
A formal computational framework

for the study of molecular evolution

Marek Kwiatkowski

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Doctor of Philosophy

Laboratory for Foundations of Computer Science

School of Informatics

The University of Edinburgh

2010

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Archive

https://core.ac.uk/display/429735548?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

iii

Abstract
Over the past 10 years, multiple executable modelling formalisms for molecu-

lar biology have been developed in order to address the growing need for a

system-level understanding of complex biological phenomena. An important class

of these formalisms are biology-inspired process algebras, which offer—among

other desirable properties—an almost complete separation of model specification

(syntax) from model dynamics (semantics). In this thesis, the similarity between

this separation and the genotype-phenotype duality in evolutionary biology is

exploited to develop a process-algebraic approach to the study of evolution of

biochemical systems.

The main technical contribution of this thesis is the continuous π-calculus (cπ),

a novel process algebra based on the classical π-calculus of Milner et. al. Its two

defining characteristics are: continuous, compositional, computationally inexpen-

sive semantics, and a flexible interaction structure of processes (molecules). Both

these features are conductive to evolutionary analysis of biochemical systems

by, respectively, enabling many variants of a given model to be evaluated, and

facilitating in silico evolution of new functional connections. A further major

contribution is a collection of variation operators, syntactic model transforma-

tion schemes corresponding to common evolutionary events. When applied to a

cπ model of a biochemical system, variation operators produce its evolutionary

neighbours, yielding insights into the local fitness landscape and neutral neigh-

bourhood.

Two well-known biochemical systems are modelled in this dissertation to validate

the developed theory. One is the KaiABC circadian clock in the cyanobacterium

S. elongatus, the other is a mitogen-activated protein kinase cascade. In each case

we study the system itself as well as its predicted evolutionary variants. Simpler

examples, particularly that of a generic enzymatic reaction, are used throughout

the thesis to illustrate important concepts as they are introduced.

iv

Acknowledgements
I am indebted to my Ph.D. advisor Ian Stark, who helped me with my work in

innumerable ways and on as many occasions. I could not have completed my

studies without his guidance.

I thank my examiners, Wan Fokkink and Vincent Danos, for taking the time to

read my thesis, for their insightful comments, and for focussing on the essence of

my work rather than the technical details. My defence was organised and chaired

by Stephen Gilmore and I would like to take this opportunity to thank him as

well for his time and efficiency.

I am grateful to my friends Alessandro Romanel and Casey Helgeson, who read

draft versions of this thesis and provided valuable feedback.

My office mates from IF-3.50 helped me to maintain my sanity or to shed it

altogether, I am not sure anymore. Thanks anyway!

v

Declaration
I declare that this thesis was composed by myself, that the work contained herein

is my own except where explicitly stated otherwise in the text, and that this work

has not been submitted for any other degree or professional qualification.

Chapters 3 and 4 are a refined and expanded version of [88]. Other material

contained in this dissertation is being prepared for publication.

Figures 2.1 and 6.4 were composed by Ms Natalia Camelo Vergara specifically

to illustrate this research. Figure 2.3 used with permission from the author.

Figure 4.4(a) adapted from Ian Stark’s original graphs in [88].

(Marek Kwiatkowski)

vi

This is likely a groundbreaking paper

and it may very well be correct

but I completely fail to understand it.

—An anonymous referee of [88]

Table of Contents

1 Introduction 1

2 Background 5

2.1 Introduction . 5

2.1.1 Overview of the chapter 6

2.2 Systems biology . 6

2.2.1 Emergence and aims . 6

2.2.2 Different modelling frameworks 7

2.2.3 Knowledge representation standards 10

2.3 Process algebras and biology . 11

2.3.1 Classical process algebras: models of concurrency 11

2.3.2 Seminal work of Regev et. al. 14

2.3.3 Modern calculi for biology 15

2.3.4 Related topics . 16

2.3.5 Outlook . 17

2.4 Selected topics in evolutionary theory 19

2.4.1 Genotype, phenotype and development 19

2.4.2 Neutrality, robustness and evolvability 20

2.4.3 Neutral spaces and RNA folding 21

3 The continuous π-calculus 25

3.1 Introduction . 25

3.1.1 The running example . 26

3.1.2 Overview of the chapter 27

3.2 The syntax . 27

3.2.1 Species . 27

3.2.2 Processes . 34

vii

viii TABLE OF CONTENTS

3.3 The semantics . 35

3.3.1 Concretions . 36

3.3.2 The transition system of species 38

3.3.3 The vector semantics of processes 42

3.4 Extraction of Ordinary Differential Equations 48

4 Modelling a circadian clock 51

4.1 Introduction . 51

4.1.1 Overview of the chapter 52

4.2 The system . 52

4.3 The model . 53

4.3.1 The original model of van Zon et. al. 53

4.3.2 The cπ translation . 54

4.4 The analysis . 58

4.4.1 The cπ software tool . 58

4.4.2 The base model . 61

4.4.3 Perturbation experiments 61

5 Variation operators 67

5.1 Introduction . 67

5.1.1 Key issues and design choices 68

5.1.2 Overview of the chapter 72

5.2 Preliminary definitions . 73

5.3 Gene-level operators . 78

5.4 State variation . 80

5.5 Rate changes . 82

6 Evolutionary case studies 85

6.1 Introduction . 85

6.1.1 Overview of the chapter 86

6.2 Evolution of enzyme models . 86

6.3 Evolutionary properties of a signalling cascade 90

6.3.1 Background . 91

6.3.2 A cπ model of the MAPK cascade 93

6.3.3 Computational experiments 94

TABLE OF CONTENTS ix

7 Conclusions 103

7.1 Evaluation . 104

7.1.1 Contributions . 104

7.1.2 Problems . 105

7.2 Future work . 106

7.2.1 A better continuous π-calculus 106

7.2.2 Infinitely supported processes 107

7.2.3 A dedicated cπ logic . 108

7.2.4 Richer affinity networks 109

A Proof of Theorem 3.2.8 111

Table of symbols 117

Bibliography 119

Chapter 1

Introduction

The advancement of our understanding of living matter and of our ability to in-

fluence it depends more and more on efficient data analysis methods, predictive

mathematical models and faithful simulation techniques. This advancement is

therefore as much of a challenge to mathematics and informatics as it is to the tra-

ditionally understood biological sciences. The field of systems biology [72, 79, 82]

attempts to rise to this challenge, particularly by seeking new abstractions and

knowledge representations to organise, comprehend and learn from biological

data. Many established mathematical and computational frameworks have been

adapted by systems biology for this purpose, including differential equations [76],

Petri Nets [59], process algebras [126], Statecharts [47], and stochastic simula-

tions [91]; and many others have been developed from scratch in order to tackle

specific aspects of biological complexity.

Development is the processing of the genetic information (genotype) as it travels

through multiple levels of organisation—genes, proteins, networks, cells, tissues,

organisms and populations—ultimately building a biological entity (phenotype).

The realisation that this process is both central to and shaped by biological evo-

lution lies at the heart of evolutionary developmental biology (EDB) [26, 102].

Very much in the spirit of systems biology, EDB researchers have identified sev-

eral high-level properties characterising development across very diverse animal

taxa [117]. Among these properties are robustness [94], evolvability [52], canal-

isation [135], modularity [14] and plasticity [116]. While their importance in a

wider context, and especially the hypothesis that they themselves evolved by nat-

1

2 Chapter 1. Introduction

ural selection, is hotly debated [93], they remain the most promising theoretical

devices for describing and studying development.

Interestingly, the two best established general mathematical frameworks for study-

ing evolution offer little help when it comes to complex genotype-phenotype re-

lationships. Population genetics [29, 61] is concerned with changes in allele fre-

quencies; here, fitness is the only manifestation of phenotype. Evolutionary game

theory [69, 95], on the other hand, has no notion of genotype at all. In view of

these limitations, much of theoretical evolutionary developmental biology relies

on ad-hoc computer simulations [6, 16, 137, 151]. A unifying approach would

undoubtedly be useful, particularly by providing a basis for rigorous definitions

of the high-level principles mentioned above, but also as a platform for comparing

results relating to different biological systems.

The aim of this dissertation is to investigate one way in which a specific class

of systems biology techniques—namely, process algebras—may serve as a general

framework for evolutionary developmental biology. Several features of process

algebras suggest considerable potential for such an application. First and fore-

most, system description and system function are treated separately by process

algebras as syntax and semantics, mirroring the duality of genotype and pheno-

type. Second, molecules can be represented in process-algebraic models directly,

and thus genetic variation can be modelled directly as well. Third, a single

process-algebraic system description can be used to produce a range of funda-

mentally distinct analyses, making it possible to study development under differ-

ent basic assumptions and at different resolutions. Finally, process algebras have

an inherently computational character, well suited for automated processing and

analysis, which in turn is necessary if sampling or exhaustive analysis of multiple

evolutionary variants of the same system is required.

Overview of contributions The first major contribution of this thesis is the

continuous π-calculus (cπ for short), a novel process algebra for the study of evo-

lutionary properties of biochemical systems. It is based on the classical π-calculus

of Milner et. al. [99], adapted so as to express fully quantitative and continuous

dynamics. A further divergence from the π-calculus is to relax the basic structure

of interaction channels from strict one-to-one linkage to arbitrary many-to-many

connectivity. The first development makes cπ models relatively inexpensive com-

3

putationally, which is useful when many models (i.e. many related genotypes) are

to be analysed; it also ties cπ closely to ordinary differential equations, often the

preferred dynamical framework in systems biology applications. The other facil-

itates rewiring of the agents in the model in a manner similar to how evolution

reshapes protein networks, thus paving the way for formal treatment of genetic

mutations.

Exactly such treatment, in the form of eleven variation operators, is the other

major contribution of this dissertation. Each variation operator is a model trans-

formation scheme corresponding to a specific class of mutations. Crucially, oper-

ators are purely syntactic constructions, completely oblivious to the semantics of

the models they act on. This corresponds to the basic neo-Darwinian assumption

that mutations take place at the level of genotype and are blind to the effect

they have on phenotype. Naturally, the eleven operators given in this thesis do

not cover the entire spectrum of mutation classes, but they nevertheless form a

reasonably expressive collection, capable of rigorous modelling complex patterns

of molecular evolution.

The evaluation of this framework consists of three modelling exercises. The first

one is a cπ model of a circadian clock of the cyanobacterium Synechococcus elon-

gatus ; here the focus is on showing that cπ is a sound general-purpose modelling

language, and evolutionary applications are only touched upon. The second is

a demonstration of the expressive power of variation operators; it consists of

a construction of a cπ model of a complex biochemical process (competitive en-

zyme inhibition) from a trivial initial model by applications of variation operators

alone. The last exercise is an operator-driven computational exploration of the

evolutionary neighbourhood of the MAPK signalling cascade; it is an example

of the kind of applications the cπ/operators framework is primarily designed for.

These exercises are secondary contributions of this dissertation.

Prior knowledge Every effort has been made to make this dissertation accessible

to the widest readership possible. We assume, however, that the reader is familiar

with the basic principles of cell biology and evolutionary theory. In addition, they

should possess a certain degree of mathematical and computational literacy.

4 Chapter 1. Introduction

Data All models, software and experiment results reported in this thesis can be

fetched from http://homepages.ed.ac.uk/stark/cpi/, or requested directly

from the author.

Overview of the thesis

Chapter 1 is this Introduction.

Chapter 2 contains a survey of existing research relevant to this thesis. Systems

biology, process algebras and selected topics in evolutionary biology are

covered. This chapter may be skipped if the reader feels comfortable with

this material.

Chapter 3 introduces the continuous π-calculus (cπ). Syntax, semantics and an

algorithm for the extraction of differential equations are given. A running

example of a simple enzymatic reaction is used throughout. This chapter

is central to this thesis.

Chapter 4 contains a cπ model of a cyanobacterial circadian clock, adapted

from [148]. Its purpose is to demonstrate the merits of cπ as a general-

purpose biochemical modelling language, and so it can be skipped if the

reader is only interested in evolutionary applications.

Chapter 5 introduces variation operators, formal model transformations corre-

sponding to potential evolutionary changes of systems modelled with cπ.

The operators form the basis of the framework developed in this thesis.

This chapter should be read together with the next one.

Chapter 6 contains two case studies. The first one demonstrates the expressive

power of variation operators by building a trajectory of models leading to

a cπ representation of competitive enzyme inhibition. The second one is

an example of the possible use of the cπ-based evolutionary framework: an

investigation of the evolutionary neighbourhood of a well-known molecular

system, the MAPK cascade.

Chapter 7 provides an evaluation of the work contained in this dissertation and

discusses possible future research directions.

http://homepages.ed.ac.uk/stark/cpi/

Chapter 2

Background

2.1 Introduction

The task of providing a concise yet comprehensive survey of the research under-

lying and motivating this thesis is not an easy one. The main difficulty lies in the

fact that although the primary intended readership of the thesis is the theoretical

computer science community, it should at least be accessible to a computationally-

minded biologist. This requirement presents us with the non-trivial challenge of

covering both the relevant biology and computer science research on two levels:

basic for the non-specialist and state-of-the-art for the expert. This is what this

chapter attempts to do.

One inevitable consequence of this approach is that any discussion has to very

quickly focus on the most relevant aspects of each field. This leads to the unfortu-

nate situation where some high-level concepts that are relevant, but not crucial,

to the subsequent developments in this thesis, are mentioned in the high-level

overview, but are not discussed in detail later. This is particularly true of the

treatment of systems biology offered here.

The central development in this thesis is a process algebra for the modelling of

evolutionary variation and dynamics in biochemical networks. This dictates the

choice of topics covered in this chapter. The first one is systems biology, the broad

scientific discipline to which our research belongs; here the focus is on different

dynamical frameworks and specification languages, because process algebras are

both. The second topic concerns existing process algebras for biology, as this

5

6 Chapter 2. Background

research area is the closest to ours. The third topic is neutrality and mutational

robustness in evolutionary developmental biology, and in particular an abstract

model of development [152], which we shall later attempt to recast in process-

algebraic terms.

2.1.1 Overview of the chapter

Section 2.2 explains what systems biology is (§2.2.1) and reviews two of its aspects

that are the most relevant for further discussion: dynamical models (§2.2.2) and

model specification standards (§2.2.3).

Section 2.3 begins with a very general introduction to process algebras (§2.3.1),

but quickly focuses on their recent application in biology (§2.3.2 and §2.3.3).

It then discusses relevant biological applications of techniques related to process

algebras (§2.3.4), and concludes with a high-level summary (§2.3.5).

Section 2.4 is devoted to recent advances in evolutionary theory concerning neu-

tral evolution and mutational robustness. It contains a discussion of the genotype-

phenotype distinction and its implications (§2.4.1), introduces the important con-

cepts of robustness and evolvability (§2.4.2) and presents a general framework for

the analysis of these properties (§2.4.3).

The cited works range from textbooks, review and seminal papers in case of the

high-level overview sections to recent research articles in case of advanced topics.

2.2 Systems biology

2.2.1 Emergence and aims

The term systems biology [72, 79, 82] describes two related and overlapping con-

cepts. On one hand, it is a field of research concerned primarily with the dynamic

processes taking place in living cells. On the other, it is a way of doing science,

where experimental developments are continuously supported by computational

modelling and vice versa (see Fig. 2.1 and [80]). In both guises, systems biology

is a response to the wealth of data collected in the post-genomic era by high-

throughput experimental techniques. The fact that this data is the result of a

2.2. Systems biology 7

subtle interplay of many components defies reductionist attempts at the under-

standing of cellular processes. Systems biology is therefore a quest for suitable

abstractions that would enable us to make sense of the experimental data and

ultimately of the cell itself.

Biological

System

Formal

Model

Model

Analysis

Experimental

Data

10 10 10 11 101 10 10

10 10 10 11 101 10 10

10 10 10 11 101 10 10

10 10 10 11 101 10 10

10 10 10 11 101 10 10

10 10 10 11 101 10 10

10 10 10 11 101 10 10

10 10 10 11 101 10 10
10 10 10 11 101 10 10

10 10 10 11 101 10 10

10 10 10 11 101 10 10

10 1111111101 10 10

10 10 10 000 11 110 10

10 10 10 11 101 10 10

10 10 10 11 101 10 10

10 10 10 11 101 10 10

Figure 2.1: The virtuous circle of

systems biology.

The most natural and most often employed ab-

straction is that of a dynamical process. The

identity and physical details of cellular agents

are neglected to the widest possible extent, and

the only feature being studied is the dynamical

behaviour of the entire system. This approach

links the two faces of systems biology, for in or-

der to study a living system in this way, one

needs an abstract model that is both informed

by experiment and drives it. Some of the math-

ematics used for this purpose is reviewed below (§2.2.2). Needless to say, this

approach has the added benefit of moving some of the workload from a wet lab

to a computer, which is almost always cheaper.

A different, though complementary, strategy is to seek organising principles,

i.e. abstract characteristics that reappear in different systems and at different

scales. The features often mentioned in this rôle are robustness [81], feedbacks

and feed-forwards [2], modularity [2] and scale-free architecture of gene and pro-

tein networks [120]. The ultimate aim of this effort is to characterise the context

in which Nature employs these mechanisms, the way they are implemented, and

the objectives they fulfill in a manner that is generic enough to yield a unified

understanding of biology.

2.2.2 Different modelling frameworks

We turn now to a discussion of mathematical formalisms most commonly used

in systems biology to model dynamical processes. We focus on the modelling

of molecular interactions, that is we assume that the task at hand is to predict

transient and eventual behaviour of a system of molecules given their detailed

interaction capabilities. The different methods we review make different simpli-

fications of the physical reality in order to make the model analytically or com-

8 Chapter 2. Background

putationally tractable. We organise our discussion around these often conflicting

assumptions.

Deterministic vs stochastic A model is deterministic if its initial state uniquely

determines its behaviour at all time scales. Conversely, a stochastic model incor-

porates randomness, thereby making it possible for two executions of precisely the

same model to differ. It is important, however, to understand that stochasticity

does not necessarily imply non-determinism: a model with a non-trivial stochas-

tic component can still consistently exhibit the same behaviour, especially when

only high-level characteristics are considered.

Perhaps the most common dynamical formalism used in systems biology are cou-

pled Ordinary Differential Equations (ODEs) [12]. ODEs specify rates of change

of continuous real variables in a deterministic fashion. Each variable corresponds

to the amount (concentration) of a molecular agent. The knowledge of all bio-

chemical reactions in the system enables the modeller to write the rate of change

of each variable as a function of that variable and the remaining ones (hence

“coupled”). The resulting set of equations can rarely be solved analytically, but

is usually dealt with easily by numerical integration methods.

Exactly the same basic principle underlies Stochastic Differential Equations

(SDEs) [109], only now the rate of change of state variables may depend on a

random variable, thereby yielding a stochastic model. Of particular interest here

are the Langevin equations, where the stochastic component represents Brownian

motion [57]. Another very important stochastic modelling framework is simply

a set of biochemical reactions together with an initial state. It can be given

stochastic dynamics by the Gillespie’s Algorithm [56]. By drawing two real num-

bers from appropriate probability distributions, the Algorithm decides at each

time step what single molecular event to simulate (i.e. which reaction to “fire”),

and what time should elapse until the next one. The counts of molecules and the

current time are then accordingly updated and the dice are rolled again.

Statistical mechanics teaches us that molecular kinetics should be seen as an

essentially stochastic process and that their deterministic approximation holds

provably only in the thermodynamical limit, that is when the number of molecules

and the volume of the solution can be treated as practically infinite. This is often

not the case for cellular systems, especially signalling and regulatory pathways

2.2. Systems biology 9

where molecules may be present in very few copies at any given time. Conse-

quently, ODE models of many natural and synthetic biological systems give erro-

neous results, while stochastic simulations usually correctly predict the behaviour

of the system [17]. Differential equations remain immensely useful, however, be-

cause in spite of the many improvements to the Gillespie Algorithm [55, 125],

stochastic simulations are often computationally intractable for large models.

Continuous vs discrete A model is continuous if all state variables (such as

amounts of molecules) admit values from dense, continuous sets (in practice the

reals). Conversely, in a discrete model all state variables range over discrete sets

(usually a finite set or the natural numbers). A model containing variables of both

kinds is called hybrid. Of the frameworks discussed above, ODEs and SDEs are

continuous and Gillespie-style simulations are discrete. Again, a discrete model

usually requires more computational power than the corresponding continuous

one, but it represents the physical reality better. In practice, hybrid models often

offer more than acceptable accuracy at acceptable cost. Unfortunately, there is

no widespread standard for hybrid modelling and as a result the possibility of a

hybrid approach is often overlooked.

There is also a distinction between discrete-time and continuous-time models.

In the former case, time is assumed to progress in discrete steps, or “jumps”;

in the latter, time is a continuous real variable. Of the frameworks discussed

above, ODEs and SDEs use continuous time, while time in Gillespie simulations

progresses in a discrete fashion. It is important to realise, however, that discrete-

time systems may retain an internal notion of real time and treat every step as

occurring at a specific “real” time instant, with the intervals between steps having

potentially different lengths. This is the case of Gillespie-style simulations.

Different kinetic laws A kinetic law is a function giving the rate at which a

biochemical reaction proceeds. It depends on the amounts of substrates and in-

hibitors/catalysts. Strictly speaking, every reaction in a reaction set should be

annotated with its kinetic law. In practice, unless specified differently, the Law

of Mass Action is used; it mandates that the rate of a reaction is proportional to

the amounts of its substrates. This principle follows from the kinetic theory and

it is believed that all low-level chemical reactions obey it. Sometimes, however, it

10 Chapter 2. Background

is convenient to treat a few related reactions as a single one. In that case, while

each of the constituent reactions may well follow the Law of Mass Action, their

amalgamation often does not. An example of this situation are catalysed (enzy-

matic) reactions, which obey a non-linear dynamical law called Michaelis-Menten

kinetics. Other kinetic laws of note include Hill kinetics (often used in models of

gene regulation) and linlog kinetics (often used in models of metabolism).

2.2.3 Knowledge representation standards

Biologists have long used informal diagrams to represent the structure and dy-

namics of biological systems. One of the main shortcomings of this approach is

that it introduces ambiguity of descriptions, because the same diagram may be

interpreted differently by different people. Systems biology with its emphasis on

computational methods made this problem particularly acute, because comput-

ers cannot yet be relied upon to resolve such ambiguities. Another problem has

been the lack of a common format for model specification that would facilitate

the exchange of models between different biological software packages. Several

non-ambiguous biological specification languages have been proposed recently to

address these issues and we briefly introduce three of the most influential.

Kohn maps Molecular Interaction Maps [83], or Kohn Maps, proposed in 1999,

are the first model specification standard for systems biology. The primary con-

cern of their author was the removal of ambiguity rather than ease of computa-

tional processing; hence, Kohn Maps are a purely graphical formalism without

a standard textual representation. The diagrams are built from a limited set of

graphical symbols and can be either “heuristic”, meaning that the detailed inter-

action structure is unknown or omitted, or “explicit”, meaning that all possible

interactions are specified and computer simulation of the Map is possible [85].

For an example of a Molecular Interaction Map of a large, well-studied system,

see the mammalian cell cycle model [84].

SBML The Systems Biology Markup Language (SBML) [71, 147] is a textual,

machine-readable, XML-based language. Since its conception in the early 2000s

it has become a de facto standard for storage and exchange of biological models.

2.3. Process algebras and biology 11

From the point of view of this thesis, the most important feature of SBML is that

it is deliberately agnostic about the dynamical framework in which the model

is to be interpreted, making it possible to run the same model under different

dynamical paradigms; we shall soon encounter the same feature with process

algebras. While not being a modelling framework itself, SBML greatly extends

the ability of systems biologists to investigate and communicate their models.

SBGN The Systems Biology Graphical Notation (SBGN) [89, 146] seeks to pro-

vide a standard for human-readable, diagrammatic representations of biological

systems. It consists in fact of three graphical languages. The Process Diagrams

specify state changes of individual agents (molecules). The Entity Relationship

Diagrams, based largely on Kohn Maps, specify interactions between the agents

and any constraints or conditions these interactions are subject to. Lastly, the

Activity Flow Diagrams represent causal and temporal dependencies of biological

events; because they are unsuitable for representation of state-based behaviour,

they are not supposed to exist independently and it is expected that in the future

they will be automatically generated from the other two. SBGN is a fairly recent

development and it is impossible at the time of writing to adequately assess its

impact on biology.

2.3 Process algebras and biology

2.3.1 Classical process algebras: models of concurrency

We provide now a very brief introduction to process algebras for the non-specialist

reader. Experts are encouraged to skip to §2.3.2; otherwise they are requested to

excuse the simplifications that follow.

Definition Process algebras or process calculi [48] are a family of mathematical

formalisms for modelling of concurrent computations. The defining properties

of process algebras are: use of communication (rather than e.g. shared memory)

for synchronisation of otherwise independent computations; parsimony, i.e. use

of very few basic constructs; and compositionality, a strong notion of modularity

12 Chapter 2. Background

P
a−→ P ′ Q

a−→ Q′

P |Q τ−→ P ′|Q′

Figure 2.2: An example SOS rule from the CCS process algebra. P , P ′, Q and Q′ are

metavariables referring to arbitrary processes; a is an action metavariable; a identifies

the action complementary to a; τ is the distinguished “silent” action; finally, | is the

CCS parallel composition operator. The rule reads: if a process P can perform the

a action and turn into P ′ and a process Q can perform the complementary a action

and evolve into Q′, then the process P |Q can perform the special τ action and evolve

into P ′|Q′. Hence, the rule captures a synchronous step of concurrent computations.

Observe that the evolution of the composite process P |Q depends exclusively on the

evolutions of its components P and Q, and thus compositionality is maintained.

where the complete behaviour of a model can be inferred from the behaviour of

its constituents.

Syntax and semantics A definition of a typical process algebra consists of two

elements. The first is an inductive definition of the syntax, that is a set of terms

(called processes) representing different concurrent computations. Two processes

can always be joined with a parallel composition operator and yield a valid process

representing the computation consisting of the two threads denoted by the initial

processes running in parallel. The second element is the definition of semantics

of processes, i.e. their behaviour or meaning. This is usually accomplished using

Structural Operational Semantics (SOS) [119], where a finite set of inference

rules assigns to every process the set of its possible evolutions (or transitions or

actions). The transitions of a composite process always depend exclusively on

the evolutions of its components, yielding a compositional framework (Fig. 2.2).

Transition systems and behaviour The set of processes together with the se-

mantic relation induced by SOS rules forms a transition system: a directed graph

where every node is a process and every edge represents a potential evolution

of a process. A different set of rules, even when operating on the same pro-

cesses, will give rise to a different transition system. This separation of syntax

2.3. Process algebras and biology 13

from semantics is important in the biological applications of process algebras (see

§2.3.5). Another consequence of this setup is that different processes are ob-

servationally indistinguishable if their transition systems can mimic each other

indefinitely; in this case we will call the two processes bisimilar (or, more gener-

ally, behaviourally equivalent). Hence, the process algebraic framework is able to

recognise two computations as identical for all intents and purposes even if their

syntactic specifications differ.

Compositionality A formal system is compositional if the semantics of a com-

posite object can be fully inferred from the semantics of the components. It is

important to realise, however, that compositionality does not preclude emergent

behaviour: it merely requires that the semantic domain is rich enough to en-

compass potential, as well as actual, behaviour. In the case of process algebras,

compositionality is usually achieved by having two kinds of transitions, corre-

sponding precisely to potential for communication and to actual communication

events (Fig. 2.2). Differential equations, on the other hand, are an example of

a non-compositional framework: the solution of a catenation of ODE systems

cannot be inferred from the isolated solutions of the initial components. Com-

positionality makes it possible to analyse a complex system by analysing each

component in turn (semantic modularity) and guarantees that the semantics of

each component remains valid in all possible contexts, and therefore does not

need to be recomputed when other components are modified (encapsulation).

History Historically, process algebras can be organised into three schools of

thought [4]. The first, due to R. Milner, led to the development of the Calculus

of Communicating Systems [97] and its successor, the π-calculus [99], and can be

credited with the use of SOS to separate syntax from semantics. C. A. R. Hoare

introduced his Communicating Sequential Processes [68] as a programming lan-

guage, using communication and parallel composition as its basic constructs.

Finally, the Dutch school of J. Bergstra and J. W. Klop and their Algebra of

Communicating Processes [7] introduced the algebraic approach, where combina-

tors such as the parallel composition are thought of as algebraic operators and

complex process expressions are simplified according to rules reminiscent of those

of basic algebra. Today a plethora of process algebras exist, targeting specific as-

14 Chapter 2. Background

pects of concurrency including performance evaluation [67, 121], security [1, 13]

and hybrid systems [8].

2.3.2 Seminal work of Regev et. al.

The process-as-molecule abstraction In the late 1990s, Aviv Regev and Ehud

Shapiro realised that process calculi can be used to model molecular dynam-

ics [126, 128, 129]. Under their interpretation, processes correspond to molecules,

process interaction to biochemical reactions and parallel composition of processes

to the spatial independence of individual molecules. The name extrusion mech-

anism specific to the π-calculus was used to represent formation of molecular

complexes. Finally, a path through a transition system defined by a process

corresponds to a possible dynamical evolution of the given molecular system.

These insights made an entire field of concurrency research instantly applicable

in systems biology.

Refinements Regev et. al. quickly identified two major deficiencies of their

original work. The first was the lack of a fully quantitative semantics: the use

of pure π-calculus forced all reactions to proceed at equal rates, in stark contrast

with actual cellular dynamics. They addressed this problem by adapting the

stochastic π-calculus [121], where every action is annotated with (the inverse of)

its expected duration. Annotating every action with the mass-action rate con-

stant of the reaction it represents makes executions of thusly modified stochastic

π model equivalent to Gillespie simulations of the corresponding reaction set. The

resulting Biochemical Stochastic π-Calculus [123] has been independently imple-

mented as BioSpi [11] and Stochastic Pi-Machine (SPiM) [143] and has since been

used in a number of non-trivial case studies [22, 86, 90].

The other problem was the lack of support for spatial aspects of cellular compu-

tations. Biochemical interactions are not only highly localised, but also actively

modify the structure of the cellular compartments. The need to account for these

phenomena led to the extension of the Biochemical Stochastic π-Calculus with

BioAmbients [127], a notion of process location borrowed from the Ambient Cal-

culus [23]. The reaction capabilities of processes were made dependent on their

relative positions in a hierarchy of formal compartments (“ambients”), and ex-

2.3. Process algebras and biology 15

tended with new primitives to dynamically change this hierarchy. BioAmbients

are implemented as part of the BioSpi tool [11].

2.3.3 Modern calculi for biology

Since Regev’s breakthrough, many existing process algebras have been used and

many more designed for applications in biology. Here we discuss the most influ-

ential ones, focusing on their defining characteristics.

PEPA and Bio-PEPA The Performance Evaluation Process Algebra (PEPA) [67]

is a well-established stochastic process calculus for the analysis of performance

of concurrent systems. It has also been extensively used for biochemical mod-

elling [18, 20, 21]. Although it is less expressive in general than the π-calculus,

it usually yields models that are simpler than the corresponding π representa-

tions thanks to a more sophisticated parallel composition operator and lack of

data passing. The recent variant designed especially for the modelling of bio-

logical systems, called Bio-PEPA [27], supports reactions with more than two

substrates, arbitrary kinetic laws and cellular compartments. PEPA and Bio-

PEPA also benefit from excellent tool support [144, 145].

Beta Binders/BlenX Beta Binders [122] were designed at the same time as

BioAmbients to provide support for cellular compartments in the context of

stochastic π-calculus. They do not offer hierarchical compartment structure and

are thus inferior to BioAmbients in this respect. Beta Binders have recently

evolved into BlenX [33], a general-purpose biological programming language,

which was used in what is to the best of our knowledge the only molecular evo-

lution research project based on a process algebra [34, 35, 130] (see also §6.3.1).

κ The κ (kappa) calculus [30] disposes of the strictly textual presentation typical

of process calculi in favour of a very intuitive graphical notation. Furthermore,

instead of modelling the states of molecules directly (i.e. using explicit processes to

describe states), κ relies on sets of graph rewriting rules to specify state changes.

This has a number of advantages, discussed in more detail below (“Rule-based

modelling”). This original contribution has recently gained some exposure outside

16 Chapter 2. Background

the computer science community [45], which, as we argue below (§2.3.5) is a

necessary condition for further advancement of the field.

Variants of π Numerous variants of the π-calculus have been created since

Regev’s work. The motivation is usually addressing a particular modelling need

or simply making π-modelling more user-friendly. Here we mention a few of

them: the spatial π-calculus [75] equips π-processes with a notion of position in

space and conditions their interactions on their relative distance; Spico [86, 139]

introduces sophisticated synchronisation patterns and uses them to develop an

object-oriented perspective on process-algebraic modelling; the attributed

π-calculus [74] allows the processes to carry arbitrary data and condition their be-

haviour on it; last but not least, π@ [149, 150] subsumes several location-focused

calculi, including BioAmbients and Beta Binders.

2.3.4 Related topics

Model checking Formal verification, or model checking [5, 28], is a family of

powerful analysis techniques for computational models. A model checking algo-

rithm takes a logical formula and a formal model as inputs and verifies whether

the formula is true of the model. This is not possible for arbitrary logics and

model classes, due to decidability and/or tractability issues. The feasible com-

binations frequently involve transition systems and so process-algebraic models

often benefit from this technique. Model checking is not limited to purely quali-

tative analysis, however. Stochastic model checkers such as PRISM [87, 124] can

analyse stochastic models (e.g. Markov Chains [77]) and return quantitative mea-

sures, e.g. the probability of the property being satisfied by a random run of the

model. Stochastic model checking has been applied in the biological context [63],

but is still intractable for most non-trivial biological systems.

One application of formal verification to biological models and data that is of

particular interest to us is model checking of time series. The model here is simply

a linear transition system (the time series measurements arranged chronologically)

and the logic of choice is usually the Linear Temporal Logic (LTL) [5, Ch. 5]. This

setup avoids the problem of state space explosion but is of course of limited use for

non-deterministic models, which may have many different yet equally valid traces.

2.3. Process algebras and biology 17

Recent extensions of this technique have been used to estimate parameters [44]

and to quantify robustness [43] of biological systems.

Petri Nets Petri Nets [103] are another prominent model of concurrent com-

puting that has been used for biological modelling [15, 59, 64]. Petri Nets are

mostly used as a simulation engine in this context, but work on model checking of

biological systems exists [64]; furthermore, some of the basic structural properties

of Petri Nets have direct biological interpretations [65]. Compared to process al-

gebras, Petri Nets lack modularity, but their widespread recognition, abundance

of existing software packages and, above all, intuitive graphical form makes them

much more accessible to biologists.

Rule-based modelling Consider a protein with n independent, distinguishable

phosphorylation sites; it has 2n possible phosphorylation states. This is a simple

instance of combinatorial explosion: the phenomenon of a huge number of pos-

sible states of relatively few initial components. When the dynamical behaviour

has to be specified for each state separately—as is the case with Petri Nets and,

to some extent, process calculi—the model becomes unnecessarily large. One

solution is to specify dynamics by means of rewriting rules, so that a single rule

is applicable in a number of states. As mentioned before, this is the approach

adopted in κ [30]. Other rule-based formalisms include Biocham [10], a compre-

hensive model checking and simulation tool for biochemical modelling; similar,

though less model-checking oriented Pathway Logic [41]; and the Language of

Biochemical Systems [113, 114], a general-purpose biological programming lan-

guage emphasising modularity and reusability of models.

2.3.5 Outlook

Strengths The process-algebraic abstraction of molecular interactions is attrac-

tive for several reasons. First of all, it provides a generic yet mathematically rig-

orous framework for description and simulation of biochemical systems. Second,

the emphasis that process calculi place on concurrent behaviour reflects very well

the spatial independence of molecules. Third, process calculi incorporate causal-

ity and non-determinism in a very natural way. Finally, they open the exciting

18 Chapter 2. Background

possibility of investigating biological systems by means of model checking and be-

havioural equivalences, as well as using compositionality to organise and execute

models in a modular way.

One other major strength of process algebras, which is crucial to this thesis is that

the same process-algebraic model may have different dynamical interpretations

without losing its mathematical rigour (cf. [18]). This stems from the strong

separation of formal syntax and formal semantics of process calculi: a process

is a well-defined mathematical object which can in principle be given arbitrary

semantics later on. Hence, any static information we have about a biological

system, such as types of molecules and their interactions, can be formally and

unambiguously specified without committing to any particular dynamical frame-

work. This should be contrasted with, for example, ODE modelling, where the

model is the dynamics and has to be completely rewritten if another kind of

analysis needs to be performed.

Weaknesses The process-algebraic approach to biochemical modelling has two

main weaknesses. The first is that is does not scale very well. When the molecule-

as-process abstraction is applied strictly, the model has to account for every

molecule. This is practical for systems with at most a couple of hundreds of

molecules of every kind, which rules out large classes of systems, for example

metabolic pathways. A new perspective, where a single agent in a process algebra

corresponds to a larger quantity of molecules [20] has been developed recently to

tackle this problem. Such coarse-grained approach makes it possible to analyse

larger systems, but the stochastic dynamics derived from such models do not

exactly match the underlying physics anymore. It is of course possible to abandon

Regev’s abstraction altogether, but it is unclear whether process algebras would

then retain any advantage over other formal methods for biological modelling; to

the best of our knowledge no sustained effort in this direction exists.

The other weakness is of a more sociological nature. The idiosyncrasies of process

algebras, their steep learning curve and their textual form make them quite in-

timidating at the first glance. As a result, their visibility in biological journals is

extremely poor and their adoption by biologists has been incidental. There are at

least two solutions to this problem: the first is to develop sophisticated graphical

notations and visualisation tools for process algebras; this has been done for κ

2.4. Selected topics in evolutionary theory 19

and SPiM. The other is to use them as a low-level language, a compilation target

for a more high-level formalism. In any case, the impact of process algebras on

biology will remain marginal unless this issue is addressed.

2.4 Selected topics in evolutionary theory

We now turn to a survey of selected concepts in theoretical evolutionary biology.

We are especially interested in recent attempts at obtaining a unified theoretical

perspective on evolutionary origins and properties of development. In this disser-

tation, we adopt one such perspective and provide a process-algebraic rendition

of it; the material in this section is therefore highly relevant and important to

subsequent discussions.

2.4.1 Genotype, phenotype and development

The phenotype of an organism is the totality of its observable characteristics. The

genotype is all of its genetic information. Natural selection favours phenotypes

that are fitter than others; variation and genetic drift randomly modify geno-

types. The concepts of genotype and phenotype can be generalised to any setting

where an evolutionary process underlies change: in the case of protein folding,

for example, amino-acid sequences are genotypes and 3D protein structures are

phenotypes. The genotype-phenotype distinction and the questions it raises is at

the forefront of biological research [117] as well as at the heart of many issues

addressed in this thesis and so we discuss it here in more detail.

Genotypes are transformed to phenotypes in a process called development. In all

interesting cases it is a complex and highly degenerate mapping. Furthermore, in

the case of genomes and organisms, development itself is guided by the genotype,

and thus development is subject to the same evolutionary processes as any other

feature of the organism. Evolutionary developmental biology (informally EDB or

evo-devo) [26, 102] is a rapidly growing field of research seeking to understand

the mechanisms and dynamics of the evolution of development.

Development and its evolution are tightly linked to a major outstanding problem

in evolutionary biology: how does biological innovation emerge? It is often the

20 Chapter 2. Background

case that the degree of variation in a high-level phenotypical trait is significantly

lower than the variability of the underlying genotypes, with animal body plans

being the prime example [31]. On the other hand, sudden bursts of innovations

such as the Cambrian radiation ostensibly defy the established gradualist view

of evolution. The solution of this paradox may lie in the evolution of devel-

opment and the way it translates random genotypical variation into apparently

purposeful, discontinuous and constrained phenotypical change [50, 53, 54].

The importance of evo-devo notwithstanding, the situations where development

can be treated as fixed or at least independent of the genotypes it acts on are

common. Folding problems are a class of examples of fixed genotype-phenotype

maps, and we discuss the case of RNA folding below (§2.4.3). In this dissertation

we treat the syntactic representation of a biological system in a process algebra

as genotype and the semantic interpretation of this model as phenotype. The

development is thus the symbolic or numerical derivation of semantics and as

such is fixed; from now on, therefore, we do not concern ourselves with variable

genotype-phenotype maps.

2.4.2 Neutrality, robustness and evolvability

Neutral evolution A genetic event, such as mutation, is neutral if it does not

change the fitness of the phenotype. Natural selection cannot distinguish between

neutral mutants by definition, despite the fact that the phenotypes themselves

may be different. The extent to which evolution advances by neutral changes was

the subject of the selectionist-neutralist debate in 1960s and 1970s; see [106] for

an overview of the debate and [78] for the definitive presentation of the neutralist

point of view. Today the neutral theory serves mainly as a null model: natural

selection is only invoked when the neutral theory fails to account for the given

phenomenon. It has recently been argued, however, that this mode of thinking

is not followed diligently enough and that many features of living organisms

commonly ascribed to natural selection evolved in fact by neutral drift [93].

Robustness and evolvability We say that a biological system is mutationally

robust (henceforth simply robust) if it continues to perform its function despite

mutations. Many biological systems display robustness at many levels of organ-

2.4. Selected topics in evolutionary theory 21

isation [152]. Recently, robustness has received a lot of attention as a general

organising principle of biological systems [81, 142, 152]. Robustness is closely

linked to neutrality: if a system can perform its function despite mutational

pressure, then most of these mutations have to be neutral, since advantageous

mutations are in general very rare [42].

A system is evolvable if it can easily achieve new functionality through mutations.

At the first glance evolvability is the exact opposite of robustness. It is important

to realise that this is only the case on the level of genotypes [153]. There is

evidence that phenotypical robustness and phenotypical evolvability are positively

correlated (see §2.4.3). Evolvability is of course tightly linked to the question of

the origins of novelty and so if robustness promotes evolvability, it also promotes

biological innovation.

Second-order evolution Robustness can evolve, albeit via an indirect evolu-

tionary process [152, Ch. 16–17]. Two organisms with equal fitness are identical

from the perspective of immediate natural selection, even if they differ in their

robustness. When faced with mutation pressure, however, the more robust phe-

notype has a greater chance to withstand it, and to pass its—presumably still

robust—architecture to its offspring. Thus, the frequency of robust phenotypes

can increase in the population. However, theoretical considerations suggest that

this trend is very weak unless the population size is large or the mutation rate is

high. This points to viruses as ideal candidates for experiments, and some evi-

dence of selection for robustness in RNA viruses has indeed been found [101, 131].

Evolvability may also evolve along similar lines, but experimental evidence for this

process is somewhat weaker [112].

2.4.3 Neutral spaces and RNA folding

We now present an abstract framework for studying neutrality, robustness and

evolvability in biological systems. It stems from influential work on RNA folding,

which we use here as an example. Our main reference for this section is [152],

which contains this and many more case studies as well as a comprehensive treat-

ment of the concept of neutral spaces.

22 Chapter 2. Background

Genotypes, phenotypes and accessibility Consider two abstract mathematical

spaces: the space of genotypes and the space of phenotypes, connected by the

genotype-phenotype mapping. No assumption is made about the structure of the

phenotype space. The space of genotypes, however, is equipped with a binary

accessibility relation, which links two genotypes if the first one can be turned

into the other by a single mutational event. The exact characteristics of the

spaces, the mapping and the accessibility relation may vary, but we usually find

that genotype space is the set of sequences (DNA/RNA bases or more abstract

letters), and hence is discrete or even finite. In this case the accessibility relation

usually represents point mutation and is therefore symmetric. The phenotype

space, on the other hand, usually lacks an obvious evolutionarily meaningful

structure; indeed, it is often the aim of such studies to discover it. Finally, the

genotype-phenotype map is always rather complex and many-to-one.

Neutral spaces and robustness The set of all genotypes mapped to the same

phenotype is called the neutral space of this phenotype. Neutral spaces constitute

a partition of the genotype space and so every genotype belongs to a unique

neutral space. Robustness of a phenotype is defined as the size (cardinality) of

its neutral space. This corresponds to the simple observation that phenotypes

that can withstand a lot of changes to their genetic makeup, must in fact be

encoded by many different genotypes. The structure of the neutral space w.r.t.

the accessibility relation does not bear on the robustness of the corresponding

phenotype in this setting. Also, note that no concept of fitness is used in this

definition.

Definition of evolvability requires an evolutionary meaningful accessibility struc-

ture on the space of phenotypes. Stadler et. al. have demonstrated how to induce

an evolutionary pre-topology on this space using only the accessibility of geno-

types [140]. However elegant, this construction is too general to yield a reliably

meaningful quantitative notion of evolvability, and in practice one uses additional

information about the problem to define an evolvability measure. We now give

one example of such an approach.

RNA folding An RNA strand folds onto itself using the Watson-Crick pairing

of individual bases. The resulting three-dimensional structure is difficult to pre-

2.4. Selected topics in evolutionary theory 23

dict from the sequence. However, the set of base pairings that minimises the free

energy of the molecule is computationally tractable through dynamic program-

ming [155]. This set is a reasonable approximation of the actual 3D form; it is

called a shape, because it gives rise to a unique 2D layout of the strand (Fig. 2.3).

Figure 2.3: A shape

By treating RNA sequences of fixed length as

genotypes, the shapes as phenotypes, and deem-

ing two sequences mutually accessible if they dif-

fer by a single base (i.e. have Hamming distance

equal to 1), one obtains an instance of the frame-

work discussed above. This model and its im-

plications were analysed extensively by Fontana

et. al. [3, 49–51, 133]. The distribution of neutral

space sizes (and thus robustness) was found to be

highly non-random, with many sequences folding into the same few shapes. Fur-

thermore, neutral spaces of these frequent shapes are connected, meaning that

any sequences folding into a frequent shape can evolve into any other such se-

quence by means of point mutations alone without changing the resulting shape

on the way. Finally, any random sequence is relatively few steps away from one

that encodes a frequent shape (e.g. 15 steps in case of sequences of length 100).

Evolvability revisited As remarked before, the definition of phenotype evolv-

ability requires a notion of evolutionary accessibility of phenotypes. In the case

of RNA sequences and shapes, a shape p can be declared accessible from another

one, say q, if the likelihood that a random mutation step away from the neutral

space of q leads into the neutral space of p is greater than a threshold value.

The distribution of these likelihoods follows a two-regime power law, suggesting

a natural threshold value, namely the one corresponding to regime change [50].

Evolvability of a shape is then defined as the number of different shapes accessible

from it.

The central result of the study of RNA folding is that phenotype robustness

and phenotype evolvability are positively correlated. It is a strong indication

that neutral evolution plays an important rôle in enabling biological innovation.

Apart from theoretical analysis, this view is also supported by laboratory exper-

iments [132]. Evidence of this effect has also been found in the case of protein

evolution [46], and many believe it is a central feature of evolution in general.

24 Chapter 2. Background

Summary The notion of neutral space is applicable to many systems and at

many levels of organisation [152]. The definition of robustness it promotes is

exceptionally simple and yet without doubt meaningful from the biological per-

spective. The application of these concepts to the study of RNA folding reveals a

deep connection between neutral evolution and biological innovation. This frame-

work is not free from limitations, the most important being that development is

assumed to be fixed. Furthermore, it is not clear whether it admits a represen-

tation of more complex kinds of genetic variation, such as recombination and

horizontal gene transfer.

Chapter 3

The continuous π-calculus

3.1 Introduction

In this chapter we introduce the continuous π-calculus, a novel formal language

for modelling of evolutionary variation of biochemical systems. It is a process

algebra and so it enjoys a number of features useful for biological modelling,

including formality, compositionality and succinctness. Formality removes ambi-

guity, which is quite common in conventional descriptions of biological systems,

and thus facilitates computational processing and analysis of models. Composi-

tionality provides strong support for modular modelling: models of subsystems

can be put together with minimal effort to form a model of a larger system. Fi-

nally, succinctness facilitates model analysis and encourages identification of the

key biological principles governing modelled systems and thus fully conforms to

the spirit of systems biology [79].

In addition to these properties, we want the continuous π-calculus (henceforth cπ)

to support continuous-state and -time modelling and to facilitate expression of

evolutionary variability. The support for variability is already partly provided

by the process-algebraic paradigm, because every model has a clearly defined

and easy to manipulate syntax; we enhance it by introducing affinity networks

to explicitly represent flexible functional connections between different agents

in the model. The support for continuous modelling is achieved by defining

the cπ semantics in terms of real vector spaces. The main motivation for this

development is to have a fully quantitative dynamical framework that is relatively

25

26 Chapter 3. The continuous π-calculus

Ṡ = −kb · S · E + ku · C
Ṗ = kt · C − kd · P
Ė = −kb · E · S + (kt + ku) · C
Ċ = kb · S · E − (kt + ku) · C

u E

S

b

C

t

P

d

Figure 3.1: Two different models of a simple enzymatic reaction: a set of Ordinary

Differential Equations (left) and a Petri Net (right). Both are formal and succinct

but neither is compositional. ODEs are continuous, but offer no support for express-

ing evolutionary variability; Petri Nets could in principle express limited evolutionary

variation, but their native semantics is not continuous.

inexpensive from the computational point of view, because any given system has

potentially very many evolutionary variants whose behaviour we may want to

analyse in detail.

3.1.1 The running example

Throughout this chapter we illustrate our constructions with the help of a simple

molecular system: an abstract enzyme-catalysed biochemical reaction. The initial

state is a solution of three agents: substrate S, enzyme E and product P . The

enzyme can bind the substrate and form the complex C at the basal rate kb. The

complex can either dissociate and release the two original components (at the

rate ku), or the substrate can be converted into product and then released (at the

rate kt), leaving the enzyme unchanged. Finally, the product P can spontaneously

degrade at the rate kd. Figure 3.1 contains two models of this system in well-

established formalisms, while Fig. 3.2 contains a cπ model complete with syntax,

semantics and execution.

The syntactic part of the model consists of three separate parts: the species

definitions, i.e. the specification of the kinds of molecules involved in the system;

the process term, that is the definition of the initial state of the system; and the

affinity network specifying the complementarity of the interaction sites of the

molecules modelled by the species. The semantics of this model consists of the

transition system encoding potential interaction capabilities of species, and the

3.2. The syntax 27

process behaviour encapsulating the immediate dynamics of the system and its

potential for interaction in other contexts. Together, these constructs allow us to

compute the dynamical evolution of the system in a compositional manner.

3.1.2 Overview of the chapter

Section 3.2 is devoted to the presentation of the syntax and §3.3 defines the se-

mantics of cπ. The section on syntax defines the key notions of species (§3.2.1)

and processes (§3.2.2) and discusses in detail their intended meaning. The pre-

sentation of semantics associates a transition system with species (§3.3.2) and a

non-standard vector-based semantics with processes (§3.3.3). The chapter con-

cludes with an algorithm for extracting Ordinary Differential Equations from cπ

models (§3.4).

3.2 The syntax

3.2.1 Species

The syntax of species is closely modelled on that of the π-calculus [98, 99, 111].

Familiarity with π-calculus is not required to follow this chapter, but the expert

reader may find it useful to think of the syntax of cπ as that of π with symmetric

polyadic communication, guarded definitions and choice, the ability to restrict

multiple names at once, but without co-names.

Several of the definitions below use arbitrary real numbers to construct syntactic

objects. The reader may think it prudent to mentally redefine these notions in

terms of a countable approximation of R such as the computable real numbers or

even the rationals. We choose not to do so explicitly because we do not rely on

the countable nature of the syntax in any crucial way.

Definition 3.2.1. (name) A name is an element of the fixed, countably infinite,

totally ordered set N . We use lowercase Roman letters like a, b, x, y to denote

names, and ~a,~b, ~x, ~y, etc., to denote finite vectors of names.

Definition 3.2.2. (prefix) A prefix is an expression of the form a(~x; ~y) (a com-

munication prefix ; a is a name, ~x, ~y are vectors of names) or τ@k (an autonomous

28 Chapter 3. The continuous π-calculus

S(s)
∆
= s(x, y).x.S(s) + y.P

E(e)
∆
= (νK)e 〈u, t〉 .a.E(e)

P ()
∆
= τ@kd.0

a

u t

ku ktK

Π
∆
= c1 · E(e) || c2 · S(s) || c3 · P

s

e

kb

species definitions

process

global
affinity
network

{| S(s)
s−→ (;x, y)(x.S(s) + y.P),

E(e)
e−→ (νK)(u, t;)(a.E(e)),

C
τ@ku−→ (E(e) | S(s)),

C
τ@kt−→ (E(e) | P),

P
τ@kd−→ 0 |} multi-transition system Trans

λafx.[if a ≡ S(s) and f ≡ (;x, y)(x.S(s) + y.P) and x = s then c2

else if a ≡ E(e) and f ≡ (u, t;)(νK)(a.E(e)) and x = e then c1

else 0] potential behaviour ∂Π

λa.[if a ≡ S(s) then − kb · c1 · c2

else if a ≡ E(e) then − kb · c1 · c2

else if a ≡ P then − kd · c3

else 0] immediate behaviour dΠ
dt

time

co
n

ce
n

tr
a

ti
o

n

xS(s)

xP
xE(e)

xC

ẋE(e) = −kb · xE(e)xS(s) + ku · xC + kt · xC
ẋS(s) = −kb · xE(e)xS(s) + ku · xC
ẋP = −kd · xP + kt · xC
ẋC = kb · xE(e) · xS(s) − ku · xC − kt · xC

ODE dynamics

Figure 3.2: The syntax (top), semantics (middle) and execution (bottom) of the cπ

model of an abstract enzymatic reaction. The syntax consists of: species definition,

including the local affinity network K (referenced in the definition of E(e)); the cπ

process; and the global affinity network giving the interaction structure of all free

names of the process. The semantics of species is a multiset of transitions, while the

semantics of the process consists of two real-valued functions. The system defines a

set of ODEs describing its dynamic behaviour. Throughout the figure, C is used as

an abbreviation for (νK)(a.E(e) | u.S(s) + t.P).

3.2. The syntax 29

or silent prefix ; k is a real number). We use the letter π and its derivatives such

as π′ or πi to denote prefixes.

In the biochemical context, a prefix present in a species (defined below) represents

the ability of the molecule modelled by this species to perform a specific action.

In the case of a silent prefix τ@k, the action is an autonomous (i.e. without an

interacting partner) state change of a molecule; k is the mass-action kinetic rate

constant of this transformation. A communication prefix a(~x; ~y) denotes the pres-

ence of an active site a on the surface of the molecule; if the molecule interacts

with another using this site, it makes a state transition. The transition happens

when another species with a complementary prefix is encountered. During this

interaction the name vector ~x is passed to the partner species and another vector

(represented by ~y) is received. This scheme raises the following two issues: firstly,

the use of name-passing in this context needs justification, because sites are not

physically exchanged between interacting proteins. While name-passing is in-

deed a less-than-perfect abstraction for biochemical interaction (see also §7.1.2),

together with name restriction it yields a very powerful mechanism for modelling

of dynamical formation of complexes, and for this reason we choose to retain it.

The second issue is that we need a notion of complementarity of sites; we choose

to abandon the classical π-calculus concept of co-names and introduce instead a

more general—and quantitative—construct of affinity networks, where any name

can in principle communicate with any other and at different intensities.

Definition 3.2.3. (affinity network) An affinity network is a finite undirected

graph whose vertices are names and whose edges are labelled with real numbers.

We use uppercase letters such as M , N and K to refer to affinity networks.

Definition 3.2.4. (species) The set Spec of species is defined by the following

grammar:

A,B :: = 0 | D(~a) | Σn
i=0πi.Ai | A|B | (νM)A (3.1)

For every invocation D(~a) there is an associated species definition D(~y)
∆
= B,

where ~y coincides with the set of free names of B (see below). We require that

every definition invocation in a species is prefix-guarded, that is appears below a

Σ in the term tree.

A species represents interaction capabilities and state changes of a molecule. The

intended meaning of the above syntactic constructs is as follows: The null pro-

cess 0 denotes a molecule incapable of any action. The invocation D(~a) behaves

30 Chapter 3. The continuous π-calculus

in the same way as the body B of its definition. The choice Σn
i=0πi.Ai denotes

mutually exclusive interaction options and their consequences: upon performing

the action specified by πi, the molecule changes its state to Ai. The parallel com-

position A|B of species enjoys the interaction capabilities of both components and

thus denotes juxtaposition of two molecules or domains. Finally, name restric-

tion (νM)A restricts the scope of the names mentioned in the affinity network

M to A; it has no direct biochemical denotation, but is used as a device to model

dynamical formation of complexes.

The above definitions are central to this dissertation, and so we use a number of

abbreviations and auxiliary notions to manage them more effectively. They are

collected below.

Notations We write |~x| for the length of the vector ~x, and ~x++~y for the catenation of

the vectors ~x and ~y. When A is a set of names, we write ~A for the vector consisting

of the elements of A ordered according to the canonical ordering of N . We sometimes

abuse the vector notation and write ~x for the set of unique elements of the vector ~x—see

e.g. Def. 3.2.5 immediately below; the intended interpretation should be clear from the

context. For a communication prefix a(~x; ~y), we write a(~y) if |~x| = 0, a〈~x〉 if |~y| = 0

and simply a if |~x| = |~y| = 0.

Any set-theoretical predicate on an affinity network M refers to the set of its vertices;

for example x ∈M asserts that the name x is a vertex of M . When a and b are names,

we write M(a, b) for the label of the edge linking a and b in M ; if there is no such edge,

or one of the names is not a vertex of M , M(a, b) is defined be equal to 0.

When D(~y)
∆
= B is a species definition, we call D the handle, ~y the arguments of

parameters, B the body and |~y| the arity of this definition. When D is a handle and D

is a set of species definitions, we write D#D to indicate that D is fresh for D, that is

no definition with handle D is, or is invoked by, an element of D. We assume that there

is a countably infinite set H of handles, and so there are always fresh handles available.

For species of the form Σn
i=0πi.Ai we use the +-notation in the case of low n, so e.g.

Σ2
i=0πi.Ai may be rendered as π0.A0 +π1.A1 +π2.A2 and Σ0

i=0πi.Ai as π0.A0. We omit

the trailing 0 in species, so e.g. a(x; y).0 becomes a(x; y), and empty parentheses in

case of invocation of definitions with no arguments, so e.g. a.D() is now a.D. Finally,

we write A ⊂ B to indicate that A is a subspecies (i.e. subterm) of B.

3.2. The syntax 31

Definition 3.2.5. (free and bound names) The sets of free names (fn) and

bound names (bn) of a species are defined as follows:

fn(0)
df
= ∅ bn(0)

df
= ∅

fn(D(~a))
df
= ~a bn(D(~a))

df
= ∅

fn(A|B)
df
= fn(A) ∪ fn(B) bn(A|B)

df
= bn(A) ∪ bn(B)

fn((νM)A)
df
= fn(A) \M bn((νM)A)

df
= bn(A) ∪ (fn(A) ∩M)

fn(τ@k.A)
df
= fn(A) bn(τ@k.A)

df
= bn(A)

fn(a(~x; ~y).A)
df
= {a} ∪ ~x ∪ (fn(A) \ ~y) bn(a(~x; ~y).A)

df
= bn(A) ∪ (fn(A) ∩ ~y)

fn(Σn
i=0πi.Ai)

df
=
⋃
i

fn(πi.Ai) bn(Σn
i=0πi.Ai)

df
=
⋃
i

bn(πi.Ai)

When X, Y are sets of names and A a species, we write X#A and say that X is

fresh for A to indicate that X ∩ fn(A) = ∅; similarly, X#Y means X ∩ Y = ∅.

If x is a name, x#A stands for x /∈ fn(A). Observe that the same name can be

free and bound in different parts of a species at the same time; in this case, of

course, it is not fresh for this species.

A name bound by the communication prefix can be seen as a placeholder for

actual names to be received from the communicating partner. A formal device

to manage the replacement of placeholders with actual (received) names is called

substitution. We write A{~a/~x} for the species arising when we take A and replace

all free occurrences of elements of ~x with the corresponding ones of ~a, and call it

the substitution of ~x by ~a in A. Note that this requires |~a| = |~x| and all elements

of ~x to be distinct.

Another consequence of having name binding, either by communication prefixes

or by name restrictions, is that the actual identity of a bound name is irrelevant:

if y is just a placeholder, any x 6= y would do the job just as well. This leads to

the notion of α-equivalence: two species are α-equivalent if one can be obtained

from the other by a consistent replacement of binders and bound names, for

example a(x; y).D(y) is equivalent to a(x; z).D(z) (because y is bound) but not

to z(x; y).A(y) (because a is free). From now on we do not distinguish between α-

equivalent species and thus the word “species” shall in fact mean “α-equivalence

class of species”.

For further discussion of substitution and α-equivalence (albeit in the context of

the λ-calculus) we refer to [115].

32 Chapter 3. The continuous π-calculus

0|A ≡ A

A|B ≡ B|A
(A|B)|C ≡ A|(B|C)

Σn
i=0πi.Ai ≡ Σn

i=0πσi .Aσi perm. σ

(νM)A ≡ A M#A

(νM)(νN)A ≡ (νN)(νM)A M#N

(νM)(A|B) ≡ A|(νM)B M#A

(c · 0)||P ≡ P

P ||Q ≡ Q||P
(P ||Q)||R ≡ P ||(Q||R)

(c+ d) · A ≡ (c · A)||(d · A)

c · (A|B) ≡ (c · A)||(c ·B)

c · A ≡ c ·B A ≡ B

Figure 3.3: Axioms generating structural congruence on species (left) and processes

(right). Note how the congruence of species is embedded in that of processes.

Definition 3.2.6. (structural congruence of species) The structural con-

gruence of species is the smallest congruence ≡ on Spec satisfying the rules in

Fig. 3.3(l) and containing the α-equivalence of species. We write S for Spec

modulo ≡.

The rôle of structural congruence is to equate species that are meant to represent

the same objects but are syntactically distinct. The rules in Fig. 3.3 all have a

simple interpretation in this context. In what follows, however, we maintain a

careful distinction between Spec and S in order to precisely state the correctness

results of cπ semantics.

Recall that the intended meaning of the parallel composition of species A|B is the

juxtaposition of molecules denoted by A and B. A non-trivial parallel composi-

tion is therefore a species that models two or more molecules, not one. We call all

species that cannot be represented as a parallel composition of non-trivial terms

prime; thus a prime species is guaranteed not to model independent molecules.

This distinction is crucial to the proper development of process semantics, be-

cause a biochemical reaction proceeds at different rates depending on whether

the substrates are independent of each other.

Definition 3.2.7. (prime species) A species A ∈ S is called prime if A 6≡ 0

and whenever A ≡ B|C, we have either B ≡ 0 or C ≡ 0. The set of prime species

is denoted S#. Note that S# is a proper subset of S.

3.2. The syntax 33

The following result allows us to represent any species in terms of prime species:

Theorem 3.2.8. (prime species decomposition) For every A ∈ Spec, there

exists a unique multiset primes(A) = {|A1, . . . , An|} ⊆ S# called the prime species

decomposition of A, such that A ≡ A1 | . . . | An. Observe that primes(0) = ∅.

Furthermore, for any A and B, primes(A|B) = primes(A) ∪ primes(B) (union of

multisets), and if A ≡ B, then primes(A) = primes(B).

Proof. See Appendix.

Similar decompositions are possible w.r.t. more complex equivalences, especially

bisimulations [100], but as we are interested in biological applications of the

calculus, we do not refine the above result beyond the structural congruence.

Example Our example system (§3.1.1) is a solution of four molecular agents: the sub-

strate S, the enzyme E, the product P and the enzyme-substrate complex C. Usually

in such a situation we give one cπ species per molecular species, and we could do so

here. We take a slightly more roundabout route instead, starting with the observation

that the complex C is not a first-class citizen: it does not have its “own” interaction

capabilities, but is entirely driven by its constituents: enzyme and substrate. We re-

flect this in our cπ model by defining the species in a way where the complex can arise

dynamically from the interaction of the enzyme and substrate species. Note that the

same reasoning can be applied to the product: all of its behaviour has to be already

encoded by the substrate, since the latter is transformed into the former. For the sake

of clarity, however, we do give a separate species for the product. Recall that we as-

sumed that the only action the product can undertake is to spontaneously degrade at

the rate kd. We model this by setting

P ()
∆
= τ@kd.0 (3.2)

Note the empty brackets indicating that this definition has no parameters—a direct

consequence of the fact that fn(τ@kd.0) = ∅.

Now we turn to the substrate. It binds the enzyme and then either unbinds or trans-

forms into the product. We model the act of binding by a communication event on a

name s. Unbinding and transformation are further (mutually exclusive) communica-

tion events, this time using the names x and y received during binding. This natural

language specification translates to cπ as:

S(s)
∆
= s(x, y).(x.S(s) + y.P) (3.3)

34 Chapter 3. The continuous π-calculus

u t

a

Kku kt

Figure 3.4: The local

affinity network K.

The enzyme reacts with the substrate to form a complex and

after the dissociation it returns to its original state. We have

already decided to model the binding as a communication event

in which the substrate receives two names. The enzyme must

therefore send two names; after that, it has to further synchro-

nise with the substrate in order to either unbind from it or

transform it into the product. We use the name e to model the

binding site of the enzyme. We send names u (for unbind) and t (for transform) to the

substrate and use the name a (for act) for synchronisation within the complex; hence,

a has to communicate with both u and t in order to ensure that both fates of the bound

substrate are possible.

Before we give the definition of the enzyme, we have to take care of one more subtle

issue: we need different copies of t, u and a for every complex in the solution, oth-

erwise there would be unwanted cross-talk between distinct complexes. We use name

restriction (cf. Eq. 3.1) to obtain fresh names for every enzyme, and therefore for every

complex. In cπ the name restriction involves specifying the interaction topology of the

restricted names in the form of a local affinity network; in our case this is the simple

three-point network K in Fig. 3.4. Hence, the final form of the enzyme species is:

E(e)
df
= (νK)e 〈u, t〉 .a.E(e) (3.4)

Lastly, we specify the connections between the remaining (i.e. free) names. There

are only two of them in the three definitions we have given: e and s. We assumed

that their interaction models binding of enzyme to substrate, and hence we set their

communication rate to kb.

Figure 3.2(top) contains all the species definitions we have just given as well as the

global affinity network.

3.2.2 Processes

Processes are simply collections of species, each labelled with a real number in-

terpreted as the concentration of the molecular species. A process is therefore a

model of a solution of many biochemical substances.

3.3. The semantics 35

Definition 3.2.9. (process) The set Proc of processes is defined by the fol-

lowing grammar:

P,Q ::= c · A | P ||Q (3.5)

where c is a real number and A ∈ Spec. We use letters P,Q,R, etc. to denote

processes. When B is a species, we write B ⊂ P to indicate that P contains a

subterm c · A such that B ⊂ A (defined previously). Note that it is meaningful

to speak about the sets of free and bound names of a process—they are unions

of respective sets defined for the species appearing in the given process.

The interpretation of Eq. 3.5 is straightforward: c ·A is the solution consisting of

a single agent A whose concentration is c, while P ||Q is the mixture of solutions

P and Q. Just as in the case of species, there are processes that are technically

different, but are supposed describe the same system (solution); we identify them

with the help of a structural congruence, as before:

Definition 3.2.10. (structural congruence of processes) The structural con-

gruence of processes is the smallest congruence on Proc satisfying the rules in

Fig. 3.3(r). We write P ≡ Q to indicate that the processes P and Q are struc-

turally congruent, and P for Proc modulo ≡. We ensure that the distinction

between the congruence of processes and the congruence of species is evident from

the context.

We now give the process corresponding to the initial state of our example system:

Example Assume the initial concentrations of enzyme, substrate and product are c1,

c2 and c3, respectively. The process describing this situation is

c1 · E(e) || c2 · S(s) || c3 · P () (3.6)

This process, together with the species definitions and the global affinity network given

before, forms the complete syntax of the cπ model of our example system (cf. Fig. 3.2(top)).

3.3 The semantics

We move now to define semantics of the syntactic objects defined in the previous

section. Our first goal is to define semantics of species. They depend crucially

on the concept of concretions.

36 Chapter 3. The continuous π-calculus

(νM)(A|F) ≡ A|(νM)F M#A

(νM)(F |A) ≡ F |(νM)A M#F

(νM)F ≡ F M#F

(νM)(νN)F ≡ (νN)(νM)F M#N

(~b; ~y)(A|B) ≡ A|(~b; ~y)B ~y#A

(~b; ~y)A ≡ (~b; ~y)B A ≡B

F |0 ≡ F

F |A ≡ A|F

(F |A)|B ≡ F |(A|B)

(A|F)|B ≡ A|(F |B)

F |A ≡ F |B A ≡ B

Figure 3.5: The structural congruence of concretions is the smallest congruence on

Conc containing α-equivalence and satisfying the above 11 rules.

3.3.1 Concretions

Definition 3.3.1. (concretion) A concretion is any term defined by the follow-

ing grammar:

F ::= (~b; ~y)A | F |A | A|F | (νM)F (3.7)

where A is a species, ~b, ~y are vectors of names and M is an affinity network.

Symbols (ν–) and | are distinct from the corresponding ones for species. We use

letters F and G to range over concretions. Names occurring in concretions can be

free or bound, and the appropriate definitions are analogous to the case of species.

Concretions have therefore their own α-equivalence, and from now on we do not

distinguish between α-equivalent concretions. We have a structural congruence

≡ for concretions as well, induced by the rules on Fig. 3.5. We write Conc for

the set of concretions and C for Conc modulo ≡, and do distinguish between

equivalent concretions in order to precisely define the semantics of species.

A concretion should be seen as a species that has committed itself to taking

part in a specific interaction that has not yet taken place. When two compatible

concretions meet, they interact and form a species—the parallel composition of

the post-interaction residues. This scheme is formalised by the notion of pseudo-

application, defined below. For another example of a concretion style presentation

of a process algebra, see e.g. [98].

Definition 3.3.2. (pseudo-application) The pseudo-application is a binary

partial function – ◦ –: Conc × Conc ⇀ Spec, defined by structural induction

over its arguments. For the base case, (~a; ~x)A ◦ (~b; ~y)B is defined if and only if

3.3. The semantics 37

|~a| = |~y| and |~b| = |~x|, in which case the result is A{~b/~x}|B{~a/~y}. The inductive

clauses are as follows:

(~a; ~x)A ◦ (F |B)
df
= ((~a; ~x)A ◦ F)|B (A|F) ◦G df

= A|(F ◦G)

(~a; ~x)A ◦ (B|F)
df
= B|((~a; ~x)A ◦ F) (F |A) ◦G df

= (F ◦G)|A

(~a; ~x)A ◦ (νM)F
df
= (νM)((~a; ~x)A ◦ F) (νM)(F) ◦G df

= (νM)(F ◦G)

For the two clauses in the bottom line we assume that M is fresh for the other

concretion involved. In the presence of α-equivalence this condition can always

be met, and hence the only reason for a pseudo-application to be undefined is the

arity mismatch of the concretions in the base case. When the pseudo-application

F ◦G is defined, we say that F and G are compatible and write F ↓G.

Proposition 3.3.3. The following hold for any species B, compatible concretions

F and G, and any affinity network M#F :

(i) F ◦ (B|G) ≡ B|(F ◦G),

(ii) F ◦ (G|B) ≡ (F ◦G)|B,

(iii) F ◦ (νM)G ≡ (νM)(F ◦G).

Proof. We prove the first claim by induction on the structure of F . The other

two have analogous proofs. For the base case, assume F = (~a; ~x)C for some ~a, ~x

and C. We have: F ◦ (B|G) = ((~a; ~x)C) ◦ (B|G) = B|((~a; ~x)C ◦G) = B|(F ◦G).

For the inductive case there are the following three possibilities:

• F = F ′|A for a species A and a concretion F ′. We have: F ◦ (B|G) =

(F ′|A) ◦ (B|G) = (F ′ ◦ (B|G))|A IH≡ (B|(F ′ ◦ G))|A ≡ B|((F ′ ◦ G)|A) =

B|((F ′|A) ◦G) = B|(F ◦G).

• F = A|F ′ for a species A and a concretion F ′. Analogously to the above.

• F = (νN)F ′ for an affinity network N and a concretion F ′. We make

sure through α-conversion that N is fresh for both B and G, and we have:

F ◦ (B|G) = ((νN)F ′) ◦ (B|G) = (νN)(F ′ ◦ (B|G))
IH≡ (νN)(B|(F ′ ◦G)) ≡

B|((νN)(F ′ ◦G)) = B|((νN)(F ′) ◦G) = B|(F ◦G).

Theorem 3.3.4. For any compatible concretions F and G:

(i) F ◦G ≡ G ◦ F ,

(ii) If F ′ ≡ F and G′ ≡ G then F ′ ↓G′ and F ′ ◦G′ ≡ F ◦G.

38 Chapter 3. The continuous π-calculus

Proof. (sketch) The first claim follows from Prop. 3.3.3 by induction on the struc-

ture of F . Once (i) is established, it is enough to consider the case F ′ = F ′

in (ii) and the proof becomes a straightforward induction on the derivation of

G ≡ G′.

3.3.2 The transition system of species

One of the hallmarks of process algebra is a transition system semantics defined

using Structural Operational Semantics (SOS) [118, 119]. In this approach, a fixed

set of rules is used to infer the steps that the given syntactic object (a process-

algebraic term) can make. The set of these steps constitutes the behaviour of the

object (cf. §2.3.1).

In the case of process algebras designed to model quantitative aspects of systems,

including process algebras for biology, it is important to account for multiple

capabilities for the same behaviour. Consider for example the cπ species a.0. It

models a molecule with one interaction site (a); after the interaction on this site,

the molecule disappears (degrades). A conventional SOS system for π-like calculi

would assign the transition set {a.0 a−→ 0} to this species. The same transition

set would be assigned to the species a.0 + a.0, which models a molecule with two

a sites. However, assuming standard stochastic kinetics, the latter molecule is

two times more likely to engage in an interaction than the former. As the two

molecules exhibit different quantitative behaviour, it is a mistake to assign the

same semantic object to both.

There are at least two solutions to this problem. The first is to meticulously label

the transitions with the information about the context of their derivation. In this

setting, the semantics of a.0 + a.0 is the set {a.0 + a.0
a,+L−→ 0, a.0 + a.0

a,+R−→ 0},
with the subscripts –L and –R indicating the parts of the species responsible

for the transition; it is different from the semantics of a.0, which is now the

singleton set {a.0 a,·−→ 0}. This labelling approach is used by the stochastic

π-calculus [121]. The other solution is to switch to multisets of transitions; the

semantics of a.0+a.0 now becomes the multiset {|a.0+a.0
a−→ 0, a.0+a.0

a−→ 0|}.
This is the approach adopted by PEPA [67] and we use it here for cπ as well: the

semantics of a cπ species shall be a multiset of transitions, with every transition

belonging to one of three classes:

3.3. The semantics 39

Class 1: From a species to a concretion, labelled by a name. Transitions of this

kind represent potential for interaction; more precisely, a transition A
a−→ (~b; ~y)B

means that the species A can interact with another by sending ~b on the channel a

and then evolve to B, with ~y replaced by the data received.

Class 2: From a species to another species, labelled by τ@k where k is a real num-

ber, for example A
τ@1.5−→ B. This transition indicates the ability of the species A

to evolve into B at the basal rate of k (here 1.5) without interaction with an-

other species. Examples of such behaviour include degradation, where B is 0, or

complex dissociation, with B of the form B′|B′′.

Class 3: From one species to another, labelled by a term τ 〈a, b〉 where a, b

are names, for example A
τ〈a,b〉−→ B. This transition also denotes the potential for

spontaneous transformation of A into B, but now the basal rate of transformation

is the affinity between the names a and b. This affinity is determined either by

the global affinity network of the model or by a local network, say M , which

is yet to be introduced by restriction (νM). Transitions of this kind can be

viewed as provisional—they represent the same behaviour as the transitions of

the second kind, but when the basal rate of transformation is not yet known; they

are necessary, however, for the semantics of species to be fully compositional.

Formal definitions of a multi-transition system and of the cπ multi-transition

system can be found below.

Definition 3.3.5. (multi-transition system) A multi-transition system is a

tuple (A,L,B, T), where the first three elements are non-empty sets (called

sources, labels and targets, respectively) and the last one is a multiset of triples

(called transitions) of the form (α, λ, β), where α ∈ A, λ ∈ L and β ∈ B. Instead

of the tuple (α, λ, β) we write α
λ−→ β and call it a transition from α to β labelled

with λ.

Definition 3.3.6. (the cπ multi-transition system) The cπ multi-transition

system is the multi-transition system (Spec,L,Spec ∪ Conc,Trans), where

L df
= N ∪ {τ@k : k ∈ R≥0} ∪ {τ〈a, b〉@k : a, b ∈ N , k ∈ R≥0} and the multi-

set Trans of transitions is defined by the SOS rules in Fig. 3.6. More precisely,

there are exactly as many transitions of a given form in Trans as many distinct

derivations of it can be performed using the rules in Fig. 3.6. When A ∈ Spec,

we write Trans(A) for the multiset of all transitions with source A.

40 Chapter 3. The continuous π-calculus

πj = aj(~bj ; ~yj)

Σn
i=0πi.Ai

aj−→ (~bj ; ~yj)Aj
Choice-1(j, n)

πj = τ@k

Σn
i=0πi.Ai

τ@k−→ Aj
Choice-2(j, n)

A
a−→ F B

b−→ G F ↓G

A|B τ〈a,b〉−→ F ◦G
Com-1

A
τ〈a,b〉−→ B a, b ∈M

(νM)A
τ@M(a,b)−→ (νM)B

Com-2

A
α−→ E

A|B α−→ E|B
Par-Left

B
α−→ E

A|B α−→ A|E
Par-Right

A
α−→ E α /∈M

(νM)A
α−→ (νM)E

Res-1

A
τ〈a,b〉−→ E a, b /∈M

(νM)A
τ〈a,b〉−→ (νM)E

Res-2

B
α−→ E D(~y)

df
= B

D(~b)
α{~b/~y}−→ E{~b/~y}

Defn

Figure 3.6: SOS rules generating the transition systems for species. The Choice

rules are in fact rule schemes that can be instantiated for any n ∈ N and 0 ≤ j ≤ n.

The letter α ranges over all possible transition labels and E over all possible targets.

The following crucial result states that species equivalence is a behavioural equiv-

alence: congruent species have equivalent transitions:

Theorem 3.3.7. Let A ≡ B. There exists a one-to-one multiset function φ from

Trans(A) onto Trans(B) such that if φ(A
α−→ E) = (B

α′−→ E ′) then α = α′ and

E ≡ E ′.

Proof. (sketch) The proof proceeds by induction on the derivation of A ≡ B.

For every transition in Trans(A) we exhibit a corresponding one in Trans(B)

through case-analysis of the derivation tree. We then argue that this association

is a bijection between the multisets of transitions.

From now on it is completely safe not to distinguish between equivalent species

and therefore, unless otherwise stated, the word “species” stands for “species

equivalence class”. Moreover, we do not distinguish between transitions whose

labels are equal and sources and targets are both equivalent.

Below we derive the transitions for the species of the running example.

3.3. The semantics 41

Example Recall that there are four species in our example system. Three of them are

defined by Eqs. (3.2)–(3.4) and the fourth one (the enzyme-substrate complex) arises

dynamically from the interaction of enzyme and substrate. We give the transitions

for the first three before turning to the complex. The product species has only one

transition:

Choice-2(0,0)

τ@k
τ@k−→ 0 P ()

∆
= τ@k

Defn

P
τ@k−→ 0

(3.8)

The only transition of the substrate species is derived similarly:

Choice-1(0,0)

s(x, y).(x.S(s) + y.P)
s−→ (;x, y)(x.S(s) + y.P) S(s)

∆
= s(x, y).(x.S(s) + y.P)

Defn

S(s)
s−→ (;x, y)(x.S(s) + y.P)

(3.9)

The enzyme species has also just one transition, but the derivation is slightly longer

due to the use of name restriction:

Choice-1(0,0)

e 〈u, t〉 .a.E(e)
e−→ (u, t;)a.E(e) e /∈ K

Res-1

(νK)e〈u, t〉 .a.E(e)
e−→ (νK)(u, t;)a.E(e) E(e)

∆
= (νK)e〈u, t〉 .a.E(e)

Defn

E(e)
b−→ (νK)(u, t;)a.E(e)

(3.10)

Finally, let us turn to the enzyme-substrate complex. This is the species that emerges

from the interaction of the substrate and enzyme species. The technical device to

manage interaction is the pseudo-application and so the complex arises as a result of

pseudo-application of two concretions: one provided by the substrate, the other by the

enzyme. The appropriate concretions are derived in Eqs. (3.9) and (3.10) above: they

are (;x, y)(x.S(s)+y.P) and (νK)(u, t;).a.E(e). We compute their pseudo-application:

(;x, y)(x.S(s) + y.P) ◦ (νK)(u, t;).a.E(e)

= (νK)((;x, y)(x.S(s) + y.P) ◦ (u, t;).a.E(e))

= (νK)((x.S(s) + y.P){(u, t)/(x, y)} | a.E(e){()/()})

= (νK)((u.S(s) + t.P) | a.E(e)) (3.11)

Thus (3.11) is the species describing the enzyme-substrate complex molecule. We now

move to the derivation of its transitions. Recall that the complex should be able to split

and release the product P and the enzyme E(e). This is evidenced by the following

42 Chapter 3. The continuous π-calculus

derivation (observe that (;)P ◦ (;)E(e) = P |E(e)):

Choice-1(1,1)

u.S(s) + t.P
t−→ (;)P

Choice-1(0,0)

a.E(e)
a−→ (;)E(e)

Com-1

(u.S(s) + t.P) | a.E(e)
τ〈t,a〉−→ P | E(e) t, a ∈ K

Com-2

(νK)((u.S(s) + t.P) | a.E(e))
τ@kt−→ (νK)(P | E(e))

(3.12)

The complex has also one other transition

(νK)((u.S(s) + t.P) | a.E(e))
τ@ku−→ (νK)(S(s) | E(e)) (3.13)

which can be derived analogously to the previous one, but using the rule Choice-1(0,1)

instead of Choice-1(1,1). Also, observe that the restriction (νK) in the targets of

the last two transitions can safely be dropped since we do not distinguish between

equivalent species anymore, and K binds neither e nor s.

The transitions derived above are recorded in Fig. 3.2(middle).

3.3.3 The vector semantics of processes

The semantics of a cπ process should compositionally specify the dynamics of

the modelled system in terms of continuous time and state space. Assuming that

all reactions are governed by the Law of Mass Action, the syntax of a cπ model

holds just enough information to define an Initial Value Problem (IVP) [12],

i.e. a set of Ordinary Differential Equations together with an initial state. Un-

fortunately, ODE descriptions are non-compositional: unless we have extra infor-

mation, we are unable to derive the set of ODEs that govern the behaviour of a

system from the ODEs that govern the subsystems. For that reason we do not

give semantics in terms of IVPs, and construct instead a less standard descrip-

tion of behaviour. Of course, differential equations can still be extracted from cπ

models and we give a suitable algorithm later (§3.4).

An important feature of π-related process algebras is the ability to dynami-

cally generate an unbounded variety of different behaviours. In terms of cπ this

means that there are species such that the closure of their multi-transition system

(i.e. their transitions, transitions of the targets, and so on) is infinite. Since cπ

processes are built from species, the semantics of processes has to deal with these

infinities. Admittedly, systems with infinitely many components do not occur in

nature, but such an abstraction may nevertheless be useful, e.g. when studying

polymerisation.

3.3. The semantics 43

Unfortunately, even if the reader is concerned neither with compositionality nor

with accounting for infinite and potentially infinite behaviours, they should not

skip this section as the ODE extraction algorithm relies on the concepts defined

here.

Definition 3.3.8. (the process space) The process space P is the vector space

(R(S#),+, × , 0P) equipped with the product topology. The set {1A}A∈S# , where

1A(A)
df
= 1 and 1A(B)

df
= 0 when A 6≡ B forms a basis of P.

Definition 3.3.9. (support of a process) Let P ∈ P. The set supp(P) ⊆ S#

is called the support of P and is given by

supp(P)
df
= {A ∈ S# : P (A) > 0} (3.14)

We extended this definition to operate on Proc by defining the support of a

syntactic process by induction on the syntax as:

supp(c · A)
df
= {B ∈ S# : B ∈ primes(A)} (3.15)

supp(P ||Q)
df
= supp(P) ∪ supp(Q) (3.16)

Clearly, supp(P) = supp(Q) for any P ≡ Q.

Definition 3.3.10. (the space of potentials) The space of potentials D is

the vector space (R(S#×C×N),+, × , 0D) equipped with the product topology. The

collection {1(A,F,x)}(A,F,x)∈S#×C×N , where 1(A,F,x)(B,G, y)
df
= 1 iff A ≡ B, F ≡ G

and x = y, and 0 otherwise, is a basis of this space.

First of all, observe that every process can be identified with a vector in P; in

fact P is the phase space of cπ systems, where every dimension (prime species)

corresponds to a type of agent, and every point (process) uniquely determines

the state of the system. The dynamical evolution of a cπ model, therefore, is a

(continuous) trajectory in P starting with the process encoding the initial state;

unless it contains points with infinite support, it is also a trajectory in P . We

can specify this trajectory by giving the gradient vector associated with every

point. This is the meaning of the P-object dP
dt

we associate with every process

P ∈ Proc (Def. 3.3.14). As we shall soon see, this is not very different from

specifying an Initial Value Problem.

However, as argued before, the dynamical evolution of a model cannot be specified

compositionally unless we know more than just the trajectory. This extra infor-

mation is provided by the D-object ∂P we associate with every process P ∈ Proc

44 Chapter 3. The continuous π-calculus

(Def. 3.3.13). It is essentially an encoding of the Class 1 transitions of the con-

stituent species enhanced with information about species concentrations. Hence,

it quantitatively records the kinds of interaction the process can engage in.

Notation The elements of P and D are functions, and we sometimes use the λ notation

to describe them. Thus for example λa.0 is the origin of P, λa.[if a≡A then 1 else 0]

is the basis vector 1A and λafx.[if a≡A and f≡F and x ∈ {u, v} then 1 else 0] is

the sum 1(A,F,u) + 1(A,F,v). Similarly, we sometimes treat syntactic processes (i.e. ele-

ments of P) as functions rather than terms and write for example P (A) for the con-

centration of the prime species A in the process P ∈ P.

If X is a multiset and x is its putative element, we write card(x,X) for the multiplicity

of x in X (i.e. the number of times x appears in X). In addition, note that when we

iterate over multisets—see e.g. Def. 3.3.11 immediately below—we visit every element

as many times as it appears in the multiset. To differentiate between multisets and

ordinary sets, we use the double brackets {|· · ·|} for the former.

Definition 3.3.11. (the species embedding) The species embedding is the

function 〈–〉 : S → P defined by:

〈A〉 df
=
∑

B∈primes(A)

1B (3.17)

Note that 〈0〉 = 0 and 〈A|B〉 = 〈A〉+ 〈B〉.
Definition 3.3.12. (the interaction tensor) Let M be an affinity network.

The interaction tensor – �M – : D × D ⇀ P is defined as the bilinear extension

of the following clause on basis vectors:

1(A,F,x) �M 1(B,G,y)
df
=

M(x, y)×(〈F ◦G〉 − 1A − 1B) x, y ∈M and F ↓G

0 otherwise

(3.18)

The tensor takes two potentials (elements of D) and returns a behaviour (ele-

ment of P) emerging from their interaction. As a consequence of the definition by

(bi)linear extension, the result scales linearly with the arguments, and therefore

the tensor reproduces the kinetic law of mass-action. The proportionality coef-

ficient is the affinity of the two names mediating the given interaction, and thus

name affinities correspond to reaction rate constants. Finally, observe that the

interaction tensor is a partial function: there are potentials whose interaction as

defined in above gives rise to infinite divergent sums. Possible improvements of the

definitions of P and D are discussed towards the end of this dissertation (§7.2.2).

3.3. The semantics 45

Definition 3.3.13. (interaction potential) Let P ∈ Proc be a process. The

interaction potential of P is the vector ∂P ∈ D defined by structural induction

on P in the following way:

∂(c · A)
df
= λafx.[c · card(a

x−→ f,Trans) · card(a, primes(A))] (3.19)

∂(Q||R)
df
= ∂Q+ ∂R (3.20)

Definition 3.3.14. (immediate behaviour) Let M be an affinity network and

let P ∈ Proc be a process. The immediate behaviour of P in the context of M

is the vector dMP
dt
∈ P defined inductively by the following clauses:

dM(c · A)

dt
df
=

∑
B∈primes(A)

B
τ@k−→C

(
k × c × (〈C〉 − 1B)

)
+

1

2
× (∂(c · A) �M ∂(c · A)) (3.21)

dM(P ||Q)

dt
df
=

dMP

dt
+
dMQ

dt
+ ∂P �M ∂Q (3.22)

Note that the interaction potential of a process does not depend on the global

affinity network, but the immediate behaviour does; we always assume that a

global affinity network has been defined and is fixed, and thus we do not mention

it explicitly when discussing immediate behaviours.

The immediate behaviour dP
dt

associates with P the gradient of the flow line

(system trajectory) at this point. The equations (3.21) and (3.22) reflect this

interpretation: in (3.21) all τ -transitions are translated to vectors with positive

contribution of transition targets (products) and negative contributions of sources

(substrates), appropriately weighted and added together; the term 1
2
×(∂(c ·A)�M

∂(c·A)) records the behaviour emerging from the interaction of two A molecules at

the correct mass-action rate. In (3.22), the immediate behaviour of a composition

of two processes is simply the sum of immediate behaviours of the components

and the behaviour that emerges from their interaction.

Computing the interaction potential ∂P of a process is more straightforward:

equation (3.19) lifts all the transitions involving concretions from the multi-

transition system and weighs them with the concentrations of their sources,

while (3.20) reflects the intuition that the interaction potential of a composition

of processes is simply the sum of the interaction potentials of the components,

with no cancellation or further emergent interaction.

46 Chapter 3. The continuous π-calculus

The following two important results state that the decomposition into prime

species is not necessary for the definition of immediate behaviour (Thm. 3.3.15),

and that congruent processes have equal semantics (Thm. 3.3.16).

Theorem 3.3.15. For any species A, real number c and network M we have

dM(c · A)

dt
=
∑
A
τ@k−→C

(
k × c × (〈C〉 − 〈A〉)

)
+

1

2
× (∂(c · A) �M ∂(c · A)) (3.23)

Proof. (sketch) Easy: every τ@k transition of A can be attributed to one of A’s

prime components (cf. Fig. 3.6), and the remaining components are present both

in A and C, and therefore cancel each other out.

Theorem 3.3.16. For every P ≡ Q, dP
dt

= dQ
dt

and ∂P = ∂Q.

Proof. (sketch) Induction on the derivation of P ≡ Q, using bilinearity of the

interaction tensor in the crucial case of the rule c · (A|B) ≡ (c · A) | (c ·B).

We conclude the presentation of semantics by deriving the interaction potential

and the immediate behaviour of the process describing the initial state of the

simple enzyme model.

Example The process describing the initial state of the example system is c1 ·E(e) ||
c2 · S(s) || c3 · P ; let us abbreviate this as Π. The global affinity network consists of

just two names: e and s, able to communicate at the basal rate kb; let us call it Aff .

As usual, we write C for the species (νK)(a.E(e) | (u.S(s) + t.P)) representing the

enzyme-substrate complex.

We begin with the derivation of the interaction potential of Π:

∂Π = ∂(c1 · E(e) || c2 · S(s) || c3 · P) (3.24)

= ∂(c1 · E(e)) + ∂(c2 · S(s)) + ∂(c3 · P) (3.25)

= λafx.[c1 · card(a
x−→ f,Trans) · card(a, primes(E(e)))]

+ λafx.[c2 · card(a
x−→ f,Trans) · card(a, primes(S(s)))]

+ λafx.[c3 · card(a
x−→ f,Trans) · card(a, primes(P))] (3.26)

= λafx.[c1 · card(a
x−→ f,Trans) · card(a, {|E(e)|})]

+ λafx.[c2 · card(a
x−→ f,Trans) · card(a, {|S(s)|})]

+ λafx.[c3 · card(a
x−→ f,Trans) · card(a, {|P |})] (3.27)

= λafx.[c1 · if a ≡ E(e) then card(E(e)
x−→ f,Trans) else 0]

+ λafx.[c2 · if a ≡ S(s) then card(S(s)
x−→ f,Trans) else 0]

+ λafx.[c3 · if a ≡ P then card(P
x−→ f,Trans) else 0] (3.28)

3.3. The semantics 47

Fig. 3.2
= λafx.[if a ≡ E(e) and f ≡ (νK)(u, t;)a.E(e) and x = e then c1 else 0]

+ λafx.[if a ≡ S(s) and f ≡ (;x, y)(x.S(s) + y.P) and x = s then c2 else 0]

+ 0D (3.29)

= λafx.[if a ≡ E(e) and f ≡ (νK)(u, t;)a.E(e) and x = e then c1

else if a ≡ S(s) and f ≡ (;x, y)(x.S(s) + t.P) and x = s then c2

else 0] (3.30)

The above function can also be written as a linear combination of basis vectors:

∂Π = c1×1(E(e),(νK)(u,t;)a.E(e),e) + c2×1(S(s),(;x,y)(x.S(s)+y.P),s) (3.31)

with the two components of the sum corresponding to ∂(c1 · E(e)) and ∂(c2 · S(s)),

respectively, and ∂(c3 · P) = 0D.

In order to simplify the derivation of the immediate behaviour of Π, we first compute
d(c3·P)
dt using the knowledge of the transitions of P obtained in the previous section:

d(c3 · P)

dt
=

∑
A∈primes(P)

A
τ@k−→B

(
k × c3 × (〈B〉 − 1A)

)
+

1

2
× (∂(c3 · P) �Aff ∂(c3 · P)) (3.32)

=
∑

P
τ@k−→B

(
k × c3 × (〈B〉 − 1P)

)
+

1

2
× (0D �Aff 0D) (3.33)

(3.8)
= kd × c3 × (〈0〉 − 1P) + 0P (3.34)

= (−kd · c3)×1P (3.35)

We ask the reader to convince themselves that d(c1·S(s))
dt = d(c2·E(e))

dt = 0P and to recall

from the previous derivations the values of ∂(c1 ·E(e)), ∂(c2 · S(s)) and ∂(c3 · P). The

derivation of dΠ
dt follows:

dΠ

dt
=

d(c1 · E(e) || c2 · S(s) || c3 · P)

dt
(3.36)

=
d(c1 · E(e) || c2 · S(s))

dt

+
d(c3 · P)

dt
+ ∂(c1 · E(e) || c2 · S(s)) �Aff ∂(c3 · P) (3.37)

=
d(c1 · E(e))

dt
+
d(c2 · S(s))

dt
+ ∂(c1 · E(e)) �Aff ∂(c2 · S(s))

+
d(c3 · P)

dt
+ ∂(c1 · E(e) || c2 · S(s)) �Aff 0D (3.38)

= (c1×1(E(e),(νK)(u,t;)a.E(e),e)) �Aff (c2×1(S(s),(;x,y)(x.S(s)+y.P),s))

− (kd · c3)×1P + 0P (3.39)

(3.11)
= (c1 · c2 ·Aff (e, s))×(〈C〉 − 1S(s) − 1E(e))− (kd · c3)×1P (3.40)

= (kb · c1 · c2)×1C − (kb · c1 · c2)×(1E(e) + 1S(s))− (kd · c3)×1P (3.41)

48 Chapter 3. The continuous π-calculus

The gradient vector dΠ
dt derived above indicates that the system produces complexes at

the rate kb · c1 · c2; loses enzyme and substrate at the same rate (kb · c1 · c2 again); and

loses product at the rate kd · c3. Note that no conversion of substrate to product occurs

because no complexes are present in the initial state.

Figure 3.2 summarises the syntax and semantics of the enzyme model.

3.4 Extraction of Ordinary Differential Equations

We conclude this chapter by giving an algorithm for translating cπ models to sets

of coupled Ordinary Differential Equations. Coupled ODEs are an established

formalism for describing dynamical systems, and thus the ability to extract them

from cπ models allows us to use the variety of ODE tools to study cπ models. Such

translation algorithms exist for other process algebras [21], invariably exploiting

the fact that the description of a system in a process algebra is decoupled from

dynamics.

In the previous section we showed how to compute the gradient vector encoding

the immediate behaviour of a particular cπ process. Differential equations can

be seen as expressions enabling us to compute the gradient vector in any point

of the process space, and their solutions are simply the flow lines of the resulting

vector field on P. As there is one differential equation per dimension (i.e. per

prime species), the set of ODEs defining this vector field is infinite. Most systems

of interest, however, visit only finitely many dimensions, and so it is important to

produce a finite set of ODEs whenever possible. The initial state of the system

determines if this is the case.

These intuitions lie at the heart of the algorithm for extracting Ordinary Differ-

ential Equations from cπ processes presented in Fig. 3.7. It abstracts from actual

processes to symbolic ones, by substituting variables for actual concentrations.

The procedure for computing the immediate behaviour d–
dt

applied to a symbolic

process yields a vector of algebraic formulae rather than an actual vector in P.

Observe that this is exactly what we did in the previous section, where we used

literals such as c1, c2 and c3 rather than actual real numbers when computing the

gradient vector dΠ
dt

for the initial state of the enzyme model. If we are able to

guarantee that the symbolic process mentions all the prime species ever encoun-

3.4. Extraction of Ordinary Differential Equations 49

1 input Π ; // proces s
2

3 Πs := x0 · 0 ;
4 Γ := supp(Π) ;
5

6 while Γ 6= ∅
7 enumerate Γ as {A1, . . . , An} ;
8 Πs := Πs || xA1 · A1 || · · · || xAn · An ;
9 Π′s := dΠs

dt
;

10 Γ := supp(Π′s) \ supp(Πs) ;
11 endwhile
12

13 output {ẋA = Π′s(A)}A∈supp(Π′s) ; // e q u a t i o n s

Figure 3.7: The ODE extraction algorithm.

tered in the system, the formulae obtained by the computation of its immediate

behaviour are precisely the ODEs we seek.

The algorithm takes a cπ process Π as input and forms the initial null symbolic

process Πs. It also sets the set of freshly visited dimensions (prime species) Γ

to the support of Π: these are the species that are present in the initial state

of the system. The main loop of the algorithm extends the symbolic process Πs

with the mentions of newly visited dimensions (8), derives its symbolic immedi-

ate behaviour Π′s (9) and sets the freshly visited dimensions to the set of new

prime species appearing in Π′s (10). The loop continues until no new dimen-

sions are visited. Naturally, the algorithm terminates if and only if the system

visits finitely many dimensions. If this is not the case, it is still possible to ex-

tract a finite set of ODEs from Π′s at every iteration of the loop to obtain a

sequence of finite ODE systems approximating the perfect infinite one. Finally,

observe that compositionality of cπ semantics facilitates the computation of the

symbolic immediate behaviour Π′s in line (9): (dΠs
dt

)n+1 is by definition equal

to (dΠs
dt

)n +
d(xA1

·A1 || ··· || xAn ·An)

dt
+ (∂Πs)

n � ∂(xA1 · A1|| · · · ||xAn · An), with the

superscripts giving the index of the iteration.

Example We derive ODEs for our example system. The initial process is c1 · E(e) ||
c2 · S(s) || c3 · P ; thus, the initial Γ is {E(e), S(s), P}, and the first execution of the

computation in line (9) is essentially the derivation of the immediate behaviour we

have performed in the previous section; the result, with literals replaced by variables,

is (kb · xE(e) · xS(s))×1C − (kb · xE(e) · xS(s))×(1E(e) + 1S(s)) − (kd · xP)×1P . The only

new dimension here is C, and so the loop restarts with Γ = {C}, and the computation

50 Chapter 3. The continuous π-calculus

of the immediate behaviour is now

dΠs

dt
=
d(xE(e) · E(e)||xS(s) · S(s)||xP · P ||xC · C)

dt
(3.42)

=
d(xE(e) · E(e)||xS(s) · S(s)||xP · P)

dt

+
d(xC · C)

dt

+ ∂(xE(e) · E(e)||xS(s) · S(s)||xP · P) � ∂(xC · C) (3.43)

= (kb · xE(e) · xS(s))×1C − (kb · xE(e) · xS(s))×(1E(e) + 1S(s))− (kd · xP)×1P

+ (ku · xC)×(1E(e) + 1S(s) − 1C) + (kt · xC)×(1E(e) + 1P − 1C)

+ 0 (3.44)

As there are no new prime species mentioned by this process (Γ = ∅), the loop termi-

nates, and the algorithm outputs the set of four differential equations—projections of

(3.44) on each of the visited dimensions:

ẋE(e) = −kb · xE(e) · xS(s) + ku · xC + kt · xC (3.45)

ẋS(s) = −kb · xE(e) · xS(s) + ku · xC (3.46)

ẋP = −kd · xP + kt · xC (3.47)

ẋC = kb · xE(e) · xS(s) − ku · xC − kt · xC (3.48)

The reader should confront these equations with those in Fig. 3.1(l).

Summary

We have introduced the continuous π-calculus (cπ), a process algebra for biochem-

ical modelling. It is based on the π-calculus, but with two crucial differences: the

connectivity of names is relaxed from the strict name-coname relation to arbi-

trary many-to-many affinity networks, and processes are given semantics in terms

of real vector spaces. The concept of affinity network drives a lot of the further

research presented in this dissertation. On the other hand, most of the semantic

notions treated here in such detail are not revisited in the future chapters, where

we rely mostly on extraction of ODEs to study our models; as we have seen,

however, they are the heart of cπ.

Chapter 4

Modelling a circadian clock

4.1 Introduction

In this chapter we use cπ to model a non-trivial, real-life biological system. The

purpose of this exercise is three-fold. First and foremost, it is to convince the

reader that cπ can indeed handle real world systems. Second, it is to showcase the

features of cπ that set it apart from other process algebras for biochemical mod-

elling, in particular the flexible wiring of agents in the affinity network. Finally,

it is to make first steps towards modelling of evolutionary variability.

What we are not doing is attempting to discover new facts about the modelled

system. The cπ representation constructed here is entirely based on a published

ODE model and is not directly driven by actual biological data. Parts of the

upcoming discussion may superficially resemble biological research writing, but

it should not be mistaken for such; the purpose of this chapter is to learn about

the modelling method, not the modelled system. Moreover, since we build on

an existing representation, most—perhaps all—of the credit for the explanatory

power of the cπ model rests with the authors of the original work.

As well as demonstrating the strengths of cπ and process algebras in the context

of systems biology, this chapter also exposes their weaknesses. Their discussion

is postponed until the end of the dissertation (§7.1.2).

51

52 Chapter 4. Modelling a circadian clock

4.1.1 Overview of the chapter

The chapter commences with a brief introduction to the biological system mod-

elled here (§4.2). We then describe the model we base this work on (§4.3.1)

and translate it into cπ (§4.3.2). Finally, we use the prototype cπ software tool

(§4.4.1) to analyse the cπ model (§4.4.2) and some of its variants (§4.4.3), includ-

ing evolutionary ones.

4.2 The system

The system we model here is the circadian clock of the cyanobacterium Syne-

chococcus elongatus. For a gentle introduction to this system—albeit not a recent

one—see [58]; the key research papers are [60, 73, 104, 105]; the recently pub-

lished collection [36] contains useful surveys of different aspects of the system.

Below we survey the research milestones and describe the clock in very general

terms, hopefully providing just enough information so that the reader is able to

follow the rest of the chapter.

A circadian clock is a molecular system which oscillates with an approximately

24-hour period, thus allowing the organism it is contained in to synchronise its

behaviour with the time of day. In order to be recognised as a circadian clock,

a molecular oscillator has to exhibit three features: the oscillation has to persist

without external stimuli for at least 24 hours; the period of oscillation has to

be stable under a range of temperatures (temperature compensation); and the

oscillations have to adapt to the local time, as defined by the external light and

darkness periods (entrainment).

For many years it was believed that only eukaryotes have circadian clocks. The

discovery of the circadian rhythms in cyanobacteria in mid-80s [60] invalidated

this view and started a whole new research field of bacterial circadian clocks [36].

It also changed the perspective on the evolutionary history of circadian rhythms—

cyanobacteria are a phylum which is at least 2.5 billion year old—and uncovered

a new class of molecular mechanism capable of acting as circadian oscillators.

The core oscillator of S. elongatus has been found to consist of a cluster of three

proteins: KaiA, KaiB and KaiC [73] (“kai” means “cycle” in Japanese). KaiC

molecules have phosphorylation sites; the oscillating quantity is the average phos-

phorylation level of KaiC. Furthermore, it is known that KaiC forms hexamers

4.3. The model 53

while KaiA and KaiB form dimers (complexes of respectively 6 and 2 identical

molecules). Remarkably, the oscillatory behaviour of the KaiABC system has

been reproduced in vitro [104, 105] using a purified solution of Kai proteins,

proving that it depends neither on transcriptional feedback nor on intracellular

compartments. This feature sets it apart from other clocks and further cements

its reputation as the oldest and simplest.

Despite great interest in the KaiABC system, its precise mechanism is not yet

fully understood [36].

4.3 The model

4.3.1 The original model of van Zon et. al.

Jeroen van Zon et. al. proposed an elegant model of the KaiABC system [148]

based on the key assumption of allostery of KaiC. A protein is allosteric if it can

assume two distinct 3D shapes. The two postulated conformations of KaiC are

called active and inactive and differ in their biochemical and kinetic properties.

Specifically, van Zon et. al. assume that each individual KaiC hexamer has an

inherent propensity to oscillate between 14 phosphorylation states (2 hexamer

forms × 7 possible phosphorylation levels per hexamer), as shown in Fig. 4.1.

A further assumption is the catalytic activity of KaiA, promoting the phosphory-

lation of active forms of KaiC with preference for hexamers at low phosphoryla-

tion levels. The authors call this mechanism differential affinity and suggest it is

responsible for synchronising the oscillation cycles of individual KaiC hexamers.

Finally, KaiB is given the rôle of stabilising the inactive forms of KaiC. According

to the model, inactive KaiC hexamers are prone to flipping back to their active

form, prematurely ending their autonomous oscillation cycle. The modellers as-

sume that two KaiB monomers can bind an inactive KaiC and prevent it from

flipping; this complex is then further stabilised by binding two KaiA monomers,

increasing the competition for KaiA between the active KaiC hexamers as a side

effect.

These assumptions allow van Zon et. al. to write out 34 coupled ODEs describing

the behaviour of every possible form of KaiC. For easy comparison with the cπ

model, we do not track the concentrations of all 34 species, but use a simpler met-

ric instead: the mean phosphorylation level of KaiC. It is defined as the fraction

54 Chapter 4. Modelling a circadian clock

C0 C1 C2 C3 C4 C5 C6

C̃0 C̃1 C̃2 C̃3 C̃4 C̃5 C̃6

BC̃0 BC̃1 BC̃2 BC̃3 BC̃4 BC̃5 BC̃6

ABC̃0 ABC̃1 ABC̃2 ABC̃3 ABC̃4 ABC̃5 ABC̃6

Figure 4.1: The state space of possible forms of KaiC according to [148], with arrow

thickness giving the preference of transitions. The four rows of different configurations

of KaiC hexamers are (top to bottom): active forms, inactive forms, KaiB-KaiC

complexes and KaiA-KaiB-KaiC complexes. The transient complexes of KaiA and

active KaiC are left out of this figure. Observe how every KaiC hexamer has an

inherent tendency to oscillate.

of all phosphorylation sites that are switched on at any given time. The mean

phosphorylation level as predicted by van Zon et. al. is graphed in Fig. 4.4(a, top).

The main merit of this model, according to its authors, is that it explains the

oscillatory behaviour of the system without assuming any direct synchronisa-

tion between individual KaiC hexamers. From the point of view of cπ and this

chapter the main appeal is the concept of differential affinity, which allows us to

demonstrate the potential of our own notion of affinity networks.

4.3.2 The cπ translation

We recast the model discussed above in terms of the continuous π-calculus. As

in the case of the running example in the previous chapter, the cπ representation

has three parts: the definitions of species, the affinity network and the process.

The complete model is presented in Fig. 4.2; we build it incrementally in this

section.

4.3. The model 55

Definitions of species We begin with the definitions of the species representing

KaiA and KaiB. We assume each of them has one active site, termed a and b

respectively. Upon interaction on this site (i.e. binding) the species awaits a

further communication event (i.e. a command to unbind) on the freshly received

name, after which it returns to its original state. This gives rise to the twin

definitions:

A(a)
∆
= a(x).x.A(a) (4.1)

B(b)
∆
= b(x).x.B(b) (4.2)

There is no a priori reason why the definitions of KaiA and KaiB should be

analogous. This is a result of our (implicit) decision to have KaiC drive its

own state changes, rather than be driven by KaiA and KaiB: for example, the

choice whether a KaiA-KaiC complex should dissociate with or without a KaiC

phosphorylation event occurring is encoded within KaiC, not KaiA (cf. Eq. 4.3).

Note however, that the species A(a) and B(b) are not identical nor equivalent

in any formal sense: they have different free names, and the subsequent wiring

of these names in the global affinity network causes A and B to behave quite

differently.

For a KaiC hexamer with k phosphorylated sites (k = 0 . . . 6) we have four species:

the free active form Ck; the free inactive form C̃k; the inactive form bound by

two KaiB monomers BC̃k; and the inactive form bound by two KaiB and two

KaiA monomers ABC̃k. It is possible to give just one definition for a k-fold

phosphorylated hexamer, or indeed one to cover all 28 possible states of KaiC.

There are benefits to doing so, for example the resulting strict correspondence of

species definitions and gene products. Here we opt for a more extensive set of

definitions instead, in order to keep the model more readable.

Before we proceed to define the KaiC species, there is one more issue to consider.

Recall that we require every species definition to mention all the free names

appearing in its body (Def. 3.2.4). The definitions we set up for KaiC are tightly

linked (cf. Fig. 4.1) and one consequence is that each of them has in fact to

mention every free name appearing in any of them. The vector of all free names

in the 21 species that follow is going to be a long one, so we abbreviate it by σ

for now. After we give all the definitions, we shall give σ directly and the reader

should then be able to convince themselves that all the definitions indeed have

to carry it around.

56 Chapter 4. Modelling a circadian clock

We now give the four definitions of C3, C̃3, BC̃3 and ABC̃3. The definitions of

the species for the forms in different phosphorylation states (i.e. with a different

subscript) are analogous, except for the boundary cases, which we discuss later.

We start with C3:

C3(σ)
∆
= (νM3)(τ@kps.C4(σ) + τ@kdps.C2(σ) + τ@flip3.C̃3(σ)

+ a3〈act 〉 .(u.C3(σ) + r.C4(σ))) (4.3)

An active form of KaiC can therefore perform three spontaneous actions (phos-

phorylation, dephosphorylation and flip to the inactive form), or, assuming a3 can

react with a, bind a KaiA monomer and either undergo catalysed phosphoryla-

tion or unbind and return to the original state. The binding of KaiA is modelled

in the usual way, by passing a fresh name act ∈ M3 to the species A(a)—see

Fig. 4.2 for the definition of M3. Observe that this is in fact a concrete instance

of the abstract enzymatic reaction modelled in the previous chapter.

The inactive form C̃3 is rather similar:

C̃3(σ)
df
= (νN)(τ@k̃ps.C̃4(σ) + τ@k̃dps.C̃2(σ) + τ@bflip3.C3(σ)

+ b̂3〈actb 〉 .b̂
〈
âctb

〉
.BC̃3(σ, u0, u, û)) (4.4)

Here we model the binding of two KaiB molecules as two sequential communi-

cation events on the names b̃3 and b̂, both of which can communicate with b.

Two fresh names, actb and âctb, are passed to two KaiB molecules, one to each; a

communication event on any of these names models the unbinding of the corre-

sponding monomer. Accordingly, u0, u and û, the names linked to act and âctb in

the local affinity network N , are passed to BC̃3 to be used for this purpose. Both

u and u0 can trigger the unbinding of the same KaiB monomer, but they do so

at different rates (Fig. 4.2). The slow trigger u is used by BC̃1 up to BC̃6, while

the fast one u0, exclusively by BC̃0; still, we pass u0 to BC̃3 because BC̃0 can be

reached from there. The differential unbinding of KaiB from the B-C complexes

is a feature of the original model (Fig. 4.1).

Modelling of a three-substrate reaction as a pair of binary ones is a deviation

from [148]. We are forced to do so because cπ admits only two-way communi-

cation. We demonstrate in due course that this modification does not alter the

dynamics significantly.

4.3. The model 57

Now, the definition of BC̃3:

BC̃3(σ, x0, x, x̂)
∆
= (νK)(τ@k̃ps.BC̃4(σ, x0, x, x̂) + τ@k̃dps.BC̃2(σ, x0, x, x̂)

+ â3 〈acta 〉 .â
〈
âcta

〉
.ABC̃3(σ, x0, x, x̂, v, v̂)

+ x.x̂.C̃3(σ)) (4.5)

Again, we have the expected autonomous capabilities and the sequential binding

of two KaiA molecules. This species can also use the last two names passed to it

in order to unbind KaiB and return to the free inactive form. Only two triggers

for the unbinding of KaiA (v and v̂) have to be created and passed on this time,

because the rate of unbinding is the same at each of the 7 phosphorylation stages.

The definition of ABC̃3 follows:

ABC̃3(σ, x0, x, x̂, y, ŷ)
∆
= τ@k̃ps.ABC̃4(σ, x0, x, x̂, y, ŷ)

+ τ@k̃dps.ABC̃2(σ, x0, x, x̂, y, ŷ)

+ y.ŷ.BC̃3(σ, x0, x, x̂) (4.6)

There is no further binding possible at this stage, so ABC̃3 performs no name

passing. Its capabilities are simply the autonomous (de-)phosphorylation and the

unbinding of KaiA.

We now comment on the boundary cases. Obviously, C0, C̃0, etc. cannot be

further dephosphorylated, so they have no autonomous dephosphorylation capa-

bility. Dually, the 6-fold phosphorylated species (C6, C̃6, etc.) have no phos-

phorylation capability. In the case of C6 this also means that there is no local

network M6 and no a6 site at all. Finally, because BC̃0 binds KaiB more weakly

than the other inactive forms of KaiC, it uses x0 rather than x to trigger the

unbinding.

We are now able to explicitly give σ. It is the catenation of the following vectors

of names: (ai)
5
i=0, the names used to bind KaiA on the active branch; (âi)

6
i=0 and

(b̂i)
6
i=0, the names used to bind the first monomer during the double binding of

KaiA or KaiB, respectively; and (â, b̂), the names used to bind the second.

The global affinity network The set of vertices of the global affinity network

consists of a, b and the collection of names, previously called σ, that communicate

58 Chapter 4. Modelling a circadian clock

exclusively with either a or b, depending on whether they are responsible for

KaiC’s interactions with KaiA or KaiB. Hence, the global affinity network has

the topology of two separated fans, with bases a and b. The affinities can be

taken directly to be the appropriate rate constants, except for the affinities for the

connections modelling the sequential binding of two KaiA and two KaiB molecules

on the inactive side. Here, the affinity for the first binding (i.e. the first KaiA or

the first KaiB to be bound) is set to the corresponding rate constant, while the

affinity for the second—to a very high number, in order to create the effect of an

immediate binding. We choose an arbitrary number k̂ for this purpose, making

sure it is a couple of orders of magnitude greater than the biggest rate constant

(in what follows, k̂
df
= 1020). However non-rigorous, such arbitrary manipulations

are very common in dynamical modelling of biochemical systems, and are often

necessary due to lack of actual parameter values or, as in our case, limitations of

the particular modelling framework. Figure 4.4(a) vindicates our design.

The affinity network thus constructed is pictured in Fig. 4.2.

The process The cπ process representing the initial state of the system is simply

0.58 · C0(σ) || 0.58 · A(a) || 1.72 ·B(b) (4.7)

where the initial amounts are taken from [148].

We now proceed to execute our model and analyse the results.

4.4 The analysis

4.4.1 The cπ software tool

We have implemented a prototype software tool for automatic analysis of cπ

specifications. The tool parses input files containing cπ models written in a

human-readable syntax (Fig. 4.3). It then computes the multi-transition systems

associated with all species in the file. Once all transitions are known, the pro-

gram computes the immediate behaviour and interaction potentials of the model

4.4. The analysis 59

C
0
(σ

)
∆ =

(ν
M

0
)(
τ
@
k

p
s
.C

1
(σ

)
+
τ
@

fl
ip

0
.C̃

0
(σ

)
+
a

0
〈a

ct
〉.

(u
.C

0
(σ

)
+
r.
C

1
(σ

))
)

C
i(
σ

)
∆ =

(ν
M
i)

(τ
@
k

p
s
.C
i+

1
(σ

)
+
τ
@

fl
ip
i.
C̃
i(
σ

)
+
a
i
〈a

ct
〉.

(u
.C
i(
σ

)
+
r.
C
i+

1
(σ

))
+
τ
@
k

d
p

s
.C
i−

1
(σ

))

C
6
(σ

)
∆ =
τ
@

fl
ip

6
.C̃

6
(σ

)
+
τ
@
k

d
p

s
.C

5
(σ

)

C̃
0
(σ

)
∆ =

(ν
N

)(
τ
@
k̃

p
s
.C̃

1
(σ

)
+
τ
@

bfl
ip

0
.C

0
(σ

)
+
b̂ 0
〈a

ct
b
〉.
b̂
〈 â

ct
b

〉 .BC̃
0
(σ

))

C̃
i(
σ

)
∆ =

(ν
N

)(
τ
@
k̃

p
s
.C̃
i+

1
(σ

)
+

+
τ
@

bfl
ip
i.
C
i(
σ

)
+
b̂ i
〈a

ct
b
〉.
b̂
〈 â

ct
b

〉 .BC̃
i(
σ
,u

0
,u
,û

)
+
τ
@
k̃

d
p

s
.C̃
i−

1
(σ

))

C̃
6
(σ

)
∆ =

(ν
N

)(
τ
@
k̃

d
p

s
.C̃

5
(σ

)
+
τ
@

bfl
ip

6
.C

6
(σ

)
+
b̂ 6
〈a

ct
b
〉.
b̂
〈 â

ct
b

〉 .BC̃
6
(σ
,u

0
,u
,û

))

B
C̃

0
(σ
,x

0
,x
,x̂

)
∆ =

(ν
K

)(
τ
@
k̃

p
s
.B
C̃

1
(σ
,x

0
,x
,x̂

)
+
x

0
.x̂
.C̃

0
(σ

)
+
â

0
〈a

ct
a
〉.
â
〈 â

ct
a

〉 .AB
C̃

0
(σ
,x

0
,x
,x̂
,v
,v̂

))

B
C̃
i(
σ
,x

0
,x
,x̂

)
∆ =

(ν
K

)(
τ
@
k̃

p
s
.B
C̃
i+

1
(σ
,x

0
,x
,x̂

)
+
x
.x̂
.C̃
i(
σ

)
+
â
i
〈a

ct
a
〉.
â
〈 â

ct
a

〉 .AB
C̃
i(
σ
,x

0
,x
,x̂
,v
,v̂

)
+
τ
@
k̃

d
p

s
.B
C̃
i−

1
(σ
,x

0
,x
,x̂

))

B
C̃

6
(σ
,x

0
,x
,x̂

)
∆ =

(ν
K

)(
τ
@
k̃

d
p

s
.B
C̃

5
(σ
,x

0
,x
,x̂

)
+
x
.x̂
.C̃

6
(σ

)
+
â

6
〈a

ct
a
〉.
â
〈 â

ct
a

〉 .AB
C̃

6
(σ
,x

0
,x
,x̂
,v
,v̂

))

A
B
C̃

0
(σ
,x

0
,x
,x̂
,y
,ŷ

)
∆ =
τ
@
k̃

p
s
.A
B
C̃

1
(σ
,x

0
,x
,x̂
,y
,ŷ

)
+
y
.ŷ
.B
C̃

0
(σ
,x

0
,x
,x̂

)

A
B
C̃
i(
σ
,x

0
,x
,x̂
,y
,ŷ

)
∆ =
τ
@
k̃

p
s
.A
B
C̃
i+

1
(σ
,x

0
,x
,x̂
,y
,ŷ

)
+
y
.ŷ
.B
C̃
i(
σ
,x

0
,x
,x̂

)
+
τ
@
k̃

d
p

s
.A
B
C̃
i−

1
(σ
,x

0
,x
,x̂
,y
,ŷ

)

A
B
C̃

6
(σ
,x

0
,x
,x̂
,y
,ŷ

)
∆ =
τ
@
k̃

d
p

s
.A
B
C̃

5
(σ
,x

0
,x
,x̂
,y
,ŷ

)
+
y
.ŷ
.B
C̃

6
(σ
,x

0
,x
,x̂

)

A
(a

)
∆ =
a
(x

).
x
.A

(a
)

B
(b

)
∆ =
b(
x

).
x
.B

(b
)

Π
∆ =

0
.5

8
·C

0
(σ

)
||

0
.5

8
·A

(a
)
||

1
.7

2
·B

(b
)

a
5
··
·

a
0

â
â

0
··
·

â
6

b̂
b̂ 0

··
·

b̂ 6

a
b

k
A
f

5

k
A
f

0
k̂

k̂
A
f

0

k̂
A
f

6

k̂
k̂
B
f

0

k̂
B
f

6

u
r

ac
t

k
A
b

i
k
p
f

M
i

u
0

u
û

ac
t b

âc
t b

k̃
B
b

0
k̃
B
b

k̂
N

v
v̂

ac
t a

âc
t a

k̃
A
b

0
k̂

K

F
ig

ur
e

4.
2:

T
he

cπ
m

o
de

l
of

th
e

K
ai

A
B

C
sy

st
em

:
sp

ec
ie

s
de

fi
ni

ti
on

s
(t

op
),

in
cl

ud
in

g
th

e
lo

ca
l

affi
ni

ty
ne

tw
or

ks
(b

ot
to

m
le

ft
);

th
e

gl
ob

al

affi
ni

ty
ne

tw
or

k
(b

ot
to

m
ri

gh
t)

;
an

d
th

e
pr

o
ce

ss
(b

ol
d)

.

60 Chapter 4. Modelling a circadian clock

1 species C3(sigma)
2 in i t 0 . 0 ;
3 network
4 s i te act , r , u ;
5 react (act , r) @ kpf ;
6 react (act , u) @ kAb (3) ;
7 end
8 body choice
9 tau<kps>.C4(sigma) ;

10 tau<kdps>.C2(sigma) ;
11 tau< f l i p (3)> .CC3(sigma) ;
12 a3 [act ;] . choice
13 r . C4(sigma) ;
14 u . C3(sigma) ;
15 end ;
16 end
17 end

Figure 4.3: A sample from the cπ tool input file; compare with Eq. 4.3.

according to Defs. 3.3.13 and 3.3.14. Finally, using the precursor of the algorithm

outlined in the preceding chapter (§3.4), it extracts the appropriate set of ODEs

and writes them out in a format suitable for immediate numerical analysis with

Octave [37, 108], the leading open source numerical computation software. In

order to speed up Octave computations and make them more robust to changes

in solver parameters, the cπ tool symbolically differentiates the ODEs and passes

the Jacobian to the solver.

The cπ tool is written in Haskell [62]. The implementation follows the theory

developed in the previous chapter quite closely (but see below). One technical

detail that seems worth mentioning is the extensive memoization of transitions,

ensuring that no transition is computed twice. This natural improvement over a

näıve implementation led to speedups of up to three orders of magnitude.

The tool has at least one serious theoretical limitation: it recognises only a subset

of the structural congruence of species. More precisely, although made aware of

α-conversion in order to avoid name capture, it does not recognise α-convertible

species as equivalent. Fortunately, this shortcoming does not matter for our case

study. Future versions of the tool may overcome it by using the well-established

de Bruijn indices [32] or building on nominal techniques such as FreshML [134].

4.4. The analysis 61

4.4.2 The base model

The 30 species definitions and the initial state give rise to 64 prime cπ species.

They are:

• The free KaiA and KaiB monomers, i.e. A(a) and B(b),

• The 7 active KaiC forms C0(σ), . . . , C6(σ),

• The 7 free inactive KaiC forms C̃0(σ), . . . , C̃6(σ)

• The 6 KaiC-KaiA complexes, e.g.

(νM3)(act.A(a) | (u.C3(σ) + r.C4(σ)))

• The 7 complexes of inactive KaiC and two KaiB monomers, e.g.

(νN)(BC̃3(σ, u0, u, û) | ˆactb.B(b) | actb.B(b)),

• The 7 complexes of inactive KaiC, two KaiB and two KaiA monomers, e.g.

(νK)(νN)(ABC̃3(σ, u0, u, û, v, v̂)|âctb.B(b)|actb.B(b)|âcta.A(a)|acta.A(a)),

• 28 transitional species, representing complexes of inactive KaiC hexam-

ers with either single KaiB monomer or two KaiB monomers and a sin-

gle KaiA. Examples include (νN)(b̂
〈

ˆactb
〉
.BC̃3(σ, u0, u, û) | actb.B(b)) and

(νK)(νN)(v̂.BC̃3(σ, u0, u, û) | ˆacta.A(a) | ˆactb.B(b) | actb.B(b)).

Based on this set of species, a multi-transition system is computed, consisting of

64 states and 138 transitions. Finally, the tool outputs a system of 64 coupled

ODEs and a symbolic representation of their Jacobian. The ODEs are similar

to those found in [148], with all differences due to the sequential, rather than

simultaneous, binding of KaiA and KaiB to the inactive forms of KaiC. In order

to demonstrate that these differences do not alter the dynamics of the model,

we juxtapose in Fig. 4.4(a) the original graph from [148] with one generated by

Octave from the cπ model.

4.4.3 Perturbation experiments

So far we have done a fair amount of work to obtain a dynamical model that

matches an arguably simpler one: a set of coupled ODEs. The difference is that

in the case of an ODE model, the model and the dynamics are the same thing.

In contrast, the cπ representation allows us to derive the dynamics. We now take

advantage of this fact by generating models of several variants of the KaiABC

system with simple manipulations of the base cπ model. To achieve the same

62 Chapter 4. Modelling a circadian clock

goal with ODEs, one would in principle have to rewrite them completely, or at

least carefully alter them by hand.

Stabilisation of the inactive branch Let us consider the situation where the

KaiB molecules are no longer allowed to bind the inactive KaiC hexamers. There

is therefore no stabilisation of the inactive branch and the competition for KaiA

between the active KaiC hexamers is seriously weakened, because no KaiA is

sequestered on the inactive branch either. The introduction of this perturbation

to the cπ model is simple: we sever all connections to the free name b in the global

affinity network. The now-superfluous species definitions like BC̃k or ABC̃k may

also be discarded, but this is by no means necessary.

As expected, this modification completely destroys the clock (Fig. 4.4(b)). Fur-

ther investigation reveals that C6 acts as an absorbing state for KaiC, which

is again something that should be expected given the instability of the inactive

branch and the overabundance of KaiA.

Synchronisation In order for the average phosphorylation level of KaiC to os-

cillate, individual hexamers have to oscillate in phase. The main mechanism re-

sponsible for the synchronisation of KaiC hexamers proposed in [148], and hence

in our base model, is differential affinity : KaiA, the phosphorylating agent, has a

greater affinity for weakly phosphorylated KaiC hexamers. We expect therefore

that the removal of this feature results in a broken clock again. We test it by

setting the affinities between a and a0 through a6 to a constant, intermediate

value kAb df
= kAb

3 .

Somewhat surprisingly, the oscillatory behaviour of the system remains almost

unchanged (Fig. 4.4(c)). It appears that another synchronisation mechanism is

at work. One obvious candidate is the differential unbinding of KaiB on the

inactive branch. We can test this hypothesis by making BC̃0 use x instead of

x0 to unbind the first KaiB monomer. The average phosphorylation level in this

variant is graphed in Fig. 4.4(d). The oscillations are now less pronounced and

their period appears to be less stable, but they are clearly still present.

We conclude that neither the differential affinity nor the differential unbinding

of KaiB is the synchronisation mechanism. This is further supported by the

fact that knocking out both these features simultaneously still does not break the

oscillations (not shown). It is possible that there is no synchronisation mechanism

4.4. The analysis 63

(a) The avg. phosph. level according to [148]
(top) and the base cπ model (bottom).

1.0

0 72

0.5

24 48

(b) The clock does not function when
the inactive branch is not stabilised.

1.0

0 72

0.5

24 48

(c) The differential affinity is not
necessary for sustained oscillations.

1.0

0 72

0.5

24 48

(d) The differential unbinding of KaiB
does not fully explain oscillations either.

1.0

0 72

0.5

24 48

(e) Duplication of KaiB has no major
effect on the behaviour of the system.

1.0

0 72

0.5

24 48

(f) The evolution of weak affinity for
KaiA by a copy of KaiB breaks the clock.

Figure 4.4: Validation (a) of the cπ model of the KaiABC system, and computa-

tional investigation of some of its aspects: stabilisation of the inactive branch (b);

synchronisation of individual KaiC hexamers (c)&(d); and a potential evolutionary

development (e)&(f). All graphs show the average phosphorylation of KaiC over

72 hours; the dotted line in (b)–(f) gives this level for the base model as reference.

64 Chapter 4. Modelling a circadian clock

as such, but the KaiC hexamers oscillate in phase because they all start in the

same state (C0). This hypothesis can in principle be easily tested by considering

the process

0.083 · C0(σ) || 0.083 · C1(σ) || 0.083 · C2(σ) || 0.083 · C3(σ) || 0.083 · C4(σ) ||

0.083 · C5(σ) || 0.083 · C6(σ) || 0.58 · A(a) || 1.72 ·B(b) (4.8)

where the initial amount of KaiC is equally spread over all 7 phosphorylation

states. Unfortunately the resulting ODEs appear to be numerically unstable,

and we have not succeeded in our attempts to solve them, which points to the

need of developing a simulation algorithm for cπ models (§7.2).

Evolutionary variability Now let us examine the following evolutionary sce-

nario: suppose that the gene coding for KaiB is duplicated and subsequently

the product of one of the copies acquires the ability to weakly bind KaiA. We

further postulate that the resulting complex does not have any special function,

but a KaiA molecule is unable to engage in any interaction while it is bound. We

are interested in knowing whether the oscillatory behaviour is preserved along

this short evolutionary trajectory and thus manipulate and solve the cπ model

accordingly.

The first step is the duplication of KaiB. In cπ terms this corresponds to a du-

plication of the corresponding species definition; in addition to the definitions in

Fig. 4.2(a), we now have also

B′(b′)
df
= b′(x).x.B′(b′) (4.9)

where b′ is a new free name with precisely the same connectivity as b. After

adding it to the global affinity network and extending the cπ process to include

B′(b′) thusly

0.58 · C0(σ) || 0.58 · A(a) || 1.72 ·B(b) || 1.72 ·B′(b′) (4.10)

the model can be processed and executed just like the base one. The result, dis-

played in Fig. 4.4(e), suggests that duplication of kaiB preserves the oscillations.

The second step is the evolution of weak affinity for KaiA by one of the copies

of KaiB. Without loss of generality, we choose the original KaiB gene to do this

step. The evolution of the binding of the kind we discuss means in cπ terms that

B(b) should be replaced by

4.4. The analysis 65

B(b, c)
df
= (νy

k−
—z)(b(x).x.B′′(b, c) + c〈z〉 .y.B(b, c)) (4.11)

where the new free name c is connected to a with the affinity k+
df
= kAf

3 /10

(arbitrary low value), and y
k

— z is the rendering of the 2-point affinity net-

work consisting of sites y and z which can communicate at the rate k−
df
= kAb

3

(arbitrary normal strength unbinding rate). Furthermore, all invocations of the

form B(b)—but, importantly, not B′(b′)—have to be updated to use the new

handle and parameter.

We readily verify that the presence of B′′ severely disrupts the clock (Fig. 4.4(f)).

Summary

We have shown that cπ can handle real-world biochemical systems and demon-

strated the process of modelling with cπ. Importantly, we are able to conclude

that the effort of providing an algebraic presentation of a biological system pays

off with the ease of model perturbation experiments. We have also made our first

attempt at the modelling of evolutionary events with cπ.

Chapter 5

Variation operators

5.1 Introduction

This chapter is devoted to the definition of special syntactical modifications of

cπ models called variation operators. Each operator is a model transformation

scheme corresponding to a potential evolutionary change of the modelled system.

Variation operators play a central rôle in this dissertation. Recall that in §2.4.3

we introduced a general abstract setting for studying and quantifying evolution-

ary neutrality and related concepts, based on the notion of neutral space. The

required elements were: a set of genotypes equipped with an accessibility relation,

a set of phenotypes and a genotype-phenotype map. In our framework, cπ mod-

els play the part of genotypes and their dynamical behaviours are phenotypes.

The mathematical definition of behaviour, given by Defs. 3.3.13 and 3.3.14 (or,

in more practical terms, by the ODE extraction algorithm in Fig. 3.7) is the

genotype-phenotype map. Hence, the only missing ingredient is the accessibility

structure of the genotype space. It is provided in this chapter: a cπ model is

accessible from another if there is a variation operator that transforms the latter

into the former. In this way we complete the recasting of the framework of neu-

tral spaces in process-algebraic terms. First, however, we need to address several

conceptual and technical difficulties this general idea raises.

67

68 Chapter 5. Variation operators

5.1.1 Key issues and design choices

Events vs effects Modelling of biological systems with process algebras takes

place at the level of molecular interaction networks. Other levels of abstraction

or application domains are of course possible, but are not considered in this

thesis. However, the mutational events that we want to model by applications of

variation operators to cπ models take place at the level of the genetic code. To

say that the mapping between this code and protein networks is non-trivial would

be an understatement. Ignoring the complexity of this translation entirely—as

we are forced to do here because cπ models have no notion of genome—comes at

a price, namely blurring the important distinction between mutations and their

effects.

In some cases this distinction is immaterial, for example gene duplication (a mu-

tation) results essentially in duplication of the corresponding part of the network

(an effect). More often, however, there is no clear correspondence between classes

of mutations and classes of effects. Consider, for example, a single nucleotide sub-

stitution (point mutation): it may have no effect on the network at all, it may

alter the binding affinities of a protein’s active site, it may up- or down-regulate a

protein or it may disable it entirely. Any of these effects can also be produced by

a mutational event other than a point mutation. One consequence of considering

effects rather than events, therefore, is the distortion of the true accessibility re-

lation of genotypes (and hence evolutionary trajectories in the phenotype space)

in a potentially very significant way; moreover, we lose the ability to investigate

those neutral genetic changes that do not alter the structure of the network at

all.

On the other hand, molecular networks are a fairly low level of abstraction for

complex biological phenomena, with a clear connection to the genome, and there

are reasons to believe that patterns uncovered by in silico evolution of models of

protein networks have evolutionary significance (cf. [6, 136–138, 151]). Process

algebraic models of these networks offer even more promise thanks to their focus

on agents rather than the function they perform, their capacity to capture con-

current and emergent behaviour in a modular way, and, above all, their inherent

ability to decouple genetic (i.e. syntactic) variation from its phenotypic (i.e. se-

mantic) consequences. At the risk of belabouring the point, we note that neither

sets of biochemical reactions, nor systems of differential equations, nor even Petri

Nets enjoy all of these advantages simultaneously.

5.1. Introduction 69

The unbearable expressiveness of π The π-calculus, and hence cπ, are very

expressive languages and it is easy to write models that do not have any direct

biological meaning, at least not under the process-as-molecule interpretation. As

the variation operators modify the syntax of cπ models, it is of utmost importance

to ensure that the existing biological meaning is preserved in the process. The

(admittedly imperfect) solution adopted here is two-fold: first and foremost, we

require that modellers represent the biological reality with cπ in a particular way.

Specifically, we ask that:

(i) All free names correspond to protein interaction sites; sites encoded by

different regions of DNA, even if functionally equivalent or evolutionarily

related, are modelled by different free names.

(ii) Only restricted names are passed and all name passing results in scope

extrusion; in all cases this models formation of complexes.

(iii) All prime species present in the model correspond to actual molecular

species. Consequently, all definitions of species correspond to states of

molecules.

(iv) All species present in the support of the process are definition invocations,

unless they model protein complexes.

Observe that because the above requirements relate the model to biological reality,

they cannot be made formal.

In addition, we endeavour to design the operators in such a way that it is in-

tuitively clear that the variants they produce possess a biological interpretation

consistent with that of the original model. We regard this to be the most im-

portant guiding principle in the design of variation operators. Many sensible

operators are not implemented for the sole reason that they might yield a model

whose biological interpretation is unclear.

To give a concrete example of the issues discussed here, consider the elaborate

private name passing schemes in the KaiABC model from the previous chapter:

while it does have a sound biological interpretation there, it is conceivable to

use exactly the same constructs to make an otherwise biologically relevant model

meaningless. Therefore, no variation operators shall introduce such complicated

name passing. On the other hand, the KaiABC model itself is properly grounded

in biology and thus is a valid starting point for the operator-based analysis.

Furthermore, there are no reasons to believe that a functionally equivalent, but

70 Chapter 5. Variation operators

syntactically simpler model of the KaiABC system could not be produced by

variation operators acting on a different cπ system.

Few operators, many variants Only a handful of variation operators are given

in this chapter and they by no means exhaust the variety of mutational effects

observed in nature. Some of the omitted effects are simply not expressible in

the process-algebraic context; some are not of the same importance as the ones

that are implemented; and formalisation of others would yield an unwieldy the-

ory or require compromising on the conservative design principle outlined in the

previous paragraph. In short, the selection offered here attempts to strike a bal-

ance between a proof-of-concept development and a fully fledged process-algebraic

treatment of mutational effects. The number of operators, however, does not af-

fect the number of possible variants of a given model. In fact, several operators

are parametrised by elements of infinite sets, and thus a single model may have

infinitely many variants. Development of general mechanisms for effective and

meaningful sampling and traversal of the resulting infinite and dense variation

space, however, is not covered by this thesis.

Operators as rules In this chapter, cπ models are rendered as tuples of the form

(D, N, P), where D is a set of species definitions, N is an affinity network and P

is a cπ process. These elements should satisfy the usual necessary conditions to

constitute a well-defined model: N should contain all the free names of P , all of

the definitions invoked in P should be defined in D and D itself should be a set

of well-formed definitions. The variation operators are formalised as inference

rules, inducing a binary accessibility relation “−→” on the set of cπ models

(tuples). The successor model is always obtained via a syntactic manipulation of

the original one, and its biological interpretation can be recovered by applying

the rules (i)–(iv) above.

As a very simple example, consider the following operator:

gene-new

(D, N, P) −→ (D ∪ {Z()
∆
= 0}, N, P)

(5.1)

This rule states that any model can be extended with a new species definition.

By applying (iii) to the rhs of the “−→” symbol—observe that (i),(ii) and (iv) do

not offer any relevant information here—we conclude that a new, non-functional

protein was added to the system, but is not present in its initial state. Thus, the

rule can be seen as a formalisation of the emergence of a new, non-functional,

5.1. Introduction 71

not expressed gene. Throughout this chapter we assume that any newly intro-

duced names and definition handles are fresh for the existing ones. Hence, the

condition Z#D was not mentioned in the above rule.

None of the operators we introduce here have been implemented in software. The

evaluation of our approach is performed in the next chapter by manual application

of operators (§6.2) and ad-hoc scripting (§6.3). We find it therefore necessary to

stress that proper implementation of variation operators is not only feasible, but

quite likely relatively straightforward thanks to their definition as inference rules.

Physical and virtual sites Names in cπ models are of two kinds: they either

model physical interaction sites, or are used for internal synchronisation within

a complex and do not correspond directly to any physical entity. The following

definition makes this distinction formal at the level of parameters of species def-

initions. Names of the first type are termed physical sites, names of the other

type are virtual sites :

Definition 5.1.1. LetM = (D, N, P) be a cπ model. We inductively define the

set vsM ⊂ N ×H as the smallest set satisfying the following:

(i) If (A(x1, . . . , xn)
∆
= B) ∈ D, and A(a1, . . . , an) ⊂ P and for some j this

occurrence of aj is bound in P , then (xj, A) ∈ vsM,

(ii) If (A(x1, . . . , xn)
∆
= B), (C(~y)

∆
= D) ∈ D, and A(a1, . . . , an) ⊂ D and for

some j this occurrence of aj is bound in D, then (xj, A) ∈ vsM,

(iii) If (A(x1, . . . , xn)
∆
= B), (C(y1, . . . , ym)

∆
= D) ∈ D, A(a1, . . . , an) ⊂ D and

for some k, j we have aj = yk and (yk, C) ∈ vsM, then (xj, A) ∈ vsM as

well.

When (x,A) ∈ vsM, we say that x is a virtual site of A. When (x,A) /∈ vsM, but

x is an argument of the definition A, we say that x is a physical site of A. We

write vsM(A) for the set of virtual sites of A, and psM(A) for the set of physical

ones.

The first clause identifies bound names that are passed in the process as param-

eters to an invocation of a species definition. The second does the same with

invocations in bodies of definitions. The third (inductive) clause makes sure that

if a formal parameter yk of a species definition C is identified as virtual, then so

are the corresponding formal parameters of the definition A, if they use yk as an

actual parameter in the body of C.

72 Chapter 5. Variation operators

A(a)
∆
= a.A(a) + τ@r.0

B(a , x)
∆
= x.A(a)

C(a , z)
∆
= τ@s.B(a, z)

Π
∆
= c · (νu k

—v)(C(a , u) | C(a , v))

(formal) physical site

formal virtual site
(actual) physical site

actual virtual site

Figure 5.1: This example system models a complex of two C molecules, which can

independently transform to B, after which they synchronously flip to an A form;

A is capable of repeated interaction on a and of spontaneous degradation. The sites

used to synchronise the intra-complex flip are virtual and a is physical. Observe that

the distinction between formal and actual physical sites is superfluous. What names

should the global affinity network of this model contain?

In general, it does make biological sense to invoke the same definition with dif-

ferent free names passed as actual physical sites: this can in principle be useful

for tackling the combinatorial explosion of species. However, if combinatorial

explosion is a major concern for the system under consideration, then rule-based

modelling formalisms such as κ [30] or LBS [114] are a much better choice (§2.3.4).

Hence, for the purposes of the evolutionary analysis techniques developed here,

we shall assume that in any given model only one fixed free name is passed as

an actual physical site to any given definition. An immediate consequence of this

fact is that this name can be used as the canonical formal physical site in that

definition, and we shall assume that this is the case as well. Thus, whenever we

have a model (D, N, P) and (A(~x)
∆
= B) ∈ D and ~x are physical sites of A, we

know that ~x ⊆ N ; furthermore, whenever an invocation A(~y) occurs, be it in P

or a body of a definition in D, it follows that ~y = ~x. The same applies even if in

addition to ~x, A has virtual parameters as well, although no similar inferences can

be made about these. Figure 5.1 illustrates the concepts of physical and virtual

sites with the help of a simple example.

5.1.2 Overview of the chapter

This section discussed important aspects of the design of variation operators.

Section 5.2 contains preliminary technical definitions required for the development

of variation operators. Three major groups of operators: gene-level events, state

variation and rate changes are defined in §5.3–§5.5, respectively.

5.2. Preliminary definitions 73

5.2 Preliminary definitions

Each definition in this section is accompanied with a brief comment on its in-

tended meaning and use. While this section probably is not the most entertaining

read to be found in this thesis, it is relied upon heavily by the remainder of the

chapter. Most notions are defined in the context of a particular cπ model or set of

species definitions, and thus their symbols carry subscripts like –M or – D; these

subscripts are omitted whenever possible.

Definition 5.2.1. (dependence of definitions) Let ξ, ζ be species definitions.

We write ξ ◦→ ζ and say that ξ depends on ζ to indicate that the handle of ζ

is mentioned in the body of ξ. When D is a set of definitions and ξ ∈ D, we

write [ξ]D for the equivalence class of ξ w.r.t. to the smallest equivalence relation

containing ◦→. Moreover, when A is a species, we write A ◦→ ζ if ζ is invoked

by A.

According to the informal assumptions outlined in §5.1.1, if two definitions are

related via the equivalence generated by ◦→, then both model states of the same

molecule. The converse is not true in general: if a molecular species can exist

in many different forms, but no transformation between these forms is possible,

then there are multiple equivalence classes of definitions in the corresponding cπ

model. The modeller should be aware, however, that because this case is for-

mally indistinguishable from the more common one of many genuinely unrelated

molecules, the variation operators treat it as the latter.

Definition 5.2.2. (substitution of definition handles) Let A be a species

and let W,V be two definition handles. We write A[W 7→ V] to denote the species

arising from A, where all occurrences of W are replaced by V . More precisely:

U(~x)[W 7→ V]
df
= U(~x) if U 6= W (5.2)

W (~x)[W 7→ V]
df
= V (~x) (5.3)

0[W 7→ V]
df
= 0 (5.4)

((νN)A)[W 7→ V]
df
= (νN)(A[W 7→ V]) (5.5)

(Σn
i=0πi.Ai)[W 7→ V]

df
= Σn

i=0πi.(Ai[W 7→ V]) (5.6)

(A | B)[W 7→ V]
df
= A[W 7→ V] | B[W 7→ V] (5.7)

Simultaneous substitution of multiple handles—denoted A[~W 7→ ~V] where ~W

and ~V are vectors of handles—is allowed provided that ~W contains no duplicates

and ~V consists of fresh handles only.

74 Chapter 5. Variation operators

Substitution of handles is used to define the variation operator modelling gene

duplication.

Definition 5.2.3. (modifications of affinity networks) Let N be an affinity

network, a ∈ N , x /∈ N and f : N → R≥0. We define three affinity networks:

N 	 a, N ⊕f x and N �f a, whose sets of vertices are N \ {a}, N ∪ {x} and N ,

respectively. The affinities of the three networks are given by:

(N 	 a)(u, v)
df
= N(u, v) (5.8)

(N ⊕f x)(u, v)
df
=



N(u, v) u, v ∈ N

f(v) v ∈ N, u = x

f(u) u ∈ N, v = x

0 u = v = x

(5.9)

(N �f a)(u, v)
df
=


N(u, v) u 6= a, v 6= a

f(v) u = a, v 6= a

f(u) v = a

(5.10)

Furthermore, we introduce the following abbreviation:

N ⊕a x
df
= N ⊕λz.N(a,z) x (5.11)

and vectorise is as follows:

N ⊕(a1,...,an) (x1, . . . , xn)
df
= (N ⊕(a1,...,an−1) (x1, . . . , xn−1))⊕an xn (5.12)

Finally, we set

N 	X df
= (N 	 (x1, . . . , xn−1))	 xn (5.13)

where X = {x1, . . . , xn} ⊂ N . Note that this definition is insensitive to the choice

of a particular ordering of X.

In short, N 	X is the restriction of the affinity network to N \X; N ⊕f x adds a

single name x to the network N , and the affinities of the new name to the existing

ones are given by f ; finally, N �f a reconfigures the existing site a by changing

all of its affinities according to f . The construction N ⊕~a ~x extends the network

N with exact duplicates of the names ~a. These definitions are used whenever the

global affinity network of a model needs to be reconfigured; for example, gene

duplication usually requires addition of new names, while gene loss may lead to

pruning of the network.

5.2. Preliminary definitions 75

b

a

c

d

k1

k2

k3

k4

N

b

c

dk3

k4

N 	 a

b

a

c

d

x

k1

k2

k3

k4

k1

k2

N ⊕a x

b

a

c

d

f(b)

f(c)

f(d)
f(a)

k3

k4

N �f a

Figure 5.2: Modifications of affinity networks.

The following construction alters just one connection in the network. It is used

with local affinity networks, for which the modifications set out in Def. 5.2.3 have

little biological meaning, since local names do not model interaction sites.

Definition 5.2.4. Let N be an affinity network, a, b ∈ N and k ≥ 0. We define

the affinity network N(a, b, k) on the set of vertices of N by:

N(a, b, k)(x, y)
df
=

k x = a and y = b, or x = b and y = a

N(a, b) otherwise
(5.14)

Furthermore, we define the set of networks

N(–, –, k)
df
= {N(u, v, k) : u, v ∈ N} (5.15)

The set rc(k,A) contains all species arising from A through a modification of a

single silent prefix rate or a single affinity in a local affinity network.

Definition 5.2.5. (rc: rate change) Let A be a species and let k ≥ 0. We

define the set of species rc(k,A) by induction on A as follows:

rc(k,0)
df
= ∅ (5.16)

rc(k,W (~y))
df
= ∅ (5.17)

rc(k,Σn
i=0πi.Ai)

df
=

n⋃
j=0

{Σn
i=0π

′
i.Ai : πj = τ@r, π′j = τ@k, and ∀l 6=j(π′l = πl)}

∪
n⋃
j=0

{Σn
i=0πi.A

′
i : A′j ∈ rc(k,Aj) and ∀l 6=j(A′l = Al)} (5.18)

rc(k,B|C)
df
= {(B|X) : X ∈ rc(k, C)} ∪ {(X|C) : X ∈ rc(k,B)} (5.19)

rc(k, (νN)B)
df
= {(νM)B : M ∈ N(–, –, k)} ∪ {(νN)X : X ∈ rc(k,B)} (5.20)

76 Chapter 5. Variation operators

The set cg(π, Z,A) contains all possible ways of enriching the species A with the

prefix π. If the position where π was inserted into A does not force any particular

successor state, this state is set to be Z.

Definition 5.2.6. (cg: capability gain) Let A,Z be species and π be a prefix.

We define the set of species cg(π, Z,A) by induction on A in the following way:

cg(π, Z,0)
df
= {π.0, π.Z} (5.21)

cg(π, Z,W (~y))
df
= {π.W (~y)} (5.22)

cg(π, Z,Σn
i=0π.Ai)

df
= {π.Σn

i=0πi.Ai} ∪ {π0.A0 + · · ·+ πn.An + π.Z}

∪
n⋃
j=0

{Σn
i=0πi.Xi : Xj ∈ cg(π, Z,Ai) and ∀l 6=jXl = Al} (5.23)

cg(π, Z,B|C)
df
= {π.(B|C)}

∪ {(B|X) : X ∈ cg(π, Z, C)}

∪ {(X|C) : X ∈ cg(π, Z,B)} (5.24)

cg(π, Z, (νN)B)
df
= {π.(νN)B} ∪ {(νN)X : X ∈ cg(π, Z,B)} (5.25)

The next definition is dual to the preceding one and describes the possible ways

for the species A to lose a single capability.

Definition 5.2.7. (cl: capability loss) Let A be a species. We define the set

of species cl(A) inductively by setting:

cl(0)
df
= ∅ (5.26)

cl(W (~y))
df
= ∅ (5.27)

cl(B|C)
df
= {(B|X) : X ∈ cl(C)} ∪ {(X|C) : X ∈ cl(B)} (5.28)

cl(Σn
i=0πi.Ai)

df
= {π0.A0 + · · · πj−1.Aj−1 + πj+1.Aj+1 + · · ·+ πn.An}nj=0

∪
n⋃
j=0

{Σn
i=0πi.A

′
i : A′j ∈ cl(Aj) and ∀l 6=j(A′l = Al)} (5.29)

cl((νN)B)
df
= {(νN)X : X ∈ cl(B)} (5.30)

The set succM(ξ) contains all species that may serve as successor states when

adding a capability to the body of ξ (cf. Def. 5.2.6). A successor state may is an

invocation of either a definition modelling a state of the same molecule (provided

it does not have any virtual sites), or of a fresh definition Z.

Definition 5.2.8. Let M = (D, N, P) be a model and let ξ ∈ D. We define the

set of species succM(ξ) by:

succM(ξ)
df
= {A(~x) : (A(~x)

∆
= B) ∈ [ξ]D and vsM(A) = ∅}∪{Z() : Z#D} (5.31)

5.2. Preliminary definitions 77

A pair of vectors of unique names uniquely defines a name substitution as given

below. This definition is used to coordinate substitutions of physical and virtual

sites in Def. 5.2.11.

Definition 5.2.9. Let ~x and ~y be vectors of names. Assume that no name

appears twice in ~x and the same for ~y. Define the function σ~x ~y : N |~x| → N |~y|

by:

(σ~x ~y(~u))i
df
=

ui yi /∈ ~x

uj yi = xj
(5.32)

In Defs. 5.2.10 and 5.2.11 we consider species definitions that may be ill-formed

in a particular way. We still use the familiar
∆
= notation to render them.

Definition 5.2.10. (balanced and imbalanced definitions)

Let ξ = (A(~x)
∆
= B) be a species definition. We call ξ imbalanced if ~x 6= fn(B). In

this case, the balanced version of ξ is the definition A(~z)
∆
= B, where ~z = ~fn(B).

Definition 5.2.11. (replacement of definitions) Let (D, N, P) be a model

and let ξ and ζ be species definitions such that:

(i) ξ ∈ D, and

(ii) D contains no imbalanced definitions, and

(iii) If ζ invokes definitions from D, it respects their arities, and

(iv) Handles and arities of ξ and ζ are equal.

We define the model (D, N, P)[ξ 7→ ζ] by

(D, N, P)[ξ 7→ ζ]
df
= balance((D \ {ξ}) ∪ {ζ}, N, P) (5.33)

where balance is the following algorithm:

1 input (E ,M,Q) ;
2

3 while E conta in s imbalanced d e f i n i t i o n s

4 l et (A(~x)
∆
= B) = η ∈ E an imbalanced d e f i n i t i o n in E ;

5 l et (A(~y)
∆
= B) be the balanced ve r s i on o f η ;

6 replace every A(~z) with A(σ~x ~y(~z)) in bod ie s o f E ;
7 replace every A(~z) with A(σ~x ~y(~z)) in Q ;
8 endwhile
9 M := M 	 (M \ fn(Q)) ;

10

11 output (E ,M,Q) ;

The above construction enables us to replace one species definition (ξ) in a model

with another (ζ). Since their handles and arities are equal, this amounts to

78 Chapter 5. Variation operators

substituting the bodies. It is seemingly a straightforward task, but surprisingly

many things can go wrong here: in particular, the number and order of name

parameters may differ between ξ and ζ. To counter this, we turn every invocation

of ξ of the form A(~z) into A(σ~x ~y(~z)) (lines 6 and 7), where σ~x ~y encodes the re-

ordering and forgetting/addition of parameters derived from comparing ~x with ~y.

Unfortunately, in doing so we may change the free name sets of the bodies of some

definitions and hence unbalance them, so it is necessary to redo the replacement,

this time of the new unbalanced definition with its balanced version, and so on

until all definitions are balanced.

Strictly speaking, it is in order now to prove the termination of the algorithm

and its insensitivity to the order in which imbalanced definitions are picked. We

leave it to the reader, and turn instead to finally defining variation operators.

5.3 Gene-level operators

We begin with operators that work on entire proteins rather than particular

sites or states. All evolutionary effects modelled by the operators in this class

correspond closely to actual mutations.

Gene emergence By gene emergence we mean either emergence of a new stretch

of DNA and the corresponding protein or the inclusion of a preexisting gene and

its product to the modelled network. The variation operator modelling gene

emergence has the form:

gene-new

(D, N, P) −→ (D ∪ {Z()
∆
= 0}, N, P)

(5.34)

Here, we assume that the new protein cannot interact with the existing agents

within the network. Thus, it serves as a “blank page”, on which evolution can

develop new functionalities and ultimately make it interact with the network in

a meaningful way. We also assume that it is not expressed initially; the operator

gene-expr(1) (below) can be used to change the expression level.

Gene loss Existing genes can be lost in many ways, in particular by physical

removal (deletion) of their DNA or by serious corruption of its regulatory or

5.3. Gene-level operators 79

coding sequence. As a result, the protein encoded by the gene disappears from

the network. The operator rule modelling gene loss has the form:

ξ ∈ D
gene-loss

(D, N, P) −→ (D \ [ξ], N 	 (fn(P) \ fn(Q)), Q)
(5.35)

where

Q
df
= λA.if A ◦→ [ξ] then 0 else P (A) (5.36)

Hence, in cπ terms gene loss is modelled by the removal of all species definitions

associated with the protein the gene coded for, as well as those components of

the process that referred to them. The free names that model the interaction

sites of the lost protein are also removed from the affinity network.

Change in gene expression A mutation can change the expression level of a

gene by altering its promoter sequence or its regulatory pathway(s). In recent

years this kind of evolutionary change has received a lot of attention as a poten-

tially crucial component of evolution of development [31, 52, 54]. There are two

operators modelling this kind of evolutionary events:

(A(~x)
∆
= B) ∈ D vs(A) = ∅ A(~x) /∈ supp(P) c ≥ 0

gene-expr(1)

(D, N, P) −→ (D, N, λS.if S=A(~x) then c else P (S))
(5.37)

A(~x) ∈ supp(P) c ≥ 0
gene-expr(2)

(D, N, P) −→ (D, N, λS.if S=A then c else P (S))
(5.38)

In cπ terms, therefore, it is only the process that changes, with the definitions

and network remaining the same. Observe that any non-negative real number c is

allowed as the new concentration, and thus any model has uncountably many

variants via this rule. The difference between the two operators is minor: the

latter deals with species already present in the process, the former with ones

about to introduced.

Gene duplication A fragment of DNA containing a gene can be accidentally

duplicated, for example in the process of recombination. From the evolutionary

point of view, this usually results in weakened selective pressure on the gene: as

long as one copy is functional, the other can be safely mutated. Furthermore,

80 Chapter 5. Variation operators

the mutations of the new copy are likely to be of relevance to the network(s) the

original gene was part of, since they result in variants of the same protein. Gene

duplication is believed to be the single most important genetic mechanism of

evolutionary innovation; see [154] for more information. The variation operator

modelling gene duplication has the form:

[ξ] = {Ai(~xi)
∆
= Bi}ni=0 ⊆ D

gene-dup

(D, N, P) −→ (D ∪ {A′i(~zi)
∆
= Bi[~A 7→ ~A′]{~y/~p}}ni=0, N ⊕~p ~y, P)

(5.39)

where

~A
df
= (A0, . . . , An) and ~p

df
= ps(A0) ∪ . . . ∪ ps(An),

~A′ = (A′0, . . . , A
′
n) is a vector of fresh handles and ~y is a vector of fresh names,

~zi
df
= ~xi{~y/~p}, i.e. (zi)j

df
= (if (xi)j = pk then yk else (xi)j).

Thus, in the target model the set of definition is extended with a copy of the

◦→-induced equivalence class of ξ. The physical sites of the definitions from

[ξ] are duplicated in the affinity network, and the duplicated definitions use the

duplicated sites rather than the original ones. In this way their subsequent vari-

ation is independent. Again, we assume that the copied gene is not expressed;

this can be amended by applying the gene-expr(1) operator immediately after

the duplication.

5.4 State variation

Variation operators that affect the internal structure of cπ terms correspond to

mutational effects rather than events. They are responsible for most of the ex-

pressive power of the collection of operators developed here. We begin with the

operator modelling the evolution of an autonomous state transition capability:

k ≥ 0 ξ = (A(~x)
∆
= B) ∈ D C ∈ succ(ξ) D ∈ cg(τ@k, C,B)

state-tau

(D, N, P) −→ (D ∪X,N, P)[ξ 7→ (A(~x)
∆
= D)]

(5.40)

where

X
df
=

{Z()
∆
= 0} if C = Z() and Z#D

∅ otherwise
(5.41)

5.4. State variation 81

Here, C ranges over possible successor states of the capability τ@k. These are

invocations of definitions from the same ◦→ class as ξ, or an invocation of an

entirely fresh definition (cf. Def 5.2.8), which is then added to the model. An

enriched version of the body of ξ is sourced from the set cg(τ@k, C,B), and it

replaces B in the model.

Precisely the same procedure is followed in the case of an emergence of an inter-

action site rather than autonomous capability (X has the same meaning here):

f : N → R≥0 ξ = (A(~x)
∆
= B) ∈ D C ∈ succ(ξ) D ∈ cg(a, C,B)

state-site

(D, N, P) −→ (D ∪X,N ⊕f a, P)[ξ 7→ (A(~x)
∆
= D)]

(5.42)

The only difference here is that the new state carries a new free name, which is

added to the affinity network. This is a direct consequence of the assumption

that different sites are represented by different names. Also, note that the new

definition A(~x)
∆
= D is imbalanced.

Arguably the most complex operator models emergence of a binding site. Since

binding is modelled as scope extrusion, the operator has to introduce a name-

passing prefix. For the sake of simplicity and symmetry we only consider prefixes

sending one private name, bound in a local two-point affinity network, and receiv-

ing only one name, presumably bound in the same way by the interaction partner.

Furthermore, we assume that upon binding the molecule enters a state with two

possible, mutually exclusive continuations; the actual path chosen depends on

whether the internal synchronisation within the complex takes place using the

name that was sent or the one that was received. In the next chapter (§6.2) we

show that this setup is sufficient to evolve complex enzyme-mediated reactions.

k ≥ 0 f : N → R≥0 ξ = (A(~x)
∆
= B) ∈ D

C ∈ {x.X + y.Y : X, Y ∈ succD(ξ)} D ∈ cg(a(x; y), C,B)
state-bind

(D, N, P) −→ (D ∪ Z,N ⊕f a, P)[ξ 7→ (A(~x)
∆
= (νx

k
—x)D)]

(5.43)

where

Z
df
= {W ()

∆
= 0 : W () ⊂ C and W#D} (5.44)

82 Chapter 5. Variation operators

Apart from the increasing complexity of the three operators defined so far in this

section, the reader is encouraged to detect similarities between them. All three

focus on a single species definition ξ and enrich it with an extra capability: a

silent prefix τ@k, a simple prefix a, and finally a name-passing prefix a(x; y).

The resulting extended definition takes place of the original one in the model,

and the affinity network is updated in the two latter cases to include the newly

added name.

The last state-related operator models loss of an interaction or autonomous capa-

bility. The successor state disappears together with the capability (cf. Def. 5.2.7),

and the operator has the self-explanatory form:

ξ = (A(~x)
∆
= B) ∈ D ζ ∈ cl(B)

state-loss

(D, N, P) −→ (D, N, P)[ξ 7→ A(~x)
∆
= C]

(5.45)

5.5 Rate changes

Finally, we have two operators corresponding to changes in site binding or inter-

action affinities, and changes to the rates of autonomous capabilities. We begin

with the first:

a ∈ N f : N → R≥0
rate-site

(D, N, P) −→ (D, N �f a, P)
(5.46)

This operator models a molecular event: change of the 3D shape of an active site

of a protein. Such an event impacts the affinities of this site towards all other

sites, because affinity is to a large extent a measure of 3D complementarity of

sites. For that reason the operator reconfigures all connection of the site a in the

global affinity network (cf. Def. 5.2.3).

In contrast, the next operator models a molecular effect—change of a single re-

action/transformation rate of a molecule. Here, only a single silent prefix rate

or a single affinity in a local affinity network is modified. There is no need to

reconfigure all affinities in a local affinity network, because local names do not

model actual sites (§5.1.1). The operator has the following form:

5.5. Rate changes 83

ξ = (A(~x)
∆
= B) ∈ D k ≥ 0 C ∈ rc(k,B)

rate-auto

(D, N, P) −→ (D, N, P)[ξ 7→ (A(~x)
∆
= C)]

(5.47)

Summary

We have defined 11 variation operators as inference rules inducing a binary re-

lation on the space of cπ models. This structure completes our recasting of the

framework of neutral spaces (§2.4.3) in process-algebraic terms. In the next chap-

ter we study its expressiveness and show how to apply it to the study of important

evolutionary properties of real biological systems.

Chapter 6

Evolutionary case studies

6.1 Introduction

This chapter is devoted to a demonstration of expressiveness and an application in

evolutionary modelling of the variation operators defined in the previous chapter.

Expressiveness is showcased by building, from a trivial model, a cπ description

of a simple enzymatic reaction exhibiting classical Michaelis-Menten dynamics;

this model is very similar to the one that served as a running example in Ch. 3.

The construction proceeds solely by application of variation operators, and ev-

ery step has a plausible biological interpretation. The final description has the

potential for further evolution, and we demonstrate this by extending the model

with a competitive inhibition mechanism. As a final demonstration of the ex-

pressive power of the operators we briefly show how to build a fully functional

model of a MAPK cascade from scratch. We stress that neither model popula-

tions nor model selection techniques are involved here, for the purpose of these

exercises is to demonstrate that variation operators create a rich, evolutionarily

meaningful accessibility structure on the space of cπ models, rather than to study

evolutionary origins of enzymes and signalling cascades.

In the second part of the chapter we perform a computational exploration of

the evolutionary neighbourhood of the previously developed MAPK model by

analysing approx. 1 million of its variants obtained via applications of the rate-

site operator. We rely on the previously championed syntax/semantic separation

(see e.g. Ch. 1 and §4.4.3) in process algebras to perform both qualitative (LTL

checking) and quantitative (signal integration) analyses of these variants. The

85

86 Chapter 6. Evolutionary case studies

results are insights into neutral spaces and fitness landscape underlying MAPK

signalling, and in particular evolutionary robustness of individual active sites of

the cascade proteins.

6.1.1 Overview of the chapter

Section 6.2 contains the enzyme study. Section 6.3 is devoted to the analysis

of the MAPK cascade, with §§6.3.1–6.3.3 dealing with background and previous

work, the model itself, and the computational experiments, respectively.

6.2 Evolution of enzyme models

Beginning with the very simple cπ model ({S()
∆
= 0},∅, cS · S) representing a

network consisting of a single inert species S, it takes several steps (i.e. operator

applications) to arrive at a model of a fully functional enzyme, and a further few

to obtain a model of competitive enzyme inhibition. There are many trajectories

meeting this specification; we show one of them, commenting on the use of vari-

ation operators as well as on the underlying evolutionary events. The complete

trajectory of formal models is given in Fig. 6.1. In addition we provide a cartoon

to illustrate each intermediate model. The changes introduced to the model in

the given step are marked in red; filled nodes denote species present in the process

part of the cπ model; affinity networks are not depicted, and so in the last step

we only highlight the names affected by the rate-site operator. The asterisk –∗

denotes a molecule bound in a complex.

S P
τ@ka

Step 1 The state-tau operator is applied to equip the species

S with a silent prefix. The successor state of this prefix is a new

state P ; a definition P ()
∆
= 0 is added to the set of species definitions. This step

corresponds to the molecular species S evolving a capability to autonomously

turn into P . Naturally, S is the future substrate and P the future product of the

modelled enzymatic reaction.

S∗

S P
τ@ka

s(x;y)
y

x

Step 2 The state-bind operator is applied to the definition

of S, resulting in the previously evolved autonomous capabil-

ity τ@ka entering in direct competition with the new binding

capability s(x; y). The successor state of the new capability,

6.2. Evolution of enzyme models 87

as mandated by the state-bind operator, is a choice between two states of

the S species; these states are arbitrarily chosen here to be S and P . The two

virtual sites introduced are x and x, and it is assumed that they can interact at

the rate k−1; this is the future enzyme-substrate complex backwards dissociation

rate. The new name s is added to the affinity network, and the definition of S

now carries a formal parameter s. In biological terms, this step corresponds to the

emergence of an interaction site s on the surface of the protein S; upon binding

to this site a complex is formed, and after it dissociates S is either unchanged or

transformed into P . As there are no sites in the system able to interact with s,

this addition has no effect on the dynamics of the model.

S∗

S P

E

τ@ka

s(x;y)
y

x

Step 3 An application of the gene-new operator results in

a new definition E()
∆
= 0 being added to the definition set.

Observe that it is completely independent from both S and

P , and thus is forms a singleton-sized equivalence class w.r.t.

the formal dependence of definitions (Def. 5.2.1). As discussed

in the previous chapter, this addition can be seen either as an

emergence of a new non-functional gene, or an inclusion of an existing gene in the

modelled system. In our case, this gene codes for the future enzyme catalysing

the transformation of S into P .

S∗

S P

E

τ@ka

s(x;y)
y

x

Step 4 Through an application of the gene-expr(1) opera-

tor, the newly created species E appears in the process at the

concentration cE. Only the process changes in this step, species

definitions and the affinity network remain the same. The dy-

namical behaviour of the model does not change, because E is

defined to be the inert process 0. The biological interpretation

of this alteration is a change in the regulation of the gene coding for E, resulting

in an increase of its basal concentration. It is also possible—but not essential, by

far—to consider this step together with the preceding one, as one mutation event

giving rise to a new, immediately expressed gene.

S∗

S P

E E∗

τ@ka

s(x;y)
y

x

e(x;y)

x

y

Step 5 The state-bind operator is applied to the defini-

tion E. A single binding site e complementary to s appears in

E, and their affinity kr is the enzyme-substrate binding rate

constant. The successor state of this site is a two-way choice

leading back to E on both paths. The site e is added to the

definition of E as a formal parameter and also appears in the

88 Chapter 6. Evolutionary case studies

global affinity network. The affinity k+ of the two virtual sites introduced in E is

the enzyme-complex forward dissociation rate constant. In biological terms, this

step should be interpreted analogously to Step 2: an emergence of a functional

binding site on the surface of a protein.

We contrast this simple enzyme model with the running example of Ch. 3. Both

exhibit exactly the same behaviour, save for the fact the product P could spon-

taneously degrade in the Ch. 3 version (the corresponding prefix can be easily

added to the current model using the state-tau operator). A more subtle differ-

ence is the arrangement of private names (virtual sites) in the model: previously,

they were grouped in a single three-point local affinity network, now they are

split between two two-point networks. This is a manifestation of the assumption

made in §5.1.1 that only very simple local affinity networks can be introduced by

variation operators.

The next three operator applications lead to a model of competitive enzyme

inhibition. Following [82, p. 149], competitive inhibition takes place when a

molecule called an inhibitor competes with the substrate for the binding site of

the enzyme. When the inhibitor molecule binds the enzyme, it makes it inactive

until the complex dissociates.

S∗

S P

E E∗

I I∗

τ@ka

s(x;y)
y

x

e(x;y)

x

y

i(x;y)

x

y

Step 6 A new species definition appears in the model through

an application of the gene-dup operator to the definition E(e).

The definition-dependency class of E(e) contains only E(e) it-

self (cf. Def. 5.2.1), and so only this definition is duplicated.

The duplicate is I(i), where I is a fresh handle, and i is a fresh

physical site with the same affinities as e; I plays the rôle of

the inhibitor in the final model. This step models the dupli-

cation of the gene coding for the enzyme. Obviously it is not

essential to fashion the inhibitor out of the copy of the enzyme: it is also possible

to duplicate and rearrange the substrate or use the gene-new operator instead.

S∗

S P

E E∗

I I∗

τ@ka

s(x;y)
y

x

e(x;y)

x

y

i(x;y)

x

y

Step 7 The copy of the enzyme appears in the process via an

application of the gene-expr(1) operator; its concentration is

set to cI . The biological interpretation of this step is analogous

to that of Step 4. Interestingly, at this stage the conversion of

substrate into product proceeds faster than previously because

I is an exact copy of the enzyme, and thus can catalyse the

reaction as well.

6.2. Evolution of enzyme models 89

[
S

∆
= 0

Π
∆
= cS · S

]
 S

∆
= τ@ka.P

P
∆
= 0

Π
∆
= cS · S


S(s)

∆
= (νx

k−1
— x)(τ@ka.P + s(x; y).(x.S(s) + y.P))

P
∆
= 0

Π
∆
= cS · S(s)



S(s)

∆
= (νx

k−1
— x)(τ@ka.P + s(x; y).(x.S(s) + y.P))

P
∆
= 0

E
∆
= 0

Π
∆
= cS · S(s)



S(s)

∆
= (νx

k−1
— x)(τ@ka.P + s(x; y).(x.S(s) + y.P))

P
∆
= 0

E
∆
= 0

Π
∆
= cS · S(s) || cE ·E



S(s)

∆
= (νx

k−1
— x)(τ@ka.P + s(x; y).(x.S(s) + y.P))

P
∆
= 0

E(e)
∆
= (νx

k+1
— x)e(x; y).(x.E(e) + y.E(e))

Π
∆
= cS · S(s) || cE ·E(e)



S(s)

∆
= (νx

k−1
— x)(τ@ka.P + s(x; y).(x.S(s) + y.P))

P
∆
= 0

E(e)
∆
= (νx

k+1
— x)e(x; y).(x.E(e) + y.E(e))

I(i)
∆
= (νx

k+1
— x)i(x; y).(x.I(i) + y.I(i))

Π
∆
= cS · S(s) || cE ·E(e)



S(s)

∆
= (νx

k−1
— x)(τ@ka.P + s(x; y).(x.S(s) + y.P))

P
∆
= 0

E(e)
∆
= (νx

k+1
— x)e(x; y).(x.E(e) + y.E(e))

I(i)
∆
= (νx

k+1
— x)i(x; y).(x.I(i) + y.I(i))

Π
∆
= cS · S(s) || cE ·E(e) || cI · I(i)



S(s)

∆
= (νx

k−1
— x)(τ@ka.P + s(x; y).(x.S(s) + y.P))

P
∆
= 0

E(e)
∆
= (νx

k+1
— x)e(x; y).(x.E(e) + y.E(e))

I(i)
∆
= (νx

k+1
— x)i(x; y).(x.I(i) + y.I(i))

Π
∆
= cS · S(s) || cE ·E(e) || cI · I(i)



∅

∅

s

s

s

s

s

s

s

e

e

e

e

i

i

i

kr

kr

kr

kr

kr

kr

ki

state-tau

state-bind

gene-new

gene-expr(1)

state-bind

gene-dup

gene-expr(1)

rate-site

Figure 6.1: Evolution of simple enzyme models by means of variation operators. The

model of a standard Michaelis-Menten enzyme is highlighted.

90 Chapter 6. Evolutionary case studies

S∗

S P

E E∗

I I∗

τ@ka

s(x;y)
y

x

e(x;y)

x

y

i(x;y)

x

y

Step 8 The final step is an application of the rate-site op-

erator to the site i. The site affinities are reconfigured in the

affinity network in such a way that i now has an affinity for

the active site of E, rather than that of S. This switch results

in I no longer taking part in the conversion of S into P ; in-

stead, it attempts to bind E and prevent it from interacting

with S, thus fulfilling the definition of a competitive inhibitor.

The underlying genetic cause of this transformation can be, for

example, a point mutation in the fragment of inhibitor gene coding for the active

site of the inhibition protein.

Summary We have presented a trajectory of cπ models of increasing complexity

and functionality obtained strictly by applications of variation operators. Start-

ing with a trivially simple model we have constructed a representation of an

enzymatic reaction, and then further extended it with a competitive inhibition

mechanism. Crucially, every step of this trajectory can be attributed to a genetic

event (but see §5.1.1). We conclude that variation operators rigorously define

a non-trivial, evolutionary meaningful accessibility structure on the space of cπ

models.

6.3 Evolutionary properties of a signalling cascade

In this section we study evolutionary robustness and evolvability of a well-known

biochemical system—the MAPK cascade—by means of massively parallel com-

putational analysis driven by our variation framework. After giving a cπ model of

the MAPK cascade, we systematically reconfigure it with the rate-site opera-

tor (§5.5), yielding approximately 1 million variants, each immediately accessible

from the base model. We then analyse the dynamical behaviour of these variants

and draw conclusions regarding the distribution of fitness amongst them (using

ODE extraction and solving) and perform a qualitative assessment of their sig-

nal processing characteristics (using formal verification of numerical traces with

Linear Temporal Logic). Due to the solid genetic and mechanistic underpinning

of the variation operators (and rate-site in particular), the generated variants

are likely to be representative of the actual evolutionary neighbourhood of the

MAPK cascade. The same cannot be said with the same degree of confidence

about more ad-hoc variation schemes such as single parameter sweeps.

6.3. Evolutionary properties of a signalling cascade 91

Ras

Raf Raf*

PP2A1

MEK MEK* MEK**

PP2A2

ERK ERK* ERK**

MKP3

Figure 6.2: The human MAPK cascade modelled in this chapter. Ras is the input

signal and ERK** is the output. Raf, MEK and ERK proteins form the MAPKKK,

MAPKK and MAPK layers, respectively. Every box is a protein species. Protein

kinases are depicted as rectangular boxes, and phosphotases as ovals. Solid arrows

denote potential transformations and dotted ones represent catalytic activity. Dia-

gram adapted from [113].

6.3.1 Background

Signal transduction is the family of molecular mechanisms by which cells recog-

nise and process external stimuli, eventually converting them into a specific bio-

chemical response, for example modification of expression of a specific gene or

change in activity of a specific enzyme in the cytoplasm [82, Ch. 6]. In a typical

signal transduction scenario, a small signalling molecule called a ligand binds the

outside part of a large transmembrane receptor protein and causes it to change

shape. The new conformation of the in-cell part of the receptor activates an-

other molecule, which in turn reacts with yet another, and so on; eventually

after such a cascade of interactions—which may involve two to a dozen differ-

ent protein species as well as complex control mechanisms such as feedbacks and

feed-forwards—the last protein in the cascade migrates to the nucleus, binds the

DNA and changes the expression of one or more genes. More generally, signal

transduction refers to all information processing in the cell, and thus its impor-

92 Chapter 6. Evolutionary case studies

tance to biology and medicine cannot be underestimated. It is also the prime

application area of process algebras in systems biology, as the copy numbers of

signalling molecules tend to be relatively low, making stochastic simulations (and

in some cases even model checking) computationally tractable.

MAPK cascades The mitogen-activated protein kinase (MAPK) cascades are

an important component of many signal transduction pathways. Found in all

eukaryotes, MAPK cascades help control a number of cellular processes, most

notably cell growth and cell division. Here, we restrict our analysis to a sub-

family of MAPK architectures considered in [70] (Fig. 6.2). The initial signal

promotes the activation (phosphorylation) of an order 3 protein kinase (MAP-

KKK). Once activated, MAPKKK acts as a catalyst for the phosphorylation of

an order 2 kinase (MAPKK). Doubly phosphorylated MAPKK activates (again,

twice) an order 1 kinase (MAPK), which is considered the output signal of the

cascade. Finally, every kinase has a corresponding phosphatase, which performs

the opposite action, namely dephosphorylates its target. This multi-tiered archi-

tecture promotes sensitivity to the signal and reduces response time [70]; as a

result, the pathway operates like a fast, sensitive, amplifying switch. The MAPK

cascade is among the most often modelled and best-understood signalling sys-

tems [110] and often serves—as it does here—as a benchmark for new systems

biology techniques.

Existing work An algebra-based programming language BlenX (see §2.3.3) has

been used to evolve MAPK-like architectures in silico [34, 35, 130]. The initial

population of BlenX models of a disconnected set of cascade proteins undergoes

thousands of rounds of simulated evolution. In every round, an individual pro-

gram can change along specific mutation schemes very similar to our own variation

operators. After mutations, the fitness of every individual is assessed using a sim-

ple formula promoting speed and strength of cascade’s response to changes in the

input signal. Individuals with high fitness have a greater chance of progressing to

the next round. The original cascade architecture was not reconstructed in this

experiment, but several different architectures with comparably high fitness were

found.

From the point of view of this dissertation, the BlenX experiment is notable not

because of its results, but because the approach taken is related to our own. The

authors have designed and implemented a number of syntactical modifications of

6.3. Evolutionary properties of a signalling cascade 93

BlenX programs with the explicit purpose of modelling of genetic events; these

include duplication and loss of proteins and domains as well mutations of indi-

vidual domains. The BlenX variation scheme is specifically designed to model

evolution of signalling pathways, and explicitly constrains syntactic variation in

order to avoid the events-effects mismatch (§5.1.1). Hence, it is less general and

almost certainly less expressive than the variation operators we use in this the-

sis, but it offers stronger guarantees of biological correctness and relevance in its

chosen application domain.

6.3.2 A cπ model of the MAPK cascade

Trusting that the reader is by now familiar with the general structure of cπ models

as well as with the basic shape of the MAPK cascade, we do not describe the

cπ model of the MAPK cascade (Fig. 6.3) in detail, but focus on the aspects

that are of importance for the variation experiments. First, however, we point

out that this model can be built from the empty one (∅,∅, 1 · 0) by applications

of variation operators. One possible sequence consists of 7 applications of the

gene-new operator establishing ancestral forms of the kinases, phosphotases

and Ras, followed by a single use of state-tau introducing the degradation

of Ras, followed by 16 applications of state-bind introducing the 16 protein

active sites as well as the correct complex formation/dissociation patterns, and

terminated by 7 applications of gene-expr(1) establishing the initial state of

the system. Once more we see that variation operators are powerful enough to

generate models of real biological significance.

Handles and sites The handles of species definitions in the MAPK model con-

sist of a species name followed by zero, one or two asterisks denoting the phospho-

rylation level; thus MEK∗∗ stands for the doubly-phosphorylated MEK protein.

A similar convention is followed for the global names (physical sites): if a par-

ticular protein in a particular state exposes only one active site, the name of

that site is the lowercase version of the corresponding definition handle. When

two sites are exposed, one is invariably the kinase active site and the other the

phosphotase-binding site; the former is again the lowercase of the definition han-

dle, and the latter is the lowercase equipped with the subscript –b. Thus, erk∗b is

the phosphotase-binding site on the surface of the singly-phosphorylated ERK.

94 Chapter 6. Evolutionary case studies

Rates and dynamics All site affinities are set to the unit value 1.0; this applies

to local affinity networks as well. The kd degradation rate of Ras is also set to

1.0. The initial concentrations of species are: 2.0 for Ras, PP2A1, PP2A2, and

MKP3; 10.0 for Raf, MEK and ERK; and trace amount 0.01 for all other species

(not shown in Fig. 6.3). The model gives rise to a set of 23 ODEs, which we solve

numerically over 72 time units, with 10 equally spaced integration points per

unit. The result is, therefore, a 720-entries-long time series. The initial signal—

defined as the combined concentrations of free Ras and the Ras-Raf complex—

decays rapidly and is followed by a well-defined peak of the output (free ERK**);

see Fig. 6.4 for the graph. The signal is not amplified and is not transduced

particularly fast in this model, but we can conclude that the cellular behaviour

is reproduced satisfactorily for our purposes.

6.3.3 Computational experiments

In this section we describe our study of robustness and evolvability of the MAPK

cascade in the context of a particular kind of genetic perturbations—namely, mu-

tations affecting individual active sites of cascade proteins. Recall from the pre-

vious chapter that the variation operator modelling this kind of genetic change is

rate-site (§5.5). Starting with the cπ model of the MAPK cascade described

above (Fig. 6.3), we systematically reconfigure its global affinity network using

the rate-site operator and analyse the resulting variants. We limit ourselves

to all possible reconfigurations that can be obtained by a single application of

rate-site to the initial model and where the affinities remain either 0.0 or 1.0;

hence, we obtain 220 = 1048576 variants (16 individual sites to reconfigure × 216

possible reconfigurations of each).

For every variant we detect its phenotype class and compute its fitness correlate

(henceforth fitness for short). These are qualitative and quantitative analyses,

respectively, and we perform them using different computational techniques.

Phenotype classes We classify the solutions of ODE systems (and thus the

underlying models) in four exclusive groups according to the qualitative charac-

teristic of the numerical trace corresponding to the output signal of the cascade

variant. The classes correspond to oscillatory, peak, switch and noise responses.

We are inspired here by an earlier study [136], where similar classification—

albeit using different methods—was performed exhaustively on the space of small

6.3. Evolutionary properties of a signalling cascade 95

R
as

∆ =
(ν
x

—
x

)r
as

(x
;y

).
(x
.R

as
+
y
.R

as
)

+
τ
@
k
d
.0

R
af

∆ =
(ν
x

—
x

)r
af

(x
;y

).
(x
.R

af
+
y
.R

af
∗)

R
af
∗

∆ =
(ν
x

—
x

)(
ν
z

—
z)

(r
af
∗ (
x

;y
).

(x
.R

af
∗

+
y
.R

af
∗)

+
ra

f∗ b
(z

;y
).

(z
.R

af
∗

+
y
.R

af
))

P
P

2A
1

∆ =
(ν
x

—
x

)p
p2

a1
(x

;y
).

(x
.P

P
2A

1
+
y
.P

P
2A

1)

M
E

K
∆ =

(ν
x

—
x

)m
ek

(x
;y

).
(x
.M

E
K

+
y
.M

E
K
∗)

M
E

K
∗

∆ =
(ν
x

—
x

)(
ν
z

—
z)

(m
ek
∗ (
x

;y
).

(x
.M

E
K
∗

+
y
.M

E
K
∗∗

)
+

m
ek
∗ b(
z;
y
).

(z
.M

E
K
∗

+
y
.M

E
K

))

M
E

K
∗∗

∆ =
(ν
x

—
x

)(
ν
z

—
z)

(m
ek
∗∗

(x
;y

).
(x
.M

E
K
∗∗

+
y
.M

E
K
∗∗

)
+

m
ek
∗∗ b

(z
;y

).
(z
.M

E
K
∗∗

+
y
.M

E
K
∗)

)

P
P

2A
2

∆ =
(ν
x

—
x

)p
p2
a
2(
x

;y
).

(x
.P

P
2A

2
+
y
.P

P
2A

2)

E
R

K
∆ =

(ν
x

—
x

)e
rk

(x
;y

).
(x
.E

R
K

+
y
.E

R
K
∗)

E
R

K
∗

∆ =
(ν
x

—
x

)(
ν
z

—
z)

(e
rk
∗ (
x

;y
).

(x
.E

R
K
∗

+
y
.E

R
K
∗∗

)
+

er
k∗ b

(z
;y

).
(z
.E

R
K
∗

+
y
.E

R
K

))

E
R

K
∗∗

∆ =
(ν
x

—
x

)e
rk
∗∗

(x
;y

).
(x
.E

R
K
∗∗

+
y
.E

R
K
∗)

M
K

P
3

∆ =
(ν
x

—
x

)m
kp

3(
x

;y
).

(x
.M

K
P

3
+
y
.M

K
P

3)

Π
∆ =

1
0
.0
·R

a
f
||

2
.0
·R

a
s
||

1
0
.0
·M

E
K
||

1
0
.0
·E

R
K
||

2
.0
·P

P
2
A
1
||

2
.0
·P

P
2
A
2
||

2
.0
·M

K
P
3

ra
s

ra
f

ra
f∗

ra
f∗ b

pp
2a

1

m
ek

m
ek
∗

m
ek
∗ b

m
ek
∗∗

m
ek
∗∗ b

pp
2a

2

er
k

er
k
∗

er
k
∗ b

er
k
∗∗

m
kp

3

F
ig

ur
e

6.
3:

A
cπ

m
o

de
l

of
th

e
M

A
P

K
ca

sc
ad

e.
S

it
e

affi
ni

ti
es

,
ar

gu
m

en
ts

of
de

fi
ni

ti
on

s
an

d
in

it
ia

l
(t

ra
ce

)
co

nc
en

tr
at

io
ns

of
ph

os
ph

or
yl

at
ed

pr
ot

ei
ns

om
it

te
d

fo
r

re
ad

ab
ili

ty
.

96 Chapter 6. Evolutionary case studies

abstract signalling networks. We characterise each class by a Linear Temporal

Logic formula, and thus the classification amounts to checking whether the time

series of ERK** satisfies it. The formulae are:

oscil(e)
df
= F(e < 0.5 ∧ F(e > 1.5 ∧ F(e < 0.5 ∧ F(e > 1.5 ∧ F(e < 0.5))))) (6.1)

peak(e)
df
= not oscil(e) ∧ e < 0.5 ∧ F(e > 1.5 ∧ F(G(e < 0.5))) (6.2)

switch(e)
df
= e < 0.5 ∧ F(G(e > 1.5)) (6.3)

noise(e)
df
= not oscil(e) ∧ not peak(e) ∧ not switch(e) (6.4)

The low and high threshold values 0.5 and 1.5 are calibrated to put the starting

model comfortably into the peak category. A more sophisticated approach using

the QFLTL logic [44] to infer the threshold values for which a given trace satisfies

a formula, is also possible.

Fitness We use a simplified version of the fitness measure used in the BlenX

studies (§6.3.1). Given a time series e = (e1, . . . , e720) of the concentration of

ERK** in the analysed variant of the cascade, the fitness of this variant is defined

by

fitness(e)
df
=

135∑
i=1

ei −
720∑
i=302

ei (6.5)

The contribution of the first sum rewards a quick and strong response to the input

signal. Similarly, the second sum penalises slow or incomplete switching off of the

output signal (Fig. 6.4). The cut-off values 135 and 302 are the time points where

the rapidly decaying input signal reaches 1/16th and 1/256th, respectively, of the

initial value. These values are chosen arbitrarily and represent instants when the

signal is considered seriously weakened and completely absent, respectively. In

the BlenX studies, the signal was constant and was switched off at a predefined

point, giving rise to more natural cut-off points.

Execution The problem was split into 16 obvious subtasks, one for every site

in the network. The procedure given below was the same for each subtask. A

simple Haskell program generated all possible 216 = 65536 reconfigurations of

the site. These were catenated, one-by-one, with a fixed species definitions file

containing the definitions from Fig. 6.3 and passed to the prototype cπ tool

(§4.4.1), which generated one ODE system for every variant. The resulting 65536

6.3. Evolutionary properties of a signalling cascade 97

2

1.5

1

0.5

0
3020100 40 50 60 70

Figure 6.4: The input and output signal of the base MAPK model, and the fitness

computation principle. The dotted line is the input (Ras) and the solid one is the

output (ERK**). The fitness is the green area (left) minus the red area (right).

ODE systems were grouped in 128 batches of 512 scripts and solved using Octave

on the Edinburgh Compute and Data Facility [40] parallel cluster. The solutions

were then processed by another script containing a simple LTL checker and a

fitness computation function.

Creation of Octave scripts took on average 2 hours, solving ODEs an hour, and

LTL checking and fitness computations, which were not parallelised, further two

hours (times per subtask). Given that all three steps of this procedure can be

further optimised, it seems safe to conclude that 2 orders of magnitude more

variants can be assessed effectively, which in case of this particular model means

that a much more comprehensive network sampling could be performed.

Results and discussion Results of the experiment are summarised in Figs. 6.5–

6.7. The first observation is that oscillatory behaviour is completely absent: not

a single mutant satisfies the oscil formula in Eq. (6.1). There are indications

that oscillatory behaviour, while rare, does arise in small protein networks via

qualitative changes to the network topology only [136]. The fact that we obtained

no oscillatory dynamics in our experiment underlines the contribution of species

definitions to the overall structure of the network.

Secondly, the peak phenotype is maintained by a non-trivial fraction of mu-

tants, indicating a degree of robustness of the cascade’s basic function to changes

in protein binding affinities. The robustness of individual sites varies, how-

ever (Fig. 6.7). Furthermore, 45% of all mutants have the switch phenotype,

98 Chapter 6. Evolutionary case studies

3000 2500 2000 1500 1000 500 0 500
0

500

1000

1500

2000

2500

3000

3500

3000 2500 2000 1500 1000 500 0 500
0

500

1000

1500

2000

2500

3000

3500

ras
similar: raf ∗,raf ∗b , mek∗b ,

mek∗∗,mek∗∗b , erk∗b ,
and erk∗∗

mek
similar: erk and mkp3

(a) (c)

3000 2500 2000 1500 1000 500 0 500
0

500

1000

1500

2000

2500

3000

3500

5000 4000 3000 2000 1000 0 1000
0

10000

20000

30000

40000

50000

pp2a1
similar: raf,mek∗, pp2a2 and erk∗

all

(b) (d)

Figure 6.5: Three typical fitness distributions of variants of specific sites (a)–(c) and

the distribution of fitness of all mutants (d). Regions of the distribution contributed

by variants satisfying the peak formula (6.2) are marked in green. The red vertical

line gives the position of the initial model. All histograms are made using 500 evenly

sized bins; spikes in (a) and (d) reach 3.0e+4 and 3.0e+5, respectively; note the

different scale used in (d).

meaning that this kind of response is readily accessible from the current archi-

tecture.

Thirdly, the 16 binding sites can be organised in three categories, according to

the fitness distributions of associated mutants (Fig. 6.5). The sites of the first

kind (Fig. 6.5a) are robust to reconfiguration and the corresponding histogram

is concentrated close to the fitness of the initial model. Mutants of the sites

of the second kind (Fig. 6.5b) typically belong to one of two very low fitness

regimes. These low fitness groupings are also present in the distributions of the

third kind (Fig. 6.5c), but here there is also a non-trivial fraction of mutants—

composed exclusively of variants satisfying the peak formula in Eq. (6.2)—with

fitness higher than that of the initial model.

6.3. Evolutionary properties of a signalling cascade 99

ra
s

ra
f

ra
f∗

ra
f∗ b

pp
2a

1

m
ek

m
ek
∗

m
ek
∗ b

m
ek
∗∗

m
ek
∗∗ b

pp
2a

2

er
k

er
k∗

er
k∗ b

er
k∗
∗

m
kp

3

ras

raf

raf ∗
raf ∗b

pp2a1

mek

mek∗
mek∗b

mek∗∗
mek∗∗b

pp2a2

erk

erk∗
erk∗b

erk∗∗
mkp3

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

ra
s

ra
f

ra
f∗

ra
f∗ b

pp
2a

1

m
ek

m
ek
∗

m
ek
∗ b

m
ek
∗∗

m
ek
∗∗ b

pp
2a

2

er
k

er
k∗

er
k∗ b

er
k∗
∗

m
kp

3

ras

raf

raf ∗
raf ∗b

pp2a1

mek

mek∗
mek∗b

mek∗∗
mek∗∗b

pp2a2

erk

erk∗
erk∗b

erk∗∗
mkp3

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 6.6: Distribution of edges in the advantageous mutants (left) and in the

leftmost peak of the low-fitness mutants of pp2a1 (right). Every square is an edge,

and the colour gives its frequency in the analysed group of mutants. Edges present

in the affinity network of the base model are marked with a small white dot.

In order to establish the cause of the two low-fitness peaks and the mechanisms

conferring fitness advantage, we have filtered out the variants belonging to these

fitness regimes and analysed the frequencies of individual edges in their affin-

ity networks (Fig. 6.6). It turns out that the low fitness mutants of the pp2a1

site are more likely to have the pp2a1–raf and less likely to have the pp2a1–raf ∗b
connection than average. Hence, low fitness of these mutants is due to PP2A1

not fulfilling its primary rôle as the Raf-specific phosphotase and/or preventing

Raf from activating by binding it temporarily. The separation into two peaks is

governed by the status of the pp2a1–erk∗∗ connection: the variants that evolved

it belong to the higher-fitness peak, the ones that did not—to the other. There

appears to be no single mechanism behind an increase in fitness, but feed-forward

(e.g. raf ∗–erk) and extra dephosphorylation reactions (e.g. erk∗–mek∗b) are com-

mon.

Lastly, the histogram of fitness of all mutants (Fig. 6.5d) is again concentrated

around the fitness of the initial model, but has also a non-trivial fraction of

mutants of low fitness. Admittedly, this distribution does not resemble the gamma

or log-normal distributions postulated in biological literature, but it does exhibit

at least two properties generally expected of distributions of mutational effects:

a vast majority of mutations are deleterious, and most have little impact on

fitness [42].

100 Chapter 6. Evolutionary case studies

Summary We have performed a large-scale computational exploration of evo-

lutionary characteristics of the immediate evolutionary neighbourhood of an im-

portant biochemical system. We have used the framework of variation operators

to generate a sample of this neighbourhood and relied on the separation of syntax

and semantics in cπ to perform two very different kinds of analysis on it. We have

exhibited fragments of neutral spaces of cascade models using LTL checking and

provided a finer-grained, quantitative analysis of the same using ODE solving.

The results we have obtained are a healthy mix of the expected and the surpris-

ing, which further increases our confidence in the soundness and usefulness of the

framework of variation operators.

6.3. Evolutionary properties of a signalling cascade 101

p
h
en

ot
y
p

e
cl

as
s

fi
tn

es
s

co
rr

el
at

e

%
m

u
ta

n
ts

p
ea

k
m

u
ta

n
ts

on
ly

al
l

m
u
ta

n
ts

p
ea

k
os

ci
l

sw
it

ch
n
oi

se
m

ea
n

m
ed

ia
n

st
d
.

d
ev

.
m

ea
n

m
ed

ia
n

st
d
.

d
ev

.

ra
s

24
.2

1
0.

00
0.

00
75

.7
9

-3
3.

94
-3

4.
16

24
.3

4
-1

4.
60

0.
09

22
.1

5

ra
f

0.
00

0.
00

99
.9

0
0.

10
N

/A
N

/A
N

/A
-1

99
2.

59
-2

00
1.

40
25

9.
08

ra
f∗

2.
44

0.
00

17
.0

1
80

.5
5

23
.8

9
16

.2
9

40
.2

6
-2

46
.1

0
0.

19
58

4.
34

ra
f∗ b

0.
61

0.
00

0.
01

99
.3

8
10

.5
1

30
.5

1
92

.7
1

3.
02

1.
56

29
.3

7

pp
2a

1
12

.3
9

0.
00

81
.0

3
6.

58
-4

38
.2

9
-4

34
.1

5
23

6.
40

-1
74

0.
54

-1
90

2.
03

65
1.

19

m
ek

19
.8

2
0.

00
75

.8
6

4.
32

-6
4.

02
-2

8.
72

15
5.

47
-1

30
5.

92
-1

68
8.

53
74

3.
11

m
ek
∗

4.
51

0.
00

91
.7

8
3.

71
-6

86
.6

9
-7

09
.3

2
29

8.
18

-1
91

8.
09

-1
99

3.
59

41
9.

05

m
ek
∗ b

0.
52

0.
00

11
.5

3
87

.9
5

23
.0

8
33

.0
2

40
.1

5
-2

20
.6

7
-2

6.
47

38
7.

81

m
ek
∗∗

1.
41

0.
00

9.
39

89
.2

0
-1

75
.5

9
-1

09
.5

1
19

7.
79

-1
43

.0
4

0.
10

41
3.

45

m
ek
∗∗ b

0.
05

0.
00

0.
73

99
.2

2
-6

9.
35

-9
6.

01
77

.5
1

-1
5.

47
2.

09
11

6.
58

pp
2a

2
9.

25
0.

00
86

.4
8

4.
27

-3
80

.3
1

-3
57

.0
5

23
7.

78
-1

91
2.

88
-2

06
5.

28
63

2.
26

er
k

16
.5

7
0.

00
69

.4
8

13
.9

5
48

.0
4

64
.0

4
67

.4
3

-7
17

.6
8

-9
31

.5
4

51
2.

89

er
k∗

9.
50

0.
00

87
.8

9
2.

62
-3

51
.4

0
-3

23
.4

9
26

8.
31

-1
94

5.
92

-2
15

5.
53

64
7.

28

er
k∗ b

0.
61

0.
00

3.
59

95
.8

0
-1

23
.2

6
-1

05
.6

0
11

0.
36

-1
68

.0
5

-1
29

.6
5

21
0.

46

er
k∗
∗

0.
05

0.
00

0.
55

99
.4

0
-1

92
.4

1
-1

95
.7

3
15

7.
44

-7
2.

13
-4

0.
21

11
5.

26

m
kp

3
10

.2
8

0.
00

88
.2

0
1.

52
-2

30
.6

3
-2

09
.3

7
20

7.
78

-2
85

3.
67

-3
10

0.
71

11
98

.0
7

ov
er

al
l

7.
01

0.
00

45
.2

2
47

.7
7

-1
72

.0
8

-5
6.

78
26

4.
22

-9
54

.0
8

-3
41

.5
7

10
78

.1
0

F
ig

ur
e

6.
7:

S
im

pl
e

st
at

is
ti

cs
of

ph
en

ot
yp

e
an

d
fi

tn
es

s
di

st
ri

bu
ti

on
s.

Chapter 7

Conclusions

In this chapter we summarise and evaluate the work contained in this dissertation.

The main conclusion we offer is that a process algebra can successfully serve

as a generic, formal and computational framework for the study of evolution of

molecular networks. The features we identified in the Introduction as potentially

conducive to this application have all proved very useful indeed. We have used

the syntax/semantics separation to ensure that variation operators are oblivious

to the effect they have on the dynamics of the model. The process-as-molecule

abstraction has enabled us to model the evolutionary changes directly as formal

transformations of species and processes. Finally, the ability to generate multiple

analyses from a single description has allowed us to study variants of an impor-

tant molecular pathway qualitatively and quantitatively in a single computational

experiment. Overall, we are confident that the application of process algebras in

theoretical evolutionary biology along the lines presented in this thesis is an idea

worth pursuing well beyond our initial investigation.

This approach is not without problems, however. In particular, process-algebraic

models of biochemical systems tend to be unnecessarily complicated and idiosyn-

cratic, which has a negative impact on their accessibility and adoption by a wider

scientific community. The technical manipulations necessary to rigorously de-

fine models of evolutionary variation are even more off-putting, as the reader

probably agrees having seen Ch. 5 of this dissertation. It is unclear at present

whether the unique features of process algebras, such as compositionality and be-

havioural equivalences, eventually outweigh these shortcomings; we discuss these

issues in more detail below (§7.1.2). This chapter contains also a more detailed

survey of the contributions of this work (§7.1.1) and proposes future research

directions (§7.2).

103

104 Chapter 7. Conclusions

7.1 Evaluation

7.1.1 Contributions

A novel process algebra The first major contribution of this thesis is a novel

process algebra for biochemical modelling: the continuous π-calculus. Its us-

ability for general-purpose dynamic modelling of molecular pathways is on a par

with that of the π-calculus, and is certainly greater for model perturbation exper-

iments. Both claims are well-supported by the KaiABC model and its analysis.

The organisation of names in affinity networks affords a considerable flexibility

to the interaction patterns of species, which in turn makes cπ a good platform for

the development of a formal treatment of mutations. The novel continuous-state

and time semantics developed to reduce the computational cost of quantitative

evaluation of multiple variants of the same model serves this purpose well, as

evidenced by the analysis of mutants of the MAPK cascade.

Two properties of cπ semantics are of additional interest from a more theoretical

point of view. The first one is the ability to extract systems of ODEs from cπ

models in a fully compositional fashion, potentially reducing the computational

cost of extraction, and the related possibility of approximating of infinite sets of

ODEs with sequences of finite ones (§3.4). The other is the separation of the

overall dynamics of a composite process into the autonomous contributions of

its components and the emergent behaviour due to their cross-interaction. This

separation, best visible in Eq. (3.22), provides the modeller with extra information

about the dynamics of his model.

A setup for evolutionary analysis The other major contribution of this dis-

sertation is the framework of variation operators. The operators defined in this

thesis cover a number of qualitatively distinct mutational effects and are ex-

pressive enough to generate models of considerable complexity and biological

interest, such as the enzyme inhibition and MAPK cascade models. They also

largely avoids the major pitfall of in silico evolution of complex models: confu-

sion of mutational events with mutational effects. Every operator is associated

with a genetic event, and thus the structure they give to the space of models has

evolutionary relevance.

This structure is the key ingredient of the theory of neutral spaces [152], and

thus we have succeeded in recasting this framework in process-algebraic terms.

7.1. Evaluation 105

Although we have not exhibited entire neutral spaces of MAPK models in our

experiments, we have shown that it is both conceptually possible and compu-

tationally feasible. In the same experiment we have evaluated an abstract fit-

ness function for variants of a MAPK cascade model, thus complementing the

qualitative LTL analysis. The theoretical setup provided by cπ and variation

operators is thus capable of analysing non-trivial evolutionary properties of com-

plex genotype-phenotype relationships, and as such has its place in theoretical

evolutionary developmental biology.

Models of biochemical systems We have built relatively large cπ models of

two biochemical systems: the KaiABC circadian clock and the MAPK cascade.

Although their primary purpose have been demonstration of the features of cπ

and variation operators, they are fully functional and form a good starting point

for a more advanced analysis of these systems. They should be viewed, therefore,

as secondary contributions of this thesis.

7.1.2 Problems

We now highlight two major issues with process-algebraic modelling of biochem-

ical systems. They are not specific to the continuous π-calculus or aggravated

by the application to evolutionary biology. It is nevertheless important to make

them explicit here, because they do have a bearing on our work.

Molecules do not pass names The ability to dynamically form complexes via

private name passing is a major advantage of π-related process algebras over

other calculi for biology. This mechanism, however, has two major negative

consequences from the point of view of the modeller. The first one is that in order

to ensure that the constituents of a complex are not treated separately, they both

have to use the shared name(s) as communication capabilities, even if there is

no other reason for doing so. While the modeller is often able to accommodate

this requirement without distorting the behaviour of the model, the mere need

for such an accommodation is an unnecessary complication. The second problem

is that scope extrusion quickly leads to illegible models, which severely limits

its usability as a primitive modelling concept, especially with complexation being

such an ubiquitous molecular event. In short, complex formation should in future

be modelled by a dedicated construct, preserving the advantages of private name

106 Chapter 7. Conclusions

passing (in particular the capacity for dynamic formation of complexes), but

doing away with the flaws outlined above.

Defining features of process algebras are underused Why use process al-

gebras for biological modelling in the first place? We have argued previously

that they offer an attractive combination of properties: formality, succinctness,

compositionality, model checking opportunities, behavioural equivalences and the

syntax-semantics separation. However, at least three of the above have had very

little impact on biological modelling so far. Compositionality has an undeniable

potential for knowledge organisation, and yet we are not aware of any mod-

elling efforts where it played an essential rôle. Quantitative model checking of

non-trivial biological models is currently intractable. Lastly, biologically relevant

behavioural equivalences are still in their infancy. Formality and succinctness are

of course very important and advantageous, and a lot of work—including this

thesis—makes good use of the clear separation of syntax and semantics, even if it

is not explicitly acknowledged. However, should only these three features prove

truly important in biological modelling, we are likely to see process algebras re-

placed with less idiosyncratic, purpose-built formal languages for biology.

7.2 Future work

In this section we outline promising and important directions of future research.

The main continuation of this dissertation should be, of course, development of

additional variation operators and study of important evolutionary questions.

Here, we focus on less obvious challenges instead.

7.2.1 A better continuous π-calculus

Better theory The presentation of the continuous π-calculus offered in this

dissertation constitutes a major improvement over the early version [88], but

we believe that further enhancements are possible and desired. As an example,

consider the concept of compatibility of concretions (Def. 3.3.2): two concretions

are compatible iff they have complementary lengths of their send/receive name

vectors. This notion is required by the polyadic synchronisation paradigm we

implemented. We did use polyadic name passing in our models, but it was never

7.2. Future work 107

essential. However, the mere fact that two concretions may be incompatible

means that any variation in the connectivity structure of names (global affinity

network) may be constrained for purely technical reasons, which is unacceptable.

The obvious solution is to abandon polyadic name passing, but retain symmetric

prefixes, thus forcing every name to send one and receive one name and making

all concretions compatible. Similar imperfections and “frozen accidents” affect

other aspects of cπ, and the next version of the calculus should do away with

them as well.

Better support The cπ software tool (§4.4.1) requires a complete reimplemen-

tation. The next version should properly recognise equivalent species, accept

literate (programming-language style) and brief (process-calculus style) model

descriptions, and, above all, compile cπ models to a range of target formalisms

and analyses, necessarily including ODEs, stochastic simulations, sets of chemical

reactions and SBML.

7.2.2 Infinitely supported processes

The π-calculus and its variants have the unique capacity to generate unbounded

numbers of non-equivalent processes from finite descriptions. The corresponding

set of ODEs, which consists of one equation per molecular species present at

any point of the dynamic evolution of the system, may therefore be infinite. It is

unclear how to handle infinite sets of nonlinear ODEs, in particular what to expect

from their solutions, when there are any. This is why we chose conservatively

P df
= R(S#) as our process space rather than one of its better behaved subspaces:

Pfin

df
= {p ∈ P : supp(p) is finite} or one of Pn

df
= {p ∈ P :

∑
A∈S# p(A)n < ∞}.

Admittedly, these issues have little importance in modelling, where the number

of molecular species involved is usually finite; polymerisation stands out as the

only possible exception to that rule. From the theoretical perspective, however,

they are very important, particularly because the ability to generate unbounded

numbers of species confers Turing universality on biochemistry [25].

In order to give a satisfactory account of infinite and potentially infinite processes,

one has to find a suitably normed subset of P to serve as process space and to

generalise cπ semantics to operate on it. It can be shown that neither Pfin nor

any Pn with the standard norms can play that rôle: d–
dt

is nowhere continuous

on the former, and ∂– � ∂– is not always defined on the latter. A recent article

108 Chapter 7. Conclusions

addresses similar questions in the context of the stochastic π-calculus [24]. A

complementary task is to provide syntactic conditions on definitions of species

under which the corresponding set of ODEs is finite, or is guaranteed to have a

solution. Here, the recent work on π to Petri Net translations [96] and the fluid

spatial π-calculus [141] may be good places to start.

7.2.3 A dedicated cπ logic

for Chris Banks

The non-standard continuous semantics of cπ open intriguing opportunities for

model checking of cπ models using continuous logics. Here we suggest a dedicated

logic based on LTL that can greatly extend the applicability of cπ to the study

of biochemical systems.

A proposal for the syntax of such logic can be found in Fig. 7.1. The formulae

are built of polynomials over real variables, real constants, concentrations of

species (e.g. [S]), their gradients (˙[S]) and site affinities (Aff (a, b)). Apart from

standard boolean connectives, first-order quantification over reals and names,

and the bounded LTL “future” quantifier, the logic has two novel quantifiers.

The first is similar to the “future” quantifier, but the behaviour of the system

is assessed in the presence of an extra agent: the model (D, N, P) satisfies the

formula Fc·at φ if P reaches, within t time units and in the continued presence of

the process c · a.0, a state satisfying φ. The other quantifier is concerned with

extensions of affinity networks: the model (D, N, P) satisfies the formula Nxφ if,

for any f , (D, N⊕f x, P) satisfies φ. Working in tandem, the two novel quantifiers

can express a range of complex properties, e.g.

∀c>100 Nx(Aff (x, a) > 2.0 =⇒ Fc·xt φ) (7.1)

Depending on the meaning of φ, the above formula can be interpreted e.g. in a

general biochemical/drug design context (“If we introduce an agent interacting

with the site a at a basal rate greater than 2.0 in a concentration greater than

100, then the system reaches the healthy state φ within time t”), but also in

an evolutionary one (“If a protein with a site capable of interacting with a at

a rate greater that 2.0 evolved, then when expressed above the concentration of

100 units, it would cause the protein network to reach the novel state φ within

time t”).

7.2. Future work 109

name ::= a, b, ..., x, y, ...
prefix ::= (νM)a(~x, ~y) M,~x, ~y may be null

real variable ::= r, s, ...
constant ::= r, s, ... r, s ∈ R
quantity ::= [S], [Ṡ], Aff (a, b) S species, a, b names
expr ::= real variable

| constant
| quantity
| f(expr, ..., expr) f : Rn → R poly.

formula ::= (name = name)

| expr > 0

| ¬ formula

| formula ∨ formula

| ∃real variable formula

| ∃name formula

| Fconstant formula

| Fconstant · prefix
constant formula

| Nname formula

Figure 7.1: The syntax of the proposed cπ logic.

In order to formally define the satisfaction relation, we believe that cπ processes

should be given semantics in terms of flow lines in a topological vector space. This

can either be the Euclidean space Rn, if the processes can be guaranteed to give

rise to finitely many prime species, or an infinitely-dimensional Banach space.

Thus, we see solving the problem posed in §7.2.2 as a prerequisite for developing

a dedicated cπ logic. Once a satisfaction relation is defined, it may be possible to

develop a model checking algorithm using the exact real arithmetic and interval

analysis techniques, in particular the work of Edalat and Pattinson [38, 39].

7.2.4 Richer affinity networks

We have identified two possible improvements of the affinity network concept. As

they are independent, we discuss them separately.

Typed sites The first improvement consists of requiring names to carry an ab-

stract type. A type should be a reflection of the biochemistry of the protein

110 Chapter 7. Conclusions

active site modelled by the name, or of similar domain-specific knowledge. Any

two names can only be connected by an edge in an affinity network if they are of

complementary types. This requirement would provide a mechanism for exclud-

ing biologically unrealistic or uninteresting interaction patterns from the analysis.

To see why this may be useful, cast your mind back to the analysis of MAPK

cascade variants. It turns out that in the fittest of all mutants the mek site is

connected to the erk* site; upon interaction of these two sites, both MEK and

ERK* are phosphorylated, which is not biologically realistic. One can of course

manually or semi-automatically remove the troublesome variants, as was done in

the BlenX studies (§6.3.1), but a more general approach such as the one described

above would definitely constitute an improvement.

More kinetic laws At present, all reactions in cπ follow the Law of Mass Action.

While this is assumed to faithfully reflect the low-level molecular kinetics and

does not preclude the emergence of more complex dynamical behaviour (see e.g.

the Michaelis-Menten kinetics exhibited by our enzyme example), it is still a

serious limitation, because the exact configuration of the underlying mass-action

reactions may be unknown or simply unimportant (§2.2.2). The solution is to

allow names to interact according to arbitrary kinetic laws; this functional rate

approach has already been used in Bio-PEPA (see §2.3.3) for the same reason.

It can be implemented in cπ by labelling the edges of affinity networks with

indication and parameters of a kinetic function. While straightforward from the

syntactic point of view, this modification would have far-reaching consequences

for the semantics. In particular, the interaction function – � – would not be

bilinear anymore and the crucial Thm. 3.3.16 would have to be proven anew.

Appendix A

Proof of Theorem 3.2.8

In this appendix we give a detailed proof of Thm. 3.2.8 (page 33).

Statement For every A ∈ Spec, there exists a unique multiset primes(A) =

{|A1, . . . , An|} ⊂ S# called the prime species decomposition of A, such that

A ≡ A1 | . . . | An.

Related work Moller and Milner [100] prove a similar decomposition result for

the CCS process algebra. However, they decompose processes with respect to

bisimulation, and not structural congruence. As a result, their proof is difficult

to adapt to our case.

Luttik and van Oostrom [92] give general conditions for a commutative monoid

(in our case 〈S, |,0〉) to have the unique decomposition property. While we

would very much like to use this work, the necessary conditions (in particular a

cancellation law: A|B ≡ A|C implies B ≡ C) appear to be as hard to prove in

our case as the main result.

In view of the abovementioned issues, we give a direct proof.

Proof idea and outline It is a common proof technique for equational speci-

fications of syntactic relations (such as ≡) to direct all the equations and thus

turn the specification into a term rewriting system. If the system is terminating

and confluent then every term has a unique normal form which can be taken as

a canonical representative of the equivalence class of the relation under study.

111

112 Appendix A. Proof of Theorem 3.2.8

In our case, we would like to have a rewrite system on Spec such that its unique

normal forms are parallel compositions of prime species. Unfortunately, it turns

out that some of the rules defining ≡, most notably the associativity of |, have to

be used in both directions to properly extract prime components, while others (es-

pecially commutativity of Σ) are not necessary at all for this task. Unfortunately,

if a rule can be used in both directions, the rewrite system is not terminating.

The main idea of the proof is to use these problematic rules to define a subrelation

∼ of ≡ and direct the remaining ones to give a terminating and confluent rewrite

system on Spec modulo ∼. The normal forms of this system still correspond

to prime decompositions and are unique, thus yielding the desired result. The

price to pay is the technical nature of the proof, arising from juggling three

congruences on Spec: the equality =, the auxiliary relation ∼ and the structural

congruence ≡.

The entire discussion above applies to the proof of uniqueness of prime decompo-

sitions. Showing existence does not pose a major problem, and we give a simple

proof in Thm. A.1.

The remainder of this appendix is structured as follows:

(i) (existence) We show (A.1) that every species has a prime decomposition.

(ii) We define (A.2) an auxiliary congruence ∼ on Spec such that ∼⊂≡ (A.3).

(iii) We define (A.5) a terminating and confluent (A.6) reduction system on S
modulo ∼.

(iv) We prove that if A ≡ B, then A and B have the same normal forms (A.8).

(v) (uniqueness) We prove that any two prime decompositions of a given

species are equal by exploiting the fact that their normal forms are (A.9).

Theorem A.1. Let A ∈ Spec. There exists a multiset {|A1, . . . , An|} ⊂ S# such

that A ≡ A1| · · · |An.

Proof. There is a simple procedure for constructing a prime decomposition. If

A ≡ 0, take ∅. If A 6≡ 0, begin with {|A|}; if A is prime, we’re done. If not,

A ≡ B|C for B,C 6≡ 0, so we take {|B,C|}. If B and C are prime, we’re done;

if not, they can be decomposed again, and so on. It remains to show that this

procedure terminates. Towards this goal, define a measure µ : Spec→ N by

113

µ(A)
df
=



0 A = 0

1 A = D(~x) or A = Σn
i=0πi.Ai

µ(B) + µ(C) A = B|C

µ(B) A = (νM)B

Observe that (1) µ(A) = 0 iff A ≡ 0, and (2) if A ≡ B then µ(A) = µ(B). Thus,

the size of any decomposition of A into non-zero parallel components is bounded

by µ(A). But the procedure outlined above necessarily increases the size of the

decomposition at each step, and thus must terminate.

Definition A.2. Define ∼ as the smallest congruence on Spec containing α-

equivalence and satisfying the following rules:

• A|(B|C) ∼ (A|B)|C,

• A|B ∼ B|A,

• (νM)(νN)A ∼ (νN)(νM)A when M#N ,

• Σn
i=0πi.Ai ∼ Σn

i=0πσi.Aσi when σ is a permutation.

We write S̃ for Spec modulo ∼ and [A] for the equivalence class of A w.r.t. ∼.

Proposition A.3. Let A,B,Ai, Bj ∈ Spec for all i, j. The following statements

hold ((ii) and (iii) under any bracketing):

(i) If A ∼ B then A ≡ B,

(ii) If (A1| · · · |An) ∼ (B1| · · · |Bk), and no Ais and Bjs are parallel compositions,

then {|[A1], . . . , [An]|} = {|[B1], . . . , [Bk]|},

(iii) If (A1| · · · |An) ∼ (B1| · · · |Bk), and no Ais and Bjs are parallel compositions,

then {|A1, . . . , An|} and {|B1, . . . , Bk|} are equal as multisets over S.

Proof. The first statement holds because any derivation of A ∼ B is also a deriva-

tion of A ≡ B; the second is proven easily by induction on the length of the proof

of (A1| · · · |An) ∼ (B1| · · · |Bk); the third follows from the previous two.

Definition A.4. Define the term rewriting system T df
= (Spec,→) by the fol-

lowing rules:

(i) A|0→ A,

(ii) (νM)A→ A when M#A,

(iii) (νM)(A|B)→ A|(νM)B when M#A.

114 Appendix A. Proof of Theorem 3.2.8

Definition A.5. Define the abstract rewrite system Z df
= (S∼,) by setting

[A] [B] iff ∃A′∼A∃B′∼B(A′ → B′).

Lemma A.6. System Z is terminating and confluent.

Proof. For termination, suppose that we have an infinite sequence [A0] [A1]

[A2] · · · . By definition, this implies an infinite sequence of species terms:

A0 ∼ A′0 → A′1 ∼ A1 ∼ A′′1 → A′2 ∼ A2 ∼ A′′2 → · · · . Because rules (i) and (ii)

of T remove symbols (0 and (ν–), respectively) whose total number is preserved

by ∼, after finitely many steps all reductions have to be applications of rule (iii).

It is now relatively easy to reach a contradiction, for example by observing that

each application of (iii) reduces the total number of | symbols under restriction

(which again is preserved by ∼).

For confluence we use Newman’s Lemma [107], stating that in terminating re-

duction systems, confluence is equivalent to weak confluence (the ability to join

any two divergent one-step reductions). It is easy to verify this property for all

six rule pairs, and we leave it to the reader.

Definition A.7. Let A ∈ Spec. We write nf(A) for the Z-normal form of [A].

Lemma A.8. Let A ≡ B for A,B ∈ Spec. Then nf(A) = nf(B).

Proof. If A ≡ B, then there exists a proof: a sequence of terms (ui)
n
i=0 ⊂ Spec

such that u0 = A, un = B and for every j ≤ n, uj ≡ uj+1 is an instance of

one of the rules defining ≡ (see Fig. 3.3(l)). But each rule is either used by ∼
or by →, and thus for every j < n, we have either uj ∼ uj+1 or uj → uj+1 or

uj+1 → uj. Moving to S̃, we obtain the sequence ([ui])
n
i=0 ⊂ S̃, with [A] = [u0],

[B] = [un], and where for every j < n either [uj] = [uj+1] or [uj] [uj+1] or

[uj+1] [uj]. Hence, [A] and [B] are convertible in Z, and as such have the same

normal form.

Theorem A.9. Let A ∈ S be a species. Suppose A = {|A1, . . . , An|} ⊂ S# and

B = {|B1, . . . , Bk|} ⊂ S# are prime species decompositions of A. Then A = B.

Proof. Since (A1| · · · |An) ≡ (B1| · · · |Bk), then by Lem. A.8 nf(A1| · · · |An) =

nf(B1| · · · |Bk), and as a consequence, (nf(A1)| · · · |nf(An)) = (nf(B1)| · · · |nf(Bk)).

Pick a representative of nf(Ai); it can be written as (A0
i | · · · |A

si
i), with si ≥ 0

and all parallel components shown. By primality of Ai, all but one of these

115

components are equivalent to 0. Assume wlog that only A0
i is not; hence A0

i ≡ Ai

and Aji ≡ 0 for j > 0. By performing the same construction on Bis we arrive at

(A0
1| · · · |A

s1
1) | · · · | (A0

n| · · · |Asnn) ∼ (B0
1 | · · · |B

t1
1) | · · · | (B0

k| · · · |B
tk
k).

By Prop. A.3(iii), therefore, we have

{|A0
1, · · · , A

s1
1 , · · · , A0

n, · · · , Asnn |} = {|B0
1 , · · · , B

t1
1 , · · · , B0

k, · · · , B
tk
k |},

with both multisets over S. As equal, both multisets must have the same number

of 0-equivalent terms in them: they can be removed and two equal multisets will

remain. But the terms equivalent to 0 are, by construction, precisely all Aji s and

Bj
i s for j ≥ 1. Removing them from both multisets simultaneously leaves us with:

{|A0
0, · · · , A0

n|} = {|B0
0 , · · · , B0

k|},

but of course lhs is A and rhs is B.

Table of symbols

Chapter 3: The continuous π-calculus

a, b, . . . , x, y, z, . . . names

~a,~b, . . . , ~x, ~y, ~z, . . . vectors of names

|~x| length of the vector ~x

N the set of names

π, πi, π
′, . . . prefixes

τ@k silent/spontaneous prefix

a(~x; ~y) communication prefix

M,N,K . . . affinity networks

A,B, . . . species

A ⊂ B A is a subspecies of B

H the set of definition handles

Spec the set of species

S Spec modulo species equivalence

S# the set of prime species

primes(A) the prime decomposition of A

P,Q, . . . processes

A ⊂ P A or its superspecies appears in P

Proc the set of processes

P Proc modulo process equivalence

fn free names

bn bound names

x#E x is fresh for E

F,G, . . . concretions

Conc the set of concretions

C Conc modulo concretion equivalence

F ◦G pseudo-application of F and G

F ↓G F and G are compatible

117

118 Appendix A. Proof of Theorem 3.2.8

Trans the multiset of transitions of cπ species

Trans(A) the multiset of transitions with source A

supp(P) the support of P

card(x,X) the multiplicity of x in the multiset X

P the process space

D the space of potentials

�M the interaction tensor (in the context of M)
dP
dt

the immediate behaviour of P

∂P the interaction potential of P

Chapter 5: Variation operators

ξ, ζ, η, . . . definitions of species

D, E , . . . sets of species definitions

(D, N, P), (E ,M,Q), . . . operator-ready cπ models

vsM virtual sites in model M
vsM(A) virtual sites of the definition with handle A

psM(A) physical sites of the definition with handle A

ξ ◦→ ζ ξ depends on ζ

[ξ]D the class of ξ w.r.t. the equivalence induced by ◦→
A ◦→ ζ species A invokes definition ζ

A[W 7→ V] substitution of handle W by V in species A

N 	 a N restricted to N \ {a}
N 	X N restricted to N \X
N ⊕f a N extended with a (affinites of a given by f)

N �f a N with a reconfigured according to f

N ⊕~a ~x N extended with ~x as a carbon copy of ~a

N(a, b, k) N with the affinity of a and b changed to k

N(–, –, k) a set of variants of N

rc(A, k) A with an internal rate changed to k

cg(π, Z,A) A enriched with π or π.Z

cl(A) A with a single prefix and its successor state lost

succM(ξ) eligible successor states for variants of ξ

σ~x ~y name substitution emulating {~y/~x}
M[ξ 7→ ζ] M with ξ substituted by ζ (with balancing).

Bibliography

[1] M. Abadi and A. Gordon, A calculus for cryptographic protocols: The spi

calculus, Proc. 4th ACM Conference on Computer and Communications

Security, ACM Press, 1997.

[2] U. Alon, An introduction to systems biology: design principles of biological

circuits, Chapman & Hall/CRC, 2006.

[3] L. W. Ancel and W. Fontana, Plasticity, evolvability, and modularity in

RNA, J. Exp. Zool. (Mol Dev Evol) 288 (2000), 242–283.

[4] J. C. M. Baeten, A brief history of process algebra, Theor. Comput. Sci.

335 (2005), 131–146.

[5] C. Baier and J.-P. Katoen, Principles of model checking, MIT Press, 2008.

[6] A. Bergman and M. Siegal, Evolutionary capacitance as a general feature

of complex gene networks, Nature 424 (2003), 549–552.

[7] J. A. Bergstra and J. W. Klop, Process algebra for synchronous communi-

cation, Inform. Control 60 (1984), 109–137.

[8] J. A. Bergstra and C. A. Middelburg, Process algebra for hybrid systems,

Theor. Comput. Sci. 335 (2005), 215–280.

[9] M. Bernardo, P. Degano and G. Zavattaro (eds.), Proc. Eighth International

School on Formal Methods for the Design of Computer, Communication and

Software Systems (SFM-08:Bio), Lect. N. Bioinformat., vol. 5016, 2008.

[10] Biocham, http://contraintes.inria.fr/BIOCHAM/.

[11] BioSpi, http://www.wisdom.weizmann.ac.il/~biospi.

[12] G. Birkhoff and G.-C. Rota, Ordinary differential equations, John Wiley

and Sons, 1978.

119

http://contraintes.inria.fr/BIOCHAM/
http://www.wisdom.weizmann.ac.il/~biospi

120 Bibliography

[13] C. Bodei, M. Buchholtz, P. Degano, F. Nielson and H. Nielson, Automatic

validation of protocol narration, Proc. 16th Computer Security Foundations

Workshop (CSFW 03), IEEE Press, 2003, pp. 126–140.

[14] J. A. Bolker, Modularity in development and why it matters to evo-devo,

Am. Zool. 40 (2000), 770–776.

[15] N. Bonzanni, E. Krepska, W. J. Fokkink, T. Kielmann, H. Bal and

J. Heringa, Executing multicellular differentiation: quantitative predictive

modelling of C. elegans vulval development, Bioinformatics 25 (2008), 2049–

2056.

[16] E. Borenstein and D. C. Krakauer, An end to endless forms: Epistasis,

phenotype distribution bias and non-uniform evolution, PLoS Comput. Biol.

4 (2008).

[17] L. Bortolussi and A. Policriti, Dynamical systems and stochastic program-

ming – to ordinary differential equations and back, Transactions on Com-

putational Systems Biology 5750 (2009), 216–267.

[18] M. Calder, A. Duguid, S. Gilmore and J. Hillston, Stronger computational

modelling of signalling pathways using both continuous and discrete-state

methods, Proc. Fourth International Conference on Computational Methods

in Systems Biology (CMSB 2006) (C. Priami, ed.), Lect. N. Bioinformat.,

vol. 4210, 2006, pp. 63–77.

[19] M. Calder and S. Gilmore (eds.), Proc. Fifth International Conference on

Computational Methods in Systems Biology (CMSB 2007), Lect. N. Bioin-

format., vol. 4695, 2007.

[20] M. Calder, S. Gilmore and J. Hillston, Modelling the influence of RKIP

on the ERK signalling pathway using the stochastic process algebra PEPA,

Proc. Second Workshop on Concurrent Models in Molecular Biology

(BioConcur 2004) (A. Ingolfsdottir and H. R. Nelson, eds.), 2004.

[21] , Automatically deriving ODEs from process algebra models of sig-

nalling pathways, Proc. Third International Conference on Computational

Methods in Systems Biology (CMSB 2005) (G. Plotkin, ed.), 2005, pp. 204–

215.

[22] L. Cardelli, E. Caron, P. Gardner, O. Kahramanoǧulları and A. Phillips,

Bibliography 121

A process model of Rho GTP-binding proteins, Theor. Comput. Sci. 410

(2009), 3166–3185.

[23] L. Cardelli and A. D. Gordon, Mobile ambients, Proc. First International

Conference on Foundations of Software Science and Computation Structure

(FoSSaCS 98) (M. Nivat, ed.), 1998.

[24] L. Cardelli and R. Mardare, The measurable space of stochastic processes,

Proc. International Conference on Quantitative Evaluation of Systems

(QEST 2010), 2010, to appear.

[25] L. Cardelli and G. Zavattaro, Turing universality of the biochemical ground

form, Math. Struct. Comp. Sci. 20 (2010), 45–73.

[26] S. B. Carrol, Endless forms most beautiful: The new science of evo devo

and the making of the animal kingdom, W. W. Norton and Company, 2005.

[27] F. Ciocchetta and J. Hillston, Bio-PEPA: a framework for modelling and

analysis of biochemical networks, Theor. Comput. Sci. 410 (2009), 3065–

3084.

[28] E. M. Clarke, O. Grumberg and D. A. Peled, Model checking, MIT Press,

1999.

[29] J. F. Crow and M. Kimura, An introduction to population genetics theory,

Harper and Row, 1970.

[30] V. Danos and C. Laneve, Formal molecular biology, Theor. Comput. Sci.

325 (2004), 69–110.

[31] E. H. Davidson and D. H. Erwin, Gene regulatory networks and the evolu-

tion of animal body plans, Science 311 (2006), 796–800.

[32] N. G. de Bruijn, Lambda calculus notation with nameless dummies, a tool

for automatic formula manipulation, with application to the Church–Rosser

theorem, Indag. Math 34 (1972), 381–392.

[33] L. Dematté, C. Priami and A. Romanel, The BlenX language: A tutorial,

in Bernardo et al. [9], pp. 313–365.

[34] L. Dematté, C. Priami, A. Romanel and O. Soyer, A formal and int-

grated framework to simulate evolution of biological pathways, in Calder

and Gilmore [19], pp. 106–120.

122 Bibliography

[35] , Evolving BlenX programs to simulate the evolution of biological

networks, Theor. Comput. Sci. 408 (2008), no. 1, 83–96.

[36] J. L. Ditty, S. R. Mackey and C. H. Johnson (eds.), Bacterial circadian

programs, Springer, 2009.

[37] J. W. Eaton, GNU Octave manual, Network Theory, 2002.

[38] A. Edalat and D. Pattinson, A domain-theoretic account of Picard’s the-

orem, Proc. 31st International Colloquium on Automata, Languages and

Programming (ICALP 2004) (J. Dı́az et al., eds.), Lect. Notes Comp. Sci.,

vol. 3412, 2004, pp. 494–505.

[39] , Domain theoretic solutions of initial value problems for unbounded

vector fields, Proc. 21st Annual Conference on Mathematical Foundations

of Programming Semantics (MFPS XXI), Electronic Notes in Theoretical

Computer Science, vol. 155, 2006, pp. 565–581.

[40] Edinburgh Compute and Data Facility (ECDF), http://www.ecdf.ed.ac.

uk.

[41] S. Eker, M. Knapp, K. Laderoute, P. Lincoln, J. Meseguer and K. Son-

mez, Pathway Logic: Symbolic analysis of biological signaling, Proc. Pacific

Symposium on Biocomputing, 2002, pp. 400–412.

[42] A. Eyre-Walker and P. D. Keightley, The distribution of fitness effects of

new mutations, Nat. Rev. Genet. 8 (2007), 610–618.

[43] F. Fages, G. Batt, A. Rizk and S. Soliman, On a continuous degree of

satisfaction of temporal logic formulae with applications to systems biology,

in Heiner and Uhrmacher [66], pp. 251–268.

[44] F. Fages and A. Rizk, On the analysis of numerical data time series in

temporal logic, in Calder and Gilmore [19], pp. 48–63.

[45] J. Feret, V. Danos, J. Krivine, R. Harmer and W. Fontana, Internal coarse-

graining of molecular systems, P. Natl. Acad. Sci. USA 106 (2009), 6453–

6458.

[46] E. Ferrada and A. Wagner, Protein robustness promotes evolutionary in-

novations on large evolutionary time-scales, P. Roy. Soc. B 275 (2008),

1595–1602.

[47] J. Fisher and D. Harel, On statecharts for biology, Symbolic Systems Bi-

http://www.ecdf.ed.ac.uk
http://www.ecdf.ed.ac.uk

Bibliography 123

ology: Theory and Methods (M. Sriram Iyengar, ed.), Jones & Bartlett,

2010.

[48] W. Fokkink, Introduction to process algebra, Texts in Theoretical Computer

Science: An EATCS Series, Springer, 1999, also available from http://

www.cs.vu.nl/~wanf/books.html.

[49] W. Fontana, Modelling ’evo-devo’ with RNA, BioEssays 24 (2002), 1164–

1177.

[50] W. Fontana and P. Schuster, Continuity in evolution: On the nature of

transitions, Science 280 (1998), 1451–1455.

[51] , Shaping space: the possible and the attainable in RNA genotype-

phenotype mapping, J. Theor. Biol. 194 (1998), 491–515.

[52] J. Gerhart and M. Kirschner, Evolvability, P. Natl. Acad. Sci. USA 95

(1998), 8420–8427.

[53] , The plausibility of life: Resolving Darwin’s dilemma, Yale Univer-

sity Press, 2005.

[54] , The theory of facilitated variation, P. Natl. Acad. Sci. USA 104

(2007), 8582–8589.

[55] M. A. Gibson and J. Bruck, Efficient exact stochastic simulation of chemi-

cal systems with many species and many channels, J. Phys. Chem. A 104

(2000), 1876–1889.

[56] D. T. Gillespie, Exact stochastic simulation of coupled chemical reactions,

J. Phys. Chem. 81 (1977), 2340–2361.

[57] , The chemical Langevin equation, J. Chem. Phys. 113 (2000), 297–

306.

[58] S. S. Golden, C. H. Johnson and T. Kondo, The cyanobacterial circadian

system: A clock apart, Curr. Opin. Microbiol. 1 (1998), no. 6, 669–673.

[59] P. J. E. Goss and J. Peccoud, Quantitative modeling of stochastic systems

in molecular biology by using stochastic Petri nets, P. Natl. Acad. Sci. USA

95 (1998), 6750–6755.

[60] N. Grobbelaar, T. Huang, H. Lin and T. Chow, Dinitrogen-fixing endoge-

nous rhythm in Synechococcus RF-1, FEMS Microbiol. Lett. 37 (1986),

173–177.

http://www.cs.vu.nl/~wanf/books.html
http://www.cs.vu.nl/~wanf/books.html

124 Bibliography

[61] D. L. Hartl and A. G. Clark, Principles of population genetics, Sinauer

Associates, 1997.

[62] Haskell, http://www.haskell.org/.

[63] J. Heath, M. Kwiatkowska, G. Norman, D. Parker and O. Tymchyshyn,

Probabilistic model checking of complex biological pathways, Theor. Comput.

Sci. 391 (2007), 239–257.

[64] M. Heiner, D. Gilbert and R. Donaldson, Petri nets for systems and syn-

thetic biology, in Bernardo et al. [9], pp. 215–264.

[65] M. Heiner and I. Koch, Petri net based model validation in systems biol-

ogy, Proc. 25th International Conference on Applications and Theory of

Petri Nets (ICATPN 2004) (J. Cortadella and W. Reisig, eds.), Lect. Notes

Comp. Sci., vol. 3099, 2004, pp. 216–237.

[66] M. Heiner and A. Uhrmacher (eds.), Proc. Sixth International Conference

on Computational Methods in Systems Biology (CMSB 2008), Lect. N.

Bioinformat., vol. 5307, 2008.

[67] J. Hillston, A compositional approach to performance modelling, Cambridge

University Press, 1996.

[68] C. A. R. Hoare, Communicating sequential processes, Commun. ACM 21

(1978), 666–677.

[69] J. Hofbauer and K. Sigmund, Evolutionary games and population dynamics,

Cambridge University Press, 1998.

[70] C. Y. Huang and J. E. Ferrell, Ultrasensitivity in the mitogen-activated

protein kinase cascade, P. Natl. Acad. Sci. USA 93 (1996), 10078–10083.

[71] M. Hucka, A. Finney, H. M. Sauro, H. Bolouri, J. C. Doyle, H. Kitano

et al., The systems biology markup language (SBML): a medium for repre-

sentation and exchange of biochemical network models, Bioinformatics 19

(2003), 524–531.

[72] T. Ideker, T. Galitski and L. Hood, A new approach to decoding life: Sys-

tems biology, Annu. Rev. Genomics Hum. Genet. 2 (2001), 343–372.

[73] M. Ishiura, S. Kutsuna, S. Aoki, H. Iwasaki, C. R. Andersson, A. Tanabe,

S. S. Golden, C. H. Johnson and T. Kondo, Expression of a gene clus-

http://www.haskell.org/

Bibliography 125

ter kaiABC as a circadian feedback process in cyanobacteria, Science 281

(1998), no. 5382, 1519–1523.

[74] M. John, C. Lhoussaine, J. Niehren and A. M. Uhrmacher, The attributed

pi-calculus, in Heiner and Uhrmacher [66], pp. 83–102.

[75] M. John, R. Ewald and A. M. Uhrmacher, A spatial extension to the pi

calculus, Electronic Notes in Theoretical Computer Science 194 (2008),

133–148.

[76] D. S. Jones and B. D. Sleeman, Differential equations and mathematical

biology, Chapman & Hall, 2003.

[77] J. G. Kemeny and J. L. Snell, Finite Markov chains, Springer, 1976.

[78] M. Kimura, The neutral theory of molecular evolution, Cambridge Univer-

sity Press, 1983.

[79] H. Kitano, Systems biology: Towards system-level understanding of biolog-

ical systems, Foundations of Systems Biology, MIT Press, 2001, pp. 1–36.

[80] , Computational systems biology, Nature 420 (2002), 206–210.

[81] , Biological robustness, Nat. Rev. Genet. 5 (2004), 826–837.

[82] E. Klipp, R. Herwig, A. Kowald, C. Wierling and H. Lehrach, Systems

biology in practice: Concepts, implementation and application, Wiley-VCH,

2005.

[83] K. W. Kohn, M. I. Aladjem, J. N. Weinstein and Y. Pommier, Molecular

interaction maps of bioregulatory networks: a general rubric for system

biology, Mol. Biol. Cell 17 (2006), 1–13.

[84] K. W. Kohn, Molecular interaction map of the mammalian cell cycle control

and DNA repair systems, Mol. Biol. Cell 10 (1999), 2703–2734.

[85] , Molecular interaction maps as information organizers and simula-

tion guides, Chaos 11 (2001), 84–97.

[86] C. Kuttler, Modelling bacterial gene expression in a stochastic pi-calculus

with concurrent objects, Ph.D. thesis, University of Lille 1, 2007.

[87] M. Kwiatkowska, G. Norman and D. Parker, Stochastic model checking,

Proc. 7th International School on Formal Methods for the Design of Com-

puter, Communication and Software Systems: Performance Evaluation

126 Bibliography

(SFM’07) (M. Bernardo and J. Hillston, eds.), Lect. Notes Comp. Sci.,

vol. 4486, 2007, pp. 220–270.

[88] M. Kwiatkowski and I. Stark, The continuous π-calculus: A process algebra

for biochemical modelling, in Heiner and Uhrmacher [66], pp. 103–122.

[89] N. Le Novère et al., The systems biology graphical notation, Nat. Biotechnol.

27 (2009), 735–741.

[90] P. Lecca, C. Priami, P. Quaglia, B. Rossi, C. Laudanna and G. Constantin,

A stochastic process algebra approach to simulation of autoreactive lympho-

cyte recruitment, Simulation 80 (2004), 273–288.

[91] H. Li, Y. Cao, L. R. Petzold and D. T. Gillespie, Algorithms and software

for stochastic simulation of biochemical reacting systems, Biotechnol. Prog.

24 (2008), 56–62.

[92] B. Luttik and V. van Oostrom, Decomposition orders—another generalisa-

tion of the fundamental theorem of arithmetic, Theor. Comput. Sci. 335

(2005), 147–186.

[93] M. Lynch, The origins of genome architecture, first ed., Sinauer Associates,

2007.

[94] M.-A. Félix and A. Wagner, Robustness and evolution: concepts, insights

and challenges from a developmental model system, Heredity 100 (2008),

132–140.

[95] J. Maynard Smith, Evolution and the theory of games, Cambridge Univer-

sity Press, 1982.

[96] R. Meyer, V. Khomenko and T. Strazny, A practical approach to verification

of mobile systems using net unfoldings, Fundam. Inform. 94 (2009), 439–

471.

[97] R. Milner, A calculus of communicating systems, Springer-Verlag, 1980.

[98] , The polyadic π-calculus: A tutorial, Tech. Report ECS-LFCS-91-

180, LFCS, University of Edinburgh, 1991.

[99] , Communicating and mobile systems: The π calculus, Cambridge

University Press, 1999.

[100] R. Milner and F. Moller, Unique decomposition of processes, Theor. Com-

put. Sci. 107 (1993), 357–363.

Bibliography 127

[101] R. Montville, R. Froissart, S. K. Remold, O. Tenaillon and P. E. Turner,

Evolution of mutational robustness in an RNA virus, PLoS Biol. 3 (2005).

[102] G. B. Müller, Evo-devo: extending the evolutionary synthesis, Nat. Rev.

Genet. 8 (2007), 949–949.

[103] T. Murata, Petri nets: properties, analysis and applications, P. IEEE 77

(1989), 541–580.

[104] M. Nakajima, T. Kondo, J. Tomita and H. Iwasaki, No transcription-

translation feedback in circadian rhythm of kaic phosphorylation, Science

307 (2005), 251–254.

[105] M. Nakajima, K. Imai, H. Ito, T. Nishiwaki, Y. Murayama, H. Iwasaki,

T. Oyama and T. Kondo, Reconstitution of circadian oscillation of

cyanobacterial KaiC phosphorylation in vitro, Science 308 (2005), 414–415.

[106] M. Nei, Selectionism and neutralism in molecular evolution, Mol. Biol. Evol.

22 (2005), 2318–2342.

[107] M. H. A. Newman, On theories with a combinatorial definition of ”equiva-

lence”, Annals of Math. 43 (1942), 223–243.

[108] Octave, http://www.gnu.org/software/octave/.

[109] B. Oksendal, Stochastic differential equations: An introduction with appli-

cations, Springer, 2003.

[110] R. J. Orton, O. E. Sturm, V. Vyshemirsky, M. Calder, D. R. Gilbert and

W. Koch, Computational modelling of the receptor-tyrosine-kinase-activated

MAPK pathway, Biochem. J. 392 (2005), 249–261.

[111] J. Parrow, An introduction to the π-calculus, Handbook of Process Algebra,

Elsevier, 2001, pp. 479–543.

[112] L. Partridge and N. H. Barton, Natural selection: Evolving evolvability,

Nature 407 (2000), 457–458.

[113] M. Pedersen, Modular languages for systems and synthetic biology, Ph.D.

thesis, The University of Edinburgh, 2010.

[114] M. Pedersen and G. Plotkin, A language for biochemical systems: Design

and formal specification, Transactions on Computational Systems Biology

XII (2010), 77–145.

http://www.gnu.org/software/octave/

128 Bibliography

[115] B. C. Pierce, Types and programming languages, MIT Press, 2002.

[116] M. Pigliucci, Phenotypic plasticity: Beyond nature and nurture, Syntheses

in Ecology and Evolution, Johns Hopkins University Press, 2001.

[117] , Genotype–phenotype mapping and the end of the ’genes as

blueprint’ metaphor, Philos. T. Roy. Soc. B 365 (2010), 557–566.

[118] G. D. Plotkin, The origins of structural operational semantics, J. Logic

Algebr. Progr. 60–61 (2004), 3–15.

[119] , A structural approach to operational semantics, J. Logic Algebr.

Progr. 60–61 (2004), 17–139, Originally published as DAIMI FN-19,

Aarhus University, 1981.

[120] J. Podani, Z. N. Oltvai, H. Jeong, B. Tombor, A.-L. Barabási and E. Sza-

thmáry, Comparable system-level organization of Archaea and Eukaryotes,

Nat. Genet. 29 (2001), 54–56.

[121] C. Priami, Stochastic π-calculus, Comput. J. 38 (1995), 578–589.

[122] C. Priami and P. Quaglia, Beta binders for biological interactions, Proc. Sec-

ond International Conference on Computational Methods in Systems Biol-

ogy (CMSB 2004) (V. Danos and V. Schächter, eds.), Lect. Notes Comp.

Sci., vol. 3082, 2005, pp. 20–33.

[123] C. Priami, A. Regev, E. Shapiro and W. Silverman, Application of a

stochastic name-passing calculus to representation and simulation of molec-

ular processes, Inform. Process. Lett. 80 (2001), 25–31.

[124] PRISM Model Checker, http://www.prismmodelchecker.org.

[125] M. Rathinam, L. R. Petzold, Y. Chao and D. T. Gillespie, Stiffness in

stochastic chemically reacting systems: The implicit tau-leaping method,

J. Chem. Phys. 119 (2003), 12784–12794.

[126] A. Regev, Computational systems biology: A calculus for biochemical knowl-

edge, Ph.D. thesis, Tel Aviv University, 2002.

[127] A. Regev, E. M. Panina, W. Silverman, L. Cardelli and E. Shapiro, Bioam-

bients: An abstraction for biological compartments, Theor. Comput. Sci.

325 (2004), 141–167.

[128] A. Regev and E. Shapiro, Cellular abstractions: Cells as computations,

Nature 419 (2002), 343.

http://www.prismmodelchecker.org

Bibliography 129

[129] A. Regev, W. Silverman and E. Shapiro, Representation and simulation

of biochemical processes using the pi-calculus process algebra, Proc. Pacific

Symposium on Biocomputing, 2001, pp. 459–470.

[130] A. Romanel, Dynamic biological modelling: a language-based approach,

Ph.D. thesis, University of Trento, 2010.

[131] R. Sanjuán, J. M. Cuevas, V. Furió, E. C. Holmes and A. Moya, Selection

for robustness in mutagenized RNA viruses, PLoS Genet. 3 (2007).

[132] E. A. Schultes and D. P. Bartel, One sequence, two ribozymes: implications

for the emergence of new ribozyme folds, Science 289 (2000), 448–452.

[133] P. Schuster, W. Fontana, P. F. Stadler and I. L. Hofacker, From sequences

to shapes and back: A case-study in RNA secondary structures, P. Roy.

Soc. B 255 (1994), 279–284.

[134] M. R. Shinwell, A. M. Pitts and M. J. Gabbay, FreshML: Programming with

binders made simple, Eighth ACM SIGPLAN International Conference on

Functional Programming (ICFP 2003), 2003, pp. 263–274.

[135] M. L. Siegal and A. Bergman, Canalization, Evolutionary Genetics: Con-

cepts and Case Studies (C. W. Fox and J. B. Wolf, eds.), Oxford University

Press, 2006.

[136] O. Soyer, M. Salathé and S. Bonhoeffer, Signal transduction networks:

Topology, response, and biochemical reactions, J. Theor. Biol. 238 (2006),

416–425.

[137] O. S. Soyer and S. Bonhoeffer, Evolution of complexity in signaling path-

ways, P. Natl. Acad. Sci. USA 103 (2006), 16337–16342.

[138] O. S. Soyer, T. Pfeiffer and S. Bonhoeffer, Simulating the evolution of signal

transduction pathways, J. Theor. Biol. 241 (2006), 223–232.

[139] SpiCO, http://spico.gforge.inria.fr/.

[140] B. M. R. Stadler, P. F. Stadler, G. Wagner and W. Fontana, The topology

of the possible: Formal spaces underlying patterns of evolutionary change,

J. Theor. Biol. 213 (2001), 241–274.

[141] A. Stefanek, Continuous and spatial extension of the stochastic pi-calculus,

Master’s thesis, Imperial College, London, UK, 2009.

130 Bibliography

[142] J. Stelling, U. Sauer, Z. Sallasi, F. J. Doyle III and J. Doyle, Robustness of

cellular functions, Cell 118 (2004), 675–685.

[143] Stochastic Pi Machine (SPiM), http://research.microsoft.com/en-us/

projects/spim/default.aspx.

[144] The Bio-PEPA Workbench, http://www.dcs.ed.ac.uk/home/stg/

software/biopepa/.

[145] The PEPA Plugin Project, http://www.dcs.ed.ac.uk/pepa/tools/

plugin.

[146] The Systems Biology Graphical Notation (SBGN), http://sbgn.org.

[147] The Systems Biology Markup Language (SBML), http://sbml.org.

[148] J. S. van Zon, D. K. Lubensky, P. R. H. Altena and P. R. ten Wolde, An

allosteric model of circadian KaiC phosphorylation, P. Natl. Acad. Sci. USA

104 (2007), 7420–7425.

[149] C. Versari, A core calculus for a comparative analysis of bio-inspired cal-

culi, Proc. 16th European Symposium on Programming (ESOP 2007)

(R. de Nicola, ed.), Lect. Notes Comp. Sci., vol. 4421, 2007, pp. 411–425.

[150] C. Versari and N. Busi, Stochastic simulation of biological systems with

dynamical compartment structure, in Calder and Gilmore [19], pp. 80–95.

[151] A. Wagner, Does evolutionary plasticity evolve?, Evolution 50 (1996), 1008–

1023.

[152] , Robustness and evolvability in living systems, Princeton University

Press, 2005.

[153] , Robustness and evolvability: a paradox resolved, P. Roy. Soc. B

275 (2008), 91–100.

[154] J. Zhang, Evolution by gene duplication: an update, Trends in Ecology and

Evolution 18 (2003), 292–298.

[155] M. Zuker and D. Sankoff, RNA secondary structures and their prediction,

B. Math. Biol. 46 (1984), 591–621.

http://research.microsoft.com/en-us/projects/spim/default.aspx
http://research.microsoft.com/en-us/projects/spim/default.aspx
http://www.dcs.ed.ac.uk/home/stg/software/biopepa/
http://www.dcs.ed.ac.uk/home/stg/software/biopepa/
http://www.dcs.ed.ac.uk/pepa/tools/plugin
http://www.dcs.ed.ac.uk/pepa/tools/plugin
http://sbgn.org
http://sbml.org

	Introduction
	Background
	Introduction
	Overview of the chapter

	Systems biology
	Emergence and aims
	Different modelling frameworks
	Knowledge representation standards

	Process algebras and biology
	Classical process algebras: models of concurrency
	Seminal work of Regev et. al.
	Modern calculi for biology
	Related topics
	Outlook

	Selected topics in evolutionary theory
	Genotype, phenotype and development
	Neutrality, robustness and evolvability
	Neutral spaces and RNA folding

	The continuous π-calculus
	Introduction
	The running example
	Overview of the chapter

	The syntax
	Species
	Processes

	The semantics
	Concretions
	The transition system of species
	The vector semantics of processes

	Extraction of Ordinary Differential Equations

	Modelling a circadian clock
	Introduction
	Overview of the chapter

	The system
	The model
	The original model of van Zon et. al.
	The cπ translation

	The analysis
	The cπ software tool
	The base model
	Perturbation experiments

	Variation operators
	Introduction
	Key issues and design choices
	Overview of the chapter

	Preliminary definitions
	Gene-level operators
	State variation
	Rate changes

	Evolutionary case studies
	Introduction
	Overview of the chapter

	Evolution of enzyme models
	Evolutionary properties of a signalling cascade
	Background
	A cπ model of the MAPK cascade
	Computational experiments

	Conclusions
	Evaluation
	Contributions
	Problems

	Future work
	A better continuous π-calculus
	Infinitely supported processes
	A dedicated cπ logic
	Richer affinity networks

	Proof of Theorem 3.2.8
	Table of symbols
	Bibliography

