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least Jakub Konečný - without whom I would not pursue my PhD degree in the first place.

I am very grateful to the School of Mathematics and all its members for making my stay
so smooth. Especially I would like to thank Gill Law for her administrative magic, and Joan
Simon and Iain Gordon for their patience and cooperation regarding various concessions I had
to ask throughout my study – it really changed my life.

I would like to say a huge thank you to all the people from Edinburgh who made my stay
more pleasant. Notably, my office mates Adria Caballe Mestres and Hattice Kursungecmez,
my lunch mates Wenyi Qin, Ivet Galabova, Xavier Cabezas, Tom Byrne, Saranthorn Phusinga,
the people from chess society, especially Zorbey Turkalp, Motiejus Gudenas, Julius Schwartz,
Adam Bremner, and Lilli Hahn, the members of the Czech-Slovak society, in particular Ivan
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Abstract

Gradient descent methods and especially their stochastic variants have become highly popular
in the last decade due to their efficiency on big data optimization problems. In this thesis
we present the development of data sampling strategies for these methods. In the first four
chapters we focus on four views on the sampling for convex problems, developing and analyzing
new state-of-the-art methods using non-standard data sampling strategies. Finally, in the last
chapter we present a more flexible framework, which generalizes to more problems as well as
more sampling rules.

In the first chapter we propose an adaptive variant of stochastic dual coordinate ascent
(SDCA) for solving the regularized empirical risk minimization (ERM) problem. Our modifi-
cation consists in allowing the method to adaptively change the probability distribution over
the dual variables throughout the iterative process. AdaSDCA achieves a provably better com-
plexity bound than SDCA with the best fixed probability distribution, known as importance
sampling. However, it is of a theoretical character as it is expensive to implement. We also
propose AdaSDCA+: a practical variant which in our experiments outperforms existing non-
adaptive methods.

In the second chapter we extend the dual-free analysis of SDCA, to arbitrary mini-batching
schemes. Our method is able to better utilize the information in the data defining the ERM
problem. For convex loss functions, our complexity results match those of QUARTZ, which is
a primal-dual method also allowing for arbitrary mini-batching schemes. The advantage of a
dual-free analysis comes from the fact that it guarantees convergence even for non-convex loss
functions, as long as the average loss is convex. We illustrate through experiments the utility
of being able to design arbitrary mini-batching schemes.

In the third chapter we study importance sampling of minibatches. Minibatching is a
well studied and highly popular technique in supervised learning, used by practitioners due
to its ability to accelerate training through better utilization of parallel processing power and
reduction of stochastic variance. Another popular technique is importance sampling – a strategy
for preferential sampling of more important examples also capable of accelerating the training
process. However, despite considerable effort by the community in these areas, and due to the
inherent technical difficulty of the problem, there is no existing work combining the power of
importance sampling with the strength of minibatching. In this chapter we propose the first
importance sampling for minibatches and give simple and rigorous complexity analysis of its
performance. We illustrate on synthetic problems that for training data of certain properties,
our sampling can lead to several orders of magnitude improvement in training time. We then
test the new sampling on several popular datasets, and show that the improvement can reach
an order of magnitude.

In the fourth chapter we ask whether randomized coordinate descent (RCD) methods should
be applied to the ERM problem or rather to its dual. When the number of examples (n) is
much larger than the number of features (d), a common strategy is to apply RCD to the dual
problem. On the other hand, when the number of features is much larger than the number of
examples, it makes sense to apply RCD directly to the primal problem. In this paper we provide
the first joint study of these two approaches when applied to L2-regularized ERM. First, we
show through a rigorous analysis that for dense data, the above intuition is precisely correct.
However, we find that for sparse and structured data, primal RCD can significantly outperform
dual RCD even if d� n, and vice versa, dual RCD can be much faster than primal RCD even
if n� d. Moreover, we show that, surprisingly, a single sampling strategy minimizes both the
(bound on the) number of iterations and the overall expected complexity of RCD. Note that
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the latter complexity measure also takes into account the average cost of the iterations, which
depends on the structure and sparsity of the data, and on the sampling strategy employed. We
confirm our theoretical predictions using extensive experiments with both synthetic and real
data sets.

In the last chapter we introduce two novel generalizations of the theory for gradient descent
type methods in the proximal setting. Firstly, we introduce the proportion function, which
we further use to analyze all the known block-selection rules for coordinate descent methods
under a single framework. This framework includes randomized methods with uniform, non-
uniform or even adaptive sampling strategies, as well as deterministic methods with batch,
greedy or cyclic selection rules. We additionally introduce a novel block selection technique
called greedy minibatches, for which we provide competitive convergence guarantees. Secondly,
the whole theory of strongly-convex optimization was recently generalized to a specific class
of non-convex functions satisfying the so-called Polyak- Lojasiewicz condition. To mirror this
generalization in the weakly convex case, we introduce the Weak Polyak- Lojasiewicz condition,
using which we give global convergence guarantees for a class of non-convex functions previously
not considered in theory. Additionally, we give local convergence guarantees for an even larger
class of non-convex functions satisfying only a certain smoothness assumption. By combining
the two abovementioned generalizations we recover the state-of-the-art convergence guarantees
for a large class of previously known methods and setups as special cases of our framework.
Also, we provide new guarantees for many previously not considered combinations of methods
and setups, as well as a huge class of novel non-convex objectives. The flexibility of our approach
offers a lot of potential for future research, as any new block selection procedure will have a
convergence guarantee for all objectives considered in our framework, while any new objective
analyzed under our approach will have a whole fleet of block selection rules with convergence
guarantees readily available.
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Chapter 1

Introduction

Stochastic optimization methods have been around since the famous paper of Robbins and
Monro in 1951 [61] and have enjoyed a lot of success ever since. The above work introduces
the well-known method called Stochastic Gradient Descent (SGD). The inherent simplicity of
SGD caused that it is successfully applied in many areas of science and it is still one of the
most important baselines for large-scale optimization problems, even after more than 60 years.

Although SGD was sufficient to solve a lot of challenging problems, with the increasing size
of the processed datasets, it has become too slow. Under these circumstances, the optimization
community was posed with a new challenge – how to devise methods able to accurately solve
problems over arbitrarily large datasets in a reasonably short time. With the arrival of the
so-called “big data” era, this challenge has become one of the top priorities of the community.

In the following we will focus our attention to one of the fundamental problems of machine
learning – supervised learning. The goal of supervised learning is to learn a predictor which is
going to accurately predict the labels of given examples, e.g., identify the word a person said.
Formally, the problem can be defined in the following way. Let X be a space of examples and
Y the corresponding space of labels. Our goal is to find a predictor h∗ : X → Y, such that
for any example-label pair drawn from the example-label space (x, y) ∼ X × Y, we will have
h∗(x) = y. To write this down as a learning problem, we can formulate the following

h∗ = arg min
h:X→Y

{
E(x,y)∼X×Y [1[h(x)=y]]

}
,

where the function 1[z] is equal to 1 if z is true and it is 0 otherwise. In words, we want
to find a predictor h∗ such that it has the lowest prediction error on average for a randomly
drawn example-label pair. Functions as 1 are usually referred to as loss/risk functions, as they
penalize the predictor for mispredicting.

The above formulation has one key drawback – we do not know the underlying probability
distribution of the example-label pairs. Indeed, we do not know what is the probability of
seeing a specific image or hearing a specfic sound. To overcome this issue, the theory suggests
to simulate the above quantity by randomly drawing n samples {(xj , yj)}nj=1 from X ×Y in an
i.i.d. fashion and approximating the above expectation by an empirical average

E(x,y)∼X×Y [1[h(x)=y]] ≈ 1

n

n∑
i=1

1[h(xj)=yj ].

If the number of samples n is large enough, we can expect the empirical average to approximate
the expectation very closely. If that is the case, we can hope that the predictor ĥ found by
minimizing the empirical average

ĥ = arg min
h:X→Y

 1

n

n∑
j=1

1[h(xj)=yj ]


will be approximately the same as h∗. This idea is known as the problem of Empirical Risk
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Minimization (ERM) and it is one of the key optimization problems arising in machine learning
[81]. However, the above problem has several caveats, which are well described in e.g. [68].

First issue is the function being minimized. In the current formulation, it is non-continuous
and therefore difficult to minimize. Also, in a case that the label is a scalar value, e.g., temper-
ature, it seems harsh to penalize a prediction off by 1 by the same amount as a prediction off by
100. The standard solution is to introduce a loss/risk function ` : Y ×Y → R+, which is going
to measure, how good our current predictor h is on a given example as the value `(h(xj), yj). A
basic example of a loss function is the squared loss, which is simply `(h(xj), yj) = (h(xj)−yj)2.
The main property of a loss function is, that it should output zero, if the prediction is correct,
and output a positive penalty based on how far off our prediction is in the case of an incorrect
prediction. The squared loss satisfies these requirements exactly. More losses are going to be
introduced later in this chapter in Section 1.2.3.

By introducing a loss function, we generalize our risk minimization problem to

ĥ = arg min
h:X→Y

 1

n

n∑
j=1

`(h(xj), yj)

 .

It is indeed a generalization as by choosing `(h(x), y) = 1[h(x)=yj ] we recover the original
formulation. However, solving the above problem still does not guarantee as a good predictor
and so we need to look at the next caveat.

To tackle the second issue, we need to restrict our potential predictors h : X → Y to a class
H. Indeed, what is known as the “No Free Lunch Theorem” [82] proves that we are unable to
find a good predictor using the empirical risk, if we consider all the possible predictors from
X to Y. This makes intuitive sense, as there are many predictors which will correctly predict
the labels for our finitely many examples, but only some of them will be able to predict correct
labels for unseen examples as well. The formal proof in the above work uses the fact, that we
are unable to distinguish between the two cases mentioned above, unless we restrict the class
of predictors. Examples of such classes of predictors can be linear models or deep learning.

One important approach for class restriction is the so-called “regularization”. The main
idea behind the regularization is, that we prefer simple predictors over complex, as complex
predictors are usually more likely to overfit to the training examples. This approach usually
leads to predictors, which generalize better to unseen data. Formally, regularization is a function
R : H → R+, which measures the complexity of a given predictor h in some way. An example
can be a regularizer, which outputs the number of characters needed to code up the predictor.
This way, shorter (simpler) codes will be penalized by less than long and complex predictors.
More examples of regularizers are introduced in Section 1.2.4.

Putting everything together, the empirical risk minimization problem can be written as

ĥ = arg min
h∈H

 1

n

n∑
j=1

`(h(xj), yj) +R(h)

 .

In words, we are looking for the predictor h∗, which has the smallest penalty for misprediction
combined with the penalty for complexity.

Usually, the classes of predictors H can be parametrized by a weight vector w ∈ W ⊆ Rd,
which transforms the problem from a functional space to a euclidean space

w∗ = arg min
w∈W

 1

n

n∑
j=1

fj(w) + r(w)

 , (1.1)

where fj(w) := `(h(xj), yj) and r(w) := R(h). The above problem (1.1) is often regarded as
the ERM problem.

One important special case of the ERM problem is the linear ERM problem, i.e., the ERM
problem specified to linear models. For linear models, we assume that the examples xj ∈ Rd
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are vectors and our class of predictors is given by

Hlinear :=
{
h(x) = 〈x,w〉+ c, w ∈ W ⊆ Rd, c ∈ R

}
.

For easier notation, the above class is often redefined to contain the constant c inside the vector
w by adding an additional entry equal to 1 to all examples xj . Using this, the linear ERM
problem takes the form

w∗ = arg min
w∈W

 1

n

n∑
j=1

φj(〈xj ,w〉) + r(w)

 , (1.2)

where φj(s) := `(s, yj).
Both the general ERM (1.1) and linear ERM (1.2) problems have their specific applications

and it is important to study the ERM problem on both of these levels – which we do in this
work. In Chapters 2, 4, and 5 we study the problem of linear ERM (1.2), while in Chapter 3
we propose a method for the general ERM (1.1). In Chapter 6 we go even further in generality,
and we propose methods for the framework

x∗ = arg min
x∈X

{f(x) + g(x)} , (1.3)

where our only assumptions are, that f : Rd → R is smooth and g : Rd → R is separable. This
framework can be specified to both general and linear ERM, as well as many other problems
appearing outside of machine learning.

In this work we consider stochastic iterative methods for solving (1.1), (1.2), and (1.3).
The methods we consider are stochastic for one of two reasons: i) we update only one random
coordinate of our objective vector on each iteration ii) we randomly sample a single example
and we update our objective vector only using information from this single example. In both
of these cases, we randomly sample an index, either of a coordinate, or an example. One of
the main goals of this work is to answer the question: how should we sample this index? In
this work we show, that the most natural sampling – the uniform sampling, where we consider
each index with equal probability – might be far from optimal. In each chapter we consider a
separate approach to this question. These approaches are discussed in more detail in Section 1.4

In the rest of this chapter we will present the standard theory developed prior to this work,
which is assumed to be known by the reader throughout the rest of the chapters. We also
introduce the empirical risk minimization problem in more details together with specific forms
of the losses and regularizers. Finally, we present notational conventions used in the rest of this
work.

1.1 Technical glossary

We will introduce the basic technical glossary in our most general setup. We are interested
in minimization problems minF (x), where the function F : Rd → R̄ := R ∪ {+∞} can be
decomposed as

F (x) = f(x) + g(x), (1.4)

where function f : Rd → R is assumed to be smooth and the function g : Rd → R̄ is usually
assumed to be non-smooth and simple, sometimes even separable. Throughout this work we
impose additional assumptions on the functions f and g, which are further specified in the
following.

1.1.1 Smooth functions

We say that a function f : Rd → R is M-smooth, if there exists a positive definite matrix
M ∈ Rd×d, such that

f(x + h) ≤ f(x) + 〈∇f(x),h〉+
1

2
h>Mh, (1.5)

15



for every x,h ∈ Rd. If a function f is β · I-smooth, where I is the identity matrix, we also say
that the function is β-smooth. By standard theory, this is also equivalent to

‖∇f(x)−∇f(y)‖2 ≤ β‖x− y‖2, (1.6)

for all x,y ∈ Rd and means that the gradient of f is β-Lipschitz.

1.1.2 Convex and strongly-convex functions

Let λ ≥ 0. A function F : Rd → R̄ is said to be λ-strongly convex, if for all x,y ∈ Rd and all
β ∈ [0, 1] we have

F (βx + (1− β)y) ≤ βF (x) + (1− β)F (y)− λβ(1− β)

2
‖x− y‖22. (1.7)

A function F which is 0-strongly convex, i.e.,

F (βx + (1− β)y) ≤ βF (x) + (1− β)F (y) (1.8)

is usually referred to as convex.
Consider a smooth function f : Rd → R. If f is λ-strongly convex, it follows by standard

theory that ∀x,h ∈ Rd.

f(x + h) ≥ f(x) + 〈∇f(x),h〉+
λ

2
‖h‖22. (1.9)

Similarly, a convex and smooth function f satisfies ∀x,h ∈ Rd

f(x + h) ≥ f(x) + 〈∇f(x),h〉. (1.10)

1.1.3 Separable functions

We say that a function g : Rd → R is separable, if there exist d scalar functions {g1, . . . , gd},
such that

g(x) =

d∑
i=1

gi(xi). (1.11)

1.1.4 Fenchel conjugation

For a general function ρ : Rk → R we define the Fenchel (also called convex) conjugate ρ∗ :
Rk → R as the function

ρ∗(s) := sup
u∈Rk
{〈s,u〉 − ρ(u)}. (1.12)

It also follows from standard theory [28], that if the function ρ is 1/γ-smooth and convex, then
the conjugate function ρ∗ is γ-strongly convex and vice-versa – if the function ρ is γ-strongly
convex, then the conjugate function ρ∗ is 1/γ-strongly convex. For more details on Fenchel
conjugation we refer the reader to the standard textbook [62].

1.2 Empirical risk minimization

In this section, we will look more closely at the linear ERM problem and its different forms.
Let us arrange all the data vectors xj as columns of a matrix X ∈ Rd×n, i.e., X:j = xj . The
vector of labels stays the same, specifically y ∈ Rn. An example-label pair therefore consists of
(X:j , yj). Let us start with the basic formulation, which we already introduced earlier.

1.2.1 Primal problem

Let φj : R → R be the loss function, and let r : Rd → R̄ be the regularizer. Then the linear
ERM function can be written as a function P : Rd → R using the intuition behind (1.2) in the
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following way

P (w) :=
1

n

n∑
j=1

φj(〈X:j ,w〉) + λr(w). (1.13)

Our goal is to find
w∗ = arg min

w∈Rd
P (w). (1.14)

We will refer to this problem as the primal problem. In the next part, we introduce the dual
formulation of the linear ERM.

1.2.2 Dual problem

We derive the dual problem using the primal formulation (1.13) from above. First, we refor-
mulate (1.13) to the equivalent

min
w∈Rd,u∈Rn

 1

n

n∑
j=1

φj(uj) + λr(w)

 , s.t. 〈X:j ,w〉 = uj (1.15)

with its corresponding Lagrangian function given by

L(w,u,α) :=
1

n

n∑
j=1

φj(uj) + λr(w) +
1

n

n∑
j=1

αj
(
uj − 〈X:j ,w〉

)
. (1.16)

It follows that the dual function D(α) is then given by

D(α) := − inf
w,u

L(w,u,α)

= − inf
w,u

 1

n

n∑
j=1

φj(uj) + λr(w) +
1

n

n∑
j=1

αj
(
uj − 〈X:j ,w〉

)
= − inf

w

λr(w)− 1

n

n∑
j=1

αj〈X:j ,w〉

− inf
u

 1

n

n∑
j=1

(φj(uj) + αjuj)


= −λ sup

w

[〈
1

λn
Xα,w

〉
− r(w)

]
− sup

u

[
1

n
((−αj)ui − φj(uj))

]
(1.12)

= −λr∗
(

1

λn
Xα

)
−

n∑
j=1

φ∗(−αj). (1.17)

The dual ERM problem can be formulated as

α∗ = arg max
α∈Rn

D(α), (1.18)

where D(α) is given by (1.17). We will refer to the vector α as the dual variable. Note, that
α has the dimension of the number of examples instead of the dimensionality of the original
space.

Often it is assumed, that the function r is 1-strongly convex, so that the dual function
r∗ is 1-smooth. Another common assumption is that the functions φj are 1

γ -smooth, which
would lead to the functions φ∗j being γ-strongly convex. Some of the presented methods will be
restricted to these cases.

It is well-known by standard theory [62] that the optimal solutions w∗ and α∗ to the primal
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(1.14) and dual problems (1.18) respectively, satisfy the optimality conditions given by

w∗ = ∇r∗
(

1

λn
Xα∗

)
α∗j = −∇φj(〈X:j ,w

∗〉), ∀j ∈ {1, . . . , n}.

Observe that once we have the solution to the dual problem α∗, we can recover the solution to
the primal problem w∗ using the optimality conditions. The authors in [72] took advantage of
this and showed that in many cases the dual ERM problem is actually easier to solve than the
primal ERM problem.

In the following chapters we will take advantage of this as well and we will often aim to
solve the dual problem instead of the primal.

1.2.3 Loss functions

In this section we introduce all the loss functions used thorough this thesis, with their corre-
sponding dual formulations.

• Quadratic/squared loss: By far the most popular loss for regression problems, most
notably linear regression. In the definition of the quadratic loss we assume that the labels
are real numbers yj ∈ R.

φj(s) =
1

2
(s− yj)2 and φ∗j (−u) = −uyi +

u2

2
(1.19)

The functions φj and φ∗j are both 1-strongly convex and 1-smooth.

• Logistic/sigmoid loss: A very popular loss used for classification problems. On top
of logistic regression, it is also one of the sensible choices for the activation function in
neural networks. For the definition we assume that yj ∈ {−1, 1}, i.e., we have a two-class
classification problem.

φj(s) = log(1 + exp(−yjs))
φ∗j (−u) = uyj log(uyj) + (1− uyj) log(1− uyj) for uyj ∈ [0, 1] (1.20)

The above function φj is 1/4-smooth and convex, while φ∗j is a 4-strongly convex and
non-smooth function, defined only on [0, 1].

• Smoothed hinge loss: As the name suggests, the smoothed hinge loss is a smoothed
version of the hinge loss widely used in support vector machines [6]. The smoothing can
be observed in the dual, where we add the term γu2/2 to the standard hinge loss dual
formula.

φj(s) =


0 syj > 1

1− syj − γ/2 syj < 1− γ
1

2γ (1− syj)2 otherwise

and φ∗j (−u) = −uyj +
γ

2
u2 (1.21)

Again, for the definitions to make sense, we assume a two-class classification problem using
yj ∈ {−1, 1}. The above function φj is 1/γ-smooth and convex, while φ∗j is γ-strongly
convex and defined only on [0, 1].

1.2.4 Regularizers

In this part we introduce the most common regularizers used for the ERM problem, also with
their dual versions.

• L1 regularizer: The L1 regularizer is a simple L1 norm applied to the input vector

r(w) = ‖w‖1 =

d∑
i=1

|wi| =

d∑
i=1

ri(wi). (1.22)
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One of the popular use cases of the L1 regularizer is its combination with the quadratic loss
which leads to an ERM problem commonly referred to as LASSO [78]. It is very popular
in signal processing, as it has sparsity-inducing properties. However, it is non-smooth
and non-strongly convex (but still convex), therefore it is more difficult to optimize. Its
Fenchel conjugate is the L∞-norm defined below in (1.25).

• L2 regularizer: By far the most popular regularizer is the squared L2 norm of the input
vector.

r(w) =
1

2
‖w‖22 =

d∑
i=1

1

2
w2
i =

d∑
i=1

ri(wi) (1.23)

Problems containing an L2 regularizers are often referred to as ridge problems, e.g., ridge
regression in the case of quadratic loss or ridge logistic regression in the case of a logistic
loss. The L2 regularizer is 1-strongly convex and 1-smooth and therefore including it
usually makes the problem easier to optimize. Due to this behavior it is often the default
choice for many models. The L2 regularizer a self-conjugate, i.e., its Fenchel conjugate is
the L2 regularizer itself.

• Box constraints:

r(w) =

{
0 max(w) ≤ b
∞ otherwise

=

d∑
i=1

{
0 |wi| ≤ b
∞ otherwise

=

d∑
i=1

ri(wi) (1.24)

The box constraint is constant on [−b, b]d and undefined otherwise. The main applications
of the box constraints are in cases where the prediction vector has a hard constraint given
by an environment.

• L∞ regularizer: As with all the Lp-norm regularizers, the L∞ regularizer is the L∞-
norm applied to the input vector

r(w) = max
i
{wi}. (1.25)

It is commonly encountered in the dual problems, as the L∞ regularizer is the Fenchel
conjugate of the L1 regularizer [91].

All of the above regularizers are separable, as it can be seen from their definitions. Also, the
above regularizers can be combined to obtain more complex regularizers, e.g., by combining the
L1 and the L2 regularizer we get the so-called elastic-net regularizer.

1.2.5 Setup for general ERM

To reach the general version of ERM (1.1), we assume that the data vectors are matrices. Specif-
ically, let X1, . . . ,Xn be a sequence of data matrices with Xj ∈ Rd×m, with their corresponding
labels stored in y ∈ Rn. An example-label pair therefore consists of (Xj , yj).

Consider the loss functions φj : Rm → R and the regularizer r : Rd → R̄. Then the general
primal function P : Rd → R̄ can be written as

P (w) :=
1

n

n∑
j=1

φj(X
>
j w) + λr(w). (1.26)

Note that in the special case of m = d and Xj = Id, i.e., the d× d identity matrix, we get the
exact formulation (1.1). We will use the above formulation in Chapter 3.

For the loss functions φj and the regularizer r we can consider the generalized dual function
D : Rm×n → R, which takes the form

D(A) := −λr∗
 1

λn

n∑
j=1

XjA:j

− 1

n

n∑
j=1

φ∗j (−A:j), (1.27)
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where the matrix A ∈ Rm×n contains the dual variables.

1.2.6 Datasets

For the numerical experiments in this thesis we use several publicly available1 datasets. A
summary of all the datasets is available in Table 1.1.

Dataset #samples #features sparsity
url 2,396,130 3,231,962 0.04 %
news 1,355,191 19,996 0.03%
cov1 581,012 54 22%
aloi 108,000 129 24.6%
w8a 49,749 301 4.2%
ijcnn1 35,000 23 60.1%
rcv1 20,242 47,237 0.2%
protein 17,766 358 29.1%
mushrooms 8124 112 18.8%
leukemia 7,129 38 100.00%
dorothea 800 100,000 0.9%

Table 1.1: Summary of real data sets used in this thesis.

The sparsity column reports on the number of nonzeros divided by the number of all entries
in the dataset, i.e.,

sparsity =
#nonzeros

#samples×#features
.

1.2.7 Notes on notation

Multi-dimensional objects are always typeset as bold, e.g., we have a vector x ∈ Rd or a matrix
X ∈ Rd×n. We use slice notation to access elements of vectors and matrices, i.e., xi is the
i-th element of vector x, Xij is the element at the i-th row and j-th column. We index the
dimensions from 1 to d by the index i and we index the data examples from 1 to n by the index
j. The data matrix has always the examples as columns, i.e., X ∈ Rd×n and X:j is the j-th
example, while Xi: is the i-th feature.

By 〈u,v〉 we denote the inner product between two vectors and by ‖u‖2 =
√
〈u,u〉 we denote

the Euclidean norm of a vector. Also, ‖u‖1 =
∑d
i=1 |ui| stands for the L1 norm and ‖u‖0 = |{i :

ui 6= 0}| counts the number of nonzeros in a given vector/matrix. If not specified otherwise,

‖X‖ stands for the Frobenius norm for matrices, which is given by ‖X‖ =
√∑d

i=1

∑n
j=1Xij .

As a shorthand, we often denote the set of integers {1, . . . , n} as [n]. Similarly [d] :=
{1, . . . , d}.

If not specified otherwise, the function P : Rd → R specifies the primal function for linear
ERM (1.13) and D : Rn → R refers to its corresponding dual function (1.17). By F : Rd → R̄
we denote a general function of the form (1.4), where f : Rd → R and g : Rd → R̄ are the
smooth and non-smooth parts, respectively.

A sequence of vectors is always indexed in their superscripts, while all the other sequences
are indexed in their subscripts. This is due to the confusion between the i-th element of vector
x, i.e., xi and the i-th term in the sequence of vectors x, i.e., xi, as well as the ambiguity
between a scalar s taken into the power i, i.e., si and the i-th term in a sequence of scalars s,
i.e., si.

1.3 Baseline methods

In this section we introduce the baseline methods, which we will compare against in the following
chapters. Also, we introduce some additional notions connected to these methods, which will

1https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
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be used throughout this work.

1.3.1 Gradient descent

Suppose we want to find the minimizer x∗ of a smooth and convex function f : Rd → R. The
baseline method for solving this problem dates back to Cauchy in 1847 [5]. The method is
known as the gradient descent, and it takes the general form

xk+1 = xk+1 = arg min
y∈Rd

{〈∇f(xk),y − xk〉+
β

2
‖y − xk‖22} = xk − 1

β
∇f(xk).

If β is chosen as the smoothness parameter, then we can guarantee that if the number of
iterations K satisfies O(β/ε) < K, then f(xK)−f(x∗) < ε . This behavior is commonly referred
to as sublinear convergence rate.

In the case that the function f is also µ-strongly convex, we can guarantee an ε-convergence
in O((β/µ) log(1/ε)) iterations, which is referred to as the linear convergence rate. The number
β/µ is called the condition number and plays a key role in the convergence rates of many
optimization methods. For more details on gradient descent and its variants we recommend
[50].

1.3.2 Stochastic gradient descent

One of the the main disadvantages of using gradient descent for ERM-type problems is that we
need to do a lot of computation for a single iteration. Indeed, we have to compute d partial
derivatives of n different loss functions. The steady rise of stochastic methods was based on the
idea that one can get a reasonable progress with much less information. An example of such
a method was already mentioned in the introduction as the Stochastic Gradient Descent [61].
In addition to SGD being commonly applied to purely stochastic problems, it is also used to
minimize finite-sum functions, which have the form

F (x) :=
1

n

n∑
j=1

fj(x).

We can observe, that the general ERM problem (1.1) fits into this framework. As an iteration
of SGD, we randomly sample a function fj and we perform the update

xk+1 = xk − ηk∇fj(xk). (1.28)

There are couple of things to say about this update rule. First, if we pick the function fj
uniformly at random, we are going in the full-gradient direction in expectation, as E[∇fj(x)] =
F (x). Second, the sequence of stepsizes ηk has to satisfy the common rule in stochastic ap-
proximation theory that

∑∞
k=1 ηk → ∞, while

∑∞
k=1 η

2
k < ∞. The most common sequence

used for SGD satisfying these condition is ηk = 1/k. It is also worth noting, that in contrast
to all the other methods mentioned in this section, SGD will not stay in the optimum once it
reaches it. Indeed, for gradient descent type methods the update is equal to zero once we reach
the optimum, but this is not the case for SGD. Due to this behavior, the SGD method is very
good at converging to a medium accuracy, while for higher accuracy solutions other methods
are prefered.

As for the convergence rates, for µ-strongly convex functions SGD needsO(B2/µε) iterations
to converge to ε-precision, where B is a global bound on the magnitude of the individual
gradient. This is a sublinear rate, which is clearly worse than the linear rate of gradient
descent. However, for medium accuracy this is competitive, due to the iterations being n-times
cheaper than the iterations of gradient descent. In the next sections we present alternative
stochastic methods for dealing with expensive iterations.
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1.3.3 Coordinate descent

Randomized coordinate descent plays an important role in the current optimization approaches.
It was originally considered in [35] for quadratic objectives and analyzed for general functions
in [49]. As the name suggests, it differs from gradient descent by only updating a single
coordinate at each iteration, which is a lot cheaper. The main hope of coordinate descent is,
that performing d coordinate descent updates is going to make more progress than performing
one full-gradient update.

In general, during an iteration k we randomly select a coordinate ik and we perform the
update

xk+1
i =

{
xki − 1

βi
∇if(xk) i = ik

xki otherwise
,

where by ∇if(x) we denote the i-th partial derivative of f at x. By standard theory the stepsize
parameters βi can be set to be the smoothness parameters of the individual partial derivatives,
i.e.,

|∇if(x)−∇if(y)| ≤ βi‖x− y‖2
for each i. The number of iterations needed for coordinate descent to converge to ε accuracy
is O(dmaxi βi/ε) in the case of a non-strongly convex objective and O(dmaxi βi/µ log(1/ε)) in
the case of a µ-strongly convex objective. The above results hold in a case, that the coordinate
was chosen uniformly at random. This was shown to be sub-optimal, as by sampling the
coordinates according to the probabilities pi = βi/

∑
j βj one can replace the term nmaxi βi in

the complexity by
∑
i βi, which is a strictly better result.

Note, that the iteration of coordinate descent is d-times cheaper than the iteration of gradient
descent – we need to compute only a single partial derivative instead of all the partial derivatives
required for full gradient descent. Therefore, although the number of iterations required for
coordinate descent to converge is larger than for gradient descent, the total computation time
is usually smaller.

1.3.4 Proximal methods

The setup described in (1.4) – a function consisting of a smooth and a non-smooth part – is
commonly reffered to as the proximal or composite setup. The baseline method for minimizing
such a function is the so-called proximal gradient descent method, which takes the form of

xk+1 = arg min
y∈Rd

{〈∇f(xk),y − xk〉+
β

2
‖y − xk‖22 + g(y)}. (1.29)

The above only makes sense if the minimization during each iteration is an easy problem – at
the very least, easier than the original problem (1.4). This is indeed the case for many common
non-smooth functions encountered in real-world applications.

As an example, suppose the non-smooth function takes the form

g(x) =

{
0 if ‖x‖2 ≤ R
∞ otherwise

.

It is straightforward to show that in this case the proximal iteration (1.29) takes the form

xk+1 = R
xk − 1

β∇f(xk)

‖xk − 1
β∇f(xk)‖2

,

which is indeed easy to compute.
As for the convergence rates, they remain of the same form as for smooth gradient descent,

described in the previous section – for smooth and convex functions we have a sublinear rate
of convergence, while for smooth and strongly-convex functions we have a linear convergence
rate. Therefore, if we are able to solve (1.29) in a reasonably fast time, adding a non-smooth
term to a smooth function does not make the minimization problem any more complex.
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The proximal methods can be easily extended to coordinate descent [40]. The only additional
requirement on the function is, that the function g is separable (1.11). This is satisfied by many
non-smooth functions, e.g. the dual functions φ∗j in (1.17) as well as the non-smooth regularizers
considered in Section 1.2.4. The separability is required for the update, which takes the form

xk+1
i = arg min

y∈R

{
∇if(xk)(y − xki ) +

β

2
(y − xki )2 + gi(y)

}
, (1.30)

where i is a randomly sampled coordinate. Similarly as for the gradient descent counterpart of
proximal methods, the complexity rates match the smooth case, with a single difference that
instead of the quantity maxi βi we have the standard full smoothness parameter β.

1.3.5 Stochastic dual coordinate ascent

In this part we present a final method, which plays a key role in the current theory of solving
ERM (1.1), and especially linear ERM (1.2). As the title of the section suggests, we are going
to apply the coordinate descent method to the dual of the ERM (1.17). However, in general the
functions φ∗j are non-smooth and therefore our update is of a proximal form. Directly plugging
in the formulation (1.17) in to the proximal coordinate update (1.30) we get the update rule

αk+1
j = arg max

y∈R

{
− 1

n
X>:j∇r∗

(
1
λnXαk

)
(y − αkj )− ‖X:j‖22

2λn2
y2 − 1

n
φ∗j (−(αkj + y))

}
,

where we maximize instead of minimization because of the dual problem (1.18) formulation.
This update is reminiscent of SGD, as each update uses a single example, instead of a single
feature. However, as it is simply a coordinate descent applied to the dual problem, SDCA
retains the same rate of convergence as proximal coordinate descent, i.e., a linear rate in the
strongly convex case and a sublinear rate in the non-strongly convex case. As we can see, this
is superior to the rates of SGD and we can see similar behavior also in practice [72].

1.4 Chapter summaries

In this part we summarize the contribution in each of the chapters. Each of this chapters is
based on a single paper/preprint, which is summarized in the table below.

Chapter 2 3 4 5 6
Paper [10] [7] [8] [9] (not yet online)

During the time of my PhD studies I have co-authored an additional preprint [26] during
my internship at the Machine Learning group at Amazon. However, the work does not fill well
into the general topic of this work and therefore it is not part of it.

1.4.1 Summary of Chapter 2

In this chapter we propose a new randomized method for solving linear ERM (1.2) based on
stochastic dual coordinate ascent, which we call AdaSDCA. The main novelty of AdaSDCA
is that the sampling of dual variables is being adapted on each iteration. Although similar
approaches were already considered before, our adaptive sampling is the first with a proven
convergence guarantee superior to all known sampling approaches.

The adaptivity is motivated by the optimality conditions for the dual variables which are

α∗j = −φ′(〈X:j ,w
∗〉), ∀j ∈ [n].

Using thess conditions we can measure how far a given dual variable is from its optimum. We
do this by introducing the dual residue, which is simply

κj := |αj + φ′(〈X:j ,w
∗〉)|
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for each j ∈ [n]. Observe that a given dual variable is optimal only if κj = 0. Therefore, our
method takes into account the residues κj and samples the dual variables with larger κj more
often.

However, the resulting sampling is only theoretical as the dual residues are expensive to
compute on each iteration. With this in mind we introduced a practical version of our method
which we call AdaSDCA+. The practical version does cheap updates to the sampling procedure
which are approximating the adaptive sampling of AdaSDCA.

In numerical experiments we show the superiority of AdaSDCA in the convergence measured
by the iteration count and also the superiority of AdaSDCA+ in wall-clock time over the
sampling approaches previously regarded as the state-of-the-art.

The work which this chapter is based on [10] received an award2 and the proposed method
AdaSDCA+ is currently a part of the Tensorflow core library3.

1.4.2 Summary of Chapter 3

In this part we propose a new variance-reduced primal method dfSDCA for solving the general
ERM (1.1) with an L2 regularizer. The “df” stands for “dual-free” and together with “SDCA”
describes the main characteristics of the method – it is a primal-only version of SDCA.

The method is motivated by the optimality conditions of the dual problem which are

α∗j = −∇φ(X>j w∗), ∀j ∈ [n]

for the general ERM. The method maintains auxilary variables αj ∈ Rm corresponding to dual
variables in the dual approaches and updates some of them at random on each iteration. The
update to each variable is a convex combination between the previous iteration of the variable
αkj and the current best estimate for the variable which is −∇φ(X>j wk), resulting in the update
rule

αk+1
j = (1− θ)αkj + θ(−∇φ(X>j wk)).

A very similar method for a slightly less general setup was already considered in [67], there-
fore we do not claim any significant novelty in the above described method. The main novelty
in contrast to the previous method is that dfSDCA has been extended to work for arbitrary
fixed sampling strategies.

A sampling strategy Ŝ is a set-valued random variable defined over all the subsets of [n].
Each subset S corresponds to one way of choosing, which variables to update, e.g., S = {1}
means that we only update the first variable, while S = [n] means that we update all the
variables. An example of a sampling itself can be defined by P (S = [n]) = 1, i.e., we select all
the variables with probability 1, which corresponds to batch updates. On the other hand, we
can define a sampling by P (S = {j}) = 1/n for each j ∈ [n], which corresponds to picking a
single variable uniformly at random. Also, we can take advantage of a multi-core machine and
define a sampling which will uniformly at random distributed one variable per core, such that
they can process the variables in parallel.

One can devise many useful samplings and our method gives a convergence rate for every
such fixed sampling. Methods with arbitrary sampling were already considered before, but
dfSDCA is the first primal variance-reduced method with such property. Also, our analysis
extends to a case, where the individual loss functions can be non-convex, as long as the average
function remains convex. As an example, this case can be observed in local convergences of deep
learning models. Our method is the first to show convergence for arbitrary sampling strategies
for such objectives.

To showcase the power of arbitrary sampling, we devise a new sampling called chunking.
The main idea of chunking is to offer a load-balancing scheme for parallel computing with a
convergence rate guarantee, analyzed through our framework. In numerical experiments we
observe empirical speed-up in using chunking against standard parallel processing schemes.

2Best contribution award - 2nd place at Optimization and Big Data 2015, Edinburgh, award committee:
Arkadi Nemirovski (Georgia Institute of Technology), Rodolphe Jenatton (Amazon Berlin)

3https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/ops/sdca_ops.cc
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1.4.3 Summary of Chapter 4

One of the important developments for sampling strategies in the recent years was the introduc-
tion of the so-called importance sampling [49, 57, 88]. The importance sampling is currently
the best fixed sampling scheme selecting a single variable at each iteration. It outperforms
standard uniform sampling both theoretically and empirically.

The main idea of importance sampling is to precompute a specific quantity vj based on the
data (usually ‖X:j‖22) for each of the variables and then sample the variables proportional to
vj . In practice this means, that the j-th variable will have the probability vj/

∑
i vi of being

sampled. The quantities vj also appear in the iteration complexity. For uniform sampling,
the guarantee is proportional to maxj vj , while for importance sampling, the guarantee is pro-
portional to the mean 1

n

∑n
j=1 vj . It follows that the importance sampling has always a lower

iteration complexity than the uniform sampling.

Although importance sampling is already known for many years, it was always restricted
to the case of serial sampling, i.e., sampling of a single variable on each iteration. In this
chapter we proposed and analyzed the first ever importance sampling for minibatches. The
main advantage of this approach over the standard serial importance sampling is that it can
be used for parallel samplings with multi-core machines. By introducing this sampling, we fill
in an important hole in the theory, as both importance sampling and parallel samplings were
already known for some time, but they were never successfully combined.

The sampling we propose is not connected to any specific method. It can be combined
with any method which allows for arbitrary sampling strategies, even the method dfSDCA we
introduced in the previous chapter.

At the end of the chapter we perform numerical experiments to showcase that our approach
indeed outperforms standard uniform parallel strategies. We observe speedup corresponding to
the difference between maxj vj and 1

n

∑n
j=1 vj both in serial and parallel setting. This verifies

that we managed to successfully generalize the importance sampling to parallel setting.

1.4.4 Summary of Chapter 5

In Chapter 5 we compare the performance of primal coordinate descent and dual coordinate
ascent on the task of linear ERM. We are not the first ones who decided to do this comparison,
but we are the first ones to do an analysis which takes into account the sparsity pattern of the
data matrix.

The main difference in this comparison for dense and sparse data comes from the fact that
the iteration cost can differ based on the variable being updated. Each variable corresponds
to a single row or column of the data matrix, depending on whether we consider the primal or
the dual approach. Each nonzero entry of this row/column is used for the computation of the
update and therefore the iteration cost is proportional to the number of nonzeros in the given
row/column of the data matrix. Previously, this was not taken into account and each iteration
was considered to have the same iteration cost.

This small difference has a potentially large impact. For example, the importance sampling,
which is considered to be the optimal fixed sampling for serial methods, might be selecting the
rows/columns with a large amount of nonzeros much more often than the rows/columns with a
small number of nonzeros. This can potentially lead to importance sampling to be sub-optimal
for sparse matrices. For a proper comparison of the two approaches, we need to make sure that
both of them are using the optimal samplings.

The first important result of this chapter is to show, surprisingly, that the importance
sampling is optimal even if we have taken the sparsity pattern into account. Once we have the
optimal sampling, we delve deeply into the comparison to draw some conclusions.

The first conclusion is that in the case of a dense data matrix, the comparison boils down
to the comparison of the number of examples n vs. the number of features d. If n > d, then
the dual approach should be used and vice-versa, if d > n, then the primal approach should be
used. This confirms the community belief about the comparison of these two methods.

As for the sparse case, the situation gets more involved. We show that the comparison boils
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to the difference between the data-dependent quantities

d∑
i=1

‖Xi:‖22 · ‖Xi:‖0 vs

n∑
j=1

‖X:j‖22 · ‖X:j‖0.

We spend the rest of the chapter on analyzing this difference in many different scenarios and
we draw some insightful conclusions. As an example we show that even for binary matrices,
the primal methods can outperform dual methods when n = O(d2), as far as the structure of
the nonzero entries has a specific form – and vice-versa.

Lastly, we include numerical experiments to showcase that our theory meaningfully predicts
the behaviour of these two methods in practice. We also include experiments on synthetic and
real data in which d � n and the dual method vastly outperforms the primal method – and
also the other way around.

1.4.5 Summary of Chapter 6

Coordinate descent methods are well studied for convex and strongly convex objectives, but
their behavior is not yet understood well for non-convex objectives. A recent work [29] revived
an old idea [52] to show that for a certain class of non-convex objectives, we can achieve the
same rate of convergence as for strongly-convex objectives. This realisation uses the fact that
in the analysis of coordinate descent one only uses a certain consequence of strong convexity,
in particular that there exists µ > 0 such that

‖∇f(x)‖22 ≥ µ(f(x)− f(x∗)), ∀x ∈ Rn,

where x∗ is the minimizer of f . The above consequence is referred to as the Polyak- Lojasiewicz
(PL) condtion. By assuming that the objective function only satisfies the PL condition and it
is not strongly convex in general, we get the same convergence guarantee as for strongly convex
functions, i.e., linear convergence of the form O(log(1/ε)). One can also observe that the PL
condition does not imply convexity and there are non-convex functions satisfying the above
condition, which leads to a global convergence result in non-convex optimization.

While this is a remarkable result, it is still very restrictive, as it only applies to a very
narrow class of functions. In the final chapter we aim to identify additional classes of non-
convex functions, for which we can give global convergence guarantees. As a natural extension
of the PL condition we introduce the so-called Weak Polyak- Lojasiewicz (WPL) condition which
is a counterpart of the standard PL condition for (weakly) convex functions. Similarly as for
the PL condition, we identify that the standard convergence analysis of coordinate descent
for convex objectives only uses a consequence of convexity and not the convexity itself. This
consequence is that there exists µ > 0 such that

‖∇f(x)‖ · ‖x− x∗‖ ≥ √
µ(f(x)− f(x∗)), ∀x ∈ Rn

and we refer to it as the WPL condition. Any smooth function satisfying the WPL condition
will share the convergence rate with convex functions, i.e., sublinear convergence O(1/ε).

Additionally, we provide convergence guarantees for an even more general class of non-
convex functions, for which we only assume smoothness. However, for this class of functions we
can no longer prove a global convergence rate guarantee, as they can potentially have many local
extrema. Nevertheless, we show that the iterative process generated by a coordinate descent
method will either convergence to the global optimum or to a point with a bounded gradient
‖∇f(x)‖ ≤ ε in O( 1

ε log( 1
ε )) iterations.

Further, we introduce a new notion of a proportion function. For an M-smooth function
(1.5) it is defined as

θ(S,x) :=
(∇Sf(x))>M−1

S ∇Sf(x)

‖∇f(x)‖2
,

where S ⊂ [n] is a given set of coordinates. The proportion function plays a key role in
the analysis of various block-selection rules and procedures. Specifically, let {Sk}∞k=0 be a
sequence of sets, where Sk is the set of coordinates updated on the k-th iteration. Let {xk}∞k=0
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be the corresponding sequence of iterates, i.e., we have xk+1
Sk

= xk+1
Sk
− (M−1

Sk
)∇Skf(xk+1)

and xk+1
[n]\Sk = xk[n]\Sk otherwise. Additionally, let {ck}∞k=0 be a sequence of scalars such that

θ(Sk,x
k) ≥ ck or E[θ(Sk,x

k) | xk] ≥ ck for each k. In this case, we show that convergence
is guaranteed once

∑∞
k=0 ck → ∞. As we can see, this is condition is very weak and it is

easily satisfied, e.g., it is sufficient to bound ck ≥ c > 0 for every k. As an example consider
randomized coordinate descent with uniform sampling. We have

E[θ(Sk,x
k) | xk] = Ei[θ({i},xk) | xk] =

1

n

n∑
i=1

(∇if(xk))2

Mii‖∇f(xk)‖2
≥ 1

n ·maxi{Mii}
,

where the last expression is a constant independent of the iterates and k and therefore guarantees
convergence.

Using the proportion function, we recover the state-of-the-art results of coordinate descent
methods for previously known and also novel block selection rules. These rules include a class
of randomized methods with uniform, non-uniform or adaptive sampling rules, as well as a class
of methods with deterministic selection procedures as batch, greedy or cyclic.

Finally, we consider all the above theory for the general proximal setting (1.3), therefore it
can be applied to both the primal (1.14) and the dual (1.18) problems in their full generality.
The flexibility of the above approach offers a lot of potential for future research, as a new
block selection procedure will have a convergence guarantee for all objectives considered in
our framework, while a new objective analyzed under our approach will have a whole fleet
of block selection rules with convergence guarantees readily available. We showcase this by
introducing a new block-selection rule called greedy minibatches, which is a minibatch version
of the greedy coordinate descent. By lower bounding its proportion function by a constant
we give it competitive convergence guarantees in strongly-convex, convex, strongly PL, weakly
PL, and general non-convex setups, which can be both smooth and proximal. The other way
around, we introduced the weakly PL setup, which can be paired by any method with a bounded
proportion function, e.g., gradient descent, coordinate descent with uniform or importance
sampling, greedy coordinate descent, minibatch coordinate descent and many more. We believe
that the flexibility of our approach opens up many future research opportunities.

27



28



Chapter 2

Stochastic Dual Coordinate
Ascent with Adaptive
Probabilities

2.1 Introduction

In this chapter we consider the regularized empirical risk minimization problem:

min
w∈Rd

P (w) :=
1

n

n∑
j=1

φj(〈X:j ,w〉) + λg(w)

 . (2.1)

In the context of supervised learning, w is a linear predictor, the columns of the matrix X,
i.e., X:1, . . . ,X:n ∈ Rd are samples, φ1, . . . , φn : Rd → R are loss functions, g : Rd → R is
a regularizer and λ > 0 a regularization parameter. Hence, we are seeking to identify the
predictor which minimizes the average (empirical) loss P (w).

We assume throughout that the loss functions φ1, . . . , φn are 1/γ-smooth for some γ > 0.
That is, we assume they every φj is differentiable and have Lipschitz derivative with Lipschitz
constant 1/γ:

|φ′j(a)− φ′j(b)| ≤ 1

γ
|a− b|

for all a, b ∈ R. Moreover, we assume that g is 1-strongly convex with respect to the L2 norm:

g(w) ≤ βg(w1) + (1− β)g(w2)− β(1− β)

2
‖w1 −w2‖2

for all w1,w2 ∈ dom g, 0 ≤ β ≤ 1 and w = βw1 + (1− β)w2.

The ERM problem (2.1) has received considerable attention in recent years due to its
widespread usage in supervised statistical learning [72]. Often, the number of samples n is
very large and it is important to design algorithms that would be efficient in this regime.

Modern stochastic algorithms for ERM. Several highly efficient methods for solving
the ERM problem were proposed and analyzed recently. These include primal methods such
as SAG [64], SVRG [27], S2GD [32], SAGA [12], mS2GD [30] and MISO [42]. Importance
sampling was considered in ProxSVRG [84] and S2CD [31].

Stochastic Dual Coordinate Ascent. One of the most successful methods in this cat-
egory is stochastic dual coordinate ascent (SDCA), which operates on the dual of the ERM
problem (2.1):

max
α∈Rn

D(α) := −λg∗
 1

λn

n∑
j=1

X:jαj

− 1

n

n∑
j=1

φ∗j (−αj)

 , (2.2)

29



where g∗ and φ∗j are the convex conjugates1 of g and φj , respectively. Note that in dual problem,
there are as many variables as there are samples in the primal: α ∈ Rn.

SDCA in each iteration randomly selects a dual variable αj , and performs its update, usually
via closed-form formula – this strategy is know as randomized coordinate descent. Methods
based on updating randomly selected dual variables enjoy, in our setting, a linear convergence
rate [72, 70, 75, 71, 88, 55]. These methods have attracted considerable attention in the past
few years, and include SCD [69], RCDM [49], UCDC [59], ICD [77], PCDM [60], SPCDM [14],
SPDC [86], APCG [37], RCD [44], APPROX [15], QUARTZ [55] and ALPHA [53]. Recent
advances on mini-batch and distributed variants can be found in [38], [90], [58], [16], [79], [25],
[43] and [41]. Other related work includes [47, 13, 1, 89, 17, 76]. We also point to [83] for a
review on coordinate descent algorithms.

Selection Probabilities. Naturally, both the theoretical convergence rate and practical
performance of randomized coordinate descent methods depends on the probability distribution
governing the choice of individual coordinates. While most existing work assumes uniform
distribution, it was shown by Richtárik and Takáč [59], Necoara et al. [45], Zhao and Zhang
[88] that coordinate descent works for an arbitrary fixed probability distribution over individual
coordinates and even subsets of coordinates [57, 55, 53, 54]. In all of these works the theory
allows the computation of a fixed probability distribution, known as importance sampling, which
optimizes the complexity bounds. However, such a distribution often depends on unknown
quantities, such as the distances of the individual variables from their optimal values [59, 53].
In some cases, such as for smooth strongly convex functions or in the primal-dual setup we
consider here, the probabilities forming an importance sampling can be explicitly computed
[57, 88, 55, 53, 54]. Typically, the theoretical influence of using the importance sampling is in
the replacement of the maximum of certain data-dependent quantities in the complexity bound
by the average.

Adaptivity. Despite the striking developments in the field, there is virtually no literature
on methods using an adaptive choice of the probabilities. We are aware of a few pieces of
work; but all resort to heuristics unsupported by theory [21, 63, 2, 39], which unfortunately
also means that the methods are sometimes effective, and sometimes not. We observe that
in the primal-dual framework we consider, each dual variable can be equipped with a natural
measure of progress which we call “dual residue”. We propose that the selection probabilities be
constructed based on these quantities.

Outline: In Section 2.2 we summarize the contributions of our work. In Section 2.3 we
describe our first, theoretical methods (Algorithm 1) and describe the intuition behind it. In
Section 2.4 we provide convergence analysis. In Section 2.5 we introduce Algorithm 2: an variant
of Algorithm 1 containing heuristic elements which make it efficiently implementable. We
conclude with numerical experiments in Section 2.6. Technical proofs and additional numerical
experiments can be found in the appendix.

2.2 Contributions

We now briefly highlight the main contributions of this work.

Two algorithms with adaptive probabilities. We propose two new stochastic dual
ascent algorithms: AdaSDCA (Algorithm 1) and AdaSDCA+ (Algorithm 2) for solving (2.1)
and its dual problem (2.2). The novelty of our algorithms is in adaptive choice of the probability
distribution over the dual coordinates.

Complexity analysis. We provide a convergence rate analysis for the first method, show-
ing that AdaSDCA enjoys better rate than the best known rate for SDCA with a fixed sam-
pling [88, 55]. The probabilities are proportional to a certain measure of dual suboptimality
associated with each variable.

Practical method. AdaSDCA requires the same computational effort per iteration as
the batch gradient algorithm. To solve this issue, we propose AdaSDCA+ (Algorithm 2): an
efficient heuristic variant of the AdaSDCA. The computational effort of the heuristic method
in a single iteration is low, which makes it very competitive with methods based on impor-

1By the convex conjugate we mean the fenchel conjugate defined in Chapter 1
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tance sampling, such as IProx-SDCA [88]. We support this with computational experiments in
Section 2.6.

Outline: In Section 2.2 we summarize the contributions of our work. In Section 2.3 we
describe our first, theoretical methods (AdaSDCA) and describe the intuition behind it. In
Section 2.4 we provide convergence analysis. In Section 2.5 we introduce AdaSDCA+: a vari-
ant of AdaSDCA containing heuristic elements which make it efficiently implementable. We
conclude with numerical experiments in Section 2.6. Technical proofs and additional numerical
experiments can be found in the appendix.

2.3 The algorithm: AdaSDCA

It is well known that the optimal primal-dual pair (w∗,α∗) ∈ Rd × Rn satisfies the following
optimality conditions:

w∗ = ∇g∗
(

1

λn
Xα∗

)
(2.3)

α∗j = −∇φj(〈X:j ,w
∗〉), ∀j ∈ [n] := {1, . . . , n}, (2.4)

where X is the d-by-n matrix with columns X:1, . . . ,X:n.

Definition 2.1 (Dual residue). The dual residue, κt = (κt1, . . . , κ
t
n) ∈ Rn, associated with

(wt,αt) is given by:
κtj := αtj +∇φj(〈X>:jwt〉). (2.5)

Note, that κti = 0 if and only if αj satisfies (2.4). This motivates the design of AdaSDCA
(Algorithm 1) as follows: whenever |κtj | is large, the jth dual coordinate αj is suboptimal and
hence should be updated more often.

Definition 2.2 (Coherence). We say that the probability vector pt ∈ Rn is coherent with the
dual residue κt if for all j ∈ [n] we have

κtj 6= 0 ⇒ ptj > 0.

Alternatively, pt is coherent with κt if for

Jt := {j ∈ [n] : κtj 6= 0} ⊆ [n].

we have minj∈Jt p
t
j > 0.

Algorithm 1 AdaSDCA

Init: vj := ‖X:j‖22 for j ∈ [n]; α0 ∈ Rn; ᾱ0 = 1
λnXα0

for t ≥ 0 do
Primal update: wt = ∇g∗ (ᾱt)
Set: αt+1 = αt

Compute residue κt: κti = αtj +∇φj(〈X:j ,w
t〉),∀j ∈ [n]

Compute probability distribution pt coherent with κt

Generate random jt ∈ [n] according to pt

Compute: ∆αtjt = arg max
∆∈R

{
−φ∗jt(−(αtjt + ∆))− 〈X:jt ,w

t〉∆− vjt
2λn
|∆|2

}
Dual update: αt+1

jt
= αtjt + ∆αtjt

Average update: ᾱt = ᾱt +
∆αjt
λn X:jt

end for
Output: wt,αt

AdaSDCA is a stochastic dual coordinate ascent method, with an adaptive probability vector
pt, which could potentially change at every iteration t. The primal and dual update rules are
exactly the same as in standard SDCA [72], which instead uses uniform sampling probability
at every iteration and does not require the computation of the dual residue κ.
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Our first result highlights a key technical tool which ultimately leads to the development
of good adaptive sampling distributions pt in AdaSDCA. For simplicity we denote by Et the
expectation with respect to the random index jt ∈ [n] generated at iteration t.

Lemma 2.3. Consider the AdaSDCA algorithm during iteration t ≥ 0 and assume that pt is
coherent with κt. Then

Et
[
D(αt+1)−D(αt)

]
− θ

(
P (wt)−D(αt)

)
≥ − θ

2λn2

∑
j∈Jt

(
θ(vj + nλγ)

ptj
− nλγ

)
|κtj |2,

(2.6)

for arbitrary

0 ≤ θ ≤ min
j∈Jt

ptj . (2.7)

Proof. Lemma 2.3 is proved similarly to Lemma 2 in [88], but in a slightly more general setting.
For completeness, we provide the proof in the appendix.

Lemma 2.3 plays a key role in the analysis of stochastic dual coordinate methods [72, 88, 71].
Indeed, if the right-hand side of (2.6) is positive, then the primal dual error P (wt) − D(αt)
can be bounded by the expected dual ascent Et[D(αt+1)−D(αt)] times 1/θ, which yields the
contraction of the dual error at the rate of 1 − θ (see Theorem 2.7). In order to make the
right-hand side of (2.6) positive we can take any θ smaller than θ(κt,pt) where the function
θ(·, ·) : Rn+ × Rn+ → R is defined by:

θ(κ,p) ≡
nλγ

∑
j:κj 6=0 |κj |2∑

j:κj 6=0 p
−1
j |κj |2(vj + nλγ)

. (2.8)

We also need to make sure that 0 ≤ θ ≤ minj∈Jt p
t
j in order to apply Lemma 2.3. A “good”

adaptive probability pt should then be the solution of the following optimization problem:

max
p∈Rn+

θ(κt,p) (2.9)

s.t.

n∑
j=1

pi = j

θ(κt,p) ≤ min
j:κtj 6=0

pj

A feasible solution to (2.9) is the importance sampling (also known as optimal serial sam-
pling) pimp defined by:

pimp
j :=

vj + nλγ∑n
k=1 (vk + nλγ)

, ∀j ∈ [n], (2.10)

which was proposed in [88] to obtain proximal stochastic dual coordinate ascent method with
importance sampling (IProx-SDCA). The same optimal probability vector was also deduced,
via different means and in a more general setting in [55]. Note that in this special case, since pt

is independent of the residue κt, the computation of κt is unnecessary and hence the complexity
of each iteration does not scale up with n.

It seems difficult to identify other feasible solutions to program (2.9) apart from pimp, not
to mention solve it exactly. However, by relaxing the constraint θ(κt,p) ≤ minj:κtj 6=0 pj , we

obtain an explicit optimal solution.
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Lemma 2.4. The optimal solution p∗(κt) of

max
p∈Rn+

θ(κt,p) (2.11)

s.t.

n∑
j=1

pj = 1

is:

(p∗(κt))i =
|κtj |
√
vj + nλγ∑n

k=1 |κtk|
√
vk + nλγ

, ∀k ∈ [n]. (2.12)

Proof. The proof is deferred to the appendix.

The suggestion made by (2.12) is clear: we should update more often those dual coordinates
αj which have large absolute dual residue |κtj | and/or large Lipschitz constant vj .

If we let pt = p∗(κt) and θ = θ(κt,pt), the constraint (2.7) may not be sastified, in which
case (2.6) does not necessarily hold. However, as shown by the next lemma, the constraint (2.7)
is not required for obtaining (2.6) when all the functions {φj}j are quadratic.

Lemma 2.5. Suppose that all {φj}j are quadratic. Let t ≥ 0. If minj∈Jt p
t
j > 0, then (2.6)

holds for any θ ∈ [0,+∞).

The proof is deferred to the Appendix.

2.4 Convergence results

In this section we present our theoretical complexity results for AdaSDCA. The main results
are formulated in Theorem 2.7, covering the general case, and in Theorem 2.11 in the special
case when {φj}nj=1 are all quadratic.

2.4.1 General loss functions

We derive the convergence result from Lemma 2.3.

Proposition 2.6. Let t ≥ 0. If minj∈Jt p
t
j > 0 and θ(κt,pt) ≤ minj∈Jt p

t
j, then

Et
[
D(αt+1)−D(αt)

]
≥ θ(κt,pt)

(
P (wt)−D(αt)

)
.

Proof. This follows directly from Lemma 2.3 and the fact that the right-hand side of (2.6)
equals 0 when θ = θ(κt,pt).

Theorem 2.7. Consider AdaSDCA. If at each iteration t ≥ 0, minj∈Jt p
t
j > 0 and θ(κt,pt) ≤

minj∈Jt p
t
j, then

E[P (wt)−D(αt)] ≤ 1

θ̃t

t∏
k=0

(1− θ̃k)
(
D(α∗)−D(α0)

)
, (2.13)

for all t ≥ 0 where

θ̃t :=
E[θ(κt,pt)(P (wt)−D(αt))]

E[P (wt)−D(αt)]
. (2.14)

Proof. By Proposition 2.6, we know that

E[D(αt+1)−D(αt)] ≥ E[θ(κt,pt)(P (wt)−D(αt))]

(2.14)
= θ̃t E[P (wt)−D(αt)] (2.15)

≥ θ̃t E[D(α∗)−D(αt)],
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whence
E[D(α∗)−D(αt+1)] ≤ (1− θ̃t)E[D(α∗)−D(αt)].

Therefore,

E[D(α∗)−D(αt)] ≤
t∏

k=0

(1− θ̃k)
(
D(α∗)−D(α0)

)
.

By plugging the last bound into (2.15) we get the bound on the primal dual error:

E[P (wt)−D(αt)] ≤ 1

θ̃t
E[D(αt+1)−D(αt)]

≤ 1

θ̃t
E[D(α∗)−D(αt)]

≤ 1

θ̃t

t∏
k=0

(1− θ̃k)
(
D(α∗)−D(α0)

)
.

As mentioned in Section 2.3, by letting every sampling probability pt be the importance
sampling (optimal serial sampling) pimp defined in (2.10), AdaSDCA reduces to IProx-SDCA
proposed in [88]. The convergence theory established for IProx-SDCA in [88], which can also
be derived as a direct corollary of our Theorem 2.7, is stated as follows.

Theorem 2.8 ([88]). Consider AdaSDCA with pt = pimp defined in (2.10) for all t ≥ 0. Then

E[P (wt)−D(αt)] ≤ 1

θimp
(1− θimp)t

(
D(α∗)−D(α0)

)
,

where

θimp =
nλγ∑n

i=1(vj + λγn)
.

The next corollary suggests that a better convergence rate than IProx-SDCA can be achieved
by using properly chosen adaptive sampling probability.

Corollary 2.9. Consider AdaSDCA. If at each iteration t ≥ 0, pt is the optimal solution
of (2.9), then (2.13) holds and θ̃t ≥ θimp for all t ≥ 0.

However, solving (2.9) requires large computational effort, because of the dimension n and
the non-convex structure of the program. We show in the next section that when all the loss
functions {φj}j are quadratic, then we can get better convergence rate in theory than IProx-
SDCA by using the optimal solution of (2.11).

2.4.2 Quadratic loss functions

The main difficulty of solving (2.9) comes from the inequality constraint, which originates
from (2.7). In this section we mainly show that the constraint (2.7) can be relaxed if all {φj}j
are quadratic.

Proposition 2.10. Suppose that all {φj}j are quadratic. Let t ≥ 0. If minj∈Jt p
t
j > 0, then

Et
[
D(αt+1)−D(αt)

]
≥ θ(κt,pt)

(
P (wt)−D(αt)

)
.

Proof. This is a direct consequence of Lemma 2.5 and the fact that the right-hand side of (2.6)
equals 0 when θ = θ(κt,pt).

Theorem 2.11. Suppose that all {φj}j are quadratic. Consider AdaSDCA. If at each iteration
t ≥ 0, minj∈Jt p

t
j > 0, then (2.13) holds for all t ≥ 0.

Proof. We only need to apply Proposition 2.10. The rest of the proof is the same as in Theo-
rem 2.7.
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Corollary 2.12. Suppose that all {φj}j are quadratic. Consider AdaSDCA. If at each iteration
t ≥ 0, pt is the optimal solution of (2.11), which has a closed form (2.12), then (2.13) holds
and θ̃t ≥ θ∗ for all t ≥ 0.

2.5 Efficient heuristic variant

Corollary 2.9 and 2.12 suggest how to choose adaptive sampling probability in AdaSDCA which
yields a theoretical convergence rate at least as good as IProx-SDCA [88]. However, there are
two main implementation issues of AdaSDCA:

1. The update of the dual residue κt at each iteration costs O(nnz(X)) where nnz(X) is the
number of nonzero elements of the matrix X;

2. We do not know how to compute the optimal solution of (2.9).

In this section, we propose a heuristic variant of AdaSDCA, which avoids the above two
issues while staying close to the ’good’ adaptive sampling distribution.

2.5.1 Description of algorithm

Algorithm 2 AdaSDCA+

Parameter a number m > 1
Initialization Choose α0 ∈ Rn, set ᾱ0 = 1

λnXα0

for t ≥ 0 do
Primal update: wt = ∇g∗ (ᾱt)
Set: αt+1 = αt

if mod (t, n) == 0 then
Option I: Adaptive probability

Compute: κtj = αtj +∇φj(〈X:j ,w
t〉), ∀j ∈ [n]

Set: ptj ∼ |κti|
√
vj + nλγ, ∀j ∈ [n]

Option II: Optimal Importance probability
Set: ptj ∼ (vj + nλγ), ∀j ∈ [n]

end if
Generate random jt ∈ [n] according to pt

Compute: ∆αtjt = arg max
∆∈R

{
−φ∗jt(−(αtjt + ∆))− 〈X:jt ,w

t〉∆− vjt
2λn
|∆|2

}
Dual update: αt+1

jt
= αtjt + ∆αtjt

Average update: ᾱt = ᾱt +
∆αjt
λn X:jt

Probability update: pt+1
jt
∼ ptjt/m, pt+1

k ∼ ptk, ∀k 6= jt
end for
Output: wt,αt

AdaSDCA+ has the same structure as AdaSDCA with a few important differences.
Epochs AdaSDCA+ is divided into epochs of length n. At the beginning of every epoch,

sampling probabilities are computed according to one of two options. During each epoch the
probabilities are cheaply updated at the end of every iteration to approximate the adaptive
model. The intuition behind is as follows. After j is sampled and the dual coordinate αj is up-
dated, the residue κi naturally decreases. We then decrease also the probability that j is chosen
in the next iteration, by setting pt+1 to be proportional to (pt1, . . . p

t
j−1, p

t
j/m, p

t
j+1, . . . , p

t
n). By

doing this we avoid the computation of κ at each iteration (issue 1) which costs as much as the
full gradient algorithm, while following closely the changes of the dual residue κ. We reset the
adaptive sampling probability after every epoch of length n.

Parameter m The setting of parameter m in AdaSDCA+ directly affects the performance
of the algorithm. If m is too large, the probability of sampling the same coordinate twice during
an epoch will be very small. This will result in a random permutation through all coordinates
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Table 2.1: One epoch computational cost of different algorithms

Algorithm cost of an epoch

SDCA& QUARTZ(uniform) O(nnz)

IProx-SDCA O(nnz +n log(n))

AdaSDCA O(n · nnz)

AdaSDCA+ O(nnz +n log(n))

every epoch. On the other hand, for m too small the coordinates having larger probabilities
at the beginning of an epoch could be sampled more often than it should, even after their
corresponding dual residues become sufficiently small. We don’t have a definitive rule on the
choice of m and we leave this to future work. Experiments with different choices of m can be
found in Section 2.6.

Option I & Option II At the beginning of each epoch, one can choose between two options
for resetting the sampling probability. Option I corresponds to the optimal solution of (2.11),
given by the closed form (2.12). Option II is the optimal serial sampling probability (2.10),
the same as the one used in IProx-SDCA [88]. However, AdaSDCA+ differs significantly with
IProx-SDCA since we also update iteratively the sampling probability, which as we show through
numerical experiments yields a faster convergence than IProx-SDCA.

2.5.2 Computational cost

Sampling and probability update During the algorithm we sample j ∈ [n] from non-
uniform probability distribution pt, which changes at each iteration. This process can be done
efficiently using the Random Counters algorithm introduced in Section 6.2 of [49], which takes
O(n log(n)) operations to create the probability tree and O(log(n)) operations to sample from
the distribution or change one of the probabilities.

Total computational cost We can compute the computational cost of one epoch. At
the beginning of an epoch, we need O(nnz(X)) operations to calculate the dual residue κ.
Then we create a probability tree using O(n log(n)) operations. At each iteration we need
O(log(n)) operations to sample a coordinate, O(nnz(X)/n) operations to calculate the update
to α and a further O(log(n)) operations to update the probability tree. As a result an epoch
needs O(nnz +n log(n)) operations. For comparison purpose we list in Table 2.1 the one epoch
computational cost of comparable algorithms.

2.6 Numerical experiments

In this section we present results of numerical experiments.

2.6.1 Loss functions

We test AdaSDCA and AdaSDCA+, SDCA, and IProx-SDCA for two different types of loss
functions {φj}nj=1: quadratic loss and smoothed Hinge loss. Let y ∈ Rn be the vector of labels.
The quadratic loss is given by

φj(x) =
1

2γ
(x− yj)2

and the smoothed Hinge loss is:

φj(x) =


0 yjx ≥ 1

1− yjx− γ/2 yjx ≤ 1− γ
(1−yjx)2

2γ otherwise,
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Table 2.2: Dimensions and nonzeros of the datasets

Dataset d n nnz(X)/(nd)

w8a 300 49, 749 3.9%

dorothea 100, 000 800 0.9%

mushrooms 112 8, 124 18.8%

cov1 54 581, 012 22%

ijcnn1 22 49, 990 41%

In both cases we use L2-regularizer, i.e.,

g(w) =
1

2
‖w‖2.

Quadratic loss functions appear usually in regression problems, and smoothed Hinge loss
can be found in linear support vector machine (SVM) problems [71].

2.6.2 Numerical results

We used 5 different datasets: w8a, dorothea, mushrooms, cov1 and ijcnn1 (see Table 2.2).
In all our experiments we used γ = 1 and λ = 1/n.
AdaSDCA The results of the theory developed in Section 2.4 can be observed through Fig-

ure 2.1a to Figure 2.1d. AdaSDCA needs the least amount of iterations to converge, confirming
the theoretical result.

AdaSDCA+ vs. others We can observe through in Figure 2.1 and Figure 2.2, that both
options of AdaSDCA+ outperforms SDCA and IProx-SDCA (labelled “Optimal” in the exper-
iments), in terms of number of iterations, for quadratic loss functions and for smoothed Hinge
loss functions. One can observe similar results in terms of time in Figure 2.3 and Figure 2.4.

Option I vs. Option II Despite the fact that Option I is not theoretically supported for
smoothed hinge loss, it still converges faster than Option II on every dataset and for every loss
function. The biggest difference can be observed on Figure 2.4d, where Option I converges to
the machine precision in just 15 seconds. The default value of m used for Option II is m = 10.

Different choices of m To show the impact of different choices of m on the performance of
AdaSDCA+, in Figures 2.5a to 2.6d we compare the results of the two options of AdaSDCA+
using different m equal to 2, 10 and 50. It is hard to draw a clear conclusion here because
clearly the optimal m shall depend on the dataset and the problem type.
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2.A Proofs

For the sake of the analysis let us define

f(α) = −λg∗
 1

λn

n∑
j=1

Xj:αj

 . (2.16)

We shall need the following inequality.

Lemma 2.13. Function f : Rn → R defined in (2.16) satisfies the following inequality:

f(α+ h) ≤ f(α) + 〈∇f(α),h〉+
1

2λn2
h>X>Xh, (2.17)

holds for ∀α,h ∈ Rn.

Proof. Since g is 1-strongly convex, g∗ is 1-smooth. Pick α,h ∈ Rn. Since, f(α) =
λg∗( 1

λnXα), we have

f(α+ h) = λg∗
(

1

λn
Xα+

1

λn
Xh

)
≤ λ

[
g∗
(

1

λn
Xα

)
+

〈
∇g∗

(
1

λn
Xα

)
,

1

λn
Xh

〉
+

1

2

∥∥∥∥ 1

λn
Xh

∥∥∥∥2
]

= f(α) + 〈∇f(α),h〉+
1

2λn2
h>X>Xh.

Proof of Lemma 2.3. It can be easily checked that the following relations hold

∇jf(αt) =
1

n
〈X:j ,w

t〉, ∀t ≥ 0, j ∈ [n], (2.18)

g(wt) + g∗(ᾱt) = 〈wt, ᾱt〉, ∀t ≥ 0, (2.19)

where {wt,αt, ᾱt}t≥0 is the output sequence of Algorithm 1. Let t ≥ 0 and θ ∈ [0,minj p
t
j ]. For

each j ∈ [n], since φj is 1/γ-smooth, φ∗j is γ-strongly convex and thus for arbitrary sj ∈ [0, 1],

φ∗j (−αtj + sjκ
t
j) = φ∗j

(
(1− sj)(−αtj) + sj∇φj(〈X:j ,w

t〉)
)

≤ (1− sj)φ∗j (−αtj) + sjφ
∗
j (∇φj(〈X:j ,w

t〉))−
γsj(1− sj)|κtj |2

2
. (2.20)

We have:

f(αt+1)− f(αt)
(2.17)

≤ 〈∇f(αt),αt+1 −αt〉+
1

2λn2
〈αt+1 −αt,X>X(αt+1 −αt)〉

= ∇jf(αt)∆αtjt +
vj

2λn2
|∆αtjt |

2 (2.21)

(2.18)
=

1

n
〈X:jt ,w

t〉∆αtjt +
vj

2λn2
|∆αtjt |

2 (2.22)
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Thus,

D(αt+1) −D(αt)

(2.22)

≥ − 1

n
〈X:jt ,w

t〉∆αtjt −
vjt

2λn2
|∆αtjt |

2 +
1

n

n∑
j=1

φ∗j (−αtj)−
1

n

n∑
j=1

φ∗j (−αt+1
j )

= − 1

n
〈X:jt ,w

t〉∆αtjt −
vjt

2λn2
|∆αtjt |

2 +
1

n
φ∗jt(−α

t
jt)−

1

n
φ∗jt(−

(
αtjt + ∆αtjt

)
)

= max
∆∈R

{
− 1

n
〈X:jt ,w

t〉∆− vjt
2λn2

|∆|2 +
1

n
φ∗jt(−α

t
jt)−

1

n
φ∗jt(−

(
αtjt + ∆

)
)

}
,

where the last equality follows from the definition of ∆αtjt in Algorithm 1. Then by letting
∆ = −sjκtjt for some arbitrary sj ∈ [0, 1] we get:

D(αt+1)−D(αt) ≥
sj〈X:jt ,w

t〉κtjt
n

−
s2
jvjt |κtjt |

2

2λn2
+

1

n
φ∗jt(−α

t
jt)−

1

n
φ∗jt(−α

t
jt + sjκ

t
jt)

(2.20)

≥ sj
n

(
φ∗jt(−α

t
jt)− φ

∗
jt(∇φjt(〈X:jt ,w

t〉)) + 〈X:jt ,w
t〉κtjt

)
−
s2
jvjt |κtjt |

2

2λn2
+
γsj(1− sj)|κtjt |

2

2n
.

By taking expectation with respect to jt we get:

Et
[
D(αt+1)−D(αt)

]
≥

n∑
j=1

ptjsj

n

[
φ∗j (−αtj)− φ∗j (∇φj(〈X:j ,w

t〉)) + 〈X:j ,w
t〉κtj

]
−

n∑
j=1

ptjs
2
i |κtj |2(vj + λγn)

2λn2
+

n∑
j=1

ptjγsj |κtj |2

2n
. (2.23)

Set

sj =

{
0, j /∈ Jt
θ/ptj , j ∈ Jt

(2.24)

Then sj ∈ [0, 1] for each j ∈ [n] and by plugging it into (2.23) we get:

Et
[
D(αt+1)−D(αt)

]
≥ θ

n

∑
j∈Jt

[
φ∗j (−αtj)− φ∗j (∇φj(〈X:j ,w

t〉)) + 〈X:j ,w
t〉κtj

]
− θ

2λn2

∑
j∈Jt

(
θ(vj + nλγ)

ptj
− nλγ

)
|κtj |2
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Finally note that:

P (wt)−D(αt) =
1

n

n∑
j=1

[
φj(〈X:j ,w

t〉) + φ∗j (−αtj)
]

+ λ
(
g(wt) + g∗(ᾱt)

)
(2.19)

=
1

n

n∑
j=1

[
φ∗j (−αti) + φj(〈X:j ,w

t〉)
]

+
1

n
〈wt,Xαt〉

=
1

n

n∑
j=1

[
φ∗j (−αtj) + 〈X:j ,w

t〉∇φj(〈X:j ,w
t〉)

−φ∗j (∇φj(〈X:j ,w
t〉)) + 〈X:j ,w

t〉αtj
]

=
1

n

n∑
j=1

[
φ∗j (−αtj)− φ∗j (∇φj(〈X:j ,w

t〉)) + 〈X:j ,w
t〉κtj

]
=

1

n

∑
j∈Jt

[
φ∗j (−αtj)− φ∗j (∇φj(〈X:j ,w

t〉)) + 〈X:j ,w
t〉κtj

]

Proof of Lemma 2.4. Note that (2.11) is a standard constrained maximization problem, where
everything independent of p can be treated as a constant. We define the Lagrangian

L(p, η) = θ(κ,p)− η

 n∑
j=1

pj − 1


and get the following optimality conditions:

|κtj |2(vj + nλγ)

p2
j

=
|κtk|2(vk + nλγ)

p2
k

, ∀j, k ∈ [n]

n∑
j=1

pj = 1

pj ≥ 0, ∀j ∈ [n],

the solution of which is (2.12).

Proof of Lemma 2.5. Note that in the proof of Lemma 2.3, the condition θ ∈ [0,minj∈Jt p
t
j ] is

only needed to ensure that sj defined by (2.24) is in [0, 1] so that (2.20) holds. If φj is quadratic
function, then (2.20) holds for arbitrary sj ∈ R. Therefore in this case we only need θ to be
positive and the same reasoning holds.
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(a) w8a dataset (b) dorothea dataset

(c) mushrooms dataset (d) ijcnn1 dataset

(e) cov1 dataset

Figure 2.1: Quadratic loss with L2 regularizer, comparing number of iterations with known
algorithms.
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(a) w8a dataset (b) dorothea dataset

(c) mushrooms dataset (d) cov1 dataset

(e) ijcnn1 dataset

Figure 2.2: Smooth hinge loss with L2 regularizer, comparing number of iterations with known
algorithms.
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(a) w8a dataset (b) dorothea dataset

(c) mushrooms dataset (d) cov1 dataset

(e) ijcnn1 dataset

Figure 2.3: Quadratic loss with L2 regularizer, comparing real time with known algorithms.
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(a) w8a dataset (b) dorothea dataset

(c) mushrooms dataset (d) cov1 dataset

(e) ijcnn1 dataset

Figure 2.4: Smooth hinge loss with L2 regularizer, comparing real time with known algorithms.
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(a) w8a dataset (b) dorothea dataset

(c) mushrooms dataset (d) cov1 dataset

(e) ijcnn1 dataset

Figure 2.5: Quadratic loss with L2 regularizer, comparison of different choices of the constant
m
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(a) w8a dataset (b) dorothea dataset

(c) mushrooms dataset (d) ijcnn1 dataset

Figure 2.6: Smooth hinge loss with L2 regularizer, comparison of different choices of the constant
m.
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Chapter 3

Primal Method for ERM with
Flexible Mini-batching Schemes
and Non-convex Losses

3.1 Introduction

Empirical risk minimization (ERM) is a very successful and immensely popular paradigm in
machine learning, used to train a variety of prediction and classification models. Given examples
X1, . . . ,Xn ∈ Rd×m, loss functions φ1, . . . , φn : Rm → R and a regularization parameter λ > 0,
the L2-regularized ERM problem is an optimization problem of the form

min
w∈Rd

P (w) :=
1

n

n∑
j=1

φj(X
>
j w) +

λ

2
‖w‖2

 (3.1)

Note that the examples are considered matrices instead of standard vectors, as this is a more
general setup. Throughout the chapter we shall assume that for each j, the loss function φj is
li-smooth with lj > 0. That is, for all x,y ∈ Rm and all j ∈ [n] := {1, 2, . . . , n}, we have

‖∇φj(x)−∇φj(y)‖ ≤ lj‖x− y‖. (3.2)

In the last few years, a lot of research effort was put into designing new efficient algorithms for
solving this problem (and some of its modifications). The frenzy of activity was motivated by
the realization that SGD [61], not so long ago considered the state-of-the-art method for ERM,
was far from being optimal, and that new ideas can lead to algorithms which are far superior
to SGD in both theory and practice. The methods that belong to this category include SAG
[64], SDCA [72], SVRG [27], S2GD [32], mS2GD [30], SAGA [12], S2CD [31], QUARTZ [55],
ASDCA [71], prox-SDCA [70], IPROX-SDCA [88], A-PROX-SDCA [73], AdaSDCA [10], SDNA
[56]. Methods analyzed for arbitrary mini-batching schemes include NSync [57], ALPHA [53]
and QUARTZ [55].

In order to find an ε-solution in expectation, state of the art (and non-accelerated) methods
for solving (3.1) only need O((n+κ) log(1/ε)) steps, where each step involves the computation of
the gradient ∇φj(X>j w) for some randomly selected example j. The quantity κ is the condition

number. Typically one has κ =
maxj lj‖Xj‖2

λ for methods picking j uniformly at random, and

κ =
∑
j lj‖Xj‖2

nλ for methods picking j using a carefully designed data-dependent importance
sampling. Computation of such a gradient typically involves work which is equivalent to reading
the example Xj , that is, O(nnz(Xj)) ≤ dm arithmetic operations.

Contributions. In this work we develop a new algorithm for the L2-regularized ERM
problem (3.1). Our method extends a technique recently introduced by Shalev-Shwartz [67],
which enables a dual-free analysis of SDCA, to arbitrary mini-batching schemes. That is, our
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method works at each iteration with a random subset of examples, chosen in an i.i.d. fashion
from an arbitrary distribution. Such flexible schemes are useful for various reasons, including
i) the development of distributed or robust variants of the method, ii) design of importance
sampling for improving the complexity rate, iii) design of a sampling which is aimed at obtaining
efficiencies elsewhere, such us utilizing NUMA (non-uniform memory access) architectures, and
iv) streamlining and speeding up the processing of each mini-batch by means of assigning to each
processor approximately even workload so as to reduce idle time (we do experiments with the
latter setup). In comparison with [67], our method is able to better utilize the information in the
data examples X1, . . . ,Xn, leading to a better data-dependent bound. For convex loss functions,
our complexity results match those of QUARTZ [55] in terms of the rate (the logarithmic factors
differ). QUARTZ is a primal-dual method also allowing for arbitrary mini-batching schemes.
However, while [55] only characterize the decay of expected risk, we also give bounds for the
sequence of iterates. In particular, we show that for convex loss functions, our method enjoys
the rate O(maxj{1/pj + ljvj/(λpjn)}), where pj and vj are some parameters of the method
associated with the sampling and data. For instance, in the special case picking a single
example at a time uniformly at random, we have pj = 1/n and vj = ‖Xj‖2op, whereby we
obtain one of the O(n + κ) log(1/ε) rates mentioned above. The other rate can be recovered
using importance sampling. The advantage of a dual-free analysis comes from the fact that it
guarantees convergence even for non-convex loss functions, as long as the average loss is convex.
This is a step toward understanding non-convex models. We illustrate through experiments the
utility of being able to design arbitrary mini-batching schemes.

3.2 Algorithm

We shall now describe the method (Algorithm 3).

Algorithm 3 dfSDCA: Dual-Free SDCA with Arbitrary Sampling

Parameters: Sampling Ŝ, stepsize θ
Initialization A0 ∈ Rm×n, set w0 = 1

λn

∑n
j=1 XjA

0
:j , pj = Prob(j ∈ St)

for t ≥ 1 do
Sample a set St according to Ŝ
for j ∈ St in parallel do

At
:j = At−1

:j − θp
−1
j (∇φj(X>j wt−1) + At−1

:j )
end for
wt = wt−1 −

∑
j∈St θ(nλpj)

−1Xj(∇φj(X>j wt−1) + At−1
:j )

end for

The method encodes a family of algorithms, depending on the choice of the sampling Ŝ,
which encodes a particular mini-batching scheme. Formally, a sampling Ŝ is a set-valued random
variable with values being the subsets of [n], i.e., subsets of examples. In this chapter, we use
the terms “mini-batching scheme” and “sampling” interchangeably. A sampling is defined by
the collection of probabilities Prob(S) assigned to every subset S ⊆ [n] of the examples.

The method maintains n vectors A:j ∈ Rm as columns of the matrix A ∈ Rm×n and a
vector w ∈ Rd. At the beginning of step t, we have At−1

:j for all j and wt−1 computed and
stored in memory. We then pick a random subset St of the examples, according to the mini-
batching scheme, and update variables A:j for j ∈ St, based on the computation of the gradients
∇φj(X>j wt−1) for j ∈ St. This is followed by an update of the vector w, which is performed
so as to maintain the relation

wt =
1

λn

n∑
j=1

XjA
t
:j . (3.3)

This relation is maintained for the following reason. If w∗ is the optimal solution to (3.1), then

0 = ∇P (w∗) =
1

n

n∑
j=1

Xj∇φj(X>j w∗) + λw∗, (3.4)
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and hence w∗ = 1
λn

∑n
j=1 XjA

∗
:j , where A∗:j := −∇φj(X>j w∗). So, if we believe that the

variables A:j converge to −∇φj(X>:jw∗), it indeed does make sense to maintain (3.3). Why
should we believe this? This is where the specific update of the “dual variables” A:j comes
from: A:j is set a convex combination of its previous value and our best estimate so far of
−∇φj(X>:jw∗), namely, −∇φj(X>:jwt−1). Indeed, the update can be written as At

:j = (1 −
θnp−1

j )At−1
:j + θnp−1

j (−∇φj(X>j wt−1)). Why does this make sense? Because we believe that

wt−1 converges to w∗. Admittedly, this reasoning is somewhat “circular”. However, a better
word to describe this reasoning would be: “iterative”.

3.3 Main results

Let pj := P(j ∈ St). We say that a sampling Ŝ is proper if pj > 0 for all j ∈ [n]. In the rest of
the chapter we assume that all samplings are proper.

We assume the knowledge of parameters v1, . . . , vn > 0 for which

E

∥∥ ∑
j∈St

XjA:j

∥∥2

 ≤
n∑
j=1

pivj‖X:j‖2 (3.5)

for all values of A ∈ Rm×n. Tight and easily computable formulas for such parameters can
be found in [54]. For instance, whenever Prob(|St| ≤ τ) = 1, inequality (3.5) holds with
vj = τ‖Xj‖2.

Further, let L1, . . . , Ln be constants for which the inequality

‖∇φj(X>j w)−∇φj(X>j z)‖ ≤ Lj‖w − z‖ (3.6)

holds for all w, z ∈ Rd and all i and let L := maxj Lj . Note that we can always bound
Lj ≤ lj‖Xj‖. However, Lj can be better (smaller) than lj‖Xj‖, which is why we will use Lj in
our results whenever possible.

To simplify the exposure, we will write

Wt := ‖wt −w∗‖2, atj := ‖At
:j −A∗:j‖2, j = 1, 2, . . . , n. (3.7)

3.3.1 Non-convex loss functions

Our result will be expressed in terms of the decay of the potential Dt := λ
2Wt + λ

2n

∑n
j=1

1
L2
j
atj ,

where Wt and atj are defined in (3.7).

Theorem 3.1. Assume the average loss function 1
n

∑n
j=1 φj is convex. If (3.6) holds and we

let

θ ≤ min
j

pjnλ
2

L2
jvj + nλ2

, (3.8)

then the for t ≥ 0 the potential Dt decays exponentially to zero as

E [Dt] ≤ e−θtD0. (3.9)

Moreover, if we set θ equal to the upper bound in (3.8), then

T ≥ max
j

(
1

pj
+

L2
jvj

λ2pjn

)
log

(
(L+ λ)D0

λε

)
⇒ E[P (wT )− P (w∗)] ≤ ε.

3.3.2 Convex loss functions

Our result will be expressed in terms of the decay of the potential Et := λ
2Wt + 1

2n

∑n
j=1

1
lj
atj ,

where Wt and atj are defined in (3.7).
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Theorem 3.2. Assume that all loss functions {φj} are convex and satisfy (3.2). If we run
Algorithm 3 with parameter θ satisfying the inequality

θ ≤ min
j

pjnλ

ljvj + nλ
, (3.10)

then the for t ≥ 0 the potential Et decays exponentially to zero as

E [Et] ≤ e−θtE0. (3.11)

Moreover, if we set θ equal to the upper bound in (3.10), then

T ≥ max
j

(
1

pj
+

ljvj
λpjn

)
log

(
(L+ λ)E0

λε

)
⇒ E[P (wT )− P (w∗)] ≤ ε

The rate, θ, precisely matches that of the QUARTZ algorithm [55]. Quartz is the only
other method for ERM which has been analyzed for an arbitrary mini-batching scheme. Our
algorithm is dual-free, and as we have seen above, allows for an analysis covering the case of
non-convex loss functions.

3.4 Chunking

In this section we illustrate one usage of the ability of our method to work with an arbitrary
mini-batching scheme. Further examples include the ability to design distributed variants of
the method [58], or the use of importance/adaptive sampling to lower the number of iterations
[59][88][55][10].

One marked disadvantage of standard mini-batching (“choose a subset of examples, uni-
formly at random”) used in the context of parallel processing on multicore processors is the
fact that in a synchronous implementation there is a loss of efficiency due to the fact that the
computation time of ∇φ(X>j w) may differ through j. This is caused by the data examples
having varying degree of sparsity. We hence introduce a new sampling which mitigates this
issue.

Chunks: Let nnz Xj be the numebr of nonzero entries in Xj . Choose sets G1, . . . , Gk ⊂ [n],
such that ∪ki=1Gi = [n] and Gi ∩Gj = ∅ ∀i, j and ψ(i) :=

∑
j∈Gi nnz(Xj) is similar for every i,

i.e. ψ(1) ≈ · · · ≈ ψ(k). Instead of sampling τ coordinates we propose a new sampling, which on
each iteration t samples τ sets Gt1, . . . , G

t
τ out of G1, . . . , Gk and uses coordinates j ∈ ∪τi=1G

t
i

as the sampled set. We assign each core one of the sets Gti for parallel computation. The
advantage of this sampling lies in the fact, that the load of computing ∇φ(X>j w) for all j ∈ Gi
is similar for all i ∈ [k]. Hence, using this sampling we minimize the waiting time of processors.

How to choose G1, . . . , Gk: We introduce the following algorithm:

Algorithm 4 Naive Chunks

Parameters: vector of nnz u
Initialization n = length(u); Empty vector g and s of length n; m = max(u)
g[1] = 1, s[1] = u[1], i = 1
for t = 2 : n do

if g[i] + u[t] ≤ m then
g[i] = g[i] + 1, s[i] = s[i] + u[t]

else
i = i+ 1, g[i] = 1, s[i] = u[t]

end if
end for

The algorithms returns the partition of [n] into G1, . . . , Gk in a sense, that the first g[1]
coordinates belong to G1, next g[2] coordinates belong to G2 and so on. The main advantage
of this approach is, that it makes a preprocessing step on the dataset which takes just one
pass through the data. On Figure 3.1a through Figure 3.1f we show the impact of Algorithm 4
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Figure 3.1: Distribution of the difference between the maximum number of nonzeros processed by a
single core and the mean of all nonzeros processed by each core. This difference shows us, how much
time is wasted per core waiting on the slowest core to finish its task, therefore smaller numbers are
better. The first row corresponds to the initial distribution while the second row shows the distribution
after using Algorithm 4.

on the probability of the waiting time of a single core, which we measure by the difference
maxj∈St{nnz(Xj)}− 1

τ

∑
j∈St nnz(Xj) and maxj∈[τ ]{nnz(Gtj)}− 1

τ

∑τ
j=1 nnz(Gtj) for the initial

and preprocessed dataset respectively. We can observe, that the waiting time is smaller using
the preprocessing.

3.5 Experiments

In all our experiments we used ridge logistic regression. We normalized the datasets so that
maxj ‖Xj‖ = 1, and fixed λ = 1/n. The datasets used for experiments are summarized in
Table 3.1.

Dataset #samples #features sparsity
w8a 49,749 300 3.8%
dorothea 800 100,000 0.9%
protein 17,766 358 29%
rcv1 20,242 47,237 0.2%
cov1 581,012 54 22%

Table 3.1: Datasets used in the experiments.

Experiment 1. In Figure 3.2a we compared the performance of Algorithm 3 with uni-
form serial sampling against state of the art algorithms such as SGD [61], SAG[64] and S2GD
[32] in number of epochs. The real running time of the algorithms was 0.46s for S2GD, 0.79s
for SAG, 0.47s for SDCA and 0.58s for SGD. In Figure 3.2b we show the convergence rate
for different regularization parameters λ. In Figure 3.2c we show convergence rates for differ-
ent serial samplings: uniform, importance [88] and also 4 different randomly generated serial
samplings. These samplings were generated in a controlled manner, such that random c has
(maxj pj)/(minj pj) < c. All of these samplings have linear convergence as shown in the
theory.
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Figure 3.2: LEFT: Comparison of SDCA with other state of the art methods. MIDDLE: SDCA for various

values of λ. RIGHT: SDCA run with various samplings Ŝ.

Experiment 2: New sampling vs. old sampling. In Figure 3.3a through Figure 3.3l we
compare the performance of a standard parallel sampling against sampling of blocks G1, . . . , Gk
output by Algorithm 4. To simulate the synchronization of parallel processes, we measure the
wall time by looking at the thread which has to process the most amount of nonzero entries, as
the other threads will have to wait for it to finish. Therefore, in each iteration we approximate
the actual wall time by maxj∈St{nnz(Xj)} and maxj∈[τ ]{nnz(Gj)} for the standard and new
sampling respectively. The x-axis on the plots stands for the amount of data passed by a single
thread as a proxy for time.
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Figure 3.3: Logistic regression with λ = 1/n. Comparison between new and standard sampling with
fine-tuned stepsizes for different values of τ .
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3.A Proofs

As a first approximation, our proof is an extension of the proof of Shalev-Shwartz [67] to ac-
commodate an arbitrary sampling [57][53][55][56]. For all j and t we let U:j = −∇φj(X>j wt−1)

and Z:j = At−1
:j −U:j . We will use the following lemma.

Lemma 3.3 (Evolution of atj and W t). For a fixed iteration t the following holds:

EŜ

[
at−1
j − atj

]
= θ

[
‖At−1

:j −A∗:j‖2 − ‖U:j −A∗:j‖2 + (1− θp−1
j )‖Z:j‖2

]
(3.12)

EŜ [Wt−1 −Wt] ≥ 2θ

λ
〈wt−1 −w∗,∇P (wt−1)〉 − θ2

n2λ2

n∑
j=1

vj
pj
‖Z:j‖2. (3.13)

Proof. It follows that for j ∈ St using the definition (3.7) we have

at−1
j − atj = ‖At−1

:j −A∗:j‖2 − ‖At
:j −A∗:j‖2

= ‖At−1
:j −A∗:j‖2 − ‖(1− θp−1

i )(At−1
:j −A∗:j) + θp−1

i (U:j −A∗:j)‖2

= ‖At−1
:j −A∗:j‖2 − (1− θp−1

i )‖At−1
:j −A∗:j‖2 − θp−1

i ‖U:j −A∗:j‖2

+ θp−1
i (1− θp−1

i )‖At−1
:j −U:j‖2

= θp−1
i

[
‖At−1

:j −A∗:j‖2 − ‖U:j −A∗:j‖2 + (1− θp−1
i )‖Z:j‖2

]
and for j /∈ St we have at−1

j − atj = 0. Taking the expectation over St we get the result.

For the second potential we get

Wt−1 −Wt = ‖wt−1 −w∗‖2 − ‖wt −w∗‖2

=
2θ

nλ

∑
j∈St

p−1
j 〈w

t−1 −w∗,XjZ:j〉 −
θ2

n2λ2
‖
∑
j∈St

p−1
j XjZ:j‖2

Taking the expectation over St, using inequality (3.5), and noting that

1

n

n∑
j=1

XjZ:j =
1

n

n∑
j=1

Xj∇φ(X>j wt−1) + λwt−1 = ∇P (wt−1), (3.14)

we get

E [Wt−1 −Wt] =
2θ

nλ

n∑
j=1

〈wt−1 −w∗,XjZ:j〉 −
θ2

n2λ2
E

∥∥ ∑
j∈St

Xj(p
−1
j Z:j)

∥∥2


(3.5)

≥ 2θ

nλ

n∑
j=1

〈wt−1 −w∗,XjZ:j〉 −
θ2

n2λ2

n∑
j=1

pjvj‖p−1
j Z:j‖2

(3.14)
=

2θ

λ
〈wt−1 −w∗,∇P (wt−1)〉 − θ2

n2λ2

n∑
j=1

vj
pj
‖Z:j‖2
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3.A.1 Proof of Theorem 3.1 (nonconvex case)

Combining (3.12) and (3.13), we obtain

E[Dt−1 −Dt] ≥ θλ

2n

n∑
j=1

1

L2
j

[
‖At−1

:j −A∗:j‖2 − ‖U:j −A∗:j‖2 + (1− θp−1
j )‖Z:j‖2

]

+
λ

2

2θ

λ
〈wt−1 −w∗,∇P (wt−1)〉 − θ2

n2λ2

n∑
j=1

vj
pj
‖Z:j‖2


=

θ

2n

n∑
j=1

[
λ

L2
j

(
at−1
j − ‖U:j −A∗:j‖2

)
+

(
λ(1− θp−1

j )

L2
j

− θvj
nλpj

)
‖Z:j‖2

]
+θ〈wt−1 −w∗,∇P (wt−1)〉

(3.8)

≥ θ

2n

n∑
j=1

λ

L2
j

(
at−1
j − ‖U:j −A∗:j‖2

)
+ θ〈wt−1 −w∗,∇P (wt−1)〉.

Using (3.6) we have ‖U:j −A∗:j‖2 = ‖∇φj(X>j wt−1) − ∇φj(X>j w∗)‖2 ≤ L2
j‖wt−1 − w∗‖2.

Using the strong convexity of P we have 〈wt−1−w∗,∇P (wt−1)〉 ≥ P (wt−1)−P (w∗)+λ
2 ‖w

t−1−
w∗‖2 and P (wt−1)−P (w∗) ≥ λ

2 ‖w
t−1−w∗‖2, which together yields 〈wt−1−w∗,∇P (wt−1)〉 ≥

λ‖wt−1 −w∗‖2. Therefore,

E[Dt−1 −Dt] ≥ θ

 1

n

n∑
j=1

λ

2L2
j

at−1
j +

(
−λ

2
+ λ

)
Wt−1

 = θDt−1.

It follows that E[Dt] ≤ (1− θ)Dt−1, and repeating this recursively we end up with E[Dt−1] ≤
(1 − θ)tD0 ≤ e−θtD(0). This concludes the proof of the first part of Theorem 3.1. The second
part of the proof follows by observing that P is (L+ λ)-smooth, which gives P (w)− P (w∗) ≤
L+λ

2 ‖w −w∗‖2.

3.A.2 Convex case

For the next theorem we need an additional lemma:

Lemma 3.4. Assume that φj are Lj-smooth and convex. Then, for every w,

1

n

n∑
j=1

1

Lj
‖∇φj(X>j w)−∇φj(X>j w∗)‖2 ≤ 2

(
P (w)− P (w∗)− λ

2
‖w −w∗‖2

)
(3.15)

Proof. Let

gj(x) = φj(x)− φj(X>j w∗)−
〈
∇φj(X>j w∗),x−X>j w∗

〉
.

Clearly, gj is also lj-smooth. By convexity of φj we have gj(x) ≥ 0 for all x. It follows that gj
satisfies ‖∇gj(x)‖2 ≤ 2ljgj(x). Using the definition of gj , we obtain

‖∇φj(X>j w)−∇φj(X>j w∗)‖2 = ‖∇gj(X>j w)‖2

≤ 2lj [φj(X
>
j w)− φj(X>j w∗)−

〈
∇φj(X>j w∗),X>j w −X>j w∗

〉
]. (3.16)
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Summing these terms up weighted by 1/lj and using (3.4) we get

1

n

n∑
j=1

1

lj
‖∇φj(X>j w)−∇φj(X>j w∗)‖2

(3.16)

≤
n∑
j=1

2

n
[φj(X

>
j w)− φj(X>j w∗)−

〈
Xj∇φj(X>j w∗),w −w∗

〉
]

(3.4)
= 2

[
P (w)− λ

2
‖w‖2 − P (w∗) +

λ

2
‖w∗‖2 + λ〈w∗,w −w∗〉

]
= 2

[
P (w)− P (w∗)− λ

2
‖w −w∗‖2

]
.

3.A.3 Proof of Theorem 3.2

Combining (3.12) and (3.13), we obtain

E[Et−1 − Et] ≥ θ

n

n∑
j=1

1

2lj

[
‖At−1

:j −A∗:j‖2 − ‖U:j −A∗:j‖2 + (1− θp−1
j )‖Z:j‖2

]

+
λ

2

2θ

λ
〈wt−1 −w∗,∇P (wt−1)〉 − θ2

n2λ2

n∑
j=1

vj
pj
‖Z:j‖2


=

θ

n

n∑
j=1

[
1

2lj
(at−1
j − ‖U:j −A∗:j‖2) +

(
(1− θp−1

j )

2lj
− θvj

2pjλn

)]
+ θ〈wt−1 −w∗,∇P (wt−1)〉

(3.10)

≥ θ

n

n∑
j=1

[
1

2lj
(at−1
j − ‖U:j −A∗:j‖2)

]
+ θ〈wt−1 −w∗,∇P (wt−1)〉

Using the convexity of P we have P (wt−1) − P (w∗) ≤ 〈wt−1 −w∗,∇P (wt−1)〉 and using
Lemma 3.4, we have

E[Et−1 − Et]
(3.15)

≥ θ

n

n∑
j=1

1

2lj
at−1
j − θ

(
P (wt−1)− P (w∗)− λ

2
‖wt−1 −w∗‖2

)
+θ〈wt−1 −w∗,∇P (wt−1)〉

≥ θ

 1

n

n∑
j=1

1

2lj
at−1
j +

λ

2
Wt−1

 = θEt−1.

This gives E[Et] ≤ (1−θ)Et−1, which concludes the first part of the Theorem 3.2. The second
part follows by observing, that P is (L+λ)-smooth, which gives P (w)−P (w∗) ≤ L+λ

2 ‖w−w∗‖2.

56



Chapter 4

Importance Sampling for
Minibatches

4.1 Introduction

Supervised learning is a widely adopted learning paradigm with important applications such
as regression, classification and prediction. The most popular approach to training supervised
learning models is via empirical risk minimization (ERM). In ERM, the practitioner collects
data composed of example-label pairs, and seeks to identify the best predictor by minimizing
the empirical risk, i.e., the average risk associated with the predictor over the training data.

With ever increasing demand for accuracy of the predictors, largely due to successful indus-
trial applications, and with ever more sophisticated models that need to be trained, such as
deep neural networks [23, 33], or multiclass classification [24], increasing volumes of data are
used in the training phase. This leads to huge and hence extremely computationally intensive
ERM problems.

Batch algorithms—methods that need to look at all the data before taking a single step to
update the predictor—have long been known to be prohibitively impractical to use. Typical
examples of batch methods are gradient descent and classical quasi-Newton methods. One
of the most popular algorithms for overcoming the deluge-of-data issue is stochastic gradient
descent (SGD), which can be traced back to a seminal work of Robbins and Monro [61]. In
SGD, a single random example is selected in each iteration, and the predictor is updated using
the information obtained by computing the gradient of the loss function associated with this
example. This leads to a much more fine-grained iterative process, but at the same time
introduces considerable stochastic noise, which eventually—typically after one or a few passes
over the data—-effectively halts the progress of the method, rendering it unable to push the
training error (empirical risk) to the realm of small values.

4.1.1 Strategies for dealing with stochastic noise

Several approaches have been proposed to deal with the issue of stochastic noise in the finite-
data regime. The most important of these are i) decreasing stepsizes, ii) minibatching, iii)
importance sampling and iv) variance reduction via “shift”, listed here from historically first
to the most modern.

The first strategy, decreasing stepsizes, takes care of the noise issue by a gradual and direct
scale-down process, which ensures that SGD converges to the ERM optimum [85]. However,
an unwelcome side effect of this is a considerable slowdown of the iterative process [3]. For
instance, the convergence rate is sublinear even if the function to be minimized is strongly
convex.

The second strategy, minibatching, deals with the noise by utilizing a random set of examples
in the estimate of the gradient, which effectively decreases the variance of the estimate [74].
However, this has the unwelcome side-effect of requiring more computation. On the other hand,
if a parallel processing machine is available, the computation can be done concurrently, which
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ultimately leads to speedup. This strategy does not result in an improvement of the convergence
rate (unless progressively larger minibatch sizes are used, at the cost of further computational
burden [18]), but can lead to massive improvement of the leading constant, which ultimately
means acceleration (almost linear speedup for sparse data) [75].

The third strategy, importance sampling, operates by a careful data-driven design of the
probabilities of selecting examples in the iterative process, leading to a reduction of the variance
of the stochastic gradient thus selected. Typically, the overhead associated with computing the
sampling probabilities and with sampling from the resulting distribution is negligible, and hence
the net effect is speedup. In terms of theory, for standard SGD this improves a non-dominant
term in the complexity. On the other hand, when SGD is combined with variance reduction,
then this strategy leads to the improvement of the leading constant in the complexity estimate,
typically via replacing the maximum of certain data-dependent quantities by their average
[57, 31, 88, 55, 46, 7, 10].

Finally, and most recently, there has been a considerable amount of research activity due
to the ground-breaking realization that one can gain the benefits of SGD (cheap iterations)
without having to pay through the side effects mentioned above (e.g., halt in convergence due
to decreasing stepsizes or increase of workload due to the use of minibatches). The result, in
theory, is that for strongly convex losses (for example), one does not have to suffer sublinear
convergence any more, but instead a fast linear rate “kicks in”. In practice, these methods
dramatically surpass all previous existing approaches.

The main algorithmic idea is to change the search direction itself, via a properly designed and
cheaply maintainable “variance-reducing shift” (control variate). Methods in this category are
of two types: those operating in the primal space (i.e., directly on ERM) and those operating in a
dual space (i.e., with the dual of the ERM problem). Methods of the primal variety include SAG
[64], SVRG [27], S2GD [32], proxSVRG [84], SAGA [12], mS2GD [30] and MISO [42]. Methods
of the dual variety work by updating randomly selected dual variables, which correspond to
examples. These methods include SCD [69], RCDM [49, 59], SDCA [72], Hydra [58, 16],
mSDCA [75], APCG [37], AsySPDC [38], RCD [44], APPROX [15], SPDC [86], ProxSDCA [70],
ASDCA [71], IProx-SDCA [88], and QUARTZ [55].

4.1.2 Combining strategies

We wish to stress that the key strategies, mini-batching, importance sampling and variance-
reducing shift, should be seen as orthogonal tricks, and as such they can be combined, achiev-
ing an amplification effect. For instance, the first primal variance-reduced method allowing for
mini-batching was [30]; while dual-based methods in this category include [71, 55, 7]. Variance-
reduced methods with importance sampling include [49, 59, 57, 53] for general convex mini-
mization problems, and [88, 55, 46, 7] for ERM.

4.2 Contributions

Despite considerable effort of the machine learning and optimization research communities, no
importance sampling for minibatches was previously proposed, nor analyzed. The reason for
this lies in the underlying theoretical and computational difficulties associated with the design
and successful implementation of such a sampling. One needs to come up with a way to focus
on a reasonable set of subsets (minibatches) of the examples to be used in each iteration (issue:
there are many subsets; which ones to choose?), assign meaningful data-dependent non-uniform
probabilities to them (issue: how?), and then be able to sample these subsets according to the
chosen distribution (issue: this could be computationally expensive).

The tools that would enable one to consider these questions did not exist until recently.
However, due to a recent line of work on analyzing variance-reduced methods utilizing what
is known as arbitrary sampling [57, 55, 53, 54, 7], we are able to ask these questions and
provide answers. In this work we design a novel family of samplings—bucket samplings—and
a particular member of this family—importance sampling for minibatches. We illustrate the
power of this sampling in combination with the reduced-variance dfSDCA method for ERM.
This method is a primal variant of SDCA, first analyzed by Shalev-Shwartz [67], and extended
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by Csiba and Richtárik [7] to the arbitrary sampling setting. However, our sampling can be
combined with any stochastic method for ERM, such as SGD or S2GD, and extends beyond
the realm of ERM, to convex optimization problems in general. However, for simplicity, we do
not discuss these extensions in this work.

We analyze the performance of the new sampling theoretically, and by inspecting the results
we are able to comment on when can one expect to be able to benefit from it. We illustrate
on synthetic datasets with varying distributions of example sizes that our approach can lead
to dramatic speedups when compared against standard (uniform) minibatching, of one or more
degrees of magnitude. We then test our method on real datasets and confirm that the use
of importance minibatching leads to up to an order of magnitude speedup. Based on our
experiments and theory, we predict that for real data with particular shapes and distributions
of example sizes, importance sampling for minibatches will operate in a favourable regime, and
can lead to speedup higher than one order of magnitude.

4.2.1 Related work

The idea of using non-uniform sampling in the parallel regime is by no means new. In the
following we highlight several recent approaches in a chronological order and we describe their
main differences to our method.

The first attempt for a potential speed-up using a non-uniform parallel sampling was pro-
posed in [57]. However, to compute the optimal probability vector one has to solve a linear
programming problem, which can easily be more complex than the original problem. The
authors do not propose a practical version, which would overcome this issue.

The approach described in [87] uses the idea of a stratified sampling, which is a well-
known strategy in statistics. The authors use clustering to group the examples into several
partitions and sample an example from each of the partitions uniformly. This approach is
similar to ours, with two main differences: i) we do not need clustering for our approach (it
can be computationally very expensive) ii) we allow non-uniform sampling inside each of the
partitions, which leads to the main speed-up in our work.

Instead of directly improving the convergence rate of the methods, the authors in [7] propose
a strategy to improve the synchronized parallel implementation of a method by a load-balancing
scheme. The method divides the examples into groups, which have similar sum of the amount
of nonzero entries. When each core processes a single group, it should take the same time to
finish as all the other groups, which leads to shorter waiting time in synchronization. Although
this is a non-uniform parallel sampling, this approach takes a completely different direction
than our method.

Lastly, in [22] the authors actually propose a scheme for importance sampling with mini-
batches. In the chapter they assume that they can sample a minibatch with a fixed size (without
repetition), such that the probabilities of sampling individual examples will be proportional to
some given values. However, this is easier said than done – until our work there was no sampling
scheme which would allow for such minibatches. Therefore, the authors theoretically described
an idea, which can be used in practice using our scheme.

4.3 The problem

Let X ∈ Rd×n be a data matrix in which features are represented in rows and examples in
columns, and let y ∈ Rn be a vector of labels corresponding to the examples. Our goal is to
find a linear predictor w ∈ Rd such that 〈X:j ,w〉 ∼ yj , where the pair (X:j , yj) ∈ Rd × R is
sampled from the underlying distribution over data-label pairs. In the L2-regularized Empirical
Risk Minimization problem, we find w by solving the optimization problem

min
w∈Rd

P (w) :=
1

n

n∑
j=1

φj(〈X:j ,w〉) +
λ

2
‖w‖22

 , (4.1)

where φj : R→ R is a loss function associated with example-label pair (X:j , yj), and λ > 0. For
instance, the square loss function is given by φj(t) = 0.5(t−yj)2. Our results are not limited to
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L2-regularized problems though: an arbitrary strongly convex regularizer can be used instead
[55]. We shall assume throughout that the loss functions are convex and 1/γ-smooth, where
γ > 0. The latter means that for all s, t ∈ R and all j ∈ [n] := {1, 2, . . . , n}, we have

|φ′j(s)− φ′j(t)| ≤ 1

γ
|s− t|.

This setup includes ridge and logistic regression, smoothed hinge loss, and many other problems
as special cases [72]. Again, our sampling can be adapted to settings with non-smooth losses,
such as the hinge loss.

4.4 The algorithm

In this chapter we illustrate the power of our new sampling in tandem with Algorithm 5 (dfS-
DCA) for solving (4.1).

Algorithm 5 dfSDCA [7]

Parameters: Sampling Ŝ, stepsize θ > 0
Initialization: Choose α0 ∈ Rn,
set w0 = 1

λn

∑n
j=1 X:jα

0
j , pj = Prob(j ∈ Ŝ)

for t ≥ 1 do
Sample a fresh random set St according to Ŝ
for j ∈ St do

∆j = φ′j(〈X:j ,w
t−1〉) + αt−1

j

αtj = αt−1
j − θp−1

j ∆j

end for
wt = wt−1 −

∑
j∈St θ(nλpj)

−1∆jX:j

end for

The method has two parameters. A “sampling” Ŝ, which is a random set-valued mapping
[60] with values being subsets of [n], the set of examples. No assumptions are made on the
distribution of Ŝ apart from requiring that pj is positive for each j, which simply means that
each example has to have a chance of being picked. The second parameter is a stepsize θ, which
should be as large as possible, but not larger than a certain theoretically allowable maximum
depending on P and Ŝ, beyond which the method could diverge.

Algorithm 5 maintains n “dual” variables, αt1, . . . , α
t
n ∈ R, which act as variance-reduction

shifts. This is most easily seen in the case when we assume that St = {j} (no minibatching).
Indeed, in that case we have

wt = wt−1 − θ

nλpj
(gt−1
j + X:jα

t−1
j ),

where gt−1
j := X:j∆j is the stochastic gradient. If θ is set to a proper value, as we shall see

next, then it turns out that for all j ∈ [n], αj is converging α∗j := −φ′j(〈X:j ,w
∗〉), where w∗

is the solution to (4.1), which means that the shifted stochastic gradient converges to zero.
This means that its variance is progressively vanishing, and hence no additional strategies, such
as decreasing stepsizes or minibatching are necessary to reduce the variance and stabilize the
process. In general, dfSDCA in each step picks a random subset of the examples, denoted as
St, updates variables αtj for j ∈ St, and then uses these to update the predictor w.

4.4.1 Complexity of dfSDCA

In order to state the theoretical properties of the method, we define

Et :=
λ

2
‖wt −w∗‖22 +

γ

2n
‖αt −α∗‖22.
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Most crucially to this chapter, we assume the knowledge of parameters v1, . . . , vn > 0 for which
the following ESO1 inequality holds

E

∥∥ ∑
j∈St

hjX:j

∥∥2

 ≤
n∑
j=1

pjvjh
2
j (4.2)

holds for all h ∈ Rn. Tight and easily computable formulas for such parameters can be found
in [54]. For instance, whenever Prob(|St| ≤ τ) = 1, inequality (4.2) holds with vj = τ‖X:j‖2.
However, this is a conservative choice of the parameters, as better choices for vj exist in some
specific cases [54]. Convergence of dfSDCA is described in the next theorem.

Theorem 4.1 ([7]). Assume that all loss functions {φj} are convex and 1/γ smooth. If we run
Algorithm 5 with parameter θ satisfying the inequality

θ ≤ min
j

pjnλγ

vj + nλγ
, (4.3)

where {vj} satisfy (4.2), then the potential Et decays exponentially to zero as

E [Et] ≤ e−θtE0.

Moreover, if we set θ equal to the upper bound in (4.3) so that

1

θ
= max

j

(
1

pj
+

vj
pjnλγ

)
(4.4)

then

t ≥ 1

θ
log

(
(1 + λγ)E0

λγε

)
⇒ E[P (wt)− P (w∗)] ≤ ε.

4.5 Bucket sampling

We shall first explain the concept of “standard” importance sampling.

4.5.1 Standard importance sampling

Assume that Ŝ always picks a single example only. In this case, (4.2) holds for vj = ‖X:j‖2,
independently of p := (p1, . . . , pn) [54]. This allows us to choose the sampling probabilities
as pj ∼ vj + nλγ, which ensures that (4.4) is minimized. This is importance sampling. The
number of iterations of dfSDCA is in this case proportional to

1

θ(imp)
:= n+

∑n
j=1 vj

nλγ
.

If uniform probabilities are used, the average in the above formula gets replaced by the maxi-
mum:

1

θ(unif)
:= n+

maxj vj
λγ

.

Hence, one should expect the following speedup when comparing the importance and uniform
samplings:

σ :=
maxj ‖X:j‖2

1
n

∑n
j=1 ‖X:j‖2

. (4.5)

If σ = 10 for instance, then dfSDCA with importance sampling is 10× faster than dfSDCA
with uniform sampling.

1ESO = Expected Separable Overapproximation [60, 54].
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4.5.2 Uniform minibatch sampling

In machine learning, the term “minibatch” is virtually synonymous with a special sampling,
which we shall here refer to by the name τ -nice sampling [60]. Sampling Ŝ is τ -nice if it picks
uniformly at random from the collection of all subsets of [n] of cardinality τ . Clearly, pj = τ/n
and, moreover, it was shown by Qu and Richtárik [54] that (4.2) holds with {vj} defined by

v
(τ -nice)
j =

d∑
i=1

(
1 +

(‖Xi:‖0 − 1)(τ − 1)

n− 1

)
X2
ij . (4.6)

In the case of τ -nice sampling we have the stepsize and complexity given by

θ(τ -nice) = min
j

τλγ

v
(τ -nice)
j + nλγ

, (4.7)

1

θ(τ -nice)
=

n

τ
+

maxj v
(τ -nice)
j

τλγ
. (4.8)

Learning from the difference between the uniform and importance sampling of single example
(Section 4.5.1), one would ideally wish the importance minibatch sampling, which we are yet to
define, to lead to complexity of the type (4.8), where the maximum is replaced by an average.

4.5.3 Bucket sampling: definition

We now propose a family of samplings, which we call bucket samplings. Let B1, . . . , Bτ be a
partition of [n] = {1, 2, . . . , n} into τ nonempty sets (“buckets”).

Definition 4.2 (Bucket sampling). We say that Ŝ is a bucket sampling if for all k ∈ [τ ],
|Ŝ ∩Bk| = 1 with probability 1.

Informally, a bucket sampling picks one example from each of the τ buckets, forming a
minibatch. Hence, |Ŝ| = τ and

∑
j∈Bl pj = 1 for each l = 1, 2 . . . , τ , where, as before, pj :=

Prob(j ∈ Ŝ). Notice that given the partition, the vector p = (p1, . . . , pn) uniquely determines
a bucket sampling. Hence, we have a family of samplings indexed by a single n-dimensional
vector. Let PB be the set of all vectors p ∈ Rn describing bucket samplings associated with
partition B = {B1, . . . , Bτ}. Clearly,

PB =

p ∈ Rn :
∑
j∈Bl

pj = 1 for all l & pj ≥ 0 for all j

 .

Note, that the sampling inside each bucket Bj can be performed in O(log |Bj |) time using
a binary tree, with an initial overhead and memory of O(|Bj | log |Bj |), as explained in [49]

4.5.4 Optimal bucket sampling

The optimal bucket sampling is that for which (4.4) is minimized, which leads to a complicated
optimization problem:

min
p∈PB

max
j

1

pj
+

vj
pjnλγ

subject to {vj} satisfy (4.2).

A particular difficulty here is the fact that the parameters {vj} depend on the vector p in a
complicated way. In order to resolve this issue, we prove the following result.

Theorem 4.3. Let Ŝ be a bucket sampling described by partition B = {B1, . . . , Bτ} and vector
p. Then the ESO inequality (4.2) holds for parameters {vj} set to

vj =

d∑
i=1

(
1 +

(
1− 1

ω′i

)
δi

)
X2
ij , (4.9)
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where Ji := {j ∈ [n] : Xij 6= 0}, δi :=
∑
j∈Ji pj and ω′i := |{l : Ji ∩Bl 6= ∅}|.

Observe that Ji is the set of examples which express feature i, and ω′i is the number of
buckets intersecting with Ji. Clearly, that 1 ≤ ω′i ≤ τ (if ω′i = 0, we simply discard this feature
from our data as it is not needed). Note that the effect of the quantities {ω′i} on the value of
vj is small. Indeed, unless we are in the extreme situation when ω′i = 1, which has the effect of
neutralizing δi, the quantity 1− 1/ω′i is between 1− 1/2 and 1− 1/τ . Hence, for simplicity, we
could instead use the slightly more conservative parameters:

vj =

d∑
i=1

(
1 +

(
1− 1

τ

)
δi

)
X2
ij .

4.5.5 Uniform bucket sampling

Assume all buckets are of the same size: |Bl| = n/τ for all l. Further, assume that pj = 1/|Bl| =
τ/n for all i. Then δi = τ |Ji|/n, and hence Theorem 4.3 says that

v
(unif)
j =

d∑
i=1

(
1 +

(
1− 1

ω′i

)
τ |Ji|
n

)
X2
ij , (4.10)

and in view of (4.4), the complexity of dfSDCA with this sampling becomes

1

θ(unif)
=

n

τ
+

maxj v
(unif)
j

τλγ
. (4.11)

Formula (4.6) is very similar to the one for τ -nice sampling (4.10), despite the fact that the
sets/minibatches generated by the uniform bucket sampling have a special structure with respect

to the buckets. Indeed, it is easily seen that the difference between between 1 + τ |Ji|
n and

1 + (τ−1)(|Ji|−1)
(n−1) is negligible. Moreover, if either τ = 1 or |Ji| = 1 for all i, then ω′i = 1 for all

i and hence vj = ‖X:j‖2. This is also what we get for the τ -nice sampling.

4.6 Importance minibatch sampling

In the light of Theorem 4.3, we can formulate the problem of searching for the optimal bucket
sampling as

min
p∈PB

max
j

1

pj
+

vj
pjnλγ

subject to {vj} satisfy (4.9). (4.12)

Still, this is not an easy problem. Importance minibatch sampling arises as an approximate
solution of (4.12). Note that the uniform minibatch sampling is a feasible solution of the above
problem, and hence we should be able to improve upon its performance.

4.6.1 Approach 1: alternating optimization

Given a probability distribution p ∈ PB , we can easily find v using Theorem 4.3. On the other
hand, for any fixed v, we can minimize (4.12) over p ∈ PB by choosing the probabilities in each
group Bl and for each j ∈ Bl via

pj =
nλγ + vj∑

k∈Bl nλγ + vk
. (4.13)

This leads to a natural alternating optimization strategy. An example of the standard conver-
gence behaviour of this scheme is showed in Table 4.1. Empirically, this strategy converges to
a pair (p∗,v∗) for which (4.13) holds. Therefore, the resulting complexity will be

1

θ(τ -imp)
=

n

τ
+ max

l∈[τ ]

τ
n

∑
j∈Bl v

∗
j

τλγ
. (4.14)
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quantity \ iteration 1 2 3 4 5 6

maxj(|pnew
j − pold

j |) 7 · 10−5 7 · 10−6 7 · 10−7 8 · 10−8 8 · 10−9 9 · 10−10

‖pnew − pold‖2 1 · 10−3 2 · 10−4 2 · 10−5 2 · 10−6 2 · 10−7 2 · 10−8

Table 4.1: Example of the convergence speed of the alternating optimization scheme for w8a
dataset (see Table 4.5) with τ = 8. The table demonstrates the difference in probabilities for
two successive iterations (pold and pnew). We observed a similar behaviour for all datasets and
all choices of τ .

We can compare this result against the complexity of τ -nice in (4.8). We can observe that the
terms are very similar, up to two differences. First, the importance minibatch sampling has a
maximum over group averages instead of a maximum over everything, which leads to speedup,
other things equal. On the other hand, v(τ -nice) and v∗ are different quantities. The alternating
optimization procedure for computation of (v∗,p∗) is costly, as one iteration takes a pass over
all data. Therefore, in the next subsection we propose a closed form formula which, as we found
empirically, offers nearly optimal convergence rate.

4.6.2 Approach 2: practical formula

For each group Bl, let us choose for all j ∈ Bl the probabilities as follows:

p∗j =
nλγ + v

(unif)
j∑

k∈Bl nλγ + v
(unif)
k

(4.15)

where v
(unif)
j is given by (4.10). Note that computing all v

(unif)
j can be done directly in one pass

over the data, and computing all p∗j is a simple re-weighting. This is the same computational
cost as for standard serial importance sampling. Also, this process can be straightforwardly
parallelized, which leads to additional savings in time. The overhead of using this sampling
approach is therefore at most one pass over the data, which is negligible in most scenarios
considered.

After doing some simplifications, the associated complexity result is

1

θ(τ -imp)
= max

l

{(
n

τ
+

τ
n

∑
j∈Bl v

(unif)
j

τλγ

)
βl

}
, (4.16)

where

βl := max
j∈Bl

nλγ + sj

nλγ + v
(unif)
j

and

sj :=

d∑
i=1

(
1 +

(
1− 1

ω′i

)∑
k∈Ji

p∗k

)
X2
ij .

We would ideally want to have βl = 1 for all l (this is what we get for importance sampling
without minibatches). If βl ≈ 1 for all l, then the complexity 1/θ(τ -imp) is an improvement
on the complexity of the uniform minibatch sampling since the maximum of group averages is

always better than the maximum of all elements v
(uni)
j :

n

τ
+

maxl

(
τ
n

∑
j∈Bl v

(unif)
j

)
τλγ

≤ n

τ
+

maxj v
(unif)
j

τλγ
.

Indeed, the difference can be very large.

Finally, we would like to comment on the choice of the partitions B1, . . . , Bτ , as they clearly
affect the convergence rate. The optimal choice of the partitions is given by minimizing in
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B1, . . . , Bτ the maximum over group sums in (4.16), which is a complicated optimization prob-
lem. Instead, we used random partitions of the same size in our experiments, which we believe
is a good solution for the partitioning problem. The logic is simple: the minimum of the maxi-
mum over the group sums will be achieved, when all the group sums have similar values. If we
set the partitions to the same size and we distribute the examples randomly, there is a good
chance that the group sums will have similar values (especially for large amounts of data).

4.7 Experiments

We now comment on the results of our numerical experiments, with both synthetic and real
datasets. We plot the optimality gap P (wt)− P (w∗) and in the case of real data also the test
error (vertical axis) against the computational effort (horizontal axis). We measure computa-
tional effort by the number of effective passes through the data divided by τ . We divide by τ
as a normalization factor; since we shall compare methods with a range of values of τ . This is
reasonable as it simply indicates that the τ updates are performed in parallel. Hence, what we
plot is an implementation-independent model for time.

We compared two algorithms:

1) τ-nice: dfSDCA using the τ -nice sampling with stepsizes given by (4.7) and (4.6),

2) τ-imp: dfSDCA using τ -importance sampling (i.e., importance minibatch sampling) de-
fined in Subsection 4.6.2.

As the methods are randomized, we always plot the average over 5 runs. For each dataset
we provide two plots. In the left figure we plot the convergence of τ -nice for different values
of τ , and in the right figure we do the same for τ -importance. The horizontal axis has the
same range in both plots, so they are easily comparable. The values of τ we used to plot are
τ ∈ {1, 2, 4, 8, 16, 32}. In all experiments we used the logistic loss: φj(z) = log(1 + e−yjz) and
set the regularizer to λ = maxj ‖X:j‖/n. We will observe the theoretical and empirical ratio
θ(τ -imp)/θ(τ -nice). The theoretical ratio is computed from the corresponding theory. The empir-
ical ratio is the ratio between the horizontal axis values at the moments when the algorithms
reached the precision 10−10.

4.7.1 Artificial data

We start with experiments using artificial data, where we can control the sparsity pattern of X
and the distribution of {‖X:j‖2}. We fix n = 50, 000 and choose d = 10, 000 and d = 1, 000. For
each feature we sampled a random sparsity coefficient ω′i ∈ [0, 1] to have the average sparsity

ω′ := 1
d

∑d
j ω
′
i under control. We used two different regimes of sparsity: ω′ = 0.1 (10% nonzeros)

and ω′ = 0.8 (80% nonzeros). After deciding on the sparsity pattern, we rescaled the examples
to match a specific distribution of norms Lj = ‖X:j‖2; see Table 4.2. The code column shows
the corresponding code in Julia to create the vector of norms L. The distributions can be also
observed as histograms in Figure 4.1.

label code σ
extreme L = ones(n);L[1] = 1000 980.4
chisq1 L = rand(chisq(1),n) 17.1
chisq10 L = rand(chisq(10),n) 3.9
chisq100 L = rand(chisq(100),n) 1.7
uniform L = 2*rand(n) 2.0

Table 4.2: Distributions of ‖X:j‖2 used in artificial experiments.

The corresponding experiments can be found in Figure 4.4 and Figure 4.5. The theoretical
and empirical speedup are also summarized in Tables 4.3 and 4.4.
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Figure 4.1: The distribution of ‖X:i‖2 for synthetic data

Data τ = 1 τ = 2 τ = 4 τ = 8 τ = 16 τ = 32
uniform 1.2 : 1.0 1.2 : 1.1 1.2 : 1.1 1.2 : 1.1 1.3 : 1.1 1.4 : 1.1
chisq100 1.5 : 1.3 1.5 : 1.3 1.5 : 1.4 1.6 : 1.4 1.6 : 1.4 1.6 : 1.4
chisq10 1.9 : 1.4 1.9 : 1.5 2.0 : 1.4 2.2 : 1.5 2.5 : 1.6 2.8 : 1.7
chisq1 1.9 : 1.4 2.0 : 1.4 2.2 : 1.5 2.5 : 1.6 3.1 : 1.6 4.2 : 1.7
extreme 8.8 : 4.8 9.6 : 6.6 11 : 6.4 14 : 6.4 20 : 6.9 32 : 6.1

Table 4.3: The theoretical : empirical ratios θ(τ -imp)/θ(τ -nice) for sparse artificial data
(ω′ = 0.1)

Data τ = 1 τ = 2 τ = 4 τ = 8 τ = 16 τ = 32
uniform 1.2 : 1.1 1.2 : 1.1 1.4 : 1.2 1.5 : 1.2 1.7 : 1.3 1.8 : 1.3
chisq100 1.5 : 1.3 1.6 : 1.4 1.6 : 1.5 1.7 : 1.5 1.7 : 1.6 1.7 : 1.6
chisq10 1.9 : 1.3 2.2 : 1.6 2.7 : 2.1 3.1 : 2.3 3.5 : 2.5 3.6 : 2.7
chisq1 1.9 : 1.3 2.6 : 1.8 3.7 : 2.3 5.6 : 2.9 7.9 : 3.2 10 : 3.9
extreme 8.8 : 5.0 15 : 7.8 27 : 12 50 : 16 91 : 21 154 : 28

Table 4.4: The theoretical : empirical ratios θ(τ -imp)/θ(τ -nice). Artificial data with ω′ = 0.8
(dense)

4.7.2 Real data

We used several publicly available datasets2, summarized in Table 4.5, which we randomly split
into a train (80%) and a test (20%) part. The test error is measured by the empirical risk (4.1)
on the test data without a regularizer. The resulting test error was compared against the best
achievable test error, which we computed by minimizing the corresponding risk. Experimental
results are in Figure 4.2 and Figure 4.3. The theoretical and empirical speedup table for these
datasets can be found in Table 4.6.

2https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/
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Dataset #samples #features sparsity σ
ijcnn1 35,000 23 60.1% 2.04
protein 17,766 358 29.1% 1.82
w8a 49,749 301 4.2% 9.09
url 2,396,130 3,231,962 0.04 % 4.83
aloi 108,000 129 24.6% 26.01

Table 4.5: Summary of real data sets (σ = predicted speedup).

Data τ = 1 τ = 2 τ = 4 τ = 8 τ = 16 τ = 32
ijcnn1 1.2 : 1.1 1.4 : 1.1 1.6 : 1.3 1.9 : 1.6 2.2 : 1.6 2.3 : 1.8
protein 1.3 : 1.2 1.4 : 1.2 1.5 : 1.4 1.7 : 1.4 1.8 : 1.5 1.9 : 1.5
w8a 2.8 : 2.0 2.9 : 1.9 2.9 : 1.9 3.0 : 1.9 3.0 : 1.8 3.0 : 1.8
url 3.0 : 2.3 2.6 : 2.1 2.0 : 1.8 1.7 : 1.6 1.8 : 1.6 1.8 : 1.7
aloi 13 : 7.8 12 : 8.0 11 : 7.7 9.9 : 7.4 9.3 : 7.0 8.8 : 6.7

Table 4.6: The theoretical : empirical ratios θ(τ -imp)/θ(τ -nice).

4.7.3 Conclusion

In all experiments, τ -importance sampling performs significantly better than τ -nice sampling.
The theoretical speedup factor computed by θ(τ -imp)/θ(τ -nice) provides an excellent estimate of
the actual speedup. We can observe that on denser data the speedup is higher than on sparse
data. This matches the theoretical intuition for vj for both samplings. Similar behaviour can be
also observed for the test error, which is pleasing. As we observed for artificial data, for extreme
datasets the speedup can be arbitrary large, even several orders of magnitude. A rule of thumb:
if one has data with large σ, practical speedup from using importance minibatch sampling will
likely be dramatic.

67



0 5 10 15 20
Number of Effective Passes / τ

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

P
(w

t )
−
P
(w

∗
)

1-nice

2-nice

4-nice

8-nice

16-nice

32-nice

0 5 10 15 20
Number of Effective Passes / τ

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

P
(w

t )
−
P
(w

∗
)

1-imp

2-imp

4-imp

8-imp

16-imp

32-imp

(a) ijcnn1, τ -nice (left), τ -importance (right)

0 5 10 15 20 25 30
Number of Effective Passes / τ

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

P
(w

t )
−
P
(w

∗
)

1-nice

2-nice

4-nice

8-nice

16-nice

32-nice

0 5 10 15 20 25 30
Number of Effective Passes / τ

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

P
(w

t )
−
P
(w

∗
)

1-imp

2-imp

4-imp

8-imp

16-imp

32-imp

(b) protein, τ -nice (left), τ -importance (right)

0 5 10 15 20 25 30 35
Number of Effective Passes / τ

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

P
(w

t )
−
P
(w

∗
)

1-nice

2-nice

4-nice

8-nice

16-nice

32-nice

0 5 10 15 20 25 30 35
Number of Effective Passes / τ

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

P
(w

t )
−
P
(w

∗
)

1-imp

2-imp

4-imp

8-imp

16-imp

32-imp

(c) w8a, τ -nice (left), τ -importance (right)

0 50 100 150 200
Number of Effective Passes / τ

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

P
(w

t )
−
P
(w

∗
)

1-nice

2-nice

4-nice

8-nice

16-nice

32-nice

0 50 100 150 200
Number of Effective Passes / τ

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

P
(w

t )
−
P
(w

∗
)

1-imp

2-imp

4-imp

8-imp

16-imp

32-imp

(d) aloi, τ -nice (left), τ -importance (right)

0 10 20 30 40 50 60
Number of Effective Passes / τ

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

P
(w

t )
−
P
(w

∗
)

1-nice

2-nice

4-nice

8-nice

16-nice

32-nice

0 10 20 30 40 50 60
Number of Effective Passes / τ

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

P
(w

t )
−
P
(w

∗
)

1-imp

2-imp

4-imp

8-imp

16-imp

32-imp

(e) url, τ -nice (left), τ -importance (right)

Figure 4.2: Train error for datasets from Table 4.5
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Figure 4.3: Test error for datasets from Table 4.5
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Figure 4.4: Artificial datasets from Table 4.2 with ω = 0.8
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Figure 4.5: Artificial datasets from Table 4.2 with ω = 0.1
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4.A Proof of Theorem 4.3

4.A.1 Three lemmas

We first establish three lemmas, and then proceed with the proof of the main theorem. With
each sampling Ŝ we associate an n × n “probability matrix” defined as follows: Pij(Ŝ) =

Prob(i ∈ Ŝ, j ∈ Ŝ). Our first lemma characterizes the probability matrix of the bucket sam-
pling.

Lemma 4.4. If Ŝ is a bucket sampling, then

P(Ŝ) = pp> ◦ (E−B) + Diag(p), (4.17)

where E ∈ Rn×n is the matrix of all ones,

B :=

τ∑
l=1

P(Bl), (4.18)

and ◦ denotes the Hadamard (elementwise) product of matrices. Note that B is the 0-1 matrix
given by Bij = 1 if and only if i, j belong to the same bucket Bl for some l.

Proof. Let P = P(Ŝ). By definition

Pij =


pi i = j

pipj i ∈ Bl, j ∈ Bk, l 6= k

0 otherwise.

It only remains to compare this to (4.17).

Lemma 4.5. Let J be a nonempty subset of [n], let B be as in Lemma 4.4 and put ω′J := |{l :
J ∩Bl 6= ∅}|. Then

P(J) ◦B � 1

ω′J
P(J). (4.19)

Proof. For any h ∈ Rn, we have

h>P(J)h =

∑
j∈J

hj

2

=

 τ∑
l=1

∑
j∈J∩Bl

hj

2

≤ ω′J

τ∑
l=1

 ∑
j∈J∩Bl

hj

2

= ω′J

τ∑
l=1

h>P(J ∩Bl)h,

where we used the Cauchy-Schwarz inequality. Using this, we obtain

P(J) ◦B
(4.18)

= P(J) ◦
τ∑
l=1

P(Bl) =

τ∑
l=1

P(J) ◦P(Bl)

=

τ∑
l=1

P(J ∩Bl)
(4.A.1)

� 1

ω′
P(J).

Lemma 4.6. Let J be any nonempty subset of [n] and Ŝ be a bucket sampling. Then

P(J) ◦ pp> �

∑
j∈J

pj

Diag(P(J ∩ Ŝ)). (4.20)
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Proof. Choose any h ∈ Rn and note that

h>(P(J) ◦ pp>)h =

∑
j∈J

pjhi

2

=

∑
j∈J

sjtj

2

,

where sj =
√
pjhj and tj =

√
pj . It remains to apply the Cauchy-Schwarz inequality:∑

j∈J
sjtj ≤

∑
j∈J

s2
j

∑
j∈J

t2j

and notice that the j-th element on the diagonal of P(J ∩ Ŝ) is pj for j ∈ J and 0 for j /∈ J

4.A.2 Proof of Theorem 4.3

By Theorem 5.2 in [54], we know that inequality (4.2) holds for parameters {vj} set to

vj =

d∑
i=1

λ′(P(Ji ∩ Ŝ))X2
ij ,

where λ′(M) is the largest normalized eigenvalue of symmetric matrix M defined as

λ′(M) := max
h

{
h>Mh : h>Diag(M)h ≤ 1

}
.

Furthermore,

P(Ji ∩ Ŝ) = P(Ji) ◦P(Ŝ)

(4.17)
= P(Ji) ◦ pp> −P(Ji) ◦ pp> ◦B + P(Ji) ◦Diag(p)

(4.19)

�
(

1− 1

ω′J

)
P(Ji) ◦ pp> + P(Ji) ◦Diag(p)

(4.20)

�
(

1− 1

ω′J

)
δi Diag(P(Ji ∩ Ŝ)) + Diag(P(Ji ∩ Ŝ)),

whence λ′(P(Ji ∩ Ŝ)) ≤ 1 + (1− 1/ω′J) δi, which concludes the proof.
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Chapter 5

Coordinate Descent Faceoff:
Primal or Dual?

5.1 Introduction

In the last 5 years or so, randomized coordinate descent (RCD) methods [69, 49, 59, 60] have
become immensely popular in a variety of machine learning tasks, with supervised learning
being a prime example. The main reasons behind the rise of RCD-type methods is that they
can be easily implemented, have intuitive appeal, and enjoy superior theoretical and practical
behaviour when compared to classical methods such as SGD [61], especially in high dimensions,
and in situations when solutions of medium to high accuracy are needed. One of the most
important success stories of RCD is in the domain of training linear predictors via regularized
empirical risk minimization (ERM).

The highly popular SDCA algorithm [72] arises as the application of RCD [59] to the dual
problem associated with the (primal) ERM problem1. In practice, SDCA is most effective in
situations where the number of examples (n) exceeds the number of features (d). Since the
dual of ERM is an n dimensional problem, it makes intuitive sense to apply RCD to the dual.
Indeed, RCD can be seen as a randomized decomposition strategy, reducing the n dimensional
problem to a sequence of (randomly generated) one-dimensional problems.

However, if the number of features exceeds the number of examples, and especially when
the difference is very large, RCD methods [60] have been found very attractive for solving the
primal problem (i.e., the ERM problem) directly. For instance, distributed variants of RCD,
such as Hydra [58] and its accelerated cousin Hydra2 [16] have been successfully applied to
solving problems with billions of features.

Recently, a variety of novel primal methods for ERM have been designed, including SAG
[64], SVRG [27], S2GD [32], proxSVRG [84], mS2GD [30], SAGA [12], MISO [42] and S2CD [31].
As SDCA, all these methods improve dramatically on SGD [61] as a benchmark, which they
achieve by employing one of a number of variance-reduction strategies. These methods enjoy
essentially identical theoretical complexity bounds as SDCA. In this sense, conclusions based on
our study complexity of primal RCD vs dual RCD are valid also when comparing primal RCD
with appropriate variants of any of the above mentioned methods (e.g., SVRG). For simplicity,
we do not explore this further in this chapter, and instead focus on comparing primal versus
dual RCD.

5.1.1 Contributions

In this chapter we provide the first joint study of these two approaches—applying RCD to the
primal vs dual problems—and we do so in the context of L2-regularized linear ERM. First, we
show through a rigorous theoretical analysis that for dense data, the intuition that the primal
approach is better than the dual approach when n ≤ d, and vice versa, is precisely correct.

1Indeed, the analysis of SDCA in [72] proceeds by applying the complexity result from [59] to the dual
problem, and then arguing that the same rate applies to the primal suboptimality as well.
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However, we show that for sparse data, this does not need to be the case: primal RCD can
significantly outperform dual RCD even if d � n, and vice versa, dual RCD can be much
faster than primal RCD even if n � d. In particular, we identify that the face-off between
primal and dual RCD boils down to the comparison of as single quantity associated with the
data matrix and its transpose. Moreover, we show that, surprisingly, a single sampling strategy
minimizes both the (bound on the) number of iterations and the overall expected complexity
of RCD. Note that the latter complexity measure takes into account also the average cost of
the iterations, which depends on the structure and sparsity of the data, and on the sampling
strategy employed. We confirm our theoretical findings using extensive experiments with both
synthetic and real data sets.

5.2 Primal and dual formulations of ERM

Let X ∈ Rd×n be a data matrix, with n referring to the number of examples and d to the
number of features. With each example X:j ∈ Rd we associate a loss function φj : R→ R, and
pick a regularization constant λ > 0. The key problem of this chapter is the L2-regularized
ERM problem for linear models

min
w∈Rd

P (w) :=
1

n

n∑
j=1

φj(〈X:j ,w〉) +
λ

2
‖w‖22

 , (5.1)

where 〈·, ·〉 denotes the standard Euclidean inner product and ‖w‖2 :=
√
〈w,w〉. We refer to

(5.1) as the primal problem. We assume throughout that the functions {φj} are convex and
1/γ-smooth, which is given by the bounds

φj(s) + φ′j(s)t ≤ φj(s+ t) ≤ φj(s) + φ′j(s)t+
1

2γ
t2, (5.2)

for all s, t ∈ R. The dual problem of (5.1) is

max
α∈Rn

D(α) := − 1

2λn2
‖Xα‖22 −

1

n

n∑
j=1

φ∗j (−αj)

 , (5.3)

where φ∗j : R→ R is the convex conjugate of φj , defined by φ∗j (s) := sup{st− φj(t) : t ∈ R}.
It is well known that that P (w) ≥ D(α) for every pair (w,α) ∈ Rd ×Rn and P (w∗) = D(α∗)
[72, 55]. Moreover, the primal and dual optimal solutions, w∗ and α∗, respectively, are unique,
and satisfy the relations w∗ = 1

λnXα∗ and α∗j = φ′j(〈X:j ,w
∗〉) for all j ∈ [n] := {1, . . . , n},

which also uniquely characterize them.

5.2.1 Note on the setup

We choose the above setup, because linear ERM offers a good balance between the level of
developed theory and practical interest. The coordinate descent methods for primal/dual linear
ERM have been around for couple of years and there is no doubt that they are well suited for
this task. Their convergence rates are well estabilshed and therefore we can confidently build
upon them. We could also consider quadratic problems, where the bounds are known to be
tighter, but the setup is less general and therefore of smaller importance to the machine learning
community. For this reasons we believe that linear ERM is the most appropriate setup for the
direct comparison between primal and dual approaches.

As we constrain our analysis to this setup, we do not claim any general conclusions about
the advantage of one approach over the other. The results in this setup are only meant to offer
us new insight into the comparison, which we believe is enlightening.
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5.3 Primal and dual RCD

In its general “arbitrary sampling” form [57], RCD applied to the primal problem (5.1) has the
form

wk+1
i ←

{
wki − 1

u′i
∇iP (wk) for i ∈ Sk,

wki for i /∈ Sk,
(5.4)

where u′1, . . . , u
′
d > 0 are parameters of the method and ∇iP (w) = 1

n

∑n
j=1 φ

′
j(〈X:j ,w〉)Xij +

λwi is the ith partial derivative of P at w. This update is performed for a random subset of
the coordinates i ∈ Sk ⊆ [d] chosen in an i.i.d. fashion according to some sampling ŜP . The
parameters u′i are usually computed ahead of the iterative process and need to be selected
carefully in order for the method to work [57, 54]. A standard result is that one can set
u′i := 1

γnui + λ, where u = (u1, . . . , ud) is chosen so as to satisfy the Expected Separable

Overapproximation (ESO) inequality

P ◦XX> � Diag(p ◦ u), (5.5)

where P is the d× d matrix with entries Pij = Prob(i ∈ ŜP , j ∈ ŜP ), p = Diag(P) ∈ Rd and
◦ denotes the Hadamard (element-wise) product of matrices. The resulting method is formally
described as Algorithm 6. Note, that there are ways to run the method without precomputing
u′i (e.g. [49]), but we will focus on the scenario where we compute them upfront, as this is the
more standard way of developing the theory.

We will focus on applying serial coordinate descent to (5.1) and (5.3). For the case of
generality we include them in the arbitrary sampling form.

Algorithm 6 Primal RCD: NSync [57]

Input: initial iterate w0 ∈ Rd; sampling ŜP ;
ESO parameters u1, . . . , ud > 0
Initialize: z0 = X>w0

for k = 0, 1, . . . do
Sample Sk ⊆ [d] according to ŜP
for i ∈ Sk do

∆k
i = − γn

ui+nλγ

(
1
n

∑n
j=1 φ

′
j(z

k
j )Xij + λwki

)
Update wk+1

i = wki + ∆k
i

end for
for i /∈ Sk do
wk+1
i = wki

end for
Update zk+1 = zk +

∑
i∈Sk ∆k

iX
>
i:

end for

When applying RCD to the dual problem (5.3), we can’t proceed as above since the functions
φ∗j are not necessarily smooth, and hence we can’t compute the partial derivatives of the dual
objective. The standard approach here is to use a proximal variant of RCD [60]. In particular,
Algorithm 7 has been analyzed in [55]. Like Algorithm 6, Algorithm 7 is also capable to work
with an arbitrary sampling, which in this case is a random subset of [n]. The ESO parameters
v = (v1, . . . , vj) must in this case satisfy the ESO inequality

Q ◦X>X � Diag(q ◦ v), (5.6)

where Q is an n× n matrix with entries Qij = Prob(i ∈ ŜD, j ∈ ŜD) and q = Diag(Q) ∈ Rn.

If we assume that |ŜP | = 1 (resp. |ŜD| = 1) with probability 1 (i.e., of the samplings are
“serial”), then it is trivial to observe that (5.5) (resp. (5.6)) holds with

u = Diag(XX>) and v = Diag(X>X). (5.7)

The proof of the above and other easily computable expressions for u and v for more complicated
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Algorithm 7 Dual RCD: Quartz [55]

Input: initial dual variables α0 ∈ Rn, sampling ŜD; ESO parameters v1, . . . , vn > 0
Initialize: set w0 = 1

λnXα0

for k = 0, 1, . . . do
Sample Sk ⊆ [n] according to ŜD
for j ∈ Sk do

∆k
j = arg maxh∈R{−φ∗j (−(αj + h))− h〈X:j ,w

k〉 − vjh
2

2λn }
Update αk+1

j = αkj + ∆k
j

end for
for j /∈ Sk do
αk+1
j = αkj

end for
Update wk+1 = wk + 1

λn

∑
j∈Sk ∆k

jX:j

end for

samplings can be found in [54].

5.3.1 Note on the methods

To understand the key differences in convergence properties of these two approaches, we analyse
their behaviour in their most basic formulations. In practice, both methods can be extended
in many different ways, including possibilities as: line-search, adaptive probabilities [10], local
smoothness [80], and more. All these extensions offer empirical speed-up, but the theoretical
speed-up cannot be quantified. At the same time all of them use additional computations,
which in combination with the last point renders them uncomparable with standard version of
RCD.

5.4 Iteration complexity and total arithmetic complexity

In this section we give expressions for the total expected arithmetic complexity of the two
algorithms.

5.4.1 Number of iterations

Iteration complexity of Algorithms 6 and 7 is described in the following theorem. We do not
claim novelty here, the results follow by applying theorems in [57] and [55] to the problems
(5.1) and (5.3), respectively. We include a proof sketch in the appendix.

Theorem 5.1. (Complexity: Primal vs Dual RCD) Let {φj} be convex and 1/γ-smooth.
(i) Let

KP (ŜP , ε) := max
i∈[d]

(
ui + nλγ

pinλγ

)
log
(cP
ε

)
, (5.8)

where cP is a constant depending on w0 and w∗. If ŜP is proper (i.e., pi > 0 for all i), and u
satisfies (5.5), then iterates of primal RCD satisfy

k ≥ KP (ŜP , ε) ⇒ E[P (wk)− P (w∗)] ≤ ε.

(ii) Let

KD(ŜD, ε) := max
j∈[n]

(
vj + nλγ

qjnλγ

)
log
(cD
ε

)
, (5.9)

where cD is a constant depending on w0 and w∗. If ŜD is proper (i.e., qi > 0 for all i), and v
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satisfies (5.6), then iterates of dual RCD satisfy

k ≥ KD(ŜD, ε) ⇒ E[P (wk)− P (w∗)] ≤ ε.

The above results are the standard state-of-the-art bounds for primal and dual coordinate
descent. From now on we will use the shorthand KP := KP (ŜP , ε) and KD := KD(ŜD, ε),
when the quantity ε and the samplings ŜP and ŜD are clear from the context.

5.4.2 Average cost of a single iteration

Let ‖·‖0 be the number of nonzeros in a matrix/vector. We can observe, that the computational
cost associated with one iteration of Algorithm 6 is O(‖Xi:‖0) assuming that we picked the
dimension i. As the dimension was picked randomly, we have to take the expectation over all
the possible dimensions to get the average cost of an iteration. This leads us to the cost

WP (X, ŜP ) := O

E

∑
i∈ŜP

‖Xi:‖0


= O

(
d∑
i=1

pi‖Xi:‖0

)
, (5.10)

for Algorithm 6 and similarly for Algorithm 7 the average cost is

WD(X, ŜD) := O

E

∑
j∈ŜD

‖X:j‖0


= O

 n∑
j=1

qi‖X:j‖0

 . (5.11)

From now on we will use the shorthand WP := WP (X, ŜP ) and WD := WD(X, ŜD), when the
matrix X and the samplings ŜP and ŜD are clear from the context.
We remark that the constant hidden in O may be larger for Algorithm 6 than for Algorithm 7.
The reason for this is that for Algorithm 6 we compute the one-dimensional derivative φ′j for
every nonzero term in the sum, while for Algorithm 7 we do this only once. Depending on the
loss φj , this may lead to slower iterations. There is no difference if we use the squared loss as
φj . On the other hand, if φj is the logistic loss and we compute φ′j directly, experimentation
shows that the constant can be around 50. However, in practice this constant can be often
completely diminished, for example by using a look-up table.

5.4.3 Total complexity

By combining the bounds on the number of iterations provided by Theorem 5.1 with the
formulas (5.10) and (5.11) for the cost of a single iteration we obtain the following expressions
for the total complexity of the two algorithms, where we ignore the logarithmic terms and drop
the Õ symbol:

TP (X, ŜP ) := KPWP

(5.8)+(5.10)
=

(
max
i∈[d]

ui + nλγ

pinλγ

)( d∑
i=1

pi‖Xi:‖0

)
, (5.12)

TD(X, ŜD) := KDWD

(5.9)+(5.11)
=

(
max
j∈[n]

vj + nλγ

qjnλγ

) n∑
j=1

qj‖X:j‖0

 . (5.13)

79



Again, from now on we will use the shorthand TP := WTP (X, ŜP ) and TD := TD(X, ŜD), when
the matrix X and the samplings ŜP and ŜD are clear from the context.

5.5 Choosing a sampling that minimizes the total Com-
plexity

In this section we identify the optimal sampling in terms of the total complexity. This is different
from previous results on importance sampling, which neglect to take into account the cost of the
iterations [57, 55, 88, 46]. For simplicity, we shall only consider serial samplings, i.e., samplings
which only pick a single coordinate at a time. The situation is much more complicated with
non-serial samplings where first importance sampling results have only been derived recently
[8].

5.5.1 Uniform sampling

The simplest serial sampling is the uniform sampling: it selects every coordinate with the same
probability, i.e. pi = 1/d, ∀i ∈ [d] and qj = 1/n, ∀j ∈ [n]. In view of (5.12), (5.13) and (5.7),
we get

TP = ‖X‖0
(

1 +
1

nλγ
max
i∈[d]
‖Xi:‖22

)
and

TD = ‖X‖0
(

1 +
1

nλγ
max
j∈[n]

‖X:j‖22
)
.

We can now clearly see that whether TP ≤ TD or TP ≥ TD does not simply depend on d vs n,
but instead depends on the relative value of the quantities maxi∈[d] ‖Xi:‖22 and maxj∈[n] ‖X:j‖22.
Having said that, we shall not study these quantities in this chapter. The reason for this is
that for the sake of brevity, we shall instead focus on comparing the primal and dual RCD
methods for optimal sampling which minimizes the total complexity, in which case we will
obtain different quantities.

5.5.2 Importance sampling

By importance sampling we mean the serial sampling ŜP (resp. ŜD) which minimizes the bounds
KP in 5.8 (resp. KD in (5.9)). It can easily be seen (see also [57], [55], [88]), that importance
sampling probabilities are given by

p∗i =
ui + nλγ∑
l(ul + nλγ)

and q∗j =
vj + nλγ∑
l(vl + nλγ)

. (5.14)

On the other hand, one can observe that the average iteration cost of importance sampling may
be larger than the average iteration cost of uniform serial sampling. Therefore, it is a natural
question to ask, whether it is necessarily better. In view of (5.12), (5.13) and (5.14), the total
complexities for importance sampling are

TP = ‖X‖0 +
1

nλγ

d∑
i=1

‖Xi:‖0‖Xi:‖22 (5.15)

TD = ‖X‖0 +
1

nλγ

n∑
j=1

‖X:j‖0‖X:j‖22. (5.16)

Since a weighted average is smaller than the maximum, the total complexity of both methods
with importance sampling is always better than with uniform sampling. However, this does not
mean that importance sampling is the sampling that minimizes total complexity.
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5.5.3 Optimal sampling

The next theorem states that, in fact, importance sampling does minimize the total complexity.

Theorem 5.2. The optimal serial sampling (i.e., the serial sampling minimizing the total
expected complexity TP (resp, TD)) is the importance sampling (5.14).

5.6 The face-off

In this section we investigate the two quantities in (5.15) and (5.16), TP and TD, measuring
the total complexity of the two methods as functions of the data X. Clearly, it is enough to
focus on the quantities

CP (X) :=

d∑
i=1

‖Xi:‖0‖Xi:‖2 (5.17)

CD(X) :=

n∑
j=1

‖X:j‖0‖X:j‖2. (5.18)

We shall ask questions such as: when is CP (X) larger/smaller than CD(X), and by how much.
In this regard, it is useful to note that CP (X) = CD(X>). Our first result gives tight lower
and upper bounds on their ratio.

Theorem 5.3. For any X ∈ Rd×n with no zero rows or columns, we have the bounds ‖X‖2F ≤
CP (X) ≤ n‖X‖2F and ‖X‖2F ≤ CD(X) ≤ d‖X‖2F . It follows that 1/d ≤ CP (X)/CD(X) ≤ n.
Moreover, all these bounds are tight.

Since CP (X) (resp. CD(X)) can dominate the expression (5.12) (resp. (5.13)) for total
complexity, it follows that, depending on the data matrix X, the primal method can be up to d
times faster than the dual method, and up to n times slower than the dual method.
Note, that for the above result to hold, we need to have the magnitudes of the individual entries
in X potentially unbounded. However, this is not the case in practice. In the following sections
we study more restricted classes of matrices, for which we are still able to claim some theoretical
results.

5.6.1 Dense data

If X is a dense deterministic matrix (Xij 6= 0 for all i, j), then CP (X) = n‖X‖2F and CD(X) =
d‖X‖2F , and we reach the conclusion that everything boils down to d vs n.

5.6.2 Binary data

In Theorem 5.3 we showed, that without further constraints on the data we cannot say directly
from d and n, which of the approaches will perform better. The main argument in the proof of
Theorem 5.3 is based on the possibility of arbitrary magnitudes of the individual data entries.
In this part we go to the other extreme – we assume that all the magnitudes of the non-zero
entries are the same. Surprisingly, using only the structure of the nonzero entries of the data we

show, that one can have CP (X) ≤ CD(X) even if d � n (specifically n ≤ d2

4 −
3
2d− 1). On the

other hand, we show that if the difference between d and n is too big (specifically n > d2 + 3d),
then CP (X) > CD(X). Naturally, we get the symmetric results as well. The class of binary
matrices is only an example which we use to illustrate the phenomenon, one can easily come
up with similar bounds for other classes of matrices as well.

Let Bd×n denote the set of d × n matrices X with (signed) binary elements, i.e., with
Xij ∈ {−1, 0, 1} for all i, j. Note, that the following results trivially hold also for entries in
{−a, 0, a}, for any a 6= 0. For X ∈ Bd×n, the expressions in (5.17) and (5.18) can be also

written in the form CP (X) =
∑d
i=1 ‖Xi:‖20 and CD(X) =

∑n
j=1 ‖X:j‖20. By Bd×n6=0 we denote

the set of all matrices in Bd×n with nonzero columns and rows.
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For positive integers a, b we write āb := b
⌊
a
b

⌋
(i.e., a rounded down to the closest multiple

of b). Further, we write
R(α, d, n) := U(α, d, n)/L(α, n),

where

L(α, n) :=
1

n
(ᾱ2
n + (α− ᾱn)(2ᾱn + n))

and

U(α, d, n) := (n+ 1)(α− d)n−1 + d− 1

+ [α− d+ 1− (α− d)n−1]2.

The following is a refinement of Theorem 5.3 for binary matrices of fixed cardinality α.

Theorem 5.4. For all X ∈ Bd×n6=0 with α = ‖X‖0 we have the bounds

1

R(α, n, d)
≤ CP (X)

CD(X)
≤ R(α, d, n).

Moreover, these bounds are tight.

The above theorem follows from Lemma 5.10, which we formulate and prove in the Appendix.
This lemma establishes formulas for the minimum and maximum of CD and CP , subject to the
constraint ‖X‖0 = α, in terms of the functions L and U . Using the same Lemma 5.10 we can
further show the following theorem:

Theorem 5.5. Let d ≤ n ≤ d2

4 −
3
2d − 1. Then there exists a matrix X ∈ Bd×n6=0 such that

CP (X) < CD(X). Symetrically, if n ≤ d ≤ n2

4 −
3
2n − 1 then there exists a matrix X ∈ Bd×n6=0

such that CD(X) < CP (X).

The above theorem shows, that even if n = O(d2), the primal method can be better than
the dual method – and vice-versa.

Further, as we show in Lemma 5.11 in the Appendix, if d ≥ n and α ≥ n2 + 3n, then
R(α, d, n) ≤ 1. Likewise, if n ≥ d and α ≥ d2 + 3d, then R(α, n, d) ≤ 1. Combined with
Theorem 5.4, this has an interesting consequence, spelled out in the next theorem and its
corollary.

Theorem 5.6. Let X ∈ Bd×n6=0 . If d ≥ n and ‖X‖0 ≥ n2 + 3n, then CP (X) ≤ CD(X). By

symmetry, if n ≥ d and ‖X‖0 ≥ d2 + 3d, then CD(X) ≤ CP (X).

This result says that for binary data, and d ≥ n, the primal method is better than the dual
method even for non-dense data, as long as the the data is “dense enough”. Observe that as
long as d ≥ n2 + 3n, all matrices X ∈ Bd×n6=0 satisfy ‖X‖0 ≥ d ≥ n2 + 3n ≥ n. This leads to the
following corollary.

Corollary 5.7. If d ≥ n2+3n, then for all X ∈ Bd×n6=0 we have CP (X) ≤ CD(X). By symmetry,

if n ≥ d2 + 3d, then for all X ∈ Bd×n6=0 we have CD(X) ≤ CP (X).

In words, the corollary states that for binary data where the number of features (d) is large
enough in comparison with the number of examples (n), the primal method will be always
better. On the other hand, if n is large enough, the dual method will be always better. This
behavior can be observed in Figure 5.1. For large enough d, all the values R(α, d, n) are below
1, and therefore the primal method is always better than the dual in this regime.

We note, that the gap in the results of Theorem 5.5 and Theorem 5.6 arises from using the
bounds a − b ≤ āb := bbab c ≤ a, which can get very loose. A tighter bounds can be achieved,
but as they have mostly theoretical purpose, we do not feel they are needed. The bounds well
convey the main message of the chapter as they are.
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Figure 5.1: The value R(α, d, n) plotted for n = 103, n ≤ d ≤ n2 and max{d, n} ≤ α ≤ nd.

Table 5.1: Details on the datasets used in the experiments

dataset d n density ‖X‖0 CP CD TP /TD
news 1,355,191 19,996 0.03% 9,097,916 3× 107 9× 106 2.0
leukemia 7,129 38 100.00% 270,902 1× 107 2× 109 0.5

5.7 Experiments

We conducted experiments on both real and synthetic data. The problem we were interested
in is a standard logistic regression with an L2-regularizer, i.e.,

P (w) =
1

n

n∑
j=1

log(1 + exp(−yj〈X:j ,w〉)) +
λ

2
‖w‖22.

In all our experiments we used λ = 1/n and we normalized all the entries of X by the average
column norm. Note that for logistic loss there is no closed form solution for ∆k

j in Algorithm 7.

Therefore we use a variant of Algorithm 7 where ∆k
j = η(φ′j(〈X:j ,w〉) + αkj ) with the step

size η defined as η = minj∈[n](qjnλγ)/(vj + nλγ). This variant has the same convergence rate
guarantees as Algorithm 7 and does not require exact minimization. Details can be found in
[55].

We plot the training error against the number of passes through the data. The number of
passes is calculated according to the number of visited nonzero entries in the matrix X. One
pass means that we look at ‖X‖0 nonzero entries of X, but not necessarily all of them, as we
can visit some of them multiple times.
We showcase the conclusions from the theory on two real datasets and multiple synthetic
datasets. We constructed all the synthetic experiments in a way, that according to the the-
ory the primal approach should be better . We note, that the same plots could be generated
symmetrically for the dual approach.

5.7.1 General data

We look at the matrices which give the worst-case bounds for general matrices (Theorem 5.3)
and their empirical properties for different choices of d and n. These matrices have highly non-
uniform distribution of the nonzeros and moreover require the entries to have their magnitudes
differ by many orders (see the proof of Theorem 5.3). We performed 2 experiments, where we
showed the potential empirical speedup for the primal method for d = n and also for d � n
(which is highly unfavourable for the primal method). The corresponding figures are Figure 5.2a
and 5.2b. For a square dataset, we can clearly observe a large speed-up. For d � n we can
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observe, that the theory holds and the primal method is still faster, but because of numerical
issues (as mentioned, the magnitutes of the entries differ by many orders) and the fact that the
optimal value is very close to an ”initial guess” of the algorithm, the difference in speed is more
difficult to observe.
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Figure 5.2: Testing the worst case for general matrices and real datasets

5.7.2 Synthetic binary data

We looked at matrices with all entries in {a,−a, 0} for some a 6= 0. We fixed the number
of features to be d = 100 and we varied the number of examples n and the sparsity level
α = ‖X‖0. For each triplet [d, n, α] we produced the worst-case matrix for dual RCD according
to the developed theory formalized in Theorem 5.4 (see the proof for more details on the matrix
structure). The results are in Figure 5.3.
Each row corresponds to one fixed value of n, while each column corresponds to one sparsity
level α given by the proportion of nonzero entries, e.g., nnz ∼ 1% stands for α ∼ 0.01 · nd.
In the experiments we can observe the behaviour described in Theorem 5.6. While n is compa-
rable to d, the primal method outperforms the dual method. When the sparsity level α reaches
values of ∼ d2, the dual method outperforms the primal although the matrix structure is much
better suited for the primal method. Also note, that the right column corresponds to dense
matrices, where larger n is the only dominant factor.

5.7.3 Real data

We used two real datasets to showcase our theory: news and leukemia2. The news dataset in
Figure 5.2c is a nice example of our theory in practice. As shown in Table 5.1 we have d� n,
but the dual method is empirically faster than the primal one. The reason is simple: the news
dataset uses a bag of words representation of news articles. If we look at the distribution of
features (words), there are many words which appear just very rarely and there are words com-
monly used in many articles. The features have therefore a very skewed distribution of their
nonzero entries. On the other hand, the examples have close to a uniform distribution, as the

2both datasets are available from https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/

84



nnz ∼ 1% nnz ∼ 10% nnz 100%

n
=

1
00

0 20 40 60 80 100

number of passes

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

P
(w

)
−
P
(w

∗
)

dual-uni

prim-uni

dual-imp

prim-imp

0 20 40 60 80 100

number of passes

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

P
(w

)
−
P
(w

∗
)

dual-uni

prim-uni

dual-imp

prim-imp

0 20 40 60 80 100

number of passes

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

P
(w

)
−
P
(w

∗
)

dual-uni

prim-uni

dual-imp

prim-imp

n
=

1,
00

0

0 20 40 60 80 100

number of passes

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

P
(w

)
−
P
(w

∗
)

dual-uni

prim-uni

dual-imp

prim-imp

0 20 40 60 80 100

number of passes

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

P
(w

)
−
P
(w

∗
)

dual-uni

prim-uni

dual-imp

prim-imp

0 20 40 60 80 100

number of passes

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

P
(w

)
−
P
(w

∗
)

dual-uni

prim-uni

dual-imp

prim-imp

n
=

1
0,

00
0

0 20 40 60 80 100

number of passes

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

P
(w

)
−
P
(w

∗
)

dual-uni

prim-uni

dual-imp

prim-imp

0 20 40 60 80 100

number of passes

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

P
(w

)
−
P
(w

∗
)

dual-uni

prim-uni

dual-imp

prim-imp

0 20 40 60 80 100

number of passes

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

P
(w

)
−
P
(w

∗
)

dual-uni

prim-uni

dual-imp

prim-imp

Figure 5.3: Worst-case experiments with various dimensions and sparsity levels for d = 100

number of distinct words in an article usually does not take on extreme values. As shown in
the theory (proof of Theorem 5.4), this distribution of nonzero entries highly favors the dual
approach.
The leukemia dataset in Figure 5.2d is a fully dense dataset and d � n. Therefore, as our
theoretical analysis shows, the primal approach should be better. The ratio between the run-
times is not very large, as the constant ‖X‖0 is of similar order as the additional term in the
computation of the true runtime (recall (5.12), (5.13)). The empirical speedup in Figures 5.2c
and Figures 5.2d matches the theoretical predictions in the last column of Table 5.1.

5.8 Conclusions and extensions

We have shown that the question whether RCD should be applied to the primal or the dual
problem depends on the structure of the training dataset. For dense data, this simply boils down
to whether we have more data or parameters, which is intuitively appealing. We have shown,
both theoretically, and through experiments with synthetic and real datasets, that contrary to
what seems to be a popular belief, primal RCD can outperform dual RCD even if n � d and
vice-versa. If a user is willing to invest one pass over the data, we recommend to compare the
quantities TP and TD (or CP and CD) to figure out which approach has faster convergence
according to the theory.

In order to focus on the main message, we have chosen to present our results for simple (as
opposed to “accelerated”) variants of RCD. However, our results can be naturally extended to
accelerated variants of RCD, such as APPROX [15], ASDCA [71], APCG [37], ALPHA [53]
and SPDC [86].
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5.A Proof of Theorem 5.1

We say that P ∈ C1(M), if

P (w + h) ≤ P (w) + 〈∇P (w),h〉+
1

2
h>Mh, ∀w,h ∈ Rd.

For three vectors a,b, c ∈ Rn we define 〈a,b〉c :=
∑d
i=1 aibici and ‖a‖2c := 〈a,a〉c =

∑d
i=1 cia

2
i .

Also, let for ∅ 6= S ⊆ [d] and h ∈ Rd, we write hS :=
∑
i∈S hiei, where ei is the i-th coordinate

vector (i.e., standard basis vector) in Rd.
We will need the following two lemmas.

Lemma 5.8. The primal objective P satisfies P ∈ C1(M), where M = λI + 1
nγXX>.

Proof.

P (w + h)
(5.1)
=

1

n

n∑
j=1

φj(〈X:j ,w〉+ 〈X:j ,h〉) +
λ

2
‖w + h‖2

(5.2)

≤ 1

n

n∑
j=1

[
φj(〈X:j ,w〉) + φ′j(〈X:j ,w〉) · 〈X:j ,h〉+

1

2γ
〈X:j ,h〉2

]
+
λ

2
‖w‖2

+λ〈w,h〉+
λ

2
‖h‖2

=
1

n

n∑
j=1

φj(〈X:j ,w〉) +
λ

2
‖w‖2 +

〈
1

n

n∑
j=1

φ′j(〈X:j ,w〉)X:j + λw , h

〉

+
1

2
h>

 1

nγ

n∑
j=1

X:j(X:j)
> + λI

h

= P (w) + 〈∇P (w),h〉+
1

2
h>Mh.

Lemma 5.9. If P ∈ C1(M) and u′ ∈ Rd is such that P ◦M � Diag(p ◦ u′), then

E[P (w + h[ŜP ])] ≤ P (w) + 〈∇P (w),h〉p +
1

2
‖h‖2p◦u′ .

Proof. See [54], Section 3.

We can now proceed to the proof of Theorem 5.1.
First, note that

P ◦M = λDiag(p) +
1

nγ
(P ◦XX>) � λDiag(p) +

1

nγ
Diag(p ◦ u)

with u defined as in (5.5). We now separately establish the two complexity results; (i) for
primal RCD and (ii) for dual RCD.

(i) The proof is a consequence of the proof of the main theorem of [57]. Assumption 1 from
[57] holds with wi := λ + 1

nγui (Lemma 5.8 & Lemma 5.9) and Assumption 2 from [57] holds
with standard Euclidean norm and γ := λ. We follow the proof all the way to the bound

E[P (wk)− P (w∗)] ≤ (1− µ)k(P (w0)− P (w∗))

which holds for µ defined by

µ :=
λ

maxi
ui+nλγ
pinγ

by direct substitution of the quantities. The result follows by standard arguments. Note that
CP = P (w0)− P (w∗).
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(ii) The proof is a direct consequence of the proof of the main theorem of [55], using the
fact that P (wk) − P (w∗) ≤ P (wk) − D(αk), as the weak duality holds. Note that CD =
P (w0)−D(α0).

5.B Proof of Theorem 5.2

The proofs for Algorithm 6 and Algorithm 7 are analogous, and hence we will establish the result
for Algorithm 6 only. For brevity, denote si = ui + nλγ. We aim to solve the optimization
problem:

p∗ ← arg min
p∈Rd+ :

∑
i pi=1

TP
(5.12)

=

(
max
i∈[d]

si
pinλγ

)
·
d∑
i=1

pi‖Xi:‖0. (5.19)

First observe, that the problem is homogeneous in p, i.e., if p is optimal, also cp will be optimal
for c > 0, as the solution will be the same. Using this argument, we can remove the constraint∑
i pi = 1. Also, we can remove the multiplicative factor 1/(nλγ) from the denominator as it

does not change the arg min. Hence we get the simpler problem

p∗ ← arg min
p∈Rd+

[(
max
i∈[d]

si
pi

)
·
d∑
i=1

pi‖Xi:‖0

]
. (5.20)

Now choose optimal p and assume that there exist j, k such that sj/pj < sk/pk. By a small
decrease in pj , we will still have sj/pj ≤ sk/pk, and hence the term maxi si/pi stays unchanged.
However, the term

∑
i pi‖Xi:‖0 decreased. This means that the optimal sampling must satisfy

si/pi = const for all i. However, this is precisely the importance sampling.

5.C Proof of Theorem 5.3

By assumption, all rows and columns of X are nonzero. Therefore, 1 ≤ ‖Xi:‖0 ≤ n and
1 ≤ ‖X:j‖0 ≤ d, and the bounds on CP and CD follow by applying this to (5.17) and (5.18)
respectively. The bounds for the ratio follow immediately by combining the previous bounds.
It remains to establish tightness. For a, b, c ∈ R, let X(a, b, c) ∈ Rd×n be the matrix defined as
follows:

Xij(a, b, c) =


a i 6= 1 ∧ j = 1

b i = 1 ∧ j 6= 1

c i = 1 ∧ j = 1

0 otherwise.

Notice that X(a, b, c) does not have any zero rows nor columns as long as a, b, c are nonzero.
Since CP (X(a, b, c)) = (d−1)a2+n(n−1)b2+nc2 and CD(X(a, b, c)) = d(d−1)a2+(n−1)b2+dc2,
one readily sees that

lim
b→0
c→0

CP (X(a, b, c))

CD(X(a, b, c))
=

1

d
and lim

a→0
c→0

CP (X(a, b, c))

CD(X(a, b, c))
= n.

5.D Proof of Theorem 5.4

We first need a lemma.

Lemma 5.10. Let α be an integer satisfying max{d, n} ≤ α ≤ dn and let L and U be the
functions defined in Section 5.6.2. We have the following identities:
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L(α, n) = min
X∈Bd×n6=0

{CD(X) : ‖X‖0 = α} (5.21)

L(α, d) = min
X∈Bd×n6=0

{CP (X) : ‖X‖0 = α} (5.22)

U(α, n, d) = max
X∈Bd×n6=0

{CD(X) : ‖X‖0 = α} (5.23)

U(α, d, n) = max
X∈Bd×n6=0

{CP (X) : ‖X‖0 = α}. (5.24)

Proof. Let X ∈ Bd×n6=0 be an arbitrary matrix and let ω = (ω1, . . . , ωn), where ωj := ‖X:j‖0.

Let α = ‖X‖0 =
∑
j ωj . Observe that CD(X) =

∑n
j=1 ‖X:j‖20 = ‖ω‖22.

(i) We shall first establish (5.21). Assume that there exist two columns j, k of X, such that
ωj+2 ≤ ωk, i.e., their difference in the number of nonzeros is at least 2. Because ωk > ωj ,
there has to exist a row which has a nonzero entry in the k-th column and a zero entry in
the j-th column. Let X′ be the matrix obtained from X by switching these two entries.
Note that CP (X) = CP (X′). However, we have

CD(X)− CD(X′) = ω2
j + ω2

k − (ωj + 1)2 − (ωk − 1)2 = 2ωk − 2ωj − 2 > 0.

It follows that while there exist two such columns, the minimum is not achieved. So, we
only need to consider matrices X for which there exists integer a such that ωj = a or
ωj = a+ 1 for every j. Let b = |{j : ωj = a}|.

We can now without loss of generality assume that 0 ≤ b ≤ n− 1. Indeed, we can do this
is because the choices b = 0 and b = n lead to the same matrices, and hence by focusing
on b = 0 we have not removed any matrices from consideration. With simple calculations
we get

α = ba+ (n− b)(a+ 1) = n(a+ 1)− b.

Note that α + b is a multiple of n. It follows that b = n− α + ᾱn and a = ᾱn/n. Up to
the ordering of the columns (which does not affect CD(X)) we have just one candidate X,
therefore it has to be the minimizer of CD. Finally, we can easily calculate the minimum
as

n∑
j=1

ω2
j = ba2 + (n− b)(a+ 1)2 = (n− α+ ᾱn)

( ᾱn
n

)2

+ (α− ᾱn)
( ᾱn
n

+ 1
)2

=
1

n

(
ᾱ2
n + (α− ᾱn)(2ᾱn + n)

)
= L(α, n).

(ii) Claim (5.22) follows from part (5.21) via symmetry: CP (X) = CD(X>) and ‖X‖0 =
‖X>‖0.

(iii) We now establish claim (5.23). Assume that there exist a pair of columns j, k such that
1 < ωj ≤ ωk < d. Let X′ be the matrix obtained from X by zeroing out an entry in the
j-th column and putting a nonzero inside the k-th column. Then

CD(X′)− CD(X) = (ωj − 1)2 + (ωk + 1)2 − ω2
j − ω2

k = 2ωk − 2ωj + 2 > 0.

It follows that while there exist such a pair of columns, the maximum is not achieved.
This condition leaves us with matrices X where at most one column j has ωj not equal
to 1 or d.

Formally, let a = |{j : ωj = d}|. Then we have n− a− 1 columns with 1 nonzero and 1
column with b nonzeros, where 1 ≤ b < d. This is correct, as b = d is the same as b = 1
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and a being one more. We can compute a and b from the equation

(n− a− 1) · 1 + 1 · b+ a · d = α

b+ a(d− 1) = α− n+ 1

as the only solution to the division with remainder of α−n+1 by d−1, with the difference
that b ∈ {1, . . . , d− 1} instead of the standard {0, . . . , d− 2}. We get

a =

⌊
a− n
d− 1

⌋
and b = α− n+ 1− (α− n)d−1.

The maximum can now be easily computed as follows:

n∑
j=1

ω2
j = (n− a− 1) + b2 + ad2

= n−
⌊
a− n
d− 1

⌋
− 1 +

(
α− n+ 1− (α− n)d−1

)2

+

⌊
a− n
d− 1

⌋
d2

= U(α, n, d).

(iv) Again, claim (5.24) follows from (5.23) via symmetry.

We can now proceed to the proof of the theorem.
The quantity is the ratio between the maximal value of CP and the minimal value of CD,

we have to show that there exists a matrix X such that this is achieved. Assume we have a
matrix X which has the maximal CP . In the proof of Lemma 5.10 we showed, that by switching
entries in X we can get the minimal value of CD without changing CP . Therefore we can achieve
maximal CP and minimal CD at the same time. Analogically for the other case.
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5.E Proof of Theorem 5.5

Let us estabilish the proof for the first case – the second will follow by symetricity. The main
idea of the proof is to choose α such that the best possible case for the primal method is going
to be better than the worst possible case for the dual method, i.e., L(α, d) < U(α, n, d). First,
we get some bounds on L and U based on the trivial bounds a− b ≤ āb := bbab c ≤ a for positive
integers a, b. First, the bound on L:

L(α, d) =
1

d

[
ᾱ2
d + (α− ᾱd)(2ᾱd + d)

]
≤ 1

d

[
α2 + (α− (α− d))(2α+ d)

]
=

1

d

[
α2 + 2αd+ d2

]
Second, the bound on U :

U(α, n, d) = (d+ 1)(α− n)d−1 + n− 1 +
[
α− n+ 1− (α− n)d−1

]2
≥ (d+ 1)(α− n− d+ 1) + n− 1 + [α− n+ 1− α+ n]

2

= dα− dn− d2 + α+ 1.

Therefore, it is sufficient to show

α2 + 2αd+ d2 < d2α− d2n− d3 + dα+ d,

We will show that this holds for α = d(d−1)
2 . Observe, that d(d− 1) is even and therefore α is

an integer. From the definition of Bd×n6=0 we know, that n + d − 1 ≤ α ≤ nd has to hold. To
verify this, we use the conditions from the assumptions:

n+ d− 1 ≤
(
d2

4
− 3

2
d− 1

)
+ d− 1 =

d(d− 1)

2
− d2

4
− 2 <

d(d− 1)

2
= α

and the other inequality

α =
d(d− 1)

2
< d2 ≤ nd.

Using the above defined α we can proceed to prove the claim:

α2 + 2αd+ d2 =
d4

4
+
d3

2
+
d2

4

<
d4

4
+
d3

2
+ d2 + d

=
d4

2
− d3 + d− d2

(
d2

2
− 3

2
d− 1

)
≤ d4

2
− d3 + d− d2n

= d2α− d2n− d3 + dα+ d,

which finishes the proof.
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5.F Proof of Theorem 5.6

As shown in the main text, the theorem follows from the following lemma. Hence, we only need
to prove the lemma.

Lemma 5.11. If d ≥ n and α ≥ n2 + 3n, then R(α, d, n) ≤ 1. If n ≥ d and α ≥ d2 + 3d, then
R(α, n, d) ≤ 1.

Proof. We focus on the first part, the second follows in an analogous way. Using the two
assumptions, we have α(n2 + 3n) + n3 ≤ α2 + dn2. By adding n2 + n to the right hand side
and after reshuffling, we obtain the inequality

n
[
(n+ 1)(α− d) + d− 1 + n2

]
≤ (α− n)2.

For positive integers a, b, we have the trivial estimates a− b ≤ āb := bbab c ≤ a. We use them to
bound four expressions:

(α− d) ≥ (α− d)n−1

n2 ≥ (α− d+ 1− (α− d)n−1)2

ᾱ2
n ≥ (α− n)2

(α− ᾱn)(2ᾱn + n) ≥ 0

Using these bounds one-by-one we get the result

n
[
(n+ 1)(α− d) + d− 1 + n2

]
≤ (α− n)2

n
[
(n+ 1)(α− d)n−1 + d− 1 + n2

]
≤ (α− n)2

n
[
(n+ 1)(α− d)n−1 + d− 1 + (α− d+ 1− (α− d)n−1)2

]
≤ (α− n)2

n
[
(n+ 1)(α− d)n−1 + d− 1 + (α− d+ 1− (α− d)n−1)2

]
≤ ᾱ2

n

n
[
(n+ 1)(α− d)n−1 + d− 1 + (α− d+ 1− (α− d)n−1)2

]
≤ ᾱ2

n + (α− ᾱn)(2ᾱn + n)

R(α, d, n) ≤ 1
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Chapter 6

Global Convergence of
Arbitrary-Block Gradient
Methods for Generalized
Polyak- Lojasiewicz Functions

6.1 Introduction

During the last decade, gradient-type methods have become the methods of choice for solving
optimization problems of very large sizes arising in fields such as machine learning, data science,
engineering, and visual computing.

Consider the optimization problem

min
x∈Rn

f(x),

where f : Rn → R is a differentiable function. Assume that this problem has a nonempty set
of global minimizers X ∗ (clearly, ∇f(x∗) = 0 for all x∗ ∈ X ∗). It is well known [4] that if
f is L-smooth and µ-strongly convex, where L ≥ µ > 0, then the gradient descent method
xk+1 = xk − 1

L∇f(xk) for all k ≥ 0 satisfies ξ(xk+1) ≤
(
1− µ

L

)
ξ(xk), where x∗ ∈ X ∗ and

ξ(x) := f(x)− f(x∗), (6.1)

is the optimality gap function. Motivated by the rise of nonconvex models in fields such as
image and signal processing and deep learning, there is interest in studying the performance of
gradient-type methods for nonconvex functions.

As observed by Polyak in 1963 [52], and recently popularized and further studied by Karimi,
Nutini and Schmidt [29] in the context of proximal methods, proofs of linear convergence rely
on a certain consequence of strong convexity known as the Polyak- Lojasiewicz (PL) inequality.
Since functions satisfying the PL inequality need not be convex, linear convergence of gradient
methods to the global optimum extends beyond the realm of convex functions.

The (strong) PL inequality can be written in the form

1
2‖∇f(x)‖2 ≥ µ · ξ(x), x ∈ Rn. (6.2)

We write f ∈ SPL(µ) if f satisfies (6.2). The PL inequality and methods based on it have
been an inspiration for many researchers in recent years [11, 34, 20]. It is known that in order
to guarantee ξ(xk) ≤ ε, it suffices to take k = O((L/µ) log(1/ε)).

The starting point of this paper is the realization that while the PL inequality serves as
a generalization of strong convexity, there is no equivalent generalization of (weak) convexity.
One of the key contributions of this paper is to remedy this situation by introducing the weak
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PL inequality:
‖∇f(x)‖ · ‖x− x∗‖ ≥ √

µ · ξ(x), x ∈ Rn. (6.3)

We write f ∈ WPL(µ) if f satisfies (6.3). If f is convex, then f ∈ WPL(1). Indeed, by convexity
and Cauchy-Schwartz inequality, we have

ξ(x) = f(x)− f(x∗) ≤ 〈∇f(x),x− x∗〉 ≤ ‖∇f(x)‖ · ‖x− x∗‖.

However,WPL(1) contains nonconvex functions as well. As an example consider the function
f(x1, x2) = x2

1x
2
2, for which it is straightforward to show that f ∈ WPL(1) and it is apparently

nonconvex. If we allow 0 < µ < 1, the inequality (6.3) becomes weaker, and holds for a larger
family of functions still.

In this paper we prove that ξ(xk) ≤ ε if k ≥ 2LR2/ε, where R is a uniform upper bound on
‖xk −x0‖. Since gradient descent is a monotonic methods, such a bound exists if, for instance,
the level set {x : f(x) ≤ f(x0)} is bounded. This result extends standard convergence result
for gradient descent for convex functions to weak PL functions.

Further contributions of this work are:

(i) We consider a large family of gradient type methods. The methods include block coor-
dinate descent with arbitrary block selection rules, such as cyclic, greedy, randomized,
adaptive and so on. Gradient descent arises as a special case when the active block at
each iteration consists of all coordinates. Also, we introduce a novel method called greedy
minibatch descent which we analyze using our developed theory to prove convergence for
it in various setups mentioned in the next point.

(ii) We extend all results (weak PL inequality, algorithms and complexity results) to the
proximal setup. That is, we consider composite optimization problems of the form
minF (x) := f(x) + g(x), where f is differentiable, and g is a simple nonsmooth function.
For instance, the weak PL inequality (6.3) arises as a special case of the new proximal
weak PL inequality when g = 0. The complexity results are the same: O(log(1/ε)) for
PL functions, O(1/ε) for WPL functions and O(1/ε log(1/ε)) for general nonconvex func-
tions. The specific rates can be found in Tables 6.1 and 6.2. Note that ρ(x0) is a problem
dependent constant standing for the distance between the initial iterate and the optimum.
To the best of our knowledge, all the rates in the tables are novel, except SgPL for gradient
descent and uniform and greedy coordinate descents for both smooth and non-smooth
case. These were already shown in [29].

block selection rule SPL(µ) WPL(ρ) general g = 0

gradient descent λmax(M)
µ log( ξ(x

0)
ε ) λmax(M)

ρ(x0)ε
λmax(M)ξ(x0)

ε log( ξ(x
0)
ε )

uniform coordinate nmaxi{Mii}
µ log( ξ(x

0)
ε ) nmaxi{Mii}

ρ(x0)ε
nmaxi{Mii}ξ(x0)

ε log( ξ(x
0)
ε )

importance coord.
∑n
i=1Mii

µ log( ξ(x
0)
ε )

∑n
i=1Mii

ρ(x0)ε

∑n
i=1Miiξ(x

0)

ε log( ξ(x
0)
ε )

greedy coordinate
∑n
i=1Mii

µ log( ξ(x
0)
ε )

∑n
i=1Mii

ρ(x0)ε

∑n
i=1Miiξ(x

0)

ε log( ξ(x
0)
ε )

uniform minibatch 1
µλmin(E[M−1

[S]
])

log( ξ(x
0)
ε ) 1

ρ(x0)λmin(E[M−1
[S]

])ε

ξ(x0)

λmin(E[M−1
[S]

])ε
log( ξ(x

0)
ε )

greedy minibatch 1
µλmin(E[M−1

[S]
])

log( ξ(x
0)
ε ) 1

ρ(x0)λmin(E[M−1
[S]

])ε

ξ(x0)

λmin(E[M−1
[S]

])ε
log( ξ(x

0)
ε )

Table 6.1: Iteration complexity guarantees for E[ξ(xK)] ≤ ε in the smooth cases.

6.1.1 Outline

We first perform the our general analysis specified for smooth gradient descent in Section 6.2.
In Section 6.3 we introduce the general setup considered in the rest of the work. In Section 6.4
we introduce the proportion function, which is a tool for the general analysis of block selection
rules. In Sections 6.5.2 to 6.7 we prove the main theory for strongly PL, weakly PL, and general
non-convex functions. Finally, in Section 6.8 we perform numerical experiments confirming our
theoretical findings.
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block selection rule SgPL(µ) Wg
PL(ρ) general g 6= 0

gradient descent λmax(M)
µ log( ξ(x

0)
ε ) λmax(M)

ρ(x0)ε
λmax(M)ξ(x0)

ε log( ξ(x
0)
ε )

uniform coordinate nmaxi{Mii}
µ log( ξ(x

0)
ε ) nmaxi{Mii}

ρ(x0)ε
nmaxi{Mii}ξ(x0)

ε log( ξ(x
0)
ε )

greedy coordinate nmaxi{Mii}
µ log( ξ(x

0)
ε ) nmaxi{Mii}

ρ(x0)ε
nmaxi{Mii}ξ(x0)

ε log( ξ(x
0)
ε )

uniform minibatch nLτ
τµ log( ξ(x

0)
ε ) nLτ

ρ(x0)τε
ξ(x0)nLτ

τε log( ξ(x
0)
ε )

greedy minibatch nLτ
τµ log( ξ(x

0)
ε ) nLτ

ρ(x0)τε
ξ(x0)nLτ

τε log( ξ(x
0)
ε )

Table 6.2: Iteration complexity guarantees for E[ξ(xK)] ≤ ε in the non-smooth cases.

6.1.2 Notation

We use boldface to denote a multi-dimensional object. As an example, we have a vector x,
a matrix X, while a scalar entry of a vector xi has a normal typeset. By [n] we denote the
set {1, . . . , n}. ‖x‖ = 〈x,x〉1/2 is the L2 norm, where 〈x,y〉 =

∑
i xiyi is the standard inner

product. refer to Table 6.3 in the appendix for a summary of frequently used notation.

6.2 Gradient Descent

We assume throughout this section that f is L-smooth for some L > 0:

f(x + h) ≤ f(x) + 〈∇f(x),h〉+ L
2 ‖h‖

2, x,h ∈ Rn. (6.4)

We shall write f ∈ C1(L). In addition to this assumption, in our analysis we consider several
classes of nonconvex objectives: PL functions, weak PL functions, and gradient dominated
functions.

In this section we perform a novel analysis of the gradient descent1 method for minimizing
f :

xk+1 = xk − 1
L∇f(xk). (6.5)

for the above classes of nonconvex functions. As we shall show, for these classes of objectives
gradient descent converges to the global minimizer. By focusing on the notoriously known
gradient descent method first, we illuminate some of the key insights of this paper without
distractions from additional complications caused by the proximal setup and particularities of
other algorithms, making the more general treatment in further sections more easily digestable.

A key role in the analysis is played by the forcing function associated with f , defined as

µ(x) :=
‖∇f(x)‖2

2ξ(x)
, x ∈ Rn/X ∗. (6.6)

For any fixed value of this function, the smaller the gradient ‖∇f(x)‖2 is, the smaller the
optimality gap ξ(x). In other words, small gradients force the optimality gap to become small.
The importance of this function is clear from the following simple lemma, which says that the
larger µ(xk) is, the more reduction we get at iteration k in the optimality gap.

Lemma 6.1. Let f ∈ C1(L) and let {xk}k≥0 be the sequence of iterates produced by the gradient
descent method (6.5). As long as xk /∈ X ∗, we have

ξ(xk+1) ≤
(

1− µ(xk)
L

)
ξ(xk).

Moreover, ‖∇f(x)‖2 ≤ 2Lξ(x) for all x.

1For simplicity, we consider gradient descent with fixed stepsize inversely proportional to the Lipschitz con-
stant: 1/L. While one can extend our results to other stepsize strategies using standard techniques, we avoid
doing so as to present our results in a simple setting.
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Proof. Let hk = − 1
L∇f(xk). Then

ξ(xk+1)
(6.5)
= ξ(xk + hk)

(6.1)
= f(xk + hk)− f(x∗)

(6.4)

≤ f(xk) + 〈∇f(xk),hk〉+ L
2 ‖h

k‖2 − f(x∗)

(6.1)
= ξ(xk) + 〈∇f(xk),hk〉+ L

2 ‖h
k‖2

= ξ(xk)− 1
2L‖∇f(xk)‖2

(6.6)
= (1− µ(xk)

L )ξ(xk).

Since ξ(xk+1) ≥ 0, it must be the case that µ(x) ≤ L for all x /∈ X ∗.

It is well known that gradient descent is monotonic: ξ(xk+1) ≤ ξ(xk) for all k. Note that
this property follows from the second-to-last identity in the proof, and relies on the assumption
of L-smoothness only. If f is µ-strongly convex or, more generally, if f ∈ SPL(µ), then µ(x) ≥ µ
for all x /∈ X ∗, and Lemma 6.1 implies the linear rate ξ(xk+1) ≤

(
1− µ

L

)
ξ(xk). This result was

shown already by Polyak [52].

6.2.1 Weakly Polyak- Lojasiewicz functions

Consider now functions satisfying a weak version of the PL inequality. To the best of our
knowledge, this is the first work where such functions are considered.

Definition 6.2 (Weak Polyak- Lojasiewicz functions). We say that f : Rn → R is a weak
Polyak- Lojasiewicz (WPL) function with parameter µ ≥ 0 if there exists x∗ ∈ X ∗ such that

√
µ · ξ(x) ≤ ‖∇f(x)‖ · ‖x− x∗‖, x ∈ Rn. (6.7)

For simplicity, we write f ∈ WPL(µ).

Consider the Huber loss given by

H(z) :=

{
z2 |z| < 1

2|z| − 1 otherwise,

and the derived function f given by f(x1, x2) = H(x1)H(x2). It is straightforward to show
from the definitions, that f is an example of a smooth function, such that f ∈ WPL(µ) for
some µ > 0 and f /∈ SPL(µ) for all µ > 0.

Note that all2 functions belong toWPL(0). As the next result shows, WPL functions admit
a lower bound on µ(x) which is proportional to ξ(x) and inversely proportional to ‖x− x∗‖2.

Lemma 6.3. If f ∈ WPL(µ), then

µ(x) ≥ µξ(x)

2‖x− x∗‖2
, x ∈ Rn/X ∗.

Proof. We have

µ(x)
(6.6)
=

‖∇f(x)‖2

2ξ(x)

(6.7)

≥ µξ2(x)/‖x− x∗‖2

2ξ(x)
=

µξ(x)

2‖x− x∗‖2
.

Several basic properties of WPL functions are summarized in Appendix 6.A. Combining
Lemma 6.1 and Lemma 6.3, we get the recursion

2By “all” we implicitly mean all functions for which the definition make sense. That is, differentiable and
bounded from below.
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ξ(xk+1) ≤
(

1− µξ(xk)

2L‖xk − x∗‖2

)
ξ(xk). (6.8)

The next lemma will be useful in the analysis of this recursion.

Lemma 6.4. Let {αt}kt=0 and {βt}kt=0 be two sequences of positive numbers satisfying the
recursion

αt+1 ≤
(
1− αtβt

)
αt. (6.9)

Then for all k ≥ 0 we have the bound

αk ≤ α0

1 + α0
∑k−1
t=0 β

t
.

Proof. As αt and βt are positive numbers, we have αt+1 ≤ αt for all t using (6.9). Observe that

1

αt+1
− 1

αt
=

αt − αt+1

αt+1αt
≥ αt − αt+1

(αt)2

(6.9)

≥ βt,

which we can recursively used to show

1

αk
≥ 1

αk−1
+ βk−1 ≥ . . . ≥ 1

α0
+

k−1∑
t=0

βt.

We get the result by inverting the last equation.

By applying the above lemma to recursion (6.8), we get a global convergence result for
gradient descent applied to a WPL function.

Theorem 6.5. Let f ∈ C1(L), and let {xk}k≥0 be the sequence of iterates produced by the
gradient descent method (6.5). Assume f ∈ WPL(µ) for µ > 0. Then for all k ≥ 1 we have

ξ(xk) ≤ ξ(x0)

1 + ξ(x0) µ
2L

∑k−1
t=0

1
‖xt−x∗‖2

≤ 2L

µ
· 1∑k−1

t=0
1

‖xt−x∗‖2
. (6.10)

The second inequality is obtained from the first by neglecting the additive constant 1 in the
denominator.

By monotonicity, all iterates of gradient descent stay in the level set L0 := {x ∈ Rn :
f(x) ≤ f(x0)}. If this set is bounded, then R := maxx∈L0

‖x − x∗‖ < +∞, and we have
‖xk − x∗‖ ≤ R for all k. In this case, the bound (6.10) implies

ξ(xk) ≤ 2LR2

µk
.

6.2.2 Gradient dominated functions

We now consider a new class of (not necessarily convex) functions. To the best of our knowledge,
this class was not considered in optimization before.

Definition 6.6. We say that function f : Rn → R is ϕ-gradient dominated if there exists an
increasing function ϕ : R+ → R+ such that ϕ(0) = 0, limt→0 ϕ(t) = 0 and

ξ(x) ≤ ϕ(‖∇f(x)‖2), x ∈ Rn. (6.11)

The above definition essentially says that for any sequence {xk} (not necessarily related
to iterates of gradient descent) such that ‖∇f(xk)‖2 → 0, we must have f(xk) → f(x∗). In
particular, if f has multiple minimizers, all must have the same function value.

As an example of the function ϕ, we might consider any function of the form ϕ(t) = c · |t|p,
where c > 0 and p > 0.
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Theorem 6.7. Assume that f ∈ C1(L) is ϕ-gradient dominated. Pick ε > 0 and let

k ≥ 2Lξ(x0)

ϕ−1(ε)
log

(
ξ(x0)

ϕ(ε)

)
. (6.12)

Then min{ξ(xt) : t = 0, 1, . . . , k} ≤ ϕ(ε).

Proof. If ϕ(‖∇f(xt)‖2) ≤ ε for some k = 0, 1, . . . , k − 1, we are done by applying (6.11).
Otherwise, ϕ(‖∇f(xt)‖2) > ε for all t = 0, 1, . . . , k − 1. Then in view of (6.6), µ(xt) >
ϕ−1(ε)/(2ξ(xt)) for all such t. By monotonicity, ξ(xt+1) ≤ ξ(xt) for all t, whence µ(xt) >
ϕ−1(ε)/(2ξ(x0)). By applying Lemma 6.1, we get

ξ(xt+1) ≤
(

1− ϕ−1(ε)

2Lξ(x0)

)
ξ(xt), t = 0, 1, . . . , k − 1.

By unrolling the recurrence, and using the bound (1 − s)1/s ≤ exp(−1) (which holds for 0 <
s ≤ 1), we get

ξ(xk) ≤
(

1− ϕ−1(ε)

2Lξ(x0)

)k
ξ(x0) ≤ exp

(
−kϕ

−1(ε)

2Lξ(x0)

)
ξ(x0)

(6.12)

≤ ϕ(ε).

6.2.3 Literature Review

The original gradient descent method was developed by Cauchy [5] and it has seen a lot of
development ever since. This development is documented in detail in [50, 4]. In the recent years,
a version of gradient descent called coordinate descent was developed. The first developments
of coordinate descent are due to [35] and it was first analyzed for general convex objectives by
Nesterov in [49].

An important part of the coordinate descent is its ability to work with arbitrary block
selection strategies. In the seminal work of Nesterov [49], there were three strategies introduced,
which are known as coordinate descent with uniform probabilities, coordinate descent with
importance sampling, and greedy coordinate descent. The first two strategies fall into the
family of randomized strategies. These were further developed in [59, 57, 60, 54, 10, 56, 8]. The
third selection rule is a deterministic strategy similar in nature to batch gradient descent and
it was shown to be superior over randomized methods in terms of iteration complexity in [51].

The Polyak- Lojasiewicz condition was first introduced by Boris Polyak in [52]. It was revived
recently in [29] and applied to modern optimization approaches. Since then, multiple papers
used the condition to develop new approaches [11, 34, 20].

Lastly, we note that our framework considers the non-accelerated version of coordinate
descent methods, although they play a key role in modern theory. If needed, the acceleration
can be achieved non-directly by using approaches as proposed in [36] or [19]. We leave the
accelerated counterpart of this framework to future work.

6.3 General Setup

In this section we move beyond the simplified setup considered in the previous section and
introduce the setting considered in this paper in its full generality. Our general treatment
differs from that in Section 6.2 in several ways.

First, we consider the composite optimization problem

min
x∈Rn

{F (x) := f(x) + g(x)} , (6.13)

where f is assumed to be smooth, and g is a simple (possibly nonconvex and nonsmooth)
separable function. Second, f is assumed to be smooth in a slightly more general sense than L-
smoothness of Section 6.2. Third, we go beyond gradient descent and consider a large family of
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first order methods which include randomized, cyclic, adaptive and greedy coordinate descent,
in serial and adaptive settings.

In the following, we will refer to the problem (6.13) with g = 0 as the smooth case and
otherwise as the non-smooth case.

6.3.1 Smoothness and separability

We assume, that f is M-smooth, which is formalized by the following assumption:

Assumption 6.8. We say that a function f : Rn → R is M-smooth, if there exists a positive
definite matrix M ∈ Rn×n such that

f(x + h) ≤ f(x) + 〈∇f(x),h〉+ 1
2 〈Mh,h〉, x,h ∈ Rn. (6.14)

In the non-smooth case (g 6= 0), we will without loss of generality assume M to be a multiple
of the identity matrix; specifically M := LI, where I is the identity matrix. If (6.8) holds for
some M, we can always replace M by LI, where L = λmax(M). It is easy to verify, that if a
function is M-smooth, it is also LI-smooth. Note that in some cases we might choose L to be
smaller. This will be in detail explained in Section 6.4.2.

For simplicity, we will use the notation with M also in the non-smooth case, but we will
always treat it as the diagonal matrix LI.

In addition to smoothness of f , we assume that the function g is separable, which is defined
as follows:

Assumption 6.9. We say that a function g : Rn → R̄ := R∪{+∞} is separable, if there exist
n scalar functions g1, . . . , gn : Rn → R̄, such that

g(x) =

n∑
i=1

gi(xi). (6.15)

Note that the function g is treated as the non-smooth part of the problem (e.g., L1 norm,
box constraints, and so on). When we refer to a smooth problem, we assume the setup with
g = 0, while all the other setups are referred as non-smooth problems.

The problem described in (6.13) is encountered in many areas, ranging from machine learning
and signal processing to biology and beyond. We believe it does not need to be motivated
further, as it was already considered in a lot of previous works.

6.3.2 Masking vectors and matrices

Let x ∈ Rn be an arbitrary vector and let X ∈ Rn×n be an arbitrary matrix. We will need
to index vectors and matrices by subsets of coordinates ∅ 6= S ⊆ [n]. The indexing has two
distinct forms. By xS we denote the |S|-dimensional vector constructed by taking the entries
of x with indices in S, while the notation x[S] is used to zero out every entry of x not appearing
in S without changing its length. We have similar notation for matrices, where XS denotes the
|S|× |S| matrix of the entries with both column and row indices in S, while X[S] is used for the
matrix X with entries zeroes out outside of columns and rows with indices in S. As a rule of
thumb, the subscript S changes the dimensions of the object, while the subscript [S] maintains
its dimensions.

To illustrate the notation, consider the following example.

Example 1. Let x ∈ R3, X ∈ R3×3 and S = {1, 3}. Then

x =

 1
2
3

 ⇒ xS =

[
1
3

]
, x[S] =

 1
0
3


and

X =

 1 4 7
2 5 8
3 6 9

 ⇒ XS =

[
1 7
3 9

]
, X[S] =

 1 0 7
0 0 0
3 0 9

 .
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6.3.3 Algorithm

We now propose and analyze a wide class of block descent algorithms for solving (6.13). For a
non-empty block of coordinates S ⊆ [n], we define

US(x,u) := 〈(∇f(x))[S],u〉+
1

2
u>M[S]u +

∑
i∈S

[gi(xi + ui)− gi(xi)] . (6.16)

We assume that finding a minimizer of US(x,h) in h is cheap (e.g., there exists a closed
form solution, or an efficient algorithm). Given an iterate xk, in iteration k of our method we
select a block Sk ⊆ [n] of active coordinates, according to an arbitrary block selection procedure
Pk, and subsequently minimize USk(xk,h) in h. The result is denoted uk. Due to the structure
of problem (6.16), the minimizer of USk does not depend on ui for i /∈ Sk. Hence, only the
active coordinates uki for i ∈ Sk are relevant, and we set xk+1 = xk + uk[Sk]. Equivalently, using
other alternative notation, we can write this as

xk+1
i =

{
xki + uki , i ∈ Sk,
xki , i /∈ Sk,

or
xk+1
Sk

= xkSk + ukSk , xk+1
[n]/Sk

= xk[n]/Sk
.

This is Algorithm 8.

Algorithm 8 Proximal Arbitrary-Block Descent Method

Input: Initial iterate x0 ∈ dom(g), arbitrary block selection procedures {Pk}K−1
k=0

for k = 0, . . . ,K − 1 do
Pick a non-empty subset of coordinates Sk ⊂ [n] using the procedure Pk
Compute uk ∈ arg minu{USk(xk,u)}
Update xk+1 = xk + uk[Sk]

end for
Output xK

Observe, that in the smooth case we have

ukSk = −M−1
Sk
∇Skf(xk), (6.17)

where ∇Sf(x) := (∇f(x))S . The iteration can be computed as a solution of a linear system of
a size |Sk| × |Sk|, which is very cheap for small |Sk|. In the non-smooth case, the iterate does
not have a closed-form solution in general but can be solved fast for a lot of forms of g, e.g.,
box constraints or L1 norm. Since we assume M = LI, we can write

ukSk = arg min
u∈R|Sk|

{
〈∇Sf(xk),u〉+

L

2
‖u‖2 +

∑
i∈Sk

gi(xi + ui)

}
. (6.18)

For simplicity, assume M = LI for some constant L > 0. If g = 0, and we always pick
Sk = [n], then Algorithm 8 reduces to gradient descent, considered in Section 6.2. If g 6= 0,
and we always pick Sk = [n], then Algorithm 8 reduces to proximal gradient descent. On the
other hand, if we always pick |Sk| = 1, then we obtain coordinate descent (g = 0) or proximal
coordinate descent (g 6= 0). The selection procedure Pk may be set to choose the coordinates
in a cyclic manner, greedily, randomly according to any (fixed or evolving) probability law, and
even adaptively to the entire history of the iterative process. There are many other possibilities
between the two extremes of always selecting |Sk| = 1 and |Sk| = n. Such methods can be
considered block coordinate descent methods, subspace descent methods, or parallel coordinate
descent methods (as the updates to individual coordinates can be performed in parallel). We
stress that unlike all other methods considered in the literature, in our method we allow for the
block selection procedure Pk to be arbitrary, without any restrictions whatsover.
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By removing these restrictions, we allow for several new possibilities in the sampling pro-
cedure. These are: 1) the block selection procedure might change from iteration to iteration,
allowing for adaptive strategies as [10], 2) the procedure might depend on previous iterations,
which opens up the possibility of cyclic and other similar selections, and 3) the procedure does
not have to be randomized, which allows for greedy selection procedures [51].

In all our convergence results we shall enforce several key common assumptions, together
with some additional assumptions. In order to avoid repeating the common core, we shall
summarize them here.

Assumption 6.10 (Common Assumptions). Let f : Rn → R be an M-smooth (6.14) function,
let g : Rn → R̄ be separable (6.15), and let F : Rn → R̄ be function defined using f and g as
in (6.13). Assume F has a global minimizer x∗, such that F (x∗) > −∞. Let x0 ∈ dom(g) be
an initial point and let the sequence {xk}Kk=1 be generated using Algorithm 8, where {Sk}K−1

k=0

is an arbitrary sequence of non-empty (possibly random) subsets of [n].

6.3.4 Forcing function

As before, let us define the optimality gap function

ξ(x) := F (x)− F (x∗), (6.19)

where x∗ is a minimizer of F . Observe that ξ(x) ≥ 0 with equality only if x ∈ X ∗ :=
arg minx F (x).

We now extend the definition of the forcing function to the proximal setting.

Definition 6.11 (Forcing function: proximal version). Let

λ(x) := −L · min
y∈Rn

{
〈∇f(x),y〉+

L

2
‖y‖2 + g(x + y)− g(x)

}
, (6.20)

where L is chosen such that (6.14) holds with M = LI. Specific choices of L are explained in
detail in Section 6.4.2. The non-negative function

µ(x) :=
λ(x)

ξ(x)
(6.21)

is the proximal forcing function. The domain of
mu is dom(g)/X ∗.

Pick any x ∈ dom(g)/X ∗. The minimum in (6.20) is non-positive since setting y = 0 gives
a zero value. Hence, λ(x) ≥ 0. Since the denominator in (6.21) is positive, µ(x) is always
nonnegative.

In the smooth case (g = 0) we have

µ(x) =
‖∇f(x)‖2

2ξ(x)
, (6.22)

which is simply the forcing function (6.6).

6.3.5 Proportion function

We introduce one more notion, which we call the proportion function. This function plays an
important role in our theory.

Definition 6.12. Let
X := {x ∈ Rn : λ(x) 6= 0} . (6.23)

The proportion function is defined by

θ(S,x) :=
−minu∈Rn US(x,u)

λ(x)
(6.24)
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for all S ∈ S and x ∈ X . For x ∈ X ∗, we set θ(S,x) = 0.

Similarly as in the definition of the forcing function, both of the minimizations in (6.24)
are non-positive, as u = 0 and y = 0 gives zero value in the numerator and denominator,
respectively. Also observe that in the smooth case (g = 0) we have

θ(S,x) =
(∇Sf(x))>(MS)−1∇Sf(x)

‖∇f(x)‖2
. (6.25)

Note that the matrix (MS)−1 exists since all principal submatrices of a positive definite matrix
are also positive definite. A more detailed treatment of the proportion function can be found
in Section 6.4.

Also note that X (6.23) might differ from X ∗ in the case of local minimizers.

6.3.6 Generic descent lemma

We now formulate a simple but important descent lemma which bounds the progress gained
by a single iteration of Algorithm 8. Our bound applies to arbitrary block selection rules, and
will enable us to prove global convergence results for Algorithm 8 for new classes of nonconvex
functions.

Lemma 6.13. Let xk+1 be the next iterate of Algorithm 8 generated from xk by picking a
nonempty set of coordinates Sk ⊆ [n]. Then

ξ(xk+1) ≤
[
1− θ(Sk,xk) · µ(xk)

]
· ξ(xk). (6.26)

Applying this repeatedly, for all K ≥ 1 we obtain the estimate

ξ(xK) ≤

(
K−1∏
k=0

[
1− θ(Sk,xk) · µ(xk)

])
ξ(x0). (6.27)

Proof. See Section 6.B.1

Recursion (6.26) is a direct generalization of Lemma 6.1. Indeed, if M = LI, g = 0, and
Sk = [n], then in the view of (6.25), θ([n],xk) = 1/L. Note that as θ ≥ 0 and µ ≥ 0, we
can be sure that ξ(xk+1) ≤ ξ(xk), which means that we are not getting worse by iterating the
Algorithm 8. The proof of Lemma 6.13 is straightforward. The difficulty will lie in bounding
the forcing and proportion functions so as to obtain convergence. In Sections 6.5.2, 6.6 and 6.7
we apply this lemma to prove the main results of this paper.

The K-step bound (6.27) provides us with a compact and generic bound on the optimality
gap at the K-th iterate of Algorithm 8 dependent on the iterates x0,x1, . . . ,xK−1 and the
selected sets S0, S1, . . . , Sk−1. This result does not immediately imply convergence as at this
level of generality, it is possible for the product appearing in (6.27) not to converge to zero.
Indeed, this corollary also covers the situation where Sk = 1 for all k, which clearly can’t result
in convergence. We will need to introduce further restrictions in order to establish convergence.

6.4 Proportion Function

In this section we show standard bounds on the proportion function, which are independent of a
given iterate. This will be important further, to recover the convergence rates given by standard
theory. We note, that for stochastic methods we bound the expectation of the proportion
function conditioned on the last iterate, instead of directly bounding the proportion function.
This quantity will be important in the theory for the convergence of stochastic methods, as
specified in following sections.

The proportion function is the only quantity in the convergence theory, which is dependent
on the choice of the set of coordinates S. Therefore, to analyze a new sampling strategy for
coordinate descent, one only has to show a bound on the proportion function. This opens up a
possible venue of novel techniques for coordinate selection.
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In the following we tackle all the known cases of samplings, which we break down by their
smoothness. Also, we introduce and analyze a new sampling procedure to showcase the gener-
ality of our framework.

6.4.1 Smooth problems

In the case of g = 0, we have the proportion function equal to (6.25), i.e.,

θ(S,x) =
(∇Sf(x))>(MS)−1∇Sf(x)

‖∇f(x)‖2

for all x ∈ X ∗, and all ∅ 6= S ⊆ [n]. Let us break-down the cases according to specific choices
of the set S.

• Batch Gradient descent: In the case when S = [n], we recover the standard gradient
descent strategy, which dates back to the work of Cauchy [5]. In this case we can lower
bound the proportion function by

θ([n],x) =
(∇f(x))>M−1∇f(x)

‖∇f(x)‖2
≥ 1

λmax(M)
(6.28)

for all x ∈ X ∗.

• Serial Coordinate Descent: Suppose S = {i}, for some given i. In this case we get

θ({i},x) =
(∇if(x))2

Mii‖∇f(x)‖2.
(6.29)

There are multiple strategies for choosing the coordinate i, and we tackle them one by
one.

– Uniform probabilities: Suppose we choose the coordinate i with the probability
pi given by pi = 1/n, independently of x. This strategy was originally analyzed in
[49]. The expectation of θ can be lower bounded as

Ei[θ({i},x) | x]
(6.29)

=
1

n

n∑
i=1

(∇if(x))2

Mii‖∇f(x)‖2
≥ 1

n ·maxi{Mii}
. (6.30)

– Importance sampling: Suppose we choose the coordinate i with the probability
pi given by

pi =
Mii∑n
i=1Mii

, (6.31)

independently of x. Again, this strategy was originally analyzed in [49]. The expec-
tation of θ can be lower bounded as

Ei[θ({i},x) | x]
(6.29)

=
1∑n

i=1Mii

n∑
i=1

Mii(∇if(x))2

Mii‖∇f(x)‖2
≥ 1∑n

i=1Mii
(6.32)

– Greedy choice: Suppose we choose the coordinate i deterministically as

i = arg max
j

{
(∇if(x))2

Mii

}
. (6.33)

It is straightforward that this strategy maximizes the proportion function (6.29) for
a single iteration, given that we choose only a single coordinate. It was originally
proposed in [49] and further improved in [51]. However, in this case we do not have a
better bound than (6.32), which would be independent of x3. We can get this bound

3In [51] they proved a slightly better bound using `1-strong convexity, which can be achieved by replacing
the `2-norm by `∞-norm in the definition of the proportion and forcing functions.
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using that the maximum of some quantity is more than its average weighted by Mii

θ({i},x) =
maxj{(∇jf(x))2/Mjj}

‖∇f(x)‖2
≥ 1∑n

j=1Mjj
. (6.34)

Observe that in the case of ‖∇f(x)‖2 = (∇if(x))2 we have that the above lower
bound (6.34) could be

∑n
j=1Mjj/Mii larger to still hold. Therefore on some it-

erations, greedy coordinate descent is much better than coordinate descent with
importance sampling, although their global bounds are the same. This usally leads
to superiority of greedy rules in practice, in the case that they can be implemented
cheaply.

• Minibatch Coordinate Descent: Suppose |S| = τ , for some given n > τ > 1. There
are currently two analyzed strategies in this case and we introduce a third.

– τ-nice sampling: Assume that we want to sample a subset of τ > 1 coordinates
at each iteration, uniformly at random from all subsets of cardinality τ . It can
be inferred from results established in [56] that the expectation of the proportion
function can be lower bounded by the quantity

E[θ(S,x) | x]
(6.25)

=
(∇f(x))>E[M−1

[S] ]∇f(x)

‖∇f(x)‖2
≥ λmin

(
E
[
M−1

[S]

])
, (6.35)

where M−1
[S] is the n × n matrix constructed by putting the matrix M−1

S on the

columns and rows specified by S and zero out the rest of the entries. Additionally,
assuming that we have a factorization M = A>A, where A ∈ Rm×n, using results
from [54] , this can be further lower bounded as

λmin

(
E
[
M−1

[S]

]) [56]

≥ 1

n ·maxi{vi}
, (6.36)

where

vi
[54]
:=

m∑
j=1

[
1 +

(‖Aj:‖0 − 1)(τ − 1)

n− 1

]
A2
ji.

– Importance sampling for minibatches: A minibatch version of importance sam-
pling was recently proposed in [8]. The main idea is as follows: we randomly partition
the coordinates into τ approximately equally sized “buckets”, and subsequently and
independently perform standard importance sampling (as described above) for each
bucket. The sampling is then generated as the union of all sampled coordinates.
For specific bounds, we recommend discussing the original paper [8], as they are not
available in a compact form.

– Greedy minibatches: To showcase the power of our framework, we introduce a
brand-new selection rule called greedy minibatches. This selection rule aims to select
the set S such that it minimizes the proportion function on the current iteration,
i.e.,

Sg := arg max
S:|S|=τ

{
(∇Sf(x))>(MS)−1∇Sf(x)

}
. (6.37)

The above selection procedure is a difficult problem in general, but it might be
feasible for some specific problems, e.g., for diagonal M or the function f with a
special structure (see [51] for examples).

To get a lower bound on the proportion function independent of the current it-
erate x, we use the argument that the maximum of some quantities is always at
least equal to any weighted mean of the same quantities. Using this, we get that
θ(Sg,x) ≥ E[θ(S,x) | x], where the sets S were selected according to the τ -nice sam-
pling, importance sampling for minibatches introduced above, or any other sampling.
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Therefore, using (6.35) we get that

θ(Sg,x)
(6.25)+(6.35)

≥ λmin

(
E
[
M−1

[S]

])
. (6.38)

Observe that both the selection rule and the above bound is a generalization of the
greedy coordinate sampling to minibatches. Also observe that the above bound is
potentially very loose. As an example, consider a diagonal matrix M with all the
elements equal to 1. The right-hand side of (6.38) is then equal to τ/n, while the
left-hand side is equal to 1. Even in this very special case, the bound is disregarding
a factor of n/τ , which is potentially huge. For this reason, it is expected that the
greedy minibatches will actually perform much better in practice than in theory
(6.38).

6.4.2 Non-smooth problems

Let us define for all i and all x ∈ Rn the function

λi(x) := −L ·min
v∈R

{
∇if(x)v +

L

2
v2 + gi(xi + v)− gi(xi)

}
. (6.39)

Using the definition of proportion function (6.24) with the diagonal M := LI we get

θ(S,x)
(6.24)+(6.39)

=

∑
i∈S λi(x)

L
∑n
j=1 λj(x)

. (6.40)

As mentioned in Section 6.3.1, the value L can be chosen as L = λmax(M) to satisfy the
inequality (6.14). However, this choice of L might be suboptimal in many cases. As an example,
when analyzing coordinate descent methods, the vector h will always be of the form hei, where
ei is the i-th coordinate vector (see Appendix 6.B.1). Therefore, it would be sufficient for L to
satisfy (6.14) for the specific choice h = hei which leads to

f(x + hei) ≤ f(x) +∇if(x)h+
Mii

2
h2 ≤ f(x) +∇if(x)h+

L

2
h2

for each i ∈ {1, . . . , n} and h ∈ R. We can easily observe from the above that this will be
satisfied with L := maxi{Mii} ≤ λmax(M). To account for this in general, we need to take
some additional measures. Specifically, let S be the collection of all sets S ⊂ [n] which can be
possibly generated during the iterative process by Pk. As an example, S = {{1}, {2}, . . . , {n}}
corresponds to all such sets for coordinate descent. We define L as the smallest number for
which

f(x + h[S]) ≤ f(x) + 〈∇f(x),h[S]〉+
1

2
〈Mh[S],h[S]〉

is satisfied for every x,h ∈ Rn and every S ∈ S. It is straightforward to see that if the size of
possible sets S ∈ S is upper bounded as |S| ≤ τ , then we can safely choose

L = Lτ := max
S:|S|=τ

{λmax(MS)} ≤ max
S:|S|=τ

{∑
i∈S

Mii

}
, (6.41)

where the last inequality is due to the eigenvalues being positive and their sum being the trace.
We can easily verify that this generalizes to L = Ln = λmax(M) for gradient descent and
L = L1 = maxi{Mii} for coordinate descent.

Now, we will breakdown the cases depending on the block selection procedure.

• Proximal Gradient Descent: The first result in the proximal setting was the Iterative
Shrinkage Tresholding Algorithm (ISTA) for the `1-norm, which selects all the coordinates
on each iteration. The result was generalized to as general non-smooth penalty in [48].
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The bound on the proportion function is given by

θ([n],x)
(6.40)

=

∑n
i=1 λi(x)

Ln
∑n
j=1 λj(x)

=
1

Ln

(6.41)
=

1

λmax(M)
. (6.42)

• Serial Proximal Coordinate descent: Suppose |S| = 1 and specifically let S = {i}.
Then we have that

θ({i},x)
(6.40)

=
λi(x)

L1

∑n
j=1 λj(x)

, (6.43)

as the size of the selected sets are upper bounded by 1. The procedure leading to the
choice of i distinguishes between various serial approaches.

– Uniform probabilities: Assume we choose the coordinate i uniformly at random
at each iteration. Then we can bound the expectation of the proportion function as

E[θ({i},x) | x]
(6.43)

= E

[
λi(x)

L1

∑n
j=1 λj(x)

]
=

1
n

∑n
i=1 λi(x)

L1

∑n
j=1 λj(x)

=
1

nL1

(6.41)
=

1

nmaxi{Mii}
. (6.44)

– Greedy choice: Another approach is to pick the coordinate i, which maximizes
the proportion function in (6.43), which was analyzed in [51]. The best bound
independent on x coincides with the above bound for uniform sampling, using the
fact that a mean of some quantity is less than its maximum

θ({i},x)
(6.43)

=
maxi{λi(x)}
L1

∑n
j=1 λj(x)

≥
1
n

∑n
i=1 λi(x)

L1

∑n
j=1 λj(x)

=
1

nL1

(6.41)
=

1

nmaxi{Mii}
. (6.45)

Similarly as in the smooth case, observe that the quantity maxi{λi(x)} is poten-
tially up to n times larger than 1

n

∑n
i=1 λi(x) and therefore the bound (6.45) can be

potentially n times larger in some cases, which usually results in better empirical
results.

• Minibatch Proximal Coordinate Descent: Suppose |S| = τ , where τ is given, which
implies that we can use L = Lτ in the bounds. We introduce two options for the block
selection procedure.

– τ-nice sampling: Only one variant of a sampling for this setup was considered
before [60], and that is a uniform choice of τ coordinates without repetition. In
expectation, each coordinate has a chance of τ/n to be picked, which is used in the
bound to get

E[θ(S,x) | x]
(6.40)

= E

[ ∑
i∈S λi(x)

Lτ
∑n
j=1 λj(x)

]
=

τ
n

∑n
i=1 λi(x)

Lτ
∑n
j=1 λj(x)

=
τ

nLτ

(6.41)
=

τ

nmaxS:|S|=τ{λmax(MS)}
. (6.46)

To our best knowledge, this bound is new, as the previous bound considered Ln
instead of Lτ . As Lτ ≤ Ln, the new bound is better.

– Greedy minibatches: Similarly as in the smooth case, we introduce a new selection
rule – greedy minibatches. Specifically, the corresponding set Sg is given by

Sg := arg max
S:|S|=τ

{∑
i∈S

λi(x)

}
. (6.47)
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Note that for τ = 1 we recover the greedy coordinate descent. To give global bounds
independent of x for this strategy, we again use the fact that maximum is an upper
bound for the mean, to get

θ(Sg,x)
(6.40)

=

∑
i∈Sg λi(x)

Lτ
∑n
j=1 λj(x)

≥
τ
n

∑n
i=1 λi(x)

Lτ
∑n
j=1 λj(x)

=
τ

nLτ

(6.41)
=

τ

nmaxS:|S|=τ{λmax(MS)}
. (6.48)

Note that the the above bound can be potentially very pessimistic, as

1 ≥
∑n
i=1 λi(x)∑
i∈Sg λi(x)

≥ τ

n

by using
∑
i∈Sg λi(x) ≥ τ

n

∑n
i=1 λi(x) ≥ τ

n

∑
i∈Sg λi(x). Therefore, the bound (6.48)

can be up to n/τ times better in certain cases.

6.5 Strongly Polyak- Lojasiewicz Functions

In this section, we reinvent the strongly PL functions using the proximal forcing function (6.21),
and develop the corresponding convergence rates. Also, we show how to recover the known
results in this setting by applying our theory.

6.5.1 Strongly PL functions

Definition 6.14 (Strongly PL functions: composite case). We say that F is a strongly PL
function there exists a scalar µ > 0 satisfying

µ(x) ≥ µ (6.49)

for all x ∈ dom(g)/X ∗. The collection of all functions F satisfying inequality (6.49) will be
denoted SgPL(µ), and we say that F is strongly PL with parameter µ.

Recall that in the smooth case we said that a function f ∈ SPL(µ), if f satisfied the condition
(6.2), which can be observed to be equivalent to (6.49) for smooth functions. Therefore we have
that SPL(µ) ⊂ SgPL(µ).

The above definition is not new, it was originally introduced in a slightly different form by
Karimi et al. [29].

6.5.2 Strongly convex functions are strongly PL

Let λ ≥ 0. Function F : Rn → R̄ is said to be λ-strongly convex, if for all x,y ∈ Rn and all
β ∈ [0, 1] we have

F (βx + (1− β)y) ≤ βF (x) + (1− β)F (y)− λβ(1− β)

2
‖x− y‖2. (6.50)

If F is 0-strongly convex, we refer to it simply as convex. Consider a differentiable function
f : Rn → R. If f is λ-strongly convex for λ ≥ 0, then

f(x + h) ≥ f(x) + 〈∇f(x),h〉+
λ

2
‖h‖2, x,h ∈ Rn. (6.51)

We will now show that if F is strongly convex, then F ∈ SgPL(ρ) for some specific ρ. This
means that the class of strongly PL (composite) functions contains the class of strongly convex
(composite) functions.
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Theorem 6.15. Assume F is λF -strongly convex with λF > 0, and f is λf -strongly convex
with λf ≥ 0. Then

µ(x) ≥ µ := min

{
L

2
,

LλF
λF − λf + L

}
(6.52)

for all x ∈ dom(g)/X ∗, and hence F ∈ SgPL(µ).

Proof. See Section 6.B.2.

In the above theorem we do not enforce separability assumption on g.

6.5.3 Convergence

We have the following convergence result, establishing convergence to a global minimizer.

Theorem 6.16. Invoke Assumption 6.10. Further, assume F ∈ SgPL(µ) (i.e., F is strongly PL
with parameter µ), and let

µk :=
µE[ξ(xk) · θ(Sk,xk)]

E[ξ(xk)]
. (6.53)

Then
K−1∑
k=0

µk ≥ log

(
ξ(x0)

ε

)
⇒ E[ξ(xK)] ≤ ε. (6.54)

Proof. See Section 6.B.3.

In order to get concrete complexity results from the above theorem, we need to estimate the
speed of growth of

∑K−1
k=0 µk in K. There no universal way to do this, which is why we state the

above result the way we do. Instead, in each situation this needs to be estimated separately.
Typically, this will be done by lower bounding µk for each k separately. Let us illustrate this
using a couple examples.

If the blocks are selected deterministically, then the expectations in (6.53) do not play any
role, and we have µk = µθ(Sk,x

k). If we have a global lower bound of the form

θ(Sk,x
k) ≥ c > 0

readily available, then
∑K−1
k=0 µk ≥ µcK, which implies the rate

K ≥ 1

cµ
log

(
ξ(x0)

ε

)
⇒ ξ(xK) ≤ ε (6.55)

or, equivalently, ξ(xK) ≤ ξ(x0) · e−cµK . More generally, convergence is established whenever
we can lower bound θ(Sk,x

k) ≥ ck > 0, where the constants ck sum up to infinity.
If the blocks are selected stochastically, then the sequence of iterates xk is also stochastic.

In such cases, it is often possible to come up with a bound for the expectation of θ(Sk,x
k)

conditioned on xk:
E[θ(Sk,x

k) | xk] ≥ c > 0. (6.56)

If this is the case, we claim that µk can be lower bounded by µc, and hence Theorem 6.16 implies
the same rate as before: given by (6.55), only with a bound on the expectation E[ξ(xk)] ≤ ε
on the right-hand side. More generally, if E[θ(Sk,x

k) | xk] ≥ ck ≥ 0, then µk ≥ µck, and
convergence is guaranteed as long as

∑
k ck =∞.

Let us now return to the claim. Indeed, the bound µk ≥ µc follows from (6.56) by applying
Lemma 6.25 (see Appendix) with X := xk, Y := θk and f(x) := ξ(x).

6.5.4 Applications of Theorem 6.16

We now showcase the use of Theorem 6.16 on selected algorithms which arise as special cases
of our generic method (Algorithm 6.18).
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Proximal gradient descent. If for all k we choose Sk = [n] with probability 1, Algo-
rithm 6.18 reduces to (proximal) gradient descent. In both smooth and non-smooth case we
have θ([n],xk) ≥ 1/λmax(M) (see (6.28) and (6.42)). Substituting into (6.55), we get the rate

K ≥ L

µ
log

(
ξ(x0)

ε

)
⇒ ξ(xK) ≤ ε,

in both the smooth and non-smooth case. These results were previously obtained for strongly
PL functions in [29].

Randomized coordinate descent with uniform probabilities. Randomized coordinate
descent, analyzed in [49, 59], arises as special case of Algorithm 6.18 by choosing Sk = {ik},
where ik is an index chosen from [n] uniformly at random, and independently of the history of
the method.

Note that a bound on E[θ(Sk,x
k | xk)] is readily available in Section 6.4, specifically in

(6.30) for the smooth case and (6.44) in the non-smooth case, and it takes the form

E[θ(Sk,x
k) | xk] ≥ c := 1

nmaxi{Mii} .

As we have seen in the discussion immediately following Theorem 6.16, this implies the bound
µk ≥ µc. Applying Theorem 6.16, we conclude that

K ≥ nmax{Mii}
µ

log

(
ξ(x0)

ε

)
⇒ E[ξ(xK)] ≤ ε,

which is the same bound as given in [29] for strongly PL functions in both smooth and non-
smooth case.

Randomized coordinate descent with importance sampling We now allow for specific
nonuniform probabilities: probability of choosing Sk = {i} is proportional to Mii (see (6.31)).
In view of (6.32), we get E[θ(Sk,x

k | xk)] ≥ c := 1/
∑n
i=1Mii for smooth functions. This leads

to the complexity result

K ≥
∑n
i=1Mii

µ
log

(
ξ(x0)

ε

)
⇒ E[ξ(xK)] ≤ ε,

which is is a new result for strongly PL functions. However, in the special case of strongly-
convex functions, this result is known [49, 59, 57].

Minibatch coordinate descent. Assume Sk is a subset of [n] of cardinality τ , chosen uni-
formly at random. This leads to (strandard) minibatch coordinate descent. In view of (6.35),

we have the bound E[θ(S,x) | x] ≥ λmin

(
E
[
M−1

[S]

])
in the smooth case. Substituting into

(6.55), we get the rate

K ≥ 1

µλmin(E[M−1
S ])

log

(
ξ(x0)

ε

)
⇒ E[ξ(xK)] ≤ ε.

This result is novel for the strongly PL case, but it was already established before for strongly
convex functions in [56].

In the non-smooth case we can use the bound (6.46) given by E[θ(S,x) | x] ≥ τ/nLτ , where
Lτ is given by (6.41). It follows that we have the guarantee

K ≥ nLτ
µτ

log

(
ξ(x0)

ε

)
⇒ E[ξ(xK)] ≤ ε,

which is novel for strongly PL and also for strongly convex functions, as Lτ is less or equal to
the standard Ln [60].
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Greedy coordinate descent. Assume a single coordinate S = {i} is chosen using the rule
stated in (6.33), i.e., the choice maximizes the proportion function on the given iteration. In
the smooth case we have the bound (6.34), i.e., θ(Sk,x

k) ≥ c := 1/
∑n
i=1Mii . This leads to

the rate

K ≥
∑n
i=1Mii

µ
log

(
ξ(x0)

ε

)
⇒ ξ(xK) ≤ ε.

Note that this is identical to the rate of randomized coordinate descent with importance sam-
pling, with the exception that we have ξ(xK) instead of E[ξ(xK)] due to the deterministic
nature of the method. Again, this result was already established in [29]. In the special case of
strongly convex functions, this was first established by Nesterov [49].

As for the proximal case, we have a bound (6.45) given by θ(S,xk) ≥ c := 1/nmaxi{Mii}
which leads to a similar rate

K ≥ nmaxi{Mii}
µ

log

(
ξ(x0)

ε

)
⇒ ξ(xK) ≤ ε.

This rate is identical to the rate of randomized coordinate descent, except for the expectation
on the right-hand side. This result was also estabilished in [29], while the strongly convex
version is due [51].

Greedy minibatches. Assume the smooth and and that we choose the set of coordinates S
according to the rule described in (6.37), which is

S := arg max
S:|S|=τ

{
(∇Sf(x))>(MS)−1∇Sf(x)

}
.

Assuming that |S| = τ , we can see that this rule maximizes the proportion function for the
given iteration. The corresponding lower bound takes the form (6.38) which leads to the rate

K ≥ 1

λmin(E[M−1
[S] ])µ

log

(
ξ(x0)

ε

)
⇒ ξ(xK) ≤ ε.

Similarly as in the serial case, this bound is identical to uniform minibatches, with the only
exception being the dropped expectation on the optimality gap ξ(x), due to this algorithm
being deterministic.

In the non-smooth case we have the bound on the proportion function given by (6.48) which
leads to the rate

K ≥ nLτ
µτ

log

(
ξ(x0)

ε

)
⇒ ξ(xK) ≤ ε.

Both of the above bounds are novel, as greedy minibatches is a novel sampling approach.

6.6 Weakly Polyak- Lojasiewicz Functions

In this section we introduce a generalized definition of Weakly PL functions, which specializes
to Definition 6.2 for a specific choice of parameters, and also covers the proximal case. We show
that proximal convex functions can be analyzed using this framework and we give a general
convergence rate guarantee for this class. Lastly, we specify our theory to several known setups,
showcasing the generality of our definition.

6.6.1 Weakly PL functions

Definition 6.17 (Weakly PL functions: general case). We say that F is a weakly PL function,
if there exists a scalar function ρ : Rn → R+, such that

µ(x) ≥ ρ(x0) · ξ(x) > 0, (6.57)

for all x0,x ∈ dom(g)/X ∗ such that ξ(x) ≤ ξ(x0). The collection of all functions F satisfying
inequality (6.57) will be denoted Wg

PL(ρ), and we say that F is weakly PL with parameter ρ.
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Recall that in the smooth case we said that a function f ∈ WPL(µ), if f satisfied the
condition (6.11)

µ(x) ≥ µξ(x)

2‖x− x∗‖2
, x ∈ Rn/X ∗.

In the proof of convergence of these methods, we further bounded the right-hand side of the
above expression by µξ(x)/2R2, where we defined R := maxx∈L0 ‖x − x∗‖ < +∞, with L0 :=
{x ∈ Rn : f(x) ≤ f(x0)}. To see the above smooth case in our general framework defined in
(6.57), we can use ρ(x0) = 1

2R2 , which satisfies our assumption, as R does not depend on x.

6.6.2 Weakly convex functions are weakly PL

We will now show that if F is convex, then F ∈ Wg
PL(ρ) for some specific ρ. This means that

weakly PL functions generalize weakly convex functions also in the composite setting.

Theorem 6.18. Assume f and g are convex, and let x∗ be a global minimizer of F . Then

µ(x) ≥ ξ(x) ·min

{
1

2ξ(x)
,

1

2L‖x− x∗‖2

}
(6.58)

for all x ∈ dom(g)/X ∗. Also, F is a weakly PL function with the parameter ρ given by

ρ(x0) = min

{
L

2ξ(x0)
,

1

2R2

}
, (6.59)

where
R := max

x∈Rn:f(x)≤f(x0)
‖x− x∗‖ < +∞. (6.60)

Proof. See Section 6.B.4.

Note that in the smooth case we have ξ(x) ≤ L
2 ‖x− x∗‖2, therefore

min

{
1

2ξ(x)
,

1

2L‖x− x∗‖2

}
=

1

2L‖x− x∗‖2
,

which also leads to ρ(x0) = 1/(2R2) in the smooth case.

6.6.3 Convergence

For this class, we can show the following convergence result.

Theorem 6.19. Invoke Assumption 6.10. Further, assume F ∈ Wg
PL(ρ) (i.e., F is weakly PL

with parameter ρ). Let

µk := ρ(x0)
E[(ξ(xk))2 · θ(Sk,xk)]

(E[ξ(xk)])2
. (6.61)

Then
K−1∑
k=0

µk ≥
1

ε
⇒ E[ξ(xK)] ≤ ε. (6.62)

Proof. See Section 6.B.5.

Similarly as in the previous section, we need to bound the quantity
∑K
k=0 µk in K to get a

complexity result. The standard theory is developed by bounding each of µk separately, which
leads to a simpler looking, but less tight bounds.

In the case that the blocks are selected deterministically, then the expectations in (6.61)
do not play any role and we have µk = ρ(x0)θ(Sk,x

k). Additionally, if we have a global lower

bound θ(Sk,x
k) ≥ c > 0, then

∑K−1
k=0 µk ≥ ρ(x0)cK, which implies the rate

K ≥ 1

ρ(x0)cε
⇒ ξ(xK) ≤ ε
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and equivalently ξ(xK) ≤ 1
ρ(x0)cK .

We get a similar result for stochastic block selection. Specifically, if we have a global
bound for the quantity E[θ(Sk,x

k) | xk] ≥ c > 0, we can lower bound the values of µk in
Theorem 6.19 by ρ(x0)c. This can be done by first lower bounding the denominator of (6.61)
by E[(ξ(xk))2] using the trivial bound E[X]2 ≤ E[X2] and further applying Lemma 6.25 with
X := xk, Y := θk, f(x) = (ξ(x))2.

In general, we can claim convergence if we have a sequence of lower bounds {ck}∞k=0 for
θ(Sk,x

k) ≥ ck in the deterministic case or E[θ(Sk,x
k) | xk] ≥ ck in the stochastic case, and

additionally
∑∞
k=0 ck =∞.

6.6.4 Applications of Theorem 6.19

We now showcase the use of Theorem 6.19 on several methods which arise as special cases of
our generic method (Algorithm 6.18). All the results for general Wg

PL functions are novel, as
the notion itself is novel. In most cases, we recover known theory by specializing the results to
convex objectives.

Proximal gradient descent. In both smooth and non-smooth case we have θ([n],xk) ≥
c := 1/λmax(M) (see (6.28) and (6.42)). Substituting into (6.62), we get the rate

K ≥ λmax(M)

ρ(x0)ε
⇒ ξ(xK) ≤ ε,

in both the smooth and non-smooth case. This result is novel for Weakly PL functions, but it
was estabilished before for convex functions in [50].

Randomized coordinate descent with uniform probabilities. The bound on the quan-
tity E[θ(Sk,x

k | xk)] is readily available in Section 6.4, specifically in (6.30) for the smooth case
and (6.44) in the non-smooth case, and it takes the form E[θ(Sk,x

k) | xk] ≥ c := 1
nmaxi{Mii} .

As discussed right after Theorem 6.19, this implies the bound µk ≥ µc. Applying Theorem 6.19,
we conclude that

K ≥ nmax{Mii}
ρ(x0)ε

⇒ E[ξ(xK)] ≤ ε,

which is novel for weakly PL functions, but it is well known for convex objectives [49].

Randomized coordinate descent with importance sampling In view of (6.32), we get
the lower bound E[θ(Sk,x

k | xk)] ≥ c := 1/
∑n
i=1Mii for smooth functions. This leads to the

complexity result

K ≥
∑n
i=1Mii

ρ(x0)ε
⇒ E[ξ(xK)] ≤ ε,

which is a novel result for weakly PL functions. However, in the special case of convex functions,
this result is known [49].

Minibatch coordinate descent. In view of (6.35), we have the lower bound E[θ(S,x) | x] ≥
λmin

(
E
[
M−1

[S]

])
in the smooth case. Substituting into (6.62), we get the rate

K ≥ 1

ρ(x0)λmin(E[M−1
S ])ε

⇒ E[ξ(xK)] ≤ ε.

This result is novel for the weakly PL case and to the best of our knowledge also for the convex
case, as the results in [56] only consider strongly convex objectives.

In the non-smooth case we can use the bound (6.46) given by E[θ(S,x) | x] ≥ τ/nLτ , where
Lτ is given by (6.41). It follows that we have the guarantee

K ≥ nLτ
ρ(x0)τε

⇒ E[ξ(xK)] ≤ ε,
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which is novel for weakly PL and to the best of our knowledge also for weakly convex functions,
as Lτ is less or equal to the standard Ln [60].

Greedy coordinate descent. In the smooth case we have the bound (6.34), i.e., θ(Sk,x
k) ≥

c := 1/
∑n
i=1Mii . This leads to the rate

K ≥
∑n
i=1Mii

ρ(x0)ε
⇒ ξ(xK) ≤ ε.

This is identical to the above rate of randomized coordinate descent with importance sampling,
with a dropped expectation on ξ(x0). This result is new for weakly PL functions and in the
special case of weakly convex functions, it was first established by Nesterov [49].

In the proximal case, we have a bound (6.45) given by θ(S,xk) ≥ c := 1/nmaxi{Mii} which
leads to the rate

K ≥ nmaxi{Mii}
ρ(x0)ε

⇒ ξ(xK) ≤ ε.

This rate is identical to the rate of randomized coordinate descent, except for the expectation
on the right-hand side. This result is novel for weakly PL and to the best of our knowledge it
is also novel for the special case of convex functions.

Greedy minibatches. In the smooth case we have the bound (6.38) which leads to the rate

K ≥ 1

ρ(x0)λmin(E[M−1
S ])ε

⇒ E[ξ(xK)] ≤ ε.

In the non-smooth case we have the bound on the proportion function given by (6.48) which
leads to the rate

K ≥ nLτ
ρ(x0)τε

⇒ E[ξ(xK)] ≤ ε.

Both of the above results are shared with uniform minibatch coordinate descent, except that
we are bounding the optimality gap itself instead of its expectation.

Both of the above rates are novel, as greedy minibatches was introduced as a novel sampling
approach.

6.7 General Nonconvex Functions

In this section we establish a generic convergence result applicable to general nonconvex func-
tions. This is done at the expense of losing global optimality: we will show that either λ(xk)
gets small, or that F (xk) is close to the global minimum F (x∗). Recall that in the smooth case
(g = 0) we have λ(xk) = 1

2‖∇f(xk)‖2.

Theorem 6.20. Invoke Assumption 6.10. Let ε > 0 be fixed. Further, let

µk :=
E[ξ(xk)θ(Sk,x

k)]

E[ξ(xk)]
. (6.63)

If the inequality

ξ(x0)

ε
log

(
ξ(x0)

ε

)
≤

K−1∑
k=0

µk, (6.64)

holds, then at least one of the following conclusions holds:

(i) λ(xk) < ε for at least one k ∈ {0, . . . ,K − 1},

(ii) E[ξ(xK)] ≤ ε.

Proof. See Section 6.B.6.
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In the smooth case (g = 0), condition (i) reduces to 1
2‖∇f(xk)‖2 ≤ ε for at least one

k ∈ {0, . . . ,K − 1}. Also note that the same strategies for bounding µk as those outlined in
6.5.3 apply here. To sum it up, if we have a global bound θ(Sk,x

k) ≥ c > 0 in the deterministic
case, then it follows from Theorem 6.20 that

K ≥ ξ(x0)

cε
log

(
ξ(x0)

ε

)
⇒

(
(ξ(xK) ≤ ε) ∨ (∃k ∈ [K] : λ(xk) ≤ ε)

)
.

Similarly, if we have a bound E[θ(Sk,x
k) | xk] ≥ c > 0 in the stochastic case, we get the same

result as above with an expectation over the optimality gap E[ξ(xK)], as the optimality gap
becomes a random variable.

6.7.1 Applications of Theorem 6.20

In this part we apply the results from Theorem 6.20 to several known methods to acquire local
convergence guarantees. To the best of our knowledge, all the results in this section are novel.

Proximal gradient descent. In both smooth and non-smooth case we have θ([n],xk) ≥
c := 1/λmax(M) (see (6.28) and (6.42)). Substituting into (6.64), we get the rate

K ≥ λmax(M)ξ(x0)

ε
log

(
ξ(x0)

ε

)
⇒

(
(ξ(xK) ≤ ε) ∨ (∃k ∈ [K] : λ(xk) ≤ ε)

)
in both the smooth and non-smooth case.

Randomized coordinate descent with uniform probabilities. In both smooth and non-
smooth case we have the bound E[θ(Sk,x

k) | xk] ≥ c := 1
nmaxi{Mii} (see (6.30) and (6.44)).

This implies the rate

K ≥ maxi{Mii}ξ(x0)

ε
log

(
ξ(x0)

ε

)
⇒

(
(E[ξ(xK)] ≤ ε) ∨ (∃k ∈ [K] : λ(xk) ≤ ε)

)
for both smooth and non-smooth functions.

Randomized coordinate descent with importance sampling In view of (6.32), we have
that E[θ(Sk,x

k | xk)] ≥ c := 1/
∑n
i=1Mii for smooth functions. This leads to the complexity

result

K ≥
ξ(x0)

∑n
i=1Mii

ε
log

(
ξ(x0)

ε

)
⇒

(
(E[ξ(xK)] ≤ ε) ∨ (∃k ∈ [K] : λ(xk) ≤ ε)

)
.

Minibatch coordinate descent. We have the bound E[θ(S,x) | x] ≥ λmin

(
E
[
M−1

[S]

])
in

the smooth case from (6.35). Substituting into (6.64), we get the rate

K ≥ ξ(x0)

ελmin(E[M−1
[S] ])

log

(
ξ(x0)

ε

)
⇒

(
(E[ξ(xK)] ≤ ε) ∨ (∃k ∈ [K] : λ(xk) ≤ ε)

)
for smooth objectives. In the non-smooth case we can use the bound (6.46) which is given by
E[θ(S,x) | x] ≥ τ/nLτ , where Lτ is given by (6.41). It follows that we get the rate

K ≥ ξ(x0)nLτ
τε

log

(
ξ(x0)

ε

)
⇒

(
(E[ξ(xK)] ≤ ε) ∨ (∃k ∈ [K] : λ(xk) ≤ ε)

)
for non-smooth functions.
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Greedy coordinate descent. In the smooth case we have the bound (6.34), i.e., θ(Sk,x
k) ≥

c := 1/
∑n
i=1Mii . This leads to the rate

K ≥
ξ(x0)

∑n
i=1Mii

ε
log

(
ξ(x0)

ε

)
⇒

(
(ξ(xK) ≤ ε) ∨ (∃k ∈ [K] : λ(xk) ≤ ε)

)
for smooth functions. In the proximal case, we have a bound (6.45) given by θ(S,xk) ≥ c :=
1/nmaxi{Mii} which leads to the rate

K ≥ maxi{Mii}ξ(x0)

ε
log

(
ξ(x0)

ε

)
⇒

(
(ξ(xK) ≤ ε) ∨ (∃k ∈ [K] : λ(xk) ≤ ε)

)
for non-smooth functions.

Greedy minibatches. In the smooth case we have the bound (6.38) which leads to the rate

K ≥ ξ(x0)

ελmin(E[M−1
[S] ])

log

(
ξ(x0)

ε

)
⇒

(
(ξ(xK) ≤ ε) ∨ (∃k ∈ [K] : λ(xk) ≤ ε)

)
In the non-smooth case we have the bound on the proportion function given by (6.48) which

leads to the rate

K ≥ ξ(x0)nLτ
τε

log

(
ξ(x0)

ε

)
⇒

(
(ξ(xK) ≤ ε) ∨ (∃k ∈ [K] : λ(xk) ≤ ε)

)
Uniform minibatch coordinate descent has bounds of the same form, except that the expectation
is missing due to the deterministic nature of the method.

Also, both of the above rate are new, as greedy minibatches was introduced as a novel
sampling approach.

6.8 Experiments

In this section we show results of sample numerical experiments. We will focus on showcasing
the theory of the general non-convex optimization methods introduced in Section 6.7.

6.8.1 Setup

For our experiments, we consider a function defined as in (6.13) with f defined as

f(x) :=
1

2m
‖Ax− b‖2 +

1

m
cos(〈c,x〉) (6.65)

with A ∈ Rm×n and b, c ∈ Rn, and the function g defined as

g(x) := λ‖x‖1. (6.66)

While it is not motivated by any specific problem, it is clearly non-convex and we can easily
control it to observe the behavior of the proposed method.

6.8.2 Global convergence of serial coordinate descent

In the first part, we consider the setup defined in the above section using (6.65) and (6.66) with
m = 1000 and n = 100. We generate A ∈ Rm×n as a random matrix with fixed singular values
linearly spaced between 1

m and 1. The vector b ∈ Rm is set to b = Ay for a vector y ∈ Rn
randomly generated from a normalized gaussian distribution. Similarly, c is also randomly
generated from a normalized gaussian. We consider two different problems, based on the value
of λ. We have a smooth problem for λ = 0 and a non-smooth problem for λ = 1

2m .
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Figure 6.1: Plots of the convergences of various sampling methods for the smooth (left) and
non-smooth (right) experiment.
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Figure 6.2: Plots of the functions in a 1-dimensional slice around the optimum for the smooth
(left) and non-smooth (right) experiment.

We measure the performance of the various coordinate descent approaches described in
Section 6.7.1. The convergence behaviors corresponding to the smooth and non-smooth setup
can be found on Figure 6.1, on the left and right plots respectively.

To make sure that the functions being optimized are indeed non-convex, we plotted a 1-
dimensional slice of the function being optimized around its optimum. These plots can be found
on Figure 6.2, for the smooth and non-smooth version respectively.

6.8.3 Local convergence of the gradient

The theory of the non-convex case in Theorem 6.20 does not always guarantee convergence to
the global optimum, but it at least guarantees a convergence of the magnitude of the gradient.
To showcase this scenario, we focused on a 1-dimensional instance of the smooth problem defined
in (6.65). We set A = [1], b = π

c and we have chosen c such that the function f has a flat
inflection point (c ≈ 2.15). It is trivial to show, that the optimal value is 0 and it is achieved
for x = π

c ≈ 1.46. The shape of the function around the optimum can be found on the left plot
of Figure 6.3.

We used a 1-dimensional gradient descent method for the convergence and we reported on
three quantities: The function suboptimality (fx ), the magnitude of the gradient (dfx ) and the
rate predicted by the theory (rate). Theory states that either the function suboptimality or
the magnitude of the gradient has to be below the predicted rate, which is what we observe in
the right plot of Figure 6.3 as well. Note that the theory focuses on worst case bounds, which
is possibly the case why the difference between the rate and the magnitudes is so huge.
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Figure 6.3: Plot of a one-dimensional function with a plateau being optimized (left) and the
convergence of the magnitude of the gradient descent with its corresponding rate (right).

6.A Some basic properties of WPL functions

Here we establish some basic properties of smooth WPL functions.

Proposition 6.21. Assume f ∈ WPL(µ) for some µ > 0. Then

(i) X ∗ = {x ∈ Rn : ∇f(x) = 0}

(ii) X ∗ = {x ∈ Rn : ξ(x) = 0}

(iii) If ∇f(x) is continuous, then X ∗ is convex.

(iv) Assume ∇f(x) is continuous. Then f is non-decreasing on all rays emanating from x∗.
That is, ψ(t) := f(x∗ + t(x− x∗)) is non-decreasing on t ≥ 0 for all x ∈ Rn.

Proposition 6.22. Assume that f has continuous gradient. If there exists a constant c > 0
such that ∫ 1

0

‖∇f(x∗ + t(x− x∗))‖ dt ≤ c‖∇f(x)‖, x ∈ Rn,

then f ∈ WPL( 1
c2 ).

Proof. Using the fundamental theorem of calculus, Cauchy-Schwartz inequality, and then ap-
plying the assumption, we get

ξ(x) = f(x)− f(x∗) =

∫ 1

0

〈∇f(x∗ + t(x− x∗)),x− x∗〉 dt

≤
∫ 1

0

‖∇f(x∗ + t(x− x∗))‖ · ‖x− x∗‖ dt

≤ c‖∇f(x)‖‖x− x∗‖.

Let us shed light on the above result. If f is convex, then the directional derivative ψ(t) :=
〈∇f(x∗ + t(x − x∗)),x − x∗〉 is an increasing function of t, and hence can be bounded above
on [0, 1] by ψ(1) = 〈∇f(x),x− x∗〉 ≤ ‖∇f(x)‖‖x− x∗‖. It follows that f ∈ WPL(1), which we
already know.

Theorem 6.23. The following hold:

1. If µ1 ≥ µ2, then WPL(µ1) ⊆ WPL(µ2).

2. If f is convex, then f ∈ WPL(µ) for all µ ≤ 1.

3. If f ∈ WPL(µ), then af + b ∈ WPL(µ) for all a ≥ 0 and b ∈ R.
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4. If f ∈ C1(L), then SPL(µ) ⊆ WPL(4µ/L).

5. Let f ∈ C1(L), fix x∗ ∈ X ∗, and assume that there exists a constant c > 0 such that
‖x− x∗‖ ≤ c‖∇f(x)‖ for all x ∈ Rn. Then f ∈ WPL( 4

L2c2 ).

6. Assume that there exists a constant c > 0 such that ‖∇f(x)‖ ≤ c for all x ∈ Rn. If
f ∈ WPL(µ), then ξ(x) ≤ c√

µ‖x−x∗‖ for all x ∈ Rn. That is, f is Lipschitz on each ray

emanating from x∗ with Lipschitz constant c√
µ .

7. Assume f ∈ WPL(µ) with µ > 0. If

〈∇f(x),x− x∗〉
‖∇f(x)‖‖x− x∗‖

≥ 1
√
µ
,

then f satisfies the restricted convexity property:

f(x∗) ≥ f(x) + 〈∇f(x),x∗ − x〉, x ∈ Rn.

Proof. 1. Obvious.

2. This was established in the introduction for µ = 1. It only remains to apply 1) to conclude
that 2) holds for all µ ≤ 1.

3. Obvious.

4. If f ∈ SPL(µ), then

‖∇f(x)‖2 · ‖x− x∗‖2

ξ2(x)

(6.2)

≥ 2µ‖x− x∗‖2

ξ(x)

(6.4)

≥ 4µ

L
.

5. We have ξ(x) ≤ L
2 ‖x − x∗‖2 using smoothness. Combining this with the assumption

‖x − x∗‖ ≤ c‖∇f(x)‖ from the claim we will prove f ∈ WPL( 4
L2c2 ) from the definition

(6.7)
2

Lc
ξ(x) ≤ 1

c
‖x− x∗‖2 ≤ ‖∇f(x)‖ · ‖x− x∗‖.

6. Directly using the definition of f ∈ WPL(µ) with the assumption ‖∇f(x)‖ ≤ c we get

ξ(x)
(6.7)

≤ 1
√
µ
‖∇f(x)‖‖x− x∗‖ ≤ c

√
µ
‖x− x∗‖.

7. Combining the definition of f ∈ WPL(µ) (6.7) with the assumption from the claim we get
that

√
µξ(x)

(6.7)

≤ ‖∇f(x)‖ · ‖x− x∗‖ ≤ √
µ〈∇f(x),x− x∗〉.

Dividing both sides by
√
µ and adding f(x∗) we get the restricted convexity.
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6.B Proofs

6.B.1 Proof of Lemma 6.13

Proof. From the definition of Algorithm 8 we have that x+ = x + u∗[S], where

u∗ := arg min
u∈Rn

{
〈∇[S]f(x),u〉+

1

2
u>M[S]u +

∑
i∈S

[gi(xi + ui)− gi(xi)]

}
(6.67)

It follows that

ξ(x+) = ξ(x + u∗)

(6.19)
= F (x + u∗)− F (x∗)

(6.13)
= f(x + u∗[S]) + g(x + u∗[S])− F (x∗)

(6.14)

≤ f(x) + 〈∇f(x),u∗[S]〉+
1

2
(u∗[S])

>Mu∗[S] + g(x + u∗[S])− F (x∗)

(6.13)
= F (x) + 〈∇f(x),u∗[S]〉+

1

2
(u∗[S])

>Mu∗[S] + g(x + u∗[S])− g(x)− F (x∗)

(6.19)
= ξ(x) + 〈∇f(x),u∗[S]〉+

1

2
(u∗[S])

>Mu∗[S] + g(x + u∗[S])− g(x)

(6.15)
= ξ(x) + 〈∇f(x),u∗[S]〉+

1

2
(u∗[S])

>Mu∗[S] +
∑
i∈S

[gi(xi + u∗i )− gi(xi)]

(6.67)
= ξ(x) + min

u∈Rn

{
〈∇[S]f(x),u〉+

1

2
u>M[S]u +

∑
i∈S

[gi(xi + ui)− gi(xi)]

}
(6.24)

≤ ξ(x) + θ(S,x) · min
y∈Rn

{
〈∇f(x),y〉+

L

2
‖y‖2 + g(x + y)− g(x)

}
(6.21)

= [1− θ(S,x) · µ(x)] · ξ(x)

Note that the inequality in the one-to-last line might happen in the case, when x /∈ X in the
definition of the proportion function in (6.24). Chaining up the resulting expressions from xK

all the way back to x0 proves the K-step bound.

6.B.2 Proof of Theorem 6.15

Proof. Using the result of Lemma 6.24, we have the bound (6.71). To get the result, we will use
the bound (a+ b)2 ≥ 4ab, which holds for any a, b > 0. Specifically, we will use it for a = ξ(x)
and b = λF

2 ‖x− x∗‖2 in the expression in (6.71) to get

−L · min
y∈Rn

{
〈∇f(x),y〉+

L

2
‖y‖2 + g(x + y)− g(x)

}
≥ ξ(x) ·min

{
L

2
,

LλF
λF − λf + L

}
,

which is the claimed result.

6.B.3 Proof of Theorem 6.16

Proof. The one-step bound (6.26) combined with the definition of the class SgPL (6.7) gives

ξ(xk+1)
(6.26)

≤
(
1− θ(Sk,xk) · µ(xk)

)
· ξ(xk)

(6.7)

≤ (1− θ(Sk,xk) · µ) · ξ(xk).
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Now, by taking full expectation over the whole sampling procedure on both sides and using the
definition of µk (6.53) we get

E[ξ(xk+1)] ≤ E
[(

1− θ(Sk,xk)µ
)
· ξ(xk)

]
= E[ξ(xk)]− µE[θ(Sk,x

k) · ξ(xk)]

(6.53)
= (1− µk) ·E[ξ(xk)].

To establish the convergence rate (6.54), we use the estimate 1− s ≤ e−s to get E[ξ(xk+1)] ≤
e−µkE[ξ(xk)], which we can simply chain together repeatedly to get

E[ξ(xk+1)] ≤ e−
∑K−1
k=0 µkξ(x0).

Setting the right-hand side less or equal to ε and rearranging we finally get (6.54).

6.B.4 Proof of Theorem 6.18

Proof. Using the result of Lemma 6.24, we have the bound (6.71). Plugging λF = λf = 0 into
the expression in (6.71) we get

−L · min
y∈Rn

{
〈∇f(x),y〉+

L

2
‖y‖2 + g(x + y)− g(x)

}
≥ ξ2(x) ·min

{
L

2ξ(x)
,

1

2‖x− x∗‖2

}
,

which is the first part of the claimed result. As for the second part, we can directly bound
ξ(ξ) ≤ ξ(x0), as these are the only pairs of x,x0 we need to consider according to Definition 6.17.
Similarly, as the function value is bounded, the quantities ‖x− x∗‖ can be upper bounded by
the largest distance in the level set of f(x0), which is given by R in (6.60). Combining these
arguments, we get that

µ(x) ≥ ξ(x) ·min

{
L

2ξ(x)
,

1

2‖x− x∗‖2

}
≥ ξ(x) ·min

{
L

2ξ(x0)
,

1

2R2

}
,

which is the claimed result.

6.B.5 Proof of Theorem 6.19

Proof. Combining the one-step bound (6.26) with the definition of the class Wg
PL (6.57) we get

that

ξ(xk+1)
(6.26)

≤ [1− θ(Sk,xk) · µ(xk)] · ξ(xk)

(6.57)

≤ [1− θ(Sk,xk) · ρ(x0) · ξ(xk)] · ξ(xk)

Now, taking full expectation over the whole sampling process on both sides and using the
definition of µk (6.61) we get

E[ξ(xk+1)] ≤ E
[(

1− θ(Sk,xk) · ρ(x0) · ξ(xk)
)
· ξ(xk)

]
= E[ξ(xk)]− ρ(x0)E[θ(Sk,x

k) · (ξ(xk))2]

(6.61)
=

(
1− µkE[ξ(xk)]

)
·E[ξ(xk)].

Observe, that {µk}Kk=0 and {E[ξ(xk)]}Kk=0 are both positive scalars, therefore we can use
Lemma 6.4 to get the bound

E[ξ(xK)] ≤ ξ(x0)

1 + ξ(x0)
∑K−1
k=0 µk

.
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Putting the right-hand side less than ε and rearranging leads to the claimed result (6.62).

6.B.6 Proof of Theorem 6.20

Proof. If part (i) from the claim holds, we are done. Now assume on the contrary, that (i) does
not hold, i.e.,

− L · min
y∈Rn

{
〈∇f(xk),y〉+

L

2
‖y‖2 + g(xk + y)− g(xk)

}
≥ ε (6.68)

for all k ∈ {0, . . . ,K − 1}. It follows, that

µ(xk)
(6.22)

=
−L ·miny∈Rn

{
〈∇f(xk),y〉+ L

2 ‖y‖
2 + g(xk + y)− g(xk)

}
ξ(xk)

(6.68)

≥ ε

ξ(xk)
.

for all k ∈ {0, . . . ,K − 1}. Using the result from Lemma 6.13, we have that ξ(xk) ≤ ξ(x0) for
all k, which we can use to further bound

µ(xk) ≥ ε

ξ(x0)
. (6.69)

Using (6.26) combined with the above result (6.69) we get

ξ(xK)
(6.26)

≤
[
1− µ(xK−1) · θ(SK−1,x

K−1)
]
ξ(xK−1)

(6.69)

≤
[
1− εθ(SK−1,x

K−1)

ξ(x0)

]
ξ(xK−1)

Taking the expectation over the whole sampling procedure on both sides and using the definition
of µk in (6.63) we get

E[ξ(xK)] ≤ E

[(
1− εθ(SK−1,x

K−1)

ξ(x0)

)
ξ(xK−1)

]
= E[ξ(xK−1)]− ε

ξ(x0)
E[θ(SK−1,x

K−1) · ξ(xK−1)]

(6.63)
=

(
1− εµK−1

ξ(x0)

)
E[ξ(xK−1)] (6.70)

Combining the above inequality (6.70) with (1− z) ≤ exp(−z) repeatedly, we get

E[ξ(xK)]
(6.70)

≤
(

1− εµK−1

ξ(x0)

)
E[ξ(xK−1)]

≤ exp

(
−εµK−1

ξ(x0)

)
E[ξ(xK−1)]

(6.70)

≤ . . .

(6.70)

≤ exp

(
−
ε
∑K−1
k=0 µk
ξ(x0)

)
ξ(x0)

(6.64)

≤ ε,

where the last line follows from comparing the logarithms of both sides. This proves (ii).
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6.C Technical Lemmas

6.C.1 Lemma 6.24

Lemma 6.24. Let f be λf -strongly convex (6.51) with λf ≥ 0 and F be λF -strongly convex
(6.50) with λF ≥ 0. Then

− min
y∈Rn

{
〈∇f(x),y〉+

L

2
‖y‖2 + g(x + y)− g(x)

}
≥ min

{
1

2
ξ(x),

(
ξ(x) + λF

2 ‖x− x∗‖2
)2

2(λF − λf + L)‖x− x∗‖2

}
. (6.71)

Proof. Let

β = min

{
1,

ξ(x) + λF
2 ‖x− x∗‖2

(λF − λf + L)‖x− x∗‖2

}
. (6.72)

Observe, that β = 1 implies, that

(λF − λf + L)‖x− x∗‖2 ≤ ξ(x) +
λF
2
‖x− x∗‖2,

from which it follows that

λf − L
2
‖x− x∗‖2 ≥ −1

2
ξ(x) +

λF
4
‖x− x∗‖2 ≥ −1

2
ξ(x) (6.73)

Now, it follows that

− min
y∈Rn

{
〈∇f(x),y〉+

L

2
‖y‖2 + g(x + y)− g(x)

}
(6.13)

= F (x)− min
y∈Rn

{
f(x) + 〈∇f(x),y〉+

L

2
‖y‖2 + g(x + y)

}
(6.51)

≥ F (x)− min
y∈Rn

{
f(x + y)− λf

2
‖y‖2 +

L

2
‖y‖2 + g(x + y)

}
(6.13)

= F (x)− min
y∈Rn

{
F (x + y) +

L− λf
2
‖y‖2

}
(let y = β(x∗ − x))

≥ F (x)− F (βx∗ + (1− β)x)− β2(L− λf )

2
‖x− x∗‖2

(6.50)

≥ F (x)− βF (x∗)− (1− β)F (x) +

(
λFβ(1− β)

2
− β2(L− λf )

2

)
‖x− x∗‖2

(6.19)
= β

(
ξ(x) +

λF
2
‖x− x∗‖2

)
− β2 (λF − λf + L)

2
‖x− x∗‖2

(6.72)
= min

{
ξ(x) +

λf − L
2
‖x− x∗‖2,

(
ξ(x) + λF

2 ‖x− x∗‖2
)2

2(λF − λf + L)‖x− x∗‖2

}
(6.73)
> min

{
1

2
ξ(x),

(
ξ(x) + λF

2 ‖x− x∗‖2
)2

2(λF − λf + L)‖x− x∗‖2

}
.

6.C.2 Lemma 6.25

Lemma 6.25. Let f be a given function and let X,Y be random variables for which it holds
that Prob(f(X) ≥ 0) = 1 and Prob(E[Y | X] ≥ 0) = 1. Additionally, let c > 0 be a scalar
such that

c ≤ E[Y | X] (6.74)
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Then it holds that
E[f(X)Y ] ≥ cE[f(X)]. (6.75)

Proof. Using the tower property E[X] = E[E[X|Y ]] combined with assumption (6.74) we get

E[f(X)Y ] = E[E[f(X)Y | X]] = E[f(X)E[Y | X]]
(6.74)

≥ E[f(X)c]

= cE[f(X)]

which concludes the proof.
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6.D Notation Glossary

Notation Description
R the set of real numbers
R+ the set of positive real numbers
R̄ the set R ∪ {+∞}
x a vector
xi the i-th entry of the vector x
X a matrix
Xi: the i-th row of the matrix X
X:j the j-th column of the matrix X
Xij the entry at the i-th row and j-th column of the matrix X
[n] a shorthand for the set {1, . . . , n}
xS a |S|-dimensional vector containing entries of x with indices in S
x[S] the vector x with the entries with indices outside S zeroed out
XS a |S| × |S| submatrix of X containing only rows and columns with indices in S
X[S] the matrix X with all entries on columns or rows outside of S zeroed out
X−1

[S] the n× n matrix containing (XS)−1 at the rows and columns indicated by S.

f a smooth function from Rn to R (see Def. 6.8)
g a separable (6.9) and possibly non-smooth function from Rn to R
F the objective function from Rn to R, defined as f + g (6.13)

∇Sf(x) a shorthand for (∇f(x))S
∇[S]f(x) a shorthand for (∇f(x))[S]

ξ(x) the optimality gap defined in (6.19)
λ(x) the auxilary function defined in (6.20)
µ(x) the forcing function defined in (6.21)
θ(S,x) the proportion function defined in (6.24)
X ∗ the set of global minimizers of F
X the set of vectors with nonzero λ(x) (6.23)

λmin(M) the smallest eigenvalue of a square matrix M
λmax(M) the largest eigenvalue of a square matrix M

M, LI the M-smoothness matrices of f (6.14) for smooth and non-smooth cases
Lτ the smoothness parameter defined as maxS:|S|=τ{λmax(MS)}

λF , λf strong convexity parameters of F and f , respectively
US(x,u) the quadratic upper bound function at a given point x, defined in (6.16)

Table 6.3: Notation Glossary.
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Conclusion and Extensions

In this work we tackled the fundamental problem of empirical risk minimization

w∗ = arg min
w∈W

 1

n

n∑
j=1

fj(w) + r(w)

 ,

in a few different formulations. In each chapter, we proposed a new approach for solving this
problem using stochastic methods, with a focus on the sampling strategies.

In Chapter 1 we introduced the emprical risk minimization problem in detail together with
some baseline methods for solving it.

In Chapter 2 we introduced a new adaptive sampling strategy for stochastic dual coordinate
ascent. The adaptivity comes from the fact that the method changes its sampling distribution
over the course of the iterative process. We show that the proposed sampling is theoretically
superior to all previously known samplings, but it is inpractical as it has high implementation
cost. For this reason, we include a practical variant, which empirically outperforms other
existing approaches.

In Chapter 3 we proposed a new variance-reduced primal method, which we analyzed for
arbitrary sampling schemes. The method can be viewed as a dual-free version of SDCA, as it
acts on the primal formulation of empirical risk minimization, but has an update reminiscent of
SDCA. We also proposed a new sampling method, which aims to help with the problems with
synchronizing parallel coordinate descent updates. The main idea of the sampling is to make
sure that every core has the same amount of computation to do on each iteration in order to
minimize the idle time of the cores.

In Chapter 4 we proposed a novel sampling scheme. The main idea of the new sampling
is to combine parallel sampling strategies with importance sampling – giving rise to the first
ever importance sampling for minibatches. We give theoretical rates for our new sampling and
we also empirically test it against uniform parallel sampling strategies. The empirical results
for the parallel setting are very pleasing, as the observed speedup against uniform strategies
corresponds to the speedup observed for the importance sampling in the serial case.

In Chapter 5 we compared the performance of coordinate descent and stochastic dual coor-
dinate ascent on the problem of linear ERM. In the case that the data is dense, we confirmed the
community belief that primal coordinate descent is advantegous if d ≥ n and vice-versa – dual
coordinate ascent is better if n ≥ d. However, we showed that in the case of sparse data, the
situation gets more complicated. First, we proved that serial importance sampling is optimal
even if we take into account the iteration costs. Second, we showed that the superiority of one
of the approaches is connected to a certain data-dependent quantity, which can be computed for
each dataset. Additionally, we gave examples of datasets where the dual approach outperforms
the primal even if d� n and vice-versa.

Finally, in Chapter 6 we introduced the notion of Weak Polyak- Lojasiewicz condition, which
can be seen as the Polyak- Lojasiewicz condition for convex functions. Using this notion, we
estabilished global convergence guarantees for proximal block descent methods for a large class
of previously unconsidered non-convex objectives. Additionally, our analysis allows for greedy,
cylic and other deterministic sampling strategies on top of traditional randomized samplings, in
which we also include adaptive strategies. We also showed how we recover the state-of-the art
guarantees for a large class of functions and sampling strategies as special cases of our analysis.

To conclude, we will now briefly outline possible future extensions to our work. First and
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foremost, we did not include any accelerated methods in our approaches. This is not a major
issue, as acceleration can be achieved by using frameworks as [36, 65, 66]. However, by directly
considering accelerated methods in our analysis, we believe that we will get better practical
speedup. Some of the parts of this work can be extended to incorporate accelerated methods
in a straightforward fashion (e.g. Chapter 5), while others might prove more challenging (e.g.
Chapter 2). There is definitely a lot of research to be done in this direction.

Secondly, the challenge of inventing a sampling which theoretically beats importance sam-
pling in serial coordinate descent / serial dual coordinate ascent is still on. Indeed, all the
methods which offer better bounds in theory are inpractical, due to their high iteration cost,
and only their heuristic versions are outperforming importance sampling in wall clock time. We
believe that our contribution in Chapter 2 lays solid groundwork for devising such a sampling
strategy.

Lastly, due to the popularity of non-convex objectives appearing in empirical risk minimiza-
tion and machine learning in general, we find it important to extend the current analysis of
gradient descent type methods to an even wider class of objectives. In Chapter 6 we managed
to extend the analysis of block descent methods to a new class of objectives, but it is definitely
not the final station on this journey. The optimization community is well aware of this research
direction and its utmost importance, as there is currently an increasing amount of papers being
published on non-convex optimization every year, largely due to the recent popularity of deep
learning methods.
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