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Abstract

Motor neuron diseases (MNDs) are progressive neurodegenerative disorders
characterized by selective death of motor neurons leading to spasticity, muscle

wasting and paralysis. Human VAMP-associated protein B (hVAPB) is the causative

gene of a clinically diverse group of MNDs including amyotrophic lateral sclerosis

(ALS), atypical ALS and late-onset spinal muscular atrophy. The pathogenic
mutation is inherited in a dominant manner. Drosophila VAMP-associated protein of
33 kDa A (DVAP-33A) is the structural homologue of hVAPB and regulates synaptic

remodeling by affecting the size and number of boutons at neuromuscular junctions

(NMJs). Associated with these structural alterations are compensatory changes in the

physiology and ultrastructure of synapses, which maintain evoked responses within
normal boundaries. DVAP-33A and hVAPB are functionally interchangeable and

transgenic expression ofmutant DVAP-33A in neurons recapitulates major hallmarks
of the human disease including locomotion defects, neuronal death and aggregate

formation. Aggregate accumulation is accompanied by a depletion of the endogenous

protein from its normal localization. These findings pinpoint to a possible role of
hVAPB in synaptic homeostasis. To elucidate the patho-physiology underlying motor

neuron degeneration in humans, we also generated a Drosophila model of ALS8 in
the adult eye. Targeted expression of mutant DVAP-33A in the Drosophila

compound eye causes a degenerative phenotype characterized by a smaller eye

containing missing or aberrantly oriented bristles and fused ommatidia. In a F1

deficiency screen, we performed a genome-wide survey aimed at identifying
enhancers and suppressors of the degenerative eye phenotype. Several interacting

regions have been found and the identification of these interacting genes will shed
new light on the molecular mechanisms underlying VAP-induced ALS.
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1.1 Modeling neurodegenerative diseases in Drosophila

Amyotrophic Lateral Sclerosis (ALS) is a devastating neuromuscular degenerative
disease that is the most common form of motor neuron disease in adults. Although
modern genetics has identified several mutations as a primary cause of the disease
and has implicated other ones as potential contributors, the mechanisms underlying
the characteristic selective degeneration and death of motor neurons in ALS have
remained a mystery (Mulder, D.W., 1986; Talbot, K., 2002). Since there is still no
effective treatment for this progressive and fatal disorder, creating a powerful and
versatile experimental model of ALS is important to provide a better understanding
of the molecular mechanisms responsible for ALS. This in turn, will open up the

possibility to identify new targets for more effective therapeutic interventions.

Comprehensive cross genomic analysis of human and the fly genome has
shown that 50% of fly genes exhibit apparent homology to human genes, including
conservation of entire genetic pathways and that 75% of all human disease genes

have an orthologue in Drosophila (Rubin et al., 2000; Fortini et al, 2000; Reiter et al,
2001). Given the high degree of evolutionary conservation among genes that control
neuronal function, Drosophila makes an ideal system to study human

neurodegeneration. Fly models have been successfully developed for a number of
different neurodegenerative diseases (Warrick et al., 1998; Jackson et al., 1998;
Struhl & Greenwald, 1999; Feany & Bender, 2000; Fernandez-Funez et al., 2000;
Jackson et al., 2002; lijima et al., 2004), and the neurodegenerative field has begun
to harness the power of Drosophila genetics in dissecting pathways of disease

pathogenesis to identify targets for therapeutic intervention.

The adult fly eye has proven to be a favourable system for genetically

dissecting various cellular processes, including receptor tyrosine kinase signaling,
cell cycle progression, and cell death pathways (Agapite & Stellar, 1997; Tanenbaum
et al, 2000; Wolff et al., 1997). It has also been the tissue of choice to direct the

expression of aberrant human genes in many neurodegenerative disease models

16



(Jackson et al, 1998; Warrick et al, 1998; Fernandez-Funez et al, 2000). The

Drosophila eye is composed of about 800 regularly packed ommatidia, and
numerous defects in cell-fate determination and differentiation produces a rough eye

phenotype, the severity of which reflects the number or ommatidia affected (St

Johnston, 2002).

Typically, expression of the disease genes is driven in cells of the eye using
the UAS/Gal4 system (Brand and Perrimon, 1993) and neurotoxicity is monitored by
the disruption of ommatidia or loss of photoreceptors. Gross analysis of the fly eye

can easily be observed under the dissecting microscope in live flies by looking at the
size and at the roughness of the eye. Such easily assayed, nervous system specific
and degenerative phenotype, coupled with the dispensability of the eye for viability
and fertility in the adult fly also makes the fly eye an ideal system to conduct genetic
screens. Compared with experiments in vertebrates, large screens are facilitated in

Drosophila by the low cost, the short generation time, the capacity for experiments
with large numbers of animals and the availability of large collections of loss-of-
function and overexpression mutant strains. Together with a wide variety of genetic
tools available, this has made the fly eye one of the most popular system to study

neurodegeneration in Drosophila.

1.2 Polyglutamine Diseases

The Drosophila eye has been fully exploited to study the pathogenesis of

polyglutamine diseases. This diverse group of late-onset, dominantly inherited

neurodegenerative diseases is caused by expansions of polyglutamine (polyQ)-

encoding CAG trinucleotide repeats within coding regions of specific proteins.

Polyglutamine-expansion disorders characterized thus far in Drosophila are:

Huntington disease (HD) (Jackson et al, 1998) , spinobulbar muscular atrophy

(SBMA) (Takeyama et al., 2002), dentatorubral pallidoluysian atrophy (DR.PLA)

(Zhang et al., 2002) and spinocerebellar ataxias (SCAs, also known as Machado-

Joseph disease, MJD) (Fernandez-Funez et al., 2000; Warrick et al., 1998). The
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mechanisms underlying polyglutamine-induced neuronal cell death remain poorly
understood; however, using several Drosophila models, they were able to

substantially improve our knowledge of the process. The expanded polyglutamine

sequence confers a dominant gain-of-function on the encoded protein and there is a

critical threshold for glutamine repeat number. The disease does not occur if the

polyglutamine repeats are below a certain threshold, while number of repeats above a

certain threshold triggers the disease. The severity of the disease is also correlated
with the extent of CAG expansion, with long tracts conferring earlier onset and an

increased severity in the symptoms (Jackson et al. 1998; Warrick et al., 1998;
Fernandez-Funez et al., 2000).

In these Drosophila models, mutant huntingtin (Fltt) fragment including 120

glutamine residues (Jackson et al, 1998), mutant MJD fragment including 78

glutamine repeats (Warrick et al., 1998) and full-length ataxin-1 with 82 glutamine
residues (Fernandez-Funez et al., 2000) were expressed exclusively in the

developing fly eye. The respective number of repeats/residues expressed in the eye

corresponds to the number of repeats that will cause each disease while the number
of repeats/residues triggering each disease differs from one another. In every case,

expression of the mutant huntingtin, mutant MJD fragments and full-length ataxin-1
caused disruption of rhabdomere structure and loss of photoreceptor neurons;

disruption of the external crystalline lattice of the eye (a so-called 'rough eye') and
abnormal external eye respectively. Analysis on the internal structures of the eye also
revealed several abnormalities: retinal sections of the eye showed decreased retinal
thickness (Fernandez-Funez et al., 2000), disrupted retinal pseudopupil (Warrick et

al., 1998), and loss of rhabdomeres (Jackson et al., 1998).

1.3 Modifiers of Polyglutamine diseases

These Drosophila polyglutamine disease models have created a platform for
candidate-based and unbiased genetic screens to identify polyglutamine modifiers.
The basis of a modifier screen is to find the missing components of a given pathway
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and to achieve that, one would carry out a screen for dominant enhancers or

suppressors of a particular phenotype (St. Johnston, D., 2002). The rough-eye

phenotype observed when expression of expanded polyglutamine tracts are expressed
in the developing fly eye allows a nervous system specific, easily assayed and
detectable phenotype for carrying out such modifier screens. Moreover, the

dispensability of the eye for viability and fertility in the adult fly would facilitate the
identification of modifiers.

The first of these polyglutamine modifiers to be reported was Hsp70 (70
kilodalton heat shock protein). Retinal coexpression of Hsp70 dramatically

suppresses the eye phenotype of SCA3 (Spinocerebellar ataxia type 3) flies (Warrick
et al., 1999). Subsequently, Drosophila HDJ1, an Hsp40 (40 kilodalton heat shock

protein), was also identified in an unbiased transposon-based screen. Misexpression
of HDJ1 strikingly suppressed a polyglutamine phenotype (Kazemi-Esforjani and
Benzer, 2000). Other disease models of polyglutamine diseases expressing truncated
and full-length proteins have also identified Hsp40 as a suppressor of their associated
cellular toxicity (Fernandez-Funez et al., 2000; Takeyama et al., 2002).

Hsp70 and Hsp 40 both belong to a family of molecular chaperones and aid in
the proper folding of proteins. They are known to act under stress conditions to

influence the processing of abnormally folded proteins (Bukau and Horwich, 1998).
Since being identified as suppressors of polyglutamine toxicity, these molecular

chaperones have been found to extend their suppressor activities to other human

neurodegenerative models such as Parkinson's disease (PD) (Auluck et al., 2002).

Other modifiers have also been identified in genetic screens of polyglutamine
diseases. Not only is the effect of protein-folding important, so is the clearance of the
disease protein. Enhancement of polyglutamine toxicity in flies has been shown to be
caused by mutations in components of the proteosome pathway such as ubiquitin

(Fernandez-Funez et al., 2000; Chan et al., 2002). Several other cellular pathways
have also been implicated by genetic screens such as small ubiquitin-like modifier
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(SUMO) pathways (Chan et al., 2002). genes implicated in neoplasia (Kazemi-

Esfarjani and Benzer, 2002), in addition to pathways associated with mRNA

regulation, cellular detoxification and transcriptional regulation (Fernandez-Funez et

al., 2000; Steffan et al., 2001).

Glutathione-S-transferase (GST) was uncovered as one of the suppressors of
the Ataxin-1 phenotype. GSTs are enzymes that have a principal role in cellular
detoxification as they catalyze the conjugation of reduced glutathione, which in turn

detoxifies the products of chemical and oxidative stress. This suggests that cellular
detoxification pathways are of great importance in polyglutamine diseases

(Fernandez-Funez et al, 2000).

The mechanism of cell death in polyglutamine-induced degeneration is not

yet known and so far, apoptosis related genes have not been recovered as modifiers
in genetic screens. P35, a baculoviral caspase inhibitor, was reported to be a poor

suppressor of both Ataxin-3 and Huntingtin-induced retinal degeneration (Jackson et

al., 1998; Warrick et al., 1998). However, a candidate-based approach to assess the
role of specific cell-death regulators revealed a common role of Dark (Drosophila

Apaf-1-related killer) in polyglutamine pathogenesis. Dark is the fly homologue of

Apaf-1, a key regulator of mammalian apoptosis. Sang and colleagues reported that

polyglutamine-induced cell death was drastically suppressed in flies lacking Dark in
addition to a suppression in caspase activation and aggregate formation (Sang et al.,

2005). Furthermore, Apaf-1 was found to colocalize to aggregates in brains of a

mouse model of Huntington's disease and patients. These observations suggest that

Dark/Apaf-1 may play a role in the formation of pathogenic polyglutamine-

containing aggregates and a common role in polyglutamine pathogenesis (Sang et al.,

2005).

The success of Drosophila genetic screens in neurodegenerative diseases and
the identification of several modifiers has already led to the possibility of preclinical
trials for many of these diseases. Polyglutamine modifiers that have generated
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special interest are those involved in transcriptional pathways, with several

transcriptional cofactors reported as genetic modifiers in flies such as CREB binding

protein (CBP), SinSA, Rpd3 and Drosophila C-terminal binding protein (dCtBP)

(Fernandez-Funez et al., 2000, Steffan et al., 2001). This finding shows that the loss
of CBP or other transcriptional activities might be involved in polyQ disease

progression. CBP has intrinsic histone acetyltransferase activity which can be
inhibited by binding to a fragment of Huntington disease protein with expanded

polyQ repeats. In flies, histone deacetylase (HDAC) inhibitors such as butyrate and

suberoylanilide hydroxamic acid (SAHA) were also shown to arrest ongoing

progressive neural degeneration induced by polyglutamine repeat expansion (Steffan
et al., 2001). Furthermore, expression of Huntington and androgen receptor with

expanded polyQ repeats in cultured cells reduces the level of acetylated histones H3
and H4, and this reduction can be reversed by administering inhibitors of HDAC

(Steffan et al., 2001; McCampbell et al., 2001). This line of evidence indicates that
HDAC inhibitors might be a useful class of agents to ameliorate the transcriptional

changes in HD and has lead to SAHA being tested in preclinical trials in mouse

models of Huntington disease (Hockly et al., 2003).

Another potential target for therapeutic intervention was uncovered by Chen
and colleagues when they investigated the role of protein phosphorylation in SCA1

(Spinocerebellar ataxia type 1) pathogenesis, as it has been shown previously that
substitution of ataxin-1 phosphorylation site greatly diminishes the ability of ataxin-1
to aggregate (Emamian et al., 2003). It was found that the 14-3-3 protein, a

multifunctional regulatory molecule, mediates the neurotoxicity of ataxin-1 by

binding to and stabilizing ataxin-1, thereby slowing its normal degradation. The
association of ataxin-1 with 14-3-3 is regulated by Akt phosphorylation and in a

Drosophila model of SCA1, both 14-3-3 and Akt were shown to modulate ataxin-1 -
induced neurodegeneration, thus identifying 14-3-3 and phosphatidylinositol 3-
kinase/Akt signalling as potential targets for therapeutic interventions (Chen et al.,
2003).
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Recent pathological and molecular analyses have even revealed common

attributes between what have been normally thought as distinct diseases based on

syndromic classifications of neurodegenerative disorders. In particular, a functional
link between seemingly unrelated neurodegenerative diseases has been reported for
Ataxin 1, the gene responsible for SCA1 and Ataxin 2, the gene causing SCA2

(Spinocerebellar ataxia type 2) (Al-Ramahi et al., 2007). In addition, it has been
shown that Ataxin 2 also contributes to the pathogenesis of Ataxin 3, the causative

gene of Spinocerebellar Ataxia 3 (Lessing and Bonini, 2008).

The poly-glutamine diseases mentioned above involved the expansion of
trinucleotide repeat which leads to toxic protein production. However, there are other
diseases caused by trinucleotide repeat expansion within noncoding regions of
mRNAs. An example of trinucleotide repeat expansion within noncoding regions of
mRNAs is SCA8 (Spinocerebellar ataxia type 8). The human SCA8 gene, which
encodes a noncoding RNA, when expressed in fly eye induces a late-onset,

progressive neurodegeneration phenotype. Both wild-type and trinucleotide-

expanded SCA8 induced neurodegenerative eye phenotypes. A genetic screen was

carried out using the SCA8 model in the Drosophila eye which identified four

neuronally expressed RNA-binding proteins (Staufen, muscle blind, split ends and

CG3249) as modifiers of SCA-8-induced neurodegeneration (Mutsuddi et al., 2004).
This screen provided potential candidates for designing therapeutic interventions for
the treatment of SCA-8 and understand the mechanism of noncoding-region
trinucleotide repeats-induced neurodegeneration.

Fragile X mental retardation (FMR) is another disease caused by trinucleotide

repeat expansion within noncoding regions of mRNAs. rCGG repeats in the 5'UTR
of the FMR gene cause neurodegeneration in premutation carriers. Expressing 90

noncoding rCGG repeats (an intermediate repeat number between repeat numbers
found in patients and normal individuals) in the fly eye was sufficient to cause retinal

degeneration. HSP70- and ubiquitin-positive neuronal inclusion bodies were found in
the degenerating neurons even though no mutant protein was produced from this
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repeat sequence. In addition, overexpression of HSP70 suppressed rCGG repeat-

induced neuronal cell death. It is possible that the expanded RNAs cause neuronal

toxicity by sequestering away essential RNA-binding proteins and molecular

chaperones (Jin et al., 2003).

1.4 Alzheimer's disease and modifier screens

A key event in the pathogenesis of Alzheimer's disease (AD) is the deposition of
senile plaques consisting largely of a peptide known as P-amyloid (A|3) that is
derived from the membrane bound amyloid precursor protein (APP) and it is the

cleaving of APP that generates pathogenic peptides (Tanzi & Bertram. 2005). The

Drosophila eye has been used in this instance to study the effects of human Ap

peptide overexpression. Ap40 and Ap42, were expressed throughout eye development
and strains containing Ap42 transgenes showed different degrees of eye

disorganization ranging from slight abnormalities to more pronounced eye defects
characterized by fusion of ommatidia and missing inter-ommatidia bristles. In the
most severely affected strains, the eyes were 'glazed' and reduced in size. This

phenotype was then used in a genetic modifier screen, where it was found that a

mutation in a Drosophila neprilysin gene suppresses the Ap42 rough-eye phenotype

by lowering the levels of Ap42 peptide, supporting the role of neprilysin in the
catabolism of Ap42 peptides in vivo (Finelli et al., 2004). Neprilysin has previously
been implicated in AP degradation (Iwata et al., 2001); this supports the use of

Drosophila to identify other factors involved Ap metabolism and toxicity to help in
the search of a potential therapeutic target for the treatment ofAD.

P- and y-secretase are responsible for generating pathogenic Ap peptides, y-
secretase cleavage of APP in the transmembrane domain underlies the majority of

early onset, familial AD. y-secretase resides in a large multi-protein complex, of
which Presenilin, Nicastrin, APH-1 and PEN-2 are four essential components (De

Trooper, 2003). Because the pathogenesis ofAD results from increased deposition of

Ap, Guo and colleagues generated flies that function as living reporters for APP y-

23



secretase activity. This sensitized genetic system utilizes a small eye phenotype to

identify components or regulators of y-secretase activity. A genetic screen carried out

by the same group identified a suppressor of the reduced eye phenotype that was

mapped to the 23C1-3 chromosomal region which contains 10-15 annotated genes

whose products may promote y-secretase activity. Once the modifier gene is
identified, it may provide another therapeutic target for AD treatment.

1.5 Tauopathies and modifiers

Neurofibrillary tangle (NFT) that is mainly made up by tau proteins is the second key
feature of AD pathology. Nevertheless, neurofibrillary pathology is also seen in a

number of disorders collectively known as tauopathies. These disorders include

fronto-temporal dementia with Parkinsonism linked to chromosome 17 (FTDP-17),

progressive supranuclear palsy and corticobasal degeneration (Lee et al., 2001).

Tau proteins are microtubule-associated proteins that are thought to stabilize
axonal microtubules and increasing tau phosphorylation in regions flanking the
microtubule binding repeats, negatively regulates microtubule binding. It is thought
that tauopathies occur due to the dysregulation of tau phosphorylation and hence
microtubule binding. Hyperphosphorylated and abnormally phosphorylated tau is

thought to occur early in the cascade of events leading to the formation of insoluble
tau protein that is seen in AD and tauopathies (Lee et al., 2001).

A genetic model of tauopathy was reported where wild type and mutant forms

(R406W and V337M) of human tau were expressed in Drosophila that recapitulates
the key features of the human disorders even though no neurofibrillary pathology
was observed. However, when human mutant tau (R406W) was expressed in the

developing Drosophila eye, a mild decrease in eye size and rough-eye phenotype
was observed (Wittmann et al., 2001). This phenotype in the eye is significant
because it would greatly facilitate a modifier screen.
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Another Drosophila model was able to show that overexpression of wild-type
human tau in the developing eye resulted in degeneration (reduced eye size and

rough eye phenotype), without apparent accumulation of NFT as observed in other
models (Williams et al, 2000, Wittmann et al., 2001). However, enhanced tau-

induced neurodegeneration accompanied by formation of NFT-like filamentous tau

aggregates was observed when tau was hyperphosphorylated by co-expression of

GSK.-3P homolog Shaggy. Perturbations in the expression of downstream

components of Shaggy such as Armadillo (Drosophila homolog of (3-catenin) and

Drosophila T Cell Factor in the Wingless pathway also modulate tau-induced

neurodegeneration. Furthermore, it was also shown that inhibitors of apoptosis

suppressed tau-induced neurodegeneration. These findings suggest that

Wnt/Wingless pathway could be a mediator of tau-induced neurodegeneration and
factors other than phosphorylation can modulate neurodegeneration associated with
tau dysregulation (Jackson et al., 2002).

Using the Drosophila model for tauopathy reported by Wittmann and

colleagues, a screen for genetic modifiers of tau-induced neurodegeneration
identified modifiers largely consisted of kinases and phosphatases including MARK
kinase and the PP1 and PP2A phosphatases that have previously been shown to

phosphorylate or dephosphorylate tau in vitro (Goedert et al. 1995 ; Liao et al. 1998 ;

Sontag et al. 1999). In addition, several tau kinases such as CDK5, PKA and the JNK

pathway were also reported to enhance tau toxicity in vivo. Despite some clinical and

pathological similarities among neurodegenerative disorders and suggestions that
disorders might share similar mechanisms of pathogenesis related to abnormal

protein folding and aggregation, a direct comparison of modifiers between

polyglutamine disorders and tauopathies revealed distinct mechanisms controlling
tau and polyglutamine toxicity (Shulman and Feany, 2003).

Tau phosphorylation occurs on numerous residues and several kinases have
been shown to be involved, leading to the conundrum of exactly which one

contributes most to the formation of NFTs. In an elegant study carried out by
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Nishimura and colleagues, they were able to show that the PAR-1/MARK kinase is
the chief culprit in tau-related neurodegeneration. Drosophila PAR-1 and its
mammalian homolog MARK (Microtubule affinity regulating kinase) are required
for cellular processes involving microtubule organization and cytoskeletal dynamics.

Phosphorylation of microtubule-binding proteins including tau by MARK, leads to

microtubule disruption (Drewes et al., 1997). Using the Drosphila eye as a model

system, they have been able to show that Drosophila PAR-1 initiates tau-toxicity by

triggering a temporally ordered phosphorylation process by directly phosphorylating
its two PAR-l/MARK-dependent phosphorylation sites, S262 and S356. This
phosphorylation event is a pre-requisite for action of downstream kinases such as

glycogen synthase kinase 3 (GSK-3) and cyclin-dependent kinase-5 (Cdk-5) to

phosphorylate several other sites and generate disease associated phosphor-epitopes.

Coincidently, studies using transgenic mice overexpressing Cdk5 or GSK-3 have

implicated these two kinases in tau phosphorylation and aggregation (Lucas et al.,
2001; Noble et al., 2003). These studies strongly suggest an initiator role for PAR-1,
where its phosphorylation acts as a trigger for subsequent multistep phosphorylation
of tau by other tau kinases to form hyperphosphorylated, aggregate-prone tau. These

findings provide yet more potential therapeutic targets of tauopathies by

differentiating the effects on various phosphorylation events of tau-toxocity

(Nishimura et al., 2004).

1.6 Parkinson's disease and modifiers

Parkinson's disease is a common movement disorder affecting about l% of the

population above the age of 65 and exists also as a juvenile onset form. The

neuropathological hallmarks of this condition are progressive degeneration of

dopamine neurons in the substantia nigra pars compacta, and the presence of

cytoplasmic neuronal inclusions known as Lewy bodies (Lang and Lozano, 1998).

Although Parkinson's disease is generally sporadic, familial forms have been
characterised. Mutations in a-synuclein have been found in families with autosomal-
dominant Parkinson's disease (Polymeropoulos et al., 1997, Kruger et al, 1998).
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Genomic triplication of the a-synuclein locus has also been found to cause

dominantly inherited Parkinson's disease (Singleton et al., 2003). Incidentally, a-

synuclein is also a component of Lewy bodies and Lewy neurites in the brains of

patients with both familial and sporadic Parkinson's disease (Spillantini at al., 1997,

Kruger at al., 1998).

Not all Drosophila models of neurodegeneration have been modeled in the
adult eye. Feany and Bender were the first to model Parkinson's disease in

Drosophila with pan-neural expression of normal human a-synuclein and two

familial mutant forms. Both wild type and mutant forms of a-synuclein induced adult
onset loss of tyrosine hydroxylase in dopaminergic neurons. Similar to human
Parkinson's, Lewy body-like accumulations of a-synuclein and progressive motor

impairment are observed in this fly model. In this instance, very mild degeneration in
the Drosophila eye is observed in aged flies expressing wild type a-synuclein (Feany
and Bender, 2000).

Chaperones such as HSP70 are up-regulated in stress responses to refold
misfolded proteins (Glover and Lindquist, 1998) and HSP70 has been shown to

suppress neurotoxicity of abnormal polyglutamine proteins in a fly model of SCA 3

(Warrick et al, 1999). Given the pathological similarities between polyglutamine-
and a-synuclein-mediated neurodegeneration the role of chaperones in Parkinsons's
have been examined using Drosophila models (Auluck et al., 2002). Coexpression of

Flsp70 in the dopaminergic neurons rescues a-synuclein induced toxicity whereas

compromising levels of HSP70 enhances toxicity in flies. Hsp70 and its co-

chaperone HSP40 have also been found to localize to Lewy bodies in the fly model
of a-synuclein and human patient tissues from Parkinson's disease and other

synucleinopathies. This suggests that altered chaperone activity by sequestration of

chaperone may be involved in progression of Parkinson's disease (Auluck et al.,

2002). The role of chaperone activity in a-synuclein toxicity is further empasized
when protection against a-synuclein neurotoxicity in dopaminergic neurons is
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observed when feeding flies with the drug geldanamycin, which acts to upregulate
heat shock response (Auluck and Bonini, 2002).

Whilst these findings emphasize the significance of chaperones in Parkinson's
disease pathology, the abnormal motor behaviour with the expression of a-synuclein

reported by Feany and Bender could not be reproduced (Auluck et al., 2002).

Furthermore, the significance of the a-synuclein model (Feany and Bender, 2000)
has been called into question when tyrosine hydroxylase stainings in the brain could
not detect any neurodegeneration, abnormal motor behaviour and retinal

degeneration that has been reportedly induced by a-synuclein (Pesah et al., 2005).
Pesah and colleagues used whole mount immuno-histochemistry techniques instead
of sequential paraffin sections used by Feany and Bender to study the number of

dopaminergic neurons in the missexpression of a-synuclein. However, the same

Gal4 drivers and a-synuclein transgenic lines were used in these two studies.
Therefore, the antibodies and whole mount method could account for the

discrepancies.

Loss of function mutations in the parkin gene, which encodes a ubiquitin-

protein ligase, was also found to underlie a familial form of Parkinson's disease
known as autosomal recessive juvenile parkinsonism (AR-JP) (Kitada et al., 1998).
The finding that Parkin functions as an ubiquitin protein ligase indicates that failure
to label specific cellular targets with ubiquitin could be responsible for dopaminergic
neuron loss in AR-JP (Greene et al., 2003). Loss of function mutants of Parkin in
flies have been reported to cause cell death of sperm and indirect fly muscles,
reduction in cell size. Moreover, mitochondria defects and increased susceptibility to

oxidative stress implicates disturbed mitochondrial function in the pathogenic
mechanism of Parkinson's disease (Greene et al., 2003; Pesah et al., 2004).

The identification of autosomal recessive mutations in Pinkl, which encodes

a Ser/Thr kinase with a mitichondrial-targeting signal potentially associates
mitochondrial dysfunction with the pathogenesis of Parkinson's disease (Velente et
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al., 2004). Removal of Drosophila Pinkl function results in degeneration of muscles
via apoptosis, mitochondrial morphological defects, increased sensitivity to oxidative

stress, male sterility and mitochondrial dysmorphology (Clark et al., 2006). Similarly
in other studies, mitochondrial associated dopaminergic neuronal degeneration

accompanied by locomotor defects and indirect flight muscle degeneration were

reported (Park et al., 2006; Wang et al., 2006; Yang et al., 2006). In addition,

neurodegeneration in these flies can be suppressed by the expression of human
SOD 1 and antioxidant treatment, further supporting the role of oxidative stress and
mitochondrial dysfunction in the disease (Wang et al., 2006). Another encouraging

finding that mitochondrial dysfunction could be a cause of Parkinson's disease is that
Pink and Parkin appear to act in a common pathway that influences mitochondrial

integrity (Clark et al., 2006).

1.7 Amyotrophic Lateral Sclerosis, ALS

Amyotrophic Lateral Sclerosis (also known as Lou Gehrig disease) is the best
characterised of all motor neuron diseases (MNDs). It was first described by the
French neurologist Jean-Martin Charcot in 1869 and is a progressive and usually
lethal neurodegenerative disorder caused by the degeneration of motor neurons. The
hallmarks of the disease is the selective dysfunction and death of motor neurons in
the brain and spinal cord, leading to spasticity, hyperreflexia, generalised weakness,
muscle atrophy and paralysis of voluntary muscles (Mulder, D.W., 1986; Talbot, K.,

2002).

ALS is the most prevalent motor neuron disease and strikes about 5 per

100,000 individuals. Most cases (about 90%) of ALS occurs without any genetic

linkage and is known as sporadic ALS while the remaining 10% of ALS cases are

familial (FALS), manifesting a variety of inheritance patterns with linkage to

multiple independent chromosome loci (Bruijn et al., 2004).

The pathological hallmark of ALS is selective atrophy and death of
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cortocospinal and corticobulbar neurons in the motor cortex and motor neurons in the
brain stem and spinal cord (Leigh and Garofolo, 1995). Affected neurons and axons

often have cytoskeletal pathology with accummulations of neurofilaments (mainly

hyperphosphorylated neurofilament subunits and peripherin) and aggregates of

ubiquinated proteins (Leigh et al., 1991; Sobue et al., 1990).

In both sporadic and familial ALS, the typical age of disease onset is between
45-60 years with a disease course of about 5 years. Progressive manifestations and
selective dysfunction of lower motor neurons (atrophy, cramps and fasciculations)
and cortical motor neurons (spasticity and pathological reflexes) in the absence of

sensory symptoms can be seen in patients. However, muscles controlling eye

movements and the urinary sphincter are spared from degenerating. Denervation of
the respiratory muscles and diaphragm towards the end of the disease course is

generally the fatal event. In the majority of ALS patients this occurs within 2 to 5

years of the onset of clinical symptoms (Mulder, D.W., 1986; Talbot, K., 2002).

1.7.1. Superoxide Dismutase 1 (SOD1)

Understanding ALS pathogenesis began with the identification of dominant
mutations in the gene encoding Cu/Zn Superoxide Dismutase 1 (SOD1) in -20% of
familial ALS and -1% of sporadic ALS cases (Rosen et al., 1993). SOD1 is a

homodimer of an ubiquitously expressed 153-amino acid polypeptide that catalyzes
the dismutation of the superoxide radical anion (O2' ) generated by mitochondrial

respiration to hydrogen peroxide, which will then be converted to less harmful
substances such as water and oxygen (Eisen, A., 2000). More than 100 disease

causing mutations can be found scattered throughout the primary and three-
dimensional structure of the protein (Andersen, P.M., 2000; Gaudette et al., 2000).

Several transgenic mouse models of SOD1 have been generated to study the

pathogenesis of ALS. Transgenic mouse models overexpressing ALS-associated
mutant forms of SOD1 results in motor-neuron disorder that recapitulates most
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features of ALS such as paralysis, motor neuron loss and ultimately death.
Neurofilament-rich spheroids, Lewy body-like neurofilament inclusions, and
accumulation of SODl-protein were also found in motor neurons (Gurney et al.,

1994; Wong et al. 1995). On the other hand, mice that overexpress normal human
SOD1 and SOD1 null mice do not develop motor neuron disease (Dal Canto et al.,

1995; Reaume et al., 1996). It remains unclear how mutant SOD1 leads to motor

neuron degeneration. It was initially thought that decreased free-radical scavenging

activity results in the toxicity of different SOD1 mutant proteins, however, it is now
well established that SOD1 mediated toxicity in ALS is due to a gain of function
instead of a loss of function mechanism. This fact is established though several lines
of evidence: Firstly, SOD1 knockout mice do not develop motor neuron disease

(Reaume et al., 1996); secondly, transgenic mice expressing familial linked mutants

S0D1G93A, SODlG37R, or S0D1G85R exhibited loss of motor neurons despite

unchanged or enhanced SOD1 enzymatic activity (Bruijn et al., 1997; Gurney et al.,
1994; Wong et al., 1995). Thirdly, ablation or overexpression of wild-type SOD1 in
mutant mice did not affect disease progression (Bruijn et al., 1998). Furthermore,
SOD1 activity levels do not correlate with disease in mice or humans, it has been
shown that some mutant enzymes actually retain full dismutase activity (Borchelt et

al., 1994; Bowling et al., 1995). Lastly, there is either no effect on the disease or

acceleration of the disease when levels ofwild-type SOD1 and dismutase activity are

chronically increased (Bruijn et al., 1998; Jaarsma et al., 2000).

Since SOD1 was the first gene to be identified in ALS and 20% of all familial
cases ofALS are caused by dominantly inherited mutations in SOD1, most research
efforts to understand ALS pathogenesis have subsequently focused on the study of
the ubiquitously expressed SOD1. The following is an overview of proposed disease
mechanisms ofALS.
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1.7.2. Oxidative damage

Studies have suggested that structural changes and pro-oxidant properties of mutant
SOD protein are involved in pathogenicity of FALS. It was proposed that misfolding
of SODl induced by mutations would allow the access of abnormal substrates

(Beckman et al., 1993). The peroxidase activity hypothesis suggests that SODl
mutant proteins can damage cellular targets including DNA, protein, and lipid
membranes due to their enhanced ability to use hydrogen peroxide as a substrate to

generate toxic hydroxyl radicals, hence promoting a cascade of oxidative damage.

(Wiedau-Pazos et al., 1996). Increased levels of oxidized products in parallel with
disease progression have been reported in S0D1G93A transgenic mice (Bruijn et al.,
1997). Another candidate substrate is peroxynitrite, where the nitration of tyrosine
residues in target proteins could occur (Beckman et al., 1993). This is consistent with
the increased levels of free 3-nitrotyrosine detected in the spinal cord of human ALS

patients (Beal et al., 1997) and in mouse models of ALS (Bruijin et al., 1997).

However, there is no evidence of increased levels of nitrotyrosine bound to proteins
in ALS patients or in mutant SODl mice as compared to controls (Bruijin et al.,
1997; Strong etal., 1998).

Experiments manipulating the SODl activity in mouse model of ALS have

emerged, challenging the oxidative damage hypothesis. The absence of wild-type
SODl in the S0D1G85R mutants would predict an increase in superoxide levels and
its product peroxynitrite or hydroxyl radicals while the elevation of normal SODl

activity would do the opposite in S0D1G85R mice either in a SODl knockout

background or in a transgenic background overexpressing wild-type SODL

However, the disease progression in S0D1G85R mice was not affected by either the
elimination of endogenous SODl or addition of wild-type SODL The role of copper
mediated oxidative damage is a commonality between the peroxynitrate and

peroxidase activity hypotheses. While copper chaperone for SODl (CCS) is required
for the delivery of copper to SODl enzymes in motor neurons, gene ablation of CCS
had no effect on disease onset or progression in SODl mutant mice. This suggest that
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S0D1 mutant toxicity is not mediated by CCS-dependent copper loading

(Subramaniam et al., 2002). Hence these results are inconsistent with mechanisms of

disease involving superoxide-mediated oxidative damage (Bruijin et al., 1998).

1.7.3. Protein instability and SOD1 aggregation

Intracellular aggregates is a common feature of neurodegenerative diseases and

represent another mechanism of SODl toxicity in motor neurons (Bruijn et al.,

1998). In mutant SODl transgenic mice, and human ALS cases, aggregates that are
immunoreactive to SODl are detected in motor neurons, neuropil and astrocytes.

These aggregates coincide with disease onset and accumulates with disease

progression (Bruijn et al., 1998; Johnston et al., 2000). These intracellular aggregates
have been proposed to mediate motor neuron degeneration through sequestration of
essential cellular components (Bruijn et al., 1998; Pasinelli et al., 2004), impairment
of chaperone activity and ubiquitin proteasome pathway (Niwa et al., 2002; Shinder
et al., 2001).

1.7.4 Axonal transport defects

An efficient and functional axonal transport system is presumably a particularly

important aspect for the survival of motor neurons, which are among the largest and

longest in the body. The presence of abnormal neurofilament inclusions together
with the reduction in activity of axonal transport in ALS patients and mouse models

supported the possibility that defects in axonal transport may play a role in the
demise of motor neurons in ALS. Both fast and slow anterograde transport are

slowed in SODl mutant mice prior to disease onset and exacerbated with the

progression of the disease. Furthermore, retrograde transport is also impaired in
SODl mutant mice (Sasaki et al., 2005; William and Cleveland., 1999).

Further prove of defective axonal transport involved in ALS comes from
mutations in the pi 50 subunit of dynactin, a major component of retrograde transport

that elicit lower motor neuron disease in humans (Puis et al., 2003). Similarly in
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mice, reduced activity in axonal transport results in motor neuron disease. Forced

expression of a subunit of dynactin called dynamitin disrupts the dynein-dynactin

complex for retrograde transport and elicits late onset motor neuron disease

(LaMonte et al., 2002) while mutations in dynein have been shown to cause

progressive motor neuron degeneration and the formation of Lewy-like inclusion
bodies (Hafezparast et al., 2003). Introduction of dynein mutations into SOD1
mutant mice however, significantly ameliorates the motor neuron disease and the

slowing of axonal transport initiated by mutant SOD1 protein. How this occurs is not

fully understood but it has been suggested that cytotoxicity due to mutant SOD1
could require dynein-based transport (Teuchert et al., 2006).

Neurofilaments have also been implicated as modulators of axonal transport
as they play important roles in stimulating axonal growth and regulating axonal
calibre. Transgenic mice with point mutations or overexpression of neurofilament
subunits exhibit neurofilament accumulation and selective motor neuron dysfunction

(Xu et al., 1993; Lee et al., 1994). Surprisingly, the overexpression of wild-type
human and mouse neurofilament proteins did not exacerbate disease progression, but
instead ameliorated motor neuron degeneration and extended the longevity of

transgenic mice expressing mutant SOD1 G37R and S0D1G93A respectively (Couillard-

Despres et al., 1998; Kong & Xu, 2000). In addition, motor neuron disease still
occurred in transgenic mutant SOD1 mice strains lacking axonal neuronal filaments
and lead to an increase in lifespan (Williamson et al., 1998; Eyer et al., 1998).

1.7.5. Mitochondrial dysfunction

Several studies have focused on the role of mitochondria in ALS pathogenesis.
Evidence of mitochondrial dysfunction in ALS patients includes the clustering of
abnormal mitochondria and morphological defects within mitochondria found in
skeletal muscles and intramuscular nerves in human sporadic ALS cases (Atsumi et

al., 1981; Aflfi et al., 1966). In addition, impaired mitochondria function and
elevated levels of mitochondrial calcium have been observed in spinal cord and
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muscles of sporadic ALS patients (Wiedemann et al., 1998; Siklos et al., 1996).

Similarly, in mouse models of SOD 1 transgenic mutants, swelling and vacuolization
ofmitochondria is observed (Kong and Xu., 1998; Sasaki et al., 2004).

It has been proposed that mutant SOD1 that is found localized to the
mitochondria forms insoluble aggregates that directly damage the mitochondria

through fusion with peroxisomes and the outer membrane, which in turn form pores

and lead to the release of cytochrome c and activation of caspases (Higgins et al.,

2003). The aggregates also impair mitochondrial function by disrupting the protein
translocation machinery and abnormal interactions with BCL2, eventually activating
mitochondrial apoptotic pathways (Pasinelli et al., 2004). However, the notion of
toxic mitochondrial mutant SOD1 has been suggested to be simply the result of the

overexpression of mutant SOD1 that does not normally localize to the mitochondria

(Bergemaim et al., 2006).

1.7.6. Exocitotoxicity

Excessive glutamate induces stimulation of postsynaptic glutamate receptors which
activates massive influx of calcium through glutamate receptors. Calcium influx to

the cells will potentially lead to detrimental calcium-activated processes and
molecules such as proteases, lipases and nucleases, causing exocitotoxicity.
Therefore, excitatory amino acid transporters (EAATs) are present in the astrocytes

to transport extra glutamate from the synaptic space to the surrounding astrocytes

after glutamate release during neurotransmission (Fairman et al., 1995). Glutamate-
mediated neurotoxicity was first proposed as a possible mechanism ofmotor neuron

degeneration when levels of glutamate were discovered to be increased in ALS

patients. This was found to be apparent in about 40% of nearly 400 sporadic ALS

patients that correlated with severity (Rothstein et al., 1990; Spreux-Voroquaux et

al., 2002).
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Interestingly, in about 65% of sporadic ALS cases and in transgenic murine
models of ALS, a significant reduction in the expression and activity of EAAT2 in
the cortex and spinal cords have been observed (Bruijn et al., 1997; Howland et al.,

2002) EAAT2 has also been suggested to be a target of SOD1 toxicity when

hydrogen peroxide was found to inactivate EAAT2. Similarly, the reduction of
EAAT2 expression and activity could result from cleavage of the transporter by
active Caspase 3 (Boston-Howes et al., 2006). Indeed, overexpression of EAAT2 in
mutant SOD1 mice delayed the onset of motor deficits, decreased caspase-3
activation and aggregate formation (Guo et al., 2003). Therefore, in motor neurons,

clearance of glutamate from the synaptic cleft by astrocytic glutamate transporter

EAAT2 is imperative in preventing such glutamate excitotoxicity (Rothstein et al.,
1996).

These studies collectively suggest that glutamate excitotoxicity resulting from

impaired glial glutamate transporter EAAT2 mediates motor neuron degeneration.
Since most mutant gene products of ALS are ubiquitously expressed, the toxic
cascade is achieved in part by mutant protein action in adjacent non-neuronal cells,

impling that neuronal degeneration is also a non-cell autonomous process.

1.7.7. Non-cell autonomous effect on the degeneration of motor
neurons

Whilst progressive paralysis in ALS is initiated by degeneration and death of motor

neurons, several studies have demonstrated that toxicity to motor neurons derives
from damage to cell types beyond motor neurons. Restricted expression of mutant
SOD1 within motor neurons (Lino et al., 2002) or astrocytes (Gong et al., 2000)
alone failed to induce motor neuron degeneration of death. With the caveat that
mutant SODl expression exclusively in motor neurons might have been too low to

initiate disease, the general view is that motor neuron death in SODl transgenic mice
is non cell autonomous.
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More definitive experiments from analyses of chimeric mice with mixed

populations of cells expressing either wild type or mutant SOD1 demonstrate the non

cell autonomous toxicity of mutant SOD1 proteins. Expressing mutant SOD1 in
motor neurons fail to induce degeneration if the motor neurons are adjacent to a large
number of supporting cells such as glia and astrocytes without the mutant SOD1.

Reciprocally, motor neurons without mutant SOD1 degenerate when surrounded by
non-neuronal cells expressing mutant SOD1 (Clement et al., 2003). In addition,

reducing the levels of mutant SOD1 in microglial and peripheral macrophages

dramatically slowed late disease progression and extending survival of transgenic
mice while expression of mutant SOD1 in microglial accelerates the late phase of
murine ALS models (Boillee et al., 2006).

Further proof of non cell autonomous effect on motor neurons come from
studies on mutant SOD1 transgenic rodent models where astroglia-specific glutamate

transporters were found to be defective (Bruijn et al., 1997; Howland et al., 2002).
SOD1 inclusions in astrocytes precede symptom onset and increase with disease

progression (Bruijn et al., 1997). These experiments demonstrated that while SOD1
mutant action primarily determines the onset and early disease, mutant SOD1 within
the supporting cells of the motor neuron accelerates disease progression.

Figure 1.1 summarize the possible mechanisms that might contribute to the

pathogenesis of SOD 1-induced ALS: A healthy motor neuron is triggered to fire with
the release of glutamate from an upstream neuron. The firing of action potentials
stimulate the release of acetylcholine at its axon terminus, causing muscle
contraction. However, in neurons and astrocytes, mutant SOD1 aggregates form
either by an inherently unstable conformation or by self-induced oxidative damage
and accumulates in ALS patients over time. The misfolded mutant SOD1

subsequently triggers aberrant mitochondrial function, endoplasmic reticulum stress

pathways, axonal transport defects, inhibition of chaperone and proteasome activity,
and activation of caspases. Similar damage in astrocytes suppresses the accumulation
and activity of glutamate transporters (EAAT2) that are necessary for recovering
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synaptic glutamate and for preventing repetitive motor neuron firing.

Disproportionate firing causes excessive calcium entry through calcium-permeable

glutamate receptors, activating cell death pathways that contribute to motor neuron

death through the degradation of key cellular components.

Nature Reviews | Neuroscience

Figure 1.1. The specificity of the toxic effect of SOD1 mutations on motor
neurons arises from the convergence of several factors.
Mutant SOD1 impairs multiple cellular functions and death of motor neurons is
made up of a complex interplay between cell autonomous and non cell autonomous
mechanisms. Diagram adapted from Cleveland and Rothstein, 2001.

1.7.8 Drosophila models of SOD1

Elia and colleagues used the G41S missense substitution in a human FALS SOD
allele and the wildtype human SOD, and targeted the expression of the individual

proteins in motor neurons of Drosophila. The SOD1 Drosophila model created by
Elia and colleagues was not particularly successful in investigating the biochemical
mechanism by which mutations in SOD cause degeneration as high-level expression
of the human FALS SOD in motor neurons ofDrosophila does not cause or promote

paralysis and premature death of adult Drosophila as reported in human and
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transgenic mice. In contrast, the expression of FALS SOD extends lifespan, increases
resistance to oxidative stress and partially rescues SOD-null mutants. The authors

proposed that the degeneration of motor neurons in Drosophila could require the
interaction of FALS SOD with other proteins that are either not present in

Drosophila or that they do not interact with human SOD.

More recently, another Drosophila model of SOD 1-induced ALS was

published by Bonini and colleagues whereby wild type or mutant human SOD1

selectively expressed in motor neurons resulted in progressive climbing defects in
adult flies. In addition, defective synaptic transmission of neural circuit,
accumulations of SOD1 proteins in motor neurons and a chaperone stress response

in the surrounding glia were observed. This fly model is at the moment the only

Drosophila model that faithfully recapitulates characteristic hallmarks of sporadic
ALS and SOD 1-linked familial ALS disease. These hallmarks may present early

changes in the disease pathogenesis as no gross motor neuron loss is observed.

Moreover, the effects on glia suggest not only a cell autonomous damage to motor

neurons, but also non cell-autonomous cellular interactions is conferred by SOD1.
These findings provide a foundation to study the role of neuron-glial interactions in
ALS pathogenesis (Watson et al., 2008).

The discrepancies seen in both Drosophila models expressing mutant human
SOD1 using the same motor neuron Gal4 driver could be due to the fact that different
mutations of SOD1 were used in the two studies. Elia and colleagues studied the
G41S missense substitution while Watson and colleagues studied the A4V and G85R
mutations linked to FALS. Moreover, the expression levels of the transgenes used by
Elia and colleagues might not be sufficient to cause neurodegeneration.

1.7.9 Other mutations of ALS

Since the landmark discovery of mutations on the gene encoding SODl, other even
rarer familial cases of ALS with atypical disease features have been linked to

39



mutations in several other genes. Mutations in the Alsin gene encoding a putative

guanine nucleotide exchange factor, have been identified in rare cases of autosomal
recessive juvenile form ofALS (Hadano et al., 2001; Yang et al., 2001).

Alsin is enriched in nervous tissue, where it is peripherally bound to the

cytoplasmic face of endosomal membranes, an association that requires the amino-
terminal RCCI (regulator of chromatin condensation)-like GEF domain (Yamanaka
et al., 2003) and can act in vitro as an exchange factor for Rab5a , which functions in

regulating endosomal trafficking and Racl activity (Kanekura et al., 2004).

Interestingly, mutant SOD 1-mediated toxicity can be suppressed by alsin in motor

neuron cell lines through binding of SOD1 via the RhoGEF domain (Kanekura te al.,

2004). Loss of alsin however, does not cause motor neuron degeneration in mice, but
does contribute to the predisposition to oxidative stress and causes age-dependent

neurological defects and altered vesicle and endosome trafficking (Cai et al., 2005;
Hadano et al., 2006).

Defects in Senataxin, a gene encoding a DNA/RNA helicase, has been shown
to cause an autosomal dominant juvenile form of ALS (Chen et al., 2004). Altered
RNA processing has been implicated in two other inherited motor neuron diseases,

spinal muscular atrophy (SMA) or severe infantile spinal muscular atrophy with

respiratory distress (SMARD). Senataxin was recently identified as the mutated gene

in an autosomal recessive ataxia-oculomotor apraxia 2 (AOA2) (Moreira et al.,

2004). Senataxin has been shown to be a nuclear protein and is involved in the

response to oxidative stress (Suraweera et al., 2007). Most recently, it was reported
to be involved in transcriptional regulation and pre-mRNA processing in a cell
culture model ofAOA2 (Suraweera et al., 2009).

1.7.10 ALS-FTD

The recent identification of 43kDa TAR DNA-binding protein (TARDBP or TDP-

43) as a major component of ubiquinated protein aggregates found in patients with
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sporadic ALS or frontotemporal lobar degeneration with ubiquinated inclusions

(FTLD-U) (Arai et al., 2006; Neumann et al., 2006), have initiated a seismic shift in

the understanding of ALS pathogenesis. TDP-43 is a widely expressed and

predominantly nuclear, 414 amino acid long protein. It contains two RNA-

recognition motifs and a C-terminal glycine-rich region that may mediate
interactions with other proteins. TDP-43 immunoreactive inclusions are found in the

cytoplasm and nucleus of neurons and glial cells in ALS and FTLD-U patients.
Abnormal hyperphosphorylation and ubiquitination of TDP-43 with the production
of ~25kDa C-terminal fragments that are missing their nuclear targeting domains are

also present in the brains and spinal cords of patients with TDP-43 proteinopathy

(Arai et al., 2006; Neumann et al., 2006). It has been proposed that ALS

pathogenesis may be driven in part, by the loss of normal TDP-43 function in the
nucleus. This is due to TDP-43 being partly cleared from the nuclei of neurons

containing cytoplasmic aggregates (Neumann et al., 2006; Van Deerlin et al., 2008).

Dominant mutations at the C-terminal region in the TARDBP gene have since
been reported to be the primary cause ofALS, with a total of 30 different mutations
now known in 22 unrelated families and in 29 sporadic cases of ALS, proving that
aberrant forms of TDP-43 can directly trigger neurodegeneration (Corrado et al.,
2009; Daoud et al., 2009; Gitcho et al., 2008; Kabashi et al., 2008; Sreedharan et al.,

2008; Van Deerlin et al., 2008). However, it is still not clear whether TDP-43

mutations lead to motor neuron degeneration through a gain of toxic function or a

loss of function, which could arise from a sequestration of the protein in nuclear or

cytoplasmic inclusions and the corresponding disruption of its interactions with

protein partners or RNA targets.

Additional ALS mutations have been found in a gene encoding another

DNA/RNA-binding protein called FUS (fused in sarcoma)/TLS (translocation in

liposarcoma) causing both dominant (Kwiatkowski et al., 2009) and autosomal
recessive (Vance et al., 2009) inheritance of ALS. FUS/TLS is a 526 amino acid

long protein that is characterized by an N-terminal domain enriched in glutamine,
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glycine, serine and tyrosine residues region, a glycine rich region, an RNA-

recognition motif, multiple RGG repeats implicated in RNA binding, a C-terminal
zinc finger motif and a highly conserved extreme C-terminal region. Most ALS-
linked mutations lie in the extreme C-terminus (Kwiatkowski et al., 2009; Vance et

al, 2009).

Similar to TDP-43, FUS/TLS is almost ubiquitously expressed and is

predominantly localized in the nucleus, however, cytoplasmic accumulation has been
detected in most cell types. Normal FUS/TLS staining in the nuclei of many neurons

and glial cell was observed in brains and spinal cords ofALS patients with FUS/TLS
mutations but aggregates of FUS/TLS are found in the cytoplasm of neurons. An
increase in cytoplasmic accumulation of mutant FUS/TLS after expression of tagged
wild type or mutant FUS/TLS was observed in cell fractionation experiments

(Kwiatkowski et al., 2009; Vance et al., 2009).

Cytoplasmic FUS/TLS inclusions are absent in control individuals, in ALS

patients with SOD1 mutations and in sporadic ALS patients who are presumably
TDP-43 aggregates positive. Importantly, ALS patients with FUS/TLS mutations do
not have TDP-43 inclusions, implying that mutant FUS/TLS-induced

neurodegeneration is independent of TDP-43 aggregation (Vance et al., 2009).

The precise roles of TDP-43 and FUS/TLS are not fully understood, but TDP-
43 is able to bind DNA and RNA, which regulates transcription and splicing but may
also be involved in microRNA biogenesis, apoptosis and cell division (Sreedharan et

al., 2008). FUS/TLS on the other hand, is known to be involved in DNA repair and
the regulation of transcription, RNA splicing, and export to the cytoplasm. The RNA

recognition motif (RRM), RGG repeat rich, and zinc finger domains are involved in
RNA processing (Vance et al., 2009). Mutations in motor proteins have been shown
to elicit axonal transport defects and causing motor neuron degeneration (Puis et al.,

2003; Hafezparast et al., 2003), interestingly, FUS/TLS also binds to the motor

proteins (Yoshimura et al., 2006). Furthermore, TDP-43 and FUS/TLS are found in
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granules associated with RNA transport in neurons, with translocation to dendritic

spines following neuronal stimuli. In addition, cultured neurons from FUS/TLS
knockout mice exhibit aberrant dendritic spine morphology (Fujii et al., 2005),

suggesting both TDP-43 and FUS/TLS might play a role in neuronal plasticity by

altering mRNA transport and local RNA translation.

The significance of the involvement of TDP-43 and FUS/TLS in

neurodegeneration is not unique to ALS, as TDP-43 aggregates are found in most

sporadic and familial FTLD-U patients while abnormal TDP-43 inclusions have been

reported in Alzheimer's disease patients (Amador-Ortiz et al., 2007). Furthermore,
FUS/TLS has been reported to be a major component of aggregates in cellular
models of Huntington's disease and SCA3. Intranuclear inclusions have also been
identified in neurons of Huntington disease patients (Doi et al., 2008). These results

support a role for altered RNA processing in neurodegeneration. Indeed, altered RNA

processing has already been implicated in other neurodegeneration such as SCA8
and Fragile X mental retardation (Mutsuddi et al., 2004; Jin et al., 2003). Hence,
lessons learned from studying TDP-43 and FUS/TLS are likely to be insightful to

neurodegenerative diseases that involve defects in RNA processing.

1.8 VAMP-associated proteins (VAPs)

1.8.1 VAP-induced ALS

In 2004, a genetic linkage study allowed the mapping of a locus responsible for a

group ofmotor neuron diseases to chromosomal region 20q 13.3. The disease, named

ALS8, affects both sexes equally and the clinical onset occurs between the third and
the fifth decade. Most patients have lower motor neuron symptoms but some show
bulbar involvement (Nishimura et al., 2004a). Mutation screening led to the
identification of a Proline to Serine substitution (P56S) at codon 56 (Nishimura et al.,

2004b) in the VAPB (VAMP-associated protein B) protein. In a branch of the same

large family the P56S mutation has been shown to cause a lower motor neuron
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disorder accompanied by autonomic involvement and dyslipidemia (Marques et al.,

2006). The proline residue mutated in ALS8 patients is present in a stretch of amino
acids that is very highly conserved from yeast to man in all VAP homologs.

1.8.2 Structure and characterization of VAPB

VAPs are type II integral membrane proteins of ~31 kDa that are highly conserved
across species and were first identified in a yeast-two-hybrid screen of Aplysia

californica (Skehel et al, 1995). Subsequently, two mammalian homologues of VAP.
named VAPA and VAPB respectively, were identified in humans (Weir et al, 1998;
Nishimura et al, 1999), rat (Nishimura et al, 1999) and mouse (Skehel et al, 2000).
Other VAP homologues have also been found in yeast, known as SCS2 (supressor of
choline sensitivity 2) (Kagiwada et al, 1998),and Drosophila, known as DVAP-33A

(Pennetta et al, 2002). While VAPB shares 63% amino acid identity with VAPA, a

splice variant ofVAPB, known as VAPC, lacks both the coiled-coiled domain and the

carboxyl terminal trans-membrane domain of VAPB (Nishimura et al, 1999).

VAPs have been implicated in diverse cellular functions such as regulation of
neurotransmitter release, membrane trafficking, ER-Golgi and intra-Golgi transport,

regulation of synaptic growth, lipid transport and metabolism, these wide range of
functions have been reported in different cell types and species and mediated by
different members of the same family (Soussan et al., 1999; Skehel et al., 1995;

Lapierre et al., 1999; Kagiwada et al., 1998; Pennetta et al., 2002; Foster et al.,

2000). Nevertheless, the overall structure ofVAPs is similar.

Structurally, VAP consists of an N-terminal region facing the cytoplasm and
a hydrophobic C-terminus that functions as a transmembrane domain. The trans¬

membrane domain contains a putative GxxxG motif that has been shown to

participate in inner-membrane protein-protein interactions while a variable coiled-
coiled domain near the C-terminus trans-membrane domain has been found in almost

all t-SNAREs (and has been referred to as the t-SNARE homology domain)

44



(Nishimura et al, 1999; Weimbs et al, 1997). The cytoplasmic region contains a

conserved N-terminal domain which shares a high degree of sequence and structural

similarity with the C. elegans Major Sperm Proteins (MSP) (Kuwabara, 2003). MSPs
are highly abundant proteins expressed in the amoeboid nematode sperm. The
movement of these cells is driven by the assembly of MSP proteins into fibrous
networks (Roberts and Stewart, 1995). MSP proteins have also been shown to

function as signaling molecules as they antagonize ephrin/Eph receptor signaling in
order to promote oocyte meiotic maturation and ovarian muscle contractions in C.

elegans (Miller et al., 2003).

Within the N-terminal, the MSP domain of VAP also contains a FFAT

(diphenylalanine [FF] in an acidic tract) binding site that is highly conserved among

VAPs from yeast to mammals but not in the related MSP protein (Loewen et al.,

2003; Kaiser et al., 2005). The FFAT motif consists of a consensus amino acid

sequence EFFDAxE and is a targeting signal responsible for localizing proteins to

the cytosolic surface of the ER and nuclear membrane (Loewen et al., 2003; Brickner
and Walter, 2004). Proteins containing exposed FFAT motifs are targeted to the ER
membranes by interaction with VAP proteins (Loewen et al., 2003; Wyles et al.,

2002).

1.8.3 Cellular functions of VAP: Lipid metabolism and homeostasis

The interaction of VAP with FFAT motif containing proteins was first described
between its yeast homologue SCS2p and Opilp, a transcriptional regulator of

phospholipid biosynthesis (Loewen et al., 2003). Subsequently, VAP was found to

interact with various lipid-binding and lipid-transport proteins that contain FFAT

motifs, which include homologues of oxysterol-binding protein (OSBP) (Wyles et

al., 2002; Wyles and Ridgway, 2004), ceramide transport protein (CERT) (Kawano
et al., 2006) and phosphatidylinositol (PtdIns)/phosphatidylcholine (PtdCho)-transfer

protein, Nir2 (Amarilio et al., 2005).
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In addition to the FFAT motif, OSBPs also have a highly conserved 350
amino acid C-terminal sterol or phospholipid binding domain and an N-terminal

pleckstrin homology (PH) domain that mediate membrane association of proteins

through phosphoinositide binding (Ridgway et al., 1992; Xu et al., 2001). OSBPs
localize to the cytoplasm or with VAP in the ER (Wyles et al., 2002), but translocate
to the Golgi apparatus when cells are exposed to 25-hydroxycholesterol (250H) or
when subjected to conditions where cellular cholesterol is depleted and/or cholesterol

synthesis is activated (Ridgway et al., 1992; Ridgway et al., 1998). This localization
of OSBP to the Golgi involves phosphatidylinositol-4-phosphate (PtdIns-4-P) and
the small GTPase, Arfl (ADP-ribosylation factor 1) binding to the PH domain

(Levine and Munro, 2002).

OSBPs were initially isolated as cytosolic receptors for oxysterols (Taylor
and Kandutsch, 1985). Oxysterols, the product of cholesterol oxidation, are primarily
involved in the transcriptional and post-transcriptional regulation of cholesterol
metabolism (Venkateswaran et al., 2000). degradation of 3-hydroxy-3-methylglutaryl

coenzyme A (HMG-CoA) reductase, a rate limiting enzyme in the mevalonate

pathway of cholesterol biosynthesis (Song and DeBose-Boyd, 2004) and the

proteolytic activation of the sterol regulatory element binding transcription factors

(Radhakrishnan et al., 2004). Hence, OSBP has been thought as a mediator of the
effects of oxysterols on the transcriptional regulation of cellular cholesterol
homeostasis (Lehto and Olkkonen, 2003).

Additionally, OSBP has an oxysterol-sensing function and has also been
shown to be involved in phospholipid and sphingomyelin metabolism (Legace et al.,

1999; Xu et al., 2001). Exposure of Chinese hamster ovary (CHO)-Kl cells to 250H
stimulates sphingomyelin synthesis due to an increase in the transport of ceramide to

the sphingomyelin synthase in the lumen of the Golgi (Ridgway, 1995; Huitema et

al., 2004). Sphingomyelin synthesis by 250H stimulation can be increased by

overexpression of OSBP and inhibited by expression of an OSBP PH domain mutant

that constitutively localizes OSBP to the ER with VAP (Lagace et al., 1999; Wyles et
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al., 2002). This suggest that a ceramide transport pathway for sphingomyelin

synthesis is activated by the translocation ofOSBP to the Golgi-apparatus.

The mechanism of ER to Golgi transport of ceramide is in turn mediated by a

600 amino acid cytosolic protein called ceramide transfer protein (CERT) (Hanada et

al., 2003). In addition to a FFAT motif that binds VAP at the ER, CERT has a

steroidogenic acute regulatory-related lipid transfer domain that binds ceramide at

the C-terminus and a PH domain that binds PtdIns-4-P at the Golgi (Hanada et al.,

2003). It has been suggested that OSBP could regulate CERT activity by either

directly or indirectly interacting with shared binding partners like VAP at the ER.
Proof of this hypothesis comes from cell culture studies where 250H was reported to

enhance the interaction between VAP and CERT, moreover, CERT mediated ER to

Golgi transport of ceramide is dependent on OSBP and VAP (Perry and Ridgway,
2006). Together with the fact that ER to Golgi transport of ceramide is impaired by
mutations of the CERT FFAT motif implies that the CERT-VAP binding is important
in ceramide transport at the ER-Golgi membrane contact site (Kawano et al., 2006).

Ceramide is transferred from the ER to the Golgi where sphingomyelin is

subsequently produced by sphingomyelin synthase on the lumen of the Golgi
(Ridgway, 1995; Huitema et al., 2004). VAP can thereby control sphingomyelin

production at the Golgi by regulating lipid transfer and lipid binding proteins.

Sphingolipids are important components of membranes where they associate with
cholesterol to form lipid rafts. Lipid rafts on the other hand, are essential in the

organization of synaptic domains, in signalling processes and in the structural
remodelling underlying release of neurotransmitter and endocytosis of synaptic
vesicles. Moreover, rafts localize and functionally modulate voltage-gated ion
channels and metabotropic glutamate receptors (Suzuki et al., 2001; Hering et al.,

2003). Given that sphingomyelin and cholesterol are metabolically co-regulated,
VAP might play a regulatory role in the metabolic interface between sphingomyelin
and cholesterol biosynthesis. However, the exact mechanism is not known (Ridgway,

2000).

47



1.8.4 Lipid sensing

The answer to how might the interaction of VAP and FFAT proteins regulate lipid

biosynthesis comes from studies in yeast. It has been proposed that VAP and/or the
FFAT proteins could 'sense' the change in their membrane environment through their

lipid-binding or lipid-sensing activity (Loewen et al., 2004). In yeast, Scs2p has been
shown to bind phosphatidylinositol monophosphate (PI4P) and biphosphates

(PI4.5P2) in vitro. The phosphoinositide binding domain is within the MSP domain
that partially overlaps with the FFAT binding domain. Therefore, the interaction of

Scs2p with FFAT proteins has been proposed to be regulated by the availability of

phosphoinositides (Kagiwada et al., 2007). Remarkably, Sacl (Suppressor of Actin)
acts as a lipid phosphatase localized at the ER which primarily regulates the pool of
PtdIns-4-P (Wei et al., 2003) that is part of a Golgi membrane localization code of
CERT and OSBP. Interestingly, in Drosophila, a genome-wide, yeast-two-hybrid

screening identified Sacl as another potential VAP interacting protein

(http://www.thebiogrid.org).

Scs2 also plays a role in the transcriptional regulation of the INOl gene,

which is important in the synthesis of inositol (Kagiwada et al., 1998). Opilp has
been shown to bind phosphatidic acid (PA), on the ER with Scs2p and is rapidly
translocated to the nucleus in response to a decrease in PA levels. PA is a key player
in the biosynthesis of Ptdlns and PtdCho as PA is converted into diacylglycerol

(DAG), a precursor of many lipid membranes. A decrease in levels of PA due to the

production of Ptdlns and PtdCho would facilitate the dissociation of Opilp with

Scs2p from the ER, resulting in the inhibition of transcription of INOl in the nucleus
and in turn, the production of inositol. Therefore, Scs2p and Opilp are involved in

'sensing' the membrane environment and that their interaction is controlled by
different phospholipids according to inositol availability (Loewen et al., 2004).

It has previously been proposed that synapse formation in flies is dependent
on DVAP-33A in a process similar to budding in yeast (Pennetta et al., 2002; Zito et
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al., 1999). DVAP-33A regulates synaptic bouton budding in a dosage-dependent
manner as null mutants of DVAP-33A impair the ability to form new boutons while

overexpression of DVAP-33A causes an increase in synaptic bouton formation

(Pennetta et al., 2002). Budding of boutons is therefore also likely to depend on

DVAP-33A to 'sense' phospholipid and inositol available. Interestingly, it has been
shown that MSP in C. elegans localizes to membranes and that it can generate the

protrusive force necessary to induce vesicle budding from male germ cells (Kosinski
et al., 2005).

1.8.5 Microtubule dynamics

In Drosophila, DVAP-33A is enriched in neuromuscular junctions and binds to

microtubule networks. DVAP-33A has been shown to regulate bouton budding at

larval NMJs in a dosage-dependent manner. It is required for structural remodeling of
synapses where it controls microtubule cytoskeleton dynamics. In DVAP-33A mutant

flies, the presynaptic microtubule architecture is severely compromised, while

overexpression of DVAP-33A causes denser organization of the microtubules with
more loop like structures. DVAP-33A is therefore proposed to function as a bridge
between microtubules and the presynaptic membrane (Pennetta et al., 2002). The
effect of VAPs on microtubules has also been observed in mammalian cells where

co-expression of VAPB and its interacting protein Nir3 causes a gross remodelling of
the ER, with bundling of thick microtubules along the altered ER membranes,

suggesting that Nir3, a Nir/rdgB protein family member, either bridges VAPB to

microtubules or increases the affinity of VAPB for microtubules (Amarilio et al.,
2005).

1.9 Rationale of project.

Although ALS was initially described more than 130 years ago, no effective remedy
is yet available. With numerous experiments using mouse models of SOD1

mutations, however, the precise mechanism by which mutations in SOD cause

49



degeneration of motor neurons is not clear and how over 140 different mutations

affecting more than 35 different residues of SOD protein can cause the same generic

phenotype in patients. Various pathogenic mechanisms including oxidative damage,

excitotoxicity, mitochondrial defects, and axonal transport that have been proposed
to contribute to the disease, though symptomatic for the disease, these mechanisms

may be secondary to the neurodegenerative process. Furthermore, compared to other

neurodegenerative diseases such as Alzheimer's, Parkinson's and polyglutamine

diseases, research on ALS has been lagging behind, perhaps due to the lack of a
suitable animal model.

VAP at the moment, stands as an interesting candidate to study the

pathogenesis of ALS. This is supported by several observations: Firstly, VAP

expression in motor neurons from sporadic ALS patients and SOD 1-ALS mice is
reduced (Teuling et al., 2007). In addition, VAPB is significantly reduced in spinal
cords of patients with sporadic ALS and furthermore is selectively enriched in motor

neurons at the mRNA and protein level (Anagnostou et al., 2008). These studies

strongly suggest that the decreased expression of VAPB might be a common feature
associated with motor neuron degeneration.

The microtubule-binding protein tau has been implicated in the pathogenesis
of Alzheimer's disease and related disorders such as fronto-temporal dementia (FTD)
with Parkinsonism linked to chromosome 17 (FTDP-17), progressive supranuclear

palsy and corticobasal degeneration, commonly referred to as tauopathies (Lee et al.,

2001). A significant link between ALS and other neurodegenerative diseases comes

from overlapping symptoms of ALS and taupathies: A significant subset of patients
affected by Frontotemporal Dementia (FTD) also present signs of motor neuron

degeneration and other symptoms typical ofALS (Lomen-Hoerth, 2004).

On the other hand, Amyotrophic lateral sclerosis/parkinsonism-dementia

complex have been linked to 17q21 and mutations have been identified in
microtubule-associated protein tau (Hutton et al., 1998) while many families with
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dominant ALS have a phenotype that overlaps with FTD. A locus for ALS-FTD has
also been reported in five families at 9q21 but no pathogenic mutation has been

reported so far (Hosier, 2000). Karsten and colleagues reported that hVAPB

expression is increased in a mouse model for FTD and that loss-of-function
mutations in DVAP-33A suppress neuronal degeneration in a fly model for

tauopathies. The authors propose that hVAPB could represent the molecular link
between tauopathies and motor neuron diseases in FTD (Karsten et al., 2006).

Interestingly, while VAPB expression is upregulated in brain regions vulnerable to

FTD, OSBP, a well- known interactor of VAP proteins, is strongly downregulated in
brain regions that are relatively unaffected both in FTD and ALS (Karsten et al.,

2006). This strongly supports the notion that regulation of expression levels of VAP

(and its interactors), might affect the selective susceptibility of some regions to

neurodegeneration. Moreover, since TDP-43 inclusions are mostly found in tau-

negative, ubiquitin positive cases of FTD while TDP-43 and FUS/TLS inclusions are

absent in patients with familial SOD1 mutations (Kwiatkowski et al., 2009; Vance et

al., 2009; Arai et al., 2006; Neumann et al., 2006; Van Deerlin et al., 2008), this

makes VAP an ideal focal point to study the molecular mechanisms of ALS

pathogenesis and motor neuron disease in FTD.

The role of VAP in ALS pathogenesis is made even more significant due to

the fact that VAP and its interactors are involved in lipid metabolism and

homeostasis, and findings that increased energy expenditure is a typical feature of
ALS. ALS patients are more likely to show evidence of hyperlipidemia compared to

controls (Dupuis et al., 2008) while reduced adiposity and hypermetabolism have
also been reported in murine models ofALS. More importantly, these animals exhibit
remarkable neuroprotection and extended survival when fed with a high fat diet

(Dupuis et al., 2004). Interestingly, patients carrying the pathogenic mutation in
hVAPB also exhibit hyperlipidemia with a significant increase in cholesterol and

triglyceride levels (Marques et al., 2006). These data support the idea that

hypermetabolism is a typical pathological trait of ALS and that defects in lipid
metabolism may play a part in the neurodegenerative process.
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Due to the role of VAP in the pathogenesis of ALS as supported by human

genetics and biochemical studies in other animal models, and the possible

implication of VAP in other neurodegenerative diseases syndromically-linked to ALS
makes VAP an interesting linking molecule between ALS and these

neurodegenerative diseases.

1.10 Aims of project.

To better understand the pathophysiology underlying VAP-induced ALS in humans,
we aim to we decided to undertake a detailed functional characterization of VAP

proteins in flies and to create a Drosophila model for ALS using VAPB to study the
effects of pathogenic VAP at the neuromuscular junction. In particular, we plan to

address the following:
1. To determine if human VAPB and its Drosophila counterpart, DVAP-33A are

functionally interchangeable.
2. Investigate the nature of the pathogenic mutation that causes VAP-induced

ALS.

3. What is the effect of the pathogenic mutation on synaptic morphology and
function?

4. To recapitulate key aspects ofALS pathology in the fly model.

Lastly, we also aim to create a Drosophila model of ALS using the adult fly

eye. With the creation of this fly model, we plan to harness the power of Drosophila

genetics by conducting a pilot enhancer/suppressor screen to look genetic interactors
of DVAP-33A, which would shed light on the molecular mechanisms of ALS

pathogenesis
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2.1 Materials

2.1.1 Primary Antibodies

Antibody Source

Mouse a—GluRIlA (8B4D2) Developmental Studies Hybridoma Bank
Rabbit a-GluRIIB Aaron DiAntonio

Rabbit a-GluRIIl/C Stephan Sigrist
Rabbit a-GluRIID Stephan Sigrist
AffiniPure Rabbit a-HRP Jackson ImmunoResearch

Guinea Pig a-DVAP (GP33) G.Pennetta

Rabbit a-hVAPB Sima Lev

Rabbit a-actin (A5060) Sigma

Table 2.1 Primary Antibodies

2.1.2 Secondary Antibodies

Antibody Source

Goat a-rabbit Biotinylated IgG Vector Laboratories

Alexa Fluor® 488 goat a-rabbit IgG Molecular Probes

Goat a-mouse Cy3 (Cyanine) Jackson ImmunoResearch

Goat a-rabbit F1TC (Fluorescein

isothiocyanate )

Jackson ImmunoResearch

Goat a-rabbit Cy3 Jackson ImmunoResearch

Goat a-guinea pig Cy3 Jackson Immunoresearch

Goat a-rabbit HRP IgG Jackson ImmunoResearch

Goat a-guinea pig HRP IgG Jackson ImmunoResearch

Table 2.2 Secondary Antibodies

2.2 Fly stocks and genetics

2.2.1 Fly stocks
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Strain Source

Canton S Bloomington Drosophila Stock Center
w'/Y; ey-Gal4/ey-Gal4; +/+ (5534) Bloomington Drosophila Stock Center
w'/Y; ey-Gal4/CyO; +/+ (5535) Bloomington Drosophila Stock Center
yw/Y; +/+; ey-Gal4/ey-Gal4 (8227) Bloomington Drosophila Stock Center
yw/Y; ey-Gal4/CyO; +/+ (8228) Bloomington Drosophila Stock Center
elavc'55-Gal4/elavcl}5-Gal4; +/+; +/+

(458)

Bloomington Drosophila Stock Center

yw/Y; C164-Gal4/C164-Gal4; +/+ Vivian Budnik

w/Y; +/+; D42-Gal4/D42-Gal4

(8816)

Bloomington Drosophila Stock Center

w'/Y; +/+; UAS-DIAP1/UAS-DIAP1

(6657)

Bloomington Drosophila Stock Center

w'/Y; LPin/CyO-GFP; +/+ Andrew Jarman

yw/yw; UAS-D VAP/UAS-D VAP;+/+ G.Pennetta

yw/yw; UAS-DVAPP58S/UAS-

DVAPP58S; +/+

G.Pennetta

yw/yw; +/+; UAS-hVAPB/UAS-
hVAPB

G.Pennetta

yw/yw; UAS-hVAPP56S/UAS-

hVAPP56S; +/+

G.Pennetta

DrosDel Deficiency Collection Szeged European Stock Center
A20

DVAP-33A /FM7; +/+; +/+
G.Pennetta

A166
DVAP-33A /FM7; +/+; +/+

G.Pennetta

A448
DVAP-33A /FM7; +/+; +/+ G.Pennetta

Table 2.3 Fly Stocks
Numbers in brackets denote Bloomington stock number.

2.2.2 Rescue experiments

The ability of the hVAPB protein to rescue the lethality associated with DVAP-33A
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A448
mutations was tested by mating female flies of the genotype DVAP-33A IFM7; +/

+; UAS-hVAPB/TM3, to males contributing the C164-Gal4 or D42-Gal4 drivers.
A448

DVAP-33A /Y; C164-Gal4/+; UAS-hVAPB/+ adult, non-FM7, males were

identified and counted. The specificity of the rescue was confirmed by the absence of
A448

DVAP-33A /Y; C164-Gal4/+; +/TM3 males. A similar genetic scheme was used
to test the ability of hVAPBP56S and DVAPP58S to rescue the lethality associated
with DVAP-33A mutations. In all cases, the rescue was confirmed by using all
DVAP-33A mutant alleles in combination with several transgenic lines expressing
h VAPB, hVAPBP56S or DVAPP58S.

2.2.3 Analysis of morphological and physiological rescue

The following crosses were performed:

A448

yw/Y; C164-Gal4/C164-Gal4 males were crossed to DVAP-33A /FM7; +/+;
A448

UAS-hVAPB/UAS-hVAPB females. DVAP-33A tY; C164-Gcil4/+; UAS-hVAPB/+

males were identified as y+ third-instar larvae lacking the FM7 chromosome. A
similar genetic scheme was applied to test the ability of Drosophila and human
mutant proteins to rescue the morphological and physiological phenotypes. To
characterize the transgenic expression phenotype, the Gal4 drivers were crossed with

transgenic lines. Embryos were collected for 20-24 hours and then transferred to a

water-bath at 30°C.

2.2.4 Recombination to construct ey-Gal4, UAS-DVAPP58S/CyO-GFP fly
stocks

ey-Gal4, UAS-DVAPP58S/CyO-GFP fly stocks were constructed as follow:

9 yw/yw; UAS-DVAPP58S/UAS-DVAPP58S; +/+

X

56



C? w'/Y; ey-Gal4/CyO; +/+

i

yw/Y; UAS-DVAPP58S/CyO; +/+ yw/Y; UAS-DVAPP58S/ey-Gal4; +/+

yw/wv UAS-DVAPP58S/CyO; +/+ yw/w; UAS-DVAPP58S/ey-Gal4; +/+

Each $ yw/w'; UAS-DVAPP58S/ey-Gal4; +/+ from the above progenies were

selected to cross with 5 males of the genotype w'/Y; LPin/CyO-GFP; +/+. 100 of
these crosses were established:

9 yw/w; UAS-DVAPP58S/ey-Gal4; +/+ X <3 W'/Y; LPin/CyO-GFP; +/+

I

yw/Y; UAS-DVAPP58S/CyO-GFP; +/+

yw/w; UAS-DVAPP58S/CyO-GFP; +/+

w'/w'; UAS-DVAPP58S/CyO-GFP; +/+

w/Y; UAS-DVAPP58S/CyO-GFP; +/+

yw/Y; ey-Gal4/CyO-GFP; +/+ yw/w'; ey-Gal4/CyO-GFP; +/+

w'/w'; ey-Gal4/CyO-GFP; +/+ w/Y; ey-Gal4/CyO-GFP; +/+
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yw/Y; ey-Gal4/LPin; +/+ yw/w'; ey-Gal4/LPin; +/+

w'/w'; ey-Gal4/LPin; +/+ w'/Y; ey-Gal4/LPin; +/+

yw/Y; UAS-DVAPP58S/LPin; +/+ yw/w'; UAS-DVAPP58S/LPin; +/+

wYw; UAS-DVAPP58S/LPin; +/+ w'/Y; UAS-DVAPP58S/LPin; +/+

From the progeny of each individual cross, one male of either w'/Y; UAS-

DVAPP58S/CyO-GFP; +/+ or w'/Y; ey-Gal4/CyO-GFP; +/+ genotypes were

selected to cross with 5 virgin females of genotype w'/w'; LPin/CyO-GFP; +/+.
From this point onwards, both w'/Y; UAS-DVAPP58S/CyO-GFP; +/+ and w'/Y; ey-

Gal4/CyO-GFP; +/+ genotypes will be known as w'/Y; ey-Gal4,UAS-

DVAPP58S/CyO-GFP; +/+ for simplicity since recombination would have occurred
in the germ cells of female progenies of genotype yw/w'; UAS-DVAPP58S/ey-Gal4;
+/+ from the first cross between yw/yw; UAS-DVAPP58S/UAS-DVAPP58S; +/+
and w'/Y; ey-Ga/4/CyO; +/+.

w'/Y; ey-Gal4, UAS-DVAPP58S/CyO-GFP; +/+

X

9 w'/w'; LPin/CyO-GFP; +/+

w'/w'; ey-Gal4,UAS-DVAPP58S/CyO-GFP; +/+

w'/Y; ey-Gal4, UAS-DVAPP58S/CyO-GFP; +/+

w'/Y; LPin/ ey-Gal4, UAS-DVAPP58S; +/+
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w'/w'; LPin/ ey-Gal4, UAS-DVAPP58S; +/+

w'/W; CyO-GFP/CyO-GFP; +/+

wVY; CyO-GFP/CyO-GFP; +/+

wVY; LPin/CyO-GFP; +/+

wVw'; LPin/CyO-GFP; +/+

Stocks were established by selecting female virgins of genotype w'/w'; ey-Gal4,UAS-

DVAPP58S/CyO-GFP; +/+ and crossed to sibling males of genotype w'/Y; ey-

Gal4,UAS-DVAPP58S/CyO-GFP; +/+ from progenies of each individual cross in
the above scheme.

^ w'/w; ey-Gal4, UAS-DVAPP58S/CyO-GFP; +/+
X

O w'/Y; ey-Gal4, UAS-DVAPP58S/CyO-GFP; +/+

I

w'/Y; ey-Gal4, UAS-DVAPP58S/CyO-GFP; +/+

w'/w'; ey-Gal4, UAS-DVAPP58S/CyO-GFP; +/+

w'/Y; ey-Gal4, UAS-DVAPP58S/ey-Gal4, UAS-DVAPP58S; +/+

w'/w; ey-Gal4, UAS-DVAPP58S/ey-Gal4, UAS-DVAPP58S; +/+
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wVY; CyO-GFP/CyO-GFP; +/+

w'/w'; CyO-GFP/CyO-GFP; +/+

Only ey-Gal4,UAS-DVAPP58S/CyO-GFP; +/+ would survive as ey-Gal4,UAS-

DVAPP58S/ey-Gal4, UAS-DVAPP58S; +/+ and CyO-GFP/CyO-GFP; +/+ are lethal.
Established stocks were then allowed a 24 hour period of egg-laying, the parents

were transferred and the embryos were heat-shocked at a 30°C water bath.
Recombination will have occurred in crosses that result in adult flies that exhibit a

reduction in eye size and rough eye phenotype. The established original stocks were

then kept for use.

2.2.5 Genetic Screen for dominant modifiers of DVAPP58S

To screen for dominant modifiers of ey-Gal4,UAS-DVAPP58S-induced eye

phenotypes, single crosses between eight males coming from deficiency lines on the
second or third chromosomes and eight virgins of the ey-Gal4,UAS-

DVAPP58S/CyO-GFP recombinant line were set at 30°C. For deficiency lines on the
X chromosome, eight virgins of each deficiency line were crossed with eight ey-

Gal4,UAS-DVAPP58S/CyO-GFP males. The resulting progeny were raised at 30°C
and screened for enhancement or suppression of eye defects.

The MATLAB software for eye quantification, allows a statistical

representation of the range of eye phenotypes resulting from the expression of the
UAS-DVAPP58S transgene. A deficiency line was selected as a suppressor of
DVAPP58S if the majority of the experimental F1 progeny was centred above 2500

arbitrary units squared and the smallest eye size had a value above 50 arbitrary units

squared when compared to 60% of ey-Gal4,UAS-DVAPP58S/CyO-GFP flies centred
between 1500 and 2000 arbitrary units squared and 5% had eye sizes around 50

arbitrary units squared. Each deficiency line from the DrosDel collection are
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molecularly mapped and information on the list of genes uncovered by each

deficiency are available on Flybase (www.flybase.org).

2.3 Electrophysiology and Ultrastructural analysis

Electrophysiology and Transmission Electron Microscopy (TEM) for ultrastructural

analysis were performed according to Chai et al., 2008.

2.4 Immunohistochemistry

2.4.1 a-HRP stainings of third instar larval NMJs.

Third instar larvae were selected at the wandering stage after having left the food and
dissected in PBS (Phosphate Buffered Solution). Larval NMJs were fixed in Bouin's
fixative (15:5:1 mixture of saturated picric acid, 37% formaldehyde and glacial
acetic acid) for 15 minutes, washed extensively in 0.1% PBT (PBS + 0.1% TritonX-

100), blocked in 10% normal goat serum, NGS (Sigma) in 0.1% PBT for 30 minutes,
and finally incubated with the primary antibody in the presence of 5% NGS

overnight at 4°C. AffiniPure rabbit anti-HRP antibody (Jackson ImmunoResearch)
was used at 1:200. Samples were washed in 0.1% PBT for 2 hours by changing
solution every 15 minutes and then incubated with the secondary antibody (anti-
rabbit Biothinylated IgG 1:400, Vector Laboratories) in presence of 5% NGS for 2
hrs at room temperature. Samples were then washed again in 0.1% PBT for 2 hours

by changing solution every 15 minutes. Signal detection was carried out with a

VectaStain ABC-E1RP kit (Vector Laboratories). In short, samples were then
incubated in the pre-incubated A+B mix with for at least 1 hour under constant

agitation and washed for 1 hour with 0.1% PBT by changing solution every 15
minutes. The NMJs were transferred into a 24-well plastic plate in 1 ml of 0.1% PBT,
100 pi ofDAB (3,3-diaminobenzidine tetrahydrochloride, Sigma) and 2-5 pi of 0.3%
H202 (Elydrogen peroxidase) were added. The reaction was then observed under the
dissection scope and stopped by washing the NMJs several times with 0.1% PBT.
The NMJs were then be mounted in 90% glycerol (diluted with IX PBS).
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To quantify the phenotypes, at least 6 different synapses per genotype were counted
on either muscles 6/7 or 12/13 at high magnification (60x) with Nomarski optics.
The bouton numbers are corrected to a mean and ± 1 SD (standard deviation) for
each transgenic phenotype.

2.4.2 Phalloidin stainings of NMJs.

Wandering third instar larvae were dissected in IX PBS and fixed with 4%

paraformaldehyde for 20 minutes. Samples were washed with 0.1% PBT and then
blocked with 10% NGS for 1 hour on rotator. Samples were then incubated with
AffiniPure rabbit anti-HRP (Horseradish peroxidase) (Jackson Immunoresearch) at a
concentration of 1:200 with 5% NGS at 4°C overnight on rotator and washed with
0.1% PBT for 2 hours under rotation. After washing, samples were incubated with
Alexa Fluor® 488 goat anti-rabbit IgG (Immunoglobulin G) (Molecular Probes) at a
concentration of 1:400 with 5% NGS for 2 hours. After incubation, the samples were
washed with PBT for 2 hours under rotation and then briefly with IX PBS. Samples
were then washed in IX PBS for 5 minutes under rotation and then incubated in 1ml

IX PBS with the addition of Alexa Fluor® 568 Phalloidin (Molecular Probes) at a
concentration of 1:40 for 20 minutes under rotation. Samples were washed twice for
5 minutes with PBS and mounted on slide in Vectashield (Vector Laboratories).

2.4.3 NMJ stainings of glutamate receptor subunits.

Larvae were dissected in lxPBS. Larvae to be stained with GluRIIA and GluRIIB

were fixed in Bouin's fixative for 5 minutes while larvae to be incubated with

GluRII/IIC and GluRIlD were fixed in 4% paraformaldehyde for 10 minutes.
Fixatives were washed off with 0.1% PBT and blocked in 10% NGS for 30 minutes.

Antibody concentrations used were as follow:
a-GluRIIA 1:100
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a-GluRIIB 1:1000

a-GluRlII 1:500

a-GluRlID 1:500

AffiniPure rabbit a-HRP 1:500

Primary antibodies were used with 5% NGS in 0.1%PBT. Samples were incubated

overnight at 4°C on rotator and then washed with 0.1% PBT for 2 hours under
rotation (i.e. 8x15 minutes).

Samples were incubated with their respective secondary antibodies with the

following concentrations:
a mouse-Cy3 1:400 (For GluRIIA)
a rabbit-FITC 1:1000 (For AffiniPure rabbit a-HRP)
a rabbit-Cy3 1:1000 (For GluRIIB, GluRII/IIC and GluRIID)

Secondary antibodies were used with 5% NGS in 0.1% PBT on rotator for 2 hours at

room temperature. Samples were then washed with 0.1% PBT for 2 hours under
rotation and then mounted on slide with Vectashield (Vector Laboratories).

2.4.4 DVAP-33A stainings of third instar larval brains

Larvae were dissected in lxPBS and then fixed brains and imaginal discs in Bouin's
fixative for 5 minutes. Fixative was washed off with 0.1% PBT and the samples
blocked with 10% NGS for 1 hour. Samples were incubated with AffiniPure rabbit a-
HRP (1:500) and a-DVAP (GP33) (1:1000) in 5% NGS and 0.1% PBT overnight at
4°C on rotator. Samples were then washed with 0.1% PBT for 2 hours under rotation
and incubated with secondary antibodies: a rabbit-FITC (1:100) and a GP-Cy3

(1:500) in 5% NGS and 0.1% PBT on rotator for 2 hours at room temperature. The

samples were then washed with 0.1% PBT for 2 hours under rotation and mounted
on slide with Vectashield (Vector Laboratories).

2.4.5 DVAP-33A stainings of third instar larval NMJs

Larvae with their respective genotypes were dissected in lxPBS and then fixed in
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Bouin's fixative for 5 minutes. The Bouin's fixative was washed off with 0.1% PBT

and then transferred into 1.5ml microcentrifuge tubes to be further washed in 0.1%
PBT. Larvae NMJs were then blocked with NGS for 30 minutes and incubated with

AffiniPure rabbit a-HRP (1:500) and a-DVAP (GP33) (1:1000) in 5% NGS and
0.1% PBT overnight at 4°C on rotator. Samples were washed with 0.1% PBT for 2
hours under rotation and then incubated with secondary antibodies: a rabbit-FITC

(1:1000) and a GP-Cy3 (1:500) in 5% NGS and 0.1% PBT on rotator for 2 hours at

room temperature. The NMJ samples were then washed with 0.1% PBT for 2 hours
under rotation and mounted on slide with Vectashield (Vector Laboratories).

2.5 Western Blot

Single, dissected brain and neuromuscular junction (NMJ) samples from Drosophila
third instar larvae or optic lobes from adult flies of the respective genotypes were

collected and kept at -20°C until homogenization. Samples were homogenized in
Laemmli buffer (Biorad Laboratories) using strokes of a pellet pestle. After

assembling the electrophoresis module (Biorad Laboratories), the protein extracts

and molecular weight marker (Molecular Probes) were loaded to fill the

corresponding wells of 8% SDS-PAGE gels. Electrophoresis was carried out at 100
Volts for 90 minutes. The gel was removed and proteins were transferred onto

Hybond-P PVDF membranes (Amersham Biosciences) for 2 hours at 200mA. Then,
the membranes were incubated overnight at 4°C under gentle agitation in blocking
solution. The blocking solution consisted of 2% ECL Advance Blocking Agent

(Amersham Biosciences) diluted in TBST(Tris Buffer Solution with Tween)-0/l%
Tween 20 (Sigma) in TBS (Tris Buffer Solution) (8g NaCL, 20ml 1M Tris at pH7.6

brought up to a final volume of 1 litre). After the overnight blocking, briefly rinse the
membrane with 2 washes in TBST before incubating the respective primary
antibodies: a-DVAP (GP33) (made in guinea pig, diluted at 1:70000) or hVAPB

(made in rabbit, diluted 1:7500) in blocking solution for 2 hours at room temperature

with mild agitation. After primary antibody incubation, the membrane was rinsed

briefly with 2 changes of TBST. The membrane was then submerged in 250ml of
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TBST and placed on a shaker during washing for 2 hours, changing TBST solution

every 15 minutes. The membranes were then incubated for 2 hours with mild

agitation at room temperature with secondary antibody a-Guinea Pig HRP IgG,
diluted at 1:60000 or a-Rabbit HRP IgG, diluted at 1:10000 in blocking solution.
The rinse/wash cycles mentioned after primary antibody incubation were repeated.

Signals on the membrane were detected using the ECL Advance Western Blotting
Detection Kit (Amersham Biosciences). In brief, detection solutions A and B were

mixed in a ratio of 1:1 and pipetted onto the membrane with the protein side facing

upwards and left for 1 minute at room temperature. Excess detection reagent was

drained before wrapping the blots with SaranWrap™. The wrapped membranes were

placed quickly into an X-ray film cassette and exposed to autoradiography film
(Hyperfilm™ECL) for 60 seconds. The film was removed and placed in developer
for 30 seconds and then rinsed briefly before fixing. On the basis of the appearance

of the first film, exposure times were varied for the subsequent films. The films were

scanned onto a computer to obtain a digital image.

For actin-loading controls:
Membranes were kept in saran wrap at 4°C in a humid chamber until it was used in

stripping protocol. The membrane was rewet for a few seconds with methanol and
then washed in distilled water for 5 minutes. The membrane was then submerged in

stripping buffer ( 100 mM mercaptoethanol, 2% (w/v) SDS, 62.5 mM Tris-HCl, pH
6.7) and incubated at 60°C for 30 minutes with occasional agitation. The membrane
was subsequently washed twice for 10 minutes in TBST at room temperature using

large volumes of wash buffer. The membrane was blocked overnight at 4°C with

blocking solution and proceeded to the immunoblotting steps with primary and

secondary antibodies as described above. The concentrations for antibodies are listed
below:

Immunoblotting for actin loading control

Primary antibody concentration
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Brains and NMJs

a-actin (Rabbit) A5060, Sigma 1:20000

Secondary antibody concentration
Brains and NMJs

a-rabbit HRP IgG (Jackson Immunoresearch) 1:20000

2.6 TUNEL staining for detection of apoptosis

Wandering third instar larval brains were dissected in IX PBS and transferred in

eppendorf tubes containing IX PBS. Fixation was done by rapidly exchanging the

dissecting buffer with 4% paraformaldehyde and fixed for 15 minutes at room

temperature, on a rotator.

Larval brains were washed with IX PBS quickly and then for 5 minutes at room

temperature, under rotation. 1 pi of a lOmg/ml of Proteinase K (Promega) solution
was diluted in 1 ml IX PBS to give a final concentration of lOug/ml Proteinase K.
This solution was added to the brains and incubated for 10 minutes under rotation at

room temperature. Samples were washed quickly with IX PBS 3 times and then for 1
hour at room temperature, under rotation, exchanging PBS solution every 15
minutes. Larval brains were fixed again for 5 minutes at room temperature with 4%

paraformaldehyde, washed quickly for 3 times with PBS and again for 3 times for 5
minutes. Samples were resuspended in 100 pi equilibration buffer for 5 minutes on

the bench. Labelling reaction with TUNEL reaction mixture (Promega DeadEnd
Fluorometric TUNEL System) were prepared as follow and kept on ice (90 pi

Equilibration buffer, 10 pi Nucleotide mix and 2 pi rTdT Enzyme for each reaction).
After incubation with equilibration buffer, the buffer was removed and the prepared
reaction mix were added to to the brains and incubated for 2 hours at 37 °C in a water

bath. The reaction mix was pipetted up and down carefully every 15 minutes. The
reaction mixture was removed after incubation and 1 ml of 20 mM EDTA was added

to terminate the reaction. Larval brains were washed with IX PBS, thrice for 15
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minutes, at room temperature under rotation. The excess liquid was drained out and
larval brains were mounted on a slide in Vectashield (Vector Laboratories).

2.7 Scanning Electron Microscopy (SEM)

Analysis of adult eye phenotype by SEM was carried out by decapitating flies under
carbon dioxide anaesthesia. Adult fly heads were fixed immediately with 3%

Glutaraldehyde in 0.1M Sodium Cacodylate Buffer (pH7.4) for >3 hours, washed in
0.1M Sodium Cacodylate Buffer (pH7.4) for 3 x 20 minutes, incubated in 1%
Osmium Tetroxide in 0.1M Sodium Cacodylate Buffer for 1-2 hours, washed for 30
minutes in distilled water, dehydrated in 50%, 70%, 90% and 100% acetone for 10
minutes each, and twice more in 100% acetone for 10 minutes each, dried with

carbon dioxide in a Polaron E3000 SII CPD, sputter coated with 20nm
Gold/Palladium (60/40) in an EMSCOPE SC500 Sputter Coater and viewed with

Philips 505 scanning electron microscope.

2.8 Imaging and morphometric analysis

Larval NMJs were imaged using an Axiovert Zeiss Microscope. The same confocal

gain settings were applied to control and mutant NMJs. A complete Z-stack was

acquired for every NMJ and rendered on a 3D projection. For the morphometric

analysis, images were initially trimmed using the Zeiss LSM Image Examiner
3.2.0.70 software (Carl Zeiss, 2002). Cluster counting and volume estimation were

performed with the software package Imaris 4.7.2 (Bitplane AG, 2006). The
minimum cluster radius was set to 0.4 pm and background object subtraction was

used when applying the 'spot detection' function. The total cluster volume was found

by fitting a 3D surface to the clusters with the iso-surface tool and no additional
Gaussian smoothing or re-sampling steps were applied. The average volume of a

single cluster was calculated by dividing the total cluster volume by the total number
of clusters. Appropriate intensity thresholds were selected to properly identify
clusters and ignore background intensities for both tools in the Imaris package.
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Statistical analysis was performed using a two-tailed Student's Etest.

2.9 Larval locomotion behaviour

Wandering third instar larvae were collected from the vial and washed briefly in
distilled water to remove traces of food. Each larva was transferred to the centre of a

9 cm Petri dish containing grape juice medium. The larva was then allowed to adjust
to the Petri dish environment and the counting of the peristaltic waves was started

only after observing the first wave of contractions. The contraction waves were

counted for at least 2 min per larva and their number divided by the time in seconds
to obtain the frequency of contractions expressed in Hertz (Hz). The Lillefors test

was applied to check for normality in the distribution of the different datasets. Since
the data concerning the elav; UAS-DVAPmt failed to pass the test for normality, the

non-parametric Mann-Whitney U test was used to compare the datasets.

2.10 MATLAB software for eye quantification

Pictures of Drosophila eyes were taken on a camera attached to a light microscope
with the same fixed magnification for all genotypes. The MATLAB software for eye

quantification allows the user to trace the border of the eye at a zoomed-in level (see

Figure 2.1 and Figure 2.2 below). The criterion used for selecting the border was that
the border highlighting should run outside the eye, as close as possible to its

boundary with the head. Errors in tracing the border can be corrected by deselecting
the single pixels. The software has other features to check there are no gaps in the
border traced and ensure that the border is one pixel wide. The software then
calculates the circumference and area of the closed border surrounding the eye,

which are then automatically transferred onto an Excel spreadsheet.
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Figure 2.1. Zoomed-in picture displayed on the MATLAB eye quantification
software.
Seen here is a picture of a wild-type eye with a partly traced border, highlighted in green.
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Figure 2.2. Zoomed-out picture on the MATLAB eye quantification software.
Seen here is a picture of a wild-type eye with a partly traced border, highlighted in green.
The traced border is extremely close to the edge of the eye, giving a more accurate
quantification of eye size.

The Lillefors test was applied to check for normality in the distribution of the
different datasets. Since all the datasets failed to pass the test for normality, with ey-

Gal4, UAS-DVAPP58S/CyO-GFP flies and ey-Gal4, UAS-DVAPP58S/Df(2L) ED695
flies bordering on normal (P=0.0153 and 0.0119 respectively), the non»parametric

Mann-Whitney U test was used to compare the datasets. Since the distribution of ey-
Gal4, UAS-DVAPP58S/CyO-GFP flies and ey-Gal4, UAS-DVAPP58S/Df(2L) ED695
flies bordered on normal, the two-sampled student t-test was also used to test these
two data sets and the difference in distribution was found to be highly significant

(P<0.005).
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Chapter 3: DVAP-33A is the structural and functional
homologue of hVAPB

3.1 DVAP-33A is the structural homologue of hVAPB

Human VAPB was found to be the causal agent ofALS8 and is a result of a missense
mutation that causes the substitution of a serine for the conserved proline (P56S) at
codon 56 (Nishimura et al., 2004b). We decided to model ALS 8 in flies as it has

been shown to be a very flexible and successful model system in studying

neurodegenerative diseases (Warrick et al., 1998, Jackson et al., 1998, Struhl &

Greenwald, 1999, Feany & Bender, 2000, Fernandez-Funez et al., 2000). In order to
model ALS8 in flies, we need to identify the structural homologue of hVAPB in

Drosophila. Comparing structural similarities between proteins sequences of humans
and Drosophila allows the identification of regions of similarity that may shed light
on the function and evolutionary relationships of genes in both normal and disease
states in these two organisms (Rubin et al, 2000, Fortini et al, 2000).

There are three proteins in Drosophila that show significant homology and
structural similarity to hVAPB and they are CG33523, CG7919 (Farinelli) and
CG5014 (DVAP-33A). Farinelli is specifically expressed in testes and larval fat body
and is also required for male fertility (Pennetta et al, 2002). Both proteins encoded

by CG33523 and DVAP-33A are ubiquitously expressed, however, global protein

sequence alignment showed that protein encoded by CG33523 is only 34% similar
while DVAP-33A is 62% similar to hVAPB.

CG33523 is 34% similar to hVAPB and encodes a VAP-like protein that

spans a region of only 6kb on the Drosophila genome. Protein sequences

corresponding to conceptual translation of CG33523 transcripts show that it contains
a C-terminal region containing a putative transmembrane domain (TMD), a domain
with strong homology to MSP and a putative Cellular retinaldehyde-binding/triple
function (CRAL-TRIO) motif at the N-terminus that binds small lipophilic
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molecules. This additional CRAL-TRIO domain found on CG33523 is unique and
not found in classical VAPs, therefore, the only possible homologue of hVAPB in
flies can only be DVAP-33A.

Using the ClustalW vl.82 alignment program available from EMBL-EB1, we
showed that DVAP-33A and hVAPB exhibit 39.6% amino acids identity matches and
61.7% of amino acids were identity matches or conserved substitutions (Figure
3.1A). Structurally, DVAP-33A and hVAPB share a common tri-partite domain

organization: an MSP homology domain at the N-terminal that contains a stretch of
16 amino acids that is perfectly conserved between DVAP-33A and hVAPB (Figure
3.1A and B), a coiled-coiled domain that may be involved in protein-protein
interaction and a transmembrane domain at the C-terminal (Figure 3.IB; Amarilio et

al., 2005; Nishimura et al., 1999). The higher degree of homology and higher degree
of structural similarity suggest that DVAP-33A is most likely to be the Drosophila

homologue of hVAPB.
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54fa DVAP-33A

hVAPB 1 MAK--VEQVLSLEPQHELKFRGPFTDWTTNLKLGNPTDRNVCFKVKTTAPRRY 52

DVAP-33A 55 ^^MlGKIIPFRSTQVEICLQPFVYDQQEKNKHKFMVQSVLAPME(ADLSDLNK 108

hVAPB 53 CVRPNSGIIDAGASINVSVMLQPFDYDPNEKSKHKFMVQSMFAP- -TDTSDMEA 104

DVAP-33A 109 LWKDLEPEQLMDAKLKCVFEMPTAEANAENTSGGGAVGGGTGAAGGGSAGANTS 162

hVAPB 105 VWKEAKPEDLMDSKLRCVFELPAENDKPHDVEINKII STTA 145

DVAP-33A 163 SASAEALESKPKLSSEDKFKPSNLLETSESLDLLSGEXKALRECNIELRRENI.H 216

hVAPB 146 SKTETPIVSKSLSSSLDDTEVKKVMEECKRL QGEVQRLREENKQFKEED-G 195

DVAP-33A 217 fprnnTTPgpq<fp»wmmvpvamrT.&ggnTP-uMyp II Hq«l^ » 269
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Figure 3.1. human VAPB (hVAPB) protein and its Drosophila homologue
DVAP-33A are structurally similar.
(A) A global protein sequence alignment was performed using the ClustalW vl .82 alignment
program available from EMBL-EB1. 39.6% amino acids were identity matches and 61.7%
were identity matches or conserved substitutions. The sequence for DVAP-33A was taken
from FlyBase (Flybase ID FBgn0029687) and the source for the hVAPB sequence was
UniProt ID/accession code VAPB_HUMAN/095292. In the rows between the aligned
proteins, represents an identity match, and is a conserved substitution according to the
GONNET 250 matrix. (B) Structure analysis of VAP proteins predicts a transmembrane
domain at the C-terminus (TM) and a coil-coiled domain (CC) in the middle. The grey boxed
area corresponds to a domain of significant homology to the nematode Major Sperm Protein
(MSP). This region includes the N-terminal (NT) sequence of 16 amino acids that is
perfectly conserved between DVAP-33A and hVAPB.

3.2 Altered expression of DVAP-33A regulates the size and
number of synaptic boutons at the larval NMJs

DVAP-33A has previously been characterized and shown to be involved in bouton

budding at the Drosophila NMJ, control ofmicrotubule cytoskeleton dynamics and is
required for structural remodelling of synapses (Pennetta et al., 2002). We found that

hypomorphic and null mutations in DVAP-33A cause a severe decrease in bouton
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number with a concomitant increase in bouton size. DVAP-33AJ'66 mutants exhibit

only 150 ± 7 boutons (Figure 3.2B and E), while controls contain 250 ± 8 boutons

(Figure 3.2A and E).. Conversely, presynaptic overexpression of DVAP-33A induces
a highly significant increase in the number of boutons with a concomitant decrease in
their size (300 ± 7 versus 180 ± 8 in controls, Figure 3.2; Pennetta et al., 2002).

Despite the redistribution in sizes of boutons observed in these synapses, the total
surface area does not significantly differ from wild type. In summary, loss of DVAP-
33A causes a decrease in bouton number accompanied by an increase in their sizes
while an increase in DVAP-33A dosage induce an increase in number of boutons
with a decrease in their sizes.
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Figure 3.2. The dosage of DVAP-33A affects the number and size of boutons at
the larval NMJs.
Anti-HRP staining of controls (A and C), DVAP-33AAl66 mutants (B) and UAS-DVAP-33A
overexpressing NMJs (D). (E) Quantification of the total number of boutons in controls and
A166 mutants. (F) Total surface area per muscle and calculation of the distribution in
synaptic bouton area (G). A revertant line was used as a control in A, while in C the UAS-
DVAP line was used as a control. The total number of boutons on muscles 12 and 13 was

counted in the analysis of DVAP-33AJ'66 mutants. The reduction in number of boutons is also
accompanied by an increase in their size and surface area in null mutants (Figure 3.2F and
G). Total number of boutons on muscles 6 and 7 was counted for the analysis of DVAP-33A
overexpressing larvae.
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3.3 Changes in DVAP-33A dosage does not affect normal
synaptic transmission

Since the number and size of synaptic contacts between a neuron and its target may

affect synaptic strength, we investigated whether the structural changes due to

alterations in DVAP-33A dosage have any consequence on synaptic function.

Electrophysiological analysis was focused on partial loss-of-function mutation
DVAP-33AA'66 since many more mutants survive to the third instar larval stage than
null mutants, while displaying very similar phenotypes to null mutants. As shown in

Figures 3.3A and B, the amplitude of the evoked junctional potential (EJP) is not

significantly different (P > 0.05) in synaptic terminals exhibiting fewer and larger
boutons (36 ± 2 mV) relative to controls (37 ± 2 mV). To determine whether other

aspects of synaptic transmission are altered in mutants, the properties of miniature

excitatory junctional potentials (mEJPs) were also analyzed. We found an increase in
the mean frequency ofmEJPs in mutants when compared to controls (3.80 ± 0.24 Hz
versus 2.00 ±0.11 Hz, P < 0.001) (Figure 3.3E). In addition, as shown in Figure 3.3E
and F, the mean amplitude of mEJPs is increased in partial loss-of-function mutants

(1.30 ± 0.02 mV in DVAP-33AA'66 versus 0.80 ± 0.01 mV in controls). This
difference in quantal size is significant (P < 0.001) and is also observed in null
mutants (data not shown).

In synaptic terminals overexpressing DVAP-33A (elav-GAL4; UAS-DVAP-

33A), the EJP amplitude is not significantly changed compared to controls (32 ± 3
mV versus 33 ± 2 mV, P > 0.05) (Figure 3.3C and D). Conversely, in synaptic
terminals overexpressing DVAP-33A, a significant decrease in quantal size was

observed (0.59 ± 0.05 mV versus 0.90 ± 0.06 mV in the control, P < 0.05) (Figure

3.3G). Interestingly, cumulative amplitude histograms for both genotypes, indicate
that the entire mEJP amplitude distribution is shifted towards larger values in
mutants (Figure 3.3F) and towards smaller values in animals in which DVAP-33A is

overexpressed (Figure 3.3G). Thus, changes in quantal size are, at least partially,

responsible for maintaining normal synaptic transmission in loss-of-function and
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overexpression paradigms.

0 1 2 3 4

Amplitude of mEJP (mV) 1.5 2.0 2.5 0.0 0.5 1.0
Amplitude of mEJP (mV)

2.0 2.5

Figure 3.3. Normal synaptic transmission is maintained in animals lacking or
overexpressing DVAP-33A.
(A-D) Evoked neurotransmitter release is normal in both DVAP-33A loss-of-function and
overxpression mutants. (A) Examples of single traces showing EJPs in DVAP-33A mutants
(A166) and controls (Revert). (B) Summary of EJP amplitudes for DVAP-33Aa166 mutants
(A166, n= 11) and controls (Rev. n=10). (C) Representative traces of EJPs in synaptic
terminals overexpressing DVAP-33A (elav; UAS-DVAP) and controls (UAS-DVAP). (D)
Summary of EJP amplitudes for overexpression mutants (n=12) and controls (n=13). (E-F)
DVAP-33A mutations significantly increase the frequency and the amplitude of spontaneous
miniature excitatory junctional potentials (mEJPs). (E) Representative traces of mEJPs for
DVAP-33A mutants (A 166) and controls (Revert). (F) Cumulative distribution of total mEJP
amplitudes in DVAP-33A mutants (A166) and in controls (Rev.). Histograms of mEJPs for
Rev. and A166 are shown. (G) Cumulative distribution of total mEJP amplitudes for
terminals overexpressing DVAP-33A {elav; UAS-DVAP) and for the control {elav), and
histograms of mEJPs for elav; UAS-DVAP and elav. The transgenic line used for
overexpressing DVAP-33A was Drwtl. (Data and figure courtesy of Bing Zhang).
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3.4 infrastructure remodeling of the synapse accompanies
functional compensation at the NMJ

At the ultrastructural level, we investigated if changes within the synapse could
account for the functional compensation in loss-of-function and overexpression of
DVAP-33A. TEM analysis of terminals lacking and overexpressing DVAP-33A was

performed and we found that there is an increase in number of active zones in
boutons of DVAP-33A loss of function mutants (2.0 ± 0.2 active zones per bouton
cross-sectional area versus 0.8 ± 0.3 in controls, Figure 3.4A-C and E) while in

synapses overexpressing DVAP-33A the number of active zones per surface area is
not affected. However, there are substantially more boutons which are significantly
smaller in size when compared to wt boutons and we observed a decrease in density
of vesicles per bouton (Figure 3.4D).

As reported in Figure 3.4F, in every small bouton resulting from DVAP-33A

overexpression, more than 80% of the bouton cross-sectional area is empty, whereas
in controls, numerous vesicles are packed in each bouton leaving only 40%-50% of
the bouton area empty. No change in the size of synaptic vesicles was observed in

any of the genotypes (not shown). The system seems to be able to concentrate the
number of active zones in a reduced number of boutons in the loss of function

mutants and on the other hand, dilute the density of vesicles in the overexpression of
DVAP-33A that have an increased number of boutons. These data clearly indicate
that synapses can undergo structural remodeling, whereby active zones can increase
in a reduced number of boutons and the pool of vesicles can be diluted in an

increased number of boutons to maintain functional and structural homoeostasis.
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Figure 3.4. Loss of function and overexpression of DVAP-33A affects
ultrastructural remodeling of the synapse.
Electron micrographs ofNMJs from controls (A and C), DVAP-33AAI66 hypomorphic mutants
(A 166.) in B, and DVAP-33A (elav; UAS-DVAP) overexpressing larvae in D. Presynaptic
active zones (arrows) and subsynaptic reticulum (SSR) are indicated. Arrows in D indicate
synaptic vesicles. (E-F) Morphometric analysis of A166 mutants and DVAP-33A
overexpressing terminals. Nerve terminals were sectioned and analyzed for the number of
active zones per bouton cross sectional area (E) and for the bouton area devoid of synaptic
vesicles (F). The transgenic line used for overexpressing DVAP-33A was Drwtl. (Figure and
data courtesy of Vivian Budnik and Young Ho Koh)
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3.5 hVAPB expression rescues the lethality, morphological
and electrophysiological phenotype of DVAP-33A null
mutants at the NMJ

Given the degree of homology and structural similarity between hVAPB and DVAP-

33A, we want to test if hVAPB can functionally substitute for DVAP-33A in flies. It
has been shown previously that the complete loss of DVAP-33A in DVAP-33A 420
and DVAP-33AA448 mutants cause lethality in second instar/early third instar larvae,
and examination of NMJ morphology in the larvae showed an increase in size and
decrease in number of boutons (Figure 3.2, this work; Pennetta et al., 2002).

Transgenic flies carrying the UAS-hVAPB cDNAs were generated (Chai, A
MSc Thesis, 2005) with the intention of rescuing the lethality and morphological

phenotypes seen in DVAP-33A loss of function mutants. The hVAPB gene was

A20 A448

expressed in null (DVAP-33A and DVAP-33A ) and hypomorphic (DVAP-33A
A166

) mutant background using C164-Gal4 (Torroja et al, 1999) and D42-Gal4 (Elia
et al, 1999) drivers. C164-Gal4 has previously been used to rescue the lethality and

morphological phenotypes seen in DVAP-33A loss of function mutants (Pennetta et

al., 2002). DVAP-33A is ubiquitously expressed and the zygotic loss results in

lethality during second/early third instar larval stages with rare (~1%) adult escapers.
The lethality associated with loss of DVAP-33A can be rescued by expressing
hVAPB using both the C164-Gal4 and D42-Gal4 drivers in combination with several

independent UAS-hVAPB transgenic lines with expected Mendelian ratios. Rescued
flies were fertile and did not show any abnormal morphological and behavioural
defects.

DVAP-33A loss of function mutants display an increase in bouton size and
decrease in bouton number at the NMJ when compared to controls (150 ± 7 boutons
versus 250 ± 8 in controls, P<0.01, Figure 3.2). This synaptic phenotype associated
with DVAP-33A loss of function can also be rescued by the expression of hVAPB

using C164-Gal4 and D42-Gal4 drivers. The number of synaptic boutons is similar
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to controls (284 ± 11 boutons versus 278 ± 12 in controls, P>0.05, Figure 3.5A and

B). Moreover, electrophysiological analysis of the same synapses shows that the EJP

(36 ± 2 mV versus 37 ± 2 mV in controls; P>0.05) and mEJP (0.83 ± 0.02 mV versus

0.89 ± 0.03 mV in controls; P>0.05, Figure 3.5C and D) are both similar to controls.

Elence, expression of hVAPB in neurons rescues the lethality, aberrant morphological

phenotype and increase mEJP amplitude associated with loss of function of DVAP-
33A mutations. These data show that hVAPB and DVAP-33A not only share
structural similarities but hVAPB can also functionally substitute for DVAP-33A at

the synapse.
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Figure 3.5. hVAPB rescues the lethality, morphological and electrophysiological
phenotypes associated with DVAP-33A loss of function.
(A-D) Defects in synaptic function and morphology in DVAP-33A loss-of-function mutations
are rescued by neuronal-specific expression of hVAPB. (A) Anti-HRP staining of controls
NMJs (UAS-hVAP) and (B) NMJs expressing hVAPB in DVAP-33A mutant background
(DVAP/hVAP). In the inset, total number of boutons on muscles 12 and 13 for controls
(blue) and NMJs expressing hVAPB in DVAP-33A mutant background (red). (C) Examples
of single traces showing EJPs in controls (UAS-hVAP) and NMJs expressing hVAPB in
DVAP-33A mutant background (DVAP/hVAP). In the inset, summary of EJPs amplitudes for
rescued and control animals. (D) Representative traces ofmEJPs from controls (UAS-hVAP)
and rescued animals (DVAP/hVAP). In the inset, histograms of mEJPs amplitudes for
controls and rescued NMJs are shown. The neuronal-specific driver P[GaI4w JC164 was
used to drive the expression of hVAPB in a DVAP-33A mutant background (Torroja el al.,
1999). Transgenic lines HWT1 and HWT8 were used to rescue the mutant phenotype
associated with DVAP-33A null mutations.

3.6 Transgenic expression of hVAPB phenocopies DVAP-33A
overexpression.

To provide further support that hVAPB and DVAP-33A are functionally
interchangeable, we investigated if the overexpression phenotype of hVAPB is
similar to the overexpression phenotype of DVAP-33A. Neuronal overexpression of
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DVAP-33A using the pan-neural driver e/av-Gal4 results in a dramatic increase in
bouton number and a concomitant decrease in bouton size (Figure 3.2). Despite
severe changes to the synapse morphology, muscle EJPs are maintained within
normal values (Figure 3.3) due to synaptic homeostatic mechanisms.

To further analyse the effect of hVAPB protein expression on synapse

morphology and function we used the same elav-Gal4 driver to overexpresss hVAPB
in a DVAP-33A wt background. As shown in Figure 3.6A and B, we observed an

increase (P<0.001) in bouton number (535 ± 16) accompanied by a decrease in the
size of the boutons when compared to controls (297 ± 7). Similar to overexpression
of DVAP-33A, expression of hVAPB in a wt background also causes a reduction in
the average mEJP amplitude. In this instance, an almost 50% reduction in mEJP size

(0.48 ± 0.0lmV) compared to controls (0.82 ± 0.0lmV; P<0.001, Figure 3.6D)

compensates for the 10% reduction in EJP amplitude (35.0 ± 0.7mV versus 29.0 ±

0.8mV; P<0.001, Figure 3.6C), allowing a near normal postsynaptic response.

Hence, the series of loss of function and gain of function experiments show that
hVAPB and DVAP-33Aare functionally interchangeable.
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Figure 3.6. hVAPB overexpression phenocopies DVAP-33A overexpression and
the morphological and electrophysiological level.
(A-D) Neuronal overexpression of the human protein induces an increase in the number of
smaller boutons, a small but significant decrease in the evoked response and a decrease in
mini amplitude. (A) Anti-HRP staining of controls (UAS-hVAP) and (B) NMJs
overexpressing hVAPB in neurons (elav; UAS-hVAP). In the inset, the total number of
boutons on muscles 12 and 13 is reported for controls (blue) and larvae overexpressing
hVAPB (red). (C) Examples of traces of EJP amplitudes for controls (UAS-hVAP) and NMJs
overexpressing hVAPB in a wt background for DVAP-33A (elav; UAS-hVAP). In the inset, a
summary of EJP amplitudes for controls and NMJs overexpressing hVAPB in a wt
background for DVAP-33A. (D) Representative traces of mEJP amplitudes for controls
(UAS-hVAP) and synapses overexpressing hVAPB in a wt background for DVAP-33A (elav;
UAS-hVAP). In the inset, histograms of mEJP amplitudes for controls and synapses
overexpressing hVAPB are shown. denotes statistically significant changes. Data
reported in A-D were obtained using HWT4 and HWT5 transgenic lines. Scale bars = 10
pm.
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3.7 hVAPBP56S expression also rescues the lethality,
morphological and electrophysiological phenotype of DVAP-
33A null mutants at the NMJ

The proline residue that is mutated in ALS8 patients is included in a stretch of 16
amino acids within the MSP homology domain at the N-terminal of VAP that is
conserved in all VAP species (Nishimura et al„ 2004b, Figure 3.7, this work). The
function of this domain is largely unknown but the high degree of conservation

clearly suggests that it may be important for the function of the entire protein.
Therefore, any mutation in this region would also very likely have similar

consequences in all VAP homologues.

A
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g Yeast FKVRTSAPTKYCVRPN
Aplysia FKVKTTAPKRYCVRPN
Drosophila FKIKTTAPKRYCVRPN
Mouse FKVKTTVPRRYCVRPN

Homo^^_^^^KVKTTA£RRYCVRPN
ALS S

Figure 3.7. The Proline to Serine mutation in ALS8 patients is located at the
MSP domain of VAP.

(A) The Proline to Serine mutation at codon 56 in ALS8 patients is situated in a stretch of
highly conserved 16 amino acid within the MSP domain of VAP. (B) The stretch of 16 amino
acids containing the ALS8 mutation changing the Proline 58 into a Serine in DVAP-33A.
The alignment shows that this domain is highly conserved in VAP proteins from different
species.

The P56S mutation in ALS8 is inherited in a dominant manner, dominantly
inherited mutations can be caused by loss of function, which can be due to a

dominant negative or a haploinsufficiency, or caused by a gain of function which can

be due to hypermorphic or neomorphic mutations (Greenspan, R.J., 2004). To help
define the nature of the ALS8 mutation, we expressed mutant VAP proteins in a null

background for DVAP-33A. Flies carrying the human VAP mutant transgene (UAS-

hVAPBP56S) and the Drosophila mutant VAP transgene (UAS-DVAPP58S) were

previously generated (Chai, A, MSc Thesis, 2005) to test the ability of these

transgene to rescue the lethality and morphological phenotypes associated with loss
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of DVAP-33A. Lethality was rescued when UAS-hVAPBP56S transgene was driven

by D42-Gal4 and C164-Gal4 drivers in a null background for DVAP-33A (DVAP-
A20 A44S

33A and DVAP-33A ). Moreover, as shown in Figure 3.8A and B, the number
of boutons in flies expressing the human mutant protein (C164-Gal4; UAS-hVAPmt,
bouton number: 290 ± 11) is not significantly different from control flies (UAS-

hVAPmt, bouton number: 304 ±11; P>0.05).

In addition, no significant difference in EJPs and quantal sizes were observed
in flies expressing hVAPBP56S (36 ± 2 mV) compared with controls (34 ± 2 mV, P >

0.05, Figure 3.8C). Finally, flies expressing hVAPBP56S exhibit quantal sizes (0.89 ±
0.02 mV) similar to those of control animals (0.83 ± 0.03 mV, P > 0.05, Figure

3.7D). Similar data in viability, morphological and electrophysiological properties
were also observed when the UAS-DVAPP58S transgene was expressed in a null

background for DVAP-33A using the C164-Gal4 driver (data not shown). The fact
that both the human and Drosophila VAP mutant protein can functionally substitute
for DVAP-33A indicates that the pathogenic allele of VAP in ALS8 is not a loss of
function.
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Figure 3.8. hVAPP56S rescues the mutant phenotypes associated with DVAP-
33A mutations.

(A-D) Defects in synaptic function and morphology in DVAP-33A loss-of-function mutations
are rescued by neuronal-specific expression of hVAPB carrying the pathogenic mutation. (A)
anti-HRP staining of control NMJs (UAS-hVAPmt) and NMJs expressing mutant hVAPB in
DVAP-33A. mutant background (DVAP/hVAPmt) in B. In the inset the total number of
boutons on muscles 12 and 13 for the same genotypes is reported. (C) EJP traces are reported
for controls (UAS-hVAPmt) and the DVAP/hVAPmt NMJs. In the inset a summary of EJPs
amplitudes is reported for the respective genotypes. (D) Representative traces of mEJPs
amplitudes for controls (UAS-hVAPmt) and DVAP/hVAPmt NMJs. In the inset histograms
of mEJPs amplitudes are shown for the corresponding genotypes. The data reported in A-D
were collected using the HMT2 transgenic line.
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3.8 Overexpression of hVAPBP56S results in drastic
oversprouting of boutons at the NMJ

We next examine the phenotype associated with the robust overexpression of
hVAPP56S throughout the nervous system. Neuronal overexpression of hVAPB and
DVAP-33A induces an oversprouting of small boutons (522 ± 16 in hVAPB

compared to 535 ± 7 in DVAP-33A). When the human mutant protein (UAS-

hVAPBP56S) was overexpressed using the same elav-Gal4 driver, we observed a

drastic increase in bouton number (656 ± 15 compared to 322 ± 9 in controls,
P<0.001 in Figure 3.9A and B) with a remarkable decrease in bouton size. This
increase in bouton number is significantly more elevated than overexpression of
hVAPB and DVAP-33A. In addition, unlike the EJPs associated with overexpression
of DVAP-33A or hVAPB, there was a reduction of more than 50% in the EJP

amplitude (14.0 ± 0.9 mV versus 34.0 ± 0.5mV in controls, P<0.001, Figure 3.8C).
As shown in Figure 3.9D. the mean quantal size (mEJP amplitude) is only 0.37 ±

0.05mV, less than half the corresponding control (0.90 ± 0.02 mV). The cumulative
distribution shows a redistribution of the mEJP values towards smaller values for all

mEJPs.
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Figure 3.9. Neuronal overexpression ofmutant hVAPBP56S reduces transmitter
release and quanta! size.
(A) Anti-HRP immunohistochemistry of NMJs overexpressing mutant hVAPB in a wt
background for DVAP-33A (elav; UAS-hVAPmt) (B) , and of UAS-hVAPmt NMJs as a
control in (A). Total number of boutons for the respective genotypes is reported in the inset
in (B). Representative traces of EJP amplitudes for the same genotypes in (C) with the
corresponding histograms for EJP amplitudes in the inset. (D) Representative traces ofmEJP
amplitudes for the same genotypes and histograms in the inset showing the distribution of
mEJP amplitudes for the same genotypes as in (A) and (B). For the neuronal overexpression
of the human mutant protein the HMTl l transgenic line was used. "*" denotes statistically
significant changes. Scale bars equal 10 pm.

The effect of hVAPB and hVAPP56S overexpression on synaptic morphology
and electrophysiology is observed in transgenic lines of hVAPB and hVAPP56S

expressing comparable amounts of proteins as assessed by densitometric analysis of
Western blots (Figure 3.10). In Figure 3.10B , OE F1WT4 and OE HMT11 have

comparable levels of protein as measured by a densitometer. However, the

morphological and electrophysiological phenotypes at the synapse seen in transgenic

expression of hVAPP56S (OE HMT11) is much more exacerbated than the

phenotypes seen in transgenic expression of hVAPB (OE HWT4) (Compare Figure
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3.6 with Figure 3.9). In addition, transgenic expression of hVAPP56S has more

severe electrophysiological and morphological phenotypes at the synapse compared
to transgenic expression of hVAPB (OEHWT3) that has roughly 10 times more

protein expressed (data not shown).
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Figure 3.10. Western Blot Analysis of Transgenic Lines Expressing hVAPB and
mutant hVAPB.

(A) Representative Western Blot of protein extracts from several transgenic NMJs
expressing hVAPB (HWT) and hVAPBP56S (HMT) probed with an antibody specific for the
human protein. An anti-Actin antibody was used as loading control. The slot labeled "CS"
are Canton S (wt) NMJs. No signal is detected in wt NMJs, showing that the antibody is
specific for the human protein. (B) Densitometric analysis of band intensity corresponding to
transgenic NMJs expressing hVAPB (HWT) and hVAPBP56S (HMT) in (A).
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Chapter 4: Expression levels of VAP affect the
abundance and volume of post-synaptic glutamate
receptor (GluR) subunits

In DVAP-33A loss-of-function mutations, an increase in quantal size ensures

functional homeostasis despite a significant decrease in the number of boutons and
an increase in their sizes (Figures 3.2C and 3.3). On the other hand, neuronal

overexpression of DVAP-33A and hVAPB result in a decrease in quantal sizes

(Figures 3.3 and 3.6D) in spite of an increase in bouton numbers and a decrease in
bouton sizes (Figures 3.2D and 3.6B). This change in postsynaptic response to

spontaneous release in neurotransmitter release is usually due to a number of factors.

Quantal size is defined as the synaptic response to the release of
neurotransmitter from a single vesicle during exocytosis (Fatt and Katz, 1952).

Quantal size can be affected by the size of the vesicle and also the sensitivity, number
or distribution of postsynaptic glutamate receptors. Neurotransmitter is released from

presynaptic specializations called active zones. In wild type animals, glutamate

receptors are clustered in puncta that lie opposite the presynaptic active zones,

placing them in an ideal position to detect neurotransmitter released (DiAntonio, A.,

2006).

Since no change in the size of synaptic vesicles was observed in loss-of
-function and overexpression of DVAP-33A NMJs (Vivian Budnik, personal

communication) it is most likely that changes in glutamate receptor subunit

composition and/or abundance can account for the change in quantal sizes in the

overexpression of hVAPB, hVAPBP56S and DVAP-33A loss of function mutants.

To date, five iGluRs have been identified in Drosophila: GluRIIA, GluRIIB

(Petersen et al., 1997; Schuster et al., 1991), GluRIII (Marrus et al., 2004; Qin et al.,

2005), GluRIID and GluRlIE (Qin et al., 2005; Featherstone et al., 2005). The
iGluRs are heterotetrameric and are made up of four distinct subunits: GluRIII,
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GluRIID, GluRIIE and either GluRIIA or GluRIIB (Qin et al., 2005). It has been
shown that the removal of GluRIIA decreases quantal size while an overexpression
of GluRIIA increases quantal size. GluRIIA has been shown to be important in
channel open time (DiAntonio et al., 1999, Petersen et al., 1997), therefore, suggests
that the density of GluRIIA may be a crucial determinant of quantal size. In this
series of experiments, we set out to investigate if a change in the composition of

glutamate receptors could account for the change in quantal sizes seen in different

expression levels ofVAP.

4.1 DVAP-33A loss-of-funotion mutations affect abundance
and cluster size of post-synaptic glutamate receptors

In order to assess whether the change in quantal sizes are due to changes in the
structure or composition of glutamate receptors, NMJs of VAP loss of function and

overexpression larvae were stained with antibodies specific for every glutamate

receptor subunit. An extensive morphometric analysis of glutamate receptors with

high resolution confocal data were applied to these NMJs to assess glutamate
abundance and distribution in these synapses.

DVAP-33A loss of function mutants exhibit an increase in mEJP (quantal

size) (Figure 3.3 and Tsuda et al., 2008). This increase in quantal size ensures

functional homeostasis of the synapse despite an increase in bouton size and a

decrease in bouton number (Figure 3.2). In the synapse of these mutants, a

significant increase in cluster count (P<0.05) and a marked increase in average

cluster volume for GluRIlA were observed (P<0.01, Figure 4.1A-C). For all other

subunits, a small but statistically significant decrease in cluster count was found

(P<0.05, Figure 4.1C). GluRIIB and GluRIII also exhibit a marked reduction in the

average cluster volume (30% reduction for GIuRIIB, Figure 4.1C; 46% for GluRIII,

Figure 4.1C-E, PO.OOl) while cluster size for GluRIID is similar to controls (Figure

4.1C). The staining intensity of every subunit does not differ significantly between
controls and mutants (data not shown).
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In synapses lacking DVAP-33A, the increase in quantal size is accompanied

by an increase in mean volume of GluRIIA clusters and an increase in the average

volume per cluster and a slight increase in cluster count. This data show that a

change in glutamate receptor volume could account for the increase in quantal size in
DVAP-33A mutants.

■Cluster count
□ Vol. per cluster

IIA IIB 11D III

Figure 4.1. DVAP-33A loss-of-function mutations affect subunit abundance and
cluster size of post-synaptic glutamate receptors.
(A) Volume renderings of controls stained with anti-GluRIIA antibodies. (B) Mutant
synapses for DVAP-33A (A448) stained with the same antibodies as in (A). (D) Control
synapses stained with anti-GluRIlI antibodies. (E) A448 synapses stained with the same
antibodies as in (D). (C) Morphometric analysis of A448 NMJs reporting cluster count and
mean cluster volume for every GluR subunit as percentages of control values. A striking
increase in the average cluster volume for GluRIIA subunit is observed in DVAP-33A
mutants. The revertant line generated by precise excision of the original P-element was used
as a control in this experiment (Pennetta et al„ 2002). Data in (C) are shown as mean ± s.e.m
and N= 5 larvae for every analyzed genotype. Scale bar = 50 pm.

4.2 Neuronal expression of hVAPB affects post-synaptic
glutamate receptor composition

A striking physiological feature of transgenic expression of VAP proteins in neurons

is a significant decrease in quantal size (Figures 3.3G and 3.6D). We investigated if
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the reduction in quantal size is also associated with a change in postsynaptic

glutamate receptor composition and/or abundance. The focus of our analysis was

directed at synapses expressing transgenic hVAPB in neurons as these synapses

exhibit a greater decrease in quantal size when compared to DVAP-33A transgenic

expression in neurons (0.48 ± 0.0 lmV versus 0.59 ± 0.05mV in DVAP-33A

overexpression, Figures 3.6D and 3.3G).

This decrease in quantal size seen in animals overexpressing hVAPB is

accompanied by a marked decrease in GluRIIA abundance (PO.OOl) when
compared to controls (Figure 4.2A-G). This decrease was specific for GluRIIA as no

difference in expression levels between controls and mutants was observed for any
other subunits (data not shown). Synapses expressing transgenic hVAPB also exhibit
a decrease in average cluster volume for subunit GluRIIA (P<0.001 Figure 4.2H-J),
GluRIlB and GluRlll (P<0.05 for both subunits, Figure 4.2J). Cluster count does not

change significantly (P>0.05) except for GluRIII where a small but statistically
significant increase is observed (P<0.05, Figure 4.2J) while no significant changes

(P>0.05, Figure 4.2J) were observed in cluster count and average volume cluster for
GluRIID. This data agrees with the fact that the decrease in quantal size in the

transgenic expression of hVAPB is accompanied by a decrease in glutamate receptor

fields ofGluRlIA, GluRIlB and GluRIII subunits.
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Figure 4.2. Neuronal expression of VAP proteins affects post-synaptic glutamate
receptor composition.
(A-C) GluRIIA subunit localization (red) at control NMJs visualized by using the neuronal
cell surface marker anti-HRP (green). (E-G) Synapses expressing transgenic hVAPB (elav;
UAS-hVAP) stained using the same antibodies as in (A-C). (D) Quantification of the
fluorescence intensity per volume unit of GluRlIA clusters in controls and in elav; UAS-
hVAP synapses. (H and I) Synapses of relevant genotypes stained with anti-GluRIIA
antibodies are shown as an example. Volume renderings of clusters immunoreactive to
GluRIIA are presented irrespective of their signal intensity. (J) Morphometric analysis of
cluster count and mean cluster volume for every GluR subunit in elav; UAS-hVAP synapses
are presented as percentages of control values. Neuronal expression of VAP proteins induces
a decrease in the expression levels of GluRIIA and a reduction in the receptor field size.
NMJ of Canton S larvae were used as controls. Data in (D) and (J) are shown as mean ±
s.e.m and in (D) the intensity is presented in arbitrary units. N = 5 larvae for every analyzed
genotype. Scale bars = 50 pm.

4.3 Presynaptic overexpression of hVAPBP56S affects the
abundance of GluRIIA subunit and the volume of

postsynaptic receptor clusters

Presynaptic overexpression of hVAPBP56S causes a drastic increase in bouton
number and a decrease in their size compared to the overexpression of the human
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and Drosophila wild type VAP protein. In addition, unlike the EJPs associated with
the overexpression of DVAP-33A and hVAPB, there was a reduction of more than
50% in the EJP amplitude (Figure 3.9C and D). The mean quantal size (mEJP

amplitude) is less than half the value of the corresponding control. We also extended
our morphometric analysis to synapses overexpressing hVAPBP56S.

We found that subunit GluRIIA was downregulated to about 33% of the wt

value (P<0.001) when assessed by measuring the intensity of the flurorescent signal

per volume unit on synapses stained with antibody specific for this subunit (Figure
4.3A-G). Using the same measurements, there was no significant difference between
wt and mutants for the other subunits. However, a decrease in cluster volume to

50%-60% of the wt value for every other subunit was observed. There was also a

small but not statistically significant decrease in number of clusters in all the subunits

(Figure 4.3H-J). Consistent with the downregulation of quantal size, presynaptic

overexpression of hVAPBP56S decreases the abundance of GluRIIA subunit and the

average cluster size of postsynaptic glutamate receptors.

Taken together, data from this series of experiments indicate that changes in

quantal sizes in different expression levels of VAP proteins are paraded by

postsynaptic remodeling of glutamate receptors. Consistent with our data, the size of

receptor field and the amount of GluR IIA subunits have also been shown to be the
most important parameters in affecting synaptic strength (Davis et al., 1998,
DiAntonio et al., 1999, Petersen et al., 1997, Marrus et al., 2004). Most significantly,
our data also suggest that VAP proteins are components of a trans-synaptic signal as

presynaptic expression of VAP affects the postsynaptic sensitivity to

neurotransmitters.
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Figure 4.3. Expression Levels of VAP Proteins Affect Subunit Abundance and
Cluster Size of Post-Synaptic Glutamate Receptors.
(A-G) Representative images of GluRIIA subunit localization (red) at NMJs visualized by
using the neuronal membrane marker, HRP, (green) in controls (A-C) and in synapses
overexpressing mutant hVAPB (E-G). Quantification of the fluorescence intensity per
volume unit ofGluRIIA clusters in controls and synapses overexpressing hVAPBP56S (elav;
UAS hVAPmt) in (D). Morphometric analysis of number of clusters and mean volume per
cluster for every subunit in synapses overexpressing hVAPBP56S are presented as
percentages of the control values. Synapses stained with an antibody specific for GluRIIB is
shown as an example (H-J). For the analysis of the NMJs overexpressing hVAPBP56S the
transgenic line HMT10 was used. This line expresses the highest level of transgenic protein
(see Figure 3.10). Similar phenotypes were observed in other transgenic lines (data not
shown). Data in (D) and (J) are shown as mean ± s.e.m while in (D) the intensity is presented
in arbitrary units. N = 5 larvae for each analyzed genotype. Scale bars: 50 pm.
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Chapter 5: Transgenic expression of DVAPP58S
recapitulates hallmarks of ALS disease symptoms

Expression of hVAPB and hVAPBP56S in neurons rescues the lethality,

morphological and electrophysiological phenotypes associated with DVAP-33A loss-
of -function mutations. This indicates that hVAPB and DVAP-33A are orthologues
and that the pathogenic allele partly retains some wild-type properties of VAP. It has
been shown that human VAP-B not only binds to human VAP-A, but also dimerizes
in vitro (Nishimura et al., 1999). This ability to self-oligomerize is a common feature
in VAP homologues (Soussan et al., 1999; Kanekura et al., 2006; Weir et al., 2001).

We tested if the human and Drosophila VAPs also exhibit this ability using a

yeast-two-hybrid screen. We found that DVAP-33A and hVAPB can form

homodimers, supporting the data that DVAP-33A and hVAPB are functionally

interchangeable. DVAPP58S and hVAPBP56S were also able to homodimerize and
form heterodimers with their respective wild type protein, demonstrating that the
mutant proteins retain part of its wild type properties. However, wild type and mutant

VAP-33 were not able to undergo cross-species interaction (ie. human mutant and
wild type proteins do not interact with Drosophila mutant and wild type proteins) (K.

Parry and G. Pennetta). This observation suggest that the best way to model the

dominantly inherited ALS8 in flies is to utilise the Drosophila proteins. The major
features ofALS in patients include degeneration of motor neurons, paralysis, muscle

atrophy and cell death. In this chapter, we show that transgenic expression of
DVAPP58S in neurons recapitulates hallmarks ofALS disease.

5.1 Transgenic expression of DVAPP58S in neurons induces
nerve fragmentation and muscle wasting

The neuropathology of ALS is primary degeneration of upper and lower motor

neurons. Neurogenic atrophy of affected muscle groups, and hardening of the lateral
white matter funiculus in spinal cord (corresponding to degeneration of the
corticospinal tract) are common pathological features ofALS patients (Mulder, D.W.,
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1986; Talbot, K., 2002). We decided to model this aspect of the disease in flies and
found that transgenic expression of DVAPP58S in neurons causes degeneration of
nerves and muscles atrophy.

In wt larvae, the motor axon entering the neuromuscular junction is thick and
terminal branches contact and sprout on muscle fibers to form a stereotypic arbor

(Figure 5.1 A). Transgenic DVAPP58S expressing synapses exhibit a high range of
abnormal morphologies: nerves at the point where they branch onto the muscle fibers
are fragmented and the corresponding synapses are not connected to the nerve

(compare arrows in Figure 5.1C and 5.ID). In other cases, the branching nerve is not
visible (compare arrows in Figure 5.IB and 5.1A) and synapses become a highly

disorganized, degenerating structure (compare arrowheads in Figure 5.IB and 5.1A).
These synapses contact muscles that exhibit an aberrant morphology when observed

by Nomarski optics.

Fluorescence-conjugated phalloidin staining was used to assess the integrity
of the muscles at the NMJs of DVAPP58S synapses. Approximately half of the
muscles exhibit an aberrant morphology in 84% of DVAPP58S transgenic larvae
when compared to controls. Muscles are also deformed, slender and exhibit an

altered striated pattern (Figure 5.ID versus 5.1C). In addition, a localized region of
severe muscle disruption was observed: muscles become detached from the body
wall insertion sites, and muscle loss is accompanied with some remnants of muscle
fibers (Figure 5.IE). In the remaining 16% of the larvae, sporadic disorganized
muscles were observed (Figure 5.IF and data not shown). We have hence shown that

pan-neural expression of the pathogenic form of Drosophila VAP can induce

fragmentation of nerves and muscle degeneration that is observed in ALS patients.
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Figure 5.1. Transgenic expression of DVAPP58S in neurons induces nerve
fragmentation and muscle wasting.
(A) Anti-HRP immunohistochemistry of control NMJs. (B) NMJs expressing transgenic
DVAPP58S stained with the same antibodies as in (A). (C) Anti-HRP immunohistochemistry
and phalloidin staining in control synapses. (D and E) Transgenic DVAPP58S expressing
synapses subjected to anti-HRP and phalloidin stainings. (F) Quantification of the mutant
phenotype. Canton S larvae were used as control in all the experiments reported in this
figure. At least 10 larvae per experiment were analyzed.
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5.2 Transgenic expression of DVAPP58S in neurons induces
larval locomotion defects and apoptosis

One of the earliest and most common signs of ALS in humans are impaired
movement and paralysis (Mulder, D.W., 1982; Talbot, K., 2002). Similarly,

transgenic larvae expressing DVAPP58S in neurons were found to be sluggish and
uncoordinated. A quantitative analysis was hence performed on the crawling
behaviour of these larvae. Wild type larvae have very stereotypic crawling

behaviour; forward locomotion in larvae consists of contractions of the posterior end

alternating with extension of the anterior body regions (Fox et al., 2006; Wang et al.,
2002). Third instar larvae expressing transgenic DVAPP58S and control larvae reared
in the same environmental conditions were observed on an agarose substrate for a

period of at least 2 minutes. The frequency of strides in Hz (number of events per

second) was calculated by dividing the number of strides by their duration.

Unexpectedly, transgenic larvae expressing DVAPP58S revealed significant

heterogeneity in the mobility phenotype compared with controls. As shown in Figure
5.2A, 34% of the larvae are completely paralyzed or exhibit very few peristaltic
contractions while the majority has a frequency of strides that is only 30% of the wt

value. In controls, the frequency of strides is homogeneous (0.85 ± 0.01 Hz) (Figure

5.2A). The difference in frequency distribution between mutants and controls is

statistically significant (P< 0.001, non-parametric Mann-Whitney U test)

Motor neuron death is one of the hallmarks of ALS in patients and SOD1
mouse models (Li et al., 2000, Bruijn et al., 2004). It has been shown that increasing
the expression of the anti-apoptotic factor Bcl-2 slowed disease onset and improved
the survival of S0D1G93A mice (Kostic et al., 1997) and that Bcl-2 binds and

aggregates with mutant SOD1 in spinal cord mitochondria of mouse models and

patients (Pasinelli et al., 2004). Several groups have also observed the activation of

caspase 3 during cell death of motor neurons and astrocytes in mouse models
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expressing mutant S0D1 (Vukosavic et al., 2000, Li et al., 2000, Pasinelli et al.,

2000).

TUNEL analysis was therefore performed on brains of transgenic larvae

expressing DVAPP58S to determine the presence of neuronal cell death.

Significantly enhanced neuronal death was observed in the central neurons of larvae

expressing transgenic DVAPP58S when compared with controls (Figure 5.2B). This
observed neuronal cell death is similar to those reported in mouse models of SOD1
mutations and ALS patients, showing that DVAPP58S-induced ALS is also able to

reproduce this aspect of the disease (Li et al., 2000, Bruijn et al., 2004).
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Figure 5.2. Transgenic expression of DVAPP58S in neurons induces locomotion
defects and neuronal cell death.

(A) Summary of the frequency of peristaltic waves for elav; UAS-DVAPmt larvae (green)
and for controls (blue), n = 49 for controls and n = 51 for elav; UAS-DVAPmt. Differences
between genotypes were highly significant (P < 0.001, accordingly to the non-parametric
Mann-Whitney U test when the data sets relative to elav; UAS-DVAPmt were compared
with controls. In this experiment, the UAS-DVAPP58S transgenic line without the driver was
used as a control. (B) Neuronal cell death in UAS-DVAPP58S/+ control brains. (C) Neuronal
cell death within larval brains expressing transgenic DVAPP58S.

5.3. Aggregates formed in 3rd instar larva nerves and brains
are strongly immuno-reactive to DVAP-33A antibodies

Formation of aggregates that are strongly immunoreactive to SOD1 antibodies

accompanies the paralytic phenotype and neuronal cell death in many mouse models
of ALS expressing pathogenic SOD1 (Hart, P.J., 2006). Similarly, aggregates

containing pathogenic SOD1 have been reported in sporadic and familial cases of
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ALS in humans (Bruijn et al., 1998). Parkinson's and polyQ disease models have
showed that there is a correlation between aggregates and toxicity (Chan et al., 2002;

Periquet et al., 2007). Similarly, several SOD1 mouse models exhibit misfolded
SOD1 aggregates (Bruijn et al., 1998; Johnston et al., 2000; Pasinelli et al., 2004).
To assess if formation aggregates is also common to VAP-induced ALS and to

identify the location of these DVAPP58S induced aggregates, confocal analysis was

performed on brains and nerve fibres of third instar larvae expressing transgenic
DVAPP58S. These third instar larval tissues were stained with antibodies specific for
DVAP-33A.

In control nerves, faint but uniform DVAP-33A staining were observed while

aggregates of variable sizes that are intensively stained with DVAP-33A antibodies
are found in nerve fibres of DVAPP58S mutant larvae (Figure 5.3A and B).
Accumulation of large aggregates was observed in the region of the nerves close to

the brain and in their terminal tracts just before motor nerves sprout on the muscles
to form the synaptic arbor (Figure 5.3B). In between these regions, the deposition of

aggregates was less prominent (Figure 5.3C). DVAP-33A associates mainly with the

plasma membrane of neuronal cell bodies (Figure 5.3D). However, in neuronal cell
bodies of DVAPP58S larval brains, aggregate formation was observed. The DVAP-
33A immunoreactivity is associated with intracellular aggregates of variable sizes

(Figure 5.3E) while the wt protein associated with the plasma membrane decreased
to nearly undetectable levels (compare Figures 5.3E with 5.3D).
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Figure 5.3. Transgenic expression of DVAPP58S induces aggregate formation in
nerve fibres and neuronal cell bodies of third instar larvae.
Nerve fibers and brains of third instar larvae were stained with antibodies for DVAP-33A

(red) and with antibodies for the neuronal cell surface marker anti-HRP (green). (A) Nerve
fibers of control larvae. (B and C) Nerve fibers of larvae expressing transgenic DVAPP58S
(elav; UAS-DVAPmt). (D) Brains of control larvae stained with anti-HRP (green) and anti
DVAP-33A antibodies (red). (E) Brains of larvae expressing transgenic DVAPP58S (elav;
UAS-DVAPmt) using the same antibodies. The anti DVAP-33A antibodies used in this report
do not discriminate between the wt and the mutant protein. By western analysis, these
antibodies recognize a band of similar size to the wt protein in protein extracts from NMJs
expressing DVAPP58S in a null background for the endogenous protein (Figure 5.6). In (D)
and (E), single sections of confocal images are shown. Canton S larvae were used as controls
in the experiments reported in this figure. Scale bars = 20 pm.

5.4 Transgenic expression of DVAPP58S depletes
endogenous DVAP-33A from its normal localization

Confocal analysis was also extended to neuromuscular synapses of third instar larvae

expressing transgenic DVAPP58S to determine whether aggregate formation has any

effect on regional differences of the endogenous DVAP-33A protein. In
neuromuscular synapses of DVAPP58S transgenic larvae, DVAP-33A positive

immuno-reactivity was undetectable. The DVAP-33A immuno-fluorescence signal
was quantified and was found to be less than 8% ofwt levels (Figure 5.4A-C and G-
J). This observation was consistent in five other DVAPP58S transgenic lines that
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were examined. On the contrary, when DVAP-33A was overexpressed in neurons, the

protein is correctly targeted to the NMJ even when fluorescence intensity levels were

four times the wt level (Figure 5.4A-F and J). Furthermore, no aggregates were

formed in nerve fibres and neuronal cell bodies of these DVAP-33A overexpressing
lines (data not shown, compare arrows in Figure s 5.4E and 5.4F). In DVAPP58S

transgenic lines, aggregates are evident in the terminal part of the nerve (arrow in

5.4F1) and the endogenous protein at the synapse is nearly undetectable (Figure 5.4H
and J). These data indicate that transgenic expression of DVAPP58S induced the
formation of DVAP-33A immuno-reactive aggregates and that overexpression of
DVAPP58S depletes wt DVAP-33A (the endogenous protein) from its normal
localization.

At the Drosophila NMJ, decreasing the amount of DVAP-33A causes a

decrease in the number of boutons and an increase in the size of the boutons (Figure

3.2). Similarly, the depletion of endogenous DVAP-33A at the NMJ by transgenic

expression of DVAPP58S causes a decrease in bouton number that is only 40% ofwt
levels (122 ± 3 as compared 283 ± 12 in controls, P>0.001, data not shown, compare

Figures 5.4A with 5.4G). Although not quantified, we also observed an increase in
the size of the boutons in DVAPP58S transgenic larvae (compare Figures 5.4A with
5.4G again).

Taken together, the data presented here indicate that neuronal expression of
DVAPP58S in the presence of the wt protein recapitulates major hallmarks of the
disease including locomotion defects, neuronal apoptosis and aggregate formation.
The formation of aggregates is accompanied by the depletion of endogenous protein
from its normal localization and consequently resulting in a decrease in protein
function at the NMJ.
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Figure 5.4. Transgenic expression of DVAPP58S depletes the endogenous
protein from its normal localization.
NMJs were stained with antibodies specific for DVAP-33A (red. DVAP) and for anti-HRP
(green) to visualize the synapses. (A-C) Control NMJs. (D-F) NMJs overexpressing DVAP-
33A (elav; UAS-DVAP). (G-I) NMJs expressing transgenic DVAPP58S (elav; UAS-
DVAPmt). (J) Quantification of synaptic DVAP-33A fluorescence intensity for the reported
genotypes. Canton S larvae were used as controls in the experiment reported in this figure. In
(J) fluorescence intensity is presented in arbitrary units. Scale bar = 10 pm.
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Chapter 6: Finding interactors of VAP: Modelling VAP-
induced ALS in the Drosophila eye

Since the patho-mechanism of ALS has not yet been elucidated, it is imperative to

identify genes that interact with VAP-33. Building on the success of modifier screens
carried out in neurodegenerative diseases such as Spinocerebellar Ataxia-1 (SCA-1),

Huntington disease and tauopathies, 1 attempted a dominant enhancers/suppressors
screen utilizing the DrosDel isogenic deficiency kit (Ryder et al, 2004) available
from the Szeged European Stock Center by using the Drosophila model for ALS that
has been created.

We tested the possibility of modelling the disease in the Drosophila adult eye
as it an experimentally-tractable structure in which to model human neurodegenerative

diseases in flies. The majority of modifier screens for neurodegenerative diseases
utilized the eye-specific driver, GMR-Gal4 to express the protein of interest in the

developing fly eye (Fernandez-Funez et al, 2000; Wittmann et al., 2001; Kazemi-

Esfarjani and Benzer, 2002; Guo et al., 2003; Mutsuddi et al., 2004; Shulman and

Feany, 2003). One caveat is that GMR-Gal4 driver produces a background rough eye

in flies and has been shown to have deleterious eye effects on eye architecture.
GMR-Gal4 homozygous flies alone (i.e. without any UAS transgene) have a highly

disorganized eye morphology (Kramer and Staveley, 2003). In addition, GMR-Gal4

homozygotes and heterozygotes have higher number of apoptotic cells in third instar
larval imaginal discs than wild type controls (Kramer and Staveley, 2003).

We decided against using the GMR-Gal4 driver for the expression of VAP

proteins in the eye as it has been shown that GMR-Gal4 driver alone exhibit a rough

eye phenotype (Fernandez-Funez et al., 2000, Cukier et al., 2008). Using the

commonly employed GMR-Gal4 driver might impede our study as enhancers or

suppressors of GMR-induced rough eye phenotype might be picked up from our

genetic screen instead of VAP-33 interactors. To circumvent this problem, we

investigated the possibility of using an alternative eye driver in which the Gal4
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protein is under the control of Eyeless, a gene specifically and strongly expressed in
the Drosophila eye.

6.1 Eye-specific expression of DVAPP58S using ey-Gal4
induces degeneration in the adult eye

The expression of eyeless starts in the eye-antennal disc precursor cell at stage 15 of

embryonic development (Hauck et al., 1999) and in third instar larval development,

eyeless expression is found at high levels in cells posterior to the morphogenetic
furrow and in a faint and fading pattern anterior to the furrow (Haider et al., 1995;
Hauck et al., 1999). To this end. the expression of Drosophila pathogenic VAP

(DVAPP56S) was targeted to the adult Drosophila eye using the UAS-Gal4 system

and eyeless-Gal4 as a driver (Brand and Perrimon, 1993). We directed the

overexpression of DVAPP58S in the developing fly eye by crossing with several ey-
Gal4 driver lines. To increase the dosage of DVAPP56S, embryos from the resulting
crosses were heat-shocked at 30°C till eclosion. We found that flies of both driver

lines ey-Gal4 (8227) and ey-Gal4 (8228) have deformed eyes, and we had to

abandon the crosses as they would not be ideal drivers for the modifier screen.

Remarkably, overexpression of DVAPP58S in the developing eye using ey-

Gal4/CyO (5535) and ey-Gal4 (5534) results in flies exhibiting a rough eye

phenotype (Figure 6.IB and C) at 30°C as compared to wild type eyes (Figure
6.1 A). SEM analysis revealed a reduction in size, extra bristles and fused ommatidia

(Figures 6.IE) when compared to wild type flies (Figure 6.ID). CyO/UAS-
DVAPP58S internal controls from the cross between ey-Gal4 (5535) and UAS-
DVAPP58S transgenic flies did not exhibit any rough eye phenotype or obvious
reduction in eye size.

As additional controls, we heat-shocked both driver lines ey-Gal4 (5534), ey-

Gal4/CyO (5535) and the UAS-DVAPP58S transgene independently to confirm that
the reduction in eye-size, rough eye and missing inter-ommatidial bristles seen in ey-
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Gal4/UAS-DVAPP58S flies were not due to the effect of either the driver lines or

UAS-DVAPP58S line alone. We found that heat-shocked ey-Gal4/CyO (5535) and
UAS-DVAPP58S had no eye abnormalities as well as one copy of ey-Gal4 (5534).

The activity of Gal4 is temperature dependent (Duffy, J.B., 2002), allowing
one to express different levels of protein by altering the temperature. We decided to

investigate how lower levels of DVAPP58S can affect the reduction in eye sizes, the

frequently missing inter-ommatidial bristles and a rough eye phenotype seen in the

overexpression of DVAPP58S in the eye. We raised ey-Gal4/UAS-DVAPP58S

embryos at 28°C till eclosion and found that flies have a less severe reduction in eye

size and roughness (Figure 6.1B).

Figure 6.1. Eye-specific transgenic expression of DVAPP58S induces a
degenerative eye phenotype in the adult fly.
SEM images of wild type (Canton S) (A) and transgenic eyes overexpressing DVAPP58S at
28°C (B) and at 30°C (C). The expression of UAS-DVAPP58S transgene was targeted to the
eye by using ey-Gal4 driver (5535). Ey-Gal4/CyO males were crossed with UAS-
DVAPP58S/UAS-DVAPP58S females and Ey-Gal4/UAS-DVAPP58S flies were identified and
subjected to phenotypic analysis. No obvious phenotype was observed in CyO/UAS-
DVAPP58S controls. (D) and (E) are higher magnifications of the eyes in (A) and (C)
respectively. The severity of the phenotype was dependent on the strength of the transgene.
Scale bars: 100 pm.
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6.2 Generating ey-Gal4, DVAPP58S/CyO-GFP flies by meiotic
recombination

We have found that transgenic expression of DVAPP58S induces a degenerative eye

phenotype when expressed specifically in the eye using the ey-Gal4 (5535) driver.
The UAS-DVAPP58S insertion situated on chromosome 2 was recombined with the

ey-Gal4 (5535) insertion also situated on chromosome 2, to generate a recombinant
chromosome 2 bearing both of these insertions. The resulting ey-Gal4,UAS-
DVAPP58S chromosome was balanced over CyO-GFP and several ey-GaI4,UAS-

DVAPP58S/CyO-GFP recombined lines were recovered. The detailed genetic
scheme of meiotic recombination is described in section 2.2.4 of Material and

Methods.

The resultant ey-Ga!4,UAS-DVAPP58S/CyO-GFP fly stocks all exhibit rough

eye phenotypes with reduced eye size, missing bristles and fused ommatidia when
raised at 30°C. Milder rough eye phenotype and less severe reduction in eye size was

also observed in ey-Gal4,UAS-DVAPP58S/CyO-GFP flies raised at a lower

temperature of 28°C and 29°C respectively.
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Chapter 7: DVAPP58S induced eye degeneration
recapitulates major hallmarks of the disease model

The aim of creating a Drosophila model ofALS in the adult fly eye is to facilitate the
convenience of conducting a genetic screen as this is now the standard structure of

modelling neurodegenerative diseases in Drosophila. Moreover, the adult fly eye

offers many advantages such as the possibility to observe the degeneration in a

temporal manner while overcoming possible lethality and fertility problems.
Modifiers of the degenerative eye phenotype would be tested for their modifying
effects on the larval neuromuscular phenotypes to be confirmed as true interactors of
DVAP-33A. To ensure that the Drosophila eye model is a faithful model ofALS, we

sought to recapitulate several key aspects of the disease hallmarks.

7.1 DVAPP58S induced eye degeneration is dosage
dependent

VAP-induced ALS8 is dominantly inherited and transgenic expression of DVAPP58S
in the presence of endogenous DVAP-33A induces a degenerative eye phenotype.
DVAP-33A has also been shown to affect synaptic sprouting in a dosage-dependent
manner (Pennetta et al., 2002) To ensure that the degenerative eye phenotype is due
to the dosage dependent effects and the expression of DVAPP58S, two copies of the
UAS-DVAPP58S transgene were targeted to the eye by crossing virgin females of

w'/w'; ey-GaU, UAS-DVAPP58S/CyO-GFP; +/+ genotype with males of yw/y;
UAS-D VAPP58S/UAS-DVAPP58S; +/+ genotype.

The embryos were raised at a lower temperature of 25°C and the resultant

non-CyO progeny exhibit a degenerative phenotype with reduced eye size, missing
bristles and fused ommatidia that is similar to ey-Gal4/UAS-DVAPP58S flies raised
at 30°C (compare Figures 6.1C with 7.IB ). This demonstrates that transgenic eye-

specific expression of DVAPP58S induces a degenerative eye phenotype in a dosage

dependent manner. ey-Gal4, UAS-DVAPP58S/UAS-DVAPP58S embryos raised at

30°C were lethal as they failed to eclose after pupal stages. This pupal lethality could
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possibly be a consequence of the leaky expression of the UAS-DVAP58S transgene or

ey-Gal4 driver into other tissues. Leaky expression of Gal4 drivers is not uncommon,

leaky expression of the GMR-Gal4 driver has been attributed to cause lethality in

methyl-CpG-binding protein 2 (MeCP2) overexpression in the fly eye at higher

temperatures. MeCP2 is a transcriptional regulator involved in chromatin

remodelling and loss ofMeCP2 causes classic Rett syndrome (Cukier et al., 2008).

Figure 7.1. DVAPP58S induced eye degeneration is dosage dependent.
SEM images of (A) Control and (B) flies expressing double copy of the UAS-DVAPP58S
transgene raised at 25°C. ey-Gal4, UAS-DVAPP58S/CyO-GFP females were crossed to
UAS-DVAPP58S/UAS-DVAPP58S males. Progeny of ey-Gal4, UAS-DVAPP58S/UAS-
DVAPP58S genotype exhibit a degenerative phenotype with reduced eye size, missing
bristles and fused ommatidia. (C) and (D) are higher magnifications of (A) and (B)
respectively. Scale bars: 100 pm.

7.2 DVAPP58S induced eye degeneration is partly due to
apoptosis

Another hallmark ofALS is motor neuron death in both patients and mouse models

(Li et al., 2000, Bruijn et al., 2004). By TUNEL staining, we also observed

significantly enhanced apoptosis in cell bodies of larva brains expressing transgenic
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DVAPP58S in our ALS model when compared to controls (Figure 5.2B). Members
of the Drosophila Inhibitor ofApoptosis Protein (DIAP) family block the intrinsic

machinery of the canonical cell death pathway by binding to and neutralizing the

pro-apoptotic caspases. The activity of DIAPs is in turn antagonized upon binding
with pro-apoptosis proteins such as Rpr, Grim and Hid, thereby liberating caspases

(Wang et al., 1999).

We found that the co-expression ofDIAP 1 with the eye-specific expression of
DVAPP58S partially suppresses the degenerative eye phenotype induced by

transgenic expression of DVAPP58S alone (Compare Figures 7.2A and 7.2B). SEM

analysis shows that the eye sizes are brought towards control eye sizes (Figure 7.2C)
while the fused ommatidia and missing bristles were also less pronounced in flies
that suppress the degenerative eye phenotype (Figures 7.2B and 7.2E). This
demonstrates that the degenerative eye phenotype induced by the transgenic

expression of DVAPP58S is partly due to cell death occurring in the eye.

Figure 7.2. Co-expression of DIAP1 partially suppresses the DVAPP58S-induced
degenerative eye phenotype.
SEM images of (A) ey-Gal4, UAS-DVAPP58S/CyO-GFP flies , (B) co-expression of DIAP 1
with ey-Gal4, UAS-DVAPP58S, ( C) control flies. (D),(E) and (F) are higher
magnifications of (A), (B) and (C) respectively. Flies were raised at
30°C and scale bars: 100 pm.
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7.3 Recombined ey-Gal4, UAS-DVAPP58S/CyO-GFP flies
exhibit dosage-dependent eye degeneration and aggregate
formation in the optic lobes of adult flies

A prominent feature of all neurodegenerative diseases is the characteristic deposits of

protein inclusions or aggregates that are either cytoplasmic, nuclear or extracellular

(Taylor et al., 2002). In our ALS fly model, we have also observed the deposition of

aggregates immunoreactive to DVAP-33A antibodies in larval brains of flies

expressing transgenic DVAPP58S. Similarly, DVAP-33A immunoreactive aggregates

were also found in the optic lobes of adult flies transgenically expressing DVAPP58S
(data not shown).

To confirm that the recombined ey-Gal4, UAS-DVAPP58S/CyO-GFP flies
exhibits the same phenotypes as ey-Gal4/UAS-DVAPP58S flies, we raised several
lines of the recombined flies at 28°C and 30°C. We found that eyes of these
recombined flies all exhibit the dosage dependent effect of DVAPP58S induced eye

degeneration phenotype with reduction in eye size, fused ommatidia and missing
bristles (data not shown). The recombined ey-Gal4, UAS-DVAPP58S/CyO-GFP flies
therefore, also exhibit the same dosage dependent degenerative phenotype as ey-

Gal4/UAS-D VAPP58S flies

These results, together with the fact that apoptosis contributes to the

degenerative eye phenotype when expressing DVAPP58S in the eye, shows that both
the eye model and the NMJ model of ALS8 can be used interchangeably. This in

turn, allows modifiers of DVAPP58S-induced degenerative eye phenotype to be used
in the NMJ model for detailed analysis and to confirm the interactions with DVAP-
33A.
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Chapter 8: Using the DVAPP58S induced eye
degeneration in a deficiency screen

Sensitized screens are commonly employed as a means of uncovering novel

regulators of gene function. Loss-of-function mutations in almost all genes are

recessive, which indicates that 50% of the wild-type level of a protein is sufficient
for normal development. When a particular process is already partially disrupted by
another mutation, however, this amount might no longer suffice, and mutations in the

genes that are involved in the pathway can therefore be identified as dominant
enhancers or suppressors in this sensitized genetic background (St. Johnston, D.,

2002).

A single Proline to Serine substitution at codon 56 in human VAPB causes

ALS8 in patients. We have created a fly model ofALS at the larval NMJ by mutating
the DVAP-33A at codon 58 from Proline to Serine (DVAPP58S). The expression of
UAS-DVAP58S transgene in the developing eye using an ey-Ga/4 driver, induces a

degenerative eye phenotype in flies with rough and reduced eyes (Figure 6.1).
Mutations that enhance or suppress this phenotype resulting from the transgenic

expression of DVAPP58S are likely to define genes that are involved in the same

biological process or pathway as DVAP-33A.

To facilitate systemic dominant-modifier screens in Drosophila, the DrosDel
collection of 209 deficiency lines has been generated which covers 60% of the
euchromatic genome. This deficiency collection is composed of molecularly-mapped
deletions with single-based-pair resolution in an isogenic background. Each deletion
uncovers an average of 44 genes or 368kb and genes uncovered by the interacting

deficiency lines can be easily identified by their annotations on Flybase

(www.flybase.org) (Ryder et al., 2004, Ryder et al., 2007). Therefore, we embarked
on a deficiency screen using this DrosDel collection because of the potential for a

'low-resolution' genome scan. Specific area of interests highlighted in this DrosDel
collection screen can then be honed in at higher resolution using the Exelixis
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collection as it has an average deletion size of 140kb and a coverage of -56% of the

genome (Parks et ai, 2004).

8.1 Interacting deficiencies from the DrosDel collection
affects the severity of DVAPP58S-induced degenerative eye
phenotype

The F1 progeny of crosses between males bearing the deletions and females of the
sensitized recombinant line expressing DVAPP58S under the control of the ey-Gal-f
driver were screened for enhancers and suppressors of DVAP58S eye defects (Figure
6.1 in Chapter 6). Figure 8.1 shows an outline of the F1 eye-based screen for
dominant modifiers of the eye phenotype using the DrosDel deficiency collection.

Figure 8.1. Outline of the Ft eye-based screen for dominant modifiers of ey-
Gal4, UAS-DVAPP58S/CyO-GFP by deficiency on the second, third and X
chromosomes.

Deficiencies on the 3rd chromosome, wim/Y; +/+; Df(3)/TM3, Sb

(P) 9 w~/w~>' ey-Gal4, UAS-DVAPP58S/CyO-GFP; +/+
X

(3 w"18/Y; +/+; Df(3)/TM3, Sb

i

(Fl) Experimental class:

O" w'/Y; ey-Gal4, UAS-D VAPP58S/+; Df(3)/+

9 w'"8/W; ey-Gal4, UAS-DVAPP58S/+; Df(3)/+
Select non-CyO, non-Sb

Internal control class:

(3 w'/Y; ey-Gal4, UAS-D VAPP58S/+;+/TM3, Sb
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9 w"I8/w-; ey-GctU, UAS-DVAPP58S/+;+/TM3, Sb
Select non-CyO, Sb

Other genotypes:

3 w'/Y; +/CyO-GFP; +/TM3, Sb

9 w",8/w-; +/CyO-GFP; +/TM3, Sb
3 w'/Y; +/CyO-GFP; Df(3)/+

9 w",8/w'; +/CyO-GFP; Df(3)/+

Deficiencies on the 2nd chromosome, w"n/Y; Df(2)/CyO; +/+

(P) 9 w/w"> ey-Gal4, UAS-DVAPP58S/CyO-GFP; +/+
X

O w"'8/Y; Df(2)/CyO; +/+

I

(Fl) Experimental class:

C w'/Y; ey-Gal4, UAS-DVAPP58S/Df(2); +/+

9 w",8/w'; ey-Gal4, UAS-DVAPP58S/Df(2); +/+
Select non-CyO

Internal control class:

<3 w'/Y; ey-Gal4, UAS-DVAPP58S/CyO; +/+

9 w"I8/w'; ey-Gal4, UAS-DVAPP58S/CyO; +/+
Select CyO and small, rough eye phenotype

Other genotypes:
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C? wVY; Df(2)/CyO-GFP; +/+

9 w'"8/w~; Df(2)/CyO-GFP; +/+

C w'/Y; CyO/CyO-GFP; +/+

9 w'"8/W; CyO/CyO-GFP; +/+

Deficiencies on the X chromosome, Df(X)/FM7; +/+; +/+

(P) C7 w/Y; ey-Gal4, UAS-DVAPP58S/CyO-GFP; +/+

X

9 Df(X)/FM7; +/+; +/+

I

(Fl) Experimental class:

9 Df(X)/W; ey-Gal4, UAS-DVAPP58S/+; +/+

C Df(X)/Y; ey-Gal4, UAS-D VAPP58S/+; +/+

Select non-CyO, dark eye colour

Other genotypes:

9 Df(X)/W; CyO-GFP/+; +/+

C Df(X)/Y; CyO-GFP/+; +/+

O FM7/E;; ey-Ga/4, UAS-DVAPP58S/+; +/+

9 w'/FM7; ey-Gal4, UAS-DVAPP58S/+; +/+

C FM7/E;; CyO-GFP/+; +/+

9 w'/FM7; CyO-GFP/+; +/+
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8.1.1 Df(2L)ED700, a small deletion that suppresses DVAPP58S-induced
eye phenotype

We isolated several interacting deficiency lines that uncover genes that suppress ey-

Gal4, UAS-DVAPP58S induced eye defects. One example is a small deficiency
known as Df(2L)ED700 which lies on the second left hand chromosome of the

Drosophila genome. ey-Gal4, UAS-DVAPP58S/Df(2L)ED700 flies have eye sizes

larger than internal control (ey-Gal4, UAS-DVAPP58S/CyO) and ey-Gal4, UAS-

DVAPP58S/CyO-GFP flies. SEM analysis also show that the fused ommatidia,

missing bristles and rough eye phenotype seen in internal controls and ey-Gal4,

UAS-DVAPP58S/CyO-GFP flies are less pronounced in ey-Gal4, UAS-

DVAPP58S/Df(2L)ED700 flies. The external appearance of the eye has been brought
towards the smooth external appearance seen in wild-type (Figure 8.2). ey-Gal4,

UAS-DVAPP58S/CyO internal control class also did not show any reduction in eye

sizes and rough eye defects (data not shown).

Figure 8.2. Df(2L)ED700 suppresses DVAPP58S-induced eye phenotype.
SEM images of (A) ey-Gal4, UAS-DVAPP58S/CyO-GFP adult eye, (B) ey-Gal4, UAS-
DVAPP58S/Df(2L)ED700 adult eye, (C) wild-type flies. (D), (E) and (F) are higher
magnifications of (A), (B) and (C) respectively. Flies were raised at 30°C and scale bars: 100
pm.

Df(2L)ED700 deletes 6 genes (CG33300, CGI3124, CG5899, CG4602,

CG4600, CG5885) and partially deletes one gene (CG5920) (Figure 8.3B).

Df(2L)ED700 lies within another larger deficiency line, Df(2L) ED695, that deletes
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49 genes and partially deletes 1 gene (Figure 8.3A). ey-Gal4, UAS-

DVAPP58S/Df(2L) ED695 flies also suppresses the ey-Gal4, UAS-DVAPP58S
induced eye defects, bringing the normally reduced eye size and rough eye

phenotype towards wild type phenotype (data not shown). These data show that the
effect of this region to suppress the degenerative eye phenotype is specific. We

attempted to narrow down to the gene responsible for the suppression and obtained
five P-element insertions that could disrupt five of the genes uncovered in this small

deficiency. However, P-element insertions of CGI3124. sop (CG5920), Srp54

(CG4602), CG5885 and yip2(CG4600) tested so far did not show any suppression

(data not shown).

9691454

Df(2L) ED695

9910601

9889753 9910601

H
Df(2L) ED700

B 21
1

9900k

Gene Model
CG33300
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9910k

Srp54~RA
Srp54
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sop

yip2-RA
yip2

CG13124
CG13124-RA"
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Figure 8.3. Two overlapping deficiencies that suppress DVAPP58S-induced eye
phenotype.
(A) Size and coordinates of Df(2L) ED700 and Df(2L) ED695. Df(2L) ED700 lies within the
genomic region of Df(2L) ED695. (B) Genes deleted by Df(2L) ED700.
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8.1.2 Df(X)ED7424, a suppressor of DVAPP58S on the X chromosome

Another deficiency line that exhibits suppressing effects on the ey-Gal4, UAS-
DVAPP58S induced degenerative eye phenotype is located on the X chromosome of
the Drosophila genome. Df(X)ED7424/+; ey-Gal4, UAS-DVAPP58S/+ flies have
increased eye size that is similar to wild type sizes when compared to ey-Gal4, UAS-

DVAPP58S/CyO-GFP flies (compare Figure 8.4A with Figure 8.4B and 8.4C). SEM

analysis also shows that the rough eye phenotype with fused ommatidia and missing
bristles are also suppressed in Df(X)ED7424/+; ey-Gal4, UAS-DVAPP58S/+ flies
(compare Figure 8.4D with Figure 8.4E and 8.4F).

Figure 8.4. Df(X)ED7424 suppresses DVAPP58S-induced eye phenotype.
SEM images of (A) ey-Gal4, UAS-DVAPP58S/CyO-GFP adult eye, (B) Df(X)ED7424/+;
ey-Gal4, UAS-DVAPP58S/+ adult eye, (C) wild-type flies. (D), (E) and (F) are higher
magnifications of (A), (B) and (C) respectively. Flies were raised at 30°C and scale bars: 100
pm.

Df(X)ED7424 deletes 72 genes and partially deletes 1 gene. This deficiency

overlaps with two other deficiencies, Df(X)ED447 and Df(X)ED7413 (Figure 8.5)
that also exhibit suppressing effects on ey-Gal4, UAS-DVAPP58S induced

degenerative eye phenotype (data not shown). Out of the three deficiency lines that

suppresses ey-Gal4, UAS-DVAPP58S induced degenerative eye phenotype,

Df(X)ED7413 uncovers the smallest region, deleting 28 genes and partially deleting
one gene (Table 8.1). We obtained P-element insertion lines that could disrupt the 29
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genes uncovered by this smallest overlapping deletion to try and narrow down to the

gene responsible for the suppression of the eye phenotype, however, Pkl7E

(CG7001), CG7101, CG6695, CG6961, Pvfl (CG7103), CG7326 and CG6891 with
P-element insertions tested so far did not show any suppression (data not shown). 13
other genes that do not have any P-element insertion however, do have RNAi
constructs. Four remaining genes have neither P-element insertions nor RNAi
constructs.

Of the 29 genes deleted, bnb (bangles and beads, CG7088), presents the most

interest as it has also been identified as a direct interactor of DVAP-33A in a yeast-

two-hybrid screen carried out in our laboratory (K. Parry and G.Pennetta,

unpublished data). Bnb is closely related to mammalian GAP-43 protein with
consensus sequences that could potentially serve as phosphorylation sites and for
calmodulin binding (Ng et al., 1989, Eberl et al., 1992).

18237900 18594695

Df(X) ED447

18388212 18594695

18388212 19029733

Df(X) ED7424

Figure 8.5. Three overlapping deficiencies on the X chromosome that suppress
DVAPP58S-induced eye phenotype.
Shown here are the size and coordinates of Df(X) ED447, Df(X) ED7413 and Df(X) ED
7424. Df(X) ED 7413 is the smallest deficiency that deletes 28 genes and partially deletes
one gene.
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CG6551 CG7088

CG6816 CG32543

CG6873 CG7274

CG6891 CG7322

CG6900 CG7326

CG7053 CG6578

CG7095 CG6585

CG7103 CG32540

CG7282 CG7001

CG32544 CG7058

CG6696 CG7101

CG6857 CG7280

CGI 2609 CG7288

CG18259 CG6659

CG6961

Table 8.1. List of genes that are deleted by the smallest overlapping deficiency,
Df(X) ED7413.

8.1.3 Other interacting deficiencies

Table 8.2 shows a number of other deficiencies that either suppress or enhance the

ey-Gal4, UAS-DVAPP58S induced degenerative eye phenotype.

Supressors Enhancers

Df(2L)EDl 165 Df(X)ED411

Df(2L)ED1455 Df(X)ED6474

Df(2R)EDl673 Df(2L)EDl 186

Df(2R)ED17l5 Df(3L)ED4341

Df(2R)ED2436

Df(3L)ED231

Df(3L)ED224

Df(3L)ED225

Df(3L)ED47lO

Table 8.2. List of other deficiencies that enhanced or suppressed the ey-Ga!4,
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UAS-DVAPP58S induced degenerative eye phenotype.

8.2 MATLAB software for quantification of eye phenotype

The majority of modifier screens demonstrate qualitatively the extent of
enhancement or suppression of various eye phenotypes. Efforts have been made to

quantify the enhancement or suppression of modifiers in genetic screens and studies
of gene activity utilizing the Drosophila adult eye. For instance, calculating the

average number of unfused ommatidia (Mutsuddi et al., 2004), the average number
of photoreceptor cells per ommatidium (St. Pierre et al., 2002), the percentage of

correctly orientated bristles (Paricio et al., 1999) and the number of ommatidia

(Jones et al., 2006, Protzer et al., 2008). Other less direct quantification include

assigning individual eyes a numerical score based on the severity of the defects

(Corona et al., 2004, Armstrong et al., 2005) and scoring retinal phenotypes

according to objective criteria (Pandey et al., 2007).

Several groups have also performed quantification of eye sizes by area

measurement (Vidal et al., 2007, Protzer et al., 2008,), circumference measurement

(Hyun et al., 2005) or calculating the longest distance of a side view of the eye from
dorsal to ventral plus anterior to posterior (Oldham et al., 2002), when the resulting

eye phenotype involves a change in eye sizes.

The quantification of eye sizes by area measurement has traditionally been
done using the NIH ImageJ software that calculates statistics of user-defined regions.
For any manually-driven selection then differences in operator bias and skill can lead
to variation in the location of the border surrounding the eye, and in ImageJ this

operation involves tracing the area using a free-hand selection tool. To mitigate the
differences occurring due to the operator's skill with the selection tool, the border
should be traced using as many control points as possible.

In collaboration with James Withers at the Neuroinformatics department, we
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have produced similar software in MATLAB which streamlines the border tracing
and analysis. Light micrographs of eyes are taken with a camera mounted on a

dissection microscope and using this software (see section 2.10 of Materials and
Methods for details), we attempt to quantify the suppressing effects of some of the

interacting deficiencies that mitigates the ey-Gal4, UAS-DVAPP58S induced

degenerative eye phenotype reported in Table 8.1 by crossing ey-Ga\4, UAS-

DVAPP58S/CyO-GFP flies with flies carrying the different deficiencies.

The ey-Gal4, UAS-DVAPP58S induced degenerative eye phenotype seen in
adult flies have a heterogeneity in the severity of the phenotype as assessed by the
size of the eyes. The distribution of the eye sizes seen in a cohort of 61 flies carrying
the ey-Gal4, UAS-DVAPP58S genotype showed that 5% of flies have an eye area of
around 50 arbitrary square units while the majority (60%) of flies have eye sizes
centred between 1500 and 2000 arbitrary square units. Wild type flies on the other
hand have 60% of eye sizes centred at 4500 arbitrary square units and 20% at 4000
and 4750 arbitrary square units each.

8.2.1 Df(2L)ED695 strongly suppresses DVAPP58S-induced eye
phenotype

Df(2L)ED695 is a deficiency line that also uncovers the region on the Drosophila
second chromosome that is deleted by Df(2L)ED700. Both deficiencies have been
found to suppress the ey-Gal4, UAS-DVAPP58S-induced degenerative eye

phenotype (see 8.1.1). Quantification of ey-Gal4, UAS-DVAPP58S/Df(2L) ED695
flies showed that 46% of eye sizes centred on 3500 arbitrary square units compared
to 60% centred between 1500 and 2500 arbitrary square units in ey-Gal4, UAS-

DVAPP58S/CyO-GFP flies. Only 4% of ey-Gal4, UAS-DVAPP58S/Df(2L) ED695
flies had an eye area of 1500 arbitrary square units while 5% of ey-Gal4, UAS-

DVAPP58S/CyO-GFP flies have an eye area of 50 arbitrary square units (Figure 8.6).
The difference in frequency distribution between ey-Gal4, UAS-DVAPP58S/Df(2L)
ED695 flies and ey-Gal4, UAS-DVAPP58S/CyO-GFP flies is statistically significant

(P0.001, Mann-Whitney U test and Two Sampled Student t-test. See Legend and
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Materials and Methods for details). The area of eye sizes seen in ey-Gal4, UAS-

DVAPP58S/Df(2L) ED695 flies has been brought towards wild type eye sizes with
15% of ey-Gal4, UAS-DVAPP58S/Df(2L) ED695 flies even reaching the normal
wild type eye sizes (4000 arbitrary square units, Figure 8.6).

0-71

IMill J I
50 1500 2000 2500 3000 3500 4000 4500 4750

Arbitrary Units2

■ ey-Gal4, UAS- ■ ey-Gal4, UAS- □ WT
DVAPP58S /CyO- DVAPP58S /
GFP Df(2L)ED695

Figure 8.6. Df(2L)ED695 dramatically increases the eye area of ey-Gal4, UAS-
DVAPP58S/Df(2L) ED695 flies.
ey-Gal4, UAS-DVAPP58S/CyO-GFP flies (red) have eye size areas centred between 1500
and 2500 arbitrary square units (N=61, S.D=654) compared to 46% of ey-Gal4, UAS-
DVAPP58S/Df(2L) ED695 flies (blue, N=31, S.D=547) centred on 3500 arbitrary square
units that is slightly below wild type values (WT, yellow, 4000-4750 arbitrary units squared,
N=20, S.D=261). Differences between eye sizes of ey-Gal4, UAS-DVAPP58S/CyO-GFP
flies and ey-Gal4, UAS-DVAPP58S/Df(2L) ED695 flies were highly significant (P0.001,
according to the non-parametric Mann-Whitney U test and the Two Sampled Student t-test
when comparing the two data sets). Flies were raised at 30°C.
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8.2.2 Df(2R)ED1673 and Df(2R)ED1715 are two overlapping deficiencies
showing moderate suppressor effects

Two overlapping deficiencies that also mitigates the ey-Gal4, UAS-DVAPP58S
induced degenerative eye phenotype are Df(2R)ED1673 and Df(2R)ED1715 located
on the second right hand chromosome of the Drosophila genome. Quantification of

ey-Gal4, UAS-DVAPP58S/Df(2R) ED1673 showed that 35% of eye sizes centred on

3000 arbitrary square units and 29% at 3500 arbitrary square units (Figure 8.7, blue)
while ey-Gal4, UAS-DVAPP58S/Df(2R) ED1715 flies had 80% of eyes centred on

3500 arbitrary square units (not shown) compared to 60% centred between 1500 and
2000 arbitrary square units in ey-Ga/4, UAS-DVAPP58S/CyO-GFP flies. The
difference in frequency distribution between ey-Gal4, UAS-DVAPP58S/Df(2R)
ED1673 flies and ey-Gol4, UAS-DVAPP58S/CyO-GFP flies is statistically

significant (P<0.001, Mann-Whitney U test. See Legend and Materials and Methods
for details). Difference in frequency distribution between and ey-Gal4, UAS-

DVAPP58S/Df(2R) ED1715 flies and ey-Gal4, UAS-DVAPP58S/CyO-GFP flies is
also statistically significant (P0.001, Mann-Whitney U test). The area of eye sizes
seen in ey-Gal4, UAS-DVAPP58S/Df(2R) ED1673 and ey-Gal4, UAS-

DVAPP58S/Df(2R) EDI715 flies have been brought towards wild type eye sizes as

8% of ey-Ga!4, UAS-DVAPP58S/Df(2R) ED1673 flies are 4000 arbitrary units

squared (Figure 8.7). Df(2R)ED1673 deletes 82 genes and partially deletes one gene

while Df(2R)1715 deletes 90 genes and partially deletes two genes. The overlapping

region uncovered by these two deficiencies consists of 34 genes.
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Figure 8.7. Df(2R)ED1673 moderately suppresses DVAPP58S-induced eye
phenotype.
ey-Gal4, UAS-DVAPP58S/CyO-GFP flies (red) have eye size areas centred between 1500
and 2500 arbitrary square units (N=61, S.D=654) compared to ey-Gal4, UAS-
DVAPP58S/Df(2R) ED1673 flies (blue) which have 35% of eye sizes centred on 3000
arbitrary square units and 29% at 3500 arbitrary square units (N=52, S.D=520). Differences
between eye sizes of ey-Gal4, UAS-DVAPP58S/CyO-GFP flies and ey-Gal4, UAS-
DVAPP58S/Df(2R) EDI673 flies were highly significant (P0.001, according to the non-
parametric Mann-Whitney U test when comparing the two data sets). Flies were raised at
30°C.
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8.2.3 Df(2L)ED1165 is a weak supressor

Df(2L)ED1165 is a deficiency line that deletes 23 genes and partially deletes one

gene on the Drosophila second chromosome. Quantification of ey-Gal4, UAS-

DVAPP58S/Df(2L) ED1165 flies showed that 37% of eye sizes centred on 3000

arbitrary square units compared to 60% centred between 1500 and 2000 arbitrary

square units in ey-Gal4, UAS-DVAPP58S/CyO-GFP flies. The 19% of eye sizes fall
between 3500 and 4000 arbitrary units squared (Figure 8.8). The difference in

frequency distribution between ey-Gal4, UAS-DVAPP58S/Df(2L)ED1165 flies and

ey-Gal4, UAS-DVAPP58S/CyO-GFP controls is statistically significant (P0.001,

Mann-Whitney U test. See Legend and Materials and Methods for details).
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Figure 8.8. Df(2L)ED1165 slightly increases the area of ey-Gal4, UAS-
DVAPP58S/Df(2L) ED1165 flies.
ey-Gal4, UAS-DVAPP58S/CyO-GFP flies (red) have eye size centred between 1500 and
2000 arbitrary square units (N=61, S.D=654)compared to 37% of ey-Gal4, UAS-
DVAPP58S/Df(2L) EDI165 flies (blue) centred at 3000 arbitrary square units. 19% of flies
have eye sizes between 3500 and 4000 arbitrary square units (blue, N=27, S.D=589) that is
towards wild type values (yellow, N=20, S.D=261). Differences between eye sizes of ey-
Gal4, UAS-DVAPP58S/CyO-GFP flies and ey-Gal4, UAS-DVAPP58S/Df(2L) ED1165 flies
were highly significant (P<0.001, according to the non-parametric Mann-Whitney U test
when comparing the 2 data sets). Flies were raised at 30°C.
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8.2.4 Df(2L)ED1455 is a weak suppressor of DVAPP58S-induced eye
phenotype

Another deficiency that qualitatively suppresses the ey-Gal4, UAS-DVAPP58S-
induced degenerative eye phenotype is Df(2L)ED1455 that deletes a region that
uncovers 193 genes (data not shown). Quantification of eye sizes showed that ey-

Gal4, UAS-DVAPP58S/Df(2L) ED1455 flies also have increased towards higher
values (39% centred on 2500 aribitrary units squared) compared to ey-Gal4, UAS-

DVAPP58S/CyO-GFP flies (60% centred between 1500 and 2000 arbitrary square

units) (Figure 8.9). 29% of ey-Gal4, UAS-DVAPP58S/Df(2L) ED1455 flies have eye

sizes of 3000 arbitrary square units while 9% have between 3500 and 4000 arbitrary

square units. The difference in frequency distribution between ey-Gal4, UAS-

DVAPP58S/Df(2L)ED1455 flies and ey-Gal4, UAS-DVAPP58S/CyO-GFP flies is

statistically significant (P<0.001, Mann-Whitney U test).
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Figure 8.9. Df(2L)ED1455 weakly suppresses the DVAPP58S-induced eye
phenotype.
ey-Gal4, UAS-DVAPP58S/CyO-GFP flies (red) have eye size areas centred between 1500
and 2000 arbitrary square units (N=61, S.D=654) compared to 39% of ey-Gal4, UAS-
DVAPP58S/Df(2L) ED1455 flies (blue) that is centred on 2500 arbitrary square units and 9%
that are between 3500 and 4000 arbitrary square units (N=37, S.D=607) Differences between
eye sizes of ey-Gal4, UAS-DVAPP58S/CyO-GFP flies and ey-GaU, UAS-DVAPP58S/Df(2L)
ED1455 flies were highly significant (P0.001, according to the non-parametric Mann-
Whitney U test when comparing the two data sets). Flies were raised at 30°C.
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8.2.5 Df(3L)ED4710, Df(3L)ED224 and Df(3L)ED225 suppress the
reduction of the eye size phenotype due to DVAPP58S overexpression

The ey-Gal4, UAS-DVAPP58S-induced degenerative eye phenotype is also

suppressed by three overlapping deficiencies located on the third chromosome,

namely Df(3L)ED4710, Df(3L)ED224 and Df(3L)ED225 (Figure 8.10, red

rectangle). These three deficiency lines delete 63, 19 and 24 genes respectively and

partially one gene each. Df(3L)ED4710 and Df(3L)ED224 have 18 overlapping

genes, Df(3L)ED224 and Df(3L)ED225 have 12 overlapping genes while

Df(3L)ED4710 and Df(3L)ED225 have no overlapping regions at all

(www.DrosDel.org.uk). Figure 8.11 shows the quantification of the suppressing
effects of Df(3L)ED225. 74% of ey-Ga/4, UAS-DVAPP58S/+; Df(3L)ED225/+ flies
(blue, Figure 8.11) have an eye area centred on between 3000 and 3500 arbitrary

square units compared to 60% centred between 1500 and 2000 arbitrary square units
seen in ey-Gal4, UAS-DVAPP58S/CyO-GFP flies (red, Figure 8.11). 10% of flies
have eyes that are 4000 arbitrary units squared, which is wild type eye size (yellow,

Figure 8.11).

The difference in frequency distribution between ey-Gal4, UAS-DVAPP58S/
+; Df(3L)ED225/+ flies and ey-Gal4, UAS-DVAPP58S/CyO-GFP flies is statistically

significant (P<0.001, Mann-Whitney U test). ey-Gal4, UAS-DVAPP58S/+;

Df(3L)ED4710/+ flies have the majority (84%) of eye size ranging between 3000
and 3500 arbitrary units squared that are of much higher values compared to ey-

Gal4, UAS-DVAPP58S/CyO-GFP flies. The difference in distribution frequency is
also statistically significant when comparing these two data sets (Mann-Whitney U

test, data not shown). Hence, we can conclude from these data that the gene/genes

responsible for the suppressing effects must lie in the overlapping region between

Df(3L)ED4710 and Df(3L)ED224 and the overlapping region between

Df(3L)ED224 and Df(3L)ED225.
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Figure 8.11. Df(3L)ED225 suppresses DVAPP58S-induced eye phenotype.
60% of ey-Gal4, UAS-DVAPP58S/CyO-GFP flies (red) have eye size areas centred between
1500 and 2000 arbitrary square units (N=61, S.D=654) compared to 74% of ey-Gal4, UAS-
DVAPP58S/+; Df(3L)ED225/+ flies (blue) that are centred between 3000 and 3500 arbitrary
square units and 10% at 4000 arbitrary square units (N=36, S.D=378) that is towards wild
type values (yellow, N=20, S.D=261). Differences between eye sizes of ey-Gal4, UAS-
DVAPP58S/CyO-GFP flies and ey-Gal4, UAS-DVAPP58S/+; Df(3L)ED225/+ flies were
highly significant (P0.001, according to the non-parametric Mann-Whitney U test when
comparing the 2 data sets). Flies were raised at 30°C.

8.2.6. Mean area of eye sizes is also increased by suppressing
deficiencies

As shown in the frequency distributions in Figures 8.6-8.9 and Figure 8.11, the

respective deficiencies suppressed the DVAPP58S-induced eye phenotype by

bringing the eye sizes towards wild-type values. Using the two sampled (unequal

variances), two-tailed Student t-Test, statistics showed that the differences between

the eye sizes in ey-Gal4, UAS-DVAPP58S/CyO-GFP flies and deficiencies-

suppressed flies were significant. We also quantified the mean eye area and Figure
8.12 clearly shows that not only is the mean eye area of wild-type flies (WT, in grey)

significantly higher than ey-Gal4, UAS-DVAPP58S/CyO-GFP flies (dark green), the
mean eye areas of deficiency-suppressed flies (various colours, see legend) have

significantly increased as compared to ey-Gal4, UAS-DVAPP58S/CyO-GFP flies.
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This result supports the data reported in the frequency distributions and confirms that
the deficiencies that has been uncovered in this screen truly exhibit modifying
abilities.
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Figure 8.12. Suppressing deficiencies statistically increase average eye sizes
compared to controls.
The average eye sizes seen in the suppression of the DVAPP58S-induced eye phenotype has
increased compared to ey-Gal4, UAS-DVAPP58S/CyO-GFP control flies (dark green) when
measured using the quantification software. The difference in average eye sizes is highly
significant when comparing wild type flies (WT, grey) with ey-Gal4, UAS-DVAPP58S/CyO-
GFP flies (dark green). Deficiencies that modify the degenerative eye phenotype is listed in
the legend. '*' and '**' denote statistically significant changes when compared to ey-Gal4,
UAS-DVAPP58S/CyO-GFP flies.
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Chapter 9: Discussion
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9.1 Levels of VAP proteins play an important role in synaptic
homeostasis and in shaping postsynaptic glutamate receptor
fields

VAPs are integral endoplasmic reticulum membrane proteins that are highly
conserved and ubiquitously expressed in all eukaryotic organisms (Kagiwada et al.,

1998, Skehel et al., 2000, Skehel et al., 1995, Nishimura et al., 1999). VAPs interact

with a large number of intracellular proteins and have been implicated in the

regulation of a variety of cellular functions such as membrane trafficking (Skehel et
al. 1995, Soussan et al., 1999), microtubule organization (Skehel et al., 2000,
Pennetta et al., 2002), unfolded protein response (UPR) (Brickner and Walter, 2004,
Kanekura et al., 2006), lipid transport and metabolism (Kagiwada and Zen, 2003,
Kawano et al., 2006).

Although the most established function of VAPs is the regulation of lipid

transport and metabolism, The role of VAPs in vesicular trafficking (Foster et al.,

2000; Skehel et al., 1995) has been the most debated. In Aplysia, VAP-33 is a cell
membrane protein that interacts with the vesicle-associated protein

VAMP/synaptobrevin and is required for the exocytosis of neurotransmitter at the

synapse (Skehel et al., 1995). However, conflicting reports by others suggest a

somewhat different role for VAP-33 at the synapse. Firstly, in Drosophila, mutations
in proteins controlling neurotransmitter release such as synaptotagmin, cysteine

string protein, synaptobrevin and syntaxinlA drastically affect evoked muscle

depolarization (Littleton et al., 1993; Schulze et al., 1995; Zinsmaier et al., 1994;
Deitcher et al., 1998). By contrast, our electrophysiological analysis shows that the

complete removal of DVAP-33A has no effect on calcium-evoked release of
neurotransmitter. Secondly, the interaction between VAP-33 and the v-SNARE

protein VAMP has not been reported in any other system including yeast (Gavin et

al., 2002), Drosophila (Giot et al., 2003), rat (Soussan et al., 1999) and humans

(Wyles et al., 2002). Thirdly, VAP-33 has been shown to "promiscuously" interact in
vitro with both v- and t-SNAREs (Weir et al., 2001) clearly questioning the in vivo

relevance of these data. Fourthly, at the Drosophila NMJs VAP-33 localizes to the
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periactive zones where proteins required for synaptic growth are clustered.

Conversely, proteins involved in the release of neurotransmitter are expected to

segregate at the active zones (Pennetta et al., 2002).

In Drosophila, DVAP-33A, Farinelli and CG33523 have significant

homology with VAPB. One of the three genes encoding VAP, DVAP-33A has been
found to be the only homologue of hVAPB because DVAP-33A has the highest

similarity to VAPB. Farinelli is exclusively expressed in the testes and fat body while
CG33523 has a CRAL-Trio domain that is not found in classical VAPs. DVAP-33A

has been shown to regulate the budding of synaptic boutons at the larval
neuromuscular junction in a dosage dependent manner and is required for structural

remodelling of synapses where it controls microtubule cytoskeleton dynamics. The
DVAP-33A dependent process of synapse formation has been proposed to be similar
to the budding of yeast (Pennetta et al., 2002).

hVAPB has been shown to be the causative gene of late-onset autosomal
dominant forms of motor neuron disorders, including typical and atypical ALS and
late-onset spinal muscular atrophy (Nishimura et al., 2004a, Nishimura et al.,

2004b). The pathogenic mutation predicts a substitution of a Serine for a conserved
Proline (P56S). We decided to use Drosophila as a model system to study the role of
hVAPB in ALS.

One of the hallmarks associated with the loss-of-function and neuronal

overexpression of DVAP-33A is decreased and increased bouton formation at the

NMJ, respectively. Despite this structural alteration, synaptic transmission is
maintained within a wt range. At the mechanistic level, muscles respond to a

decreased number of boutons and quantal content by upregulating quantal size;

conversely muscles compensate an increase in number of boutons and quantal
content by downregulating quantal size. Quantal size is the response of a muscle to

the spontaneous release of a single synaptic vesicle and it is thought to be
determined, in large part, by the properties of transmitter receptors. At the
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Drosophila NMJ, there are two classes of glutamate receptors: 1) receptors

containing the subunit IIA together with IID, III and HE subunits; 2) receptors

containing the subunits IID, III and HE associated with the subunit IIB (Schuster et

al., 1991; Petersen et al., 1997; DiAntonio et al., 1999; Marrus et al., 2004; Qin et

al., 2005; Featherstone et al., 2005)

We found that the increase in quantal size in DVAP-33A loss-of-function
mutations is associated with an increase in the number and cluster volume for the

subunit IIA, while cluster size for subunits III and IIB is decreased. No significant

changes in cluster size for subunit IID were found. Interestingly, it has been reported
that subtype IIB and subtype IIA receptors have different functional properties: IIB
channels desensitize almost ten times faster than IIA channels and the time constant

for the decay of the synaptic event is much faster (DiAntonio et al., 1999; Davis et

al., 1998; Pawlu et al., 2004). In agreement with our data, overexpression of the IIA
subunit has been shown to induce an increase in both quantal size and receptor

channel open times (Petersen et al., 1997, Marrus et al., 2004).

Conversely, neuronal overexpression of VAP proteins causes a decrease in

quantal size that is accompanied by a decrease in the postsynaptic level of the

receptor subunit IIA and a reduction in the mean volume of the receptor field.

Interestingly, mutants in the receptor subunit IIA display a reduced receptor channel

open time and a smaller quantal size (DiAntonio et al., 1999; Petersen et al., 1997).
These data indicate that VAP proteins may be part of a trans- synaptic mechanism
that ensures synaptic efficacy by coordinating structural remodelling of the synapse

and postsynaptic sensitivity to neurotransmitter.

From the genetic point of view, opposite phenotypes in the loss of function
and overexpression implies regulatory function of the gene in the process it controls

(Greenspan, R.J., 2004). On the other hand, since it has been shown that there is a

dosage dependent effect of DVAP-33A on synaptic sprouting (Pennetta et al., 2002),
and the fact that synaptic homeostasis still occurs in DVAP-33A loss of function
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mutants, indicates that DVAP-33A is not required for homeostasis. Our best working

hypothesis is that DVAP-33A dosage could function as a sensor of synaptic surface
area that could trigger homeostatic regulation of synaptic efficacy.

Previous work has shown that in mild glutamate receptor mutants, a

homeostatic increase in neurotransmitter release compensate for the reduction in

quantal size and the evoked response is maintained within normal values. (DiAntonio
et al., 1999; Petersen et al., 1997). However, in conditions when receptors become
limited such as in the case of mutants for subunit III, it has been proposed that
homeostatic mechanisms are insufficient to normalize evoked release and a marked

deficit in synaptic function is observed (DiAntonio, 2006). The reduction in quantal
size observed in larvae overexpressing hVAPB and mutants overexpressing
hVAPBP56S is similar to that reported in strong mutations for the subunit III (Marrus
and DiAntonio, 2004). As predicted, we also observe a breakdown of the homeostatic
mechanism when overexpressing hVAPP56S, the evoked response exhibit a 50%
decrease while in the case of hVAPB. a near normal postsynaptic response was

observed. Interestingly, decrease in quantal size has also been reported in muscle

biopsies ofALS patients (Maselli et al., 1993).

While these data clearly indicate that changes in the expression levels of VAP

proteins have a critical role in shaping the post-synaptic glutamate receptor field and
the abundance of specific subunits, the mechanism by which this phenomenon occurs

remains elusive. However, studies on MSP have provided intriguing insights into
how this trans-synaptic mechanism might occur. MSP, also found to have high

homology to the N-terminal domain of VAP, has been shown to control ephrin/Eph

receptor pathway in C. elegans (Miller et al., 2003). MSP is a 14kD protein that is

highly abundant in nematode sperm and controls the movement of the sperm by

regulating the assembly and disassembly of filaments composed of MSP (Roberts
and Stewart, 1995).

MSP is also a signalling molecule for oocyte maturation and ovarian sheath
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cell contractions in C.elegans by its secretion into the reproductive tract from the

sperm cytosol and binds to Eph receptors on oocyte and sheath cell surfaces (Miller
et al., 2003). Eph receptors and ephrins have been implicated in multiple aspects of

synaptic function, including clustering and modulation of glutamate receptors

(Yamaguchi and Pasquale, 2004). In addition, Ephrin/Eph receptors are also involved
in synaptic plasticity, cytoskeletal remodelling and axonal pathfinding (Birgbauer et
al., 2001, Henderson et al., 2001, Shamah et al., 2001). Interestingly, Tsuda and

colleagues reported that the MSP domain of DVAP-33A is cleaved and secreted.
More significantly, both the MSP domain of hVAPB and DVAP-33A genetically
interacts with Eph receptors in C.elegans. The pathogenic protein on the other hand,
is not cleaved or secreted and is trapped in ER aggregates, suggesting a disruption of
the potential activity of the secreted fragment by the pathogenic mutation. However,
the cleavage and secretion of VAPB might be tissue specific as not all cell types in

Drosophila are capable of secreting cleaved VAPB, moreover, the cleavage and
secretion of VAPB was tested only in cell culture system and the wing imaginal
discs. The authors extrapolated this data and proposed that both defects may

contribute to produce features ofALS8 pathology (Tsuda et al., 2008). Nonetheless,
the authors failed to show that such a mechanism actually operates in the NMJ or

nervous system, the tissues that are mostly affected by ALS.

9.2 hVAPB and DVAP-33A are functionally interchangeable at
the NMJ

We showed that hVAPB and DVAP-33A are not just structural homologues but they
are in fact functional homologues as the expression of hVAPB in neurons rescues the

lethality, morphological and electrophysiological phenotypes associated with DVAP-
33A loss of function mutations. Moreover, the overexpression of hVAPB

phenocopies the phenotype of DVAP-33A overexpression at the morphological and

electrophysiological level: overexpression of hVAPB and DVAP-33A causes an

increase in the number of synaptic boutons and a consequential decrease in bouton
sizes when compared to controls while accompanied by a decrease in quantal sizes in
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these synapses. These results show that hVAPB and DVAP-33A perforin homologous
functions at the synapse and as a consequence, information gained from the study of
DVAP-33A will also be relevant to the function of hVAPB.

In order to gain insight into the mechanism of the human disease, we asked
whether the pathogenic mutation is a gain- or a loss-of-function mutation. The data

presented here show that the pathogenic protein carrying the P56S mutation and the

corresponding Drosophila P58S mutant protein were able to rescue the lethality,

morphological and electrophysiological phenotypes associated with DVAP-33A loss
of function mutations. This points toward two possibilities: the mutation is irrelevant
to the pathogenesis of ALS8 or the mutant allele has a pathogenic effect while

retaining certain functional properties of the wild type protein.

The second hypothesis is very much plausible for several reasons. Firstly, the
P56S mutation has been reported to be causative for an inherited form of MNDs in
humans. This mutation affects nine related families totalling 1500 individuals of
which 200 suffer from motor neuron disorders (Nishimura et al., 2005; also refer to

appendix). Second, many of the phenotypes associated with the overexpression of
human or Drosophila wild type protein are similar to those due to the overexpression
of the pathogenic proteins. The main difference is that the pathogenic mutation
causes a more severe phenotype than the one generated by the overexpression of the

corresponding wt protein, when transgenic lines expressing comparable amounts of

protein were compared. Third, a genetic model for ALS has been generated where
the expression of the mutant VAP recapitulates major hallmarks of the human disease
such as locomotion defect, neuronal cell death and aggregate formation, clearly

indicating that the mutation has a pathogenic effect. Fourth, both the Drosophila and
the human mutant proteins retain some functional wild type properties such as the

ability to self-oligomerize (K. Parry and G. Pennetta; Kanekura et al., 2006).

Flowever, neuronal expression of the pathogenic protein in the presence ofwt DVAP-
33A depletes the wild type protein from its normal localization at the NMJ and
induces aggregate formation. These effects are not observed when the wild type
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protein is overexpressed. Moreover, this depletion of the endogenous DVAP-33A in

transgenic expression of pathogenic DVAP-33A produces a morphological

phenotype that is similar to the loss of function morphological phenotype of DVAP-
33A at the NMJ, suggesting a dominant negative effect. Indeed, several other groups
have proposed a dominant negative effect for the Proline to Serine substitution in
VAP (Kanekura et al., 2006; Teuling et al., 2007; Ratnaparkhi et al., 2008). Despite
this, the depletion of endogenous DVAP-33A from its normal localization cannot be
the principal mechanism of the disease as DVAP-33A loss of function mutants do not

develop ALS suggesting that the mutant protein has acquired an abnormal, new toxic
property.

9.3 A genetic model for ALS in Drosophila that recapitulates
major hallmarks of the disease

One of the most common features ofALS and nearly all neurodegenerative diseases
is the accumulation of aggregates that are intensively immunoreactive to disease-
related proteins (Bruijn et al., 2004). Each disease, however, differs with respect to

the anatomical location and morphology of the aggregates. The major component of
the aggregates is usually the protein encoded by the gene mutated in the familial
forms, which is also unique to each disease. Despite this diversity, a bulk of
circumstantial evidence support the hypothesis that aggregates are typical hallmarks
of neurodegenerative diseases and have a toxic effect on neurons (Caughey and

Lansbury, 2003). While no autopsy material is available for familial cases with the
P56S mutation, SOD 1-positive inclusions have been reported in human sporadic and
familial ALS cases as well as in SOD1 mouse models (Bruijn et al., 1998, Shaw et

al., 2008). We found the presence of aggregates that are intensively immuno-reactive
for DVAP-33A both in neuronal cell bodies and in nerve fibers of our ALS model.

Interestingly, human and Drosophila VAPB carrying the pathogenic mutation have
also been shown to undergo intracellular aggregation when expressed in cell culture

systems (Kanekura et al., 2006, Teuling et al., 2007) and in fly models (Tsuda et al.,

2008; Ratnaparkhi et al., 2008). However, similarities between human disease and
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our fly model are not limited to aggregate formation as flies expressing transgenic
VAP proteins carrying the ALS8 mutation, exhibit other hallmarks of the human
disease such as neuronal cell death, muscle wasting and defective locomotion
behaviour (Mulder et al., 1986).

It remains to be established whether the VAP protein in the aggregates in our

fly model ofALS represents the mutant protein, the endogenous protein or a mixture
of both, however, we observe a regional decrease in the level of the endogenous
DVAP protein. The DVAP-33A protein that is normally associated with the plasma
membrane in neuronal cell bodies and at the neuromuscular synapses is nearly
undetectable in DVAPP58S transgenic animals. As a result of this decrease in

synaptic levels of the endogenous protein, a decrease in the number of boutons is
observed (Chai et al., 2008; Ratnaparkhi et al., 2008; Tsuda et al., 2008). It was

previously shown that DVAP-33A regulates bouton formation at the synapse in a

dosage-dependent manner (Pennetta et al., 2002). Despite these structural alterations,
a homeostatic mechanism is established to maintain synaptic efficacy within
functional boundaries. We speculate that the depletion of the endogenous protein
from its normal localization and the formation of aggregates would affect the
homeostatic mechanism linking structural remodelling and synaptic efficacy
controlled by DVAP-33A. Although not directly tested in our model, experiments in
cell culture and yeast studies show that overexpression of mutant VAPB induces
formation of aggregates in which the endogenous wild type protein is recruited

(Kanekura et al., 2006; Teuling et al., 2007; Suzuki et al., 2009). This would suggest

that the pathogenic allele functions as a dominant negative. Indeed, other groups
have also proposed that the P56S mutation causes ALS8 through a dominant-

negative mechanism (Kanekura et al., 2006; Teuling et al., 2007; Tsuda et al., 2008;

Ratnaparkhi et al., 2008).

Similar to what has been proposed for other neurodegenerative diseases, the
formation of aggregates may directly interfere with critical cellular processes and /or

compromise the ability of the system to keep up with the degradation of aggregated
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proteins (Petrucelli et al., 2004; Zeng et al., 2004; Venkatraman et al., 2004; Bence
et al., 2001). We have also observed that Hsp70, a major stress-induced molecular

chaperone in flies, is upregulated and closely associated with aggregates in larval
brains transgenic for the P58S protein while in controls, a faint and diffuse

cytoplasmic staining is observed (data not shown). Aggregates associated with

neurodegenerative diseases are immunoreactive for various molecular chaperones
and for components of the protein quality control machinery, including the

ubiquitin/proteosome complex and the lysosome-mediated autophagy system. These
data have suggested that cells recognize aggregated disease proteins as abnormal and
that recruitment of chaperones and components of protein clearance systems to

inclusions, may serve to refold, disaggregate and/or degrade the mutant proteins
(Chan et al., 2002; Taylor et al., 2002). On the other hand, it has also been suggested
that aggregates might be harmful to cells by sequestering away proteosomes,

molecular chaperones and transcription factors that are normally essential for cell

viability (Taylor et al., 2003; Zhou et al., 2003).

Despite major efforts in research, is still not clear what contributes to the

degeneration of synapses in neurodegenerative diseases. However, studies in animal
models have supported the role of synaptic dysfunction in nerodegenerative disease

pathogenesis. In several animal models for motor neuron diseases (Frey et al., 2000;
Pinter et al., 1997) as well as in patients affected by ALS (Maselli et al., 1993),

synaptic deficits are detected since the very early stages of the disease and
exacerbation of these lesions correlates with time and speed of disease progression

(Dengler et al., 1990). Maintaining synaptic function is dependent on the precise

regulation of neural excitability and neurons have the capacity to respond to

perturbations such as inappropriate synaptic function or altered innervation to

maintain their function within a normal physiological range. (Davis and Goodman,

1998). The significance of synaptic homeostasis to appropriate neural function

suggests that there are links to neural disease. Strikingly, mutant proteins that are

implicated in causing neurodegenerative disorders impair the integrity or function of

presynaptic terminals and postsynaptic specializations (Walsh and Selkoe, 2004;
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Palop et al., 2006). For instance, disruption of synaptic transmission (Chee et al.,

2005), synaptic toxicity (Yoshiyama et al., 2007) and derealization of PSD-95

(postsynaptic density-95), a key postsynaptic scaffolding protein (Almeida et al.,

2005; Gylys et al., 2004; Roselli et al., 2005; Zhang et al., 2007) are reported in AD
mouse model and patients, and an animal model of tauopathy. In addition, a-

synuclein genetically interacts with cysteine-string protein-a (CSPa), a protein

important in facilitating the folding and refolding of synaptic SNARE proteins
critical for neurotransmitter release, vesicle-recycling and synaptic integrity

(Chandra et al., 2005).

Defects in retrograde signalling can also contribute to a breakdown of

synaptic homeostasis and function. Bone morphogenetic protein (BMP) signalling
has been implicated in the potential mechanism of pathogenesis of hereditary spastic

paraplegia (Wang et al., 2007). BMP signalling regulates synaptic growth, function
and stabilization at the Drosophila larval NMJ by postsynaptic retrograde signalling

(McCabe et al., 2004), and is involved in the maintenance of microtubules and

axonal transport (Wang et al., 2007). Interestingly, pathogenic DVAP-33A has been

reported to interfere with BMP signalling pathways at the NMJ (Ratnaparkhi et al.,

2008). These observations demonstrate that proteins normally required for synaptic
function and signalling mutated in neurodegenerative diseases could play a major

part in the degenerative process.

9.4 Modelling VAP-induced ALS in the Drosophila adult eye
facilitates enhancer/suppressor screens

The molecular mediators and cellular events that contribute to the pathogenesis of
most human neurodegenerative diseases are still poorly understood. Studying these
diseases in model organisms enables one to exploit powerful genetic analysis to

dissect such disease processes. Genome wide screens that have been performed in
recent years looking at interactors of a pathological phenotype have successfully
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identified genes that are involved in RNA processing, transcriptional regulation,

phosphorylation, molecular chaperones and components of protein clearance system

as potent suppressors of neurotoxicity in several fly models of neurodegenerative
diseases (Fernandez-Funez, 2000; Kazemi-Esfarjani and Benzer, 2000, Shulman and

Feany, 2003; Mutsuddi et al., 2004). These enhancer/suppressor screens have been
conducted exclusively using the adult Drosophila eye as a read-out as it is an

experimentally-tractable structure in which to model human neurodegenerative
diseases in flies.

Since the patho-mechanism of ALS has not yet been established, we tested
the possibility of modelling ALS8 in the adult fly eye with the intention of

conducting a genome-wide screen for interactors of DVAP-33A. In order to carry out
the modifier screen, we first searched for a suitable eye-specific driver that does not

exhibit non-specific eye defects on its own as GMR-Gal4 does. Although GMR-Gal4
has been extensively used in disease models and modifier screens, we believe that

finding a more suitable eye-specific driver to substitute GMR-Gal4 would avoid the

problem of identifying enhancer or suppressors of GMR-Gal4 instead of true

interactors ofDVAP-33A.

By exploring the usage of other eye-specific drivers, we were able to show
that the expression of the DVAPP58S transgene in the adult eye using the eyeless-
Gal4 driver exhibit a rough phenotype with a reduction in size, extra bristles and
fused ommatidia. As observed in the larval NMJ, we also found that cell

degeneration in the eye is due to apoptosis: overexpression of DIAP-1, a gene

inhibiting apoptosis in flies partially suppresses the mutant eye phenotype. This

partial rescue could be explained by the short in vivo half-life (about 30 minutes) of
DIAP1 protein (Kuranaga et al., 2006) while another explanation would be that other
mechanisms such as necrosis or autophagy could play a part in the degenerative

phenotype. These data are consistent with the conclusion that a degree of cell death is

occurring in the eye expressing the pathogenic protein. As previously described for
the nervous system of third instar larvae, we also observe in the eye the formation of
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microscopically visible aggregates.

The similarity between the phenotypes in the adult Drosophila eye and in the
larval NMJ indicate that these two systems can be used interchangeably to model

key aspects of VAP-induced ALS in Drosophila. Although eye phenotypes are useful
tools to rapidly identify genetic modifiers of a particular gene, retinal degeneration is
not a characteristic feature ofALS. A more effective strategy is to first identify genes

that modulate VAP-induced toxicity in the adult eye and, subsequently, validate the

modifying activity of these interactors in other tissues that are more characteristically
affected in ALS patients such as the larval NMJ and motor systems including
locomotion behaviour.

Our model ofALS is highly and potentially more powerful than other models
for neurodegenerative diseases in flies. This is strengthened by the fact that human
VAPB rescues the phenotype associated with the loss of function of the Drosophila

protein. This means that whatever that is learnt about the wt protein in flies can be
related to the human protein. Most of the other neurodegenerative disease models

rely on the strong overexpression of a heterologous human protein (Fernandez-Funez
et al., 2000; Warrick et al., 1998; Jackson et ah, 1998; Feany and Bender; 2000;
Wittmann et al., 2001; Jackson et al., 2002). Especially in the case of the Parkinson's
disease model where a-synuclein has no real homologue in flies (Feany and Bender,
2000), the neurotoxicity phenotypes observed in these fly models might result from
the heterologous expression of human diseased proteins. Despite this, it has been
shown that toxicity of SCA3 (caused by expanded polyglutamine repeats of Ataxin

3) can be modulated by normal activity of Ataxin 2, whose expanded polyglutamine

repeats causes SCA2 (Lessing et al., 2008). Al-Ramahi and colleagues have also
shown previously that wild type Drosophila Ataxin 2 modifies human expanded
Ataxin 1-induced degeneration. These two studies utilizing the human pathogenic

protein of Ataxin 1 and Ataxin 3 showed a functional link and revealed
commonalities between neurodegenerative disorders with common clinical features
but different etiology. We are therefore even more confident that using our model of
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VAP-induced ALS in the eye would potentially uncover novel and interesting genes

that are involved in ALS pathogenesis.

9.5 A genome-wide deficiency screen to search for genetic
interactors of DVAP-33A

In Drosophila, genetic screens have been particularly invaluable in identifying the

missing components of a pathway. Loss of function mutations in most genes are

recessive, which indicates that 50% of the protein is sufficient to ensure an almost
normal function. When a particular pathway is partially disrupted by an existing
mutation, this amount might no longer suffice and mutations in the genes that are
involved in the pathway can therefore be identified as dominant enhancers or

suppressor in a sensitized genetic background (St. Johnston, D., 2002).

We carried out a small pilot screen to test whether our Drosophila eye model
is sensitive enough to detect modifiers. As deficiencies are equivalent to null
mutations in the genes that are deleted, a rapid way to scan the genome for potential

target genes in enhancer and suppressor screens is to look for dominant effects in

heterozygote deficiencies. We embarked on a quick survey of the genome using
deficiencies and information gained from any interacting regions in this pilot screen
would be used as a starting point for a high resolution misexpression screen. Flies
that carry both the eyeless-Gal4 driver and the UAS-DVAPP58S transgene in the

presence of the wild-type protein were generated by meiotic recombination. This ey-

Gal4/UAS-DVAPP58S fly stock was used in a F1 screen deficiency screen to look for

genetic modifiers of DVAP-33A.

The DrosDel Collection was used to identify enhancers and suppressors of
the eye degenerative phenotype. Out of deficiencies screened so far, we identified 14

suppressors and 3 enhancers of the DVAPP58S induced degenerative eye phenotype
and the remaining deficiencies on the third chromosome are subjected to ongoing

analysis. Three overlapping deletions on the X chromosome are strong suppressors

of the degenerative eye phenotype. This suggests that the same gene is removed by
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the three deficiencies and that the gene responsible for the suppression should be
found in the overlapping region between the three deficiencies. This smallest

overlapping deletion also contains the bangles and beads gene. Bangles and beads

(Bnbj represents, at the moment, our best suppressor candidate gene, as it has been
shown to be a physical interactor of DVAP-33A by a yeast two hybrid screen (K.

Parry and G. Pennetta). Bnb is closely related to mammalian GAP-43 protein (Ng et

al., 1989), a neuronal growth associated protein that affects filopodial extension and

branching, axonal pathfinding, and synaptic plasticity (Benowitz and Routtenberg,

1997). GAP-43 is enriched in the membranes of growth cones during development
and axonal regeneration. It is phosphorylated after long-term potentiation,

implicating GAP-43 in learning and memory and a loss of GAP-43 results in axonal

pathfinding defects (Benowitz & Routtenberg, 1997, Strittmatter et al., 1995). This

proves extremely interesting as the loss of DVAP-33A also affects synaptic

branching at the larval NMJ (Pennetta et al., 2002) and axonal pathfinding defects at

the adult mushroom bodies (data not shown and Tsuda et al., 2008).

We have also found seven deficiencies on the second chromosome and four

deficiencies on the first half of the left third chromosome acting as suppressors of the
VAP-induced neurotoxicity in the eye. Df(2L)ED700 the smallest deficiency that

suppresses the eye phenotype has six genes deleted and one gene deleted partially.
This finding is rather significant as three out of the seven genes uncovered by this
deletion, together with DVAP-33A, code for proteins found in lipid droplet fractions
of Drosophila embryos. Lipid droplets are ubiquitous organelles that are storage sites
for energy, sterols, and precursors of membrane phospholipids with central roles in
cholesterol homeostasis and lipid metabolism. It has been shown by mass

spectrometry of purified lipid droplets of Drosophila embryos that DVAP-33A

(CG5014), sop (CG5920) and CG5885 proteins are represented significantly in lipid-

droplet fractions while yip2 (CG4600) is represented abundantly (Cermelli et al.,

2006). It is appealing to hypothesize about the connection between VAP, lipid
metabolism and cholesterol homeostasis, considering the fact that VAP and its
interactors such as CERT and OSBP have been implicated in regulating lipid
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metabolism and homeostasis. Recent studies in the field of ALS have revealed that

dyslipidemia extends survival of ALS patients (Depuis et al., 2008). Consistently,

increasing the lipid content in the diet of ALS animal models that exhibit reduced

adiposity and increased rates of energy expenditure offers neuroprotection and
extends survival in these animals (Depuis et al., 2004).

Transgenic expression of DVAPP58S using the ey-Gal4 driver induces a

heterogeneous rough eye phenotype and reduction in eye sizes. Such variability in

eye phenotypes is not uncommon as GMR-Gal4 driven expression of human SCA8

protein also causes variability in rough eye phenotypes (Mutsuddi et al., 2004). Due
to the heterogeneous nature of the eye sizes seen in DVAPP58S-induced eye

phenotype, software for quantifying the area and circumference of the region of the

image occupied by the eye was also developed with the help of an informatics
collaborator to better quantify the suppressing or enhancing effects of modifiers on

the degenerative eye phenotype. This software, developed by James Withers was

written using MATLAB (Mathworks Inc.) allows tracing of the eye border with
calculation of its area and circumference. It allows a more flexible and accurate way

of tracing the eye than the commonly used ImageJ software because it eliminates

operator error as tracing the border of the eye depends very much on the skill of the

operator using free-hand tool in ImageJ. Operator bias is also reduced with our

quantification software because it has the ability to segment the tracing of eye
boundaries by introducing more control points (in this case, pixel by pixel). The

operator in this case decides at every control point where the border of the eye and
head is. We were able to use this software to quantify some of the deficiencies that
showed suppressing effects on the degenerative eye phenotype and confirmed our

initial findings using a purely qualitative method of screening. Of all the deficiencies
that showed modifying activity, we were able to confirm that the increase in eye sizes
were statistically significant and are in the midst of identifying the gene responsible
for the suppression.

Although deficiency screens provide a quick and easy means of screening the
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genome for interacting regions, it is however, difficult to pinpoint the actual

modifying gene using P-element insertions because many of these insertions are not

associated with a phenotype and does not disrupt the gene it is associated with. In

many cases, imprecise P-element excision is needed to generate new mutant alleles

(Venken and Bellen, 2005). We attempted to identify the genes responsible for the

suppression effect by crossing the transgenic line expressing the pathogenic protein
with P-element insertion lines for the genes deleted in the deficiency and as

expected, found that the P-element insertion lines used did not suppress the

degenerative eye phenotype. This could also be due to several other factors: firstly,
the suppression could be allele specific; secondly, there might be a need to remove

two or more genes to be able to observe a suppression, especially in the case of large
deletions; thirdly, the P-element insertions that were tested either do not disrupt the

genes they are associated with or possibly the position of the P-element insertions

may not have caused a sufficient reduction in the amount of proteins to cause a

suppression. Of all the P-element insertions tested thus far, only two were lethal
insertions. This suggest that although the P-element is present, the insertion might
not be affecting the gene it is associated with.

One way to overcome these problems is to utilise more specific alleles if
available or overexpressing the candidate genes to observe an opposite phenotype (an
enhancement in these cases). We also plan to hone in on the gene responsible for the

suppression or enhancement by utilizing the Exelixis Collection where the average

deletion is 140kb. The Exelixis Collection can also be used to fill up the gaps in the
DrosDel Collection with deletions present in the Exelixis Collections. In this first
screen, because we chose the most severe eye degenerative phenotype, we may have
selected for particularly strong suppressors. A milder phenotype can be selected as

the phenotype is dependent on the expression levels of the mutant transgene.

Despite the problem of identifying the gene responsible for the modifying
effects of the degenerative eye phenotype, the deficiency screen is progressing by

searching for interacting deficiencies on the third chromosome. This is because the
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deficiency screen has proven that the degenerative eye phenotype is modifiable and
we have so far identified 14 suppressors and 3 enhancers with this approach. This

provides a crucial proof of principal for a broader misexpresssion screen of single

gene mutations and that interacting deficiencies uncovered by this current screen will
be used as early candidates for a high resolution misexpression screen that is being

planned in the lab.
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Perspectives

Following the publication of our fly model of VAP-induced ALS, two other groups

subsequently published their fly models of ALS8 (Chai et al., 2008; Ratnaparkhi et

al., 2008; Tsuda et al., 2008). Both groups have independently suggest that

pathogenic VAPB functions as a dominant negative brought about by aggregation of
VAP and recruitment of wild type VAP. Tsuda and colleagues also showed that the
MSP domain of VAP is cleaved and secreted and further proposed that the trapping
of wild type VAP by pathogenic protein aggregates and the initiation of the UPR
cause a reduced secretion of cleaved VAPB may contribute to produce features of
ALS8 pathology. These reports reinforce the idea that Drosophila models ofALS are

crucial in dissecting the molecular mechanisms ofALS pathogenesis.

The value of Drosophila as a model of neurodegenerative disorders is its

capacity to provide a platform for unbiased genetic screens aimed at identifying
molecular components of a pathological pathway. The generation of Drosophila
models of ALS has taken some time compared to other neurodegenerative disease
models such as polyglutamine diseases, Parkinson's, Alzheimer's and tauopathies

(Warrick et al., 1998; Jackson et al., 1998; Struhl & Greenwald, 1999; Feany &

Bender, 2000; Fernandez-Funez et al., 2000; Wittmann et al., 2001; Jackson et al.,

2002; Guo et al., 2003; Iijima et al., 2004; Mutsuddi et al., 2004). This disadvantage
of generating an ALS fly model only recently means that our understanding of
molecular mechanisms involved in ALS pathogenesis is still in its "infancy"

compared to other neurodegenerative diseases. On the other hand, genome-wide
screens looking at interactors of a pathological phenotype have identified, among

others, molecular chaperones and components of the protein clearance systems as

potent suppressors of neurotoxicity in several fly models of neurodegenerative
diseases (Kazemi-Esfarjani and Benzer, 2000; Auluck et al., 2002; Auluck and

Bonini, 2002; Chan et al., 2000; Warrick et al., 1999) suggesting commonalities
between what have been traditionally thought as distinct diseases based on

syndromic classifications of neurodegenerative disorders. Since a role for these
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pathways in mitigating neurotoxicity in VAP-induced ALS is largely unexplored, we
can exploit the genetic and pharmacological tools that have been generated from
these previous modifier screens.

Even though the genome-wide F1 deficiency screen identified several

interacting regions, narrowing down to the modifying gene proves to be extremely

challenging. This is because the genes uncovered by the deficiencies might not be

disrupted by P-element insertions and therefore generation of new mutant alleles due
to imprecise excision of the P-elements might be necessary to create a real mutation.
A more direct approach would be conducting a misexpression screen that is designed
to select modifiers that affect toxicity upon upregulation. A P-element based

misexpression screen would be a better means for screening due to the fact that the
modifier gene can be directly identified as information on the P-element insertions
and which gene it affects is readily available on Flybase. This approach has been

very successfully applied to Drosophila models of polyglutamine-repeat disorders

(Fernandez-Funez et al., 2000; Bilen and Bonini, 2007; Kazemi-Esfarjani and

Benzer, 2000) and tauopathies (Shulman and Feany, 2003; Blard et al., 2007) where
a large number of interesting genes have been identified.

Genetic screens carried out in Drosophila models of neurodegenerative
diseases have so far been using a collection of 2,276 p(EP) lines and have mainly
identified chaperones and components of the protein clearance systems as major
determinants in the pathogenesis (Fernandez-Funez et al., 2000; Bilen and Bonini,

2007; Kazemi-Esfarjani and Benzer, 2000; Shulman and Feany, 2003; Blard et al.,

2007). These findings clearly suggest that commonalities exist among different

neurodegenerative diseases. However, one caveat of using the EP collection is the
screen can never be saturated because of hotspots for P-element insertions and it is
also possible that the 2,276 p(EP) lines contain a high degree of redundancy. Thus, it
is very likely that screening the same collection with another disease model will
continue to "spot" the same genes.
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We plan to utilize a set of 5,183 lines with the potential of misexpressing a

neighbouring gene that has been assembled by the Bloomington Stock Centre. This
collection comprises insertions of transposable elements with little redundancy

among mutant lines and the possibility to screen 40% of the total 13,366 Drosophila

genes. These genes are very likely to be different ones as, in assembling this

collection; particular care was taken to avoid redundancy in the mutant lines. Only
lines whose insertion points could be uniquely and unambiguously localized by

sequence comparison to the genomic sequence, were maintained and new lines that
mutate genes already disrupted by other transposable elements, were discarded
(Bellen et al., 2004). This makes our approach more powerful than other modifier
screens relying on the p(EP) collection and also increases our chances of identifying
additional and different classes of modifiers of VAP-induced neurotoxicity.

In particular, an F1 screen of the established collection of 5,183 transposable
elements will be carried out by crossing flies expressing the pathogenic VAP in the

eye. to individual transposable element-insertion lines and examine the progeny for
dominant enhancement or suppression of the VAP-induced rough eye phenotype.
When one of these transposable elements is inserted proximal to a gene and in the
same orientation, it allows the specific misexpression of the gene under the control of
Gal4. Alternatively, when inserted in the reverse orientation, the transposable
element often inactivates the expression of the gene. Thus this screen has the

potential to identify both loss-of-function and gain-of-function modifiers of VAP-
induced toxicity and the identification of these interacting genes will shed new light
on the molecular mechanisms underlying VAP-induced ALS.

To facilitate an enhancer/suppressor screen using our Drosophila eye model,
software to quantify the effects of modifiers by measurement of eye sizes was

developed. The software is also being further improved to allow semi-automated

tracing of the fly eye, decreasing the time spent tracing the eye area. This allows a
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larger sample size of eyes to be traced in a minimum amount of time, thus increasing
statistical power and improving our statistical analysis of the data. Furthermore, by

increasing the sample size of eyes traced, it allows for a clearer definition of which

eye size has the highest frequency, thus better enabling us to categorise enhancers
and suppressors as strong, medium or weak. Also included in the pipeline is a

function that could quantify the extent of the rough eye phenotype by measuring the

degree of "entropy" of the structure of ommatidia and orientation of bristles. In most

of the methods used in quantifying the rough eye phenotype, a particular area was

chosen to perform the quantification manually, be it calculating the average number
of unfused ommatidia (Mutsuddi et al., 2004), photoreceptor cells per ommatidium
(St. Pierre et al., 2002) or the percentage of correctly orientated bristles (Paricio et

al., 1999). This would certainly introduce an operator bias in the phenotype

description as some areas of the eyes could be more affected then others. Conversely
in our software, quantification is performed by looking at the entire surface of the

eye, hence ensuring a real average situation can be described.

This high resolution misexpression screen for modifiers of VAP-induced ALS
has never been attempted before and it is crucial that a fast, accurate and efficient

system of screening is put in place. We are confident that this approach, coupled with
the enhanced software in quantifying the enhancing and suppressing effects of
modifiers, will provide modifier genes that can be quickly subjected to functional

analysis to further address their role in ALS pathogenesis.
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Appendix
This appendix includes data from two projects currently ongoing in the lab that I am
involved in. Also included is a published paper which contains data discussed in the
main text of this thesis.
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Appendix 1

The role of Sacl in the pathogenesis of ALS

hVAPB (human VAMP-associated protein B) is the causative gene of a late onset

autosomal dominant form ofALS in humans (ALS8, Nishimura et al., 2004). We
have generated a Drosophila model for ALS in which the neuronal

overexpression of the mutant VAP protein recapitulates major hallmarks of the
human disease including locomotion defects, neuronal death and aggregate
formation. However, the molecular mechanism of ALS pathogenesis has not
been defined. Here we show that Sacl is an interactor of DVAP-33A. Sacl is a

lipid phosphatase that is involved in a wide range of cellular processes such as

regulating actin cytoskeleton organization, cell morphology and growth. Similar
to DVAP-33A, the dosage of Sacl also induces a change in number and size of
boutons at the NMJ. Decrease in the levels of Sacl induced the formation of

large boutons and a decrease in their number while overexpression of Sacl
induces an increase in bouton number and a decrease in their sizes. Targeted
knockdown of Sacl in the eye by RNAi was shown to effectively induce rough

eye phenotype and neuronal degeneration. Our results suggest that VAP and
Sacl are in the same molecular pathway and further studies into the role of
Sacl at the synapse and nervous system should shed new light on the molecular

pathogenesis of ALS and should assist in the development of rational therapies
for this progressive fatal disorder.

Human VAMP-associated protein B (hVAPB) is the causative gene of a late onset,

autosomal dominant form of motor neuron disorders, including typical and atypical
ALS and late-onset spinal muscular atrophy (Nishimura et al., 2004). The pathogenic
mutation causes a substitution of a Serine for a Proline at codon 56 (P56S) in a

stretch of 16 amino acids that is very highly conserved from yeast to man in all VAP

homologs.
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Drosophila VAP-33 (DVAP-33A), the structural homologue of hVAPB in
flies, regulates synaptic remodelling by affecting the size and the number of boutons
at Neuromuscular Junctions (NMJs) (Pennetta et al., 2002). We and others have

produced a VAP-induced Drosophila model of ALS that recapitulates major
hallmarks of the disease including locomotion defects, neuronal apoptosis, aggregate

deposition and ultra-structural synaptic abnormalities (Chai et al., 2008, Tsuda et al.,
2008, Ratnaparkhi et al., 2008). However, the underlying molecular mechanism of
ALS pathogenesis remains unknown.

A genome-wide yeast-two-hybrid screening in Drosophila identified Sacl

(Suppressor ofActin) as a potential VAP interacting protein (Giot et al., 2003) and an

independent yeast two hybrid study has confirmed that Sacl is a protein interacting
with DVAP-33A as well as with its human homologue hVAPB (K. Parry and G.

Pennetta). Sacl dephosphorylates several phosphatidylinositol (Ptdlns) phosphates
and acts as a lipid phosphatase localized at the ER which primarily regulates the

synthesis and the turnover of Ptdlns phosphates. Ptdlns phosphates are important

regulators of a wide range of cellular processes including cytoskeletal organization,
vesicular trafficking, apoptosis, proliferation and differentiation (Hughes et al.,

2000).

In Drosophila, Sacl is involved in cell-shape changes during gastrulation by

acting on the Jun N-terminal kinase (JNK) MAPK signalling (Wei et al., 2003).
Loss of Sacl function results in embryonic lethality due to the fact that Sacl directs

morphogenetic movements controlling dorsal closure during embryonic development

(Wei et al. 2003a). The function of Sacl in the nervous system, however, has not

been previously addressed nor has the role of this protein in human

neurodegeneration. Because Sacl mutants die well before the development of the
nervous system, it is imperative to circumvent the early lethality of null mutations.

Hypomorphic allele of Sacl has previously been generated (Wei et al., 2003b),

unfortunately this allele is lost and no longer available. We therefore decided to

overcome the early lethality of null mutations by generating hypomorphic mutations
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and dominant negative alleles. Hypomorphic mutations were generated by

expressing the UAS-Sacl transgene in a null background for the same gene. UAS

transgenic lines have been reported to induce leaky expression of a gene even in the
absence of Gal4 (Marrus and DiAntonio, 2004), hence the hypormorphic mutations

may allow bypassing of the first developmental requirement for Sacl.

Studies performed in yeast indicate that the highly conserved
-RXNCLDCLDRTN- motif represents the catalytic core of the Sacl phosphatase

(Hughes et al., 2000 and references therein). The Sacl dominant negative alleles was

produced by generating transgenes containing either a deletion of this catalytic
domain or an amino acid substitution where the first Aspartate (D) residue is changed
to an Asparagine (N) at the catalytic domain of Sacl. The deletion and the amino
acid substitution should disrupt the catalytic activity whilst maintaining the normal

folding such that it successfully competes with the wild type protein. The expression
of the dominant alleles will be driven in a temporal- and tissue-specific manner by

using the UAS-Gal4 system (Brand and Perrimon, 1993) in a wild-type background.
The effect of the dominant negative allele will be confirmed by observing similar

phenotypes with a loss of function mutation by Sacl RNAi.

Here we show that alterations in the dosage of Sacl affects synaptic bouton
number and size while decreasing the level of Sacl in neurons also causes

degeneration in the adult eye. Our yeast-two-hybrid studies confirmed that Sacl is a

protein interacting with DVAP-33A as well as with its human homologue hVAPB

(data not shown). We found that decreasing the level of Sacl in neurons caused an

increase of the size of boutons at the synapse when compared to the wild-type

synapses. The effect of Sac 1 loss of function on synapses have also been confirmed

using RNAi (Figure IB). Conversely, overexpression of Sacl led to a formation of
filliform synapses and smaller bouton sizes. We also observed a change in number of
bouton at these synapses that warrants detailed quantification (Figure 1). This effect
on synaptic bouton size and numbers at the NMJ is similar to the effect of altering
DVAP-33A dosage: DVAP-33A loss of function mutants caused an increase in bouton
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size and a decrease in their numbers while overexpression of DVAP-33A caused
filliform synapses and decrease in bouton size (Chai et al., 2008). Thus the effect of
Sacl manipulation mirrors that of DVAP-33A. It has been proposed that DVAP-33A
affects bouton budding at the NMJ by controlling membrane remodelling (Pennetta
et al., 2002). Interestingly, Sacl was also shown to affect membrane remodelling

during morphogenic movements of cells during dorsal closure (Wei et al. 2003a).
These observations strongly suggest that Sacl is not only a biochemical interactor of
VAPB, but also control the same molecular pathways.

Figure 2. Changes in Sacl levels cause morphological phenotype at the NMJ. Anti-HRP
stainings of (A) WT larva NMJ (B) UAS-Sacl RNAi line showing increased bouton size
(arrowhead) and decreased bouton number. (C) Overexpression of Sacl in NMJs caused
formation of filliform synapses, small size (arrowhead) and large number of boutons. All
pictures were taken at the same magnification. Muscles 12 and 13 were examined in this
instance and elav-Gal4 was used to drive both transgenes.

We next examined the effect of reducing Sacl levels in the Drosophila adult

eye and expression in the nervous system of an RNAi transgene specific for Sacl
shows a very dramatic phenotype. A decrease in the expression levels of Sacl in the

eye causes morphological defects, loss of pigmentation and extensive black, necrotic

patches covering the majority of the eye surface (Figure 2). The severity of the

phenotype depends on the strength of the transgene and it was consistently more

severe in males than in females. This is due to the fact that the transgene is inserted
on the X chromosome and therefore dosage-compensation will lead to a ~2 fold

higher levels of transgene expression in males than in females.
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Figure 2. Decrease in Sacl levels in the adult eye causes extensive neurodegeneration.
Expression of an RNAi transgene specific for Sacl driven by a pan-neural driver (elav-Gal4)
in females (B) and males (C). In (A) the adult eye of a control fly is shown.

SEM (scanning electron microscope) analysis of male adult eyes shows that
the whole eye of the male flies was affected by neurodegeneration (Figure 3A and

B). Although the size of the eye stayed roughly the same, the neurodegeneration was

represented by loss of photoreceptors, missing bristles and fused ommatidia (Figure
3C and D, arrowheads). This observed eye phenotype is specific and it is unlikely to

be due to an effect on off-target genes as an independently generated, hypomorphic
allele of Sacl shows the same phenotype (Wei et al., 2003b). However, this allele is
lost and unavailable. Transgenic expression of Sacl in the nervous system also
induces progressive locomotion defects. Adult flies with an increased Sacl

expression in neurons exhibit fairly normal locomotion behaviour upon hatching but
within a few days, they display a progressive reduction in motor activity, becoming

sluggish and uncoordinated (data not shown).
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Figure 3. Decreasing the dosage of Sacl causes necrotic patches in the Drosophila eye.
(A) Wild type male fly showing normal eye composition, compared with (B) male tly eye
expressing Sacl RNAi with rough eye phenotype. (C) Pattern of ommatidia and hair bristles
as seen in the wild-type as compared to (D) showing fused ommatidia and loss of bristles
(arrowheads) as representation of necrotic patches. elav-Gal-f was used to drive the RNAi
transgene.

Finally, the reported biochemical interaction between DVAP-33A and Sacl is

likely to be functionally relevant as decreasing the dosage of Sacl in a mutant

background for DVAP-33A exacerbates the DVAP33A-induced morphological

phenotype at the Drosophila NMJ (data not shown). We have shown that interactors
of VAP that affects lipid metabolism such as Sacl have similar phenotypes at the
larval NMJ, strongly suggesting that VAP and Sacl are in the same molecular

pathway.

In yeast and cell culture systems, hVAPB has been reported to interact with
several proteins affecting lipid metabolism including OSBP and CERT (Wyles et al.,
2002; Loewen and Levine, 2005; Loewen et al., 2003; Kawano et al., 2006). These

192



interactions are a conserved feature of many VAP proteins, supporting the idea that

they can be functionally relevant. CERT is required for the transport of ceramide
from the ER to the Golgi complex, a process critical for the synthesis and
maintenance of normal sphingolipid levels (Acharya and Acharya, 2005, Yan and

Olkkonen, 2008). OSBPs affect membrane dynamics and act as sterol sensors

controlling local lipid composition (Legace et al., 1999; Xu et al., 2001). CERT and
OSBPs are both lipid transfer proteins that share a common basic structure: they both
localize to the ER by the binding of their FFAT (two phenylalanines in an acidic

tract) motif with VAP proteins and to the Golgi apparatus through their pleckstrin

homology (PH) domain which binds Phosphotidylinositol-4-phosphate (PtdIns(4)P)

(Yan and Olkkonen, 2008). In particular, they both use PtdIns(4)P as part of a Golgi
membrane localization code which also includes the PH domain and a small GTPase.

(Acharya and Acharya, 2005, Yan and Olkkonen, 2008; Legace et al., 1999; Xu et

al., 2001). Remarkably, Sacl that is localized at the ER primarily regulates the pool
of PtdIns(4)P (Wei et al., 2003a).

These and other data reported above lead us to propose that VAPs function as

scaffolding proteins that recruit to specific subcellular compartments several lipid

regulators such as Sacl, CERT and OSPB to adjust local lipid composition and

thereby to influence membrane remodelling, signal transduction and cytoskeletal

dynamics. Interestingly, correlative evidence have indicated that disruption in lipid
metabolism is a common trait of ALS pathogenesis (Dupuis et al., 2008; Dupuis et

al., 2004; Marques et al., 2006). Further experiments will also be done to address the
biochemical interaction of Sacl with pathogenic VAP and the ability of Sacl to affect

pathogenic VAP-induced hallmarks ofALS in the nervous system. These approaches
will provide insight on the functional importance of the Sacl-VAP interaction, the
effect of this interaction on the ability of the pathogenic VAP to induce a disease-
related phenotype and the role of lipid metabolism in ALS pathogenesis.
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Materials and Methods

Fly stocks, genetics and molecular techniques
UAS-Sacl RNAi flies were obtained from Vienna Drosophila RNAi Center (VDRC),
elav-Gal4 was obtained from Bloomington Drosophila Stock Center.
The full length transcript for Sacl was retrieved from the GH08349 clone obtained
from BDGP (http://flvbase.bio.indiana.edu/') and cloned into pUAST vector using

Bglll — Kpnl linkers. The Aspartate to Asparagine amino acid change (D—>N) and
deletion of the -RXNCLDCLDRTN- catalytic motif was introduced into Sacl cDNA
cloned in pBluescript (G. Pennetta) by site-directed mutagenesis using QuickChange
II XL Site Directed Mutagenesis Kit (Stratagene) and following manufacturer's
instructions. The introduction of the D—>N amino acid change and
-RXNCLDCLDRTN- deletion were each verified by direct sequencing of the

corresponding clone. The Sacl cDNA carrying the amino acid change and
-RXNCLDCLDRTN-motif deletion were each isolated by PCR amplification and
cloned into independent pUAST vectors using BamHI - Kpnl linkers.

All transgenic lines were established by following standard protocols (Spradling and

Rubin, 1982). Basic molecular biology techniques were performed according to

(Ausubel et al., 1998).

Immunohistochemistry and confocal immunofluorescence

Stainings of third instar larval NMJs and analysis of the morphological phenotype
was performed as described in (Pennetta et al., 2002).

Scanning Electron Microscopy (SEM)
SEM was done according to methods described in the main text of the thesis.
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Appendix 2

The role of VAP and lipid binding proteins in ALS pathogenesis.

hVAPB (human VAMP-associated protein B) was shown to be the causative gene

of a late onset, autosomal dominant form of motor neuron disorders, including

typical and atypical ALS and late-onset spinal muscular atrophy in a large
Brazilian kindred. The mutation was identified as a Proline to Serine

substitution at position 56 (P56S) on the N-terminal domain of hVAPB that is

very well conserved across species from yeast to man, suggesting an important
functional role for this residue. VAP has been shown to interact with various

lipid-binding, and lipid-transport proteins that contain FFAT motifs, such as

oxysterol-binding protein (OSBP) and ceramide transport protein (CERT)
which affect lipid metabolism. Correlative evidence have indicated that

disruption in lipid metabolism is a common trait ofALS pathogenesis. However,
the underlying molecular mechanism remains obscure. Here we report another
mutation on hVAPB that causes typical ALS in an unrelated family. This new

mutation causes a Threonine to Isoluecine at residue 46 at the N-terminal of the

protein. Interestingly, T46 is part of a conserved core domain of VAP

responsible for binding proteins containing FFAT motifs that are involved in

lipid metabolism. We also show that transgenic expression of corresponding

Drosophila pathogenic protein (DVAPT48I) induces aggregate formation,

fragmentation of the ER and upregulation of Hsp70. Transgenic expression of
DVAPT48I specifically in the eye also induces a degenerative eye phenotype. We
also observe the colocalization of DVAP-33Awith dCERT (Drosophila CERT) in
larval tissues and in a cell culture system. We demonstrate hVAPB is indeed a

causative gene of ALS and major hallmarks of ALS are recapitulated by

transgenic expression of DVAPT48I. Moreover, our colocalization studies

strongly suggest a physical interaction between VAP and dCERT and we are

currently confirming these interactions for the fly proteins by using

coimmunoprecipitation experiments and yeast-two hybrid assay. We are
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confident that studying VAP interactors such as CERT and the Threonine to

Isoleucine mutation of VAP will help us understand the role of lipid metabolism
in the function of the nervous system and how lipid dysfunction can lead to

motor neuron degeneration.

A mutation in human VAMP-associated protein B (hVAPB) in a large Brazilian

family was found to be the causative gene for a late onset autosomal dominant form
ofALS in humans (ALS8, Nishimura et al., 2004). This mutation affects nine related
families totalling 1500 individuals of which 200 suffer from motor neuron disorders

including typical and atypical ALS and late-onset spinal muscular atrophy

(Nishimura et al., 2005). The mutation was identified as a Proline to Serine
substitution at position 56 (P56S) in a stretch of highly conserved 16 amino acids on

the N-terminal domain of the protein (Nishimura et al., 2004).

Recently, another mutation in hVAPB was identified in an unrelated family
affected by typical ALS. The mutation changes the Threonine at position 46 (T46)
into an Isoleucine (Prof. Jacqueline de Belleroche, Imperial College London,

personal communication). This amino acid also resides in the same stretch of 16
amino acids that is very well conserved in all VAP homologues including the fly

homologue DVAP-33A (refer to the main body of the thesis). More interestingly, an
extensive site-directed mutagenesis on Scs2, the homologue of VAP in yeast, showed
that T46 is part of a conserved core domain of VAP responsible for binding proteins
involved in lipid metabolism (Loewen and Levine, 2005). This finding is also

supported by the analysis of the crystal structure of the N-terminal portion of VAP

showing that this residue is indeed localized in the pocket of VAP responsible for

interacting with the FFAT motif of lipid binding proteins (Kaiser et al., 2005).

In yeast and cell culture experiments VAPs have been shown to interact with
OSBPs and CERT, lipid binding proteins that contain a FFAT motif that associates
with the ER via interaction with VAPs and a PH domain that targets both proteins to

the Golgi (Wyles et al., 2002, Loewen and Levine, 2005, Loewen et al., 2003,
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Kawano et al., 2006). CERT is required for the transport of ceramide from the ER to

the Golgi complex, a process critical for the synthesis and maintenance of normal

sphingolipid levels (Acharya and Acharya, 2005, Yan and Olkkonen, 2008). OSBPs
affect membrane dynamics and act as sterol sensors controlling local lipid

composition. Sterols and sphingolipids are the major components of the lipid rafts
and, in Drosophila, lipid rafts are positive regulators of metabotropic glutamate

receptors at the synapse. They also regulate voltage-gated ion channel signalling and
the synaptic vesicle cycling underlying neurotransmission (Rohrbough and Broadie,
2005).

Interestingly, it has been reported that the P56S substitution in hVAPB

responsible for ALS in humans impairs the binding with FFAT motif (Teuling et al.,
2007). In addition, patients carrying the P56S pathogenic mutation in hVAPB also
showed hyperlipidemia with a significant increase in cholesterol and triglyceride
levels (Marques et al., 2006). Studies have also revealed increased energy

expenditure as a typical feature of ALS pathogenesis and that ALS patients were

more likely to show evidence of hyperlipidemia relative to controls (Dupuis et al.,

2008). Reduced adiposity and hypermetabolism have also been reported in murine
models of ALS and, more importantly, these animals exhibit remarkable

neuroprotection and extended survival when fed with a high fat regimen (Dupuis et

al., 2004). Taken together, these data suggest dysfunction in lipid metabolism could

play a part in motor neuron disease pathogenesis.

In an effort to assess the functional significance of the T461 amino acid

change, we have generated transgenic flies expressing the pathogenic mutation. We
found that transgenic expression of the mutant protein (DVAPT48I) recapitulates

major hallmarks of the disease such as aggregate formation, ER fragmentation and

upregulation of Hsp70 and neurodegeneration of the adult fly eye. Expression of
DVAPT48I in neurons induces the formation of aggregates both in the neuronal cell
bodies and the nerves of the larval motor system. In controls, DVAP staining appears

dispersed throughout the cytoplasm of neuronal cell bodies while in DVAPT48I
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transgenic brains, DVAP immunoreactivity is associated with intracellular aggregates
of variable sizes. (Figure 1E-H). We also observed a disruption of ER morphology,

transgenic expression of DVAP containing the pathogenic mutation induces ER

fragmentation (Figure 1I-N) while an up-regulation of EIsp70 clearly indicates an

accumulation of unfolded or aberrantly folded proteins. In control neuronal cell
bodies, Hsp70 staining appears faint and uniformly distributed throughout the cell. In
DVAPT48I transgenic neurons, Hsp70 is up-regulated and forms inclusions closely
associated with DVAP aggregates (Figure 10-T). Targeting the expression of the
same protein in the adult nervous system and in particular in the eye also induces

neurodegeneration characterized by smaller eyes, loss or aberrantly oriented bristles
and fused ommatidia. While the adult Drosophila eye is composed of an ordered

array of ommatidia and interspersed bristles, transgenic eyes appear smaller, with

missing or aberrantly oriented bristles (black arrowhead) and fused ommatidia (white

arrowhead) (Figure 1A-D).

Expression of tagged proteins in a cell culture system confirms that the

aggregates are composed of both the mutant and the wild-type protein. DVAP

normally distributes throughout the cytoplasm forming a reticulum as is expected for
an ER-associated protein. A concomitant transfection with a plasmid expressing a

myc-tagged mutant protein depletes the wildtype (wt) protein from its normal
localization. We also demonstrate that the presence of the mutant protein is necessary
for the formation of aggregates. Co-transfection of wt DVAP with the DVAPT48I

depletes the wt protein and induces the formation of aggregates. These aggregate are

also immunoreactive for the mutant protein indicating that the mutant protein is

sequestered in these inclusions (Figure 2A-G).
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Figure 1. Characterization of the disease in transgenic flies expressing DVAPT48I, the
DVAP mutant allele that causes typical ALS in humans.
(A) Scanning electron micrographs of controls and (B) transgenic adult fly eyes expressing
the UAS-DVAPT48I transgene under the control of the eye-specific driver, eyeless-Gal4. (C)
and (D) are higher magnifications of (A) and (B) respectively. (E-H) Brains and nerve fibers
of third instar larvae were stained with antibodies for DVAP (red) and with antibodies for the
neuronal cell surface marker anti-HRP (green). (E) Brains of control larvae and (F) brains of
larvae expressing transgenic DVAPT48I. Nerve fibers of control larvae (G) and transgenic
larvae (H) were stained with anti-HRP (green) and anti-DVAP antibodies in red. In control
nerves a faint and uniform staining for DVAP is observed while in transgenic nerves large
aggregate strongly immunoreactive for DVAP accumulate along the nerves. In (1-K.) control
brains and (L-N) brains from transgenic larvae were stained with anti-DVAP antibodies (red)
and with antibodies specific for KDEL, a Endoplasmic reticulum (ER) marker (green). (O-
Q) Control brains stained with DVAP (green) and Hsp70 antibodies (red). (R-T) T48I
transgenic brains stained with the same antibodies. Scale bars in (A) and (B) are 200pm. The
other ones are 10pm.

Studies have shown that CERT interacts with VAPs via its FFAT motifs

(Kawano et al., 2006) and we also demonstrate that DVAP-33A colocalizes with
dCERT (Drosophila CERT). Using antibodies specific for DVAP and dCERT we

observe that DVAP and dCERT colocalize in larval tissues, including brains (data not

shown). The colocalization studies have also been confirmed in a cell culture system

as co-expressed tagged versions of DVAP and dCERT in COS7 cells show that
DVAP and dCERT colocalize (Figure 2F1-M). The extensive colocalization of dCERT
and DVAP suggest that these proteins may interact and effects of the T46I and P56S
mutations on the ability of VAP to bind CERT, the localization of CERT and lipid
metabolism are currently being investigated.

Taken together the data reported in our study lead us to several important
conclusions. Firstly, the identification of a new mutation in hVAPB confirms and
reinforces the fact that hVAPB is indeed a causative gene of ALS. Secondly, the

newly identified mutation in an unrelated family is the cause of the disease because

major pathological hallmarks are recapitulated in a Drosophila system. Thirdly,
colocalization of DVAP-33A with dCERT in cell culture suggest that the interaction
is conserved across species and that VAP could play a part in regulating lipid
metabolism and homeostasis through lipid regulators such as Sacl and CERT. These
observations in turn imply a significant role of lipid metabolism in ALS
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pathogenesis. Interaction of CERT with VAP has previously been proposed to be

important for the correct localization of CERT and for the stimulation of CERT-

dependent ceramide transport and sphingomyelin synthesis (Perry and Ridgeway.

2006). Studies on the role of these lipid regulators at the synaptic level could lead us

to understand how lipid dysfunction could result in motor neuron degeneration. This

project is currently ongoing in our lab as a result of collaboration with the group of
Prof. Jacqueline de Belleroche at the Imperial College London.
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Figure 2 (A-G) Aggregates, an hallmark of the disease in flies, are composed of both
wild-type and mutant DVAP.
COS7 cells transfected with plasmids expressing DVAP-FLAG and DVAPT481-myc were
stained with antibodies specific for the two tags. COS7 cells transfected with a plasmid
expressing DVAP-FLAG and stained with anti-FLAG antibodies are shown in (A) as a
control.

Figure 2 (H-M) dCERT and DVAP colocalize in a cell culture system.
COS7 cells were co-transfected with plasmids expressing DVAP-FLAG and dCERT-myc
proteins. Co-transfected cells were stained with antibodies specific for both tags to visualize
the proteins.
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Materials and Methods

Fly stocks, genetics and molecular techniques
elav-Gal4 and eyeless-GaU drivers were obtained from Bloomington Drosophila
Stock Center.

The T48I amino acid change was introduced into DVAP-33A cDNA cloned in

pBluescript (G. Pennetta) by site-directed mutagenesis using Quick Change Site
Directed Mutagenesis Kit (Stratagene) and following manufacturer's instructions.
The introduction of the point mutation was verified by direct sequencing of the

corresponding clone. The DVAP-33A cDNA carrying the mutation was isolated by
PCR amplification and cloned into the pUAST vector using EcoRI- Kpnl linkers. All

transgenic lines were established by following standard protocols (Spradling and
Rubin, 1982). For expression in a cell culture system, theT481 DVAP-33A cDNA
was amplified by PCR and cloned into pCMV-myc vector (Clontech) by using

EcoRI-Kpnl linkers. DVAP-33A-FLAG tagged protein was expressed in cell culture

by cloning the DVAP-33A cDNA in frame with the FLAG tag in pCMV-Tag 2

(Stratagene). The cloning was performed by PCR amplification using EcoRI-Sall
linkers. dCERT cDNA was retrieved from the GH07688 cDNA clone obtained from

BDGP (http://flybase.bio.indiana.edu/). dCERT cDNA was cloned in frame with the

myc-tag in the pCMV-myc vector (Clontech) using EcoRI-Kpnl linkers. Basic
molecular biology techniques were performed according to (Ausubel et al., 1998).

COS7 cell transfection and immunocytochemistry
C0S7 cells were cultured in DMEM medium (Gibco) containing 10% FCS and 1%

Penicillin/Streptamycin. One day before transfection, cells were plated at 150 000
cells/ml on poly-L-Lysine coated cover slips (BD Biosciences). Cells were

transfected with Fugene 6 Transfection Reagent (Roche) according to manufacturers

protocol and grown for 24 hours. Cells were fixed in 4% paraformaldehyde for 20
minutes at room temperature. Slides were blocked in 10% NGS and labelled with

primary antibody for 2 hours at room temperature.
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Immunohistochemistry and confocal immunofluorescence

Wandering theird instar larva brains were dissected in IX PBS and fixed in Bouin's

Fixative for 5 minutes. Rabbit anti-c-myc (Sigma) was used at 1:500, Mouse anti-
FLAG (Sigma) was used at 1: 200, Mouse anti-Hsp70 (Affinity BioReagents) at

1:200, Mouse anti-KDEL (Stressgen) at 1:50, Rabbit anti-HRP(Jackson

Immunoresearch) at 1:500 and Guinea pig anti-DVAP (G.Pennetta) at 1:1000. Larval
nerves, tissues and COS7 cells were imaged using an Axiovert Zeiss Microscope.

Scanning Electron Microscopy (SEM)
SEM was done according to methods described in the main text of the thesis.

References

Acharya, U„ Acharya, J.K. (2005). Cell Mol Life Sci. 62: 128-142.
Ausubel F.M., Brent R., Kingston R.E., Moore D.D., Seidman J.G., Smith A.J.,

Struhl K. Current Protocols in Molecular Biology (1998) New York: John
Wiley & Son.

Dupuis, L., Oudart, H., Rene, F., Gonzalez de Aguilar, J.L., Loeffler, J.P. (2004).
Proc Natl Acad Sci USA. 101: 11159-11164.

Dupuis, L., Corcia, P., Fergani, A., Gonzalez de Aguilar, J.L, Bonnefont-Rousselot,
D., Bittar, R., et al. (2008). Neurology. 70: 1004-1009.

Kaiser, S.E., Brickner, J.H., Reilein, A.R., Fenn, T.D., Walter, P., Brunger, A.T.
(2005). Structure. 13:1035-1045.

Kawano, M., Kumagai, K., Nishijima, M., Hanada, K. (2006). J Biol Chem. 281:
30279-30288.

Loewen, C.J., Roy, A., Levine, T.P. (2003). EMBO J. 22: 2025-2035.
Loewen, C.J., Levine T.P. (2005). J Biol Chem. 280: 14097-14104.
Marques, V.D., Barreira, A.A., Davis, M.B., Abou-Sleiman, P.M., Silva, W.A. Jr,

Zago, M.A., et al. (2006). Muscle Nerve. 34: 731-739.
Nishimura, A.L., Mitne-Neto, M., Silva, H.C., Richieri-Costa, A., Middleton, S.,

Cascio, D., et al. (2004). Am. J. Hum. Genet. 75: 822-831.
Nishimura, A.L., Al-Chalabi ,A., Zatz, M. (2005). Hum Genet. 118: 499-500
Perry, R.J., Ridgway, N.D. (2006). Mol Biol Cell. 17: 2604-2616.
Rohrbough, J., Broadie, K. (2005). Nat Rev Neurosci. 6: 139-150.
Spradling A.C., Rubin G.M. (1982) 218:341-347.
Teuling, E., Ahmed, S., Haasdijk, E., Demmers, J., Steinmetz, M.O., Akhmanova, A.,

et al. (2007). JNeurosci. 27: 9801-9815.
Wyles, J.P., McMaster, C.R., Ridgway, N.D. (2002). J Biol Chem. 277: 29908-29918.
Yan, D„ Olkkonen, V.M. (2008). Int Rev Cytol. 265: 253-285.

204



Acknowledgements
I thank G. Pennetta and M. Marescotti for designing the cloning strategy and

performing the molecular cloning of pUAST-DVAPT48I, pCMV-myc-dCERT,

pCMV-DVAP-FLAG and pCMV-DVAPT48I-myc constructs.

205



Human Molecular Genetics, 2008, Vol. 17, No. 2 265

(1997) Rescue of cardiac alpha-actin-deficient mice by enteric smooth
muscle gamma-actin. Proc. Natl. Acad. Sci. USA. 94, 4406-4411.

29. Abdelwahid, E., Pelliniemi, L.J., Szucsik, J.C., Lessard, J.L. and Jokinen,
E. (2004) Cellular disorganization and extensive apoptosis in the
developing heart of mice that lack cardiac muscle alpha-actin: apparent
cause of perinatal death. Pediatr. Res., 55, 197-204.

30. Anderson, R.H., Brown, N.A. and Webb, S. (2002) Development and
structure of the atrial septum. Heart, 88, 104-110.

31. Boheler, K.R., Carrier, L„ de la Bastie, D., Allen, P.D., Komajda, M.,
Mercadier, J.J. and Schwartz, K. (1991) Skeletal actin mRNA increases in
the human heart during ontogenic development and is the major isoform
of control and failing adult hearts. J. Clin. Invest., 88, 323-330.

32. Suurmeijer, A.J., Clement, S., Francesconi, A., Bocchi, L„ Angelini, A.,
Van Veldhuisen, D.J., Spagnoli, L.G., Gabbiani, G. and Orlandi, A.
(2003) Alpha-actin isoform distribution in normal and failing human
heart: a morphological, morphometric, and biochemical study. J. Pathol.,
199, 387-397.

33. Garner, I., Minty, A.J., Alonso, S„ Barton, P.J. and Buckingham, ME.
(1986) A 5' duplication of the alpha-cardiac actin gene in BALB/c mice is
associated with abnormal levels of alpha-cardiac and alpha-skeletal actin
mRNAs in adult cardiac tissue. EMBO J., 5, 2559-2567.

34. Nowak, K.J., Sewry, C.A., Navarro, C„ Squier, W., Reina, C„ Ricoy, J.R.,
Jayawant, S.S., Childs, A.M., Dobbie, J.A., Appleton, R.E. et al. (2006)
Nemaline myopathy caused by absence of alpha-skeletal muscle actin.
Ann. Neurol.

35. Gelernter-Yaniv, L. and Lorber, A. (2007) The familial form of atrial
septal defect. Acta Paediatr., 96, 726-730.

36. Zetterqvist, P., Turesson, 1., Johansson, B.W., Laurell, S. and Ohlsson,
N.M. (1971) Dominant mode of inheritance in atrial septal defect. Clin.
Genet., 2, 78-86.

37. Klar, J., Gedde-Dahl, T., Jr, Larsson, M.. Pigg, M., Carlsson, B., Tentler,
D., Vahlquist, A. and Dahl, N. (2004) Assignment of the locus for
ichthyosis prematurity syndrome to chromosome 9q33.3—34.13. J. Med.
Genet., 41, 208-212.

38. Trybus, K..M. (2000) Biochemical studies of myosin. Methods, 22.
327-335.

39. Bing, W„ Knott, A. and Marston, S.B. (2000) A simple method for
measuring the relative force exerted by myosin on actin filaments in the in
vitro motility assay: evidence that tropomyosin and troponin increase
force in single thin filaments. Biochem. J., 350 (Pt 3), 693-699.

40. Kinose, F., Wang, S.X., Kidambi, U.S., Moncman, C.L. and
Winkelmann, D.A. (1996) Glycine 699 is pivotal for the motor activity of
skeletal muscle myosin. J. Cell. Biol., 134, 895-909.

41. Becker, D.L., McGonnell, I., Makarenkova, H.P., Patel, K., Tickle, C.,
Lorimer, J. and Green, C.R. (1999) Roles for alpha 1 connexin in
morphogenesis of chick embryos revealed using a novel antisense
approach. Dev. Genet., 24, 33—42.

42. Becker, D.L. and Mobbs, P. (1999) Connexin alphal and cell
proliferation in the developing chick retina. Exp. Neurol, 156, 326-332.



Human Molecular Genetics, 2008, Vol. 17, No. 2 266-280
doi: 10.1093/hmg/ddm303
Advance Access published on October 18, 2007

hVAPB, the causative gene of a heterogeneous
group of motor neuron diseases in humans,
is functionally interchangeable
with its Drosophila homologue DVAP-33A
at the neuromuscular junction
Andrea Chai1, James Withers1, Young Ho Koh2 4, Katherine Parry1, Hong Bao3, Bing Zhang3,
Vivian Budnik2 and Giuseppa Pennetta1*

1Center for Neuroscience Research, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Summerhall,
Edinburgh EH9 1QH, UK, department of Neurobiology, University of Massachusetts Medical School, Worcester,
MA 01605-2324, USA, department of Zoology, University of Oklahoma, Norman, OK 73019, USA and
4llsong Institute of Life Science, Hallym University, Anyang, Kyunggi-do 431-060, Korea

Received September 3, 2007; Revised and Accepted October 10, 2007

Motor neuron diseases (MNDs) are progressive neurodegenerative disorders characterized by selective death
of motor neurons leading to spasticity, muscle wasting and paralysis. Human VAMP-associated protein B
(hVAPB) is the causative gene of a clinically diverse group of MNDs including amyotrophic lateral sclerosis
(ALS), atypical ALS and late-onset spinal muscular atrophy. The pathogenic mutation is inherited in a domi¬
nant manner. Drosophila VAMP-associated protein of 33 kDa A (DVAP-33A) is the structural homologue of
hVAPB and regulates synaptic remodeling by affecting the size and number of boutons at neuromuscular
junctions. Associated with these structural alterations are compensatory changes in the physiology and
ultrastructure of synapses, which maintain evoked responses within normal boundaries. DVAP-33A and
hVAPB are functionally interchangeable and transgenic expression of mutant DVAP-33A in neurons recapi¬
tulates major hallmarks of the human diseases including locomotion defects, neuronal death and aggregate
formation. Aggregate accumulation is accompanied by a depletion of the endogenous protein from its normal
localization. These findings pinpoint to a possible role of hVAPB in synaptic homeostasis and emphasize the
relevance of our fly model in elucidating the patho-physiology underlying motor neuron degeneration in
humans.

INTRODUCTION

Motor neuron diseases (MNDs) encompass a group of
inherited disorders characterized by the selective dysfunction
and death of motor neurons leading to spasticity, hyperre-
flexia, generalized weakness, muscle atrophy and paralysis
(1). The best characterized and the most common of these dis¬
eases is amyotrophic lateral sclerosis (ALS) with a prevalence
of approximately 5/100 000 individuals. The majority of ALS
cases are sporadic while only ~10% are familial, manifesting
a variety of inheritance patterns with linkage to multiple

independent chromosome loci (2). Among the familial cases,
~20% are caused by dominantly inherited mutations in the
protein encoded by the gene Cu/Zn superoxide dismutase
1 (SOD1) (3).
In 2004, a genetic linkage study mapped the locus respon¬

sible for a group of MNDs to chromosomal region 20ql3.3
(ALS8). The disease affects both sexes equally and the clini¬
cal onset occurs between the third and fifth decade. Most

patients have lower motor neuron symptoms but some
show bulbar involvement (4). Mutation screening led to the
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identification of a Proline to Serine substitution (P56S) at
codon 56 in human VAMP-associated protein B (hVAPB)
(5). In a branch of the same large family the P56S mutation
has been shown to cause a lower motor neuron disorder

accompanied by autonomic involvement and dyslipidemia
(6). The mutated Proline is present in a stretch of amino
acids that is very highly conserved from yeast to man in all
VAP homologs.
hVAPB is a type II integral membrane protein that belongs

to a highly conserved family of proteins. VAP proteins have
been implicated in glucose transport trafficking, expression
of phospholipid biosynthetic genes, regulation of synaptic
growth, neurotransmitter release and ER-Golgi and intra-Golgi
transport (7-11). These seemingly different functions have
been investigated in different species and cell types and they
are possibly mediated by different members of the same
family.
The overall structure of all VAP proteins is similar and

consists of a cytoplasmic N-terminal region and a trans¬
membrane domain at the C-terminus. The N-terminal
domain shares a high degree of structural similarity with
the Caenorhabditis elegans major sperm proteins (MSPs)
(12). MSPs are highly abundant proteins expressed in the
amoeboid nematode sperm. The movement of these cells is
driven by the assembly of MSP proteins into fibrous net¬
works (13). MSP proteins have also been shown to function
as signaling molecules as they antagonize ephrin/Eph
receptor signaling in order to promote oocyte meiotic
maturation and ovarian muscle contractions in C. elegans
(12).
DVAP-33A (Drosophila VAMP-associated protein of

33 kDa A) exhibits significant homology with hVAPB.
DVAP-33A regulates bouton budding at larval neuromuscu¬
lar junctions (NMJs) in a dosage-dependent manner. It is
required for structural remodeling of synapses where it con¬
trols microtubule cytoskeleton dynamics. We have pre¬
viously proposed that synapse formation is dependent on
DVAP-33A in a process similar to budding in yeast (9).
Recently, it has been shown that, MSP localizes to
membranes and can generate the protrusive force necessary
to induce vesicle budding from male germ cells in
C. elegans (14).
To better understand the pathophysiology underlying

VAP-induced MNDs in humans, we have undertaken a
functional characterization of VAP proteins in flies.
In Drosophila, structural remodeling induced by
loss-of-function and overexpression of DVAP-33A is paral¬
leled by functional and ultrastructural compensation at the
synapse. We show that hVAPB and DVAP-33A are func¬
tionally interchangeable and that transgenic expression of
mutant VAP in neurons recapitulates several hallmarks of
the human disease including locomotion defects, neuronal
apoptosis and aggregate deposition. Interestingly, aggregate
accumulation is associated with a strong reduction in the
abundance of the endogenous protein at its normal localiz¬
ation. Taken together these data underline a possible role
for hVAPB in synaptic homeostasis and highlight the
importance of this fly model in elucidating the patho-
mechanism of VAP-induced motor neuron degeneration
in humans.

RESULTS

Homeostatic regulation of neurotransmitter release
at NMJs with altered expression of DVAP-33A

Hypomorphic and null mutations in DVAP-33A cause a severe
decrease in bouton number and an increase in bouton size. Con¬

versely, overexpression of DVAP-33A in neurons induces a
highly significant increase in the number of boutons with a con¬
comitant decrease in their size (Supplementary Material,
Fig. SI). Since the number and size of synaptic contacts
between a neuron and its target may affect synaptic strength,
we investigated whether these structural changes have any
consequences on synaptic physiology. We focused our
electrophysiological analysis on DVAP-33Aa'66 partial
loss-of-function mutants as many more of them survive to the
third instar larval stage than null mutants though both mutants
exhibit very similar phenotypes. As shown in Figure 1A and
B, the amplitude of the evoked junctional potentials (EJPs) is
not significantly different (P > 0.05) in synaptic terminals exhi¬
biting fewer and larger boutons (36 ± 2 mV) relative to controls
(37 ± 2 mV). To determine whether other aspects of synaptic
transmission are altered in mutants, we studied the properties
of miniature EJPs (mEJPs). We found an increase in the
mean frequency ofmEJPs in mutants when compared with con¬
trols (3.80 ± 0.24 Hz versus 2.00 ± 0.11 Hz, P < 0.001)
(Fig. IE). In addition, as shown in Figure IE and F, the mean
mEJP amplitude is increased in partial loss-of-function
mutants compared with controls (1.30 + 0.02 mV in
DVAP-33Aa'6 versus 0.80 ± 0.01 mV in controls). This differ¬
ence in quantal size is significant (P < 0.001) and is also
observed in null mutants (data not shown). We calculated the
quantal content by dividing the mean EJP size by the mean
iof the mEJP size and found a decrease in quantal content of
^40% in mutants compared with controls (44.90 ± 0.9 in con¬
trols versus 26.91 ± 0.5 in mutants, P < 0.001).
In Drosophila, the UAS/GAL4 system allows the temporal

and tissue-specific expression of a transgene by using a
variety of GAL4 drivers (15). We overexpressed DVAP-33A
in neurons by using the pan-neural driver elav-GAL4. In synap¬
tic terminals overexpressing DVAP-33A, the EJP amplitude is
not significantly changed compared with controls (32 + 3 mV
versus 33 ± 2 mV, P > 0.05) (Fig. 1C and D). Conversely,
there is a significant decrease in quantal size in these
mutants (0.59 ± 0.05 mV versus 0.90 ± 0.06 mV in controls,
P < 0.05) (Fig. 1G). Interestingly, cumulative amplitude histo¬
grams indicate that the entire mEJP amplitude distribution is
shifted towards larger values in mutants (Fig. IF) and towards
smaller values in animals overexpressing DVAP-33A
(Fig. 1G). A significant increase in quantal content accompanies
the increase in bouton number as the quantal content in
DVAP-33A overexpressing larvae is 54.13 ± 1.5 compared
with 36.66 ± 0.8 in controls (P < 0.05). Thus, changes in
quantal size are responsible for maintaining normal synaptic
transmission in loss-of-function and overexpression paradigms.

Ultrastructural remodeling at NMJs lacking
and overexpressing DVAP-33A
To determine whether ultrastructural remodeling at the
synapse accompanies the previously described functional
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Figure 1. Electrophysiological analysis of larvae lacking and overexpressing DVAP-33A. (A) Examples of single traces showing EJPs in DVAP-33A mutants
(A166) and controls (Revert); (B) summary of EJP amplitudes for DVAP-33Aa'66 mutants (n = 11) and controls (Rev. n = 10); (C) representative traces of EJPs
in synaptic terminals overexpressing DVAP-33A (elav; UAS-DVAP) and controls (UAS-DVAP); (D) summary of EJP amplitudes for overexpression mutants
(n = 12) and controls (n = 13). Note that evoked neurotransmitter release is normal in both DVAP-33A loss-of-function and overexpression mutants; (E) repre¬
sentative traces of mEJPs for DVAP-33A mutants and controls; (F) cumulative distribution of total mEJP amplitudes in DVAP-33A mutants and in controls.
Histograms of mEJPs for Rev. and A166 are shown; (G) cumulative distribution and histograms of total mEJP amplitudes for terminals overexpressing
DVAP-33A (elav; UAS-DVAP) and for controls (elav). DVAP-33A mutations significantly increase the frequency and the amplitude of mEJPs while
DVAP-33A overexpressing mutants exhibit a significant decrease in mean mEJP amplitude. Error bars represent SEM.

compensation, we performed a serial section TEM (trans¬
mission EM) analysis of terminals lacking and overexpressing
DVAP-33A. As shown in Figure 2, boutons from
DVAP-33AA'66 animals display an increase in the number of
active zones: 2.0 + 0.2 active zones per bouton cross-sectional
area versus 0.8 + 0.3 in controls (Fig. 2A-C and E). Although
overexpression of DVAP-33A does not affect the number of
active zones per surface area, other features clearly differen¬
tiate these boutons from wild-type (wt) terminals. As shown
in Figure 2D, there are substantially more boutons which are
significantly smaller in size when compared with wt boutons
(Fig. 2A). In addition, these boutons appear to contain fewer
vesicles. As reported in Figure 2F, in every small bouton
resulting from DVAP-33A overexpression, more than 80%
of the bouton cross-sectional area is devoid of synaptic ves¬
icles, whereas in controls, numerous vesicles are packed in
each bouton leaving only 40-50% of the bouton area devoid
of synaptic vesicles. No change in the size of synaptic vesicles
was observed in any of the genotypes (data not shown). In
summary, analysis by TEM of DVAP-33Aa'66 mutant

synapses, containing larger and fewer varicosities, reveals a
compensatory increase in the number of active zones per
bouton. In contrast, in synaptic terminals overexpressing
DVAP-33A, which contain more boutons that are smaller in
size, the density of the vesicles per bouton is decreased.
These data indicate that synapses can undergo structural remo¬
deling, whereby active zones are concentrated in a reduced
number of boutons while the pool of vesicles can be diluted
in an increased number of boutons to maintain functional
and structural homeostasis.

DVAP-33A is the functional homolog of hVAPB
In Drosophila there are three proteins (CG33523, CG7919
also named farinelli and CG5014 which is DVAP-33A) with
significant homology and structural similarity to hVAPB.
Farinelli, expressed specifically in testes and in larval fat
body, is required for male fertility. The proteins encoded by
CG33523 and DVAP-33A are ubiquitously expressed but the
CG33523 protein is only 34% similar while DVAP-33A is
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Figure 2. Nerve terminal ultrastructure of DVAP-33A mutants. (A and C) Electron micrographs of control NMJs: Canton S in (A) and Revertant in (C);
(B) electron micrographs of DVAP-33Aa'66 hypomorphic mutant NMJs (A166); (D) electro-micrographs of DVAP-33A (elav; UAS-DVAP) overexpressing
NMJs. Presynaptic active zones (arrow) and subsynaptic reticulum (SSR) are indicated. Arrow in (D) indicates synaptic vesicles; (E and F) morphometric
analysis of A166 mutants and DVAP-33A overexpressing terminals. Nerve tenninals were sectioned and analyzed for the number of active zones per bouton
cross-sectional area (E), and for the bouton area devoid of synaptic vesicles (empty area) (F). DVAP-33A mutants exhibit an increase in the number of active
zones per bouton, whereas in the overexpression the density of vesicles per bouton is decreased. At least 11 boutons per animals were analyzed. Error bars
represent SEM.
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62% similar to hVAPB. The degree of homology and the
pattern of expression suggest that DVAP-33A is likely to be
the Drosophila ortholog of hVAPB. DVAP-33A and hVAPB
also share a common three-partite domain organization: an
MSP homology domain (Supplementary Material, Fig. S2A
and C) containing a stretch of 16 amino acids conserved
from yeast to man (Supplementary Material, Fig. S2B), a
coiled-coil domain (Supplementary Material, Fig. S2A and
C), and a trans-membrane domain at the C-terminus (Sup¬
plementary Material, Fig. S2A and C).
Given the degree of homology between DVAP-33A and

hVAPB, we tested whether the human gene can functionally
substitute for the loss of DVAP-33A. We generated transgenic
flies carrying the UAS-hVAPB cDNAs and tested several inde¬
pendent transgenic lines. We have previously shown that the
synaptic bouton phenotype associated with DVAP-33A
loss-of-function mutations can be rescued by driving the
expression of the wt protein in neurons (9). We therefore
used the same GAL4 drivers to test the ability of hVAPB to
functionally replace DVAP-33A. The hVAPB gene was
expressed using the C164-GAL4 (16) and D42-GAL4 (17)
drivers in null (DVAP-33A44S, DVAP-33A2(>) and hypomorphic
(DVAP-33aim) mutant backgrounds. Although DVAP-33A is
expressed ubiquitously and its zygotic loss results in larval
lethality with rare adult escapers (~1%), the lethality associ¬
ated with the loss or partial loss of DVAP-33A can be
rescued with both drivers in combination with several
UAS-hVAPB transgenes. We often obtained the expected Men-
delian ratio. Rescued flies were fertile and did not show any
obvious morphological or behavioral defects. We next investi¬
gated whether h VAPB can rescue the morphological and elec¬
trophysiological phenotypes associated with DVAP-33A
loss-of-function mutations. We found that in synapses expres¬
sing hVAPB under the control of C164-Gal4 or D42-Gal4 in
DVAP-33AJ44,s null background, the number of synaptic
boutons is similar to controls (284 + 11 boutons versus
278 + 12 boutons in controls, P > 0.05, Fig. 3A and B).
Moreover, electrophysiological analysis of the same synapses
shows that the EJPs (36 + 2 mV versus 37 + 2 mV in con¬
trols; P > 0.05) and mEJPs (0.83 ± 0.02 mV versus 0.89 +
0.03 mV in controls; P > 0.05) are both similar to controls
(Fig. 3C and D). Hence, the lethality, aberrant NM.I mor¬
phology and increased mEJP amplitude associated with loss
of DVAP-33A, are rescued by targeting the expression of
hVAPB in neurons. These data indicate that the human and
the Drosophila protein share a common structure and
perform homologous functions.

Transgenic expression of hVAPB mimics
DVAP-33A overexpression
As shown in Supplementary Material, Figure SID, neuronal
overexpression of DVAP-33A using the pan-neural elav-GAL4
driver causes a dramatic increase in the number of boutons as

well as a decrease in their size. Despite these morphological
changes, a homeostatic mechanism maintains muscle EJPs
within normal values (Fig. 1C, D and G). To assess whether
transgenic expression of the human protein in neurons has
similar effects on synaptic structure and function, we used the
same elav-Gal4 driver. As shown in Figure 3E and F, we

observed a dramatic increase (P < 0.001) in the number of
boutons (535 + 16) with a concomitant decrease in bouton
size when compared with controls (297 + 7). Similar to the
overexpression of DVAP-33A, expression of hVAPB in a wt
background also causes a reduction in the average mEJP ampli¬
tude. In this case, however, a 50% reduction in the mEJP
size (0.48 + 0.01 mV versus 0.82 + 0.01 mV in controls; P <
0.001, Fig. 3H) and about a 10% reduction in the EJP amplitude
(29.0 + 0.8 mV and 35.0 + 0.7 mV in controls; P< 0.001,
Fig. 3G) were observed. Although there is a small decrease in
the amplitude of the evoked response, the decrease in quantal
size allows a nearly normal post-synaptic response. Hence,
the experiments in both loss-of-function and transgenic
expression indicate that hVAPB and DVAP-33A can substitute
for each other's function.

Expression levels of VAP proteins affect the abundance
of specific receptor subunits and the volume
of post-synaptic receptor clusters
In DVAP-33A loss-of-function mutations, an increase in
quantal size ensures functional homeostasis despite a signifi¬
cant decrease in bouton number (Supplementary Material,
Fig. SI andFig. 1). This increased response to spontaneous
release of neurotransmitter is usually due to changes in the
composition or sensitivity of post-synaptic glutamate recep¬
tors. Neurotransmitter is released from presynaptic specializ¬
ations termed active zones. In wt animals, glutamate
receptors are clustered in puncta that lie opposite the presyn¬
aptic active zones, placing them in an ideal position to
detect neurotransmitter released. To date, five ionotropic
glutamate receptor subunits have been identified at the Droso¬
phila NMJ: GluRlIA, GluRIIB (18,19), GluRlII (20,21),
GluRIID and GluRllE (21,22). We used previously character¬
ized antibodies to assess glutamate receptor abundance and
distribution in synapses lacking DVAP-33A. A significant
increase in cluster count (P < 0.05) and a marked increase
in the average cluster volume for GluRlIA were observed
(P < 0.01, Fig. 4A—C). For all the other subunits a small
but statistically significant decrease in cluster count was
found (P < 0.05, Fig. 4C). GluRIIB and GluRlII also
exhibit a marked reduction in the average cluster volume
(30% reduction for GluRIIB, Fig. 4C; 46% for GluRIII,
Fig. 4C-E, P< 0.001) while cluster size for GluRIID is
similar to controls (Fig. 4C). The staining intensity of every
subunit does not differ significantly between controls and
mutants (data not shown).
A striking physiological feature of transgenic expression of

VAP proteins in neurons is a significant decrease in quantal
size (Figs 1G and 3H). We investigated whether the decrease
in quantal size was associated with changes in the post¬
synaptic glutamate receptors as well. We focused our analysis
on synapses expressing transgenic hVAPB in neurons, which
exhibit a greater reduction in quantal size (Fig. 3H).
A marked decrease (P < 0.001) in GluRIIA abundance com¬
pared with controls was observed (Fig. 5A-G). This decrease
was specific for GluRlIA as no difference in expression levels
between controls and mutants was found for any other
subunits (data not shown). Moreover, synapses expressing
transgenic hVAPB exhibit a reduction in the average cluster
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Data in (C) are shown as mean + SEM and n = 5 larvae for every analyzed genotype. Scale bar = 50 p,m.

volume for the subunit GluRIIA (P < 0.001 Fig. 5H-J),
subunit GluRIIB and GluRIII (P < 0.05 in both cases,

Fig. 5J). Cluster count on the other hand, does not change
significantly (P > 0.05) except for the subunit GluRIII
where a small but statistically significant increase
is observed (P < 0.05, Fig. 5J). No significant changes
(P > 0.05, Fig. 5J) in cluster count and average cluster
volume were reported for the subunit GluRIID.
Taken together, these data indicate that changes in the

expression levels of VAP proteins regulate quantal size by
shaping the post-synaptic glutamate receptor field and the
abundance of specific subunits. Moreover, our data indicate
that VAP proteins are components of a /ra«s-synaptic signal
as their presynaptic expression affects the post-synaptic sensi¬
tivity to neurotransmitters.

hVAPB carrying the ALS8 mutation rescues
the DVAP-33A mutant phenotype
The Proline residue that is changed into a Serine in ALS8
patients is conserved and contained in a stretch of 16 amino
acids that is virtually identical in all VAP proteins (5). Such a
high degree of conservation suggests that this region plays a
crucial role in the function of VAP proteins and mutations
affecting this region are likely to have similar consequences
in all VAP homologues. To help define the nature of the

ALS8 mutation, we expressed mutant VAP proteins in a null
background for DVAP-33A. We generated flies carrying
UAS-hVAPBP56S (the human VAP mutant) transgene and
flies carrying the UAS-DVAPP58S (the Drosophila mutant
VAP) transgene. We tested the ability of these transgenes to
rescue the mutant phenotypes associated with the loss of
DVAP-33A. Lethality was rescued when the hVAPBP56S trans¬
gene was driven by the D42-Gal4 and C164-GAL4 drivers in a
null background (DVAP-33AA2° and DVAP-33AA448, denoted
as DVAP/hVAPmt in Fig. 6). In addition, as shown in
Fig. 6A and B, the number of boutons is not significantly differ¬
ent in flies expressing the human mutant protein (C164-Gal4;
UAS-hVAPmf, bouton number: 290 + 11) compared with con¬
trols (UAS-hVAPmt; bouton number: 304 +11; P > 0.05).
Moreover, no significant difference in EJPs was observed in
flies expressing hVAPBP56S (36 ± 2 mV) compared with con¬
trols (34 ± 2 mV, P > 0.05, Fig. 6C). Finally, flies expressing
hVAPBP56S exhibit quantal sizes (0.89 ± 0.02 mV) similar
to those of control animals (0.83 ± 0.03 mV, P > 0.05,
Fig. 6D). Similar data with respect to viability, morphological
and electrophysiological properties were also observed with
the UAS-DVAPP58S transgene expressed in DVAP-33A
mutant background (data not shown). The fact that both the
human and fly protein carrying the pathogenic mutation can
substitute for the function of DVAP-33A indicates that the

pathogenic allele retains wt properties.



Human Molecular Genetics, 2008, Vol. 17, No. 2 273

FaI CTRL B c

1 HRP IIA HRP+IIA
E elav; UAS-hVAP F G

1 1 HRP IIA HRP+IIA

D 6

5 4
a

</) O

C °
O

0) *-
■*-»

(/)
D

o 1

r~

i

i
pi
i i

hVAP
■ Cluster count
■ Vol. per cluster

MB IID

Figure 5. Neuronal expression ofVAP proteins affects post-synaptic glutamate receptor composition. (A-C) GluRIIA subunit localization (red) at control NMJs
visualized by using the neuronal cell surface marker anti-HRP (green). (E-G) Synapses expressing transgenic hVAPB (elav; UAS-hVAP) stained using the same
antibodies as in (A-C). (D) Quantification of the fluorescence intensity per volume unit of GluRIIA clusters in controls and in elav; UAS-hVAP synapses.
(H and I) Synapses of relevant genotypes stained with anti-GluRIIA antibodies are shown as an example. Volume renderings of clusters immunoreactive to
GluRIIA are presented irrespective of their signal intensity. (J) Morphometric analysis of cluster count and mean cluster volume for every GluR subunit in
elav; UAS-hVAP synapses are presented as percentages of control values. Neuronal expression of VAP proteins induces a decrease in the expression levels
of GluRIIA and a reduction in the receptor field size. NMJ of Canton S larvae were used as controls. Data in (D) and (J) are shown as mean + SEM and in
(D) the intensity is presented in arbitrary units. N = 5 larvae for every analyzed genotype. Scale bars = 50 pan.

Transgenic expression of the Drosophila mutant protein
in neurons recapitulates several hallmarks
of the human disease

Expression of hVAPB and hVAPBP56S in neurons rescues the
lethality, morphological and electrophysiological phenotypes
associated with DVAP-33A loss-of-function mutations. This

suggests that the human and the fly proteins perform similar
functions and that the pathogenic allele retains crucial proper¬
ties of the normal protein. One of the most common features
of VAP homologues is their ability to self-oligomerize
(11,23,24). To test whether the fly and the human VAPs
exhibit this ability, we employed the yeast two-hybrid
system. We found that DVAP-33A as well as its human
counterpart can form homodimers, supporting the data that
the human protein and the fly protein are functionally inter¬
changeable (Supplementary Material, Fig. S3). We also
found that the human and the Drosophila proteins carrying
the ALS8 mutation can self-oligomerize, supporting the
evidence that both mutant proteins retain at least part of

the functional properties of the wt protein (Supplementary
Material, Fig. S3). Surprisingly, we observed that, although
both the human and Drosophila protein can interact with
their respective mutant protein, there was no significant inter¬
action between proteins from different species (e.g. the human
mutant protein does not interact with the wt Drosophila
protein although the same protein strongly interacts with
the human wt protein. Supplementary Material, Fig. S3B
and C). This observation suggests that the best way to
model the human disease inherited in a dominant manner is
to use the Drosophila system where the Drosophila mutant
protein will be expressed in the presence of the fly wt protein.

One of the earliest and most common symptoms of MND in
humans is paralysis and impaired movements. Similarly, we
found that transgenic larvae expressing DVAPP58S in
neurons were sluggish and uncoordinated. We therefore per¬
formed a quantitative analysis of their locomotion behavior.
Forward locomotion in larvae consists of contractions of the
posterior end alternating with extension of the anterior body
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Figure 6. hVAPP56S rescues the mutant phenotypes associated with DVAP-33A mutations. (A) Anti-HRP stainings of control NMJs (UAS-hVAPmt). (B) NMJs
expressing mutant hVAPB in DVAP-33A mutant background (DVAP/hVAPmt). In the inset, the total number of boutons on muscles 12 and 13 for the same
genotypes is reported. (C) EJP traces are reported for control and DVAP/hVAPmt NMJs. In the inset, a summary of EJP amplitudes is reported for the respective
genotypes. (D) Representative traces of mEJP amplitudes for control and DVAP/hVAPmt NMJs. In the inset, histograms of mEJP amplitudes are shown for the
corresponding genotypes. Defects in synaptic function and morphology in DVAP-33A loss-of-functions are rescued by neuronal-specific expression of hVAPB
carrying the ALS8 mutation. UAS-hVAPmt transgenic lines without the driver were used in the control experiments reported in this figure, n = 10 larvae for
every genotype. Error bars are SEM. Scale bars = 10 |xm.

regions (25,26). Third instar larvae expressing transgenic
DVAPP58S and control larvae reared in the same environ¬
mental conditions were observed on an agarose substrate for
a period of at least 2 min. The frequency of strides in Hz
(number of events per second) was calculated by dividing
the number of strides by their duration.
Unexpectedly, transgenic larvae expressing DVAPP58S

revealed significant heterogeneity in the mobility phenotype
compared with controls. As shown in Figure 7A, 34% of the
larvae are completely paralyzed or exhibit very few peristaltic
contractions while the majority has a frequency of strides that
is only 30% of the wt value. In controls, the frequency of
strides is homogeneous (0.85 + 0.01 Hz). The difference in
frequency distribution between mutants and controls is statisti¬
cally significant (P < 0.001, see legend of Fig. 7 and Materials
and Methods for details).
Motor neuron death is one of the hallmarks ofMND both in

human patients and murine models (2). We therefore per¬
formed TUNEL analysis to assess whether transgenic
expression of DVAPP58S causes neuronal apoptosis. Signifi¬
cantly enhanced neuronal death was observed in the central
neurons of larvae expressing transgenic DVAPP58S compared
with controls (Fig. 7B and C).

In mouse models for ALS expressing pathogenic SOD1, the
paralytic phenotype and the neuronal cell death have been
associated with the formation of aggregates that are strongly
immunoreactive with SOD1 antibodies (27). Similarly, aggre¬
gates containing pathogenic SOD1 have been reported for
sporadic and familial cases of ALS in humans (28). To test
whether this feature is also common to VAP-induced MNDs,
we performed Western analysis on whole tissue extracts of
third instar larvae. Although DVAP-33A migrates exclusively
as a monomer in SDS-PAGE of controls, in DVAPP58S trans¬
genic lines an immunoreactive smear with a significant
reduced mobility was observed (data not shown). The presence
of these higher molecular weight species is suggestive of the
ability of the protein to form aggregates. To identify where
these aggregates accumulate and whether there are regional
differences in the localization of the endogenous protein, we
performed confocal analysis on larval brains, nerve fibers
and neuromuscular synapses of DVAPP58S transgenic
animals stained with antibodies specific for DVAP-33A. In
control nerves, we observed faint but uniform staining while
in the nerves ofDVAPP58S transgenic larvae, highly immuno¬
reactive aggregates of variable sizes were found (Fig. 8A and
B). Large aggregates accumulate in the region of the nerves
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Figure 7. Transgenic expression of DVAPP58S in neurons induces loco¬
motion defects and neuronal cell death. (A) Summary of the frequency of peri¬
staltic waves for elav; UAS-DVAPmt larvae (green) and for controls (blue).
n = 49 for controls and n = 51 for elav; UAS-DVAPmt. Differences
between genotypes were highly significant (P < 0.001, accordingly to the non-
parametric Mann-Whitney U test when the data sets relative to elav;
UAS-DVAPmt were compared with controls. In this experiment, the
UAS-DVAPP58S transgenic line without the driver was used as a control.
(B) Neuronal cell death in UAS-DVAPP58S/+ control brains. (C) Neuronal
cell death within larval brains expressing transgenic DVAPP58S.

proximal to the brain and in their terminal tracts just before
motor nerves sprout on the muscles to form the synaptic
arbor (Fig. 8B). In between these regions, the deposition of
aggregates was less prominent (Fig. 8C). In neuronal cell
bodies of DVAPP58S larval brains, we also observed aggre¬
gate formation and the wt protein associated with the plasma
membrane decreased to nearly undetectable levels (compare
Figs 8E with D). Similarly, at neuromuscular synapses of
DVAPP58S transgenic larvae, DVAP-33A positive
immuno-reactivity was virtually undetectable (less than 8%
of the wt level, Figs 9A-C and G-J). This phenomenon
was consistently observed in all five DVAPP58S transgenic
lines examined. Conversely, in DVAP-33A overexpressing
lines the protein is correctly targeted to the NMJ even when
protein levels are 4-fold the wt level (Fig. 9A-F and J). No
aggregates were found in the neuronal cell bodies and nerve
fibers of DVAP-33A overexpressing lines (data not shown
and compare arrow in Fig. 9E with arrow in Fig. 9H). Taken
together, these data indicate that transgenic expression of
DVAPP58S in neurons induces the formation of DVAP-33A
immuno-reactive aggregates and a depletion of the endogen¬
ous protein from its normal localization. At the Drosophila
NMJ, decreasing the level of DVAP-33A induces a decrease
in the number of boutons and an increase in their size (Sup¬
plementary Material, Fig. SI). As a consequence of the
decreased synaptic level of DVAP-33A, the number of
boutons at the DVAPP58S transgenic synapses was only
40% of the wt number (122 + 3 as compared with 283 + 12
in controls, P > 0.001, data not shown, but compare Fig. 9A

with G). Although not directly quantified, an increase in
bouton size was also observed (data not shown). A number
of other abnormalities such as muscle wasting and synaptic
degeneration were often observed at these NMJs. A detailed
analysis of these phenotypes is reported in Supplementary
Material, Fig. S4. Taken together these data indicate that neur¬
onal expression of DVAPP58S in the presence of the wt
protein recapitulates several hallmarks of the human disease
including locomotion defects, neuronal cell death and
aggregate formation. It is noteworthy that aggregate accumu¬
lation is associated with a depletion of the endogenous
protein from its normal localization and a consequent decrease
in its function.

DISCUSSION

Recently, h VAPB has been shown to be the causative gene of
late-onset autosomal dominant forms of motor neuron dis¬
orders, including typical and atypical ALS and late-onset
spinal muscular atrophy (5, 6). The pathogenic mutation pre¬
dicts a substitution of a Serine for a conserved Proline
(P56). We decided to study the role of hVAPB in MNDs
using Drosophila genetics.

One of the hallmarks associated with loss-of-function and
neuronal overexpression of DVAP-22A is decreased and
increased bouton formation at the NMJ, respectively. Despite
this structural alteration, synaptic transmission is maintained
within a wt range. At the mechanistic level, muscles respond
to a decreased number of boutons and quantal content by
upregulating quantal size; conversely muscles compensate an
increase in number of boutons and quantal content by
downregulating quantal size. Compensatory changes in
quantal size during synaptic homeostasis are thought to be
determined, largely, by the properties of transmitter receptors.
At the Drosophila NMJ, there are two classes of glutamate
receptors: one set containing the subunit IIA and another one
containing the subunit IIB (29). In DVAP-33A loss-of-function
mutations, the increase in quantal size is associated with an
increase in the number and average cluster volume of subunit
IIA. Conversely, the decrease in quantal size in the oversprout-
ing mutants is accompanied by a decrease in the level of post¬
synaptic receptor subunit IIA and a reduction in the average
cluster volume for several subunits. In agreement with our
data, the IIA subunit receptors have been shown to affect
quantal size and receptor channel open time (18,30). Similar
to our oversprouting mutants, in synapses lacking the receptor
subunit IIA, a homeostatic increase in neurotransmitter release
compensates for the reduction in quantal size and the evoked
response is maintained within normal values (18,30). These
data indicate that expression levels of VAP proteins play a
crucial role in synaptic homeostasis by coordinating structural
remodeling and post-synaptic sensitivity to neurotransmitter to
ensure synaptic efficacy.

Interestingly, expression of hVAPB in neurons rescues leth¬
ality, morphological and electrophysiological phenotypes
associated with DVAP-33A loss-of-function mutations.
Moreover, neuronal expression of hVAPB in a wt background
induces phenotypes similar to the overexpression of
DVAP-33A. These data clearly indicate that DVAP-33A and
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Figure 8. Aggregates strongly immunoreactive for DVAP-33A are markers of the disease in flies. Nerve fibers and brains of third instar larvae were stained with
antibodies for DVAP-33A (red) and with antibodies for the neuronal cell surface marker anti-HRP (green). (A) Nerve fibers of control larvae. (B and C) Nerve
fibers of larvae expressing transgenic DVAPP58S (elav; UAS-DVAPmt). In control nerves, a faint but uniform staining is observed (A). Conversely, in
DVAPP58S transgenic nerves, large aggregates accumulate in the region of the nerves proximal to the brain and in their terminal tracts just before motor
nerves contact the muscles (B). In between these regions, the deposition of aggregates was less prominent (C). (D) Brains of control larvae stained with
anti-I IRP (green) and anti DVAP-33A antibodies (red). (E) Brains of larvae expressing transgenic DVAPP58S (elav; UAS-DVAPmt) using the same antibodies.
DVAP-33A associates mainly with the plasma membrane of neuronal cell bodies (D). On the contrary, in DVAPP58S transgenic brains, the DVAP-33A immu-
noreactivity is associated with intracellular aggregates of variable sizes (E). The anti DVAP-33A antibodies used in this report do not discriminate between the
wt and the mutant protein. By western analysis, these antibodies recognize a band of similar size to the wt protein in protein extracts from NMJs expressing
DVAPP58S in a null background for the endogenous protein (data not shown). In (D) and (E), single sections of confocal images are shown. Canton S
larvae were used as controls in the experiments reported in this figure. Scale bars = 20 p,m.

A CTRL B elav; UAS-DVAPmt

V-i

•. 'I1

./ 1

C elav; UAS-DVAPmt

D CTRL

- ' • /' A-; ' :.
1 - A- > ,, I r - * -kJL /• ' ' »

> f ji m L • . J J * jP * ,. ' :

, ' r% , " ' > - ■
• V'N.r'jX jtiF •' t, , '.v •/> I ;• \ 1 f' ILtx I &■ . .. <

i 1

E

h

elav; UAS-DVAPmt
^ - ••

^ • A
j. < ' ▼

"I". *

*

hVAPB perform homologous functions at the synapse and as a
consequence, information gained by studying DVAP-33A is
expected to be relevant for hVAPB function as well. Surpris¬
ingly, neuronal expression of mutant VAP proteins also
rescues all phenotypes associated with mutations in
DVAP-33A. Two alternative scenarios could be proposed to
explain these data: the mutation is irrelevant for the ALS8
pathogenesis or the mutant allele has a pathogenic effect
while retaining certain functional properties of the wt
protein. We strongly favor the second hypothesis for the fol¬
lowing reasons. First, the P56S mutation in hVAPB has
been reported to be causative for an inherited form of
MNDs in humans. This mutation affects nine related families

totaling 1500 individuals of which 200 suffer from motor
neuron disorders (31). Second, we have generated a genetic
model for MNDs where the expression of the aberrant VAP
recapitulates major hallmarks of the human disease, clearly
indicating that the mutation has a pathogenic effect. Third,
our data and data published by others (23) suggest that both
the Drosophila and the human mutant proteins retain some
functional wt properties such as the ability to self-oligomerize.
However, neuronal expression of the pathogenic protein
induces aggregate formation and depletes the wt protein
from its normal localization. These effects are not observed
when the wt protein is overexpressed, suggesting that

the mutant protein has acquired a new, potentially toxic
property.
Indeed, one of the most common features of MNDs

and nearly all neurodegenerative diseases is the accumulation
of aggregates that are intensively immuno-reactive to
disease-related proteins (2). Each disease, however, differs
with respect to the anatomical location and morphology of
the aggregates. The major component of the aggregates is
usually the protein encoded by the gene mutated in the familial
forms, which is also unique to each disease. Despite this diver¬
sity, a bulk of circumstantial evidence support the hypothesis
that aggregates are typical hallmarks of neurodegenerative dis¬
eases and have a toxic effect on neurons (32). While no

autopsy material is available for familial cases with the
P56S mutation, SOD 1-positive inclusions have been reported
in human sporadic and familial ALS cases as well as in
SOD1 mouse models (28). We found the presence of aggre¬
gates that are intensively immuno-reactive for DVAP-33A
both in neuronal cell bodies and in nerve fibers of our MND
model. Interestingly, hVAPB carrying the pathogenic
mutation has also been shown to undergo intracellular
aggregation when expressed in a cell culture system (23).
However, similarities between human disease and our fly
model are not limited to aggregate formation as flies
expressing transgenic VAP proteins carrying the ALS8
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Figure 9. Transgenic expression of DVAPP58S affects synaptic levels of the endogenous protein. NMJs were stained with antibodies specific for DVAP-33A
(red, DVAP) and for anti-HRP (green) to visualize the synapses. (A-C) Control NMJs. (D-F) NMJs overexpressing DVAP-33A (elav; UAS-DVAP). (G-I)
NMJs expressing transgenic DVAPP58S (elav; UAS-DVAPmt). (J) Quantification of synaptic DVAP-33A fluorescence intensity for the reported genotypes.
Note that despite a 4x increase in the level of expression of DVAP-33A, the protein is located at the synapse and no aggregates are visible in the nerves of
these transgenic lines expressing the wt protein (arrow in E). In DVAPP58S transgenic lines, aggregates are evident in the terminal part of the nerve (arrow
in H) and the endogenous protein at the synapse is nearly undetectable (H and J). Canton S larvae were used as controls in the experiment reported in this
figure. In (J) fluorescence intensity is presented in arbitrary units. Scale bar = 10 pm.

mutation, exhibit other hallmarks of the human disease such as
neuronal cell death, muscle wasting and defective locomotion
behavior.

Although it remains to be established whether the VAP
protein in the aggregates represents the mutant protein, the
endogenous protein or a mixture of both, we clearly observe
a regional decrease in the level of the endogenous protein.

The DVAP-33A protein that is normally associated with the
plasma membrane in neuronal cell bodies and at the neuro¬
muscular synapses is nearly undetectable in DVAPP58S trans¬
genic animals. As a consequence of the decrease in synaptic
levels of the endogenous protein, a decrease in the number
of boutons is observed. We have previously shown that
DVAP-33A regulates bouton formation at the synapse in a
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dosage-dependent manner (9). Despite these structural altera¬
tions a homeostatic mechanism is established to maintain

synaptic efficacy within functional boundaries. We speculate
that the depletion of the endogenous protein from its normal
localization and the formation of aggregates would affect the
homeostatic mechanism linking structural remodeling and
synaptic efficacy controlled by DVAP-33A. Although not
directly tested in our model, experiments in cell culture
show that overexpression ofmutant hVAPB induces formation
of aggregates in which the endogenous wt protein is recruited
(23,33). This would suggest that the pathogenic allele func¬
tions as a dominant negative. However, the depletion of the
endogenous protein from its normal localization cannot be
the principal mechanism of the disease as mutants lacking
DVAP-33A do not develop MND. It is therefore possible
that the pathogenic allele has acquired an abnormal, new
toxic activity. Similar to what has been proposed for other
neurodegenerative diseases, the formation of aggregates may
directly interfere with critical cellular processes and /or com¬
promise the ability of the system to keep up with the degra¬
dation of aggregated proteins (34).
Taken together these data offer experimental support to the

hypothesis that VAP proteins play a conserved role in synaptic
homeostasis and emphasize the relevance of this fly model in
fostering our understanding of the molecular mechanisms
underlying VAP-induced motor neuron degeneration in
humans.

MATERIALS AND METHODS

Genetics and molecular techniques
DVAP-33Aa,m is an hypomorphic mutation obtained by impre¬
cise excision of P{ry+'72 = lArB}47, a P element inserted
600 bp upstream of the AUG (9). A revertant line generated
by precise excision of the same P element was used as a
control for loss-of-function mutations.
Site-directed mutagenesis on DVAP-33A and hVAPB

cDNAs was performed using Quick Change Site Directed
Mutagenesis Kit (Stratagene). All transgenic lines were estab¬
lished by following standard protocols (35). Basic molecular
biology techniques were performed according to (36) and
Western Blots on single dissected NMJ according to (9).
To test the ability of the hVAPB protein to rescue the lethal¬

ity associated with DVAP-33A mutations, female flies,
DVAP-33AA448IFM7; +/+; UAS-hVAPB/TM3, were mated to
males contributing the C164-Gal4 or D42-Gal4 drivers.
DVAP-33A A448/Y; C164-Gal4/+; UAS-hVAPB/+ adult,
non-FM7, males were identified and counted. The specificity
of the rescue was confirmed by the absence of
DVAP-33AA44S/Y; C164-Gal4/+; +/TM3 males. A similar pro¬
tocol was used to test the ability of hVAPBP56S and
DVAPP58S to rescue the lethality associated with DVAP-33A
mutations. In all cases, the rescue was confirmed by using all
DVAP-33A mutant alleles in combination with several trans¬

genic lines expressing hVAPB, hVAPBP56S or DVAPP58S.
For the analysis of the morphological and physio¬

logical rescue, the following crosses were performed.
yw/Y; C164-GAL4/C164-GAL4 males were crossed to
DVAP-33AA44S!FM7; +/+; UAS-hVAPB/UAS-hVAPB females.

DVAP-33A A448/Y; C164-Gal4/+; UAS-hVAPB/+ males
were identified as y+ third-instar larvae lacking the FM7
chromosome. A similar genetic scheme was applied to test
the ability of Drosophila and human mutant proteins to
rescue the morphological and physiological phenotypes. To
characterize the transgenic expression phenotype, the Gal4
drivers were crossed with transgenic lines. Embryos were
collected for 20-24 h and then transferred to a water-bath at
30°C.

Immunohistochemistry, imaging and morphometric
analysis

Stainings of third instar larval NMJs and analysis of the mor¬
phological phenotype was performed as described in (9). For
the phalloidin staining the NMJs were fixed in 4% paraformal¬
dehyde and the phalloidin treatment was perfonned accord¬
ingly to the manufacturer's instructions (Molecular Probes).
NMJ stainings with antibodies specific for the glutamate recep¬
tor subunits were performed according to (20), except for the
subunit 1ID where the protocol described in (21) was used.
Larval NMJs were imaged using an Axiovert Zeiss Micro¬
scope. The same confocal gain settings were applied to
control and mutant NMJs. A complete Z-stack was acquired
for every NMJ and rendered on a 3D projection. For the mor¬
phometric analysis, images were initially trimmed using the
Zeiss LSM Image Examiner 3.2.0.70 software (Carl Zeiss,
2002). Cluster counting and volume estimation were performed
with the software package Imaris 4.7.2 (Bitplane AG, 2006).
The minimum cluster radius was set to 0.4 pun and background
object subtraction was used when applying the 'spot detection'
function. The total cluster volume was found by fitting a 3D
surface to the clusters with the iso-surface tool and no

additional Gaussian smoothing or re-sampling steps were
applied. The average volume of a single cluster was calculated
by dividing the total cluster volume by the total number of
clusters. Appropriate intensity thresholds were selected to
properly identify clusters and ignore background intensities
for both tools in the Imaris package. Statistical analysis was
performed using a two-tailed Student's /-test.

Electrophysiology
Intracellular recordings were performed in HL3 saline (37).
Spontaneous mEJPs were obtained by intracellular recording
from muscles bathed in HL3 saline containing low calcium
concentration (0.3 mM) and 3 p,M tetrodotoxin. For evoked
transmitter release, 1 mM Ca2+ was added to the HL3 saline.
Electrical signals were amplified through an Axoclamp 2B
amplifier (Axon Instruments), digitized and recorded by a com¬
puter equipped with pClamp8 software (Axon Instruments).
Quantal content was calculated by the method of dividing the
size of the mean EJP with the size of the mean mEJP.

Analysis of the amplitude and frequency of mEJPs was per¬
formed using Mini Analysis (Synaptosoft, Inc.). mEJPs with
slow time course arising from neighboring electrically
coupled muscle cells were excluded from analysis (38). No
significant differences were found in muscle resting potentials
or muscle input resistance among different genotypes.
The unpaired Student's /-test was used for data statistics.
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Additionally, the Kolmogorov-Smirnov test was used when
comparing quantal size analysis of different genotypes for
the data reported in Figure 1 while one-way ANOVA (analysis
of variance) was used for statistical analysis of different gen¬
otypes in the remaining figures.

Ultrastructural analysis

Body wall muscles were prepared for TEM as in (39). Synap¬
tic boutons were serially sectioned and photographed at
10 000-30 000 x using a JEOL 100S TEM. For morphometric
analysis, the cross-section corresponding to the bouton midline
(cross-section of largest diameter) was identified, the negative
scanned at 60 000 x, and used for quantification using NIF1
image (Version 1.62) as in (40). Number of active zones
was determined by counting the number of T-bar structures
(complete or partial) observed at the cross-sectional area. To
measure the area of empty zones (devoid of synaptic vesicles)
in the cross-sectional area of synaptic boutons, the boundary
of synaptic vesicle pools was digitalized and the enclosed
area was calculated by using the Measure function of N1H
image. Serial sections taken from 11 synaptic boutons of
two independent preparations for each genotype were used
for EM analysis. Statistical analysis was performed using a
two-tailed Student /-test.

Larval locomotion behavior

Wandering third instar larvae were collected from the vial and
washed briefly in distilled water to remove traces of food.
Each larva was transferred to the centre of a 9 cm Petri dish

containing grape juice medium. The larva was then allowed
to adjust to the Petri dish environment and the counting of
the peristaltic waves was started only after observing the
first wave of contractions. The contraction waves were

counted for at least 2 min per larva and their number
divided by the time in seconds to obtain the frequency of con¬
tractions expressed in Flz. The Lillefors test was applied to
check for normality in the distribution of the different datasets.
Since the data concerning the elav; UAS-DVAPmt failed to
pass the test for normality, the non-parametric Mann-
Whitney U test was used to compare the datasets.

Tunel staining for apoptosis detection
Larval brains were carefully dissected and fixed in 4% para¬
formaldehyde for 15 min. Detection of apoptotic neuronal
cells was performed using the fluorescein cell death kit
(Promega) following manufacturer's instructions.

SUPPLEMENTARY MATERIAL

Supplementary Material is available at HMG Online.

ACKNOWLEDGEMENTS

We thank H. Bellen, in whose laboratory this project was
initiated, for helpful comments on a previous version of this
manuscript. We are grateful to P. Brophy for his constant

support and scientific advice. We thank C. O'Kane and
R. Ribchester for their input and criticisms. We also thank
A. DiAntonio and S. Sigrist for providing the glutamate recep¬
tor antibodies and T. Gillispie for the confocal analysis. The
hVAPB cDNA was obtained from MRC, Gene Service,
Cambridge (UK).

Conflict of Interest statement. None declared.

FUNDING

This research was supported by grants from the Wellcome Trust,
the Scottish Motor Neuron Disease Association and the Royal
Society to G.P., in part by a NIH grant (ES014441) to B.Z. and
in part by a NIH grant (NS030072) to V.B. J.W. is supported
by an EPSRC/MRC pre-doctoral fellowship at the School of
Informatics and K.P. by a MRC pre-doctoral fellowship.

REFERENCES

1. Talbot, K. (2002) Motor neurone disease. Postgrad. Med. J.. 78. 513-519.
2. Bruijn, L.I., Miller, T.M. and Cleveland. D.W. (2004) Unraveling the

mechanisms involved in motor neuron degeneration in ALS. Anna. Rev.
Neurosci.. 27, 723-749.

3. Rosen, D.R., Siddique, T., Patterson. D.. Figlewicz, D.A., Sapp, P..
Hentati, A., Donaldson, D., Goto, J., O'Regan, J.P., Deng, H.X. et at.
(1993) Mutations in Cu/Zn superoxide dismutase gene are associated with
familial amyotrophic lateral sclerosis. Nature, 362, 59-62.

4. Nishimura, A.L., Mitne-Neto, M., Silva, H.C., Oliveira, J.R., Vainzof, M.
and Zatz, M. (2004) A novel locus for late onset amyotrophic lateral
sclerosis/motor neurone disease variant at 20q 13. J. Med. Genet., 41.
315-320.

5. Nishimura, A.L., Mitne-Neto, M., Silva, H.C., Richieri-Costa, A.,
Middleton, S., Cascio, D., Kok, F„ Oliveira, J.R., Gillingwater, T.,
Webb, J. et at. (2004) A mutation in the vesicle-trafficking protein VAPB
causes late-onset spinal muscular atrophy and amyotrophic lateral
sclerosis. Am. J. Hum. Genet., 75, 822-831.

6. Marques, V.D., Barreira, A.A., Davis, M.B., Abou-Sleiman, P.M.,
Silva, W.A., Jr, Zago, M.A., Sobreira, C„ Fazan, V. and Marques, W„ Jr
(2006) Expanding the phenotypes of the Pro56Ser VAPB mutation:
proximal SMA with dysauionomia. Muscle Nerve, 34, 731-739.

7. Foster, L.J., Weir, M.L., Lim, D.Y., Liu, Z., Trimble, W.S. and Klip, A.
(2000) A functional role for VAP-33 in insulin-stimulated GLUT4 traffic.
Traffic, 1, 512-521.

8. Kagiwada, S., Hosaka, K., Murata, M., Nikawa, J. and Takatsuki,
A. (1998) The Saccharomyces cerevisiae SCS2 gene product, a homolog
of a synaptobrevin-associated protein, is an integral membrane protein of
the endoplasmic reticulum and is required for inositol metabolism.
J. Bacterial.. 180. 1700-1708.

9. Pennetta, G„ Hiesinger, P.R., Fabian-Fine, R., Meinertzhagen, I.A. and
Bellen, H.J. (2002) Drosophila VAP-33A directs bouton formation at
neuromuscular junctions in a dosage-dependent manner. Neuron, 35,
291-306.

10. Skehel, P.A., Martin, K.C., Kandel, E.R. and Bartsch, D. (1995) A
VAMP-binding protein from Aplysia required for neurotransmitter
release. Science, 269, 1580-1583.

11. Soussan, L., Burakov, D., Daniels, M.P., Toister-Achituv, M., Porat, A.,
Yarden, Y. and Elazar, Z. (1999) ERG30, a VAP-33-related protein,
functions in protein transport mediated by COPI vesicles. J. Celt. Bio!.,
146, 301-311.

12. Kuwabara, P.E. (2003) The multifaceted C. elegans major sperm protein: an
ephrin signaling antagonist in oocyte maturation. Genes Dev., 17. 155-161.

13. Roberts, T.M. and Stewart, M. (1995) Nematode sperm locomotion. Curr.
Opin. Cell Bio!., 7, 13-17.

14. Kosinski. M., McDonald, K., Schwartz, J., Yamamoto, I. and
Greenstein, D. (2005) C. elegans sperm bud vesicles to deliver a meiotic
maturation signal to distant oocytes. Development, 132. 3357-3369.



280 Human Molecular Genetics, 2008, Vol. 17, No. 2

15. Brand, A.H. and Perrimon, N. (1993) Targeted gene expression as a
means of altering cell fates and generating dominant phenotypes.
Development, 118, 401-415.

16. Torroja, L.. Packard, M., Gorczyca, M.. White, K. and Budnik, V. (1999)
The Drosophila beta-amyloid precursor protein homolog promotes
synapse differentiation at the neuromuscular junction. J. Neurosci., 19,
7793-7803.

17. Elia, A.J., Parkes, T.L., Kirby, K., St George-Hyslop, P., Boulianne, G.L.,
Phillips, J.P. and Hilliker, A.J. (1999) Expression of human FALS SOD in
motorneurons of Drosophila. Free Radie. Biol. Med., 26, 1332-1338.

18. Petersen, S.A., Fetter, R.D., Noordermeer, J.N., Goodman, C.S. and
DiAntonio, A. (1997) Genetic analysis of glutamate receptors in
Drosophila reveals a retrograde signal regulating presynaptic transmitter
release. Neuron, 19, 1237-1248.

19. Schuster, C.M., Ultsch, A., Schloss, P., Cox, J.A., Schmitt, B. and Betz, H.
(1991) Molecular cloning of an invertebrate glutamate receptor subunit
expressed in Drosophila muscle. Science, 254, 112-114.

20. Marrus, S.B., Portman, S.L., Allen, M.J., Moffat, K.G. and DiAntonio, A.
(2004) Differential localization of glutamate receptor subunits at the
Drosophila neuromuscular junction. J. Neurosci., 24, 1406-1415.

21. Qin, G., Schwarz, T., Kittel, R.J., Schmid, A., Rasse, T.M., Kappei, D.,
Ponimaskin, E., Heckmann, M. and Sigrist, S.J. (2005) Four different
subunits are essential for expressing the synaptic glutamate receptor at
neuromuscular junctions of Drosophila. ./. Neurosci., 25, 3209-3218.

22. Featherstone, D.E., Rushton, E., Rohrbough, J., Liebl, F., Karr, J.,
Sheng, Q., Rodesch, C.K. and Broadie, K. (2005) An essential Drosophila
glutamate receptor subunit that functions in both central neuropil and
neuromuscular junction. J. Neurosci., 25, 3199-3208.

23. Kanekura, K., Nishimoto, I., Aiso, S. and Matsuoka, M. (2006)
Characterization of amyotrophic lateral sclerosis-linked P56S mutation of
vesicle-associated membrane protein-associated protein B (VAPB/ALS8).
J. Biol. Chem.. 281, 30223-30233.

24. Weir, M.L., Xie, H., Klip, A. and Trimble, W.S. (2001) VAP-A binds
promiscuously to both v- and tSNAREs. Biocltem. Biophys. Res.
Commun., 286, 616—621.

25. Fox, L.E., Soil, D.R. and Wu, C.F. (2006) Coordination and modulation of
locomotion pattern generators in Drosophila larvae: effects of altered
biogenic amine levels by the tyramine beta hydroxlyase mutation.
J. Neurosci., 26, 1486-1498.

26. Wang, J.W., Soil, D.R. and Wu. C.F. (2002) Morphometric description of
the wandering behavior in Drosophila larvae: a phenotypic analysis of
K+ channel mutants. J. Neurogenet., 16, 45-63.

27. Hart, P.J. (2006) Pathogenic superoxide dismutase structure, folding,
aggregation and turnover. Curr. Opin. Chem. Biol., 10. 131-138.

28. Bruijn, L.I., Houseweart, M.K., Kato, S., Anderson, K.L., Anderson, S.D.,
Ohama, E., Reaume, A.G., Scott, R.W. and Cleveland, D.W. (1998)
Aggregation and motor neuron toxicity of an ALS-linked SOD1 mutant
independent from wild-type SOD1. Science, 281, 1851-1854.

29. DiAntonio, A. (2006) Glutamate receptors at the Drosophila
neuromuscular junction. Int. Rev. Neurobiol, 75, 165-179.

30. DiAntonio, A., Petersen, S.A., Heckmann, M. and Goodman, C.S. (1999)
Glutamate receptor expression regulates quantal size and quantal content
at the Drosophila neuromuscular junction. J. Neurosci., 19, 3023-3032.

31. Nishimura, A.L., Al-Chalabi, A. and Zatz, M. (2005) A common founder
for amyotrophic lateral sclerosis type 8 (ALS8) in the Brazilian
population. Hum. Genet., 118, 499-500.

32. Caughey, B. and Lansbury, P.T. (2003) Protofibrils, pores, fibrils, and
neurodegeneration: separating the responsible protein aggregates from the
innocent bystanders. Annu. Rev. Neurosci., 26, 267—298.

33. Teuling, E., Ahmed, S., Haasdijk, E., Demmers, J., Steinmetz, M.O.,
Akhmanova, A., Jaarsma, D. and Hoogenraad, C.C. (2007) Motor neuron
disease-associated mutant vesicle-associated membrane

protein-associated protein (VAP) B recruits wild-type VAPs into
endoplasmic reticulum-derived tubular aggregates. J. Neurosci., 27,
9801-9815.

34. Shao, J. and Diamond, M.l. (2007) Polyglutamine diseases: emerging
concepts in pathogenesis and therapy. Hum. Mol. Genet., 16, R115-R123.

35. Spradling, A.C. and Rubin, G.M. (1982) Transposition ofcloned P elements
into Drosophila germ line chromosomes. Science, 218, 341-347.

36. Ausubel, F.M., Brent, R„ Kingston, R.E., Moore, D.D., Seidman, J.G.,
Smith, A.J. and Struhl, K. (1998) Current Protocols in Molecular Biology,
John Wiley & Son, New York.

37. Stewart, B.A., Atwood, H.L., Renger, J.J., Wang, J. and Wu, C.F. (1994)
Improved stability of Drosophila larval neuromuscular preparations in
haemolymph-like physiological solutions. J. Comp. Physiol [A], 175,
179-191.

38. Zhang, B„ Koh, Y.H., Beckstead, R.B., Budnik, V., Ganetzky, B. and
Bellen, H.J. (1998) Synaptic vesicle size and number are regulated by a
clathrin adaptor protein required for endocytosis. Neuron, 21, 1465-1475.

39. Koh, Y.H., Popova, E., Thomas, U., Griffith, L.C. and Budnik, V. (1999)
Regulation of DLG localization at synapses by CaMKII-dependent
phosphorylation. Cell. 98, 353-363.

40. Budnik, V., Koh, Y.H., Guan, B., Hartmann, B., Hough, C., Woods, D.
and Gorczyca, M. (1996) Regulation of synapse structure and function by
the Drosophila tumor suppressor gene dig. Neuron, 17, 627-640.


