. Secondly, with multi-

modal studies now an active area of research, generative models may provide

some sort of interface for integrating data from multiple modes into the model

estimation or validation procedures.

We have therefore chosen to limit ourselves to generative models of the hemody-

namic response. The most established of these is the Balloon model [57]. The

balloon model represents hemodynamic activity in one region only, whereas we

are interested in interactions across many regions. This gives some idea of the

magnitude of the models we are dealing with – large differential systems of neural

and hemodynamic variables interrelated at various levels. Into all this we add

stochasticity, reflecting the inherent noise and uncertainty in both the biological

processes being modelled and the MRI machinery used to measure them. This

has naturally led to considering these models in the more general framework of

SDEs.

8.2 Model

We define a model of the neural and hemodynamic interactions between M re-

gions of interest in the brain. A region consists of neural tissue and a venous

compartment. The state xi(t) of region i at time t is given by:
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xi(t) =



fi(t) normalised blood flow into the venous compartment

si(t) vasodilatory signal

qi(t) normalised dHb content of the venous compartment

vi(t) normalised blood volume of the venous compartment

zi(t) neural activity

The complete state at time t is given by x(t) = (x1(t)T , . . . ,xM(t)T )T .

Interactions between regions are modelled in four parts – the input model, the

neural model, the hemodynamic model and the measurement model.

8.2.1 Input model

The input model represents the stimulus associated with the experimental task

during an fMRI session. In general this is a function u(t), with U denoting its

dimensionality. For a simple block design paradigm a one-dimensional box-car

function is adequate.

8.2.2 Neural model

Neural interactions between the regions are given by:

dz =

[(
A+

U∑
i=1

Biui

)
z + Cu + d

]
dt+ Σz dW (8.1)

where dW is the M -dimensional standard (zero mean, unit variance) Wiener

process, A an M×M matrix of efficacies between regions, B1, . . . , BU matrices of

input modulation upon neural efficacies, C an M×U matrix of efficacies between

inputs and regions and Σz an M×M diagonal diffusion matrix with diagonal σz.

8.2.3 Hemodynamic model

Within each region, the variables fi, si, qi, vi and zi interact according to a

stochastic extension of the balloon model. It is assumed that regions are suf-
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ficiently separate that their hemodynamic activity is independent given neural

activity [62].

Stochasticity is carefully introduced in line with the intuition of the model. On

top of the noise already incorporated into the neural model, blood flow in and out

of each venous compartment is considered stochastic. This is important given that

the coupling between neural activity and blood flow is not well understood, and

so this stochasticity can be used to account for this uncertainty. Inflow is diffused

with parameter σf . Outflow is more difficult as it is not a state variable. Given its

dependence on blood volume v, however, we introduce a diffusion with parameter

σv to blood volume. We introduce further stochasticity to blood oxygenation,

diffusing with σq, permitting some nondeterministic decoupling of the metabolic

rate of oxygen, potentially important in light of some studies [61; 64].

The balloon model will not behave sensibly in the case that fi, qi or vi is negative.

The deterministic model will never violate these constraints from any sensible

initial state, although the stochastic extension may. One solution is to introduce

noise into the log space of fi, qi and vi, redefining the derivatives relative to ln fi,

ln qi and ln vi via the simple identity d lnx
dt

= dx/dt
x

. While workable, this introduces

additional divisions and exponentials that, at the level of loop nesting where

these calculations are performed, become a significant computational burden.

We instead find multiplicative noise to be effective, essentially reducing noise as

these variables approach 0 to reduce the likelihood of them ever crossing the

threshold.

Dropping the subscript i for clarity, the stochastic balloon model becomes (c.f.

7.1-7.6).

df = s dt+ fσf dW (8.2)

ds =

(
εz − s

τs
− f − 1

τf

)
dt (8.3)

dq =
1

τ0

(
f

1− (1− E0)
1
f

E0

− v
1
α
−1q

)
dt+ qσq dW (8.4)

dv =
1

τ0

(f − v
1
α ) dt+ vσv dW . (8.5)

In the extreme, floating point arithmetic may result in any of these variables

becoming zero, introducing singularities. We correct for these singularities using
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the limits:

dq =



1
τ0

(
f 1−(1−E0)

1
f

E0
− v 1

α
−1q

)
dt+ qσq dW when v 6= 0 and f 6= 0 ,(

− 1
τ0
v

1
α
−1q
)
dt+ qσq dW when v 6= 0 and f = 0 ,

1
τ0

(
f 1−(1−E0)

1
f

E0

)
dt+ qσq dW when v = 0 and f 6= 0 ,

qσq dW when v = 0 and f = 0 ,

(8.6)

and,

dv =



1
τ0

(f − v 1
α ) dt+ vσv dW when v 6= 0 and f 6= 0 ,

−v
1
α

τ0
dt+ vσv dW when v 6= 0 and f = 0 ,

f
τ0
dt when v = 0 and f 6= 0 ,

0 when v = 0 and f = 0 .

(8.7)

All of this combined emphasises the most significant uncertainty in the hemody-

namic model itself – the coupling between neural activity and induced blood flow

– while also accounting for the noise that we expect in a biological system such as

this. We find this more controlled introduction of correlated noise more appeal-

ing, and more consistent with the neuroscientific theory, than simply slapping an

independent Wiener process onto each component of the model.

8.2.4 Measurement model

The relative BOLD signal change at any time for a particular region is given by

(c.f. 7.7)1:

∆y = V0

[
k1(1− q) + k2

(
1− q

v

)
+ k3(1− v)

]
. (8.8)

This may be converted to an absolute measurement ŷ for comparison with ac-

tual measurements by introducing a baseline signal bi for each region and an

independent noise source ξ ∼ N (0, 1):

ŷ = b(1 + ∆y) + σyξ . (8.9)

The model is completely defined by (8.1-8.9).

1Again, subscript is have been eliminated for clarity
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8.2.5 Contrast to existing models

As proposed, the model is close to that of DCM. The main innovation is incor-

porating noise at all levels of the system, making this a truly stochastic model

compared to the determinism of DCM. This is important, particularly in light of

the significant knowledge gap in the understanding of the processes connecting

neural and hemodynamic activity in the brain. DCM, on the other hand, intro-

duces noise only at the observation level, and consequently has a much simplified

noise structure that may require additional preprocessing such as whitening to

be effective.

Additional superficial differences are the introduction of the constant terms d in

the neural model (8.1) and BOLD baselines b in the measurement model (8.9).

These replace the standardisation prepreprocessing usually performed on data

before the application of DCM.

Like DCM, the model proposed has numerous appealing advantages over SEM. In

particular, it incorporates a biophysical model of hemodynamic activity to infer

interactions between regions at the level of latent neural activity. SEM, on the

other hand, detects interactions at the observation level only, and is confounded

by convolution of the hemodynamic response. Furthermore, the model, as pro-

posed, allows variation of the hemodynamic response across regions by adjusting

the biophysical parameters such as ε and α, and rate constants τ0, τf and τs.

8.2.6 Prior

The prior for the system is designed to ensure stationarity, as is observed and

expected from domain knowledge. Observe that the model is constructed hier-

archically with all state variables ultimately dependent on the behaviour of z in

the neural model. Consequently, by ensuring stationarity of the neural model,

stationarity of the entire system is ensured.

For the particular implementation of the model used in this work, we have a

single box-car input function u(t) taking value 1 or 0 according to the presence or

absence of the experimental stimulus, respectively. While the second term over

Bi matrices in (8.1) is bilinear over arbitrary input functions, in these constrained
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circumstances it simply represents a switching factor between two different linear

configurations – one during experimental stimulus and one during rest. We may

therefore consider the neural model to be linear.

For this single input scenario, we bring to bear the theory of discrete-time linear

dynamical systems via an Euler–Maruyama discretisation of (8.1) over a time

step of 1, giving the autoregressive:

xn+1 = xn + (A+Bu)xn + Cu + d + Σzξ (8.10)

= (I + A+Bu)xn + Cu + d + Σzξ , (8.11)

where ξ ∼ N (0, I). Note that as the system is linear, the discretisation is exact

and the choice of time step arbitrary.

For u(t) = 1, let Φ = I + A + Bu = I + A + B. In order for the system to

be stable, |λi| must be ≤ 1 for all eigenvalues λi of Φ. A more conservative but

facilitative constraint is to ensure that σi ≤ 1 for all singular values σi of Φ, on

the basis that σmin ≤ |λi| ≤ σmax for the smallest and largest singular values, σmin

and σmax, and all λi.

The identity matrix I is stable, and the set of all stable matrices convex. Conse-

quently, by generating stable matrices A and B, the stability of Φ is assured.

Any stable matrix Φ may be generated using Algorithm 8.1:

Algorithm 8.1 Begin by producing matrices XU and XV of random elements

uniformly distributed between 0 and 1, with linearly independent columns. De-

compose each into XU = URU and XV = V RV using QR decomposition. U and

V are now orthonormal matrices.

Generate a random diagonal matrix D of singular values ≤ 1 and reconstruct Φ

using its singular value decomposition Φ = UDV T .

Note that stability is also assured for the case of u(t) = 0, where Φ = I+A+Bu =

I + A. The method generalises straightforwardly to multiple box-car inputs.

The above provides prior parameter samples for the neural model only. Other

parameters are sampled from a Gaussian distribution of independent components

given by Tables 8.1-8.3. Together, these constitute the prior over parameters
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p(θ). Note that in this work, hemodynamic and measurement model parameters

are fixed for all experiments, although these could be selectively freed to allow

variation in the hemodynamic response across regions (see [89] for discussion).

Conditioned on such a parameter sample, the system is stationary. The full

prior is given by ps(x0 |θ)p(θ). In order to obtain a sample from this, for each

parameter sample θ
(i)
0 , a starting state is drawn from the multivariate Gaussian of

independent components given by Table 8.4. The system is then simulated with

fixed input u(0) for some burn time until the stationary distribution is reached.

The state at this point constitutes a sample from ps(x0 |θ = θ(i)
o ), and x

(i)
0 and

θ
(i)
0 together a complete sample from the prior.

8.3 Numerical scheme

We perform an initial study into the model that is similar to that for the double

well model (§4.4.2), comparing various numerical schemes. The same caveats

apply as those noted at the end of §4.4.2, with the higher dimensionality in this

case making it difficult to adjust for any perceived autocorrelation, equilibrium

or other qualitative differences across results.

In contrast to the double well model, where each numerical scheme was made

to perform a fixed number of steps, for the fMRI model each scheme is made to

progress a fixed length of time. This is important given the switching input of the

model – the most difficult part of the integration – ensuring that each numerical

scheme progresses through the same number of switches.

We set error bounds of δabs = 10−3 and δrel = 10−2 for all schemes.

For a single region, Figure 8.1 plots a histogram of step sizes for each numerical

scheme. A fixed time step of .025 is used for the EM(1)FIXED scheme on the

basis of these results. A performance comparison of the schemes is given in Table

8.5. On the basis of these results the RK(4) scheme is chosen.
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Parameter (θ) µθ σθ

ε .8 16

E0 .4 .0024

τ0 1.02 .1

τ−1
f .41 .002

τ−1
s .65 .015

α .32 .0013

Table 8.1: Gaussian prior over hemody-

namic model parameters (based on [4]).

Parameter (θ) µθ σθ

σz .1 .01

σf .01 .01

σv .01 .01

σy 2 .5

Table 8.2: Gaussian prior over noise pa-

rameters.

Parameter (θ) µθ σθ

b 190 5

V0 .018 .01

k1 .28 1

k2 2 1

k3 .4 1

Table 8.3: Gaussian prior over measure-

ment model parameters (based on [57]).

Variable (x) µx σx

z 0 .1

f 1 .1

s 0 .1

q 1 .1

v 1 .1

Table 8.4: Gaussian prior over state vari-

ables.

Scheme Runtime Steps Progression
Runtime

Progression
Steps

EM(1)FIXED 2.88 1660000 14236 .0247

EM(1) 3.70 559057 11081 .0733

RK(2) 6.87 662253 5968 .0619

RK(4) 1.45 74639 28276 .5493

RK(8) 3.27 61174 12538 .6702

EM(1)IMP 7.92 782229 5177 .0524

RK(2)IMP 8.76 792096 4680 .0518

RK(4)IMP 14.89 826810 2754 .0496

Table 8.5: Comparison of numerical schemes for the fMRI deconvolution model.

Results in all cases are based on a time progression of 4.1× 104s.
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Figure 8.1: Histogram over step sizes for numerical schemes.

8.4 Data

We use both a simulated and a real data set for our experiments. The simulated

data set is important for validation of methods as it has a known ground truth.

For a given TR, number of observations T and number of regions M , a simulated

data set may be constructed simply by drawing a single sample from the prior and

simulating for T × TR seconds. Given that the prior ensures stability, any such

sample can be propagated indefinitely to obtain a data set of the desired length.

Different random number seeds produce different data sets. Fixing hemodynamic,

noise and measurement model parameters to their prior means as in Tables 8.1-

8.3, the diagonal elements of A to -1, and starting from a single sample drawn

from the remaining prior, we generate both single region and 4 region sequences

using a TR of 2.05s with 200 observations. We refer to this as the Sim data set.

Real experimental data is used in the form of the Session Effects, or SessFX set.

This was collected during a simple finger tapping exercise. Using a Siemens Vision

at 2T with a TR of 4.1s, a healthy 23-year-old right-handed male was scanned on

33 separate days over a period of two months. In each session, 80 whole volumes

were taken, with the first two discarded to account for T1 saturation effects. The

experimental paradigm consists of alternating 6TR blocks of rest and tapping of

the right index finger at 1.5Hz, where tapping frequency is provided by a constant

audio cue, present during both rest and tapping phases.

All scans across all sessions were then realigned using SPM5 [76] and a two-level
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random effects analysis performed, from which 13 voxels were selected to represent

regions of interest. No smoothing or normalisation was applied to the data. Of

the 13 voxels, one is selected for deconvolution experiments, located in right M1,

and four are selected for use in effective connectivity experiments, located in

the left posterior parietal cortex, left M1, left S1 and left premotor cortex. A

single session is used to provide the measurements for these experiments. A more

driven enquiry would use all sessions – our motivation here is to demonstrate the

effectiveness of the proposed methods rather than provide biological insight.

It is worth noting that the preprocessing steps typically performed on fMRI data

sets are not particularly conducive to temporally sensitive analyses such as those

performed here. In particular, whole volumes are generally assumed to have been

acquired at the same time. Perhaps worse, if not assumed to be so, interpolation

and resampling may be performed to match slice timings. Our preprocessing

of the SessFX data set has been limited in order to preserve as much temporal

information as possible.

8.5 Deconvolution

The fMRI deconvolution problem is to infer the posterior distribution over neural

activity given a particular observation of the BOLD signal. For this task the

model is defined over a single region only, so that M = 1.

For the deconvolution problem over the Sim data set, we fix all hemodynamic,

noise and measurement model parameters to their prior means as in Tables 8.1-

8.3, and A to -1 for regularisation. Other parameters – B, C and d – are allowed

to vary freely.

For the SessFX data set we do the same, only this time fixing b to the mean of all

measurements in the session. We find it particularly useful to fix A and b when

working with real data so as to limit the number of parameterisations which are

equally favoured given the significant noise in the data.
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Method Sim SessFX

Auxiliary + regularised filter 14.00 15.26

Kernel forward-backward smoother 17.39 11.48

Kernel two-filter smoother 30.95 17.97

Table 8.6: Runtime performance results for deconvolution problem with both data

sets. All runs are over 4 nodes with P = 1000 particles. Times given in wallclock

seconds.

8.5.1 Results

Figures 8.2 & 8.3 provide filter results using the auxiliary + regularised filter for

both the Sim and SessFX data sets. Gaussian kernels are used for the regularised

particle filter with bandwidth h = .5hopt and no standardisation. P = 1000

particles are used, distributed over 4 nodes.

Figures 8.4 & 8.5 smooth these results using the kernel forward-backward smoother,

and Figures 8.6 & 8.7 using the kernel two-filter smoother. In both cases a kernel

bandwidth of h = .5hopt is used, with no standardisation.

Table 8.6 provides performance results for both data sets.

8.5.2 Discussion

In the case of the simulated data set, results are consistent with the known

ground truth. We note that in this case the kernel two-filter smoother delivers

a more successful smoothing than the kernel forward-backward smoother in the

first block of activity between 24.6s and 49.2s.

In the case of the SessFX data, quite a clear pattern of neural activity is extracted

from the very noisy BOLD signal for the single region. Close to zero activity is

apparent during periods of rest, while inhibition of activity is evident during

periods of stimulus. This is consistent with expectations given that the data is

extracted from the right motor cortex and the experimental condition is tapping

of the right index finger. Even when smoothed, some misbehaviour is apparent

within the first few blocks. We observe such behaviour consistently across voxels
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Figure 8.2: Deconvolution of a region in the Sim data set using an auxiliary +

regularised particle filter with bandwidth h = .5hopt, no standardisation and P = 1000

particles. Lines indicate means and shaded regions two standard deviations either side.

Known ground truth of the neural activity (z) and actual observations are marked for

comparison.
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Figure 8.3: Deconvolution of the right M1 region in the SessFX data set using an

auxiliary + regularised particle filter with bandwidth h = .5hopt, no standardisation

and P = 1000 particles. Lines indicate means and shaded regions two standard

deviations either side. Actual observations are marked for comparison.
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Figure 8.4: Deconvolution of a region in the Sim data set using a kernel forward-

backward smoother across the results of the auxiliary + regularised particle filter.

Bandwidth is set to h = .5hopt, with no standardisation and P = 1000 particles. Lines

indicate means and shaded regions two standard deviations either side. Known ground

truth of the neural activity (z) and actual observations are marked for comparison.
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Figure 8.5: Deconvolution of the right M1 region in the SessFX data set using a

kernel forward-backward smoother across the results of the auxiliary + regularised

particle filter. Bandwidth is set to h = .5hopt, with no standardisation and P = 1000

particles. Lines indicate means and shaded regions two standard deviations either

side. Actual observations are marked for comparison.
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Figure 8.6: Deconvolution of a region in the Sim data set using a kernel two-filter

smoother across the results of the auxiliary + regularised particle filter. Bandwidth

is set to h = .5hopt, with no standardisation and P = 1000 particles. Lines indicate

means and shaded regions two standard deviations either side. Known ground truth

of the neural activity (z) and actual observations are marked for comparison.
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Figure 8.7: Deconvolution of a region in the SessFX data set using a kernel two-filter

smoother across the results of the auxiliary + regularised particle filter. Bandwidth

is set to h = .5hopt, with no standardisation and P = 1000 particles. Lines indicate

means and shaded regions two standard deviations either side. Actual observations

are marked for comparison.
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in the data set, and this may in fact represent characteristic behaviour under the

experimental stimulus rather than methodological limitation, particularly given

that no such behaviour is apparent with the idealised simulated data.

Unfortunately, despite the nice neural signal extracted, the fit of the model based

on predicted versus actual observations is fairly poor, as evident by the number of

outliers visible in Figures 8.3, 8.5 and 8.7. This is not overly surprising given the

low signal-to-noise ratio of the data. Indeed, we might conversely argue that the

results are encouraging given that the fit is obtained from a single session only. A

second-level analysis across such results obtained for each session could potentially

be used for stronger inference. We note that taking the mean across all sessions

produces a much clearer signal and much better fit [46], although this is not ideal

given that such aggregates may smudge the sensitive temporal information used

to infer the causal relationships of interest for effective connectivity. A few other

tricks can improve fit, notably increasing measurement noise, but this produces

broader distributions over neural activity such that the two states are then not

well defined, and is questionable practice regardless given that measurement noise

is assumed known a priori. We leave the results in their current state as a work

in progress, without such compromises.

At least one previous study has attempted to use particle filtering techniques

for fMRI deconvolution [90]. This study relied on linear discretisation of similar

SDEs to those proposed here, albeit without the same controlled introduction of

noise. As demonstrated, our own methods can make use of faster Runge–Kutta

schemes. To our knowledge no study has attempted to smooth the results of this

filtering, however. On its own, a filter does not provide an accurate deconvolution

of the hemodynamic response, particularly for times close to the starting point,

and provides little basis for assessing model likelihood or fit.

8.6 Effective connectivity

For studies of higher level patterns of activity, such as effective connectivity [65],

it becomes necessary to strip away the hemodynamic activity to reveal the un-

derlying neural interactions. In the first instance, this is because interactions

between regions at the neural level are not necessarily evident at the hemody-
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Method Sim SessFX

Auxiliary + regularised filter 24 21

Kernel forward-backward smoother 605 281

Table 8.7: Performance results for effective connectivity problem with both data sets.

All runs over 40 nodes with P = 105 particles. Times given in wallclock minutes.

Smoothing times do not include that of the preceding filter.

namic level [80]. In the second, analyses increasingly benefit from the temporal

qualities of the data, and the hemodynamic response itself is a form of temporal

blurring.

We perform 4 region effective connectivity analyses on both the Sim and the

SessFX data sets. Even with 4 regions we have a reasonable sized problem with

24 state variables and 36 free parameters. We set P = 105 and run our methods

across 40 nodes of the Eddie cluster of the Edinburgh Data and Compute Facility2.

8.6.1 Results

Figure 8.8 presents smoothed results using the kernel forward-backward smoother

for underlying neural activity in the Sim data set. For model fit, Figure 8.9

presents predicted measurements against actual observations.

Figures 8.10-8.17 provide parameter estimation results for the Sim data set. Fig-

ures 8.18-8.25 provide results for the SessFX data set.

Table 8.7 provides runtime performance results.

8.6.2 Discussion

On the surface, it appears as though the filter has failed to capture the ground

truth parameter values for the Sim data set, despite exhibiting good fit to both

observations (Figure 8.9) and ground truth neural activity (Figure 8.8). While the

estimated parameters and their ground truth represent two different dynamical

systems, closer investigation reveals that there is much in common.

2http://www.ecdf.ed.ac.uk/

http://www.ecdf.ed.ac.uk/
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Figure 8.8: Smoothed neural activity z on the Sim data set for the effective con-

nectivity problem. Lines indicate means and shaded regions two standard deviations

either side. Known ground truth is marked for comparison.
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Figure 8.9: Smoothed predicted measurements against actual observations on the

Sim data set for the effective connectivity problem. Lines indicate means and shaded

regions two standard deviations either side. Actual observations are marked for com-

parison.
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A =


−1.00 −.09 .48 −.36

−.01 −1.00 −.20 .01

.12 .13 −1.00 −.44

.32 −.24 −.17 −1.00

±


na 10−2 10−2 10−2

10−1 na 10−1 10−2

10−1 10−2 na 10−2

10−1 10−1 10−2 na


Figure 8.10: Final estimate of A for Sim data set, mean plus standard deviation.

Recall that the diagonal is fixed.
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Figure 8.11: Converging estimate of A during filter for Sim data set. Horizontal

dotted lines indicate known ground truth parameter values.
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B1 =


−.64 −.39 −.46 .07

−.36 −.86 −.64 −.17

.53 .28 −1.03 .26

−.15 .20 .15 −.42

±


10−2 10−2 10−2 10−2

10−2 10−2 10−2 10−2

10−2 10−2 10−2 10−2

10−2 10−2 10−2 10−2


Figure 8.12: Final estimate of B for Sim data set, mean plus standard deviation.
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Figure 8.13: Converging estimate of B during filter for Sim data set. Horizontal

dotted lines indicate known ground truth parameter values.
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C =


−.11

−.68

.35

−.39

±


10−2

10−2

10−2

10−2


Figure 8.14: Final estimate of C for Sim data set, mean plus standard deviation.
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Figure 8.15: Converging estimate of C during filter for Sim data set. Horizontal

dotted lines indicate known ground truth parameter values.

d =


.18

.07

−.24

−.07

±


10−3

10−3

10−3

10−3


Figure 8.16: Final estimate of d for Sim data set, mean plus standard deviation.

Horizontal dotted lines indicate known ground truth parameter values.
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Figure 8.17: Converging estimate of d during filter for Sim data set. Horizontal

dotted lines indicate known ground truth parameter values.
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A =


−1.00 −.92 −.12 −.03

−.03 −1.00 −1.10 −.76

.16 .10 −1.00 −.05

.41 −.08 −.38 −1.00

±


na 10−6 10−7 10−8

10−4 na 10−7 10−8

10−5 10−7 na 10−8

10−5 10−7 10−7 na


Figure 8.18: Final estimate of A for SessFX data set, mean plus standard deviation.

Recall that the diagonal is fixed.
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Figure 8.19: Converging estimate of A during filter for SessFX data set.
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B1 =


−.14 .34 .12 .16

.26 −.85 −.07 −.66

−.89 .11 −.75 .45

.02 .68 −.49 −1.03

±


10−15 10−15 10−14 10−16

10−14 10−13 10−16 10−14

10−15 10−15 10−15 10−15

10−15 10−14 10−16 10−15


Figure 8.20: Final estimate of B for SessFX data set, mean plus standard deviation.
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Figure 8.21: Converging estimate of B during filter for SessFX data set.
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C =


−.95

.66

−.51

.37

±


10−14

10−15

10−15

10−15


Figure 8.22: Final estimate of C for SessFX data set, mean plus standard deviation.
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Figure 8.23: Converging estimate of C during filter for SessFX data set.

d =


.09

.15

.03

.12

±


10−16

10−17

10−17

10−16


Figure 8.24: Final estimate of d for SessFX data set, mean plus standard deviation.
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Figure 8.25: Converging estimate of d during filter for SessFX data set.
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Consider the equilibrium state of the neural model (8.1). We approximate this

by simulating a single trajectory from the model with fixed input, taking 105

samples at 1s intervals, and taking the maximum likelihood Gaussian fit to these

points, given the linear-Gaussian nature of the neural model:

=



N


.15

.15

−.19

−.04

,

1.0× 10−2 9.0× 10−6 9.0× 10−6 −1.0× 10−5

9.0× 10−6 1.0× 10−2 −2.0× 10−5 2.0× 10−5

9.0× 10−6 −2.0× 10−5 1.0× 10−2 1.0× 10−5

−1.0× 10−5 2.0× 10−5 1.0× 10−5 9.0× 10−3


u = 0

N


.16

−.38

−.12

−.19

,

1.0× 10−2 −8.0× 10−5 −4.0× 10−5 −9.0× 10−5

−8.0× 10−5 1.0× 10−2 1.0× 10−4 1.0× 10−4

−4.0× 10−5 1.0× 10−4 1.0× 10−2 1.0× 10−4

−9.0× 10−5 1.0× 10−4 1.0× 10−4 1.0× 10−2


u = 1

Now consider the same after fixing parameters to their posterior mean:

=



N


.17

.06

−.22

−.07

,

1.0× 10−2 −4.0× 10−5 2.0× 10−5 −4.0× 10−5

−4.0× 10−5 1.0× 10−2 3.0× 10−5 −6.0× 10−6

2.0× 10−5 3.0× 10−5 1.0× 10−2 −1.0× 10−6

−4.0× 10−5 −6.0× 10−6 −1.0× 10−6 1.0× 10−2


u = 0

N


.14

−.30

−.07

−.29

,

1.0× 10−2 −7.0× 10−5 −1.0× 10−5 −7.0× 10−5

−7.0× 10−5 1.0× 10−2 3.0× 10−5 1.0× 10−5

−1.0× 10−5 3.0× 10−5 1.0× 10−2 8.0× 10−6

−7.0× 10−5 1.0× 10−5 8.0× 10−6 1.0× 10−2


u = 1

On inspection, the two configurations have very similar equilibrium states. Note

that the comparison is between the ground truth parameter setting and a con-

figuration based on the mean of the posterior over parameters, such that the

uncertainty represented by the whole posterior distribution may account for dis-

crepancies.

The equilibrium state dominates any other in the data, but the difference be-

tween the two configurations arises predominantly when the input is switched,

and relates to the rapidity with which the system decays to the equilibrium distri-

bution. In either case neural activity decays to this well within the TR spacing of
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measurements. Such subtle differences in decay rate are indistinguishable given

the relatively small number and sparsity of measurements, and further drowned

in noise regardless. The method therefore has no reason to favour one over the

other, and has no incentive to settle on the ground truth.

Ultimately, it may simply be the case that, regardless of the method, there is

insufficient information in the data to identify the model without greater tempo-

ral resolution or a more informative prior that favours particular configurations.

Similar can be said for the deterministic form of the model used in DCM.

One may therefore wonder why the simpler method of SEM, which essentially

identifies parameters in the equilibrium state only, is not a more attractive option

than these differential models. Recall, however, that SEM does not deconvolve

the hemodynamic response, and estimates interactions at the measurement level

only. Introducing latent variables into an SEM to represent neural activity falls

short of achieving this, as their relationship with observed variables is non-linear.

8.7 Summary

The major contributions of this work in the fMRI domain are establishing a

stochastic model of latent neural and hemodynamic activity (§8.2), formulating

a filtering and smoothing approach for inference in this model, overcoming the

basic practical difficulties associated with this, and identifying areas where fur-

ther model and methodological advances are needed to successfully solve effective

connectivity problems.

This chapter has demonstrated the potential of the proposed model and methods

for the deconvolution (§8.5) problem. It has attempted the same for the effective

connectivity (§8.6) problem, but results have fallen short of expectations. Ar-

guably, this is related more to the model and data than the method. Further

discussion will follow on this in §9.1.5.





Chapter 9

Conclusion

The ambitious goal of this work was to develop and deploy sophisticated machine

learning methods to reveal meaningful patterns of effective connectivity beneath

an observed BOLD signal in fMRI. Bayesian filtering methods have a natural

appeal in combining mathematical models of biophysical processes with a proper

statistical treatment of uncertainty, both intrinsic to the phenomena under study,

and representative of the confidence in the model itself. The biophysical processes

underlying fMRI are at present best described by the balloon model. Rather than

settling for simplified models – linearity, Gaussianity, discrete time – the project

has taken hold of this state of the art continuous-time model, in spite of its

unwieldiness, and sought to develop the core methodology required to bring it to

bear for inference. This has meant accepting a myriad of challenges – nonlinearity,

non-Gaussianity, continuous time, difficult parameterisation, and others – but a

biological realism and real world relevance.

Methodology for working with such models is still in its infancy, and has led

to considerable effort in this work on the filtering, smoothing and parameter

estimation problems in continuous time using particle methods.

We have provided a substantial review of Bayesian filtering methodology for

discrete-time models (§2) and fused this with existing theory in SDEs (§3) to

develop a framework for particle filtering in continuous time (§4). In doing so we

have identified a number of challenges, most notably:

• the expensive computational cost of particle propagations, and

161
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• the unavailability of a closed form transition density p(xn |xn−1).

The first of these has been tackled by introducing higher-order Runge-Kutta

schemes for numerical integration into the Bayesian filtering framework. We

have provided substantial experimental results throughout that clearly demon-

strate the advantage of these higher order schemes over commonly used linear

discretisation schemes in terms of runtime performance.

The second of these undermines the assumed analytical tractability of the transi-

tion density in most particle filtering and smoothing methods. §4 identified only

those particle filtering methods using resampling proposals as being relevant for

continuous-time models. At the same time it highlighted particular problems in

conventional smoothers, and their very poor performance.

In response to this, §5 introduced the kernel forward-backward and kernel two-

filter smoothers. Tailored for the continuous time case, these very fast, but ap-

proximate methods, may facilitate efficient model fit assessment and iterative

parameter estimation schemes. They are applicable to a broader range of dy-

namical systems than both conventional methods and related work, in particular

the general class of models expressed using stochastic differential equations. By

their construction they facilitate use of the higher-order Runge-Kutta methods

advocated earlier in the work. Ultimately, they are substantially more computa-

tionally efficient than conventional methods in terms of both space and runtime

resources. In addition, they establish an importance sampling scheme that pro-

vides a handle into addressing the degeneracy problem identifiable in all conven-

tional particle smoothing techniques.

§6 provided a concrete implementation of these and other approaches suitable

for large-scale, high-performance distributed computing environments. This has

permitted the use of such methodology at an unprecedented scale, and provided

open source code to repeat the same in the form of the dysii C++ library.

Finally, we have taken the biologically motivated but deterministic balloon model

for fMRI and extended it into the stochastic setting. We have then applied this

novel model and our methods to fMRI analysis, in particular the deconvolution

and effective connectivity problems.
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9.1 Future work

Despite the contributions of this work, the picture is still incomplete. We discuss

potential areas for future research in this section.

Perhaps most outstanding is the matter of parameter estimation, where this work

has brutishly relied on its high-performance implementation to use large numbers

of particles for Bayesian parameter estimation. Parameter estimation using par-

ticle methods is still in its infancy, even for discrete time. While the smoothing

methods presented here may provide a vehicle to efficient parameter estimation

schemes, they are not an end in their own right in this regard. We outline a few

ideas for further work here.

9.1.1 Parameter estimation

Particle filtering, being an importance sampling technique, relies heavily on the

design of a suitable proposal distribution in order to be effective. While any pro-

posal distribution that is non-zero where the target density is non-zero is theo-

retically tenable, proposals vary considerably in their effectiveness. A well chosen

proposal will draw samples strongly supporting the whole target density with

approximately equal weights. A poorly chosen proposal will draw misdirected

samples which lie in a limited region of the target’s probability mass, possibly

even its tails, with high variance in weights. More samples are required in the

latter case, with heuristic measures such as ESS making this clear.

As dimensionality expands, it becomes increasingly difficult to design appropri-

ate proposals. As an importance sampler, a particle filter in high-dimensional

spaces may be destined to failure. The matter is additionally confounded when

taking a Bayesian approach to parameter estimation – adding parameters into

the state space increases dimensionality further. Indeed, for the fMRI effective

connectivity problem, the number of parameters scales O(M2) in the number of

regions considered, M , and similar would be expected of any similar network-type

problem.

Iterative parameter estimation schemes can at least hope to minimise the di-

mensionality of the state by witholding the parameters from it. Generally, these
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require the conjecture of a fixed parameter configuration, followed by filtering

and smoothing to obtain the expected likelihood of the model under this config-

uration. The fast kernel smoothers introduced in this work potentially facilitate

the efficient calculation of the expected likelihood. The parameter estimate may

then be updated based on this likelihood, and the entire process repeated. Pos-

sible update schemes include Expectation Maximisation (EM) [91] and gradient

ascent [33].

Observe that for the fMRI model presented, the parameters of most interest are

the A, B1:U and C matrices and d vector of the neural model (8.1). For a single

box-car input u1(t) of value 0 or 1, and equispaced measurements at time ∆t, the

neural model is a two-state switching linear model. When u1(t) = 0 the model is

given by:

dz = (Az + d) dt+ Σz dW (9.1)

which corresponds exactly to the autoregressive:

z∗t+1 = (I + ∆tA∗)z∗t , (9.2)

where z∗ = (zT , 1)T and A∗ = (A,d). Similarly, when u1(t) = 1 the system is

given by:

z∗t+1 = (I + ∆tB∗)z∗t , (9.3)

where B∗ = (A+B1, c + d), with c being the single column of C as a vector.

Given these linear systems we can proceed with an EM algorithm. For the E-

step parameters are fixed and a smoother used to obtain a weighted sample set

{(s(i)
n , ψ

(i)
n )} representing the smooth density at each time tn. For the M-step,

parameters may be updated as follows:

A∗ ← Σ−1
0

∑
n∈T0

P∑
i=1

ψ(i)
n s(i)

n (s′
(i)
n+1)T (9.4)

B∗ ← Σ−1
1

∑
n∈T1

P∑
i=1

ψ(i)
n s(i)

n (s′
(i)
n+1)T (9.5)

where s
(i)
∗ is the propagation of the particle at time tn to time tn+1, T0 is the set
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of times where u1(t) = 0 and likewise T1 the set of times where u1(t) = 1, and:

Σ0 =
∑
n∈T0

P∑
i=1

ψ(i)
n s(i)

n (s(i)
n )T (9.6)

Σ1 =
∑
n∈T1

P∑
i=1

ψ(i)
n s(i)

n (s(i)
n )T . (9.7)

New estimates for A, B1, C and d may then be recovered straightforwardly from

A∗ and B∗.

The problem with this approach is that neural activity is dominated by the flatline

equilibrium distribution where the autocorrelation of the function is zero and the

particular parameter configuration is essentially arbitrary. Consequently, runs

exhibit a convergence toward zero regardless of initial conditions. Further work

is needed in this regard, although we do note that preliminary results on this

would not be possible at all without the efficient smoothers of this work.

9.1.2 MCMC possibilities

An entirely different approach may be warranted. Markov Chain Monte Carlo

(MCMC) techniques require a number of samples that is theoretically indepen-

dent of the number of dimensions. In situations where all data is available ahead

of time, a batch MCMC approach to sampling the state across all times may be

an alternative to the recursive filtering approaches advocated here. Some work

has already been conducted in this regard [92].

Consider a Metropolis-Hastings scheme where the current state of the chain is

given by sτ1:T . A proposed new state s∗1:T is drawn from a proposal q(s1:T | sτ1:T )

and accepted with probability:

A(s∗1:T , s
τ
1:T ) = min

(
1,
p(x1:T = s∗1:T |y1:T )q(sτ1:T | s∗1:T )

p(x1:T = sτ1:T |y1:T )q(s∗1:T | sτ1:T )

)
. (9.8)

At a glance, we would expect the transition density to appear when expanding

this acceptance rate. By way of example, consider a block Gibbs sampling scheme

where the the state xk for some time tk is resampled conditioned on the remaining
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trajectory. The proposal reduces to:

q(s∗1:T | sτ1:T ) = p(xk = s∗k |x1:k−1 = sτ1:k−1,xk+1:T = sτk+1:T ) (9.9)

= p(xk = s∗k |xk−1 = sτk−1,xk+1 = sτk+1) (9.10)

=
p(xk+1 = sτk+1 |xk−1 = sτk−1,xk = s∗k)p(xk = s∗k |xk−1 = sτk−1)

p(xk+1 = sk+1 |xk−1 = sτk−1)
(9.11)

=
p(xk+1 = sτk+1 |xk = s∗k)p(xk = s∗k |xk−1 = sτk−1)∫

p(xk+1 = sτk+1 |xk)p(xk |xk−1 = sτk−1) dxk
, (9.12)

and again the transition density appears, twice in fact. It is not immediately clear

how one can draw from this distribution, or provide a derivation which eliminates

it.

9.1.3 Other interpolation methods

Kernel density approximations are a simple non-parametric approach to density

estimation that are easy to apply, but even with efficient partition tree calcula-

tions are limited to O(lgP lgP ) runtime performance for each smoothing step.

One can imagine other interpolation techniques also, such as EM or variational

fitting of Gaussian mixtures or other analytical distributions. It may even be

possible to tailor a filter around these, such as propagating selected sigma point

samples from each component of a Gaussian mixture in a manner inspired by some

sort of continuous-time extension to the unscented Kalman filter [19]. These may

prove more efficient, although such parametric approaches may be model depen-

dent.

9.1.4 Other continuous time behaviours

While SDEs may be used to represent the class of continuous-time stochastic

diffusions, they do not encompass the full range of continuous-time stochastic

processes. The Chapman-Kolmogorov equation [17, ch.3] is a more general means

of representing stochastic processes. From this general equation and its differen-

tial form, the families of jump processes, Fokker-Planck equations, diffusions and

others may be derived. The precise form of the Chapman-Kolmogorov equation

is unimportant here. What is important is that it neatly breaks down into the

three main properties of a stochastic process:
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drift which is the deterministic component of the process,

diffusion which is the continuous uncertainty of the process, and

jumps which are the discontinuous uncertainties of the process.

By selectively zeroing out one or more of these components, various process fam-

ilies are obtained. Processes with only a drift component form deterministic Li-

ouville equations [17, §3.5.3], only a jump component jump processes [17, §3.5.1],

and only drift and diffusion components diffusion processes, often described by

Fokker-Planck equations [17, §3.5.2] or SDEs.

This appears a useful way of thinking of stochastic processes, and of positioning

SDEs relative to other theory. This work is currently only applicable to diffusion

process models described using SDEs. A reasonable extension would be to con-

sider other families, particularly jump processes, and how these could be fit into

the framework developed, or the framework extended to suit.

9.1.5 fMRI developments

Improving the results of the fMRI experimentation in this work requires a more

integrated approach to model development and data collection that requires ad-

ditional expertise in the field.

Unfortunately, the data sets available for use in this work are not particularly con-

ducive to the temporal analysis desired, having high TR and block experimental

design. More rapidly acquired images on more recent hardware, at greater tem-

poral resolution and using event-related experimental paradigms, are probably

more useful for this sort of analysis. Bringing in data from other more tempo-

rally sensitive modalities, such as Electroencephalography (EEG) or Magnetoen-

cephalography (MEG), may also prove useful.

Expert knowledge may also be used to fix a subset of connectivity parameters, or

at least to provide more informative priors over them. The effect of this would

be to constrain the number of configurations manifesting equivalent equilibrium

distributions and facilitate identification of a single most likely set of parameter

values.
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