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Abstract 
 

Proteins are among the most important groups of biomolecules, with their 

biological functions ranging from structural elements to signal transducers between 

cells. Apart from their biological role, phenomena related to protein behaviour in 

solutions and at solid interfaces can find a broad range of engineering applications 

such as in biomedical implants, scaffolds for artificial tissues, bioseparations, 

biomineralization and biosensors. For both biological and engineering applications, 

the functionality of a protein is directly related to its three-dimensional structure (i.e. 

conformation). Methods such as homology and threading that depend on a large 

database of existing experimental knowledge are the most popular means of 

predicting the conformation of proteins in their native environment. Lack of 

sufficient experimentally-derived information for non-native environments such as 

general solutions and solid interfaces prevents these knowledge-based methods being 

used for such environments. Resort must, instead, be made to so-called ab initio 

methods that rely upon knowledge of the primary sequence of the protein, its 

environment, and the physics of the interatomic interactions. The development of 

such methods for non-native environments is in its infancy – this thesis reports on the 

development of such a method and its application to proteins in water and at 

gas/solid and water/solid interfaces. After introducing the approach used – which is 

based on evolutionary algorithms (EAs) – we first report a study of polyalanine 

adsorbed at a gas/solid interface in which a switching behaviour is observed that, to 

our knowledge, has never been reported before. The next section reports work that 

shows the combination of the Langevin dipole (LD) solvent method with the Amber 

potential energy (PE) model is able to yield solvation energies comparable to those 

of more sophisticated methods at a fraction of the cost, and that the LD method is 

able to capture effects that arise from inhomogenities in the water structure such as 

H-bond bridges. The third section reports a study that shows that EA performance 

and optimal control parameters vary substantially with the PE model. The first three 

parts form the basis of the last part of the thesis, which reports pioneering work on 

predicting ab initio the conformation of proteins in solutions and at water/solid 

interfaces. 
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Chapter 1.  Introduction 

Proteins are biomolecules that underpin life. The function of these proteins – 

which can vary from structural over immunological to material and signal 

transporting (Bogen, 1968; Goodsell, 1996; Rappé and Casewit, 1997; Siegel et al., 

2006) – is linked directly to the three dimensional (3D) conformation of the proteins, 

which in the native state is termed the “tertiary structure”. This tertiary structure is 

dictated by the amino acid sequence (i.e. the primary structure) of the protein, and 

the physics of the intra-protein and protein-environment interactions (Anfinsen, 

1973; Rappé and Casewit, 1997). 

There has been a vast effort aimed at understanding the behaviour of proteins 

in their native environment such as in solutions and within biological membranes 

(Forrest and Sansom, 2000; Scharnagl et al., 2005). The experimental efforts are 

reflected in, for example, the Protein Data Bank (PDB) (Berman et al., 2000) and 

numerable Nobel prizes.1 Computational methods are also making an increasing 

contribution to understanding protein structure and function in the native 

environment. The worth of such computational work is demonstrated by its pivotal 

role in elucidating the mechanism of development of neurodegenerative disorders, 

such as Alzheimer’s (Nguyen and Hall, 2006), and, increasingly, in the design of 

drugs to treat various diseases (Frecer et al., 2004). 

As demonstrated by the fields of biomedical and tissue engineering, 

bionanotechnology and bioprocessing amongst others, proteins are also found at the 

interface between the native and inorganic worlds (Kasemo, 2002). For example, 

protein adsorption is the first step in the body’s response to inorganic implants such 

                                                 
1 For example, for the Nobel Prize in Chemistry, the following received awards based on their protein 
structure related work: Frederick Sanger (1958), Max Ferdinand Perutz and Sir John Cowdery 
Kendrew (1962), and Sir Aaron Klug (1982). Prizes in other categories were also awarded for work 
relating to protein structure and function in their native environment. 
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as artificial heart valves, as shown in Figure 1.1 (Kasemo, 2002; Ratner and Bryant, 

2004). As this can lead to complications and even life-threatening reactions (e.g. 

emboli), technologies based on understanding of protein behaviour at solid surfaces 

are currently being developed to eliminate such responses (Ratner and Bryant, 2004). 

Similar approaches are also being used in the next generation tissue scaffolds to 

improve spatial control over cell adhesion, which is essential for producing all but 

the simplest tissue (Shin et al., 2003). 

Proteins are also found at solid surfaces in biosensors and bioarrays as sensing 

elements, analytes and foulants, as depicted in Figure 1.2 (Castillo et al., 2004; 

Hultschig et al., 2006). Biosensors are attractive as they can be easily miniaturised 

and respond rapidly, making them ideal for use outside the lab (e.g. at home), as in 

vivo sensors (e.g. glucose monitors of diabetics), for continuous monitoring of 

processes in industry and the environment, and at potential biohazard sites (Castillo 

et al., 2004; Sapsford et al., 2004). The high throughput capacity of protein arrays, on 

Figure 1.1 Protein mediated immunological response to implants – from (Ratner 
and Bryant, 2004). 
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the other hand, means they are playing an increasing role in diagnosis and drug 

discovery (Hultschig et al., 2006). Protein adsorption and migration on solid surfaces 

are also central to bioseparations (Przybycien et al., 2004) and fouling in the 

processes (e.g. in food industry) and beyond (Flemming, 2002). 

Proteins at solid interfaces are also essential to nature – examples include 

antifreeze proteins (AFP), shown in Figure 1.4, that allow some species to survive at 

sub-zero temperatures by binding to small ice crystals to inhibit their growth (Liou et 

al., 2000), and proteins involved in biomineralization, a process responsible for egg 

shell for example (Weiner and Addadi, 1997). Such processes are inspiring new 

“biomimetic” technologies. For example, mimicking AFPs, a number of groups have 

developed peptides that can control crystal growth to obtain desired crystal 

characteristics (Seeman and Belcher, 2002; Sarikaya et al., 2003). It is believed these 

peptides can also be used to self-assemble nanoscale entities to form complex 

multiscale structures in a manner similar to biomineralization (Seeman and Belcher, 

2002; Sarikaya et al., 2003) and systems such as nanoelectronic elements and circuits 

illustrated in Figure 1.5 (Katz and Willner, 2004). 

As in the native state, the behaviour of a protein at a solid surface and the 

response of the surface to the protein depend on the 3D conformation of protein. This 

is clearly seen in, for example, the anti-freeze protein shown in Figure 1.4 but is also 

evident in applications such as biosensors where sensing of a protein depends upon 

Figure 1.2 Proteins on the surface of biosensors – from (Härtl et al., 2004). 
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the three-dimensional conformation of the binding site (Kasemo, 2002). It is clear, 

therefore, that understanding of the 3D conformation of proteins at solid surfaces is 

as important as in the native context. 

The capacity to experimentally determine the conformation of a protein at a 

solid interface is far more limited compared to their conformation in the native state 

or crystal. In particular, it is not possible to determine the 3D conformation of 

proteins at solid surfaces at an atomistic level but, rather, at best details such as 

secondary structure measures and the orientation of the peptide to the surface (e.g. 

(Giacomelli et al., 1999; Vermeer and Norde, 2000)). Given these experimental 

limitations and challenges for proteins at solid surfaces, modelling has an even more 

important role to play than in the study of the native state – it is this which motivated 

the work reported in this thesis. 

Study of proteins on solid surfaces using molecular methods is still in its 

infancy. Of the limited work to date, much is based on simplified models, e.g. 

reduced molecular models (Zhdanov and Kasemo, 1997, 1998a), or rigid structures 

(Lu and Park, 1989; Lu et al., 1992). The few studies that use realistic models have 

used molecular dynamics (MD) (Raffaini and Ganazzoli, 2003, 2004a), Monte Carlo 

(MC) (Song and Forciniti, 2001; Mungikar and Forciniti, 2004) or local molecular 

mechanic simulations (Oren et al., 2005) – all these methods are limited in their 

ability to identify the likely structure of proteins on solid surfaces either because of 

algorithmic limitations (e.g. local molecular mechanics and standard MC) or 

computational expense such as in the case of the more sophisticated MC methods 

Figure 1.3 Biofouling of heat exchangers in process industry – from (Flemming, 
2002) 
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and MD. The work reported here was, therefore, concerned with developing a 

computationally rapid means of predicting the 3D conformation of proteins on solid 

surfaces in the presence or otherwise of a solution phase. 

The approach developed involves using an evolutionary algorithm (EA) to 

determine, in principle, the global free energy (FE) minimum associated with a 

protein at a solid interface in the presence of a solvent or otherwise. The protein is 

modelled at an atomistic level and the interactions both between the atoms within the 

protein and the protein and its environment are modelled using physics-based 

potential energy (PE) models. This thesis describes the work undertaken in 

developing this approach. 

There are many possible PE models available for biomolecular systems 

(Ponder and Case, 2003; Mackerell, 2004). Previous work by the group at Edinburgh 

showed that Amber (Cornell et al., 1995), a well established PE model, can be used 

to predict protein structures using EAs (Djurdjević, 2006). It was not, however, clear 

if similarly good predictions could be achieved with less computational effort using 

other models – the first part of the study reported here focused, therefore, on 

determining the EA performance for a number of common PE models. This study, 

which, as far as we are aware, is the first of its kind, showed that EA performance 

can vary significantly with the PE model. 

The second aspect of the work reported here is the very first example of the use 

of an EA to predict the 3D conformation of a protein at a gas-solid interface. In this 

work, we discovered that as the surface energy is increased, polyalanine does not 

undergo a gradual conformational change but, rather, switches between distinct 

conformations at specific surface energies that depend on the size of the polyalanine 

molecule. Detailed analysis of the results revealed that this novel behaviour – which 

could be exploitable in nanotechnologies and be of relevance to disease processes – 

Figure 1.4 Interaction of anti-freeze protein with water molecules from ice crystal 
– from (Liou et al., 2000). 
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arises from the symmetry of the polyalanine molecule and its ability to support 

hydrogen bonds. 

There are a large number of ways in which solvents can be treated in 

biomolecular simulations (Orozco and Luque, 2000) ranging from simple implicit 

models such as electrostatic screening (Blaney et al., 1982) through to fully explicit 

solvent molecules involving multiple sites, such as TIP3P and TIP4P (Jorgensen et 

al., 1983). In the case of proteins at solid surfaces, phenomena such as solvent 

structuring between the protein and solid surface and hydrogen-bond bridging are 

likely to be important (Beglov and Roux, 1995; Bujnowski and Pitt, 1998) – it is, 

therefore, important that the solvent model used be able to capture such effects. 

Implicit models cannot capture these effects, indicating explicit models are 

necessary. However, the often used fully explicit models are computationally very 

expensive. We, therefore, investigated a semi-explicit model called Langevin dipoles 

(Warshel and Levitt, 1976; Florián and Warshel, 1997) to determine if this treatment 

of the solvent can capture complex phenomena at low computational cost compared 

to the traditional fully explicit methods. We show for the first time that Langevin 

dipoles combined with the Amber PE model can in fact predict the solvation energies 

of bio-related molecules as accurately as the state-of-the-art explicit methods at just a 

fraction of their cost. 

The final part of the work undertaken here brings together all the previous 

elements of the work to study met-enkephalin, a pentapeptide, firstly in water and 

then, finally, at a water-graphite interface – both studies are firsts as far as we are 
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aware. This work revealed that water structuring and hydrogen bond-bridges play a 

role in the structure of proteins at solid surfaces as anticipated. 

The thesis is structured as follows. A review of previous models for proteins at 

solid interfaces is first undertaken. This is then followed by a summary of the basic 

methods used in the work undertaken here, whilst further details are contained in 

appendices. The next four chapters report each of the studies undertaken here as 

outlined above. The final chapter summarizes the work and discusses some possible 

future work. 
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Chapter 2.  Literature Review 

2.1. Introduction 

Given the overall aim of this project, the most obvious previous work of 

relevance here are studies which use computational methods to investigate 

conformation of proteins in solutions and at solid-fluid interfaces. Before the relevant 

numerical methods are introduced, however, it is helpful to provide a brief 

introduction into their theoretical background, i.e. into the statistical mechanics of 

proteins. Since the most common techniques applied in molecular simulations of 

proteins in solutions and at solid surfaces are Monte Carlo and molecular dynamics, 

these methods are, then, introduced in their basic form and with some recent 

improvements aimed at increased efficiency. Subsequently, an alternative approach 

to protein structure prediction, based on the Anfinsen hypothesis (Anfinsen, 1973) is 

discussed along with its advantages and limitations. This is followed by a more 

detailed description of the previous molecular simulation studies of proteins at solid 

surfaces. Emphasis is, then, placed on water representation, as water is the most 

common solvent in which proteins can be found. Finally, as met-enkephalin peptide 

is frequently considered here, a review of both experimental and simulation based 

methods for determination of its conformation is provided. 

2.2. Statistical Mechanics of Proteins 

The main goal of our work is to develop a method for the prediction of protein 

3D structure. A standard procedure applied for this purpose is to explore the free 

energy surface of proteins (discussed in more details in Chapter 3). In order to relate 

microscopic properties (e.g. protein molecular structure) with thermodynamic 

properties of a system, such as the free energy, it is a common practice to revert to 

statistical mechanics. The approach used in statistical mechanics is to express 
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mechanical (i.e. temperature independent) thermodynamic properties of a 

macroscopic system in terms of the average of corresponding properties in the 

individual microscopic states (McQuarrie, 1976). The internal energy of a protein 

can, thus, be represented as an average of the potential energies of individual 

observed protein conformations. In order to perform sampling of various microscopic 

states of the system, a concept of ensembles is commonly used in statistical 

mechanics. 

2.2.1. Canonical Ensemble 

The concept of an ensemble of systems, introduced by Gibbs, represents a 

collection of a very large number of systems in different microscopic states 

constructed in a way that each microscopic system conforms to a set of macroscopic 

thermodynamic properties, such as the temperature or the volume of the system 

(McQuarrie, 1976). The most often used ensemble in statistical mechanics is the 

canonical ensemble, characterised by the constant values of number of particles, 

volume and the temperature of the system (McQuarrie, 1976). Since protein 3D 

structure studies commonly operate with a single molecule on a constant 

temperature, the canonical ensemble can also be used in statistical mechanical 

methods for protein structure prediction. 

The macroscopic state of the entire ensemble is specified by the number of 

systems in individual microscopic states. If the number of systems in a state i is 

denoted as ai, the macroscopic state of the ensemble may be represented as a 

multidimensional vector a, { }1 2 3, , ,..., ,...ia a a a=a . The number of ways in which a 

particular value of a may be obtained is denoted as W(a). If the total number of 

systems in the ensemble is N, the probability of any one of them to be in a state i is 

(McQuarrie, 1976) 

 
( )

( )
1 i

i

aW
P

N W
=

∑
∑
a

a

a

a
 (2.1) 

where the summation is conducted over all possible macroscopic states a. The 

canonical ensemble average of a mechanical property M can then be calculated from 

the value of the property in all individual systems and probabilities to observe the 

systems in particular microscopic states (McQuarrie, 1976) 
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 i i
i

M M P= ∑  (2.2) 

The probability Pi is commonly replaced by a weight function wi (Allen and 

Tildesley, 1989) 

 i ens iw Q P=  (2.3) 

where Qens is the partition function, defined as the sum of weight functions over all 

possible microscopic states (Allen and Tildesley, 1989) 

 ens i
i

Q w= ∑  (2.4) 

In the canonical ensemble, the weight function is expressed as a function of the 

Hamiltonian of the system, H (Allen and Tildesley, 1989) 

 exp i
i

B

Hw
k T

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
 (2.5) 

where the Hamiltonian is a sum of kinetic and potential energy for each particle of 

the system (Allen and Tildesley, 1989), while kB is the Boltzmann factor and T 

temperature in K. The weight function of the canonical ensemble is also referred to 

as the Boltzmann factor (Frenkel and Smit, 1996). According to equation (2.4), the 

partition function of the canonical ensemble, QNVT, is calculated as (Allen and 

Tildesley, 1989) 

 ( )
3

,1 1exp exp
!

i
NVT n

i B B

HHQ d d
k T n h k T

⎛ ⎞⎛ ⎞
= − = −⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∫

r p
r p  (2.6) 

where the sum over microstates is replaced with an integral over all possible particle 

positions, r, and momenta, p, of a system with n particles, while h is the Planck 

constant. 

Once the value of the partition function is known, it can be used to calculate 

the free energy, G, of a macroscopic system (Allen and Tildesley, 1989) 

 lnB NVTG k T Q= −  (2.7) 

The integration of equation (2.6) in order to obtain the partition function is, however, 

a nontrivial problem and it has to be performed using molecular simulation methods. 

Two molecular simulation techniques commonly used in protein simulation studies 

are Monte Carlo (MC) and molecular dynamics (MD). These two techniques will be 

described in more details in the next section. 
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2.3. Monte Carlo and Molecular Dynamics in Protein Simulations 

Monte Carlo and molecular dynamics are standard molecular simulation 

approaches for exploration of free energy surface of proteins and other molecules or 

molecular ensembles. They rely on calculation of interatomic potentials (MC) or 

forces between the atoms (MD), thus operating on a potential energy (PE) surface of 

the system. However, in addition to this, they are also equipped with a mechanism 

for generating structures with similar energies. As the entropy of a macroscopic 

system is directly related to the number of the unique microscopic states accessible to 

it (McQuarrie, 1976; Frenkel and Smit, 1996), counting of the unique protein 3D 

structures in a simulation gives MC and MD the ability to incorporate entropic 

contribution of an ensemble of the structures. In other words, by combining PE with 

entropic contributions, both MC and MD are well suited for the exploration of free 

energy surface of proteins. 

2.3.1. Basic Monte Carlo Implementation 

According to the Boltzmann distribution (Frenkel and Smit, 1996), a 

probability for a thermodynamic system to be found in a microscopic state i with the 

total energy Ei is equal to 

 ( )
( )

exp
exp

i B
i

j B
j

E k T
P

E k T
−

=
−∑

 (2.8) 

where the denominator represents the summation of Boltzmann factors, 

( )exp j BE k T−  over all possible quantum states. This sum is also known as the 

partition function, Q. Using equation (2.8), the average energy of the system, E , 

may be calculated by summing up energies of all possible quantum states multiplied 

with their corresponding probabilities (Frenkel and Smit, 1996) 

 
( )

( )

exp

exp

i i B
i

i i
i i B

i

E E k T
E E P

E k T

−
= =

−

∑
∑ ∑

 (2.9) 

In a similar fashion, thermodynamic average of an arbitrary variable A, A , can be 

calculated from the equation (2.10) 
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( )

( )

exp

exp

i i B
i

i i
i i B

i

A E k T
A A P

E k T

−
= =

−

∑
∑ ∑

 (2.10) 

where Ai is the value of variable A in a quantum state i. 

The total energy of the system may be represented as a sum of the kinetic and 

potential energy contributions, while the sums over quantum states may be replaced 

by integrals over coordinates and momenta of all atoms (Frenkel and Smit, 1996). In 

a system of N atoms, the average value of A is, thus, calculated as 
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where pi is the momentum and mi the mass of atom i. rN contains coordinates of all N 

atoms, while pN consists of their momenta. The kinetic energy part of the integral is a 

quadratic function of the momenta and can be solved analytically. It is the potential 

energy of the system that requires application of numerical methods, such as Monte 

Carlo, in order to be solved. 

Being only a function of the system configuration, the part of the variable A 

calculated through PE integrals is referred to as configurational, Aconf. The 

thermodynamic average of the configurational part of the variable A is then 

calculated as 
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 (2.12) 

where the denominator is denoted as the configurational part of the partition 

function, Z (Frenkel and Smit, 1996). Whilst numerical solving of the partition 

function, as well as of the integral in the numerator of equation (2.12), is still 

computationally intractable problem, Metropolis et al. (1953) have developed a 

method for efficient sampling of the ratio of the two integrals. 

Monte Carlo is, in principle, a random walk method, i.e. the equation (2.12) 

would be solved by randomly creating structures and calculating their potential 

energies. In the Metropolis scheme, however, the so called importance sampling of 

structures is utilised. In this approach, new structures are not generated completely 



 14

randomly, but with a relative probability proportional to the Boltzmann factor 

(Frenkel and Smit, 1996). The simulation is initiated by creating the system in a 

random configuration rN(o), characterised with a finite value of the Boltzmann 

factor, ( )( )exp BU o k T− . In protein simulations, this condition corresponds to a 

random conformation without overlaps. In the next step, a new configuration of the 

system, rN(n), is created by randomly displacing atoms of the previous configuration. 

The Boltzmann factor of the new configuration is calculated as ( )( )exp BU n k T− . 

The numerical core of the Metropolis scheme consists of evaluation of the 

probability of transition between the old and the new configuration. In the original 

implementation of the method (Metropolis et al., 1953), a move from the old, o, to 

the new conformation, n, is always accepted if it does not lead to increase in the 

potential energy. If ( ) ( )U n U o> , however, the move is accepted with the 

probability that is calculated from the difference of the Boltzmann factors of the two 

configurations. If probability of accepting a random move from configuration o to 

configuration n is denoted as ( )π o n→ , the Metropolis scheme can be summarised 

with the following formula 

 ( )
( ) ( )

( ) ( ) ( ) ( )

1 ,

exp ,
B

U n U o
π o n U n U o

U n U o
k T

⎧ ⎫≤
⎪ ⎪

→ = ⎛ ⎞−⎨ ⎬
− >⎜ ⎟⎪ ⎪

⎝ ⎠⎩ ⎭

 (2.13) 

In summary, a molecular simulation of a protein with the basic MC algorithm 

is conducted by first generating a random nonoverlapping protein conformation, 

which is then subjected to random incremental conformational changes, where each 

change is accepted with the probability defined by equation (2.13), in which U is the 

potential energy of generated protein conformations, calculated using one of the PE 

models (discussed in more details in Appendix B). An example of application of 

such an algorithm is the study of met-enkephalin conformation by Li and Scheraga 

(1987), in which protein conformation was represented through a set of dihedral 

angles and MC moves consisted of random changes in these angles. Other early MC 

studies of proteins, such as that of Krigbaum and Lin (1982) or Kolinski et al. (1986) 

relied on application of simplified, lattice models of proteins, but used the same MC 

procedure outlined by Metropolis et al. (1953). 



 15

2.3.2. Basic Molecular Dynamics Implementation 

Whilst Monte Carlo samples configurations of a protein (or any other system) 

using random moves, molecular dynamics (MD) is a deterministic method in which 

new configurations are obtained using Newton’s laws of motion (Frenkel and Smit, 

1996). The central part of an MD algorithm is the calculation of forces that act on all 

protein atoms. The resultant force acting on an atom i is calculated as a gradient of its 

potential energy (van Gunsteren and Berendsen, 1990) 
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∂
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 (2.14) 

where the potential energy, U, is calculated from the same PE models used for the 

calculation of potential energies in MC simulations. Once the force acting on each 

atom is obtained, it is used to calculate the acceleration of the atoms according to 

Newton’s second law of motion 

 i
i

im
=

Fa  (2.15) 

Accelerations are then used to calculate displacements of atoms after an arbitrary 

time step according to the definition of acceleration as the second derivative of 

position over time 

 ( )2
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d
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t

=
r

a  (2.16) 

The evolution of position vector, ri, in time is obtained through integration of the 

equation (2.16) using one of the established numerical methods, such as Verlet 

algorithm (Verlet, 1967; Frenkel and Smit, 1996). The atomic displacements 

obtained this way are the effectors of conformational changes in protein. Analogous 

to the MC approach, these incremental structural changes enable sampling of 

conformations around local minima, thus adding the entropic contribution to the 

calculated intramolecular potential energy. Similarly, in an MD simulation, relevant 

thermodynamic properties may be obtained by averaging over trajectory, which is 

analogous to ensemble averaging in MC, as expressed by equation (2.10). 

Although their reliance on natural laws of motion implies that MD simulations 

mimic the real movement of molecules, they are still not as reliable as laboratory 

experiments. Their ability to retrieve information on atomic level, which is often 
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inaccessible to experimental methods, makes them ideal as complementary methods 

to experiments (van Gunsteren and Berendsen, 1990). MD simulations are, for 

instance, often used in combination with NMR data, to determine the 3D structure of 

proteins (Clore and Gronenborn, 1987; Kaptein et al., 1988; van Gunsteren and 

Berendsen, 1990). Analogously, MD has been applied in refinement of protein 

structures obtained from crystallographic data (Brünger et al., 1987). In addition to 

this, a large number of studies have used MD approach to predict the 3D structure of 

proteins without restraints imposed by experimental data (McCammon et al., 1977; 

Tirado-Rives et al., 1993; Huston and Marshall, 1994; Zhang and Hermans, 1994; 

Lin and Baumgaertner, 2000; Hénin et al., 2005). 

2.3.3. Algorithmic Improvements in Monte Carlo and Molecular Dynamics 

Basic implementations of MC and MD methods have found widespread use in 

simulation of gases and liquids with simple, mono- or diatomic molecules. These 

systems are characterised with low energy barriers, which may easily be traversed by 

simple molecular simulation algorithms, thus allowing exhaustive sampling of the 

configurational search space. Conformational changes in proteins are, however, often 

characterised with very high energy barriers, which poses serious obstacle for 

representative sampling by simple MC and MD implementations. The algorithms 

often get “trapped” inside basins of local energy minima, thus spending too much 

computational time in sampling the structures of lower interest. Several methods 

have been developed with the aim of improving the ability of MC and MD to cross 

the energy barriers with higher efficiency. 

Simulated annealing (Kirkpatrick et al., 1983) is a technique that can be 

combined with both MC and MD approaches. Annealing is a treatment usually used 

in metallurgy for removing imperfections in crystal structure. Material is exposed to 

a high temperature, and then slowly cooled down. Heating perturbs the crystal 

structure, thus removing the imperfections in it, while slow cooling allows the crystal 

to settle down in a more favourable state. Analogously, incremental increasing and 

subsequent decreasing of the temperature of a simulated molecular system allows its 

reconfiguration into a lower energy minimum (Rappé and Casewit, 1997). The 

theoretical background of the simulated annealing lies in the increased ability for 

crossing energy barriers on higher temperatures. For an energy barrier of the height 
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UB, the probability for a molecule to cross it is expressed through the Boltzmann 

factor, ( )exp B BU k T− . If a local energy minimum is surrounded by high barriers, 

the probability for a transition move may be very low on the room temperature. 

Temperature increase, however, increases the Boltzmann factor, thus allowing higher 

barrier crossing probability. In order to perform sampling on temperatures of interest, 

the system is incrementally cooled down and simulated long enough to allow a 

steady state to be reached for each of the temperatures (Kirkpatrick et al., 1983). If 

the temperature reduction is slow enough, the system is able to progress towards the 

global energy minimum without being trapped in higher-energy local minima (Rappé 

and Casewit, 1997). Simulated annealing in protein structure studies has been utilised 

to enhance conformational sampling in both MC (Liu et al., 2000; Nachman et al., 

2002; Gordon et al., 2003) and MD algorithms (Esteve et al., 2001; D'Amelio et al., 

2003; Doucet and Pelletier, 2007). 

A method that is, in a phenomenological sense, similar to simulated annealing 

is the parallel tempering approach (Hansmann, 1997). Parallel tempering algorithm 

uses the same principle of enhanced efficiency for crossing energy barriers on higher 

temperatures. There are, however, some important differences between the two 

methods. Whilst simulated annealing operates with a single system, which is 

subjected to consecutive increase and decrease of temperature, parallel tempering 

approach makes several copies of the initial system and simulates each copy in 

parallel on different temperatures. The systems are, however, not completely 

independent from each other as the conformations are allowed to be exchanged 

between them (Hansmann, 1997). Parallel tempering operates with two main 

configurational moves. The first is the local update, in which a copy of the system is 

subjected to a regular MC or MD move without any effect from other instances of 

the system. Periodically, a global update is performed, in which the exchange of 

conformations between two copies is tried 
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The update is global as, unlike incremental conformational changes in a single MC 

and MD step, a whole conformation is reshuffled if the move has been successful 
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(Hansmann, 1997). This substantial change of conformation is the main driving force 

for barrier crossing. The transition probability of a global update move is, 

analogously to configurational changes in a simple MC algorithm, based on 

Metropolis criterion (Metropolis et al., 1953; Hansmann, 1997) 
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where o and n denote the old and the new configurations, respectively. The old 

configuration is the one in which configurations i and j are on temperatures Ti and Tj, 

respectively, whilst the new configuration n corresponds to the same configurations 

with swapped temperatures. Like simulated annealing, parallel tempering has been 

used as a sampling improvement technique both in MC (Mitsutake et al., 2001; 

Rathore and de Pablo, 2002; Podtelezhnikov and Wild, 2005) and MD based (Sugita 

and Okamoto, 1999; Cheng et al., 2005; Rathore et al., 2005) analysis of protein and 

peptide 3D structure. MD algorithms improved by parallel tempering sampling are 

also referred to as replica exchange molecular dynamics (REMD) methods (Sugita 

and Okamoto, 1999). Due to the very low level of interactions between simulated 

replicas of the system, both MC and MD parallel tempering methods are very 

suitable for running on parallel CPU architectures (Mitsutake et al., 2001) as each 

CPU can be assigned a single instance of the system on a different temperature and 

CPU communication is performed only when replica exchanges are tried. 

The weighting factor of global update move in parallel tempering – equation 

(2.18) – involves changes in both the potential energy and temperature, which makes 

it a non-Boltzmann factor. Sampling techniques which use non-Boltzmann weighting 

factors are referred to as generalised ensemble methods (Sugita and Okamoto, 1999). 

Thus, parallel tempering can be viewed as one of the generalised ensemble methods 

for protein structure prediction (Hansmann and Okamoto, 1999). One of the first 

incarnations of generalised ensemble techniques is the well known umbrella 

sampling (Torrie and Valleau, 1977). Umbrella sampling is used in calculation of 

free energy difference between two states of a system. A single MC or MD 

simulation with the basic algorithm on lower temperatures would sample the region 

around only one of them. In umbrella sampling method, however, sampling of both 
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states is achieved by replacing the Boltzmann factor with a modified weight function 

that favours parts of conformational space accessible to both states (Torrie and 

Valleau, 1977; Frenkel and Smit, 1996). Umbrella sampling, as other generalised 

ensemble techniques, can be used both within the MC and MD frameworks. 

Examples of its application in protein studies include analysis of met-enkephalin 

conformation (Bartels and Karplus, 1998) and the conformational study of the 

Betanova protein (Bursulaya and Brooks, 1999). 

The most prominent of the generalised ensemble methods is the multicanonical 

algorithm (Berg and Neuhaus, 1992), also known as entropic sampling (Lee, 1993; 

Hansmann and Okamoto, 1999). In the canonical ensemble (in which the weight of 

conformations is equal to the Boltzmann factor), low temperatures are convenient for 

sampling around local minima, but they do not allow efficient barrier crossing. High 

temperatures, on the other hand, allow easy barrier crossing, but sampling of low 

energy regions deteriorates due to increased ability for escaping from them 

(Nakajima et al., 1997). The multicanonical algorithm alleviates this problem by 

introducing an artificial flat energy distribution, which increases efficiency of barrier 

crossing without affecting the efficiency of sampling the low energy barriers 

(Nakajima et al., 1997). Multicanonical algorithm in protein structure analysis has 

been combined with MC (Hansmann et al., 1996; Mitsutake et al., 2000) as well as 

with MD method (Hansmann et al., 1996; Nakajima et al., 1997). 

Whilst discussing modifications and improvements to basic MC and MD 

algorithms, it should be noted that some regard genetic algorithms as a modified MC 

method (Hansmann and Okamoto, 1999). According to this view, the main 

difference between the two is that, unlike MC, genetic algorithms do not operate on a 

single configuration trajectory, but on a population of configurations from various 

regions of the search space. Genetic algorithms have, however, evolved into an 

independent search method and, within a broader category of evolutionary 

algorithms, will be an object of the study in this thesis. 

2.4. Anfinsen’s Hypothesis for Protein Structure 

Monte Carlo and molecular dynamics methods are very convenient tools for 

sampling an ensemble of protein structures characterised with low potential energies. 

On many occasions, however, native conformation of a protein is characterised by a 
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single most stable conformation, in which case a more efficient numerical methods 

may be applied. In order to analyse alternative approaches in protein structure 

prediction, the free energy of a protein is first analysed in more detail. 

2.4.1. Protein Free Energy and Entropy 

The free energy of a macroscopic system described by canonical ensemble may 

be expressed in terms of potential energy and entropy of the system (McQuarrie, 

1976) 

 G U TS= −  (2.19) 

Potential energy of the system, U, is a consequence of interaction between the 

constituent particles. In protein simulations, it is usually calculated through the 

application of empirical potential energy models or force fields (discussed in detail in 

Appendix B). The entropy of a protein is a more difficult concept. 

Using the statistical mechanics definition, the entropy of a macroscopic system, 

S, is proportional to the logarithm of the number of microscopic states available to 

the system (McQuarrie, 1976) 

 ( )lnΩBS k T=  (2.20) 

where Ω(T) is the total number of states accessible at the temperature T. In protein 

studies, individual microscopic states are defined as unique protein conformations 

and the entropy S is denoted as conformational or configurational entropy. 

Trajectories between different protein conformations often involve transition 

over energy barriers of various heights. In order to include conformations from both 

sides of a barrier into the entropy calculation, the barrier has to be easily traversable 

by thermal fluctuations. This means that on the sampling temperature T, the protein 

has to be able to cross the barrier with high probability. The probability for barrier 

crossing, πb, is equal to the Boltzmann factor 

 Δexp b
b

B

Uπ
k T

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
 (2.21) 

where ΔUb is the barrier height. It is obvious that for low energy barriers and high 

temperatures this probability increases, thus increasing the entropy of a protein. Low 

temperatures, however, increase the magnitude of the fraction, resulting in decrease 

of barrier crossing probability and the entropy of the system. In the extreme case, for 
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0KT → , the protein becomes “frozen” in a single local minimum as the probability 

for conformational change becomes 0 even for the lowest of barriers: 

( )exp 0bπ = −∞ = . Being unable to occupy more than a single conformation, the 

entropy of such a protein is 0 according to equation (2.20). 

The approach that is commonly applied in molecular simulations of proteins is 

to decompose conformational entropy into two contributions: that of the local 

fluctuations in the neighbourhood of a well defined 3D structure and the contribution 

that corresponds to the existence of multiple distinct structures (Karplus et al., 1987). 

The potential energy surface is then modelled as a set of multidimensional harmonic 

wells separated by energy barriers. If the total number of distinct local minima 

(harmonic wells) is N, the total conformational entropy, S, is calculated as (Karplus 

et al., 1987) 
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where wi is the Boltzmann factor associated with the well i, while v
iS  is its 

vibrational entropy, or entropy associated with the local fluctuations around the 

minimum. For the one-dimensional fluctuation (e.g. pendulum or rotation around a 

single chemical bond), the vibrational entropy can be expressed as a function of the 

vibrational frequency of the minimum i, νi (Karplus et al., 1987) 
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 (2.23) 

Since each bond in a protein molecule is an independent oscillator, this expression is 

replaced with a more general equation in protein studies in which explicit calculation 

of entropy is needed (Karplus et al., 1987). 

2.4.2. Anfinsen’s Hypothesis 

Whilst there are instances in which proteins do not have a clearly defined 3D 

structure, i.e. they can be found in a range of conformations corresponding to various 

local minima on the potential energy surface, a distinct feature of many natural 

proteins is to occupy a single distinct conformation. In such cases, the Anfinsen’s 

hypothesis (Anfinsen, 1973) is valid. According to this hypothesis, the native 
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conformation of a protein is a single folded conformation in which the free energy of 

the protein and its environment is at the minimum. When a molecule is found in a 

single conformation, its entropy is zero according to the previous discussion. 

Accordingly, Monte Carlo and molecular dynamics may be replaced by simpler and 

more efficient algorithms for minimisation of the potential energy surface. This 

assumption has been used throughout this thesis and will be discussed in more detail 

in Chapter 3 and the following chapters. 

It should be noted, however, that Anfinsen’s thermodynamic hypothesis has 

certain limitations. In particular, there are proteins and peptides that do not conform 

to a single conformation rule. An example of such molecules is the well known met-

enkephalin, studied in Chapters 4 and 7 of this thesis. Short peptides, such as met-

enkephalin, are characterised by an ensemble of different conformations with similar 

values of potential energy, rather than a single most stable 3D structure. Furthermore, 

the barriers between these local minima in potential energy landscape are also low, 

which means that molecule easily traverses from one conformation to the other. In 

other words, multiple conformations have similar probabilities of existence. Since 

this effectively increases the disorder of the system, we may say that for these 

peptides, entropy is increased and starts to play an important role in the free energy 

of the system even on the room temperature. Whilst acknowledging this role, it 

should be stressed that the approach used throughout this thesis, as only the initial 

stage in the study, deliberately neglects the entropic contribution. Some of the ways 

for including the entropy into the calculation will be discussed in the last chapter, 

devoted to future work. 

2.5. Molecular Simulations of Proteins at Solid Surfaces 

Systems of interest in protein adsorption consist of several elements. Whilst the 

protein and the solid surface are the most obvious physical elements of the system, 

water and other solvents may also be present. Numeric elements include various 

mathematical models of the physical elements, as well as methods for calculation of 

free energy of the system. Table 2.1 provides a brief overview of various physical 

and numeric elements applied in relevant protein adsorption studies. Classification of 

molecular simulation methods can be performed using any of these elements. This 
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review classifies the methods based on the complexity of mathematical model 

utilised in protein representation. 

2.5.1. Simple Geometry for Protein Molecule Models 

The simplest models utilised in protein adsorption studies are those that do not 

recognise any intramolecular details. This depiction is, of course, very efficient from 

perspective of computational cost since it represents a protein as a simple particle 

that can be described with a small number of parameters. An example of such an 

approach can be found in an early study of protein adsorption kinetics (Zhdanov and 

Kasemo, 1998a). Zhdanov and Kasemo have used Monte Carlo simulations in which 

adsorbed proteins are represented as disks with variable radius. Surprisingly, 

although the model does not deal with any structural details, it is still able to 

represent adsorption induced deformation of proteins by varying the radii of their 

corresponding disks. 

Using a similar philosophy, other simplified protein models have been 

developed, although with somewhat more detailed internal structure. Yet, despite 

increasing the number of degrees of freedom, these models were not able to capture 

any conformational changes. Gorba et al. (2004) have used a very simple rigid sphere 

representation of cytochrome c molecules in their Brownian dynamics study of 

protein behaviour on charged surfaces. Compared to a simple disk representation of 

Zhdanov and Kasemo, their protein model featured a hard sphere with a charge and a 

dipole in its center. Utilisation of this model allows monitoring of energetic changes 

related to protein orientation, but hard sphere puts a limitation on analysis of 

conformational changes. Similar model for adsorption of lysozyme  
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Table 2.1 Overview of simulations of protein adsorption 
Protein Surface Reference 

Namea Sizeb Modelc DOFd Initial statee 
Solf 

Natg Poth Modeli 
PE modelj Methodk 

(Roush et al., 1994) Rat cytochrmome b5 13k A R1, H HOM I AEM  A ES MM 
(Noinville et al., 1995) 1ALC and 7LYZ 123, 129 A R2, T2, H PDB I AEM Amber A Amber MM 
(Juffer et al., 1996) 1CUS + 15 variants 200 A R1, H PDB I CS  S ES MC 
(Bujnowski and Pitt, 1998) Leu-enkephalin 5 A R1, H  E CPE CVFF A CVFF MD 
(Zhdanov and Kasemo, 1998b) 27-mer 27 ONB H, T2, B N N SA  S - MC 
(Castells et al., 2002) 27-mer 27 ONB H, T2, B N N SA  S - MC 
(Shang and Geva, 2005) 128-mer 128 OFFB B RAND I SA, SR  A A LD 
(Knotts IV et al., 2005) (Residues 10-55) 1bdd 46 OFFB B RAND N SA, SN  S A MC 
(Griffin et al., 2005) 2 × β-barrel HT model 46 OFFB B GR (SA) N SR; SN  S A REMD 
(Skepö et al., 2006) Proline-rich protein 1 150 OFFB B RAND I NCS  A A MC 
(Friedel et al., 2006) 2 × β-barrel HT model 46 OFFB B GR (SA) N SR  S A RELD 
(Ravichandran et al., 2001) 7LYZ 129 A H, T2, H PDB I PCS  A Amber BD 
(Zhou et al., 2003) 1IGY and 1IGT 1294, 1316 UR R3, H, T2 PDB I S-Au LJ+ES A CHARMM MC 
(Sun et al., 2005) 7LZY 129 UA R3, H PDB I S-Au LJ+ES A A/GROMACS E-MM 
(Song and Forciniti, 2001) N-DDIIDDII-C 8 UA R3, H, T2 LR (MC); α-helix E FCC LJ+ES A GROMACS MC 
(Mungikar and Forciniti, 2004) N-(DDII)n-(C) n = 2, 4, 5 UA R3, H, T2, B LR (MC) ; α-helix E FCC LJ+ES A GROMACS MC 
(Mungikar and Forciniti, 2006) N-DDIIDDII-C 8 UA R3, H, T2, B LR (MC) ; α-helix E×2 FCC LJ+ES A ? MC 
(Braun et al., 2002) GBP1, 2 and 3 84, 84, 94 UA R3, H, T2, B HOM E Au LJ S CHARMM26 LD 
(Raffaini and Ganazzoli, 2003) Fragments of 1AO6 107, 126 A R3, H, T2, B PDB I&E G CVFF A CVFF MD 
(Raffaini and Ganazzoli, 2004a) 1FBR 93 A R3, H, T2, B PDB I&E G CVFF A CVFF MD 
(Kantarci et al., 2005) 4×9 residue peptides 9 A R3, H, T2, B  E Pt CVFF A CVFF MD 
(Oren et al., 2005) 5 septa-peptides 7 A  Relaxed V Pt LJ A CHARMM22 MM 
(Carravetta and Monti, 2006) 4×dipeptides 2 A R3, H, T2, B  E TiO2 DQM-LJ A Amber MD 
(Cormack et al., 2004) BPTI 58 A  PDB-relaxed E MgO LJ+ES A CVFF MD-LM 

a. Common name or PDB code. 
b. Size of protein in residues or, if this is not available, approximate molecular weight. 
c. Fidelity of model: A = fully atomistic; U = united atom; UR = united residue; OFFB = off-lattice bead model; ONB = on-lattice bead model. 
d. The degrees of freedom considered: Rn = rotation about n axes; Tm = translation parallel to surface in m dimensions; H = distance from surface; B = backbone dihedral angles; O = other internal 

degrees of freedom such as bond angle and length stretch. 
e. Initial state of protein: PDB = directly from PDB database; N = native state. HOM = defined from homology; LR = locally relaxed; GR = globally relaxed (method in brackets: SA = simulated 

annealing); RAND = completely random.  
f. Solvent treatment: N = none; I = implicit; E = explicit. 
g. Surface nature: G = graphite; Si = silicon; AEM = anion-exchange membrane surface; S-Au = SAM-Au; CS = charged surface; NCS = negatively charged surface; PCS = positively charged 

surface; CPE = crystalline polyethelene; SA = simple attractive; SR = simple repulsive; SN = simple neutral. 
h. LJ = Lennard-Jones 
i. Model of surface: S = smooth; A =  atomic. 
j. Energy model: P = Physics-based (with name in bracket); K = knowledge based; A = ad-hoc; ES = electrostatics only. 
k. Method: MM = molecular mechanics; E-MM = exhaustive molecular mechanics; MC = Monte Carlo; MD = molecular dynamics; LD = Langevin dynamics; REMD = replica exchange MD; 

RELD = replica exchange LD. BD = Brownian dynamics 
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molecule on charged surfaces has been used by Carlsson and co-workers (Carlsson et 

al., 2004). The protein was represented as a hard sphere, with point charges added 

beneath the hard-sphere surface for each charged amino acid residue. 

2.5.2. Lattice Model of Protein Molecules 

Pioneered by Dill and co-workers in the field of protein folding (Lau and Dill, 

1990; Chan and Dill, 1994), lattice models of proteins have established a prominent 

place in protein adsorption studies. By constraining amino acid residues to nodes of a 

cubic lattice, these models reduce degree of freedom for movement of a protein, thus, 

boosting computational performance. However, this limitation also means that it is 

impossible to sample all protein conformations and that those conformations that are 

sampled are going to be represented with lower accuracy. It is, therefore, common to 

see utilisation of this model only in studies concerned with the fundamentals of 

folding, while many applications with real proteins require finer grained 

representation. Application of lattice models in theoretical investigations also means 

that they can operate with idealised proteins in which only small number of the kinds 

of residues are present (e.g. polar and hydrophobic). Most of the protein adsorption 

studies based on the lattice model have been conducted with this simplification. It is 

also noticeable that all lattice-based protein adsorption studies have used Monte 

Carlo minimisation method, which is justifiable as high level of discretisation would 

render molecular dynamics inoperable. 

The first studies of proteins on solid surfaces with the use of lattice models 

have been conducted by Zhdanov and Kasemo (Zhdanov and Kasemo, 1997, 1998b, 

2000, 2001), who used the model to extend their studies of protein adsorption 

kinetics, as well as to conduct theoretical investigation of metastable states in protein 

denaturation and phenomenon of protein packing during adsorption from solutions of 

high concentrations. In another theoretical study, Castells et al. (2002) have shown 

how surfaces with different affinities toward hydrophobic and hydrophilic residues 

can induce different conformational changes. This result, although not directly 

applicable to real proteins, clearly indicates that adsorption induced conformational 

changes of proteins depend on the nature of both the protein and adsorbing surface. 
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2.5.3. Mesoscopic Protein Models 

Mesoscopic models can be characterised by use of simple particles in 

representation of specific parts of a protein. In this sense, they are an extension to 

lattice models, which use separate elements for representing individual residues. On 

the other hand, mesoscopic models are not constrained to lattice nodes, while their 

particles are not restricted to single residues and can contain larger parts of the 

molecule with unique behaviour or structure (e.g. larger hydrophobic patches or 

whole helices). 

An example of a mesocsopic approach applied in studies of protein adsorption 

is a molecular mechanics based investigation of albumin adsorption on pyrolytic 

carbon conducted by Mantero et al. (2002). While the albumin molecule has been 

separated into a hydrophilic and a hydrophobic helix, each of which has been 

modelled as nondeformable spheres, surrounding water was represented using an 

explicit model. Parameterisation of helical parts has been performed starting from 

their all-atom models using a physics based atomistic potential energy model. 

The multiscale approach of Mantero et al. has obvious advances over lattice 

representation since parameterisation from atomistic models allows it to be used in 

modelling of real proteins. However, a major disadvantage of this model is its 

limitation in predicting conformational changes. By using hard spheres for individual 

helices, this representation does not allow any denaturation, which limits the 

application only to adsorption of proteins that do not demonstrably denature, with the 

main aim of determining their orientation on the surface. 

Similar mesoscopic characteristics can be observed in colloid model applied by 

Zhou and co-workers in studies of immunoglobuline adsorption on charged surfaces 

(Sheng et al., 2002; Zhou et al., 2004). The Y-shaped antibody has been represented 

using a 12-bead model and subjected to Monte Carlo energy minimisation in search 

for optimal position of the molecule over the surface. The model did not allow any 

flexibility within beads and between them (i.e. the protein was rigid). 

Zhou and co-workers have also diversified their methodology by application of 

a united-residue model in simulations of immunoglobuline adsorption (Zhou et al., 

2003). United-residue models can be classified as mesoscopic since they represent 

whole residues as structureless particles. However, they are far finer grained than 
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other mesoscopic models described above. In the united-residue model of Zhou et al., 

each residue is reduced to a sphere centered at the position of the corresponding Cα 

atom. New van der Waals parameters (i.e. parameters for a whole residue), have been 

derived from atomistic simulations using the CHARMM potential energy model 

(MacKerell et al., 1998). In theory, allowing flexibility in movement of individual 

residues can be used to represent conformational changes. However, Zhou et al. have 

again restrained the antibody molecule to its rigid conformation and monitored only 

changes in the position of adsorbed molecule (Zhou et al., 2003). 

In recent years, Knotts et al. have conducted a molecular simulation study of a 

bacterial protein on two types of surfaces (Knotts IV et al., 2005). They have used a 

bead-residue representation based on a Gō-like model of proteins (Abe and Gō, 

1981; Gō and Abe, 1981; Hoang and Cieplak, 2000). Analogously to the model of 

Zhou and co-workers (Zhou et al., 2003), each residue was represented as a single 

bead. However, individual beads were not rigidly bound to each other, but connected 

with a spring, instead. This has allowed simulation of conformational changes – a 

feature that previously described mesoscopic models have not achieved. Similar to 

this was a study conducted by Skepö et al. (2006), in which a united-residue model 

was used to study conformational changes of proline-rich protein upon adsorption to 

a negatively charged surface. 

2.5.4. Protein Models with Atomistic Details 

Only in the last two decades have advances in computer technology allowed 

significant increase in number of protein adsorption studies based on full atomistic 

models. Although there are still models that utilise united-atom representations in 

which methyl groups (CHn) are modelled as individual beads (Song and Forciniti, 

2001), there is an increasing number of protein adsorption studies that rely on 

application of all-atom models. The number of degrees of freedom is significantly 

greater in such models, which enables much higher flexibility and accuracy than in 

the previously described models, but, of course, with computational cost 

implications. 

Energy of adsorption systems in atomistic models is obtained by summing up 

individual interactions between all constituent atoms. Since the number of pair 

interactions is somewhere between a linear and a quadratic function of the number of 
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individual particles, it is clear that increase in the number of atoms can lead to 

significant growth in computational cost with protein size. It is, therefore, necessary 

to model these interactions with simple potential energy functions (Wilson et al., 

2004). A number of empirical potential energy functions (also known as force fields) 

have been developed for work with proteins and other biomolecules. Some of the 

popular potential energy (PE) models used in protein adsorption studies are Amber 

(Cornell et al., 1995), OPLS (Jorgensen et al., 1996) and CVFF (Dauber-Osguthorpe 

et al., 1988). Application of empirical force fields significantly reduces 

computational time in comparison to some more detailed approaches, such as 

quantum mechanical energy calculation. 

A group of very early reports on protein adsorption with the application of all-

atom models has been published by Lu and co-workers in the early nineties (Lu and 

Park, 1989; Lu et al., 1992; Lu, 1993) These authors have investigated adsorption of 

large, biologically relevant proteins, such as lysozyme and haemoglobin on surfaces 

of polymers. Although polymer surfaces can not be regarded as solid in a strict sense, 

Lu et al. have treated them as such by using continuum surface representation, which 

recognises neither individual surface molecules nor their movements. Despite 

increasing the level of protein description, Lu et al. have kept the molecule rigid, thus 

studying only position and orientation of the protein on polymer surfaces. A crude 

attempt to study protein conformational changes during adsorption on polymer 

surfaces has been proposed by Lu who described conformational change of 

glucagons from α-helix to extended β-strand by calculating the energies of 

interaction of these two conformations with polyethylene surface (Lu, 1993). Still, 

this approach is far from prediction of conformational change based only on protein 

primary structure and its environment as it implies previous knowledge of adsorbed 

structure. 

All-atom protein models have gained popularity in the last decade, especially 

in studies of initial stages of protein adsorption, in which conformational changes can 

be neglected, thus allowing monitoring of changes in orientation only (Noinville et 

al., 1995; Asthagiri and Lenhoff, 1997; Ravichandran et al., 2001). Keeping the 

protein rigid significantly reduces the number of necessary energy calculations as 

intramolecular potential energy remains constant throughout the simulation and is, 
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therefore, irrelevant in energy minimisation procedures. Since the energy of 

interaction between the surface and the protein still changes with the orientation, the 

number of interactions increases with the size of the protein. However, with rigid 

conformation, the scaling of number of interactions with the number of atoms is only 

linear (Wilson et al., 2004), which is a significant improvement over quadratic 

scaling evident in flexible molecules. 

Some of the models for study of proteins at solid interfaces exhibit partial 

rigidity. Bujnowski and Pitt (1998) have, for example, conducted an investigation of 

water structure around enkephalin in proximity of a polymer surface. Their model 

keeps the backbone rigid by fixing positions of the α-carbons. This means that the 

bulk orientation of the protein to the surface also remains constant. At the same time, 

side chain atoms are allowed to move freely (with constraints implied by the 

potential energy model). 

2.5.5. All-Atom Protein Models with Conformational Changes 

Model of Bujnowsi and Pitt (1998) and other all atom approaches described 

above are very useful for specific purposes, such as description of initial stages of 

protein adsorption. However, their inability to deal with conformational changes is a 

serious limitation for their universal application. Along with orientation of adsorbed 

proteins, their conformation is a major factor that determines their biological activity 

(Wilson et al., 2004). Experimental studies have shown significant reduction in 

enzyme activities during their adsorption, which can be explained through changes in 

conformation (Kondo et al., 1996). It is, therefore, obvious that in many instances, 

only fully atomistic representations allowing conformational changes can give 

complete insight into the protein adsorption phenomena. 

Simulation of conformational changes is usually performed using molecular 

dynamics or Monte Carlo method for potential energy minimisation. Raffaini and 

Ganazzoli have, for example, applied molecular dynamics in simulation of 

adsorption of albumin subdomains on the surface of graphite (Raffaini and 

Ganazzoli, 2003). Although conformational changes have been restricted only to 

isolated domains of the protein, their work has succeeded in explaining albumin 

adhesion on the graphite surface under flow. A model which would be based only on 

changes in orientation would not be able to elucidate this phenomenon. Similar 
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results have been obtained with adsorption of a fibronectin module (Raffaini and 

Ganazzoli, 2004a), although it was shown that conformational changes of the module 

were of a lower magnitude than those of albumin fragments. In a subsequent study, 

Raffaini and Ganazzoli have shown that surface induced conformational changes 

during adsorption on graphite are directed in a way that will increase the surface of 

protein exposed to the surface, but also enabling lateral interactions between the 

residues, thus forming parallel strands adsorbed on a graphite surface (Raffaini and 

Ganazzoli, 2004b). In an attempt to investigate the effect of the nature of adsorbing 

surface on the behaviour of proteins, Raffaini and Ganazzoli (2006) have undertaken 

a study of protein adsorption on hydrophilic, poly(vinyl alcohol) surface. It was 

shown that, despite formation of new hydrogen bonds between the protein and the 

hydrophilic surface, the extent of protein conformational changes is much lower than 

during adsorption on hydrophobic graphite surfaces. 

Another study of a fibronectin fragment on a different surface has been 

conducted by Wilson and co-workers (Wilson et al., 2004). The surface was 

composed as self-assembled monolayer (SAM). Although SAMs generally have high 

flexibility and are, therefore, more complex than real solid surfaces, Wilson et al. 

have treated the surface residues as fixed, thus converting SAM into a proper solid 

surface (from perspective of molecular simulations). By introducing small chemical 

modifications to surface residues, the group has shown that the degree of 

denaturation (i.e. conformational change) depends on a kind of solid surface on 

which the protein is adsorbed. This result is analogous to the findings of Castells and 

co-workers (Castells et al., 2002) who have reached a similar conclusion using a 

much simpler, lattice representation of a protein. 

Noinville et al. (2003) have used a combination of experimental study and 

molecular dynamics to investigate adsorption of dermaseptin on a synthetic surface. 

Although the surface in molecular simulations was constructed from ethane 

molecules, their positions were fixed and the surface treated as solid. Analogously to 

the findings of Castells and co-workers (Castells et al., 2002) and Wilson et al. 

(2004), it was found that dermaseptin molecule undergoes different conformational 

changes depending on the hydrophobic character of the surface. 
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Several groups have also studied adsorption of proteins and short peptides on 

metal surfaces (Braun et al., 2002; Bizzarri et al., 2003; Imamura et al., 2003; 

Bizzarri, 2006; Yang and Zhao, 2007). Adsorption on metal surfaces is, however, 

obscured by protein and metal polarisation (Imamura et al., 2003) or even by 

formation of chemical bonds between the protein and the surface atoms (Bizzarri, 

2006). 

While Monte Carlo simulations are very suitable for lattice-based models of 

protein adsorption, it is apparent that molecular dynamics is a favoured approach for 

all-atom models that include conformational changes. Examples of Monte Carlo 

minimisation applied in the all-atom flexible models include studies conducted by 

Mungikar and Forciniti (Mungikar and Forciniti, 2004, 2006), in which adsorption of 

peptides of various length on charged solid surfaces is simulated in the presence of 

explicitly represented water. 

2.5.6. Summary of Molecular Simulation Methods for Protein Adsorption 

The main conclusion that can be drawn from the previous protein adsorption 

simulation studies is the necessity to conduct all-atom simulations with capability to 

perform conformational changes in order to capture all the relevant effects and 

changes during the adsorption process. 

It is also apparent that most of the methods applied in the field of protein 

adsorption are based on classical molecular simulation approaches: Monte Carlo and 

molecular dynamics. Both of these techniques are, however, hampered with high 

computational costs and inability to locate structures of interest in a reasonable time. 

It is, therefore, out intention to find an alternative approach for exploration of free 

energy surfaces of proteins in search of their optimal conformation. 

Within a multitude of methods for optimisation of complex functions, 

evolutionary algorithms (EA) have shown high robustness with affordable 

computational cost (Goldberg, 1989). Although already applied in identification of 

conformation of proteins in their native state (Shulze-Kremer, 1992; Le Grand and 

Merz, 1993, 1994), research to date has not revealed any EA based studies of 

conformation of adsorbed proteins. This thesis presents development and testing of 

an EA based method for prediction of adsorption induced conformational changes. 
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2.6. Solvent Models in Protein Simulations 

Despite decades of development, representation of water in biomolecular 

systems is still active area of research. Part of the reason is the significance that 

water plays in biological systems. However, even more important is the difficulty 

encountered in water molecule modelling. Despite its apparent simplicity, the water 

molecule is known to be highly polarizable, which requires development of 

sophisticated models for its representation. Sophisticated models are, however, 

computationally expensive, especially if they are applied in simulations of 

biomolecules, which are, due to their size, often surrounded by many thousands of 

solvent molecules. 

Methods used in molecular simulations of solutions involving proteins can 

broadly be divided into two categories: implicit and explicit. The required level of 

solvent description depends on the needs and expected outcomes of the simulation. If 

the object of a study is investigation of solvent restructuring, an explicit (a.k.a. 

discrete) model for water should be used. If, on the other hand, one is only interested 

in energetics of solvation process, it may be sufficient to use an implicit water model. 

2.6.1. Implicit Treatment of Protein-Water Systems 

Implicit methods are those that do not delve into full details of the molecular 

structure of the system. Although proteins may be represented using all-atom 

approach, solvent is treated as a continuous medium, using equations of continuum 

electrostatics. Depending on details of models used to represent protein and water, 

further classification of implicit approaches may be performed. 

Electrostatic Screening Methods 

Methods of electrostatic screening assume that electrostatic interactions 

between two charges are screened by the solvent that occupies space between them 

(Orozco and Luque, 2000). On a microscopic level, water molecules can be 

represented as dipoles. Dipoles trapped in an electric field tend to orient in a 

direction that reduces the strength of the field. Since two charges on a small distance 

from each other will create a local electric field, any dipoles found between the 

charges will effectively reduce the intensity of the electrostatic interaction between 

them compared to the electrostatic field between these two charges in vacuum. This 
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effect is called screening and one way to express it is using the relative dielectric 

constant, εr, which represents the ratio of intensity of electrostatic interactions 

between two charges in vacuum and the same charges, at the same distance, in a 

dielectric medium. 

Higher values of εr correspond to stronger reduction of electrostatic interaction 

by the screening effect. Coulomb’s law, in the presence of dielectric environment, is 

expressed as 
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where Ees is the energy of electrostatic interaction between point charges q1 and q2 

separated by distance r, and ε0 represents the electric permittivity of vacuum. A more 

consistent way to write this equation is using the dielectric constant, ε, defined as: 

04 rε πε ε= . Using dielectric constant, equation (2.24) transforms to 
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In specific cases, where the solvent is homogeneous and solution very diluted, 

ε may be treated as a constant (Orozco and Luque, 2000). However, the majority of 

protein-water systems relevant in biochemical studies do not satisfy this condition. A 

straightforward way to overcome this situation is to treat the dielectric constant as a 

simple function of distance between charges involved in electrostatic energy 

calculation. The simplest function that can accomplish this is a linear dependence 

between the dielectric constant and the distance between point charges (Blaney et al., 

1982). However, more complex functions for representation of dielectric constant 

have been developed, most of which describe exponential change of ε with distance 

(Warshel et al., 1984; Mehler and Solmajer, 1991). Despite being very simple 

compared to other approaches for treatment of protein-water interactions, screening 

methods are still in use, especially in ligand-docking simulations (Morris et al., 

1998). The major advantage of screening methods is speed, but, due to their 

oversimplified representation of the solvent, they are not able to capture the 

behaviour of local elements of the system, especially where there is significant 

heterogeneity (Orozco and Luque, 2000). 
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Group Solvation Methods 

Group solvation methods assume that the total solvation energy of a solute may 

be expressed as a sum of contributions of all of its constituent groups (Orozco and 

Luque, 2000). Depending on the way this contribution is calculated, methods of this 

group can be further divided into two subclasses: techniques based on molecular 

topology, and the solvent accessible surface approach. Both of them use free energy 

of solvation, ΔGs, for numerical representation of the solvation process. Free energy 

of solvation is commonly defined using the concept of Ben-Naim (Ben-Naim, 1978), 

according to which solvation is described as a process of transfer of solute molecule 

from its gas phase into a solution at constant temperature, pressure and solvent 

composition. Free energy of solvation is, hence, defined as the work spent in this 

process (Orozco and Luque, 2000). 

Approaches based on molecular topology assume that the free energy of 

solvation can be calculated as a sum of intrinsic properties defined for isolated solute 

constituents – atoms or groups (Leo et al., 1971) 
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where s
ig  is the contribution of atom or group i to the free energy of solvation, ΔGs. 

In protein terminology, solvation free energy could be calculated as a sum of 

contributions of individual residues. However, a serious disadvantage of this 

approach, especially when it is applied to molecules as complex as proteins, is the 

neglect of conformational changes. Intrinsic properties of constituent groups remain 

constant despite possible structural changes, thus making this model inapplicable for 

studies that investigate structure-energy relationship. 

An improvement that takes solute conformation into account has been enabled 

through the application of solvent accessible surface methods. This group of models 

is based on the assumption that solvation free energy contribution of individual 

constituents (atoms or groups) depends on the amount of surface area of these 

constituents that is exposed to solvent (Chothia, 1974; Orozco and Luque, 2000). 

Conformational dependence is expressed through the relationship between solute 

conformation and area of its surface that is exposed to the solvent. In order to obtain 

numerical value of solvation free energy, intrinsic contributions of constituent groups 
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or atoms have to be multiplied by their respective surface areas exposed to the 

solvent 
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where γi represents solvation free energy of constituent i per unit area, while Ai 

represents the surface area of the same constituent exposed to the solvent. 

Despite further improvements, group solvation methods suffer from several 

disadvantages. First of them is computational inefficiency of calculation of exposed 

surface area. Another drawback of these methods is related to their accuracy. The 

intrinsic properties of individual groups are usually calculated from solvation 

characteristics of small molecules and may not have the same values when the 

constituent is found inside a large molecule (Orozco and Luque, 2000). 

Continuum Electrostatics Methods 

A common feature of continuum electrostatics methods is placement of the 

solute molecule into the interior of a cavity formed inside the solvent (Orozco and 

Luque, 2000). The solvent is treated as a polarisable continuous medium with the 

dielectric constant εs. The interior of the solute cavity is characterised with a different 

value of dielectric constant – εi. All models of this class are based on the Poisson 

equation 

 ( ) 4 ( )D πρ∇ =r r  (2.28) 

where D(r) is the electric displacement at position r where the charge density is ρ(r). 

D(r) is defined in terms of electrostatic potential at position r, Φ(r), and dielectric 

constant ε(r) 

 ( ) ( ) Φ( )D ε= − ∇r r r  (2.29) 

The dielectric constant, ε(r), changes discontinuously from the interior of the solute 

cavity to the bulk solvent. 

Equations (2.28) and (2.29) are solved for Φ, which is then used to obtain the 

electrostatic contribution to the free energy of solvation 
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where superscripts s and g stand for solution and gas phase, respectively, i.e. the 

Poisson equation should be solved for both phases in order to calculate the free 

energy of solvation. 

Solutions of proteins and other biomolecules represent complex systems, in 

which Poisson equation can be solved only numerically. Based on the algorithm used 

to obtain the solutions, continuum electrostatics methods may be subdivided into 

several classes. Most often utilized among these are finite difference approach, the 

Born model and the boundary element method. 

Finite difference method represents domain of interest as a cubical grid 

(Warwicker and Watson, 1982; Honig and Nicholls, 1995; Orozco and Luque, 2000). 

Solute is mapped onto the grid for which Poisson equation along with necessary 

derivatives is solved for all the nodes. Since electrostatic potential on a grid node 

depends on potential on all surrounding nodes, an iterative procedure must be applied 

to solve the system. Although the method may be very fast, problems occur if the 

initial values are incorrectly guessed, in which case a system may never converge 

(Orozco and Luque, 2000). 

The Born model is derived from analytical solution of Poisson equation. 

Although it cannot be solved analytically for complex systems with irregularly 

shaped cavities, single atoms and spherical cavities represent much simpler case in 

which solution to Poisson equation is obtained as a series of spherical harmonics 

(Orozco and Luque, 2000). If higher harmonics are neglected, the solution is 

expressed using equation of Born (Born, 1920a) 
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where εr is, again, relative dielectric constant, and r represents the radius of the 

cavity in whose center charge q resides. In terms of atoms, r can be related to atomic 

radius, or the distance from the center of atom to the surface that water molecules 

cannot penetrate. For complex systems, ΔGes may be obtained as a sum of 

contributions of individual atoms, corrected by perturbing effect of surrounding 

atoms (Still et al., 1990; Orozco and Luque, 2000). One of the disadvantages of 

Born’s model is its inaccuracy when applied to complex molecules. However, this 

problem may be alleviated with additional parametrisation for constituent atoms. 
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Following the philosophy of the finite difference approach, the boundary 

element method also performs decomposition of domains of interest into smaller 

elements. However, in this case, elements do not occupy the whole volume of the 

system. Instead, only the surface of the solute exposed to the solvent is partitioned, 

usually using triangular elements (Connolly, 1983). The underlying idea of this 

approach is that the reaction of the solvent to the presence of solute charges can be 

described using distribution of charged surface elements on the solvent accessible 

surface of the solute (Orozco and Luque, 2000). Charges of surface triangles are 

calculated in a self consistent manner, using positions and intensities of solute 

charges as well as other charged surface triangles (Zauhar and Morgan, 1988). This 

method can be very fast (Vorobjev and Scheraga, 1997), but problems may occur if 

the surface of the solute is so complex that triangulation methods fail to partition it 

properly. 

Summary of Implicit Methods 

A general conclusion that may be drawn for all implicit approaches is that they 

may be very fast, but could suffer from serious disadvantages in situations where 

micro-effects, such as hydrogen bonds and solvent structuring between surfaces, are 

important. Due to their simplified representation of solvent nature, they are unable to 

capture heterogeneity in such cases. 

2.6.2. Explicit Methods for Description of Protein-Water Systems 

The main feature of this group of methods is their representation of the whole 

system at a molecular level. Molecular representation of the solvent enables 

capturing some of the phenomena that are intractable for implicit models. A well 

known example is hydrogen bond, which may be established between two protein 

atoms connected over a bridge created by specifically positioned water molecules 

(Beglov and Roux, 1995). Since implicit solvent methods do not recognize individual 

solvent molecules, they are unable to capture specific molecular orientations that 

may involve significant changes in free energy. Capturing of these local effects is the 

main advantage of explicit methods over implicit solvent representation. Most of the 

explicit approaches belong to one of two groups: molecular mechanics and quantum 

mechanics methods. 
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Molecular Mechanics Methods 
Molecular mechanics techniques use laws of classical physics to describe 

interactions between the molecules. Solvent restructuring and interactions with the 

solute are obtained through a procedure of ensemble sampling. Two molecular 

simulation techniques that are predominantly exploited in the context of water 

configuration sampling are Monte Carlo and molecular dynamics (Allen and 

Tildesley, 1989; Frenkel and Smit, 1996). 

Water molecules in molecular mechanics methods can be represented using 

models of various degree of complexity. Simple models are those that do not include 

effects of molecule polarisation. The nonpolarisable water models can be further 

divided based on the number of active sites in the molecule. The three site models, 

such as the simple point charge or SPC (Berendsen et al., 1981) and 3-point 

transferable intermolecular potential (TIP3P) model (Jorgensen et al., 1983) assign a 

point charge to each atom in the water molecule. These models have gained 

significant popularity due to the simplicity of their implementation and associated 

low computational costs. However, their disadvantage is low accuracy in prediction 

of physical properties of water. It was found that somewhat better results can be 

achieved with the 4-site molecular models, in which the negative charge is shifted 

from the center of the oxygen atom towards the hydrogen atoms (Jorgensen et al., 

1983). Popular models from this group include the TIPS2 (Jorgensen, 1982) the 

TIP4P (Jorgensen et al., 1983). Among the most sophisticated nonpolarisable water 

representations are those which use 5 active centers to characterise the water 

molecule. These models place two negative point charges into the vertices of 

tetrahedron which has the oxygen atom in its center and the two hydrogen atoms in 

its remaining vertices. Examples of 5-site models include the Bernal-Fowler or BF 

model (Bernal and Fowler, 1933), Stillinger’s ST2 (Stillinger and Rahman, 1974) 

and TIP5P model (Mahoney and Jorgensen, 2000). 

Polarisable water models are able to capture molecular polarisation using 

approaches of dipole polarisability and fluctuating charges (Stern et al., 2001). A 

common practice for development of these models is to use one of the nonpolarisable 

models as a basis and extended it by allowing deformations of bond lengths and 

angles. This enables displacement of charges inside the molecule during the 
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simulation. Such an approach is applied in the development of the SPC/Fw model 

(Wu et al., 2006), which, as its name suggests, is a flexible extension of the rigid 

SPC model (Berendsen et al., 1981). 

Quantum Mechanics Methods 
These are the most rigorous of all the techniques that are used in molecular 

simulations. All calculations are based on equations of quantum mechanics. In 

general, field of application of these methods is theoretical analysis of small systems 

that are transformed in chemical reactions. Classical molecular mechanics methods 

cannot deal with chemical changes. Since systems of interest in biochemical studies 

are usually of significant size, pure quantum mechanical approach did not find broad 

application in simulations of biomolecules. However, a combination of quantum and 

molecular mechanics proved to be very useful in studies where interest is 

concentrated on a particular subdomain of the system, while the rest of it may be 

represented using some less accurate method. A field in which this is particularly 

important is the study of mechanism of enzymatic reactions (Warshel and Levitt, 

1976). 

2.6.3. Bridging the Gap between Implicit and Explicit Solvent Methods 

Both molecular and quantum mechanics share some common characteristics 

that distinguish them from implicit solvent approach. They are far superior in 

analysis of the system structure, especially the structure of the solvent in the vicinity 

of the solute. Both of the methods are, however, very slow compared to implicit 

approach. This makes them undesirable in simulations that involve big systems and 

many execution steps. A good compromise in these situations is to use a method that 

can still provide an insight into the behaviour of solvent on a structural level, but not 

in such a detailed way as quantum and molecular mechanics. Langevin dipole (LD) 

model, a method tailored to achieve this goal, has been developed by Warshel and 

co-workers (Warshel and Levitt, 1976; Warshel and Russell, 1984; Florián and 

Warshel, 1997). 

In the LD method, water molecules are modeled by dipoles fixed on a regular 

lattice, where strength and orientation of the dipoles are determined in a self-

consistent manner under the influence of the charges on the solute atoms. It also 

includes all non-polar aspects of the solute-solvent interaction and hydration entropy. 
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Whilst the reduced water molecule representation means this method is in principle 

less accurate than the traditional explicit approaches, it is still able to capture 

heterogeneity at the molecular level but with much less computational resource. At 

the same time, it allows a considerably higher level of insight into structural details 

of the solvent than implicit methods are able to provide. 

Being the method of choice in our study of proteins in water solutions and at 

solid-liquid interfaces, the Langevin dipole model will be explained in more details 

in Chapters 6 and 7. 

2.7. Previous Studies of Met-enkephalin 3D Structure 

Since its discovery more than 30 years ago (Hughes et al., 1975), met-

enkephalin drew considerable attention of both experimentalists and molecular 

modelling community alike. Despite being among the smallest biologically relevant 

peptides (only 5 amino acid residues long), its structure in water solutions, as 

determined by experimental methods, has proven to be elusive (van der Spoel and 

Berendsen, 1997). High conformational flexibility has also shown to be a stumbling 

block for a range of molecular simulation methods. 

2.7.1. Experimental Studies 

Met-enkephalin is represented with two entries in Protein Data Bank (Berman 

et al., 2000): 1PLW and 1PLX (Marcotte et al., 2004). The study in which these two 

structures were obtained was oriented towards representing met-enkephalin molecule 

in an environment similar to the one in which it expresses its biological function. The 

primary biological role of met-enkephalin is as neurotransmitter that binds to cell 

membrane based opiate receptors (Hughes et al., 1975). Thus, the study by Marcotte 

et al. was conducted in bicelles – a model of cell membranes. This environment is, 

however, different than water solution and studies of other proteins show that similar 

nonpolar environments may promote conformational changes resulting in a 3D 

structure different than the one observed in aqueous solution (Losonczi et al., 2000). 

As we are primarily interested in proteins in solutions and at solid-fluid interfaces, 

this work is of less relevance here. 

First experimental works devoted to elucidation of met-enkephalin 3D 

structure in water have emerged in the first years after the discovery of the molecule. 
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Roques and coauthors (Roques et al., 1976) have used proton magnetic resonance 

(PMR) to obtain insight into 3D structure of met-enkephalin in water and dimethyl 

sulfoxide (DMSO) solution. Although the results could not be interpreted with 

complete distinction, the authors conclude that the most probable conformation in 

both solutions is characterised with hydrogen bond between CO of the first glycine 

residue and NH-group of methionine, with high mobility of N-term tyrosine residue. 

Using the same methodology, Jones and his group have reached analogous 

conclusions (Jones et al., 1976). However, PMR and 13C NMR (CMR) studies 

conducted in very similar environmental conditions (Bleich et al., 1976) have 

provided results that can be interpreted through the lack of intramolecular hydrogen 

bonding and possible interactions between tyrosine side chain and solvent molecules. 

Khaled and co-workers (Khaled et al., 1977) have conducted an extensive 

study of both met- and leu-enkephalin in a range of solvents using several different 

experimental methods: PMR, CMR, ultraviolet (UV) and circular dichroism (CD) 

spectroscopies. In an effort to shed some light on discrepancies in met-enkephalin 

conformation encountered by previous research groups, they have discovered effects 

of temperature and enkephalin concentration on its 3D structure. The proposed 

conformation of met-enkephalin in diluted solutions, i.e. in its monomeric form, is 

similar to the structure derived by groups of Roques and Jones, with β-turn between 

second glycine and phenylalanine residues, and hydrogen bond between first glycine 

and methionine. An additional H-bond is also speculated between OH-group in 

tyrosine side chain and NH of the second glycine residue. 

In another study, Jones and co-workers (Jones et al., 1977) have attributed 

previously observed discrepancies in PMR spectra of met-enkephalin to existence of 

two forms – cationic and zwitterionic. The conformation previously described by the 

same group (Jones et al., 1976) has been assigned to zwitterionic form, while 

structures similar to that produced by Bleich and co-workers (Bleich et al., 1976) 

correspond to met-enkephalin cation. However, an even more important discovery is 

the very high conformational flexibility of met-enkephalin, resulting in a group of 

structures with similar probability of occurrence. A similar conclusion with regards 

to structural flexibility has been reached in an independent CD study conducted in a 

wide range of temperatures and pH values leading to different ionised forms (Spirtes 
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et al., 1978). The notion of conformational flexibility is further supported by 

investigation conducted by Graham and coauthors (Graham et al., 1992). While 

rigidity of met-enkephalin was increased in the presence of sodium dodecyl sulphate 

(SDS) micelles, the absence of micelles in aqueous solutions increases the number of 

detected structures to as many as 20 different conformations obtained by combining 

experimental data with molecular modelling. Structural flexibility of met-enkephalin 

is understood to be a consequence of its low molecular mass and the presence of two 

consecutive glycine residues (Spirtes et al., 1978), which are known to be very 

mobile due to lack of side chain groups (Rappé and Casewit, 1997). 

2.7.2. Molecular Simulations 

The inability of experimental techniques to discern a single stable met-

enkephalin 3D structure in aqueous solutions has motivated many researchers to 

approach the problem using molecular models. The first attempt to utilise molecular 

simulations in elucidating met-enkephalin conformation (Isogai et al., 1977) occurred 

soon after the molecule’s discovery and was based on application of the ECEPP 

potential energy model (Momany et al., 1975). This study is, however, important 

only for historical reasons as computational resources of the time were prohibitive 

for solvent representation and application of the method was limited to met-

enkephalin in vacuum. One of the first molecular simulations of met-enkephalin in 

solutions was based on the application of the ECEPP/2 potential energy model 

(Nemethy et al., 1983; Sippl et al., 1984) for solute atomic parameters, while implicit 

representation has been used for water (Li and Scheraga, 1987). Results of Monte 

Carlo energy minimisation of the system were in accordance with experimental 

findings and suggest existence of an ensemble of stable unfolded conformations in 

water, contrasting a single dominant structure in which simulations in the absence of 

water were resulting. Another study involving continuous solvent with a similar 

outcome (Koča and Carlsen, 1995) further confirmed the notion of met-enkephalin 

flexibility in aqueous solution by producing over 500 different structures within a 

span of only 4 kcal/mol. 

Advances in computational power achieved in recent years have allowed 

utilisation of finer grained solvent representations. Studies in which reference 

interaction site model (RISM) theory (Chandler and Andersen, 1972) have been 
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applied for determining the solvated structure of met-enkephalin have yielded results 

that were in general accordance with experimental studies and implicit solvent 

simulations and which favour conformational flexibility and unfolding of the solute 

molecule (Kinoshita et al., 1997, 1998). The latter work, through the combination of 

Monte Carlo energy minimisation and RISM based calculation of interactions with 

solvent, results in a set of almost fully extended structures of similar energies, 

characterised with large fluctuations in side chain conformations. Although the study 

used an un-ionised molecule for all energy calculations, the authors stress that their 

first study has shown remarkable similarities in solvation behaviour of the un-ionised 

and zwitterionic met-enkephalin form. Similar results, with low energy barriers for 

transition between various conformations, have been confirmed in molecular 

dynamics studies with explicit representation of water (Sanbonmatsu and García, 

2002). 

2.7.3. Summary of Met-enkephalin Structure Determination Studies 

A general conclusion derived from molecular simulation studies, as well as 

from experimental approach in investigation of met-enkephalin structure, is that its 

conformation in aqueous solution is very flexible, both in unionised and in 

zwitterionic form. Whilst there is no general agreement with respect to the most 

stable conformation of the molecule in the solution, most of the studies, both 

experimental and modelling, have observed a tendency of met-enkephalin to unfold 

and extend its backbone in the presence of water molecules, thus exposing its atoms 

to the solvent. 
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Chapter 3.  Methods 

3.1. Introduction 

A generally accepted dogma in the field of protein 3D structure studies is the 

Anfinsen’s thermodynamic hypothesis, according to which the native 3D structure of 

a protein is the one in which the free energy of the protein and its surrounding 

environment (e.g. water solution) is at the minimum (Anfinsen, 1973). The free 

energy of a protein is a sum of its potential energy (PE) and the entropic 

contribution. The entropic contribution is, however, often neglected, thus 

approximating the free energy of the protein with its intramolecular potential energy. 

Further simplification commonly adopted in protein folding studies involves 

fixing the bond lengths and angles between chemical bonds (details of the protein 

structure are provided in Appendix A) at values that provide minimal potential 

energy for individual amino acids. Such an approach has been used in all versions of 

the ECEPP PE model (Momany et al., 1975; Nemethy et al., 1983; Nemethy et al., 

1992; Arnautova et al., 2006). This assumption has also been used throughout this 

work. 

With the bond lengths and angles fixed, the only way to change the 3D 

structure of a molecule is by performing torsions around chemical bonds (explained 

in greater detail in Appendix A). Accordingly, the potential energy of a molecule can 

be expressed as a function of all the dihedral angles. This multidimensional function 

is usually called the PE surface, or, due to approximation of the free energy of a 

protein with its potential energy, free energy (FE) surface. Since peptide bonds are 

assumed to be perfectly planar and fixed in trans-conformation (Mizushima et al., 

1950; Kitano et al., 1973; Kitano and Kuchitsu, 1973), potential energy of a protein 

is now a function of its φ and ψ backbone dihedral angles and χ1 to χN side chain 
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dihedrals. The number of side chain dihedral angles, N, depends on the amino acid 

residue and ranges from 0 for glycine (since it has no side chain whatsoever) to 7 for 

arginine. 

The potential energy of a protein associated with each set of dihedral angles is 

usually calculated using one of the empirical PE models (also known as force fields, 

Appendix B). The free energy surface will, therefore, be a function of a protein (i.e. 

its primary structure) and the PE model used to calculate its potential energy. 

Applying Anfinsen’s hypothesis, in order to determine the 3D structure of a protein, 

all that is needed is the protein’s primary structure, the PE model and the numerical 

method for minimisation of the FE surface. Methods that are able to obtain the 3D 

structure of a protein based only on its primary structure and the PE model are 

known as ab initio methods for protein 3D structure prediction. Our goal is the 

development of a novel ab initio method for prediction of structure of proteins in 

native and non-native environments. 

3.2. Free Energy Surface Exploration 

Free energy surfaces of proteins are, generally, very complex, 

multidimensional and multimodal functions. An example of a free energy surface, 

given as a function of a single pair of backbone dihedral angles is illustrated in 

Figure 3.1. In reality, however, this function will be even more complex as it will 

depend on more dihedral angles. 

Two techniques that have found the most widespread use in exploration of the 

free energy landscape are Monte Carlo (MC) and molecular dynamics (MD) (Allen 

and Tildesley, 1989; Frenkel and Smit, 1996), discussed in detail in Chapte 2. 

Although algorithmic improvements to the basic MC and MD implementations have 

allowed them to operate successfully with rough free energy landscapes, both 

methods tend to spend significant amount of time in configurational sampling. MD 

simulations, for example, usually simulate molecules in the time span of 

nanoseconds or even longer, whilst the time step is measured in femtoseconds 

(Bolhuis, 2003; Karplus and Kuriyan, 2005). It is, therefore, often necessary to 

performs millions of energy calculations  in order to obtain reliable results through 

MC and MD approaches. This has led many researchers to apply other free energy 

surface exploration methods in prediction of protein 3D structure. A method that 
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gained popularity in protein folding field is genetic algorithm (Goldberg, 1989; 

Mitchell, 1996). Genetic algorithm itself belongs to a broader group of methods 

based on principles of natural selection and survival of the fittest – evolutionary 

algorithms (EA). 

3.3. Evolutionary Algorithms in Protein Folding Prediction 

The main advantage of evolutionary algorithms in prediction of 3D structure of 

proteins is their superiority in handling barriers in the free energy landscape. Unlike 

MC and MD methods, which rely on incremental exploration of the free energy 

function, EA based approach is capable of performing jumps out of local minima, 

irrespective of the size of surrounding energy barriers. This capacity of EA based 

methods is embedded in the design of the algorithm itself. 

Evolutionary algorithms are global optimisation methods based on the 

mechanisms of natural genetics and natural selection (Goldberg, 1989). Natural 

evolution is a constant process in which a species’ survival capabilities are perfected 

from generation to generation. The main driving force for this improvement is the 

survival of the fittest. When two individuals mate and form offspring, the chances of 

the offspring survival are increased if its genetic material equips it with greater 

fitness. For predatory species, it could be better eye sight or greater speed. Prey 

φ

ψ

global
minimum

φ

ψ

global
minimum

Figure 3.1 An example of the free energy surface of a peptide as a 2D function of  
φ and ψ backbone dihedral angles in a single residue. All the other dihedral angles 
are kept fixed. 
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species would, for instance, benefit from better sense of hearing. On the other hand, 

“bad” genetic material will deteriorate the offspring chances of survival and reaching 

reproductive period, thus diminishing the probability of passing unfit genes into the 

new generation. Consequently, as generations progress, the species constantly 

evolves and improves its average fitness. 

Evolutionary algorithms are driven by the same principle – survival of the 

fittest members and disposing of those less fit. Function whose global optimum is 

searched for is used as the fitness in EA methods. In protein structure prediction, this 

is the free energy. Since, by Anfinsen’s thermodynamic hypothesis (Anfinsen, 1973), 

native structure of a protein is the one with the minimal free energy, the structures 

that have lower free energy will have higher fitness and vice versa. 

The essential details of the design of an EA based method used in this thesis 

are adopted from the study of proteins in their native conformation by Djurdjevic 

(Djurdjević, 2006). A simplified flow diagram of the algorithm is shown in Figure 

3.2. Basic elements of the method are described in greater details below. 

3.3.1. Population 

The EA based determination of protein 3D structure operates on a set of 

protein conformations that form a population. Each individual conformation is called 

a member of the population. All genetic operators (such as crossovers and mutations, 

described below) are performed with individual members. The most important 

numerical characteristic of a population is its size, NP. All our studies have been 

performed with populations of between 100 and 600 members. 

As the evolutionary algorithm progresses, its population changes, thus 

increasing the average fitness of its members. The evolution of the population is 

governed by the principles of natural evolution. However, the creation of the first set 

of members is always performed randomly in protein ab initio structure prediction. 

3.3.2. Genes, Chromosomes and Population Members 

Ability of a biological organism to survive depends on its fitness, which is, in 

turn, encoded in its genetic material – chromosomes and genes. From the perspective 

of natural evolution, genetic material is the only thing that defines an individual  
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Figure 3.2 Simplified flow diagram of the evolutionary algorithm implementation 
used throughout the study. 
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organism. Analogous reasoning can be applied in evolutionary algorithms, i.e. a 

population member is completely described by its associated “chromosome”. 

Natural evolution is conducted through genetic manipulation of chromosomes, 

which can be thought of as strings of genes. In an analogous way, evolutionary 

algorithm methods create chromosomes as strings of variables that the fitness 

function depends on. In the protein folding studies, a gene corresponds to a value of a 

single dihedral angle, whilst chromosome is expressed as a set of all dihedral angles 

that determine protein 3D structure. All genetic operations are performed on this 

string of dihedral angles. 

3.3.3. Gene Encoding 

Mapping between the set of dihedral angles and the chromosome string in EA 

methods is not always straightforward. The majority of the EA based methods 

perform this mapping using binary encoding (Goldberg, 1989). Binary encoding uses 

binary numbers to store values of dihedral angles in a chromosome string. The 

precision of binary numbers is, however, usually low (including less than 10 binary 

digits), which has significant repercussions on the EA performance if the fitness 

function is a function of variables whose values belong to the set of real numbers. 

Such is the case with protein 3D structure prediction. Dihedral angles can take any 

real value between 0 and 360o. It has been shown that the EA performance in protein 

3D structure prediction in a gas phase is much higher if the real encoding is used 

instead of binary (Djurdjevic and Biggs, 2006). The real encoding will, hence, be 

applied in this study. 

3.3.4. Member Fitness 

Calculation of the fitness (the second step of the algorithm in Figure 3.2), as 

discussed above, is performed using the PE model chosen for the study. It is 

conducted for each population member in the first generation and for every newly 

created member in latter generations. 

The functional relationship between a chromosome and its associated fitness is 

resolved by first decoding genes into a set of dihedral angles. The dihedral angles are 

then used to obtain Cartesian coordinates of all the atoms in the protein. Atomic 
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coordinates can then be used to calculate all the terms in the intramolecular energy 

sum. 

It should be noted that the fitness calculation will be discussed in more detail in 

later chapters. Our work substantially relies on development of new methods, for 

which the fitness function is not only the intramolecular PE of a protein, but includes 

other terms, such as free energy of solvation, or interaction between the protein and a 

solid surface. 

The inner steps of the algorithm shown in Figure 3.2 are completely governed 

by the set of evolutionary operators: selection for reproduction, crossover, and 

mutation (Goldberg, 1989). When applied on a population of structures of an 

arbitrary size, these operators direct the population towards the member with the 

highest fitness, i.e. the 3D structure with the lowest free energy or native 

conformation. 

3.3.5. Selection for Reproduction in Evolutionary Algorithms 

Reproduction is the main process for transfer of fit genes from the old to the 

new generation. Since its purpose is to propagate good genetic material, it is tightly 

related to the process of selection of fit members of a population. Selection of a 

member whose genetic material will be passed to the new generation is, hence, based 

on its fitness – probability to be selected increases with the fitness. The relationship 

between fitness of a member and probability of transfer of its genes to the new 

generation depends on specific algorithmic implementation. A method that is often 

used in evolutionary algorithms is the roulette wheel selection (Goldberg, 1989). It 

has been shown, however, that in protein 3D structure prediction, tournament 

(Goldberg et al., 1989) and uniform selection (Schwefel, 1981; Bäck and 

Hoffmeister, 1991) are both far superior (Djurdjević, 2006). These two approaches 

have been used throughout this work. 

Tournament selection is conducted by randomly choosing several members of 

a population and forming a subpopulation of these members. The member with the 

highest fitness in the subpopulation is then used in the following crossover step of 

the algorithm. Since the crossover is performed between two members, the other 

member of the population is selected using the same tournament procedure. It is clear 
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that the higher the fitness of members, they will have more chances of “winning the 

tournament” within the subpopulation. 

Whilst tournament selection creates subpopulation by random choice and then 

performs fitness ordering within the subpopulation, uniform selection takes the 

opposite approach – it first orders all the members of the population according to 

their fitness and then chooses randomly a member to be passed to the new generation 

from the fraction of the population formed by the fittest members. The fraction of the 

population considered for the selection is designated as the truncation selection 

parameter. Higher values of this parameter correspond to low selection pressures, 

while very low values indicate that the selection pressure is very high as only the 

fittest members are allowed to pass to the new generation (Djurdjević, 2006). 

3.3.6. Crossover Operator 

Reproduction is responsible for passing good genetic material to new 

generations. However, if the genes were passed without any modifications, the new 

generations would quickly become saturated with the optimal member from the first 

generation, without any possibility of further improvement in fitness. Crossover is 

one of the methods for creating qualitatively new population members. As such, it is 

a means of fitness landscape exploration. Crossover creates new population 

members, with new sets of strings, which correspond to unexplored points on the 

fitness function surface. 

Crossover operator couples two “parent” chromosomes (i.e. chromosomes 

from the previous generation) and mixes their genes in order to create two “child” 

chromosomes. Depending on the type of gene mixing, there are three basic crossover 

implementations: single point, multipoint and uniform crossover. (Haupt and Haupt, 

1998). 

In a single point crossover, a location between the two consecutive genes is 

chosen randomly and parents swap the parts of the chromosome after the chosen 

location. Thus, one child will have the starting sequence of genes from the first 

parent, whilst the ending sequence will be identical to the ending sequence of the 

second parent. The other child will have a complementary distribution of genes – its 

starting sequence will be identical to the starting sequence of the second parent, 

whilst its ending genes will match that of the first parent. 
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Multipoint crossover is merely a generalisation of a crossover with single 

point. Whilst a single point divides chromosome in two segments, crossover with NX 

points will create 1XN +  segments on both parent chromosomes. Parents then swap 

genes of every even-numbered segment. Thus, the first child will have the first 

segment of genes identical to the first parent, but its second segment will come from 

the second parent. The third segment will, again, correspond to the first parent and so 

on. The other child will have a complementary set of genes, as for the single point 

crossover. 

Unlike single and multipoint crossover strategies that operate on whole 

segments of chromosomes, uniform crossover swaps individual genes of two parents 

(Haupt and Haupt, 1998). Chromosomes of both parents are scanned and each gene 

of each parent is randomly copied to the chromosome of the first or the second child. 

The premise of crossover is the idea that fitness is carried by individual genes 

and that, in order to achieve maximal fitness, the optimal combination of genes 

should be established in a single individual. Individuals with high fitness, hence, 

carry some of the good genes, but not necessarily their optimal combination. In the 

early generations of evolutionary algorithm, good genes are often mixed with bad 

ones in individual members. Thus, choosing two fit members from an early 

generation will increase the overall number of good genes as each of the chosen 

individuals carries their own set of them. Crossing the chromosomes over creates a 

child that will potentially include both of the sets of good genes, and, therefore, be 

even more fit than its parents. Obviously, due to complementary set of genes 

between the children, the other child produced from the same crossover operation 

will have lower performance, but it does not deteriorate the overall performance of 

the EA method as the unfit offspring will quickly be replaced with more fit members 

of the population. 

Previous work has shown that multipoint crossover shows advantageous 

performance in protein 3D structure prediction (Djurdjevic and Biggs, 2006) and is, 

thus, used in this work. 



 54

3.3.7. Genetic Mutation 

In addition to crossover, mutation is another operator that facilitates 

exploration of fitness landscape and increases population diversity. However, whilst 

crossover produces new population members based on genes inherited from previous 

generations, mutation may introduce completely novel genetic information. It is 

performed by randomly changing individual genes to a new value that can be any 

number from the allowed range. For protein dihedral angles, this is the range of 

values between 0 and 360o. Mutation is implemented by scanning all the genes in a 

chromosome and changing each of them with the prespecified probability of 

mutation, PM. 

As a means for increasing diversity, mutation is used as a measure for 

prevention of premature convergence of a population to a point of locally maximal 

fitness. Although crossover can also be used to increase diversity of the population, it 

has the highest potential to do so in the early stages of the algorithm, while 

individual members are to a significant degree genetically different from each other. 

Progress of the algorithm, however, enriches new generations with earlier fit 

members. After a number of generations, there is a possibility that the population is 

saturated with a single chromosome, that may not correspond to globally maximal 

fitness. In such cases, crossover will operate on two members whose chromosomes 

are genetically identical. Thus, both children will be the exact genetic replicas of 

their parents. Only mutation can introduce new genes into such a population and 

enable the algorithm to jump out of the local fitness maximum. 

3.3.8. Steady-State EA 

The flow diagram in Figure 3.2 shows that the genetic mutation of the 

offspring is followed by evaluation of their fitness (described above) and adding the 

newly created members to the new generation. The number of the new members in a 

new generation defines the type of an evolutionary algorithm. The type used in all 

our studies is the steady-state evolutionary algorithm (De Jong, 1975; Holland, 1975; 

Mitchell, 1996). 

Steady-state evolutionary algorithm is characterised with specific strategy for 

replacement of old population members with the offspring. Whilst traditional genetic 

algorithm implementation (also known as generational genetic algorithm) performs 
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replacement of the whole population with the offspring, steady-state algorithm is 

based on replacement of limited fraction of the population with the new members 

(Mitchell, 1996). The number of old members that are being replaced is called 

generation gap, NG (De Jong, 1975). 

Thus, in the algorithm used in our studies (Figure 3.2), only NG members of the 

offspring are added to the new generation. The rest of the generation, its 

C P GN N N= −  members, is filled by the part of the population copied from the 

previous generation. 

Copying only NC members from the previous generation to the new one means 

that NG members of the previous generation have been discarded, or replaced with 

the new members. Replacement of the old population members in our studies has 

been conducted using the exponential replacement strategy (Syswerda, 1991). 

Exponential replacement is performed by first ranking all of the population members 

according to their fitness and then, starting from the least fit and moving upwards, 

testing if the member should be replaced by generating a random number whose 

value should be lower than prespecified replacement probability in order for 

replacement to occur. This strategy leaves a possibility for the least fit members to 

survive for several generations, which is desirable as, although they are overall unfit, 

they may possess some unexpressed genetic quality that would be lost with their 

replacement. 

3.3.9. Convergence Criterion 

After completion of each new generation, the algorithm performs a check 

whether the population has converged to the optimum. It is assumed that 

convergence is achieved if the fittest member of the population does not change for 

5000 generations. If a single member is the fittest for such a long period, there is a 

high probability that it has copied its genes throughout the whole population (i.e. the 

whole population has the same or very similar chromosomes), thus reducing its 

genetic diversity. The reduction of genetic diversity, even if achieved in a local 

optimum, leaves poor chances of ever finding better solution and the algorithm is, 

hence, terminated. If the convergence has not been achieved, the algorithm continues 
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execution by selecting parents for the offspring of the new generation, as shown in 

the outer loop of Figure 3.2. 

3.4. Other Numerical Elements Used in the Study 

3.4.1. Local Minimisation of the Fittest Member 

Whilst being praised for its robustness, evolutionary algorithm is known to 

suffer from lower level of accuracy. In the context of protein 3D structure prediction, 

it can predict a structure that is close to the global minimum of free energy, but never 

at the exact point of global minimum. It is, therefore, necessary to couple EA with a 

local minimisation method, which, when the conformation is in the right region 

(close to the FE minimum), performs better than EA in pinpointing the exact 

minimum position. The local minimisation method used in our studies is the same as 

the one used by Djurdjevic (2006) – Broyden-Fletcher-Goldfarb-Shanno algorithm or 

BFGS (Press et al., 1992). BFGS is a gradient minimisation method and, although 

expensive, it is applied on a single optimal conformation from the EA run, thus 

significantly improving the accuracy of the method for only a fraction of the overall 

computational time. 

3.4.2. Evaluation of the Quality of Structure Prediction 

Where applicable, the 3D structures predicted by an EA based approach were 

compared to the already known structures that correspond to the global minimum on 

the FE surface. As in the study of Djurdjevic (2006) the comparison is performed 

using root mean square difference (RMSD) between the recovered and the expected 

structure. RMSD between the two conformations (“1” and “2”) of the same molecule 

is calculated using the following equation 
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where x, y, and z are atomic coordinates and N is the number of atoms in the 

molecule used for the comparison. In many instances, not all of the atoms of a 

protein were used in RMSD calculation. It is a common practice in protein folding 

studies to use only positions of α-carbons in this calculation (Djurdjević, 2006). 
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Chapter 4.  EA Performance for Common Potential 
Energy Models 

4.1. Introduction 

According to Anfinsen’s hypothesis (Anfinsen, 1973), the native conformation 

of a protein corresponds to the minimum of free energy of the protein and its 

surrounding environment (such as water solution). For proteins in a gas phase or in 

vacuum, however, physical properties of the environment are not considered, while 

the entropic contribution to the free energy of the protein may be neglected. The 

determination of the most stable 3D structure of a protein in a gas phase is, therefore, 

equivalent to search for the global minimum of its potential energy. Whilst potential 

energy (PE) surface of various proteins in a gas phase has been explored by various 

methods, including evolutionary algorithms (Shulze-Kremer, 1992; Le Grand and 

Merz, 1993, 1994; Djurdjević, 2006), there is still little understanding of the details 

that influence EA performance and its functional relationship with the EA design and 

control parameters. In particular, no study has previously addressed the effect of the 

choice of the EA fitness function (i.e. the PE model) to the performance and 

optimisation of evolutionary algorithms. This chapter describes our efforts to address 

this issue. 

The influence of the fitness function choice has been analysed using met-

enkephalin molecule (Hughes et al., 1975) in the gas phase. Four common PE 

models have been used to describe the fitness function. The chapter first describes 

the details of the system used in the study. System description is followed by 

representation of the major findings and analysis of the results. Major findings are 

summarised in the conclusion. 
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4.1. Study Details 

4.1.1. Overview of the Study 

The primary aim of the study was to elucidate how the performance of an EA 

in the ab initio protein fold prediction context and the optimal control parameters are 

influenced by the potential energy (PE) model used. This was achieved by 

determining how the performance of an EA varied with the control parameters when 

applied to a small peptide using four different PE models. The performance 

characteristics were determined through a full sweep of the control parameter space. 

A number of criteria were used to select the PE models considered. We felt it 

was important to consider at least some of the more popular PE models. This 

requirement was, however, tempered against the desire to study PE models with 

different functional forms as well as models that primarily differed in their 

parameters to determine if this would substantially influence performance. 

A secondary aim was to elucidate how EA performance characteristics are 

influenced by the degree of accuracy demanded for the fold prediction. This was 

done by considering how the performance of the EA varied with the fold accuracy 

when using the Amber PE model. It should be stressed that it was not the intention of 

this study to identify optimal control parameters for the ab initio protein fold 

prediction problems – as the previous work in our group hinted at (Djurdjevic and 

Biggs, 2006) and this study confirms, these parameters are a strong function of the 

nature of the search space, which is affected by not only the PE model, but also the 

peptide and its representation. 

4.1.2. Evolutionary Algorithm 

The EA used throughout the work reported here was based on the SRM design 

described earlier (Djurdjevic and Biggs, 2006) with one exception: tournament 

selection was replaced by truncation selection (Schwefel, 1981; Bäck and 

Hoffmeister, 1991) with exponential ranking (Hancock, 1994). We have found this 

design, which is based on steady-state replacement with elitism, real encoding and 

multipoint crossover, to be generally superior to other designs we have considered in 

the ab initio protein fold prediction context. 
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4.1.3. Representation and Encoding of the Peptide 

Met-enkephalin, a natural endogenous opioid (Clement-Jones et al., 1982; 

Spadaccini and Temussi, 2001) consisting of 5 residues as illustrated in Figure 4.1, 

was considered in the gas phase with the N- and C-terms capped by acetyl and 

methyl-amide groups respectively. Although this peptide is relatively small 

compared to many natural proteins, it is ideal here as its heterogeneity and flexibility 

(which arises from the presence of the two glycine residues in the middle) makes it 

non-trivial to determine its fold, yet its size allows adequate statistics to be obtained 

in reasonable (although still considerable) computational resource. It is for these 

reasons that the peptide has been widely studied in the protein fold prediction context 

(Kawai et al., 1989; Ripoll and Scheraga, 1989; Nayeem et al., 1991; Olszewski et 

al., 1992; Le Grand and Merz, 1993; Androulakis et al., 1997; Lee et al., 1997; Jin et 

al., 1999; Klepeis and Floudas, 1999; Vengadesan and Gautham, 2004). Whilst it 

may be argued that, as a flexible molecule, met-enkephalin is not suitable for the 

application of Anfinsen’s hypothesis (Anfinsen, 1973), we stress that our goal here is 

not to retrieve all experimentally determined 3D structures, but to test the EA 

performance, for which reason a highly flexible molecule with rough free energy 

landscape is very desirable. 

The peptide was modeled entirely at an atomistic level. In common with many 

of the previous ab initio studies, only the main backbone, φi and ψi, and side chain 

dihedral angles, χi, were varied during the course of the simulation. These 19 

dihedral angles were encoded as real numbers in a linear chromosome. Initial values 

of the angles were sampled from a uniform distribution spanning the range [0°, 

360°), and they were allowed to vary over this range during a simulation. As per 
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Figure 4.1 Structural formula of met-enkephalin molecule analysed in this study. 
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standard practice in the field, the dihedral angles about the peptide bond were fixed 

at 180iω =  (Pauling, 1940; Mizushima et al., 1950; Kitano et al., 1973) throughout 

the simulations, whilst all the bond lengths and angles were similarly fixed at values 

determined by an exhaustive search for the global minimum in the PE surface of 

each of the residues when capped at the N- and C-terms by acetyl and methyl-amide 

groups respectively. 

4.1.4. Potential Energy Models 

Potential energy of a molecule and its relationship with the molecule’s 3D 

structure is captured by the potential energy (PE) models (discussed in greater detail 

in Appendix B). Potential energy models are sums of various terms that define 

contribution to the total energy of the molecule associated with specific 

intramolecular interactions. The functional form of these terms is one of the primary 

sources of difference between the various PE models available in the open literature. 

The second major source of variation between PE models is the set of model 

parameters. 

Four PE models were considered in detail here: Amber94 (Cornell et al., 1995), 

OPLS (Jorgensen et al., 1996), CVFF (Dauber-Osguthorpe et al., 1988) and 

ECEPP/3 (Nemethy et al., 1992). The details of these PE models are summarised in 

Table B.1 in Appendix B. The Amber model is typical of many of the biomolecular 

PE models in that it seeks to capture the major sources of PE variation without 

excessive complexity. For example, it adopts the most basic forms of the bonded 

interactions, and omits explicit mention of hydrogen bonds, which are instead 

accounted for implicitly. The OPLS model, which is more modern, is largely based 

on Amber but has different parameter values (Jorgensen et al., 1996). The ECEPP 

model, which is perhaps one of the most popular PE models, is even simpler than 

Amber or OPLS in that it includes no bond length or angle terms, although it does 

include hydrogen bonds explicitly. 

The parameter sets used for each PE model were taken from original sources. 

Our implementations of Amber and OPLS models were assessed by comparing 

energies produced by our code against those obtained from TINKER (Ponder, 2004). 

CVFF implementation was tested against original force field source, whilst ECEPP 
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results have been compared with those produced by ECEPPAK package (Ripoll et 

al., 1995). 

4.1.5. Parameter Ranges 

The EA used here is controlled by a total of nine parameters: the mutation 

probability, PM, crossover probability, PX, number of crossover points, NX, 

population size, NP, number of the best-to-worst rank ordered members of the 

population used in selection, Pλ αN=  for ( ]0,1α∈ , the number of population 

members retained per generation, NC, exponential replacement factor, s, the relative 

PE change of the best fold in a generation below which no change is considered to 

have occurred, εPE, and the number of generations of no change in the PE of the best 

fold required to trigger termination of a simulation, NT; the values of these 

parameters are shown in Table 4.1. 

Table 4.1 Control parameters considered in the study and their numerical values 

Parameter Values considered 
PM 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0 
PX 0.0, 0.1, 0.3, 0.5, 0.7, 0.9, 1.0 
NX 2, 4, 8 
NP 100, 200, 300, 400, 500, 600 
α 0.1, 0.5, 0.9 
NC NP – 1 
s 0.1 
εPE 10-4 
NT 5000 

Previous work in our group (Djurdjevic et al.; Djurdjevic and Biggs, 2006) 

suggests that the mutation probability has the most profound influence on 

performance, whilst the crossover probability, number of crossover points, truncation 

fraction, α, and population size also influence performance, albeit to a lesser degree. 

We, therefore, considered a range of values for each of these parameters. The 

remaining parameters were fixed at values that our experience suggests are 

satisfactory. 

4.1.6. Performance Measures 

When presenting the performance of an EA, many use the average performance 

of NR separate simulations under identical conditions (i.e. NR realisations) 
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where Fi is a performance measure for a simulation such as, for example, the number 

of PE function evaluations required. The average performance is not, however, 

always a good measure of the performance. For example, some control parameter 

settings led to premature termination (i.e. before the global minimum is reached) in a 

small number of function evaluations because of insufficient chromosomal 

disruption. Clearly the average number of function evaluations is not a good 

indicator of performance in such cases. Success rates approaching 100% are also 

possible, but often at the expense of long simulations. It is clear that there must be 

some balance between both success and number of function evaluations when 

assessing performance. We have, therefore, used here the number of potential 

function evaluations required to be 99% sure that the fold is correct (Djurdjevic and 

Biggs, 2006) 
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where S is the fraction of the NR realisations that are deemed successful. A realisation 

is judged successful if the root mean square difference (RMSD) between the best 

fold obtained from the realisation and the “correct” fold is less than some threshold, 

εRMSD. For the vast majority of the work reported here, 1ÅRMSDε =  is used which is 

less than half the average RMSD obtained if the met-enkephalin structures were 

randomly generated (Djurdjevic et al.) and a value considered satisfactory for most 

biologically relevant work (Baker and Sali, 2001). The last part of the work reported 

here does, however, consider the effect that this parameter has on the performance 

characteristics of the Amber PE model. 

Table 4.2 The number of observed “correct” folds for each of the PE models studieda 

“Correct” fold Number observed Fraction of total 
… for Amber 1288 0.114 % 
… for OPLS 2151 0.231 % 
… for CVFF 676 0.423 % 
… for ECEPP 6 0.00037% 

a. Folds were considered to be the same as the ‘correct’ fold provided their PE was within 0.5 
kcal/mol of the ‘correct’ fold and the RMSD between the two folds was no more than 0.1 Å. 
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We have assumed here that the “correct” fold for a PE model corresponds to 

the lowest energy fold obtained from all the simulations done for the PE model. As 

Table 4.2 shows that these folds were observed multiple times, it is reasonable to 

assume they are the fold associated with the global PE minimum, although this is not 

essential for our purposes here. 

The RMSD in Table 4.3 indicates that the backbone of the “correct” folds for 

the various PE models differ from each other. The PE energy of the various “correct” 

folds obtained using the other PE models are, however, always higher (see Table 

4.3), suggesting that the different folds have some basis in fact. Indeed, such 

differences are not unsurprising given the disparities in the functional forms of the 

PE models and their parameter values. 

Table 4.3 The RMSD and the PE of the “correct” fold for the PE models relative to 
the “correct” fold of the other PE models 

“Correct” fold values for PE model below relative to 
values of “correct” fold for PE models left. PE model 

Amber OPLS CVFF ECEPP 
RMSD (Å) 0.0 - - - Amber 
ΔUt (kcal/mol)a 0.0 11.44 5.97 24.96 
RMSD (Å) 1.29 0.0 - - OPLS 
ΔUt (kcal/mol)a 1.36 0.0 8.20 35.39 
RMSD (Å) 0.78 0.69 0.0 - CVFF 
ΔUt (kcal/mol)a 44.04 43.47 0.0 107.11 
RMSD (Å) 2.38 2.14 2.42 0.0 ECEPP 
ΔUt (kcal/mol)a 14.03 13.35 96.17 0.0 

a. ΔUt = Ut (“correct” fold in PE model 1) − Ut (“correct” fold in PE model 2) 

Despite these quantitative differences, Figure 4.2 shows that the “correct” folds 

for the PE models are not dissimilar in some respects – all contain bends with 

hydrogen bonds on either side (i.e. they could be described as β-bends). The 

predicted folds are, therefore, broadly consistent with those obtained by others 

(Ripoll and Scheraga, 1989; Androulakis et al., 1997), although direct comparison is 

impossible because of differences in the caps and PE models. 
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4.2. Results and Discussion 

4.2.1. Influence of NR on Accuracy of Performance Measure 

The uncertainty of the F(99) data will clearly tend to decrease as the number of 

realizations, NR, increases. Figure 4.3 indicates that this is indeed the case, with the 

F(99) value in a better performing part of the control parameter space tending to 

remain roughly constant beyond 500RN ≈  for all the PE models, whilst the standard 

deviation tends to stabilize beyond 900RN ≈ . 

Unfortunately, carrying out even 500 realizations per control parameter 

combination for all the PE models would be computationally prohibitive2. We have, 

instead chosen to use 300RN =  realizations for the vast majority of the work 

reported here, and then subdivide the performance-control parameter space into 

regions of (99)3
F

σ  or (99)6
F

σ  depending on the spread of the performance, where 

(99)F
σ  is the standard deviation associated with the F(99) data as shown in Table 4.4. 

Figure 4.4, which compares F(99) evaluated for the OPLS PE model using 300RN =  

                                                 
2 A very large amount of resource – approximately 47 CPU core years on a cluster of 200+ Intel Xeon 
5160 dual core CPUs running at 3.0GHz – was used in generating the data for this study. 

Amber 
CVFF 

OPLS 

ECEPP 

Figure 4.2 “Correct” folds for the PE models considered in the study superimposed 
on N-terms. 
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and 2000RN =  for a part of the control parameter space, suggests that the use of the 

lower resolution data is satisfactory. 

Table 4.4 Best and associated standard deviation for the PE models considered 

PE model (99)
bestF  (99)F

σ  
Amber 403419 119763 
OPLS 299449 122250 
CVFF 284976 73298 
ECEPP 752592 132776 

 

4.2.2. Influence of Potential Energy Model on Performance 

Table 4.4 indicates that the best performances for the Amber, OPLS and CVFF 

PE models are, within statistical uncertainty, the same. The number of potential 

function evaluations required for the ECEPP model is, on the other hand, clearly 

much greater than the other two models – this difference may in part explain why Jin 

and co-workers (Jin et al., 1999) had far less success than Le Grand and Merz (Le 

Grand and Merz, 1993, 1994) in the earliest attempts to use EAs in the ab initio fold 
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Figure 4.3 Variation of the performance measure, F(99), (closed symbols) and its 
standard deviation, (99)F

σ , (open symbols) with the number of realizations, NR, for 
the Amber (circles), OPLS (squares), CVFF (upward triangles) and ECEPP 
(downward triangles) PE models; the performance is shown relative to the 
maximum and the standard deviation as a fraction of the performance. 



 66

prediction context. It is clear that the best performance that can be achieved for a 

given EA design is at the very least PE model dependent. 

Figures 4.5 to 4.8 show the variation of EA performance with the various 

control parameters for all PE models considered in the study. All of the results 

represented here were collected at 0.5XP = , but since crossover probability does not 

have a strong effect on performance, results obtained for other PX values show 

identical trends and are, hence, excluded from the analysis. For the sake of 

completeness, variation of EA performance with mutation and crossover probability 

is shown in Figure 4.9 for a single combination of NP, NX and α. It is clear that, 

although small changes in F(99) values with PX are present, the variation is not high 

enough to be statistically significant and is well below the level of variation with PM. 

The level of fluctuations in the data, which is indicated by the standard 

deviation data in Table 4.4, means it is not possible to determine definitively the best 

optimal control parameter settings. However, the figures indicate that the 

performance is most influenced by the mutation probability, with the best 
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Figure 4.4 Sample variation of EA performance measure, F(99), with mutation 
probability, PM, and population size, NP, for the OPLS potential energy model 
evaluated using: (a) 300RN = , and (b) 2000RN =  realizations; other control 
parameter values are 0.5XP = , 4XN = , and 0.5=α . The color scale is log10-
based to enable the wide range of performances to be seen on a single set of plots. 
The lines are located at intervals of (99)3

F
σ  starting from (99)

(99) 3best F
F + σ , where the 

best performance, (99)
bestF , and standard deviation, (99)F

σ , are given in Table 4.4. 
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performance for Amber, OPLS and CVFF PE models occurring at higher mutation 

probabilities, whilst optimal performance of ECEPP PE model is achieved at 

mutation probabilities between 0.2 and 0.3. 

For all PE models considered in the study, figures show that population size, 

NP, has little effect on performance, provided the mutation probability is in a suitable 

range (high values of PM for Amber, OPLS and CVFF and lower values for ECEPP 

PE models). Lower values of PM for Amber and CVFF PE models, however, tend to 

require larger population sizes for better performance. To some extent, this effect can 

also be observed with OPLS PE model, especially for high α. This behaviour is 

explained through balance of diversity. Whilst decrease of PM causes reduction in 

diversity, increase in population size has an opposite effect which compensates the 
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Figure 4.5 Variation of EA performance measure, F(99), with mutation probability, 
PM, population size, NP, number of crossover points, NX, and selection parameter, 
α, for the OPLS PE model evaluated using 0.5XP =  and 300RN = . 
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diversity loss. Amber and CVFF PE models are also characterised with an observable 

effect of truncation selection. Weaker selection pressures (i.e. 1α → ) should be 

adopted at lower mutation probabilities in order to achieve better performance for 

these two PE models. Effect of α in ECEPP PE model is expressed through shift in 

optimal mutation probabilities towards lower values with the increase of α. Similar to 

crossover probability, number of crossover points, NX, appears to play very small 

role in behaviour of any of the PE models. 

Within statistical uncertainty, Table 4.4 suggests that the switch to OPLS or 

CVFF PE models does not bring major changes in the optimal performance of the 

EA compared to Amber. Comparison of Figure 4.6 with corresponding plots for 
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Figure 4.6 Variation of EA performance measure, F(99), with mutation probability, 
PM, population size, NP, number of crossover points, NX, and selection parameter, 
α, for the Amber potential energy model evaluated using 0.5XP =  and 300RN = . 
Figure 4.4 provides additional explanation of color scale and positions of lines. 
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OPLS and CVFF PE models (Figure 4.5 and Figure 4.7, respectively) suggests that 

the variation of performance with the control parameters is also little affected by the 

switch from Amber to the other two models. These results suggest that the 

differences in the functional forms of these PE models and their different parameter 

values have little effect on the performance characteristics of the EA 

On the other hand, analysis of Figure 4.8 shows that variation of EA 

performance in ECEPP PE model is substantially different from the results obtained 

for the other three PE models considered. The most notable difference is in the 

location of optimal performance region, which in ECEPP occurs at the lower end of 

the PM range investigated in this study. This phenomenon, opposite to all three other 

PE models, is also accompanied by an increase in optimal F(99) value, which, as 
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Figure 4.7 Variation of EA performance measure, F(99), with mutation probability, 
PM, population size, NP, number of crossover points, NX, and selection parameter, 
α, for the CVFF PE model evaluated using 0.5XP =  and 300RN = . 
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Table 4.4 suggests, is no longer within statistical uncertainty from the best F(99) 

values of the other force fields. 

The results obtained here indicate that EA performance is very much 

dependent on the nature of the PE model. However, not all differences are equal – 

using Amber as the benchmark, the hydrogen bond term in ECEPP has a 

disproportionate effect on performance compared to the higher-order torsional terms 

in the OPLS model. The results obtained here also suggest that EA performance is 

less dependent on the PE parameter values, although this presumably must be 

caveated by the need for their differences to not affect the fundamental character of 

the PE model (e.g. by switching the dominance of one or more terms). Bearing in 

mind that the character of the underlying fitness landscape can also be affected by 
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Figure 4.8 Variation of EA performance measure, F(99), with mutation probability, 
PM, population size, NP, number of crossover points, NX, and selection parameter, 
α, for the ECEPP/3 PE model evaluated using 0.5XP =  and 300RN = . 
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the protein and degrees of freedom being considered, the above results all suggest 

that an adaptive mutation probability should be used in the ab initio protein fold 

prediction context. 

4.2.3. Influence of the Desired Level of Accuracy on Performance 

An RMSD of 1 Å would be considered adequate for many purposes (Baker and 

Sali, 2001). However, higher levels of accuracy may be desirable under certain 

circumstances. Figure 4.10 shows how the performance characteristics for the Amber 

PE model are influenced by the level of accuracy demanded. It is clear that the 

mutation rates that lead to the best performance switch from higher to lower rates as 

the level of accuracy demanded increases, with the switch occurring at 0.4RMSD ≈ε . 

As expected, Figure 4.10 shows that the number of computations required to be 

99% sure that the correct fold is obtained increases by a factor of 30 as the level of 

accuracy demanded changes from 1RMSD =ε  to 0.1RMSD =ε  Å. This level of 

computation would, of course, be unacceptable in general. However, the results of 

this and the previous section suggest that a much lower number of computations 

could be achieved whilst still achieving ultra-high accuracy by adapting the mutation 

probabilities during the course of the simulation, with higher rates early in a 

simulation and lower rates later. 
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Figure 4.9 Variation of EA performance measure, F(99), with mutation probability, 
PM, and crossover probability, PX, for the Amber PE model evaluated using 

200PN = , 4XN = , 0.5α =  and 300RN =  
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4.3. Conclusion 

It has been shown that the performance characteristics of an EA can be 

profoundly influenced by the potential energy (PE) model used in ab initio protein 

fold prediction. The minimum number of PE function evaluations required for the 

ECEPP PE model was approximately double that required for the Amber, OPLS and 

CVFF PE models. The range of optimal EA control parameters also differed 

significantly, with lower mutation rates being preferred by the ECEPP model and 

higher for the other PE models considered here. 
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Figure 4.10 Variation of EA performance measure, F(99), with mutation probability, 
PM, population size, NP, and level of accuracy demanded from EA, εRMSD, for the 
Amber potential energy model evaluated using 0.0XP = , 0.9=α , and 

5000RN = . 
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It has also been shown that the EA performance characteristics are profoundly 

influenced by the level of accuracy demanded in a simulation – the amount of 

resource was found to increase 30 fold as the level of accuracy demanded increased 

by an order of magnitude, and the preferred range of mutation rates changed from 

high to low values. 

The results here, as well as those in a previous study in our group (Djurdjevic 

and Biggs, 2006), all suggest that adaptive mutation probabilities are highly desirable 

when applying EAs in the ab initio context. The work here also suggests, on the 

other hand, that there is less of a need to implement adaptivity in other control 

parameters such as population size, crossover probability, selection pressure and 

number of crossover points. 

Strong influence of the PE model choice to the EA performance is an indicator 

that the EA implementation used in this study is not very robust as the optimal set of 

parameters would have to be adjusted every time a new PE model is used. It should 

be noted, however, that the application of static EA parameters is inherent only to the 

basic EA implementation. It is expected that algorithmic improvements, such as 

adaptable mutation rate, will boost the performance as well as the robustness of the 

algorithm. 
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Chapter 5.  EA Based Study of Polyalanine at a Gas-
Solid Interface 

5.1. Introduction 

All of the studies conducted in our group so far (including Chapter 4 of this 

thesis) have been based on application of evolutionary algorithms (EA) in prediction 

of the 3D structure of proteins in vacuum or dilute gas phase (Djurdjević, 2006). 

Vacuum-based simulations were, however, used only as a testbed for developing a 

robust EA approach for prediction of protein conformation in an arbitrary 

environment. Of particular interest here are proteins at a solid-fluid interface. 

Although majority of the applications of proteins at solid interfaces described 

in the Introduction occur on a liquid-solid interface, analysis of protein adsorption on 

solid surface from gas phase is critical for understanding of the integral adsorption 

phenomenon. Simplification of the observed system by decoupling of protein-solid 

from protein-solvent and solid-liquid interactions allows better understanding of the 

mechanism of protein conformational changes induced by adsorption. A further 

generalisation was achieved by replacing met-enkephalin studied in Chapter 4 with a 

simpler molecule. Polyalanine was chosen here due to the small size of its side chain 

and well defined conformation in gas phase (Djurdjević, 2006). Finally, in order to 

reduce complexity of protein-surface interactions, smooth solid surface was used, 

thus allowing only van der Waals interactions between the two to be considered. 

The description of the studied system is given first, including the definition of 

the molecules, interaction potentials and energy minimisation procedure. This is 

followed by analysis of conformational changes of polyalanine molecules and 

discussion of the relationship between these changes and surface energies. Major 

findings are summarised in the conclusion. 
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5.2. Study Details 

5.2.1. Peptide, Solid Surface and Potential Energy Models 

A fully atomistic off-lattice representation of polyalanine capped by acetyl 

(Ac) and amino-methyl (NHMe) groups at the N- and C-termini, respectively, as 

shown in Figure 5.1, was used. The intra-molecular potential energy (PE) for 

polyalanine was modeled by the Amber potential (Cornell et al., 1995). 

A rigid, uncharged smooth solid surface composed of L layers of solid atoms 

was considered. The PE arising from the interaction between this solid surface and 

an atom-j of the protein was modeled by the Steele potential (Steele, 1974) 
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where Δ is the distance between the solid layers, ρ is the density of the solid atoms 

within the layers, σjs and εjs are the Lennard-Jones length and energy parameters, 

respectively, for the interaction between a protein atom-j and a solid atom, and z is 

the normal distance between the protein atom and the solid surface. Given the 

simplicity of the side chain of polyalanine and the overall charge neutrality of the 

molecule, the use of a smooth surface should be a satisfactory model for various 

metal surfaces (Braun et al., 2002) and other materials such as the basal plane of 

graphite (Cracknell et al., 1995; Nicholson, 1996; Bandosz et al., 2003). 

The entropy contribution has not been analysed numerically in this study, 

which, in the first instance, limits some of our findings to very low temperatures. 

C 
H3C

O H3C H H

N
CH3C

C

H O

N ψ φ 

NHMeAc 

Alan

n 

χ 

ω 

Figure 5.1 Schematic of polyalanine molecules considered here showing the acetyl 
(Ac) and amino-methyl (NHMe) caps at the N- and C-termini respectively, and the 
backbone, φ, ψ and ω, and sidechain, χ, dihedral angles. 
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This issue will, however, be of concern in a limited range of investigated parameters 

and should not affect general conclusions. Possible effects of the entropy inclusion 

will be discussed further below. 

5.2.2. Methodology 

Stable polyalanine conformations were identified with the global potential 

energy (PE) minimum found by an evolutionary algorithm (EA) acting on the 

distance of the first nitrogen atom from the solid surface, the angle between the solid 

surface normal and the N-Cα bond in the first residue, the angle of the second C atom 

about the N-Cα bond of the first residue, and all dihedral angles except those about 

the peptides bonds, which were fixed at 180ω = . All bond lengths and bond angles 

were fixed at the values obtained by locally relaxing a single Ac/NHMe-capped 

alanine residue initialized with the equilibrium PE model parameters. 

The EA was based on the SRM (steady state, real encoding and multipoint 

crossover) design described in Djurdjevic and Biggs (Djurdjevic and Biggs, 2006) 

except truncation (Schwefel, 1981; Bäck and Hoffmeister, 1991) rather than 

tournament selection was used, as in Chapter 4. For each polyalanine/solid surface 

combination, the EA was initially run 104 times with different random number seeds. 

If the lowest energy conformation had not been identified more than once, further 

runs were undertaken until this occurred; the number of runs required typically 

varied from around 104 for the smallest molecules in the less challenging regions of 

the conformational space, to 2-7 times this number in the more challenging parts of 

the space such as near the switching points where the small energy differentials 

between the conformations meant the minimum with the wider funnel mouth tended 

to be preferentially identified even when it was not the global minimum. The lowest 

energy structure identified was always compared against the other main possibilities, 

as described below. 

As the number of runs required increased substantially with the number of 

residues, n, it was necessary to adopt a three stage strategy in some of the more 

challenging parts of the conformational space for the larger molecules. The first stage 

involved application of the EA to all degrees of freedom as usual. In the second 

stage, the initial population was seeded with the best conformation from the first 

stage and only the distance and orientation of the polyalanine molecule from the 
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solid surface were varied (i.e. all the dihedral angles were fixed). The final stage was 

the same as the first except the initial population was seeded with the best 

conformation from the second stage. 

As the initial results obtained from the single and three-stage strategies for the 

larger peptides were inline with those of the smaller peptides, many of the results for 

the former were obtained by constraining the dihedral angles within ±15º of the 

angles of the expected conformations (described in more details below) and then 

selecting that with the lowest energy. 

5.2.3. Study Details 

Polyalanine molecules of n = 6, 8, 10 and 12 residues were considered in detail 

for surface energies in the range of 0.0 4.0s gE E= −  at intervals of 0.1 gE , where Eg 

is the energy arising from the interaction between the protein in the given 

configuration and the [111] gold surface characterized by the parameters given in 

Table 5.1 (Mahaffy et al., 1997). Polyalanine molecules of n = 7, 9, 11, 13 and 14 

residues were also considered at surface energies around the conformational 

switching points for these peptides. 

Table 5.1 Gold surface potential energy interaction parameters 

Parameter Valuea 
Ρ 0.13886 atoms/Å2 
εg 0.0905 kcal/mol 
σg 3.359 Å 
Δ 2.3545 Å 
L 2 

a. The parameters are based on those of the [111] surface of gold (Mahaffy et al., 1997). 

Although the change in surface energy may be interpreted physically in a 

number of ways – variation of the solid density (via ρ or Δ) or solid atom Lennard-

Jones parameters – it was achieved here through the expedient of multiplying the 

energy evaluated for each protein atom-gold surface interaction by the requisite 

factor (i.e. for s gE KE= , the PE obtained from equation (5.1) using the parameters 

of Table 5.1 was multiplied by K). The Lennard-Jones (LJ) parameters for the 

protein-gold interaction, σjs and εjs, were obtained by combining the protein atom 
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parameters from the ff94 Amber parameter set (Cornell et al., 1995), σj and εj, with 

those of the gold atoms using the Lorentz-Berthelot rules (Allen and Tildesley, 1989) 
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The evolutionary algorithm (EA) required a number of control parameters to be 

set including the population size, NP, mutation probability, PM, crossover probability, 

PX, number of crossover points, NX, and the fraction of the rank-ordered population 

used in uniform selection, α (Djurdjević, 2006; Djurdjevic and Biggs, 2006). 

Previous work by Biggs and co-workers (Djurdjević, 2006; Djurdjevic and Biggs, 

2006; Mijajlovic and Biggs, 2007a) and results presented in Chapter 4 have shown 

that EA performance is sensitive to the control parameter values, and that optimal 

values vary with the peptide details and potential energy model. As this study was 

focused on the phenomenology rather than the computational issues, limited effort 

was expended on determining the optimal parameter values. Instead, reasonable 

estimates of the optimal mutation and crossover probabilities were obtained by 

varying them as indicated in Table 5.2 whilst keeping the remaining parameters, 

which we have found to generally have a secondary effect on EA performance, fixed 

at the values also shown in this table. Although insufficient results were obtained to 

make definitive statements on the most appropriate values for crossover and mutation 

probabilities, good performances were in general obtained when using PX and PM 

values from the middle and bottom end of the ranges given in Table 5.2, respectively. 

The principal results obtained from the EA were the conformation of the 

peptide in the form of its distance from and orientation to the solid surface and its 

dihedral angles, the intramolecular potential energy (PE) for the peptide broken 

down into its non-frozen components recognized by Amber PE model(Cornell et al., 

1995) (i.e. torsional, electrostatic, dispersion, electron cloud overlap), and the 

peptide-surface PE. These data were used to generate a number of additional results 

as follows: 

• The root mean square deviation (RMSD) of the Cα atoms relative to the gas 

phase conformation determined by the EA, which is an α-helix as expected 

(Ripoll and Scheraga, 1988; Park and Goddard, 2000). 
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• The number of residues per turn, S, as per Quine (Quine, 1999) and Otero-Cruz 

and co-workers (Otero-Cruz et al., 2007). Both methods give very similar 

results, with the average differences being less than the uncertainty associated 

with the number of residues per turn. 

• The normal distance of the peptide centroid from the solid surface, dc. The 

coordinates of the centroid were determined by /i ijx x N= ∑  for i = 1, 2 and 

3, where xij is the ith coordinate of peptide atom-j in three-dimensional space, 

and the summation is over the N atoms of the peptide. 

• The angle between the peptide axis and the solid surface, θ, which is termed 

henceforth the angle of tilt. The peptide axis was determined by minimizing the 

function 2
jd∑ , where dj is the normal distance from the axis to atom-j of the 

peptide, and the summation is over all the atoms of the peptide except those 

associated with the caps. This definition is similar to that of Martin and co-

workers (Martin et al., 2005), except they sum over the Cα atoms only. 

• The strain along the peptide axis, ( )0 0l l l− , where l is the distance between 

the N atom of the first residue and the C atom of the last residue, and l0 is the 

length of the α-helix in the gas phase. 

• The energy associated with the hydrogen bonds as per the DSSP (Kabsch and 

Sander, 1983). 

Table 5.2 Evolutionary algorithm control parameter values used.a Meaning of the 
symbols is explained in the text. 

Parameter Values 
NP  400 
α  0.9 

Peptide position/orientation 0 
NX 

Dihedral angles 4 
Peptide position/orientation 0.0 

PX 
Dihedral angles 0.1, 0.3, 0.5, 0.7, 0.9 
Peptide position/orientation 0.17 

PM 
Dihedral angles 0.03, 0.05, 0.1, 0.3, 0.5, 0.8, 0.85, 0.9, 0.95 

a. Although stored in a single chromosome, different EA parameters were applied to the 
degrees of freedom defining the position and orientation of the peptide to the solid 
surface, and the dihedral angles. 
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5.3. Results and Discussion 

5.3.1. Conformational Change with Surface Energy for 6-alanine 

Figure 5.2 which shows the variation of the RMSD of 6-alanine with the 

surface energy, clearly indicates that the peptide conformation undergoes step 

changes at 0.878s gE E=  and 2.158s gE E= . Examples of the conformations 

associated with the three distinct RMSD ranges and the associated dihedral angle 

distributions in Ramachandran space are shown in Figure 5.3 and Figure 5.4, 

respectively. 

Analysis of the conformations associated with the lower of the three surface 

energy ranges, an example of which is shown in Figure 5.3(a), reveals all are 

characterized by an 4i i+ →  hydrogen bonding pattern, in which the weakest and 

strongest bonds have energies of -1.622 and -2.248 kcal/mol, respectively. All rings 

formed by hydrogen bond consist of 13 atoms. Although the dihedral angles of these 

conformations do deviate slightly from that of the gas phase conformation, the 

number of residues per turn is essentially the same for all the conformations at 

3.6S = . The conformations up to 0.878s gE E=  may all, therefore, be properly 

termed 3.613 (i.e. α) helices. 

Analysis of the conformations determined within the intermediate surface 

energy range such as that shown in Figure 5.3(b) reveals in every case an 3i i+ →  

hydrogen bonding pattern with 10 atoms per hydrogen bonded ring and with energies 
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Figure 5.2 Variation of RMSD of 6-alanine with surface energy. 
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of the weakest and the strongest bonds equal to -1.894 and -2.151 kcal/mol, 

respectively. Further analysis shows that whilst once again the dihedral angles of 

these conformations do change slightly over the surface energy range, the number of 

residues per turn essentially remains unchanged at 3.1S = . The conformations in the 

intermediate surface energy range may, therefore, be most correctly referred to as 

3.110- helices. 

(b)
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Solid
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Solid
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Figure 5.3 The three conformations observed for 6-alanine as surface energy is 
increased, from the N-term end (left) and from the top (right): (a) α-helix; (b) 
3.110-helix; and (c) 27-helix. The corresponding surface energy ranges over which 
the conformations are stable are also shown. 
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Detailed consideration of the conformations obtained in the uppermost surface 

energy range like that shown in Figure 5.3(c) reveals an 2i i+ →  hydrogen bonding 

pattern with 7 atoms in the hydrogen bonded rings and with the weakest and 

strongest bonds characterised with energies of -1.737 and -2.268 kcal/mol, 

respectively. As the number of residues per turn for all the conformations in this 

surface energy range is identical at 2.0S =  despite the dihedral angles of the 

conformations changing slightly with surface energy, they can all be described as 27-

helices. With the side chains being in the plane of the helix, these conformations are 

essentially identical to that proposed by Zahn in 1947 for α-keratin (Zahn, 1947), 

which Bragg and co-workers denote as 27b (Bragg et al., 1950) in order to 

differentiate it from the much less stable alternative 27 conformation of Huggins 

(Huggins, 1943). Whilst the 27-helical conformation obtained here has long been 

hypothesised for proteins in solutions or crystals (Zahn, 1947; Bragg et al., 1950), we 

have found only one reported experimental observation under such conditions 

(Pervushin and Arseniev, 1992) – the results here suggest they could possibly be 

more prevalent for proteins near solid surfaces. 
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Figure 5.4 Ramachandran plot showing the backbone dihedral angles for one 
example of each of the conformations in Figure 5.3. 
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As seen in Figure 5.4 and Figure 5.5, the conformational switches are reflected 

in the various characteristics of the peptide/surface system. The length of the peptide 

undergoes a substantial change at each transition, Figure 5.5(a), with the 3.110 and 27 

conformations being ~17% and ~59% longer than the α-helical conformations, 

respectively. Figure 5.5(b) shows that the normal distance between the centroid of 

the peptide and the solid surface also undergoes a step change as the peptide switches 

from the α-helix ( 5.45Åcd ≈ ) to the 3.110-helix ( 4.70Åcd ≈ ) and, finally, 27-helix 

( 3.88Åcd ≈ ). The variation of the normal distance between the lower surface of the 

peptide and the solid surface, ds, also shown in Figure 5.5(b) indicates, however, that 

the peptide moves closer to the solid surface in the first conformational switch and 

then away again in the second switch. Figure 5.5(c) shows that whilst the angle 

between the peptide axis and the solid surface, θ, is always small (i.e. the molecules 

lay almost flat to the solid surface), it too undergoes a step change at the 

conformational switches. 

A number of the characteristics of the α- and 3.110-helical systems appear to 

experience some change over their associated surface energy ranges. As the changes 

are much less than both those that occur at the conformational switches and the 

approximations inherent to the model, we focus here on only the very notable 

nonlinear decline in the tilt seen for the 3.110-helical conformation, Figure 5.5(c). 

Origins of this behavior can be explained using Figure 5.6, which shows a simplified 

representation of the conformations of the 3.110-helix at either end of the associated 

surface energy range. At the lower end of the surface energy range shown at the left 

of this figure, the “virtual bonds” (Quine, 1999) nearest the solid surface are inclined 

to the surface, with the degree of inclination decreasing from the NHMe cap to the 

Ac cap. An increase in the surface energy leads to a reduction in this inclination by 

offsetting the unfavorable change in the intramolecular energy arising from the 

required changes in the relevant dihedral angles. This reduction in the inclination 

leads to a corresponding decrease in the displacement between the NHMe and Ac 

caps normal to the solid surface and, hence, the angle between the peptide axis and 

the solid surface. 
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Figure 5.5 Variation of conformational measures for 6-alanine with surface energy: 
(a) longitudinal strain; (b) normal distance between peptide centroid and the solid 
surface, dc, and peptide lower surface and the solid surface, ds, where the latter is 
obtained by subtracting from the former the peptide radius of gyration component 
normal to the solid surface; and (c) angle between the peptide axis and solid 
surface (the tilt). 
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5.3.2. Energetics of Adsorption of 6-alanine 

Figure 5.7(a) shows that whilst the conformational potential energy (PE) of the 

peptide changes adversely as it switches from an α-helix to a 3.110-helix and, finally, 

a 27-helix, the PE arising from the solid surface is more than sufficient to stabilise the 

respective conformations. The continuous decrease of the total PE of the system with 

rising surface energy begs the question of why the peptide conformation does not 

also gradually change. The reason becomes clear when the intramolecular PE is 

decomposed into that arising from the hydrogen bonds and that which does not, 

Figure 5.7(b). This figure shows that the combined effect of the torsional and non-

hydrogen bond electrostatic and LJ interactions is to destabilize the 3.110 and, even 

more so, 27-helical conformations relative to the α-helix. The hydrogen bonds, on the 

other hand, always act to stabilize the higher surface energy conformations – in short, 

only hydrogen bond stabilized conformations are possible. It is clear, therefore, that 

because continuous conformational change would lead to a breaking of the hydrogen 

bonds at some point, such change is not possible. 

The precise switching surface energy can be identified with the point of 

intersection of the lines that define the variation of the total energy of the two 

conformers with the surface energy as illustrated for the α → 3.110-helix switch in 

the insert of Figure 5.7(a). Using this observation and assuming that between the 

switching points the conformational PE of the peptide is constant and the peptide-
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Figure 5.6 A schematic to aid explanation of the change in the tilt of the 3.110-helix 
as the surface energy increases, Figure 5.5(c). The residues and caps of the peptide 
are replaced by beads connected by what Quine (Quine, 1999) terms “virtual 
bonds”. The beads are located at the Cα and the methyl C atoms of the caps. The 
size of the beads reduces from the NHMe cap in the foreground to the Ac cap in 
the background. Angles have been exaggerated to aid the discussion. 
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surface PE varies in a linear manner with surface energy (i.e. the peptide 

conformation as a whole remains unchanged between the switching points), the 

switching surface energy can be estimated using 

 Δ
Δsw

ps

UE
S

= −  (5.4) 

where ΔU and ΔSps are the changes in the peptide conformational PE and the 

derivative of the protein-surface PE with respect to the surface energy, ps sdE dE , 

across the switch respectively (derivation provided in the appendix). Application of 

this expression to estimate the switching points for a peptide in principle requires a 

simulation for each conformation on a single solid surface (i.e. one surface energy) 

only. Good estimates can be obtained by using the same solid surface but, because 

the peptide conformation as a whole does change with surface energy slightly (as 

Figure 5.7 Variation of various potential energy (PE) contributions with the surface 
energy: (a) peptide conformational PE, U, peptide-surface PE, Eps, and total PE, 

t psE U E= + ; and (b) PE associated with hydrogen bonding in the peptide, UHB, 
and the remaining peptide conformational PE, nHB HBU U U= − . 
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shown in Figure 5.5), identification of the switching points to a high level of 

accuracy requires a small number of iterations. 

Casual study of Figure 5.3 may suggest that the various conformations may 

possess some symmetry about the peptide axis. Detailed consideration of the 

potential energy surface (PES) of each conformation about this axis, shown in Figure 

5.8, reveals that this is in fact not true. In the case of α-helical conformations, Figure 

5.8(a) shows that the rotational path around the peptide axis, which also requires 

some change in the angle of tilt and (not shown) distance from the solid surface, is 

characterised by six non-equivalent minima with the energies given in Table 5.3. 

This lack of symmetry essentially arises out of the number of turns about the axis 

being fractional (i.e. there is an incomplete turn), which leads to one part of the 

peptide being more dense, and therefore more active to the solid, than the remainder. 

Figure 5.8(b) and Table 5.4 reveal three non-equivalent minima as the 3.110-helical 

conformation is rotated about its axis; this arises from the difference in the number of 

side chains at the three vertices of the helix (in the case of the 6-alanine peptide 

considered here, two have 3 groups each whilst the third has only 2) and the number 

of oxygen and nitrogen atoms on the three “faces” of the helix (there is 3 of each 

atom on the helix “face” closest to the solid and 2 of each atom on the other helix 

“faces” for the 6-alanine peptide here). The lack of energetic symmetry about the 

peptide axis for the 27-helical conformation, as shown in Figure 5.8(b) and Table 5.5, 

arises from the differing number of oxygen atoms on the two sides of the structure 

(for the 6-alanine peptide considered here, there are 4 on one side and 3 on the other, 

for example). 

Inspection of Table 5.3 to Table 5.5 shows that whilst the energy differences 

between the global minimum and the other local minima about the peptide axis are 

relatively small for all three conformations, the barriers to rotation away from the 

global minimum are very considerable indeed (~2200 K, ~4500 K and ~6500 K for 

the α, 3.110 and 27 helices respectively). This suggests that the peptides, once 

adsorbed, will not rotate about their axis. Consideration of Figure 5.8 shows that the 

barriers to the variation of the angle of tilt, θ, are even greater than those to rotation 

about the peptide axis, suggesting that the orientation of the peptide to the solid 

surface is also likely to vary little once adsorption occurs. 
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Figure 5.8 Variation of potential energy (PE) of 6-alanine with the angle of 
rotation about the peptide axis, ζ, and the angle of tilt, θ: (a) α-helix, (b) 3.110-
helix, and (c) 27-helix. The angle of rotation has been arbitrarily defined relative to 
the global minimum, whilst the angle of tilt has been given relative to that at the 
global minimum, θ0 (i.e. in each case, the global minimum is located at the centre 
of the PE surfaces shown here). 
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Table 5.3 Minima and saddle points in the potential energy surface of Figure 5.8(a) 
and associated energies relative to the global minimum (M3). 

Point ζ (º) θ (º) E (kcal/mol)
S1 -177 3 3.50 
M1 -166 11 2.97 
S2 -135 6 5.12 
M2 -93 -5 1.24 
S3 -39 -18 4.47 
M3 0 0 0.00 
S4 37 -16 5.06 
M4 65 -22 3.27 
S5 80 -12 3.98 
M5 98 -1 2.83 
S6 126 -10 5.04 
M6 167 -15 1.18 

Table 5.4 Minima and saddle points in the potential energy surface of Figure 5.8(b) 
and associated energies relative to the global minimum (M2). 

Point ζ (º) θ (º) E (kcal/mol)
S1 -172 -56 9.65 
M1 -118 -6 2.90 
S2 -64 -7 9.39 
M2 0 0 0.00 
S3 60 0 9.04 
M3 120 -2 2.39 

Table 5.5 Minima and saddle points in the potential energy surface of Figure 5.8(c) 
and associated energies relative to the global minimum (M1). 

Point ζ (º) θ (º) E (kcal/mol)
S1 -72 -1 12.99 
M1 0 0 0.00 
S2 105 0 13.70 
M2 174 0 2.52 

5.3.3. Effect of Number of Alanine Residues 

The results presented above for 6-alanine are qualitatively similar for the other 

polyalanine molecules considered in the study. The size of the peptide did, however, 
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quantitatively affect two key aspects of the switching phenomenon – the switching 

surface energy and the longitudinal strain – which are considered here in detail. 

 

Figure 5.9 Variation of switching-related energetic characteristics with the number 
of alanine residues for the α → 3.110 (closed circle) and 3.110 → 27 (open circle) 
switches: (a) switching surface energy, (b) change of conformational PE across 
switches, and (c) change of ps sdE dE  across switches. 
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Figure 5.9(a) shows that whilst the switching surface energies, Esw, tend overall 

to increase with the number of residues, the increases are neither smooth nor, indeed, 

locally monotonic. This complex change can be understood by first considering in 

turn the two factors that affect the switching surface energy as indicated by equation 

(5.4). Figure 5.9(b) shows that the change in the conformational potential energy 

(PE) of the peptide across the switches, ΔU, increases relatively smoothly for both 

switches – this clearly is not the cause of the complex change in the switching 

surface energy with the number of residues. Figure 5.9(c), on the other hand, shows 

that the change in ps sdE dE  across the switches, ΔSps, does vary in a complex 

manner with the number of residues. Moreover, comparison of this variation with 

that in Figure 5.9(a) reveals a definite correlation – for example, the relatively small 

increase in the α → 3.110 switching surface energy as the number of residues 

increases from 6n =  to 7n =  corresponds to a relatively large jump in ΔSps, whilst 

the relatively large jump in the switching surface energy for 7n =  to 8n =  

corresponds to a small change in ΔSps. 

The source of the complex change in ΔSps for a switch can be understood using 

analysis of change in peptide-surface PE with surface energy, Es, for the three 

conformations. If we assume the conformations within their range of stability remain 

essentially rigid – which results from §5.3.1 show to be a good approximation – then, 

because the variation of the peptide-surface potential energy (PE) with the surface 

energy must pass through the origin, the slope of this variation for a conformation on 

a surface of energy Es, is given by ps ps sS E E= . Thus, the difference between the 

slopes for two conformations, A and B, that are adsorbed on the same solid surface is 

given by ( )A B
ps ps ps sS E E EΔ = − . As it does not matter which solid surface is 

involved, it is sufficient to say that the change in slope scales with the change in the 

peptide-surface PE of the two conformations on the same solid surface, which is 

denoted by ( )A B~ps ps ps ps ss s
S E E EΔ − = Δ . Thus, the irregular variation of ΔSps with 

the number of residues arises out of the differences in the way ps s
E  varies with the 

number of residues for the two conformations. The origin of these differences is: (1) 

the fractional periodicities of the three helices, and (2) the disparity between these 
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periodicities. The fractional periodicity combines with the discreteness of n to yield a 

complex variation of the peptide-surface PE for each helix. This complexity is then 

compounded when the difference between them is taken across a switch. 

Figure 5.10 shows the variation of the longitudinal strain of the peptide with 

the number of residues for the two conformational switches. Whilst, as expected, the 

strain for the α → 3.110 switch is less than that of the 3.110 → 27 switch, the change 

in strain with number of residues is qualitatively similar for both. Although the strain 

tends to increase with the number of residues, as with the switching surface energy, 

the change is complex, with rises in the ranges 6 8n = −  and 10 11n = −  being 

followed by shallow dips between 9 10n = −  and 12 13n = −  respectively. Figure 

5.11 shows that the complexity comes from the fact that the length of the gas phase 

α-helix – which is the reference conformation when evaluating the strain – varies 

with the number of residues (a similar but very much weaker dependence is also 

observed for the 3.110 and 27 helices on the solid surface). This is due to the rise in 

the strength of the collective dipole (Ripoll and Scheraga, 1988; Park and Goddard, 

2000) – which acts to shorten the helix – and the degree of completeness of the helix, 

which is responsible for the local irregularity. 
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Figure 5.10 Variation of longitudinal strain with number of alanine residues for the 
α → 3.110 (closed circle) and 3.110 → 27 (open circle) switches. The strain is 
measured relative to the gas phase α-helical conformation. 
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5.3.4. General Discussion 

It is clear from the results above that hydrogen bonding is essential to the 

manifestation of the observed conformational switching. As many of the amino acids 

are capable of supporting hydrogen bonds, similar switching could perhaps be 

expected in other peptides and proteins. However, although experimental observation 

of switching such as that observed here is likely to be difficult to detect, lack of 

reports in the literature suggests that hydrogen bonding is not the only requirement. 

We hypothesize that a further essential requirement is a high peptide symmetry such 

as that obtained in a homopeptide like polyalanine, which would induce the entire 

peptide to switch at specific surface energies rather than in sub-elements over ranges 

of surface energies. Our results also suggest that switching may well be restricted to 

smaller peptides. These hypotheses will be tested by us in future work. 

Braun and co-workers provide good arguments as to why the smooth surface 

used here is a satisfactory model for the study of charge-neutral molecules like 

polyalanine on metal surfaces (Braun et al., 2002), whilst this surface has also been 

widely used in the study of adsorption of uncharged molecules on the graphite basal 

plane (Cracknell et al., 1995; Nicholson, 1996; Bandosz et al., 2003). There are, 

however, some surfaces where corrugations are significant such as, for example, the 

armchair and other non-basal surfaces of graphite (shown, for example, in Figure 11 

in (Biggs et al., 2004)). Given that the switching phenomenon observed here arises 
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Figure 5.11 Variation of peptide length per residue with number of alanine residues 
for the gas-phase α-helix. 
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from the symmetry of the molecule and its ability to support hydrogen bonds – the 

surface simply provides the energy for switching – such corrugations are unlikely to 

destroy either the switching or the structures observed. However, depending on the 

exact nature of the corrugations it may be expected that they will have some effect on 

the switching energies. The surface representation used here is also unlikely to be 

good for metal oxides and other surfaces that may act to subvert the intra-peptide 

hydrogen bonding that stabilize the structures observed here – future work will seek 

to investigate this issue. 

The effect of entropy has been ignored in this study. Its inclusion is unlikely to 

destroy the switching phenomenon, however, as all three conformations observed 

here are known to exist in real proteins (Pervushin and Arseniev, 1992; Solov'yov et 

al., 2006), albeit at substantially different levels, whilst various theoretical studies 

have established the free energy minima associated with the α- and 310-helical 

conformations (Clark et al., 1991; Tirado-Rives et al., 1993; Huston and Marshall, 

1994; Zhang and Hermans, 1994). The entropic effect is, however, likely to modify 

the switching surface energies. In particular, previous work on polyalanine shows 

that there is a greater entropic stabilization of the 310-helix relative to the α-helix, and 

this would be even more so for the more extended 27-helix. The entropic effect is, 

therefore, likely to depress the switching surface energies relative to those predicted 

here. Future work will seek to elucidate the entropic contributions further for 

polyalanine on the solid surface. 

Effects of the entropy will be the most intensive in the vicinity of switching 

points, where the potential energy difference between two conformations is the 

lowest. This is somewhat limiting factor for the possible future applications of the 

conformational switching effect as any device based on the switching phenomenon 

would have to operate on very low temperatures in order to disable random 

transitions between the conformations. Moving away from the switching points, 

however, stabilises the adsorbed conformations as the potential energy difference 

between them increases, as shown in the insert of Figure 5.7(a). Thus, operating in 

the surface energy range away from the switching points would reduce the effects of 

entropy and allow application of the conformational switching phenomenon on 

higher temperatures. 
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Previous work has shown for polyalanine in the bulk phase that the relative 

stabilities of the α- and 310-helical conformations can be changed with the nature of 

the solvent, the end groups and the presence of ligands (Clark et al., 1991; Smythe et 

al., 1993; Zhang and Hermans, 1994). These observations could be exploited to tailor 

the switching surface energies for polyalanine on a solid surface, or provide a means 

of instigating a conformational switch without changing the nature of the solid 

surface. These possibilities will also be investigated in future work. 

It is perhaps worthwhile mentioning some potential implications of the work 

reported here. Conformational switching is of relevance in molecular electronics 

(Rambidi, 2003) and protein-based computer memories (Birge, 1992), both of which 

are part of an ongoing quest to build a biomolecular computer. Molecular switches 

are also an important molecular mechanical element that underpins molecular rotors, 

brakes and motors (Feringa, 2001; Kelly, 2001). Stretches of polyalanine are very 

common in natural proteins and have been implicated in some diseases (Albrecht and 

Mundlos, 2005) – the work here raises the possibility that solid surfaces may be able 

to stabilize in these stretches non-native conformations such as observed here, which 

may have implications for their biological activity and function. 

5.4. Conclusions 

Using an ab initio structure prediction approach, we have discovered a 

conformational switching phenomenon for polyalanine on solid surfaces – the 

peptide undergoes step changes in its conformation at specific surface energies that 

vary in a complex manner with the peptide size. Two conformational switches were 

observed: (1) α-helix→3.110-helix, and (2) 3.110-helix→27-helix. The first always 

occurs at lower surface energies than the second. All three structures are 

characterized by hydrogen bonding – it is this hydrogen bonding and, we 

hypothesize, the symmetry of the homopeptide that leads to the conformational 

switching rather than gradual change in the structure. 

Whilst all the conformational characteristics of the peptide-solid surface 

system undergo some step change at the switching points, the backbone dihedral 

angles, number of residues per turn, and strain along the peptide axis experience the 

most significant changes. The strain in particular sees significant changes that could 

well be exploited. Although the various components of the potential energy (PE) also 
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undergo step changes at the switches, the total energy of the peptide-solid system 

undergoes a continuous change, with the discontinuity being restricted to its 

derivative. By making some well founded assumptions, a simple expression 

(equation (5.4)) for the switching surface energy was obtained that can be used to 

estimate the switching surface energies with a small number (as little as three) 

simulations. 

Whilst the conformational switching was observed in all the polyalanine 

molecules from 6n =  to 14n =  residues, the surface energy at which the switches 

occur and the associated longitudinal strain vary in a complex manner with the 

number of residues. These complex variations arise from the fractional periodicity of 

the helices and the disparities between these periodicities. 

Although the effect of entropy has not been included here, results from gas and 

solution phase simulations as well as experimental evidence suggest that entropy will 

not destroy the switching effect. Entropy will, however, most likely lead to a 

reduction in the switching surface energies predicted here. Previous simulation work 

additionally suggests that the presence of solvents will also not destroy the switching 

but, rather, offer a route for tailoring the switching surface energies. 
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Chapter 6.  Investigation of Coupling of Langevin 
Dipole Method with Amber PE Model 

6.1. Introduction 

Results of the studies presented in Chapters 4 and 5 have demonstrated the 

ability of an EA based approach to predict protein conformation in a gas phase and 

on the gas-solid interfaces. Whilst being very useful in theoretical studies and for 

method testing, gas phase simulations do not have many practical applications in 

studies of proteins. For most biomolecules, solution in water is a much more 

common environment. Water is believed to play an essential role in protein folding 

(Barron et al., 1997; Xu and Cross, 1999) as well as in the behavior of proteins in 

non-native environments, including solid-liquid interfaces (Mungikar and Forciniti, 

2004; Carravetta and Monti, 2006), which is of particular relevance here. 

As indicated in Chapter 2, the Langevin dipole (LD) model of water (Florián 

and Warshel, 1997) has been shown to be both fast and accurate. One of its 

disadvantages, however, is the need to obtain solute atomic charges from quantum 

mechanical (QM) methods which are computationally very expensive and, hence, 

inapplicable in an EA based approach. We have, therefore, investigated the 

possibility of replacing the expensive QM charge calculation with a set of static 

charges adopted from the Amber PE model, thus creating a modified model that we 

have termed LD-Amber. The systems used to test the LD-Amber method are defined 

first, along with the description of the method. The results of the LD-Amber 

application in prediction of solvation free energies of amino acid side chain 

analogues and alanine dipeptide are then presented in detail. Finally, the performance 

of the method is compared to traditional molecular dynamics approach. 
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6.2. Study Details 

6.2.1. Solvation Free Energies of Amino Acid Side Chain Analogues 

Amino acid side chain analogues obtained by replacing the backbone atoms of 

the α-amino acids with a hydrogen atom are commonly used as a basis for testing 

solvent models (Wolfenden et al., 1981; Edsall and McKenzie, 1983; Ben-Naim, 

1990; Avbelj, 2000). The first part of this study was, therefore, focused on 

comparing the LD-Amber-derived free energies of solvation of the amino acid side 

chain analogues in Table 6.1 with published experimental and theoretical data. 

Table 6.1 Amino acid side chain analogues considered in this study 

Amino acid (code) Side chain analogue at pH 7 
Alanine (ala) Methane 
Arginine (arg) N-propylguanidinium 
Asparagine (asn) Acetamide 
Aspartate (asp) Acetate ion 
Cysteine (cys) Methanethiol 
Glutamate (glu) Propionate ion 
Glutamine (gln) Propionamide 
Histidine (his) Methylimidazolium 
Isoleucine (ile) Butane 
Leucine (leu) Isobutane 
Lysine (lys) N-butylammonium 
Methionine (met) Methylethylsulfide 
Phenylalanine (phe) Toluene 
Serine (ser) Methanol 
Threonine (thr) Ethanol 
Tryptophan (trp) 3-Methylindole 
Tyrosine (tyr) P-cresol 
Valine (val) Propane 

It may be noted from Table 6.1 that the sidechain analogues for glycine and 

proline were not considered. In the former case, its sidechain analogue is molecular 

hydrogen, which is of little interest here because the hydrogen atoms carry no charge. 

The proline sidechain analogue was omitted because the charge distribution on what 

is nominally a propane structure is highly non-physical due to the cyclic sidechain of 

proline being connected to backbone atoms of very different electronegativity. 
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6.2.2. Free Energy Surface of Alanine Dipeptide in Neutral Water 

In some contexts it is important to be able to correctly model the free energy 

surface (FES) rather than just the energy of solvation for a native conformer – the 

most obvious example is in the ab initio structure prediction context, where search 

methods probe the FES extensively in search for the global minimum. The second 

part of the study was, therefore, focused on comparing the characteristics of the LD-

Amber-based FES of the alanine dipeptide in neutral water with published 

experimental and theoretical data. 

The alanine dipeptide, which is a single alanine residue capped by acetate and 

amino-methyl groups on the N- and C-termini respectively (i.e. AcAlaNHMe), was 

selected for study here for a number of reasons. Principally, its small size – its 

structure can be defined in terms of just two dihedral angles – makes it possible to 

thoroughly probe its FES without excessive computational effort. However, as will 

be seen, its use in the parameterization of the Amber potential model (Cornell et al., 

1995) also aids in better understanding any deficiencies revealed by our analysis. 

Whilst the even simpler glycine dipeptide could have been used instead for the same 

reason, conformational analysis would have been complicated by significant solute 

entropic contributions arising from its small side chain (Rappé and Casewit, 1997). 

6.2.3. Electrostatic Potential Field and Water Structure Around Alanine 
Dipeptide 

Previous theoretical work suggests hydrogen bonding networks involving the 

solute and solvent play a role in stabilizing solute structures (Mezei et al., 1985; 

Beglov and Roux, 1995). More recent theoretical work also suggests that moderation 

of the intrasolute electrostatic interactions by the solvent also influences solute 

structure (Drozdov et al., 2004). As these phenomena are dependent on the 

heterogeneous solvent structure within and immediately around the solute both at a 

local level (i.e. molecule-molecule) and over longer ranges in the form of bridges, for 

example, it is reasonable to suppose that accurate determination of stable conformers 

is dependent on correctly predicting the structure of the solvent. Whilst the LD 

method cannot say anything directly about the structure of the solvent because the 

dipoles are constrained to a regular lattice, it does predict the electric field at a local 

level. We have investigated this issue by comparing the electrostatic potential field 
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obtained from the LD-Amber approach for a particular conformation of the alanine 

dipeptide with that obtained from an MD simulation. 

6.2.4. Computational Peformance 

One of the main motivations for using the LD method is its speed. There is, 

however, little quantitative information available on the computational expense of 

the method and how it compares with competitor explicit approaches. The 

computational expense of the LD-Amber approach is, therefore, compared with 

traditional explicit approaches. 

6.3. Methodology 

6.3.1. LD-Amber Method 

As illustrated in Figure 6.1, the volume around the solute in the LD approach 

(Florián and Warshel, 1997) is divided into a number of distinct regions. The solvent 

is absent in the first of these regions, which is located within the surface defined by 

the van der Waals radii of the solute atoms, σ. The solvent in the volume located 

between this van der Waals surface and the surface RO(x), Figure 6.1, is modeled by 

Langevin dipoles located at the nodes of cubic grids, whilst beyond this outer surface 

the solvent is treated using a continuum approximation. The outer surface, RO(x), is 

defined by the set of nodes where the electric field arising from the solute falls below 

a threshold, Oξ , where this field at a node-j is given by (Florián and Warshel, 1997) 

 3
i ij

j
i ij ij

Q
ε r

= ∑
r

ξ  (6.1) 

where Qi are the atomic charges associated with the solute, rij and rij are the 

displacement between the atomic charge-i and node-j and its magnitude respectively, 

and ijε  is the screening function given by (Florián and Warshel, 1997) 

 
2
1.7

ij
ij

r
ε

+
=  (6.2) 

where the magnitude of the displacement is in angstroms. As the electric field 

gradients near the solute are in general large, a fine cubic grid of spacing af is used 

between the van der Waals surface and the surface defined by the distance σ δ+  

from the solute atoms. Beyond this, a coarser grid spacing, c fa a> , is used, which 



 103

aids the computational efficiency of the method. Dipoles are discarded from nodes of 

this coarser grid if they fall within a distance ( ) 2c fa a+  of a dipole on the finer 

grid. 

The orientation and magnitude of the dipoles in the volume ( ) ( )I OR R< <x x x  

are determined from equations (6.1) and (6.2), where the surface RI(x) is defined by 

the set of nodes where the electric field arising from the solute falls below a second 

σ
σ + δ

( )IR x
( )OR x

σ
σ + δ

( )IR x
( )OR x

Figure 6.1 Schematic showing the five different regions around the solute in terms 
of solvent treatment. The solvent is excluded from the innermost region (white). 
The solvent in the two regions beyond this is modeled by Langevin dipoles located 
at the nodes of fine and coarse grids with their magnitudes and directions being 
determined iteratively in a self-consistent manner under the influence of the solute 
and the fixed dipoles located in the fourth region between the surfaces RI(x) and 
RO(x). The solvent in the fifth region beyond the surface RO(x) is modeled using a 
continuum approximation. 
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threshold, I Oξ ξ> . The orientation and magnitude of the remaining dipoles are 

determined iteratively in a self consistent manner under the influence of the solute 

and the fixed dipoles beyond RI(x) as described by Florián and Warshel (Florián and 

Warshel, 1997). The dipole j is allowed to polarise by changing its orientation and 

magnitude in the direction of the of the total electrostatic field, ξj, calculated as a sum 

of the electrostatic field of the solute and of the neighbouring dipoles 

 
( )( ) ( )1 12

0
5

3 n n
jk k jk jk k

j j
k j jk

r

r

− −

≠

−
= + ∑
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where rjk is the position vector that connects dipoles j and k and rjk is its magnitude. 

μk is the neighbouring dipole vector k, while the superscript (n-1) denotes that its 

value is taken from the previous iterative step. 0
jξ  is the electrostatic field of the 

solute at position of dipole j and its value remains constant during a single iteration 

procedure. Electrostatic field of the solute is calculated from the unscreened solute 

charges 
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ξ  (6.4) 

Electrostatic field calculated in equation (6.3) is used as a basis for calculating 

the magnitude of the dipole j in the current, nth iteration. The new magnitude of the 

dipole j is obtained using the Langevin function, L(x) 

 ( ) ( )0
n

jμ μ L x=  (6.5) 

where μ0 is the magnitude of dipole j at saturation (i.e. its maximal magnitude – 0.05 

and 0.26 e Å⋅  for finer and coarser grids, respectively), while the Langevin function 

is defined as 

 ( ) ( ) 1cothL x x
x

= −  (6.6) 

x is a compound term defined as 

 0 j

B

μ ξ
x

k T
=  (6.7) 

where ξj is the magnitude of the electrostatic field at point dipole j. kB in the 

denominator of the equation is the Boltzmann constant, while T is the absolute 
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temperature of the system. The orientation of the dipole j is assumed to be the same 

as the orientation of the electrostatic field ξj at the nth iteration. 

Equation (6.7) expresses the effect of the solvent temperature on the energetics 

of solvation process. The Langevin function shown in equation (6.6) asymptotically 

tends to 1 as x tends to infinity (i.e. for very low temperatures). As the temperature is 

reduced, the dipole fluctuation is decreased, thus increasing their effective magnitude 

in the direction of the electrostatic field, as expressed by equation (6.5). Increase in 

the temperature, on the other hand, increases the dipole fluctuations, thus reducing 

their effective magnitude. The effect of the temperature on the magnitude of the 

Langevin dipole is shown in Figure 6.2. 

Knowing the dipole vectors, the free energy that arises from the interaction 

between the solute and that part of the solvent modeled by the dipoles is determined 

straightforwardly by assuming the solvent responds in a linear manner to the solute 

(i.e. linear response theory) (Florián and Warshel, 1997) 

 0
es(LD)

1
Δ 722.5

N

j j
j

G
=

= ∑μ ξ  (6.8) 

where N is the total number of the dipoles and coefficient 722.5 is applied to obtain 

the value in kJ/mol. The value of the coefficient implicitly includes energy needed to 

polarise the solvent molecules, as determined by Florián and Warshel (1997). 

Fixing the dipoles to a lattice means the free energy change due to the dipoles 

varies with the position of the solute relative to the grid. It is, therefore, necessary to 

average the free energy change obtained from a small number of simulations, S, in 

which the position of the solute molecule is randomly generated within the central 

0μ

0μ

( )1j Tμ

( )2j Tμ
jξ

Figure 6.2 Effective magnitude of the Langevin dipole changes with the 
temperature. Lower temperatures (T1) reduce fluctuations and increase the effective 
magnitude, while higher temperatures (T2) promote dipole fluctuations, thus 
reducing its effective magnitude. In both cases, the effective orientation of the 
dipole j is in the direction of the electrostatic field ξj. 
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cell of the fine grid. It should be noted that changes from the gas-phase solute 

structure due to solvation are sometimes included by coupling the internal degrees of 

freedom of the solute and the solvent in a self-consistent manner. However, inline 

with common practice, this is not done here as it involves an iterative process. 

The total free energy of solvation of the solute, ΔGs, is obtained by adding to 

the average free energy change arising from the volume modeled by Langevin 

dipoles, ΔGes(LD), the free energy change due to the electrostatic interaction between 

the solute and solvent volume beyond the surface RO(x), ΔGes(c), the van der Waals 

interactions between the solute and dipoles, ΔGvdW, the interaction between the 

solvent and non-polar part of the solute surface (i.e. hydrophobic contributions), 

ΔGphob, and solute polarization due to the solvent, ΔGpol (Florián and Warshel, 1997) 

 s es(LD) es(c) vdW phob polΔ Δ Δ Δ Δ ΔG G G G G G= + + + +  (6.9) 

The models proposed by Florián and Warshel for all but the solute polarization term 

were used here unchanged. 

The contribution of implicitly represented solvent, ΔGes(c), is calculated using 

Born’s formula if the solute is charged (Florián and Warshel, 1997) 
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where Q is the net charge of the solute (in e), while R is the average radius of the 

domain represented with explicit dipoles (in Å). εr is the relative dielectric constant 

and the coefficient 695 is applied to express the energy in kJ/mol. If the solute carries 

no net charge, its total dipole moment μ is used to calculate the contribution of 

continuous solvent (Florián and Warshel, 1997) 
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The van der Waals energy of solvation is expressed through a 9-6 interaction 

term (Florián and Warshel, 1997) 
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∑  (6.12) 

where kvdW is an empirical parameter equal to 3.5 kJ/mol, and ri* and Ci are the 

radius and the London coefficient of the solute atom i, while Nj is the normalisation 
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factor whose purpose is to scale down the strength of the interactions with the 

dipoles of the denser fine grained grid 
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N

a
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 (6.13) 

where, as above, ac is the node distance in the coarse grid while aj is the node 

distance of the grid to which the dipole j belongs. 

The hydrophobic term, ΔGphob, represents the energy invested in the formation 

of the solvent cavity. It is proportional to the number of the Langevin dipoles on a 

distance less than 1.5 Å from the van der Waals surface of the solute atoms 

 ( )phob phobΔ Φ j
j

G k f= ∑  (6.14) 

where kphob is an empirical parameter equal to 0.050 kJ/mol, while Φj is the 

electrostatic potential calculated at the position of the dipole j. f is a complex 

function of the electrostatic potential 
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 (6.15) 

where Φmin = 0.002 e/Å, Φmax = 0.015 e/Å and χ = 0.08 are all empirical parameters 

(Florián and Warshel, 1997). 

Solute polarization was ignored as the model of Florián and Warshel for ΔGpol 

requires either access to high level QM results (indeed, even higher than those used 

to determine the atomic charges) or empirical data for the solute, neither of which are 

desirable in the contexts of interest here. This neglect of solute polarization is in part 

justified by the fact that the QM method used to determine the Amber atomic charges 

over-predicts the gas-phase molecular dipole moment by 10-20%, effectively 

mimicking the polarization effect in some approximate meanfield way (Cornell et al., 

1995; Florián and Warshel, 1997). 

A variety of parameters are required to be specified before simulations can be 

done, including the magnitude of the dipoles on the fine and coarse grids at 

saturation, μ0,f and μ0,c respectively. As already indicated, the atomic charges, Qi, 

were taken from the ff94 Amber parameter set (Cornell et al., 1995). This use of the 
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Amber charges in principle requires us to determine the remaining parameters afresh 

rather than use those of Florián and Warshel (Florián and Warshel, 1997). Such a re-

parameterization is, however, contrary to the spirit of the approach being investigated 

here and we, therefore, used the parameters of Florián and Warshel as summarized in 

Table 6.2 – part of the motivation for this study is, of course, to determine how good 

this approximation is. 

Table 6.2 LD parameter values used in the work reported here beyond the atomic 
charges, which were taken from the ff94 Amber parameter set (Cornell et al., 1995) 

Parameter Valuea 
af 1 Å 
ac, 3.1043 Å 
δ 2 Å 
ξI 0.0021 e/Å2 
ξO 0.0015 e/Å2 
μ0,f 0.05 eÅ 
μ0,c 0.26 eÅ 
S 10b 

3C(sp )
σ  2.65 Å 

2C(sp )
σ  3.00 Å 

3O(sp )
σ  2.20 Å 

2O(sp )
σ  2.65 Å 

σN 2.65 Å 
σS 3.20 Å 
σH c 

a. Unless indicated otherwise, all values are taken from Florián and Warshel (Florián and 
Warshel, 1997). 

b. Although this value is smaller than that used by Florián and Warshel, experimentation 
showed this to be sufficient for accurate results. 

c. The van der Waals radius of hydrogen is determined using H hσ kσ= , σh is the radius of 
the nearest heavy atom, and k is a constant that takes a value of 0.88 or 0.78 when the 
heavy atom is in the first or second row of the periodic table respectively. 

The van der Waals parameter for the oxygen atoms of the carboxyl group of 

the aspartate and glutamate side chains presented a problem. In the neutral form of 

these side chains, the oxygen atom in the -OH group is sp3 hybridized whilst that in –

C=O is sp2 hybridized. In neutral water, on the other hand, deprotonation occurs 

(Rappé and Casewit, 1997) to leave behind a spare electron that is delocalized over 
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the two oxygen atoms; in this case the oxygen atoms are neither sp2 nor sp3 

hybridized (Pauling, 1940). Whilst Florián and Warshel provide van der Waals radii 

for interactions between the dipoles and both sp2 and sp3 hybridized forms of the 

oxygen atom (Florián and Warshel, 1997), they do not provide parameters for the 

resonant case. Tests were, therefore, undertaken as part of this work to determine the 

most appropriate parameters. These tests revealed that the sp3 oxygen parameter of 

Florián and Warshel lead to acceptable results – they were, therefore, used for the 

work reported here. 

6.3.2. Generation of Solvation Free Energies of Amino Acid Side Chain 
Analogues 

The solvation energy for each of the side chain analogues in Table 6.1 was 

generated using the LD-Amber approach as described in §6.3.1. The analogue 

structures were derived from the acetyl and amino-methyl capped dipeptide of the 

associated amino acids using a two-stage process. In the first stage, 1296 structures 

obtained by systematically varying the backbone dihedral angles of the dipeptide in 

10° increments over the range of [−180°, 180°] were locally relaxed using the 

algorithm of Davidon (Davidon, 1975; Ponder, 2004) with an RMS gradient cutoff 

criterion of 0.01 Å; all other initial angles and bond lengths were defined by the 

Amber ff94 parameter set (Cornell et al., 1995). The analogue structure used in the 

LD-Amber simulations was then obtained by replacing the backbone atoms 

(including the caps) of the lowest energy member of the set of 1296 locally relaxed 

structures with an H  atom carrying a charge equal to that of the other Hβ atoms, and 

then subtracting the excess charge from the Cβ atom to ensure charge neutrality 

(Shirts et al., 2003). 

6.3.3. Generation of Free Energy Surface of Alanine Dipeptide in Neutral Water 

As direct determination of the free energy difference between conformer C1 

and conformer C2 in solution, 12Δ sG , is computationally very demanding, it is 

sometimes determined via the thermodynamic cycle illustrated in Figure 6.3 (Ben-

Naim, 1990), which gives 

 12 12 (2) (1)Δ Δ Δ Δs g
s sG G G G= + −  (6.16) 
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where ΔGs(i) is the free energy of solvation of the conformer Ci, and 12Δ gG  is the free 

energy difference between the conformers in the gas phase. Whilst determination of 

12Δ gG  is computationally less expensive than its solution-phase counterpart, it is still 

a non-trivial exercise and approximations are, therefore, often made. These 

approximations may be understood by considering the two aspects of the free energy 

difference between the two conformers in the gas phase at a temperature T 

 12 12 12Δ Δ Δg g gG U T S= −  (6.17) 

The potential energy component, 12Δ gU , can be evaluated very easily from 

knowledge of the three-dimensional structure of the two conformers and a potential 

energy model. The solute entropic component, 12Δ gT S , on the other hand is more 

difficult to determine and is, hence, often neglected to give 

 12 12 (2) (1)Δ Δ Δ Δs g
s sG U G G≈ + −  (6.18) 

This approximation is made here. 

Inline with common practice, the FES of the alanine dipeptide was determined 

as a function of the two backbone dihedral angles, φ and ψ, shown in Figure 6.4. The 

gas-phase PES over these angles was obtained from the Amber model using the 

associated ff94 parameter set (Cornell et al., 1995) by evaluating the potential energy 

1Cg
2Cg

1Cs
2Cs

(2)sGΔ(1)sGΔ

12
sGΔ

12
gGΔ

Solution phase

Gas phase

1Cg
2Cg

1Cs
2Cs

(2)sGΔ(1)sGΔ (2)sGΔ (2)sGΔ(1)sGΔ (1)sGΔ

12
sGΔ

12
gGΔ

Solution phase

Gas phase

Figure 6.3 The thermodynamic cycle commonly used to determine the difference 
in free energies of two conformers C1 and C2 in solution, 12

sGΔ , given knowledge 
of the free energy of solvation of the two conformations, ΔGs(i), and the free energy 
difference between the two conformers in the gas phase, 12

gGΔ . 
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of the 32400 structures obtained by varying these two angles in 2° increments over 

the range [−180°, 180°]. All bond lengths and angles, including the side chain 

dihedral angle, were kept fixed at their corresponding values obtained by locally 

relaxing the alanine amino acid structure from the equilibrium values specified by 

the Amber ff94 parameter set (Cornell et al., 1995). 

As indicated by equation (6.18), the FES of the alanine dipeptide in neutral 

water was determined by adding to the gas phase PES the free energies of solvation. 

These were determined for the 32400 conformers of the dipeptide using the LD-

Amber approach as described in §6.3.1. 

6.3.4. Generation of Electrostatic Potential Field from the LD-Amber Approach 
and MD 

Given a set of n charges, Qi, and m dipoles, μi, at positions ri relative to r, the 

electrostatic potential at that position, Φ(r), can be determined by 

 ( ) 3
1 10

1Φ
4

n m
i i i

i ii i

Q
πε r r= =

⎡ ⎤
= +⎢ ⎥

⎣ ⎦
∑ ∑ μ rr  (6.19) 

where ri is the magnitude of the position vector, and ε0 is the permittivity of free 

space. This expression was used to determine the electrostatic potential field (EPF) 

around the αL conformer of the alanine dipeptide as identified from the second part of 

this study using solvent configurations obtained from LD-Amber and MD 

simulations. 

The EPF for the LD-Amber approach was determined by averaging over the 

fields obtained from the final configurations of S = 10 LD-Amber simulations 

undertaken as described in §6.3.1. 
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Figure 6.4 Alanine dipeptide structure showing the two dihedral angles that define 
its backbone conformation. 
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The EPF field for the MD approach was determined by averaging over 1000 

snapshots taken at evenly spaced intervals from an MD simulation of 50,000 

timesteps of size 2 fs. The MD simulation was done in the canonical ensemble using 

the algorithm of Berendsen and co-workers (Berendsen et al., 1984) as implemented 

in the Tinker code (Ponder, 2004). The solute and water molecules, which were 

modeled using the TIP3P molecule (Jorgensen, 1981), were treated as rigid bodies. 

The solute-water interactions were modeled with the Amber potential with the 

associated ff94 parameter set (Cornell et al., 1995). A cutoff radius of 9 Å was used 

for all van der Waals interactions, while electrostatic interactions were evaluated 

using particle mesh Ewald method (Darden et al., 1993) with the same cutoff. The 

initial state of the MD simulation was generated by placing the solute molecule 

centrally into a cubic volume and then inserting water molecules into volume using 

grand canonical MC simulation with a chemical potential corresponding to a bulk 

water density of 1000 kg/m3 and a temperature of 298 K. The linear dimension of the 

volume was set to 30 Å more than the largest dimension of the solute. A total of 

1682 water molecules were simulated, which represented more than four complete 

hydration layers around the solute. The system obtained from the MC simulation was 

relaxed for 2500 MD timesteps before being used for production purposes. 

6.3.5. Comparison of Computational Performance 

The computational cost of the LD-Amber approach for determining the free 

energy difference between two conformations in solution is compared with that of 

traditional explicit approaches based on use of thermodynamic integration or similar 

strategies with a series of molecular dynamic (MD) simulations along a reaction 

coordinate between the two conformations (Anderson and Hermans, 1988; Tobias 

and Brooks, 1992; Chipot and Pohorille, 1998; Smith, 1999b). The computational 

expense of this approach depends on a number of issues – to ease comparison, the 

timing for a single MD simulation was scaled using conservative assumptions about 

these issues so as to give a reasonable best case estimate for the computational 

expense of the traditional explicit approach. Because timings are very dependent on 

the machine used amongst other things, all MD and LD-Amber simulations were 

performed using the same machine based on an AMD Athlon MP 1.4 GHz CPU with 

2 GBytes of RAM and running under Linux. 
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6.4. Results and Discussion 

6.4.1. Solvation of Amino Acid Side Chain Analogues 

The free energy changes for transfer of the amino acid side chain analogues 

from the gas phase to water at pH 7 estimated by the LD-Amber approach are given 

in Table 6.3 along with the constituent parts. These predicted solvation energies are 

generally inline with the hydrophobicity of the associated amino acids, bearing in 

mind that there are many ways in which this can be defined (Cornette et al., 1987). 

Analysis of the contributions to the solvation energy indicates that the change in free 

energy arising from the electrostatic and van der Waals interactions is in all cases 

offset by a decrease in the free energy of the water as reflected in the consistently 

positive hydrophobic contribution. Inline with their largely non-polar character, the 

analogues of Ala, Ile, Leu and Val are characterized by some of the largest 

hydrophobic contributions and smallest electrostatic contributions. Also as expected, 

the electrostatic contributions from the five charged analogues are an order of 

magnitude greater than the closest neutral analogues, and are the only analogues to 

see a significant contribution from the volume beyond that modeled by the Langevin 

dipoles. Amongst the neutral analogues, those of Asn, Gln, Ser and Thr are 

characterized by some of the largest electrostatic contributions and smallest 

hydrophobic contributions, inline with their known polar character. A similar balance 

between the contributions could also perhaps be expected for the analogue of Tyr 

given its known polar character – this somewhat anomalous result will be considered 

further below. 

Comparison of the results obtained here against experiment, Table 6.4 

(Wolfenden et al., 1981; Florián and Warshel, 1997; Smith, 1999a; Shirts et al., 

2003), shows that the LD-Amber approach leads to very good results for most of the 

analogues and acceptable results for the remainder. Although the largest relative 

deviation from experiment is 65% for the Phe analogue, the corresponding deviation 

of 2.07 kJ/mol is small compared to experimental uncertainty. The 15% and 26% 

relative deviations for the Ser and Met analogues, respectively, are similarly 

associated with small deviations and are, therefore, acceptable. The most 

disappointing results are those of the Asn, Trp, Gln and Tyr analogues, where the  
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Table 6.3 Free energy change for transfer of the amino acid sidechain analogues 
from the gas phase to water at pH 7 estimated by the LD-Amber approach, 

LD-Amber
sGΔ , and its constituent parts – electrostatic contribution due to solvent 

modeled by dipoles, ΔGes(LD), electrostatic contribution due to solvent volume 
beyond that modeled by dipoles, ΔGes(c), contribution due to van der Waals 
interactions between solute and dipoles, ΔGvdW, and hydrophobic contribution, 
ΔGphob. 

Side chain 
analogue of 

ΔGes(LD) 
(kJ/mol) 

ΔGes(c) 
(kJ/mol) 

ΔGvdW 
(kJ/mol) 

ΔGphob 
(kJ/mol) 

LD-Amber
sGΔ  

(kJ/mol) 
Ala -0.05 0.00 -5.90 14.51 8.56 
Arg+ -184.91 -41.49 -21.23 2.22 -245.41 
Asn -23.93 -0.94 -11.85 5.67 -31.06 
Asp- -282.75 -42.19 -11.22 1.38 -334.77 
Cys -5.01 -0.10 -8.55 8.13 -5.53 
Gln -24.26 -0.37 -13.69 7.52 -30.80 
Glu- -276.46 -42.42 -13.75 1.62 -331.02 
His+ -183.87 -42.03 -18.58 2.00 -242.49 
Ile -0.08 0.00 -12.83 21.99 9.07 
Leu -0.24 0.00 -12.95 21.74 8.55 
Lys+ -212.98 -42.20 -16.88 1.98 -270.07 
Met -4.44 -0.05 -13.05 12.97 -4.57 
Phe -4.12 0.00 -18.68 21.69 -1.11 
Ser -21.74 -0.85 -7.38 5.61 -24.36 
Thr -19.99 -0.30 -9.80 7.96 -22.13 
Trp -12.91 -0.10 -23.66 17.50 -19.17 
Tyr -15.12 -0.03 -19.28 15.67 -18.76 
Val -0.12 0.00 -10.92 20.02 8.99 

deviations from experiment are greater than experimental uncertainty and not an 

insignificant fraction – 22% to 27% – of the total. However, as will be seen below, 

the deviations are certainly no worse than those associated with other methods. It is 

interesting to note that three of the six analogues whose relative deviations from 

experiment exceed 20% are the only molecules that contain a benzene ring. This 

could suggest a particular incompatibility between the Amber charge distribution for 

the aromatic carbon atoms and the associated LD van der Waals radius or, 

alternatively, the difficulties faced in identifying unambiguously this radius for atoms  

 



 115

Table 6.4 Comparison of solvation free energies from LD-Amber, LD-Amber
sΔG , the LD 

method (Florián and Warshel, 1997), LD
sGΔ , a continuum method (Smith, 1999a), 

C
sGΔ , a traditional explicit method (Shirts et al., 2003), ES

sGΔ , and experiment, e
sGΔ . 

Sidechain 
analogue of 

LD-Amber
sGΔ   

(kJ/mol) 

LD
sGΔ      

(kJ/mol) 

C
sGΔ         

(kJ/mol) 

ES
sGΔ      

(kJ/mol) 

e
sGΔ       

(kJ/mol) 
0.44 -0.59 -1.72 1.25 

Ala 8.56 
5% 

7.53
7% 

6.4
21% 

9.37 
15% 

8.12† 

- - Arg+ -245.41 
- 

- -246.3
- 

- None available
9.44 3.26 -6.90 4.89 Asn -31.06 
23% 

-37.24
8% 

-47.4
17% 

-35.61 
12% 

-40.50† 
10.33 18.75 1.40 Asp- -334.77 
3% 

-326.35
5% 

-343.7
<1% 

- -345.10‡ 
-0.34 -1.09 4.29 2.89 Cys -5.53 
7% 

-6.28
21% 

-0.9
83% 

-2.30 
56% 

-5.19† 
8.45 -3.55 3.14 Gln -30.80 
22% 

- -42.8
9% 

-36.11 
8% 

-39.25† 
6.58 1.50 Glu- -331.02 
2% 

- -336.1
<1% 

- -337.60‡ 
5.11 -8.70 His+ -242.49 
2% 

- -256.3
4% 

- -247.60‡ 
0.07 -0.63 -0.70 1.17 Ile 9.07 
1% 

8.37
7% 

8.3
8% 

10.17 
13% 

9.00† 
-0.99 -2.24 -0.04 Leu 8.55 
10% 

- 7.3
23% 

9.50 
<1% 

9.54† 
7.73 2.90 Lys+ -270.07 
3% 

- -274.9
1% 

- -277.80‡ 
1.62 5.79 4.73 Met -4.57 
26% 

- -0.4
94% 

-1.46 
76% 

-6.19† 
2.07 1.08 -0.42 Phe -1.11 
65% 

- -2.1
34% 

-3.60 
13% 

-3.18† 
-3.19 -3.93 -4.53 2.30 Ser -24.36 
15% 

-25.10
19% 

-25.7
21% 

-18.87 
11% 

-21.17† 
-1.71 -1.76 -5.98 2.76 Thr -22.13 
8% 

-22.18
9% 

-26.4
29% 

-17.66 
14% 

-20.42† 
5.43 2.20 4.18 Trp -19.17 
22% 

- -22.4
9% 

-20.42 
17% 

-24.60† 
6.80 -7.84 2.72 Tyr -18.76 
27% 

- -33.4
31% 

-20.84 
11% 

-25.56† 
0.66 0.04 -0.43 1.46 

Val 8.99 
8% 

8.37
<1% 

7.9
5% 

9.79 
18% 

8.33† 

Deviations and relative deviations (%) from experiment are given as superscripts and subscripts to 
predictions respectively. 
† (Wolfenden et al., 1981) 
‡ (Smith, 1999a) 
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that are part of a resonant structure (Florián and Warshel, 1997). Two of the 

remaining analogues whose relative deviations from experiment exceed 20% – those 

of Asn and Gln – are the only molecules that contain a carboxyamide group. This 

and the fact that the associated deviations from experiment are similar to those for 

the (charged) analogues that contain constituent parts of the carboxyamide group (i.e. 

NH2 or sp2 hybridized oxygen) suggest that one or more of the constituent parts of 

this group may be the source of the discrepancy. 

Table 6.4 includes results obtained by Florián and Warshel (Florián and 

Warshel, 1997) for the eight analogues considered by them. Comparison of these 

results with those generated here reveals the latter to be better in all but two cases. 

The average deviation from experiment for the eight analogues is 3.27 kJ/mol 

compared to 3.76 kJ/mol for those of Florián and Warshel, whilst the corresponding 

average relative deviations are 9% and 10% respectively. Comparison of our results 

with those obtained by Smith (Smith, 1999a) using a continuum solvent based model 

(column 4 of Table 6.4) provides, on first glance, a more mixed picture. The average 

deviation of our results from experiment is 4.17 kJ/mol compared to 3.63 kJ/mol for 

those of Smith. This larger average deviation should, however, be contrasted with the 

average relative deviation of our results which, at 15%, is some 8% less than that 

associated with the results of Smith. This reflects the fact that, whilst the continuum 

solvent based method used by Smith works particularly well for the charged 

analogues (average deviation and relative deviation from experiment are 3.63 kJ/mol 

and 1% compared to 7.44 kJ/mol and 2% for the results obtained here), it is 

particularly poor for the uncharged analogues where the average deviation and 

relative deviation are 3.63 kJ/mol and 30% compared to 3.17 kJ/mol and 18% for our 

results. Comparison of the results generated here with those obtained by Shirts and 

co-workers (Shirts et al., 2003) for the neutral analogues using a traditional explicit 

solvent based approach, column 5 of Table 6.4, reveals our results to be better in 7 

out of the 13 cases. This is reflected in a slightly better average relative deviation 

here of 18% against 20% for Shirts et al., although the average deviation from 

experiment for our results is 0.71 kJ/mol worse at 3.17 kJ/mol. 

It can be concluded from the above analysis that use of the Amber potential 

model within the LD framework of Florián and Warshel (Florián and Warshel, 1997) 
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produces results that are consistent and of an accuracy similar to those produced by 

other methods. Perhaps the only cause for concern in using Amber within the LD 

framework are the less than accurate results for the three analogues that contain a 

benzene ring and the two that contain the carboxyamide group. Although the 

accuracy of the results obtained here for these analogues are not substantially worse 

than those of other methods or excessive compared to experimental uncertainty, 

improved results may follow re-parameterization of the van der Waals radius 

associated with the interaction between the dipoles and the aromatic carbon atom and 

constituent atoms of the carboxyamide group. 

6.4.2. Free Energy Surface of Alanine Dipeptide in Neutral Water 

Experimental and theoretical studies all suggest the FES of alanine dipeptide is 

characterized by a number of local minima depending on the environment. The first 

group of commonly cited minima is associated with seven and five membered ring 

structures – denoted by C7eq, C7ax and C5 – formed by an intramolecular hydrogen 

bond between the CO and NH groups at the ends of the peptide. The remainder of the 

commonly cited minima are associated with more extended structures, with their 

dihedral angles being similar to those of the left-handed polyproline II helix, denoted 

by PII, and right- and left-handed alpha helices, which are denoted by αR and αL, 

respectively (it should be noted that whilst the angles are similar to those found in 

these helical structures, they are not PII- or α-helices per se as the intramolecular 

hydrogen bond pattern that defines them is absent due to, clearly, an insufficiency of 

residues). As the dihedral angles of the C7eq, C5 and PII conformers are all located 

within the β region of the Ramachandran plot, one or more of them are sometimes 

collectively denoted as β conformers (often without distinction). 

The PES of the alanine dipeptide in the gas phase shown in Figure 6.5 reveals 

five separate minima. As with most previous theoretical studies (Pettitt and Karplus, 

1988; Tobias and Brooks, 1992; Gould et al., 1994; Schmidt and Fine, 1994; Buesnel 

et al., 1997; Chipot and Pohorille, 1998; Apostolakis et al., 1999; Rosso et al., 2005), 

the global potential energy minimum is associated with the C7eq conformer, located 

here at o80= −φ  and o76ψ =  where 108.45kJ/molU = − . The energy of the C5 

conformer, located here at o152= −φ  and o166ψ = , is only slightly higher at 
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107.68kJ/molU = −  – this result is also very much inline with most of the previous 

studies already cited which consider more than the two C7 conformers (Tobias and 

Brooks, 1992; Gould et al., 1994; Buesnel et al., 1997; Chipot and Pohorille, 1998). 

The potential energies of the other two commonly known conformers, αL and C7ax, 

are substantially higher at 63.00kJ/molU = −  ( o52=φ , o36ψ = ) and 

60.41kJ/molU = −  ( o56=φ , o98ψ = − ) respectively. This order is the reverse of 

those studies already cited which consider these conformers (Gould et al., 1994; 

Chipot and Pohorille, 1998). The minimum with 83.04kJ/molU = −  at o154= −φ  

and o56ψ = −  is located in the α-helix region of the Ramachandran plot, but does not 

correspond to the traditional αR structure, which is typically located at much lower 

values of φ. It does, however, correspond to the α’ conformer identified by Head-

Gordon and co-workers (Head-Gordon et al., 1991) for an analogue of the alanine 

dipeptide obtained by replacing the terminal methyl groups with hydrogen atoms; 

this conformer is, therefore, denoted here accordingly. 

It is interesting to compare in greater detail the PES obtained here with that of 

Gould and co-workers (Gould et al., 1994), as their results form the basis for the 

Amber ff94 parameter set. The potential energy difference obtained here between the 

two most stable conformers and their associated angles are very much inline with 

those of these workers, which is particularly encouraging given our interests lie 

primarily in this part of the Ramachandran plot. As already indicated, the order of 
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Figure 6.5 Potential energy surface (PES) of alanine dipeptide determined using 
the Amber potential model with the associated ff94 parameter set (Cornell et al., 
1995). 
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stability of the αL and C7ax conformers obtained here is the reverse of that obtained 

by Gould and co-workers (Gould et al., 1994) – this difference most likely arises 

from our decision to not locally relax the sidechain structure when generating the 

PES. Gould et al. identify three conformers –β2 ( o131= −φ , o22ψ = ), αR ( o61= −φ , 
o41ψ = − ) and β ( o58= −φ , o134ψ = − ) in order of decreasing stability – which do 

not appear to exist in the gas-phase PES obtained here. However, as all the angles 

associated with these minima lie within a rather flat bottomed low-energy region as 

shown in Figure 6.5, these minima may well appear if the side chain were to be 

locally relaxed. Indeed, as will be seen below, two of these minima subsequently 

appear on solvation of the gas-phase structure, suggesting that nascent minima may 

in fact exist in the PES. 

Figure 6.6 shows the FES of the alanine dipeptide in neutral water evaluated 

using the PES of Figure 6.5 and the solvation energies obtained from the LD-Amber 

approach. This figure reveals all the expected minima as well as two additional 

minima. The first of these additional minima is located in the lower left hand corner 

of the β sheet region and is connected to both the C5 and αR regions – this minimum 

has been denoted here by β2 following Gould et al. who predicted a very similar 

structure (Gould et al., 1994). The second additional local minimum is to the left of, 

and directly connected to, the traditional αR minimum. As already indicated in the 

discussion above, this minimum appears to arise from the α’ minimum in the gas-

phase PES and, as such, has been denoted here accordingly. 
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Figure 6.6 Free energy surface (FES) of alanine dipeptide in neutral water 
determined using the PES in Figure 6.5 and solvation energies obtained from the 
LD-Amber approach. 
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Table 6.5 Minima identified here for the alanine dipeptide in neutral water and 
saddle points between a selection of these minima with associated dihedral angles 
and free energy values. 

Conformer φ  ψ  Δ sG  kJ/mol 

αR -70° -36° -152.157 
PII

 -78° 166° -149.438 
C5 -138° 166° -147.076 

C7eq -86° 60° -141.318 
α’ -146° -50° -141.197 
β2 -130° 14° -140.877 
αL 48° 44° -127.672 

C7ax 56° -166° -113.663 
PII↔C5 -112° 168° -143.718 

PII↔C7eq -80° 76° -140.056 
C7eq↔αR -88° 34° -138.349 
C5↔β2 -152° 74° -135.855 
αR↔β2 -118° 10° -139.173 
αR↔α’ -124° -50° -138.227 

Table 6.5, which gives details of the free energy minima of Figure 6.6 and the 

saddle points between them, shows the αR conformer to be the most stable. The free 

energy difference between this and the PII conformer and the low barriers along the 

pathways between them (shown in Figure 6.7) suggests, however, that the latter may 

also be well populated at equilibrium. The small free energy difference between the 

C5 and PII conformers and the low barrier between them (Figure 6.7) suggests that 

the former may also be partially populated, although clearly less so than the αR and 

PII states. The remaining conformers are unlikely to be significantly populated at 

equilibrium because, as illustrated in Figure 6.7, the energy levels are substantially 

higher than those of the three lowest states and the barriers for movement into them 

from these states are considerable. 

Whilst there is still some debate, the vast majority of the experimental work to 

date suggests the alanine dipeptide in water takes on either the PII conformation 

(Poon et al., 2000; Kim et al., 2005), or rapidly switches back and forth between this 

and the αR conformation (Madison and Kopple, 1980; Han et al., 1998; Poon et al., 

2000; Gnanakaran and Hochstrasser, 2001; Mehta et al., 2004). One of the 
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experimental studies (Takekiyo et al., 2004) also suggests the C5 conformer may 

exist at equilibrium. There is very little recent experimental evidence for the 

existence of any other of the conformers at equilibrium. The free energy surface 

obtained here appears, therefore, to be inline with the experimental evidence 

excepting that which indicates the PII conformation dominates (Poon et al., 2000; 

Kim et al., 2005). 

There is an abundance of theoretical studies concerned with the alanine 

dipeptide in water. Unfortunately, the predicted energy levels, and even the 

differences between them, vary from study to study. These disagreements arise for a 

variety of reasons including differences in the solvent models (Smith, 1999b; 

Freedman and Truong, 2004), potential energy models (Resat et al., 1997; Hu et al., 

2003), free energy components included (e.g. some include the solute entropic 

contribution whilst many do not), levels of accuracy (e.g. quantum model level; 

number of MC steps), and structures used (e.g. gas phase structures). All these make 

quantitative comparison between model predictions very difficult. There is scope, 

however, for a qualitative comparison at least in terms of order of conformer stability 

and the range in which the angles fall. 

Analysis of those studies that give the relative free energies of the dipeptide in 

water, which are summarized in Table 6.6, (Stillinger and Rahman, 1974; Rossky et 

al., 1979; Jorgensen, 1981; Pettitt and Rossky, 1982; Jorgensen et al., 1983; Hermans 

et al., 1984; Anderson and Hermans, 1988; Pettitt and Karplus, 1988; Tobias and 

Brooks, 1992; Gould et al., 1994; Schmidt and Fine, 1994; Cornell et al., 1995; 

Buesnel et al., 1997; Florián and Warshel, 1997; Smart et al., 1997; Chipot and 

Pohorille, 1998; Apostolakis et al., 1999; Smith, 1999b; Hu et al., 2003; Rosso et al., 

2005) reveals that 11 predict one of the β-sheet conformers (5 × PII, 5 × β and 1 × β2) 

to be the most stable against six for the αR conformer. Further analysis also shows 

that the β-sheet and αR conformers are predicted to be the second most stable in nine 

(2 × PII, 2 × β, 4 × C5 and 1 × C7eq) and six cases, respectively. Bearing in mind the 

many differences between the models of Table 6.6, the results obtained here are in 

line with these previous studies. 
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The dihedral angles of the α-helical and β-sheet conformers obtained here all 

fall within their respective regions as normally defined. Analysis of Table 6.6 also 

indicates that the vast majority of the angles predicted here fall within the range of 

values obtained in the previous studies. The only two exceptions are the ψ angle of 

the αR conformer, which falls some 5° above the highest previously predicted value 

of −41° (Buesnel et al., 1997), and the same angle for the C7ax conformer, which is 

26° below the lowest previously predicted value of −140° (Smart et al., 1997) – as 

discussion above suggests, these differences most likely arise from our not relaxing 

the sidechain when generating the gas-phase PES. The dihedral angles of the C7eq 

conformer are also both slightly below the range of angles predicted by others (Pettitt 

and Karplus, 1988; Gould et al., 1994; Buesnel et al., 1997). Whilst the approximate 
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Figure 6.7 Schematic showing to scale the free energies (kJ/mol) associated with 
the minima on the left hand side of the FES in Figure 6.6 and the transition states 
between them. All energies are given relative to the global energy minimum 
associated with αR conformation. 
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Table 6.6 Comparison of order of stability of alanine dipeptide conformers as indicated by various predictions of relative free energies in water 

Reference Method† SM‡ PE Conformations in order of most stable (left) to least stable (right) in water* 

(Pettitt and Karplus, 
1988) XRISM PR-TIP (Rossky et al., 

1979) 
PII 

-56°, 171° 
~C7ax 

63o, -69o 
C5 

-177°, 180°
C7eq 

-66°, 70° 
αL 

63°, 49° 
αR 

-68°, -56° 
 

(Anderson and Hermans, 
1988) MD-TI SPC 

CEDAR 
(Hermans et 

al., 1984) 

β 
-110°, 120°

αR 

-120o, -40o 
αL 

60°, 100° 
C7ax 

70°, -60° 
   

(Tobias and Brooks, 
1992) MD-FEP TIP3P CHARMM19 β (≅PII) 

-80°, 120° 
αR 

-80o, -60o 
C7ax 

60°, -80° 
αL 

60°, 60° 
   

(Gould et al., 1994) QM SCRF HF/6-31G** 
β2 

-112°, 23° 
β 

-118°, 133° 
C7eq 

-73°, 75° 
C7ax 

75°, -73° 
αL 

68°, 39° 
  

(Schmidt and Fine, 
1994) - PB/ 

NP-SAS CFF91 
PII 

-70°, 150° 
C5 

-150°, 150° 
αR 

-90°, -60° 
αL 

70°, 70° 
C7ax 

80°, -70° 
  

(Buesnel et al., 1997) 
MC-FEP 
QM/MD 

TIP3P 
CHARMM 

AM1 
MP2/6-31G**

αR 
-61o, -41° 

C7eq 
-73°, 75° 

β2 
-112°, 23° 

C5 
-179°, 180°

β 
-118°, 133°

αL 
69°, 39° 

C7ax 
75°, -73° 

(Smart et al., 1997) SD/MC PB/ 
NP-SAS CHARMM β (≅PII) 

-70°, 120° 
αR 

-70o, -50o 
C5 

-160°, 150°
αL 

50°, 50° 
C7ax 

50°, -140° 
  

(Chipot and Pohorille, 
1998) MD-US TIP4P AMBER β ~αR C5 C7eq    

PB β (≅PII) 
-73°, 132° 

αR 
-69o, -61o 

C7ax 
56o, -88° 

    
(Smith, 1999b) MD-US 

TIP3P 

CHARMM22 
 αR 

-72°, -56° 
β (≅PII) 

-80°, 162° 
C7ax 

61°, -133° 
αL 

59°, 57° 
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Table 6.6 continued 

Reference Method† SM‡ PE Conformations in order of most stable (left) to least stable (right) in water* 

(Apostolakis et al., 
1999) MD-US CHARMM19/23 

PII
# 

-75°, 136° 
C5 

-147°, 152° 
αR 

-76o, -50° 
C7ax 

57°, -84° 
αL 

51°, 81° 
αL’ 

65°, 143° 
 

CHARMM22 αR ~β      
AMBER98 αR β      

OPLS β αR αL C7ax    (Hu et al., 2003) MD TIP3P 

SCCDFTB 
AMBER98 

β αR αL C7ax    

(Rosso et al., 2005) MD-AFED ? CHARMM22 
αR 

-81°, -63° 
β (≅PII) 

-81°, 153° 
C7ax 

63°, -117° 
    

This study - LD-
Amber AMBER94 

αR 
-70°, -36° 

PII 
-78°, 166° 

C5 
-138°, 166°

C7eq 
-86°, 60° 

αR2 
-146°, -50°

β2 
-130°, 14° 

αL 
48°, 44° 

           
† Method: Extended reduced interaction-site method (XRISM) (Pettitt and Rossky, 1982); Monte Carlo (MC); molecular dynamics (MD); quantum mechanics (QM); free 
energy perturbation (FEP); thermodynamic integration (TI); umbrella sampling (US). 
‡ Solvent model: self consistent reaction field (SCRF); Poisson-Boltzmann only (PB); Poisson-Boltzmann with non-polar contributions included via solvent-accessible 
surface area term (PB/NP-SAS); Langevin dipole (Florián and Warshel, 1997) with Amber and associated ff94 parameter set (Cornell et al., 1995) (LD-Amber); explicit 
model using the following water molecule models: TIPS model (Jorgensen, 1981) as modified by Pettitt and Rossky (PR-TIP) (Pettitt and Rossky, 1982); TIP3P model 
(TIP3P) (Jorgensen et al., 1983); TIP4P model (TIP4P) (Jorgensen et al., 1983); SPC model (SPC) (Stillinger and Rahman, 1974). 
* Only conformers considered in the studies are shown. Associated dihedral angles φ and ψ are shown, respectively, when given by authors. Where authors indicate a β-sheet 
structure only, the conformer with angles nearest those given by the authors is indicated in parentheses. 
# Apostolakis and co-workers (Apostolakis et al., 1999) assigned the dihedral angles of o75= −φ  and o136ψ =  to C7eq. These angles are, however, more properly associated 
with the PII conformer. 
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nature of the gas-phase PES undoubtedly has a part to play in this, the small 

differences can also be blamed on the difficulties faced in identifying precisely the 

location of this weak and broad minimum. 

6.4.3. Electrostatic Potential Field and Water Structure around Alanine 
Dipeptide 

The electrostatic potential fields (EPF), Φ(r), generated from MD and LD-

Amber on a plane through the αL conformation of the alanine dipeptide in neutral 

water are compared in Figure 6.8. In order to better enable comparison, the solute 

contribution to the field, which is the same in both cases, has been removed and the 

fields normalized (this was done because the numerical values were somewhat 

different as expected from two different solvent models). The focus on the αL 

conformation and the plane shown in Figure 6.8 is motivated by the work of Beglov 

and Roux (Beglov and Roux, 1995), which indicates hydrogen bonded water bridges 

exist between the hydrogen atoms in this plane and the oxygen atoms just above and 

below the plane as indicated at the bottom of Figure 6.8. 

Although the EPF obtained from the LD-Amber approach is smoother and 

somewhat more diffuse than that obtained from MD, there are many similarities 

between them. Both are clearly characterized by regions of significant negative and 

positive potential above and below 0y = , respectively. Whilst these regions in the 

MD field consist of two separate extrema connected by a saddle point, it is clear that 

spatial smoothing of this field would lead to a single extremum in each region similar 

to that seen in the LD-Amber field. There are also striking similarities in the 

symmetry of the two fields about 0x =  – in both cases the global minimum and 

maximum are located above x = 0, the positive regions are cusped upwards at the 

left-hand end and rounded at the other, and all the regions are tilted slightly upwards 

from left to right. The LD-Amber-related 3D contour plot shown in Figure 6.8 

indicates the existence of a number of smaller extrema distributed around the two 

global extrema. Although noise due to poor sampling makes it difficult to discern 

similar extrema in the MD field with any precision, there are hints of such extrema as 

indicated by the arrows in the MD-related 3D contour plot in Figure 6.8. 
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Figure 6.8 Two-dimensional (2D) and three-dimensional (3D) contour plots of the 
electrostatic potential field (EPF) on the plane through the αL conformation of the 
alanine dipeptide shown at the bottom of the figure when in neutral water as 
predicted by an explicit approach based on the MD (top) and the LD-Amber 
approach (middle); the position of the hydrogen and nitrogen atoms in the plane 
are shown on the 2D contour plots. The termini of the two hydrogen bridges that 
are responsible for the EPF extrema are shown by double-ended arrows in the 
figure at the bottom. 
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Geometric analysis of the MD-based field suggests the negative region above 

0y =  can be attributed to a water bridge between the two solute hydrogen atoms in 

the plane. In particular, the distances between the left-hand and right-hand solute 

hydrogen atoms and the corresponding peaks are ~ 1.96Å  and ~ 1.91Å , respectively 

– almost exactly inline with the theoretical values – whilst the distance between the 

two negative extrema is ~ 2.7 Å , very much inline with the structure suggested by 

Beglov and Roux (Beglov and Roux, 1995) (Figure 4 in their paper suggests the 

distance is less than (because the O-H O⋅ ⋅ ⋅  distance is not co-linear) 

1.92 0.95 2.87 Å+ = , where the second value in this sum is the canonical O-H bond 

length). 

Geometric analysis of the positive region below 0y =  is more difficult. It is, 

however, not unreasonable to attribute this region to the hydrogen atoms of one of 

the two water molecules that constitute a bridge between the solute oxygen atoms as 

indicated at the bottom of Figure 6.8. The existence of the two maxima indicates the 

oxygen atom of the water molecule “bonded” to the solute oxygen above the plane is 

in a downwards position, whilst the differences in the heights of the maxima suggests 

the distance between the hydrogen atoms of the water molecule are different. 

It is clear that comparison of the electrostatic potential field derived from MD 

with that obtained from the LD-Amber approach can aid in the interpretation of the 

latter in terms of the solvent structure despite its smoothed character. Of course, it 

would make no sense to undertake such a comparison in general! However, as 

inversion of smoothed data to obtain atomic-level (albeit non-unique) detail has long 

been practiced in a variety of other fields, it is reasonable to suppose that such 

inversion processes may well work here. 

6.4.4. Computational Performance 

The computational expense of traditional explicit approaches based on use of 

thermodynamic integration or similar strategies with a series of Monte Carlo (MC) or 

molecular dynamic (MD) simulations along a “reaction coordinate” between the two 

conformations (Anderson and Hermans, 1988; Tobias and Brooks, 1992; Chipot and 

Pohorille, 1998; Smith, 1999b) depends on a number of issues including the number 

of steps (i.e. simulations) along the reaction coordinate, the length of the simulations, 
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and the number of water molecules involved. So as to get a reasonable best case 

estimate for the expense of the traditional explicit approach, it is assumed that just 

three simulations of 120k timesteps each are required along the reaction coordinate, 

and that only the first solvation layer is explicitly included, as proposed by Beglov 

and Roux (Beglov and Roux, 1995). 

An 120k timestep MD simulation involving 165 rigid TIP3P (Jorgensen et al., 

1983) water molecules and a single rigid alanine dipeptide molecule in the αL 

conformation undertaken using Tinker (Ponder, 2004) took 464 minutes on the 

machine described in §6.3.5. Assuming the execution time of an MD simulation is a 

quadratic function of the number of atoms, this time would be reduced to 

approximately 40 minutes using the approach of Beglov and Roux (Beglov and 

Roux, 1995) in which only 43 water molecules are required. A good best case 

estimate of the total time required is, therefore, around 120 minutes. Whilst this 

estimate will be used here for comparison, it is recognized that it is optimistic, as 

more than three simulations would typically be required for results of better quality. 

Furthermore, there is evidence that explicit modeling of only the first hydration layer 

may be inadequate (Pal et al., 2002; Lee and Olson, 2005) and could lead to poor 

results (Frimand et al., 2000). 

As indicated by equation (6.18), determination of the free energy difference 

between two conformers in the solution phase using the LD-Amber approach 

involves first evaluating the free energies of solvation of the two conformers using 

the method and then adding in the free energy difference between the conformers in 

the vapor phase. With each LD-Amber simulation taking approximately 0.6 seconds 

on the machine used here (described in §6.3.5) the total time required to evaluate the 

solvation free energies of the two conformers, assuming 10 simulations per 

conformer is sufficient, is 12 seconds. Assuming the free energy difference between 

the two conformers in the gas phase is evaluated following the protocol outlined 

above for the solution phase calculations leads to a total time of around 165 seconds 

for the LD-Amber-based approach, which is approximately 3% of the time estimated 

for the traditional explicit approach. 
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6.5. Conclusions 

A thorough assessment of the use of the Amber potential model within the 

Langevin dipole (LD) framework of Warshel and co-workers – which we have 

termed LD-Amber to differentiate it from the various LD incarnations of these 

workers – was undertaken to assess the accuracy of this approach and its speed. The 

first part of the assessment involved comparison of the LD-Amber predictions for 18 

amino acid side chain analogues with experimental and other theoretical results. This 

comparison showed the approach is able to produce results consistent with the 

experimental data and of similar accuracy to those produced by the best implicit and 

explicit methods. The second part of the assessment involved comparison of the LD-

Amber-based free energy surface (FES) of the alanine dipeptide in neutral water with 

the published experimental and theoretical data. This comparison showed that the 

LD-Amber approach is able to produce a FES consistent with the vast majority of the 

experimental and theoretical results available in the literature. An approximate 

analysis undertaken here showed that this could be done with just 3% of the 

computational effort required if traditional explicit approaches are used. Finally, by 

comparing the electrostatic field for an alanine dipeptide conformer in neutral water 

obtained from the LD-Amber approach with that obtained from a molecular 

dynamics simulation, it was shown that the LD-Amber approach (and, therefore, LD 

method in general) is able to recover the correct field at a local level – this may offer 

the opportunity to establish the solvent structure from LD results using an inverse 

process. This ability to capture the solvent restructuring phenomenon gives the LD-

Amber and other LD-based methods an advantage over somewhat computationally 

cheaper implicit solvent techniques. 
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Chapter 7.  EA Based Study of Met-enkephalin in 
Water and at a Graphite-Water Interface 

7.1. Introduction 

It was shown in Chapters 4 and 5 that protein 3D structure in a gas phase and at 

the gas-solid interface could be predicted successfully using an EA based approach. 

Chapter 6, on the other hand, demonstrates that effects of protein solvation can be 

accurately incorporated into the free energy of the system with a very low 

computational cost using our LD-Amber model. The LD-Amber model is, however, 

used only to calculate the solvation free energy associated with a single 3D structure 

of a protein. In this chapter, we develop a method in which previous evolutionary 

algorithms are enhanced by embedding the contribution of the free energy of 

solvation into the EA fitness function. The LD-Amber facilitated EA method has 

been termed as LD-EA. 

The LD-EA method has been applied to determine the 3D structure of met-

enkephalin molecule (used in gas phase studies in Chapter 4) in water solution and at 

the interface between graphite and water. Met-enkephalin has previously been 

studied in a capped form. In water solutions, however, effect of explicit charges may 

be very important and the molecule is studied in both capped and zwitterionic forms 

here. The differences between the two forms are first briefly introduced, along with 

the description of the other elements of the system and a detailed explanation of the 

LD-EA method. The LD-EA method is then utilised to predict the structures of met-

enkephalin in water solution and at the graphite-water interface. The structures are 

analysed and compared to the corresponding results obtained in the gas phase and at 

graphite-vacuum interface. 
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7.2. Model Details 

7.2.1. Peptide 

A large part of our work has been based on application of EA in prediction of 

3D structure of the small polypeptide, met-enkephalin (Hughes et al., 1975). Since 

we have accumulated significant amount of experience on this system, we have 

decided to extend its study within a modified environment. Although it is beyond the 

scope of this specific study, further investigation of met-enkephalin may help us in 

analysing the differences between EA performance in predicting the vacuum and 

solvated structures of the same molecule. It should be noted that whilst our previous 

work was focused on investigation of EA ability to locate the global minimum of a 

function, this study is also oriented towards application of EA in predicting 

experimentally observed 3D structure of met-enkephalin. This has inevitably led to 

some changes in modelling of the molecule. Whilst the earlier study was conducted 

on polypeptide molecule with termini capped by electroneutral groups, most of the 

experimental studies that involved met-enkephalin have been performed using 

regular –NH2-group on N-term and –COOH on C-term. However, Amber force field 

that we used in the earlier study of the LD method does not contain parameters for 

such terminated proteins. Rather than that, N- and C-termini are protonated and 

deprotonated, respectively, to form a zwitterionic form characterised by the presence 

of –NH3
+ and –COO- groups on opposite ends of the molecule. Justification for 

investigation of zwitterionic molecule comes from some experimental studies 

(Roques et al., 1976; Jones et al., 1977), which have been performed in pH 

conditions that favour ionisation of end groups and formation of zwitterionic met-

enkephalin molecule. Since the Amber force field that we have used in our previous 

LD study operates only with polarised termini and experimental results for this form 

of the molecule have already been collected, we have decided to use the zwitterionic 

form for testing the LD-EA method and its applicability in prediction of protein 3D 

structure. However, since our secondary goal was to compare the optimal structures 

obtained in vacuum and in water solution, we have also conducted one group of 

solvent-based simulations using met-enkephalin molecule capped with acetyl- and 

amino-methyl-groups – the same form as the one used in our previous, vacuum-
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based investigation. Chemical structures of the two met-enkephalin forms are shown 

in Figure 7.1. 

Most of the atom parameters were taken from the Amber PE model (Cornell et 

al., 1995). As in our earlier LD-Amber study, atomic van der Waals radii for 

exclusion of water dipoles in the inner LD grid were taken from the original 

description of the method by Florián and Warshel (Florián and Warshel, 1997). 

Initial coordinates of atoms were calculated using the procedure already described in 

EA performance study. In short, each residue was capped with acetyl and amino-

methyl groups on N- and C-termini, respectively, and allowed to relax using BFGS 

local minimisation algorithm. Bond lengths, angles and dihedrals obtained in the 

procedure were then translated into atomic coordinates and incorporated in met-

enkephalin molecule. The ending residues, tyrosine and methionine, were subjected 

to somewhat modified procedure for calculation of their atomic coordinates in 
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Figure 7.1 Molecular structure of two forms of met-enkephalin considered in this 
study: (a) capped and neutral; (b) zwitterionic. 
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zwitterionic form of met-enkephalin. In order to evaluate its bond characteristics in a 

more precise way, tyrosine was modified only by adding amino-methyl group to its 

C-terminus, whilst the N-terminus was modelled as ammonium group, –NH3
+. 

Analogously, initial atomic coordinates for methionine in zwitterion were obtained 

from a residue capped with acetyl group on N-terminus and representing C-terminus 

as –COO-. 

7.2.2. Solvent 

Description of the solvent is the same as that used in the development of the 

LD-Amber method (Mijajlovic and Biggs, 2007b). The only substantial difference in 

modelling is in the size of the system. Whilst the previous study was conducted on 

smaller molecules with up to 22 atoms for alanine dipeptide, zwitterionic met-

enkephalin has 75, whilst the capped form includes 84 atoms. This has serious 

implications on computational cost as it extends duration of a single solvation energy 

calculation by 5-10 times. This problem has been approached by implementation of 

code execution in parallel environment. 

The initial step of the procedure is equivalent to a regular, sequential execution 

of LD-Amber method. As a reminder, the calculation starts by taking a set of atomic 

coordinates as input and displacing the molecule in 10 random positions around the 

origin of the coordinate system. In the parallel version, each of these 10 random 

positions is sent to a different processor which calculates Langevin, hydrophobic, 

Lennard-Jones and bulk solvent energy for a single position. This enables 

synchronous calculation of solvation energies for all these positions. Finally, when 

the last of the parallel processes finishes, the results are returned to the master CPU, 

which averages them up. Although the speed of the whole procedure depends on the 

slowest of the solvation energy calculations, the whole procedure is considerably 

faster than serial evaluation of solvation energies for different positions in a loop. 

Free energy surface (FES) of met-enkephalin in water is constructed 

analogously to that of alanine dipeptide in the LD-Amber study (Mijajlovic and 

Biggs, 2007b). The difference in the free energies of two solvated conformations can 

be approximated as the sum of the difference in their potential energies and the 

difference of their free energies of solvation 
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 12 12 s(2) s(1)Δ Δ Δ Δs gG U G G≈ + −  (7.1) 

where 12Δ gU  is the potential energy difference between conformations 1 and 2, 

calculated using Amber PE model (Cornell et al., 1995), and ΔGs(i) is free energy of 

solvation for structure i. 

In order to utilise equation (7.1) in evaluation of fitness function for 

evolutionary algorithm, the free energy of a single conformation in water is 

calculated from an analogous expression 

 ( )Δs g
i i s iG U G= +  (7.2) 

where g
iU  is now the potential energy of a molecule in conformation i, while ΔGs(i) 

is its free energy of solvation, as above. 

Potential energy of the molecule is, like in the vacuum studies, expressed as a 

sum of electrostatic, Ues, van der Waals, UvdW, and torsional term, Utor, while bond 

lengths and angles between neighbouring chemical bonds are kept rigid, for which 

reason their contribution remains constant throughout the simulation and is not 

calculated. Free energy of solvation is decomposed as in our LD-Amber study and 

consists of proper Langevin dipole term, ΔGes(LD), hydrophobic, ΔGphob, and van der 

Waals, ΔGvdW, terms and contribution of implicitly represented bulk solvent, ΔGes(c). 

As before, the solute polarisation term in the original work of Florián and Warshel 

has been ignored, as its neglect has provided satisfactory results in the study of 

solvation of smaller molecules. 

7.2.3. Solid Surface 

Our earlier study of polyalanine adsorption (Mijajlovic and Biggs, 2007c) was 

based on smooth representation of the solid surface and application of Steele 

potential for calculation of protein-surface interactions (Bojan and Steele, 1987; 

Steele, 1993). Polyalanines are simple molecules and their repetitive structure allows 

utilisation of simple surface models. Met-enkephalin, on the other hand, has much 

more diversity and complexity in its side chain groups and is expected to show 

different adsorption behaviour on surfaces with different atomic structures. It is, 

therefore, necessary to model the surface in atomistic detail in order to capture all the 

characteristics of this interaction. 
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Met-enkephalin molecule features two aromatic rings. Experimental studies of 

other molecules that exhibit similar structural units have shown that aromatic rings 

can be involved in π-stacking mediated adsorption on graphitic layers (Zheng et al., 

2003). In order to investigate the influence of this effect on met-enkephalin 

adsorption, we have decided to simulate its interaction with graphite substrate. Since 

π-stacking is established by interactions between delocalised electrons of aromatic 

rings, the necessity to capture this structural detail in graphite is obvious and it is 

clear that in this and similar systems smooth surface representation would be inferior 

to a model with full atomistic details. Distance between carbon atoms in graphite 

hexagonal rings is taken as 1.42 Å, while the distance between graphene layers is 

3.35 Å (Trucano and Chen, 1975). Lennard-Jones parameters of carbon atoms for 

van der Waals interactions between graphite and protein are assumed to be the same 

as parameters of aromatic carbon in Amber force field (Cornell et al., 1995) – 

3.3997 Åσ = , 0.0860kcal/molε = . Parameters for van der Waals interactions 

between graphite and water dipoles are taken from the work of Florián and Warshel 

(Florián and Warshel, 1997) – * 3.0År =  (sp2 hybridised carbon), 1.5C = . Carbon 

atoms in graphite have been treated as uncharged and unpolarisable. 

The main disadvantage of all-atom models is their high computational cost. 

Whilst interactions between protein and a smooth surface vary only as a function of 

height of the protein, the energy of adsorption on a structured surface is obtained by 

summing up interactions of individual protein atoms with each surface atom in turn. 

One of the ways to alleviate this obstacle, whilst still keeping a high level of 

structural detail, is to use a hybrid approach that represents a compromise between 

structured and smooth surface representations. Since the strongest protein-surface 

atomic interactions occur with the topmost layer of surface atoms, it is of crucial 

importance to represent this layer in atomistic detail, while any lower layers could be 

replaced with smooth planes of appropriate properties. As in our polyalanine 

adsorption study (Mijajlovic and Biggs, 2007c), surface energy has been calculated 

only from interactions with the two uppermost surface layers, which is justified by 

very small contributions of lower surface planes (Braun et al., 2002). Figure 7.2 

illustrates the hybrid model of graphite surface used in this study. It should be noted 

that structural details of the surface are considered important only in its interaction 



 137

with the protein. Water model in the LD-EA approach is already simplified and using 

highly accurate surface model with it would not lead to significant improvements in 

accuracy. We have, therefore, decided to utilise a smooth representation in 

calculation of surface-solvent interactions. 

Presence of solid surface dictates implementation of several phenomenological 

changes in procedure for calculation of free energy of the system. The most obvious 

new term that has to be added to overall free energy is the contribution of interaction 

between protein and solid surface, Esurf. Due to utilization of hybrid surface model, 

the surface interaction energy is calculated as a sum of explicit and implicit terms. 

Explicit term represents a sum of interactions between all protein atoms and carbon 

atoms in the first graphite layer. Interaction between a protein atom i and a surface 

atom j is discarded if the distance between the two is greater than a prespecified 

cutoff radius, rcut. The cutoff radius is calculated as 2.5
Cs
σ + , where cesium ion is the 

species with highest σ in Amber force field. In mathematical notation, the explicit 

surface energy contribution can be expressed as 

 
( )

12 6

1

4
a
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ij ijexpl

surf ij
i j r r ij ij
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r r= ≤
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⎢ ⎥= −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

∑ ∑  (7.3) 

where Na is the number of atoms in adsorbed protein and σij and εij are obtained using 

arithmetic and geometric mixing rules, respectively, for protein, i, and graphite 

atoms, j. The implicit term in protein surface interaction describes interaction of the 

protein with lower, smoothly represented surface layers. Since our work has been 

Figure 7.2 Hybrid model of graphite surface used in this study. The uppermost 
layer is modelled in full atomistic detail, while the lower is represented as smooth. 
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based on using only two layers of solid surface, one of which is represented 

explicitly, the implicit contribution to protein-surface interaction comes from a single 

layer of surface atoms and can be calculated using the following equation 
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∑  (7.4) 

where σiC and εiC are equal to corresponding coefficients σij and εij in equation for the 

explicit protein-surface interaction term, ρ is the surface density of atoms in a layer, 

whose value for graphite has been calculated as 0.3818 atoms/ Å2, Δ is the distance 

between the graphite layers (Trucano and Chen, 1975), and zi is the distance of atom 

i from the solid surface. 

Apart from its effect on protein, introduction of solid surface also affects 

structural features of solvent. Contribution of this effect to overall free energy of the 

system is, however, more difficult to evaluate. A rational approach in estimation of 

contribution of solid surface solvation is to calculate the solvation free energy of an 

area of solid surface without the presence of protein and then, the solvation free 

energy of the same area in the presence of adsorbed protein. Presence of additional 

solute molecule, as well as of its surrounding solvation layer, will produce overlaps 

with some water molecules (or, in terms of Langevin dipole model, number of 

solvent dipoles) in surface solvation layers. Overlapping dipoles of the surface 

solvation layer are removed from the system, thus reducing the magnitude of 

solvation free energy of the solid surface. A simplified graphical representation of 

the volume of solvent above the solid surface in the absence and presence of solute 

molecule is shown in Figure 7.3. As indicated in the figure, solvation energy of the 

solid surface area of interest is calculated as s(1)Δ surfG , while the solvation of the same 

s(1)Δ surfG s(2)Δ surfGs(1)Δ surfG s(2)Δ surfG

Figure 7.3 Solvation of smooth solid surface by Langevin dipoles in the absence 
(left) and presence (right) of an additional solute molecule. 
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area in the presence of solute molecule is s(2)Δ surfG , and is usually smaller in magnitude 

owing to the reduction of number of water molecules due to overlaps with solute 

atoms. The difference between two solvation energies, s s(2) s(1)ΔΔ Δ Δsurf surf surfG G G= − , is 

considered as an individual term in the sum that forms overall free energy of the 

system. 

The area of the solid surface for calculation of sΔ surfG  contribution is 

constructed as a disc with the diameter 40 Å larger than maximum length of the 

adsorbed protein. A large disc is necessary to ensure that all dipoles from the solute 

solvation layers are above the area of interest even when molecule is in its most 

elongated conformation. The distribution of Langevin dipoles over the solid surface 

is performed in a way analogous to their distribution around the solute – 3 layers of 

inner grid dipoles with node distance of 1 Å are followed by an additional 3 layers of 

outer grid dipoles with node distance equal to 3.1043 Å. Since graphite surface bears 

no atomic charges, it does not generate any electrostatic field and surface solvation 

free energy comprises only of hydrophobic and van der Waals terms. Hydrophobic 

term is relevant only to inner grid dipoles (those closest to the surface), while it was 

shown that extending number of outer grid dipoles to more than 3 layers had 

negligible effect on van der Waals term in the solvation energy due to the distance of 

additional layers from the surface. 

Although smoothing of surface planes for calculation of their interactions with 

adsorbed molecules is already described elsewhere (Steele, 1974), the procedure has 

been developed for 12-6 Lennard-Jones potential. The interaction between solid 

surface and point dipoles of the LD method is, however, modelled through 9-6 

potential and the original equations for smooth surface had to be adjusted. Starting 

from equation for interaction between an individual atom in graphite lattice and point 

dipole and applying principles outlined in Steele procedure, an equation is derived 

for van der Waals contribution to solvation energy of graphite (derivation shown in 

Appendix D) 
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where kvdW is van der Waals parameter defined by Florián and Warshel (Florián and 

Warshel, 1997) and equal to 0.84 kcal/mol, while ρ and Δ have already been 

introduced in equation (7.4). L and Nd represent the number of surface layers and 

Langevin dipoles, respectively. Analogously to the calculation of protein-surface 

interactions, only the first two surface layers are accounted for in equation (7.5) since 

the contribution of lower layers is too small. As in the original expression for van der 

Waals interactions involving dipoles, proposed by Florián and Warshel (Florián and 

Warshel, 1997), Nj is the normalisation factor introduced to balance the increase of 

dipole density of the inner solvation layer. zj is the height of dipole j, or its vertical 

distance from the nearest surface layer. Values of r* and C for carbon atoms in 

graphite planes have already been assigned above. 

Finally, presence of solid surface also affects calculation of solvation free 

energy of the solute itself. Any dipoles from the protein solvation layer that overlap 

with the solid surface are removed from the system, while hydrophobic and van der 

Waals energies of the remaining dipoles are calculated by summing up their 

corresponding interactions with both the solute and solid surface. Bulk contribution 

to solvation free energy is also adjusted due to the fact that presence of solid surface 

prevents integration of bulk solvent to infinity in all directions, as shown in Figure 

7.4. Following approach of Born (Born, 1920b) for ionic solutes and Bell (Bell, 

1931) for solvated dipoles, the integration is performed by summing individual 

contributions of infinitesimally thin spherical shells that surround the solute starting 
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Figure 7.4 Bulk contribution to solvation free energy extends from sphere of radius 
Rb to infinity, but only in the domain above the solid surface. 
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from radius Rb from its geometric center to infinity, where Rb is radius of spherical 

volume whose interior is modelled using Langevin dipoles. However, unlike in the 

original approach of Born and Bell, solvation energy of an infinitesimal layer is 

multiplied by fraction of a shell that lies above the solid surface. For an ionised 

molecule whose geometry center is on a distance h from the solid surface, 

contribution of continuous solvent to solvation free energy can be calculated as 
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where q is the net electrostatic charge of the molecule, while ε0 and εr are vacuum 

and relative dielectric permittivity, respectively. If the net charge of the solute 

molecule is 0, bulk solvent contribution to solvation free energy is calculated using 

molecule’s total dipole moment, μ 
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Equations (7.6) and (7.7) are derived in the appendix. 

Combining all new energy terms with those that have already been defined for 

the simple dissolved systems, total free energy of a protein solution in vicinity of a 

solid surface can be calculated using the following equation 

 sΔs g
surfG U E G= + +  (7.8) 

in which ΔGs is now calculated as the following sum 
 s es(LD) es(c) vdW phob sΔ Δ Δ Δ Δ ΔΔ surfG G G G G G= + + + +  (7.9) 

where all the contributions have been described above. 

7.3. Study Details 

The basic outline of the evolutionary algorithm remains the same as the one 

used in EA performance study on met-enkephalin in gas phase – steady state, real 

encoding, multipoint crossover and uniform parent selection, SRMU (Djurdjevic and 



 142

Biggs, 2006). Degrees of freedom used here are derived from our study of 

polyalanine adsorption on smooth surfaces. Introduction of structural details of the 

solid surface has led to extension of the set of variables by position of the pivotal 

atom inside the graphene hexagon, as well as the change of central rotation atom 

from N atom of the first residue to N of the residue from the middle of the sequence 

(Figure 7.5). The latter modification is introduced only for the purpose of achieving  

higher efficiency and does not otherwise affect calculation of adsorption energies. A 

significant difference in comparison to our previous applications of EA appears in 

the central step of evaluation of fitness function. As described above, fitness function 

in LD-EA method is expressed as total free energy of a solute molecule in a solvated 

environment, rather than its intramolecular potential energy. 
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Figure 7.5 Illustration of additional degrees of freedom for simulation of met-
enkephalin molecule adsorbed on graphite surface. Only the central residue, 
second glycine, is shown. Added degrees of freedom describe the position of N 
atom of the second glycine residue inside the hexagon of carbon atoms: distance of 
perpendicular projection of N atom from the origin of coordinate system, r, angle 
between the x-axis and N atom perpendicular projection vector, φ, and the distance  
of N atom from the surface, h. 
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The parametric study of EA performance in prediction of met-enkephalin 3D 

structure in gas phase has been used as a guide for choosing optimal EA control 

parameters for energy minimisation in water solution. Although the optimal set of 

control parameters for gas phase minimisation has been obtained using capped 

molecule, lack of corresponding parameterisation procedure for met-enkephalin in 

zwitterionic form has led us to use the same set of parameters for both met-

enkephalin structures investigated in this study. 

Table 7.1 Design and control parameters for evolutionary algorithm 

Design parameters 
Evolutionary algorithm type Steady-state 
Encoding type Real 
Crossover type Multipoint 
Parent selection strategy Uniform 

Control parameters 
Convergence criterion 0.0001 
Generational gap 1 
Exponential replacement factor 0.1 
Stop range 5000 
Population size 500 
Mutation probability 0.1 
Truncation selection parameter 0.1 
Number of crossover points 4 
Crossover probability 0.1 

The gas phase parameterisation study has indicated that there is no single set of 

universally applicable optimal control parameters, but a range of the optimal sets 

which should be applied based on the success criterion and expected precision of the 

algorithm. Thus, if one aims for structural matching of lower accuracy between an 

EA outcome and the structure that corresponds to presumed global energy minimum, 

high values of mutation probability should be utilised. On the other hand, if a 

structural matching of very high precision is required, or if the EA is expected to find 

structures with as low energy as possible, mutation probabilities should be small. 

Being our first study of LD-EA method and not knowing the relationship between 

RMSD and energy difference for solvated structures, our decision was to pursue a 

rigorous energy minimisation procedure as it should exploit the full potential of EA 

approach. Accordingly, the set of control parameters was adjusted for energy 

minimisation with strict definition of successful outcome. EA parameterisation in gas 

phase has shown that the optimal parameter set for such a demand is the one shown 
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in Table 7.1 and Table 7.2 provides the parameters used for Langevin dipole part of 

the algorithm. 

Table 7.2 Langevin dipole method parameters used in the study 

Parameters of Langevin dipole part of the LD-EA method 
Inner grid node distance 1 Å 
Outer grid node distance 3.1043 Å 
Outer grid dipole moment 0.26 eÅ 
Temperature 298.15 K 
Inner grid thickness  2.0 Å 
Neighbouring dipoles exclusion distance 2.5 Å 
Lower neighbour inclusion cutoff distance 6.0 Å 
Upper neighbour inclusion cutoff distance 18 Å 
Electrostatic field threshold for inclusion of dipoles 0.0015 e/Å2 
Electrostatic field threshold for iterating dipoles 0.0021 e/Å2 
Convergence criterion 0.001 
Number of iterating points for averaging 10 
Number of random positions for a single structure 10 

7.4.  Results and Discussion 

7.4.1. Capped Met-enkephalin in Gas Phase and Water Solution 

Capped met-enkephalin in gas phase or vacuum has already been investigated 

in great detail in our study of EA performance with different force fields. However, 

since application of Langevin dipole method requires utilisation of Amber atomic 

charges, only result obtained for Amber PE model are of immediate interest for 

comparisons. Optimal met-enkephalin conformation in vacuum, as calculated by 

Amber set of equations, had total intramolecular energy of -76.096 kcal/mol. The 

structure associated with this energy is shown in Figure 7.6. The right hand side of 

the figure clearly shows that the backbone is double folded into a β-turn structure 

Figure 7.6 Met-enkephalin structure with the lowest intramolecular energy 
coloured by element (left) and with the emphasised backbone (right). 



 145

stabilised by hydrogen bonds between NH-group of the first glycine residue and CO 

group of methionine, as well as by an additional hydrogen bond between CO group 

of the second glycine residue and OH-group from tyrosine side chain. 

Decomposition of energy terms for the structure, as well as for the other structures 

found to be optimal in other environmental conditions, is given in Table 7.3. The 

main contribution to overall intramolecular energy in the gas phase appears to be that 

of electrostatic interactions. Since Amber PE model does not include hydrogen bonds 

explicitly, their stabilising effect is captured through electrostatic and van der Waals 

interactions of involved atoms. 

Introduction of solvent has major impact on conformation of capped met-

enkephalin molecule, as shown in Figure 7.7. The minimal energy structure no 

longer exhibits turns. Instead of two parallel extended legs, backbone is now folded 

into a helical structure with hydrogen bonds established between CO-group from 

acetyl cap and NH-group of phenylalanine, as well as between CO of tyrosine and 

NH-group of methionine. Although CO and NH groups from the first glycine residue 

and amino-methyl cap, respectively, do not satisfy geometric requirements for 

hydrogen bond, their O and H atoms are separated by only 2.503 Å. Distance 

between O atom from the second glycine and H atom from NH group of amino-

Figure 7.7 Capped met-enkephalin structure in water solution – side view of 
structure coloured by element (left) and frontal view of the emphasised backbone 
(right). 
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methyl cap is somewhat higher (3.104 Å), thus placing NH group in between CO 

groups from the two residues. Since amino-methyl cap is at the end of the sequence, 

it is not surrounded by residues from both of its ends, thus being more mobile than 

regular inner residues. This increased flexibility and attraction of NH by CO-group 

from the second glycine is a probable reason for deviation of hydrogen bond between 

the first glycine and amino-methyl cap. Nevertheless, the two existing hydrogen 

bonds are sufficient for establishing a pattern of bonds between CO-group of residue 

i and NH-group of residue i+4 – a pattern that determines α-helix. The transition 

from β-turn to α-helix is further illustrated in Ramachandran plot of gas phase and 

solution conformations of capped met-enkephalin, shown in Figure 7.8. While 

dihedral angle pairs for vacuum structure are dispersed along a broad region, 

solvated structure is characterised with their concentration in a much narrower area 

of α-helix. 
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Table 7.3 Decomposition of energies of two forms of met-enkephalin in three environments considered in this study 

 Energy terms 
Casea Utor Ues UvdW Ug ΔGphob ΔGes(c) ΔGes(LD) ΔGvdW sΔΔ surfG ΔGs Esurf G 
CV 15.090 -87.272 -3.913 -76.095 - - - - - - - -76.095 
ZV 9.299 -170.297 10.584 -150.414 - - - - - - - -150.414 

ZVG 9.387 -163.593 9.913 -144.293 - - - - - - -54.738 -199.031 
CS 13.101 -69.521 -3.791 -60.211 3.784 -0.185 -30.135 -16.185 - -42.721 - -102.932 
ZS 11.265 -64.586 1.143 -52.178 2.199 -0.353 -117.006 -16.837 - -131.997 - -184.175 

ZSG 9.236 -65.799 6.275 -50.288 2.451 0.032 -108.558 -168.809 81.041 -193.843 -0.888 -245.019 
a CV – capped molecule in vacuum; ZV – zwitterion in vacuum; ZVG – zwitterion adsorbed on graphite in gas phase (vacuum); CS – capped molecule in solvent; ZS – 

zwitterion in solvent; ZSG – zwitterions adsorbed from solvent 
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There is a remarkable similarity in solvation induced conformational changes 

between capped met-enkephalin and alanine dipeptide, studied with our LD-Amber 

model. As a reminder, water solvation of alanine dipeptide promotes switch from 

equatorial C7 conformation to right-handed α-helix. Although none of met-

enkephalin residues exhibits C7,eq conformation angles, most of dihedral angle pairs 

of gas phase molecule are found in the same Ramachandran plot quadrant as C7,eq. 

Upon introduction of water, however, the most stable conformation appears to be 

closest to right handed α-helix, αR. An explanation for this phenomenon should be 

sought for in exposing partially charged protein atoms to favourable interactions with 

surrounding water molecules. An illustrative example is solvation induced breaking 

of hydrogen bond between tyrosine OH-group and CO-group from the second 

glycine residue. In the absence of water, favourable electrostatic interactions are 

established between partially positively charged H atom and partially negative O 

atom from CO-group. However, introduction of water enables exposure of these 

atoms to oppositely charged atoms from solvent molecules, thus compensating for 

the decrease of stability caused by intramolecular hydrogen bond breaking. View 

from bottom in Figure 7.7 (right hand side) clearly shows that all side chain groups 

are stretched away from the backbone and into the solvent, which facilitates their 

solvation. 

Hydrogen bonds in the backbone seem to suffer only rearrangements, which 

should not affect intramolecular energy substantially. Overall effect of transition 

from optimal structure in vacuum to αR-helix in water solution is increase in 

intramolecular energy for more than 15 kcal/mol (Table 7.3). The bulk of the effect 

is achieved through electrostatic component, which increases from -87.272 to -

69.521 kcal/mol, (i.e. ~20%). This is, however, balanced by a large negative value of 

the free energy of solvation. The largest contribution to the free energy of solvation 

(~70%), as calculated by Langevin dipole model, originates in interactions of dipoles 

from inner solvation layers with permanent electrostatic field of the solute molecule. 

Apart from solvation of individual partial charges, LD model may reproduce 

formation of water-mediated hydrogen bridges established between two oxygen or 

two hydrogen atoms, respectively. This phenomenon has been described by Beglov 

and Roux (Beglov and Roux, 1995) who used molecular dynamics and atomistic 
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water model to show formation of water bridges between the two O atoms of the CO-

groups and between the two H atoms of the NH-groups of alanine dipeptide in left 

handed α-helix conformation, αL. Our study of the LD-Amber method applied to 

alanine dipeptide in αL conformation has shown that even if the level of description 

of water is reduced to Langevin dipoles, the model can still predict establishing of 

water-mediated hydrogen bridges between like charged sites in the molecule 

(Mijajlovic and Biggs, 2007b). The same analysis can be applied for larger 

molecules, such as met-enkephalin. Figure 7.7 shows several structural elements in 

which consecutive CO and NH-groups are oriented in the same direction, thus 

exposing their O and H atoms to serve as a base for formation of water bridges. An 

example of such a water bridge, formed between O atoms from aligned CO groups of 

the second glycine and phenylalanine residues can be seen in Figure 7.9. The figure 

is a 3-dimensional view of electrostatic field formed exclusively by Langevin dipoles 

distributed around met-enkephalin molecule, i.e. the effect of point charges from the 

solute molecule is extracted from the overall electrostatic field. The 3D space is cut 

by a plane that passes through the oxygen atoms of interest (designated by O in the 

figure). The blue colour in the cutting plane indicates positive electrostatic potential. 

Since this potential is generated only by solvent, it indicates increased concentration 

of solvent originating positive charges, i.e. hydrogen atoms. Although Langevin 

dipole method does not operate with explicit water molecules, we have shown earlier 

that analysis of electrostatic field generated by dipoles allows indirect derivation of 

positions of water molecules in the first solvation layer. Analogous to the analysis of 

water bridges in αL-conformation of alanine dipeptide, existence of two distinct 

curved regions with positive electrostatic potential leads to conclusion that these 

belong to hydrogen atoms from two water molecules involved in hydrogen bridging 

between the two oxygen atoms from solute. Faint red areas in the upper part of the 

figure belong to domains of the space below the cutting plane and correspond to 

increased concentration of water oxygen atoms around hydrogen atoms from NH-

groups on the back side of the solute. Although not clearly visible from this 

perspective, these regions also indicate formation of water-mediated hydrogen 

bridges between NH-groups. 
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The ability of the Langevin dipole method to represent solvent structuring is 

probably a more general phenomenon, i.e. it should not be restricted to water alone. 

Whilst in water solutions, it is reasonable to relate the structural changes to the 

formation of new hydrogen bonds, the LD method is able to operate with any solvent 

whose molecules have finite dipole moment, irrespective of its ability to form 

hydrogen bonds. It should be noted that dipoles themselves do not have the ability to 

engage into hydrogen bridging. The bridging concept is invoked here only because it 

has been shown in Chapter 6 that dipole restructuring obtained in the LD model 

corresponds to establishing of water bridges as seen by the MD simulation. In 

general case, the dipole restructuring does not have to be constrained to water 

bridges and is probably common to all dipolar solvents. 

Figure 7.7 shows that apart from CO-groups of the second glycine and 

phenylalanine residues, there are several more combinations of both CO and NH-

groups in an orientation suitable for formation of water bridges. For example, this 

kind of stabilisation can also be established between CO-groups from the first and 

the second glycine residues, as well as between corresponding groups from 

Figure 7.9 Electrostatic field of water dipoles around capped met-enkephalin 
molecule in solution. 
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phenylalanine and methionine. Although some other CO-groups from consecutive 

residues are also in a favourable mutual position, formation of water bridges between 

them is hampered by side chains or other parts of the backbone. Similarly, NH-

groups of the acetyl cap and the tyrosine residue, as well as of tyrosine and the first 

glycine are in a suitable position for formation of water bridges with O atoms from 

water molecules facing the solute. This is a clear contrast to the conformation of the 

molecule in vacuum, where, as Figure 7.6 shows, CO or NH-groups from 

consecutive residues are usually turned in opposite directions, thus disabling 

formation of water bridges if such a structure were introduced into water solution. 

The ability to form numerous water bridges and thus compensate the increase in 

intramolecular energy is, hence, the most plausible explanation of conformational 

change that occurs with solvation of met-enkephalin molecule by water. 

7.4.2. Met-enkephalin Zwitterion in Gas Phase and Water Solution 

Zwitterionic form of met-enkephalin is characterised by replacement of acetyl 

and amino-methyl caps by NH3
+ and COO- ionised caps, respectively. While still 

remaining in an electroneutral state, with net zero charge, this form of the molecule 

features NH3
+-group on its N-terminus combined with COO--group on C-terminus. 

This separation of charges has a profound effect on met-enkephalin conformation, 

especially in vacuum, where the environment does not provide any screening 

between the charged ends. Since the ends are oppositely charged, electrostatic forces 

cause strong attraction between them. On the other hand, van der Waals repulsive 

forces limit the number of possible configurations in which the two termini can be 

found on the small distance. The balance between the attractive electrostatic forces 

and repulsive steric interactions is accomplished by folding the backbone of the 

molecule into a loop, shown in Figure 7.10. Visual comparison between this and the 

structure shown in Figure 7.6 shows a remarkable similarity between the optimal 

vacuum conformations of capped and zwitterionic met-enkephalin form. Strong 

electrostatic attraction between the charged ends results in higher degree of folding 

towards the termini in the zwitterionic structure, as well as modification of positions 

of some of the side chains (most obviously expressed for tyrosine side chain), but the 

rest of the backbone appears to be folded in a conformation very similar to the one in 

vacuum. A relatively small RMSD of 0.541 Å between the two structures further 
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confirms this observation. It should be noted that, since our RMSD calculation is 

based on determining the distances between corresponding Cα atoms, this procedure 

can be applied to the two forms of the molecule since removing end groups does not 

strip the molecule from its Cα atoms. A very small RMSD (lower than the threshold 

value used to define similar structures in our study of EA performance with different 

force fields), indicates that, although important for bending of protein termini, 

electrostatic interactions between the ends may not be crucial for folding the rest of 

the backbone. As a comparison, the RMSD between two capped structures, in 

vacuum and in solvent, is much higher, with a value of 2.353 Å, while the deviation 

between optimal zwitterionic forms in vacuum and in water is even higher at 3.212 

Å. Apparently, the environment exhibits much stronger influence on conformation 

than removal of end groups and ionisation of termini. This can be explained by effect 

of solvent to electrostatic interactions throughout the whole length of the molecule, 

while end ionisation affects only small parts of it. 

While there is a strong degree of similarity between capped and zwitterionic 

structures in vacuum, solvated conformations of the two forms are substantially 

different, with RMSD of 2.625 Å. The conformation of energetically most 

favourable zwitterionic met-enkephalin molecule in water is shown in Figure 7.11. 

Although completely different than the capped form, this result is in a good 

agreement with other simulation studies which suggest that met-enkephalin in water 

solutions is found in highly flexible conformation with extended backbone 

(Kinoshita et al., 1998). On the other hand, the structure proposed here is not 

Figure 7.10 Zwitterionic met-enkephalin conformation in vacuum coloured by 
element (left) and with emphasised backbone (right). 



 153

completely identical to any of the experimentally found solvated conformations 

(Roques et al., 1976; Jones et al., 1977; Khaled et al., 1977; Spirtes et al., 1978; 

Graham et al., 1992). However, experimental studies themselves produced results in 

a wide range of conformations and most of them agree that met-enkephalin in dilute 

solutions is found in an unfolded and very flexible conformation. The unfolding 

aspect is in a very good agreement with our results. 

Evolutionary algorithms do not, of course, offer insight into the flexibility of 

the molecule as they only allow identification of the global minimum. However, an 

indirect indicator of conformational flexibility is an apparent lack of intramolecular 

hydrogen bonds as well as water-mediated hydrogen bridges. The only 

intramolecular hydrogen bond is established between the CO-group of the first 

glycine and NH-group of the phenylalanine residue. Further to that, number of pairs 

of CO- and NH-groups that are in orientation suitable for formation of water bridges 

is substantially lower than in optimal conformation of capped molecule in solution. 

The only CO-pair that can serve as a template for water bridge consists of CO-group 

from phenylalanine and one part of the carboxyl end group, while the only two 

suitable NH-groups are one part of the ammonium group at N-term and NH-group of 

the first glycine residue. If the number of hydrogen bonds and water bridges was 

Figure 7.11 Zwitterionic met-enkephalin in water solution coloured by element 
(left) and with emphasised backbone (right). 
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higher, the flexibility of the molecule would be severely reduced, which would create 

disagreement with experimental findings. 

As expected, Table 7.3 shows that the highest contribution to overall energy of 

zwitterion in gas phase is that of electrostatic interactions, which is explained by 

small distance between the charged termini of the molecule. Intramolecular 

electrostatic interactions, however, diminish in the presence of solvent due to the 

significant degree of separation between the charges (found on the opposite ends of 

extended molecule). The level of reduction in magnitude of charge-charge 

interactions is so great that electrostatic energy contribution to overall potential 

energy is even lower than in capped form of the molecule, which has much lower 

atomic charges. Nevertheless, this energetic loss is balanced by increase in 

electrostatic interactions with surrounding solvent. The magnitude of interactions 

between Langevin dipoles in inner solvation layers and charges from the solute is so 

strong that it is more than two times higher than overall intramolecular potential 

energy. Although contribution of bulk solvent, ΔGes(c), to the overall solvation free 

energy is very small, the table shows that it is about two times higher in magnitude 

for solvated zwitterion than for capped molecule. This can, again, be explained by 

the higher degree of separation of charges and formation of a stronger solute dipole. 

Elongation of the zwitterionic form also contributes to increase in magnitude of the 

solute dipole. Comparison of hydrophobic terms for zwitterionic and capped form 

shows that zwitterionic met-enkephalin is more hydrophilic, again probably due to 

existence of strongly charged groups at its ends. 

7.4.3. Met-enkephalin Zwitterion Adsorption on Graphite 

As discussed above, backbone conformation of met-enkephalin in vacuum is 

very similar for both capped and zwitterionic forms. It is, therefore, expected that 

when the adsorption of the molecule is conducted from the gas phase, the resulting 

structures will be similar for both forms. Although presence of solvent introduces 

significant difference in folding pattern of capped and zwitterionic met-enkephalin, 

computational constraints have limited our choice to zwitterionic form as it has 

higher biological significance and is more often used in experimental studies. 

Met-enkephalin structure adsorbed on graphite in vacuum is shown in Figure 

7.12 in top and side view. Although visually very similar to vacuum conformation 



 155

illustrated in Figure 7.10, the RMSD between the two structures is 1.093 Å. The 

reason for the high RMSD despite high visual similarity between the two 

conformations is a stronger effect of surface interactions on positions of Cα atoms, 

which are used for RMSD calculation. Cα atoms are expected to be more susceptible 

to surface induced deviation since they are anchoring points for side chain groups. 

Side chains have high degree of flexibility in vacuum, but, as Figure 7.12 shows, are 

constrained to positions parallel to the surface in adsorbed molecule. The 

translocation of side chains causes distortion of the backbone that is stronger in Cα 

positions than in positions of neighbouring N and carboxyl C atoms. Consequently, 

the overall shape of the backbone remains similar to that in vacuum, but RMSD is 

high due to changed Cα positions. 

Energy decomposition, shown in Table 7.3, reveals that overall intramolecular 

potential energy is increased for only about 4% compared to the optimal vacuum 

structure. The main source of energy change is in electrostatic interactions which 

increase from -170.297 kcal/mol to -163.593 kcal/mol (i.e. ~3.9%). Small variation 

in electrostatic energy is consistent with the analysis of conformational changes 

discussed above. Most of the backbone transformation stems from changes in Cα 

positions, while positions of its backbone neighbours, N and C atoms of peptide 

bond, undergo smaller variations. Since magnitude of point charge assigned to Cα 

atoms is much lower than for N and C atoms, modification of electrostatic 

interactions is also lower for shifting Cα than it would be for N and C backbone 

atoms. Majority of atoms in the side chain groups carry charges of low intensity and 

have small effect on electrostatic energy of the molecule. The most notable 

1 Å1 Å1 Å

Figure 7.12 Zwitterionic met-enkephalin molecule adsorbed on graphite from gas 
phase: view from top (left) and side view (right). 
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exceptions are O and H atoms from tyrosine side chain and S atom in side chain of 

methionine. However, these side chains are separated in a vacuum and, despite 

conformational change, remain separated upon adsorption. Adsorption, therefore, 

does not introduce any significant changes in electrostatic interactions between these 

two residues. Distance between O and H atoms of tyrosine, due to fixed bond length, 

remains constant during the adsorption process. Interactions between all side chains 

and the backbone do not suffer significant variations as in both free and adsorbed 

molecule, side chains are stretched away from the backbone. 

Van der Waals interactions with the surface are very favourable and their 

magnitude is more than sufficient to offset the decrease of stability caused by 

increase in intramolecular potential energy. A notable feature of the adsorbed 

structure is, as expected, alignment of aromatic rings of tyrosine and phenylalanine 

with the surface, as can be seen in Figure 7.12. This is clearly visible for tyrosine 

ring which is virtually parallel to the surface, thus substantially increasing the 

magnitude of surface interactions. 

Adsorption of zwitterionic met-enkephalin in the presence of solvent is 

substantially different from its adsorption in vacuum. Position of the molecule above 

the graphite surface is shown in Figure 7.13. A striking difference in comparison 

with vacuum adsorption is that the molecule is no longer attached to the surface. 

Minimal and average distances of met-enkephalin atoms from the surface in vacuum 

are 2.327 Å and 4.120 Å, respectively. However, corresponding distances in the 

presence of water are 8.662 Å and 12.836 Å, which indicates distribution of several 

1 Å1 Å1 Å

Figure 7.13 Zwitterionic met-enkephalin molecule adsorbed on graphite from 
dilute water solution: view from top (left) and side view (right). 
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solvation layers between the surface and the solute. Assuming that the distance 

between layers corresponds to the position of the first peak in O-O radial distribution 

function of liquid water, the solvation layer distance is estimated to be about 3 Å 

(Narten et al., 1967; Narten, 1972; Jorgensen, 1981), which indicates that three to 

four layers of water molecules can be placed between met-enkephalin and graphite. 

This is somewhat surprising outcome considering the hydrophobic character of 

graphite surface and favourable interactions between graphite and met-enkephalin, 

especially between the aromatic rings of the two. 

In order to verify this result and elucidate the behaviour of solvent in the space 

between the solid surface and the solute molecule, we have systematically varied the 

distance between the surface and the peptide, keeping met-enkephalin in rigid 

conformation and fixed orientation with respect to graphite planes. The distance 

between the surface and the closest met-enkephalin atom has been gradually 

increased from 0 to 30 Å in steps of 0.1 Å. Since the conformation of the molecule is 

fixed, the only terms that remain susceptible to change during distance variation are 

adsorption energy and energy of solvation (including the term for change in surface 

solvation energy, sΔΔ surfG . Functional relationship between energies and distance 

between the surface and protein’s closest atom is shown in Figure 7.14. Adsorption 

energy, or sum of van der Waals interactions between the protein and the surface, 
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Figure 7.14 Change of surface interaction (■) and free energy of solvation (●) with 
distance between met-enkephalin and graphite surface. The sum of the two (▲) 
shows that solvation effects are dominant in this coupling. 
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changes in a way similar to classical Lennard-Jones potential, i.e. with a steep 

increase in strength of repulsive term with small distances and slower increase in 

attractive term for increasing distance of met-enkephalin from the surface. 

Combination of the two terms creates a function with a single minimum, at a distance 

of about 2.4 Å. Value of surface energy at this distance is -21.7 kcal/mol. 

Free energy of solvation, on the other hand, has far more complex behaviour as 

its change with distance from the surface is characterised with multiple local minima. 

Four of the local minima dominate in this function’s landscape: (2.4 Å, -136.0 

kcal/mol), (5.5 Å, -171.3 kcal/mol), (8.6 Å, -190.4 kcal/mol), and (11.7 Å, -167.0 

kcal/mol). The distance between the minima is 3.1 Å, which closely corresponds to 

the separation between the solvation layers. Thus, each minimum corresponds to 

insertion of a single solvation layer. The third local minimum is characterised with 

the lowest solvation energy, which leads to conclusion that optimal position of met-

enkephalin above the graphite surface is the one which leaves average number of 

three solvation layers between them. Since the magnitude of surface energy is 

considerably lower than that of the free energy of solvation, the latter term dominates 

the sum and optimal position of the molecule corresponds to global minimum of 

solvation free energy. This ordered insertion of solvation layers is 

phenomenologically very similar to structuring of water layers during water 

adsorption in graphite pores (Ulberg and Gubbins, 1995), which may suggest that 

met-enkephalin molecule plays a role analogous to that of a pore wall in this system. 

It is interesting to note that solvation energy decreases almost steadily after the 

fourth minimum, i.e. after four solvation layers have been inserted between the 

molecule and the surface. Any new solvation layers do not contribute significantly to 

energy of solvation. In order to get a better understanding of this phenomenon, total 

solvation energy is decomposed for each position of met-enkephalin above the 

surface. Figure 7.15 shows how each of the energy terms changes with the distance. 

While hydrophobic and electrostatic contributions change almost continuously, van 

der Waals interactions and changes in surface solvation energy show strong local 

extrema with addition of each new solvation layer. When protein and solid surface 

are on a small distance from each other, inserted layer engages in van der Waals 

interactions with both of them, which substantially increases magnitude of van der 
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Waals energy. At the same time, each new inserted layer will disturb surface 

solvation layers distributed over graphite when met-enkephalin is not present. This 

disturbance of surface solvation layers causes decrease in magnitude of surface 

solvation energy, which manifests as jumps in sΔΔ surfG . 

Comparison of the separation between the minima of the solvation free energy 

(Figures 7.14 and 7.15) and the parameters of the LD-EA model shows that the 

distance between the minima is very similar to the distance between nodes of the 

coarse grid of the LD model. The results collected in this study are not sufficient to 

make a decisive conclusion whether the observed minima separation is an artefact of 

the chosen grid representation. Further studies, in which different grid geometries 

(e.g. tetrahedral) and node distances will be examined, are expected to help in 

rectifying the situation. 

7.4.4. Computational Cost of the LD-EA Method 

Met-enkephalin simulations, irrespective of the form of the molecule used 

(capped or zwitterionic), require on average between 48 and 72 hours of wall time 

for a single EA run. Since all calculations are performed with 11 CPUs, this 

translates to 3-4 weeks of CPU time. Although this computational cost does not 

appear to be so small, it should be noted that utilisation of full atomistic solvent 
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Figure 7.15 Change of individual terms of solvation energy with distance of met-
enkephalin from graphite surface: ΔGphob (■), ΔGes(c) (●), ΔGes(LD) (▲), ΔGvdW 
(▼), and sΔΔ surfG  (♦). 



 160

models for calculation of EA fitness function would be at least an order of magnitude 

more expensive (Mijajlovic and Biggs, 2007b). Furthermore, we expect that further 

optimisation of evolutionary algorithm (such as implementation of adaptive control 

parameters) will significantly reduce CPU times needed for a single simulation. 

7.5. Conclusions 

The LD-Amber method developed previously has proven as a very fast and 

reliable technique for calculation of solvation free energies of amino acid residues 

and small proteins in different conformations. This part of our work focuses on 

extending its application to development of an evolutionary algorithm based global 

minimisation method that uses individual LD-Amber calculated energies of solvation 

for evaluation of fitness function of specific protein conformations. Being a 

combination of LD-Amber and EA techniques, we have designated the new method 

as LD-EA. To our knowledge, no similar techniques that combine Langevin dipole 

with evolutionary algorithms have been developed. 

Apart from designing a completely novel method, we have also utilised it in a 

much more complex system than the systems we used in our previous LD-Amber 

study. The new method has been applied to evaluate solvated conformation of met-

enkephalin molecule in its zwitterionic, as well as form capped with acetyl and 

amino-methyl groups on N- and C-terms, respectively. The results obtained show 

significant degree of conformational change in the process of solvation and are in a 

good qualitative agreement with experimental and other simulation studies. 

Further development of LD-EA approach has been accomplished by expanding 

it into a new environment – system consisting of protein, water and solid surface as a 

substrate for protein adsorption. Met-enkephalin molecule in its zwitterionic form 

has been simulated in contact with graphite surface both in vacuum and in water 

solution. Vacuum based adsorption results in a conformation whose backbone and 

side chains are aligned with the surface and on a small distance from it. This can be 

explained by increase of magnitude of favourable protein-surface interactions. 

Adsorption from water solution, however, produces somewhat unexpected result. 

Although graphite surface is supposed to be hydrophobic and, therefore, attract met-

enkephalin more favourably than it attracts water, the protein is not attached to the 

surface as we expected. Rather than that, simulations show that the optimal position 
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is accomplished with an average of three solvation layers between the surface and the 

molecule. One of the explanations is that solvation of met-enkephalin has a dominant 

effect over protein-surface interactions. There is, however, a possibility that 

Langevin dipole parameters for sp2 hybridised carbon atoms have to be readjusted 

for their application in smooth solid surface. 
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Chapter 8.  Conclusions and Future Work 

8.1. Summary of Major Findings 

Chapter 4 describes the study of the influence of EA fitness function on EA 

performance and the choice of optimal control parameters. Different fitness functions 

have been represented with four PE models commonly used in protein conformation 

studies. It has been shown that the choice of a PE model can profoundly affect the 

performance of the EA, changing the number of potential energy evaluations for up 

to two times. It has also been discovered that different PE models are associated with 

different sets of control parameters that provide optimal performance. An important 

finding of the study indicates that the set of optimal control parameters is not only 

bound to the fitness function being optimised, but also to the required level of 

accuracy. A detailed investigation using the Amber PE model (Cornell et al., 1995) 

has shown that increasing the required level of accuracy for an order of magnitude 

causes optimal mutation rate to decrease from values close to 1 to almost 0. The 

same change also causes the number of necessary PE evaluations to increases for 

about 30 times. 

In Chapter 5, an EA approach has been applied in predicting the 3D structure 

of polyalanine molecules of different length adsorbed on smooth surface modelled 

with the Steele potential (Steele, 1974). The adsorption is studied in the gas phase, 

i.e. on solid-gas interface. It was concluded that, despite expected gradual change of 

conformation with continuous increase in strength of protein-surface interaction, the 

polyalanine molecules switch from one conformation to the other when a surface 

interaction threshold is reached. It was found that polyalanine adsorbs in one of the 

three conformations – right-handed α-helix, 310-, and 27-helix – which are all 

characterised with a specific hydrogen bond pattern established between CO- and 
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NH-groups of the backbone. Investigation of the behaviour of polyalanine molecules 

with different numbers of residues has shown that the switching point for each 

molecule depends on its size. This has implications in potential industrial application 

of the switching phenomenon as it allows design of molecules that will undergo 

conformational changes at prespecified values of protein-surface interaction strength. 

The effect of length on the value of switching point can also be utilised in industrial 

separation of molecules based on their lengths. 

The Langevin dipole model (Florián and Warshel, 1997) has been shown to 

predict the solvation free energies accurately and with low computational cost. 

However, the original model is based on solute atomic charges calculated from 

quantum mechanical (QM) methods. QM calculation of charges is very time 

consuming and necessity to recalculate the charge distribution for every 

conformation of the solute makes it inapplicable in evolutionary algorithm based 

protein structure prediction. The study described in Chapter 6 shows that the LD 

model coupled with atomic charges adopted from the Amber PE model (LD-Amber) 

does not suffer from any deterioration in accuracy. It was found that the free energies 

of solvation of amino acid side chain analogues calculated by the LD-Amber method 

are, in most cases, very close to experimentally calculated values, and, in general, no 

worse than the results obtained using more sophisticated, explicit solvent model. 

Application of the LD-Amber method on a small alanine-dipeptide molecule in a 

range of its conformations has shown that, in addition to being able to operate with 

different amino acids, the method is capable of providing good results on a single 

molecule in different 3D structures. It has also been shown that, whilst being up to 

two orders of magnitude faster than explicit solvent models, the LD-Amber method 

can still predict solvent restructuring – something that would be impossible with 

implicit solvent models. 

Chapter 7 describes implementation of an EA based approach with the LD-

Amber calculated solvation free energy. The method obtained by coupling EA with 

the LD-Amber was termed LD-EA. LD-EA has been tested on prediction of solvated 

3D structure of met-enkephalin molecule in its zwitterionic and capped forms. The 

results obtained with the capped molecule have shown substantial differences 

compared to the results collected for the same molecule in vacuum. Zwitterionic 
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form has been observed in an extended conformation in water solution – a good 

qualitative agreement with experimental results for the 3D structure of solvated met-

enkephalin in zwitterionic form. It should be noted, though, that experimental studies 

do not offer a single conformation for met-enkephalin in water solutions, but a set of 

structures similar to that obtained in our study. The LD-EA method has also been 

used to investigate the 3D structure of zwitterionic met-enkephalin molecule on the 

graphite-water interface. The implementation of the new method has shown that, 

rather than closely adsorbing to the graphite surface, met-enkephalin molecule is 

found in its vicinity, but with three solvation layers between the surface and the 

molecule – a phenomenon similar to water adsorption in pores of microporous 

graphitic carbons (Ulberg and Gubbins, 1995). 

8.2. Overview of the Contribution to the Body of Knowledge 

• It was shown for the first time that the choice of the PE model can profoundly 

influence the EA performance and location of optimal EA control parameters in an 

EA based prediction of protein 3D structure. This finding is important, as many past 

EA based protein studies have used an arbitrary set of control parameters without 

clear understanding of their effect on the EA performance. 

• The studies of polyalanine at solid surfaces and met-enkephalin at the graphite-

water interface represent the first applications of an evolutionary algorithm in the 

context of prediction of the 3D structure of proteins at a solid-fluid interface. 

• The study of polyalanine at the solid surface has also shown a phenomenon 

that has never been reported before – conformational switching of the polyalanine 

molecule induced by the changes in surface interaction energy. The phenomenon can 

potentially be exploited in emerging technologies, such as nanocomputing and 

construction of nanomotors. 

• We have shown that coupling of the Langevin dipoles (LD) model with solute 

atomic charges adopted from the Amber PE model creates a very fast computational 

method with the level of accuracy comparable to explicit solvent representations. 

The LD-Amber model eliminates the need to conduct expensive QM calculations for 

evaluation of atomic charges for different conformations of the same molecule. Thus, 

the LD-Amber model extends the applicability of the original LD model into 
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numerical methods that otherwise would not be able to cope with its embedded QM 

charge calculation. 

• Contrary to some previous arguments from the scientific community, it has 

been shown that Langevin dipoles are capable of giving a high level of insight into 

the restructuring of solvation layers around the solute molecule. We have 

demonstrated the ability of the LD-Amber method to capture solvent restructuring 

and formation of water bridges around solvated alanine dipeptide molecule. This 

phenomenon has previously been observed using molecular dynamic methods 

(Beglov and Roux, 1995), but with the computational cost almost two orders of 

magnitude higher than that of the LD-Amber approach. 

• For the first time, an LD based calculation of solvation free energies has been 

used to facilitate calculation of the fitness function in an EA determination of protein 

3D structure in solution. 

• A novel model for interaction of proteins with a solid-fluid interface has been 

developed. The new model encompasses evaluation of protein intramolecular 

potential energy, energy of interaction between the surface and the protein and 

solvation of both the surface and the protein molecule. 

8.3. Future Work 

8.3.1. Adaptive Evolutionary Algorithm 

Our study of the relationship between control parameters and EA performance 

has revealed that the mutation probability has stronger effect on performance than 

any other parameter. It has also been demonstrated that the optimal mutation 

probability depends on the required level of accuracy of the EA outcome. If an 

evolutionary algorithm is run with one value of mutation probability, PM, in the 

initial stage and with another value or range of values in latter stages, then the initial 

PM value will direct the EA to a broad proximity of the global optimum, while latter 

PM values will narrow down the search to a very accurate solution. 

Following the same principle, it is possible to construct a “self adaptive” 

evolutionary algorithm, which will autonomously modify the mutation probability 

during the course of the simulation. The same principle can be applied to the other 

control parameters. Development of an adaptive EA will significantly reduce 
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computational time, thus allowing improvement in statistics of the method and 

enabling the EA approach to be applied to larger molecules. 

8.3.2. Calculation of Protein Conformational Entropy and Free Energy 

Free energy of a protein in solution is a sum of free energy of the protein and 

solvation free energy. However, free energy of the protein is currently simplified and 

approximated with its potential energy. In order to obtain a more accurate fitness 

function for EA minimisation, protein free energy calculation should be augmented 

by contribution of conformational entropy. It has also been demonstrated that protein 

conformational entropy may play an even more significant role during protein 

adsorption (Liu and Haynes, 2004). 

Due to its nature, an EA based approach requires the entropy and free energy to 

be associated with individual conformations. It is, therefore, necessary to apply an 

empirically based method for evaluation of conformational entropy based on a single 

3D structure (Karplus and Kushick, 1981; Sternberg and Chickos, 1994; Cole and 

Warwicker, 2002). One of the ways in which the entropic contribution can be 

calculated is by using a Hessian or the second derivative of the potential energy for a 

given conformation (Klepeis et al., 2002). Knowing the PE model, the second 

derivative at a local minimum associated with the conformation can easily be 

obtained numerically. 

8.3.3. Implementation of Protein Ionisation and Polarisation 

The current implementation of the EA based protein 3D structure prediction 

operates with proteins in a single ionised state. Proteins that include ionisable amino 

acid residues, such as aspartic acid or arginine, change their state of ionisation by 

protonation and deprotonation of acidic and basic groups. The protonation state is a 

function of the pH value of the solution. It is, however, also a function of protein 

conformation. The conformation is, in turn, strongly influenced by the distribution of 

atomic charges, which depends on protonation state. Consequently, the protonation 

state and conformation are mutually dependent and an ab initio method for 

conformation prediction will couple optimisation of conformation with the 

optimisation of the protonation state (Antosiewicz and Porschke, 1989; Mehler, 

1996). 



 168

In addition to ionisation, protein solvation may also be accompanied by a 

significant degree of electronic polarisation. Polarisation of the solute has been 

deliberately neglected in our LD-Amber studies, but it can be included using one of 

the PE models for biomolecules that explicitly include electronic polarisability, such 

as those developed by Cieplak and co-workers (Cieplak et al., 2001; Wang et al., 

2006). 

8.3.4. Development of Simplified Protein Models 

Atomistic protein models provide very high accuracy and the best insight into 

events on atomic levels. However, they are extremely computationally demanding. 

Being a method that relies on generation of random structures, evolutionary 

algorithm is bound to operate with many conformations that are characterised with 

high potential energies, especially in the early stages of the algorithm execution. In 

such a situation, an EA based method spends a significant amount of time doing 

detailed energy calculations for structures that will quickly be rejected. It may be 

advantageous to utilise other, simplified models of protein structure, such as united-

residue model (Zhou et al., 2003) for primary, approximate evaluation of the 

potential energy associated with a structure. Structures that show high fitness (i.e. 

low potential energy) would then be subjected to a detailed atomistic PE calculation. 

Although some of the structures would have their potential energies calculated twice, 

overall, the number of expensive all-atom calculations would significantly reduce. 

Implementation of united-residue or other bead representations is not 

straightforward as physical parameters in the Langevin dipole model are based on 

all-atom representation of the solute (Florián and Warshel, 1997). It may, therefore, 

be necessary to reparameterise the LD model in accordance with the simplified 

protein representation, or adopt a new solvation model. 

8.3.5. Development of an Evolutionary Algorithm Approach for Prediction of 
Amino Acid Sequences with Optimal Adsorbing Properties 

The EA approach discussed so far determines the conformation and associated 

adsorption energy for a protein with the known primary structure or amino acid 

sequence. The method may, however, be embedded into a more complex 

evolutionary algorithm that will be utilised to find the optimal sequence of amino 
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acids for adsorption on a given surface. In such a case, amino acid sequence would 

be generated by an “outer level EA”, whilst the adsorption energies of each 

generated peptide would be determined by an “inner EA” described in this work. The 

fitness function for an outer EA would be adsorption energy of an optimal 

conformation produced by the inner algorithm. Alternative fitness functions could 

also be designed to satisfy other applications (e.g. finding a peptide that optimally 

binds to two different solid surfaces). A method for determining optimally binding 

peptide can, for example, find application in nanotechnology, where the peptide 

could be used to bind two solid nanoparticles (as indicated in the Introduction). 
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Appendix A. Protein Structure Definition 
Proteins are linear combinations of amino acid residues. Table A.1 shows the 

structures of all 20 naturally occurring amino acids. Although they form a limited set, 

the number of combinations in which they can be arranged is vast. 

A common feature of all amino acids is that they can be divided into two 

structural parts: a backbone and a side chain (Figure A.1). The backbone is built of 

an amino group, -NH2, the so called α-carbon and its associated hydrogen atom, -

CαH-, and a carboxyl group, -COOH. The side chain (-R in Figure A.1) defines an 

amino acid. It should be noted that, as Table A.1 shows, glycine and proline are 

somewhat special compared to other amino acids. Glycine is the simplest amino acid 

and its side chain consists of a single hydrogen atom ( R=H ), while the backbone of 

proline is looped and connected to the N atom from amino group, i.e. its backbone 

and side chain are fused into a cyclic structure. These odd features give glycine and 

proline some characteristics that other amino acids do not possess. Due to the small 

side chain, glycine is much more flexible than other amino acids (Rappé and 

Casewit, 1997), which has significant implications in conformational analysis of 

proteins that contain glycine, such as met-enkephalin. Proline, on the other hand, is 

much more rigid than other amino acids as the movement of its backbone is 

constrained by chemical bonds with the side chain. When found in the middle of an 

amino acid sequence, proline, due to this rigidity, has a tendency to interrupt 

canonical spatial arrangement of its surrounding residues. 

Amino acid residues are connected to each other through peptide bonds. A 

peptide bond is formed in a dehydration process in which the carboxyl group of the 

first amino acid reacts with the amino group of the following residue, as shown in 

Figure A.2 (Rappé and Casewit, 1997). Since the new molecule possesses an amino 
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Figure A.1 General structural formula of all amino acids. 
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Table A.1 Natural amino acidsa 

    

Glycine (Gly, G) Alanine (Ala, A) Valine (Val, V) Leucine (Leu, L) 
    

Isoleucine (Ile, I) Methionine (Met, M) Tryptophan (Trp, W) Phenylalanine (Phe, F) 
    

Proline (Pro, P) Serine (Ser, S) Threonine (Thr, T) Cysteine (Cys, C) 
    

Tyrosine (Tyr, Y) Asparagine (Asn, N) Glutamine (Gln, Q) Aspartic acid (Asp, D) 
    

Glutamic acid (Glu, E) Lysine (Lys, K) Arginine (Arg, R) Histidine (His, H) 
a. Colour code: grey – hydrophobic; blue – polar; orange – acidic; green – basic; 
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group on its left hand side and carboxyl group on the right hand side, further amino 

acids can be added ad infinitum. 

Macromolecules obtained by the polymerisation process depicted in Figure A.2 

are called polypeptides if the number of amino acid residues is less than 50. Proteins 

are chains of amino acids that contain more than 50 residues (Rappé and Casewit, 

1997). Some of the naturally occurring proteins can have thousands of amino acid 

residues, whilst others, such as met-enkephalin used in our studies, may contain only 

a few. Small polypeptides (several amino acid residues long) are commonly referred 

to as oligopeptides or simply peptides. 

The end of the molecule on which the amino group is located (left hand side in 

Figure A.2) is called N-terminus, while the other end is C-terminus. By convention, 

proteins are defined using a sequence of amino acids that starts from the N-terminus 

and finishes at the C-terminus (Rappé and Casewit, 1997). 

The linear sequence of amino acids is what is known as the primary structure. 

Thus, protein primary structure is completely defined by knowing its constituent 

amino acids and their order from N- to C-terminus. Primary structure is, however, 

not sufficient to describe the 3D structure (also known as conformation (Cantor and 

Schimmel, 1980)) and biochemical characteristics of a protein. In order to describe 

these, one should also know the secondary, tertiary and, for protein aggregates, 

quaternary structure. 

Secondary structure represents the configuration of continuous regions of a 

protein, in which amino acid backbones form locally symmetric 3D structure (Cantor 

and Schimmel, 1980). The most common elements of the secondary structure include 

helices, sheets and turns (Rappé and Casewit, 1997). α-helix is, for instance, very 

widely distributed in many biologically relevant proteins. It is characterised with a 

screw axis of symmetry and completion of a full helical turn after every 3.6 residues 
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Figure A.2 Formation of the peptide bond. 



 192

on average (Cantor and Schimmel, 1980). The formation of a secondary structure is 

usually facilitated by establishing hydrogen bonds between different amino acid 

residues. Thus, in an α-helix, hydrogen bonds are formed between CO-group from 

the peptide bond of residue i and NH-group from the peptide bond of residue 4i + . 

Tertiary structure of a protein is the 3D structure or conformation of a 

complete chain of residues. It is a product of further rearrangements of secondary 

structure units (Rappé and Casewit, 1997). The tertiary structure is, effectively, a 

corollary of the secondary structure since the overall shape of a molecule is dictated 

by the structure of all of its individual units. On the other hand, the tertiary structure 

is tightly related to the biochemical function of a protein as the latter is a 

consequence of 3D positions of specific active groups or properties of the electric 

field formed by protein atomic charges. 

Quaternary structure defines binding of different protein chains into a single 

biochemical unit. Single protein chains can be coupled by chemical bonds or van der 

Waals and electrostatic interactions (Rappé and Casewit, 1997). Ionic channels in 

cell membranes (Hille and Catterall, 2006) and virus shells or capsids (Cantor and 

Schimmel, 1980) are typical examples of heteromers formed by several individual 

amino acid chains. The quaternary structure is not an objective of our work since, at 

this stage, we are interested in prediction of 3D structures of isolated protein chains. 

A.1 Ramachandran Plot 

3D structure of a protein can be defined in terms of all the dihedral angles in its 

backbone. The backbone is built by consecutively adding N, Cα and C atoms of 

individual amino acids. This repetitive sequence of three atoms allows definition of 

three backbone dihedral angles (Figure A.3). φ is the angle that defines the torsion 

around N–Cα bond. ψ defines the torsion around Cα–C bond, while the torsion around 

the peptide bond, C–N, is defined by ω dihedral angle. The peptide bond, CO–NH, is 

normally represented as a single bond between carbon and nitrogen atoms. However, 

in reality it possesses some characteristics of a double bond due to hybridisation with 

the double C=O bond (Pauling, 1940), as shown in Figure A.4. From the perspective 

of conformational analysis of proteins, the most important double bond feature that 

the peptide bond possesses is its strong rigidity. While single bonds have relatively 
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low rotation energy barriers, the double bond is usually kept planar in either cis or 

trans-conformation (Pauling, 1940; Mizushima et al., 1950). It has been shown that 

trans-conformation, in which α-carbon atoms are on the opposite sides of the C–N 

bond (i.e. o180ω = ), is by far the dominant conformation of the peptide bond 

(Kitano et al., 1973; Kitano and Kuchitsu, 1973; Momany et al., 1975). The trans-

conformation of the peptide bond will, accordingly, be used throughout this work, 

i.e. ω dihedral angle has been fixed at 180o in all our simulations. 

With the peptide bond fixed in its trans-conformation, the 3D structure of the 

backbone can now be fully described with pairs of φ and ψ dihedral angles for each 

amino acid residue. A very convenient way to represent pairs of φ and ψ angles 
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Figure A.3 Definition of the backbone dihedral angles in a protein: 
( )αC N C C= − − −φ ; ( )αN C C Nψ = − − − ; ( )α αC C N Cω = − − − . In a 

similar way, side chain dihedral angles (not shown in the figure) describe torsion 
around bonds in side chains. For known values of bond lengths and angles, 
dihedral angles provide complete description of protein 3D structure. 
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Figure A.4 Delocalisation (hybridisation) of the peptide bond in proteins. 
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graphically is the Ramachandran plot (Ramachandran et al., 1963). Ramachandran 

plot with sterically allowed regions and areas in which protein dihedral angles are 

most commonly found is shown in Figure A.5. Regions of the plot outside of the 

dashed lines are normally inaccessible to dihedral angles. However, as noted earlier, 

there are exceptions, especially with glycine and proline (Rappé and Casewit, 1997). 

 

Figure A.5 Ramachandran plot with the sterically allowed regions (within dashed 
lines) and regions in which dihedral angle pairs are most commonly located 
(shaded). 
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Appendix B. Potential Energy of a Protein 
Conformation 

Potential energy of a protein, as of any other molecule, is a function of its 3D 

structure. For example, change of atomic coordinates leads to changes in distances 

between different atoms, the ultimate consequence of which is the change in van der 

Waals and electrostatic energy between pairs of atoms. Overall intramolecular 

potential energy of proteins is, however, far more complex and includes several more 

contributions besides van der Waals and Coulomb interactions. 

B.1 Decomposition of a Protein Potential Energy 

The most accurate way to calculate potential energy of a molecule is by 

applying quantum mechanical methods. This approach is, however, computationally 

extremely expensive even for smaller molecules, and impractical for proteins that 

can include thousands of atoms. Potential energy of proteins and other large 

biomolecules is, therefore, approximated using a set of empirical equations, 

commonly referred to as force fields or potential energy models. 

Force fields represent overall potential energy, U, of an isolated molecule in a 

specified conformation as a sum of several terms 

 b a d es di eo hbχU U U U U U U U U= + + + + + + +  (B.1) 

where Ub is the energy of bond stretching or contraction, Ua is the angle bending 

energy, Ud is the energy associated with torsion around chemical bonds, Uχ 

represents the inversion term, and Ues , Udi, Ueo and Uhb are the non-bonded terms, 

electrostatic, dispersion, electron cloud overlap and explicit hydrogen bond energies, 

respectively. Bond and angle energies have self-explanatory names. They are a 

product of deformation of chemical bonds and angles between bonds from their 

equilibrium values. The torsion or dihedral angle energy, Ud, originates in torsion 

around a chemical bond. It is calculated for the rotation around the central bond for 

every set of four consecutive atoms. Figure B.1 shows graphical definitions of bond 

lengths, angles and dihedral angles used in calculation of the corresponding energy 

terms. Inversion energy relates to deformations of planar structures. Non-bonded 

energy terms are calculated for pairs of atoms that are separated by three or more 
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chemical bonds, e.g. atoms A and D in Figure B.1. Van der Waals interactions 

(dispersion and electron overlap terms) are calculated using Lennard-Jones potential 

or similar expression. Electrostatic energy term is derived from Coulombic 

expression for the force between two charged particles. It should be noted that many 

force fields do not include explicitly defined hydrogen bonds. Hydrogen bonds are, 

instead, often modelled through electrostatic and van der Waals interactions of 

relevant atoms. On the other hand, some force fields may include additional terms, 

such as the so called cross terms, which describe mutual influence of different 

deformations. These terms are, however, not very common and are not considered in 

detail here. 

Some of the most commonly used force fields in the studies of protein 3D 

structure are Amber94 (Cornell et al., 1995), OPLS (Jorgensen et al., 1996), CVFF 

(Dauber-Osguthorpe et al., 1988) and ECEPP/3 (Nemethy et al., 1992), also used in 

Chapter 4 of this thesis. Numerical details of these force fields are summarised in 

Table B.1. 

Figure B.1 Definition of chemical bonds, angles between them and dihedral angles. 
Bond stretching (or contraction) energy is calculated for all three chemical bonds: 
AB, BC and CD. Analogously, angle bending energy is calculated for both angles: 
ABC and BCD. The torsion energy is evaluated for the dihedral angle ABCD. The 
value of the dihedral angle, dABCD, is calculated by projecting bonds AB and CD 
into a single plane perpendicular to the central bond, BC, and evaluating the angle 
between the projections. 
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Table B.1 Terms of the force fields used in this thesis 

Terma Amber OPLS CVFF ECEPP 

Ub ( )2r
b b b

b

K r r−∑  ( )2r
b b b

b

K r r−∑  ( )1 b b br rr
b
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a a a
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K θ θ−∑ θ  ( )2

a a a
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K θ θ−∑ θ  ( )2
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−⎜ ⎟

⎝ ⎠
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a. Symbols are defined in equation (B.1). 
b. The remaining symbols take the following meaning: br  and br  are the length and equilibrium length of a bond, b, respectively, of stiffness, r

bK , aθ  and aθ  are 
the angle, a, between two bonds having a common atom and its equilibrium value respectively, bKθ  is the associated stiffness, dφ , is the dihedral angle with the 
associated barrier height parameters, dKφ  and l

dKφ , periodicity, dn , and phase, dγ , ijr  is the distance between two non-bonded atoms i and j, ijA  and ijB  are the 
associated van der Waals repulsive and attractive parameters respectively, qi is the partial charge associated with atom i, ε is the dielectric constant of the 
surrounding medium, rhb is the distance between a hydrogen atom and either a non-bonded oxygen or nitrogen atoms defining a hydrogen bond, Ahb and Bhb are 
the associated hydrogen bond repulsive and attractive parameters respectively, and fij are the scaling factors for 1-4 interactions. 

c. The shaded terms are directly affected by the degrees of freedom varied during the EA simulations. The remainder are used to determine the bond lengths and 
angles as described in the text, which are then fixed during the EA – these terms will, therefore, have only an indirect impact on the performance of the EA. 
Improper torsion is not allowed and cross terms are neglected in PE calculation. 
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Appendix C.  Determination of Switching Points in 
Polyalanine Adsorbtion on Smooth Surfaces 

As shown in Chapter 5, polyalanine molecules switch conformation from α- to 

310-helix and from 310- to 27-helix when the energy of the protein-surface interaction 

is gradually increased. The switching point has been defined as the protein-surface 

energy for which overall energies of two conformations of the same molecule are 

equal. 

This analysis considers two conformations A and B either side of a switching 

point. The total potential energy of these conformations, Et, is the sum of the intra-

peptide potential energy, Ep, and the peptide-surface potential energy, Eps 

 
(A) (A) (A)
(B) (B) (B)

t ps

t ps

E U E
E U E

= +
= +

 (C.1) 

Figure 5.7(a) shows that the intra-peptide potential energies are, to a good 

approximation, independent of the surface energy, Es. This figure also shows, on the 

other hand, that the peptide-surface potential energy is very much dependent on the 

surface energy. Ignoring the small changes in conformations between the switching 

points, this dependency for the conformations can be well modeled by a straight line 

passing through the origin with a slope equal to 

 /ps ps sS dE dE=  (C.2) 

The variations of the total energy of the two conformations with surface energy 

now become 

 
(A) (A) (A)
(B) (B) (B)

t ps s

t ps s

E U S E
E U S E

= +
= +

 (C.3) 

The switching point is the value of Es for which the total potential energies of 

the structures are equal (shown in insert of Figure 5.7(a)); i.e. (A) (B)t tE E= . Thus, 

equating the expressions for the total energy of the two conformations, the switching 

point is calculated as 

 [ ](A) (B) (B) (A) Δ Δsw ps ps psE U U S S U S⎡ ⎤= − − = −⎣ ⎦  (C.4) 

as shown in equation (5.4). 
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Appendix D. Derivation of van der Waals Energy 
Between Langevin Dipoles and Smooth Surface 

The derivation uses the same principles as those used by Steele (Steele, 1974) 

for the derivation of energies of van der Waals interactions between the molecules of 

gases and solid surfaces. The major difference is that, instead of 12-6 Lennard-Jones 

potential used in the initial step by Steele, a softer 9-6 potential is used here, as 

suggested by Florián and Warshel (2007). 

Figure D.1 shows the interaction of a dipole j with one smooth plane. The 

overall energy of interaction is derived by integrating the energies of van der Waals 

interactions between the dipole and planar rings, Er, from 0 to ∞. 

The energy of interaction between the dipole j and surface atom a on a distance 

rj from each other is (Florián and Warshel, 1997) 

 
( )

9 6

vdW 2
* *2 3

*
a j

j j

C r rE k N
r rr

⎡ ⎤⎛ ⎞ ⎛ ⎞
⎢ ⎥= −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

 (D.1) 

where kvdW is the van der Waals coefficient vdW 0.84kcal/molk = , r* and C are the 

dimension and interaction strength van der Waals parameters of carbon atoms in 

graphite, while Nj is the normalisation factor for balancing interactions in the coarse 

and fine grids of the LD model (Florián and Warshel, 1997). 
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Figure D.1 Energies of interaction of dipole j with a ring element Ee, ring Er, and
plane Ep.
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Figure D.1 Energies of interaction of dipole j with a ring element Ee, ring Er, and
plane Ep.

dθ
dr



 202

In a smooth surface, however, all atoms are fused into a plane. The plane can 

be represented as a set of concentric infinitesimally thin rings, r. Each ring, in turn, 

can be divided into infinitesimal elements, e. The energy of interaction between an 

element e of a ring and the dipole j depends on the distance between the two and the 

number of atoms that can fit into the element, na. The number of atoms in an 

element, analogous to the derivation of Steele, can be calculated using surface 

density of atoms in the plane, ρ, and the area of the element, Ae: a en ρA= . The 

surface area of an element of a ring can be expressed in terms of the ring radius, r, 

and the angle of the circular segment covered by the element, dθ: 

( )/ 2 2eA dθ π πrdr rdrdθ= = . The van der Waals energy of interaction between the 

dipole j and an element e can, therefore, be expressed as 

 e aE ρE rdrdθ=  (D.2) 

The energy of interaction between the dipole and an infinitesimally thin ring 

which contains element e is calculated by integrating over all the elements 

 
2 2

0 0

2
π π

r e a aE E ρE rdrdθ πρE rdr= = =∫ ∫  (D.3) 

The energy of interaction between the dipole and the plane is, then, obtained 

through integration of all the rings, whose radii range from 0 to ∞ (Figure D.1) 

 
0 0 0

2 2p r a aE E πρE rdr πρ E rdr
∞ ∞ ∞

= = =∫ ∫ ∫  (D.4) 

The distance between the ring at radius r from the vertical projection of the 

dipole j to the plane is (from Figure D.1) 2 2 2
j jr z r= + , whilst the energy Ea is 

substituted from equation (D.1). Thus, equation (D.4) can be transformed into 

 
( )

( )
( )

( )
( )

9 6
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2 2 * 3 *
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∞ ∞
⎡ ⎤
⎢ ⎥
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∫ ∫  (D.5) 

Using the integral solution 

 
( ) ( )( ) 12 2 2 2

1

2 1
n n

xdx

a x n a x
−= −

+ − +
∫  (D.6) 

for the limits indicated in equation (D.5) we obtain 
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( ) ( ) 2 22 2

0

1
2 1n n

xdx
n aa x

∞

−= −
−+

∫  (D.7) 

Replacing a with zj and substituting into equation (D.5), the following 

expression is produced 
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vdW 2 7 4

1 12 2 * 3 *
7 4*

p j
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 (D.8) 

Finally, adding lower surface planes produces 
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vdW
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7 Δ 4 Δ
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∑  (D.9) 

Summing these interactions for all the dipoles produces equation (7.4). 
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Appendix E. Bulk Contribution to Solvation Free 
Energy in the LD-EA Method for Molecules above 

a Solid Surface 
Two cases should be considered – a charged molecule (or ion) with the net 

charge of q, and a neutral molecule with dipole moment μ. Each will be considered 

in turn. 

E.1 Solvation of an Ion at the Water-Solid Interface 

Following the derivation of the solvation free energy of an ion in an implicit 

solvent, proposed by Born (Born, 1920a), the same principle can be applied to obtain 

the free energy of solvation for an ion above the solid surface, Figure E.1. It should 

be noted, though, that while Born’s integration extends from the ion radius to infinity 

in all directions, the integration conducted here has to start from Rb (which is the 

radius of the sphere whose internal volume is modelled by Langevin dipoles) and has 

to take into account the spherical dome immersed into the solid surface. 
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q

Figure E.1 Sphere for integration of free energy of solvation for an ion q on the
distance h eabove the solid surface

Rb
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r

h

q

Figure E.1 Sphere for integration of free energy of solvation for an ion q on the
distance h eabove the solid surface
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( ).bh R≤
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Electrostatic potential energy, U, of a continuous charge distribution in a 

volume V may be expressed in terms of electrostatic field generated by the charge 

throughout the volume V (Guru and Hiziroğlu, 2004). Although the charge 

distribution of the ion is not continuous, the discontinuity is outside of the volume of 

interest and the potential energy equation provided by Guru and Hiziroğlu may be 

applied 

 2
0

1
2 r

V

U ε ε E dV= ∫  (E.1) 

where E is the magnitude of the electrostatic field E in an element of the volume dV, 

calculated as E = E , while ε0 and εr have earlier been defined as the electric 

permittivity of vacuum and relative dielectric constant, respectively. 

For a point charge q placed in the center of a sphere with radius r, the 

electrostatic field on the surface of the sphere is calculated as 

 2
0

1
4 r

qE
πε ε r

=  (E.2) 

The volume of interest here is the volume outside of the sphere Rb (Figure E.1), but 

also above the solid surface. The integration is, therefore, performed by adding 

infinitesimally thin spherical shells from Rb to ∞, and subtracting the part of each 

shell that lies inside the solid surface. 

The volume dVS of a spherical shell of radius r and infinitely small thickness dr 

is calculated as the product of the area of shell surface and the thickness 

 2
S 4dV πr dr=  (E.3) 

The volume of the spherical dome inside the solid surface is, similarly, calculated as 

 D 2 ( )dV πr r h dr= −  (E.4) 

where 2 ( )πr r h−  is the area of the sphere (spherical dome) that is inside the solid 

surface, for the sphere whose center is on a distance h from the surface. Thus, the 

volume dV for integral in equation (E.1) can be obtained by subtracting the volume 

dVD from the volume dVS 

 24 2 ( ) 2 ( )dV πr dr πr r h dr πr r h dr= − − = +  (E.5) 

and for bh R≤  the integral in equation (E.1) can now be solved 
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where integral on the left hand side of the equation can be decomposed into a sum of 

two table integrals of the form 2

dx
x∫  and 3

adx
x∫ . Solving these, U becomes 
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 (E.8) 

and finally 
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R hqU
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=  (E.9) 

This is, however, only the potential energy in a dielectric environment with dielectric 

constant εr, such as water ( 80rε ≈ ). In order to obtain the free energy of solvation 

(or, in this case, the contribution of implicitly represented water to it), one must find 

the difference of potential energies in a gas phase (in which 1rε = ) and inside the 

dielectric environment. Thus, the free energy of solvation can be calculated as 

 
2 2

es(c) 2 2
0 0

2 2Δ
16 2 16 2

sol vac b b

r b b

R h R hq qG U U
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= − = −  (E.10) 
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 (E.11) 

If the whole sphere of Langevin dipoles is above the surface (i.e. bh R> , 

Figure E.2), the integration is performed in two steps, where the first step integrates 

whole spherical shells from the radius Rb to h, whilst the second step (from h to ∞) 

extends the integration for the spherical shells partially immersed into the solid 

surface and is equivalent to the procedure shown in equations (E.1) to (E.11). 

Integration of the inner space (Rb to h) uses the same basic principles (equation 

(E.1)), but, since none of the spherical shells from this space intersect the surface, the 

differential volume dV is equal to the volume of the whole spherical shell, dVS, and 

the upper limit of the integration is h, rather than ∞. The contribution of this part of 



 208

the space is 
2
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⎛ ⎞⎛ ⎞
= − −⎜ ⎟⎜ ⎟
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. Summing up with the contribution 

from the outer space of the implicit solvent (h to ∞), which is, from equation (E.11), 

equal to 
2

outer
es(c)

0

3 1Δ 1
16 2 r

qG
πε h ε

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
, the overall contribution of implicit solvent to 

solvation free energy of a charged molecule on a distance h from the solid surface is 
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 (E.12) 

Equations (E.11) and (E.12) are equivalent to the two cases ( bh R≤  and bh R> ) of 

equation (7.6). 

E.2 Solvation of a Dipole at the Water-Solid Interface 

Derivation of the implicit solvent contribution to the free energy of solvation of 

a dipole with moment μ and net charge equal to 0 is more complex than for the ion 

as, in addition to the dipole position, it also depends on its orientation. Calculation of 

ΔGes(c) uses the approach described by Bell (Bell, 1931). Figure E.3 shows relevant 

spherical domains used in the derivation of free energy of solvation of a dipole. The 
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Figure E.2 Sphere for integration of free energy of solvation for an ion q on the
distance h above the solid surface
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Figure E.2 Sphere for integration of free energy of solvation for an ion q on the
distance h above the solid surface
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only difference, compared to the Bell’s approach is decomposition of the inner 

domain to two domains, A and B, due to the presence of solid surface. 

For the case shown in Figure E.3 ( bh R≤ ), the part of the solvent represented 

by Langevin dipoles is divided into two spherical domains, A and B. A is the sphere 

of radius h, i.e. the sphere that is centered in the point dipole μ and touches the solid 

surface. The rest of the Langevin dipole domain is represented by a spherical shell B 

that extends from sphere A to the radius Rb. The domain outside of radius Rb is the 

implicitly represented solvent (domain C) and it is characterised with dielectric 

constant, εr, greater than 1 (for water solutions 80rε ≈ ). It should be noted that 

domains A and B are both characterised with 1rε =  since the solvent inside them is 

represented explicitly using Langevin dipoles. 

Since the first spherical domain, A, is not interrupted by the presence of the 

solid surface, the integration of the contribution of that domain is identical to that 

proposed by Bell (1931) 
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∫ ∫  (E.13) 
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which, after solving, produces (Bell, 1931) 
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A
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Δ
24
μ λG
πε h

=  (E.14) 

where μ is the magnitude of the dipole μ, and λ is introduced by Bell in order to 

simplify the numerical representation (Bell, 1931) 
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−
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+
 (E.15) 

Integration of the domain B uses similar approach with two modifications. The 

first modification is in the limits for the integration. Whilst the domain A is 

integrated from 0 to h (radius of the spherical domain A), the integration of the 

domain B is performed from h to Rb, which, as for the solvation of ion, represents the 

radius of a sphere whose volume is filled by Langevin dipoles. 

The second modification regards the intersection of the domain B by the solid 

surface (Figure E.3). Only the part of the domain B that is above the solid surface is 

considered for the calculation of the free energy of solvation, while the part that is 

immersed into the surface is neglected. Calculation of the contribution of the part 

above the solid surface has been performed by multiplying the volume of each 

infinitesimal spherical shell in the integration by its fraction above the solid surface. 

It should be noted that this procedure is only an approximation, but since our 

experience suggests that the overall implicit solvent contribution to the solvation free 

energy is very small compared to the contribution of the Langevin dipoles (up to 

several percents), this approximation is expected to be good enough for this purpose. 

For the sphere of radius r whose center is at a distance h from a solid surface ( h r< ), 

simple geometric manipulation shows that the fraction of the area of the spherical 

surface that is outside of the solid surface is ( ) ( )2f r h r= + . 

Adding the fraction f and changing the integration limits in equation (E.13) 

produces 

 ( )
2 2

B 2 2
es(c) 0 2 2 3 3 6

00

1 2Δ 3cos 1 2 sin
2 16 2

bRπ

b bh

μ λ λ r hG ε θ πr θdrdθ
π ε r R R r

⎡ ⎤ +
= − +⎢ ⎥

⎣ ⎦
∫ ∫  (E.16) 

which, after some mathematical manipulation, results in 
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Contribution of the domain C is obtained using Bell’s approach for the 

contribution of dielectric environment (equation (4) in (Bell, 1931)), with 

multiplying each spherical shell by the fraction f of the shell above the solid surface, 

as for the domain B 
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C
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00

2
2
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1 3cos 11Δ
2 16
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b
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r
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r r
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∫ ∫
 (E.18) 

which, after simplification, produces 
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1 1 4 3
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96
r b
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μ ε λ R h
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πε R

⎡ ⎤− − +⎣ ⎦=  (E.19) 

Summing the contributions of all three domains (A, B and C), the total 

contribution of implicit solvent to the free energy of solvation of a dipole μ on a 

distance h from the solid surface is 
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( )( )
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 (E.20) 

for bh R≤ . 

Calculation of ΔGes(c) for a point dipole μ further away from the surface 

( bh R> , Figure E.4) uses an analogous procedure, but divides the bulk solvent into 

domains B (spherical shell with inner radius of Rb and outer radius equal to h) and C 

(set of infinitesimally thin spherical shells partially immersed into the solid surface 

and extending from radius h to ∞), whilst the domain A now represents the whole 

sphere in which the solvent is represented by Langevin dipoles and for which 1rε = . 

The contributions of the domain A can be calculated as 

 ( )
2 2

A 2 2
es(c) 0 2 2 3 3 6

00 0

1 2Δ 3cos 1 2 sin
2 16

bRπ

b b

μ λ λG ε θ πr θdrdθ
π ε r R R
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= − +⎢ ⎥

⎣ ⎦
∫ ∫  (E.21) 

or, after simplification 
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The contribution of the domain B is 
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∫ ∫
 (E.23) 

or simplified 
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Finally, the domain C is included with the following contribution 
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 (E.25) 

which, when simplified, gives 
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distance h above the solid surface

Rb

r

θ
AB

C

( ).bh R<

h h

μ

Figure E.4 Sphere for integration of free energy of solvation for a dipole μ on the
distance h above the solid surface

Rb

r

θ
AB

C

( ).bh R<

h



 213

Summing up equations (E.22), (E.24) and (E.26), the contribution of implicit 

solvent to the solvation free energy of a point dipole on a distance h from solid 

surface for bh R>  becomes 
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es(c) es(c) es(c) es(c)

2
3 3

23 3
0

Δ Δ Δ Δ
1 4 1 8 2 1

96 2 1
r

r b r
b r

G G G G
εμ ε R ε h

πε R h ε

= + +

− ⎡ ⎤= − − +⎣ ⎦+

 (E.27) 

Combining equations (E.20) and (E.27) covers all dipole positions above the 

solid surface, thus corresponding to equation (7.7). 
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