
Abstraction-level Functional Programming

Allan Clark

Doctor of Philosophy
Laboratory for Foundations of Computer Science

School of Informatics

University of Edinburgh
2008

Abstract

This thesis is concerned with abstraction-level programming, where abstraction-
level is the level of programming tasks which extend the abstraction of the ma¬
chine. Extending the abstraction of the machine is generally done by compiler
writers for high-level programming languages or those implementing an inter¬
face to lower-level or legacy libraries. The abstractions which are implemented
are then used, either explicitly or implicitly, by the high-level language pro¬

grammer. The main aim of the abstraction is often to increase programmer pro¬

ductivity but can also be for efficiency or security reasons. Implementing an
automatic runtime garbage collector is a common example of an abstraction-
level programming task.

To date most abstraction-level programming has been done in low-level
programming languages such as C. The contents of this thesis describes an in¬
vestigation into the design of a functional language Nitro, for use in abstraction-
level programming. The main goal is to provide the abstraction-level program¬
mer with some of the benefits enjoyed by high-level functional language pro¬

grammers.

iii

Acknowledgements
First and foremost my thanks to Stephen Gilmore who has provided optimum
supervision and technical input and doing so in the most friendly of manners.
David Aspinall has provided well received technical input as well as being
continually available. John Longley has provided advice and support and in
addition as always made himself available at the shortest of notice. It is thanks
to John Longley that I first looked at the problem of inferring exception an¬

notations for functional programs and eventually applied this to the delayed
typing scheme described in this thesis. My thanks as well to my parents who
have never wavered in their support of any of my decisions both academic
and personal (and in other areas where my decision making abilities are much
more questionable). Friends too numerous to mention have provided many

more relaxed moments and allowed me to retain a good perspective. Tim Jones
and Andy Koppe have been interesting and accommodating office-mates both
providing technical assistance whenever it was required.

iv

Declaration

I declare that this thesis was composed by myself, that the work contained
herein is my own except where explicitly stated otherwise in the text, and that
this work has not been submitted for any other degree or professional qualifi¬
cation except as specified.

v

Table of Contents

1 Introduction 1

1.1 Strong typing vs Weak typing 2
1.2 Static vs Dynamic typing 3
1.3 Functional vs Imperative 4
1.4 High-level vs Low-level languages 5

1.4.1 Advantages of the higher abstraction 6
1.4.2 Advantages of the lower abstraction 7
1.4.3 High and Low-level tasks 7

1.5 The Abstraction Type Gap 8
1.6 Trust 9

1.6.1 The application code 9
1.6.2 The Compiler 10
1.6.3 The Abstraction Code 10

1.6.4 The Compiler/Abstraction-Code Link 11
1.7 Introducing Nitro 11
1.8 Abstraction-level Examples 12

1.8.1 Generic Primitives 12

1.8.2 Garbage Collection 14
1.8.3 Marshalling 14

1.9 General Approach 15
1.10 Structure of this thesis 16

1.11 Contributions 17

1.12 Implementation of Nitro 18

vii

2 Background 23
2.1 Functional Programming Languages 23

2.1.1 Flouse 23

2.1.2 The Fox Net Project 24
2.2 The C Language and Derivatives 25

2.2.1 C++and C# 25

2.2.2 Cyclone 26
2.2.3 Ccured and Safe-C 26

2.2.4 Physical Type Checking 27
2.3 Related Foreign 'Data' Interfaces 29

2.3.1 No Longer Foreign Function Interface 29
2.3.2 Checking type safety of foreign function calls 30
2.3.3 Interoperability Through Common Framework 30

2.4 Related Type Systems 31
2.4.1 Lower bounds on Type Inference with Sub-typing 31
2.4.2 Subtyping over Record Types 32
2.4.3 Practical Type Inference for Arbitrary-Rank Types 33

2.5 Memory Management 33

3 Core Nitro 35

3.1 Syntax 35
3.1.1 Notes 35

3.1.2 Derived Forms 39

3.2 Static Semantics 42

3.2.1 Typing Contexts 43
3.2.2 Type Schemes 44
3.2.3 Auxiliary Functions 44
3.2.4 Environment Closure 45

3.2.5 Notes 46

3.2.6 Syntactic Restrictions 47
3.2.7 Definitions 47

3.2.8 Expressions 48

viii

3.2.9 Record Field Initialisations 50

3.2.10 Patterns 50

3.2.11 Match Rules 52

3.2.12 Definition Semantics 52

3.3 Dynamic Semantics 54
3.3.1 Representation of Values 55
3.3.2 Function Closures 55

3.3.3 The Rec operation on value environments 56
3.3.4 The State and ST OP Conventions 56

3.3.5 Expressions 58
3.3.6 Matches 60

3.3.7 Patterns 61

3.3.8 Field Patterns 62

3.3.9 Notes 62

4 Foreign Data Interface 65
4.1 Motivation 65

4.1.1 Marshalling 66
4.2 Data Representation Facilities 68

4.2.1 Tags in data representation 68
4.2.2 Custom tags 70
4.2.3 Arguments 71
4.2.4 Unboxed Values 72

4.2.5 Masks for custom constructors 74

4.2.6 Tag operations 79
4.2.7 Multiple arguments packed in a tag 80
4.2.8 Bare Arrays 82

4.3 Syntax 89
4.3.1 Derived Forms 89

4.4 Static Semantics 92

4.4.1 Typing Contexts 92
4.4.2 Tagged Union Type Declarations 93

ix

4.4.3 Constructor Application 94
4.4.4 Pattern Matching 95
4.4.5 Additional Constraints on Matches 96

4.4.6 Bare Arrays 96
4.5 Dynamic Semantics 97

4.5.1 The Fail Convention 98

4.5.2 Values 98

4.5.3 Evaluation Contexts 99

4.5.4 Constructor Application 99
4.5.5 Pattern Matching 102
4.5.6 Tagged Type Declarations 103
4.5.7 Constructor Definitions 104

4.5.8 Bare Arrays 104
4.6 Examples 105

4.6.1 Ocaml 105

4.6.2 Ncurses Editor 118

4.7 Conclusions 125

5 Delayed Typing 127
5.1 Introduction 127

5.2 Motivation 128

5.3 Delayed Typing Formalisation 131
5.3.1 Delayed Types 131

5.4 The basic lambda calculus 132

5.4.1 Syntax 132
5.4.2 Typing Rules 133

5.5 Notes 134

5.6 Adding in Type Constraints 135
5.6.1 Additional Syntax 135
5.6.2 Additional Typing Rules 135

5.7 Adding Recursion 136
5.7.1 Additional Syntax 136

x

5.7.2 Additional Typing Rules 136
5.8 Adding Records 137

5.8.1 Additional Syntax 137
5.8.2 Additional Typing Rules 137

5.9 Adding Sub-typing 138
5.9.1 Additional Typing Rules 138

5.10 Adding Side Effects 139
5.10.1 Additional Syntax 139
5.10.2 Additional Typing Rules 139
5.10.3 Sub-typing with side-effects 139

5.11 Adding Exceptions 140
5.11.1 Additional Syntax 140
5.11.2 Additional Typing Rules 141
5.11.3 Updated Typing Rules 142

5.12 Algorithm <Wd 145
5.12.1 Syntax of Delayed Types 146
5.12.2 The algorithm for delayed typing 147
5.12.3 Notes 148

5.12.4 Additions to the Typing Algorithm 150
5.13 Properties 156

5.13.1 Subsumes Hindley-Milner Typing 156
5.13.2 Non-Ambiguity 159
5.13.3 Type Safety 161
5.13.4 Exception Safety 162

5.14 Comparisons 164
5.14.1 Elindley-Milner 164
5.14.2 Rank 2 - Rank N Polymorphism 165
5.14.3 Abstract Interpretation 166
5.14.4 Soft-Typing 167
5.14.5 Dependent Types 168
5.14.6 Existential Types 168

xi

5.14.7 Constraint Solving 169
5.14.8 Intersection Types 169
5.14.9 Sized Types 170
5.14.10 Uniqueness Types 171
5.14.11 Haskell Type Classes 171

5.15 Incorporation Into Nitro 171
5.15.1 Syntax 171
5.15.2 Tagged Union Data Types 172
5.15.3 Sub-typing 172
5.15.4 Bare Arrays 174

6 Regions 175
6.1 Background 176

6.1.1 Explicit Memory Management 176
6.1.2 Implicit Memory Management 177
6.1.3 Compromise Solutions 179
6.1.4 Region Memory Management 183

6.2 Nitro Regions 187
6.2.1 The Type of Regions 188
6.2.2 The let region construct 188
6.2.3 The at construct 188

6.2.4 The Uses Region Type 189
6.2.5 The no Type 189
6.2.6 The Heap Region 190

6.3 Syntax 190
6.4 Semantics 192

6.4.1 Subsumption 194
6.4.2 Region Convention 195

6.5 Notes 196

6.6 The region scoping function 197
6.7 Conclusions 197

xii

7 Conclusions 201

7.1 Cyclone discussion 201
7.1.1 A functional Cyclone 201
7.1.2 Compiling Nitro to Cyclone 202

7.2 Abstraction-Level Programming 204
7.3 Evaluation 205

7.3.1 Accessing Foreign Data 205
7.3.2 Delayed Typing 208
7.3.3 Regions 209

7.4 Trusted applications 209
7.5 Contributions and Further Work 210

7.5.1 Foreign Data Interface 211
7.5.2 Delayed Types 212
7.5.3 Regions 213
7.5.4 Modules 214

Bibliography 215

xiii

Chapter 1

Introduction

The main purpose of a programming language is to allow humans to com¬
municate instructions to a computer such that it can perform some repetitive
time-consuming task with high reliability and speed. Languages have been
developed to reduce the risk that the programmers make mistakes when in¬
structing the computer. Languages are now closer to natural language than
previous generations of programming languages were, while at the same time
maintaining the property of non-ambiguity.

This allows the increased documentation and readability of programs which
is a constant area of research aimed at reducing the errors made by program¬

mers. However, inevitably some programs will contain errors. Modern pro¬

gramming languages contain facilities for the re-use of code such that portions
of programs that are correct can be re-used by other programs. When a pro¬

gram contains an incorrect portion if such a portion is re-used then it is more

likely that the deficiency will be found. In addition when such a defect is cor¬
rected it is corrected for all programs which have re-used the common func¬
tionality.

1

2 Chapter 1. Introduction

1.1 Strong typing vs Weak typing

A further area of research is the automatic detection of programmer errors.

Types are now commonly used for this purpose. Entities within a program are

given types by the type system which forbids the use of an entity inconsistent
with the type it has been given. For example the multiplying together of two

objects makes sense only when the types of the two objects are numerical, or

have, in some way, been associated with a multiplication operator. In this way

type systems aid the compiler in rejecting code that is unlikely to do what the
programmer has intended it to. Furthermore it can reject some code that may

be correct but is difficult to maintain and/or reuse. When a strong type system
is used it can be coupled with an information hiding mechanism. Implementa¬
tion details can be hidden so that relatively distant parts of the code cannot be
programmed to rely on a specific implementation detail. This increases main¬
tainability and re-usability because changing one part of the code will, in many

cases, not require a change to another and in the cases that it does the compiler
can reject the program until all dependent parts are modified consistently.

The term strong typing has several meanings including, whether or not vari¬
ables within a program can change their type, or the degree to which implicit
type conversions are allowed. In this thesis the most general notion of strong

typing is applied, this concerns whether or not such type errors as those de¬
scribed in the preceding paragraph are allowed within the user program. A
language using strong typing does not allow the programmer to use a value
of one type as though it were of another incompatible type. With weak typing
this does not hold and erroneous programs are accepted by the compiler. In
weakly-typed languges in some cases warnings are issued by the compiler and
external program analysis tools are used to help locate bugs that the weak type
system could not find, for example[l, 2, 3].

1.2. Static vs Dynamic typing 3

1.2 Static vs Dynamic typing

The issue of strong and weak typing is not the same as static and dynamic typ¬

ing. These terms refer only to when the typing occurs. A static type system
type checks the program before it is run while a dynamic type system checks
the types of values at runtime immediately before a type dependent operation
is executed. One can have any combination of the two distinctions of type

system: Static-Weak, Static-Strong, Dynamic-Weak and Dynamic-Strong.
A static-strong type system aims to reject all programs that are guaranteed

to result in a runtime type error (for at least some inputs) and allow all other
programs. Because this is not in general possible a static strong type system
is usually a conservative approximation; it will not allow a type incorrect pro¬

gram to be run but might also reject some programs which would never fail
with a type error.

For some of the type correct programs rejected by the compilers for popular
static-strongly typed programming languages it is desirable that the type sys¬
tem rejects them because they are not maintainable, however there are some

programs rejected which would be useful to execute[4].
A dynamic type system will allow both more correct and incorrect pro¬

grams to be run. This means that some correct programs that cannot be type
checked statically are allowed to run but also that finding faults in programs

must be done by running tests. Some programming languages incorporate a

compromise between the two such as the notion of soft typing[5].
A certain class of errors cannot be detected at compile-time and must be

deferred to run-time. In this case the earlier that the error is detected the less

damage can result from the error and the easier it is for the programmer to
correct their program. Runtime error detection usually involves a runtime cost
in the efficiency of the program. This means that although a type system is
classified as a static type system there are some dynamic type checks which
must be performed. A very common dynamic check included within static
type systems is the check inserted prior to an array index operation which
ensures that the index is within the bounds of the array.

4 Chapter 1. Introduction

1.3 Functional vs Imperative

Languages described as imperative are so called because a program written in
such a language consists of a sequence of commands which are executed in or¬
der. An imperative language may include other features to assist in composing
the sequence of commands, for example an object oriented language may also
be an imperative language. Examples of imperative languages include C and
Java [6].

The term functional language can be given several different meanings. Com¬
monly there are two features which are associated with the meaning, these are:

higher-order functions, and a lack of side-effects such as destructive update or

assignment.

To enable higher-order functions, functions must be first class values within
the language. This means that a function must be considered as a normal value
and in particular can be passed around as an argument or returned as the result
of another function. Imperative languages often include this feature. Although
C is generally regarded not to contain first class functions the programmer may

pass in or return a function pointer, though these may not be created at run¬

time. Higher-order functions combine functions as first class values together
with nested functions. A nested function is a function whose definition is con¬

tained within the definition of another function. Purely syntactically nested
functions though are not really nested. For a function to be truly nested it
must use a variable or value defined outside of its own definition and within

the definition of the function within which it is nested. If this is allowed then a

value can escape its scope, because the nested function which references it can

be passed out as part of the result of the function in which it is defined.

In this thesis the term functional language will be taken to mean a language
which provides higher-order functions and discourages side-effects. A pure

functional language will be taken to mean a language which entirely forbids
expressions with side-effects.

1.4. High-level vs Low-level languages 5

1.4 High-level vs Low-level languages

Programming languages can be distinguished by the level of abstraction from
the details of the machine that they provide. In high-level programming lan¬
guages the details of the machine are kept hidden from the programmer. The
programmer describes how to solve the problem in a way which is indepen¬
dent of the machine on top of which the compiled program will run. In low-
level programming languages such details are available to the programmer.

A high-level language aims to abstract into programming language con¬

structs a set of useful operations and/or idioms. The main goals are to increase
the readability of the program, increase the productivity of the programmer
and increase the amount of information about the program that the compiler
can infer in order that it may detect more errors in the code. These three aims
give clues as to what kind of operations or idioms should be abstracted into a

language construct. Anything which is repeated often enough and/or can be
a source of program errors may be represented better as a language construct.
By using a higher-level construct the programmer is conveying more of the in¬
tention of the code to the compiler. For example an enumeration type conveys
to the compiler that it is only appropriate to store a small set of values in any

location given that type. Because the compiler knows this it can detect any

attempt to assign a value outside that range of small values.
Furthermore a high-level language which imposes a strong type system

must provide a construct for some operations that could otherwise not be ex¬

pressed within the type system of the language. An example of this is an

exception mechanism - an arbitrary jump out of a function is generally not
allowed within a high-level programming language and hence exceptions are

commonly provided as a language construct.
Some common abstractions include:

• Tagged union data types

• Objects

• Checked array representations

6 Chapter 1. Introduction

• Record and tuple values

• An exception mechanism

• Garbage collection

• Strong typing

In contrast a low-level language does not provide abstract constructs which
hide implementation details. Often the constructs provided are for the con¬

venience of the programmer only. The programmer is granted access to the
details of the machine. Such access allows optimisations based on the repre¬
sentation of data to be included in the program. A low-level language often
provides no automatic runtime garbage collection and offers a weak type sys¬
tem. Because the type system is weak and the programmer has control over
the representation of their data it is possible for the programmer to reuse a
block of memory for a new value of a different kind from the one for which the
memory block was previously used. With this ability comes the responsibil¬
ity to make sure that the only memory blocks reused in this fashion are those
which will never again be accessed as the old value. In other words it is the
programmer that must make sure never to reuse memory in which a live value
is stored.

1.4.1 Advantages of the higher abstraction

The programmer is not burdened with the details of the machine, and can

therefore concentrate fully on the task of solving the given problem. Details
such as how values are stored and when they are relinquished are not neces¬

sary for the implementation of many programming problems. Productivity is
increased as the compiler has more information about the intentions of the pro¬

grammer and can therefore warn or even reject code that is likely (or guaran¬

teed) not to perform the intended computation. Programmers therefore spend
less time fixing faults in their programs. In addition parts of the program, for
example the management of the memory, are already implemented within the

1.4. High-level vs Low-level languages 7

programming language and hence the task is reduced before the programmers
even begin to write any code.

1.4.2 Advantages of the lower abstraction

Programmers have wide-ranging control over the entities within their pro¬

grams. With the control comes a degree of predictability. For example one
can know in advance when a given portion of memory will be deleted, and
in the absence of run-time services such as garbage collectors there is a more

straightforward relationship between program runtimes predicted from the
source code and measured runtimes.

Such predictability is frequently required when the programming task con¬
cerns the operation of the machine itself, rather than the use of the machine to

perform a universal computation.

1.4.3 High and Low-level tasks

Both high-level and low-level languages have their advantages and disadvan¬
tages and the choice of programming language for any given task is dependent
on many things. Some programmers like to feel that they are in complete con¬

trol, even if that control is not necessary for their given problem. However I
would like to submit that programs can be classified into two separate groups

which characterise well the use of high-level and low-level languages.
The key distinction is that either the programmer is extending the interface

of (or abstraction to) the computer or they are using the interface to the com¬

puter. For example a garbage collector: either the programmer is implement¬
ing the garbage collector and thus extending the abstraction to the computer,
or is using the garbage collector to take care of the details of managing the
storage of values within their program.

In this thesis a further distinction is made between different kinds of low-

level, or abstraction-providing, programming. Where the programmer must

directly access the machine (for example when implementing perhaps of the

8 Chapter 1. Introduction

operating system kernel) this is defined to be low-level; where this is not neces¬

sary this is defined to be abstraction-level. Code which is low-level is generally
machine dependent whereas code which is abstraction-level is either machine
independent or easily portable. It is at this level where it is hoped that more

of the beneficial features provided to the high-level language programmer can

be transferred to the lower-level programmer, in this case the abstraction-level
programmer.

1.5 The Abstraction Type Gap

Ignoring the issue of efficiency for the present, it is clear that strong typing is
a useful abstraction. Providing the type abstraction however, commonly in¬
volves implementing part of it outside of the type abstraction itself. Consider
the case of checked array accesses. The type system should make sure that
whenever an array is accessed the index used is greater than or equal to zero
but less than the length of the array. If this is not the case then the value re¬

turned will not be part of the array and therefore cannot be guaranteed to be
of the correct type. A simple way to achieve this kind of type safety abstrac¬
tion is to use a dynamic check. The length of the array is stored together with
the array, then whenever an index operation is invoked the index is checked
against the length stored together with the array. There must be some way to
check that the length stored with the array is in fact the real length of the array,
and that when an access is made the required check is done. This can be done
by implementing the creation, indexing and updating of arrays outside of the
target language, and providing no access to the programmer to the bare ar¬

ray format. The only access that the user has to the abstract arrays is through
the three exposed operations. Therefore the user cannot make a mistake by
misusing the representation of the array since it is not known to them. The
implementation of these three operations themselves though must be written
without this abstraction.

For such low-level untyped code to be trusted, aside from trusting the pro-

1.6. Trust 9

grammer to have made no mistakes, the compiler of the higher-level language
is trusted to retain invariant properties of values which the generated code
creates. In the example of the arrays the compiler is trusted to produce code
which only invokes the operation for indexing an array with a value which
was created with a call to the create array operation. More generally every

argument to a call of the index array operation will be in the format expected
with the integer which should represent the length of the array actually being
equal to that length.

The assumption that the abstraction-level programmer has made no mis¬
takes is a trust that is often acquired through means of testing. This is because
such abstraction-level programming is often done in the low-level weakly-
typed language C [7]. Suppose that the three array operations defined above
are implemented in C, this allows the programmer to access an array with any
index whatsoever. There is nothing to ensure that the index is checked against
the length of the array.

These are two distinct trusts that are made when using abstraction code
written in a separate language: firstly that the assumptions made by the ab¬
straction code about the manner in which the abstractions are invoked are up¬

held by the compiler for the high-level language; secondly that those assump¬
tions are used correctly by the abstraction code itself. The separate elements
that must be trusted are expanded upon in the next section.

1.6 Trust

If any given application code is to be trusted to be correct, or at least safe to
run, then there are several parts that must be separately trusted.

1.6.1 The application code

The application code itself must be correct. Confidence in the safety and cor¬
rectness of the application code can be increased if it is written in a high-level
strongly-typed language. The type system will ensure that the application

10 Chapter 1. Introduction

code contains no type errors so the program code is safe to run (though it
may still be incorrect in the sense of returning the wrong values). In this case

the application code need not be trusted to be safe as it is checked automati¬
cally, therefore by using a type-safe language the amount of code that must be
trusted has been reduced.

1.6.2 The Compiler

Using a high-level language allows some guarantees about the application
code to be checked mechanically by the compiler, but some of those guarantees

only hold if the compiler is itself guaranteed to be correct. It is not enough to
trust the compiler to be safe, the compiler must be trusted to be correct.

The type system makes sure that the application code does not make any

invalid memory accesses if the type system has been proven to enforce such a

property, but only if the compiler correctly implements the given type system.
Even if the compiler's type checker has been correctly implemented, perhaps
the translation into machine code is faulty. This could mean that correct or safe
application code is transformed into incorrect or unsafe machine code.

1.6.3 The Abstraction Code

The application code written in the high-level language and translated into
machine code uses - implicitly or explicitly - the abstraction code that extends
the interface of the machine. Therefore the abstraction code itself must also be

correct. The abstraction code must generally be programmed in a low-level
programming language. If the abstraction code is programmed in a strongly-
typed language then, as is the case with strongly-typed application code, no
trust need be placed on the safety of the abstraction code. Once again the trust
must instead be placed on the compiler for the language used. Because the
abstraction code commonly implements operations that are difficult to ensure

the safety of, abstraction code is commonly implemented in a weakly-typed
programming language.

1.7. Introducing Nitro 11

1.6.4 The Compiler/Abstraction-Code Link

Finally the compiler for the application code produces machine code that utilises
the abstraction code. Therefore the compiler and the abstraction code must
have the same set of assumptions about the way in which the abstraction code
is invoked.

There is a protocol or interface that the abstraction code must provide and
the compiled code uses. Often this protocol is maintained by informal meth¬
ods, occasionally parts of this protocol can be type checked. Many of the in¬
variants assumed by the abstraction must be maintained by the authors of the
compiler by hand. If the entire application is to be trusted to be safe, then this
link between the compiler and the abstraction code must also be trusted.

The remainder of this thesis describes the development of a type-safe func¬
tional language Nitro. Nitro is designed to be used for abstraction-level pro¬

gramming in order that the programmer may have more confidence in the
safety and correctness of the abstraction code.

1.7 Introducing Nitro

Nitro is a programming language developed to survey the ideas contained
within the current thesis. The main goal is to provide a functional language
that can be used to implement the abstraction code which the implementa¬
tions of other high-level (functional as well as non-functional) languages rely
upon. Writing such abstraction code is often seen as low-level programming,
however in order to be clear in this thesis such abstraction code programming
will be referred to as abstraction-level programming. The aim in developing Ni¬
tro is to bring many of the advantages of high-level functional programming
to the aid of the abstraction-level programmer.

12 Chapter 1. Introduction

1.8 Abstraction-level Examples

This section introduces the primary motivating examples of abstraction-level
programming for which Nitro is intended to be used. These three examples
provide features which are very commonly found in high-level programming
languages, but which are most often implemented in C.

1.8.1 Generic Primitives

In order to assist in the writing of the abstraction-level code the compiler writ¬
ers for a given language will ensure that all values within a program conform
to some common internal representation. For example the language designers
may wish to provide a single polymorphic equality function which operates
over two values of any one type. It is possible to write an equality operator if
the common internal representation has some simple properties. These are:

• All values are represented by one common sized element for example a

word of the machine.

• A value can be tested to determine whether it is itself immediately the
value - as is the case for an integer - or if the value represents a pointer
to a block of values in memory. This can be determined using an is_biock

operation.

• A block of values in memory is always attached with a special value
which represents the length of the block in values. In this case the primi¬
tive - biock_iength - can be used to determine the length of the block.

• Blocks may be indexed with integer offsets where each offset is itself a

value in the common internal representation.

Using these assumptions and mapping the block indexing operation to an

array-like syntax such as: b[i], where b is a block pointer and i is an integer
offset; the generic equality operator can be written as in figure 1.1.

1.8. Abstraction-level Examples 13

equality: valuel value2 =

if is_block valuel

then if is_block value2

then equality_block valuel value2

else false // valuel but not valuel is a block
else if is_block value2

then false // valuel but not valuel is. a block
else valuel == value2

equality_block: blockl block2
if block_length blockl == block_length block2

then forall (i = 0 to (block_length blockl) - 1)

equality blockl[i] block2[i]
else false // blocks have different lengths

Figure 1.1: Generic equality code

Notice that there is a potential gap between what the abstraction-level code
considers to be equal and what the language defines as being equal. Consider
the equality test true = l, if the type system allows such an expression then
the language definition must consider what the result should be. The language
definition might reasonably define the result of comparing values of different
type to either be false or to raise an error - here we suppose that the result
should be false. However if the two values share the same representation
then the given generic equality operator will return true. If this definition is
to be used then it is up to the compiler writer to make sure that two values
considered to be distinct by the language specification are either given distinct
representations or are not allowed to be tested for equality. In high-level lan¬
guages this is commonly done by the type system insisting that the type of the
two operands are the same and hence two values of different types are never

compared.

14 Chapter 1. Introduction

1.8.2 Garbage Collection

Implementing a garbage collector has similar problems to overcome. It must
be possible to see all values within a program as belonging to some common

type, otherwise memory allocated for one value cannot be re-used to store
another value without arbitrarily changing the type of a storage location. Fur¬
thermore it must be possible to distinguish between pointer and non-pointer
values such that the roots of a program may be followed to find the live data.

There must be a mechanism within the language used to implement the
garbage collector to manage the garbage collector's own memory. While com¬

puting the memory management of the application code the garbage collector
will itself produce some data which must be relinquished appropriately. There
has been much research (for example [8,9]) devoted to achieving this in a type-
safe manner and it is proving to be very challenging.

1.8.3 Marshalling

If a high-level language is to see popular usage then it must provide access
to libraries written in other languages. This allows the use of legacy code as
well as new code that is simply not written in the desired language. However
code written in another language will produce values that will not conform
to the common internal representation of the high-level language. This means

that the use of generic primitives such as the equality operation defined above
is not possible. The foreign values, those produced by the other languages,
must also be separated out from the native values. This prevents the garbage
collector and other runtime services attempting to interpret the foreign values
as values conforming to the common internal representation. Such an error

could lead to the invalid dereferencing of a non-pointer value.
Rather than separating such foreign values from native values another ap¬

proach is to simply provide a conversion routine which converts from the for¬
eign format into the native representation. Unfortunately though, because a

high-level language abstracts away from the runtime representation of values

1.9. General Approach 15

the programmer cannot access the raw representation of the foreign values.
Therefore the programmer must rely on a translation routine written in an
abstraction-level programming language which can 'see' into the foreign inter¬
nal representation.

This has a runtime performance cost because each value must be struc¬
turally translated into the native representation, however the advantage is the
ability to perform all operations provided by the native language and no sepa¬
ration of foreign values from native values is necessary. Translated values can
be created within the garbage collected portion of memory and thus the signif¬
icant abstraction of automatic memory management is maintained even when
interfacing with a foreign language.

These three examples of abstraction-level programming are very often per¬

formed in the low-level language C. These tasks can generally not be per¬

formed within the high-level language while maintaining representation ab¬
straction. However the tasks themselves are not low-level from the point-of-
view of their implementation. They are only low-level from the point-of-view
of their use. A similar distinction is made when implementing a compiler. The
compiler will generally produce low-level assembly or even machine code.
However the compilation itself is simply a high-level computation from some

input - the source program - to some output - the compiled program. The
main point is that access to the representation of the high-level program's val¬
ues is required, but low-level access to the machine is not.

1.9 General Approach

The general approach to provide abstraction-level programmers with high-
level language features is to enhance the type system such that more informa¬
tion can be provided by the programmer to the compiler via the type system.
Data types will be used as they are used in both low-level weakly-typed lan¬
guages and high-level strongly-typed languages. That is, the type of a value
both describes how it can be represented in memory and prevents the misuse

16 Chapter 1. Introduction

of the value at an incompatible type.
The type system is then further enhanced to describe more precisely the

behaviour of code operating on values given such types. This allows code
that would not be passed by type systems in common usage for high-level
languages to be written in Nitro. This includes providing the programmer
with the ability to describe within the type of an argument, the assumptions
made about the way in which the abstraction code will be invoked. These are

the assumptions that the compiler for the high-level language must obey.

1.10 Structure of this thesis

The remainder of this thesis is structured as follows. Chapter 2 surveys similar
and other approaches to increasing the safety of low-level and abstraction-
level code. The core of the Nitro programming language is defined in chapter
3. This will be the basis from which the extensions to assist abstraction-level

code will be derived. The first such extensions provide access to memory-level
storage details of values. These are defined and discussed in chapter 4. Data
type definitions are extensively enhanced to enable the definition of data types
with specific run-time representations. This allows access to foreign values
which may then be used directly by Nitro or translated into the native format
of some other high-level language.

A new typing scheme is detailed in chapter 5, this infers more accurate
and verbose information about values defined within a Nitro program. This
typing scheme, called a delayed type system, is formally defined by means of a
set of inference rules. These rules are used to prove important properties of
the typing scheme and an algorithm is given for automatic inference of types.

Finally the incorporation of the delayed typing system into the Nitro language
is detailed.

The facilities to control the management of memory within a Nitro program
are discussed in chapter 6.

This completes the main additions to the Nitro programming language to

1.11. Contributions 17

assist its use in abstraction-level programming. The final chapter 7, concludes
with a look at the success of the additions made to Nitro, what could yet be
added and also the kind of programming operations that are unlikely to be
done in a functional type-safe abstraction-level programming language such
as Nitro.

1.11 Contributions

The main contributions of this thesis are briefly described here. A functional
abstraction-level programming language, Nitro, is developed and formally de¬
fined in chapter 3. This new language is used to investigate the application of
high-level typing techniques to abstraction-level programming. To this end
the language and formal definition of Nitro are extended with facilities for de¬
scribing foreign data as described in chapter 4 of this thesis.

A typing scheme described in chapter 5 is developed to enhance the appli¬
cability of strong typing at a level lower than the application level. Although
this was the main aim in the development of this typing scheme it is not re¬
stricted to this domain and could be applied to other kinds of programming
languages. This type scheme is incorporated into the formal definition of Nitro
and some properties of the typing scheme are demonstrated.

The language and formal definition are once again extended in chapter 6
to incorporate a regions memory management scheme as described in [10]. As
such this thesis presents an additional experience in the use of regions to man¬

age the life times of data objects. This increases the likelihood that this scheme
will see use in practical development thereby providing more confidence in
the usability of region memory management systems. The final contribution
of the work done is the implementation of the nitroc compiler used to explore
these ideas and available as open-source software.

18 Chapter 1. Introduction

1.12 implementation of Nitro

This section describes the implementation status of the Nitro compilers. There
are two versions of the Nitro compiler both developed in the functional pro¬

gramming language OCaml [11]. The first version was developed during the
design of the foreign data interface described in chapter 4 and compiles Nitro
code into assembly language which is then compiled to machine code by the
host C compiler. This version is referred to as nitro_opt.

The first version was found to be very slow on larger inputs and hence
a second version was developed which compiles Nitro code to C code. The
second version is named nitroc. The nitroc program is more modular in design
and includes three separate type checkers which can be used to type check
the Nitro program. The first is the foreign type checker, this type checker is
for a Hindley-Milner style type scheme augmented with type definitions for
controlling how data is represented in memory, as described in chapter 4 of
this thesis. The second type checker implements the delayed typing scheme
described in chapter 5 of this thesis. Finally the regions type checker augments
the delayed typing scheme with support for the typing of region constructs as
described in chapter 6 of this thesis.

The nitroc verison of the compiler can also be used to format the input
program as a document, including the responses made by the type system
to top level definitions in the Nitro program. When used in this manner the
comments in the Nitro program are taken to be document text. The printing
engine can output in three different formats, plain text, html and latex. The
latex output may then be executed to produce PostScript or PDF documents.
The examples given in this thesis were produced by using the Nitro compiler
in this fashion.

Henceforth the phrase "Nitro compiler" will be used to refer to nitroc. The
top half of Figure 1.2 depicts the overall design of the Nitro compiler and re¬
lated tools.

To compile the code into native code the Nitro compiler first converts into
a private language called miniC. This is a subset of the C language which is

1.12. Implementation ofNitro 19

informally defined by the compiler in the miniC module. By default all of
the C types of the produced program are declared with the abstract type of
nitro_vaiue_t. This means that operations such as the dereferencing of a pointer
value are performed using a C cast. If we trust that the Nitro type system and
conversion to C have been implemented correctly then all such cast operations
are safe since they correspond to safe Nitro operations. In order to increase
the confidence in those implementations a type inference system for the miniC
code produced can be invoked by the user. This system attempts to infer better
types for each of the declared values in the produced C program and thus uses
the (weak) C type system implemented by the C compiler to provide some

assurance that no program errors were introduced by the compilation of the
Nitro program.

The foreign type checker is completely separate from the two delayed typ¬
ing based type checkers. It uses a Hindley-Milner style type-inference en¬

gine to infer the types. The delayed-typing type checker and the region type-
checker are more closely related. The region type-checker uses the same typ¬

ing engine as the delayed-typing checker but also includes inference of region
types.

The top half of Figure 1.2 depicts the structure of the second version of the
Nitro compiler. This shows that the three web demos depend on the front end
portions of the compiler, that is the lexical analysis, parsing and type checking.
In addition the common printer is required to format the results of program

analysis in html. The back end portions of the compiler are not depended
upon by the three web demos because no actual code is produced. By con¬
trast the full Nitro compiler depends on both the front end and back end/code
generation modules.

The bottom half of Figure 1.2 gives the flow chart of the Nitro compiler.
A single run of the compiler passes the program through several stages where
each stage transforms the program in preparation for the next stage of the com¬

piler. The lexical analysis splits the program text into tokens which are more

straightforward to parse. The parser then builds up an abstract representation

20 Chapter 1. Introduction

of the program. This is a two-dimensional tree or graph representation of the
one-dimensional stream of tokens produced by the lexer. From this abstract
representation there is a choice of type checkers all of which produce a typed
version of the abstract syntax. This is similar to the abstract syntax but deco¬
rated with the inferred type information. From this point there is a split, either
the typed abstract representation may be formatted with a choice of three dif¬
ferent output styles or the compiler will proceed to code generation. This takes
the form of generation to a sub-set of the C programming language, formatting
the output such that it is acceptable to a host C compiler. Optionally the mini
C code which is produced may be type checked by the type checker prior to

formatting for output.

1.12. Implementation ofNitro 21

Figure 1.2: The top half depicts the structure of the Nitro compiler showing the de¬

pendencies between the separate modules. The lower half shows the flow of a single
run through the Nitro compiler transforming the source text into an final executable.

Chapter 2

Background

This chapter relates some existing work relevant to the work contained within
this thesis. There are three major themes; the typing of low or abstraction-level
code, type systems related to that which is developed in Chapter 5 and finally
work on memory management.

The first theme consists mostly of the research done in providing existing
low-level programming languages with type-safety and other high-level lan¬
guage features, however Section 2.1 surveys research done in using existing
high-level languages for low-level programming.

2.1 Functional Programming Languages

In this thesis a functional programming language is described which has been
designed with abstraction-level programming as the main goal. Others have
taken existing functional programming languages and applied them to the ar¬

eas of systems and abstraction-level programming.

2.1.1 House

The House[12] project aims to provide access to hardware from the functional
programming language Haskell via a "hardware monad". The main aim is to
facilitate the implementation of an operating system fully within Haskell. The

23

24 Chapter 2. Background

approach is to use the Haskell foreign function interface to provide access to
the hardware, but restrict the use of this interface via the hardware monad.
A program logic P-logic [13] is used to ensure that this interface can be used
only in a safe manner. Essentially using the Haskell foreign function interface
one can access the hardware but in an unsafe manner, however by accessing
only through the hardware monad the user cannot make safety errors. This
property is guaranteed using P-logic. The approach has proven to be fruitful,
however it still relies on the unsafe marshalling routines provided by the for¬
eign function interface, such marshalling routines could be re-written in Nitro
and or the hardware monad could be ported to Nitro thus gaining still more
confidence in the correctness of the low-level code.

2.1.2 The Fox Net Project

The FoxNet project is an implementation of a TCP/IP network protocol stack
written entirely in an extended version of the functional programming lan¬
guage SML called SML+ developed for the project. The extensions provided
by SML+ include a mechanism for reading and writing raw memory outside
the heap managed by the SML garbage collector. The final design and imple¬
mentation of the TCP/IP stack is described in [14] and the performance of the
FoxNet protocol stack is reported in [15]. It was shown at the time that the
implementation was significantly slower than the equivalent C implementa¬
tion. This was attributed to a lack of inlining of small functions which would
be implemented as C macros using #define in a C implementation and also
the performance of the mechanism for manipulating raw memory. However
the project showed that functional languages can be used for systems and low-
level programming, and in addition the high-level features found in most such
languages are a significant benefit when designing and implementing systems
and low-level software.

2.2. The C Language and Derivatives 25

2.2 The C Language and Derivatives

In this section several languages which have been derived from C are dis¬
cussed as well as attempts to work within the C language to achieve a more

satisfactory programming environment.

2.2.1 C++ and C#

Two extremely popular languages derived from the C programming language
are C++ [16] and C# [17]. Both languages improve upon the software main¬
tenance capabilities of C programs by using object oriented programming to
allow program division. While C++ is an extension of C such that (almost)
all C programs will compile with a C++ compiler, C# is an entirely new lan¬
guage with a similar syntax. One very large difference is that the C# language
provides for automatic garbage collection. Although C# allows for the ad¬
dition of low-level code using the unsafe modifier it is intended as a high-
level application programming language and is therefore not designed for the
abstraction-level programming tasks with which this thesis is concerned and
is not as relevant to Nitro.

C++ however could be used by an abstraction-level programmer since it
maintains the control over data representation inherited from its C origins.
Coupled with this are several higher-level features, most notably the object-
oriented features. In addition interfacing with a legacy C library requires no

marshalling interface and the types are already a perfect match. Whilst retain¬
ing many of the advantages of low-level programming in C however, C++ also
retains many of the disadvantages. In particular programming in C++ is still
not type-safe. The ability to control the representation and life times of data
values allows the programmer to make the same mistakes as is possible in a

C implementation. The additional abstraction mechanisms provided by C++
can alleviate these problems to some extent but encapsulation mechanisms on

their own cannot provide an entire solution.
Since there is greater scope for code encapsulation there is also greater

26 Chapter 2. Background

scope for code reuse. This has long-understood benefits for software main¬
tenance.

2.2.2 Cyclone

The Cyclone [18] programming language has been developed to improve the
security of low-level code and in particular legacy code. This offers a very

C-like syntax and semantics however the type system is more strict. In ad¬
dition high-level features such as tagged-union types, polymorphism and ex¬

ception raising and handling have been added. This offers a good solution
for those that wish to upgrade an existing library or code incrementally into
type-safe code. Rather than throw away all of the existing code it can be semi-
automatically translated into Cyclone code. Additions to the code can then use

the new more modern features.

In addition Cyclone has become a testing ground for new memory manage¬
ment techniques. This is especially true of memory management techniques
related to region memory management. The region memory management
scheme will be discussed further in Chapter 6 and the Cyclone language will
be discussed in the conclusions chapter 7.

2.2.3 Ccured and Safe-C

The CCured[19, 20, 21] and the Safe-C projects aim to compile without modi¬
fication legacy C code. However the legacy C code is compiled in such a way

as to transform unsafe code into safe code. This has the significant advantage
that one can take a library written in C which is desired to be ensured to be
safe and compile the code without the need to understand and modify it. It
may be that the initial developers of the library are not available or have no

desire to improve the security of their code. The disadvantage is that because
the cost of translation is never paid the dynamic cost of runtime checks and
representations are forever incurred.

The CCured program analysis tool works through a combination of static

2.2. The C Language and Derivatives 27

analysis and inserting dynamic runtime safety checks to ensure that a C pro¬

gram does not make an invalid memory access. This means that some of the
cost of the runtime checks can be eliminated since the cost is incurred at com¬

pile time.
The Safe-C project aims to implement a compiler which transforms unsafe

C code into safe C code using the extended pointer and array access semantics
described in [22], in particular this allows the efficient and immediate detection
of all memory access errors.

Other similar examples of work done in increasing the trust in legacy C
programs include the equal program analysis tool[23] which allows the user to
add type qualifiers to enable greater type checking of C code. Although this
means that legacy code must be modified to include those extra type qualifiers
it does mean that a variety of properties can be checked such as format string
vulnerability [24] and deadlock detection [25].

Splint[l] is a program analysis tool aimed at detecting common C program¬

ming errors, however it does not claim to be complete in that some errors will
pass through undetected.

2.2.4 Physical Type Checking

Most of the research in checking C code more strictly is based on the desire for
improved security. Type systems for C whether they be static or dynamic are

used to make sure that the program will not make illegal acceses into memory.

Strong type systems for high-level languages aim to reduce the errors in the
code by disallowing inconsistent use of program elements. For security how¬
ever the correctness of the entire program is not required, only the safety, or

absence of memory access errors, is important.
Research in this area has developed the concept of physical type checking

of C code[26] in which two types are considered compatible if their physi¬
cal representations are compatible. The basic idea is that each pointer should
dereference to 'valid memory', this implies that the programmer can never

consider an integer type to be a pointer. Consider the type definitions given in

28 Chapter 2. Background

Figure 2.1.

typedef struct point_imm_ {
int * first ;

int second ;

} point_imm ;

typedef struct imm_imm_ {

int x ;

int y ;

} imin_imm ;

typedef struct imm_point_ {

int red ;

int* green ;

} imm_point ;

Figure 2.1: Sample C type definitions.

If we have a value of type *point_imm, then this can be used as a value of
type * imm_iinm since when the pointer is dereferenced, the two fields can be seen
as integers with no invalid pointers. However the same value cannot be seen

as one of type *imm_point since when it is dereferenced the second field could be
mistakenly dereferenced. Note that physical type checking by itself does not

guarantee an absence of runtime errors such as heap management and array
bounds errors.

Smith and Volpano in [27] develop a sound type system for a polymorphic
dialect of C that retains many of the 'awkward' features of C such as the "ad¬
dress of" operator and pointer arithmetic. The type system is not intended to

reject unsafe programs but give a rigorous definition of what may go wrong
when a well-typed polymorphic C program is executed.

2.3. Related Foreign 'Data' Interfaces 29

2.3 Related Foreign 'Data' Interfaces

This section surveys the work done on the foreign data interfaces for high-
level languages. Any high-level language which wishes to see a high volume
of users must provide a way to access libraries written in other languages since
it is simply too much work to hope to port all existing (and future) libraries
into your own preferred language. Most high-level languages provide some
form of foreign function interface in which it is possible to call functions writ¬
ten in another language. A foreign data interface allows direct access to data
computed by code written in a foreign language.

2.3.1 No Longer Foreign Function Interface

Nlffi [28] is an encoding of (nearly) the whole of the C type system into the type

system of ML. There is a program generator which will generate some stub
code required, but in general, as in this work, C values are accessed directly.

There are several advantages to using an interface in the style of Nlffi. It
can be used with an existing language; there is no need to add constructs to

your language to deal with foreign data. There are some cases where the Nlffi
can be more efficient. These correspond exactly to those cases where C can be
more efficient and in general correspond to the places where there is a possible
safety hole. There is some scope for the Nlffi to be more general, again this
comes from those cases where one can use runtime information to avoid some

checks that a static checker must include.

The most important advantage of the Nitro foreign data interface is that
we retain type safety. There is nothing in the C type system that prevents
one from picking any field from a union type, regardless of what the actual
value stored there is. Another example is possibly null pointers, these will be
treated in Chapter 4, once represented in Nitro one cannot incorrectly attempt
to dereference a null pointer. In contrast, using the Nlffi, one checks for a null
pointer with if c.Ptr.isNuii l then ... else However there is nothing to

prevent you dereferencing such a pointer in either branch of the conditional,

30 Chapter 2. Background

or even ensuring you have performed the check. To retain type safety in this
case the stub code implementing the dereferencing could apply a check, but
then we would have redundantly performed the check twice.

2.3.2 Checking type safety of foreign function calls

Another approach, taken in [29], is to do multiple language type checking of
the foreign function calls. The authors' goal is to check the safety of uses of
an existing foreign function interface, in their case that of OCaml. This means

that we still require stub code and there is still a marshalling barrier. However
there is now greater confidence that the marshalling interface is indeed written
correctly. The foreign data interface described in this work cannot achieve this,
essentially the programmer is on their own when actually writing the interface
and mistakes can still be made. A combination of the two approaches seems

like a promising direction for future study.

2.3.3 Interoperability Through Common Framework

Several systems exist which aim to provide inter-operability between languages
through the use of a common compilation scheme. Although such schemes
have separate aims to that of Nitro they do reduce the need for marshalling
routines between separate languages. However the common abstractions that
such a framework provides must still be implemented. In addition it is likely
that they must be implemented outwith the scheme. A common abstraction to

provide is garbage collection. Such common runtimes could be re-written in
Nitro.

One such framework is the Oz[30] runtime environment on top of which
the Alice dialect of ML is implemented[31].

The .NET common language infrastructure[32] is another such environ¬
ment aiming at providing language interoperability via a common compilation
target. Although aimed mostly at object-oriented imperative languages it has
been used as a target for functional languages including F#[33] and SML[34],

2A. Related Type Systems 31

Additionally some languages such as SML [35, 36] have been compiled to
the Java runtime thus allowing interoperability between the chosen language
and Java by using the Java runtime as a common language runtime.

The Moby[37] language - a high-level statically typed language with an

ML-like module language - has a framework for foreign data access [38]. The
authors make a similar distinction between a foreign function interface as pro¬

vided by the majority of high-level languages in common usage and a foreign
data interface which allows direct access to foreign data. In addition the au¬

thors make the same observation that there are situations in which a foreign
data interface is required usually due to the cost of the marshalling routines
and the volume of data which must be marshalled.

The foreign data interface works by allowing the user to embed C code
directly into Moby code. This allows the user very fine-grained control over

the foreign data interface policy. This is done by allowing the user to include
(or inline) BOL code, where BOL is the intermediate language of the Moby
compiler expressive enough to be used to implement a C compiler. The dis¬
advantage is that the BOL code itself is, as with C, weakly typed. The result
is a foreign data interface more expressive than the one described for Nitro in
Chapter 4 but lacking in the type safety guarantees.

2.4 Related Type Systems

In this section some of the work on type systems relevant to that of the type

system developed in Chapter 5 of this thesis is discussed.

2.4.1 Lower bounds on Type Inference with Sub-typing

Hoang and Mitchell provide a proof[39] that type inference of subtypes is a

P-SPACE-hard problem. This is independent of the expression syntax. This
is done by showing the problem of typeability in the presence of a subtype
relation to be equivalent to a satisfiability problem over a partial order. In [40]
the problem is shown to have at worst an upper bound of exponential-time.

32 Chapter 2. Background

This is a somewhat negative result, however it is not the first result of its
kind and would not be the first to contradict practical experience. It was gen¬

erally assumed that ML type inference without the presence of a subtype re¬

lation was efficiently computable in polynomial time. However as noted in
[41] various terms in ML have been constructed for which the inferred type
was exponential in length. Even worse simply deciding whether or not an

ML expression can be given a type is shown to be complete for exponential-
time. However practical experience in the use of ML-like type inference sys¬

tems has shown that most typing problems lie within those that are efficiently
computable. There is therefore hope that the same may be true of type infer¬
ence in the presence of subtyping though more practical experience may or

may not support this hope. Experience in using the Nitro delayed typing type
checker has yet to yield programs in which type checking was too slow.

2.4.2 Subtyping over Record Types

Remy [42] improves upon the work of Wand [43] to provide record concate¬
nation (or record extension) using row variables. This provides an intuitive
extension to non-extensible record typing in an ML environment (in the au¬

thor's specific case OCaml is used). Some desirable programs however are

not typable under this scheme which are typable under the delayed typing
scheme detailed in Chapter 5. The un-typable programs are generally due to
the monomorphic restriction on function arguments. Consider the program

given in Figure 2.2 written in OCaml.

let r = { x = true; y = 2 ; } in
if r.x then r else { y = 1 ; }

fun r -> if r.x then r else { y = 1 ; }

Figure 2.2: Code showing a typable let expression and an un-typable function abstrac¬
tion in Remy's record extension of OCaml.

2.5. Memory Management 33

The system described can give a type to the first let expression but not the
function abstraction. The delayed typing scheme can provide a useful type for
both expressions.

2.4.3 Practical Type Inference for Arbitrary-Rank Types

In [44] the authors describe a practical type system for an arbitrary-rank type
system. The authors note that full type inference for such a system is undecid-
able. However in practice software developers are prepared and often keen to
write down the types of their definitions in full. This works well for the de¬
layed typing scheme in which all top level definitions can be given a full type

signature but the programmer need not be burdened with providing a type for
all defined names.

2.5 Memory Management

Chapter 6 details the regions based scheme for memory management used in
Nitro for programs in which the programmer wishes to control the lifetimes of
their values. Many programs though can be written without regard for mem¬

ory management using implicit runtime garbage collection. In Nitro the pro¬

grammer has a fine degree of control over the representation of values in the
program as discussed in Chapter 4. This means that it is very awkward for the
compiler to provide the runtime garbage collector with the roots or pointers of
the running program. Therefore the implementation depends upon a runtime
garbage collector which can operate with ambiguous roots as set out in [45].
The Nitro compiler uses the realisation of this algorithm in the implementation
available at: http: //www.hpl .hp. com/personal/Hans_Boehm/gc/index.html.

In this thesis dynamic memory management is considered as one technique
when in practice there are many different algorithms and combined schemes.
This is not to mention the many different solutions for varied circumstances
of dynamic collection including distributed, multi-processor systems and real¬
time environments, Wilson [46] gives a good review of available techniques

34 Chapter 2. Background

for the special case of a single processor, single machine environment. Nor
does this thesis begin to uncover the problem of fitting an allocator algorithm
to the memory management scheme being used or the problem of allocation
in general regardless of the scheme used. For a detailed look in the specific
instance where memory is not expected to be moved around see [47].

Chapter 3

Core Nitro

This chapter introduces the core of the Nitro programming language. This core
is a functional language lacking in any features of particular importance to the
abstraction-level programmer. This will serve as the basis onto which such
features will be added in subsequent chapters.

The syntax is defined in the following Section 3.1, the static semantics are
defined in Section 3.2 and finally the dynamic semantics in Section 3.3.

3.1 Syntax

The syntax of Nitro will be recognised by anyone familiar with the OCaml
[11] programming language. Since OCaml in turn shares some syntax with
the SML programming language the syntax should be comfortable for anyone
with a background in SML.

The syntax of expressions is given in Figure 3.1 and the syntax for types
and type schemes is defined by the grammar in Figure 3.2. Finally the syntax
of top level definitions is given in Figure 3.3.

3.1.1 Notes

On the notation used above; phrases contained with angled brackets (< phrase >)
are optional. Each grammar rule can be read with or without the optional

35

36 Chapter 3. Core Nitro

expr

field-dec
match

mrule

pattern

field-pattern :=

c (constants)
X (variable access)
let pattern = expr\ in expr2 (let binding)
{expr) (bracketed)
expr\ expr2 (application)
fun pattern —► expr (abstraction)
{field-dec+} (record creation)
expr.field (field access)
expr\.field <— expr2 (field update)
Con expr (constructor application)
let rec x — fun pattern —► expr\ in expr2 (recursion)
match expr with match end (matching)
label = expr; (field initialisation)
mrule (one rule)
mrule \ match (many rules)
pattern —> expr (match rule)
- (the any pattern)
X (identifier binding)
{field-pattern-\-} (record pattern)
pattern as x (named pattern)
Con pattern (tagged pattern)
Con (constructor pattern)
label — p ; (field pattern)

Figure 3.1: The syntax for expressions in core Nitro.

3.1. Syntax 37

tyrow

tyrowsemi

int (Integers)
bool (Booleans)
ident (Type names)
tyrow ident (Type application)

(Functions)

(Type variables)
(single type)

(many types)

Larg 7 Lres

'a

T

(,tyrowsemi)

t ,tyrowsemi
a := x

| W('ai,...'an).T

Figure 3.2: The syntax for types and type schemes in core Nitro.

tydec

tybind

tyvars

const rs

const r

conarg

typlace

fieldecs

fieldec

type tybind
tyvars tyname =

tyvars tyname =

constrs (and tybind)
{fieldecs} (and tybind)

{'a{-,'b}+)
constr (| constrs)
Con (conarg)
typlace x

of

fieldec

fieldec fieldecs
label: x ;

(type declaration)
(tagged type dec)
(record type dec)

(no type vars)
(one type var)

(many type vars)
(constructor dec list)

(constructor dec)
(constructor arg)
(type placement)

(record field decs)

(single field dec)
(many field decs)

Figure 3.3: The syntax for top level definitions.

38 Chapter 3. Core Nitro

phrases. The vertical bar is used to separate grammar rules with the same left
hand side but are also used by the Nitro syntax itself. The two uses are easily
distinguished as the meta-notation uses are inline with the := sign of the first
grammar production. The {} brackets are meta-notation except for three oc¬

curences; in the 'record creation' and 'record pattern' rules for expressions and
the 'record type dec' rule for top-level declarations.

The syntax distinguishes between identifiers and tagged union type con¬

structors. Identifiers always start with a lower case letter and constructors
with an upper case letter. This means that a pattern which matches over a

tagged union type cannot be mis-spelt and accidently become a catch-all iden¬
tifier pattern. For example given the type definition:

type 'a option = Some of 'a \ None
then the function isNone cannot be mis-defined as in the following definition
because the compiler will complain of an undefined constructor NONE.

let isNone = fun opt —>

match opt with
NONE —> true

| _ —■> false
end

Match expressions require an end keyword as a termination symbol. If
match expressions require no terminating symbol and are nested then it be¬
comes ambiguous as to which match a match rule belongs to. However in
contrast to SML, let expressions in Nitro require no terminating end. This
means that let expressions can be concisely nested together.

The 'as' pattern may be confusing because several languages define this
similarly but differently. In Nitro the pattern to be matched is first, followed
by the as keyword followed by the name to which the pattern should be bound.

Recursive definitions are forced syntactically to be function expressions.
This means that it is only useful to bind a single identifier rather than the more

general pattern since no other pattern would match a functional value.
In SML the ref operator is a primitive. In contrast the OCaml and Nitro

3.1. Syntax 39

languages provide no primtive ref operator, instead both languages allow for
mutable record fields. Using mutable record fields ref can be trivially defined
as a record type with one mutable field:

type 'a ref = {mutable contents : 'a ;}
The update operation may be defined as updating the contents field:
let update j-ef r x — r.contents x

Since infix operators may be defined (for Nitro see the derived forms sec¬
tion 3.1.2) the infix update operator of SML, :=, may be defined as a synonym

for update^ref.
The reverse encoding of mutable record fields using a primitive ref oper¬

ator is possible. However unless the compiler uses heavy optimisations the
storage requirements are less compact and many operations require one ex¬
tra memory access. In the next chapter Nitro's facilities for describing data
layout are described and this ability to accurately define foreign updatable
record fields is important. Interestingly it seems that the decision to use muta¬
ble record fields in OCaml was due to the same idea that mutable record fields

subsume primitive references [48] whereas in SML the decision was made be¬
fore mutable record fields were known [49] and this decision was carried for¬
ward into the later definitions.

3.1.2 Derived Forms

There are some derived forms which allow some definitions to be written out

less laboriously, since these can be translated into the forms given above they
need not be considered by the static and dynamic semantics defined in sections
3.2 and 3.3 respectively.

The first derived form is to allow the common if — then — else style expres¬

sion. This is the same as a match expression matching over the boolean type,
if e\ then e2 else £3 =>•

match e\ with true —*■ ^2 | false —> £3 end
In the above syntax all function definitions must have a single identifier as

the argument. In general it is more convenient to have a pattern here, particu-

40 Chapter 3. Core Nitro

larly where the pattern is fully exhaustive. Hence we have the derived form
fun pattern —> e =>■

fun x —> match x with pattern —> e end
Value declarations which involve a function definition can be translated by

giving each argument following the name of the function. This works inside
let expressions as well as let rec expressions. These derived forms are applied
recursively until each let binding defines exactly one pattern as allowed by the
core syntax described above,

let pattern (patterns) p = e =4>
let pattern (patterns) = fun p —> e

let pattern (patterns) p = e\ in e2 =>

let pattern (patterns) = fun p —> ei in e2

let rec pattern (patterns) p = e\ in C2 =>

let rec pattern (patterns) = fun p —> e\ in e2

Nitro does provide for the user definition of infix operators. These must
all start with an operator character and the operator character is used by the
parser to determine precedence. This is the same device as used in OCaml.
An infix application is then made into the equivalent prefix application by the
parser.

e\ op <?2 ==>

op e\ 6?2

Tuple expressions and patterns are translated into record expressions and
patterns. Each position in such a tuple expression or pattern is given a record
field label of the form i_j where i is the position in the tuple and j is the total
length of the tuple.

This shows the derived form for the case of pairs, the rule is scaled for tu¬

ples of greater size. This same rule is applied to both patterns and expressions,
so the x and y here are either both expressions or both patterns.

0A) =>•

{1 _2 = x; 2_2 = y ;}
There are no top-level recursive value declarations. These can be simulated

3.1. Syntax 41

by pushing the recursion into a nested declaration. The rule for this is given
as:

let rec x = e =>

let x = let rec x = e inx

The expression to be defined recursively must be a function expression, this
rule is inherited from the rule for let rec expressions.

An 'or-pattern' allows several patterns to be mapped to the same expres¬

sion in a match rule. Often this is simply more convenient, sometimes it gives
a more intuitive definition of a function. Furthermore or-patterns allow a final
case in a pattern match to consist of an or-pattern which matches any of the
constructors not matched above. This is more robust than a wild-card pattern
since if the tagged union type in question is updated with more constructors
then the compiler will emit a warning reminding the programmer to update
the function definition. In addition 'or-patterns' may be efficiently compiled
see [50]. For the purposes of formal definition, or-patterns are defined as a

derived form. First or-patterns must be lifted to the top level of a pattern and
then match rules are duplicated with respect to the top-level or-patterns.

Con (p\ | p2) =4>

(Con p\) | (Con P2)

{(fieldsi) lab = (p\ \ P2) ; (fields2)} =>

{(fieldsf) lab = p\ ; (fields2)} \ {(fieldsf) lab — p2 ; (fields2)}
(p\ I Pi) asx=^

p\ as x | p2 as x

(P\ \pi)-i=^
(P\ '■ *) I (P2 : t)

As with the let binding derived form this is applied recursively until all
or-patterns may be removed from the program with the following rule. (p\ |
p2)->e=>

p\-^e\p2->e
Note that this means that any identifiers which are bound within an or-

pattern and used in the corresponding expression must be bound in both sides

42 Chapter 3. Core Nitro

of the or-pattern (and to the same type of object).
With the addition of side-effecting expressions there are some expressions

which do not produce a useful result. These expressions are evaluated only
for their side-effects. These expressions will often evaluate to the unit value
(). Many such expressions may be sequenced together using nested let expres¬

sions. In addition the convenient semi-colon syntax used in both OCaml and
SML is supported in Nitro. An expression may be a list of expressions sepa¬
rated by semi-colons. The overall result of the sequence of expressions is the
result of evaluating the final expression. Such a sequence of expressions may

be translated into a series of nested let expressions.

let () = e\ in C2

Note that this forces the type of each expression in a sequence expression
(other than the final one) to be of type (). This was considered preferable to

using the _ in the derived let expression. The programmer can always turn

any other type of value into a unit value using an ignore function defined as:

let ignore x = ()
In this way the arguably questionable 'throwing away' of a value is at least

done explicitly and hence self-documented. In addition the compiler need not
be very smart to remove the unnecessary matching of the unit values to the
unit patterns.

The following sections formally define the static and dynamic semantics of
core Nitro programs using sets of inference rules.

3.2 Static Semantics

The rules in this section define the static semantics of core Nitro. These are

used to specify which programs a Nitro compiler should accept and which
types should be assigned to them. Before the rules are presented the typing
contexts against which program fragments are checked are described. Auxil¬
iary functions used within the inferences rules are then detailed. The syntactic

3.2. Static Semantics 43

restrictions placed on Nitro programs are given in section 3.2.6 . Finally the
rules for type checking begin with those for expressions in section 3.2.8.

3.2.1 Typing Contexts

Typing takes place within a typing context. A typing context contains infor¬
mation already known about the program. In the rules which follow C and
subscripts such as Cn will be used to denote a typing context. The separate

parts of a typing context are as follows.

• A value environment, this maps value identifiers to types. In the rules that
follow Venv will be used to denote the value environment part of a typing
context.

• Afield environment, this maps identifiers as record field labels to the par¬

ent type in which the field is defined and the type associated with that
field. In addition whether or not the field is a mutable field is stored. To

denote the field environment part of a typing context, Fenv will be used.

• A constructor environment, this maps tagged type constructor identifiers
to the type of the argument to the constructor and the parent tagged type
within which the constructor was defined. To denote the constructor en¬

vironment part of a context, Cenv will be used.

• A type name environment, this maps type names to information about
types; the number of type parameters to the given type. To refer to the
type name environment component of a context Tenv will be used.

In the semantic rules which follow the term C + Venv will be used to mean

the context C modified by adding the value environment Venv to the current
value environment component of C. Also to reduce the number of rules a

phrase within angled brackets () is a first option. The rule can be read either
with all of the first options present, or with none of the first options present.
Similarly for a second option written within double angle brackets (()).

44 Chapter 3. Core Nitro

3.2.2 Type Schemes

A type xi is said to be an instantiation of a type scheme a = V(('ai ...'an)).x
if x i can be obtained by applying a substitution over the type x such that the
domain of the substitution matches the set of type variables ('a\.. .'an). We
write x = inst(c) if this is the case.

Two type schemes are considered equal if they differ only in a renaming
and/or reordering of the bound type variables. Also if Oj can be obtained by
deleting the bound type variables which do not occur in the body from the
type scheme 02 then ai and c>2 are considered equal.

3.2.3 Auxiliary Functions

There are several auxiliary functions which are used in the semantic rules for
the core Nitro language. These are:

C09\C The constant type function C09\i takes as argument a literal constant
and returns the type of it. For example CO'.A/(l) = int. For core Nitro the
literal constants are: the integers, the boolean values (true and false) and
the unit value written as ().

9v[Information about a record field label is gained from a typing context via
the record field label function 9.{. From a given typing context and field
label two types are returned. The first is the type to which the record field
belongs and the second is the type associated with the particular field. In
addition the field may be marked as mutable.

The two types returned may be any instantiation of the stored types with
respect to the type variables stored in the type environment together with
the parent record type. For a field stored as (xi,X2) where X] is stored
together with type variables 'a\ ...'an then the two types returned may
be (X3,X4) where X3 = 5(xj) and X4 = S(x2) for some substitution S such
that the domain of S is {'a\ ,..'an}.

3.2. Static Semantics 45

This function must take special care with field names generated by tuple
expressions or patterns expanded to their underlying record type form.
The field label i-j contains enough information to generate both the par¬

ent tuple type and the type of the argument.

Given a mapping of record-field labels to types and a typing context the
record field mapping function 5^ returns the parent type to which all the
field labels belong.
This function only succeeds if the set of label names all belong to the same

record type, all are mapped to the type defined within the definition of
the parent record type, and all labels that belong to that record type are
defined within the given mapping. Note that this function must also
take into account the typing of tuple fields since these are not generated
by type descriptions.

T The constructor type function T takes as arguments the current typing con¬

text and a constructor identifier. It returns the type of the constructor
which will be an arrow type for those constructors which have an asso¬

ciated argument. For those constructors which have no associated argu¬

ment then the type returned will simply be the parent tagged union data
type which contains the constructor. Where T (C, Con) = xarg —> xres, then
xarg is the type of the associated argument and xres is the parent tagged
union type to which the constructor Con belongs.
The type returned may be any instantiation of the stored type according
to the type variables associated with the parent tagged union type in the
same manner as described above for the tM function.

3.2.4 Environment Closure

In order to allow the polymorphic use of identifiers defined in Nitro programs

the static semantic rules will make use of a closure operation Clos. The closure
of a type Clos(x) is defined as V('a\...'an).x where 'a\..!an are the type variables
occurring free in x (also written FTV{x)).

46 Chapter 3. Core Nitro

Closure can be applied according to a given semantic object, most com¬

monly the current context so that Close,(t) means V('aj...'an).i where 'a\...'an =

FTV(x)\FTV(C).
In addition the closure of an environment must take special care in the pres¬

ence of mutable record fields. The same device employed in SML is used here.
Expressions are defined as expansive or non-expansive. A non-expansive ex¬

pression is defined by the grammar given in figure 3.4 and all other expressions
are considered expansive.

Where the closure of a value environment Venv is taken, then for every iden¬
tifier x in the domain of Venv there is a pattern p matching an expression e

which defines x. The closure of Venv then depends on the structure of e such
that where Venv(x) = x

then

(Closc,p(Venv))(x) =x
whenever e is expansive. Where e is non-expansive then as before
(Close,p (Venv)) (jc) = V((FTV (t) \FTV (C)) .x
Note that the grammar for non-expansive expressions given could be ex¬

panded upon but it is a deliberate choice for the sake of predictability not to.
For example one could allow record expressions in which all the record field
initialisations are non-expansive. Having done this one could allow a field
access where the record expression is non-expansive, though this kind of ex¬

pression would rarely be of use. Retaining the simplicity of the grammar for
non-expansive expressions and thus the ease with which a programmer can

predict which expressions a compiler will allow was judged to be of greater
value than allowing those extra expressions.

3.2.5 Notes

This section contains some small notes that may aid the reader in understand¬
ing these rules, particularly if the reader is familiar with similar functional
languages and their definitions such as that of Standard ML[51].

Record field labels all begin with a lowercase letter and can be determined

3.2. Static Semantics 47

nexp := c

x

{nexp)
fun x —> e

Con {nexp)

Figure 3.4: Grammar of non-expansive expressions in Nitro.

as being record field labels rather than value identifiers due to their position in
the source code.

All constructor identifiers and record labels belong to exactly one type. Al¬
though core Nitro does not contain a module system, were one to be added,
this would provide a mechanism for the reuse of constructor identifiers and
record field labels.

3.2.6 Syntactic Restrictions

In this section the syntactic restictions placed on Nitro programs are detailed.
These allow the rules here to be more concise since they need not cover pro¬

grams which violate the syntactic restrictions.
A pattern may not define an identifier more than once. Note that this re¬

striction does not apply to or-patterns since these are removed by a derived-
form source transformation before the syntactic restrictions are applied.

A record type declaration may not define the same record field label more

than once. Similarly a record creation expression may not define a field label
more than once.

Similar to record type definitions a tagged union type declaration cannot
define a constructor identifier more than once.

3.2.7 Definitions

This section briefly describes the assumptions that the reader may make when
reading the typing rules for expressions. These assumptions are of the typing

48 Chapter 3. Core Nitro

environment in which the typing of expressions will take place and occur due
to the way in which type and value definitions are treated. The treatment of
type and value definitions is formalised in section 3.2.12.

A value definition will add the defined names to the value environment

component of the typing context. This means that when typing an expression
it can be assumed that the names of all previously defined values are in the
typing context's value environment with the appropriate types.

Each record type definition defines a set of record labels which belong to the
type being defined. Each record label must belong to exactly one record type.

Similarly for tagged type definitions the constructor identifiers must belong to
one parent tagged type. This means that when typing expressions the use of a

record field label or tagged type constructor can uniquely determine the parent

type involved. For example in the expression e.lcibel the required type of e can
be determined from label. Note that this is in slight contrast to the treatment
of record labels in SML. The treatment of records in the Definition of Standard

ML have been criticised by some authors for example [52].

3.2.8 Expressions

The rules in this section define the static semantics for the expressions within
core Nitro. The rules all have the form C h expr =>- x where C is a typing context,
expr is the expression to give a type to and x is the type which may be given to
the expression within the given typing context.
C h expr => x

C09t(c)=x
Chc=>T

C(x) = a x = inst(o)
C hr=)-x

C b e =r- x

C b (e) =>■ x
(3)

3.2. Static Semantics 49

C h e => x

(4)
C h e : x => x

C b p => (Venv,xp) C he\=>xp C +Close,p(Venv) b e2 => x'

(5)
C b let p = e\ in e2 => x

Venv = {x : xarg } C + Venv h e => xres

C b fun x —» e => (xarg —> xres)

C b c \ xarg > xres Cbe2 ^ xarg

C b e i £2 =4>

(6)

(7)

The following rule allows monomorphic recursion. Notice how the closure
of the environment obtained by adding the identifiers defined in the pattern
is used for the typing of the body of the recursive definition, but in the in-
tialise expression there is no closure. The effect of this is that a function cannot
be used polymorphically in the body of its own definition but may be used
polymorphically in the body of the let-expression just as with a non-recursive
let-expression. Recall as well that due to the syntactic restrictions the intialis-
ing expression for a recursive let-binding must be a function.

Cbp =>• (Venv,xp) C + Venv \~e\=>xp C + Close,p(Venv) \-e2 => x
(8)

C b let rec p = e\ in e2 => x

T(C, Con) = (ti —> x) C h e => Xi

C b Con e =$> x

T(C,Con) = x x^{x\ —> X2)
C b Con => x

(9)

(10)

Match expressions (Rule 11) rely on the rules for a match. These are defined
in section 3.2.11

C b match =4>(ti —> x) C b c => Xj
(11)

C b match e with match end =4- x

50 Chapter 3. Core Nitro

Note that in rule 12 the marking of the field as mutable or not is ignored
and the application of the M should be regarded as allowing the return of a
marked field or not. This is achieved with the use of the first option to produce
two separate rules. In contrast rule 13 specifically requires that the field is
marked.

(12)

(13)

(14)

C b e =4- x i M(C, label) = (mutable) (xi, x)
C b e.label => x

C e\ => Xi !M(C, label) = mutable(xi ,x) C b ej => x

C b e\.label <— g2 =4- ()

C b fields =>■ p p) = x

C b { fields } => x

3.2.9 Record Field Initialisations

Rule 15 defines how to type a list of record field definitions of the form label =

e ; where label is the record field label being defined and e is a Nitro expression.
The rule here allows a list of record field definitions to be given a mapping
from field names to types. Recall that the syntactic restrictions prevent the
same label from being defined more than once.

C b fields =4- p

C b e\ =4* X (C b fields => p)
(15)

C b lab = e\ ; (fields) => {lab i—» x}(+p)

3.2.10 Patterns

The rules in this section define when a type can be given to a pattern. In order
to type expressions within the scope of a pattern a Nitro compiler must also
bind the identifiers defined by the pattern to a type. Therefore the rules in this
section are all of the form: C b pattern => (Venv,x). Here C is the typing con¬

text, pattern is the pattern to type check, Venv is a mapping from the identifiers

3.2. Static Semantics 51

defined in pattern to types and x is the type which may be given to the whole
pattern.

Note that in Rule 22 in which record field labels are matched, the pattern
need not define all of the labels within the given record type. The rules enforce
that all of the field labels belong to the same type.

The rules begin with the underscore pattern which defines no new identi¬
fiers and thus infers the empty value environment. It may also be given any

type.
C b pattern => (Venv, x)

C\~ - => ({},t)

C I- x => ({x : x},x)

Chp => (Venv,x)
C\- p as x => (Venv U {x : x}, x)

C\- p => (Venv, x)
C b p : x =>• (Venv,x)

Cb p => (Venv,X\) T(C,Con) = (xi —■> x)
C b Con p => (Venv, x)

T(C,Con)=x x^(xi —> X2)
C b Con ({},x)

Cb fields ..patterns (Venv,x)
C b {fields^patterns} => (Venv.x)

C b fields ..patterns => (Venv.x)

(16)

(17)

(18)

(19)

(20)

(21)

(22)

For the typing of a field pattern, whether or not the field is mutable is ig¬
nored. As before this is done using an optional part of the rule.

52 Chapter 3. Core Nitro

C\~ p\ => (Venvi,Ti) 9^(0fab) = ((mutable)) (x,xi)
(C \~ fields-patterns =>(Venv',x))

C h lab = p i ; {fields-patterns) =$■ (Venv\(UVem/),x)
(23)

3.2.11 Match Rules

The rules in this section define the static semantics of a match. The result will

be an arrow type from the common type of all the patterns to the common type
of all the associated expressions.
C h mrule

C b match

C b p ==> (Venv, x) C + Venv h e =>X\

C b p (x -► Xi)

C b mrule (C b match =>■ x)
C b mrule (| match)

(24)

(25)

3.2.12 Definition Semantics

Value definitions are typed as let expressions, except that there is no body ex¬

pression in which the bound variables are used. Instead the bound variables
are retained within the type environment and possibly used in subsequent
value definitions.

C b let p = e => Ci

Cbp (Venv.x) Venv\ = Close,p(Venv) C) = C + Venv\
C b let p — e => C\

(26)

Type definitions modify the type environment of the typing context. Record
and tagged union type declarations also modify the record environment and
constructor environment components of the typing context respectively.
C b tydec =>■ Cj

3.2. Static Semantics 53

C\ — C + J'env C\ b tybind => (Tenv, Fenv, Cenv)L : L (27)
C b type tybind => C\ + Fenv + Cenv

54 Chapter 3. Core Nitro

C b tybind =>■ (Tenv, Fenv, Cenv)

x = tyname (tyvars) C,T b fieldecs => Fenv\ Tenv\ = {tyname t—> tyvars}
(C h tybind =>■ (Ten\>2, Fenvi, Cenv))

C b tyvars tyname — fieldecs (and tybind)
=4- (Tenv\ (\JTenv2),Fenv\ (\JFenv2), {}(UCenv))

(28)

x = tyname (tyvars) C.x, const rs b Cenv \ => Tenv\ = {tyname h-> tyvars}
(C b tybind => (Tenv2, Fenv, Cem>2))

C f- tyvars tyname = constrs (and tybind)
=>• (Tenv\(UTenv2),{}(UFenv),Cenvi (\JCenv2))

(29)

C, x b fieldecs =>• Fenv

Fenv 1 = {label 1—» (x,Xi)} (C,x b fieldecs =>- Fenv2)
(30)

C,x b /o&eZ : Xi ; (fieldecs) =>• Fenvi(+Fenv2)

Fenv 1 = {label 1—» mutable(x,Xi)} (C,x b fieldecs => Fenv2)

C,x b mutable /oZ?eZ: Xi ; (fieldecs) => Fenvj (+Fenv2)
(31)

C,x b constrs =4> Cenvj

Cenvj = {Con 1—> (xi —> x)} (C,xb constrs =>■ Cenv2)

C,x b Con of Xi (| constrs) => Cenv\ (+Cenv2)

Cenvj = {Con 1—> x) (C,x b constrs => Cenv2)

C,x b Con (| constrs) => Cenvi (+Cenv2)

3.3 Dynamic Semantics

This section presents the dynamic semantics of core Nitro programs. An ex¬

pression may evaluate to either a value, as described in the following section,

3.3. Dynamic Semantics 55

or the special value STOP. Since core Nitro does not have an exception mech¬
anism ST OP is a fatal error. This means that the program will stop running,
and the implementation is free to choose whether or not to display some diag¬
nostic message to the user. The STOP value does not indicate that a type error

occurred.

A pattern is evaluated against a specific value and will return either a new

value environment or FAIL to indicate that the value did not match the pattern.
Note that a FAIL does not indicate a fatal error since there may be further
patterns to try. Once all patterns have been exhausted a FAIL is promoted
to a STOP.

Only well-typed programs are considered. This simplifies the rules some¬

what and also means that there are specific circumstances under which STOP
will occur. The only situation is a pattern failure where there are no more pat¬
terns to try. A simple example is the following let-expression:

let Some x = None in x

3.3.1 Representation of Values

A value may be as described in the following table. The first column in this
table gives the identifiers which will be used in the following rules to denote
a member of the given set. The next column is the name of the set. The third
column describes the contents of the set.

v G Value = Record U Tagged U FcnClosure U Constant
r G Record = Lab fin Val
t G Tagged = ConUConxVal

(x,e,E:VE) G FcnClosure = Valueld x Exp x Env xVEnv
c G Constant = predefined constants
a G Address = memory locations

3.3.2 Function Closures

Function closures are the representation of functional values. These match
closely the representation of functional values given in [51]. The informal def-

56 Chapter 3. Core Nitro

inition of a function closure (x,e,E,VE) is that the environment E holds the
environment at the time of the function creation. The value environment VE

will hold the recursive functions.

3.3.3 The Rec operation on value environments

The Rec function operates on value environments and is intended to perform
a single unrolling of recursively defined functions ready for their possible ap¬

plication. The recursive function must have the following properties:

• Dom{VE) = Dom(Rec(VE))

• if VE{x) ^ Fenclosure then VE(x) = (Rec(VE))(x)

• if VE(x) = (y,e,E,VE2) then (Rec(VE))(x) = (y,e,E,VE)

As mentioned the recursive functions which are contained within the VE

component of a function closure are unrolled once at definition time and once

again at application time. This means each time it is applied recursively it is
unrolled once. The Rec function is therefore applied in two rules: Rule 37 for
application and Rule 40 for recursive declaration. An example is shown in the
notes section 3.3.9.

3.3.4 The State and STOP Conventions

The state consists of a mapping from addresses to values. The dynamic se¬
mantics take place within a global state which is updated and inspected only
by those rules which correspond to the record-related expressions. However
all other rules which contain sub-expressions must observe the possible side
effects of the sub-expressions. This can be laborious and detract from the main
purpose of each rule, hence the rules which follow which do not explicitly
mention the state are subject to a convention which states that if a rule is pre¬

sented as:

3.3. Dynamic Semantics 57

E b phrasei => V| ... E \~ phrasen => vn

E b phrase =>■ v

Then this rule is expanded to mean:

E,sq b phrasei => vi,si ... E,sn-\ b phrasen =>• vn,sn

E,sq\~ phrase => v,sn

In this way the side-effects of each of the sub-expressions of the main phrase
are accumulated and inherited by the conclusion for the whole rule. In addi¬
tion the order of evaluation is set to be left to right according to the order of
the premises. This convention will be referred to as the state convention.

The STOP convention is similar. An expression may produce STOP if any

of its sub-expressions do so. In this instance however we require multiple rules
for each sub-expression which may fail. One can infer an additional rule for
each sub-expression, such that all sub-expressions to the left have not failed,
the current sub-expression fails and the conclusion is that the whole expression
fails.

If a rule is presented as:

E b phrase\ vi ... E b phrasen => v„

E b phrase => v

then the first additional rule is:

E b phrase \ =>• STOP

E b phrase ==> STOP

and the others are all of the form:

E b phrase \ =>v\ ... E b phrase i-1 =>■ v,_i E b phrasei =>• STOP

E b phrase => STOP

As a small note it should be observed that the expansion of the stop con¬

vention may cause the same rule to be generated twice. Such duplicate rules
can be safely ignored. As an example the rules for match expressions 43 and

58 Chapter 3. Core Nitro

44 both expand to give the same rule indicating a STOP value is the result in
the case that the first sub-expression fails.

3.3.5 Expressions

E b expr =>• v/STOP

val (c) = v

E \~ c =>v

E{x) = v

E x => v

E b fun v —» e =>• (x,e,E, {}) in Fenclosure

E b e\ (x,e,E\, VE) in Fenclosure E b ei =>• V2

E2 = E\ + {v 1—► V2} +Rec(VE) E2 b e => v

E b ej ^2 v

E b ej =>• vj E,v\\~p=>VE E + VE\~e2=>v

E b let p = e\ in e2=> v

E b e\ =>■ vi E, vi b p =^> FAIL

E b let p = e\ ine2=> STOP

(34)

(35)

(36)

(37)

(38)

(39)

Note that for recursive let declarations the syntactic restrictions force the
intialising expression to be a function. Since the only pattern kinds which can

have function type cannot fail then the program would not pass type checking
if the pattern could fail. For this reason there is no rule equivalent to rule 39.

E b e\ =>■ vj E,v\\~p=s»VE E + Rec(VE) b e2 => v

E b let rec p = e\ in e2 => v

E b Con => Con in Value
(41)

3.3. Dynamic Semantics 59

E \~ e => v

: (42)
E b Con e =>• (Con,v) in Value

E \- e => v E,v b match => v\
(43)

E b match e with match end =4- vi

£he=^v F, v b match => FA/L

E b match e with match end => STOP
(44)

Rule 44 covers the case where all the patterns in the match rules of a match
expression fail to match the value. The dynamic semantics of match are defined
in section 3.3.6.

3.3.5.1 Records

This section defines the dynamic semantics of record expressions. This in¬
cludes record creation, record field access and record field update. These rules
are distinct from the rules defined above in that they explicitly mention the
state and hence are not subject to the state convention.

s,E b fields => r in Valuers' a £ Dom(s')
(45)

s, E b {fields} => a, s' + {a i—* r}

s,E \~ e => a E Addr, s' s'{a) — r in Record relabel) = v

s,E b e.label v, s'

s,E b e\ => a in Addr,si s\,E h e2 => v,S2 S2(a) = r in Record
r2 — r\label + {label t—> v} 53 = ^2\{^} + {a i—> ^2}

s,E b e\.label <— C2 =4- (),S3

3.3.5.2 Field Initialisations

(46)

(47)

E b fields =* r/STOP

60 Chapter 3. Core Nitro

E b e => v (E h fields =>• r)
(48)

E h = e ; (fields) => {label i—> v}(+r)

3.3.6 Matches

A match is considered against a given value. For match rules it must be distin¬
guished between the pattern failing and the associated expression evaluating
to STOP. This is the reason that STOP is distinct from FAIL. In the case that the

pattern fails to match the given value then FAIL is produced and in Rule 50 if
there are more match rules to follow then these are tried.

By the STOP convention Rule 49 states that if the first match rule produces
a STOP then the whole match also produces a STOP.

In summary there are three cases to consider.

• The pattern of the first (and perhaps last) match rule matches the given
value. In this case the the result is either a new value or STOP depending
on what the expression of the first match rule evaluates to.

• The pattern of the last match rules fails to match the value. This in turn

implies that no pattern in any of the match rules have matched the given
value otherwise this pattern would not have been tried. In this case the
whole match results in a FAIL. This case is covered by rule 51.

• The pattern of the first match rules fails in which case the subsequent
match rules are considered against the given value.

£,vh match => v\/FAIL/STOP

E,v\~ mrule =>- vj
(49)

E,v h mrule (| match) => vi

E, v b mrule =>■ FAIL E,v h match => v\/FAIL
(50)

E,v b mrule \ match =$■ v\/FAIL

A single match rule then can either produce FAIL if the pattern fails to
match the given expression. If the pattern does match the value then either

3.3. Dynamic Semantics 61

a result value or STOP is produced based on what the associated expression
evaluates to.

E,v b mrule => v\/FAIL/STOP

E, v h p =>■ FAIL

£,vh p —> c => FA/L
(51)

E,v\~ p =>VE E + VE\~e=r-v\

E, v h p —>• c =» vi
(52)

3.3.7 Patterns

Patterns are matched against a given value and produce a value environment
or FAIL if the pattern does not match the given value.
E,v b pattern => VE/FAIL

E,v b_=> {}

val(c) = v

F, v h c => {}

val(c) 7^ v

E,vT c=> FAIL

E,v |-jc=>{jmv}

(53)

(54)

(55)

(56)

v = Con

E,v h Con =>- {}

v ^ Con

E,v h Con => FAIL

(57)

(58)

v = (Con, vj) F,vi b p => VE/FAIL

E,vFCon p=>VE/FAIL
(59)

62 Chapter 3. Core Nitro

v^(Con,v i)
(60)

E,v b Con p => FAIL

v = air\Addr s(a) = rir\Value E,r\- fields =>VE/FAIL
(61)

s,E,v h {fields} =>• VE/FAIL, s

Note that in Rule 61 the state is mentioned - as it must be examined - but

it is not modified.

3.3.8 Field Patterns

E,r h fields^patterns => VE /FAIL

rilab) = v E, v h p => FAIL
(62)

E,r b lab = p ; {fields-patterns) => FAIL

r{lab) = v E,vh p =>VE {E,r\~ fields-patterns =>VEi/FAIL)

E,r b lab = /?; {fields-patterns) => VE{+VE\/FAIL)

3.3.9 Notes

The use of the Rec function can now be shown via an example. Consider the
definition of a recursive function such as:

let rec count x = count {x + 1)
recall that this is a derived form for:

let count = let rec count = fun x —» count (x+ 1) in count
So by the rule for abstraction (Rule 36) the abstraction expression evaluates

to

{x,count (x+ 1),£,{}) in Fenclosure
due to the use of Rec in the rule for recursive let bindings (Rule 40) this

becomes:

(x,count (xT 1),E,{count i—> {x,count (x+ 1),£,{})})
So in other words the mapping of the recursive function count contains a

single mapping of the count function itself unrolled once. Whenever the count

3.3. Dynamic Semantics 63

function is applied, when the expression component of the function closure
itself is evaluated, this 'one unrolling' occurs. Therefore the count function is
always mapped in the environment containing a finite number of unrollings
of the function body.

Chapter 4

Foreign Data Interface

This chapter details the facilities provided in Nitro for inspecting and creating
values which must be manipulated by code written in another programming
language. The other language may be a lower-level language such as C or

a higher-level language such as Java. The main purpose of this is to allow
interfacing with other languages.

4.1 Motivation

A language allows the user to manipulate data through the use of primitives.
Primitives allow the creation, inspection and manipulation of data. The prim¬
itives in a low-level language allow the user to directly access the representa¬
tion of data in the user's program. A high-level language does not allow the
user to directly inspect the representation of data in the user's program. The
primitives provided by the high-level language are such that a language im¬
plementation may change the underlying representation of data and all uses of
the given primitives are still valid. Therefore the data inspection and manip¬
ulation primitives can be seen as an opaque interface. This allows an imple¬
mentation of the high-level language to ensure that all of the values in a pro¬

gram conform to a particular common representation. This in turn allows the
implementation to provide other runtime services such as garbage collection.

65

66 Chapter 4. Foreign Data Interface

The programmer cannot directly use data from another language, because that
data will not conform to the relevant internal representation for this language.
The garbage collector and other runtime services are usually written in another
language, because it manipulates that internal representation which we are not
allowed to inspect.

An abstraction-level programming language must provide the ability for
the programmer to control the representation of data in a program once it is
run. The principal reason for this is to enable the abstraction-level program¬

mer to inter-operate with the values of the high-level language for which the
abstraction is being provided. In order to provide an abstraction the language
may also be required to interface with operating system constructs or even di¬
rectly with the hardware. Further advantages of providing low-level control
over data representation in the abstraction-level language include the ability
to optimise abstraction routines such that the performance loss in utilising the
abstraction is as slight as possible.

This chapter will introduce the foreign data interface of Nitro. The pro¬

grammer is given the ability to describe how values of specific types are rep¬
resented in memory at runtime. This allows the programmer to access foreign
data. The ability the programmer has to define the layout of data structures
can also be used for data private to Nitro code. That is, code which does not
interface with the outside world. This means that the programmer can opti¬
mise data structures that are not foreign or exported. For this to be a useful
addition we insist that the programmer is still unable to subvert the type sys¬

tem of Nitro. The programmer should therefore be unable to access a value
as a value of an incompatible (Nitro) type. The type system is a static type

system, although some dynamic checks must be inserted such as array bounds
checks.

4.1.1 Marshalling

A marshalling interface is a common way for a high-level language to provide
access to foreign data. Because the high-level language only permits opera-

4.1. Motivation 67

tions on data which corresponds to its representation of values, the language
must provide a means to marshal arbitrary values to and from that internal
representation. Furthermore because the language does not provide the abil¬
ity to inspect arbitrary values, the marshalling code must be written in a lan¬
guage which does. In other words the marshalling code must be provided
by an abstraction-level programming language. Usually an implementation of
such a high-level language will provide C macros and functions allowing the
creation of values conforming to the internal representation. An interface is
then built from one language to another by using C to inspect the values of the
first language and create values of the second using the provided functions.
Unfortunately this means that marshalling routines must be written for each
separate implementation of the language. In practice this is often offset by the
language designer specifying a common set of C macros and procedures which
must be provided by an implementation. Alternatively there exist several at¬

tempts to generate C stub code automatically, see for example [53, 54].

For an abstraction-level programming language this is not suitable. Mar¬
shalling routines are exactly the kind of programming task that an abstraction-
level programming language is used for and it is not appropriate to require the
use of a further low-level language to manipulate foreign data structures. An
alternative arrangement is to provide our abstraction-level language with the
facilities to inspect and manipulate foreign values in a way that we can ensure

is safe. To do this we provide the ability to describe the representation of a

foreign data type. A programmer may still write an unsafe program, if they
make a mistake when writing the interface. If however, the interface is correct,
then the type-system of the language can make sure that no illegal operations
over the foreign data are performed. Additionally the compiler can help detect
an illogical interface, such as an ambiguous union type where a value could be
considered to be of two incompatible types because the test cannot always de¬
termine between the two.

In addition because Nitro is closer to a high-level language than C or other
low-level languages, Nitro is a good candidate for writing new applications

68 Chapter 4. Foreign Data Interface

that must interface efficiently with legacy code. Suppose there is a library writ¬
ten in a low-level language such as C, which provides some important func¬
tionality required by a new application, for example the parsing of XML[55]
data. If this new application is written in a high-level language then mar¬

shalling routines must be written to convert the C representation of the parsed
XML data into the representation of the high-level language. It may be the
case that the application requires many calls to the C parsing library and the
performance loss due to the repeated calls to the marshalling routines is too

expensive. In such cases the high-level language is often abandoned and the
new application written in the unsuitable low-level language C. In these cases

Nitro, an abstraction-level programming language, can be used as a compro¬
mise. Nitro can directly access the C representation of the parsed XML data
and so no marshalling routines are required. However the purpose of Nitro
is to provide the abstraction-level programmer with desirable high-level lan¬
guage features, and is hence a more suitable language in which to implement
the remainder of the new application than the low-level language C.

4.2 Data Representation Facilities

This section describes the various facilities provided by Nitro for using tagged
types to describe external types. Each new facility is described in a subsection,
which ends with a discussion of the typing requirements introduced by the
addition of the associated extension. This section aims to give an informal
account of the data representation constructions. The syntax and semantics,
both static and dynamic, are formalised in Sections 4.3, 4.4 and 4.5. To begin
with the basic idiom of a tagging representation of data is reviewed.

4.2.1 Tags in data representation

A common C idiom is a tagged union type. Union types are used as the type of
a storage location into which values of two or more types can be stored. When
we wish to use the value stored in a location of union type, we cast the storage

4.2. Data Representation Facilities 69

location to the type that we expect the value stored there to be. Often we use a

tag or kind field to record what type is stored within the union location. Here
is an example:
typedef int circle_dimensions;

typedef int square_dimensions;

typedef struct rect_d

{ int width; int height; }

rect_dimensions;

typedef enum { Circle = 1,

Square = 2 ,

Rectangle = 3

} shape_kind;

typedef struct shape_ {

shape_kind tag;

union { circle_dimensions circle;

square_dimensions square;

rect_dimensions rectangle; } dimensions;

} shape;

The intention is that a value of type struct shape_, holds a tag indicating
how the rest of the value should be interpreted. So that the value of the tag

field corresponds with the type of the value stored within the union dimensions
field. Often the programmer would then write macros for creating and access¬

ing valid shape values in a consistent manner. A high-level language will often
provide a special syntax for defining such tagged types and creating and in¬
specting tagged values. Additionally, because it is not possible to examine the
underlying representation of such a tagged value, it is not possible to subvert
the type system and access or create a value without using the tag. Therefore
all manipulations can be checked and ensured to be sensible.

Generally the lack of control over the underlying representation of tagged
values is of no concern. It does not matter to us whether the tagged value is
represented with the tag first and then the value, or vice versa. Also it does not
matter what numerical values are given to each of the tags. It might be defined

70 Chapter 4. Foreign Data Interface

by something like:

type shape = Circle of int

] Square of int

| Rectangle of (int, int)

However, where the type is that of a foreign language, such as the C shape type
defined above, we cannot use such a type, since it is unlikely to be represented
in the same way. If we could define where to place the tag and which numerical
values each tag should take, then we would be able to define the C shape type
in our high-level language. We could access such a value directly from Nitro
without marshalling. Also the type system of Nitro ensures that we cannot
create an invalid shape value. For example, where the union field is set to a

value of type circie_dimensions but the tag field is set to Rectangle. It also ensures

that we do not make a mistake when interpreting the contents of a shape value.

4.2.2 Custom tags

In the previous section we wanted to use the constructors of a tagged type to

represent the enumeration type used in the C code. We were prevented from
doing this because our tags would take on numerical values determined by the
Nitro compiler. Hence our first extension to the language of tagged types is to
allow the programmer to specify the value of each constructor's tag. We do this
using braces after the constructor name. With this extension we can implement
the enumeration type used in the shape type of the previous section.

type shape =

Circle {1}

Square {2}

| Rectangle {3}

Note that this will not allow us to subscript the union dimensions field of the
C struct. For that we require to add arguments to our Nitro shape type. A value
of this type will consist of a pointer to a word in memory which contains one

of the tag values.

4.2. Data Representation Facilities 71

4.2.2.1 Typing

There is no additional typing required for this extension. One might worry

about the possibility of assigning the same tag to two distinct constructors.
This does not affect type safety at this stage, however it will affect type safety
when we consider arguments to custom tagged types. In addition it is some¬

times desirable for two constructor identifiers to be interchangable, for exam¬

ple we may define a colour enumeration type which includes the two construc¬
tors:

| Grey {1}

| Gray {1}

4.2.3 Arguments

The example which provoked our use of tagged union types was the common
C idiom of using a value of an enumeration type to distinguish between the
different possibilities stored in a location of union type. In general we want
to use a tag to record the type of the values that surround it in memory. We
state the type of the argument after the value of the tag in the type definition.
The precedes keyword is used to indicate that the argument is stored after the
tag in memory. When we match against a tag with a precedes argument, the
pointer to the tag is incremented to give a value of the type of the argument,
which must therefore be a pointer type. This allows us to describe several
locations after the tag by using the tuple type.

Single ground type arguments cannot be given with the precedes key¬
word because a ground type is not a pointer type. For example the argument
precedes int does not make sense and will be rejected by the compiler. One
can of course still use the of keyword to indicate ground type arguments which
follow a tag.

With this additional facility we have all the tools necessary to fully describe
our C shape type. The definition is:

type shape =

72 Chapter 4. Foreign Data Interface

Circle {1} of int

Square {2} of int

| Rectangle {3} precedes (int, int)

4.2.3.1 Typing

The type checker must now worry about the possibility of two tags having the
same value. Clearly if we accidently defined the Rectangle constructor above as

having tag 2, then we could match against it when the real value was created
with the square constructor. This would mean we would incorrectly assume

that two integers followed the tag, when in fact there is only one. There is more

than one solution to this problem. The simplest is to reject any type definition
for which two constructors with identical tags do not have identical argument

types. Other possibilities are of little use at this point and are considered later.
The final criteria is formalised in the static semantics in Section 4.4.

4.2.4 Unboxed Values

A further requirement for enabling the inspection of foreign values is that we
are able to match long values without the dereferencing of a pointer as required
above with the simple custom tagged type. To this end Nitro provides the
immediate keyword to represent an unboxed value. Enumerated types become
more efficient, since we need not allocate space on creation of a value and we

also do not incur the cost of the dereference when matching against the value.
In fact we can now interface perfectly with C enumerated types. We do not
want to use an immediate type for the above shape type though, because the C
type that we are interfacing with is not an immediate enumerated type, it is a

struct type containing an immediate enumerated type.
The immediate type will be expanded upon later to cover more situations

that straightforward enumeration types. This will include the introduction of
tags which do not take up all of the word in which they are stored, hence
arguments to an immediate type can be stored in the word of the tag itself.
This is a common space optimisation in legacy C code. Also we later allow

4.2. Data Representation Facilities 73

struct tm

{

int tm_sec; /* Seconds .[0 —60] (1 leap second) */
int tm_min;/* Minutes .[0 —59] */
int tm_hour;/* Hours.[0— 23] */
int tm_mday;/* Day.[1—31] */
int tm_mon;/* Month.[0 — 11] */
int tm_year;/* Year— 1900. */
int tm_wday;/* Day of week. [0—6] */
int tm_yday;/* Days in year .[0 —365] */
int tm_isdst;/* DST.[—1/0/1] */

#ifdef USE_BSD

long int tm_gmtoff;/* Seconds east of UTC. */
const char *tm_zone;/* Timezone abbreviation . */

#else

long int tm_gmtoff;/* Seconds east of UTC. */
const char * tm_zone;/* Timezone abbreviation . */

#endif

} ;

Figure 4.1: C code defining the tm struct in the time.h header file.

tags to overlap. This means that we can interface with possibly-null pointers
in an elegant way.

Here we define the days of the week type, that could be used to represent
the tm_wday field of a tm struct as defined in the time.h system header file (on
Posix compliant systems[56]) and shown in Figure 4.1. Notice that although
the C code expects an integer our type would be more robust since we ensure

that we cannot create an invalid weekday value.

type immediate weekday =

Sunday {0} | Monday {1} | Tuesday {2} | Wednesday {3}

| Thursday {4} | Friday {5} | Saturday {6}

74 Chapter 4. Foreign Data Interface

4.2.4.1 Typing

There are no special requirements on the type checker for immediate types at
this point. However, the extensions mentioned above which will be discussed
in the sections which follow do require modification to the type system.

4.2.5 Masks for custom constructors

Often the number of different tags that a value may have is quite limited. The
arguments of the tags can also have quite small space requirements. When this
is the case there is always the temptation to pack the tags and the values to¬

gether into a single word. This is particularly the case with legacy code where -

at the time the code was written - storage space was at a premium. If we want
to interface with such code then we must provide a way for a tag to match
against only a portion of the tag value.

As an example we consider how a garbage collector may tag values. A
garbage collector must decide at runtime whether a value represents a pointer
into memory or is simply a long value representing an integer or a value of
some enumerated type. A common way to do this is to reserve the least sig¬
nificant bit of every value to tag the value as a pointer or an integer. Pointers
are generally word aligned and hence distinguished by a zero in the least sig¬
nificant bit, whereas integers are marked with a one in the least significant bit,
and must be shifted appropriately when loading and storing from memory.
The main implementation of the OCaml language is an example.of a language
which uses an internal representation such as this.

To recap, we need to match values against tags but only a portion of the
value is matched against the tag. We require a type which reflects this. In
Nitro we can use the mask keyword to modify a tag value. This means that
when matching against a tag, the candidate tag value is first masked before
being compared with the defined tag value. Here is a type for OCaml values.
type immediate ocaml_value =

Ptr { 0 with mask 1 } of heap_object

| Long { 1 with mask 1 } of int

4.2. Data Representation Facilities 75

let print_ocanil_value v =

match v with

Ptr hp -> print_heap_object hp

| Long i -> print_int (i >> 1)

let create_long i =

Long ((i << 1) + 1)

heap_object type and a function print_heap_object to print values of this type.
We have used the immediate keyword to operate on values as they are encoun¬

tered without interpreting them as pointers to tags. Our function, print_ocami_vaiue,
matches against either tag which only takes up part of the value. Hence the ar¬

gument here refers to the whole value. Our immediate tags before had no

argument since this did not make sense; if you match against the whole value
then you know the whole value and do not need an argument to represent it.
However when we match against only a portion of the tag value this usually
means that the rest of the tag value, o[Br all of it, represents some value.

We have not yet described how to use only a part of the tag value as the
argument, so in this example the whole tag value is also the argument value.
As described above this is perfect for pointer values since their representation
does not need to be changed. For long values this means that we have to
remember to shift the argument. In a later section we will see how this can be
done for us automatically.

4.2.5.1 Failing constructors

Adding arguments to an immediate tagged value changes the way that we

construct a value of that type. When the tag uses up all of the space of the tag
value, then using that constructor is equivalent to using a constant. The opera¬

tion cannot fail. However when we accept an argument, the argument may not
be of the correct form, that is, it may not match the tag. Hence creating values
with an immediate constructor that accepts an argument is an operation that
may fail. In this case the computation fails and exits. When Nitro introduces

76 Chapter 4. Foreign Data Interface

exceptions a pre-defined exception may instead be raised. Where == refers to

physical equality the pseudo code for the constructor application expression,
(Con v) then becomes:

let v' = Con v in

let Con v'' = v' in

if v'' == v

then v'

else error

4.2.5.2 Typing

As stated earlier, allowing tag values to be explicitly defined opens up the
possibility of tags being equal. When constructors may have arguments this
causes a type safety hole. Now that tags are permitted to match only a part of
the value there is greater scope for two tags to overlap and also for overlapping
tags to be useful.

Suppose we wish to add to our OCaml value type the possibility for a null
pointer. This might be useful if we wished to use the same internal represen¬

tation to compile a language which allows null pointers. We might then try to
extend our definition like this:

type immediate ocaml_value =

Null { 0 }

Ptr { 0 with mask 1 } of heap_object

| Long { 1 with mask 1 } of int

Without due care from the type system this could create a safety hole. The
ptr tag could match a value that had been created with the Null constructor. If
we then tried to interpret this as a heap_object we would then make an invalid
memory access.

In fact it is likely that we would have written many functions that would
now be rendered unsafe and need to be updated. Simply not allowing a def¬
inition where there are two tags that are not mutually exclusive is too restric¬
tive. The definition above is exactly the one we want. One possibility is for

4.2. Data Representation Facilities 77

the order in which the tags are defined to be important. A tag definition then
means, match against this tag only when those above have failed to match the
candidate value. A tag that appears below one with which it is not mutually
exclusive must have an argument type that is less general than the argument

type of the earlier tag. In practice the earlier tag usually has no argument and
hence any type is less general than it. Where two tags are mutually exclusive
the order of the matches against the values is not enforced.

Currently a tagged value is given the type corresponding to the type within
which the constructors that may have been used to create the value were de¬
fined. We would like instead for a tagged value to be given a type which rep¬

resents the set of constructors that were possibly used to create the value. This
situation is similar to the use of polymorphic variants within OCaml [57]. The
named types in which these constructors are defined can then be convenient
synonyms for the case where the set of constructors contains all the construc¬
tors for that type. Hence we obtain typings such as:

let v = Null

v : {Null}

let v2 = if ... then Null else Long 1

v2 : { Null | Long }

let is_null v =

match v with

Null -> true

| Ptr _ -> false
is_null : { Null | Ptr } -> bool

let b2 = is_null v

b2 : bool

(*

v2 may have been created using the Long constructor but
the function is-null does not test against this

*)

let bl = is_null v2

78 Chapter 4. Foreign Data Interface

type_error : ...

The final definition here raises a type error, because we attempt to apply a

function to a value which may have been constructed with a constructor that
is not matched against by the function.

It now becomes clear that our overall type system would be greatly en¬
hanced by allowing subtyping. We can see the type {Ptr | Long} as a subtype
of {Ptr | Long | Null } and similarly {Ptr | Long | Null} -> booi as a subtype of
{ptr | Long} -> booi. Hence our typing of masked constructor tags would ben¬
efit from being used in a subtyping type system since functions that do not
first check for Null can be written, but only applied to arguments that could
not have been created with Null. The next chapter explores this in more detail.

Some types simply do not make sense and should be rejected. The example
shown here is useful due to the fact that the Null constructor takes no argu¬

ments, hence it is safe to match against this constructor when the argument is
possibly a heap_pointer. In this case a heap_pointer would probably never equal
0, however even if it somehow did, we would not lose any safety by falsely
matching the Null tag. To see this, imagine that we defined the heap_pointer

type to be int. We could then construct a value as ptr o, this would match
against the Null even though it was created with the ptr constructor. However
there would be no harm, at least in terms of type safety, to do so. An exam¬

ple of an illogical type that should be rejected - by applying the rule that a tag
which is not mutually exclusive with an earlier tag must have a subtype for its
argument type - would be the following:
type illogical =

String {0 with mask 1} of string

Int {0 with mask 1} of int

It should be noted that the task of the type checker to check whether or not
two tags are mutually exclusive is not always trivial; consider the following
definition:

type immediate silly =

I { 2 with mask 2 } of int

| S { 0 with mask 1 } of string

4.2. Data Representation Facilities 79

Any value with the two least significant bits set to 10 will match both tags.
Finally we make an addition to the syntax to allow a tag that need not be

matched. We use the underscore to denote this. It is equivalent to a tag of
{ o with mask 0}, in that it will match any value. It is useful when there are

some special values of a type that should be matched against while anything
else can be considered as belonging to some other type. A good example is
possibly null C-style pointers, for example a C string.
type immediate c_string =

Null_pointer { 0 }

| C_string { _ } of char_string

Where we have defined char_string to represent C strings that cannot be
null. Underscore tags do not change our requirements of the type system, a

tag that uses the underscore is subject to the same restraints that one using a

tag of { o with mask 0} would be, hence generally an underscore tag is given
within the last constructor of a type, and is matched against last as all other
constructors must be checked first.

4.2.6 Tag operations

In the section above, the Long constructor was introduced. The constructor

though, matched against the format of a Long value and left it as it was. This
was not quite what we wanted, because to get the true value of the integer
value represented by the Long value we had to remember to shift the value one

place to the right. Similarly when creating a value with the Long constructor
we have to remember to shift the value one place to the left and add 1. This
resulted in the line for printing OCaml values looking like this:

| Long i -> print_int (i >> 1)

Clearly the definition of the constructor should be able to convey this infor¬
mation so that these operations can be performed automatically by the pattern
match. We also want the inverse of these operations to be performed when
we create the value. To enable this, Nitro provides tag operations. These are

affixed within a constructor definition, after the description of a tag and before

80 Chapter 4. Foreign Data Interface

the argument type. Tag operations are a restricted set of expressions with an

associated inverse operation. The type of an OCaml value can now be given
as:

type immediate ocaml_value =

Ptr { 0 with mask 1 } of heap_object

j Long { 1 with mask 1 } (>>. 1) of int

The (». l) gives the tag operation that must be performed on the argument of
the Long tag after we have matched the tag but before we match the argument

against any pattern. The associated inverse operation is applied to arguments
of a constructor when creating a value. This is done before we test that the
value is a valid argument to the constructor. The dot after the shift operation
in the above example tells the compiler that the inverse operation is to shift left
and pad out with ones rather than zeros.

4.2.6.1 Typing

The tag operations introduce no extra typing at compile time. However, extra

dynamic checks are inserted at run time to ensure that the value does not lose
information when the creation tag operation is used and its inverse is used to
deconstruct the value. For example when shifting such that the inverse shift
operation pads with zeros, the compiler must insert a check that the argument
value to which the constructor is being applied does indeed have zeros in those
bits which are shifted out. This ensures that when the inverse operation is
applied upon using the constructor to deconstruct the value, the argument
obtained is the same value as that which was applied, and hence can be seen

at the same type.

4.2.7 Multiple arguments packed in a tag

As mentioned above, it is often the case that the number of different tags is
rather small compared with the amount possible from the word size of the
machine. In addition the arguments may not require a whole word. When this

4.2. Data Representation Facilities 81

situation arises it is tempting to store the tag of the value and its argument in
the same word. We actually had something similar to this when we used the
least significant bit of an ocami_vaiue to flag whether the value was a pointer or

not. To store multiple tags is always possible by using intermediate types and
shifting. Sometimes though this is inconvenient when we want to access only
one of the values stored within a value without going through several layers
of constructors. One example is the header value for an OCaml heap object.
Heap objects in OCaml are stored with a single header value which describes
the kind of the object(s) following the header. The header value contains three
pieces of information. Firstly it stores an OCaml tag. An OCaml tag is one of
several defaults that indicate the following bytes represent a string, a function
closure, a record value or one of the other OCaml base types. In the case that
the value is a tagged union type, then the tag is the numerical representation
of the constructor used to create the value. The second piece of information
stored is a further tag used by the garbage collector to say what state the value
is in. This is known as the colour of the value. Finally the header value stores
how large the heap allocated object is.

To represent a heap object in Nitro then, we use multiple arguments within
a tag, since this allows us to access these three pieces of information in any

order. Here is the definition:

type heap_object =

Closure {247 with mask OxFF;

_ (mask 0x300 >> 8) of gc_colour;

_ (>> 10) of int; }

| String { 252 with mask OxFF;
_ (mask 0x300 >> 8) of gc_colour;

_ (>> 10) of int}

| Double { 253 with mask OxFF;
_ (mask 0x300 >> 8) of gc_colour;

} precedes (int * int)

and immediate ocaml_value =

Ptr { 0 with mask 1 } of heap_object

82 Chapter 4. Foreign Data Interface

| Long { 1 with mask 1 } (>>. 1) of int

Note that the arguments within the braces of the tag only refer to the por¬

tion of the tag masked by the associated argument. This is in contrast to those
arguments outside the braces that refer to the entire tag value. Generally the
arguments within the braces are of type integer or a related type since pointers
cannot in general be stored in less than a word. In any case the compiler inserts
a check that the arguments given to a constructor when used to create a value
do not lose information when masked upon (or other tag operation) to fit the
values into the argument. So for example we could use this to utilise the least
significant bits in a pointer type where the pointers are always word aligned -

whether this reads better than having the pointer argument outside the braces
and hence referring to the whole tag value is a matter of personal taste.

4.2.7.1 Typing

A valid type definition containing multiple arguments in Nitro does not con¬

tain multiple arguments within a single constructor which overlap. The con¬
structors must still follow the rules for overlapping constructors in that any

two which are not mutually exclusive must either have the same argument

type, or the constructor with the more general argument type is matched against
first in any pattern matching. The wild card argument tags have no effect on

whether or not a constructor overlaps with another since that portion of the
tag may be any value.

4.2.8 Bare Arrays

This section describes how arrays are handled in Nitro. The chosen repre¬
sentation must allow foreign arrays to be accessed, but there must also be an

array format to native to Nitro which is convenient to use. The array format
described here allows both such without requiring two separate array repre¬
sentations. Therefore foreign and native arrays need not be distinguished from
each other, for example, by storing them separately.

4.2. Data Representation Facilities 83

4.2.8.1 Motivation

Arrays are a crucial part of the foreign data interface. If one is to access foreign
values, one must be able to access an array of foreign values. A type-safe
language however must ensure that an access to an array is made within the
bounds of the array.

In a high-level language safe array access is commonly achieved by storing
the length of the array together with the array. Any index into the array is
checked (at runtime) to be within the bounds of the array by comparing the
index value with zero and the length stored with the array. In the case that
the index is outside the bounds of the array then either an exception or a fatal
error is raised.

This arrangement is not an option for external arrays, since while the length
may be stored with the array, it may not be in the format expected. Certainly
there exist several language implementations which store the length of the ar¬

ray in different ways, hence it is not possible to access all kinds of arrays with
that technique.

A more general method of representing arrays is to allow the user to de¬
scribe to the compiler how the length is stored. The user may then access the
elements of arrays of different representations and the compiler can ensure

that such accesses are safe.

This scheme is a compromise between two styles of array access. The un¬

safe version in which the user must do all of the array bounds checking them¬
selves and the abstracted version in which the storing of the array length and
the bounds checks are automatically inserted by the compiler. In Nitro the
checking of array indexing operations is done explicitly by the programmer

but the compiler checks that the programmer has done it correctly. Note that
the compromise is in the flexibility not in any ability to avoid array bounds
checks because the programmer believes that the index will never be invalid.
However it could be argued that the extra information available to the com¬

piler may allow an optimiser to remove more unnecessary bounds checking.
This possiblity is not explored in the current text.

84 Chapter 4. Foreign Data Interface

4.2.8.2 Details

To realise this scheme in Nitro there is the concept of a bare array. The main
idea is that the user must provide the length of the array in order to make an

array access. The type of a length expression is a new type, called an index
type, which the compiler can treat separately to ensure that the correct length
expression is given for each array access.

An access to a bare array is written as a. (e). [i], where a is the array to be
accessed, e is the length of the array and i is the index into the array. In the
common case the expression e will be an index variable, but in general could
be any expression with index type.

The type system must ensure that e is indeed a valid representation of the
length of a. To achieve this the type of a bare array has an associated index
variable. Index variables act as existential type variables; they cannot match
any other index variable but themselves.

An index type on its own is written index, (v) and as part of an array type
as x array, (v), where x is the type of the elements within the array.

To create an array we use the array ej e2 expression, where e2 is the length
of the new array and must have index type. The index variable of the index
type is then associated with the resulting array type. The expression ei is eval¬
uated to give the value with which all the elements of the array are initialised.

When an access to a bare array is made, such as ei . (ten). [e2], the type

system forces the expression ei to have the type of a bare array, and ten must
have an index type. Furthermore the index variable within that index type
must be the same as the index variable associated with the array type. The
expression e2 must have type int. No check is made at compile time regarding
its size and hence suitability to index into the array ei. At runtime the value
is checked against len which is known to hold the length of the array.

Values of type index, used to create arrays and as the tests, are created
with the let index construct which has the form let index v = eiin e2. The

expression ei must have type integer. The name v is added to the current

typing environment with an index type containing a new index variable. The

4.2. Data Representation Facilities 85

let make element size =

let index s = size in

(s, array element s)

: 'a —> int —> (index.(s), 'a array.(s))

let access a i =

let (s, data) = a in

data. (s) . [i3

: (index. (s), 'a array .(s)) —> int —> 'a

let length a =

let (s, data) = a in

#s

: (index.(s), 'a) —> int

Figure 4.2: Code for safe arrays as pairs in Nitro.

expression e2 is typed with this new typing environment to give the type of
the whole expression.

We can convert from indexes into integers with the # operator. In the ex¬

pression # ei, the expression ej must have an index type and the whole ex¬

pression is given type int. Note that both operations can be compiled out at
compile time and hence incur no runtime cost. The operations are necessary

only to give enough information to the type checker.

4.2.8.3 Safe Arrays

As an example safe arrays - that is arrays which are stored together with their
length for bounds checking - may be implemented in Nitro using bare arrays
in a pair. The first value is the length of the bare array which is the second
value. Functions can then be written to create, access and take the length of
this pair representation of arrays. The Nitro code for this is given in Figure 4.2.

The final function length has a very general type inferred for it that gives

86 Chapter 4. Foreign Data Interface

no information about the second element of the pair and does not enforce that
it is called with an array at all. One could give the function a type constraint
such that the type is (index, (s) , 'a array, (s)) -> int.

The following section highlights two problems with the pair representation
of arrays and details a solution.

4.2.8.4 Marked Arrays

Requiring the programmer to provide an index variable each time an array ac¬
cess is made is an extra burden on the programmer. In the last example we saw

that we can build on the bare arrays to create a more high-level representation.
This is called a marked array. The intention is that the programmer may use
marked arrays in the course of normal programming and need only resort to
the bare array representation when required for accessing foreign arrays.

A marked array format then becomes the native array kind in Nitro, which
avoids two distinct representations of arrays; one for use with foreign arrays

and one for internal Nitro programming. Instead the native array format is
built upon the foreign array format.

Bare arrays can also be used to optimise other representations, for example
matrices can store the length of all of the arrays only once rather than once for
each row.

The above representation of safe arrays used a pair to store the length to¬

gether with the bare array. There are two disadvantages with this representa¬
tion of marked arrays. Firstly as noted above the type inferred for the length
function is more general than desired.

The second disadvantage is the restriction that the types of two high-level
arrays with different lengths represented in this way cannot be unified. This
is because index variables cannot be unified with anything other than them¬
selves. This means that the pair representation of marked arrays is insufficient
for use as the native kind of arrays in Nitro.

Both problems can be solved by defining a high-level array using a tagged
type with a single constructor. As in:

4.2. Data Representation Facilities 87

type 'a marked_array s = Array of (index.(s), 'a array.(s))

Because the index variable s is existential such an array representation can

be seen as an abstract type in the style of [58]. Applying the constructor Array

gives a value of type ' a marked_array which hides the index variable used to cre¬

ate the array. Hence two marked_array types can be unified together. Matching
against the Array constructor brings a new index variable into scope. The new

index variable is attached to both the index type of the length and the bare
array type. Hence safe array accesses can still be made, such as:

let access a i =

let Array (s, data) = a in

data . (s) . [i]

: 'a marked .array —> int —> 'a

The length function can also be rewritten as:

let length a =

let Array (s, _) = a in #s

: 'a marked .array —> int

Notice that the use of index variables is entirely hidden by the type of the
access function. The revised access function has the required type, namely that
it may only be applied to marked arrays. The inferred type for the re-written
length function also rejects any attempt to apply it to something other than a

marked array.

In a similar manner functions may be written for the common array oper¬

ations such as iter and copy. These can be grouped together to form a module
with the actual type of the marked array hidden. The programmer can then
use these arrays as conveniently as arrays are used in a traditional high-level
language, without the need to provide a check variable at each index opera¬
tion.

88 Chapter 4. Foreign Data Interface

type gc_info

type immediate 'a m_array len =

Array { _ } of (int.(len), gc_info, 'a array.(len))

let index_marray a i =

let Array (1, data) = a in

data.(1).[i]

: 'a m.array —> int —> 'a

Figure 4.3: The definitions for accessing M arrays.

4.2.8.5 Foreign Arrays

The preceding section has shown that convenient marked arrays can be de¬
fined in terms of the bare arrays which Nitro provides. This chapter though is
concerned with the ability to describe the representation of external arrays in
order to access them.

Suppose there is an array representation in some foreign language M. Ar¬
rays in M consist of a tuple of three elements, the first is the length, the second
is some information used by the garbage collector, and the third is the actual
array itself.

The definitions given for marked arrays in the preceding section wrap the
arrays within a constructor. Recall that this was done to allow the existen¬
tial types involved with the arrays to be hidden and hence arrays of different
lengths considered to have the same type. A foreign array however cannot be
wrapped in a constructor since this will change the representation. To avoid
this problem an immediate constructor is used. The definitions for the type of
M arrays are given in Figure 4.3

Now suppose there is a further foreign language N also exporting arrays
which must be accessed. These arrays are similar but contain a further tuple
element before the actual array, which contains debugging information. Such
arrays can be defined as in Figure 4.4.

4.3. Syntax 89

type gc_info

type debug_info

type immediate 'a n_array =

Array { _ } of (int.(len), gc_info, debug_info, 'a array.(len))

let index_narray a i =

let Array (1, data) = a in

data.(1).[i]

: 'a n-Cirray —> int —> 'a

Figure 4.4: The definitions for accessing N arrays.

This section has given a high-level introduction the foreign data facilities
provided by Nitro. The following sections will provide a formal definition of
the syntax and semantics. Section 4.6 details two example uses of the foreign
data facitilies defined in this chapter and Section 4.7 ends the chapter by con¬

cluding on the approach taken to foreign data representation access.

4.3 Syntax

The syntax for the new type definitions added to Nitro to allow the definition
of types representing foreign data types is given in Figure 4.5. Figure 4.6 shows
the additions to the syntax of expressions, patterns and types. These syntax
additions include the additional syntax necessary for bare array manipulation.
Finally in addition to the definitions given here a function may be exported as

an external C function using the export keyword.

4.3.1 Derived Forms

There are a few simple derived forms in the syntax. These are convenient for
the programmer while still allowing the semantic rules to be reduced by not
considering these forms separately. Recall from the previous chapter in Section

90 Chapter 4. Foreign Data Interface

tydec

tybind

tyvars

tyivars
indexvar

const rs

const r

tagdesc

tagarg

tagvalue

type tybind
(immediate) tyvars tyname tyivars = const rs (and tybind)

'a

Ca{;'b}+)
indexvar*

tyname

constr (| const rs)
Con {tagdesc} (tagop typearg)
tagarg+
tagvalue with mask num ((tagop) of try) ;

num

—num

tagop

tagoper

tagoper tagoperand

tagoper tagoperand tagop

»

«

» .

« .

+

tagoperand

typearg

typlace

&&

id

num

typlace ty

of

precedes

Figure 4.5: The syntax for foreign type definitions

4.3. Syntax 91

expr

targexps

pattern

targpats

x

let index z

#i

expr in expr

array expr\ exprj

expr i. (expri). [expr^]
expr\.(expr2).[expr^\ <— expr4

Con {targexps} {expr)
expr, {targexps)
Con {targpats} {pattern)
pattern; {targpats)
index, (z)
x array, (z)

Figure 4.6: Extensions to the syntax of Nitro expressions, patterns and types.

3.1.2 that:

phrase \ =>■

phrase2
Is written to mean that phrase \ may be written as an abbreviation for the

expanded form phrase2-
In the given syntax it is not possible to omit the mask of a custom con¬

structor. As a convenience the programmer may omit this and the full mask is
inferred instead.

Con of {1} =>
Con of {1 with mask 0xFFF...}

Here the length of the mask is dependent on the size of the word of the
machine.

Similarly one must always give a tagop if one is to provide a tag operation.
However Nitro allows the identity tag operation and a constructor definition
which contains an argument without a tag operation is inferred to have the
identity operation. The constructor definition

Con of ty ==>

Con of id ty

92 Chapter 4. Foreign Data Interface

The following derived form allows the user to leave out a tag description.
Note that usually the tagop here will be id and will be the result of an expan¬

sion of the previous derived form. The tagdesc is arbitrary but in practice the
compiler will choose a simple constant unused by any other constructor within
the same tagged type definition.

Con of tagop ty =>

Con of {tagdesc} tagop ty
When this rule is applied, all constructor application expressions and pat¬

terns concerning the constructor in question must be modified by the rules:
Con e =>

Con {tagdesc} e

Con p =>

Con {_} p

4.4 Static Semantics

The static semantics of the core Nitro language may now be updated to include
the facilities for defining the runtime representation of values. Since many of
the changes are within the type definition language, the new type definition
rules are presented first. These are followed by the rules for typing expressions
and patterns which must be updated. Before the type declaration rules are

given the new typing context and in particular the constructor environment
portion is described.

4.4.1 Typing Contexts

In section 3.2.1 the structure of a type context was described including the part
related to tagged union data types called the constructor environment. The in¬
formation held for each constructor identifier in the constructor environment

must be revised to allow for the correct typing of the Nitro foreign data inter¬
face constructs.

The data which must be held for each constructor is now:

4.4. Static Semantics 93

• The parent tagged union type to which it belongs, which contains infor¬
mation detailing whether this type is immediate or not.

• The structure of the tag value itself. This structure information contains
the details of each of the parts that make up the tag value (or tag argu¬

ments). For each tag argument the environment must store

- The tag argument value
- the tag argument mask
- the tag argument operation
- the type of the tag part

• The main tag operation

• The main tag type and argument placement which details whether this
is a precedes argument or not.

Note that the tag operation and the argument placement are not present in the
case that the constructor accepts no arguments outside of the tag.

4.4.2 Tagged Union Type Declarations

C b tydec =>• Cj

C\ = C + Tenv C\ h tybind ■=> (Tenv, Fenv, Cenv)
(64)

C b type tybind => C\ + Fenv + Cenv

C F tybind => (Tenv, Fenv, Cenv)

x = tyname(tyvars) C, tyivars, x b constrs => Cenv\ Tenv\ = {tyname >—> tyvars}
(C b tybind => (Tenv2, Fenv, Cenv2))

C b ((immediate))ryvars tyname tyivars = constrs (and tybind)
=> (Tenv\(CTenv2), {} (UFenv), Cenvx (UCenvi))

(65)

94 Chapter 4. Foreign Data Interface

C,tyivars,x h constrs => Cenv\

C, tyivars, x h constr => Cenv\ (C,tyivars,x h constrs => Cenv-i)

C,tyivars,x h constr (j constrs) =>• Cenv\ (+Cenv2)

C, tyivars, x h constr =>• Cenv

Chfy=^xi Ch tagargs =>■ td Cenv\ = {Con i—» {td,tagop,typlace,{x\ —> x))}

C.tyivars,x h Con {tagargs} tagop typlace ty => Cenv\
(67)

C h tagargs => td Cenv\ = {Con i—> (fd,x)}
(68)

C.tvivars.x h Con ftapares1

C h tagarg => ta

C h tagdesc => td

C h tagarg => ta (C h tagargs => tas)
(69)

C h tagarg {tagargs) =>■ (ta{,tas))

Ch/y=>x ta = (?agvalue ,num, tagop ,x)
— (70)

C h tagvalue with mask ram tagop of ty ',=$■ ta

4.4.2.1 Additional Restrictions

In rule 67 the compiler rejects the constructor definition if typlace = precedes
and X] is a ground type.

In rule 69 the tag value portion of each of the tag arguments must not over¬

lap. This can be checked by performing a bit-wise and operation between any
two of the tag argument mask values.

4.4.3 Constructor Application

The typing context stores the information required of the applied construc¬
tor. The information is of the following form: (tagargs(,tagop,typlace),x). The

4.4. Static Semantics 95

tagop and typlace components are present if the constructor accepts an ar¬

gument and absent otherwise. The tagargs component is a list of compo¬

nents which are themselves made up of several sub-components. A single
tagarg has the form: (tagvalue,num,tagop,x). In the following rules the phrase
"types in tagargs" will mean the list of x components got from extracting the x

component from each of a list of tagargs.
Che

T(C, Con) = (tagargs,tagop,typlace, (xj —> x))
C b e => Xi xs = types in tagargs C b targexps => xs

C b Con {targexps} e => X

T(C,Con) = (tagargs, x)
X.S' = types in tagargs C b targexps =t- xs

C b Con {targexps} =£- x

C b targexps => xs

C b targexp => x (C b targexps => xs)
C b targexp; (targexps) x; (xs)

4.4.4 Pattern Matching

C b pattern => (Venv, x)

C b Con {targpats(*)} pattern =£- (Venv\ -f- Venv2,x)

T(C,Con) = (tagarg^k\x) C,tagarg(*) b targpats(*) => Venv2

C b Con {targpats(*)} => (Venv\ + Venv2,x)

C, tagarg(*) b targpat(*) => Venv

(71)

(72)

(73)

Cb pattern (Venv\,X\) T(C,Con) = (tagarg^k\tagop, typlace, (xj —■» x))
C, tagarg^ b targpats^ => Venv2

(74)

(75)

96 Chapter 4. Foreign Data Interface

C b targpat => (Venvi,x) x = type of tagarg (C,tagarg^ b targpat^ =>■ Venvf)

C,tagarg\ (tagarg(*)) b targpaf, (targpat(k') => Venv\ (+ Venvf)
(76)

4.4.5 Additional Constraints on Matches

The rules for match expressions remain the same. The compiler will reject all
those match expressions for which the rules do not permit a type to be inferred.
However there is another class of match expressions which must be rejected
by the compiler. Those involvling ambiguous matches which are unsafe due
to overlapping tag values.

In section 4.2.5.2 it was explained that it is often useful to allow two custom
constructors to overlap. Whereby overlapping constructors are two construc¬
tors for which at least one value may match either constructor. It was noted
that this is useful but also unsafe to allow without restriction. The null pointer
type is such an example:
type immediate poss_null_c_string =

Null { 0 }

Ptr { _ } of cstring

Here the Ptr constructor may match any value. The compiler must reject
any pattern match where a ptr pattern may be matched against a value which
has not (in the same match expression) previously been tested so as to ensure
that the value does not match the Null constructor.

This means that the sets of match rules depicted in Figure 4.7 are rejected.
Notice that in the last set the match rules are rejected even though the Null

value is matched against. This is because the enclosing pattern may fail despite
the Null pattern succeeding.

4.4.6 Bare Arrays

C\~e\=>int Cj[i t-> index.(a)] b e2 => x a^C
C b let index i — e\ in ei =>■ x

4.5. Dynamic Semantics 97

let Ptr p = el in e2

match e of

Ptr p -> el

end

match e of

Ptr p -> el

| Null -> e2
end

match e of

(Null, 1) -> el

| (Ptr, x) -> e2
end

Figure 4.7: Matches rejected because Ptr may match a Null value.

C\~ i=> index, (i)
. (78)

C h #i =>■ int

Chei=>T C h ei =t> index, (i)
(79)

C h array e\ £2 => x array. (/)

C h e\ =4> x array.(i) C h £2 index.(i) C H £3 =>• int
C h ^1.(^2).[^3] =4> T

C h e\ => x array, (i) C h £2 =>• index, (i) Cl-£3=>int Cb£4=>T
(81)

Ch ei.(e2)-[«3] <— £4 => ()

4.5 Dynamic Semantics

In this section the dynamic semantics are updated to include the runtime rep¬

resentation control facilities of Nitro. The main job of the compiler is to pro¬

duce executable code which will ensure runtime properties which cannot be

98 Chapter 4. Foreign Data Interface

ensured at compile time. In particular when a value is constructed using a

tagged union datatype constructor, it must be possible to retrieve the same

value during a pattern match deconstruction. If this were not the case then the
type system would be unsound, since a value constructed at one type could be
deconstructed to a value of another type.

Since there are many methods which may be combined to control the way

a value is represented, it is possible that many such runtime checks must be
inserted. However in practice only one such method or a simple combination
of methods is used and hence the compiler need only insert one or, in many

cases, no checks.

Before continuing with the inference rules for the dynamic semantics the
reader is reminded of the state and STOP conventions used in the core Nitro

dynamic semantics and first defined in section 3.3.4.

4.5.1 The Fail Convention

The pattern matching rules, given in section 4.5.5, are all subject to a FAIL con¬

vention which is analogous to the STOP convention. Each premise which may

produce a value environment or a FAIL causes the main rule to be duplicated
with both the premise and the conclusion producing a FAIL. Therefore the
FAIL convention causes the top rule 93 to produce two further rules:

E{Con) = (tagargs, op, typlace) E,vi h tagargs, targpats =4- FAIL

E, [(vi,v2)] b Con {targpats} pattern =>- FAIL

E(Con) = {tagargs, op, typlace) E,v2 b pattern =>■ FAIL

E, [(vi, V2)] b Con {targpats} pattern =>• FAIL

4.5.2 Values

(82)

(83)

Values are the same as in the core Nitro dynamic semantics given in Section
3.3 with the following addition.

4.5. Dynamic Semantics 99

A group of values may be 'boxed' using [vi,..., v„] meaning that each of the
values are stored in consecutive memory locations.

4.5.3 Evaluation Contexts

An evaluation context must store dynamic information about the program.

This means that the bound variables within a program will be mapped by
the evaluation context to their respective values. Additionally an evaluation
context stores information about the tagged union datatype constructors. The
information returned for a given constructor is of the form:

((immediate,)tagargs((, op, typlace)})

The presence of the immediate flag specifies that the constructor is an im¬
mediate one. Where there is an argument to the constructor (other than the tag

arguments), the op and typlace components are present.
In addition there is the state or memory of a program. The memory of the

program is a mapping from addresses to values. Due to the state convention
the state is only explicitly mentioned within rules which must modify or ex¬

amine the memory of the program.

Function application syntax will be used to interrogate the evaluation con¬

text so that where E is an evaluation context and Con is a constructor identifier

then E(Con) will return the information stored about the tagged union con¬

structor.

4.5.4 Constructor Application

Constructor application must use the information in the evaluation context
about the given constructor to create the correct representation of the value.
In addition the argument values must be checked to ensure that they are suit¬
able for encapsulation by the given constructor. Such checks are those which
cannot be performed ahead of time by the compiler in accordance with the
static semantic rules. The semantics given here are conservative in that such a

100 Chapter 4. Foreign Data Interface

check is the most general check and is always performed. A compiler however
would not need to be very sophisticated to reduce the check to a simpler one

or remove it completely.
The dynamic semantics only consider programs which are given a type by

the rules for the static semantics. Therefore a situation such as a constructor

application without an argument given but where the constructor in the evalu¬
ation context specifies an argument operation and placement cannot occur and
are not considered by the following rules.

4.5.4.1 Tag operations and Checks

There are two operations, other than the tag operators themselves, used by the
dynamic semantics for constructor application. The || and the & operations.
The first combines two values together using a bitwise 'or' operation and the
second combines two values using a bitwise 'and' operation. The first is used
for immediate arguments to combine the immediate argument with the con¬

structor (which may contain tag arguments). The second is used to apply the
masks to the tag arguments.

When a constructor is applied, a runtime check is performed to ensure that
the construction of the tagged value has not lost information of the argument.
If this were allowed then it may be possible to construct a value using an ar¬

gument of the correct type which, when that argument is extracted from the
tagged value, is distorted and hence may not be of the appropriate type. For
example in the following code:
let Con x = Con v in ...

It must be the case that x is equal to v otherwise there is no way to be sure

of the type of x. The generic test which is inserted is a test that the same value
is extracted as was used to construct. A compiler however may choose to

optimise or even remove such checks in specific cases where it is safe to do
so. The rule 86 uses the check V2 = opr(v) to perform this dynamic runtime
check.

Note that in rule 87 the restriction vj = opr{v) is very strong. In practice few

4.5. Dynamic Semantics 101

foreign constructs require complex tag arguments with an immediate construc¬
tor which also has an argument. This means that few constructor applications
are failed due to this restriction.

EV- e^v,STOP

E{Con) = (tagargs) E,tagargs b targexps => v

E b Con{targexps} => [v]

E(Con) = (immediate, tagargs) E, tagargs b targexps => v

E b Con{targexps} => v

EiCon) = {tagargs, op,typlace) E, tagargs b targexps => vi

E b e => V2 V = op(v2) V2 = opr(v)
E b Con{targexps} e => [vi,v]

E{Con) = (immediate,tagargs,op,typlace) E,tagargs b targexps =>• vj

E he=>V2 V = V\ ||op(v2) V2 = Opr{v)
E b Con{targexps} e =>■ v

E{Con) = {tagargs, op, typiace) E,tagargs b targexps =>- vi

E b <? => V2 V] 7^ Opr{op{v2))
E b Con{targexps) e => STOP

E {Con) = (immediate, tagargs, op, typlace) E, tagargs b targexps => vi

£ b e => v2 v2 7^ opr(vi ||qp(v2))
E b Conj/urgexps} e => STOP

(84)

(85)

(86)

(87)

(88)

(89)

E, tagargs b targexps =4- v/STOP

E,tagarg b targexp => vj (£, tagargs b targexps => V2)
(90)

E,tagarg\ {tagargs) b targexp-, {targexps) => v 1 (11V2)

E,tagarg b targexp =>• v/STOP

102 Chapter 4. Foreign Data Interface

E \~e=>v\ v = (num & (opr(v\)))
(91)

E, (_ with mask num. op of ty\-e=> v

4.5.5 Pattern Matching

The rules in this section define the semantics of matching values against pat¬
terns involving foreign data type constructors.
E,v h Con {targpats} pattern => VE/FAIL

E(Con) = (tagargs) E,v,tagargs b targpats =>• VE

E, [v] b Con {targpats} => VE

E(Con) = {tagargs, op, typlace)
E, vi,tagargs b targpats => VE\ E,opr(yj) b pattern => VEi

E, [(vi,v2)] b Con {targpats} pattern =>- VE\ +VE2

E(Con) = (immediate, tagargs) E,v, tagargs b targpats => VE

E,v b Con {targpats} =4- VE

E{Con) = (immediate, tagargs, op, typlace)
E,v, tagargs b targpats =>• VE\ E,opr(v2) b pattern =$> VE2

E,v b Con {targpats} pattern => VE\ + VE2

E,v, tagargs b targpats => VE/FAIL

E,v,tagarg b targpat =$■ VE\ (E,v, tagargs b targpats =4- VE2)

E,v, (tagarg; {tagargs)) b {targpat; {targpats)) =4> VE 1 {+VE2)

E,v,tagarg b targpat => VE/FAIL

(92)

(93)

(94)

(95)

(96)

vi = tagopr{v & num) E,v\ b pattern =>VE
; (97)

E, v, (_ with mask num tagop of ty) b pattern =>• VE

4.5. Dynamic Semantics 103

4.5.6 Tagged Type Declarations

In the core Nitro dynamic semantics there was no need to give a semantics to

type definitions. The type definitions were used only in the static semantics.
However in the foreign dynamic semantics, because the type declarations af¬
fect how tagged union type values are created, information from them must
be collected. Here are the dynamic semantics for the tagged union data type
declarations, the purpose of these rules is to ensure that the evaluation context
has enough information about the constructors used in a program.

Rule 100 uses the function imm which maps all constructor entries in a given
constructor environment to an immediate version of the same constructor. This

function implements the mappings:
(itagargs) —> (immediate,tagargs)
and

(,tagargs, op, typlace) —» (immediate, tagargs, op, typlace)
E h tydec =>■ E

E b tybind => CE
(98)

E h type tybind => E + CE

E b tybind => CE

E b constrs =>• CE\ (E b tybind => CEj)
^

E b tyvars tyname tyivars — constrs (and tybind) => CE\ (+CE2)

E b constrs => CE\ (E b tybind => CEj) CE = imm{CE\)
E b immediate tyvars tyname tyivars = constrs (and tybind) => CE (+CE2)

(100)

E b constrs =>■ CE

E b constr => CE\ (E b constrs => CEj)
E b constr{| constrs) => CE\ (+CE2)

(101)

104 Chapter 4. Foreign Data Interface

4.5.7 Constructor Definitions

E b constr => Con t—> Centry

E b Con {tagargs} => Con tagargs

E b Con {tagargs} op typlace x => Con i—■> (tagargs, op, typiace)

4.5.8 Bare Arrays

E he=> v/STOP

E \- #i=> v

E b e\ =4> vi E + {i i—> vi} b e2 => v

E b let index i — e\

s,E b e\ => vi,si s\,E b e2 => n,S2

v=[vi,...vi] a^Dom(s2) length(v)—n

s,E b array e\ ei => a,S2 + {a h-» v}

s,E b e\ => a,s\ s\,E\-e2=> n,S2 S2,EFe3
0 <i<n ss(a) = [v0,... ,v„_i]

s,EF ei.(e2).[e3] =>Vi,S3

l, S3

(102)

(103)

(104)

(105)

(106)

v.lu/)

s,E b e\ =>- a,s\ s\,E F e2 => n,S2 S2,E b ez => i,S3 S3,E b e\ => v,s4

0</</z s4(a) = [v0,...,v„_i] vfl[i] = v va[j] = s4(a)[j],j ^ i

s,E b ei.(e2).[e3] +-e4=> (),s4[a h-> va]

s,EPe\=>a,s\ s\,E b e2 n,S2 S2,E b £3 => i,S3

(53, E b e4 => v, 54) (i < 0) or (i > n)

s,E b e\.(e2)\e3}(*— e4) => STOP

(108)

(109)

4.6. Examples 105

4.6 Examples

In this section two example uses of the foreign data interface for Nitro de¬
scribed in this chapter are presented.

4.6.1 Ocaml

The first example develops an interface to the OCaml [11] programming lan¬
guage. In this section a Nitro interface to the OCaml data representation will
be described. The current C interface to the OCaml data representation is also
described and both are used to create an equality function for use in OCaml
programs. The two approaches are then compared.

In general an interface to a language is specific to an implementation of that
language. This is often offset if the language definition defines the represen¬

tation of values. Alternatively there may be a standard for interfacing with,
or exporting data to, the outside world. Interfacing to the OCaml language
avoids this problem altogether because there exists only one implementation.

The OCaml language is a high-level functional language, which can be
compiled to native code by an optimising compiler or bytecode that is inter¬
preted by a virtual machine. The virtual machine is implemented in C and
performs the interpretation of the program's bytecodes. In addition further
routines, also written in C, provide runtime services such as garbage collec¬
tion and polymorphic comparison. These runtime services are used by both
the interpreter for bytecodes and code compiled by the native code compiler.

For such runtime services to function, all values created and manipulated
by an OCaml program must conform to a specific internal representation. This
is required by both compilers, the runtime services and, in the case of a byte-
code program, the interpreter of the bytecodes, all of which must agree on the
common internal representation. Since the internal representation is the same
for both native-code-compiled and bytecode-compiled programs the same run¬

time services can be used for both provided that the compilers agree on the
representation. For an OCaml program to use values from a further language,

106 Chapter 4. Foreign Data Interface

such as C, the foreign values must be marshalled to conform to this represen¬

tation.

4.6.1.1 Target Application

This example concerns the writing of a comparison operator for OCaml val¬
ues. To achieve this a function written in Nitro which inspects the OCaml data
representation is exported as an external C function. This may then be called
by any OCaml program. In the real runtime this function is written in C and
the = operator is mapped to a call to the external C function. Note that if the en¬

tire runtime were re-written in Nitro, including the interpreter for bytecodes,
then there would be no need to export it as an external C function, since the
interpreter could call the Nitro function directly.

4.6.1.2 The data representation

This section details the data representation specific to the OCaml system. The
roots of all values are stored in a one word sized storage location. These must
be marked by the runtime as either a pointer into the heap or a long value.
Pointers into the heap may be safely dereferenced, long values may not. For
this purpose the least significant bit of every value is reserved as a flag to indi¬
cate whether the value can be dereferenced or not. The bit is set to l to indicate

the value is a long value and set to o to indicate the value is a pointer into the
heap. The runtime must make sure that long values are shifted to the left and
marked as a long before being stored, and conversely shifted to the right before
the value is manipulated, for example when two integers are added together.
This means that integers are stored with one bit fewer than the word length of
the machine.

A value that is a pointer can be dereferenced to obtain access to a heap object.
All heap objects conform to the same structure. The first word is a header
containing three pieces of information. The header describes how to interpret
the remaining bytes of the heap object. For generic values the remaining bytes
are an array of OCaml values.

4.6. Examples 107

The three pieces of information contained within the header word are as

follows:

• A tag indicating the kind of heap object. This also indicates how to in¬
terpret the bytes/words that follow this header. There are a small num¬

ber of predefined tag values to indicate a built-in type such as string,
float or function closure. All other tag values are considered to represent
a tagged union datatype or record type. In the case of a tagged union
datatype the actual value of the tag is the tag of the union datatype.

• A colour field, used by the garbage collector.

• A length field which indicates how many bytes/words follow this header.

The structure of an OCaml value heap object header is shown in figure 4.8.

OQ
O

Object size
o
o Tag
o
c

11 10 Q f 7 0

Figure 4.8: The structure of an OCaml heap object header.

There are several kinds of heap objects. Here is a description of a few of
them which give the essence of the variation between the different kinds of
heap objects.

Closure This is a function closure. It is treated much like a tuple, so there is an

array of values that follows, except that the first value is a code pointer,
and should not be accessed as a normal value.

String The bytes which follow are treated as characters. The length portion of
the header indicates how many bytes there are.

Double The bytes which follow are to be interpreted as a double value. The
length field of the header should always be the same.

108 Chapter 4. Foreign Data Interface

Double array Similar to a double except that there is a number of double val¬
ues to follow, that number being held in the length field of the header.

Generic Not one of the predefined tags, this represents a tagged union or

record type. Such heap object headers are always followed by an array

of OCaml values.

The important part is that the tag within the header describes the kind of
values that follow the header in memory, how many there are and how to

interpret them.

4.6.1.3 Type Definitions

In this section the Nitro definitions used to interface with the representation
of OCaml values described above are given. The equivalent C definitions are

then described. These are the definitions which are used within the OCaml

runtime system because the OCaml runtime is written in C. The Nitro type
definitions are given in Figure 4.9.

A point to note is the definition of the Double tag. The representation always
stores the length of the value in the length field even when the length is fixed
as with the Double tag. This means it can be used without checking the tag in
the C code. It would have been possible to define the length field in the Double

tag in the same way that was done for the other tags. However, because the
double tag's length is fixed it can also be fixed within the constructor. This has
the effect that the Double constructor cannot be used to create a double value

with an incorrect length field.
If the double tag were a variable length field, then this could be used to cre¬

ate a double value with an incorrect length field. This is because the declared
argument to the Double tag is a pair rather than a value array. It would still be
impossible to make an incorrect access from within Nitro however an invalid
value could be created which is then passed back to the current OCaml run¬

time. The runtime could in turn use the incorrect length field and overrun the

4.6. Examples 109

type gc_colour =

Caml_white {0x000}

| Caml_grey {0x100}

| Caml_blue {0x200}
| Caml_black {0x300}

type heap_object =

Closure {247 with mask OxFF;

_ with mask 0x300 of gc_colour;

_ (>> 10) of int;}

(*

In the Double tag we combine the tag field with the
length field , because the length is always the same.

*)

| Double { 0x8FD with mask 0x8FF;
_ with mask 0x300 of gc_colour;

} precedes (int, int)

| Tag { _ with mask OxFF of int;
_ with mask 0x300 of gc_colour;

_ (>>10) of int.(1en) }

precedes ocaml_value array.(len)

and immediate ocaml_value =

Ptr { 0 with mask 1} of heap_object

| Long { 1 with mask 1} (>>. 1) of int

Figure 4.9: The Nitro type definitions for OCaml values.

110 Chapter 4. Foreign Data Interface

argument to the double tag. Hence the method used of declaring the length as
one value is preferable in this instance.

In contrast to the Nitro definitions, the C definitions are spread out between
types and values. In particular creaction and inspection macros are defined
separately from the type, and perhaps more significantly, separately from each
other. For conciseness, included here is a small sample of the C definitions. The
remainder can be found in the OCaml distribution available at http: //caml.

inria.fr/ocaml/release.en.html and the file byterun/mlvalues.h contains

the relevant C definitions.

/* The type of ocaml values */
typedef long value;

These macros simply test whether a value is a pointer or a long value. Using
these macros corresponds to matching against the ptr and Long Nitro construc¬
tors matching the arguments with the underscore.
/* Longs vs blocks . */
#define Is_long(x) (((x) & 1) != 0)

#define Is_block(x) (((x) & 1) == 0)

These are the creation and access macros for long values. There are no

corresponding macros for pointer values. To use a pointer value it should be
first tested using the is_biock macro and then the original value is used. To
use a long value it is first checked with the is_iong macro and then the Long_vai
macro is used to extract the represented integer. To create a long value the
vai_iong macro is used.

/* Conversion macro names are always of the form "to-from". */
/* Example: ValAong as in "Val from long" or "Val of long". */
#define Val_long(x) (((long)(x) << 1) + 1)

#define Long_val(x) ((x) >> 1)

4.6.1.4 The Equality function definitions

Given the two sets of definitions for the OCaml value representation this sec¬
tion now details two implementations of the equality operator. One is written

4.6. Examples 111

in Nitro and the other in C. The test is for structural equality rather than phys¬
ical equality A physical equality test can simply determine if two values are

exactly the same, a structural equality test must examine the structure of both
values.

4.6.1.5 The C comparison function definition

The source code for the C version of the OCaml comparison function is shown
below. This is taken from the OCaml distribution [11], I have added some

comments and omitted some cases for the purpose of clarity.

/* Booleans are integers 0 or 1 */
#define Val_bool(x) Val_int((x) != 0)

#define Val_false Val_int(0)

#define Val_true Val_int(l)

static int compare_val (value vl, value v2)

{ if (vl == v2)

return Val_true ;

/* If both values are longs , then they should be exactly
the same and caught by the above case. This test
also catches the case that one is a long and one is
a block . */

else if (Is_long (vl) || Is_long (v2))
return Val_false ;

/* We can now assume that both are block values , so we

test the tag value, either they are not equal, in
which case we fail or they are in which case we

distinguish between the kinds of heap objects . */
else {

tag_t tl, t2;

int sizel, size2;

tl = Tag_hd(Hd_val(vl)) ;

t2 = Tag_hd(Hd_val(v2)) ;

sizel = Wosize_hd(Hd_val(vl)) ;

size2 = Wosize_hd(Hd_val(vl)) ;

112 Chapter 4. Foreign Data Interface

if (tl != t2)

return Val_false ;

/* We match against only one tag since we knoiv
both are the same */

switch (tl) {

case Closure_tag:

/* Raises an ocaml exception */
caml_invalid_argument("equal: functional value") ;

case String_tag: {

char * pi, * p2 ;

pi = (unsigned char *) String_val(vl) ;

p2 = (unsigned char *) String_val(v2) ;

return (Val_bool (compare_strings

(sizel, pi, size2 , p2))) ;

}

case Double_tag: {

double dl = Double_val(vl) ;

double d2 = Double_val(v2);

return (Val_bool (dl = = d2)) ;

}

default: /* Ordinary tagged value */ {
int i ;

for (i = 0; i < sizel && i < size2; i ++)

if (compare_val (Field(vl, i), Field(v2, i))
== Val_false)

return Val_false ;

/* If all the fields are equal, return true */
return Val_true ;

} /* End of default case */
} /* End of switch statement */

} /* End of else command */

4.6. Examples 113

4.6.1.6 The Nitro comparison function definition

Figure 4.10 depicts the Nitro code used to define the OCaml values for true

and false of the OCaml boolean type. In Nitro these values have the type
ocaml_value.

let ocaml_true = Ptr { Tag { 0;0;1} Array.empty }

let ocaml_false = Ptr { Tag {0;0;0} Array.empty }

Figure 4.10: OCaml true and false in Nitro.

The Nitro code shown below defines comparison for OCaml values. The
infix operator == is a library function in Nitro which defines physical equality.
let rec compare_val vl v2 =

if vl == v2

then ocaml_true

else match vl, v2 with

Ptr pi, Ptr p2 -> compare_heap_object pi p2

I _ ~ >

(* Two equal Longs would be physically equal
and hence caught by the if above *)

ocaml_false

end

and compare_heap_object ol o2

match ol, o2 with

Closure
_

| _, Closure _ ->

caml_invalid_argument("equal: abstract value")

| String {_; lenl} si,
String {_; len2} s2 ->

let res = compare_strings (lenl, si, len2, s2) in

Ptr { Tag {0;0; res} Array.empty }

| Double (dlf, dls), Double (d2f, d2s) ->

if (dlf == d2f) && (dls == d2s)

114 Chapter 4. Foreign Data Interface

then ocaml_true

else ocaml_false

(*

This case is required by the compiler so that in the final
case it knows that both arguments must be values created
with the Tag pattern .

*)

| (String _ | Double _),
(String _ | Double _) ->

ocaml_false

| Tag {tl; lenl} al, Tag {t2; len2} a2 ->

if (tl == t2) && (lenl == len2)

then

let rec match_args i =

if i < #lenl

then

let res = compare_val al.(lenl).[i]

a2. (len2) . [i]

in if res == ocaml_false

then ocaml_false

else match_args (i+1)

else ocaml_true

in match_args 0

else ocaml_false

end

In order to be able to call this from an OCaml program as an external C
procedure the definition is made with the export keyword.
export ocaml_compare = compare_val

4.6.1.7 Evaluation

Two implementations of an equality function for OCaml values, written in C
and Nitro respectively have been defined in this chapter. This section evaluates

4.6. Examples 115

the two solutions, including the type definitions and how they may help to
write and maintain other such functions.

4.6.1.7.1 Safety It has been a design goal of the Nitro foreign data interface
to remain type safe. This means that we cannot create a value in Nitro and
access it from within Nitro at an incompatible type. This is important as it
means we can use the control over data representation to code our own private
data structures, perhaps optimising for speed or space. It also means that if we

correctly code our interface then we cannot incorrectly access a foreign value,
or create an invalid foreign value to return, though we can still cause the calling
program to fail because it relies on some human maintained protocol.

In our example we cannot return to the OCaml runtime an invalid OCaml
value. This means that for example the garbage collector will not fail because
of some value which the Nitro code has returned. However the program may

still fail since Nitro type definitions do not allow the encoding of OCaml type
information, hence it would be possible to, for example return to the user pro¬

gram an OCaml double where an OCaml string was expected.
The C implementation is subject to all of these possibilities as well, and in

addition there is no assurance that given a valid OCaml value the C procedure
does not make an illegal access, or that it does not return an invalid OCaml
value.

We say that a program is value-safe, if the program is type-safe given the
condition that it is never supplied with an external value which does not con¬

form to the representation expected by the interface to that external source.

Furthermore if the external source is also value-safe then the combination of

our program and the external source is type-safe. Nitro programs are value-
safe and therefore if the interface, which is written in Nitro, is correct then the
whole program is type-safe. An implementation in C is not checked by the
compiler to be value-safe, since it may misuse any value supplied from the ex¬

ternal source or return an invalid value back to the external source, which may
in turn misuse it based on the false assumptions made by the interface.

116 Chapter 4. Foreign Data Interface

Because Nitro implementations are value-safe an important class of pro¬

gramming errors can be detected by the type system. Our example above can
still fail but only when the interface is wrong. When the interface states that
we may return to the external source any OCaml value when in fact the exter¬
nal source expects an OCaml value of a specific OCaml type. If the external
source does not make this assumption, that is, it assumes the value returned
is an OCaml value but does not assume anything about its OCaml type then
our program cannot fail, because our interface is therefore correct and the Ni¬
tro implementation and external source are both value-safe. In chapter 5 the
type system is enhanced to support the definition of more accurate interfaces
within Nitro and therefore more programs can be guaranteed to be type-safe.
In particular the equality function defined in this chapter can be ensured to
return only OCaml boolean values.

As was mentioned during the discussion of the C implementation, there is
nothing to check that we have ensured a value is a block before dereferencing
it and accessing the header. Likewise in the C implementation there is nothing
to check that once a block header has been accessed the code does not access

the block past the length given in the header. In the Nitro version it is simply
not possible to use a Long value as a heap object.

When checking a generic tagged value the C implementation first checks
that both blocks are the same length, and then accesses only up to that length.
There is nothing to check that we perform the first check and nothing to make
sure that we do not access past the end of either block. The Nitro implementa¬
tion though, because of the way bare arrays are typed, checks each array access

with its own length. It is therefore not possible to access memory erroneously
past the end of either block.

4.6.1.7.2 Speed One of the reasons often given for choosing C as the imple¬
mentation language for code perceived as low-level is efficiency. One source of
efficiency is that it is possible to use reasoning that cannot be expressed within
the type system to remove safety checks. As an example of one such check,

4.6. Examples 117

consider that both versions check that the lengths of the arrays in two generic
tagged values are equal. This check could be removed knowing as we do that
the two values tested for equality must be of the same OCaml type. This means

that if they have the same tag they must have the same number of arguments
and hence length of array.

Removing such checks with only a human guarantee that it is safe to do so

is naturally a dubious practice. In addition the extra type information about
foreign values, retained by the Nitro type system, can allow optimisations that
are not immediately obvious and certainly not easily maintained. For exam¬

ple, in our equality test, when accessing the argument value arrays of both
heap objects a naive Nitro compiler will insert array bounds checks. A smarter

compiler however could use the type information and the equality check to
remove the bounds checks. This means we save on as many bounds checks
as the C version. Should a change occur which invalidates our assumption
then the appropriate array bounds checks are re-inserted. For example if we

remove the equality check on the array lengths, then the bounds check on the
second array would be re-inserted.

After these optimisations have been applied the resulting order of checks
is often not what a programmer would naturally write. I speculate that using
such optimisations matching over the heap object type could be made more

efficient than the corresponding C code. For an example of work on optimising
pattern matching see [59].

4.6.1.7.3 Maintainability The Nitro definition of the OCaml values is entirely
contained within type definitions. For the C version there are type and macro
definitions. A change in the Nitro type definition automatically causes the
compiler to flag up all portions of code dependent on the type that must also
be updated. Because of the extra safety guarantees a change in the Nitro def¬
inition means that the rest of the code is checked for consistency. This is not
true of the C version.

118 Chapter 4. Foreign Data Interface

4.6.2 Ncurses Editor

This example is intended to show the expressiveness of the Nitro foreign inter¬
face. The editor itself is written in Nitro, and for the most part the Nitro code
could be that of a high-level functional language. Combining the control over

data representation with the benefits of the high-level features offered by Nitro
we obtain a compromise solution in which we can implement the editor with
suitable high-level constructs but do not pay the cost of expensive marshalling
routines when interfacing with the legacy C coded library. In addition com¬

bining the interface described here with the OCaml interface described in the
preceding section, one could implement the marshalling routines required for
an OCaml interface to the legacy library.

4.6.2.1 Background

Ncurses is a programming library providing an API which allows the pro¬

grammer to write text-mode user interfaces in a terminal-independent man¬

ner. It also optimises screen changes, in order to reduce the latency experi¬
enced when using remote shells. Ncurses [60] stands for "new curses", and
is a replacement for the discontinued 4.4BSD classic curses. There are many

programs built using the ncurses library, including text editors, web browsers,
instant messaging clients, package management tools and even integrated de¬
velopment environments.

Because the library is based upon an old library and has been around itself
for many years, the library makes extensive optimisations for both space and
time, relying on full control over data representation. This makes the library a

good test for the Nitro foreign data interface.

4.6.2.2 The Nitro Editor

The nitro editor is a text editor specialised for use in writing Nitro programs. It
highlights the syntax for Nitro programs and allows a basic but useful form of
automatic indentation. There is also folding of function definitions (whereby

4.6. Examples 119

a function is folded so that only the top-line is visible) and various other com¬

mon keyboard commands such as "move to the end of the line". It uses the
ncurses library for writing to the terminal but is entirely written in Nitro. There
is no need for marshalling routines because the program is entirely within the
type system for Nitro. The bindings to the ncurses library are of course re¬

usable in other Nitro programs. A screenshot of the editor in action is shown
in Figure 4.11.

Figure 4.11: . The ncurses Nitro editor in action.

4.6.2.3 The main type definitions

This section details the main type definitions which form the basis of the bind¬
ing to the ncurses library.

4.6.2.3.1 Characters Here is the listing for the definition of the key codes
used in the library. These are returned from functions such as get_ch which
waits for the user to press a key and returns the key code representing it. Most
of the key codes are defined as constants, the dots at the end represent that
there are many more to follow. We could also write out all of the ASCII char¬
acter codes as constants, however this has the disadvantage that there is no

simple pattern which means, 'is an ASCII character'.

120 Chapter 4. Foreign Data Interface

Under ncurses, if the key is an ASCII character code, then the ASCII code is
given in the least significant byte and the rest of the word value is zero. Hence
as our pattern we reverse the mask that selects only the least significant byte
and we have an argument that matches the whole value that is a char. Note that
it is a Nitro char and not a C char. All of the other key codes have no arguments
since they are constants.
type immediate key_code =

KEY_ASCII {0 with mask -255} of char

| KEY_CODE_YES {256}

| KEY_MIN {257}

| KEY_BREAK {257}

Giving a mask for the key_ascii constructor means that we can write func¬
tions such as the one shown in Figure 4.12 which removes white space and
control keys from a list of key presses. Had we given an individual construc¬
tor to each character we would need a case here for every single character.

let rec remove_whitespace chars =

match chars with

[] -> []

| (KEY_ASC11 ' \n') : : rest

| (KEY_ASC11 ' \t ') : : rest

(KEY_ASCII ' ') :: rest -> remove_whitespace rest

(KEY_ASCII _ as k) :: rest -> k :: (remove_whitespace rest)

| _ -> remove_whitespace rest

Figure 4.12:

4.6.2.3.2 Windows Windows are a basic part of the ncurses library. When
interfacing with the library from C we are provided with several macros to
extract information from the packed values which form the representation of a

window.

4.6. Examples 121

A window is itself represented by a C struct, which we can map well with
a Nitro record. The first element of the record is the current x and y coordinates
the second is the maximum x and y coordinates.
type ncurses_window = { current_y_x : xy_coord ;

maximum_xy : xy_coord ;

}

However the individual values are mostly packed into as few words as

possible. As an example x and y coordinates are packed into a single word. On
a 32 bit word machine this means that the two most significant bytes form the
X coordinate and the two other bytes form the Y coordinate. Hence we require
a way to extract these two values from the one word. We use an immediate

type with a single custom constructor. The custom constructor defines two tag

arguments. Just as the custom constructors for the OCaml heap object headers
had to extract multiple values from within a word here we do the same thing.
In the case of the x coordinate, because we are taking the most significant bytes,
we must shift the value two bytes to the right to obtain the correct value. This
was the same operation performed to get the true length value from the length
portion of the header.
type immediate xy_coord =

YX_coord { _ with mask 65535 >> 0 of int

_ with mask -65536 >> 16 of int }

4.6.2.3.3 Attributes Attributes are properties that control how characters are

printed to the terminal. They can be attached to text or turned on and off for all
characters printed to the screen. All but one of the attributes are simple on-off
attributes that are either true or false, such as whether to print characters with
an underline, or in bold. There is a single more complicated attribute which is
the colour which can take one of two hundred and fifty five different values.
Because all the attributes are so simple rather than make them all take up space
the ncurses library stores all the attributes in one thirty-two bit value. There
is enough space left over for a one byte character value. This means that on a
machine with a word length of at least thirty-two bits we can store in a register

122 Chapter 4. Foreign Data Interface

a character to be printed to the screen and all the attributes with which to print
it.

This could be represented using a single custom constructor with multiple
tag arguments most of which are one byte long. However a more readable
way is to give a separate constructor for each of the attributes. Using such
a definition it means that subsequent functions operating over attributes can

be written without the knowledge of how the attributes are represented. This
style is also more tolerant of layout changes in that function definitions are less
likely to require modification.

The following type definition describes the layout detailed above. This is
then improved upon to allow more convenient testing for the absence of a

particular attribute. The first style uses immediate constructors to access each
of the individual attributes. There is also a constructor to access the character

value stored in an attribute word. It is also simple to define a constructor to
test for an attribute word in which all attributes are switched off - the Normal

constructor is defined below for this purpose. The 11 after the custom tags are

tag operations which ensure that the relevant bit is set after construction.

type immediate t_attribute =

Char_value {_ with mask 255 of char}

I Colour {_ with mask 65280 of int} of t_attribute

Normal {0 with mask -256} of t_attribute

Standout {65536 with mask 65536} || 65536 of t_attribute
Underline {131072 with mask 131072} || 131072 of t_attribute
Reverse {262144 with mask 262144} || 262144 of t_attribute
Blink {524288 with mask 524288} || 524288 of t_attribute

... Several more similar constructors

Note that all of the attribute constructors overlap each other. There are

many attribute word values that could match two or more of these construc¬
tors. This is allowed by the Nitro compiler because all of these overlapping
constructors have the same argument type, namely t_attribute. Even the colour
constructor is given a t_attribute argument, only the char_vaiue constructor is

4.6. Examples 123

given no type. This means that all values of type t_attribute must have ul¬
timately been created with the char_vaiue constructor and hence must have a

character in the least significant byte. The compiler also insists that none of the
other constructors overlap the char_vaiue or colour constructors, because they
have immediate arguments that could be changed otherwise.

Because the argument type of the attribute constructors is itself a t_attribute
we can test for multiple attributes at once using nested patterns, for example.
let is_blink_and_underline attrib =

match attrib with

Blink (Underline _) -> true

| _ -> false
end

: t-attribute —> bool

Note that it does not matter in which order the constructors were originally
applied in order to obtain the value being tested or indeed if any constructors
were applied at all because of course the value being matched against may
have been created by the ncurses library itself.

There is still one significant drawback to this approach, and that is that
testing for the absence of a specific attribute is laborious at best. One possibility
is to test for its presence and then matching all values in a case below. As in
this code fragment:
let is_not_blinking attrib =

match attrib with

Blink
_ -> false

| _ -> true
end

: t-attribute —> bool

A better way is to give a corresponding negative constructor for each of the
attributes. Here is the updated t_attribute type.

124 Chapter 4. Foreign Data Interface

type immediate t_attribute =

Char_value {_ with mask 255 of char)

| Colour {_ with mask 65280 of int}
| Normal {0 with mask -256} of t_attribute
| Standout {65536 with mask 65536} || 65536 of t_attribute
| NoStandout {0 with mask 65536} && -65537 of t_attribute
| Underline {131072 with mask 131072} || 131072 of t_attribute
| NoUnderline {0 with mask 131072} && -131073 of t_attribute

... Several more similar constructors

We have shown with the example of Ncurses attributes that a common C
idiom, namely that of using bit masks as flags, can be imitated using the Nitro
foreign data interface.

With these three type definitions we have covered the main functionality of
the ncurses library. Most of the rest of the interface consists of external function
declarations. It has been shown that we can represent the data structures of the
ncurses library in Nitro. In particular three common forms used in C libraries;

• Enumeration types often done using integers and the preprocessor as
with the key_code example.

• Combining smaller types together into one word without losing infor¬
mation.

• Bit masks used to hold together flags of various properties within one

value that can be passed around.

4.6.2.4 A Note on Portability

Some of the definitions in this example have been necessarily restricted to a

particular architecture or set of architectures. This unfortunately arises when¬
ever the user is given access to the concrete data representation. When using a

high-level language the implementor of the marshalling routines required for
a legacy library interface must also take portability into consideration. How¬
ever this is commonly done for them by the library implementor in the form
of macros and defined constants. For Nitro, a preprocessor could be written to

4.7. Conclusions 125

help with portability and in some cases the C preprocessor itself could be used.
We have already seen a case where we have used the Nitro defined constant
wordsize to implement a tagged data type. More such constants and macros

could be defined to help with portability.

4.6.2.5 Conclusions

This section has described an interface to a legacy C library, allowing direct
access from Nitro, a type-safe functional language. Since this particular legacy
C library utilises common idioms used in C data representation to optimise
for both space and time we are given confidence in the expressiveness of the
foreign data interface of Nitro. While it is doubtless that there exist some rep¬

resentations (for example see Section 7.3.1.1) that cannot currently or perhaps
ever be represented directly in a type-safe language, the examples in this chap¬
ter provide encouragement to map as much as is possible. For those represen¬
tations that remain outside of the scope of Nitro, there is no choice but to write
a marshalling routine, however such representations can often be considered
questionable and may eventually become obsolete.

4.7 Conclusions

This chapter has presented example uses of the Nitro foreign data interface. It
has been shown that a large degree of control over data representation need
not require that we sacrifice safety guarantees.

We have also shown that interfacing with foreign data from a type-safe
language need not require that we write marshalling routines to package up

the foreign data into our own format. Where this is desirable we can at least
write those routines in our own language rather than resort to a (perhaps third)
low-level implementation language.

The two examples have shown an ability to manipulate values from the
higher-level OCaml language, and from the lower-level C language. Combin¬
ing the type definitions from both we can provide an OCaml interface to the

126 Chapter 4. Foreign Data Interface

ncurses library. In this way we can use Nitro— a type-safe functional language
— to provide the marshalling routines necessary to translate ncurses values
into the common internal representation of the OCaml environment.

There is a web demonstration of a version of Nitro that includes a tradi¬

tional type inference scheme augmented with typing for bare arrays and the
foreign data facilities described above. This can be found at http: / /homepages.
inf . ed. ac .uk/s9810217/foreign_data_demo .html.

Chapter 5

Delayed Typing

5.1 Introduction

In the previous chapter Nitro was given a foreign data interface which utilised
the power of tagged union data types by allowing the user to provide repre¬

sentation requirements. This means that the layout of data in memory can be
controlled by the user. The type system still maintained that the user could
not make illegal accesses to any data structure and therefore the benefits of in¬
creased security and error detection by the compiler were retained. The type

system however lacked the ability to allow sub-typing relations and this was

noted to be a serious drawback as it suppressed the ability of the programmer

to encode foreign type information within the types of the Nitro code. For
abstraction-level code this meant that the interfaces to the languages for which
the abstraction is being provided were coarser than desired.

This chapter details a novel typing scheme which can incorporate the for¬
eign data type additions detailed in the previous chapter and also allow the
inference of sub-typing constraints. The resulting type system also admits a

general scheme for inferring type annotations such as those which describe
the effects which the evaluation of an expression can have. Effects are such
actions as the raising of an exception or the accessing of a region in memory.

As something of a bonus, the new typing scheme allows the typing of more

127

128 Chapter 5. Delayed Typing

programs meaning that some of the slack of previous typing schemes can be
included. The slack of a typing scheme is the set of programs which are safe
programs but which the typing scheme will reject [61]. This is because for a
safe statically-typed language, the typing scheme admits a conservative ap¬

proximation to the set of all safe programs.

This chapter begins with a review of the need to allow sub-typing within
the type system of an abstraction-level programming language. The delayed
typing scheme is then introduced and a formal static semantics in the form of
inference rules are presented for a basic lambda-calculus. This is then extended
with typing constraints, record types, a sub-typing relation and side effecting
expressions through the use of mutable record fields. Finally exception raising
and catching capabilities are added to the lambda-calculus and the inference
of exception effect annotations is detailed.

An algorithm to infer types under the delayed typing scheme is presented
and some properties of the delayed typing scheme are shown in section 5.13.

In section 5.14 the delayed typing scheme is then compared with the tradi¬
tional Hindley-Milner typing scheme and several other typing schemes which
augment Hindley-Milner.

The chapter concludes with a description of how the delayed typing scheme
was incorporated into the Nitro programming language and some conclusions.

5.2 Motivation

In this section the motivations for the development of the delayed typing sys¬

tem are reviewed.

In the previous chapter it was noted that the lack of sub-typing impeded the
programmer's ability to encode foreign type information. Returning a value
from the compare function, it was possible for the type system to ensure that a
valid ocami_vaiue was returned. However it would be desirable to ensure that

the value returned was either ocami_true or ocami_faise.

This would not only increase the confidence in the correctness of the compare

5.2. Motivation 129

function, it would also facilitate the writing of the OCaml compiler. On en¬

countering the expression if x == y then 1 else o the compiler must emit a

call to the Nitro defined compare function and instructions which match the re¬

sult of that call to the OCaml representation of true and/or false. Recall that
an OCaml boolean value is represented as a boxed tagged value, this means that
the value is in fact a pointer to a header in which the tag portion distinguishes
between true and false. This is shown in Figure 5.1. The upper smaller box
is the pointer, distinguished from a long value by the zero in the least signif¬
icant bit. This pointer points at a block, however the block has zero length
after the header. The value is entirely defined within the Tag portion of the
header which may take one of two values to represent either true or false.
The other fields of the header are the garbage collector colour whose value we

do not know, and the object size, that is the number of values which follow the
header, which we know to be zero.

boolean value

CfQ
O

Object size (0)
O
o Tag (true
o
c /false)

11 10 q * 7 0

Figure 5.1: The structure of an OCaml boolean value.

The instructions emitted by the compiler to perform the comparison de¬
pend on the guarantees made by the compare function. In particular what those
instructions must check for. The differences are summarised in Table 5.1.

Without sub-typing, the programmer could of course define a second type
ocami_booiean with a similar but restricted definition to that of ocami_vaiue. How¬

ever in doing so the programmer prevents any value of type ocami_booiean from
being used wherever it is possible to use an ocami_vaiue. For example it would
not be possible to call the defined compare function with an ocamijoooiean value

130 Chapter 5. Delayed Typing

Guarantee Check Possible Errors

No guarantees The compiler assumes it
is an ocaml_value and may

check if it is safe to derefer¬

ence to obtain the tag part.
It then must check if the

tag portion is equal to true
or false.

We may make an illegal
access to memory, or if
the value is not equal to
true, the else branch will
be taken, but the value

may not be equal to false
either.

Is an ocaml_value The compiler may check to
see if it is safe to derefer¬

ence the value to obtain the

tag portion.

We now cannot make an

illegal access to memory.

However unless there is

a check, if the tag is not

equal to true it may also
not be equal to false.

Is an ocaml_boolean The compiler can derefer¬
ence the value to obtain the

tag without a check to en¬

sure it is safe. If the value

is not equal to true, then it
must be equal to false.

No illegal access to mem¬

ory can be made. Addi¬
tionally we cannot mistake
a non-boolean value which

is not equal to true, to
be equal to false, because
the value is definitely a

boolean.

Table 5.1: Checks inserted on a call to the Nitro defined compare function

5.3. Delayed Typing Formalisation 131

as either of the arguments. Worst still, if the type definition for ocami_vaiue is
changed then the programmer must remember to update the type definition
for the separate ocami_booiean type.

5.3 Delayed Typing Formalisation

This section details a formal semantics for the delayed typing scheme. It be¬
gins with a basic lambda-calculus, this is then extended to include record ex¬

pressions and a sub-typing relation and then further extended to allow side-
effecting expressions through the use of mutable record fields. Finally, excep¬
tion raising and catching facilities are added and the delayed typing scheme
is augmented with the ability to infer accurate exception annotations on the
types.

5.3.1 Delayed Types

In this section a delayed type is briefly explained before a set of formal in¬
ference rules which define the delayed typing scheme over a basic lambda-
calculus are given.

A delayed type is a type containing an expression which is said to be wait¬
ing to be typed. Because the typing of an expression is delayed, it can be given
a type accurate to the situation in which it is used. When an expression is
bound to an identifier, the identifier can be given a delayed type, the expres¬

sion associated with the delayed type can then be typed differently according
to the separate uses of the bound identifier. In this way a delayed type is an

efficient representation of a set of types which are appropriate for the given
expression (and hence the identifier to which it is bound).

A delayed type is written
x := [[e]]

the expression inside the delayed type has a special syntax which will be
shown in the section 5.12.1, for now these are expressions which may contain
as any sub-expression a type. Here is an example:

132 Chapter 5. Delayed Typing

[[fun r —»(r, int)]]
This represents the set of all types which are an arrow type, where the ar¬

gument type is a record type containing the field lab and the return type is a
three tuple consisting of, the original argument type, the type associated with
the lab field and int. Examples of the set include

({lab: int;} —> ({lab : int;}, int, int))
({lab : (bool —> bool) ;lab2 : bool ;} —>

({lab : (bool —»■ bool) ;lab2 : bool(bool —> bool),int))
Since a delayed type is equivalent to a set of types the inference rules make

no mention of delayed types but refer only to sets of types. Each expression
can be given a set of appropriate types. An algorithm for inferring delayed
types is given in section 5.12, this also contains the syntax of delayed types.
Since sets of types, and in particular infinite sets of types, are awkward to

display to the programmer, an implementation of a delayed typing scheme for
a programming language such as Nitro would display delayed types as the
representation for a set of types.

5.4 The basic lambda calculus

In this section a simple lambda calculus is defined and the static semantics
for a delayed typing scheme over that lambda calulus are given. This basic
lambda calculus represents a subset of the core Nitro defined in Chapter 3.
In the following sections this basic lambda calculus will be augmented with
features found in Nitro.

5.4.1 Syntax

The syntax for the subset of expressions is given in Figure 5.2 and the syntax
for type in Figure 5.3

Notice that the syntax for types allows types to contain type schemes. This
allows the inference of a type such as ((V('a).'a —>■ 'a) —> int) which is the type
of a function which accepts as its first argument a polymorphic function.

5.4. The basic lambda calculus 133

c

x

let x — e\ in e2

e\ f?2

fun v —> e

Figure 5.2: The syntax of expressions in the basic lambda calculus

int

bool

(T2rg * tres)
'a

Figure 5.3: The syntax of types in the basic lambda calculus

5.4.2 Typing Rules

Please note, the character x, as distinct from x is used to denote a set of possible
types. The rules make use of a set notation where a generic member of the set
is given on the left hand side of the vertical bar and on the right hand side the
conditions on that generic member. So for example {(x —> xi) | x G x} would
represent the set of all types which are arrow types such that the argument
type is in the set of types x.

C h e => T

The first three rules apply to all expressions. They allow a typing deduction
to refine the set of types deduced for an expression.

C he=4»{xi} x = inst(C,Xj)
(110)

Che=> {x}

e :=

x :=

C F e => Xj XCXi

C h e => t
(111)

134 Chapter 5. Delayed Typing

Che=>r xgx 'a not free in C
(112)

C b e =>- x U {V('a).x}

The remaining rules each apply to one grammatical form of expression.

CO*C(c) = x

C b C => X

C{x) = x

C \~ X => T

x — {(xi —>■ x2) I {xi}] he^!'AX2 E x'}
C h fun x —> e =£- x

Chei=^Xi Cf~e2=t-X2

C b <?i e2 => {x | (x2 —>• x) e xi ax2 e x2}

C h e\ =>- Xi Cx[x i—> X]] h 62 ^ T2

C h let x = e\ in ei =>• X2

(113)

(114)

(115)

(116)

(117)

5.5 Notes

The inst function used in rule 110, substitutes any bound type variable for a

type in the body of a type scheme. Hence the type V('a).('a —* x) can become
the type (xj —> S(z)) where S — [a i—>■ xi] However the substitution must rename

any of the bound type variables occurring in x as appropriate to avoid variable
capture on any of the free variables in x\.

The subsumption rule 111 allows a smaller set of types to be inferred for a

given expression. In particular this rule can be used to allow a singleton set of
types to be inferred. This ability will be used in the following section to enforce
explicit type constraints given by the programmer.

The application rule 116, may infer types for the argument expression which
are not applicable to the function. Additionally for the function expression

5.6. Adding in Type Constraints 135

there may be many types in the set inferred for it that accept none of the types
in the set inferred for the argument expression. In general there may be many

types in the sets which are inferred for both the function and the argument ex¬

pression which are inappropriate for the application expression. However the
rule will not allow those inappropriate types to form part of any set inferred
for the whole application expression.

5.6 Adding in Type Constraints

In this section the basic lambda calculus is extended by allowing typing con¬

straints to be applied to both expressions and binding locations for identifiers.
Note that typing constraints are single types and not sets of types.

5.6.1 Additional Syntax

The additional syntax is straightforward and similar to most variants of the
SML language. The brackets around the type constrained argument the ab¬
straction expression are optional and provided here for clarity.

e := e :x

fun (x : t) —> e

let x : T = ei in 62

5.6.2 Additional Typing Rules

The additional typing rules restrict the set of types inferred for each constrained
expression (or identifier) to a single type corresponding to the given type con¬
straint. The sub-expressions may in general have a larger set of types inferred
for them, but this set can always be reduced to the singleton set containing
only the constraint type by using the subsumption rule 111, assuming that the
constraint type is in the set in the first place.

Che^> {t}
C h e : x => {t}

(118)

136 Chapter 5. Delayed Typing

C h e\ =>- {x} Cx[x > {x}] h C2 =>■ x

C h let x : x = ei in 62 ^
(119)

Cx[x i ► {x}] h e => T

C h fun (jc : x) —> e => {(x —> Xi) | Xi e x}
(120)

5.7 Adding Recursion

Adding recursion to the delayed typing scheme is not as trivial as with a

strictly unified system. To ease the job of the inference algorithm all recur¬

sively defined values must be constrained with a single type. Additionally, as
in the core Nitro language, a syntactic restriction which restricts the initialis¬
ing expression to be a function abstraction is used to avoid incomputable cyclic
values such as:

let recx : int = xini

5.7.1 Additional Syntax

The additional syntax is simply the let rec expression. There are no additional
types required.

e : = letrecx:x = funy—>> e\ in <?2

5.7.2 Additional Typing Rules

The typing rules do not allow a set larger than the singleton set to be inferred
for the initialising expression. In any case this must match with the type con¬

straint which must be a single type. This means that there is no polymorphic
recursion.

Q[n-> {x}] b (funy—* ei) => {x} Cx[x i-* {x}] h e2 => f
(121)

C h let rec x : x = (fun y —> e\) in C2 =>■ x

5.8. Adding Records 137

5.8 Adding Records

The addition of record expressions and types will enrich the type system such
that in the following section sub-typing can be usefully added. Recall that the
major goal of the delayed typing scheme was to allow for sub-typing on record
and tagged union types.

5.8.1 Additional Syntax

The additional syntax is again straightforward. It is a departure from SML
record syntax for field access in which the OCaml convention of using the dot
notation is used.

e := e.field

{label = e ;+ }
Types are updated with:

x := {label: x ;+ }

5.8.2 Additional Typing Rules

The rule for field access makes use of the function f, this takes two arguments:
a type and a field label. If the given type is a record type containing a field
with the given label then the type which the field is mapped to is returned.
Otherwise the function fails.

The rule for field access show here, allows for the possibility that all of the
types in the set inferred for the record expression contain more than one field.
In the next section sub-typing between record fields is introduced such that this
provision is not required, since any type could be reduced to a type containing
only the accessed field label. Because those rules have not yet appeared in this
section the rule for field access allows for larger record types.
C b {fields} => f

C (C b {fields} => X\}
-- (122)

C b {lab = e ; {fields)} => {lab : x ; (fieldecs) | x 6 x(A{fieldecs} 6 Xi)}

138 Chapter 5. Delayed Typing

C \~ e =y t
— (123)

C b e.lab => {fF(x, lab) | x € x}

5.9 Adding Sub-typing

In this section a sub-typing relation is defined over record types and this rela¬
tion extends naturally to types containing record types, including other record
types.

5.9.1 Additional Typing Rules

The rules which follow define the sub-typing relation <: where T| <: T2 denotes
that Ti is a sub-type of the type X2.

x, = x2
(124)

xi <: x2

IF(x, label) <: T\ (x <: {fields})
x<: {label =X\ ; (fields)}

(125)

The sub-typing relation extends to types containing record types, currently
the only such type is the arrow type. Here is the sub-typing rule for arrow

types, notice that the parameter types are switched over because they are in
the contra-variant position.

X3 <: Xj X2 <: X4
(126)

(xi x2) <: (x3 -► x4)

Finally there is a subsumption rule for sub-typing, this allows the set of
types which may be inferred for an expression to be increased by allowing a

super-type of any of the types otherwise in the set.

C b e =t> x

(127)
C b e => {x | xi G x Axj <: x}

5.10. Adding Side Effects 139

5.10 Adding Side Effects

In this section side-effects are added to the language through the use of muta¬
ble record fields.

5.10.1 Additional Syntax

e := {(mutable) label = e ;+ }
x := {(mutable) label : x ;+ }

The additional syntax to accommodate destructive update for record fields
is given by the following grammar. A unit expression and a unit type are
added. The unit type is the type of a side-effecting expression that produces
no result, such as a record field update. A unit expression can be used as the
other case when such an action is performed conditionally.

e := e\.label e2

I 0
x := ()

5.10.2 Additional Typing Rules

Note that here the field expression can only be of one type, and hence the
inference of any expression has to choose one type for all occurrences of the
record field.

C h e => {x} (C b {fields} => X[)
(128)

C h {mutable lab = e ; {fields)} =>

{{mutable lab : x ; (fieldecs)}(| {fieldecs} € Xj)}

Che i => {mutable lab : x ;} C I- ei =>- {x}
C h e\.lab e2 => {()}

5.10.3 Sub-typing with side-effects

The rules for sub-typing of record expressions must be modified with respect
to the addition of the possibility for side-effecting expressions. The main up-

140 Chapter 5. Delayed Typing

date is that a mutable record field is now in the non-variant position. This
means that a record type containing a mutable field is a sub-type of another
such record type, only if their mutable fields have the exact same type, rather
than, as with immutable record fields, the first being a sub-type of the second.

Here is the additional sub-typing rule for mutable record fields:

mutable X\ = fix,label) (x <: {fields})
(130)

x <: { mutable label = Tj ; {fields)}

5.11 Adding Exceptions

As well as allowing a sub-typing relation in the presence of type inference
one of the goals of the delayed typing scheme was to allow the inference of
accurate exception annotations. In this section, exception raising and catching
abilities are added to the language and exception annotations are added to the
types. The inference rules are then updated such that the types within the sets
of types inferred for each expression contain annotations indicating the set of
exceptions that may be raised by that expression.

5.11.1 Additional Syntax

A type now has attached to it a set of exceptions that the expression associated
with the type may raise. A set of exceptions is written as: [E\\E2\■■■',En] The
greek letter E, will be used to range over sets of exceptions.

In order to allow the raising and catching of exceptions the syntax for ex¬

pressions is extended by:
e raise E

try e\ with E e2
The syntax of types must be updated:

x := xg]
any

The new type any indicates that the expression can be thought of as having
any type. This is the type given to an expression which is guaranteed to raise

5.11. Adding Exceptions 141

one of a set of exceptions. The value obtained by evaluating such an expression
can be used in any context, since that value will never be obtained and hence
its use will never be evaluated. Where a type occurs without an exception
annotation this is assumed to mean the empty set of exceptions, that is, to
indicate that no exceptions will be raised.

5.11.2 Additional Typing Rules

The important rules for the typing of exceptions are those which deal directly
with the additional expression forms. These are:

(131)
C h raise E =>- {any[£]}

C b e\ =4> Xi C b <?2 => x2
—— (132)

C b try e\ with E —» c2 => T3 U X4

where X3 = {x[£] | x[£] e Tj AE ^ £}
and x4 = {T[(?\{E}) I « e fi Ax£"] G x2}

In rule 132 the union of two sets of types may be inferred for a try expres¬

sion. The first set X3 is the set of types which can be inferred for the expression
e\ which indicate that it cannot raise the exception E. Any of the types in this
set may be inferred for the whole try expression regardless of which types (if
any at all) may be inferred for the expression <?2. Because the expression e\ will
not raise the exception E, the handler expression e2 will not be evaluated and
hence its typing need not influence the typing of the try expression.

The second set X4 is essentially the set of types which may be inferred for
both expressions e\ and e2, since the result of the try expression could poten¬

tially be the result of evaluating either of these two sub-expressions. The ex¬

ception annotations on the types in the set X4 are modified to reflect the seman¬
tics of the try expression. If, ignoring the outermost exception annotations, it
is possible to infer x for both sub-expressions then x is in the set X4. The excep¬
tion annotation attached to x in the set X4 is the union of the sets of exceptions

142 Chapter 5. Delayed Typing

inferred for both sub-expressions except that if E only occurs in the exceptions
associated with e\ then it is omitted.

An additional rule, Rule 133, allows the inference of any type for an expres¬

sion which will certainly raise one of the exceptions in the given set. Usually
such an expression will be combined with other expressions as part of a choice.
Therefore it must be possible to infer the type of the other choices for the ex¬

pression which will always raise the exception.

Cbci =>{any[£]}
(133)

Chei => {x[£]}

Another way to allow this would be to change the rule for the raise expres¬

sion to be:

C h raise E =$■ {x[2s]}

However in the next section the rules for the typing of other expressions
will be updated which take advantage of the fact that the type system allows a

type to distinguish between an expression which will always raise one of a set
of expressions (any[£]) and one which may raise one of a set of expression but
may also evaluate to a value (x[£]).

5.11.3 Updated Typing Rules

All of the previous typing rules must be updated to account for exception sets.
Here is the new rule for application.

C h e\ =*>■ T] C b £2 ^ x2

—: — (134)
Chei e2=^ {x[£] | (x2 -» x[£'])[£"] £ %\ Ax2[£"'] G x2)

where £, = £,' U t," U

Informally this rule states that the set of exceptions which may be raised
by an application expression is the union of the sets which can be raised by
evaluating the function value, the set of exceptions which may be raised by

5.11. Adding Exceptions 143

evaluating the argument and the set of exceptions which may be raised by the
body of the function when applied to the given argument.

A further two rules may be added to the inference system to allow for ex¬

pressions which always raise one of a set of exceptions. The first rule states
that if the first expression in an application expression always raises one of a

set of expressions, then the any type may be inferred for the whole application
expression, since the argument expression will never be evaluated.

This second rule states that if the argument expression always raises one of
a set of exceptions then we may return the any type for the whole application
expression, since the function will never be applied. However the exception
annotation on this any type must incorporate all of the exceptions that may be
raised by the evaluation of the function expression (note not the application of
the function expression).

Finally a rule for sub-typing exception annotations must be added, this rule
allows a type x, to be a sub-type of a type x2 if the undecorated types (ie with¬
out the exception annotations) are related by the subtype relation and the set
of exceptions associated with x, is a subset of, or equal to, the exception set
associated with the type x2.

5.11.3.1 Exception Slack

The following section will describe an inference algorithm to compute delayed
types equivalent to the sets of types which may be inferred for a given expres¬
sion using the rules developed above. Before that, this section describes an

Che, =*{any[£]}
(135)

C\~e\e2=> {any[^]}

TI<:T2

x.[^] <:T2[£>/]
(137)

144 Chapter 5. Delayed Typing

advantage gained over a traditional strict typing scheme by using a delayed
typing scheme.

It was mentioned in the introduction that the delayed typing scheme ad¬
mits more programs which cannot go wrong than a type system based on

Hindley-Milner. Recall that the programs for which it would be desirable to

provide a type for but which a given type system cannot are known as the
slack of the type system. One place where a delayed typing system includes
more of the slack is expressions which will never be evaluated. For some such
expressions a delayed typing scheme can give a delayed type which hides the
type error. Because the value is never evaluated it is possible that the delayed
type is thrown away and never reduced to a type error. A possible pragmatic
use is in early software development or rapid prototyping where part of the
program text does not yet pass type-checking. This can be blocked off by an

always false conditional and allow testing to proceed on the part of the pro¬

gram which does pass type checking.
Once exceptions are introduced an expression may never be evaluated sim¬

ply because it is within an exception handler, and the handler is never invoked
because the related exceptions are never thrown in the appropriate context.
Here is a worthwhile example: Suppose one has a function which performs
some computation and will never raise a given exception E. But the program¬
mer realises that it is possible that this function will change such that it may
raise E.

let work — fun a —>■ e

If the programmer simply leaves this function as it is, it may eventually
leak out a raised exception E which they did not mean to happen. A good way
to avoid this is to wrap the value in a first class exception handler, for example:
let handleE = fun y —> (fun / —»(fun x —> try / x with E —> y))

This function accepts a function / to apply, and an argument x, it also ac¬

cepts a default answer y, which is returned in the case that the function appli¬
cation raises the exception E.

Now suppose our work function returns a list of items one way to wrap our

5.12. Algorithm Wd 145

function would be with:

let workE = handleE [] work
This would work in most languages, however it is inherently bad program¬

ming style, if work is modified to possibly raise the exception E then it is likely
that the program will have unexpected results since the arbitrary list value [] is
returned with no justification.

Under delayed typing one could wrap the work function like this:
let workE = handleE () work

The () expression would normally have the incorrect type however under
delayed typing one of the types in the set inferred for the handle function
would be:

y('a'b).({) -> ('a 'b[]) -> 'a -> 'b)
Here I have retained the empty exception annotation to highlight the fact

that the functional argument must not raise the exception E. Recall that gener¬

ally t[] is equivalent to the type x. There will of course be multiple types in the
set which are similar but have different types for the first argument.

The key point is that with this definition, should the type of the work func¬
tion change such that it may now raise the exception E, then the type system
will reject the program. There is no type in the set which may be inferred for
the handleE function which can accept a unit type for the first argument and
a function which may raise the exception E and returns a list for the second
argument. At this point the programmer would be forced to reconsider what
the correct answer should be whenever work raises the exception E.

5.12 Algorithm W
In this section the algorithm for the inference of delayed types is developed.
The typing rules allow for the inference of a set of types associated with an

expression. The set of types appropriate for a given expression is commonly
an infinite set and is hence awkward to display to the user. To avoid this a

delayed type represents a set of types and it is delayed types which are inferred

146 Chapter 5. Delayed Typing

by the algorithm given in this section.
This section begins with a definition of the syntax of a delayed type. The

algorithm for the basic lambda-calculus is then discussed.

5.12.1 Syntax of Delayed Types

In section 5.3.1 it was stated that a delayed type is a compact representation of
a set of types. In this section that syntax is defined and in the following section
an algorithm for inferring delayed types for expressions is given.

A delayed type is an expression waiting to be typed and is denoted as: [[e]]
The converse of a delayed type is a concrete type. A concrete type is a type
which is not a delayed type.

In the algorithm that follows xc will be used to denote a concrete type.
The syntax for delayed types is an extension of the syntax for expressions

to allow expressions to contain types. A delayed type can be thought of as a

partially typed expression.
e := c (constants)

I x (types)
x (variable access)
fun x —> e (abstraction)

| e\ e2 (application)
letx = e\ in C2 (let binding)

where types are augmented to allow the inclusion of a delayed type.

x := [[*]]
Notice that a concrete type may still contain a delayed type, however not

at the top level. For example: ([[x]] —> [[e]]) is a concrete type. A concrete

type has a special status; all values which may be computed by the program

have concrete type, in particular all top-level definitions will be given a con¬

crete type. This is an important property since it is possible to mask a typing
error within a delayed type, the typing error will be uncovered whenever the
delayed type is 'reduced' to a concrete type. If this never happens, then it is
because the expression associated with the delayed type is never evaluated.

5.12. Algorithm cWd 147

Before giving the algorithm for delayed typing this section closes by briefly
giving examples of a delayed type representing a set of types. The simplest
example is that of the identity function, the algorithm below will infer the fol¬
lowing type for the identity function:

«[*]] - [[*]])
This represents the set of types, including type schemes, which are an arrow

type in which the argument type is the same as the return type.
{(ti -> x2) | Ti =x2}
Where sub-typing is included this set is increased to include all arrow types

such that the argument type is a sub-type of the return type.
{(xj -» x2) | Ti <:T2}
A delayed [[e]] type will always be contained within an arrow type. This

is because the expression within a delayed type should always contain at least
one free variable, it is this free variable that is preventing the type from being
reduced to a concrete type.

Here is a further delayed type ([[x]] —> [[x./afc]]). This represents the set of
all arrow types, whose argument is some record type containing the label lab,
and whose return type is the type associated with the label lab in the argument
record type.

5.12.2 The algorithm for delayed typing

Since the syntax for expressions is contained within the syntax for delayed
types, our algorithm takes a delayed type as argument.

Recall that xc is a type which is not of the form [[e]], that is, it is not a delayed
type.

The algorithm also accepts as input a context C which maps identifiers to

types. This is distinct from the contexts which were used in the typing in¬
ference rules which mapped identifiers to sets of types. Recall though that a

delayed type is a concise representation of a set of concrete types. This is ex¬
tended to typing contexts where a typing context used in this algorithm is a

concise representation of the equivalent context for the typing rules.

148 Chapter 5. Delayed Typing

As in the typing rules the context Cx represents the typing context obtained
by removing all mappings of the identifier x from the typing context C. The
algorithm then is given in Figure 5.4.

The cases for application expressions are worth highlighting. There are

four kinds of application expressions which must be reduced by the algorithm,
three of which are covered. The fourth kind is ill-typed application expres¬

sions which have no corresponding case in the algorithm and hence fail type-

checking.
The first case is if the type of the function expression is delayed then the

whole application expression is a delayed type. The type of the argument ex¬

pression may or may not be delayed. In the second case the argument type is
delayed and again the whole application expression is then given a delayed
type. Note that in this case the function expression may not even have an ar¬

row type, this will mean that ultimately the application expression is ill-typed,
however if it is part of an expression that is never evaluated the type-system
need not reject it and hence a delayed type is returned. The third case involves
a concrete function type and a concrete argument type. In this case the argu¬
ment type is substituted into the body of the function type to give the resulting
type which may or may not be delayed. Finally if both types are concrete but
the type of the function expression is not an arrow type then the application
expression is ill-typed and no type is assigned to the expression.

5.12.3 Notes

The case for the typing of a constant expression uses the function C09{^ as

used in the typing rule 113. However this function returns a set of types,
but the algorithm should return a single delayed type. For the purposes of
this algorithm however the C OC\£ function will return a delayed type which is
equivalent to the set of types associated with the constant. In practice the set
of types for a constant is commonly a singleton set such as {int}, returning an

equivalent delayed type is therefore trivial.
It may seem strange that there is no rule which reduces an arbitrary arrow

5.12. Algorithm <Wd 149

Wd(C,e) = x
If e is int

then x = int

If e is bool

then x = bool

If e is 'a

then r = 'a

lie isV('a).x'
then x = V('a).Wd(C,T')

If e is c

then x = C09*t(c)
If e is x

then x = C(x)
If e is fun x —*■ e\

then x = ([[x]] -> Wd(Cx[x^[[x]]],ei))
If e is e\ g2

and (Wd{C,e\) = [[e'}\ Wd(C,e2) = x2

then x = [[g' x2]]
If e is e\ e2

and <Wd(C,e\) = Xi cWd{C,e2) = [[e'}}
then x = [[xi e']]

If e is e\ e2

and <H>d(C,ei) = ([[*]] -> [[e']]) ^(C,e2) =x^
then x = 1i;rf(Cx[x 1—> x^], e')

If e is let x = e\ in g2

and ^(C^i) = [[<?j]] Wd(Cx[xi-> [[x]]],e2) = x2
thenx= [[letx = g'j inx2]]

If g is letx = gi in g2

and Wd(C,e 1) = Xj
then x = cWd(Cx[x Xj],e2)

Figure 5.4: Algorithm for delayed typing

150 Chapter 5. Delayed Typing

type. There is no rule which might look something like:
If e is (ti —> T2)

and d4^d(C,r 1) = T3 TUd(C,Z2) — X4

then x = (T3 —» T4)
This is intentional. Without type constraints all function types are of the

form ([[x]] —> [[e]]). The next section will introduce how the algorithm handles
type constraints, as part of this, arbitrary arrow types must be considered.

The square brackets indicating a delayed type are only considered nec¬

essary at the outermost level or the outermost level within a concrete type.
This means that types containing superfluous square brackets are considered
equal, for example: [[ei £2]] is equal to the type [[[[<?i]] [[^2]]]] and similarly
[[let v = e\ in ^2]] is equivalent to [[letx = [[ei]] in [[^2]]]

5.12.4 Additions to the Typing Algorithm

In this section additions to the type system are incorporated into the algorithm
for delayed typing.

5.12.4.1 Type Constraints

To allow for the typing of expressions using type constraints the extra cases

may be added to the inference algorithm shown in Figure 5.5. However they
require the definition of an auxiliary function Ia. This matches two types
and, if the given two types are compatible, returns a substitution mapping the
bound identifiers in the first type to the appropriate component-types of the
second type. There will only be bound identifiers in the first type if it contains
delayed types. The algorithm for Id is shown later in Figure 5.6, before this the
complications which arise from the addition of type constraints are discussed.

The addition of type constraints complicates the typing algorithm for the
remaining expression kinds. This is because those cases dealing with such
expressions cannot now expect that each type is a fully delayed type. A fully
delayed type is one in which all bound identifiers have been delayed and all

5.12. Algorithm Wd 151

Wd(C,e) = x
If e is e : xc

and Wd(C,e) = [[e']]
then x = [[e': x0]]

If e is e : xc

and cH?d(C,e) = X\ Id{x\,xc)=S
thenx= cWd{C,S{x i))

If e is let x:tc = e\ in e2

and <Wd{C,ei) = [[e']] x2 = "Wd(C[x [[«']]],e2)
then x = [[let x:xc = e' in x2]]

If e is let x : xc = e\ in e2

and cWd{C,e\) = Xi Id(xi,Tc)—S
then x = Wd(C[x i—> 5(xi)],e2)

If e is fun x : xc —> e

and x\ = cWd{Cx[x \—> xc],e)
then x = (xc —»■ xi)

Figure 5.5: Algorithm cases for delayed typing of type constraints

typing decisions based on their use delayed. These complications are briefly
discussed before the algorithm for the Id function is detailed.

Previously in the absence of type constraints, all types could be considered
to be fully delayed. In particular this meant that a function type was always of
the form:

«M] - [MD
Application of such a type was simple because the argument type was sub¬

stituted into the delayed result type for the type [[x]]. With the addition of
typing constraints it cannot be assumed that a function type is so simple, it
may have the more general form:

(ti T2)
where xi may contain any number of delayed types, and in particular, as

was done for the identifier x in the simplest case, there may be identifiers which

152 Chapter 5. Delayed Typing

must be given a type corresponding in some way to the type of the argument
to which the function is applied. For example an application expression e\ e2

may be typed in the context where e\ is given type

(([[*]] - [MD - [f*int]])
and where e2 is given type
(int -» int)
This application should be typed correctly but there is currently no case

which will apply to this situation. A new case, which is a more general form of
the previously defined case for application, is required. The two cases which
deal with a delayed type for the function or argument expression are retained.
It is still desirable to return a delayed type in the case that either of the sub¬
expressions are given a delayed type. Therefore in this new case both sub¬
expressions are assumed to have been given a concrete type, the function ex¬

pression must have an arrow type.
If e is e\ e2

and fWd{C,e\) = (x2 —> x') Wd(C,e2)=xc2 S = Id(C,x2,xc2)
then x = TUd(C,S(x'))

In order to perform the application this case uses the Id function. The algo¬
rithm for this function is given in Figure 5.6.

Note that this algorithm uses union over substitutions, denoted by Umerge.
This fails if both substitutions map the same identifier to different types.

Id{C , [[x]] , xc) = [x i ^ xc) (if x ^ Dom(C))
Id(C , int , int) = []
Id(C ,bool , bool) = []
Id{C, (xi —> x2) ,(T3->T4)) = Id(C,XhX3) Emerge Id(C, t2,T4)
Id{C, V('u).Ti ,V('A).t2) = /d(C,Ti, [b 'a]x2)

Figure 5.6: Algorithm for the instantiation of types

An instantiation may fail due to the non-concreteness of the left-hand side.
In fact the only delayed type on the left hand side which can be instantiated is
the single identifier [[x]].

5.12. Algorithm Wd 153

For example the following instantiation will fail.
7J([[letx = e\ in e2]],ic)
This is because there is not enough information to instantiate the bound

identifier x. It is unknown how the type of e\ should be constrained such that
it is a concrete type. However this does not necessarily indicate a failure in
the typing of an expression, merely that the typing of the expression should be
delayed within a delayed type. Consider the following function application in
the environment where + is a predefined function of type (int —> int —■> int):

(fun x —> let y : int = 1 +x in y) 1
For the algorithm to infer a type for this application expression, it must

first act recursively on the abstraction expression. This will in turn recurse

through to the let binding containing the type constraint. At this point the
algorithm types the initialising expression and is assigned the delayed type

[[(int -► int) *]]
When the algorithm attempts to instantiate the type int to this type it does

not know where to start. Hence the instantiation fails. However this failure

is acceptable because it is a delayed type. The function may be given type

[[fun x —> [[let y : int = (int —»■ int) x in [[y]]]]]]
The typing of the entire application expression may now proceed as the

argument expression (the integer constant 1) is given type int which is then
applied to the abstraction type. The initialisation type of the delayed let type
can now be given type int and type constraint applied. The whole application
expression is finally given type int.

5.12.4.2 Record Fields

The addition of record fields does not complicate the algorithm which can

work recursively over the fields of a record creation expression. The inter¬
esting decision is when to return a delayed type and when to return a concrete

type. A record type is distinct from a function type in that a function type
is always concrete even if the constituent types are delayed. A record type
however is only concrete if each of the labelled types are themselves concrete.

154 Chapter 5. Delayed Typing

The justification for this is the masking of type errors. Consider the following
application fun x —> ((fun r —> r.lob\) {lab\ = 1 \lab2 = x 1 ;})

The type of the initialising expression of labj is delayed, however if the
record type was considered concrete then the algorithm could reduce the ap¬

plication of the inner abstraction to the record expression and the delayed type
of labi would be lost. If eventually the outer abstraction is applied, then the
initialising expression for lab2 is still evaluated (as this is a strict language),
even though it is not used. Hence if the value to which the outer abstraction is
applied is not a function which can accept an integer argument then the typ¬

ing algorithm would not detect the type error. To prevent this a record type
is considered to be a delayed type unless all of the constituent label types are

themselves concrete.

The algorithm therefore makes use of a function fr which can take a de¬
layed record type [{{labn = tn ;+ }]] and if all of the t„ types are concrete then a

concrete record type {lab,, : Tn ;+ } is returned, otherwise the original delayed
record type is returned. Note the difference between the field initialisations
lab = t ; in a delayed record type and the field declarations lab : xc ; in a con¬

crete record type. The first line of the algorithm operates over delayed record
types and the second line operates over concrete record types - all the label
types within are concrete but those concrete types may contain delayed types
which may be reducible.
The algorithm for field rows; cWd^(C, fields) = fields' must operate both on
field rows as expressions (and part of a delayed type) and also on field types.
In both cases the algorithm is straightforward and calls the main tWd function
recursively on the types of all the labels. The Wdf function is shown in figure
5.8

5.12.4.3 Recursion

Because inference of recursive definitions is always assisted by the program¬
mer in the form of a provided type constraint, the extensions to the algorithm
are simplistic. The point to note here is that although the type constraint is a

5.12. Algorithm Wd 155

If e is {fields}
and fields' = (C, fields)
then x = fr{[[{fields'}]])

If e is {fieldecs}
and fieldecs' = Wdf (C, fieldecs)
then x = {fieldecs'}

If e is e.lab

and {lab : Xi ; (fieldec)} = Wd(C,e)
then x = T\

If e is e.lab

and [[e']] = Wd(C,e)
then x = [[e'.Zaft]]

Figure 5.7: The additional cases to support record typing.

concrete type, the initialising expression may still be a delayed type since the
whole let expression may be nested within another expression. Therefore the
first additional case allows for this situation and returns a delayed type of the
whole recursive binding. The second additional case performs the reduction
of the recursive definition.

If fields is label = e ; (fields)
and (Wd(C,e) = Xj (Wdf(C,fields) = fields')
then fields\ = (label — Xi ; (fields'))

If fields is label : xc ; (fieldecs)
and Wd(C\Tc) = Xj (<JiJdf(C, fieldecs) — fieldecs')
then fields\ = (label = x^ ; (fieldecs'))

Figure 5.8: The algorithm for the Wdf function.

156 Chapter 5. Delayed Typing

If e isletrecx:xc = e\ in e2

and Wd(Cx[x i-> Tc],ei) = [[*?']] Wd(Cx[x [[*]]],e2) = T2

then x = [[let rec x :tc = e' in x2]]
If e isletrecx:xc = e\ in e2

and <Wd{Cx[x i—> xc],ei) = T\ Id(ii,xc) = S
then x = <Wd(Cx[x i—*■ S(xi)],e2)

5.13 Properties

This section describes the properties of the delayed typing system and the as¬

sociated inference algorithm detailed in sections 5.4 and 5.12.

5.13.1 Subsumes Hindley-Milner Typing

The type system should have the property that it includes all of the Hindley-
Milner type system. This means that if a term is typable under the Hindley-
Milner type system [62] then it should also be typable under delayed typing.
The Hindley-Milner type system is defined with the set of inference rules given
in Figure 5.9

In this section a proof of this property is detailed.
To avoid confusion separate typing relations are used for delayed typing

and Hindley-Milner typing. The term: Che =>hm t will mean that under the
the Hindley-Milner type system, the expression e may be given the type x in
the typing context C.

In contrast the term: C he =»£> x will mean that the expression e under the
delayed typing scheme given the typing context C has the set of types x. Note
that the typing contexts used by the sets of rules are different for Hindley-
Milner and delayed typing.

Recall from section 5.12.2 that the algorithm uses typing contexts of the
kind used in the Hindley-Milner inference rules. That is, identifiers are mapped
to single types. Two typing contexts C\ and C2 in Hindley-Milner and delayed
typing styles respectively, are considered equivalent if for every mapping x x

5.13. Properties 157

C09t(c) = x

Che =>HM T

che =>//a/ ct a' = inst(a)
Che =>//m a'

Che =$>hm cj a not free in C

Che =>HM Va.a

C(x) = a

C h X a

c h ei =>//M (tl —* T) c h e2 =>HM tl

c h (ei e2) =>HM X

Cc[x i * Xj] h e =$~hm t

Ch-funx—>e (ti —> x)
Chei =4>//m<7 Ct[x i-> a] h e2

Chletx = e\ in e2 =>//mT

Figure 5.9: Typing rules for the Hindley-Milner type system

(138)

(139)

(140)

(141)

(142)

(143)

(144)

158 Chapter 5. Delayed Typing

in C\ there is a mapping in Cj_ such that The same variable will be
used across both styles of typing contexts and as such to mean that the two are

equivalent.
Using this convention the desired property of delayed typing can be stated

more formally as:

Lemma 5.13.1. ifC h e =>hm t then Che =>p x

and that x ex.

Equivalently we have that, given the assumption above then Che {t}
since the subsumption rule (111) may be used.

The proof is done by induction on the size of the deduction which is a

witness to the assumption.

Proof. Case Taut: Che =>hm c? By the rule for tautology in Hindley-Milner
it must be the case that C(x) = a therefore by the assumptions we can assume
that C(x) =x and that o£t. Therefore rules 111 and 114 can be used to deduce
Che =>d {cr}
Case Inst:

Che =>hm c o' = inst(a)
Che =>hm

by induction then we can assume that C he =>d {ct}. Hence by the use of the
delayed typing instantiation rule 110 we have Che =>d {a} U {a'}
Case Gen:

Che =>hm <5 cl not free in C

Che =3*hm Va.o

by induction we have Che =>d t and a e x hence by rule 112 we can deduce
Che x U {V('a).Ci}
Case Comb:

Che 1 (x 1 —► x) Cb^2 =>HMt 1

C h (e\ ef) =>hm t

5.13. Properties 159

By induction we know that we must have C b e\ =4>£> {(xi —> X2)} and C b
e2 =>d {ti} hence by rule 116 we must have C b e\ C2 =>d {t} as required.
Case Abs:

Cc [x i—> T1] h C t

Cbfunx —=>hm (^1 —> t)

By the induction hypothesis we must have that Cx[x i-> {xi }]he =>0 {x} so from
rule 115 there must be a x such that x G x and C b fun x —> e =>£> x

Case Let:

C b ci a Cx[x a] b C2 =>f/M t

C b let x — <?i in £2 ^hm t

By the induction hypothesis we must have that C b ei =>£> {a} and also by the
induction hypothesis we have Cx[x 1—> {g}] b e2 =>d {t} and so by rule 117 we
have Cb let x = eiin^ =>d {t} D

5.13.2 Non-Ambiguity

The type system should be unambiguous. This means that if C b e => Xi and
C b e => X2 then there exists a set of types x such that C b e => x and both Xi and
X2 are subsets of, or equal to, x.

A small lemma named the inclusion lemma is required first in order to
show the main theorem of non-ambiguity.

Lemma 5.13.2. The inclusion lemma states that if Cx[x i—> xj] b e => x and X2 D Xi

then Cx[x 1—>■ X2] b e => x' and x' D x.

The proof of this lemma is simple and rests on the fact that either the ex¬

pression e does not contain the identifier x, in which case the same deduction
used for Cx[x 1—> Ti] b e => x can be used to deduce Cx[x 1—> X2] b e => x. If the
expression e does contain the identifier x then any deduction will involve at
least one step using rule 114 to deduce that Cx[x >-> Ti] bx=>f and this can be
replaced by a two step reduction using both the subsumption rule (rule 111)
and the aforementioned rule 114 to deduce Cx[x*-+t2] b x =4> x since xj C x2.

160 Chapter 5. Delayed Typing

5.13.2.1 The main non-ambiguity theorem

The main result of non-ambiguity for the delayed typing system can be achieved
with induction on the size of the expression e.

Case e — c Then C b e => C05\C(c) one can therefore infer a subset of the set of
types, f in C09\C(c) but for any two such type sets they have the common super

set of types x.

Case e = x For any x such that C b e => x it must be the case that we have x CC(x)
Therefore any two such sets of types must both be a subset of, or equal to, the
set C(x).
Case e = let x = e\ in e2 If C h e => x' then by the rule for let typing (rule 117)
Ch e\ => x\ and Cx[x i-» x)] h e2=>T/ and similarly if C h e =$■ x" then Chei => x'{
and also Cx[x i—> x'[] h ei =>■ f"

By the induction hypothesis there must exist xj such that Ch e\ => xi and
x, D x'j and x\ D x'[. Hence by the inclusion lemma it must be the case that
Cx[x X\] h e2 => x'2 and that x'2 D x' and Cx[x i-> xj] h e2 => x2 and that x2 T> x".
Finally by the induction hypothesis there must exist a X2 such that X2 5X2 and
X2 D x2 and Cx[x 1—> Xi] h ei =t> X2 and by the typing rule for let expressions (rule
117) C h e =t> X2 as required.
Case: e = (e\ ^2)

If C F e => x' then by the rule for application typing (rule 116) Che 1 =>■ x\
and Che2 ^^2 and ^e set {x | (X2 —> x) G x) A X2 G x'2} is equal to, or a super
set of, x\

Similarly if C h e =>• x" then by the rule for application typing (rule 116)
Che 1 ^x'i and Che2 => x2 and the set {x | (X2 —> x) e x'[AX2 € x2) is equal to,
or a super set of, x".

Via the induction hypothesis it must be the case that Che 1 Xj and x\ D x)
and xi D x'[and similarly we have C h e2 => X2 and X2 D x2 and X2 D x2

Due to these type set relations we must have the set x = {x | (X2 —> x) €
xi Ax26x2} and this set must be a super set or equal to both the sets x' and x".
Finally then the typing rule for application can be applied and we have that
C F e =>■ x

5.13. Properties 161

5.13.3 Type Safety

An important property of the delayed typing scheme is one of type safety.
This means that if the delayed typing scheme allows a type to be inferred for a

given expression then the program cannot "go wrong". It must first be defined
what it means for a program to "go wrong" and indeed to do this a suitable
evaluation function must first be defined.

The definition for both and the basis for the proof of type safety are taken
from [63]. An outline of the proof is given in this section.

The evaluation function proceeds from left to right by re-writing. The eval¬
uation function, as in [63], requires a partial function 8 : Constant * Value
Value which interprets the application of functional constants to values. The 8
used must have the following 8 — typability property: if C09\C(c) = (xi —> X2)
and v : i\ then 8(c,v) is defined and b 8(c,v) => {X2}

For a program to "go wrong" the evaluation must get stuck when attempt¬
ing to reduce an expression. This occurs when an expression is reduced to
(c v), which represents a constant applied to a value, for which 8(c,v) is not
defined. In particular if we have (e\ ej) and the expression e\ is neither further
reducible nor of the function form (funx—*e) then the expression is said to be
stuck and hence to have "gone wrong".

An evaluation step is written as e\ => p2- The closure of this operation is
written as: e 1—> v and for a program that does not succeed we have: e 1—»

WRONG.

The property we wish to prove for delayed typing then becomes: if
h e => {t} then
e WRONG

The proof of this rests on the notion of subject reduction. This states that
reductions preserve the type of an expression. Formally, if F e\ => {x} and
e\ ==> C2 then h C2 => {x}

Subject reduction is not enough on its own to ensure type safety, it must
also be shown that an expression whose reduction has become stuck because
of some type error, for example (1 1), cannot be typed. If this were not the

162 Chapter 5. Delayed Typing

case, then an expression which is well-typed can still be reduced to a stuck
expression without violating subject reduction.

For the simple lambda-calculus there is only one kind of expression which
is stuck. That is an expression (c v) for which 8(c, v) is undefined. Such expres¬
sions cannot be given a type otherwise the 8 — typability condition is violated.

5.13.3.1 Subject Reduction

The proof of subject reduction proceeds via induction on the size of the ex¬

pression being reduced. The interesting case is given below and rests upon

the replacement lemma. The replacement lemma allows the replacement of
one sub-expression of a typable expression with another sub-expression of the
same type without altering the type of the whole expression. Using e\e{\ to
mean an expression e with a 'hole' in it which is filled by the sub-expression e\

then the replacement lemma can be formally stated as follows.

Lemma 5.13.3. If C h e[e\] =>• {t} and Cj F e\ => {xi} and Q h e2 => {xi} then
C b e[e2] => {x}

The interesting case for subject reduction then is that of application:
Case: (fun x —> e\) v =>• e\[x i—» v]
From the assumption C F (fun x —»e\) v => {x} and the rule for abstraction (115)
we must have that: CF v => {xi} and C F fun x —► e\ => {(xi —> X2)} for at least
one Xi and X2. From the rule for abstraction it must be the case that Cx[x
{xi }] F e\ => {X2} By the replacement lemma we have that C F e\ [x t—> v] => {X2}

5.13.4 Exception Safety

In this section the type system extended to include the inference of exception
annotations as discussed in section 5.11 is considered. An important property
of any system which infers sets of exceptions which may be raised is one of ex¬

ception safety. This means that if an expression e\, when evaluated may raise an

exception E\, then any type inferred for e\ is annotated with a set of exceptions
which includes E\.

5.13. Properties 163

For the delayed type system described here this property can be formally
written as:

Lemma 5.13.4. IfC \~ e =>x and e \—> raise E then x[£] g x implies that £ g £,.

Recall that x is a synonym for x[] so if C h e =s> x and tgt then this requires
that e raise E for any E.

A small fact about deductions is used, this states:

Lemma 5.13.5. If\~e=> {t [£,]} then any deduction for the type of e which involves
this deduction, must deduce a set x in which every member ofx is annotated with at
least the set [£,].

The main property of exception safety can be proven with the use of subject
reduction. Informally, subject reduction states that; if the type system allows
an expression e\ to be typed with a given set of exceptions as an annotation and
e\ can be reduced to then the type system allows the inference of the same

set of exceptions for expression ei- In particular if the type system allowed a

smaller set of exceptions to be inferred for the expression e\ than was possible
for C2 then the property of subject reduction would not hold.

Formally then the property of subject reduction is given by :

Lemma 5.13.6. If F e\ =>■ xj and e\ =>■ C2 then H C2 =» Tz and x[£J g xi implies

Since the only rule which applies to raise expressions is rule 131 we have:
F raise E => {any[£]} and by the property 5.13.5 there is no type x[^] which
may be inferred as part of a set for the raise expression such that E g £,. Hence
for all raise expressions any type which may be inferred for it must have the
raised exception as part of the exception annotation. By subject reduction if an

expression e\ may be reduced to a raise expression then all types in any set in¬
ferred for the expression e\ must contain the raised exception in the associated
annotation set. Since it would be impossible to infer a set which did not con¬

tain the raised exception for the raise expression. Therefore subject reduction
implies exception safety.

164 Chapter 5. Delayed Typing

The interesting case for subject reduction for exception safety is now shown.
Case: (try raise E with E e2) =>■ ei By the assumption we have that
b try raise E with E —> e2 => x for some non-empty set. By rule 131 we have
b raise E => {any[£"]} and lemma 5.13.5 we have that when using rule 132 the
set T3 is empty since none of the types in the set for the first expression do
not contain the exception E. This means that the set inferred for the whole
try expression is equal to the set inferred for the expression e2. Since the try
expression reduces to C2 subject reduction is preserved. □

In general subject reduction holds for exception safety because for each
form of expression the exceptions which it may raise depend upon the ex¬

ceptions which may be raised by the sub-expressions. Each rule is deliberately
tailored not to allow any exceptions to escape without annotation.

5.14 Comparisons

In this section some related type-systems and type-system extensions aimed at

solving similar problems to that which the delayed typing system of Nitro is
aimed at are detailed and compared to the delayed typing system.

5.14.1 Hindley-Milner

The Hindley-Milner type system[64] is the basis upon which much work on

type-systems is founded. This provides polymorphic typing of programs in
the simply-typed lambda-calculus. Not only the basis for much research on

type-systems, the Hindley-Milner type system is also the essence of many type

systems in practical use, including but not limited to, the type systems of SML,
OCaml, Clean [65] and Haskell. Recall from Section 5.13.1 the set of inference
rules for the Hindley-Milner type system given in Figure 5.9

In section 5.13.1 it was proved that the delayed typing system can provide
a type for all programs which the Hindley-Milner typing system can, therefore
the typing system types as many programs. Since it was also shown in section
5.13.3 that the delayed typing system does not allow the typing of any 'wrong'

5.14. Comparisons 165

programs the delayed typing system can be said to include the Hindley-Milner
type system. This is a good starting point as it means we have not produced a

type system which is less general than or provides less guarantees than a type

system which is in widespread use.
It is simple to give an example of a program which is typable under the

delayed-typing system but not in Hindley-Milner. The simplest example in¬
volves the polymorphic use of an argument type. In delayed typing a type can

be given to the following function:
fun/—► (/ 1J true)

The delayed type assigned to it is:
([[/]] - [[(/ int,/ bool)]])

A traditional Hindley-Milner type system will however assign no type to the
above function.

In this sense the delayed-typing system can be said to have included some

of the slack of the Hindley-Milner typing system. The slack of any type sys¬

tem is the set of programs which are not-typable but which it is desirable to

type. Often this set corresponds to those programs which although they are

typable are not 'wrong', in the sense that the program will always either fail to
terminate or terminate with a value of the correct type.

As noted in the section 5.11.3.1 another kind of program some of which are

typable under delayed typing but not under Hindley-Milner are those which
contain expressions which are guaranteed not to be evaluated. Although this
class of programs are generally uninteresting there are, as noted, opportunities
to use this ability to increase the maintainability of some software.

5.14.2 Rank 2 - Rank N Polymorphism

The 'rank' of a type system refers to the depth at which universal quantifiers
may appear in a contra-variant position. Because the original Hindley-Milner
type system is a rank 1 system no polymorphism occurs in the argument of a

functional argument. This was demonstrated in the example function of the
previous section. The functional argument / cannot be applied to both an

166 Chapter 5. Delayed Typing

integer and a boolean because it cannot be polymorphic in a rank 1 system. In
a rank 2 system however one would be able to type such a function.

Rank-2 polymorphism allows a function to accept a polymorphic argu¬

ment. With Rank-1 polymorphism all V quantifiers come at the outer scope

of a type. For example one may have
V(a).(a —> a)

but one cannot have the type

V(a).(V(P).(P - P) - a)
The delayed typing system is quite capable of giving a type to such func¬

tions. In fact a delayed typing system is an arbitrary-rank type system, that is
polymorphism can be nested however deep in the contra-variant position as

required. It is known that pure type inference becomes difficult or intractable
for rank > 2. However the delayed typing scheme described in this thesis re¬

quires type constraints on recursive functions and hence does not have pure

type inference. It therefore does not automatically follow that the delayed-
typing system is intractable. Some work on making arbitrary-rank polymor¬
phic type systems tractable includes [44].

There remain some programs outside of the scope of an arbitrary-rank
polymorphic type system which can be typed by a delayed type system. One
such class has already been mentioned, those which include un-typable ex¬

pressions which are guaranteed not to be evaluated at run-time.
Additionally giving a Hindley-Milner type system higher-rank polymor¬

phism does not address the problem of sub-typing. Recall that sub-typing was
a requirement of the new delayed typing system for Nitro because of the need
to encode foreign type information in abstraction-level code.

5.14.3 Abstract Interpretation

Abstract Interpretation [66] is a means of static analysis which consists of exe¬

cuting the program but in an imprecise manner. Each point in the program is
given not a specific value but a set of possible values which it may take on a

given execution of the program. Often this set is an interval of values. In this

5.14. Comparisons 167

way a single abstract interpretation of the program can approximate all possi¬
ble runs of the program on all the inputs (or a sub-set of the possible inputs in
which the analyser is interested).

A delayed typing scheme is similar to abstract interpretation, whereby the
set of types represents the set of possible values. In fact delayed typing may be
seen as a specific instance of abstract interpretation where the abstractions are
fixed at the level of the type. The programmer may alter the precision of the
abstraction by using more refined types since the delayed typing scheme ad¬
mits sub-typing. While delayed typing loses some of the generality of abstract
interpretation it gains in simplicity for the programmer. No extra definitions
are required on the part of the programmer, and the same abstraction is used
on every program therefore a programmer new to a specific software project is
immediately familiar with the static analysis used.

It is possible that abstract interpretation could be integrated into a delayed
typing scheme and that such a marriage would yield a powerful design. It
may be that the advantages of conformity across software projects and specific
analyses can be combined with the advantage of greater control over the gran¬

ularity of the specific analyses. This may be a promising area for subsequent
work.

5.14.4 Soft-Typing

The main idea behind soft-typing as described in [5] is to combine the expres¬

sivity of dynamic typing with the feedback given to the programmer before
execution of the program offered by static typing. The main idea is to use a

static type system, but where a program is ill-typed, rather than produce an
error and refuse to compile the program, a warning is emitted and a dynamic
run-time check is inserted. This can be seen as an extension to the common

method for typing arrays in statically typed programming languages. Gener¬
ally it is not possible to ensure statically that the index of an array access is
within the bounds of the array being accessed. Therefore the compiler will
allow all such accesses but insert a dynamic run-time check that the index is

168 Chapter 5. Delayed Typing

within the bounds of the array before executing the actual access. Soft-typing
extends this method to the more general question of whether a value is used
appropriately

This method marries two advantages of the static and dynamic typing strate¬

gies; the ability to detect errors at compile time coupled with the ability to run
all correct programs. However the boundary still exists in practice, since the
extra correct programs which are now allowed, but would be failed by a static
type system, are dynamically typed. This means that no extra programs are

statically approved.
Introducing automatic run-time checks has the disadvantage that the com¬

piler may need to introduce a private run-time representation of values in or¬
der to determine their types at run-time. This was something that Nitro sought
to avoid.

5.14.5 Dependent Types

A dependent type is a type which depends upon a value. Dependent types[67]
can ensure more properties of a program than can a delayed type. For example
in a language providing dependent types one may write a zip function over

two lists and ensure that it is only called with two lists of the same length.
This is not possible using delayed types for arbitrary lengths of lists. It may be
possible using index types to provide something similar but in general delayed
types cannot provide the same guarantees which a dependent type is capable
of.

Dependent types have been incorporated into traditional Hindley-Milner
type systems, such as with dependent ML (see [68]) and there is no reason

why dependent types could not be incorporated into a delayed typing system.

5.14.6 Existential Types

The relationship of abstract data types to existential types was first described
by Mitchell and Plotkin [69]. Existential types have been used in Nitro to assist

5.14. Comparisons 169

in the typing of bare array accesses. Their use allows a polymorphic structure
to hold heterogeneous items about which local constraints can be retained. In
the case of Nitro the 'local constraints' were limited to equality. This allowed
the Nitro programmer to define an abstract array data type which held both
the array itself and its length. The existential types allow one to ensure that
the length argument given is indeed the length of the bare array, but also that
this length did not have to be any particular length. This was necessary as it
allows one to equate the types of two arrays of differing lengths, provided their
lengths are stored together with the corresponding array. Without this ability
it would, for example, be impossible to choose between two arrays unless both
arrays were created with the same index variable.

5.14.7 Constraint Solving

A constraint solving type system, such as HM(X)[70] first described by Oder-
sky, Sulzmann and Wehr, has much in common with a delayed typing system.
A delayed type can be seen as a representation of the constraints upon the
type. Instead of a further typing language used to describe the constraints, the
constraints are implicit in the form of the delayed expression. For example the
type

([[/]] - [[/ int]])
constrains the argument type to be a function which can accept values of

type int (or a sub-type of int).

5.14.8 Intersection Types

An intersection type is a type belonging to two types. An intersection type is
usually written as T\ AT2 and means a type which is both of type Xj and %2- This
only makes sense if intersection types are used in the presence of a sub-typing
relation. Without a sub-typing relation then we have simply that x = Xi AX2 if x

is an instantiation of both X\ and X2.

In the presence of sub-types an intersection type becomes more powerful.

170 Chapter 5. Delayed Typing

In fact the power of expressivity of intersection types is such that type infer¬
ence is known to be undecidable. However this does not mean that the type

system is unusable.
In Nitro a delayed conditional type is equivalent to an intersection type.

Consider the simple if function
fun b —> (fun x —> (fun y —> if b then x else y))
This could be given the intersection type

(bool —■> ('a —> ('b —> 'aA'b)))
in delayed typing we would give the type:

([[&]] - ([[*]] - (Ml - [[if b then x else y]])))
Given a suitable typing for conditionals, in which the end result is a com¬

mon super-type of the types of both branches, then both the intersection and
the delayed types for the given function can be applied to the same set of types.
Intersection types were studied by Benjamin Pierce for his PhD thesis [71, 72].

5.14.9 Sized Types

Sized types can have slightly different meanings, but generally sized types
relate static information about the magnitude of values in a program, as in
[73]. The size information typically relates somehow to the number of objects
within a container type such as the elements in a list or an array. The size
information is often in the form of a relation, rather than reasoning about the
absolute size of data structures the size relative to each other is calculated. For

example the append function which joins two lists together. The size type will
specify that the returned list is larger than both of the input lists, or perhaps
even that it is exactly equal to the size of the first plus the size of the second.

Size types can also be used to ensure the termination of recursive functions
which traverse structurally inductive data types, by ensuring that the size of
the argument given to all the recursive calls is smaller than the size of the
'current' argument.

In a similar way to dependent types, sized types offer more than a delayed
type, but are not mutually exclusive to delayed types. That is one can imagine

5.15. Incorporation Into Nitro 171

a delayed type system incorporating some form of sized types. Sized types do
offer more than the index types used by Nitro's foreign data interface to allow
the encoding of array length information. The Nitro solution is however more

lightweight.

5.14.10 Uniqueness Types

A uniqueness type guarantees that an object has at most one reference to it.
When this is guaranteed then destructive update may be used upon it to im¬
prove the efficiency of functional code without relinquishing the important
property of referential transparency. The language Clean [65] uses unique¬
ness types to provide input/output actions in a lazy functional programming
language [74].

As with dependent types and sized types, uniqueness types can in theory
be incorporated into a delayed typing system.

5.14.11 Haskell Type Classes

Type classes as used in Haskell (see [75,76, 77]) offer a method to allow ad-hoc
polymorphism into functional programs. This system is not orthogonal to the
use of delayed types, in fact since type classes can benefit from a sub-typing
relation, adding a type class mechanism to a delayed typing system would be
complimentary.

5.15 Incorporation Into Nitro

This section describes how the delayed typing scheme was incorporated into
the Nitro programming language.

5.15.1 Syntax

There was relatively little concrete syntax in the way of expressions which
were added to Nitro from that which already existed from the introduction

172 Chapter 5. Delayed Typing

of the foreign data constructs as described in Chapter 4.
Before the inference of exception annotations Nitro did not have any ex¬

ception raising or handling facilities. This was because it is inherently unsafe
to allow the propagation of an exception from the abstraction level code to the
calling procedure. Now that exception annotations may be accurately inferred
to indicate which exceptions may be raised by the abstraction one can either
ensure that no such exceptions will leave the abstraction level or at least be
aware of the possibility. This second option allows a system to prevent the
number of such escaping exceptions to be maintained, or even constrained.
Furthermore when one does cause a problem there is hope that the offending
portion of code can be tracked down more easily than if another abstraction-
level programming language had been used.

The syntax for raising and catching exceptions added to Nitro is as follows:
e := raise E

try e\ with £" —> e2

5.15.2 Tagged Union Data Types

Tagged union data types were not mentioned in the discussion of delayed
types. However tagged types play a central role in the foreign data interface
facilities of Nitro.

A tagged type can be represented in a similar way to record types and in¬
deed tagged types work very well with the delayed typing system. There is a

natural sub-typing relation over tagged union types which is explained in the
following section.

5.15.3 Sub-typing

As with record types there is a sub-typing relation between tagged union data
types. However the sub-typing relation is the converse of that used for record
types. Recall that a record type is a sub-type of another record type if it con¬

tains all of the same record fields. A tagged type is a sub-type of another tagged
type if it contains no constructors which are not also present in the second type.

5.15. Incorporation Into Nitro 173

The rational for this is that a function expecting an argument which is a

tagged type containing the constructors con\, ...,conn will perform well on a

value which was created with any one of the given constructors (and the ap¬

propriate argument type). Such a value will have a tagged type which may

contain less constructors that the set con\, ...,conn. If this function is applied to a

value with a tagged type containing a constructor not in that set, then the func¬
tion may fail, in particular if the function matches over the constructor then the
pattern match will fail. So a function with type ((coni X\\....con2 X2) —> x) may

be applied to any with a tagged type containing a sub-set of those constructors

(con\ T\\....con2 X2), but not to a tagged type containing any constructors out
with that set.

Conversely a function excepting a record type which contains the labels
lab\,...,labn can accept a value which was created with more labels defined
but not less. If it is applied to a value created with less labels defined, then one

of the undefined labels may be accessed by the function, causing an error.

As with record fields though, the parameter types of the constructors must
be sub-types. Here are a couple of examples before the sub-typing relation for
tagged types is more concretely defined.

(label 1 of int) <: (label I of int | label2 of bool)

(labelI of int | label2 of W('a).('a —■» 'a)) <:

(labelI of int | label2 of V('a).(bool —> bool))

Here are the additional two rules to allow sub-typing for tagged union
types under delayed typing. They use the T function which, given a tagged
union type x and a constructor label lab returns the parameter type of the con¬
structor lab within the type x. If x is not a tagged union type or does not contain
the constructor lab then the function (P fails.

X) <: tP(x,label) (constrs <: x)

(label of Xi (| constrs)) <: x
(145)

174 Chapter 5. Delayed Typing

5.15.4 Bare Arrays

This section defines the additional typing rules which must be added to the
delayed typing inference rules to allow the typing of the foreign data bare
arrays. The key points here are that we cannot assign the same index variable
to more than one value (though we can of course alias an identifier with an

index type) and that an array can only be assigned one index variable type
hence it cannot be accessed with the wrong index variable.

Chei=»{int} Ci[i i—> {index.(a)}] h ei =>• x a not free in C
^

C h let index i = e\ in e2 => x

Since arrays are mutable the type of the cells within an array can only have
one type, not a set of types. This is the same as a mutable record field.

C e\ => {t} C h £2 => {index, (z)}
C b array e\ ei => {x array, (z)}

CT e\ => x Che2 {index.(z)} Che3 =4> {int}
C h ei.(e2)-[e-s] => (t | x array.(z) € x}

C h e\ =>■ {x array.(i)} C h e2 => {index.(z)} Che3=>{int} Cbe4=>{x}
Che 1 -(^2)-[^3] <-C4=> {()}

(149)

Chapter 6

Regions

This chapter details the region memory management scheme used in Nitro.
Regions allow the programmer to control the lifetimes of objects created by the
Nitro code while retaining a type-safety guarantee. This ability is essential for
abstraction-level code which may create values the lifetimes of which depend
on higher-level code.

This chapter begins with a background look at different memory man¬

agement schemes, most of them involving a compromise between the two
extremes of automatic garbage collection done at runtime and fully manual
memory management where the whole issue of memory management is left
up to the programmer. This is completed by an introduction to the general
regions memory management scheme. Nitro regions are then introduced by
detailing the language constructs which are available to the programmer for
manipulating data storage in regions of memory. The typing of such region
constructs within the delayed typing scheme of the previous chapter is de¬
scribed at the user-level. In section 6.3 a formal semantics for the delayed
typing of region constructs is shown. The chapter concludes with a discus¬
sion of the success of using a region memory management scheme within an

abstraction-level functional programming language such as Nitro.

175

176 Chapter 6. Regions

6.1 Background

When designing a language a choice must be made on how to manage mem¬

ory within programs written with that language. There are several choices that
can be split into two major forms. Explicit memory management in which the
programmer has full control over memory operations, and automatic mem¬

ory management in which the programmer leaves the task to the compiler and
runtime services. Several schemes lie somewhere in between these two possi¬
bilities and usually involve a compromise between the advantages of each.

6.1.1 Explicit Memory Management

If explicit memory management is chosen then the programmer generally has
three operations available. The programmer must be able to request a new

block of memory and to delete or relinquish control of any block obtained in
this way. Finally the programmer is given the ability to reuse a block of mem¬

ory, this may simply be a side-effect of the language allowing arbitrary update.
There are several advantages to explicit memory management. The three

most notable are control, efficiency and predictability. By allowing program¬

mers control over the management of memory they can rely on some prop¬

erties of a program that would not be guaranteed by an automatic system of
memory management. This can be necessary particularly when manipulating
memory is a central part of the program being developed rather than just a ne¬

cessity required to solve the real problem. Such control can also lead to an in¬
crease in efficiency, though efficiency is listed as a separate advantage because
the explicit operations for maintaining the memory of a program are usually
simple operations compared with the dynamic bookkeeping that must be done
by an automatic runtime service, however the measured cost of per-allocated
cell may be less with a dynamic garbage collector (see below in Section 6.1.2).
In addition to control and efficiency, where programmers explicitly allocate
and free portions of memory they have the predictability of such operations.
Furthermore not only are such operations predictable in their behaviour but

6.1. Background 111

they are often evident in the source code of the program. This means that
the programmer cannot only predict a stall in some operation due to memory

management routines but is also more likely to notice the possibility of such a

stall in advance of a test procedure uncovering it.
There are also several disadvantages to explicit memory management. The

two major disadvantages are the inconvenience it forces upon the program¬

mer and the lack of a safety guarantee. Because programmers have full control
over the reuse and lifetimes of the memory blocks which they request, the
only thing preventing them from making a mistake is themselves. The previ¬
ous paragraph mentions that programmers may use properties of the program
which they as programmers can know but which cannot be expressed to the
compiler or runtime system. However this means that the programmer can

also make use of a property of the program which is not true and therefore
access a memory location with an incorrect type.

The inconvenience to programmers is perhaps the least attractive draw¬
back of explicit memory management. For every program the programmers

must spend a large fraction of their time solving an issue that is not central
to the main problem presented by the program which they are trying to im¬
plement. In addition the source code of the program is sprinkled with calls to
invoke memory operations. This can help highlight bugs and deficiencies in
the memory management part of the program but it can also obscure the im¬
plementation details of the real problem. In other words using explicit memory

management can make the program harder to read.

6.1.2 Implicit Memory Management

Automatic memory management usually takes the form of a runtime garbage
collector. When the garbage collector is invoked it scans the variables in the
program that are still live. This involves searching down the stack of the pro¬

gram and the machine's program registers. The garbage collector assumes that
all such variables may be used again and hence can be considered live. It must
determine which of these variables constitute pointers into the heap memory

178 Chapter 6. Regions

of the program. All portions of the memory in the heap which are not reach¬
able from the live variables in the program are considered to be garbage that is
safe to delete or reuse. There are several different strategies or algorithm for
the garbage collector to use, many are reviewed and discussed in [78].

The advantages of automatic runtime garbage collection mirror the disad¬
vantages of explicit memory management. The convenience to the program¬
mer can greatly improve productivity. The language is now able to make a

guarantee of safety; since the programmer need not be provided control over
the deletion and reuse of memory, the language can ensure that these opera¬

tions are only performed when it is safe to do so. This is of course not the only
requirement for type safe programming but it does make it possible.

The disadvantages are clear - the loss of control over the reuse and dele¬
tion of memory can mean that memory which will never again be accessed
by the program is retained by the program simply because the garbage col¬
lector cannot determine that the memory will indeed never be accessed again.
A programmer employing an explicit memory management scheme may use

properties of the program which a dynamic garbage collector must spend time
computing while the program is running. The loss of efficiency in speed is gen¬

erally noted as a disadvantage of using a runtime garbage collector. The actual
cost is not always as great as perceived, for example in [79] Appel notes that
as the size of the memory is increased the cost of deallocating a cell of memory

can be made to tend towards zero. In [80] Zom measures the cost of conserva¬

tive garbage collection by using explicit and implicit garbage collection with
the same programs. His conclusions indicate that the cost in extra CPU cycles
of garbage collection is low and questionable. However he also concludes that
programs using automatic collection will have an increased use of memory.

For environments where there are small caches and memory spaces this can

degrade performance.

Controlling when the garbage collector makes a pass to determine the garbage
in the heap is one of many similar problems that are presented to a language of¬
fering runtime garbage collection. A lot of research has been directed at these

6.1. Background 179

problems and many solutions exist although many compromise some of the
advantages of automatic runtime garbage collection. For example a language
may provide a 'collect-garbage-now' operation that the programmer may in¬
voke, generally during an inactive period of the program - such as between
the levels of a game - to attempt to avoid the collector running during a more

critical phase of the program. However any programmer using this has lost
some of the convenience and readability advantages that were gained by us¬

ing automatic garbage collection.
Furthermore the lack of explicit memory management operations makes

programs in which the central problem is the manipulation of memory diffi¬
cult or perhaps impossible to write. Other such low-level tasks become awk¬
ward such as the implementation of a marshalling routine to allow the inter-
operation between two high-level languages. As was discussed in chapter 4
such implementation tasks require low-level access to the structure of data but
even with this ability they can be awkward to develop if the programmer can¬

not explicitly create or delete memory. Because of this compiler writers must

implement many of the low-level routines provided by the language in C or

some other low-level language rather than the programming language which
the compiler is for.

6.1.3 Compromise Solutions

So far the two extremes of memory management have been considered, but
there are many other schemes that fall somewhere between the two. Before
moving on in section 6.1.4 to discuss region based memory management, in¬
cluded here is a brief survey of some techniques that offer a compromise be¬
tween explicit and manual memory management.

6.1.3.1 Checked Explicit Memory Management

One alternative is checked explicit memory management (for examples [81]:
the programmer must explicitly invoke the memory management operations

180 Chapter 6. Regions

but the compiler can check these to make sure that memory is not reused or

deleted too soon. By employing this a programming language can provide
some of the advantages of explicit memory management while capturing a

major advantage of a runtime garbage collector, that is programs can be en¬

sured to be type safe. However this scheme does not gain the advantage of
convenience of automatic garbage collection.

This general scheme can be further split into two different categories: the
compiler may check the memory management operations at compile time or

insert runtime code to apply the check dynamically. To enable compile-time
checking there are often restrictions on when these commands may be called.
This offers programmers most of the benefits of efficiency and predictability.
There is still a greater control over memory than with an automatic scheme but
not quite as much as with unchecked explicit memory management. For exam¬

ple a programmer cannot use properties of a program that cannot be presented
to the compiler.

Checking each memory management command at runtime offers the or¬

thogonal advantages of retaining control but losing much of the efficiency and
predictability. In fact in order to speed up such calls often the runtime check¬
ing - for example checking a delete operation is safe - is postponed until it
is actually required - in this case, when the memory is reused. This means

that the pause required to make the runtime check is unpredictable both in its
duration and in when it is performed. As a result this scheme is little used as

a primary memory management scheme, however it has been employed as a

means of improving legacy code. In such cases a combination of altering the
semantics of pointer and array accesses to speed up the runtime checks and
static analysis to remove such checks where they are not required is used. The
Safe-C compiler uses a technique described in [22] to provide efficient checking
of pointer and array accesses. The CCured project [19, 21] analyses the input
C program to determine the smallest number of runtime checks that must be
inserted to make the program memory safe - where memory safe means that
the program will stop rather than overrun buffers or write over data that is still

6.1. Background 181

in use. In addition the analysis performed can highlight some bugs that would
otherwise require tests to discover.

6.1.3.2 Implicit Compile-Time Memory Management

Automatic compile-time memory management hopes to automatically insert
in the program memory management commands, for example see [82], This
means that a program written for use with an automatic runtime garbage col¬
lector is translated into an explicitly managed program.

In theory this can offer the best of both worlds. From automatic garbage
collection the programmer retains safety and convenience but still does not
sacrifice efficiency of the translated program. Predictability can still be retained
though only if the programmer is aware of the inference used for automatically
inserting the memory management commands. Control is nearly lost, though
again with some knowledge of the underlying scheme the programmer is of¬
ten able re-write their program in order to steer the inference algorithm in
some way. In practice such systems have proven very difficult to implement.
Generally the inference of where in the program to place the memory re-use
command is very conservative and as a result the program retains unused data
for too long. An example of an inference system for an ML-like programming
language with promising early results is described in [83] with the remaining
problems due to polymorphism and mutable reference cells.

6.1.3.3 Compile-Time Garbage Collection

The above section introduced the notion of automatically inferring the mem¬

ory management commands so that the programmer need not insert them,
but also a runtime garbage collector was not required. The notion of compile-
time garbage collection is to automatically infer when it is safe to insert memory
re-use commands but still combine this with a runtime garbage collector for
example [84]. In [85], Mazur, Ross, Janssens and Bruynooghe describe the im¬
plementation and design of one such system for the Mercury [86] programming
language.

182 Chapter 6. Regions

Where compile-time garbage collection is used static analysis techniques
are employed to reduce the runtime cost of the garbage collector. Because
memory is reused there is less garbage to collect, also when and what areas of
memory need to be collected can be inferred at compile-time. To the program¬

mer the scheme is essentially an automatic runtime garbage collected scheme
but performance is often improved. Once again the scheme can be difficult to

implement.

6.1.3.4 Other Possibilities

Finally it is possible to offer some finer grain compromises by combining parts
of the schemes above. For example combining automatic compile-time mem¬

ory management and checked explicit memory management can result in what
is for the most part automatic compile-time memory management but which
allows the insertion of constraints to make sure the inference has detected key
points at which to delete or reuse memory. This provides some measure of
control and predictability at the cost of some of the convenience. Another ex¬

ample is allowing the programmers to designate which values should be auto¬
matically reclaimed by a garbage collector and which they wish to relinquish
manually perhaps using checked explicit memory management commands.

In [87] a linear type system for a first-order functional language is presented
which allows in-place update by ensuring that all references are only used
once (hence the linear quality of the type system). The main innovation is a

resource type o which is bound to the space used by a constructor, such as

the list constructor cons. When a value is deconstructed via a pattern match its
resource may be re-used thus allowing in-place update. Since the resource may

only be used once it is guaranteed not to be needed anywhere else. In [88] the
authors present an updated type system which is less restrictive. This allows
some sharing of data by allowing more than one access to the references of
the resource type o. Provided that all but the last use is non-destructive this is
shown not to interfere with the semantics of the translated program. This work
is in the context of the MRG or Mobile Resource Guarantees project[89], which

6.1. Background 183

aims to provide machine checkable proofs about the resources consumed by
a given program. The resource in question is often maximum memory usage

such that a program can be determined to be safe to run on a device with a

limited amount of memory.

For the most part this section has talked about 'the language' offering a

certain scheme and for most of the time this meant 'the implementation' of a

language. The compromise schemes are often not part of the language but are
attached by a specific implementation often as an extra program analyser or li¬
brary. The possible reason for this is that any one language does not wish to tie
itself down to one particular scheme lest some other superior scheme emerges.

It may also be simply because memory management innovators are concerned
with the deployment of a particular memory management scheme rather than
the nuances of language design. In any case most languages stipulate only ex¬

plicit or automatic memory management and the precise scheme used is left
up to the implementors and, sometimes, even the programmers themselves,
for example the Boehm-Demers-Weiser[45, 90] conservative garbage collector
provides C programmers with automatic runtime garbage collection. For some

schemes language support is desirable or even necessary. In these cases we of¬
ten see a dialect of an existing language emerge.

6.1.4 Region Memory Management

So far this section has discussed memory management schemes by distin¬
guishing them based on the amount of work done by the programmer, the
compiler and any runtime services. Between the two extremes of entrusting
everything up to the programmer and providing completely automatic mem¬

ory management by the runtime system, several compromise positions have
been identified. This subsection will detail a method, regions, that can be em¬

ployed to strike a balance between several of the compromise solutions. Re¬
gions have been used for several decades one of the first uses within an explicit
memory management system was described by Ross in [91] and [92] gives a

good survey of the use of regions for memory management splitting those

184 Chapter 6. Regions

listed into three kinds; those that ensure safety statically, those that ensure

safety dynamically and those which are unsafe.
A region is a portion of memory in which a set of objects may be stored.

Regions are often expandable as more objects are stored within the region.
Alternatively it is possible to group together regions. Within a region-based
memory management scheme objects created within a program may be stored
within a region. Regions may be created and deleted dynamically at runtime.
When a region is deleted all of the objects stored within that region are also
deleted. Generally an object may be stored in at most one region though there
is often a sub-region relation in which all objects stored within a sub-region
may be seen as being stored within another region that is guaranteed to outlive
the first.

Regions may be programmed by hand, explicitly creating and deleting re¬

gions. The deletion operations are not checked by the compiler. When so used
region programming is explicit memory management and cannot guarantee

safety. In this sense the regions are used to structure the explicit memory con¬

trol in the hope that mistakes are less likely and can also improve performance
as all values allocated within a region can be deallocated with one delete region
operation. Furthermore although there are no compile-time guarantees as to
the safety of the program it is possible to add dynamic runtime checks when¬
ever the "delete region" operation is called. Work on explicit region mem¬

ory management and allowing language support for such constructs includes
[93, 92],

6.1.4.1 Stack of Regions

In [94], Tofte and Talpin first presented the stack of regions memory manage¬

ment scheme as a means of allowing static checking and automatic inference
for region based memory management. Regions are maintained using a stack.
When a region is created it is placed upon the region stack. A region cannot be
deallocated unless it is at the top of the region stack. Therefore regions have
the property that any region created is destroyed before any of the regions that

6.1. Background 185

were still alive at the time of its creation. When an object is created it may be
stored within any of the regions that are currently live. The object is deleted
whenever the region in which it is contained is itself deleted. An object may

only live in one region.

Definition 1 (Region scheme). For the remainder of this thesis when referring to
a regions scheme this will mean a region scheme in which there is a stack of regions
which must be deleted according to the FIFO discipline ofstack management.

Within a region scheme there are three main operations. A create_region

operation to create a new region on the top of the region stack and a handle to
be used to refer to the new region. An aiiocate_region operation allocates space

for a new object within a region. Finally a deiete_region operation deletes the
region and all of the values that have since been allocated within that region.
This operation may require as a parameter the region to delete and check that
it is the top of the region stack, or it may implicitly delete the top of the stack.

As before these operations may be invoked explicitly by the programmer.

When this is done either there is no safety guarantee or safety is ensured by
static type checking, dynamic runtime checks or a combination of both. Addi¬
tionally such region operations may be inferred by the compiler. An algorithm
for such an inference is given in [95].

Regions in this form then can be used to provide a range of solutions to

memory management which find a compromise between the control and per¬

formance of explicit memory management and the safety and convenience
of automatic runtime garbage collection. Explicit region operations that are

checked by the compiler offer some of the control and performance of explicit
memory management, while also providing the safety of automatic garbage
collection at the expense of much of the convenience. If the checking is done
statically then some of the control is lost as some programs that are safe to run

are rejected because the type system is not powerful enough to express it. If
the checks are dynamic much of the control can be retained but at the cost of a

loss in performance, though this loss may not be significant.

186 Chapter 6. Regions

6.1.4.2 Region Inference

Inferring region operations automatically means that the safety and conve¬
nience of dynamic garbage collection may be retained. However, to a large
extent the control that explicit memory management provides is lost. There is
also a loss of some of the performance afforded by explicit regions as the in¬
ference does not always infer the optimal regions into which to place objects.
Some of this can be offset by the programmer, with some knowledge of the
inference algorithm, by rewriting their program to be more friendly to the in¬
ference engine. A better approach is to simply allow explicit annotations but
still infer the region operations where the programmer has not given them.
In either case some of the convenience afforded by entirely automatic dynamic
garbage collection is lost, but at the significant benefit of a gain in performance,
control and predictability.

Regions as used in the ML-Kit[96], are automatically inferred by the com¬

piler. This was done because the authors were compiling an existing language
that did not contain region primitives. Used in this way regions are a form of
automatic compile-time memory management which it has already been noted
appears to offer the best of both worlds however in practice the user must have
some knowledge of the region system.

6.1.4.3 Cyclone Regions

The Cyclone language has extended[97] this approach by adding into the lan¬
guage explicit region annotations for the programmer to assist the inference
algorithm by giving manual hints as to where might be good places to insert
region operations. In addition this has the advantage of helping to maintain
region code that has been fine tuned. For example a programmer who has
manipulated the way in which a piece of code has been written in order to

get the best region performance from the compiled code can ensure that future
updates to the code do not invalidate properties which the fine tuning relied
upon.

In addition several memory management techniques have been incorpo-

6.2. Nitro Regions 187

rated into Cyclone such that programmers have a choice of approaches for
each object in their programs. For example programs may store objects in a

special Heap region which is never deleted and may be optionally garbage
collected at runtime. There is also a special Unique region. Objects stored
in this region have only one reference to them and therefore can be deleted
as soon as the pointer leaves the active scope. Although this can burden the
programmer with choice it can also offer them the control and performance
comparable with explicit memory management when required.

The Nitro language uses an approach similar to Cyclone. A region mem¬

ory management scheme is used, region operations are given explicitly by the
programmer and checked to be safe by the compiler. A separate heap that may
be optionally garbage collected is also offered. The remainder of this chapter
concentrates on detailing the typing of region operations within Nitro and in
particular how this interacts with the delayed typing scheme detailed in Chap¬
ter 5.

6.2 Nitro Regions

The example Nitro code in the previous chapters takes no notice of memory

management. The code was written with the assumption that all values are al¬
located on the heap and automatically collected by a runtime garbage collector.
This can be done using a conservative garbage collector without modifying or

requiring an internal representation of values; recall that this was an impor¬
tant property for Nitro since otherwise foreign values must be separated from
internal Nitro values.

The use of such a garbage collector is frequently inappropriate, for example
when writing a marshalling routine to allow the exchange of data between two
Other high-level languages. Most of the values created should be registered
with the garbage collector of the target language, some intermediate values
used during the translation should be deleted immediately. This section intro¬
duces the region primitives provided by Nitro and details the typing involved

188 Chapter 6. Regions

at the level appropriate for a user of the type system. In section 6.3 the syntax
and typing of the region constructs are formalised.

6.2.1 The Type of Regions

Regions are given unique region names. The type of a region is written region, (v)
where v is the name of the region. A region variable is a region name that may

be instantiated. We write region. ('r) to denote a region variable. Only a re¬

gion variable can be instantiated; a region name cannot.

6.2.2 The let region construct

Regions can be created with the let region construct this has the form
let region r in ei. In the expression ei, the name r has type region, (v) where
v is a unique region name. The syntax of region types is similar to that of index
types but there is a subtle difference, distinct region names may be unified.
Whereas one index type may never be used in place of another, some region
types may be interchangeable. This is because there is a natural sub-typing
relation between regions based on lifetimes.

During the evaluation of the expression let region r in ei, once the ex¬

pression ei has been evaluated the region r is removed, and all of the objects
which were created within that region are relinquished. The type system must
make sure that no such object is later accessed.

6.2.3 The at construct

The at construct allows the creation of a new object inside a particular region.
It has the form ei at r where r is a program variable which must have type
region, (v) for some region name v. The object is created within the region v.

When that region is removed the object is automatically relinquished. Some
expressions create no new data. In this case the at construct has no effect at
runtime, however it does affect the typing of the expression. In this case the at

annotation becomes a constraint which specialises the type of the expression.

6.2. Nitro Regions 189

The expression must have a type with an at annotation specifying a region
which lives longer than the region specified by the at annotation of the ex¬

pression. This is best described by way of an example:
let example =

let region rl in

let region r2 in

let p = (1, 2) at rl in
let q = p at r2 in

q

During the typing of this expression the identifier p has type (int, int) at rl.
The expression p at r2 is allowed since the region rl outlives the region r2. The
identifier q has type (int, int) at r2 even though it refers to the same actual
value as p, because the annotation at r2 given to the expression p - which does
not produce any data - acts as a region constraint.

6.2.4 The Uses Region Type

The Uses region type specifies which regions may be accessed by the compu¬

tation of the value associated with the type. It is written as x.{/?}. Here R is a

set of regions which may be accessed during the evaulation of the expression
to which the type system has inferred the type t.

6.2.5 The no Type

The type checker must invalidate the types of values stored in regions which
go out of scope. In addition it must invalidate the type of functions which
may access regions which go out of scope. However it is not desirable to reject
all code for which a value escapes the scope of the region it is allocated within
provided that value is never accessed outside of that scope. Similarly functions
which access regions out of scope are allowable if they are never applied.

To allow for this the no type is introduced. This is the opposite of the any

type which was introduced in section 5.11. Recall that the any type could be

190 Chapter 6. Regions

unified with any other type. It was used to indicate that instead of a value be¬
ing returned an exception would definitely be raised, hence it could be unified
with any other type. When unified with any other type, the resulting type is
the other type.

By contrast the no type, when unified with any other type, always returns
the no type. This is because it is not safe to use a value of type no. Since the
unification of any other type together with the no type returns the no type, a

value of no type cannot be used with any operation. So a no type can be part
of a tuple or record type, it may also be the type of a returned value. However
a value with type no cannot be manipulated or inspected. Generally a no type
is the result of a compound value such as a tuple value going out of scope, so

the pointer which represents the tuple is safe to be passed around, but cannot
be dereferenced.

6.2.6 The Heap Region

The heap region is a special region that is never deallocated. Any expression
that does not have an associated at construct is equivalent to an expression
with an at construct with the heap region as the given region. This means that
a program which ignores regions altogether can still be accepted. The heap
region itself may be optionally garbage collected using the Boehm-Demers-
Weiser conservative garbage collector. For some programming tasks the com¬

bination of automatic garbage collection with specific regions for some values
works well. For others one or other approach is preferable. The Cyclone devel¬
opers have experimented with several safe memory management idioms and
the use of two or more together within a single program. A report on these
experiments can found in [81].

6.3 Syntax

This section begins the formalisation of the region typing within the domain
of delayed typing. In this section the syntax for the region expressions and

6.3. Syntax 191

types are provided and in section 6.4 the static semantics of region programs
are formalised.

The additional syntax for region programming in Nitro is given in Figure
6.1. The additional types are given in Figure 6.2.

expr : = let region r in expr

| expr at r

Figure 6.1: The additional syntax of expression for region programming.

region, (v)
x at region, (region)
x. {region}
no

v

V

H

Figure 6.2: The additional types for region programming

Although the region types are types, the programmer may consider them
to be more like annotations. To allow for this the following set of rules define
equivalence over types involving region types. This allows distinct types to
be treated as equal types in much the same way as distinct type schemes are

treated as equal if they differ only in the names of the bound type variables.
A type without an enclosing region type may be considered equivalent to

one specifying the H. So that x is equivalent to x at H.{H}.
Nested annotations are combined so that: (x at r\) at r2 is equivalent to x at r

where r is equal to the shortest living region between r\ and r2 or the longest
living region if the type is in the contra-variant position.

Similarly use annotations may be combined: x.{7?i }.{i?2} is equivalent to

x.{Ri u/?2}.

x

region :=

192 Chapter 6. Regions

Such equalities can be applied in any order such that: ((x. {R i} at ri). {R2 }) at r2

can be rewritten as: t at r.{Ri UR?}

6.4 Semantics

This section details the static semantics of region programs. These semantics
follow the same course as the delayed typing static semantics. Each expression
may be assigned a set of types.

The region semantics for the simple lambda-calculus based on those given
in section 5.4 must consider three situations specifically.

• Expressions which create values stored in memory.

• Expressions which access memory directly.

• The region annotated expressions.

All other kinds of expressions may follow a region convention. Recall from
the delayed typing static semantics that a delayed type represents a set of con¬
crete types. The set of inference rules defining the static semantics given in this
chapter also associates expressions with sets of types.

The main idea is that expressions may be typed with any region annota¬
tions and only at region annotated expressions does the type inference enforce
the region rules. So for example a record creation expression may be associated
with the set of all appropriate record types with any region annotations. This
corresponds with storing the record in any region. If that record creation ex¬

pression occurs within a let region expression then the typing of the let region
expression will exclude from the set of inferable types the inappropriate region
typings of the record creation expression. If the record creation expression oc¬

curs as the left hand side of an at expression, then the typing of the at expres¬

sion will exclude all types which do not place the record in the given region.
Similarly if the record creation expression is assigned to some identifier which
is then used on the left hand side of an at expression then the inappropriate
typings for the identifier are removed.

6.4. Semantics 193

C b expr => X

Expressions which create data to be stored in a region in memory must be
typed so as to indicate which region the value is stored in. The region the
value is stored within must then be accessed when creation occurs and hence

the type of the expression will contain be enclosed in a Uses region type with
that region in the set of regions which are accessed. There are two expressions
which create data, record creation expressions and function expressions which
must create a function closure. As discussed above the rule for record creation

allows the inference of all regions for the region in which the record is to be
stored. The set in the following rule will therefore instantiate v to all regions.
This set may later be pruned when an at expression is typed. The same is true
for the function creation rule.

C b {fields} =>• x
(150)

C b {fields} => {x at region.(v).{v} | x e x}

f ={(xi -> x2) |Cx[xi->{xi}] be=>x'Ax2 ex'}
— (151)

C b fun x —» e => {x at region.(v).{v) | x 6 x}

The only expressions which directly access memory are record field access

expressions and application expressions (which must access a function clo¬
sure). Note that in this rule i\ may itself be an at type with region uses.

C b e => x
— (152)

C b e.lab => {xi.{sU v} \x\ = f(T,lab) Ax at region.(v).{s) € x}

The result type of an application must include the region in which the func¬
tion closure is stored as being accessed. This rule will be updated to include
the regions which may be accessed by the expressions e\ and e2 in section 6.4.2.

C h e\ => Xi C b e2 => x2
— (153)

C\~ ei e2=> {x.{v} | (x2 -> x) at v € Xi Ax2 e x2}

The typing of the region annotated expressions is now detailed. The rules
for the data creating expressions, rules 150 and 151, mean that any expression

194 Chapter 6. Regions

annotated by an at annotation may have in the set of types which may be
inferred for it, all region annotations. Therefore the typing for the at expression
needs only to remove from that set any which are incompatible with the given
region. Whether or not this annotated expression actually accesses the given
region is dependent on the kind of expression. It may for example be a variable
which was a function argument. In this case the expression does not access the
given region.

C b e\ =>- x
— (154)

C h e\ at v ^ {x at region, (v) G x}

The most complicated expression to type is the let region expression. This
must invalidate the type of an expression which must not be accessed because
the region is being removed from scope. It must remove from the set of typ¬

ings all those types which are associated with a value stored in the region being
removed from scope. Additionally all function types for which the body ex¬

pression accesses the given region must also be invalidated. The function noT
performs this operation, this is described in section 6.6.

Che2 x
— (155)

C b let region r in e\ =>- {noT(r,x) | x G x}

6.4.1 Subsumption

The subsumption rules allow the inference of a less general type. That is a

type which may be used in fewer situations. For regions there are subsump¬
tion rules required for the two extra region types; the at type and the Uses
annotation type.

For the at type; where a type x at r\ may be inferred for a given expres¬

sion then it is also safe to infer x at r2 if r2 is a region which does not outlive
r\. This is because if the type system ensures that the value computed by the
expression is not accessed after the region r2 is deleted then it will also not be
accessed after the region r\ is deleted since r\ is guaranteed to outlive r2- This

6.4. Semantics 195

is expressed in rule 156. This rule uses the ordering over regions where r2 < r\

means that region r\ outlives region r2.

C h e =>f x at r\ € x r2 < r\
— (156)

C h e => {x at r2} Ux

For the uses annotation if the type system can infer the type x. {/?i} for a

given expression, then it is safe to allow the type x.{/?2} to be inferred for the
same expression provided that R\ C R.2- Since if the type system guarantees
that the expression will not be evaluated outside the scope of the regions in R2
then it will also not be evaluated outside the scope of the regions in R\. This is
expressed in rule 157.

C h e => x x.{l?i} 6X R2 D R\
1 (157)

C h e => {x.{/?2}} Ux

The no type may be given to any expression which is otherwise typable.
This allows us to give the no type to expressions whose region is then removed
from scope. For example the expression let region r in e at r may be given the
no type since the inner expression e may first be typed as the set x. Using
rule 154 this is then given the set Xj such that all types have the appropriate at
annotation. Using this new subsumption rule it is now given the set {no} Uxj.

Using the rule for let region expressions 155 this is reduced to the singleton set

containing only the no type.

C b e => x

1 (158)
C b e => {no} Ux

6.4.2 Region Convention

The remaining expressions are typed in the same manner as the original de¬
layed typing scheme given in section 5.4. Flowever the typing rules must al¬
low for the use of regions within sub-expressions. Recall the rule for function
application Rule 153, this must now be updated to the form:

196 Chapter 6. Regions

C hei=>T\ Cb e2 => x2
(159)

Chei e2=> {x.{vUR} I ((x2 —► x) at v).{Rj G Ti Ax2.{R} G x2}

This rule means: a type may be in the set of types inferred for this appli¬
cation expression if the appropriate arrow type is in the set inferred for the
function expression and the appropriate argument type is in the set of types
inferred for the argument expression. Additionally the uses annotation on the
inferred type must be the union of the set of regions which may be accessed
when computing the function expression and the argument expression. This
may be enforced by requiring that both uses annotations are the same. The
subsumption rule 157, can be used to inflate either of the uses annotation to
the union of the two.

Additionally note that the return type for the function x may itself be of the
form x.{/?i}. Because we ensure that x.{/?i}.{/?} is equivalent to x.{RUR\}, it
must be that any type in the set inferred for the application expression contains
all those regions which may be accessed by the evaluation of the function body.

All of the remaining expression rules must be updated in this fashion. A
region convention is used for this purpose. The region convention states that
where a rule is presented as:

C h phrase\ => Xj C b phrasen => xn

C b phrase =^> {x | Xj G Xj...x„ G X„}

This is instead required to mean:

C b phrase\ => X\ C b phrasen => xn

C b phrase => {x.{R} | Xi.{R) G Xi ...x„-{/?} G x;!}

6.5 Notes

The record creation typing rule (Rule 150) already accounts for the case that
the field initialising expressions access some regions. In this case the type of
the record will have type x.{R}. So the types in the set inferred for the record

6.6. The region scoping function 197

creation will all have the form x.{i?} at v.{v}, which by the rule of combining
region annotation types is equivalent to: x at v.{vU/?}.

6.6 The region scoping function

The region scoping function noT must invalidate the type of values which are
stored in regions which are leaving scope. Additionally functions which may

access such regions must also be invalidated as it would be unsafe for them to
be run.

Notice the final line in this function. It states that if the type of a value re¬

turned by the let region expression contains the region which is leaving scope
in its uses annotation then we can remove it from there. The reasoning is that
if the computation of that value will occur whilst that region is in scope then
any future checks need not re-check this property. This is not necessary since
any future checks will not concern the currently leaving scope region however
it does allow the type system to clean up the inferred types.

noT (v, int) = int
noT(v,bool) = bool
noT(v,x at region, (v)) = no

noT(y, (xi —» x2.{v})) = no

noT(v,i.{R}) = x.{/?/v}
All other types are operated on recursively.

6.7 Conclusions

The region system for memory management provided a convenient solution
to the problem of memory management for Nitro. Firstly Nitro did not wish
to require a common internal representation, since this would conflict with the
major goal of the foreign data interface which was to interface directly with
foreign data. By using a conservative garbage collector which operates on am¬

biguous roots this could be avoided without the need to resort to anything

198 Chapter 6. Regions

other than automatic runtime garbage collection. However if this is used then
the programmer is not able to employ separate memory management schemes
for the programs which Nitro is used to interface with and in particular pro¬
vide an abstraction for. As discussed in the background section of this chapter
important properties such as predictability and control are, at least to some

extent, lost.

With the region memory management scheme a Nitro program is able to
allocate foreign values and either collect them automatically with the use of
the region scheme or allow them to be collected automatically in the special
heap region. Furthermore Nitro can be used to implement a different form of
garbage collection for the foreign values with which it is interfacing. This is
done by abstracting the type of values such that the arrays holding them can

be updated with new values. In this way memory is re-used by the calling
program with the aid of the Nitro implemented abstraction.

The delayed typing scheme was used to allow accurate typing of Nitro's
region constructs. Code that made no use of regions does not necessarily
need to be polluted with region variables and annotations on the types of such
values. This is one area in which further work could achieve even better re¬

sults by using default annotations, such as a higher order function having
the same region effects as the sum of all of its functional arguments. A web
based demonstration of the delayed typing of region constructs can be found
at http: / /homepages. inf. ed. ac.uk/s9810217/region_demo.html.

This chapter has brought together the foreign data interface and the de¬
layed typing scheme to fill in the missing component of the abstraction-level
programming language Nitro. The Nitro programmer is now able to:

• Directly manipulate foreign values.

• Embed foreign type information into Nitro types.

• Control the lifetimes of those foreign values.

• Relinquish control of the lifetimes of those foreign values.

6.7. Conclusions 199

This last is important, for some abstraction-level tasks, in particular when
augmenting an existing abstraction, the programmer does not want to take
over the control of the allocation details of the foreign values. The OCaml
equality operator example of section 4.6.1.6, should not manage the returned
boolean value itself but instead register it with the existing OCaml runtime
garbage collector.

The advantages of using Nitro to perform these tasks are:

• The type system can be used to make guarantees about the behaviour of
the abstraction-level code.

• The programmer has the use of high-level productivity increasing lan¬
guage constructs.

• The programmer may write their abstraction code in a language much
closer to the language for which the abstraction is provided, which is
often familiar to the abstraction-level programmer.

• The programmer can manipulate the strengths and subjects of the guar¬
antees provided by the Nitro type system.

This last advantage again requires further explanation. It was shown in the
OCaml equality operator that the type system could ensure that a valid OCaml
value was returned. With the use of the delayed typing system and the sub-
typing relations it provides, it is also possible to ensure that not only a valid
OCaml value, but a valid OCaml boolean is returned.

Finally the drawbacks of using Nitro with a region based memory manage¬

ment scheme are:

• Occasionally the type system can mean that a task solvable in C in an

obvious way is made more difficult by the need to satisfy the Nitro type

system although often the gain in maintainability of the resulting code
can be worth the extra effort.

Chapter 7

Conclusions

This chapter summarises the conclusions made within the current thesis. It
begins with a discussion of the Cyclone language with respect to the Nitro
language. Following this the main contributions made within this thesis and
through the development of the Nitro language are discussed and finally some

future work is proposed.

7.1 Cyclone discussion

This thesis has talked about providing the abstraction-level programmer with
features predominately found in higher-level languages. Cyclone[18], a safe
variant of the C programming language, is a related language. Much research
and effort has gone into the design of the Cyclone language and the develop¬
ment of the associated programming tools.

A couple of interesting questions arise; why not create a functional version
of Cyclone? and why not compile Nitro to Cyclone?

7.1.1 A functional Cyclone

Cyclone has already been designed to create a safe low/abstraction-level pro¬

gramming language by starting with a low-level language C, and adding high-
level features and restricting unsafe low-level features. Nitro attempts to come

201

202 Chapter 7. Conclusions

from the other direction by starting with a high-level type-safe functional lan¬
guage and adding in support for abstraction-level tasks. In doing so one fea¬
ture of Nitro is that application programming can be undertaken in Nitro with¬
out any use of the abstraction-level facilities. This presents the application de¬
veloper with a good choice, if they foresee that their application may require
abstraction-level components, for example interfacing with a legacy library.
Such foresight has in the past led to developers using an unsuitably low-level
language to implement an application knowing that using a high-level lan¬
guage would require the writing of marshalling routines. Writing the appli¬
cation in Nitro means that no marshalling routines are required and therefore
performance worries need not induce the selection of an inappropriate low-
level language.

7.1.2 Compiling Nitro to Cyclone

The decision to design a new low-level language as opposed to providing a

variant of Cyclone does not automatically prohibit the possibility of compiling
the new language Nitro to the imperative language Cyclone. This is in contrast
to the approach of compiling Nitro directly to assembly language or compiling
into C code thus using the C compiler as a high-level assembler. There are a

few good reasons for considering this. Firstly the type checking performed by
the Cyclone compiler is stricter than that done by the C compiler. This means

that there can be greater confidence in the correctness of the Nitro compiler
since its output Cyclone program is more thoroughly checked by the Cyclone
compiler than the equivalent C output program would be checked by the C
compiler.

Secondly, Cyclone already has a region memory management implementa¬
tion. In particular there is a region inference implementation which attempts
to compute the best regions into which to place objects. Currently Nitro has
no such system, a Nitro programmer must therefore either rely on traditional
runtime garbage collection or manually choose the regions in which to place
their objects. A region inference system, such as described in [95, 98], for Nitro

7.1. Cyclone discussion 203

would require a significant investment of time, gaining one for free via com¬

piling to Cyclone would certainly be desirable.
There are other benefits to compiling Nitro to Cyclone; Cyclone already

implements some other features that must be written in the Nitro compiler
such as pattern matching, exceptions and tagged union types.

There are two major reasons for not compiling to Cyclone. The first is the
engineering effort involved and the second is the restrictions on the facilities
that Nitro could provide because each such facility must be converted into
equivalent Cyclone code. Most of the points that follow here fall into one or

both of these major reasons.

The delayed typing scheme discussed in chapter 5 was in part developed to
allow the type checking of code that was previously not well typed. This meant
that a larger number of safe programs could be allowed to pass type checking
and be compiled. It is not clear that such programs could be translated into
Cyclone code which would fit into the Cyclone type system and if so whether
such a translation would require a lot of implementation effort or result in an

inefficient compilation scheme.

Cyclone cannot access all of C's data structures and one must occasionally
write a wrapper to convert between the C representation and the Cyclone one

and back again. It was a major aim of the Nitro foreign data interface to avoid
such marshalling routines.

Compiling Nitro to C involves the use of C as an extended assembler. This
means back-end issues such as register allocation and low-level optimisations
which are not relevant to the Nitro language can be avoided. The Nitro com¬

piler does not translate Nitro types to C types, all Nitro values are declared
with type nitro_vaiue_t. To create tuple or record types then, we cast the tuple
value to a nitro_vaiue_t pointer and assign the fields using array subscripting.
The C compiler can be used in this way, as a higher-level assembler, because
the type system it provides is a weak type system.

To compile to Cyclone the type system cannot be abused in such a man¬

ner, and the Nitro compiler would be required to translate all Nitro types into

204 Chapter 7. Conclusions

equivalent Cyclone types. Therefore the compilation would be an intelligent
translation rather than a compilation. Such a translation would require a large
investment of time.

The region inference of the Cyclone programming language would not nec¬

essarily fit the expectations of a region inference scheme for Nitro. That is, the
region annotations that could be inferred of a Nitro program will not neces¬

sarily correspond to those regions that will be inferred for the same objects in
the resulting Cyclone program. In fact there are occasions when the Cyclone
region inference algorithm fails and the user must supply a region annotation.
Whether such cases could be avoided or whether the Nitro compiler could au¬

tomatically provide such annotations would depend upon the translation from
Nitro to Cyclone. In any case it is debatable whether or not compiling Nitro to

Cyclone does indeed give us a region inference system 'for free'.
Finally, while this does not affect either the facilities Nitro can provide, or

the engineering effort involved in the compiler, the Cyclone runtime system -

in particular that which maintains the regions used by the program - is written
in C. A goal of the Nitro language was that the runtime system be itself writ¬
ten entirely in Nitro and this was achieved in the implementation provided.
Compiling to Cyclone would leave three choices:

1. The Cyclone runtime is not used thereby losing automatic region infer¬
ence and a major advantage of compiling to Cyclone.

2. Alternatively the hope that a Nitro region runtime would be used could
be sacrificed.

3. Finally the Cyclone region runtime could be re-implemented in Nitro.
This final option would again require significant implementation effort.

7.2 Abstraction-Level Programming

In this thesis the term abstraction-level programming was used to further distin¬
guish kinds of programming tasks. Initially two kinds were identified as high-

7.3. Evaluation 205

level and low-level. The high-level tasks were defined to be the implemen¬
tation of algorithms in a hopefully machine-independent manner, using the
abstractions to the particular machine provided. Those abstractions were pro¬

vided by the low-level programmer. The kinds of tasks done in low-level pro¬

gramming were then further categorised into low-level and abstraction-level
programming tasks. The abstraction-level programming tasks deal purely with
the representation and management of data, while the low-level tasks are those
in which direct access to the internals of the machine are required. It was ar¬

gued that there was a gap in programming language design where most lan¬
guages were designed as either high-level; offering full abstraction from the
machine, and low-level; offering full access to the machine. In between these
two extremes an abstraction-level programming language would be one that
offered access to and control of the data representation but retained some high-
level language features such as type-safety.

7.3 Evaluation

In this section Nitro is evaluated as a programming language designed to fa¬
cilitate abstraction-level programming.

7.3.1 Accessing Foreign Data

Chapter 4 dealt mostly with the accessing of foreign data from within Nitro.
Type definitions were used to convey to the compiler how data values are rep¬
resented in memory. It was shown that many important data types could be
represented in this way. The compiler's type system was modified to support
the ability for the programmer to dictate within a type definition constraints
on the use of a value. This was most obvious when using immediate data types
in which the arguments of overlapping constructors were incompatible. The
quintessential example is that of a C data structure in which the null pointer
value represents some choice. As in:
type immediate c_string =

206 Chapter 7. Conclusions

Null_string { 0 }

[Cstring { _ } of c_char_array

As discussed in section 4.2.5.2, because the tag values overlap, and the ar¬

guments are not compatible, whenever a value of type c_string is matched
against, the constructor Nuil_string must be matched against before the con¬
structor cstring. The equivalent definition in C relies upon the programmer al¬
ways checking for the null string where appropriate. Note as well that when¬
ever the value is guaranteed not to be the null string, for example after this
match has been performed, then the value has type c_char_array and hence the
programmer does not needlessly check for the null string. Also, although this
layout cannot be defined in a high-level language, it can be emulated with a

union type. The equivalent definition using a union type would be forced to
use a block in memory, with the first value used to determine the presence of
a following C string pointer. So the Nitro definition combines the best of both
worlds, the programmer retains the efficiency in both space and time of the
C representation and the guarantee that one cannot misuse the pointer of the
high-level union type definition.

7.3.1.1 Limitations

There are certain kinds of data that Nitro is not yet capable of representing. A
null terminated array for example is awkward to represent. A possible defini¬
tion is:

type null_terminated

Terminate { 0 }

| Non_term { _ } precedes null_terminated

This allows us to examine a null-terminated array such as those produced
by C language libraries. The size of a value can be adjusted to allow access
to a null-terminated C style string as well. A precedes argument is handled
specially by the compiler such that it can create a memory block large enough
to occupy both the argument and the tag. This works if the argument is cre¬

ated at the time of the constructor but with a recursive precedes argument, the

7.3. Evaluation 207

argument will, at least some of the time, be a reference to an existing value.
This whole value then must be copied across by the code produced by the
Nitro compiler. Hence building up a large nuil_terminated value may be quite
inefficient.

There are three solutions to this problem, either accept that these kinds
of values are awkward to represent and rely on external procedures to create
values of this kind or represent a value as an ordinary Nitro bare array and
rely on the programmer to ensure that the final value is the null value. Finally
add in language support for null terminated arrays as is done in the Cyclone
language.

The first and second options here are almost the same, because in the ex¬

ternal procedure again the programmer is relied upon to ensure that the array
is indeed terminated with a null character. It could be argued that external
libraries are more thoroughly tested and hence this solution is more desir¬
able, however it could also be argued that within Nitro the array cannot be
illegally accessed outside of its bounds whether or not the null character is
in place. Note that in either case the Nitro code cannot illegally access the
null-terminated array, unless the first option is used and the external library is
faulty. The final solution suffers none of the previous complications at the cost
of complicating both the language and the compiler.

7.3.1.2 Overall

In general the foreign data interface of Nitro allows the functional programmer

direct access to foreign data in a familiar environment. This ability to control
the representation of data can also be used to optimise the private data struc¬
tures in a Nitro program. The most important uses however are facilitating
the writing of language routines which cannot be done in the host language
because it prevents access to the representation of values, and the marshal¬
ing of data from foreign or legacy libraries into a format manageable by the
programmer's preferred high-level language. Chapter 4 has shown that using
Nitro to provide such routines can result in more readable, maintainable and

208 Chapter 7. Conclusions

trustworthy code.

7.3.2 Delayed Typing

This section evaluates the effect of modifying the type system of Nitro to in¬
clude a delayed type scheme. Although in chapter 5 many advantages were
discussed such as the ability to infer exception annotations and the ability to
remove some of the slack of the type system, the main advantage was the in¬
creased accuracy of the type system and the provision for sub-typing.

Allowing sub-typing was shown to allow the programmer to encode for¬
eign type information within the Nitro type. In particular a value could be
seen at a type which indicated it was some value produced by a particular pro¬

gramming language such as OCaml. At the same time, the same value could
be seen at a Nitro type which indicated that it was of a particular (OCaml)
type of OCaml value. This meant that it was possible to ensure that the value
returned from a routine to an OCaml program was of, say, the OCaml boolean

type but the same value was also of the more general OCaml value type and
hence could, for example, be registered with the OCaml garbage collector.

Delayed typing has been mostly a success in the goals that were identi¬
fied. The cost is in the lack of conciseness within the inferred types. Type
constraints can and arguably should always be given, when used with regu¬
lar use of type constraints the delayed typing system allows the user further
expressive power to indicate via the type, information concerning the values
in the program. Because Nitro is used as an abstraction level programming
language, such information within the type is highly desirable because an ab¬
straction can be seen as the implementation of an interface and hence the more

that interface can be described mechanically in the form of a signature the bet¬
ter.

The extra accuracy within the type is also required to allow more programs

to be type checked. This is particularly important for an abstraction-level pro¬

gramming language because the code is generally performing some task that
cannot be type checked within the high-level language utilising the abstraction

7.4. Trusted applications 209

provided. Finally the extra accuracy of the type can also be used by both the
programmer and the compiler to optimise code. Checks can be omitted by the
compiler using the extra type information to ensure that the check can only
ever evaluate in one direction. The programmer can use extra type accuracy
to optimise data structures notably when used in conjunction with the foreign
data interface.

7.3.3 Regions

A region memory management scheme was given to Nitro to allow abstraction-
level programs which cannot use a runtime garbage collector to be written.
Region memory management is no silver bullet and using such a scheme has
shown how hard a problem the correct deployment of memory management
is. There are many different schemes to choose from, some which require lan¬
guage support and others which do not. Selecting a memory management
scheme which does require language support involves a small amount of risk
since it may be that a better solution will be discovered in the future, thus
code which uses the language support must be modified. However the region
scheme works well in tandem with a conservative garbage collector. The pro¬

grammer can control only those data value lives which need to be controlled
by the program or that the programmer feels can benefit from such explicit
control.

7.4 Trusted applications

In the introduction several places of trust were identified. These places of trust
are distinguished from each other in two respects, firstly in how and what they
are trusted and/or checked for and secondly in their relationships towards
each other.

The identified places of trust are:

• The application code

210 Chapter 7. Conclusions

• The Compiler

• The Abstraction Code

• The Compiler-Abstraction Code Link

There were two separate properties of code that must be trusted, the safety
of the code and the correctness. The safety of code referred to the possibility
that it may attempt to make an illegal access into memory, in broad terms this
meant that if a given memory location contains a value of a given type, then
that memory location must not be accessed as though it stored a value of an in¬
compatible type. Correctness is much harder to define, however a very generic
definition would say that code which evaluates all inputs to expected results
is code which is correct.

It was noted that the safety and correctness of the entire application were

linked, for the safety of one part of the trusted application depends upon the
correctness of another part. For example the safety of the application code itself
depends upon the correctness of the compiler in translating safe and correct
code to equivalent safe and correct machine code.

The main contribution of this thesis has been to describe the development
of a language; Nitro, designed to increase the confidence in the abstraction
code. This is done by providing the programmer with features found in high-
level languages used to code application code, and supplementing this with
low-level features required for writing such abstraction code. Once the appli¬
cation and abstraction code are combined into a single machine program the
user can be more confident in the safety and correctness of the whole program

because Nitro provides greater guarantees than a low-level programming lan¬
guage would.

7.5 Contributions and Further Work

The main contributions of this thesis have been:

7.5. Contributions and Further Work 211

• A formal definition of the core of the Nitro functional programming lan¬
guage.

• An extension to the formal definition to incorporate direct manipulation
of foreign langauge objects.

• The development of a the delayed-typing scheme.

• An extension to the formal defintion to incorporate the delayed-typing
scheme.

• Demonstration of some properties of the delayed-typing scheme.

• An extension of the formal definition to include facilities for managing
the lifetimes of objects through use of a region memory management
scheme.

• The full implementation of the Nitro programming language including
the extensions noted.

The remainder of this section highlights some of the future work that could
be undertaken to improve the results contained within this thesis.

7.5.1 Foreign Data Interface

The foreign data interface allows a variety of control over the representation
of data whilst still allowing the compiler to restrict the programmer to the use
of data types for which consistent access can be guaranteed. This means that
the programmer can use as much space as is actually required to distinguish
the distinct values within their types. What the programmer cannot do is use

external information which is not available within the data itself.

This inability is highlighted when the data is somehow previously anal¬
ysed. A good example is the implementation of a virtual machine which in¬
terprets a stream of byte-code instructions. One such instruction may have
the meaning; take the value on top of the stack and dereference it as a pair.

212 Chapter 7. Conclusions

Another instruction might have the meaning, take the top two values of the
stack and add them together as integers. If the stack is represented as a list of
arbitrary values a C implementation can cast the top of the stack according to
what the next instruction expects it to be. This is of course an unsafe thing to
do. However if the instruction stream is first run through a verifier, and that
verifier is trusted to be correct, then all of the casts may be trusted to be safe.
Such a simple encoding in Nitro would not be possible. Future work into this
area could yield exciting results not just for abstraction-level programming,
but for low-level typing in general.

7.5.2 Delayed Types

There are many other applications of the delayed typing scheme. One that I
would particularly like to add would be the application to uniqueness typing.
In uniqueness typing a name is typed as being either the sole reference to that
value or one of potentially many. When this is done destructive update may

be an allowable and useful addition to the language. The Clean language is
a lazy functional language which allows side effects using uniqueness typing,
"worlds" which are updated must be updated through a unique reference to
that world.

Other possible uses for delayed typing include:

• Type classes, due to the ability to allow sub-typing constraints.

• Many more annotations, in this thesis two such annotations were region
and exception effects. Other annotations could include destructive up¬

date, uniqueness, use of foreign and possibly unsafe code, author signa¬
ture and concurrency constraints.

• Other analyses such as space and time resource bounds, since such anal¬
yses can utilise the arguments to a function retaining the delayed type of
a function could be useful.

7.5. Contributions and Further Work 213

• The use of the extra information contained within a delayed type to give
a more helpful error message.

Future work in applying a delayed typing scheme to these typing areas is
an interesting possibility. Finally for delayed typing a possible complaint is
that the more verbose types which are inferred are less readable than those
inferred by a non-delayed type inference system. It was noted that once anno¬

tations of just one kind are added the delayed type system can often result in
a more readable type. Future work in how best to report types which contain
annotations and results of analyses such as those listed above could enhance
this situation.

7.5.3 Regions

Once a language has introduced explicit region constructs as a method of al¬
lowing the programmer safe control over aspects of memory management the
possibilities for future invention become large. Many distinct kinds of regions
exist and many have been developed for use in the Cyclone language. A good
overview can be found in [97, 81]. In particular most general memory man¬

agement schemes can be translated into a type of region, thus the programmer
has many separate memory management schemes available to them within the
same program. Different values can be managed differently depending upon

how the programmer decides that the lifetime of the value will behave during
execution. Region types already considered include, but are not limited to, the
following:

• Dynamically collected heap region

• A stack region, held on the machine's stack and automatically deleted at
the termination of the function in which it was created.

• A unique region in which values stored have only one reference to them.

• A reference counted region.

214 Chapter 7. Conclusions

Future work done here would benefit other systems which utilise a region
memory management scheme including Cyclone. The future work in relation
to Nitro would therefore include:

• Use substantial testing to establish the efficiency and scalability of the
current Nitro scheme including the current runtime, itself written in Ni¬
tro.

• Investigate the translation of the current region inference techniques as
used for SML [99] and Cyclone.

• Extend the current Nitro scheme to include those kinds of regions already
successfully integrated into the Cyclone language.

7.5.4 Modules

In this thesis Nitro has been described without a module system. The inter¬
esting part in adding a module system to Nitro is in how it would cooperate
with the delayed typing system. Delayed typing is arguably best used to infer
a very generic but accurate type which the programmer may restrict in a very

specific way to the exact type required. Where module signatures are used
the signature can describe a very precise interface which it is then possible to

implement in many ways. This is because using sub-typing constraints and
type annotations such as region or exception annotations, the signature given
can describe the behaviour desired with a high degree of precision. However
because of the very general types inferred the signature can be matched with
a wide range of implementations.

Bibliography

[1] David Evans and David Larochelle. Improving Security Using Extensible
Lightweight Static Analysis. IEEE Softw., 19(1):42-51, 2002.

[2] S. Johnson. Lint, a C program checker. Unix Programmer's Manual, 2,1978.

[3] Ken Ashcraft and Dawson Engler. Using Programmer-Written Compiler
Extensions to Catch Security Holes. In SP '02: Proceedings of the 2002 IEEE
Symposium on Security and Privacy, page 143, Washington, DC, USA, 2002.
IEEE Computer Society.

[4] J. J. Hallett and Assaf J. Kfoury. Programming Examples Needing Poly¬
morphic Recursion. Electr. Notes Theor. Comput. Sci., 136:57-102, 2005.

[5] Robert Cartwright and Mike Fagan. Soft typing. In PEDI '91: Proceedings
of the ACM SIGPEAN 1991 conference on Programming language design and
implementation, pages 278-292, New York, NY, USA, 1991. ACM Press.

[6] James Gosling, Bill Joy, and Guy L. Steele. The Java Eanguage Specification.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1996.

[7] American National Standards Institute. ANSI/1SO/1EC 9899-1999: Pro¬

gramming Languages — C. American National Standards Institute, 1430
Broadway, New York, NY 10018, USA, 1999.

[8] Stefan Monnier and Zhong Shao. Typed Regions. Technical Report
YALEU/DCS/TR-1242, Dept. of Computer Science, Yale University, New
Haven, CT, October 2002.

215

216 Bibliography

[9] Daniel C. Wang and Andrew W. Appel. Type-preserving garbage collec¬
tors. In POPL '01: Proceedings of the 28th ACM SIGPLAN-SIGACT sympo¬
sium on Principles ofprogramming languages, pages 166-178, New York, NY,
USA, 2001. ACM Press.

[10] Mads Tofte and Jean-Pierre Talpin. Region-based memory management.

Inf. Comput., 132(2):109-176,1997.

[11] X. Leroy, J. Vouillon, D. Doligez, et al. http: / /caml. inria. fr, 1996-2007.
The Objective Caml system. Software and documentation available on the
Web.

[12] Thomas Hallgren, Mark P. Jones, Rebekah Leslie, and Andrew Tolmach.
A principled approach to operating system construction in Haskell. In
ICFP '05: Proceedings of the tenth ACM SIGPLAN international conference on
Functional programming, pages 116-128, New York, NY, USA, 2005. ACM
Press.

[13] Richard B. Kieburtz. P-logic: property verification for Haskell programs,

ftp://ftp.se.ogi.edu/pub/pacsoft/papers/Plogic.pdf, 2002.

[14] Edoardo Biagioni, Robert Harper, and Peter Lee. A Network Protocol
Stack in Standard ML. Submitted for publication to Higher-Order and Sym¬
bolic Computation.

[15] Herb Derby. The performance of FoxNet 2.0. Technical Report CMU-
CS-99-137, School of Computer Science, Carnegie Mellon University, June
1999.

[16] Bjarne Stroustrup. The C++ Programming Language. Addison Wesley Long¬
man, Reading, MA, third edition, 1997.

[17] ECMA. ECMA-334: C# Language Specification. ECMA (European As¬
sociation for Standardizing Information and Communication Systems),
Geneva, Switzerland, second edition, December 2002.

Bibliography 217

[18] T. Jim, G.Morrisett, D.Grossman, M.Hicks, J.Cheney, and Y. Wang. Cy¬
clone: A Safe Dialect of C. In USENIX Annual Technical Conference, Mon¬
terey, CA, USA, 2002.

[19] George C. Necula, Scott McPeak, apd Westley Weimer. CCured: type-
safe retrofitting of legacy code. In POPE '02: Proceedings of the 29th
ACM SIGPLAN-SIGACT symposium on Principles ofprogramming languages,
pages 128-139, New York, NY, USA, 2002. ACM Press.

[20] Jeremy Condit, Matthew Harren, Scott McPeak, George C. Necula, and
Westley Weimer. CCured in the real world. In PLDI '03: Proceedings of the
ACM SIGPEAN 2003 conference on Programming language design and imple¬
mentation, pages 232-244, New York, NY, USA, 2003. ACM.

[21] George C. Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and
Westley Weimer. CCured: type-safe retrofitting of legacy software. ACM
Trans. Program. Lang. Syst., 27(3):477-526, 2005.

[22] Todd M. Austin, Scott E. Breach, and Gurindar S. Sohi. Efficient detection
of all pointer and array access errors. SIGPLAN Not., 29(6):290-301,1994.

[23] Jeffrey S. Foster. Type Qualifiers: Lightweight Specifications to Improve Soft¬
ware Quality. PhD thesis, University of California, Berkeley, December
2002.

[24] Umesh Shankar, Kunal Talwar, Jeffrey S. Foster, and David Wagner. De¬
tecting Format-String Vulnerabilities with Type Qualifiers. In Proceedings
of the 10th USENIX Security Symposium, pages 201-220, August 2001.

[25] Jeffrey S. Foster, Tachio Terauchi, and Alex Aiken. Flow-sensitive type

qualifiers. In PLDI '02: Proceedings of the ACM SIGPLAN 2002 Conference
on Programming language design and implementation, pages 1-12, New York,
NY, USA, 2002. ACM Press.

[26] Satish Chandra and Thomas Reps. Physical type checking for C. SIGSOFT
Softw. Eng. Notes, 24(5):66-75,1999.

218 Bibliography

[27] Geoffrey Smith and Dennis Volpano. A sound polymorphic type system
for a dialect of C. Science of Computer Programming, 32(l-3):49-72,1998.

[28] Matthias Blume. No-Longer-Foreign: Teaching an ML compiler to speak
C "natively". Electr. Notes Theor. Comput. Sci., 59(1), 2001.

[29] Michael Furr and Jeffrey S. Foster. Checking type safety of foreign func¬
tion calls. In PLDI '05: Proceedings of the 2005 ACM SIGPLAN conference on

Programming language design and implementation, pages 62-72, New York,
NY, USA, 2005. ACM Press.

[30] Thorsten Brunklaus and Leif Kornstaedt. A Virtual Machine for Multi-

Language Execution. Technical report, Saarland University Computer
Science Programming Systems, November 2002.

[31] Leif Kornstaedt. Alice in the land of Oz - an Interoperability-based Im¬
plementation of a Functional Language on Top of a Relational Language.
In Proceedings of the First Workshop on Multi-language Infrastructure and In¬
teroperability (BABEL'01), Electronic Notes in Computer Science, volume 59,
Firenze, Italy, September 2001. Elsevier Science Publishers.

[32] ECMA. ECMA-335: Common Language Infrastructure (CLI). ECMA (Eu¬
ropean Association for Standardizing Information and Communication
Systems), Geneva, Switzerland, third edition, June 2005.

[33] D. Syme and J. Margetson. The F# website. See http://research.
microsoft.com/fsharp/, 2006.

[34] Nick Benton, Andrew Kennedy, and Claudio V. Russo. Adventures in
interoperability: the SML.NET experience. In PPDP '04: Proceedings of
the 6th ACM SIGPLAN international conference on Principles and practice of
declarative programming, pages 215-226, New York, NY, USA, 2004. ACM
Press.

[35] Nick Benton, Andrew Kennedy, and George Russell. Compiling stan¬
dard ML to Java bytecodes. In ICFP '98: Proceedings of the third ACM SIG-

Bibliography 219

PLAN international conference on Functional programming, pages 129-140,
New York, NY, USA, 1998. ACM Press.

[36] Nick Benton and Andrew Kennedy. Interlanguage working without tears:

blending SML with Java. In ICFP '99: Proceedings of the fourth ACM SIG-
PLAN international conference on Functional programming, pages 126-137,
New York, NY, USA, 1999. ACM Press.

[37] Kathleen Fisher and John Reppy. The design of a class mechanism for
Moby. In PLDI '99: Proceedings of the ACM SIGPLAN 1999 conference on

Programming language design and implementation, pages 37-49, New York,
NY, USA, 1999. ACM Press.

[38] Kathleen Fisher, Riccardo Pucella, and John H. Reppy. A Framework for
Interoperability. CoRR, cs.PL/0405084, 2004.

[39] My Hoang and John C. Mitchell. Lower bounds on type inference with
subtypes. In POPL '95: Proceedings of the 22nd ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pages 176-185, New
York, NY, USA, 1995. ACM Press.

[40] Patrick Lincoln and John C. Mitchell. Algorithmic aspects of type infer¬
ence with subtypes. In POPL '92: Proceedings of the 19th ACM SIGPLAN-
SIGACT symposium on Principles ofprogramming languages, pages 293-304,
New York, NY, USA, 1992. ACM Press.

[41] Harry G. Mairson. Deciding ML typability is complete for deterministic
exponential time. In POPL '90: Proceedings of the 17th ACM SIGPLAN-
SIGACT symposium on Principles ofprogramming languages, pages 382-401,
New York, NY, USA, 1990. ACM Press.

[42] D. Remy. Type checking records and variants in a natural extension of ML.
In POPL '89: Proceedings of the 16th ACM SIGPLAN-SIGACT symposium
on Principles of programming languages, pages 77-88, New York, NY, USA,
1989. ACM Press.

220 Bibliography

[43] M. Wand. Type inference for record concatenation and multiple inheri¬
tance. In Proceedings of the Fourth Annual Symposium on Logic in computer
science, pages 92-97, Piscataway, NJ, USA, 1989. IEEE Press.

[44] Simon Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich, and Mark
Shields. Practical type inference for arbitrary-rank types. /. Funct. Pro¬
gram., 17(1):1—82, 2007.

[45] Hans-Juergen Boehm and Mark Weiser. Garbage collection in an uncoop¬

erative environment. Softw. Pract. Exper., 18(9):807-820,1988.

[46] Paul R. Wilson. Uniprocessor Garbage Collection Techniques. In Yves
Bekkers and Jacques Cohen, editors, IWMM, volume 637 of Lecture Notes
in Computer Science, pages 1-42. Springer, 1992.

[47] Paul R. Wilson, Mark S. Johnstone, Michael Neely, and David Boles. Dy¬
namic Storage Allocation: A Survey and Critical Review. In IWMM '95:
Proceedings of the International Workshop on Memory Management, pages 1-
116, London, UK, 1995. Springer-Verlag.

[48] Xavier Leroy, November 2006. personal communication via e-mail.

[49] R. Milner, November 2006. personal communication via e-mail.

[50] Fabrice Le Fessant and Luc Maranget. Optimizing pattern matching. In
ICFP '01: Proceedings of the sixth ACM SIGPLAN international conference
on Functional programming, pages 26-37, New York, NY, USA, 2001. ACM
Press.

[51] R. Milner, M. Tofte, R. Harper, and D. MacQueen. The Definition of Stan¬
dard ML: Revised 1997. The MIT Press, 1997.

[52] Andreas Rossberg. Defects in the Revised Definition of Standard ML.
Technical report, Saarland University, Saarbrucken, Germany, October
2001. Updated 2004/06/22, 2005/01/13, 2005/01/26, 2006/07/18.,
2007/01/22.

Bibliography 221

[53] T Nordin and Simon Peyton Jones. Green Card: a foreign-language inter¬
face for Haskell. In Proceedings of the Haskell Workshop 1997, June 1997.

[54] Thien-Thi Nguyen, Loic Dachary, Oleg Tolmatcev, et al. http://www.
swig.org, 2000-2007. The Swig interface compiler, software and docu¬
mentation available on the web.

[55] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, and Francois
Yergeau. Extensible Markup Language (XML) 1.0 (Fourth Edition),
September 2006. http: //www.w3 .org/TR/xml/.

[56] System Application Program Interface (API) [C Language]. Information
technology—Portable Operating System Interface (POSIX). IEEE Com¬
puter Society, 345 E. 47th St, New York, NY 10017, USA, 1990.

[57] Jacques Garrigue. Code reuse through polymorphic variants. In
Workshop on Foundations of Software Engineering, Sassaguri, Japan.
Available from http://www.math.nagoya-u.ac.jp/~garrigue/papers/

fose2000.html, 2000.

[58] Konstantin Lafer and Martin Odersky. Polymorphic type inference and
abstract data types. ACM Trans. Program. Lang. Syst., 16(5):1411-1430,
1994.

[59] Fabrice Le Fessant and Luc Maranget. Optimizing pattern matching. In
ICFP '01: Proceedings of the sixth ACM SIGPLAN international conference on
Functional programming, pages 26-37, New York, NY, USA, 2001. ACM.

[60] TE Dickey, 1993-2007. Ncurses text user interface library avail¬
able at http://www.gnu.org/software/ncurses/ncurses.html and also
http://dickey.his.com/ncurses/ncurses.html.

[61] Michael I. Schwartzbach. Polymorphic Type Inference. Technical Report
LS-95-3, brics, June 1995. viii+24 pp.

222 Bibliography

[62] Luis Damas and Robin Milner. Principal type-schemes for functional pro¬

grams. In Proceedings of the 9th ACM SIGPLAN-SIGACT symposium on

Principles ofprogramming languages, pages 207-212. ACM Press, 1982.

[63] Andrew K. Wright and Matthias Felleisen. A Syntactic Approach to Type
Soundness. Information and Computation, 115(l):38-94,1994.

[64] Robin Milner. A Theory of Type Polymorphism in Programming. Journal
ofComputer and System Sciences, 17:348-375, August 1978.

[65] Brus T, Eekelen van MCJD, Plasmeijer MJ, and Barendregt HP. Clean - A
Language for Functional Graph Rewriting. In Proceedings of Conference on

Functional Programming Languages and Computer Architecture, pages 364-
384, Portland, Oregon, USA, 1987. Springer Verlag.

[66] Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified
lattice model for static analysis of programs by construction or approx¬
imation of fixpoints. In POPL '77: Proceedings of the 4th ACM SIGACT-
SIGPLAN symposium on Principles of programming languages, pages 238-
252, New York, NY, USA, 1977. ACM.

[67] Per Martin-Lof. Intuitionistic Type Theory, volume 1 of Studies in Proof
Theory: Lecture Notes. Bibliopolis, Napoli, 1984.

[68] Howgwei Xi and Frank Pfenning. Dependent Types in Practical Pro¬
gramming. In Conference Record of POPL 99: The 26th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, San Antonio,
Texas, pages 214-227, New York, NY, 1999.

[69] John C. Mitchell and Gordon D. Plotkin. Abstract types have existential
types. In POPL '85: Proceedings of the 12th ACM SIGACT-SIGPLAN sympo¬
sium on Principles of programming languages, pages 37-51, New York, NY,
USA, 1985. ACM.

[70] Martin Odersky, Martin Sulzmann, and Martin Wehr. Type inference with
constrained types. Theor. Pract. Object Syst., 5(l):35-55,1999.

Bibliography 223

[71] Benjamin C. Pierce. Programming with intersection types, union types,
and polymorphism. Technical Report CMU-CS-91-106, Carnegie Mellon
University, February 1991.

[72] Benjamin C. Pierce. Programming with Intersection Types and Bounded Poly¬
morphism. PhD thesis, Carnegie Mellon University, 1991.

[73] Wei-Ngan Chin and Siau-Cheng Khoo. Calculating sized types. In PEPM
'00: Proceedings of the 2000 ACM SIGPLAN workshop on Partial evaluation
and semantics-based program manipulation, pages 62-72, New York, NY,
USA, 1999. ACM.

[74] P.M. Achten, J.H.G. Groningen van, and M.J. Plasmeijer. High-level spec¬

ification of I/O in functional languages. In Proceedings of Glasgow work¬
shop on Functional programming, pages 1-17, Ayr, Scotland, 1992. Springer-
Verlag.

[75] P. Wadler and S. Blott. How to make ad-hoc polymorphism less ad-hoc.
In Conference Record of the 16th Annual ACM Symposium on Principles of
Programming Languages, pages 60-76. ACM, January 1989.

[76] Cordelia V. Hall, Kevin Hammond, Simon L. Peyton Jones, and Philip L.
Wadler. Type Classes in Haskell. ACM Transactions on Programming Lan¬
guages and Systems, 18(2):109—138, March 1996.

[77] John Peterson and Mark P. Jones. Implementing Type Classes. In SIG¬
PLAN Conference on Programming Language Design and Implementation,
pages 227-236,1993.

[78] Paul R. Wilson, Mark S. Johnstone, Michael Neely, and David Boles. Dy¬
namic Storage Allocation: A Survey and Critical Review. In IWMM '95:
Proceedings of the International Workshop on Memory Management, pages I'¬
ll6, London, UK, 1995. Springer-Verlag.

[79] Andrew W. Appel. Garbage Collection can be Faster than Stack Alloca¬
tion. Information Processing Letters, 25(4):275-279,1987.

224 Bibliography

[80] Benjamin Zorn. The measured cost of conservative garbage collection.
Softw. Pract. Exper., 23(7):733-756,1993.

[81] Michael Hicks, Greg Morrisett, Dan Grossman, and Trevor Jim. Expe¬
rience with safe manual memory-management in cyclone. In ISMM '04:
Proceedings of the 4th international symposium on Memory management, pages

73-84, New York, NY, USA, 2004. ACM Press.

[82] Henry G. Baker. Lively Linear Lisp — 'Look Ma, No Garbage!'. ACM
SIGPLAN Notices, 27(9):89-98,1992.

[83] Oukseh Lee, Hongseok Yang, and Kwangkeun Yi. Static insertion of safe
and effective memory reuse commands into ML-like programs. Sci. Corn-
put. Program., 58(1-2):141-178, 2005.

[84] Jeffrey M. Barth. Shifting garbage collection overhead to compile time.
Commun. ACM, 20(7):513-518,1977.

[85] Nancy Mazur, Peter Ross, Gerda Janssens, and Murice Bruynooghe. Prac¬
tical Aspects for a Working Compile Time Garbage Collection System for
Mercury. In Proceedings of the 17th International Conference on Logic Pro¬
gramming, pages 105-119, London, UK, 2001. Springer-erlag.

[86] F. Henderson, T. Conway, Z. Somogyi, and D. Jeffery. The
Mercury Language Reference Manual, 1996. available from:
http:/ /www.es.mu.oz.au/mercury.

[87] Martin Hofmann. A Type System for Bounded Space and Functional In-
Place Update. Nord. J. Comput., 7(4):258-289, 2000.

[88] David Aspinall and Martin Hofmann. Another Type System for In-Place
Update. In Daniel Le Metayer, editor, ESOP, volume 2305 of Lecture Notes
in Computer Science, pages 36-52. Springer, 2002.

[89] Donald Sannella, Martin Hofmann, David Aspinall, Stephen Gilmore, Ian
Stark, Lennart Beringer, Hans-Wolfgang Loidl, Kenneth MacKenzie, Al-

Bibliography 225

berto Momigliano, and Olha Shkaravska. Mobile resource guarantees, vol¬
ume 6, pages 211-226. Intellect, 2007.

[90] Fergus Henderson. Accurate garbage collection in an uncooperative en¬

vironment. In ISMM '02: Proceedings of the 3rd international symposium
on Memory management, pages 150-156, New York, NY, USA, 2002. ACM
Press.

[91] Douglas T. Ross. The AED free storage package. Commun. ACM,
10(8):481-492,1967.

[92] David Gay and Alexander Aiken. Memory Management with Explicit
Regions. In SIGPLAN Conference on Programming Language Design and Im¬
plementation, pages 313-323,1998.

[93] David Gay and Alexander Aiken. Language Support for Regions. In
SIGPLAN Conference on Programming Language Design and Implementation,
pages 70-80, 2001.

[94] Mads Tofte and Jean-Pierre Talpin. Implementation of the typed call-by-
value A,-calculus using a stack of regions. In POPL '94: Proceedings of the
21st ACM SIGPLAN-SIGACT symposium on Principles ofprogramming lan¬
guages, pages 188-201, New York, NY, USA, 1994. ACM Press.

[95] Mads Tofte and Lars Birkedal. A region inference algorithm. ACM Trans.
Program. Lang. Syst., 20(4):724-767,1998.

[96] Mads Tofte, Lars Birkedal, Martin Elsman, Tommy Hojfeld Olesen
Niels Hallenberg, and Peter Sestoft. Programming with Regions in the ML
Kit (for Version 4). IT University of Copenhagen. April 2002, April 2002.

[97] Dan Grossman, Greg Morrisett, Trevor Jim, Michael Hicks, Yanling Wang,
and James Cheney. Region-based memory management in cyclone. In
PLDI '02: Proceedings of the ACM SIGPLAN 2002 Conference on Program¬
ming language design and implementation, pages 282-293, New York, NY,
USA, 2002. ACM Press.

226 Bibliography

[98] Jean-Pierre Talpin. A simplified account of region inference. Technical
Report 4104, INRIA, Jan 2001. Internal publication available at http: / /
hal.inria.fr/inria-00072527/en/.

[99] Lars Birkedal, Mads Tofte, and Magnus Vejlstrup. From region inference
to von Neumann machines via region representation inference. In POPL
'96: Proceedings of the 23rd ACM SIGPLAN-SIGACT symposium on Princi¬
ples of programming languages, pages 171-183, New York, NY, USA, 1996.
ACM Press.

