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Abstract

The subject area of this thesis is the locating of mobile users using the future 3rd generation
spread spectrum communication system UMTS. The motivation behind this work is twofold:
firstly the United States Federal Communications Commission (FCC) mandated the provision
of user location into services in the United States of America due to the increasing number of
emergency calls originating from unknown locations. Secondly the user location can enable
a number of other potentially profit–making applications and services. These are generally
thought to be the important new applications of the third generation mobile networks.

The UMTS standard has now made provision for a time difference of arrival based mobile
user location system in which the mobile measures time differences of arrival of received sig-
nals from surrounding base stations (BS’s). There are two main problems to such a technique:
firstly the problem of detecting enough base stations to make a location fix, the so called ‘hear-
ability’ problem. In spread spectrum systems all base stations transmit on the same bandwidth
thus non–serving BS’s may not be detectable in normal operation. The second problem is
non–line of sight (NLOS) propagation, in which time difference measurements (or any other
measurement types) may be corrupted significantly, thus causing significant location error.

The thesis of this work is that these two problems can be entirely overcome using spatial fil-
tering of measurements and location estimates. Two constraints that are placed on the filtering
algorithms are that the operation should be real time and that the precise distribution of NLOS
errors is unknown (though certain key characteristics are exploited).

A channel model is first developed, which specifically characterises line of sight and NLOS
transitions as well as out of cell radio wave propagation. Several scenarios are then simulated.
Slow moving users, low hearability and heavily NLOS conditions pose the biggest challenge.
Spatial filtering is achieved by Kalman filters adapted to the problem, as well as simple aver-
aging filters. Results show that improved location accuracy (to within FCC recommendations)
is possible in all considered scenarios with spatial filtering as well as improved robustness to
low hearability. The detection stage of the receiver is also analysed in detail and methods to
improve hearability are presented.

The performance of a hybrid location system using angle of arrival measurements of the mobile
at the serving BS is also assessed. A fairly pessimistic model for the spread of NLOS errors is
used, however significant location improvement is noted in several scenarios. Worst perform-
ance occurs in urban scenarios so finally a novel approach to user location is described which is
robust to NLOS propagation conditions and also overcomes the hearability problem since only
measurements at the serving BS are required. The technique, termed Scatterer Back Tracing
(SBT), uses and requires multipaths to calculate the mobile location. Results suggest this SBT
can provide extremely high location accuracy but is very sensitive to measurement noise.
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Chapter 1
Introduction

1.1 Motivations for Mobile Station Location

In wireless systems the need for accurate mobile station (MS) location estimation has been

motivated by the US Federal Communications Commission’s (FCC’s) E911 mandate for emer-

gency services [1]. The mandate was deemed necessary due to the rising number of emergency

calls made from mobile phones by callers reporting accidents who do not know where they

are. Vital minutes were being lost to the emergency services at the inevitable cost of lives. The

requirements of the accuracy and frequency requirements of the location estimate were initially

set to within 125m for 67% of users and within 300m for 95% of users, but were subsequently

reduced to within 50m and within 150m at respective percentiles for handset based solutions.

Full compliance of new digital handsets to the standards is set for October 2002.

Although the FCC mandate motivated initial plans for MS location access, the potential for

introduction of lucrative customer services has further fuelled action. These location services

include services which are already available through other technologies, e.g. navigation service,

as well as new services including location billing, location advertising and a whole range of

location enabled internet based services, from looking up train timetables to ordering food

from a local restaurant. Additionally location access may also aid some network functions like

traffic/handover management.

There are no doubt numerous benefits available from location enabled services, however there

has also been much debate about privacy laws and the sensitivity of such information. For

this reason handset based solutions may be favoured by many, for they give the user absolute

control over their location information. There have been further complications about whether

the network provider has legal ownership of the information and can sell it to interested third

parties. Such transactions would have to be authorised by the user in a similar manner to

internet based money transactions.

1



Introduction

1.2 Challenges to Mobile Station Location

Recent location estimator proposals incorporate either bearing, signal strength, or timing meas-

urements or a combination of the three measured at, or from, several surrounding base stations

(BS’s) to solve the location function via triangulation or trilateration. Whichever methods are

used it is clear that the mobile communication air interface does not provide an ideal environ-

ment for making such measurements to provide the required location accuracy.

The main problem is that of non–line of sight (NLOS) scenarios. In these conditions com-

munication is maintained via multipaths. However multipaths will have a different trajectory

and path length to the line of sight (LOS) path, which will cause errors in the final location

accuracy. These errors will be spatially correlated, potentially over large distances, and often

biased in nature and sufficiently large to cause location errors to be worse than accuracy re-

quirements. For future wideband mobile networks like UMTS [2] the main focus of research

has been timing measurements since the resolution of such measurements is in the range of

20m. In UMTS time difference of arrival (TDOA) location estimation has been written into the

standard. Timing measurements of signals emanating from surrounding BS’s are to be made

at the MS. Assuming a high signal to noise power, with the timing resolution available, the

dominant errors become NLOS errors rather than measurement errors. The propagation envir-

onment at the UMTS carrier frequency (1.92GHz) is much more reflective than at the GSM

carrier frequency (900MHz), suggesting that the NLOS errors may be worse in UMTS than

GSM. Several lines of research have been proposed to mitigate these NLOS errors. Many of

these methods require precise a priori statistical knowledge of the NLOS conditions and of-

ten only work in some special cases. The performance of the mitigation algorithms is directly

related to the accuracy of this knowledge.

A further problem is lack of data in systems which require measurements from more than one

BS. This is sometimes termed the hearability problem and is especially problematic in CDMA

systems in which all BS’s transmit on the same carrier frequency. Various techniques to improve

hearability in CDMA systems have been proposed.
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1.3 Research Area

In this thesis the performance of spatial filtering algorithms on the location accuracy is invest-

igated. It is postulated that using spatial filtering is the most robust way to overcome the NLOS

and hearability problems and can provide location accuracy within the FCC regulations. Figure

1.1 shows the generalised receiver architecture to be considered.

Measurement data
preprocessorsNoisy

data

Location
functionData

location
Noisy Location

Tracking filter

Figure 1.1: Generalised location estimator architecture.

The measured data is fed into a preprocessor which attempts to correct or remove any NLOS

errors. Correction can be achieved by supposing that at some point in the past the MS may have

been LOS. By utilising known constraints on the manoeuvring capability of the MS, an estimate

for the current data can be made even if the MS is NLOS. An important part of the correction

procedure is the generation of relative confidence (variance) weightings for each measurement

available. The corrected data is then used to calculate the location estimate by the location

function. Assuming measurement noise and some residual NLOS noise may still be present in

the data, the location estimates will not provide an accurate time continuous motion. Therefore

the location estimates are fed into a tracking filter to provide a final location estimate.

Using the spatial filtering techniques, the requirement for a priori knowledge is reduced. This

is quite important since it necessitates the minimum of calibration of the system. Another

advantage is that due to the hearability problem the measurements required to calculate the

location are not always available. Using spatial filtering, measurements can be extrapolated in

time to provide the maximum information to the location estimator at all times, thus providing

good performance when hearability is low. The effect of hearability on the location accuracy

of the system and also methods to improve hearability are investigated.

Since TDOA methods have been proposed in UMTS, this is the method of location calcula-

tion initially considered. Combining measurement types in the location estimator can improve

accuracy and may well provide extra NLOS mitigation capabilities. Therefore an Angle of Ar-

rival (AOA) and TDOA hybrid system, considered the most likely hybrid implementation, is

also investigated.
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Results show that location accuracy in urban areas for the conventional triangulation techniques

is poorest due to a high probability of NLOS errors. A location technique based on backtracing

incoming rays is proposed for these situations. This technique can provide perfect location

accuracy even in NLOS conditions and also has the added advantage that only measurements

at one BS are required to locate the MS.

1.4 Thesis Structure

The next chapter, Chapter 2, contains a summary of background information and the state of

current research. In Chapter 3 a channel model suitable for evaluating performance of the loc-

ation service is presented. This model is used in subsequent chapters to test performance. In

Chapter 4 the problem of hearability in the context of UMTS is addressed. The hearability per-

formance of various proposed idle period downlink (IPDL) techniques is assessed, along with

several methods to improve this performance. In Chapter 5 the location accuracy performance

of a TDOA receiver employing spatial filtering is presented under varying channel scenarios. In

Chapter 6 a hybrid AOA/TDOA is considered in a similar fashion. Chapter 7 introduces at a dif-

ferent method to calculate location suitable for urban areas and location accuracy performance

is assessed. Chapter 8 contains the final conclusions of the thesis.
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Chapter 2
Background

In this chapter the pertinent signal processing theory and current state of the art is summar-

ised. Firstly the mobile communications channel is introduced followed by a summary of

channel modelling techniques. Then the various techniques to calculate the mobile location are

described. These are standard triangulation/trilateration techniques using range, range differ-

ence (RD) or bearing measurements. Following this is a résumé of the various measurement

strategies that have been proposed.

At this point the key issues which affect location accuracy in a mobile network, namely the

non–line of sight (NLOS) propagation, geometrical dilution of precision (GDOP) and so called

hearability problems are introduced. Methods to overcome these problems are explained. The

basic operation of the Kalman filter (KF) is also explained since its operation is widely used in

tracking applications.

Finally location accuracy results derived from a simple application of theory are presented.

These give some impression of the relative merits of the various location calculation techniques

under vastly over–simplified assumptions, which form a basis for subsequent chapters.

2.1 Mobile Communications Channel

The radio propagation channel in mobile communications systems is a complicated non–linear

function of the environment. Figure 2.1 shows a typical multipath environment, including both

reflection and diffraction, and its associated channel impulse response (CIR). Each multipath

can be characterised by its amplitude,
� ! ; phase shift,

� ! ; time delay,
� ! ; AOA,

� ! ; and Doppler

shift,
� *"! . Typically the characteristics of the channel that are critical to algorithm performance

are fast fading of the received power caused by superposition of rays from a diffuse scatterer(s),

superposition of multipaths with differing absolute delays and power levels, and long term

power fading caused by shadowing.
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(delay, angle)
Polar coords in
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BS

At MS

At BS

Diffracted path

MS

Figure 2.1: A typical urban multipath environment and angular/delay CIR at MS and
BS

Classically the CIR at any point in space for an omnidirectional antenna,
� � � ��� �

, has been

represented as a time varying function of the form [3]

� � ��� � � �
� = , D � '�
!�� �

� ! � � ��� 
��	� = , D�
 � �� � ! � � � � (2.1)

where T is the number of multipath components. The received signal,
� � � �

, is found from the

convolution of the transmitted signal, � � � � , with the CIR [4].

� � � � ��� ���
� � � � ��� � � � � ��� � � � ��� � � � �

(2.2)

where
� � � �

is a complex Gaussian noise process. It should be noted that in reality the integration

takes place over a finite range, defined by the delay spread of the channel.

Since the introduction of mobile networks several methods have been used to model the propaga-

tion channel, the choice of which depends on the application being studied. These are discussed

in Sections 2.1.1 to Section 2.1.3.

2.1.1 Stored and Deterministic Models

A stored model is simply an actual measured CIR. Note that the CIR is a continuous function

in delay.

An extension of this idea is to use deterministic modelling. Ray tracing techniques [5], [6], [7]
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can be used. These apply the geometrical theory of diffraction and reflection to the geograph-

ical, topographical and morphographical structure of the region of interest. Naturally these

methods are extremely computationally intensive, but can give extremely accurate representa-

tions of the complex field and thus the CIR at each point in space.

2.1.2 Path Loss and Shadowing Models

Simpler field strength prediction models have been developed based on empirical formulae

derived from experimental data. Okumura [8] and Hata [9] developed path loss formulae from

test measurements in urban areas which showed that path loss is generally greater than free

space path loss predictions (the exception can be when wave guiding down urban canyons

occurs e.g. [10]). MS–BS separation, MS and BS height are the main parameters, however

a number of correction factors were found to be required to account for general geographical,

topographical and morphographical features as well as the LOS state.

The COST 231–Walfisch–Ikegami model was developed to account more accurately for the

conceptual notion of multiple rooftop diffraction and rooftop to street level diffraction. More

recently dual slope models, (e.g. Min et al [11]) have been developed to account for the flat

earth propagation model which predicts a breakpoint after which the path loss exponent in-

creases.

Actual measured path loss tends to be distributed around the path loss predictions of the above

models. For this reason a shadowing term is usually included to model this uncertainty. The

uncertainty stems from a series of multiplicative attenuations of the wave power by the sur-

roundings. Using the central limit theorem the uncertainty will be approximately lognormal

distributed. Standard deviations of 8-12dB’s are typically used, however this can be reduced

if the MS is constrained to be LOS [11]. Gudmundson [12] found the shadowing term to be

spatially correlated over 5–20m with a decaying exponential autocorrelation function. Much

longer decorrelation lengths, T 
 X ? Z�Z , of 100m for rural scenarios have also been reported [13].

The single slope path loss model in the UMTS testbed [2] is

� � � �76 R�9��.6 � � � �������
	 ' � � �
6����� (2.3)

where .�T � is the path loss in dB and � is the MS to BS separation. Lognormal shadowing

with 8dB standard deviation is assumed unless otherwise stated. Spatial autocorrelation of the
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shadowing term is modelled by a decreasing exponential autocorrelation function defined by:

Q � � � � �������
� � � � � �

T * 4 � -B- ��� R � (2.4)

where
� � is the spatial separation of two samples and Q � T * 4 � -)- � � ���&	 . The method for

generating this form of correlated Gaussian random variables is well known and defined by a

1st order IIR filter as

� I 	 P � � I 	 � 6�PEQ � � I 	 P � 6 � Q + (2.5)

where
� I 	 P is a Gaussian distributed random variable,

� I 	[P is the autocorrelated output fed back

into the filter, and Q is the correlation factor obtained from the previous equation.

2.1.3 Stochastic Model

Stochastic models have been developed from observations of typical channel characteristics

over the last few decades. In this way the models encompass a wide range of scenarios. There

are many different models currently used. Generally there are distinctions between macrocell,

microcell (both outdoor) and picocell (indoor) models. The carrier frequency and bandwidth

also affect the model characteristics. Both the Turin–Suzuki–Hashemi [14] outdoor model and

the Saleh–Valenzuela indoor model [15] define multipath delays with Poisson point processes.

The distributions can be modified to give realistic clustering of paths. The COST 207 model

[16] was created as a standard testbench for GSM. In this model typical, non–time varying chan-

nel delay profiles are defined, each with a Doppler spectrum to define the fading characteristics.

Several scenarios exist to model dense scatterers and distant scatterers with both Gaussian and

Clarke’s (Classical) Doppler spectra. In [17] a computationally efficient implementation of the

model is reported. A modification to the Saleh–Valenzuela model was proposed by Spencer et

al [18] to introduce an AOA distribution.

2.1.3.1 Geometrical scatterer model

Driven by the need to model AOA information in order to simulate antenna array performance,

geometrically based single bounce scatterer models have been proposed.

Figures 2.2(a), (b) show a circular model and elliptical model respectively. The circular model,

8
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first proposed by Jakes [19], assumes a macrocellular environment, in that the BS antenna

height is large and therefore above the rooftop height. In such cases the majority of scatterers

will be located around the MS. These scatterers are defined as being uniformly distributed in

space within a circle of radius � �
around the MS. Ertel et al [3] and Piechocki et al [20]

characterise the delay–angular distributions at the MS and BS.

In the elliptical model the BS antenna height is assumed to be at or below rooftop. In such

cases the scattering will occur around both the MS and BS [21]. The MS and BS are placed at

the foci of an ellipse, within which scatterers are located. The dimensions of the ellipse,
�
,
�
,

are defined by the maximum delay,
��� � � �SR�� �

and the MS–BS separation, � .

� � * ��4  �� ���+ � � � '+ � ���	� ����� � + � R �	� ����� � (2.6)

where
�

is the speed of light. Liberti et al [21] calculate the delay–angular distributions at the

MS and BS assuming a uniform scatterer distribution within the ellipse. These show a much

larger angular spread at the BS than those in the circular model.

m
Si R

BS MS
d

BS,max

MS,i

BS,i

α

α

α

(a)

iS

BS MS

MS,i

d

b

a

BS,iα

α

Rm

(b)

Figure 2.2: Geometrically based (a) circular, (b) elliptical scatterer models

Gaussian Wide Sense Stationary Uncorrelated Scattering (GWSSUS) models have been pro-

posed to model realistic frequency selective fading channels. In geometrical scatterer models

individual scatterers can be broken down into clusters of scatterers, assumed to have identical

delay, but time varying phase differences. In this case (2.1) becomes

� � � ��� � �
� = , D � '�
� � �

����
� � �

� � � �
� � ��� 
 � �	� 
 = , D�
 ���� � � � � � � (2.7)
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where
� � is a sufficiently large number so that the central limit theorem can be applied.

The CoDiT model [22] developed as a testbed for 3rd generation systems is an amalgamation

of these ideas. An elliptical model is employed however the scatterer distribution is not uniform

in space. A Gaussian angle of arrival model is used to generate GWSSUS.

2.2 Measures of Location Accuracy

Location accuracy can be measured in terms of the Euclidean distance between the estimate,

(
� # , � # ), and the true location, (

�
,
�
). This is often termed the circular error.

H X � � � ��� # � � � + � ��� # � � � +
(2.8)

For any set of location estimates the cumulative density function (CDF) of location errors can

then be determined. The error at a certain percentile � is the value of location error, H �X � that

satisfies W������ � H X � � � � � 6 �� . The 67%ile, H (��X � , and 95%ile errors, H	��
X � , are of specific interest

since the FCC regulations use these performance measures.

The root mean square (RMS) error is also used. For N location estimates (
� � , � � ) for 	�� 6
� � �

of the true location (
�

,
�
) it is defined

H � � " �
�� 6�

��
� � ' I

��� � � � � + � ��� � � ��� + P (2.9)

If the location estimates have a 2D Gaussian distribution around the true location with equal

variances in each dimension then H X � has a Rayleigh distribution. The percentile errors can

therefore be related directly to the RMS error by suitable evaluation of the Rayleigh CDF,

giving H (��X � �76
�&�	�H � � "
and H ��
X � � 6
� � ��H � � "

.

2.3 Location Estimators

The Weighted Least Squares (WLS) estimator is a popular method to solve for the MS location

when range and/or bearing measurements are available. The estimator aims to minimise the
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weighted mean squared error sum given by [23]

� � / " � �  � � # ��� 
 �  � � # � (2.10)

where  is an I ��� 6�P matrix containing the measured dependent variable, # is a I � � 6�P matrix

containing the parameters to be estimated, 
 is an I ��� � P weighting matrix which can be used

to weight measurements which are more accurate, and � is an I ��� �	P matrix which specifies

the linear relationship between # and the dependent variable, � . The weighting matrix 
 is

the only a priori information required and if it is not known then replacing it with the identity

matrix reduces the estimator to Ordinary Least Squares (OLS).

The estimator that minimises
� � / " is then given by

��� / " � � � � 
 � � � ' � � 
  (2.11)

which minimises
� � / " with respect to # as long as

�	�
� . Note that if

� �
� the solution fits

all measured data.

Assuming that 
 is the inverse of the true error covariance matrix,
� �

' and the errors are

zero mean, then by the Gauss–Markov theorem
� � / " is the minimum variance estimate with

covariance matrix given by

���� � � � / " � � � � / " � � � � 
 � � � '
� � � � �

�
' � � � ' (2.12)

Additionally if the errors have a Gaussian distribution the WLS estimator is also the Maximum

Likelihood (ML) estimator. The ML estimator maximises the probability
� �  � # � . If through

a priori knowledge the errors are known to be non–Gaussian, e.g. as in the case of NLOS

errors, then the ML estimator must be solved numerically. Iterative methods for minimisation

(or maximisation) of functions are well established [24], but add significantly to the burden of

calculation and may be prone to finding local minima if the starting estimate of # is not well

chosen.

The goodness of an estimator is determined by how accurate the location errors are compared

to the theoretical lower bound on estimation accuracy determined by the measurement noise
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power and noise sensitivity of the equations to be solved around the true solution. This lower

bound is discussed in more detail in Section 2.3.4. The closer an estimator performance comes

to this lower bound the more efficient it is said to be.

2.3.1 Estimators for Bearings

Figure 2.3 shows the intersection of bearings from several BS’s. In the case of two bearings

the solution is trivial, the intersection of two lines. Note that with three or more bearings in

the presence of measurement noise the bearings may not all intersect at the same point. The

equation for each of
�

bearings,
� � , is given by

���
�
� � �

� � � �� � � �� � � ���
�
� � � � � � � � ��� � � � (2.13)

where # � I � � P � � is unknown location to be solved and
��� � ��� � � is the location of sensor

(BS) 	 .

1
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α
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BS2

BS3

BS4

Figure 2.3: Location by bearings
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Thus to form the WLS estimator

 �
���
�

�
'
� �

' ��� �
�

'� �
� 0 � � 0 ���

�
� 0

����
� (2.14)

� �
���
�
6 ���

�
�

'� � � �
6 ���

�
� 0

����
� (2.15)

Since the WLS estimator is straightforward there is no need to consider other estimators unless

the measurement noise is known to be non–Gaussian in which case an ML estimator should be

considered.

2.3.2 Estimators for Ranges

Figure 2.4 shows the intersection of range circles from several BS’s. Again the range circles

need not intersect at one point in the presence of measurement noise. In fact the range circles

need not intersect at all if the errors are large and negative. The equation for each of
�

range

circles is

��� � � � �"+� ��� � � � �1+ � �3+� �
� (2.16)

where
� � represents the measured range to sensor 	 . For 3 ranges a unique minimum mean

square error solution exists which may not be the intersection of the circles since they do not

necessarily cross. Song [25] developed an empirical method which works in all cases in which

square terms are cancelled to produce three straight lines. The intersection points of these lines

are averaged to produce the final location estimate.

In the presence of an overdetermined system ( � 3 ranges) a WLS estimator can be used. Un-

fortunately (2.16) is non–linear in
�

and
�

and matrices � and # cannot be isolated. In this

case either the function
� � / " can be minimised numerically or (2.16) can be linearised using

a Taylor series expansion. The Taylor series for a function of two independent variables states
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Figure 2.4: Location by ranges

[26]

� � � � � � ��� � � � � ��� � � ��� K �#���� ��� � � � � � ���� ��������� N �
6
R � K

� + � ������ ��������� � R � � � ���� � ����������� � + � � �� � � � ����� N � � � (2.17)

Since
�

and � are small steps the higher power terms are usually discarded. The Taylor series

method uses an initial guess for
��� � � �

then iteratively determines the local linear WLS solution.

Thus �
� � �

� �

�
� � � � � � 
 � � � � ' � � � 
 �  (2.18)
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Where for range location

� � �
���
�

�����
� � �����

� �� � � �
�����
� 0 �����

� �

����
� �

���
�
� �1� �- �

� � � �- �� � � �� � � �- �
� �1� �- �

����
� (2.19)

and

�  �
���
�
� ��� � �

'
� + � ��� � �

'
� + � �

'� �
� ��� � � 0 � + � � � � � 0 � + � � 0

����
� (2.20)

The derivation of the derivative terms is shown in Section A.1.1. After each iteration the es-

timate for
��� � � �

is updated to
� ��� � ����� � � � �

and applied to the next iteration until
� �

and
� �

converge to zero. This method is known to be efficient if the initial guess is sufficiently

accurate.

Another method to solve the overdetermined case is the Divide and Conquer (DAC) approach

[27] in which measurements subsets containing all possible combinations of 3 range estimates

are used to calculate possible locations. All locations are then combined using a weighted

average.

2.3.3 Estimators for Range Differences

Figure 2.5 shows the intersection of range difference (RD) hyperbolae between several pairs of

BS’s. Again if the solution is overdetermined ( � 2 RD’s) in the presence of measurement noise

the hyperbolae may not intersect at one point. Note that each pair of hyperbolae intersect twice.

The second solution is not shown and is generally sufficiently far from the region of interest

that it can be ignored. The equation of each of the
� � 6 hyperbolae is given by

� ��� � � � � + � ��� � � � � + � � ��� � �
'
� + � ��� � �

'
� + � � � � ' �
� (2.21)

where
� � � ' represents the measured RD between sensor 	 and sensor 6 .

The solution of these equations even in the case where they are precisely determined is not

straightforward since the equations are non–linear. Fang [28] and Chan [29] have derived closed

form solutions which are mathematically identical. Chan’s method is shown below. Firstly
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Figure 2.5: Location by RD’s

(2.21) can be rearranged then squared to give

� +� � '
� R � � � '

�
'
� � +

' � �5�
� R � � � � R � � � � � + � � +

(2.22)

where � � � � +� � � +� and
� � is as defined in (2.16). Subtracting (2.16) at 	%� 6 from (2.22) gives

� +� � '
� R � � � '

�
' �

� R � � � ' � � R � � � 6 � � �5� � � ' (2.23)

where
� � � ' �

� � � �
' and similarly for

� � � ' .
With

� �S� sensors and thus two RD’s
���������

can be solved from (2.23) in terms of
�
' . i.e.

�� �
�

�� � � �� � + � '
� + � '��� �

'
��� �
'

��
�
' �� �� � + � '��� �

'

�� �
'
� 6
R

�� � ++ � '
�
� + � � '� +� �

'
�
�
��
� '

����� (2.24)

Substituting the intermediate solution into (2.16) at 	�� 6 gives a quadratic in
�
' . The positive

solution is then substituted back into (2.24) and resolved.

In the case where
� � � , i.e. the solution is overdetermined, there are several methods. The

Taylor–series expansion can again be used. This leads to an identical iterative WLS estimator
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as in (2.18) with

� � �
���
�

�����
� � �����

� �� � � �
�����
� 0 �����

� �

����
� �

���
�
� �1���
- � � � �1� �- �

� �1���
- � � � �1� �- �� � � �� �1� �- � � � �1� �- �
� � � �- � � � � � �- �

����
� (2.25)

and

�  �
���
�

� + � '
� ��� + � �

'
�

� �
� 0 � '

� ��� 0 � �
'
�

����
� (2.26)

The derivation of derivatives is shown in Section A.1.2. The DAC method is also applicable.

Chan [29] developed a closed form solution. This is achieved by solving in terms of variables

# �:I � � �
' P
�

which are initially assumed independent using the WLS method. From

(2.23) it is straightforward to generate

� � � ���
�
� + � '

� + � '
� + � '� � � � � �

� 0 � '
� 0 � '

� 0 � '

����
� (2.27)

and

 � 6
R

���
�

� ++ � '
�
� + � � '� �

� +0 � '
�
�50 � � '

����
� (2.28)

The true covariance matrix
�

is a function of the actual values of
� � . Assuming the weighting

matrix, 
 , accurately represents the inverse of the covariance matrix of the RD’s then
�

is given

by

� � � 

�
' � (2.29)

where

� ��� ������K � + � � � � � 0 N (2.30)
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Since
� � are not known initially the estimator can first be solved with

� � 

�
' then the

solution used to calculate
� � and recalculate

��� � � (one iteration is sufficient). As mentioned

this solution assumes the elements of # are independent. However they are related by (2.16) at

	 � 6 . Without expanding the details of the paper the ML estimate (assuming Gaussian noise

still) of I ��� � �
'
� + ��� � �

'
� + P � may be obtained by a further step

� 3 � � � � � � � �
�
' � � � � ' � � � � �

�
'  �

(2.31)

where

� � �
���
�
6 �
� 6
6 6

����
� (2.32)

and

 � �
���
�
� � � � � ' � ' � �

'
� +

� � � � � + � ' � �
'
� +

� +� � � � � '
����
� (2.33)

and

� � ��� � ��� � � � � �
(2.34)

where

� � ��� ������K � � � � ' � ' � �
'
� � � � � + � ' � �

'
� � � � � � � ' N (2.35)

The final solution is then given by

$ ��� � � 3 � � �
� �

'�
'

�
� (2.36)

with covariance matrix

� � � � � � � � � � �
�
' � � �

�
' 
 �

�
' � � �

�
' � � � � � � � ' (2.37)
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where

� � � ��� � ���OK � 3 � ' � ' � �
'
��� 3 � + � ' � �

' N (2.38)

The analysis in [29] shows that Chan’s method performs as well as the Taylor–series method

without the problems of requiring a good initial guess and that it is better then the DAC method

in the high noise region. In future chapters to provide consistency only Chan’s method is used

in RD calculations.

Finally in [30] a technique called RD averaging is introduced. This involves fixing all RD’s in

a loop to sum to zero (e.g.
� + � '

� � � � + � �
'
� � �
� ) thus ensuring a real solution (or real solution

plane in 3D location) exists. This method is applicable when all components of the loop could

be measured independently, for instance via the generalised cross correlation (GCC) method.

For a known signal when a MF is used this method is not required since all loops will sum to

zero.

2.3.4 Cramér–Rao Lower Bound

The Cramér–Rao Lower Bound (CRLB) is the theoretical best performance of an estimator

given input measurements corrupted with Gaussian distributed noise [23] and is given by

	
�
��� � � �

�
' ���

�
' (2.39)

where
�

is a matrix containing the partial derivatives of the measured variables (e.g. RD’s,

ranges, angles) with respect to the unknown parameters (e.g. MS location). The derivation is

given in Appendix A.

The best RMS error for a location system is therefore defined
	
�� � " � � ��� � ��� K 	 � N .

2.4 Measurement Techniques

In this section current methods used to obtain the measurements required for location calcula-

tion are summarised. Rappaport et al [31] and Caffrey et al [32] also provide a comprehensive

reference.
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2.4.1 Signal Strength

Received signal strengths vary with MS–BS separation. Thus a measured signal strength can

be converted to a range. Measurement of three such ranges from the MS to three different

BS’s can allow a position estimate. Unfortunately the dependence between range and signal

strength is a complex one. In Section 2.1.2 standard path loss models are presented which have

been based on large sets of measured data. Path loss typically attenuates 20–60dB per decade

(range multiplied by ten times). However in reality every scenario has slightly different path

loss characteristics due to features and obstructions in the environment. To allow for these

variations shadowing models are introduced which usually allow for a lognormal distribution

around the median path loss with 8-12dB log standard deviation. On a shorter scale fast fading

in signal strength also occurs which can have a Rayleigh probability density function (PDF).

These fluctuations can be as much as 30dB with MS movements of a fraction of a wavelength.

Clearly long term averaging is required to remove the effect of Rayleigh fading. Unfortunately

shadow fading cannot be averaged since such averaging would have to take place over large

distances across which the true range would also have changed significantly. In the first paper

to deal with MS location Figel [33] proposes a median average technique to calculate range

estimates from signal strength measures. Results show smaller cell radii allow better location

accuracy. For a cell radius of R�� � km location accuracy of H (��X � � �	� m may be possible.

Song [25] also presents similar accuracy results, using a geometrical solution to the circles of

range. Hata et al [34] explores the relationship between detection time and standard deviation

of median signal strength error in more detail. Theoretical results show that even with slow

Rayleigh fading rates the median can be estimated with standard deviation less than 1dB with

detection time less than 10 seconds.

Hellebrandt et al [35] show results in a GSM environment, the standard of which specifies

signal strengths for surrounding BS’s are measured, quantised into 64 levels, and returned to

the network at all times in case a handover is required. They propose a LS estimator to solve

for location and also suggest precise knowledge via a database of past measurements could

be used to further enhance location accuracy. This technique is sometimes referred to as en-

hanced signal strength (ESS) location. In [36] further use of a Kalman filter (KF) (see Section

2.10) to track successive location estimates is proposed, giving RMS location accuracy to 70m.

Salcic et al [37] propose a similar method with a a neural network employed to learn the semi–

random relationship between position and actual signal strengths (caused by shadowing) from
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test measurements. They give location errors within 270m for real tests.

2.4.2 Time of Arrival (TOA)

Since the advent of high bit rate digital communication timing measurements can be used to

locate the MS. If the transmit time of a signal is known then the receive time (with reference

to the transmit time),
� � , can be used to calculate a range as

� � � �	� � where
�

is the speed of

light. Three ranges provide a unique location estimate. Measurement of TOA’s implies both

transmitter and receiver are tightly synchronised which is not the case in mobile networks.

Therefore the method generally used is to calculate the Round Trip Time (RTT) of a signal

transmitted and then sent back. The TOA is simply half the RTT (adjusted for processing

time at the relay point). This system has been proposed in GSM networks where the timing

advance (TA) is already required to maintain frame synchronisation of received signals at the

BS from multiple MS’s. TA’s are required from non–serving BS’s which can be achieved

without modification to the GSM terminals by a forced handover request to the BS’s of interest

(chosen from the signal strength data). The correlation method is generally used to calculate the

TOA with a matched filter (MF) (see Section 2.6) to the known transmitted signal. The major

problem with GSM is that the bit rate is still fairly low. Timing resolution is only required in

the GSM standard to a quarter of the bit interval corresponding to a distance of 277m [38].

Silventoinen et al [39], [40] and Fischer et al [41] give basic location accuracy evaluation of

TOA location in GSM with variable accuracy expectations ranging from 100 to 1000m. Pent

et al [42] examines the performance with additional tracking via a KF. Dumont et al [43] apply

the MUSIC super–resolution algorithm [44] to improve the correlation resolution. Multipaths

arriving within the bit period cannot be individually resolved by correlation alone and this

superposition can cause a large timing error. An improvement ratio of over 40% in RMS TOA

error over correlation methods is achieved in a test scenario. Such methods may be unnecessary

in higher bit rate systems (e.g. UMTS) when the resolution is sufficient to give the accuracy

required and other errors (such as NLOS and z direction differences) start to dominate.

Chen [45] looks at a method for solving the ambiguity of having (possibly) two location estim-

ates when only 2 TOA’s are available by use of sector knowledge in tri–sectored BS’s. Morley

et al [46] propose an ML type estimator (as opposed to LS) since NLOS errors have a positive

only distribution. The premise for this is that the estimate must be within all range estim-

ates (plus Gaussian measurement noise). Improvement of around 20% is noted with this more
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efficient estimator. On the down side this sort of ML estimator must be solved numerically.

2.4.3 Time Difference of Arrival (TDOA)

The drawback of TOA systems is the tight synchronisation required or in RTT mode the need

for additional communication overhead (since a message must be sent both ways) and pro-

cessing delays at the mid point of the round trip as the message is returned which cause further

timing uncertainty. For this reason TDOA methods have been proposed for future systems. The

difference in arrival time of signals from several BS’s at one MS can be measured by MF(s)

if the signal is known or by the GCC method [47] if it is not (see Section 2.5). Assuming the

transmit time of all signals is the same the time differences (TD’s) can be converted to RD’s

by multiplying by
�

. Two RD’s are required to calculate a location. If the transmitters are not

synchronised the difference in transmit time must be independently measured by a fixed node

in the network (these have been termed Location Measurement Units, LMU’s). Alternatively a

signal from the MS may be received at several BS’s or LMU’s and the TD’s measured. In this

case the GCC method may be most suitable to calculate the TD from the received signals since

the actual transmitted signal may not be known. Again relative synchronisation of the receiving

stations must be known. The latter method is often termed Observed Time Difference (OTD).

A whole family of alternatives to GCC have been developed which exploit the cyclic stationar-

ity of signals [48], [49] to reduce the effect of interferers. However these cyclic methods are not

applicable in many mobile communications systems since all the interferers (other users) have

the same cyclic frequency. Also in CDMA systems since all users transmit on the same band-

width multiple cross correlation peaks will occur for each user which is problematic. Aatique

[50] notes that the bit decisions of the unscrambled and despread signal at the serving BS can

be used to reconstruct the transmitted signal. The reconstructed signal can then be used as a

MF on the received signal from other BS’s. As long as the bit error rate is low performance is

near the single user case.

An OTD system has already been developed for GSM by Cambridge Positioning Systems

(CPS) [51]. This system also uses super–resolution techniques to overcome the lack of time

resolution available in GSM thus is termed enhanced OTD (E–OTD). CPS claim accuracy of

up to 50m (though it is unclear which measure of accuracy this refers to). Clearly at higher bit

rates one might expect accuracy to increase, though with higher carrier frequencies the propaga-

tion environment becomes more reflective (higher diffraction losses) and thus prone to larger
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NLOS errors. Silventoinen et al [40] show simulation errors of 100-200m for the OTD system.

Porcini et al [52] presents results for the proposed IPDL location method (see Section 2.8) for

UMTS. The simulation results using standard 3rd generation channel models show location

errors between H (��X � � 	� – 6��� m. Similar results are presented in the author’s own paper [53]

and by Ludden et al [54]. In [55] a rather constrained urban grid like scenario, with a delay

locked loop that can synchronise tightly to the incoming rays, is examined. In such scenarios

constraining the MS to lie on the road connecting LOS BS’s is better than using the information

from other NLOS BS’s.

2.4.4 Angle of Arrival (AOA)

Resolving AOA’s is not as straightforward as resolving TOA’s or signal strengths especially

in highly multipath environments. An antenna array is required (currently this is not practical

at the MS). By comparing the received signal at each element of the array the AOA can be

estimated. Phase interferometry and beamforming are well known techniques. In phase inter-

ferometry the phase differences of signals across the array are measured. In beamforming a

power distribution is generated by applying complex steering weights to each elements of the

array. Neither of these methods work well in multipath. Tyler et al [56] propose using TD’s in

a widely spaced antenna array to calculate the incident AOA(’s) rather than phase differences.

For realistic antenna geometries this implies super high resolution of TD’s. More complicated

algorithms exist such as MUSIC [44], ESPRIT [57] and ML [58] techniques, the latter of which

is very complicated since all combinations of possible incident paths are searched. Usually the

number of antenna elements in the antenna array must be equal to or greater than the number

of incoming paths (per frequency channel). In CDMA type systems this adds further problems

since all users are interfering on the same frequency channel with differing AOA profile. If

the signal is despread first (each user with different spreading code) a reconstructed single user

signal can be used in the AOA search algorithms [31].

A further drawback of AOA systems is that the antenna array elements must use tightly matched

components to ensure all filtering and amplification across the array is linear and equal. Further

to this the antenna orientation must be precisely measured since if the array moves even slightly

(e.g. by high winds) the AOA’s measured would no longer be accurate. This implies regular

servicing of the antennae would be required.
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Telesentinel [59] and Swales et al [60] use AOA technology and claim location accuracy within

FCC requirements at test sites for low carrier frequency systems. Thompson et al [61] report

much larger location errors in a real experiment ( H (��X � � � 	� m).

2.4.5 Hybrid Techniques

Combinations of the previously described techniques are possible and may be more robust

to measurement noise. Combining measurement types is usually a straightforward adaption

of the location estimator. Spirito [62] describes a multilateration technique using TDOA and

TOA and simulation results show this performs significantly better than a TDOA only loca-

tion estimator in a GSM system. The simulations assume that the large measurement noise in

GSM is the dominant error mechanism so the improvement may not be realistic when NLOS

errors dominate the measurements. Korthris et al [63] report actual location accuracy results

for combinations of TOA and AOA measurements. It is shown that location accuracy varies

considerably from location to location. Increasing the number of AOA’s and TOA’s used in

the location calculation increases the accuracy considerably. Cong et al [64] consider a TDOA

technique augmented with one AOA from the serving BS. Results show that if the serving BS

is considered LOS using the AOA can improve location accuracy of the standard TDOA only

system by 70%. This hybrid technique is also analysed in the author’s own paper [65].

2.4.6 Satellite Methods

The use of a Global Positioning System (GPS) receiver built into the MS has been suggested.

GPS, owned by the US government, calculates a 3D location by the measurement of TDOA’s

from 4 or more satellites. Much is already known about the location accuracy of such a system.

In stand alone mode location accuracy of 10m is now possible since the deliberate degradation

of the GPS signals to civilian users was switched off. This can be countered by using reference

receivers at fixed locations which transmit the continuously varying location corrections to

surrounding users. This differential GPS can achieve location accuracy to within 10m [66]. The

Global Navigation Satellite System (GLONASS) is the Russian equivalent to GPS. Location

accuracy of 20m is possible since no deliberate errors are introduced.

The major problem with GPS type systems is the time taken to acquire the signals. In normal

operating conditions the receiver may take up to 16 minutes to locate the user dependent on the
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position of satellites in the sky. Each signal must be acquired by a lengthy 2D search in delay

and Doppler shift since the pseudo noise codes used are long and the satellites have variable

Doppler shift dependent on where they are located in the sky. The user also must have a clear

line of sight to each horizon. To overcome this Soliman et al [67] propose use of a hybrid GPS

receiver called ‘gpsOne
� �

’ which utilises TOA measures from the BS network. If one TOA

is known the precise GPS clock time can be known at the MS. This knowledge reduces the

number of satellites that need be detected to 3 since only 3 TOA’s are required to determine a

location in 3D space. NLOS errors to the BS do not effect this location estimate since the TOA

is only used to reference the GPS clock. The one TOA can also be used in the location estimate

which reduces the number of satellites required to 2. This method introduces errors cause by

NLOS. Since fewer satellites are needed acquisition time can be reduced to several seconds.

Location accuracy of H (��X � � 6�� m and H (��X � � 9�9 m is observed with 3 satellite and 2 satellite

location respectively.

2.4.7 Multipath Fingerprinting

Fingerprinting methods involve building up a comprehensive database of complex multipath

delay profiles at locations throughout the cell. At any time the MS can report its multipath

delay to the BS and via a one to one mapping between delay profile and location the location

can be estimated. This technique is only useful for urban locations when other methods may fail

due to NLOS conditions. Naturally errors might occur when two disjoint areas of the cell have

similar multipath profiles. Other problems include creating the database which must also be

updated each time the cell environment changes, and non–stationary scatterers (e.g. vehicles)

which could never be built into the model. If the fingerprinting is done at the BS the system

might be more robust since a unique profile in delay and AOA could be measured.

2.4.8 Scatterer Tracing

It is possible to use the multipath make up of the channel to locate the mobile. Thompson [68]

locates the source of a signal by using the TD between the arrival of the LOS signal and the

signal reflected off a scatterer of known location. It is noted that location in this manner is

possible however very sensitive to measurement noise. In the author’s own paper [69] a more

complicated algorithm is proposed that does not rely on knowledge of scatterer locations. The

location accuracy again is very sensitive to measurement noise.
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2.5 Generalised Cross Correlation

The generalised cross correlation (GCC) method provides a way to estimate TD between sig-

nals arriving at different sensors from one source. Knapp et al [47] provide a comprehensive

reference.

Consider a signal, � � � � , transmitted from a remote source through a single path channel with

noise and received at two separate BS’s. The two received signals,
�
'
� � �

and
� + � � � may be

modelled

�
'
� � � � � � � ��� �

'
� � �

� + � � � � � � � � � � + � '
��� � + � � � (2.40)

where � is the relative attenuation difference between
�
'
� � �

and
� + � � � , � '

� � �
,
� + � � � are noise

components and
� + � ' is the signal delay difference. � � � � , � '

� � �
and

� + � � � are assumed to be real,

joint stationary, zero mean random processes, with
�
'
� � �

and
� + � � � uncorrelated to � � � � .

The crosscorrelation of
�
' and

� + is described mathematically as

� - � - � � � � � � �
� � �

'
� � � � + � �� � � � �

� � ��2F2 ��� � � + � '
��� � 0 � 0 � ��� � (2.41)

If
�
'
� � �

and
� + � � � are uncorrelated then � 0 � 0 � ��� � �
� . This equation can be rewritten

� - � - � � � � ��� � 2G2 ��� ��� 
 ��� � � + � '
�

(2.42)

where
�

represents convolution. The signal autocorrelation, � 2G2 ��� � peaks at
� � � (though

in cyclic signals there may be equal peaks present), thus estimation of delay difference
� + � ' is

simply a matter of finding the delay value at which ��- � - � ��� � peaks. In practice the integration

period must be finite especially since � � � � , � + � ' and � in practice are non stationary, thus

�� - � - � ��� � � 6� � � � � �
'
� � � � + � �� � � � � (2.43)

where
�

is a practical integration time.
�� - � - � ��� � may also be represented as a digital sampled
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signal as

�� - � - � � � � � 6� � �
� �

'�
0 � � �

'
��� � � + ��� � � �

(2.44)

where � � �

in samples to the nearest sample.

Practical implementations of (2.43) and (2.44) are integrate and dump circuits or the sliding

correlator followed by peak detection.

In (2.42) a single delay is assumed. However in many situations multipaths and thus multiple

delays will exist. Therefore

� - � - � � � � �S��2F2 � � � � �
� �V�


 � � � � + � ' �
�

(2.45)

The sum of



functions is the CIR. The convolution operation can smear one



function into

another, making it impossible to distinguish peaks or delay times. For such cases there have

been several prefiltering processes operating in the frequency domain that aim to accentuate the

received signals at those frequencies with the highest signal to noise ratio (SNR) [47].

2.6 Matched Filter

If � � � � is known the GCC methods can be greatly simplified. In such cases use of a filter

matched to � � � � is the optimal filter to maximise the SNR of a received signals
�
'
� � �

and
� + � � �

[4] in a single path channel. The response to such a Matched Filter (MF) is defined by

�
'
� � � � � ,

�
�
'
� � � � � � � � � � � � �

� + � � � � � ,
�

� + � � � � � � � � � � � � � (2.46)

This
�
'
� � �

and
� + � � � are the time autocorrelation function of � � � � convolved with each CIR.

The time delay difference,
� + � ' , can then be evaluated by comparing the relative difference in

peaks in
�
'
� � �

and
� + � � � . Multipath conditions may cause several peaks in both

�
'
� � �

and
� + � � � .

In such case it is desirable to select the earliest peak in terms of
�

since multipaths have an

additional delay component over the LOS path caused by a longer signal path. This is termed

Multipath Rejection (MPR).
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2.7 Non–Line of Sight Problem

The Non–Line of Sight (NLOS) problem has often been termed the killer issue in MS location.

In NLOS propagation the signal paths between MS and BS are all either reflected or diffracted.

These paths are generally termed multipaths. Figure 2.1 shows an example of these multipaths.

If the line of sight (LOS) path is not present then the first arriving path will have an additional

time delay, termed excess delay, and possibly an angular difference at both MS and BS from

the hypothetical LOS path. The signal will also be attenuated due to the reflection/diffraction

coefficients and also the increased path length. This leads to the shadowing model previously

described.

Caffrey et al [70] note the excess delay distance can average 400–700m in a GSM system,

however little is known about the true distribution since excess delay is not critical to the com-

munication performance of the system and these factors have not been reliably measured. More

is known about the multipath delay power profile which through numerous measurements has

been shown to be well approximated by an impulse plus decreasing exponential distribution

[71]. The impulse part is caused by the higher power LOS component. It is reasonable to

assume that in NLOS propagation the spike component is not present, thus the delay power

profile is exponentially distributed. It seems reasonable to assume that the excess delay PDF

is also exponentially distributed with mean inversely proportional to the number of multipaths

detected. Maxwell’s distribution and a non–zero mean Gaussian distribution have also been

observed [72], [40] . Whichever case is true it should be noted that the excess delay distribution

has a positive mean which causes significant biases in range or RD measurements.

The angular distribution at the BS is generally thought to be Gaussian like in nature, with

mean the true LOS AOA. The angular spread defines the angle that encompasses directions

over which significant energy is received. Paulraj et al [73] report typical angular spreads of

�
�� � in indoor scenarios, R��
�

in urban scenarios, and 6
�

in flat rural scenarios. Piechocki et al

[20] present general formula for the PDF of AOA’s based on the circular scatterer model. The

angular distribution is

� � � � � �
�� � + * �� - ��� ��� � � � ��� + � � ��� � � � + � 6 � �
	�� �

' � � � � � � � ���
	�� �
' ��� � � �

� � �� � ��� ��� � (2.47)

where � is the MS–BS separation,
�

is the radius of the circular scatterer area. The equation is
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only valid for � � �
. The equation shows the intuitive assumption that angular spread increases

as the MS–BS separation decreases. The delay angular spread is also significant since the

earlier arriving multipaths tend to have a reduced angular spread. A reasonable estimate for the

LOS AOA could therefore be the mean AOA of all multipaths, the AOA of the first arriving

multipath or a composite mean with higher weightings to the earliest arriving multipaths.

Several strategies have been suggested to overcome NLOS errors in timing measurements.

Range residual tests have been proposed in [74], [45], [64]. Wylie et al [74] show that the

range residual between the measured range and the estimated location using all range estimates

tend to be higher for the NLOS range estimates than the LOS range estimates. For the scen-

ario with one NLOS BS out of three they estimate correctly the NLOS BS 60% of the time.

Chen [45] and Cong et al [64] generate subsets of measurements to generate possible location

estimates. Chen [45] produces a weighted average of all possible locations using the squared

range residual sum as a weighting for each location. Cong et al [64] propose simply using the

summed squared RD residuals from each location to detect any NLOS BS. This algorithm only

performs well with one NLOS BS among many LOS BS’s.

Borras et al [75] propose a decision theoretic framework to detect NLOS BS’s via a time series

of estimates based on the fact that in NLOS the delay will have a higher variance than under

LOS conditions. This is a reasonable assumption if the NLOS errors are larger than the meas-

urement noise variance and the excess delay changes in a random manner due to the changing

multipath profile which could not caused by erratic movement of the MS. Actually measuring

NLOS delay variance is somewhat problematic since a high degree of spatial correlation oc-

curs. Rhe CoDiT report [22] proposes modelling multipath survival lengths to be of the order

of 1000 wavelengths. To detect the increased variance the MS has to move to experience spatial

diversity. Since the mean true LOS delay may also change as the MS moves tracking is required

to estimate the instantaneous delay mean. Wylie et al [74] propose using a LS fit to model the

mean and calculate the variance.

Once an NLOS BS is recognised it can be removed from the location calculation. However the

measurement can still improve the location estimation accuracy. Morley et al [46] and Cong

et al [64] propose using ML estimators matched to the NLOS delay error distribution of range

and RD’s. Location accuracy can improve significantly with such implementations since the

location uncertainty can effectively be limited to the positive side of the delay distribution.
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NLOS delay correction methods have also been proposed. Wylie et al [74] propose an adjusted

LS technique. A LS fit to the TOA measurement series is adjusted to pass through the earliest

TOA measurements. The assumption is that at some point in the past the MS might have been

LOS and this TOA can be extrapolated into the future. This method is described in more detail

in Section 5.2. Jeong et al [76] propose exploiting an apparent relationship between mean

multipath delay,
� �

and multipath delay spread
� � � "

. Ratios of � � � � � "�� � � � 6 to R for

urban areas have been reported and
� � � "�� � � � R in rural areas. Utilising a predetermined �

the estimated
�� ��� � can be calculated as

�� ��� � � � � � � � � � "
. Improvement of around 40% in

H (��X � is observed using this method.

The drawbacks of many of the methods proposed to overcome NLOS errors is that they rely

heavily on a priori knowledge of the NLOS error distributions. If these assumptions are found

to be in error then the location accuracy improvement may well be diminished or even reversed.

Detection and correction of AOA NLOS errors may be possible by similar methods. Publica-

tions in this area are somewhat limited. NLOS detection may also be possible by analysing the

power ratio between impulse and exponential in the power delay profile.

2.8 Hearability Problem

Hearability is a term dubbed to mean the measure of the ability of the MS to detect surrounding

BS’s (or vice versa). Hearability is usually expressed in terms of the number of BS’s detectable

in a given time interval. In most location techniques measurements from at least 3 BS’s are

required to make a location estimate. Using hybrid systems, e.g. TDOA/AOA or TOA/AOA,

this requirement can be reduced, potentially to only 1 BS. However these systems tend to be

more complicated to implement, e.g. requiring accurately calibrated antenna arrays at the BS,

and lack the LOS state diversity afforded by taking measurements from several BS’s. In UMTS

a TDOA technique has been proposed as part of the standard [77], thus non–serving BS hear-

ability will be an issue as TD measurements involving at least 3 BS’s are required for a location

estimate.

Electromagnetic radiation attenuation in mobile systems has been found to increase in propor-

tion to anywhere between the 2nd and 6th power of the transmitter to receiver separation, � � "
,

dependent on the terrain. This factor alone implies that a distant BS will be undetectable as

the signal power will fall well below the thermal noise level. However in practical systems
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(with more than one BS) carrier frequencies must be reused. In systems with several available

frequencies, e.g. GSM, there will be many carrier frequencies available. Each BS is assigned

a different subset of these carriers deliberately so adjacent BS’s do not produce co–channel

interference. The frequency reuse distance,
� � A , measured in cell diameters, is defined as the

minimum separation between BS’s using the same frequencies. Large
� � � implies reduced

co–channel interference, however to support the same number of users per cell more carrier

frequency spectrum would be required.

The hearability of distant BS’s will clearly be dependent on the co–channel interference from

the serving BS and thus on
� � A . In a system with several available frequencies this will not

be a major concern as the co–channel interference levels on frequencies used by adjacent BS’s

should be low, even if
� � A �SR cell diameters, the minimum for a working system. This means

that, assuming the transmit power is well above the thermal noise level, several adjacent BS’s

can be detected and a location estimate can be made. However in CDMA systems
� � A � 6 as

all BS’s share the same wideband frequency. As complete code orthogonality is not practical

co–channel interference will limit hearability. Clearly when an MS is close to the serving BS

there is little chance of detecting other BS’s due to the large difference in received power levels.

This effect is often termed the ‘near–far effect’. At current signal bandwidths power differences

of greater than 30–40dB are probably impossible to overcome. Figure 2.6(a) shows the PDF

of signal powers received by MS’s placed randomly in the centre cell of a hexagonal cell ar-

rangement (cell radius � ��� 	��� m). The simple path loss model (2.3) with 8dB lognormal

shadowing was used. Figure 2.6(b) shows the same distribution with a dual slope model (3.11).
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Figure 2.6: Path loss distribution for BS’s with 1st–5th highest received power for (a)
simple, (b) dual slope path loss models
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From Figure 2.6 it is possible to see that power differences between the 1st BS and all other

BS’s are above 30–40dB for much of the time (though it is worth noting that the correlation

between power levels is not shown in the figure). Similarly the 2nd BS can also overpower

the lower power BS’s. The power levels of subsequent BS’s tend to be similar. The dual slope

model marginally increases the power of the 1st and 2nd closest BS’s relative to more distant

BS’s and thus heightens the near–far problem.

To overcome this near–far problem various techniques have been proposed among which IPDL

has been favoured. Recently IPDL has been added to UMTS. These techniques are discussed

in more detail in Chapter 4.

[78] consider the hearability statistics for a UMTS system. In the former this is expressed as

a hearability histogram. This is the hearability statistic that is used in this thesis. Silventoinen

et al [40] present a similar statistic for a GSM system. Nortel Networks [79] and Ludden et al

[54] consider the CDF of the received C/I ratio for the BS’s with the 1st, 2nd and 3rd strongest

received C/I. After processing and taking into account a suitable noise threshold, it is then

possible to calculate hearability probabilities. Chen [45] considers the probability of detecting

a BS and shows this has a significant impact on performance. The hearability distribution could

be extrapolated as a simple function of the number of BS’s in the simulation. The drawback

of this work is that this probability is considered constant for all BS’s, however realistically

this will be a function of the relative separations between all BS’s and the mutual interference

levels. In Chapter 4 the relationship between mean hearability and location error is explored in

a more realistic manner.

2.9 Geometric Dilution of Precision Problem

Geometric Dilution of Precision (GDOP) occurs when MS to be located is far away from the

BS’s, or when the location equations intersect nearly parallel to each other. A numerical value

for GDOP [80] can be defined as

����� � �
�
� +� � � +�
� -

�
	
�� 3 �

� - (2.48)
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where � +� and � +� represent the mean square location errors in the x and y directions and � +-
the measurement noise variance. Clearly high GDOP situations have to be avoided in the

location calculation by suitable selection of measurements based on a current estimate of the

MS location. As noted in (2.48) the GDOP value is related to the CRLB.

2.10 Kalman Filter

The Kalman Filter (KF) has wide spread use in prediction and tracking of moving targets or

parameters. A KF is a tracking filter that allows for an uncertainty in the target motion by

adding a random acceleration component, �>0 , between measurement samples [81]. In matrix

notation the target dynamics are described

� 0 � 	 � 0 � '
�  0 (2.49)

where

� 0$�
�
� � 0

�� 0

�
� (2.50)

is the state vector and

	 �
�
� " � � "

� "
�
� (2.51)

is the state transition matrix, where
� �

is the sample time, and

 0 �
�� �

� 0

�� (2.52)

is the dynamic model driving noise vector.
"

and
�

are the identity matrix and zero matrix

respectively with the same size as the tracked dimensions in � 0 . The target state vector com-

ponents can be described in as many dimensions as required though usually one (parameter

tracking) or two (target tracking) dimensions are all that is required. The state vector can be

extended to higher order derivatives of
� 0 .

Kalman [82] first derived the optimum filter which minimises the mean square error between
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filter prediction,
�� 0 � '

� 0 , and true target value, � 0 � ' . Equations (2.53–2.57) define the recurs-

ive operation of the filter.

�� 0 � 0 � ' �
	 �� 0 � '

� 0 � ' (2.53)

�� 0 � 0 � ' �
	 �� 0 � '

� 0 � '
	 � � � � (2.54)

! 0 � �� 0 � 0 � '
� � I � 0 � � �� 0 � 0 � '

� � P
�
' (2.55)

�� 0 � 0$� �� 0 � 0 � '
� ! 0�I  0 � � �� 0 � 0 � ' P (2.56)

�� 0 � 0 � �� 0 � 0 � '
� ! 0 � �� 0 � 0 � ' (2.57)

where  0 is the measured data vector,
�� 0 � 0 is the covariance matrix of

�� 0 � 0 ,

� �

 � 0 � 0 � '
 � 0 �7I " � P (2.58)

is the Kalman gain matrix,
� 0 , is the covariance matrix of the measurement noise vector cor-

rupting  0 and
� � is the covariance matrix of

 0 .

The output state vector,
�� 0 � 0 , is calculated from a variance weighted sum, set by the Kalman

gain,
! 0 , of the filter prediction,

�� 0 � 0 � ' , based on the previous state vector output and the

current measured data,  0 .

In practice the covariance matrices
� 0 and

� � may not be known and so should be estimated.

Usually covariance terms are zero thus for tracking to
!�

� � ��� � +� "�� (2.59)

� � �
�
� � �

� � +� "
�
� (2.60)

� +� could be estimated from the variance of measured data in a test environment. A reasonable
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approximation for � +� , termed the velocity driving noise or sometimes the plant noise, can be

calculated from the maximum acceleration of the target
"� � / � as

� � �
� � "� � / �
� (2.61)

where 6 � � � � depending on target type and the manoeuvre independence between samples.

2.10.1 KF with Manned Manoeuvring Targets

Manned manoeuvring targets have different characteristics to non–manned targets. The prin-

cipal difference is that manned targets, such as vehicles, tend to manoeuvre in short bursts,

maintaining constant velocity for other periods. Singer [83] proposes a manned manoeuvring

target model. The target acceleration is supposed to have an exponential correlation function of

the form

���� �� ��� � � � +� ������I � � � � � P (2.62)

where
�

represents the reciprocal of the manoeuvre time constant.
� �76 � �� might represent a

slow turn. The KF is implemented to track derivatives of
�

to
"�

giving state transition matrix

	 �
���
�

" � � " � , �+ "
� " � � "
� � "

����
� (2.63)

if
� � �

is small. The correlation model ���� �� ��� � is introduced into
� � giving

� � �SR � � +�
���
�

� � 
 � R� � � * � 9 � � � � �
� � * � 9 � � � � � � � + � R
� � � � � � � + � R � �

����
� (2.64)

if
� � ����� � ��	 . The performance of the Singer filter is shown to improve tracking performance

during a manoeuvre.

Since the target is not manoeuvring for much of the track several manoeuvre detection methods

have been proposed, the idea being that when the target is not manoeuvring the velocity driving

noise power, � +� , can be reduced to zero (or close to zero), a constant velocity KF. When a
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manoeuvre is detected � +� can increased. McAuley et al [84] suppose that if a manoeuvre

occurs the residual sequence between the filter prediction and the measured parameters will

contain a bias. This bias can be detected recursively using an exponential detector of the form

� 0 ����� ��I � � � � � P � 0 � '
� ��� 0 � � 0 � (2.65)

where � is a constant matched to the manoeuvre time constant. If
� 0 exceeds a threshold a

manoeuvre is detected. Chan et al [85] propose a least squares (LS) fit to the residuals to solve

for the unknown forcing velocity ��0 . The covariance matrix of the fit is used to determine

whether the manoeuvre has occurred and if so �>0 is applied to the state transition. This is

advantageous in that no a priori knowledge of the target is required to set the threshold. Kawase

et al [86] propose an identical method, except that rather than using LS fitting to solve for the

unknown � 0 , they use previous filter predictions � 0 � 0 , � 0 � '
� 0 � ' , � 0

� + � 0 � + to compute � 0
geometrically.

Gholson et al [87] model �>0 as a semi–Markov process. The probability of each discrete

magnitude of ��0 being the true forcing velocity given � 0 � 0 � ' and � 0 is calculated. These

probabilities are used in a weighted sum which also includes the transition probabilities between

each discrete ��0 and the last selected �>0 � ' . Thus during periods of constant velocity � 0 will

tend towards the lowest forcing velocity (zero), while during manoeuvres �%0 will build up

successively. Ricker et al [88] use a similar method in which a bank of KF’s representing each

forcing velocity combination is used. The outputs of these are combined in a weighted sum.

2.10.2 Extended Kalman Filter

If the location estimation uses non–linear equations then non–linear target dynamics can be

specified in the KF model. This type of KF is often termed the extended KF (EKF). In the EKF,
�

can be modified to take into account the non–linearities in the equations by adjusting the

Kalman gain matrix accoriding to

� �

 � 0 � 0 � '
 � 0 (2.66)

The modified gain extended Kalman filter (MGEKF) has also been suggested to overcome track

biasing that can occur in non–linear problems [89], [90]. In this case a further gain modification

is applied to
�� 0 � 0 which equalises the difference between filter prediction and the true data
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before and after the gain stage of the EKF.

For the purposes of this thesis a linear model is assumed (though in practice the problems

are non–linear) and these more complicated implementations are not considered further. The

reasons for this is that the equations are linearised in the location estimator, thus causing the

location errors to behave in a more linear manner, and that other errors (e.g. NLOS errors)

outweigh the errors caused by non–linearity.

2.11 Performance Comparison of Location Techniques

In this section the performance of several triangulation based location techniques is compared

by evaluating the CRLB statistic,
	
�� 3 �

. Since several different schemes with different meas-

urement types (and some hybrid schemes) are examined the GDOP statistic is not used. This

also allows direct comparison between location errors produced by different measurement

types.

Various cell geometries are considered. A 2 BS geometry with BS’s at (0,0)m and (1000,0)m,

a 3 BS geometry with an additional BS at (500,865)m and finally a 3 BS linear geometry

where the additional BS is at (2000,0)m. The noise power is arbitrarily fixed to correspond

to some reasonable lower bound on the measurement noise that might be expected in a real

system. Such a lower bound will only occur in LOS conditions. Noise power of 6 ��� m
+

for

range measurements and 6��
�

 rad

+
for angular measurements are used. In NLOS conditions the

expected noise power would be much larger and would no longer be reasonably approximated

by the Gaussian distribution, thus the CRLB performance is less relevant. However the analysis

does show trends in performance and highlights poor location performance. Note that the

performance of the systems only utilising timing measurements remains scalable with respect

to cell radius. However the precision of angular based systems is reduced with increased cell

radius. Signal strength measurement based location performance is more difficult to assess as

measurement noise (or noise caused by shadowing) does not transform linearly to range. In this

case a Gaussian noise PDF assumption is no longer adequate.

Derivations of the gradient terms for range, RD and bearing measurements required to construct
�

are shown Appendix A. Each row in
�

represents one measurement type thus for an M
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TOA/N TDOA location estimator
�

is constructed as follows

� �

������������
�

� �1� �- �
� �1� �- �� � � �� �1���

- �
� �1� �
- �� �1���

- � � � �1� �- �
� �1� �
- � � � �1� �- �� � � �� �1�

�- � � � �1� �- �
� �1�

�- � � � � � �- �

�������������
�

(2.67)

Figures 2.7, 2.8 and 2.9 show the performance of various schemes employing one measure-

ment technique. Location error defined by the red colour is well outwith FCC regulations,

whereas green and blue colours would be within the regulations. Figures 2.7(a), (b), (c) show

the location accuracy for AOA schemes with 2 BS’s, 3 BS’s and 3 BS’s in a linear arrangement

respectively. Note that the 2 BS location fails when the MS is directly between the 2 BS’s but

in other regions is reasonable. The 3 BS location has reduced accuracy as the MS moves out-

side the region of the BS’s. The linear arrangement has similar problems to the 2 BS scenario.

Figures 2.8(a), (b), (c) show the location accuracy for TOA schemes with 2 BS’s, 3 BS’s and 3

BS’s in a linear arrangement respectively. The 2 BS location scheme again suffers from poor

performance when the MS is directly between BS’s. Note also that two solutions may exist

in this scenario in which case a priori knowledge would have to be used to ascertain which

location is correct. The 3 BS location performs well in all regions but the linear arrangement

location accuracy is little better than the 2 BS scenario. Figures 2.9(a), (b) show the location

accuracy for TDOA schemes with 3 BS’s and 3 BS’s in a linear arrangement respectively. The

3 BS location performs the best for the region between all BS’s, however performs poorly out-

with this triangle. There are regions linear to the orientation of each pair of BS’s in which

location accuracy is very poor. In the linear arrangement location accuracy is again poor in line

with the BS’s and distinctly worse than the TOA method outside the area enclosed by the BS’s.

Both TDOA methods provide two solutions. In the linear arrangement these may be especially

difficult to distinguish.

Figures 2.10 and 2.11 show the performance of various hybrid schemes. Figure 2.10(a) shows

the location accuracy for an AOA, TOA scheme with 1 BS. Location accuracy diminishes with

distance. Although the performance looks good the 1 BS scheme is especially vulnerable to

NLOS errors which are correlated in AOA and TOA. Figure 2.10(b) shows the location accuracy
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for an AOA (BS at (0,0) only), TDOA scheme with 2 BS’s. The location is poor in places

which are not between the two BS’s. As a method for locating the MS when 2 TDOA’s are not

available this seems quite promising. Figure 2.10(c) shows the location accuracy for a similar

scheme where both BS’s supply AOA’s. There are no poor areas between the 2 BS’s. Figure

2.11(a) shows the location accuracy for an AOA (BS at (0,0) only), TDOA scheme with 3 BS’s.

Here the location is overdetermined in that there is more information than required to calculate

the location. The extra information removes several of the areas with poor location accuracy,

seen in the 2 TDOA case in Figure 2.9(a) and further improves location accuracy between the 3

BS’s. Figure 2.11(b) shows the same set up but for a linear arrangement. The location accuracy

is much improved over the 2 TDOA linear case in Figure 2.9(b) and a unique solution exists.

The performance is also a considerable improvement over the one TD case in Figure 2.10(b)

since the areas where location accuracy is poor between the BS’s are removed. Finally Figure

2.11(c) shows the location accuracy for a TOA (BS at (0,0) only), TDOA scheme with 2 BS’s.

This has similar performance to the 2 TOA scheme in Figure 2.8(a).

To conclude even in good (LOS) conditions the location accuracy can vary a lot depending on

the location of the MS with respect to the BS’s. Generally speaking increasing the number of

measurements available increases the location accuracy. Using hybrid schemes can also remove

areas of poor location accuracy which are characteristic of using one measurement type only.
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Figure 2.7: Location accuracy lower bound for (a) 2AOA – 2BS’s, (b) 3AOA – 3BS’s,
(c) 3AOA – 3BS’s linear array
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Figure 2.8: Location accuracy lower bound for (a) 2TOA – 2BS’s, (b) 3TOA – 3BS’s,
(c) 3TOA – 3BS’s linear array
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Figure 2.9: Location accuracy lower bound for (a) 2TDOA – 3BS’s, (b) 2TDOA – 3BS’s
linear array
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Figure 2.10: Location accuracy lower bound for some hybrid schemes (a) 1AOA,
1TOA – 1BS, (b) 1AOA, 1TDOA – 2BS’s, (c) 2AOA, 1TDOA – 2BS’s
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Figure 2.11: Location accuracy lower bound for some hybrid schemes (a) 1AOA,
2TDOA – 3BS’s, (b) 1AOA, 2TDOA – 3BS’s linear array, (c) 1TOA,
1TDOA – 2BS’s
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Chapter 3
Channel Model for Location

Performance Evaluation

Conventional channel models are of limited suitability for realistic simulation of mobile loca-

tion services, as they tend not to distinguish between LOS and NLOS situations. In this chapter

a simple model is developed which explicitly includes LOS/NLOS conditions as part of a geo-

metrical scatterer model.

In the next section the requirements of a suitable model are introduced. The CoDiT model, used

as a framework for the developed model, is then discussed in more detail. In the last section the

LOS/NLOS model is described and characterised with respect to excess delay and AOA PDF’s.

3.1 Requirements of Channel Model for Simulation of MS

Location Accuracy

In order to model the channel realistically for simulation of location estimation performance,

the model must include space/time varying power levels, absolute delays and AOA’s. Critical

areas to consider are the:

� LOS path and corresponding statistics. NLOS conditions will seriously degrade the per-

formance of all types of location techniques (e.g. TDOA, TOA, AOA systems) as the

received signal will tend to be of lower power, be delayed and impinging at a different

angle at both MS and BS in comparison to a LOS path.

� Time of arrival of multipaths with reference to a true LOS path. NLOS timing offsets will

cause errors in location estimation using time based systems (e.g. TDOA, TOA systems).

� Dynamic delay and angular profile. Multipath delay and incident angle will not be con-

stant due to the dynamic propagation environment.
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� Realistic out of cell path loss model and shadowing. Transmission from several sources

must be compared at one receiver (or vice versa).

� Spatial correlation factors. Delay and angular CIR’s are correlated over distance.

As summarised in Section 2.1.1 through to Section 2.1.3 there are several methods generally

used to model the channel. However most of these are not suitable for the simulation of MS

location accuracy.

Stored models Although the model is, by definition, realistic, to rely solely on one CIR for

testing location algorithms would not be a sensible idea. A large number of such CIR’s

would be required to test a number of possible scenarios. There are several additional

drawbacks to this method of modelling for location services. Firstly, accurate MS loca-

tions would be required (probably using GPS) during the track as well as a precise timing

reference between the transmitter and receiver. Additionally, the CIR’s from several BS’s

are required simultaneously to estimate location accuracy in most schemes. These sorts

of measurements are not available to the author at the time of writing.

Deterministic models These methods are extremely computationally intensive and, similarly

to stored models, a large number of different locations would need to be tested.

Path loss and shadowing models Both path loss and shadowing models are required since

signals from multiple sources are compared, but these should be adapted to model LOS

and NLOS situations. In Section 3.3.3 a path loss model is developed which predicts

LOS path loss with a small shadowing term and models LOS obstructions with additional

shadowing factors.

Stochastic models The discussed models (without scatterer modelling) do not provide all the

required statistical variability. Specifically the angular distribution of multipaths are not

developed other than by Doppler PDF’s in the COST 207 model (e.g. the classical Dop-

pler spectrum suggests rays impinging from all AOA’s). The COST 207 model also

provides no variability in delay profile. The geometrical scatterer models match certain

requirements. For instance absolute delay and AOA (single bounce assumption) spreads

can be generated. The CoDiT model, discussed in more detail in Section 3.2, has been

used as the basis for the channel model developed as it contains definitions for a num-

ber of useful scenarios and also is a standard ratified by numerous field measurements.
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However none of the standard models discuss the LOS/NLOS state statistics, for which

a separate model has been developed in Section 3.3.

3.2 CoDiT Model

In this section the pertinent features of the CoDiT model [22] are reproduced. The CoDiT

model is an elliptical scatterer model (See Section 2.1.3.1) with several scenarios defined, e.g.

urban, suburban, rural. Each scenario contains a scatterer makeup with individual scatterers

characterised by mean power (  � ), coherence (Nakagami distribution, � � ), mean incidence

angle at the MS with respect to LOS direction (
� � " � ) and mean time delay (

� � ). The model dif-

fers from the previously described model in that
� � "

and
�

are defined as uniformly distributed

and independent RV’s, as opposed to the typical spatially uniform definition.

� � "
is uniform in the range I���� �&R��OP and

�

is uniform in range I ������� � � ������� P . Note that in

subsequent analysis
�	�

is used to denote the delay distance. It is interesting to compare the joint

PDF
����� � ��� � � �

(
�

and
�

are coordinates in 2D) with the spatially uniform scatterer distribution

of other models. The derivation of
����� � ���������

is given in Appendix B.1.

����� � ��� � � � � 6
R�� � ��������� � ������� �

�
�
�
�
�

� + � � � � � � �
� � + � � � � � � + � � � + � � + � 6� � � � � � + � � +

�
�
�
�
�

(3.1)

Figure 3.1 shows
� ��� � ��� � � �

plotted with � � 	�� m,
�	� ����� � �� and

�	� ����� �'��	� m. The BS

is at x–y coordinate (0, 0) and the MS at (500,0). Clearly the spatial distribution of scatterers is

greatest around the MS, though there is a slight increase around the BS. Directly between MS

and BS there is a reduced scatterer probability. The overall effect is a composite between the

circular and elliptical models with uniform spatial distribution.

Similarly
� ���� �  � � !#" ���	� �

is of interest as this will in some way reflect the performance of

an AOA based location system in NLOS conditions. The derivation of
� ����� �  ��� !#" ���	� �

is

given in Section B.2. Equation (B.14) is not repeated here due to its length. Figure 3.2 shows� ���� �  ��� !#" � �	� �
plotted with � � 	��� m,

�	���%�&� � � m and
�	��� � � � ��	� m. The figure shows

that with the model scatterers tend to lie in the true direction of the MS. Even with a large delay

the distribution favours the true direction (but naturally less so than with small delay).
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Figure 3.1:
����� � ���������

plotted with �$�
	���� ,
�	������� �
�� and

�	������� ����	���

The channel is defined as a sum of contributions from several scatterers as in (2.7). This equa-

tion is modified slightly to give

� � � ��� � �
� = , D � '�
� � �

� � � � � H 2@� � � � 
 � � � � � � � � � (3.2)

where
� � � � � is a long term sinusoidal variation in power,

� � � � � is a sinusoidally varying time

delay, and

H 2�� � � � �
� � � � � 
 � � ��� �

��� ���� ,	��
� � ��� ��� � � ������������
� � '

� � �
� 
 � � � 
 � ��� ���� ,	��
� � ��� � 
 ���

H 2@� � � � is a short term field contribution from scatterer � . � � � are field amplitude terms,
� � �

are random phase offsets that are uniformly distributed in the range I���� �&R��OP , �
is the carrier

wavelength, ) the MS velocity, and
� 3 � � � the MS incident angle of the � th component of the

	 th scatterer. The contribution is split into two parts, the coherent part which will typically be

strong in a LOS ‘scatterer’, and the diffuse parts which are of equal amplitude with incident

angle
� 3 � � � normally distributed about the central angle

� 3 � � � . The distribution variance is
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plotted with �$�'	�� m,
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� m and

�	��� ��� � ��	� m

set to 0.15 rads
+
. Amplitude terms for

� � � are defined from the Nakagami-m distribution as

� � � ���  �
�
6 � �

�
'�

� � � �
��� � �  ���� / � #G2 �

6 � � 6 � �
�
'� ���

where
� Imean, variance P represents a normal distribution. � �$� 6 implies all components

have equal power, thus corresponds to Rayleigh fading. � � � 6 implies a strong contribution

from the central component, and thus could resemble Rician scattering if a classical Doppler

spectrum is present. In this case the number of scatterers are limited so a spiky Doppler spec-

trum is obtained.
��� / � #F2 � 6 �� is chosen to ensure the correct fading statistics are obtained.

Using smaller values for
��� / � #F2 is possible if

� 3 � � � and
� � � are not chosen randomly but

evenly spaced across their respective distributions [19].

The scatterer definitions for the scenarios which will be used in this thesis are supplied in

Appendix B (Section B.4). Note that these definitions have been adjusted slightly as will be

discussed in Section 3.3.1. In each scenario the number of scatterers, T � � �
, is fixed. However, to

reflect a time changing environment, individual scatterers are allowed to appear and disappear.
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Each NLOS scatterer therefore has a survival length which is chosen from a positive only

normal process
��� I$T 2 � T +2 � � P . Suitable values for the mean scatterer length, T 2 , of 	 m and R� m

for urban and suburban environments respectively have been suggested in the CoDiT model

[22]. The LOS scatterer has different statistics and this is addressed in the next section.

3.3 LOS Model

For the purpose of evaluating the performance of location services whether the MS is LOS or

NLOS is very important to the accuracy of the results. For instance if all BS are considered

LOS the location accuracy will be very good even in the presence of many multipaths since

measured propagation delay and angles of arrival of the first arriving path will reflect the true

geometrical separation of BS and MS. In real scenarios the MS will not always be LOS thus

conventional channel models which model typical scenarios are not always very useful, e.g. the

CoDiT rural and suburban model are always LOS and the urban model is always NLOS.

In NLOS cases there are many different types of objects that can be obstructing the LOS path,

e.g. buildings, vehicles, hills, and foliage. For the purpose of this work these are divided into

two categories – those close or local to the MS, and distant large obstructions which might cause

severe shadowing thus would be located between cells. The local obstructions occur between

the MS and all BS’s whereas the cellular obstructions would generally not occur between MS

and its serving BS. Figure 3.3 shows the two different types of LOS obstructions in a typical

scenario.

MS3

MS1

LLOS CLOS

BS1 BS2

LLOS CLOS

MS2

MS1

MS2

MS3

BS2BS1

Figure 3.3: LLOS and CLOS obstructions in a typical cellular environment

50



Channel Model for Location Performance Evaluation

In the next sections the local LOS (LLOS) and cellular LOS (CLOS) models are described, with

particular attention to the LOS probabilities and spatial characteristics of the LOS/NLOS trans-

itions. For simplicity the two models are considered to be statistically independent. Following

this a path loss/shadowing model is proposed which accounts for the fact that LOS states are

already modelled. Finally the statistical properties of excess delay (the TOA of the first arriving

path with respect to a LOS path) and AOA of first arriving path (with respect to a LOS path)

are analysed and compared to theory.

3.3.1 Local LOS (LLOS)

The shortest signal path around an obstruction is always a diffractional path. However diffrac-

tion around obstructions situated close to the MS will tend to be heavily attenuated. Figure 3.4

shows the diffracted path and generalised geometry. The diffraction parameter, )�* , is defined

by [91]

)�*4� � � R � � '
� � + �

� � ' � +
(3.3)

The diffraction loss may be calculated from the uniform theory of diffraction [92]. Figure 3.5

[91] shows this loss as a function of ) * . Figure 3.6 shows ) * as a function of � '
� � � '

� � + �
for various obstruction heights and source separations with

� � ��� 6 	
��R	 m. Clearly as the

geometry size is reduced and the obstruction is moved closer to either transceiver the diffraction

parameter becomes very negative, thus huge attenuation is experienced.

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

h

d1 d2

MSBS

Figure 3.4: Generalised diffraction geometry

Communication with the MS is then primarily by multipaths generally by reflection off nearby

objects which are outwith the heavy shadow region of the LLOS obstruction. In this model

the LLOS or non–LLOS (NLLOS) state is considered a binary decision. In the NLLOS state

the LLOS path is simply removed from the CoDiT channel definition by means of the disap-
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Figure 3.5: Diffraction loss against ) *

pearance function (defined in [22]). Note for the CoDiT channel definitions where no LLOS

scatterer (a scatterer at zero delay) is defined, the definition has been adjusted to include an

LLOS scatterer (see Section B.4).

Figure 3.7 shows a conceptual street model for LLOS analysis, where � is the MS–BS separa-

tion,
,

the angle of the BS from the MS w.r.t. street orientation,
� !#"

is the BS height,
� � "

is

the MS height,
�#-

is the building height, 2V2�, is the street width.
,�-

is the critical value of
,

at

which the building top edge is in a perfect line with the BS. � - is the distance from the MS to

the building at this point.

By similar triangles

� - � � � �#- � � � " �
� !#" � � � " (3.4)

Also, neglecting the effect of side streets,

,�- � � � � � �
	�� �
'
� 2 3 �

� - � � � 	 � �
'
� 2 2@, � 2 3 �

� - � (3.5)

A conceptual value for the LLOS probability, . /�/10 " , can be calculated. Assuming
,

to be
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Figure 3.6: )+* for different diffraction geometries

uniformly distributed in R�� and noting that if the MS is located at an intersection . /�/ 0 " is

approximately doubled the following expression can be derived

. /�/10 " �
� + � ��� � ! ���� ��� � ! ����� �����
	 � ������ �

�
� + � ��� � ! ���� ��� � ! ����� ���� � ����� � ��� � � ����� ��� ��� � ��� � �� ��� � � ��� � � � � ���� � ��� � ��� ��� ��� � ��� � �� ��� � � ��� � ���� (3.6)

Figure 3.8 shows the function plotted as a function of � and 2 3 �

with
� !#" � 	� ,

� � " � R ,� - � 6 	 , 2 2�, � R� , �[2�, �:6 �� . � has a major effect on . /�/10 " , however it is probable that

the model is unrealistic for � � 	���� as changing street structure and altitude differences

are not considered. Location across the street, 2 3 �

makes little difference to . /�/10 " so can

be neglected from simulation. The assumption that
,

is uniformly distributed in R�� may be

unrealistic as BS’s will tend to be located in orientation with the street layout.

Although . /�/10 " does vary with MS–BS separation, for simplicity in the model a fixed prob-

ability is used for to generate LLOS sequences between the MS and all surrounding BS’s. In

reality when an obstruction only just breaks the LOS path between MS and BS the near LLOS

path will have no appreciable effect on location accuracy as the delay is almost the same as a

genuine LLOS path. For this reason the . /�/10 " values chosen for simulation are higher than
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Figure 3.7: Street model for LLOS analysis, (a) top down view, (b) side on view at, � ,�-

those shown in Figure 3.8. In the urban scenario .�/�/10 " �
���&R is used; in the suburban scenario

. /�/10 " � � �$9 is used; and in the rural scenario . /�/10 " � 6
��� is used. The higher value in

the suburban scenario reflects the fact that typically the suburban area is less built up than the

urban scenario, i.e. the MS is not surrounded by buildings on all sides, and that the buildings

will be lower, thus the MS will typically be in a near LLOS state. In the rural scenario the MS

is always LLOS or near LLOS.

As the MS moves around in the environment the LLOS state will change from LLOS to NLLOS

and vice versa. The length of time spent in each state is very critical to the performance of

any location estimator that uses tracking techniques to improve the location accuracy. The

method chosen to construct sequences was to choose a LLOS state survival length at every state

decision. The next state decision is carried out once the MS has travelled this distance. The

LLOS state survival length has a positive only normal process
� � I&T /�/10 " � T +/�/10 " � � P where

T /�/10 " is the mean LLOS state survival length in metres. T /�/10 " is chosen to reflect the typical

dimension of streets and buildings in the scenario. The mean distance in LLOS and NLLOS

states, T � /�/ 0 " and T � � /�/10 " respectively, may then be calculated as

T � /�/10 " � T /�/10 " � 6 � . /�/10 " � . +/�/10 " � .
�
/�/10 " � � � � � �

� T /�/10 "
6 � . /�/ 0 " (3.7)
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Figure 3.8: . /�/10 " plotted as a function of � and 2 3 �

Similarly

T � � /�/10 " � ������� �
������� � (3.8)

Another method to generate the state sequences would be to use a Markov model. This is

discussed in Section 3.4.

Table 3.2 summarises the parameter values selected for the created scenarios.

3.3.2 Cellular LOS (CLOS)

In a typical cell geometry, cell coverage areas are not circular in shape due to different terrain

features. Large features that cause heavy attenuation to signals passing over or through will

therefore tend to form the natural boundaries between cells as this is the most efficient way to

plan a cell network. Generally speaking these features will be hills or possibly large buildings

(taller than the BS). Diffraction is the dominant mechanism for propagation over or around

these obstructions.

In these non–CLOS (NCLOS) conditions the signal is additionally attenuated, fractionally

delayed and possibly subject to a small shift in incident angle at the receiver. Due to the un-
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evenness of the diffraction edge over the obstruction it might also be expected that the fading

becomes more severe (tending towards a Rayleigh distribution). These changes will affect all

(or nearly all) paths to the MS, thus the effective signal source of the LLOS model is the dif-

fraction edge of the CLOS obstruction.

In subsequent simulations three models are used to define the probability of being CLOS,

.45 /10 " .

Unobstructed – no obstructions between cells. . 5 /10 " �76 for all BS’s.

Partially obstructed – flat terrain with some large features. . 5 /10 " is defined by (3.9), used

in the absence of any real measurement data, for non–serving BS, while . 5 /10 " � 6 for

serving BS.

6 � � 6��
.45 / 0 " � � � � 6 � = * � ' D* 6�� � � 	��

� � � 	��
(3.9)

where � is the MS–BS separation in cell radii. Figure 3.9 shows this equation.

Obstructed – all surrounding BS’s are obstructed (e.g. by hills). . 5 /10 " � � for all but

serving BS except .65 /10 " �76 for serving BS.
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Figure 3.9: . 5 /10 " plotted against MS–BS separation for partially obstructed scenario

The mechanism for generating the CLOS state is identical to that of the LLOS state. In this

case the mean CLOS state survival length, T$5 /10 " , is defined by the typical width of the shadow
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region of large buildings or hills. Perahia et al [13] note that the shadowing autocorrelation in

rural environments can be much longer than urban environments, typically �S6 �� m, due to the

presence of much larger obstructions. Table 3.2 summarises the values chosen.

As previously mentioned the shadow regions caused by NCLOS conditions have four effects

on the channel (all local scatterers) experienced by the MS.

Loss of coherence ( � � 5 /10 " ) The diffracted path can be assumed to contain a summation of

diffuse parts caused by the irregularity of the diffraction edge. This has an effect of

decreasing the coherence of the path. Within the CoDiT model this can be modelled by

decreasing the Nakagami–m value of the paths in the CoDiT model (towards Rayleigh

fading, � � 6 ). The � distribution defined for other scatterers in each scenario is used

to select the NCLOS � value for the LLOS path.

Power attenuation ( �� 5 /10 " ) All paths to the MS will be attenuated. From Figures 3.5, 3.6

it can be seen that for � '
� � � '

� � + ��� ����	 , )�* varies from -1 to 8 depending on
�

. This

corresponds to a diffraction loss in the region of 6 � to �� dB. In the following simulations

a uniform distribution across subsections of this range is used. Table 3.1 summarises the

parameter ranges chosen for each CLOS scenario.

Time delay (
� ��5 /10 " � The additional distance travelled round the obstruction causes a delay

in the signal arriving at the MS. Typically this will be a small delay (0–1 � � ). In the

following simulations a uniform distribution across subsections of this range is used as

shown in Table 3.1.

Angular deflection (
� � 5 /10 " ) There is a possibility of a small angular deflection caused by

the obstruction which can be modelled by a Gaussian distribution with a mean of zero

degrees. This was not implemented in the model.

Parameter Unobst. Partial Obstructed

.65 /10 " 1 1 1
(serving BS)
.65 /10 " 1 see (3.9) 0
(other BS’s)

� 5 /10 " (dB) NA U[0,10] U[10,20]
� ��5 /10 " � ( � � ) NA U[0.0,0.4] U[0.2,0.6]

Table 3.1: Scenario specific parameters
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��5 /10 " and
� � 5 /10 " will clearly be correlated with each other across their specified ranges.

A correlation factor,
��	��1 

, is used in the following simulations. Correlation is achieved by the

following

� � � 6 � �
	��1 � � � �
	��1 �
(3.10)

where
�

and
�

represent the two random uniform variables used. Each time the MS enters an

NCLOS region the four parameters are generated as defined by their PDF’s. During transition

from CLOS to NCLOS regions parameter values are smoothed over the first tenth of the actual

CLOS state survival length using a simple function for greater realism.

3.3.3 Path Loss and Shadowing Model

Since the LOS model already incorporates heavy shadowing due to NLOS conditions, the path

loss and shadowing model required need only model the LOS path loss expected. A dual slope

path loss model is used which is matched to the single slope model at a distance �$�76��� m.

� � � �S�� ��	 � 6 � � ' � � 	 � � � �J� ��� �
�S�� ��	 � 6 � � ' � � 	 � � � � ��� 6�� � + ���
	 � � � � � � � � � � � � (3.11)

The breakpoint, ��� � , the point at which the slope changes, can be calculated from [93]

��� � � � 	�� � � � !#" � � "
�

� ��� � (3.12)

where ��� is the cell radius,
� !#"

is the BS height,
� � "

is the MS height and
�

is the carrier

wavelength. The breakpoint maximum is set to the cell radius so that out of cell radiation is

reduced, which is desirable to the network operator for system performance (though in CDMA

type systems partial overlapping of cells for soft handover is possible). The slope parameters

used, � ' � � ��� , � + � ����� were derived from LOS measurements by Min et al [11], who

found that the dual slope model fits LOS measurements much better than the standard single

slope model. This is due to the flat earth effect, wherein a different phase component reflected

off the ground interferes with the LOS component. After the breakpoint this interference is

always destructive. The dual slope model therefore has the effect of attenuating the signal more

severely at greater distance, which in terms of location services requiring to detect several BS’s

is the worst case scenario.
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The long term sinusoidal variation of scatterer received power,
� � � � � , already within the CoDiT

model (see (3.2)) is probably only suitable for short simulation lengths, less than the period of

the sinusoid. More realistic and more frequently used is the lognormal distributed exponential

autocorrelation model as discussed in Section 2.1.2. Lognormal shadowing is therefore added

to the path loss model with standard deviations ��2 ' � R����� � and �O2 + � 	��$9� � for before and

after the breakpoint, again derived from measured data by Min et al [11]. This shadowing can

be thought of as modelling the uncertainty in received LLOS power, due to flat earth effects.

The sinusoidal variation in the CoDiT model is kept to allow variation in shadowing between

scatterers. In this way each scatterer has partially correlated long term fading.

The shadowing decorrelation lengths, T 
 X ? Z�Z , used for for each CoDiT scenario are summarised

in Table 3.2. Note that low values are used even for the rural scenario since the CLOS model

accounts for shadows caused by large obstructions.

Parameter Rural Suburban Urban

CoDiT model rural suburban urban
��� (km) 10.0 2.0 0.5� !#"

(m) 50.0 30.0 30.0
T 2 (m) NA 20 5
T 
 X ? Z�Z (m) 20 20 5
.%/�/10 " 1.0 0.8 0.2
T /�/10 " (m) NA 30 15
T � /�/10 " (m) NA 150 18.75
T � � /�/10 " (m) NA 37.5 75
T 5 /10 " (m) 1000 200 50

Table 3.2: Terrain specific parameters

3.3.4 Statistical Analysis of NLOS Errors in Time and Angle

The PDF of the channel model excess delay can be derived under some simplifications. Firstly

the PDF for the LLOS excess delay is considered.

In each scenario there are
�

arriving rays. The first arrives at zero time delay with probability

. /�/10 " (otherwise it is undetectable) and detection probability . 
�� C ' . The subsequent
� � 6

rays arrive uniformly distributed in the interval (
�+�%�&� ���������

) with, for simplicity, equal detection
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probability . 
�� C 0 . The probability of detecting
� � �

multipath rays is a binomial distribution.

. � � � � � �
�� � � 6

� �� .
�
�� C 0 � 6 � . 
�� C 0 � �

�
'
�1�

(3.13)

From this the cumulative probability of the excess delay,
� #�* given that the MS is NLLOS, can

be derived.

W  � � ��� � �
� �

'�
� � � .

� � � � �
�

�

0 � ' .
��� 0 � � �

�
� �

'�
� � �

�� � � 6
� �� .

�
�� C 0 � 6 � . 
�� C 0 � �
�
'
�1� �

6 � � ������� � �

������� � ���%�&� �
�
� (3.14)

where
������� � � � �������

. Using the binomial sums theorem

��� � � � 0 �
0�

 � �

�� �
�
�� � 
 � 0 � 


(3.15)

(3.14) simplifies to

W  � � ��� � � 6 � �
6 � . 
�� C 0

�
6 � � ����� � �

������� � ������� � �
� �

'

� 6 � �
6 � . 
�� C 0

� � � �%�&�
������� � ������� �

� �
'

(3.16)

Differentiating gives the PDF

�� � � ��� � � �
� � W

 � � ��� �
� . 
�� C 0 ��� � 6 �

������� � �������
�
6 � . 
�� C 0

� � ���%�&�
������� � ������� �

� � +
(3.17)

The excess delay in the CLOS model is simply a uniform distributionin the range (
� 4
� ��0 � �4
� / � ).

Thus in CLOS conditions the excess delay PDF of (3.17) can be convolved with the uniform

CLOS distribution to give the final distribution.

Figure 3.10 shows the excess delay PDF for the CoDiT urban model (
� � R�� ���+�%�&� �

� � � � ��� ��� � R � � ) and suburban model (
� � � ��������� � ��� 6 � � ��������� � 6 	 � � ) with . 
�� C 0 �

���.6 � 6
��� . The excess delay is normalised to its standard deviation, the evaluation of which is not
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concise and therefore not given.

Lee [72] gives two PDF’s generally used to represent the time delay distribution of a mobile

channel. These are the Maxwell distribution

� # * ��� � �
� R � � � � � 9 � � �

� � +
� � � +

��� �
� � � � � 9 � � � � +

R � + � (3.18)

and the exponential distribution

� # * ��� � � 6
� ������� � �

��� (3.19)

where
�

is the standard deviation of
�

. These are also shown in Figure 3.10 for comparison

purposes. It can be seen that the CoDiT model is similar to the exponential distribution.
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Figure 3.10: Probability density functions for excess delay model

The PDF of
��!#"

for the first arriving NLLOS path can be calculated with knowledge of
� #�* � � �

in a similar fashion to the previous calculation of
� ���� � 4  

. The derivation is shown in Appendix

B.3, however a closed form solution does not exist. Figure 3.11 shows this PDF and the PDF

for all paths for comparison for the CoDiT model with MS–BS separation, ���
	��� m. It can be

seen that the first arriving path has a more compact PDF, thus according to the model, detecting

the AOA of the first arriving path will give more accurate location estimates than choosing

a path at random or the strongest powered path. The angular spread for the AOA is similar

to models proposed by Piechocki et al [20], though their elliptical model assumes scattering
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around the MS only. Owen et al [94] measure an angular spread with standard deviation 17.6

degrees in an urban environment, which again is similar to the model prediction.

−120 −90 −60 −30 0 30 60 90 120
alpha_BS (degrees)

0

0.01

0.02

0.03

0.04

pd
f

First arriving path
All paths

Figure 3.11:
� !#"

probability density function for first arriving path and all paths

3.4 Improvements to Model

The LLOS model would probably be more realistic if treated in a similar fashion to the CLOS

model, i.e. rather than simply removing the first arriving path from the multipath profile, the

first path would be subject to an attenuation, additional delay, angular deflection and fading

type change. The LLOS model would be characterised by significantly larger attenuation than

the CLOS model, e.g. uniform distribution from 0 to 60dB, and a larger angular deflection

variance. The delay model and fading model would be similar to the CLOS model. In this way

near LLOS states would be modelled more realistically.

A different way to model the LLOS and CLOS states is to use a Markov model. Markov

models have been used previously in communications to model burst transmission errors [91]

for example. Figure 3.12(a) shows a simple state diagram for the LLOS or CLOS state model.

Taking the LLOS model as an example, the state transition probabilities, � ' and � + , can be

defined by

� ' �
� �

T � /�/10 " (3.20)
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Figure 3.12: Markov state diagrams for (a) simple LLOS, CLOS model, (b) LLOS
model with street orientation

and

� + �
� �

T � � /�/10 " (3.21)

where
� �

is the sampling distance. Here the mean time spent in LLOS and NLLOS states,

T � /�/10 " and T � � /�/ 0 " respectively, are defined individually. . /�/10 " can be derived as

. /�/ 0 " � T � /�/ 0 "
T � /�/ 0 " � T�� � /�/ 0 " (3.22)

Thus the LLOS model can be defined similarly to the model in Section 3.3.1 by two parameters

.%/�/10 " and T � /�/10 " .

Figure 3.12(b) shows a more complicated implementation for the LLOS model, in which street

orientation is considered. The justification for using such a model is that typically in an urban

area the BS might be located pointing down a street or streets. Therefore the MS might be

expected to experience long LLOS sequences as it travels down a street with a BS. If it is

travelling perpendicular to streets with BS’s then LLOS will occur at junctions only. Finally if

the street orientation is at some other angle to the street the BS is on, LLOS would be infrequent.

A possible improvement to the model would be to include angular crosscorrelation in the shad-

owing, LLOS and CLOS generation between signals arriving at the MS from different BS’s.

Shadowing measurements by Graziano et al [95], Mawira et al [96] and Sorenson et al [97]

show that in certain scenarios large correlations appear to exist across AOA differences of up
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to �� � . Figure 3.13 shows the azimuth location of surrounding BS’s against path loss (using

(2.3)), for a MS circling its serving BS in the centre of a hexagonal array with 19 BS’s.
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Figure 3.13: BS azimuth locations against MS–BS path loss for an MS in the urban
tracking environment

From the figure it can be seen that the location in azimuth and path loss for each BS remain

quite separated. Thus it is reasonable to suggest that angular shadowing variation will have

very little effect on the performance of the location estimator. It should be noted that for this

example the MS path was not near the cell boundary. However even in this case, when the

path loss to the serving and 2nd closest BS’s might be expected to be similar, the AOA’s will

be nearly opposite each other. Klingenbrunn et al [98] presents an angular correlation model

for shadowing and show the method for the derivation of multiply correlated Gaussian random

variables by means of a Cholesky factorisation.

In terms of the timing and angular errors generated by NLLOS and NCLOS conditions then

angular correlation becomes much more important. Clearly signals impinging at the MS from

a similar angle will have similar multipath profiles and LLOS states. Thus the NLLOS er-

rors would be expected to be highly correlated. Similarly the first and second tier of BS’s

would be expected to have highly correlated CLOS states and NCLOS errors. The correlations

would reduce the measurement diversity available and thus would be expected to reduce loca-

tion accuracy. The effect might be similar to reducing the number of BS’s detectable, which in
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subsequent chapters is shown to reduce location accuracy but not greatly if parameter tracking

is used.

Trying to incorporate such correlations into the geometrical model is impractically complex. A

practical way to do it might be to use a ray tracing model, at least for the area close to the MS,

which is an area to consider for future work.

3.5 Conclusions

In this chapter a channel model suitable for evaluation of location services has been developed

with some modification to the CoDiT model which addresses the critical factors of spatial

correlation and LOS modelling.

The mechanism for modelling spatial and LOS characteristics has been based on observed

data from other sources as far as possible, however there were a number of parameters for

which intuitive values were chosen. In subsequent chapters sensitivity to these parameters is

determined.

The critical statistics of excess delay and AOA of the first arriving path were evaluated and

shown to be similar to theoretical models. However the geometrical scatterer model used allows

more realistic simulation of spatial correlation than the theoretical models alone.

In the final section several methods to improve the model were proposed, these include angular

correlation of shadowing and the LOS model as well as utilising a more complicated Markov

model to address typical street layout to BS alignment in the LOS model.
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Chapter 4
Hearability and Idle Period

Downlink Techniques

In many location techniques non–serving BS hearability is required. In CDMA systems this

becomes a critical limiting factor due to the frequency reuse between BS’s. Several methods

have been proposed to increase BS hearability and thereby overcome this limitation. In this

chapter these methods, including the author’s own method, are compared in terms of hearability.

In the last section simple techniques to improve hearability by coherent and non coherent sum-

mation of measurement samples are introduced. A theoretical framework is devised under

some simplifying assumptions. Integrating these into simulations leads to an evaluation of the

optimum measurement sample spacing.

4.1 Hearability Assessment in UMTS

Following on from Section 2.8 it is of interest to evaluate the hearability distribution that might

be expected in a CDMA system (e.g. UMTS) if no method to lower the mutual interference

between BS’s is implemented. Figure 4.1 shows typical pilot signal hearability figures for

a CDMA system with no method to overcome the near–far effect. Table 4.1 shows the key

system parameters (in the ‘No IPDL’ column – see Section 4.2 for a description of IPDL). The

hearability for different receiver processing gains is shown. Detection of each BS is evaluated

by calculating the received pilot SNR, then evaluating the detection probability, . 
�� C , according

to an acceptable false alarm probability, . ; � . An independent decision is then made as to the

hearability of each BS according to . 
�� C . Without loss of generality the pilot C/I ratio for BS 	
can be expressed as � H 4� � � � � . ���� � � 6 � � � .%� ��� ��� �

� � ' � ����O� . �
(4.1)
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where .%� is the path loss between BS 	 and the MS, � is the pilot transmit power fraction,
� �

is the noise power,
� !#"

is the number of BS’s in the system and all BS’s are assumed to be

transmitting at equal power with identical � .
No IPDL PR–IPDL TA–IPDL vTA–IPDL

. ; � 2.60e-5
Path loss model Simple path loss (2.3)
Thermal noise power Path loss evaluated at � �� � �

8
��� 500m
Shadowing std dev. 8dB
. ��
��� 0 '')( NA NA
. C Z � � U NA NA 0.3 1.0
Pilot fraction 0.05 0.05 1.00 1.00

Table 4.1: Hearability simulation system parameters

For a low processing gain (24dB for one UMTS pilot symbol) only the serving BS can be

detected (note that . ; � � R���� � 6��
�

 is much smaller than might normally be accepted for

synchronisation purposes thus it is possible to not detect any BS. This high value is used since

the MPR techniques discussed in Section 5.1.2 make the location receiver very sensitive to

noise). Even at large processing gains (37dB for a two UMTS slot integration length), although

there are often many BS’s detected, about 40% of the time only two or less BS’s can be detected,

not enough to make a TDOA location estimate.
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Figure 4.1: Hearability of simple system with different processing gains
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The previous results apply for a single signal search. However it is possible to carry out many

searches in a time interval over which the MS is approximately stationary. By simply increasing

the number of measurements periods,
� �

, a selection diversity scheme is obtained whereby the

largest C/I ratio received will define the hearability. The measurement periods are separated in

time so time diversity is obtained. The performance of such a scheme in uncorrelated Rayleigh

fading is well known if the interference is assumed constant power and Gaussian distributed

[91]. In Rayleigh fading the PDF of the C/I ratio during one measurement period is given by

the chi–squared distribution

�
� � � � 6

�
�
��� �

� � �
�
� � (4.2)

where �
� is the mean C/I ratio. The CDF is given by

W � � � ��� �

�
�
� � � � � �76 � ��� �

� � �
�
� � (4.3)

If now
� �

samples are considered, the probability that the individual C/I ratios, � � , are all less

than or equal to a specific C/I ratio, � , is simply

W � � ��� � � �
. � I � '
� � + � � � � � � � � � � P � � W � � � � �

�
�

�
6 � �����

� � �
�
� � �

� �
(4.4)

The mean C/I ratio can then be evaluated as

H I � P � � �
�

� �
� � ��� � � � �

� � �
�

� �	W � � ��� � �
� � � �

� � �
�

�
� �
�
�
��� �

� � �
�
� �

�
6 � ��� �

� � �
�
� � �

� �
� �

� �
�

� ��
� � '

6
� (4.5)

Figure 4.2 show the effect on pilot hearability of different
� �

with selection diversity. Between

each of
� �

measurements there is uncorrelated Rayleigh fading, while lognormal shadowing is

stationary.
� � �76 � improves performance considerably over

� � �S9 , however even with high

processing gain there is still a residual 10–20% of MS’s that only detect one or two BS’s.

In this analysis only uncorrelated Rayleigh fading and selection diversity has been considered.
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Figure 4.2: Hearability of simple system with selection diversity of (a) 8, (b) 16 meas-
urements

In Section 4.3 performance under correlated fading, shadowing and with coherent and non–

coherent integration of measurements is considered.

Norrel Networks [79] proposed that a system with a processing gain of 30dB or more would be

able to locate the MS in the majority of cases. Their results show (similarly to Figure 4.8(a1–

3)) that 90% of MS’s will be able to detect 3 BS’s, suitable for a TDOA location estimate, and

94% 2 BS’s. In the latter case they propose a TDOA–RTT hybrid location estimate. However

there are two fundamental flaws to such a proposition. Firstly 6% of all MS’s can only be

located by cell ID. Assuming this 6% is a circular area around the BS, this corresponds to

all MS’s within
� �����
� ��� � ���$R+��	���� of the serving BS. Consider this for a rural scenario

where ��� � 6 � �1� . Any MS within 2.5km of the BS cannot be located to any degree of

accuracy. Secondly the TDOA–RTT estimator is very unstable as the equations tend to be

close to parallel at the point of intersection. In Section 2.11 the CRLB for such a system is

derived and the sensitivity demonstrated. It is also possible to have two realistic solutions to

the equations leading to further ambiguity.

4.2 Techniques to Improve Hearability in CDMA systems

Methods have been proposed to improve hearability in CDMA systems at the expensive of

capacity. One proposal was to deploy a so called power up function (PUF) (Bruckert et al

[99]) which would, when required on an ad hoc basis, boost the transmitted signal power of the
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MS so the signal could be detected at neighbouring BS’s. This proposal works in the opposite

direction to the previously discussed system in that the signal from the MS is detected by several

BS’s rather than vice versa. The hearability figures previously discussed would directly relate

to the number of BS’s able to detect the MS since the downlink and uplink path losses will be

statistically identical. The proposal was rejected on the grounds that the transmit power would

adversely affect surrounding users, including those in other cells, by increasing the interference

noise floor in an uncontrolled manner. Other considerations were possible lowering of battery

life and the requirement to reduce the transmit power at the MS due to possible health risks

associated with exposure to electromagnetic radiation.

The other proposals are based on idle period downlink (IPDL) structures. In IPDL each BS

stops transmitting for a period. In this time interval the MS can detect surrounding BS’s. In-

herently the system introduces a capacity loss due to the idle times, however this does not

adversely effect users in other cells and fractionally reduces the overall interference level. In

the next subsections two variation of the IPDL technique are described.

4.2.1 Pseudo Random IPDL (PR–IPDL)

In PR–IPDL the idle periods at each BS occur once within each designated idle frame with

a pseudo random position within the frame, Ericsson [78], (see Figure 4.3). During the idle

period the MS can then hopefully detect other BS’s around which are transmitting as normal.

The idle period length, T � � , along with the length of the idle frame, T � � , define the probability

of each BS being idle at any time in the idle frame, . �	���
��� , as

. �����
� � � T ���
T � � (4.6)

T � � matches the UMTS frame length and idle period lengths of T � � � ����	 or 6
�&� UMTS slot

length have been proposed as standard [100], thus . �	���
��� � '')(
� '� + . The UMTS slot length

has been chosen to assure channel stationarity over the entire slot thus increasing T ��� beyond

this value may cause a loss of channel coherence across the MF at high Doppler frequencies.

Idle period frequencies W ��
� � � 6 � R � 	 � 6�� Hz have been proposed. Naturally increasing the

frequency reduces the data capacity of the system. As the idle frames become more closely

spaced the quality of service (QoS) for real time data transmission may be reduced. Support of

two modes of operation, continuous and burst mode have been proposed [101]. In burst mode

the idle periods occur in bursts at W ��
� � Hz. Between bursts no idle periods occur, thus saving
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capacity at the expensive of measurement frequency and possibly location accuracy as less

multipath/LOS diversity will be available. The effect of measurement frequency on location

accuracy is explored in Section 5.3.6.
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Figure 4.3: IPDL idle frame structures

The timing measurements can be taken from any physical channel, however the Primary Com-

mon Pilot Channel (PCPICH) has been proposed. This is a scrambling code one UMTS frame

in length, unique to each BS. Thus the receiver will be complex as a number of codes must be

integrated and the precise chip position at the start of the idle period for each BS is unknown.

The processing gain available for such codes will be 31dB or 34dB for the two proposed values

of T ��� (with 2560 chips per slot).

The purpose of using idle periods is to remove the interference from the dominant BS. However

there may still be a near–far problem associated with the second highest powered signal. Sim-

ilarly if that signal is idle there may be a near–far problem with the next signal and so on.

Naturally as propagation distances increase the near–far effect tends to fade away. An intuitive

measure of how well the technique might perform is to consider the probability that the
�

most

high powered signals are idle and the
��� � 6 � th signal is not. This probability, . �	�!#" ��
��� ��� � . �	���
��� � ,

shows the probability of receiving the signal from BS 0 � ' with no higher powered interference

present, in which case, assuming the signal can be brought out from the thermal noise, a meas-

urement can be taken. Noting that the serving BS will always be idle at the measurement time

it is straightforward to evaluate an expression for . �	�!#" ��
��� ��� � . �����
� � � as

. �	�!#" ��
��� ��� � . �����
� � � � � . �	���
��� � 0
�
' � � . �	���
��� � 0 (4.7)

Note that for simplicity the case of partially overlapping idle periods is ignored.
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If there are
� � �

idle periods then the probability of the idle event defined by . �	�!#" ��
��� ��� � . �����
� � �
occurring at least once is given by

. ���!#" ��
� � ��� � . �	���
��� ��� ��� � �
��� ��
� � '

�� � � �
	

�� � . �	�!#" ��
��� �@� � � � � 6 � . �	�!#" ��
��� �@� � � ��� �
� �

� 6 � �� � � �
�

�� � . �	�!#" ��
��� �@� � � � � 6 � . ���!#" ��
� � ��� � � ��� �

� 6 � � 6 � � . �	���
��� � 0
�
' � � . �����
� � � 0 � ��� � (4.8)

This probability only takes into account whether the idle states occur at least once. Naturally

if they occur more often then this allows greater selection diversity in the presence of signal

power level variation. The conditional expectation of the maximum signal power from
� ���

measurements with Rayleigh fading can thus be calculated by including (4.5) in (4.8) to give

H � ��
�
��� � . �	���
��� ��� � � � �

� ��� �
� � ' � �

� � ' '�
�� � ���

	
�� � . ���!#" ��
� � ��� � � � � 6 � . ���!#" ��
� � ��� � � ��� �

� �

. ���!#" ��
� � ��� � . �	���
��� ��� ��� � (4.9)

A useful performance measure of the expected signal power gain for any
�

, . ���!#" ��
� � and
� ���

can then be derived by multiplying (4.8) and (4.9) to give

� �	� ��� � . �	���
��� ��� � � � � H � ��
�
��� � . �	���
��� ��� � � � � . �	�!#" ��
��� ��� � . �	���
��� ��� � � �

�
��� ��
� � '

��
� � '

6
�

�� � � �
	

�� � . ���!#" ��
� � ��� � � � � 6 � . ���!#" ��
� � ��� � � ��� �
� �

(4.10)

As previously mentioned the hearability of the 3rd highest to weakest powered BS’s is decided

entirely by the presence of the dominant 2 BS’s. As hearability of the 3rd BS is required for a

TDOA estimate a reasonable performance criterion is to decide on suitable values for . �	���
��� and� � �
that maximise

� ��� � 6 � . �	���
��� ��� � � � and
� ��� � R � . �����
� � ��� ��� � . Figure 4.4(a) shows the function

plotted at the two values of
�

. Figure 4.4(b) shows the equally weighted sum of the two lines.

Note that . �	���
��� �
� is a limit that cannot be attained as the previous equations only hold during

the serving BS idle period.
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Figure 4.4:
�@� �)� �	� ��� � . �	���
��� ��� ��� � plotted for n=1 and n=2, (b) the equally weighted sum

From these results it is clear that the optimum . �����
� � is in the range I����$R � ��� � P . Thus the proposed

value for . �����
� � � '')( (proposed in [101]) performs about 1dB worse for large
� � �

. . �	���
���
could be increased by for instance reducing T � � , however there are other considerations to

consider. One key advantage of the PR–IPDL system is that tight synchronisation between

BS’s is not required. As long as the idle frames from different BS’s mostly overlap at the

reception point the performance should stay fairly constant. Reducing T � � will therefore tighten

the synchronisation requirements which is not desirable.
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4.2.2 Time Aligned IPDL (TA–IPDL)

In TA–IPDL the idle periods are synchronised so that each BS goes idle at the same time in

the idle frame, Motorola [102], see Figure 4.3. During the idle period the pilot channel only is

transmitted with probability . ���C Z � � U . . ���C Z � � U � ���$� has been proposed [101]. In such a scheme

it is sensible to boost the pilot transmit fraction, i.e. the fraction of the total transmit power

that is used for the pilot, to 6 during the idle period [103]. This could potentially gain 7–13dB

in transmit power, thus increasing the pilot range by 1 to 2 octaves depending on the path loss

exponent. Naturally at the reception point fractional misalignment will occur so T � � should be

significantly greater than the maximum channel delay, or idle guard periods should be utilised.

Again the PCPICH is proposed to be utilised for measurement purposes with similar problems

as described in the PR–IPDL case.

TA–IPDL can substantially improve the hearability of the system compared with PR–IPDL as

will be demonstrated in the next section. The main disadvantage is that tight synchronisation

between BS’s is required to give this improvement. However to calculate the location using

TDOA the relative desynchronisation times are required no matter the technique. It is proposed

that these are supplied by LMU’s which are fixed receivers at precisely known locations (prob-

ably located at most BS’s). These LMU’s will measure the desynchronisation so it is reasonable

to suppose they could be used to provide timing adjustments to ensure tight synchronisation.

Similarly to the PR–IPDL case the equivalent probability . ���!#" ��
��� ��� � . �����
� � � can be derived as

. ���!#" ��
��� ��� � . �����
� � � � � . �����
��� � 0 � � . �����
� � � 0
�
' (4.11)

where . �����
��� � 6 � . ���C Z � � U . For this scheme it should be noted that the serving BS may transmit

during the idle period. Considering
� ���

idle periods then, similarly to (4.8),

. ���!#" ��
��� ��� � . �����
� � ��� � � � �76 � � 6 � � . �����
��� � 0 � � . �����
��� � 0
�
' � ��� � (4.12)

Similarly to the PR–IPDL case a performance measure,
� ��� ��� � . �����
��� ��� � � � , is formed,

� ��� ��� � . �����
��� ��� ��� � �
��� ��
� � '

��
� � '

6
�

�� � � �
	

�� � . ������ � *"!$# ��� � � � � 6 � . ������ � *"!$# ��� � � ��� �
� �

(4.13)

Again it is desired to maximise
� ��� ��� � . �����
� � ��� � � � for

� � 6 � R . Figure 4.5(a) shows the func-
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tion plotted at the two values of
�

. Figure 4.5(b) shows the equally weighted sum of the two

lines.
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Figure 4.5:
�@� �)� ��� ��� � . �����
��� ��� � � � plotted for n=1 and n=2, (b) the equally weighted sum

From these results the proposed value of . ���C Z � � U �'���$� (corresponding to . �����
� � �
��� � ) seems to

be a reasonable choice.

4.2.3 Variant of TA–IPDL using the PSCH (vTA–IPDL)

One disadvantage in using a TA–IPDL system is that it only works well with low . ���C Z � � U . This

implies that timing measurements can be made much less frequently than the idle period fre-

75



Hearability and Idle Period Downlink Techniques

quency, thus losing fading and potential multipath diversity (though the time between measure-

ments should still be smaller than the rate of change of the multipath profile of the channel).

A disadvantage of both TA–IPDL and PR–IPDL is the receiver complexity, in that the MS will

have to integrate over different long scrambling codes to detect each BS.

To improve matters somewhat a variant of TA–IPDL has been proposed by the author which

uses time allocated slots within the idle period to transmit a pulsed pilot channel with . � ���C Z � � U �
6 . A suitable pilot channel already present in the system is the primary synchronisation channel

(PSCH), see Figure 4.3, which is the same for all BS. In this way the receiver can be greatly

simplified as only integration of one short code is required. Note again the pilot fraction can be

increased to 6 . The PSCH is a pulsed T 4 � R�	
� chip code once per UMTS slot (2560 chips).

Thus if T � � is 1 UMTS slot the processing gain is 10dB down from the other IPDL schemes,

however there are other benefits to compensate for this. Figure 4.6 shows the make up of an

idle frame at transmission and reception.

Code Alignments

Lip
LcLca

16th closest BS

2nd closest BS
Serving BS

Propagation delay to serving BS

Propagation delay to 16th BS relative to serving BS

At transmission

At reception

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

16th closest BS

2nd closest BS
Serving BS

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 4.6: vTA-IPDL idle period structures

Although identical codes are used by each BS, BS identification can be achieved by identifying

the relative code alignment with respect to the serving BS and reporting this back to the serving

76



Hearability and Idle Period Downlink Techniques

BS. 16 PSCH code alignments have been specified in [2] (the code alignment slot length T 4 / �
6 �� chips), leading to marginal overlapping of codes in time. Due to different propagation

delays to the MS further overlapping can occur. Since the codes are quite short, thus limiting

processing gain, this effect must be carefully considered. It is possible to arrange the 16 codes

in a hexagonal cell tessellation so that adjacent BS’s do not use adjacent code alignments, see

Figure 4.7(a), thus the serving BS near–far effect will be confined to more distant BS’s. For

large cells the propagation delays become such that at reception the codes may have shifted past

the next code alignment relative to the serving BS. Note for the signal from one of the BS’s in

the second tier surrounding the serving BS travels between R�� � to ����� more than than signal

from the serving BS. Therefore to facilitate code identification

������� � � 4 T 4 / (4.14)

where
� 4

is the chip duration in seconds and
�

is the speed of light ( � � � ' ). For UMTS para-

meters therefore � � ��� km. In larger cells only every second alignment can be used otherwise

BS identification becomes more difficult (though signal strength measurements could be used

to assist the process) and hence a shorter alignment reuse distance is required, see Figure 4.7(b).

���
�

���
�

���
�

���
�

��	
	



�
�

��


���
�

���
�

���
�

���
�

���
�

���
�

���
�

���
�

���
�

15

1

7

3

16

5

14

10

6

4

11

9

12

2

13

8

(a)

  !
!

""#
#

$$%
%

&&'
'

(()
)

**+
+

,,-
-

13

7

5

3

1

9

11

(b)

Figure 4.7: Possible code alignment reuse plans in a vTA–IPDL system for (a) small
cells, ��� ��� km (b) large cells
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The processing loss previously mentioned can be partially offset by the increase in selection di-

versity gain (the code is always present within the idle period). Therefore as . � ���!#" ��
� � ��� � . � �����
��� �
6 ��� ��� � �76 the performance measure

� � ��� ��� ��� �
is simply, from (4.5),

� � ��� ��� � � � �
��� ��
� � '

6
� (4.15)

Summing
� � ��� ��� ��� �

for 2 BS’s gives an expected gain improvement of 2–3dB’s over TA–IPDL

and PR–IPDL for
� ��� � 9 � 6 � . There will also be (ignoring misalignment and code overlap)

no other BS’s transmitting anything during each BS’s PSCH which again should improve hear-

ability.

4.3 Hearability Performance Comparison Between Systems

The hearability is assessed for a set of 19 BS’s in a hexagonal arrangement. 1000 MS’s are ran-

domly placed in the middle cell. Each MS takes
� � �

measurements with uncorrelated Rayleigh

fading and stationary lognormal shadow fading. The pilot channel C/I ratio during each meas-

urement, derived from (4.1), is given by� H 4� � � � � . � � � � 	 �� � � � 6 � � � . � � � � 	 ��� � � ���
� � ' � ����O� . �

� � � � � (4.16)

where
� � � � � is 6 if the � th BS is transmitting and � otherwise. Note for vTA–IPDL

� � � � � �76
for � � 	 and � otherwise (thus code overlaps are neglected). Hearability is assessed with a

variable processing gain
� � � R�� � � 6 � ��� � � � dB corresponding to T � � � ���.6 � ����	 � 6 � � � R � 2F! � , .

For vTA–IPDL
� � � R�� dB is the proposed gain whereas PR–IPDL and TA–IPDL both have

had
��� �7� 6 and ��� dB proposed. The detection probability . 
�� C can then be evaluated based

on the post processing C/I ratio and the false alarm probability . ; � . A detection decision is

then made based on . 
�� C . Table 4.1 shows the system parameters used. A system without IPDL

is used as a performance benchmark.

In Figure 4.8 the effect of increasing
� ���

(
� �

for no IPDL) is shown. The hearability of all

schemes increases dramatically as
� ���

increases and at
� � � � 9 all schemes provide hearability

� � BS’s at the higher processing gains. The vTA–IPDL and TA–IPDL show significantly

better hearability. Figure 4.9 shows the effect of adjusting the pilot fraction for no IPDL and
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PR–IPDL schemes with
� ��� �79 (

� � �79 ). With a pilot fraction of � ����R PR–IPDL no longer

provides acceptable hearability at
� � � ����� � . Increasing the pilot fraction in the no IPDL

scheme does increase the hearability, however a residual 10% of MS’s still detect only 1 or 2

BS’s at
� � �7����� � . Figure 4.10 shows the effect of adjusting . �	���
��� in the PR–IPDL scheme.

There is very little difference in performance for the values chosen, thus a lower value should

be favoured as this implies the lowest capacity loss. Figure 4.11 shows the effect of adjusting

. ���C Z � � U in the TA–IPDL scheme. . ���C Z � � U � ���.6 performs poorly compared to the other values

as might be expected from Figure 4.5, however is still much better than the PR–IPDL and no

IPDL schemes. In Figure 4.12 the effect of varying the standard deviation of lognormal shadow

fading is shown. Large log standard deviations decrease hearability marginally. In Figure

4.13(1) results for the dual slope path loss model (equation 3.11) are shown. Comparing these

to Figure 4.8(2), they show a marked decrease in performance with the dual slope path model

as opposed to the simple path loss model. The dual path loss model is used in simulations in

subsequent chapters as it is the worst case performance model. Further to this, results with the

partially obstructed CLOS and fully obstructed CLOS model are shown in Figures 4.13(2–3).

The partially obstructed model has little effect on the hearability, however the fully obstructed

model reduces hearability significantly so that none of the schemes work adequately.

Overall the results show that hearability is best with the TA–IPDL scheme which provides

adequate hearability (
�

3BS’s) with
� � � � 6 dB for all but the no CLOS scenario. The vTA–

IPDL scheme with
� � � R�� dB performs slightly worse than TA–IPDL with

� � �S��� dB, and in

practice would be further limited (at high hearability) by code overlapping. PR–IPDL performs

worse but is still viable in most scenarios with
� � � ��� dB. The advantages and disadvantages

of each scheme are summarised in the Table 4.2.

Synch. Min T ��� Receiver Remarks

PR–IPDL loose 1 UMTS slot Many codes Synchronisation less of an issue
TA–IPDL tight 0.5 UMTS slot Many codes Lowest capacity loss
vTA–IPDL tight 1 UMTS slot One code Simplest receiver, cell planning

Table 4.2: Advantages and disadvantages of IPDL schemes
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Figure 4.8: Hearability against number of idle periods with uncorrelated Rayleigh fad-
ing: (a) no IPDL, (b) PR–IPDL, (c) TA–IPDL, (d) vTA–IPDL; (1) 1, (2) 8, (3)
16 periods
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Figure 4.9: Hearability against pilot transmit power fraction: (a) no IPDL, (b) PR–IPDL;
(1) 0.02, (2) 0.05, (3) 0.10 pilot fraction
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Figure 4.12: Hearability against lognormal shadowing: (a) no IPDL, (b) PR–IPDL, (c)
TA–IPDL, (d) vTA–IPDL; (1) 4dB, (2) 8dB, (3) 12dB standard deviation
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Figure 4.13: Hearability for dual slope path loss and CLOS models: (a) no IPDL, (b)
PR–IPDL, (c) TA–IPDL, (d) vTA–IPDL; (1) all CLOS, (2) partial CLOS, (3)
no CLOS
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4.4 Performance of an Adaptive Receiver

In the previous section it was shown that in extreme conditions the IPDL schemes do not guar-

antee the required hearability. In such conditions more C/I ratio gain can be found by using

coherent and non–coherent integration of the
� � �

measurements as well as the selection di-

versity schemes previously considered.

The receiver architecture (R1) (see Figure 4.4) is based on a conventional MF synchronisation

circuit.
� � �

is divided down into
� 4

and
� 0 , the number of idle periods to be combined

coherently and non–coherently respectively, where
� 4 � 0 � � � �

. If
� 4 � 0 � � � �

selection

diversity between
� 24� � � � ��� 4)� 0 integrals is also used. To limit the possible combinations

of
� 4

and
� 0 , only values that are powers of 2 are used. It is supposed that the receiver can

perfectly adapt the coherent and non–coherent integration, and selection diversity components

to maximise the power of the output signal,
� � 	 � . In a practical system a serial search of possible

values can be performed aided by past measurements, terminating when or if the threshold is

exceeded. Note that this search method should not affect the false alarm probability as the noise

component is fixed.

Matched
Filterr(i)

Pilot code
(local copy)

( )2. Comp
TOA(i)

I(i)

T(i)

Calculation
Threshold Threshold integration using selected Nc, Nn

Th
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Note: Nc and Nn are chosen to maximise the SNR of I(i)

M(i,s)
Nc C(i,p) Nn

1Integration for
Nc=1->Nip

Variable Coherent

slots

Non-coherent
Integration for

coherent segments
Nn=1->Nip/Nc

Selection
Diversity
Ns=
Nip/NcNn

Figure 4.14: Adaptive receiver architecture, R1

4.4.1 Practical Limit to Number of Idle Periods

� � �
is in practical cases limited by the maximum possible W ��
��� due to QoS considerations and

thus the maximum time over which the MS can be considered stationary (in the location sense),

itself a function of the MS speed and how accurately the MS is to be located. A reasonable

location stationary distance might be about 20m, in which case the maximum time over which

measurements are not out of date would be between 1 and 10 seconds between vehicular and

walking speeds.
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In integration schemes (as opposed to selection diversity) a further consideration is the station-

arity of the multipath channel in NLOS conditions. Typical survival lengths for multipaths in

urban environments tend to be around 5–10m [22], thus further reducing the integration time

possible. The pulse shaping should also be considered since the pulse shapes will become frac-

tionally misaligned with each other at the MS as the MS travels radially (w.r.t. the scatterer

location). Since the chip time in UMTS corresponds to a propagation distance of 77m, above

the desired location accuracy, the pulse shaping misalignment (or slippage) loss will be small

if
� � �

has already been chosen to ensure approximate MS location stationarity. Figure 4.4.1

shows the slippage loss for several values of
� 0 .
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Figure 4.15: Pulse slippage loss for several
� 0 values

4.4.2 Optimum Idle Period Spacing and Clustering

Since the receiver is capable of exploiting channel coherence between successive idle periods,

a reasonable strategy is to reduce the separation of the idle periods in time, TVU � � , in order to

increase the probability of coherence occurring. As previously mentioned, due to QoS consid-

erations, there is a practical minimum limit to this separation.

If the Doppler shift experienced by the MS is high then the channel coherence between idle

periods even with low T U � � becomes low. In this case ideally T U �.� would be large to exploit the
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fading diversity inherent in the channel.

Clearly there is a trade off between taking measurements closely together in time thus main-

taining a coherent channel for MS’s with low Doppler shift and taking measurements far apart

in time to exploit fading diversity for those MS’s with high Doppler shift. In subsequent sec-

tions it is shown that coherent gain is greater than fading gain. For this reason clustering of idle

periods together in groups is proposed within one burst of idle periods. A burst of idle periods

contains
� � �

of length T � A Z U C � � ��� � W ��
� � for one location estimate. Figure 4.4.2 shows this

clustering method. WYX � A U C � Z � 6 � T�� A Z U C implies that more than one cluster will be in a burst.

In this case fading diversity can be achieved. In subsequent simulations the optimum TVU � � and

W X � A U C �[Z combinations are evaluated.

The IPP is assumed fixed within a cluster
Fcluster

FidleNumber of idle periods in cluster=

cluster1/F

L sep

Idle Cluster

L idle T frame IPP

Figure 4.16: IPDL clustering within a burst

4.4.3 Coherent Integration

The MF output is stored slotwise as
� � 	 � � � ( 	 is the sample in slot index and � is the idle

slot index ) and integrated over
� 4

idle slots. In receiver R1 it should be noted that due to the

variable gain factor,
� 4

, the MF output power must be normalised by a factor 6 ���54 to provide

the same noise power in each signal and thus allow power levels to be compared. The output

of the coherent integration stage,
� � 	 � � � (� is the coherent segment index), is the signal power

envelope.

The normalised power gain of the MF depends on the Doppler shift of the channel and, for a
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simple single phasor channel, can be expressed as [104]

�
��� � ; � 6
T + X ? 
��

�
	�� + � � � * � 4 TVX ? 
�� ��
	�� + � � � * � 4 � (4.17)

where
� 4

is the chip duration and
� * is the Doppler shift. For variable coherent integration

length with a pulsed pilot code the gain is defined with
�54�� K3R � �

� � ��� � ���
	 + ��� � � � N to max-

imise

�
�

� � ; �
� 4 � 	 � + � � � * � 4 � TVX ? 
�� � T U �.� ��� 4�� 6 � � �� TVX ? 
�� � T U � � ��� 4 � 6 � � + � 	 � + � � � * � 4 � (4.18)

where T U �.� is measured in chips. For computational simplicity only
�54 � R � , � � �

(all

integers) values are used. Figure 4.17 visualises (4.18) with T X ? 
�� � R	
� chips, T U � � �7R	
���
chips and

� 4 �
� �$R
� � � . At zero Doppler shift the gain is 3dB/octave.
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Figure 4.17: MF coherent gain for
� 4 �76 8 9

It can be seen that using only powers of two as
� 4

values (solid lines in the figure) does not

decrease performance significantly.

Since the coherent integration occurs before squaring the integration stage output noise has a

complex Gaussian distribution. Thus
� � 	 � � � (after the squarer) with no signal and complex

Gaussian noise present has a chi squared PDF with 2 degrees of freedom of the form
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� �O032 ����� � 6
R � +0

� ���� � �� (4.19)

where R � +0 is the total noise power (identical in
� � 	 � � � and

� � 	 � � � ), which must first be estim-

ated. There are several strategies for noise power estimation which are outside the scope of this

work.
� � 	 � � � with signal present has a non–central chi squared PDF with 2 degrees of freedom

of the form

� ��2 ����� � 6
R � +0

� � � � 	 � �� � �� �
�
�

� � �

R � +0 � (4.20)

where
� � ��� �

is the
�

th order modified Bessel function of the first kind, and
� +

is the signal

power in
� � 	 � � � , assumed constant over

� 4
idle periods, and

� 4
times the signal power in

� � 	 � � � . In Rayleigh fading
� +

has a chi squared distribution about the short term mean signal

power
�� +

. In Rician fading a non–central chi squared distribution applies.

4.4.3.1 Threshold calculation

A Neyman–Pearson decision threshold,
� �

, can be calculated based on an acceptable false

alarm probability, . ; � , caused by the noise process.
� �

(expressed as a power) can be calcu-

lated from (4.19) as

��� �SR � +0 ��� � 6
. ; � � (4.21)

In practice the autocorrelation sidelobes of the pilot code may be greater than
� �

in high SNR

conditions. So a further additive threshold is required to ensure that the autocorrelation side-

lobes do not exceed the threshold. In this thesis low SNR’s are assumed so the effect of the

autocorrelation threshold is not considered.

The probability of detecting a signal, . 
�� C , can be calculated from (4.20) as

. 
�� C � �
'
� � � � 	 � � �

� 0
� � ���
� 0�� (4.22)

where
� � ��� ��� �

is Marcum’s Q function of order � .
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4.4.3.2 Coherent Integration versus Selection Diversity

It is interesting to calculate the point at which selection diversity becomes advantageous to

coherent integration. This will be the case if there is a wide discrepancy between the SNR

levels in samples. Coherent integration will be favourable if the SNR after coherent integration

is greater than the largest SNR (chosen from all samples) before coherent integration. For 2

samples, one with power
� �
��� and the other with power � +

� �
��� where � �S6 then

� � �
�
+

��� � � + �
+

��� � � �
+

���
�
�
� � � � +
R ��� � �

+
���

� � � R � 6
� + � � � ���
�� � (4.23)

where
� � � � � represents the coherent integration process.

4.4.4 Non–coherent Integration

� � 	 � � � for the last
� 0 idle periods are summed non–coherently to give

� � 	 � . Values of
� � 	 �

larger than
� � 	 � are selected as arrival peaks. Again a normalisation factor, 6 ��� 0 , is applied

to allow power levels to be compared when selecting an optimum
� 0 value. Assuming R � +0 is

constant over
� 0 idle periods

� � 	 � � ���
,
� � 	 � with no signal present has a chi squared PDF

with R � 0 degrees of freedom of the form

� � 032 ����� �
� 0

�
+ � �0 R � ��� ��� 0 �

��� 0 � � � � � ' � � � � �� � �� (4.24)

With signal present
� � 	 � has a non–central chi squared PDF with R � 0 degrees of freedom of

the form

� � 2 ����� � � 0
� � 0 �
. + �

� � � �� � ��� � 	 � � � �� � ��
R � +0

� � � � '
� � � 0 � .

R � +0 � (4.25)

where . + is the mean of
� 0 � + values.

The false alarm probability after the non-coherent detection stage, . ; �>=@?BA�CED , assuming constant
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noise power, can be evaluated as

. ; ��=F?GA�CED � � � � ��� �� � �� � � � '�
� � �

6
� �

� � 0 ���
R � +0 � �

(4.26)

Figure 4.18(a) shows . ; �>=@?GA�CED against . ; � for various values of
� 0 . Clearly the effect of

increasing
� 0 is to reduce . ; �>=@?BA�CED for the same . ; � .
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Figure 4.18: (a) . ; ��=F?GA�CED against . ; � , (b) . 
�� C�=@?BA�CED against . 
�� C , for various
� 0 values

Similarly
� � 	 � with signal present has a non–central chi squared distribution with R � 0 degrees

of freedom. The detection probability after the non-coherent detection stage, . 
�� C�=F?GA�CED can be

evaluated as

. 
�� C�=@?BA�CED � � � �

� � .
� 0

� � � 0 ���
� 0 � (4.27)

Figure 4.18(b) shows . 
�� C�=F?GA�CED against . 
�� C for various values of
� 0 . For . 
�� C � ��� �(	 . 
�� C�=@?GA�CED

is increased and for . 
�� C � ��� �(	4. 
�� C�=F?GA�CED is decreased.

If .<; �>=@?GA�CED is fixed then (from Figure 4.18) as
� 0 is increased . ; � can be increased and sub-

sequently
���

lowered. This allows signals at lower SNR’s to have increased . 
�� C�=@?GA�CED values.

Figure 4.19 shows the SNR gain achieved by non–coherent integration, against
� 0 for various

values of . 
�� C�=@?BA�CED and . ; ��=F?GA�CED . The SNR gain is the difference in SNR of signals with the

same . 
�� C before and after non–coherent integration. For small . ; ��=F?GA�CED values the gain avail-

able is close to 3dB/octave. For more useful values of . ; �>=@?BA�CED the gain is close to 2dB/octave.

As the . 
�� C value drops the SNR gain possible from non–coherent integration decreases. For

signals well below the noise power non–coherent integration can produce little gain.
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Figure 4.19: SNR gain against
� 0 for fixed . ; ��=F?GA�CED

4.4.4.1 Non–coherent Integration versus Selection Diversity

Similarly to the coherent integration case the point at which selection diversity becomes favour-

able to non–coherent integration can be calculated. For 2 samples, one with power
� �
� � and the

other with power � +
� �
��� where � �S6 then

� � �
�
+

��� � � + �
+

��� � � �
+

���
� � �

�
+ � � + � + �
R ��� � �

+
���

� + � R� � � 6 (4.28)

where
� � � � � represents the non–coherent integration process and

� �
is the threshold reduction

obtainable from Figure 4.19. For
� � �SR dB then

� + � � 	��$9 R� � (4.29)
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4.4.5 Effects of Fading Correlation

In previous hearability results only uncorrelated (in time) Rayleigh and stationary (completely

correlated) shadow fading were considered. However if TVU �.� is to be varied it is important to

quantify the effect of correlation. In the following subsection the performance difference across

possible correlation values for different fading types is evaluated with respect to the different

time diversity schemes.

4.4.5.1 Uncorrelated Rayleigh Fading with Selection Diversity

This has been dealt with in Section 2.8. The expectation of the maximum power in
� � �

uncor-

related chi squared random variables (RV’s), M ' � ��M ��� � , has been shown to be, from (4.5),

H I � �
�0 � ' ��� ��� � K M 0ONP �

��� ��
� � '

6
� (4.30)

Figure 4.20(a) shows this function plotted as a function of
� � �

. Note the gain increment per

octave reduces as
� � �

increases, and is never more than 2dB per octave.

4.4.5.2 Correlated Rayleigh Fading with Selection Diversity

Dealing with correlated RV’s is somewhat more complicated than independent RV’s and it

is well known that for
� � � �:R it is not possible to calculate the required expectations in

the general case [19]. In this thesis, under correlated fading, only the case with
� � � � R is

considered.

In terms of the fading power the correlation leads to two correlated chi squared RV’s, M '
� M +

with normalised power composed from identical normal RV’s
�
' � � � * as

M ' �
6
R
� � +
'
� � ++ � � M + � 6

R
� � +� � � +* � (4.31)

A standard correlation term, Q , exists between jointly normal pairs
� �
'
� � � �

and
� � + � � * � as

described in [105]

� � � � ��� � � � � 6
R�� � + � 6 � Q + ��� �

� � 6
R � 6 � Q + �

� � + � R Q � � � � +
� + � � (4.32)
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The joint PDF of M ' and M + , known as Moran’s distribution [106], is then given by

��� � � � � ��� '
��� + � �

��

 � � Q

+ 

�
� +�

� � '
�� 
�
� � �

� � 6 � � ��
�
�
�� � � � �

�
' � ��

� ��� 
 �� �
� (4.33)

In selection diversity the expectation of the maximum power of the two chi squared RV’s,

H I � �
� K M '

� M + NP is of interest. This can be calculated by first considering the conditional

expectation as follows

HJI � �
� K�M '

� M + N � M ' �
�
' P � � � �

�
�
'
��� ��� + ��� '

� � � + � � �
� �

� + �	� ��� + ��� '
� � � + (4.34)

Integrating over all values of M ' then gives

H I � �
� K M '

� M + NP � � �
�

�	� ���
'
� H I � �

�	K�M '
� M + N � M ' �

�
' P �

�
'

� � �
�

� � �

�
�
'
�	� ���

'
� ��� �
� + ��� '

� � � + � � '
� � �

�
� �
� �

� + ��� ���
'
� �	� ��� + ��� '

� � � + � � '
� � �

�
� � �

�
�
'
� � � � � � ��� + ��� '

� � � + � � '
� � �

�
� �
� �

� + � � � � � � �
� + ��� '
� � � + � � ' (4.35)

Noting the area of integration of both double integrals is the same, it is apparent that the double

integrals are identical leaving

H I � �
� K�M '

� M + N P �SR � �
�

� � �

�
�
'
� � � � � � ��� + ��� '

� � � + � � ' (4.36)

Figure 4.20(b) shows this function plotted as a function of Q + . Note that the correlation causes

minimal effect until Q + is quite large.

Figure 4.21(a) shows a typical power profile with Rayleigh fading. The MS is moving at 5kmph

giving a maximum Doppler shift of 8.9Hz with a 1.92GHz carrier frequency. Figure 4.21(b)

shows the corresponding autocorrelation functions of the actual power and real voltage. It can

be seen that the power autocorrelation drops to about 0.4 and stays fairly constant. Due to the

regular fading properties the real voltage autocorrelation drops rapidly then oscillates between

-0.2 and 0.2 corresponding to Q + � �����	 . In practice the correlation factor Q will have negligible

impact on the selection diversity except if measurements occur within the same fade.
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Figure 4.20: H I � �
��K M<0ONP plotted against (a)

� � �
for uncorrelated Rayleigh fading, (b)

Q + for correlated case,
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Figure 4.21: (a) Typical received power profile with Rayleigh fading and (b) its auto-
correlation function

4.4.5.3 Uncorrelated Shadow Fading with Selection Diversity

Supposing that the shadowing is uncorrelated between
� � �

measurements then the expectation

of the maximum of
� � �

lognormal RV’s is required. If
�
' � � � ��� � are independent normally

distributed RV’s then

��� ��� � � 6
�

� R�� ��� �
� � � +
R � + � (4.37)
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� ��� � � 6 �
� � ' � (4.38)

Thus � � � �
is a lognormally distributed RV on a dB scale. The CDF of the maximum in

� ���
RV’s,

� � / � , is derived as

W � � ��� ��� � / � � � . � I � ' � � � 0 � � � / � P
� I W � ��� � / � � P ��� � (4.39)

where W � ��� �
is the CDF of the normal density function. Therefore the PDF of

� � / � is

� � � ��� ��� � / � � � �
� � � / � W

� � ��� ��� � / � �
� � � � I$W � ��� � / � � P ��� �

�
' � � ��� � / � � (4.40)

The expectation of � � � � / � � , i.e. the maximum power in
� ���

lognormal RV’s is by definition

H I � � � � / � � P � � �
� � � ��� � � � � ��� � � � � � (4.41)

Noting the moment generating function identity [105]

HJI � , � P �������
� � ��� 6

R �
+ � + � (4.42)

where
�

is a constant and
�

is a normally distributed RV with mean � and variance � + , for� � � �76 the integral in (4.41) can be evaluated, since in this case (4.41) simplifies significantly,

to

HJI � � � '
� P � � �

� � � ��� � � � ��� � � �

� H I.6 �
� � ' � P (4.43)

where
�

is a normally distributed RV, thus

H I � � � '
� P � ��� �

� � + ��� � 6 � � +
R�� � (4.44)

Figure 4.22(a) shows (4.41) plotted as a function of
� ���

for �
� � dB and � �:9 dB. Note

that the lognormal distribution provides a mean power bias with
� ��� � 6 (the median power
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is at 0dB). In subsequent simulation results this bias is removed. The gain increment for 8dB

shadowing decreases with increasing
� ���

, with a maximum of about 2.5dB per octave. Note

that this is greater than that provided by Rayleigh fading, and is similar to non–coherent gain,

but less than the coherent gain performance.

4.4.5.4 Correlated Shadow Fading with Selection Diversity

Again, in the case of correlated fading, only
� � � � R is considered. In this case

�
' ,

� + are

identical jointly normal RV’s as in (4.32). In this case the conditional PDF is [105]

� � ��� + � � '
� � 6

�
� R�� � 6 � Q + � ��� �

� � ��� + � Q � ' � +R � + � 6 � Q + � � (4.45)

where Q represents the correlation factor between the normal RV’s
�
' and

� + . It should be

noted that the conditional density of
� + is simply a normal density with mean Q � ' and variance

R � + � 6 � Q + � . Similarly to (4.36) the expectation of the maximum can be derived as

H I � �
� K �

'
� � + NP � R � �

� � � � �
� � � ��� '

� � � � � � � ��� + � � '
� � � + � � '

� R � �
� � � ��� � � � � � � W �

� � � 6 � Q �
� 6 � Q + � � �

� R � �
� � � ��� � � � � � � W � � � � 6 � Q

6 � Q � � � (4.46)

When Q
� 6 (4.46) simplifies to (4.41) with
� ��� � 6 . When Q
� � (4.46) simplifies to

(4.41) with
� � � �7R . When Q � � 6 (4.46) simplifies to twice (4.41) with

� ��� �7R . The later

point means that negative correlation will improve the selection diversity performance, however

it is noted that shadow fading is usually modelled with decaying exponential autocorrelation

function [12], thus implying positive Q values.

Figure 4.22(b) shows (4.46) plotted as a function of Q for � ��� dB and � �S9 dB. Small values

of Q cause little degradation in expected power.

Gudmundson’s [12] experimental results show that a decreasing exponential autocorrelation

function accurately models the behaviour of lognormal shadow fading. The decorrelation

length of lognormal shadow fading, T 
 X ? Z�Z , is defined as the distance at which the autocor-

relation function has value 0.5. Typical values for T 
 X ? Z�Z have been suggested as 5m for urban

scenarios and 20–100m for suburban/rural scenarios [77], [22]. The required correlation value
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Figure 4.22: H I � �
��K M<0ONP plotted against (a)

� � �
for uncorrelated shadow fading, (b) Q

for correlated case,
� � � �SR

for Q can be calculated from

Q��
����	 ����� � ���� ���	�
� (4.47)

With typical values of ) � 	 kmph (pedestrian), T 
 X ? Z�Z � 	 m in an urban environment and

T U � � � � �.6 R	 secs this gives Q � ��� � � � ; at ) � 	� kmph (vehicular) gives Q � ��� � 9
� . These

correlation factors are quite high thus shadow fading correlation will be quite important to the

performance of the receiver.

4.4.5.5 Fading with Coherent Integration

Coherent integration in the receiver will usually occur over a period when the channel is ap-

proximately stationary. Thus correlation in fading is of no interest.

4.4.5.6 Fading with Non–coherent Integration

For fixed shadowing, non–coherent integration is the sum of
� 0 2nd order chi squared RV’s,

thus giving the post integration signal power distribution,
� � . + � , as a chi squared distribution

of order R � 0 . It is easy to see H I�. + P �SH I � + P and thus correlation in fading will have no effect

on the mean value of fading gain.
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4.4.6 Simulation Results and Discussion

An IPDL scheme with
� ��� � 9 , T
� A Z U C � 6 second and W ��
��� � 9 Hz was simulated. The

performance of a selection diversity receiver, fixed (
� 0��S9 ) non–coherent integration receiver,

and adaptive receiver, R1, were compared with respect to the mean SNR gain achieved over the

mean SNR for signals from the 2nd and 3rd closest BS’s (BS’s A, B) in a hexagonal cell array.

Figure 4.23 shows the location of the BS’s and the area over which MS were dropped with

uniform distribution and uniform direction of travel over R�� . Results are shown for the MS

travelling at 5kmph and 50kmph, corresponding to typical pedestrian and vehicular motion

(max Doppler shifts of 8.9Hz and 89.0Hz respectively for 1.92GHz carrier frequency).

���
�

�������
�

���
�

BS-A

BS-B

Serving
MS’s dropped in
shaded region

Figure 4.23: BS arrangement and MS drop zone

LOS and NLOS scenarios were simulated. In the LOS scenario Nakagami-m ( � � 6 	 ) short

term fading, and lognormal shadowing with 4dB log standard deviation were simulated. In

NLOS Nakagami-m ( � �:6 ), i.e. Rayleigh fading, and lognormal shadowing with 8dB log

standard deviation were simulated. In both cases the decorrelation length of lognormal shad-

owing was 20m. Change in path loss from movement during the measurement period was not

modelled thus cell radius was not a factor. In the LOS scenario the Doppler shifts for each BS

are correlated to each other as shown in Figure 4.24. Typically this correlation means that if

there is a higher Doppler shift from one BS, the other BS will tend to have a low Doppler shift.

In NLOS a uniform angular distribution is assumed for the arrival angle at the MS, therefore
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leading to uncorrelated Doppler shifts as described by the following PDF,

��� � � � � � � '
� � + � � 6� 6 � �

'
� � � / � � 6 � � + � � � / �

� � � � / � � �
'
� � + � � � / � (4.48)

where
� � / � is the maximum Doppler shift calculated as

� � / � � ) � � � , where ) is the MS

speed, and
�

is the carried wavelength. The mean SNR gain across the two BS’s remains

unaffected by the Doppler shift correlation, so differences in results are due only to the fading

types simulated.
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Doppler shift (BS-B)

Figure 4.24: Joint Doppler PDF for 2nd and 3rd closest BS in LOS hexagonal cell
scenario

To compute the non–coherent integration gain . 
�� C �'���.6 and . ; � � R�� ����6 �
�

 are used. The

analysis assumes that in each idle period the BS pilot channel is present and a measurement can

be taken. This is not the case where . C Z � � U � 6 as in PR–IPDL and TA–IPDL. This factor is

further considered in Section 4.4.6.1.

The parameters T U �.� and WYX � A U C � Z are varied. T U � � is varied from 1 UMTS slot, the minimum

separation if T ��
��� � 6 slot, to 6 � W ��
��� , the maximum separation with T � A Z U C � 6 second.

W X � A U C �[Z is varied from 6 Hz to � Hz, where clusters are spaced 6 � W X � A U C �[Z seconds apart.

Figures 4.25(a), (b) show the results for the LOS and NLOS scenarios respectively. The mean

maximum SNR gain is mean with respect to 10000 random MS drops and the SNR gain from

both non–serving BS’s and the maximum SNR gain possible for each receiver since the receiver
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R1 parameters can adapt ideally. The performance of the selection diversity only receiver in

all cases is improves with increased T U �.� simply because the fading diversity increases. With

higher W X � A U C � Z the idle periods are further spread apart thus the improvement at low T U �.� .
At higher speeds the performance is better as more spatial diversity thus fading diversity is

obtained. In the LOS scenario 1–2dB of improvement (still well below the uncorrelated fading

expectation) at the largest T U �.� is achieved, in the NLOS scenario 3.5–5dB gain is possible.

The performance of the fixed (
� 0 �S9 ) non–coherent integration receiver is dependent on only

the expectation of the fading which is constant with regard to TVU �.� and MS speed. Varying the

parameters makes no difference therefore for clarity only one line is shown. An SNR gain of

6.2dB is achieved (due to threshold reduction as shown in Figure 4.19). The fixed non–coherent

integration receiver always performs better than the selection diversity receiver.

The performance of the adaptive receiver improves with decreased TVU �.� due to the increased

coherency in the channel. At higher speeds the performance is worse and deteriorates more

quickly with increasing T U �.� . At maximum T U �.� the performance is slightly better than the

fixed non–coherent integration receiver. This can be attributed to selection diversity gain. Low

W X � A U C �[Z performs better in the LOS scenario however in the NLOS scenario where there is more

fading diversity, WYX � A U C � Z � R can outperform WYX � A U C �[Z �76 (by 0.3–0.5dB).

Low T U �.� values may be undesirable due to QoS considerations for real time services, or un-

workable, e.g. in PR–IPDL an idle frame is required in which only one frame is idle (the

idle period length to idle frame length ration defines . �����
� � ). A reasonable minimum T U �.� � 6
UMTS frame would provide an SNR gain of about 1.5dB for the adaptive receiver R1 over the

non–coherent integration receiver at low speeds and 0.5dB at higher speeds. In the NLOS case

W X � A U C �[Z � R Hz would be beneficial to increase fading diversity at high speeds. The gain over

the selection diversity only receiver is larger still. In LOS this gain is about 4.5dB at high speed,

6.5dB at low speed; in NLOS 1.5dB at high speed, 4dB at low speed.

Clearly only one possible configuration of W ��
��� and T
� A Z U C has been considered here. The

results show that some gain is possible with a slight increase in receiver complexity. Specifically

in an emergency scenario where the MS is near stationary with poor hearability the adaptive

receiver could provide a critical hearability improvement. In practice it may be feasible to use

a variable length T � A Z U C and even T U � � if an emergency request is made by a MS with low

hearability or integrate across bursts for very slow moving MS’s.
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Figure 4.25: Mean maximum SNR gain against T U �.� and WYX � A U C � Z for (a) LOS, (b) NLOS
scenarios
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4.4.6.1 Effect of . C Z � � U on receiver performance

In the previous analysis . C Z � � U4� 6 was assumed. In practice this is not the case for PR–IPDL

with proposed . �	�C Z � � U � ' 
')( and TA–IPDL with . ���C Z � � U � ���$� . The vTA–IPDL scheme does

however have . � ���C Z � � U � 6 . The transmit probability can be included into the simulation model,

or alternatively effective W
�����
���

and
� ������

can replace W ��
��� and
� ���

in the previous simulations

to give an approximate performance, where

W
�����
� � �SW ��
��� . C Z � � U � � ���� � � � � � . C Z � � U (4.49)

From these equations it is easy to see TA–IPDL performance will be affected greatly by such

a consideration, in which case potential gains are reduced. For this reason a slightly higher

. ���C Z � � U �
��� � � ���&	 is proposed by the author.

4.5 Conclusions

In this section the concept of hearability has been examined. It has been shown that in a CDMA

system (with frequency reuse distance of 1 cell) the hearability performance will limit the per-

formance of conventional triangulation based location estimation techniques, e.g. TDOA. Sim-

ulation results show that for the simple path loss model with a reasonable transmit power up-

wards of 20% of MS’s would not be able to detect the required 3 BS’s even exploiting Rayleigh

fading diversity. For this reason IPDL techniques have been include in the UMTS specific-

ations. A comparison of several such techniques has shown merits for each method. Based

purely on hearability TA–IPDL is the best choice, however PR–IPDL requires less synchron-

isation constraints and has been accepted as the standard [101]. The author’s own vTA–IPDL

proposal also performs well and requires only one code in the MF.

When slightly more challenging channel conditions are simulated, e.g. a dual path slope model

with cellular obstructions, the performance of all techniques, and especially PR–IPDL, be-

comes poor with a simple MF. For this reason the possibility of coherently and non–coherently

integrating idle periods, as opposed to simple selection diversity, is investigated. To provide co-

herent gain the separation of idle periods has to be reduced, however for fast moving scenarios,

where little coherency is available even for low T U � � , widely spaced idle periods are required

to benefit from shadowing diversity. For this reason clustered idle periods are proposed, which
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improve performance in the NLOS scenario. For the particular configuration simulated the ad-

aptive receiver had performance gains of 1.5dB over the non–coherent integration receiver and

upwards of 4dB gain over the selection diversity receiver at low speeds.
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Chapter 5
Performance of a TDOA Location

Estimator

In this chapter the performance of location estimators utilising TDOA measurements taken at

the MS, as proposed for UMTS, under several different scenarios are presented.

Initially a simple receiver architecture which does not exploit spatial diversity is described. Loc-

ation accuracy results for this simple receiver are presented under a number of scenarios. Sens-

itivity of location accuracy to several key channel parameters is also examined. Subsequently

performance of a receiver architecture which allows the estimator to exploit spatial diversity in

propagation conditions is presented. The performance of this location estimator is shown to be

a great improvement over the simple receiver architecture.

5.1 Simple TDOA Location Estimator Architecture

Figure 5.1 shows the proposed receiver architecture, R2. The adaptive coherent and non–

coherent integration stages of the previously proposed adaptive receiver, R1, (see Figure 4.4)

are not implemented since the performance of that receiver can be gauged by considering the

performance of the receiver R2 with higher transmit power.

( )2.
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Pulse Shape
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BS database

Th+ Tacorr(i)

Calculation
Threshold

MS

Matched
Filterr(i)

(local copy)
Pilot code

Figure 5.1: TDOA location estimator receiver architecture, R2

Since a short pilot code is used in vTA–IPDL the MF is of length T � ; �ST X ? 
�� � ��2 where ��2 is

the oversampling rate. In TA–IPDL or PR–IPDL the length of the MF would be T � ; � T ��
��� �
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��2 . Such a long MF is currently impractical, thus an integrate and dump architecture might be

preferred. Figure 5.1 shows an example of the output of the MF stage,
� � 	 � ( 	 represents the

sample index in the idle period), during a vTA–IPDL idle period having T ��
� � � 6 UMTS slot

( 6 ��R��(� samples with � 2 �'� ), with a single path channel between the MS and all surrounding

BS. The threshold,
� � 	 � , is also shown.
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Figure 5.2: MF output and threshold example

The serving BS has a much stronger signal since it is closer and the autocorrelation sidelobes

can be seen clearly above the noise floor centred at 	 � R��� . Several more distant BS’s can

still be detected above the threshold. The threshold is not constant since the autocorrelation

sidelobes must not trigger the threshold. The method used to control the threshold is discussed

in the following subsections.

5.1.1 Autocorrelation Suppression

Since as many TD’s as possible are required it is necessary to suppress the pilot code autocor-

relation function so that peaks in the autocorrelation sidelobes are not falsely identified.

Initial attempts were made to implement an iterative subtraction technique. In this technique,

starting with the largest peak, the estimated complex autocorrelation functions associated with

each peak are subtracted (prior to the complex envelope detector). This subtraction process

allows signals from BS’s with lower power to show through the autocorrelation noise of another
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higher powered signal. Unfortunately the technique proved to be too sensitive to noise, since

any noise component on the highest peaks propagates through the iterative subtraction. In these

cases the technique produced many more false peaks above the threshold.

A simpler method was finally used. The signal plus noise power going in to the MF is estimated

from

. �&� � 6
T � ;

� ��� �
'�


 � '
� � � � ����+ (5.1)

The maximum signal output power assuming the signal is an autocorrelation sidelobe is then

. � X ? Z�Z � 	 � ��� + ����� T +� ; � . ��� � 	 � � ��� �
(5.2)

where � + ����� is the power ratio of the maximum autocorrelation sidelobe to the main lobe and� � � R � +0 is the noise power estimate. In the following simulations
� �

is estimated as . ���
during a completely idle guard band prior to the idle period. The code assigned to the PSCH

in the UMTS specifications has � + ����� � � 6 ���.6 dB [2], however better codes exist in the group

assigned to the secondary synchronisation channel (SSCH) channel. For the following simula-

tions a code with � + � � � � � 6 � ��� dB is used.

A power threshold is then generated as

� � X ? Z�Z � 	 � �'. �"
�� . � X ? Z�Z � 	 � (5.3)

where by simulation . �1
�� � 6
�&�	 was found to be necessary to account for inaccuracies in the

power estimates . �&� and
���

.

The final threshold is then the sum of the independent noise and autocorrelation thresholds, i.e.

� � 	 � � � � � � � X ? Z�Z � 	 � (5.4)

The probability of a MF output above this new threshold remains approximately . ; � . Uncer-

tainty exists since various power estimates have been used.
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5.1.2 Multipath Rejection and Pulse Shape Suppression

The output after the threshold comparator stage gives a fairly accurate representation of the

CIR. To generate the RD’s for the location estimator only the earliest arriving path arrival time

is required. Therefore multipath rejection (MPR) is required. The function of the rejection

stage is not only to pick out the first path in the channel impulse response but to ensure that as

accurately as possible a consistent point on the pulse shaping main lobe is chosen as the output

peak, ideally the central peak of the main lobe.

Three simple algorithms are proposed:

Highest Peak – the highest peak above the false alarm threshold on the channel impulse re-

sponse is taken. This is a typical strategy in initial signal acquisition and synchronisation.

First Response – the first occurrence of the CIR above the threshold is taken.

First Peak – the first peak of the CIR above the threshold is taken. The strategy for selecting

the peak is to first find the first occurrence as in the first response technique then to search

within one chip for a higher peak. The highest peak within one chip is chosen.

Before the latter two strategies can be implemented it is very important to remove the pulse

shape sidelobes which may be above the threshold if the SNR is high and thus could cause a

false peak to be detected. Raised cosine pulse shaping, �
� � �

, is used with
� �
���$R R defined by

�
� � � � � 	 � � � � ��� � � �

�
� � 6 � � � + � + � (5.5)

where
�

represents time measured in chips. Figure 5.1.2 shows the power of the pulse shaping

waveform as a function of distance in chips from the main lobe. The sidelobe power is within

14dB’s of the peak. Again it may be possible to iteratively subtract the pulse shaping waveform

before the signal envelope detector, however for similar reasons to the autocorrelation suppres-

sion a simple power threshold is used. This need only be applied to the negative side of the

waveform. A threshold of 7dB/chip was used as shown in Figure 5.1.2. This will limit the

ability to resolve temporally close multipaths but since in true LLOS the first arriving wave will

generally be of higher power to subsequent waves it should not have a great bearing on location

accuracy performance.

The performance of the MPR techniques were assessed by simulation. The relative position of
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Figure 5.3: The pulse shaping waveform and threshold

the output peak was measured with reference to the true arrival time of the centre of the pulse

shape using the highest peak, first response and first peak algorithms. UMTS system parameters

were used with only the pilot channel simulated. The CoDiT rural (single path) and CoDiT

urban (multipath) channels were simulated and the LOS state of the channels fixed to LLOS

and CLOS. The received SNR (before the MF) was varied from -30dB to 0dB and the code

used in the MF had length 256 chips thus giving a processing gain of 24dB. An oversampling

rate of � 2 � � was used. In each simulation the results were collected for 1000 different but

statistically identical channels. For each channel the sampling instance was varied randomly

with uniform distribution of � 6 � R sample to ensure the receiver did not always sample precisely

on the pulse shape peak.

Figures 5.4(a)-(c) show the PDF’s of the output peak compared to the true position of the pulse

shape peak for all three techniques with the rural (single path) channel. It can be seen that

the first response algorithm (Figure 5.4(b)) at high SNR’s tends to pick the leading edge of

the pulse which occurs 4 samples before. However as the SNR decreases the detection rate

falls and the detected peak shifts closer to the centre of the true peak. This shift is undesirable

since it introduces a bias when comparing detected peaks between signals from several BS’s

at different SNR’s. For the one path channel the first peak and highest peak detectors (Figures

5.4(a), (c)) perform similarly with both giving timing within one sample of the true peak with

highest frequency, though the first peak strategy tends to pick the leading side of the peak.
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Decreasing the SNR does not significantly affect the mean peak position, but does reduce the

detection probability.
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Figure 5.4: Output peak relative position PDF’s in single path channel for (a) highest
peak, (b) first response, (c) first peak strategies

Figures 5.5(a)-(c) show the same PDF’s for the urban (multipath) channel. This time the output

peaks are detected over a significant delay spread even thought the channel is LOS. In this case

since multipaths can combine coherently to give higher power than the LOS path (especially if

the LOS path is in a fast fade) the first peak performs better than the highest peak algorithm.

The conclusions to be drawn from these simulations are that the first peak algorithm, while

being fairly simple, works adequately at detecting the peak to the nearest sample time consist-

ently over all SNR’s and for multipath channels. In UMTS the chip rate is high, corresponding

to 78.3m propagation distance per chip. Since oversampling is employed to further increase

the time resolution at the receiver, super resolution techniques are unnecessary. Since a con-

stant false alarm threshold is employed reducing the SNR does not increase the measurement
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Figure 5.5: Output peak relative position PDF’s in multipath channel for (a) highest
peak, (b) first response, (c) first peak strategies

noise (in fact it may marginally reduce the noise) thus SNR itself is not a necessary or indeed

useful measure for measurement confidence as has been proposed in [100]. In all subsequent

simulations the first peak algorithm is used.

5.1.3 Peak Identification

The transmitting BS for each peak must be identified. If the PCPICH channel were being used

this would be straightforward since each BS would be transmitting a different code. In the case

of vTA–IPDL the PSCH is used which is identical for each BS. Since the serving BS is known

and each BS has a unique code alignment relative to the serving BS (see Figure 4.6), peak

identification is still straightforward.
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5.1.4 BS Synchronisation Offsets

Typically in a mobile network all the BS’s are not tightly synchronised. In order to calculate

the MS location the BS’s must either be tightly synchronised or their synchronisation offset

known. Since for other applications of the mobile network tight synchronisation is not required

the latter strategy has been proposed as part of the UMTS standard [2]. So called LMU’s need

to be located in known fixed positions throughout the network to measure the synchronisation

offsets of surrounding BS’s through pilot channel measurements. Naturally LMU’s should be

placed to be LOS to all the surrounding BS’s.

5.1.5 Location Estimator

A TD vector,
� �� ��� �

, can be formed from
�� ��� �

defined as

� �� ��� � �
��
�
��������	��
 �������	��
������ �

�����������	��
 ��������	��
������ �

���
� (5.6)

where � � � 
 represents the measured synchronisation offset between BS � at location (
� � , � � ) and

BS



and
�

is the measurement index.

Since the receiver R2 is not utilising spatial or temporal variation the relative variances of
�

' ��� � are unknown. Therefore the weighting matrix, 

 
, is constructed with equal weights, the

absolute magnitude being of no significance.



�
' �

��� ��
����� ��!
"#���$"&%'% �(�$"�!
)+*�,.-0/1.243�5./ (5.7)



�
' is an

�
by

�
matrix with terms as defined. Note

� �
represents the exclusive–or operation.

Where 3 or more TD’s are available Chan’s TDOA location estimator is used (see Section

2.3.3). If 2 TD’s are available the intersection point(s) of the TD’s are used (see Section 2.3.3).

There are two solutions to the equations, so the solution that minimises the total summed dis-

tance between the MS and the 3 BS’s is used. If only one TD is available then the intersec-

tion point of that TD with the line connecting the two detected BS’s is used in which case

111



Performance of a TDOA Location Estimator

�$ �7I � � P � is given by

�$ �
�
� �

'�
'

�
� �

�� � +
� +

�� � �� �
'�
'

��
R

� �
� � ��� ,�
	�� ,

�
� � � ��

'
�@� � � �� + ��� � � � '

� + �
R (5.8)

where

, � � �
�
�
'
� � + � �

'� + � �
' �

Finally if no TD’s are available the serving BS location, � � ' �
' �
�

is used as the MS location

estimate.

5.1.6 Location Estimation Accuracy Performance

A vTA–IPDL UMTS system is simulated. 1000 MS’s are placed randomly in the central cell

of a hexagonal array with uniform spatial distribution. Rural, suburban and urban scenarios are

simulated with varying cell radius, � � , and channel model parameters. The MS’s travel with

random bearing uniformly distributed across R�� at speeds of 150kmph, 50kmph, and 5kmph in

rural, suburban and urban scenarios respectively. Tables 5.1, 3.1 and 3.2 show the simulation,

channel, LLOS, CLOS and IPDL parameters. The dual slope path loss model, (3.11), is used.

For the rural scenario a 7 BS array is used while for the other scenarios a 16 BS array is used

(see Figure 4.7).

Timing difference measurements are taken at the MS during eight consecutive idle periods

(
� � � � 9 ) over 1 second (

� ��
��� � 9 Hz) from the PSCH (with processing gain 24dB) and are

used to calculate a location estimate. In this time the MS will experience little or no spatial

diversity of LOS/NLOS or shadowing conditions, but will benefit from Rayleigh (fast) fading

diversity. For each BS the earliest TOA is used in the location calculation, but only those BS’s

that are detected in at least half the idle measurements are used.

Initially a suitable false alarm probability, . ; � , needs to be found to give optimum performance.

Setting . ; � too high results in too many false peaks being used in the location estimator. If

. ; � is too low then the hearability of BS’s will drop so that insufficient timing measurements
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Parameter Value

Carrier frequency 1.92GHz
Chip rate 3.86Mchips/s
Over sampling rate � 2 4
Modulation scheme QPSK
Slot frequency 1600Hz
Time resolution 1/64 chip
Max. frame desynchronisation, � ' ��� � 0 chips
Pulse shaping roll off rate (

�

) 0.22��� "
2m

IPDL scheme vTA–IPDL
Idle period frequency 8Hz
Idle period length 2560 chips
Pilot length 256 chips
Pilot transmit power (% of total) 100%
Pilot SNR 0dB
Path loss model Dual slope (3.11)� ' , � ' 3.0, 2.6� + , � + 6.0, 5.8�
	��1 

0.8
� ��5 /10 " 5

Table 5.1: System parameters

are available to calculate a location. Figure 5.6 shows the effect of varying . ; � in the rural (one

LLOS path) scenario. The value of the location error CDF at 50m is plotted against . ; � . The

peak performance occurs at . ; � �SR�� �	 �"6 �
�

 . In all subsequent simulations this value is used.

With T ��
��� � R	
�� chips and noting the noise is bandlimited, the optimum . ; � corresponds

to one false peak every 15 idle periods regardless of � 2 , though due to incorrect noise power

estimation these errors tend to be bursty in nature.

Figure 5.7(a) shows the cumulative probability function for circular location error in the rural

scenario with varying pilot powers. The transmit power is varied such that the received pilot

SNR from the serving BS at the serving BS cell boundary varies from -12dB to 12dB. Figure

5.7(b) shows the corresponding hearability results. It can be seen that for high hearability

location accuracy well within the FCC regulations is obtained. At the 67th percentile accuracy

of within 30m is observed. There is a residual 10% of MS’s which are unable to be located

to within 250m due to using the wrong solution in the 2 TD case (which has two solutions) or

having hearability less than 3 BS’s. As hearability drops, the percentage of wayward location

estimates increases, which can be directly related to the fraction of MS’s with below 3 BS
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Figure 5.6: Location error CDF at 50m against . ; � in the rural scenario

hearability. Since the cell radius is large the back up strategies for calculating the location with

hearability less than 3 BS’s still give large errors, which is the reason for the characteristic

flattening of the CDF’s.
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Figure 5.7: (a) CDF of circular location error and (b) hearability histograms with vary-
ing received pilot SNR in the rural scenario

Figure 5.8(a) shows the effect of different CLOS scenarios on the location performance. Not-

ably the difference between the unobstructed scenario and the partially obstructed scenario is

slight, the partially obstructed scenario having slightly worse location accuracy. The implica-

tion of this is that there would be no real need to perform calibration to take into account the
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NCLOS propagation delays for this scenario. The obstructed scenario performs much worse.

Of most interest is the fact that its CDF only begins to rise at 50m. Thus, even assuming the

pilot power could be boosted to overcome the hearability problem, location accuracy would not

be good enough to meet FCC regulations. This implies some sort of calibration of NCLOS

delays would be required. Figure 5.8(b) show the effect on hearability for the CLOS scenarios.

Clearly in the obstructed scenario a much greater pilot power would be required. In all future

simulations only the partially obstructed CLOS scenario is used.
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Figure 5.8: (a) CDF of circular location error and (b) hearability histograms with vary-
ing CLOS model in the rural scenario

Figure 5.9 shows the effect of varying the oversampling rate � 2 . Somewhat surprisingly the

sampling rate had little effect on the accuracy of location estimates over the range tested. � 2 �
6 corresponds to a distance resolution of 77.3m, whereas � 2 � 6 � corresponds to a distance

resolution of �� �� .

Figure 5.10 shows the effect of varying the synchronisation offsets, � ' ��� � (measured in � � . The

synchronisation offsets for each BS are uniformly distributed within the ranges specified. In the

calculation of location it is assumed that the offsets are known to the nearest sample. Since the

IPDL scheme used requires time alignment of the idle periods the degree of desynchronisation

has a slight impact on performance. This can be attributed to the increased tendency for pilot

pulses from different BS’s to overlap and thus mask each other or be falsely recognised. In

TA–IPDL and PR–IPDL the performance would not deteriorate since pilot codes are already

overlapping and each BS uses its own code and would not be falsely recognised.

Figure 5.11(a) shows the results of varying the pilot SNR for the suburban scenario. Figure

115



Performance of a TDOA Location Estimator

0 50 100 150 200 250
Circular error (m)

0

0.2

0.4

0.6

0.8

1

cd
f

1x oversampling
2x
4x
8x
16x

SNR=12dB

SNR=−6dB

Figure 5.9: CDF of circular location error with varying � 2 in the rural scenario
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Figure 5.10: CDF of circular location error with varying synchronisation offset range in
the rural scenario

5.11(b) shows the corresponding hearability results. At low SNR the location accuracy per-

formance is poor since the hearability is generally below 3 BS’s. As the SNR increases the

performance increases but reaches an SNR level above which accuracy fails to increase. This

is because of NLLOS errors entering the location estimator. Even one NLLOS measurement

can cause large errors in the location estimate, especially since the delay spread of the suburban

model is large.

Figure 5.12(a) shows the effect of varying . /�/10 " in the suburban scenario. Figure 5.12(b)

shows the corresponding hearability results. With . /�/ 0 " � 6
�&� the location accuracy ap-
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Figure 5.11: (a) CDF of circular location error and (b) hearability histograms with vary-
ing pilot SNR in the suburban scenario

proaches that of the rural scenario and exceeds the FCC requirements at 67%. Performance can

not be as good as the rural scenario since the multipaths cause added interference and could

still be detected if the LLOS path was in a fast fade. As . /�/10 " decreases location accuracy

deteriorates rapidly. Hearability drops slightly with decreasing . /�/10 " .
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Figure 5.12: (a) CDF of circular location error and (b) hearability histograms with vary-
ing .�/�/10 " in the suburban scenario

Figure 5.13(a) shows the results of varying the pilot SNR for the urban scenario. Figure 5.13(b)

shows the corresponding hearability results. In this case the location accuracy at low SNR is

117



Performance of a TDOA Location Estimator

not as poor as the other scenarios. This is because the cell radius, � � � 	��� m, is an order of

magnitude smaller thus the strategies for locating the MS with only one or two BS’s become

more accurate. In general hearability is higher at the same SNR levels compared to the rural

and suburban scenario. Again this gain can be attributed to the lower � � value. As the SNR is

increased the location accuracy improves, again reaching a limit, which notably fails the FCC

regulations. This limit is again a function of . /�/10 " though in the urban model the delay spread

is not so large, thus utilising NLLOS measurements is not as detrimental as in the suburban

scenario.
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Figure 5.13: (a) CDF of circular location error and (b) hearability histograms with vary-
ing pilot SNR in the urban scenario
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Figure 5.14: (a) CDF of circular location error and (b) hearability histograms with vary-
ing . /�/10 " in the urban scenario
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Figure 5.14(a) shows the effect of varying . /�/ 0 " in the urban scenario. Figure 5.14(b) shows

the corresponding hearability results. The effect of varying . /�/10 " does not produce a linear

relationship as might be expected. . /�/10 " � 6
��� naturally performs the best though not as

well as the suburban or rural scenarios since the multipath component of the channel has a

large power, thus is more likely to overpower the LLOS component than in the other scenarios

during a fast fade on the LLOS component. At . /�/10 " � ����� the performance is better than

. /�/10 " � ���$R or . /�/10 " � ��� � . This can be explained by the fact that since all BS’s have

identical NLLOS delay statistics the delays tend to cancel each other out. In a scenario with

both NLLOS and LLOS BS’s this does not occur so the full NLLOS delay errors propagate

into the estimator. Variation in . /�/10 " has little or no effect on hearability since the multipath

power is the majority of the channel power.

To conclude the results show that two factors, hearability and . /�/10 " will affect the location

accuracy considerably. Notably in the suburban scenario if . /�/10 " � 6 , regardless of the

hearability level, the FCC guidelines cannot be reached. In the urban scenario the same applies

for all values of . /�/10 " . For this reason methods to improve location accuracy in NLLOS

conditions are required. One such method is to exploit spatial diversity of measurements as is

investigated in the remainder of this chapter.

5.2 Filtering of TOA Measurements to Exploit Spatial Diversity

The distribution of NLOS errors in TOA measurements was described in Section 2.7. Figure

3.10 shows the distributiondeveloped from the LLOS model, which is similar to the exponential

model. Measurement noise is also present on the TOA as shown in Figures 5.4 and 5.5. The

overall distribution of TOA’s in NLOS conditions is therefore the convolution of these two noise

processes, see Figure 5.15.

Measurement NLOS
ErrorError

Combined
Error

* =
mean

Range
TOA/

LOS
Early Late

T+T T-c c c-

Figure 5.15: PDF of TOA/Range in NLOS with measurement noise

119



Performance of a TDOA Location Estimator

The value
� 4

represents the chip period/distance. The measurement noise does not fall outside

of this distance except due to false alarms. The key point to notice from the TOA distribution

is that the mean is not equivalent to the true LOS TOA, which complicates the filtering pro-

cess. The earliest arriving TOA’s are closest to the true LOS TOA. Furthermore the spread of

the distribution is large enough that corrupted data can cause large location errors. This has

been demonstrated through simulation in Section 5.1.6. A final problem is the large spatial

correlation between NLOS errors.

Ideally the filter would discard all NLOS data. However the environment may be such that no

good data is available for considerable periods of time, so the function of the prefilter stage

should be to make the best use of the available data by generating variance estimates for each

measurement stream. In tracking the measured parameters, the manoeuvring capability of the

MS may be taken into account. The aim here is a real time estimate, thus any significant delay

would render a final location estimate out of date.

Kalman filters are often used in such real time tracking applications. In the next subsections

this and other ways to prefilter the TOA data are presented and their performance on simulated

data compared.

5.2.1 Input Estimation Kalman Filter Implementation

The KF (see Section 2.10) is optimal for tracking a parameter in time with unbiased Gaussian

distributed noise. However the TOA distribution in NLOS is not Gaussian distributed and the

true LOS TOA is not equal to the mean of the distribution. Furthermore as the MS moves

from LOS to NLOS conditions the variance of measurements will change significantly. If the

measurement variance is set to be the estimated LOS variance, � + /10 " , then the KF will add

too much significance to NLOS data and perform poorly. If the measurement variance is set

to be the estimated NLOS variance, � + � /10 " , the KF will converge slowly during transition

to LOS regions. For this reason an input estimation stage is added to the KF to estimate the

measurement variance real time. This is termed an input estimation KF (ieKF). The justification

for this input estimation stage is described below.

If the true TOA value is known the PDF of the TOA’s new value after a time interval can be

predicted. For example if the MS has manoeuvred and its velocity is considered uniform in
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speed (to a maximum speed) and direction, a PDF of the new TOA,
�� ��� �

can be derived as

�  ��� � ��� ��
� � � =  �  � ��� D� '�  �� ��� ��
 � � � �
�
� �����  � ��� �  � ����� ' �
	 �	 �� ����� ��   ��  � ���

(5.9)

where
�������

is the maximum change in TOA in the time interval.

Figure 5.16 shows this equation. (5.9) is of similar shape to the Gaussian PDF with equal

variance; the major difference being that the Gaussian PDF is over an infinite range whereas

(5.9) is limited to R���	 � .
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Figure 5.16: TOA uncertainty after a time interval.

This PDF leads to a simple input estimator which discards data that is definitely NLOS and

cannot be due to a manoeuvre. A weighting is applied to the measurement noise variance

estimate, � +� , (contained in
� 0 ) as follows

��
+� � � �

�
�
�
+ /10 " �

� ' � '� ��� � � (5.10)

where � ' � ' is the TOA variance predicted by the KF (first term in
�� 0 � 0 � ' ), and

� � � �
is a

weighting function, a function of the residual
�

between the measured TOA and the KF predic-
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tion. In the following the weighting function is defined as a Gaussian curve normalised to one

at its maximum,

� ��� � � � ���
�� � ��� �

though in practice any function could be used.

In TOA filtering, the NLOS error PDF is not symmetric about the true LOS TOA. A KF will

track to the mean and not the true LOS TOA. Therefore if a TOA is measured that is more than
� 4

earlier than the predicted TOA the filter outputs are forced to take the measured value on the

assumption that a manoeuvre has occurred. This is done by setting
�� +� � � + /10 " . Furthermore

if this difference is larger than a threshold, �
� Z�Z

, the filter prediction must be so badly wrong

that estimates of
!� 0 � 0 and its variance will also be inaccurate so should be reinitialised. In this

way the filter attempts to track to the LOS edge of the data.

It should be noted that due to this favouring of early TOA, the filter is extremely sensitive to

noise generated by false alarms in the TOA measurement device. TOA values falling below

�
� Z�Z

were only used if the previous measured TOA also occurred within one chip of it.

The MS manoeuvring capability can be controlled by the velocity driving noise power para-

meter, � +� . This value must be carefully chosen, since if � +� is too small the KF will loose track

with the MS path, and if � +� is too large the KF will follow the measured data and offer no

filtering benefit at all.

The output variance estimate,
�� 0 � 0 , can reflect three modes of operation. If the MS is LOS,�� 0 � 0 will reflect the LOS measurement variance. In the absence of new measurements or if

new measurements must be NLOS according to the filter prediction,
�� 0 � 0 reflects uncertainty

caused by manoeuvring capability of the MS. Finally if the MS is NLOS and the NLOS meas-

urements could be true according to the filter predictions,
�� 0 � 0 will reflect the NLOS measure-

ment variance (assuming little spatial correlation in measurements). Since the ieKF is biased to

the early end of the NLOS PDF and the PDF is exponential–like the variance estimated in this

fashion will be similar to � + � /10 " . The distribution of the uncertainty in the former two cases

is approximately Gaussian, the latter case is a mixture of exponential–like and Gaussian since

there is also so manoeuvring uncertainty present.

The variance estimation process is not perfect all the time, since sometimes NLOS measure-
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ments fit the filter prediction, but the method is robust in most cases.

5.2.2 Adjusted LS Filter Implementation

Wylie et al [74] describe an adjusted least squares (aLS) implementation to remove NLOS

errors from corrupted data. This is described in more detail in Section 2.7. The technique does

not use information about the MS manoeuvring capability.

This filter length, T / " , in seconds and filter order
� / " are parameters in this technique, the

effect of which is to be investigated. The implementation in [74] assumes post processing of

data, i.e. a delay is acceptable. For this implementation the performance is examined with delay

of half T / " and no delay, the latter being more appropriate to the real time approach studied in

this thesis.

The correction factor,
� / " , applied to the aLS fit will tend towards

� 4
as the length of the filter

in measurement samples increases. Figure 5.17 shows an example of the LS fit with T / " � ���
seconds and

� / " �SR .
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Figure 5.17: Example of aLS fit.

The measurement variance estimate from the aLS technique can be obtained from the fit resid-

ual.
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5.2.3 First TOA (fTOA) Filter Implementation

In this filter the first TOA is selected from the last T � � 0 � seconds worth of data. The assumption

is that the MS is stationary or near stationary. Similarly to the LS filter a correction factor
� � � 0 �

is required since the first TOA will tend towards
� 4

as the length of the filter in measurement

samples increases.

It is also important to note that since early TOA’s are selected the technique is susceptible to

errors caused by false alarm detection. To overcome this only data within 10 chips of the mean

TOA value are accepted as good data.

An approximation of the measurement variance can be calculated by

��
+ �SH I � + P � �� +

(5.11)

where expectations are calculated over the filter length T � � 0 � and
�� +

has replaced H I � P + in the

standard definition of variance.

5.2.4 Performance Comparison of Prefiltering Techniques

The performance of the KF, ieKF, aLS and fTOA algorithms are compared for simulated TOA

data in an urban environment at 50kmph and at 5kmph with measurement frequency
� ��
� � �

9 Hz over 90 seconds. In Section 5.3.6 the MS course is described in more detail. Tables

5.1, 3.2 show the parameter settings. 10 statistically identical datasets are tested for several

different average received pilot SNR levels. Note the pilot SNR changes throughout the track

since the MS–BS separation distance varies. The performance of each technique is assessed in

terms of RMS range error of the filtered TOA to the true TOA (timing errors are converted to

range errors) for the middle 30 seconds of the track. The fractional hearability of the BS (i.e.

the fraction of measurements periods which yield a TOA measurement) varies as the SNR is

changed and is the x–axis of the results graphs.
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For the KF and ieKF implementations
	

,
�

and an initial value of
�
�
�
� are

	 �
� "����
) "

� � � � � "#) � �

�
�
�
� �

� "�)�) )�) )
) " � )�)

�
where the variances (measured in terms of the sampling rate) in

�
�
�
� are initially set high so

the measurement data is initially favoured. � +� is set to 6
��	 + � ms
� + � +

, or equivalently � �����	 � m
samp

� +
� , � + where the sample period

� � �
��� 6 R	 � . This relatively large acceleration capability is

required since several instantaneous manoeuvres of the MS occur. �
�[Z�Z � � standard deviations

are used. The KF is implemented with both � +� � � + /10 " and with � +� � � + � /10 " . These KF’s

are termed LOS–KF and NLOS–KF respectively. The noise power values are estimated to be

� + /10 " � 6 � 6 R chip
+

and � + � /10 " � � �$R	 chip
+
.

For the aLS filter T / " � 6�� � �� seconds and
� / " � 6 � R are tested.

� / " � � � � 	 chips was

found to give the best performance.

Similarly for the fTOA filter T � � 0 � �76 � � �� seconds and
� � � 0 � �
� � � 	 chips are used.

For all simulations it is assumed that the arbitrary time reference for TOA’s stays constant, thus

ignoring MS clock instability. However if the MS clock instability changes slowly with respect

to the idle period frequency the KF or LS filter could effectively track the instability. In the case

of the fTOA filter this is more problematic. Once the TDOA’s are formed the clock stability is

not an issue, however as is discussed in the next subsection it is advantageous to filter the two

TOA streams separately first.

Figures 5.18(a), (b) show example tracks for the 50kmph and 5kmph scenarios respectively. At

50kmph the measurements display far less temporal correlation than at 5kmph. It is clear from

these examples that the non–delayed aLS and fTOA filters perform worse than the same filter

with delay. The LOS-KF and NLOS–KF track to the mean of the data which is not very useful,

while the ieKF tracks the lower edge of the data, most successfully at higher speeds when the

acceleration constraint allows it to discard NLOS data.

Figures 5.19(a), (b) show the RMS error between the true range and the filtered range for the

50kmph scenario. The raw data RMS error does not stay constant over the range of hearability
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Figure 5.18: Example prefilter tracks for (a) urban 50kmph, (b) urban 5kmph scenarios

since at lower hearability false alarms add considerably to the range error. The aLS filter works

best with
� / " � 6 and T / " � ��� seconds. The RMS range error can be reduced from 180m

to 40m. The lower order fit works better since the MS trajectory is fairly linear, and even when

this maps to the range parameter it remains fairly linear. Increasing the order simply allows a

better fit to the errors thus increasing the range error at the edge of the fit. The aLS filter with

no delay performs significantly worse than that with a delay. Somewhat surprisingly the fTOA

filter with T � � 0 � �:6 � seconds performs well at high fractional hearability with or without

delay. The ieKF performed well over the hearability range though not as well as the fTOA. The

ieKF was generally better than the aLS without delay.
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Figure 5.19: RMS range errors with (a) aLS, (b) fTOA, ieKF, LOS–KF, NLOS–KF filters
in the urban 50kmph scenario

Figures 5.20(a), (b) show the results for the 5kmph scenario. This time the fTOA performs the

best across a wide range of fractional hearability. The fTOA without delay performs a little

worse than the fTOA with delay. The RMS range error can be reduced from 180m to 60m.

To conclude, for the fast moving scenario the aLS fit with delay gives the best error perform-

ance. However the ieKF is marginally better than the aLS fit without delay. It should also be

noted that the ieKF performance is pessimistic since the velocity driving noise was set delib-

erately high so the ieKF would not lose track at the instantaneous manoeuvre points. At lower
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Figure 5.20: RMS range errors with (a) aLS, (b) fTOA, ieKF, LOS–KF, NLOS–KF filters
in the urban 5kmph scenario

speeds the fTOA filter with T � � 0 � � �� seconds performs the best. Generally speaking the

RMS range error of real time range estimates can be reduced by about 67%. In the following

work the real time location accuracy improvement possible by utilising the ieKF and fTOA

filter is assessed.
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5.3 Location Estimator Architecture Utilising Spatial Diversity

In Section 5.1 the location estimate was based on measurements over a very short period of

time. In this case there was no spatial diversity experienced (since the MS was approxim-

ately stationary) and it is impossible to estimate whether measured data is good data or heavily

corrupted by NLOS errors. In Figure 1.1 a generalised architecture was introduced and in

Section 5.2 suitable preprocessors to exploit spatial diversity in TOA measurements have been

examined.

Figure 5.21 shows the proposed location estimator architecture. The measured TOA data

streams,
�

' ��� � , for each of
�

BS’s, including corrupting noise, are each fed into a KF which

estimates the true uncorrupted TOA,
��
' ��� � , and provides the estimated variance of

��
' ��� � ,

�� + ' ��� � .

Note that
��
' ��� � are relative to an arbitrary time (possibly the start of the idle period) and do not

reflect the true MS–BS separation.
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Figure 5.21: TDOA location estimator receiver architecture with spatial filtering, R3

The set of
�

TOA estimates is reduced to
�

by considering the variance estimates. The

reduced data set is then converted to TDOA’s (incorporating any measured synchronisation

offsets between BS’s) and fed into the location estimator. The location estimator determines

the covariance matrix,
��

, for the location estimate,
�$
, which is the estimated accuracy of

�$
with the given input variances

�� + ' ��� 3 . The outputs
�$

and
��

are fed into one last KF to give

the final time continuous location estimate,
�$

, and estimated RMS error,
	� � � "

. � ' and � +
are multiplicative terms applied to the variance estimates. Feedback of the smoothed velocity

estimator is required to optimally set some of the parameters.

The KF implementation is good at picking up the dynamics of a moving MS. However if the
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MS is moving slowly in an NLLOS environment the KF implementation fails to pick up the MS

motion. In this case the preferred approach is to use long term smoothing which is achieved

by the fTOA prefiltering algorithm and a weighted average (WA) location smoothing algorithm

instead of the KF stages. In the following subsections the implementation is discussed in more

detail.

In the following the ieKF–KF implementation of receiver R3 is called receiver R3A and the

fTOA–WA filter implementation is called receiver R3B.

5.3.1 Preprocessor Stage

The ieKF (tracking to first derivative) with early biasing is used except for the low speed

NLLOS scenario in which case the fTOA filter is used. The output variance estimates are,

for the case of the KF implementation, taken from
� 0 � 0 . Studying the deviation of estimates

��
' ��� � from the true LOS

�

' ��� � revealed that the estimated
�� + ' ��� � is lower than the true variance.

Thus a multiplicative term, � ' is applied. Since it is a multiplicative term it does not affect the

location estimator so could be combined with � + (discussed later).

5.3.2 Dataset Reduction

Ideally only LOS data would be used in the estimator. Thus a LOS state estimator was initially

proposed. Borras et al [75] present several LOS state estimators based on timing measure-

ment. However, where no a priori knowledge of the LOS and NLOS processes is available, the

optimum detector is simply a LOS variance decision threshold. According to the LOS/NLOS

model the CLOS/NCLOS state will be undetectable to the LOS state estimator since the CLOS/

NCLOS state is a slowly varying effect. Thus the LOS estimation techniques in [75] could only

be expected to detect the LLOS/NLLOS state. From the PDF’s in Figures 5.4(c), 5.5(c) the

LLOS variance could be calculated and a suitable threshold determined. This threshold could

be applied to the preprocessor TOA variance estimates
�� + ' ��� � and NLLOS measurements could

then be discarded.

The problem with such a method is simply that sufficient LLOS measurements may not be

available. By test simulations the most reliable method was to pass all measurements whose

variances fell within 100 times the lowest variance estimate since the variances can be accoun-

ted for in the location estimator as weightings. When less than 3 such measurements exist the
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measurements with the lowest three variances are passed on. This upper threshold on vari-

ances is required since all the variances are estimates which tend to become less accurate with

increasing variance.

5.3.3 Location and Location Variance Estimator

A variance estimate for the input TDOA streams now exists (from the preprocessing stage). The

variance estimates for each TD are composed of the measurement and NLOS noise processes

for both BS’s as well as the manoeuvring uncertainty noise. These may not be Gaussian in

distribution, but since the true distribution are not known it is reasonable to make the Gaussian

assumption without much loss in performance. This also makes the ML estimator solvable by

algebraic methods whereas a ML estimator fitted to a non–Gaussian distribution perhaps may

only be solved numerically. Chan’s estimator [29] can now be used with a weighting matrix

  . 


�
' can be created as



�
' �

��� �� � � � �� �� � ���	��� �� ���� � �	� � �	� ��!
� � �� �� � � �	� �	� "���� �$"�!
) *�, - /1 243'5 / (5.12)

Note that
��  � 


�
' .

The estimated accuracy of the location estimate
�$

is determined by evaluating its covariance

matrix,
��

, which for Chan’s estimator is given by (2.37)

In the case where the solution is precisely determined, i.e. two TD’s, the Cramér Rao lower

bound (CRLB) is used as an estimate of
��

. The CRLB,
	 � , for the TDOA estimator can be

derived as

	
�
� � � � �� �

' � � � ' (5.13)

where

� �
���
�
= � � �1� D- � � = ��� �1� D- � = � � �1� D- � � = ��� � � D���

� � � �= � � �1� D- � � = � � � � D- � = � � �1� D- � � = � � �1� D�
�

����
�

The derivation is shown in Appendix A.
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Simulation shows that trace K �� N is often smaller than the true mean squared error. The variance

calculation assumes no bias in the measured TD’s. Clearly the prefilters can never correct

perfectly the NLOS bias, thus a multiplicative factor, � + , is applied to
��

before the final KF

tracking stage to give a more realistic error measure.

The variance estimate for a location generated by one TD is set to
� � � � � � + . Where no TD’s

are used and the serving BS location is used for the location estimate the variance estimate is

set to
� � � � R � + . These estimates are deliberately high so locations generated by 2 or more TD’s

are favoured.

5.3.4 Location Kalman Filter

An orthodox 2D 2nd order KF is used to track the location estimates. Successful use of such a

filter specifically for the purpose of locating mobile phones has been reported in [36].

The observation inputs,  and
��

, are equated to
�$

and
��

(the outputs of the location and

variance estimator) respectively. The output
�$

is the final location and velocity estimate which

could then be stored in an MS location database. The final RMS error confidence,
	� � � "

, is

given by the square root of the sum of the first two diagonal terms of
��

(though in practice this

might also be stored as separate x and y direction confidences).

5.3.5 Weighted Average (WA) Location Filter

At low speeds it is impossible to capture the true dynamics of the MS movement. In this case a

WA over the last T � � seconds worth of location data is proposed. The WA operation performed

can be describe in matrix form

�$ ��� � �
���������

� ��� � '�

 � �

�$ ��� � � � � �� ��� � � �
�
'
���������

� ��� � '�

 � �

�� ��� � � �
�
' (5.14)

where
�

represents the current idle period index.

5.3.6 Location Estimation Accuracy Performance

In this section the location accuracy of the receivers utilising spatial diversity, R3A and R3B,

are presented. A UMTS system incorporating vTA-IPDL with W ��
��� � 9 Hz is simulated (see
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Section 4.2.3). Table 5.1 shows the system parameters. The LOS/NLOS model of Section 3.3

is implemented. All simulations use the partial CLOS model (see Table 3.1) and the dual slope

path loss model of (3.11).

Four scenarios were simulated: fast car in rural terrain (150kmph, curve, 90 seconds), car

travelling in suburban terrain (50kmph, zig–zag, 90 seconds), car travelling in urban terrain

(50kmph, zig–zag, 90 seconds), and pedestrian walking in urban terrain (5kmph, zig–zag, 90

seconds). Table 3.2 shows the scenario dependent parameters. All the scenarios assume a

constant speed, however in each scenario instantaneous direction changes occur. These were

provided to prevent the KF from correctly predicting the true path in the case when the MS is

initially detected but then lost entirely, which would lead to an underestimate of location errors.

However the instantaneous manoeuvres cause all results to be pessimistic since the KF cannot

adapt to the manoeuvre with the velocity driving noise limited to a realistic value. The tracks

are shown in Figure 5.22. A hexagonal array of 16 BS’s for urban and suburban and 7 BS’s

for rural scenarios is simulated (see Figure 4.7). Ten statistically identical runs at each scenario

and each transmit power were made. To allow time for convergence of the filtered track to the

true track the location accuracy results are calculated from the last 45 seconds of the filtered

track.

The ieKF’s bank have identical parameter settings as described in Section 5.2.4. A no delay

fTOA filter bank is used with parameters T � � 0 � � �� seconds and
��� � 0 � �
��� � 	 chips.

For the 2D location KF

	 �

�����
�
"#) ��� )
) " ) ���

)�) " )
)�) ) "

������
� � � �

� "#)�) )
) "#) )

� �

�
�
�
� �

���� �

� "�� ���
�

For the WA location filter T � � �S�� seconds.

Optimum values for � ' and � + were determined by simulation to match the variance estimates

to the true RMS errors observed at the filter and location estimator output. Table 5.2 shows the

parameter values used. In the rural scenario choice of � + is not critical.
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Figure 5.22: MS paths in simulation for (a) rural, (b) suburban, (c) urban car, (d) urban
pedestrian scenarios

Scenario � ' � +
Rural 1 1–16
Suburban 1 16
Urban car 4 25
Urban ped 4 40

Table 5.2: Values for variance correction factors

Figures 5.23(a), (b), (c), (d) show example tracks for the rural, suburban, urban car and urban

pedestrian scenarios respectively for receiver R3A. Although the time scale is not discernible

the figures demonstrate the improvement possible utilising the ieKF for prefiltering. In the

Figures 5.23(a), (b), (c) the effect of the instantaneous manoeuvres can be seen on the final KF

output. The KF output tends to overshoot the corners and for this reason the location accuracy

results may be pessimistic. Note also the initial acquisition of the path can take several seconds.

In the urban pedestrian track (Figure 5.23(d)) the track filtering process is not able to pick
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out the true MS path. Furthermore since the KF allows rather large acceleration capabilities

to accommodate the acceleration of a car the KF output oscillates as the individual location

estimates jump around due to NLOS errors. In Figure 5.24 the response of the fTOA prefilter

and WA location filter is shown. Again the track fails to pick out the true motion of the MS but

does give a more reasonable estimate of it compared to the KF implementation.
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Figure 5.23: Example tracks using receiver R3A in the (a) rural, (b) suburban, (c)
urban car, (d) urban pedestrian scenarios

The transmit power of the BS’s is varied such that the mean received LOS SNR from the

serving BS by an MS at the serving cell boundary (corner of hexagonal cell) varies in steps of

3dB from -18dB to 12dB. In this way hearability is varied. The hearability value is used in

the results graphs as it is approximately independent of IPDL technique, thus the results are

valid for all IPDL methods discussed. Figures 5.25(a), (b), (c), (d) show H (��X � and H ��
X � against

mean hearability in the rural, suburban, urban car and urban pedestrian scenarios respectively

utilising receiver R3A. The location accuracy of the final output of receiver R3A,
�$

, and the
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Figure 5.24: Example track using receiver R3B in the urban pedestrian scenarios

location estimator output,
�$
, are shown. For comparison the performance if no spatial filtering

were carried out on the data, i.e. receiver R2, is shown. This location estimate is based on the

measurements taken in a one second interval (which in the urban car scenario does give some

spatial diversity). (These results are not the same as in Section 5.1.6 since the MS path does not

cover the whole area of the cell.) Each point on the graphs represents a 3dB increase in pilot

SNR.

In the rural scenario the location accuracy improves significantly with spatial filtering from

H (��X � � ��� m to H (��X � � 6 � m and H ��
X � � 	� m to H ��
X � � R� m. Additionally utilising the

spatial filtering allows good performance at low instantaneous hearability (
�

3 BS’s) since data

can be extrapolated from previous measurements. Increasing the hearability beyond 4 BS’s

per second did not improve the location accuracy since all BS’s are LLOS. In the suburban

scenario the improvement is more dramatic since the spatial diversity is used to discriminate

NLLOS BS’s. Location accuracy of H (��X � � R� m and H ��
X � � 	� m is achieved. Increasing the

hearability beyond 3 BS’s per second did not improve the location accuracy greatly. In both

these scenarios the performance of
�$

is worse than
�$
. This is simply a manifestation of the

instantaneous manoeuvres and in a more realistic track
�$

would have better accuracy than
�$
. In

the urban car scenario location accuracy of H (��X � � ��	 m and H ��
X � �S9� m is achieved, compared

to H (��X � � ��� m and H ��
X � � 6 R� m without filtering. This improvement is not great but critically

brings performance below the FCC regulations. Again the accuracy of
�$

is pessimistic due to

the instantaneous manoeuvres. Location accuracy increases slowly with increasing hearability.

The performance in the urban pedestrian scenario is not as good as the urban car scenario since

less spatial diversity is available. The location accuracy is still below FCC requirements.
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Figure 5.25: Location error against hearability using receiver R3A in the (a) rural, (b)
suburban, (c) urban car, (d) urban pedestrian scenarios
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Figure 5.26: Location error against hearability using receiver R3B in the urban pedes-
trian scenario
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In Figure 5.26 the location accuracy is shown for the urban pedestrian scenario using receiver

R3B. At high hearability this receiver outperforms R3A. The best achieved location accuracy

is H (��X � � ��	 m and H ��
X � � 	�� m. This accuracy appears slightly better than can be achieved

in the urban car scenario with receiver R3A, however it should be noted that the instantaneous

manoeuvres will not worsen these results as they do in the urban car scenario.

Figures 5.27 (a), (b), (c) show the effect of varying . /�/10 " in the suburban, urban car and

urban pedestrian scenarios respectively for mid–level hearability (3–4BS’s) with receiver R3A.

In the suburban scenario performance stays constant down to . /�/ 0 " � ��� � since NLLOS

BS’s are rejected successfully. In the urban car scenario H (��X � improves by about 25% between

. /�/10 " � ���$R and . /�/10 " � 6
��� . In the urban pedestrian scenario the accuracy increase is

about 50% over the same . /�/10 " change.

Figure 5.28 shows the effect of varying . /�/10 " with receiver R3B. At . /�/10 " � 6
��� the per-

formance is no longer better than receiver R3A in the same scenario.

The performance of the spatial filtering depends on the spatial correlation of the LLOS, CLOS

and multipath surroundings. The parameters T /�/10 " , T 5 /10 " and T 2 and T 
 X ? Z�Z define the

degree of spatial correlation. A geometry multiplier, � � , is applied to the base values of these

parameters (shown in Tables 5.1, 3.1, 3.2) to examine the effect on the performance of the

receivers. In the case of receiver R3B this is identical to slowing down the MS by a factor � � ,
but not for receiver R3A due to the velocity driving noise term. Figures 5.29(a), (b), (c) show

the location accuracy against ��� for the rural, suburban and urban car scenarios respectively

with receiver R3A at a medium hearability level (3-4 BS’s).

The location accuracy in suburban and urban car scenarios deteriorates with increasing � � .
The effect is greatest in the suburban scenario since there are few multipaths. The NLLOS

states last for longer and any multipath detected will last for longer, thus resembling an LLOS

state. Therefore the NLLOS rejection (via the variance estimation) breaks down. In the urban

scenario there are more multipaths present so, even though the geometry factor increases, mul-

tipaths still appear and disappear with regularity giving some spatial diversity. In the rural

scenario location accuracy is fairly constant. T$5 /10 " and T 
 X ? Z�Z have little effect on location

accuracy. Figure 5.30 shows the results for the urban pedestrian scenario with receiver R3B at a

high hearability level (6 BS’s). The performance tails off quicker in this scenario since the MS

experiences no spatial diversity during T � � 0 � seconds. The problem is experienced identically
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Figure 5.27: Location error against . /�/10 " using receiver R3A in the (a) suburban, (b)
urban car, (c) urban pedestrian scenarios
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Figure 5.28: Location error against . /�/10 " using receiver R3B in the urban pedestrian
scenario
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Figure 5.29: Location error against � � using receiver R3A in the (a) rural, (b) sub-
urban, (c) urban car scenarios

in slow moving MS’s. In Section 5.3.8 a method to overcome this is described.
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Figure 5.30: Location error against � � using receiver R3B in the urban pedestrian
scenario
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Figure 5.31: Location error against W ��
��� using receiver R3A in the (a) rural, (b) sub-
urban, (c) urban car scenarios

Figures 5.31 (a), (b), (c) show the effect of varying W ��
��� in the rural, suburban, and urban car

scenarios respectively for a medium hearability level (3–4 BS’s) with receiver R3A. Generally

decreasing W ��
��� has a negative effect on the location accuracy, more so in the urban and sub-

urban scenarios where NLLOS situations can occur. The main effect of decreasing the idle

frequency is that track acquisition takes significantly longer. Furthermore, after the cornering

points (especially in the urban car scenario), re–acquisition of the track takes longer. This is the

reason why the accuracy of
�$

appears especially poor. Figure 5.32 shows the effect for receiver

R3B in the urban pedestrian scenario at high hearability (6 BS’s).

To summarise using receiver R3A in fast moving environments improves H (��X � and H ��
X � signific-

antly. Furthermore it allows the hearability level to drop below 3 BS’s by extrapolating old data.

In the pedestrian scenario receiver R3B gives significantly better location accuracy than receiver
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Figure 5.32: Location error against W ��
��� using receiver R3B in the urban pedestrian
scenario

R3A when the hearability level is high. However if .�/�/10 " is high receiver R3A gives better

accuracy than receiver R3B for all speeds. The LLOS geometry parameters have a significant

effect on the performance. However with ���
� � the location accuracy is still a significant

improvement over receiver R2. Reducing W ��
� � diminishes location accuracy though less so

with receiver R3B. Table 5.3 summarises the location accuracy gain of receiver R3A/R3B over

receiver R2 at a high hearability level.

R3A R3B R2 % improvement

Rural H (��X � 10 33 70
H ��
X � 20 � 250 � 92

Suburban H (��X � 20 200 90
H ��
X � 40 � 250 � 84

Urban Car H (��X � 45 65 30
H ��
X � 75 130 42

Urban Pedestrian H (��X � 45 65 30
H ��
X � 55 130 58

Table 5.3: Summary of location accuracy improvement of receiver R3A/B over receiver
R2

5.3.7 Velocity Feedback

Speed feedback is required to set � ' and � + and switch between receiver R3A and receiver R3B

in a real scenario. Figure 5.33 shows an example of the magnitude of the velocity component

of
�$

for all scenarios. The dashed lines show a 10 second smoothed average. Note that the

true speeds 90kmph, 50kmph and 5kmph correspond to R	 ms
�
' , 6�� � � ms

�
' and 6
� � � ms

�
'
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respectively. At faster speeds the speed estimate is more accurate especially with smoothing.

The urban pedestrian speed is over estimated. Both receivers could be implemented in parallel

and a speed threshold around
�
ms

�
' could be used to decide which receiver to take the current

location estimate from.
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Figure 5.33: Examples of speed estimates in all scenarios

5.3.8 Stationary MS Problem

Naturally if the MS is stationary little or no spatial diversity will be experienced. In this case

the location estimates of either receiver would converge in time to a location with the same

accuracy as receiver R2. This is undesirable since the performance of this receiver is below the

FCC regulations in urban and suburban scenarios.

Once receiver R3A has converged the smoothed speed estimate will drop very close to zero.

This can trigger a further speed threshold which can then hold a previous location estimate

as the current estimate (conveniently the last T � � location estimates are stored in receiver

R3B). Updated location estimates would not occur again till the speed threshold is once more

exceeded (possibly with hysteresis).

5.3.9 Further Modifications to KF Implementation

In Section 2.10.1 several KF implementations with manoeuvre tracking or detection were intro-

duced. These provide greater track stability in the case when manoeuvres are known to occur
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infrequently and with spatial correlation, i.e. typically in manned manoeuvring objects. In this

case the MS can be considered a manned manoeuvring object. The manoeuvre detectors utilise

the residual between measured and predicted parameters to detect the start of a manoeuvre.

Before the manoeuvre a constant velocity filter is employed. At the manoeuvre detection point

the velocity driving noise is increased, thus allowing the manoeuvre to take place. After several

seconds the velocity driving noise is reset to zero and the filter reverts to constant velocity.

Unfortunately NLLOS errors have precisely the same characteristics as a manoeuvre in that

they cause long term bias in the tracked parameter, thus triggering the manoeuvre detector. The

KF implementations were not found to be suitable for the sort of TOA noise or location estimate

noise present in the system.

Since the manoeuvre detection strategies do not work another method is proposed. The velocity

of the MS is known from the KF with a certain uncertainty. Since the manoeuvring capabil-

ities of the MS are approximately known as a function of speed, a velocity based manoeuvre

inhibition (VMI) technique is proposed.

Figure 5.34 shows a possible surface defining the acceleration capability of an MS. � is the

ratio of current speed to maximum speed, � ����� , and � +� and � +� represent the velocity driving

noise power � +� in the direction of motion and perpendicular to motion respectively (in the

figure these are normalised to � +� ). At low speeds a manoeuvre can take place in any direction

with equal maximum power. At speeds greater than � + sideways manoeuvres are inhibited. At

speeds greater than � ' forward acceleration is also reduced and a deceleration bias, � � , exists.

For the example surface � � , � � and � � are defined as

� � � � � �
� �
R

� � � 6 � � 'R � � ' �
� �

(5.15)

� +� � � � +
�
+
�
� 6 � 6

R
� � � 6 � � 'R � � ' �

� �
� +

(5.16)

� +� � � � +
�
+
�

���
� 6

� � 6 � � � ��0 �
� � �

����
+ � � � � � + �

���� �� � �
����
+ � � 6 � � + �

�� � �
����
�
+

(5.17)
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Figure 5.34: Acceleration capability of MS as a function of speed

where
�
' � 6 � ,

� + � � ,
� � � � control the slope of the surface with these values for the ex-

ample shown and � +� ��0 is the minimum sideways velocity driving noise expressed as a fraction

of � � .

To apply VMI to the KF the coordinate space must be rotated in the direction of the velocity

estimate for each measurement.
, 0 � � represents the rotation from the normal (x,y) coordinate

axes at sample
�

. The following extra steps at the start of the KF procedure described in Section

2.10 are required.

, 0 � 0 � ' � ���
�
�
'
� � � � '� * � ' � (5.18)

where
� / � - represents the

�
th row,

�
th column entry in

�� 0 � '
� 0 � ' .

, 0 � � �
, 0 � '

�
�
� , 0 � 0 � ' (5.19)

� 0 ,
�� 0 � '

� 0 � ' ,
� 0 ,

�� 0 � '
� 0 � ' must all be rotated. The transformation of the coordinate axes in

� 0 ,
�� 0 � '

� 0 � ' is achieved by

 0 ��� '  0 (5.20)

145



Performance of a TDOA Location Estimator

where

� ' �
�
� � ��� , 0 � � � �
	�� , 0 � ��
	�� , 0 � � � ��� , 0 � �

�
�

and

�� 0 � '
� 0 � ' ��� +

�� 0 � '
� 0 � ' (5.21)

where

� + �

������
�

� ��� , 0 � 0 � ' � �
	�� , 0 � 0 � ' � ��
	�� , 0 � 0 � ' � ��� , 0 � 0 � ' � �
� � � ��� , 0 � 0 � ' � �
	�� , 0 � 0 � '
� � �
	�� , 0 � 0 � ' � ��� , 0 � 0 � '

�������
�

If errors are assumed Gaussian in 2D, the transformation is a linear combination of two Gaus-

sian processes, thus the covariance matrices
� 0 ,

�� 0 � '
� 0 � ' can be rotated by applying

� 0�� � '
� 0 � � ' (5.22)

and

�� 0 � '
� 0 � ' � � +

�� 0 � '
� 0 � ' �

� + (5.23)

The noise covariance matrix is then updated to

� � �

������
�
� � � �
� � � �
� � � +� �
� � � � +�

�������
� (5.24)

before the normal KF equations are carried out. The predictor equation is adjusted, to take into
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account the bias term � � , to

�� 0 � 0 � ' �
� �� 0 � '

� 0 � '
�

������
�
�
�
� �
�

�������
� (5.25)

The final location calculation
�� 0 � 0 and variance estimate

�� 0 � 0 are now defined in a coordinate

axes rotated by
, 0 � � . These outputs should therefore be rotated back when required.

The VMI KF was tested on the rural scenario results and yielded a further 12% increase in H (��X �
location accuracy. In this scenario the speed estimate is fairly accurate. In other scenarios the

estimate will be less accurate. To avoid overestimating the speed � could be calculated based

on a -3 sigma estimate of speed.

5.4 Conclusions and Further Ideas

In this chapter the performance of a TDOA location receiver with and without filtering to ex-

ploit spatial diversity has been presented under several scenarios. It has been shown that without

filtering in NLOS conditions poor location accuracy results below the FCC regulations. The re-

ceivers with filtering showed location accuracy improvement of minimum 30% and 42% at the

67%ile and 95%ile respectively. These improvements are sufficient to reduce the location error

below FCC regulations in all cases for the channel model scenarios presented. The filtering

process also allows the hearability and hence transmit power to be reduced significantly since

previous data can be extrapolated. Spatial filtering at high speed is possible using KF’s. At low

(pedestrian) speeds averaging techniques work better.

The detection stage of the receiver has also been analysed in detail. Suppression of autocorrel-

ation and pulse shaping noise requires some extra consideration. The solutions presented are

straightforward to implement and are robust, however do desensitise the receiver to true peaks.

Once these sources of noise have been accounted for MPR can be solved satisfactorily with a

simple first peak detection algorithm.

Finally it should be noted that the parameters � ' and � + have been matched to the specific

scenarios. It is well known that under the Gaussian measurement noise assumption, if the input
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measurement noise covariance matrix,
�

, is known to a multiplicative constant, this constant

(effectively � ' ) can be estimated directly from location estimate
� 3 � [23]. This method of

setting � ' needs to be investigated further. A similar method based on the final KF output may

also be possible to set � + .
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Chapter 6
Performance of a AOA/TDOA

Hybrid Location Estimator

In this chapter the performance of a hybrid location estimator, utilising TDOA measurements

(similar to the previous chapter) and an AOA arrival measurement of the MS signal at the

serving BS, is presented. Simulation results are presented which show that location accuracy

improvement over the TDOA only system is possible even in highly NLOS conditions. Fur-

thermore location estimation is now possible when only two BS’s are detectable, rather than

the three BS’s required in the TDOA only system, thus reducing the hearability problem.

6.1 Introduction

A TDOA technique has been proposed for providing location services in future UMTS net-

works. The performance of such a system, evaluated in the previous chapter, is limited by

errors in the TD measurements primarily caused by NLOS propagation conditions.

In future systems AOA measurements at the serving BS may be available, primarily as a re-

quirement to increase downlink capacity via beamforming. In this case the MS’s AOA will be

known at the serving BS (and possibly adjacent BS’s if the MS is in a soft handover region).

The AOA measurements will be subject to NLOS errors correlated to the errors in the TD’s

involving the serving BS, but should still be useful to the location estimator.

In this study the AOA is only measured at the serving BS. There are several reasons for this

restriction. Firstly and most importantly the AOA at the serving BS will be very useful to the

network to allow beamforming and thus improve the cell capacity by lowering the interference

power and allowing further multiple access reuse (code reuse in CDMA). Thus the measure-

ment will be ‘free’ in that no additional processing would be required for the location service.

Secondly, as previously discussed, except in the soft handover region the MS will only be de-

tectable at non–serving BS’s during idle periods. Thus non–serving BS’s have a limited set of
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data from which to derive AOA measurements. It could be expected that they would therefore

be susceptible to a higher measurement noise. Finally if AOA measurements are taken at other

BS’s they will have to be transmitted to the location calculation point thus increasing network

traffic, whereas in the serving BS only scenario, measurements are made only at the MS and

serving BS.

To simplify the simulations in this chapter it is assumed that the serving BS is always detectable

and that the AOA of the first arriving path can be measured without interference from the other

paths (though Gaussian measurement noise is present). This AOA is used as the estimate of the

LOS AOA. Another method would be to use the mean AOA if sufficient scatterers are present

in the environment.

In the next section the performance of a hybrid AOA/TDOA receiver which does not exploit

spatial diversity, is briefly presented.

6.2 Simple AOA/TDOA Hybrid Location Estimator Architec-

ture

The hybrid receiver, R4, is identical to receiver R2 from the previous chapter except that AOA

measurements are introduced to the estimator. The method for measuring the AOA is beyond

the scope of this work, but the effect of the AOA measurement error is considered. In the fol-

lowing subsections the new location estimator is described and location accuracy performance

evaluated by simulation.

6.2.1 AOA–TDOA Location Estimator

Identically to the previous chapter a TD vector,
� �� ��� �

can be formed from
�� ��� �

, defined as

� �� ��� � �
��
�
��������	��
 �������	��
������ �

�����������	��
 ��������	��
������ �

���
� (6.1)

where � � � 
 represents the measured synchronisation offset between BS � and BS


.
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The most likely MS location,
�$ ��� �

, can be found from the
� � 6 TD hyperbolae defined by

� + � �
' �

� �� + � '
��� �

� �
� � � �

' �
� �� � � '

��� � (6.2)

where
� � is the distance between the MS at

��� 3 ��� 3 �
and BS � at

��� � � � � � ; and the AOA such

that

���
�
�

' �
� � �

'� � �
'

(6.3)

Again the ML solution derived by Chan [29] is used, see Section 2.3.3. The equations for

calculating the location are not affected by the addition of the AOA term. However the matrix

definitions in Section 2.3.3 must be adjusted to include the AOA equation to

� � �
������
�

� + � �
'

� + � �
'

� � �� + � '� � � � � �
� � � �

'
� � � �

'
� � �� � � '� 6 � �

�
�

' �

�������
�
�

(6.4)

 � 6
R

������
�

��� � �� + � '
� + � � +

'
� � +

'
� � ++ � � ++� �

��� � �� � � '
� + � � +

'
� � +

'
� � +� � � +�

R � '
� R � ' � � �

�

'

�������
� (6.5)

A sensible weighting must be applied between the measurements of
�

' and
�

' ��� � since they

are a measure of different parameters, range and angle, in the estimator. The measurement

weighting matrix 
 is defined
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where 

�
' is the

�
by

�
matrix,



�
' �

��� ��
� � � � �� ��� ��!
� � � �� ���$" ���(� " !
) *�,.-0/1 243'5./ (6.7)

Note
� �

represents the exclusive–or operation The variances � + and � +� must be estimated

through some a priori knowledge.

In the event of only 2 BS’s being detected a unique solution is determined from the intersection

of the AOA line and TD hyperbola. This is given by

� �
� +
'
� � ++ � ��� � �� + � '

� + � ��� + � �
'
� + � + � �

��� � � � ��� ' � � + ��� R � �� + � '
�
'
� 6 � '= ��� � � � D �

R � �
'
� � + � � � �1���

��� � � � � � �� + � '
� 6 � '= ��� � � � D � � (6.8)

� �
� � �

'���
�
�

'
� �

' (6.9)

If only 1 BS is detected the AOA can be used to predict a location at a distance � '
� �

from the

BS. �
� �
�

�
� �

�
� �

'�
'

�
� � � '

� �

�
� �
	�� � '� ��� � '

�
� (6.10)

6.2.2 Location Estimation Accuracy Performance

The simulation environment is identical to Section 5.1.6. . � � � R�� �
�6��
�

 for all simulations.

AOA measurements are corrupted by Gaussian measurement noise of varying power, � +� /10 " ,

in addition to any NLOS errors that may be present. In 

�
' estimated LOS measurement
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variances are used. This is necessary since the AOA and TDOA must be correctly weighted

in the estimator.
� + � + � 6 �� m

+
is used. � +� � � +� /10 " is assumed to be known precisely.

� '
��� �
	� m is used.

Figure 6.1 shows the cumulative probability function for circular location error in the rural

scenario for varying AOA measurement noise � +� /10 " with LOS SNR at the cell boundary equal

to 0dB. The performance of the TDOA only estimator is also shown.
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AOA variance=1e−4

TDOA only

Figure 6.1: CDF of circular location error with varying � +� /10 " in the rural scenario

If � +� /10 " � 6 �
� �

rad
+

a significant location accuracy improvement over the TDOA system is

achieved. This can be put down to two factors. When the hearability is below 3 BS’s the loca-

tion can still be calculated precisely and when the hearability is
�

3 BS’s the location estimator

is improved. With � +� /10 " � 6��
� �

rad
+

the location accuracy becomes significantly worse. In

the following simulations � +� /10 " �76 �
�

 rad

+
.

Figures 6.2(a), (b), (c) show the effect on location accuracy of varying the pilot SNR at the

cell boundary from -12dB to 12dB for the rural, suburban and urban scenarios respectively.

In the rural scenario there is a great improvement over the TDOA only results of the previous

chapter. This is due to the possibility of locating the MS precisely with only 2 BS’s hearable.

At higher SNR’s there is a slight improvement in location accuracy. In the suburban scen-

ario again lower SNR’s are improved over the TDOA only results due to 2 BS location being
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Figure 6.2: CDF of circular location error with varying pilot SNR in the (a) rural, (b)
suburban, (c) urban scenarios

possible. However at higher SNR’s (and hence higher hearability) there was no improvement

since NLLOS corruption of any one TD or AOA will lead to a large location error. The 2 BS

location method is then most robust to NLLOS errors and hence the mid SNR=0dB results are

better than higher SNR’s. The urban scenario shows similar trends. At high SNR’s the location

accuracy deteriorates compared to the TDOA only results of the previous chapter.

Figures 6.3(a), (b) show the effect on location accuracy of varying .�/�/10 " for the suburban and

urban scenarios respectively for a fixed pilot SNR=0dB. These results reaffirm that for high

. /�/10 " values the AOA/TDOA estimator is significantly better than the TDOA only estimator.

The results of this section show AOA measurements could improve location accuracy. However

in NLLOS environments or if the AOA measurement noise is high using the AOA measure-

ments can have the opposite effect. Spatial diversity is required to attempt to recreate LLOS
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Figure 6.3: CDF of circular location error with varying . /�/10 " in the (a) suburban, (b)
urban scenarios

measurements in NLLOS conditions and provide real time variance estimates
�� + and

�� +� . In the

next section a performance comparison between several methods of AOA filtering to exploit

spatial diversity are presented.

6.3 Filtering of AOA Measurements to Exploit Spatial Diversity

The distribution of NLOS errors in AOA measurements was described in Section 2.7. In Figure

3.11 the first arriving NLLOS AOA PDF is shown. The NLLOS noise power of such meas-

urements is quite large. This noise is multiplied by the MS–BS separation so that location

accuracy of an AOA system is cell size dependent and potentially very large. Measurement

noise, which is usually considered to be Gaussian distributed, is also present. Figure 6.4 shows

the convolution of the measurement and NLLOS noises for the elliptical scatterer model.

Measurement NLOS
ErrorError

Combined
Error

AOA * =
mean

Figure 6.4: PDF of AOA in NLOS with measurement noise
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The AOA measurements require to be filtered to exploit the fact that the NLOS long term mean

is the true LOS AOA. Assuming some spatial diversity in multipath make–up is experienced a

fair estimate for the true LOS AOA may be obtained.

Similarly to the last chapter the LS technique is compared to the ieKF, LOS–KF and NLOS–KF

as a prefilter for the AOA measurements in order to exploit spatial diversity. In this section the

performance of a smoothed average (SA) filter is also analysed.

6.3.1 AOA ieKF Implementation

The AOA ieKF implementation is similar to the timing measurement KF introduced in the

previous chapter. However in AOA filtering, the NLOS error PDF is symmetric about the

true PDF thus the early biasing technique is omitted in the implementation. The KF should

naturally converge to the true LOS direction given enough uncorrelated NLOS measurements.

Simulation shows that convergence can be slow if the initial measurements have large NLOS

errors. In such cases resetting the ieKF greatly improved performance.

Since an MS travelling close to the BS has a much larger angular acceleration capability the

velocity driving noise, � +� , should be a function of MS–BS separation. This separation can be

estimated by feedback of the MS location estimate and then used to update � +� .

6.3.2 LS and SA Implementation

The AOA distribution is symmetrical about the mean so no adjustment is required to the LS

technique (as in previous chapter). The smoothed average is simply

� � 6
T " � W ��
� �

� � � � � ��� ��
� � �

� ���

' I
� � 	 P (6.11)

where T " � is the filter length in seconds and
�

represents the current time in samples. The

SA filter can also have a delay. For a delay of T � R the SA and
� � 6 LS techniques are

mathematically the same.

Since the measurement space wraps around at R�� a preliminary estimate of the mean � , via a

smoothed average, is obtained first then this mean is used to recompute the measurements in

the interval � �
� to � �

� by the addition or subtraction of R�� , before recalculating the AOA
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output (for both SA and LS techniques).

6.3.3 Performance Comparison

The performance of ieKF, KF, LS and SA filters were compared for the central 30 second

segment of a 90 second track in the urban environment with MS moving at 50kmph and 5kmph.

The results reported are RMS performance over 10 data sets. The SA filter with delay T " � � R
and LS

� � � � 6 filter with delay T � � � R are mathematically equivalent. For simplicity � +� ���� � � 6 �
�

 rad s

� +
is fixed regardless of MS–BS separation.

The hearability fraction for the data sets is 1 (since only the serving BS is considered). Noise of

power � +� /10 " � 6 �
�

 rad

+
corrupts the measurements as well as the NLLOS noise of the first

arriving path.

The KF is implemented with both � +� � � +� /10 " and with � +� � � +� � /10 " . These KF’s are

termed LOS–KF and NLOS–KF respectively. The LOS power is supposed to be known pre-

cisely while the NLOS noise power is estimated to be � +� � /10 " �
����	 rad
+
.

Figures 6.5(a), (b) show example tracks for the LS, SA, ieKF and NLOS–KF techniques in

the urban car and urban pedestrian scenarios respectively (the LOS–KF is not shown since

it followed the data very closely). In the urban 50kmph scenario the SA with delay clearly

performs poorly since the AOA is changing quickly. The ieKF diverges at a manoeuvre point

since the velocity driving noise does not allow it to track the sudden velocity shift. This would

not happen if manoeuvres were modelled more realistically. At 5kmph the spatial correlation

can clearly be seen.

Tables 6.1(a), (b), (c) show the mean RMS error between the track and the true LOS AOA for

the LS, SA and KF techniques respectively in the urban 50kmph scenario. The raw AOA data

has an RMS error of 43.5 degrees. The ieKF outperforms all the other techniques, including the

LS technique with delay. This can be explained by the large angular spread in measurements

experienced. In the LS technique
� / " �76 outperforms

� / " � R partly because of the linearity

of the MS path, and secondly as higher orders will allow curve fitting to accommodate NLOS

data, since there is no gradient constraint on the curve.

Tables 6.2(a), (b), (c) show the mean RMS error between the track and the true LOS AOA for

the LS, SA and KF techniques respectively in the urban 5kmph scenario. The raw AOA data
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Figure 6.5: Example AOA tracks for (a) urban 50kmph (b) urban 5kmph scenarios

has an RMS error of 77.8 degrees. Again the ieKF outperforms all the other techniques. Since

far less spatial diversity is obtained the performance of all systems is much worse than in the

moving scenario.

To conclude at higher speeds the filtering of AOA is quite successful. The ieKF performs best

though
� / " � 6 LS should also be considered. In fact LS methods might be improved by an

iterative procedure to generate weights for the data based on goodness of fit to the previous fit.

At 5kmph the performance of all techniques is very poor since little spatial diversity is gained.

Furthermore unlike the tracking of TOA’s (when early TOA’s can be favoured) there is no way
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RMS error (deg)� �76 � � R
T � 6 � 8.45 / 15.3 11.8 / 22.0
T � R� 6.73 / 11.3 8.86 / 15.9
T � �� 6.52 / 12.2 7.61 / 13.3

(a)

RMS error (deg)
T �76 � 18.7
T �SR� 33.3
T �S�� 46.7

(b)

RMS error (deg)

LOS–KF 38.5
NLOS–KF 12.1
ieKF 5.16

(c)

Table 6.1: RMS error performance for (a) LS filter (with delay / no delay), (b) SA filter
(no delay), (c) KF techniques in urban 50kmph scenario

RMS error (deg)� �76 � � R
T � 6 � 58.8 / 74.4 66.0 / 75.7
T � R� 26.2 / 34.7 37.0 / 43.9
T � �� 17.5 / 25.5 24.0 / 36.9

(a)

RMS error (deg)
T �76 � 52.7
T �SR� 18.4
T �S�� 17.0

(b)

RMS error (deg)

LOS–KF 78.5
NLOS–KF 75.8
ieKF 12.7

(c)

Table 6.2: RMS error performance for (a) LS filter (with delay / no delay), (b) SA filter
(no delay), (c) KF techniques in urban 5kmph scenario

of determining between two AOA samples which data is more likely to be LLOS.

159



Performance of a AOA/TDOA Hybrid Location Estimator

6.4 AOA/TDOA Hybrid Location Estimator Architecture Util-

ising Spatial Diversity

Figure 6.6 shows the receiver R5. The architecture is identical to the TDOA implementation,

receiver R3, discussed in the previous chapter except that an AOA measurement is also in-

cluded. Similarly this measurement is prefiltered to suppress NLOS errors for which an ieKF is

used for high speeds and an SA filter for low (pedestrian speeds). At high speeds the location is

tracked by KF and at low speeds by a WA filter. The high speed receiver and low speed receiver

are termed receiver R5A and receiver R5B respectively. The decision over which receiver to

use is made by feedback of MS speed from the final KF tracking filter, though in simulation

the feedback is not implemented. The receiver R5 is discussed in more detail in the following

subsections.
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MS location
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Figure 6.6: Receiver architecture with TOA and AOA data streams.

6.4.1 Preprocessor Stage

The variance calculation for the SA filter is made according to the standard variance definition

for the filter length.

6.4.2 Dataset Reduction

This stage is identical to receiver R3, see Section 5.3.2
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6.4.3 AOA–TDOA Location and Location Variance Estimator

The location calculation is performed similarly to Section 6.2.1. Variance estimates for the

input TDOA streams and AOA stream now exist (from the preprocessing stage). The measure-

ment covariance matrix 

�
' is redefined as



�
' �

������
�

�



�
' � �

�
� � � � �� +�

�������
� (6.12)

where 

�
' is the

�
by

�
matrix,



�
' �

��� �� � � � �� �� � � �� ���� � ��� ��!
� � �� �� � ��� "���� � "�!
) * , -0/ 1 243'5 / (6.13)

In the definition of
�� � 


�
' the covariance terms between

�

' and
�

' are taken as zero for

simplicity. In reality these covariances will lie in the range � to �  ' �
�
' .

The estimated accuracy of the location estimate
�$

is determined by evaluating its covariance

matrix,
��

. This is calculated by (2.37).

In the case where the solution is precisely determined, i.e. one TD and one AOA, the CRLB is

used as an estimate of
��

. The CRLB,
	 � , for the AOA–TDOA estimator can be derived as

	
�
� � � � �� �

' � � � ' (6.14)

where

� �

��������
�

= � � �1� D- � � = ��� �1� D- � = � � �1� D- � � = ��� �1� D� �
� � � �= � � �1� D- � � = � � �1� D- � = � � �1� D- � � = � � �1� D�

�

'= � �1� � D � ' � � � � � � �
�� � � � � � � � = � �1� ' D= � �1� � D � � ' � � � � � � �

�� � � � � � � �
���������
�

The derivation is shown in Appendix A.
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6.4.4 Location KF

This stage is identical to receiver R3, Section 5.3.4

6.4.5 Weighted Average Location Filter

This stage is identical to receiver R3, Section 5.3.5

6.4.6 Location Estimation Accuracy Performance

An identical simulation environment to Section 5.3.6 is used. AOA measurements are corrupted

by Gaussian measurement noise of varying power, � +� /10 " , in addition to any NLOS errors that

may be present.

Figure 6.7 shows H (��X � and H ��
X � for the rural scenario with varying Gaussian noise power on the

AOA measurements. The mean hearability is approximately 3 BS’s per second. The TDOA

only performance (at
�$

since this gives better performance than
�$

in this scenario) is shown

for comparison purposes. Using the AOA measurements gives a substantial improvement, up

to 60% for H (��X � and up to up 70% for H ��
X � if the measurement noise power, � +� /10 " , is less

than 6 �
� *

rad
+
. By similar triangles it is reasonable to assume a smaller cell radius would

further desensitise the location error to � +� /10 " . Subsequent simulations use � +� /10 " � 6 �
�



rad
+
. With � +� / 0 " � 6 �

�

 the location accuracy does not improve since the location error

is now dominated by timing errors. With � +� /10 " � 6 �
� �

the AOA/TDOA receiver performs

slightly worse than the TDOA only receiver since the AOA noise is much larger than the timing

measurement noise. Ideally the AOA would then have no effect on the performance but since

the covariance weighting can never be perfect the location accuracy can decrease.

Figures 6.8(a), (b), (c), (d) show the location accuracy with varying received pilot SNR and

hence varying hearability for the rural, suburban, urban car and urban pedestrian scenarios

respectively with receiver R5A. With increasing hearability each point on the graph corresponds

to a 3dB increase in SNR. Best location accuracy for the TDOA only receiver R3A is also

shown. Due to the KF prefilters the location accuracy remains good even when the mean

number of BS’s detected per second is very small (i.e.
� � ). The performance of the hybrid

systems tails off slightly slower than TDOA only systems with lowering hearability as only a

hearability of 2 BS’s is required for a location estimate. The CRLB analysis in Figure 2.11
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Figure 6.7: Location error against � +� /10 " using receiver R5A in the rural scenario

shows the noise sensitivity can be larger for the 1 TD, 1 AOA location compared with any 2

TD location method, thus the improvement is not as much as might be hoped. In the urban

pedestrian scenario the performance of the hybrid estimator is worse than the TDOA only

estimator if the hearability
� � BS’s per second. At low speed it becomes increasingly difficult

to differentiate between LLOS and NLLOS states since little spatial diversity is experienced.

Figure 6.9 shows the performance with receiver R5B in the urban pedestrian scenario. This

receiver performs much worse than receiver R3B.

Figures 6.10(a), (b), (c) show the location accuracy with varying .�/�/10 " for the suburban,

urban car and urban pedestrian scenarios respectively with receiver R5A. Generally as . /�/10 "
increases the improvement of the AOA/TDOA estimator over the TDOA only estimator in-

creases. This improvement is most significant in the urban scenarios. Figure 6.11 shows the

performance with receiver R5B in the urban pedestrian scenario. The TDOA only estimator

performs better for all . /�/10 " .

To conclude utilising the AOA at the serving BS can improve the location accuracy of a TDOA

only location estimator. This improvement is only possible with � +� /10 " �S6 �
� *

rad
+

for � � �
6 � km. With a smaller cell radius the tolerable noise power could be proportionately larger. In

low .�/�/ 0 " scenarios location accuracy only improves in the high speed scenario (urban car)
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Figure 6.8: Location error against hearability using receiver R5A in the (a) rural, (b)
suburban, (c) urban car, (d) urban pedestrian scenarios
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Figure 6.9: Location error against hearability using receiver R5B in the urban pedes-
trian scenario
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Figure 6.10: Location error against . /�/10 " using receiver R5A in the (a) suburban, (b)
urban car, (c) urban pedestrian scenarios
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Figure 6.11: Location error against . /�/10 " using receiver R5B in the urban pedestrian
scenario
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since at low speeds (urban pedestrian) the prefiltering process is unable to differentiate between

LLOS and NLLOS AOA’s. Receiver R5B did not perform well at all in the urban pedestrian

scenario, thus for low speeds and low . /�/10 " the AOA should not be used in the estimator. Table

6.3 summarises the location accuracy improvement of receiver R5A/B over receiver R3A/B at

a high hearability level with � +� /10 " �76 �
�

 rad

+
.

R5A R5B R3A R5B % improvement

Rural H (��X � 8 10 20
H ��
X � 11 20 45

Suburban H (��X � 9 20 55
H ��
X � 22 40 45

Urban Car H (��X � 37 45 18
H ��
X � 66 75 12

Urban Pedestrian H (��X � 55 45 -22
H ��
X � 77 55 -40

Table 6.3: Summary of location accuracy improvement of receiver R5A/B over receiver
R3A/B

6.5 Conclusions

In this chapter the performance of a hybrid AOA/TDOA location receiver with and without

spatial diversity has been presented under several scenarios. Without spatial diversity the per-

formance of such a receiver is worse than the TDOA unless . /�/10 " � 6
�&� . It could be ad-

vantageous if hearability is less than 3 BS’s. The spatial filtering algorithms do not work as

well for AOA measurements as for TOA measurements. However a significant improvement

in location accuracy was achieved over the TDOA only receiver if the MS is moving fast or if

. /�/10 " is large. Unfortunately the location accuracy improvement is greatest in precisely those

scenario’s in which location accuracy is already very good (and below the FCC requirements).

At 5kmph with low . /�/10 " the performance deteriorates below TDOA only performance. Sim-

ulated performance might be improved if a circular scatterer model is used. This would reduce

the angular spread of the AOA’s compared to the elliptical scatterer model used and perhaps

would be a more representative model.
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Chapter 7
Source Location by Scatterer Back

Tracing

In this chapter a novel Scatterer Back Tracing (SBT) approach to MS location estimation in

multipath environments which is not degraded by NLOS conditions is described. The AOA,

TOA relative to the first arriving ray, and Doppler shifts for individual rays are measured at

the serving BS. Using the information from 6 arriving rays the MS location can be precisely

calculated.

Location accuracy performance of the technique is assessed with the addition of Gaussian dis-

tributed noise to the measurements. Further simulations of an enhanced estimator augmenting

the original estimator with signal strength measurements and utilising a Kalman filter (KF) to

track a moving MS are presented. These show promising location accuracy results, significantly

better than results obtained using conventional triangulation techniques discussed in previous

chapters.

7.1 Problem Formulation

NLOS conditions can dramatically reduce the performance of conventional triangulation based

mobile location techniques. However even in NLOS when sufficient resolvable multipaths

are present the MS may be precisely located by back tracing the arriving rays under a single

reflection assumption. Even in a multiple reflection scenario the technique may work if the

reflection points are spatially close, which should be true for early arriving multipaths.

Figure 7.1 shows a possible geometry for a single reflection scatterer,
� 0 . The scatterer and BS

are assumed fixed; the MS has speed ) in direction
� �

with respect to line of sight to the BS.

In a typical urban environment a number of such scatterers will be present, e.g. in the CoDiT

urban model 20 scatterers are defined.

In the following section equations are formulated based on this single reflection geometry which
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Figure 7.1: Single reflection scatterer geometry

use AOA,
� 0 ; time of arrival with respect to first arriving ray,

� 0 � ' ; and Doppler shift,
� *)0 ,

measurements for each arriving ray. For the purpose of this work it is assumed that the required

measurements could be found by using an antenna array and suitable processing on the received

signals. These measurements,
��� 0 � � *)0 � for

� � 6
� � � and
� 0 � ' for

� � R�� � � , will be subject

to uncorrelated additive noise which again for simplicity is assumed to be Gaussian distributed.

This assumption ignores the problem of resolving closely spaced scatterers, when the noise

distribution could be non–Gaussian and correlated in time.

There are 5 unknowns, the MS polar coordinates,
��� � ��� � �

, velocity
� ) � � � �

and time delay of

the first arriving ray relative to the true LOS arriving time,
�

'
�
� .

Using the temporal knowledge of the channel for each scatterer, see Figure 7.1

� 0 � � 0 � � � ��� � �	� 0 � '
� �	�

'
�
� (7.1)

Using the cosine rule gives

� 0 � � � � � +0 � � +� � R � 0 ��� � ��� ��� � � � 0 � (7.2)
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Rearranging (7.1) and substituting in 7.2 gives

� 0 � � � � 0 � � � � �	� 0 � '
� �	�

'
�
�� +0 � � � ��� 0 � ��� � �	� 0 � '

� �	�

'
�
�
�1+� R � 0 ��� � ��� ��� � � � 0 � � ���	� 0 � '

� �	�

'
�
�
� + � R ����� � � 0 � ���	� 0 � '

� �	�

'
�
�
� � R ��� � 0

� 0 �
���	� 0 � '

� �	�

'
�
�
� + � R � �	� 0 � '

� �	�

'
�
�
� � �

R ����� � �	� 0 � '
� �	�

'
�
�
� ��� � ��� ��� � � � 0 � � (7.3)
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Figure 7.2: Possible geometry at MS

Using the geometrical knowledge of the channel for each scatterer

���� � ���� � � � �� � � ��
(7.4)

Therefore for each scatterer (for convenience in the following equation complex notation is used

to represent geometry with the real axis representing the x–axis and imaginary axis representing

the y–axis)

H 0 � � 0 � � �
	�� � � 0 � � � ��� ��� 0 � � �
� 0 � � � � �
	�� � , 0 �� � ��� � , 0 � � � ��� � � �
	�� � � � � � � ��� ��� � � � �
� (7.5)

where, (see Figure 7.2),

, 0 � �
� � � � � � � # 0 (7.6)

and

# 0$� � ��� � ' � � *)0 �
) � (7.7)
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where
�

is the carrier wavelength. If
� � � � the

� �
should be substituted with

� � �
� in all

the prior analysis.

Substituting (7.2) and (7.3) into (7.5) gives a set of non–linear equations, H 0 , in the 5 unknowns
����� ��� � � ) � � � � �

'
�
�
�

for each scatterer
� 0 . In the presence of measurement noise H 0 may

not equal zero, therefore a unique solution can be found by minimising the sum of
� H 0 � + for� � 6
� � � with

� � � scatterers (
� � 	 is insufficient due to ambiguity in (7.6)). This leads

to the simple estimator

� �
��
0 � '

� H 0 � + (7.8)

The
, 0 value in (7.6) that minimises the component of

�
from (7.5) is chosen. The final solution

vector
� ���� � �� � � �) � �� � � ��

'
�
�
�

is obtained by iteratively minimising (7.8).

Using a signal strength measurement an auxiliary estimate for
���

can be calculated. Assuming

a lognormal distribution of signal strength, a conditional range PDF of the true range
� �

about

the estimate
	� �

can be evaluated as

��� � ����� �
	��� � �
	���

� 2 � R�� �����
� � . � � ��� � +

R � +2 � (7.9)

where � 2 is the shadowing log standard deviation and . � � ��� �
is the path loss equation. Figure

7.3 shows
� � � ��� � �
	� � �

(normalised to
	� �

) for the simple path loss model (2.3) with different � 2
values. The range spread encompassed by the PDF is quite wide for higher standard deviations.

However most of the spread is in the region
��� � 	���

, thus the PDF may still be helpful to

eradicate false location estimates where the estimated range
���� � 	���

.

Utilising
��� � �������
	��� �

leads to the enhanced scatterer back tracing (eSBT) estimator

� #�� ��� � ����� �
	��� �
��
0 � '

� H 0 � + (7.10)

7.1.1 Comments on Estimator Performance

As previously mentioned the mobile location, velocity and NLOS delay are the solution of a set

of non–linear equations. The downhill simplex minimisation technique [24] is used to find a

possible solution. Although there are five unknowns simulation shows that multiple roots occur
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Figure 7.3:
� � � ����� �
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against normalised
���

for different lognormal shadowing

when
� � 	 , i.e. when there are only five equations and thus five scatterer measurement sets

are used in the sum
�
. Simulation shows using

� � � never gives more than one root. In the

presence of noise the minimised solution generally gives
� � � .

A great problem in minimising non–linear equations is that of converging on local minima.

Figures 7.4(a), (b) demonstrate this problem for the minimisation of
�

for a particular MS

location, (
� R	
��� ,

� ��R���� ), and scatterer makeup (not shown). The serving BS is located at

(0m,0m) for this and all subsequent examples. The graphs show the minimum
�

found at each

location when the MS location
� ��� ��� � �

is artificially fixed in the estimator. Figure 7.4(a)

shows the surface under low input noise ( � +� �:6 �
�
� , � +��� �:6 �

�

 ��+� ��� , � +4  �:6 �

�
' ), and

Figure 7.4(b) with higher noise power ( � +� �76��
�

 , � +� �76 �

� � ��+�����
, � +4  �76�� ).

It can be seen under low noise, Figure 7.4(a), the minimum of the surface occurs very close

to the true location. A number of other effects can be observed. Firstly the sensitivity of

the estimator to range error (obtained from the Doppler information) is high. For this reason

the enhanced estimator can perform significantly better. Secondly there are discontinuities

in the surface where the estimator has failed to find the minimum. These can be eradicated

by increasing the number of calculations of
�

in the estimator and thus the search time. Lastly

several local minima are present. In the low noise case these are significantly shallower than the
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(a)

(b)

Figure 7.4: Minimised
�

against location for a (a) low noise, (b) high noise scenario

172



Source Location by Scatterer Back Tracing

global minimum. In the high noise case, Figure 7.4(b), the minimum around the true location

is less deep and deeper minima are now present at considerable distance from the true location.

With high noise the noise performance can therefore not be derived from the partial derivatives

or the desired parameters (location) with respect to the measured parameters.

7.2 Simulation Results and Discussion

The simulation uses the urban channel model scatterer definition (definition in Table B.1). The

AOA at the MS is defined, therefore the transformation shown in Appendix B.2 is used to

calculate the AOA at the BS. The estimator uses the
� � � earliest arriving rays. A cell

radius of 500m is used, with a path loss exponent of 3.76 and lognormal shadowing of 8dB.

1000 randomly dropped MS’s are located within the cell, travelling at 50kmph (
� 4 �76
� ��R GHz,

maximum Doppler shift ,
� * � � � � ��R�� � Hz). The LLOS probability, . /�/10 " , is set to 0.2. A

tracking scenario is also simulated. A 2D 1st order KF identical to the implementation in

Section 5.3.4, provides the tracking capability. For this scenario, again as in to Section 5.3.6,

a spatially correlated LOS model is applied, where the shadowing decorrelation length and

scatterer mean survival length are both 	 m (see Table 3.2).

The estimator performance is simulated with varying measurement noise powers, with � +� var-

ied from 6��
�
� to 6 �

� �
rads

+
; � +4  varied from ��� 6 to 6 ���� m

+
; and � +� � varied from 6 �

�

 ��+* �����

to 6 �
� � � +* ����� Hz

+
. The number of calculations of

�
required by the estimator depends greatly

on the noise power corrupting the measurements. If the noise power is low a good solution

is found with 5 thousand calculations of
�
. However for high noise even after 500 thousand

calculations a good solution may still not be found.

Figures 7.5(a), (b) show the RMS location accuracy achieved for the SBT, eSBT and eSBT

with KF post tracking estimators against Gaussian distributed noise power added to the meas-

urements,
� � 0 � � *�0 ��� 0 � '

�
. As a performance comparison to these estimators the perform-

ance of cell location only (CL), first arriving AOA and Signal Strength (AOA–SS); and first

arriving AOA and TOA (AOA–TOA) estimators are shown. The performance of the latter

is also shown with a KF tracking filter. Figure 7.5(a) shows results for low Doppler noise

power, � +��� � 6 �
�

 � +* ����� ; and Figure 7.5(b) shows results for high Doppler noise power,

� +� � � 6��
� � � +* � ��� . For the SBT, eSBT and First AOA–First TOA estimator the performance

is shown with two different noise powers added to
�	� 0 � ' of ���.6�� + (the lower solid line of the
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Figure 7.5: RMS location error performance for (a) low, (b) high Doppler noise
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pair) and 6����� + (the upper dashed line).

The results in Figures 7.5(a),(b) show that both SBT and eSBT techniques outperform the other

location techniques (of which the AOA–TOA method is the best) in the low measurement noise

region. In the lowest noise scenario location accuracy is an order of magnitude better ( 20m

RMS to 200m RMS) than the other techniques and as noise levels are reduced further the

location error is reduced to zero whereas performance of the other techniques is limited by

NLOS errors. However performance deteriorates quite dramatically as the noise power of any

one measurement type is increased. The eSBT estimator performs significantly better than the

SBT estimator in the high Doppler noise, low AOA noise region. This can be attributed to the

sensitivity of the location range estimate
���

to the Doppler measurements. In the presence of

high AOA or TD noise the eSBT estimator generally performs slightly worse than the SBT

estimator. This is due to the fact that with higher noise when the true solution is no longer in a

global minimum the estimates tend to converge towards the BS with
� �

uniformly distributed.

Thus the range enhancement simply draws the location estimate away from the BS, but as the

estimate of
� �

bears no relation to the true value this on average increases the RMS error.

With KF tracking further improvement is possible in both SBT methods and conventional meth-

ods. Again in the low noise region the eSBT outperforms the AOA–TOA method though the

RMS performance improvement is reduced to a factor of two. Figures 7.6(a), (b) show example

tracks using the eSBT technique and AOA–TOA technique respectively with low measurement

noise power. The measurement noise power in both cases was � +� � 6��
� *

, � +4  � 6 �
�
' and

additionally for the eSBT � +� � � 6 �
�

 . It is clear to see that the error distribution around the

true path for the SBT technique is much more 2D Gaussian looking than the AOA–TOA tech-

nique. In the latter the radial error has a positive bias (away from the BS) due to NLOS positive

bias on the TOA measurements. Figure 7.6(a) also highlights the KF overshoot caused by the

unrealistic instantaneous direction change of the MS. Thus, especially for the eSBT technique,

results may be pessimistic.

Figures 7.5(a),(b) show the performance of the eSBT technique with KF tracking deterior-

ates rapidly with increasing noise power whereas the AOA–TOA method is much more stable.

Figures 7.7(a), (b) show example tracks using the eSBT technique and AOA–TOA technique

respectively with high measurement noise power. The measurement noise power in both cases

was � +� � 6 �
�
' , � +4  � 6 �

�
and additionally for the eSBT � +� � � 6 �

� � � +* � ��� . Here it is clear

to see the eSBT technique has broken down due to the high noise levels. The estimated loca-
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Figure 7.6: Example location tracks for the (a) eSBT, (b) AOA–TOA techniques with
low measurement noise power
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Figure 7.7: Example location tracks for the (a) eSBT, (b) AOA–TOA techniques with
high measurement noise power
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tions appear uniformly distributed in angle around the serving BS and bear no relationship to

the true MS path. The AOA–TOA technique however is much more robust to the increased

noise and a reasonable estimated path is still found. For the AOA–TOA technique the added

Gaussian measurement noise has overpowered the NLOS noise and thus the location errors are

approximately 2D Gaussian distributed about the true location.

7.3 Refinements to KF operation

There are some simple refinements that can be made to the KF tracker.

7.3.1 KF Tracking with Input Estimation

The noise on individual location estimates is distinctly heavy tailed (i.e. large location errors

occur with comparative high frequency). In Figure 7.8 the measured CDF of circular location

error (using the previously described simulation environment) is shown for the eSBT estimator

with different noise powers.
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Figure 7.8: The CDF of circular location errors for a selection of measurement noise
variances

It can be seen that a heavy tail in the distribution occurs when any one of the noise terms is
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high. The reason for this heavy tail is the non–linearity of the estimator. As shown in Figure

7.4 when noise corrupts the measurements the global minimum may no longer be centred near

the true solution, in which case the estimated locations are more evenly distributed across the

cell. It is impossible to tell from the estimator whether a location is good, i.e. a location that

is found in the same minimum as the true solution or bad, i.e. a location that is found in a

different minimum. Therefore an input estimator is employed, similar to Section 5.2.1, to try

to differentiate between good and bad data by utilising the KF predictor equation to form a

likelihood function for the measured data. The measurement noise estimate for the individual

location estimates,
� 0 , then contains diagonal terms

��
+� � � �

�

��
�
+�%�&� � � ' � '

����� � � - ��+ 2 ��� � �
�� (7.11)

��
+� � � �

�

��
�
+�%�&� � � + � +

������� � - ��+ 2 � � � � �� (7.12)

where � � � 
 indicates the element on the 	 th row and � th column of
� 0 � 0 � ' and

�
is the residual

between the measured parameter � 0 and the filter prediction
� 0 � 0 � ' . �

+�����
is the measurement

variance including just good measurements, which can be estimated from the data.

7.3.2 Utilising Auxiliary Velocity Information in the KF Tracking

The location estimator produces an estimate for the MS’s instantaneous velocity. It is possible

to adjust the KF formulation to incorporate this new data.

Figure 7.9 shows the cumulative distribution of the Euclidean velocity estimate error for several

values of measurement noise power. It is clear from the curves that the velocity estimate is

quite accurate, within 5ms
�
' , to the 60th percentile even at high noise powers. These velocity

estimates may be useful to the KF and can be incorporated by changing the definition of the KF

measurement matrices to
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Figure 7.9: The CDF of Euclidean velocity errors for a selection of measurement noise
variances
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Also apparent from Figure 7.9 is that for a small cumulative probability (10–20%) large velocity

errors occur. These errors cause poor tracking performance unless the velocity measurement

noise estimates, � + �� and � + �� , are set high, in which case the performance improvement achieved

using velocity information is negligible. For this reason an input estimation technique is applied

to the velocity estimate again using the predicted velocity to form a measurement likelihood

180



Source Location by Scatterer Back Tracing

function. The velocity measurement noise variance can then be calculated as

��
+ �� � � �

�

��
�
+� ����� � � � � �

��� � � � - � ��+ 2 � � � �
�� (7.14)

��
+ �� � � �

�

�
��
�
�
+� ����� � � * � *

��� �
� � - � ��+ 2�� � � �

����� (7.15)

where
� ��

,
� ��

are the differences in the x–axis direction and y–axis direction velocity estimates

between the filter prediction � 0 � 0 � ' and the measurement  0 . These terms can be used in the

lower diagonal terms of the measurement noise matrix � 0 .

7.3.3 Simulation of KF Variants

Three alternative KF tracking implementations were applied to the simulation scenario from

Section 7.2: a KF with input estimation (ieKF), a KF utilising auxiliary velocity information

(vKF), and a KF with both methods (ie–vKF). (Note that both the vKF and ie–vKF have input

estimation on velocity estimates.) Values of � +����� �SR	��� and � +� ����� � R	 were used.

Simulation results show the performance of the KF variants was limited by the error caused by

overshoot at the cornering points of the MS path. Thus the actual RMS error performance for

the methods is similar. Figures 7.10(a), (b) show examples of the tracking performance with

low ( � +� � � 6 �
�

 � +� � � ) and high ( � +� � � 6 �

� � � +�����
) Doppler noise respectively. The other

noise powers were � +� � 6 �
�

 and � +4  � 6 �

�
' . In both scenarios the vKF implementation

is an improvement over the simple KF in that it is smoother and more accurately captures the

shape of the MS path though the RMS location errors are similar. The ieKF and ie–vKF offer

further improvement over the simple KF and vKF in the low noise scenario. However in the

higher noise scenario the ieKF and ie–vKF tracks tend to diverge from the good locations for

some or all of the track. In the case of the ie–vKF the velocity estimates are still accurate thus

it keeps a similar but shifted shape to the true MS path.
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Figure 7.10: Example location tracks for (a) low, (b) high Doppler noise scenarios with
different KF configurations
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7.4 Conclusions and Further Considerations

In this chapter a new method for source location in a multipath environment has been presen-

ted. The SBT method utilises AOA, TDOA and Doppler shift measurements of individual

scatterers and requires measurements from only one BS. Simulation results have shown that

the method has the potential to give location accuracy to less than 50m RMS in the presence

of low measurement noise power. The performance is significantly better than the performance

of other single BS systems that were also presented in this chapter as well as the multiple BS

(TDOA/AOA) methods considered in previous chapters. The best performance from the other

single BS methods was the First AOA–First TOA with about 50–60m RMS with KF tracking.

In the tracking scenario utilising a KF further improves performance in all methods. Results

also seem to suggest that utilising the auxiliary velocity information from the estimator in the

KF further improves location accuracy. Additionally the performance of the SBT technique

in the tracking scenario is not affected by the . /�/10 " and spatial correlation properties of the

environment in the same way as the conventional triangulation methods which require spatial

diversity in measurements to mitigate NLOS errors.

However with increasing noise power the performance of the SBT techniques is much reduced.

With � +��� �:6 �
�

 ��+* � � � Hz

+
if � +� � � 6 �

� �
rad

+
or � +4  � � 6 �

�
m
+

the performance is worse

than the AOA–TOA method. With � +� � � 6 �
� � ��+* ����� Hz

+
, this drops to � +� � � 6 �

� *
rad

+
or

� +4  � � 6 �
�
m
+
.

Whether the noise levels simulated are realisable is unclear. It is envisaged that the measured

parameters could be tracked using a KF before the estimation stage which would lower the

noise variance. Probably the Doppler shift measurement noise would be the most critical.

� +��� �76��
� � � +* � ��� corresponds to a standard measurement noise of � ������R � * ����� . An FFT based

method could be used to extract the Doppler frequencies from a large number of samples. Given

that in UMTS a minimum of four times oversampling has been proposed, the time resolution

will be about 20m. This implies noise variances well below 6 �
�
m
+

could be achieved with a

KF. � +� � � 6 �
� *

rad
+

gives a measurement standard deviation of ����	 � R � . Even in conventional

triangulation methods this level of accuracy is required to make AOA measurements useful.

There are several further problems to be considered with the SBT method. The simulation

model assumed stationary scatterers. Non–stationarity of scatterers can lead to changing Dop-

pler shifts and thus the calculated angle # 0 being incorrect. The interaction between scatterers
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with paths arriving at the BS temporally and spatially close has not been considered. At best

this will skew the measurement noise distribution. At worst the two paths would be unresolv-

able and this would lead to a falsely identified scatterer. Simulation also omitted the possibility

of multiple reflection scatterers. There is no way to account for the multiple reflections in the

estimator. However multiple reflection paths would tend to have higher attenuation so initially

in choosing scatterers for the estimator scatterers with a low power delay product should be

ignored. Finally the carrier frequencies of the BS and MS in practice will not be matched. Gen-

erally the MS carrier will be phase locked to the frequency with largest received power. The

Doppler shift measurements may therefore include an offset term,
� * � . This term can be added

into the definition of # 0 in (7.7) to give

#O0 � � ��� � ' � � � *)0 � � * � � �
) � (7.16)

� * � can be either be solved by increasing the number of unknowns in the estimator which

is undesirable as more scatterers will be required in the estimator. Alternatively
� * � can be

measured by analysing the Doppler spectrum of the channel and estimating the long term mid

point. This technique might also provide an initial estimate for ) from the frequency width of

the spectrum which could be used to aid the SBT estimator.

Finally the SBT estimator could be aided by the location of known fixed scatterers, e.g. tall

buildings in an urban environment. These could be identified by
� 0 measurements at the BS

and the appropriate value of
� 0 inserted into the equations from a database.
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Chapter 8
Conclusions

This thesis has been concerned with the performance of an MS location estimator in a UMTS

system. Firstly a channel model suitable for testing location service performance has been

implemented with specific attention to the spatial characteristics of the channel. Analysis of

hearability with various IPDL techniques has been presented, with suggestions to improve these

methods. Location accuracy performance for the TDOA system has been presented with and

without spatial filtering, under various different channel scenarios. Further results have been

presented for an AOA/TDOA hybrid system. A different method in which incoming rays are

backtraced to pinpoint the MS has also been formulated and shown to be a viable alternative

in urban scenarios. This chapter draws together the main conclusions of the work. Some

suggestions for further work in this field are also presented.

8.1 Summary of the Work

In Chapter 3 a method for modelling spatial variations in LOS and NLOS was developed, based

on some reasonable interpretations of the geometry of obstructions likely to present in urban,

suburban and rural scenarios. The CoDiT model was used as the basis of this model which

provided ratification for the some of the parameters developed. Where available other sources

were used to substantiate parameter value choice. The critical statistics of excess delay and

AOA of the first arriving path were evaluated and shown to be similar to theoretical models.

In Chapter 4 it was shown that in UMTS the hearability performance will limit the location

accuracy of a TDOA based location estimation techniques. Upwards of 20% of MS’s would not

be able to detect the required 3 BS’s. Using IPDL techniques improves matters significantly.

A comparison of several such techniques has shown merits for each method. Based purely

on hearability TA–IPDL is the best choice, however PR–IPDL has a relaxed synchronisation

constraint. The author’s own vTA–IPDL proposal also performs well and requires only one

pilot code.
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Further hearability improvement is possible by increasing the idle period length. However this

is not desirable since QoS of real time services would be affected. Therefore the possibility

to coherently and non–coherently combine measurements from successive idle periods was

investigated. To provide coherent gain the separation of idle periods should be small. Again the

minimum separation is limited by QoS considerations. Non–coherent integration is not effected

by channel correlation, however selection diversity gain is possible with large shadowing if

spatial diversity exists. To gain spatial diversity in shadowing increased separation is desirable.

There is a trade off between providing closely spaced idle periods to allow coherent combining

for slowly moving MS’s and having widely spaced idle periods to increase selection diversity

gain for fast moving MS’s. Clustered idle periods can be created to take advantage of both

situations with an adaptive receiver, giving several dB’s gain over selection diversity and non–

coherent integration only receivers.

In Chapter 5 the performance of a TDOA location receiver was investigated. Since MPR is

employed the signal detection stage requires special consideration of autocorrelation and pulse

shaping sidelobes. Iterative subtraction methods proved too sensitive to noise, thus simple

thresholding methods were proposed. Location accuracy is very sensitive to . � ��� � , decreas-

ing significantly at low . � � � � values, and to a certain extent sensitive to hearability when

. � � � � is high. Location accuracy in the urban scenario was found to be worse than required

by FCC regulations with reasonable channel parameters. Using spatial filtering the receivers

showed location accuracy improvement of minimum 30% and 42% at the 67%ile and 95%ile

respectively, sufficient to meet the FCC regulations. The receiver could also operate at much

lower instantaneous hearability levels. The KF and LS implementations both seem reasonable

candidates for filtering when the MS is moving fast. However at slower speeds averaging works

better. As the MS speed is reduced it is necessary to hold the location updating otherwise spatial

diversity gains will be lost.

In Chapter 6 the performance of a hybrid AOA/TDOA location receiver was presented under

several scenarios. Without spatial diversity to help estimate the LLOS state the performance of

such a receiver can be worse than a TDOA only receiver, though it does allow location to be

calculated with only 2 BS’s hearable. Significant improvement of a minimum 18% and 12% at

the 67%ile and 95%ile respectively was achieved with spatial filtering at high speeds. At low

speeds distinguishing LOS and NLOS conditions using the AOA time series alone becomes

impossible.
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In Chapter 7 the SBT method for locating the MS by using the multipath nature of the environ-

ment was investigated. Simulation results have shown that SBT has potential to give location

accuracy to less than 50m RMS (with a 2D Gaussian noise assumption of the final tracked

path this RMS value is approximately 50m at the 67%ile), but is very sensitive to measurement

noise. Input estimation as a way of removing outliers is important as location error is a mixture

of a low powered 2D Gaussian distribution and a uniform distribution across the cell. Using

the auxiliary velocity estimate from the location estimator in the tracking process provides a

more accurate track. Most importantly the performance of the SBT technique does not deteri-

orate with low . � � � � or with large spatial correlation in the environment as the conventional

triangulation methods do.

8.2 Suggestions for Further work

There are several areas in which further work could be carried out.

Channel Model A framework for the channel model has been developed, however several

parameters values had to be estimated due to the lack of real characterisation of these

parameters through real measurements. In particular the probability and length of LOS

and NLOS states in urban and suburban areas and the associated NLOS error distributions

in timing and bearing require qualification by actual measurement. The next stage after

this would be to develop angular correlation models for the various parameters.

LOS/NLOS Detection In this thesis only spatial variation in measurements were used to detect

and weight LOS and NLOS measurements. Performance could be enhanced by assisting

the prefiltering process with collateral information. In particular the instantaneous shape

of delay and azimuth power profiles could be used to determine whether a LOS compon-

ent is present. Furthermore NLOS correction can never be completely accurate, similarly

the weighting process, especially at low speeds when spatial diversity is much reduced.

An appealing enhancement would be to generate further weights based on residual rank

analysis as proposed in [40], [64].

Measurement Noise In this work genuine detection of signals was used to generate timing

measurement noise distribution. However the AOA and Doppler measurement noise was

assumed to have a Gaussian distribution with varying power. It would be desirable to
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assess the performance of detection algorithms for these measurement types too. This is

especially important in the back tracing technique which is highly sensitive to noise.

Statistical Location Methods for NLOS In Chapter 7 one method for robust estimation of

the MS location in NLOS using only one BS was presented. This method uses precise

geometry to calculate the location and thus is sensitive to noise. However other statistical

methods may exist which are also robust to NLOS. Using the circular scatterer model as

a basis for the multipath statistics it might be possible to exploit the relationship between

angular spread and MS–BS separation. Another idea is to use the fact that the expectation

of scatterer to BS separation is the same as the MS–BS separation.
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Appendix A
Cramér–Rao Lower Bound

Derivations

A.1 Cramér–Rao Lower Bound Calculations

The Cramér–Rao Lower Bound (CRLB),
	
�
, on the accuracy of an estimator for � is defined

as [23]

	
�
�SH

� � 


�
��� � � �
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�
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�
'

(A.1)

where � is the true value of the vector of variables and
�

is the measured vector of variables.

Assuming � is assymptotically Gaussian with respect to
�

then

�
�

�
� � � � 6

� R�� � ��� �
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��� � +
R � � (A.2)
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�
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R � (A.3)

where
�

is the covariance matrix of
�

. Therefore
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� �

' � �
��� �

(A.6)

Noting that for an RV � � ���
, where

�
is a non–random matrix and

�
is a random error

matrix,

HJI���� � P � � � � �
(A.7)
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Therefore, as
�

�
� � � � � ,
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�
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�
' (A.10)

where
�

is a matrix containing the partial derivatives of the measured variables with respect to

the unknown parameters.

A.1.1 Range Equation

The range equation is

� +
' � ��� � �

'
� + � ��� � �

'
� +

�
' � � ��� � �

'
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Therefore 
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Similarly 
 �
'
 � �
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'�

'
(A.13)

A.1.2 Range Difference Equation

The range difference equation is

� + � ' � � + � �
'

� � ��� � � + � + � ��� � � + � + � � ��� � �
'
� + � � � � �

'
� +

(A.14)
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Therefore 
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Similarly 
 � + � '
 � �
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(A.16)

A.1.3 Bearing Equation

The bearing equation is

�

' � ���
�
�
'
� � � �

'� � � 6 � (A.17)

Therefore 
 �
'
 � � 6

��� � �
'
� � 6 � = � �1� � D �= � �1� � D � � (A.18)

and 
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'
 � �

��� � � 6 �
��� � �

'
� + � 6 � = � �1� � D �= � �1� � D � � (A.19)
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Appendix B
Channel Model Definitions and

Derivations

The following general formula [105] applies when determining the joint PDF of two RV’s from

that of another two RV’s,

� � � � � 2 ��� � �
� � � � � � � �

�
��� �
�
�

�
��� (B.1)

where
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�
�

�
���

is the determinant of the Jacobian matrix, i.e.
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B.1 Calculation of Joint
�����	��


PDF for CoDiT Model

� 3 �

and
�	�

(
�

is the speed of light) can be expressed in terms of the cartesian coordinates
�

,
�
, where � is the MS–BS separation in metres, as

� 3 � � ���
�
�
'
� �

� � � � (B.2)

�	� � � � + � � + � � � � � � � + � � + � � (B.3)

The Jacobian matrix elements can be evaluated as

� � ���
� � �

�
= * �1� D � � � � � � � ���

� � � = * � � D= * � � D � � � �
� 4  
� � �

�
� � � � � � � = * �1� D� = * �1� D � � � �

� � 4  
� � �

�
� � � � � � � �

� = * �1� D � � � �
(B.4)
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For the transformation of
��� 3 � � �	� �

into
��� � � �

(B.1) can be rewritten as

� ��� � ��� � � � �
� � ��� � 4  ��� 3 � � �	� �

��� � � 3 � ���	� ��� (B.5)
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noting that in the CoDiT definition
� 3 �

and
�	�

are independent and uniformly distributed

RV’s. After some manipulation this gives
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B.2 Calculation of Joint
������� ���	��


PDF for the CoDiT Model

To calculate
� � � � � 4  ��� � � ���	� � an expression for

� 3 �

in terms of
� � �

is required. This is done

by a transformation through the intermediary cartesian coordinates.

Expressions for
�

and
�

can be found by solving the intersection of the ellipse with delay
�	�

,

given by

��� � *+ � +� + � � +
� + �76 (B.9)

where

� � * ��4  + � � � '+ � ���	� � + � R �	� �

and the equation of the line with AOA
� ���

at the BS, given by

� �
�

���
�
� ��� (B.10)

Substituting (B.10) in (B.9) and solving for the +ve root of
�
, after some manipulation, yields

� �
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�
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From (B.10)
�

can be expressed as
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From (B.2) therefore
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, after some manipulation, is given by
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Noting (B.1),
� � � � � 4  ��� ��� � �	� � can be expressed as
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where
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It is noted that 6 � ���
�
+ � � � � � � � + � ��� , however this substitution does not lead to any great

simplification.
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B.3 Calculation of the PDF of
� � �

for the First Arriving Path

in the CoDiT Model

In a similar way to (B.14)
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Integrating the above over all possible delays leads to
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which cannot be derived explicitly.

B.4 CoDiT Model Scenario Definitions

Scatterer  � � � � � - � � � � � �V� �/1� �
- � � � � ��� � �

1
�

1 15 0
�

0 [0,0.7] [1000,2000] 0
2–20 [0.1,0.6] 1 [0, R�� �

] [0,2] [0,0.9] [500,1000] [0,200]

Table B.1: CODIT urban model with added LOS path

Scatterer  � � � � � - � � � � � � � �/1� �
- � � � � ��� � �

1 1 15 0
�

0 [0,0.7] [1000,2000] 0
2–6 [0.1,0.4] [1,5] [0, R�� �

] [0.1,15] [0.1,0.1] [500,1000] [0,400]

Table B.2: CODIT suburban model

Scatterer  � � � � � - � � � � � � � �/1� �
- � � � � �@� � �

1 1 25 0
�

0 [0,0.5] [1000,2000] 0

Table B.3: CODIT rural model

�

changes made to original CoDiT model.
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Appendix C
Original Publications

The following papers are included in this Appendix:

Channel Model Implementation for Evaluation of Location Services
presented at the 3G2000 conference in London, UK, March 2000.

A Robust Location Estimator Architecture with Biased Kalman Filtering of TOA Data
for Wireless Systems

presented at the ISSSTA2000 conference in New Jersey, USA, September 2000.

Performance of a TDOA–AOA Hybrid Mobile Location System
presented at the 3G2001 conference in London, UK, March 2001.

Analysis of IPDL Patterns for Increased Signal Detection Probability in UMTS
presented at the VTC conference in Rhodes, Greece, May 2001.

Calculation of Mobile Location using Scatterer Information
accepted for publication in IEE Electronics Letters.
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CHANNEL MODEL IMPLEMENTATION FOR EVALUATION OF LOCATION SERVICES

N. J. Thomas, D. G. M. Cruickshank, D. I. Laurenson

University of Edinburgh, UK

ABSTRACT

Simulation and evaluation of location services presents a
number of new problems in the area of stochastic channel
modelling which conventional models do not account for.
Such problems are modelling of line of sight (LOS) probab-
ilities, LOS to non–line of sight (NLOS) power ratios, NLOS
excess propagation time delay, out of cell radio propaga-
tion/coverage, and spatial correlation factors.

A two level channel model which addresses these problems
is introduced. Local level effects, based on the CODIT
propagation model, and cell level effects are incorporated.
LOS probabilities and shadowing effects are treated inde-
pendently at each level. Several scenarios are developed
to model different levels of radiowave propagation between
cells, corresponding to flat and hilly terrain.

Simulation results for the two proposed Idle Period Down-
link (IDPL) Time Difference of Arrival (TDOA) techniques
for UMTS are presented.

INTRODUCTION

Traditional stochastic channel and propagation models were
designed to provide typical scenarios for testing mobile
communication systems. However realistic simulation of
location services requires special consideration of a number
of factors.

� Line of sight (LOS) path and corresponding probability
of LOS. Non–line of sight (NLOS) conditions will ser-
iously degrade the performance of all types of location
techniques (e.g. TDOA, TOA, AOA systems).

� Time of arrival of multipaths with reference to a true
LOS path. NLOS timing offsets will cause errors
in location estimation using time based systems (e.g.
TDOA, TOA systems).

� Dynamic delay and angular profile. NLOS timing er-
rors and NLOS angular errors will not be constant due
to dynamic propagation environment.

� Realistic out of cell path loss model and shadowing.
Transmission from several sources must be compared
at one receiver (or vica versa).

� Spatial correlation factors. The communication chan-
nel is correlated over distance.

A simple LOS model and path loss model to address these
points, which can be incorporated into the CODIT propaga-
tion model [1], are introduced and then simulated. Although
the simulation is a downlink TDOA system, the model can
be applied to the uplink for both timing and angular meas-
urement based location techniques.

CODIT MODEL

The CODIT model defines the scatterer make up of the
terrain. Individual scattererers are characterized by mean
power (

���
), coherence (Nakagami distribution, � � ), mean

incidence angle ( � � ) and mean time delay ( � � ). The model
can generate a realistic time–varying channel impulse re-
sponse and angular profile if the scatterers are regenerated
after the MS moves a certain distance. This distance can
be defined by a normal process (restricted to three standard
deviations), N[ �	� , �
���� ], where �
� is the mean scatterer
length. However the LOS ’scatterer‘ (defined at zero delay)
will have different statistics to the other scatterers. For this
reason a LOS model is defined.

It is necessary to make some slight adjustments to the
CODIT model. Firstly � � should be defined relative to
the LOS direction (i.e. ����� ����� ) to facilitate doppler
shift and/or arrival angle calculation. Secondly, the urban
model does not include a LOS scatterer. Therefore it is re-
defined according to Table 1 (for parameter definitions see
the CODIT report).

PATH LOSS MODEL

Conventionally path loss is modelled by a lognormal distri-
bution around a mean path loss provided by empirical for-
mulae. A single slope path loss with a standard deviation of
8–12dB is usually chosen to cover a wide range of condi-
tions. However if a LOS model is used only the variation of
LOS path loss uncertainty should be modelled. A two slope
model is employed which models the out of cell propaga-
tion more realistically than a single slope model [2]. The
breakpoint, ��� , is calculated from:

��� � �������
�! #" �  #$ �% & ��'�( (1)
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Scatterer � ��� ��� ���	��
����� ��� ����������� ������
������
1 1 15 0 0 [0,0.7] [1000,2000] 0
2–20 [0.1,0.6] 1 [0, � ] [0,2] [0,0.9] [500,1000] [0,200]

Table 1: CODIT urban model with LOS path
—————————————————————————————————————————————————

where  "!$# is the BS height,  "%&# is the mobile height, ')(
is the cell radius, and * is the carrier wavelength. Here it is
assumed that for small cells the transmitters are tilted down
to set the breakpoint at the cell radius. This will limit the
out of cell propagation for improved capacity but may be
detrimental to the performance of the location service.

The required parameters are the two slope indexes, �,+ (be-
fore the breakpoint) and �.- (after the breakpoint) and their
corresponding standard deviations, /0+ and /1- . The simula-
tion values in Table 3 are derived from measured data repor-
ted in [2].

Spatial correlation of the path loss variation is required as
the MS moves through the cell. This is modelled by a
decreasing exponential autocorrelation function [3] defined
by:

'�2�2"
	��3��$465.7
8 9;:�8<>= <$? @ - (2)

where ACB�D is the decorrelation length where ' 2�2 
	ACB�D$�E4FHG I
. The method for generating this form of correlated

Gaussian random variables is well known and defined by
a 1st order IIR filter (3).

JHK LM 4 JHK L�NPO�M Q)R 3 K LM�S OTNUQ"- (3)

where 3 K LM is a Gaussian distributed random variable, J"K LVM
is the autocorrelated output fed back into the filter, and Q
is the correlation factor, a function of A B�D and the sample
frequency.

LOS MODEL

It is important in the simulation of location services to model
the LOS/NLOS state of the channel. A LOS signal will tend
to be of higher power and accurate for timing and/or angular
measurements, thus improving the location estimator accur-
acy.

Considering Figure 1 it can be seen that the characteristics
of the NLOS path(s) (power, absolute delay, arrival angle)
change considerably when the location and size of the ob-
structor, relative to the MS, is changed. Two independent
processes are modelled, either (or both) of which can be ex-
perienced by an MS at any one instance.

Local LOS (LLOS) model

Scenario 1 (Figure 1) shows an obstructor close to the
MS (typically a large building). In this case, non–LLOS
(NLLOS), the mechanisms for propagation between MS and

MS

BS

BS
(or around) obstructor

Scenario 2;

Diffraction over
Cellular obstructor

Reflection off
Local obstructor
Scenario 1:

scatterers

Figure 1: Local and cellular obstructors.

BS will be reflections off local scatterers, as defined by
the CODIT model, outwith the shadow region of the ob-
structor. Traversing regions of NLLOS and LLOS can be
simulated by the disappearance and appearance of the LOS
tap (defined at zero delay) in the CODIT model.

To generate the LLOS/NLLOS state sequence the LLOS
probability, W D"D1X # , mean LLOS run length, A DHD�X # , and
associated pdf are defined. In the following simulations
the LLOS sequence is generated by re–evaluating the LLOS
state (according to W DHD�X # ) and current run length (defined
by a normal process (restricted to three standard deviations)
N[ A DHD�X # , A DHD�X #1Y,Z ]) each time the MS has travelled the
previous run length.

Clearly W D"D1X # is a quantity defined by the nature of the
terrain. As no actual W D"D1X # measurements have been found
it is necessary to estimate the value. For simplicity W DHD1X #
is considered constant with MS–BS separation. A DHD1X # will
depend on the typical width of buildings and roads in urban
and suburban areas.

In practice it may be possible to distinguish between LLOS
and NLLOS regions by analysing the variance of the timing
data [4]. Timing errors caused by NLLOS and multipath
conditions can be corrected given enough a priori location
diversity. [5] use an adjusted least squares fit of the timing
data to estimate an unbiased timing.

Cellular LOS (CLOS) model

Scenario 2 (Figure 1) shows an obstructor at distance from
the MS (typically a hill ridge). In this case, non–CLOS
(NCLOS), it is assumed that a single path diffraction over
(or round) the obstructor is the dominant propagation mech-
anism. Associated with this diffraction will be a change in
coherence, attenuation, additional time delay and possible
angular deflection which will affect all the local scatterers in
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scenario 1 (it is assumed that the shadow of the obstructor
is large enough to encompass all the local scatterers). It is
important to note that with good cell planning a CLOS ob-
structor would not exist centrally within a cell, rather at or
near the cell boundary and so would typically affect radi-
owave propagation between cells. A serving BS would be
unlikely to be shadowed by such an obstructor.

Again to generate the CLOS/NCLOS state sequence the
CLOS probability, ��������� , mean CLOS run length, 	
�������
and associated pdf are defined. The sequence is generated
in the same way as the LLOS state sequence.

Three CLOS scenarios have been considered to simulate dif-
ferent radiowave propagation between cells.

Unobstructed – ������������ for all BS’s, i.e. no obstruc-
tions between cells.

Partially obstructed – �������� is defined by (4) for non–
serving BS, ������������ for serving BS, i.e. flat terrain
with some large features.

� �������
����������������� �! #" $&%�')(* �,+-�.+-/0�1 ��23/4�

(4)

where � is the MS–BS separation in cell radii.

Obstructed – ��������5� 1
for all but serving BS,

���������6�7� for serving BS, i.e. all surrounding BS’s
are obstructed (e.g. by hills).

The value for 	
������� depends on the terrain. In urban areas
it might be expected to be the width of the shadow of a large
building, in rural the width of the shadow of a hill.

The shadow regions caused by NCLOS conditions have four
effects on the channel (all scatterers) experienced by the MS.

Loss of coherence ( 8:9;������� ) The diffracted path can be
assumed to contain a summation of diffuse parts caused
by the irregularity of the diffraction edge. This has an
effect of decreasing the coherence of the path. Within
the CODIT model this can be modelled by decreas-
ing the Nakagami–m value of the paths in the CODIT
model (towards Rayleigh fading, 8<�#� ).

Power attenuation ( =;9;������� ) All paths to the MS will be
attenuated. Diffraction theory and measured data sug-
gest the typical range for this attenuation is 0–30dB
( [6] p55). In the following simulations a uniform dis-
tribution across subsections of this range is used.

Time delay ( >?9;��������� The additional distance travelled
round the obstructor causes a delay in the signal ar-
riving at the MS. Typically this will be a small delay
(0–1 @�A ). In the following simulations a uniform distri-
bution across subsections of this range is used.

Angular deflection ( B�9;������� ) There is a possibility of
a small angular deflection caused by the obstructor
which can be modelled by a Gaussian distribution with
a mean of zero degrees.

=!9;������� and >?9;������� will clearly be correlated across their
specified ranges. A correlation factor, C;D %�E , is used in
the following simulations. Each time the MS enters an
NCLOS region the four parameters are generated as defined
by their pdfs. Transition from CLOS to NCLOS regions are
smoothed over the first tenth of the actual CLOS run length.

IPDL SIMULATION

The fundamental problem with all location techniques in
CDMA systems is that of hearability (i.e. the ability to
‘hear’ distant BS’s which transmit on the same frequency).
One suggestion for UMTS is to insert idle periods in the
downlink of the BS. In these periods timing measurements
can be made for more distant BS’s.

Two slightly different proposals have been made. In pseudo
random IPDL (PR–IPDL) each BS goes idle in one of 16
different slots, chosen randomly, in the idle frame [7]. In
time aligned IPDL (TA–IPDL) each BS goes idle at the same
time in the idle frame [8]. However in TA–IPDL the pilot
code or broadcast channel is still transmitted in the idle slot
with a certain probability. Both methods require known BS
synchronisation offsets.

In following UMTS simulations the pilot codes (transmitted
over 1/10 of the slot) are used for the timing measurements.
This provides a lower processing gain than using the broad-
cast channel (continuous), but is much simpler as the pilot
code is the same for all BS’s. All the BS’s are frame aligned
at 1/16th slot offsets which allows the source of the received
pilot symbols to be identified.

The TA–IPDL system simulated uses idle periods of length
two slots and the pilot code transmit probability set to one.
In that way at least one totally idle slot length is available to
take measurements. In the PR–IPDL system the idle period
length is one slot at double the frequency.

Parameter TA–IPDL PR–IPDL

Idle frame frequency (Hz) 5 10
Idle period length (slots) 2 1
Pilot transmit probability 1 NA
Idle guard length (slots) 0.1 0.1
System capacity loss (%)1 0.6875 0.75

Table 2: IPDL parameters

Receiver architecture and parameter settings

A simple receiver structure is implemented, consisting of a

1not including additional signalling required.
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matched filter, square law envelope detector, and threshold
detector. Trailing multipaths are removed from the output of
the threshold detector and the remaining leading edges as-
signed to the most likely BS. Timing data is collected each
idle slot over the one second run time and the earliest arriv-
ing path for each BS used as the final timing data for the
location estimator. This assumes that the MS is approx-
imately stationary over the one second, but provides some
multipath and LLOS diversity as the channel will not be sta-
tionary. No knowledge of the timing error process variance
is assumed in the location estimator and no a priori location
data is available for Kalman filtering.

The simulation uses a hexagonal array of 16 cells for urban
and suburban areas and 7 cells for rural areas. The MS is
randomly placed in the area of the central BS cell with a
random bearing. After one second the location is evaluated.
This is simulated 50 times per terrain/scenario. It should
be noted that in this short run time little spatial diversity of
LLOS and CLOS effects will occur. The SNR value is the
ratio of the average LOS power of the pilot channel at the
cell boundary to the noise floor (considered constant over
the cell).

TA–IPDL simulation results for different values of ���������
for the partially obstructed urban and suburban scenarios
are also presented (the CODIT model does not allow for
NLLOS in the rural setting).

Tables 3, 4, 5 shows the system, terrain specific and scenario
specific parameters.

Results and Discussion

The results (Figure 2) show that for both the unobstruc-
ted and partially obstructed scenarios the IPDL method can
probably perform at or above the original FCC E911 man-
date [9] of � 125m 67% of the time (these accuracy require-
ments have since been tightened). The hearability of BS’s in
the obstructed scenario drops to below that required for the
TDOA location estimate. In the case of the urban scenario
the cell scale is small enough that the location error may still
be tolerable (just below the FCC E911 mandate level).

The TA–IPDL results are much better than the PR–IDPL
results. The main reason for this is that the mean number
of BS’s hearable was below 3 for PR–IPDL. In this method
clearly the probability of ‘hearing’ three BS’s is affected by
the probabilityof the two closest BS’s going idle at the same
time. In this case this probability is 	�
�	� , which gives the
probability of this event happening at least once in the sim-
ulation as 	�����	���
�	������������� �! � . Simulating a longer run
time would improve the PR–IPDL results, however there
will always be an inherent problem of low measurement
availability. For this reason TA-IPDL should be prefered
as more timing data measurements will be possible because
BS interference is not a (major) factor.

It can be seen that increasing hearability beyond a certain
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Figure 2: Circular error and hearability results for different
scenarios

level (3–5 BS’s) reduces the accuracy of the estimator (no-
tice the partially obstructed scenario outperforms the unob-
structed scenario for TA–IPDL, Figure 2 (a1,b1,c1)). This
is due to an increased probability of using measurements
corrupted by NLLOS/NCLOS errors. This suggests that re-
ducing the set of data at the input to the location estimator
based on an LLOS state estimate will be beneficial.

The results in Figure 3 show the high sensitivity of location
error to the �"���#�"� parameter for the suburban model which
has a higher delay spread than the urban. In the urban model
there are so many scatterers that usually the first detected
path occurs quite close to zero delay. Hearability is also
affected slightly in the suburban environment due to the loss
of the LLOS path.

CONCLUSION

A channel model implementation suitable for evaluation of
location services has been demonstrated. As the statistics
of the LOS states and their properties are not known it is
necessary to make intuitive estimates or carry out simulation
over a wide range of values.
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Figure 3: ��������� sensitivity results

It is clear from the simulation results that the LLOS and
CLOS states have a great effect on the performance of the
location estimator and therefore should be considered care-
fully. The results suggest that hearability in hilly rural and
suburban areas may be a problem. The location accuracy
figures provide a lower bound on location accuracy per-
formance. To improve on the performance the receiver must
be adapted to take advantage of the spatial diversity of the
multipath, LLOS and CLOS states. With suitable LLOS
state estimation, NLLOS mitigation and Kalman filtering
this should be be possible.

An improvement to the model would be to include angular
correlation of path loss variation and LOS states. Parameter
sensitivities, development of a more robust receiver archi-
tecture, and doppler tracking techniques are areas of future
research.
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Parameter Value

Carrier frequency 1.92GHz
Chip rate 3.86Mchips/s
Over sampling rate 4
Modulation scheme QPSK
Slot frequency 1600Hz
Pilot length 256 chips
Pilot transmit power (% of total) 20%
Pilot SNR 0dB
Time resolution 1/64 chip
Max. frame desynchronisation 0 chips
Pulse shaping roll off rate ( � ) 0.22��	 � 2m
�� ,  � 3.0, 2.6
�� ,  � 6.0, 5.8�������

0.8����� ����� 5

Table 3: System parameters

Parameter Rural Suburban Urban

CODIT model rural suburban urban� � (km) 10.0 2.0 0.5��� � (m) 50.0 30.0 30.0� � (m) NA 20 5� � � (m) 20 20 5
� �!����� 1.0 0.8 0.2� �!����� (m) NA 30 15� � ����� (m) 1000 200 50
MS speed (kmph) 150 50 5

Table 4: Terrain specific parameters

Parameter Unobst. Partial Obstructed

� � ����� 1 1 1
(serving BS)
� � ����� 1 see (4) 0
(other BS’s)
NCLOS NA U[0,10] U[10,20]
shadow (dB)
NCLOS NA U[0.0,0.4] U[0.2,0.8]
delay ( " 
 )

Table 5: Scenario specific parameters
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ABSTRACT

A time difference of arrival (TDOA) technique has been pro-
posed for providing location services in future UMTS net-
works. The performance of such a system is limited by errors
in the time difference (TD) measurements primarily cause
by non–line of sight (NLOS) propagation conditions. In fu-
ture systems angle of arrival (AOA) measurements at the
serving base station (BS) may be available, primarily as a
requirement to increase downlink capacity via beamforming.
These measurements may also be useful for location pur-
poses, though they will also be subject to errors caused by
NLOS propagation conditions between the mobile (MS) and
the serving BS. In this paper the performance improvement of
a TDOA location system utilising the AOA measurement from
the serving BS, over a TDOA only system is evaluated. Simu-
lation results are presented which show that location accur-
acy improvement is possible even in highly NLOS conditions.
Furthermore location estimation is now possible when only
two BS’s are detectable, rather than the three BS’s required
in the TDOA only system, thus increasing the coverage of the
system.

1. INTRODUCTION

In wireless systems the need for accurate location estima-
tion has been motivated by the US FCC’s E911 mandate for
emergency services [1], as well as customer services (e.g.
fleet navigation, location billing), and network aspects (e.g.
improved traffic management).

In UMTS a TDOA based location estimation technique has
been proposed utilising idle period downlink (IDPL) to allow
time differences (TD’s) to be calculated between the serving
BS’s and more distant BS’s.

Naturally in line of sight (LOS) conditions the performance
of such a system can be very accurate. However if any
of the TD’s are measured when a BS is non–LOS (NLOS)
then sizeable location errors may be generated. In [2] it is
noted that NLOS propagation lengths may be typically 400m
greater than LOS.

Increasing the number of measurements can increase the loc-
ation accuracy, but care must be taken not to utilise NLOS
measurements where possible. In [3] a robust receiver archi-
tecture was introduced in which timing measurements were
tracked via a Kalman filter (KF) with a simple LOS state in-
put estimator. The KF variance estimates generated are used

as a weighting matrix in the location estimator. The receiver
performs well even in a largely NLOS environment.

In future mobile systems antenna arrays may become stand-
ard. In this case the MS’s angle of arrival (AOA) will be
known at the serving BS (and possibly adjacent BS’s if the
MS is in a soft handover region). The AOA measurements
will be subject to NLOS errors correlated to the errors in
TD’s involving the serving BS, but should still be useful to
the location estimator.

In this paper the performance improvement of a TDOA loca-
tion system utilising the AOA measurement from the serving
BS, over a TDOA only system is evaluated. The NLOS prob-
lem is first discussed in more detail then the proposed loc-
ation receiver architecture is described. Simulation results
for measurements from a time aligned idle period downlink
(TA–IPDL) [4] UMTS system are then presented.

2. NON–LINE OF SGHT PROBLEM

Timing and AOA measurements in NLOS conditions will be
subject to large errors. The received signal in NLOS con-
ditions is made up of a superposition of arriving rays from
local and distant scatterers. As the MS moves through the
environment, scatterers appear and disappear, thus there is a
high degree of spatial correlation in measurements. This cor-
relation is inversely proportional to the MS speed, and also
dependent on the environment type.

The NLOS error in timing measurements (or excess delay)
is positive only, with a distribution usually considered to be
exponentially decaying [5]. In AOA measurements at the BS
there is an angular spread around the true LOS AOA. In [6]
an angular spread with standard deviation 17.6 degrees in an
urban environment is measured.

2.1. LOS model

In modelling the LOS/NLOS characteristics of the environ-
ment a LOS model based on the CoDiT model[7] is used.�

scatterers exist in each environment, defined in terms of
delay (uniformly distributed within a range) and AOA at the
MS (uniformly distributed over ��� ). Scatterers appear and
exist for a length normally distributed around ��� . A LOS
path is present with probability �	��
�� . The LOS path ex-
ists for a length normally distributed around ���
�� , before
the LOS state is re–evaluated. ����
�� is dependent on the
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geometry of, for example, surrounding buildings and streets
and thus conceptually the ������� might be expected to have a
value of the order 10–100 metres.

The probability density function of the NLOS excess delay,�	��
 , in the model or identically the pdf of the arrival time of
the first of N paths in the uniformly distributed delay range
can be derived as (space does not permit the derivation)

�� � ��
���� ����������������! "���"# $&%('*)&+ 
,��-*. � ���  /�0�/# $�������� "���"# $�1"243 �  �506�87*9;:=<>� ��
 <?�87A@8B"C�ED FHG�I�JHKMLON(PQJ!R
(1)

where + 
,��- is the identical detection probability of each scat-
terer and �87*9;: to �87A@8B is the range of scatterer delays.

�� � �0
!�
has a shape similar to the exponential pdf but over a finite
range, and does not always integrate to one. In such cases+ 
,��- is too low and there is a probability that the signal is not
detected.

The pdf of the AOA of the first received path at the BS in
NLOS conditions is complicated to derive in closed form.
However Monte–Carlo simulation have shown that as the
MS–BS separation increases the angular spread around the
true AOA decreases and, even in NLOS conditions, a fair es-
timate for the AOA may be obtained if there is some spatial
diversity.

3. RECEIVER ARCHITECTURE

Figure 1 shows the receiver architecture implementation.
The architecture can be thought of in three stages: prefilter-
ing of measurement data to correct/remove as far as possible
NLOS data as well as smooth sampling measurement noise;
the variance weighted location calculation; and a final KF
tracking stage to provide a time continuous smoothed mo-
tion.

3.1. Prefilter stage

The received timing measurements, � 5,S S T , and AOA meas-
urement, U 5 , may be heavily corrupted with NLOS errors,
which ideally would be discarded. However the environment
may be such that no good data is available for considerable
periods of time, so the function of the prefilter stage should
be to make the best use of the available data. Also, in track-
ing the measured parameters, the manoeuvring capability of
the MS must be taken into account.

KFs are used to track � 5,S S T and U 5 to their first derivative. If
the true parameter value is known the pdf of the parameter’s
new value after a time interval can be predicted. For example
if the MS has manoeuvred and its velocity is considered uni-
form in speed (to a maximum speed) and direction, a pdf of

the new parameter,
�V + � can be derived as�V + ���EWVXZY8[Z\^] 3 �"_�� ����� 6` 5a � ���Z� XZY8[Hb"c^d�fe g % . � ���Z�Mh � ���Z�ji 5, lk!mk m����� 1 _on ��n 2a � ����� (2)

where + 7p@,B is the maximum change in parameter in the time
interval. (2) is of similar shape to the Gaussian pdf with equal
variance; the major difference being that the Gaussian pdf is
over an infinite range whereas (2) is limited to q R r!s .

This pdf leads to a simple input estimator which discards data
that is definitely NLOS and cannot be due to a manoeuvre.
A weighting is applied to the measurement noise variance
estimate, s/tu , as followsvs tu �>wyx�z|{js t����� C P 5 _ 5}  KM��~ (3)

where P 5 _ 5 is the parameter variance estimated by the KF,s/t����� is the minimum parameter measurement variance in
LOS conditions, and

}  KM� is a weighting function, a func-
tion of the residual K between the measured parameter and
the KF prediction. In the following the weighting function
is defined as a Gaussian curve normalised to one at its max-
imum, }  K���� J  �� mm�� ]���]� 5
where � 5 allows for some magnitude adjustment in the KF
output variance estimates, s/t�Q5,S S � and s/t��5 , which were found
by simulation to be smaller than anticipated due primarily to
correlated NLOS data.

In TOA filtering, the NLOS error pdf is not symmetric about
the true LOS TOA. If a TOA is measured that is earlier than
the predicted TOA LOS measurement noise region the filter
outputs are forced to take the measured value on the assump-
tion that a manoeuvre has occurred (the parameter velocity
estimate should also be adjusted). In this way the filter at-
tempts to track to the LOS edge of the data.

In AOA filtering, the NLOS error pdf is symmetric about the
true pdf. The KF should naturally converge to the true LOS
direction given enough uncorrelated NLOS measurements.
Simulation shows that convergence can be slow if the initial
measurements have large NLOS errors. In such cases reset-
ting the KF greatly improved performance.

3.2. AOA–TDOA estimator

A time difference vector, ���� (� � , and covariance matrix, � � ,
can be formed from �� �� � and

vs/t� , defined as���� �� ��������,�o�(���/� ��0�Q�(�j�"�y�	��� �� ���,�Q�(�j��� ��8�*�(�j�"�y�	��� ��� C
� � �����  �¡ � �(�j��¢ �  �¡0£ �����¥¤�¦¨§o©�  �¡ � �(�j� ¤�¦«ª�¬0§p¦ªH©® ¯	°�±�²o³	´ ¤µ� ²
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Figure 1: Receiver architecture with TOA and AOA data streams.

where ����� � represents the measured synchronisation offset
between BS � and BS� , and ��� is an 	 by 	 matrix with
terms as defined.

The most likely MS location, 
������� , can be found from the	���� time difference hyperbolae defined by��� � �������� "!#$� � � ��%�& &�$' � ���(���� "!#)' � � ���� (4)

where � � is the distance between the MS at �*,+)-�� and BS � at�*��.+)-���� ; and the AOA such that/.0�132 �(� *4�5* �-3�6- � (5)

In [8] a linearization of (4) in terms of dependent variables�*7+.-�+ ��� � is demonstrated which yields a standard weighted
least squares (WLS) solution. The further constraint from
equation (5) is added to yield the WLS solution of the form!8 ��9�:<; �>= � :>? = � :<; �>= �A@ (6)

where

:B� �
CDD
E
* � �"* � - � �F- �G�� 5!#$� � �&H& & & & &* ' �F* � - ' �5- � �� "!# ' � ��I� /.0�1J2 � K

L MM
N +

@ � �O
CDD
E
 �$ "!#�� � � � ��P * � � P - �� �F* �� �F- ��& & �� "!# ' � � � � P * � � P - �� �F* �' �F- �'O * � � O - � /.0�132 �

L MM
N

and

� �
CDD
E

K��� &H&KK & & KRQ �S �
L MM
N

In the definition of � the covariance terms between #�� and2 � are taken as zero for simplicity. In reality these covari-
ances will lie in the range K to Q � � Q S � .
This WLS solution implies independence between the vari-
ables �*7+.-�+ � � � which is not the case. Chan [8] suggests a
further calculation which imposes the true dependencies on
the variables which is shown in [8] to be a more efficient
estimator. In this paper both WLS and Chan’s method are
assessed.

The accuracy of
!8

is determined by evaluating its covariance
matrix,

!T
. In the case where the solution is precisely de-

termined, i.e. one TD and one AOA, the Cramér Rao lower
bound (CRLB) is used as an estimate of

!T
. The CRLB, U � ,

for the AOA–TDOA estimator can be derived as

U � � WV ; �>= � VX�)= � (7)

where

V �
CDDDDD
E

Y Z�[ = Z�\] [ � Y Z�^ = Z_\] ^ Y `�[ = `�\] [ � Y `�^ = Z�\`$^& & &H&Y Z [ = Z_\] [ � Y Z_a = Z_\] a Y ` [ = `�\] [ � Y `�a = Z_\`$a�Y ` = ` [ \�b �AcJd e�f�e [)g ^d hAfih [ g ^�j Y Z = Z � \Y ` = ` [ \ ^ b �Ackd e�f�e [lg ^d hAfih [ g ^mj

L MMMMM
N

Simulation shows that trace n !TXo is often smaller than the true
mean squared error. The variance calculation assumes no
bias in the measured TD’s. Clearly the prefilters can never
correct perfectly the NLOS bias, thus a multiplicative factor,pm� , is applied to

!T
before the final KF tracking stage to give

a more realistic error measure.

4. SIMULATION AND RESULTS

A UMTS system incorporating TA-IPDL was simulated.
Cells were arranged in a hexagonal grid around the serving
BS. Timing measurements are made from the pulsed pilot
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channel during idle periods when all BS’s stop transmit-
ting traffic channels. Table 1 shows the system parameters.
Four 90 second scenarios were simulated: fast car in rural
terrain (150kmph, curve), car travelling in suburban terrain
(50kmph, zig–zag), car travelling in urban terrain (50kmph,
zig–zag), and pedestrian walking in urban terrain (5kmph,
zig–zag). Table 2 shows the scenario dependent parameters.
Table 3 shows reasonable values for ��� and ��� . Ten statistic-
ally identical runs at each scenario were made. The receiver
architecture is simulated with and without AOA information
and with both WLS and Chan’s estimator to calculate the
location.

Figure 2 shows the simulated measured AOA data from the
serving BS and KF outputs of a typical track in the urban car
scenario. Figure 3 shows the simulated measured TOA data
from a non–serving BS and KF outputs of a typical track in
the urban car scenario.
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Figure 2: A typical AOA track in urban car scenario.

0

10

20

V
ar

ia
nc

e 
(s

am
ps

^2
) 0 30 60 90Time (secs)20

40

60

80

100

T
O

A
 r

el
at

iv
e 

to
 a

rb
. s

am
p 

(s
am

ps
)

Urban (50kmph) − BS2 at (0,865)

Measured TOA
KF output
True TOA

Figure 3: A typical TOA track in urban car scenario.

Figure 4(a1) shows the results of simulations for the rural
scenario with varying Gaussian noise power on the AOA
measurements. The mean number of BS’s detectable (or
hearability) in each idle period was approximately ��� � . It is
clear that Chan’s algorithm outperforms the WLS algorithm,
and it is noted that the gain achieved by using the AOA can
easily lost by using an inefficient estimator. Using the AOA
measurements gives a substantial improvement (up to 60%)
in 67% location accuracy if the measurement noise power,
	 �
����� , is less than ������� rads � . By similar triangles it is
reasonable to assume a smaller cell radius would further de-
sensitise the location error to 	 �
����� . Subsequent simula-
tions use ��� ��� rads � as an attainable value for 	 �
����� .
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Figure 4: 67% circular location error against (a1) AOA
noise power, for the rural scenario; (b1)–(d1) � ���� , for the
suburban, urban car, urban pedestrian scenarios; (a2)–(d2)
hearability, for all scenarios
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In Figure 4(a2) the hearability is varied. In TA–IPDL this
is possible by increasing the pilot channel power; in inter-
ference limited systems the processing gain would require to
be increased. Each point on the graph corresponds to a 3dB
change in SNR (after processing). It can be seen that the re-
ceiver performance does not improve greatly as the number
of BS’s detectable increases. Due to the KF prefilters the loc-
ation accuracy remains good even when the mean number of
BS’s detected per idle period is very small (i.e. ��� ).

Figures 4(b2), 4(c2), 4(d2) show the effect of varying the
hearability in the suburban, urban car and urban pedestrian
scenarios respectively. As in the rural case a practical limit is
reached above which increasing hearability does not improve
performance. Utilising the AOA data improves location ac-
curacy in the suburban and urban car scenarios. This im-
provement is not as great as in the rural (simple LOS) scen-
ario, but is upwards of 20%. In the urban pedestrian scenario
the performance is worse using the AOA data. In this case
the KF operation is poor due to the high level of correlation
between AOA samples.

Figures 4(b1), 4(c1), 4(d1) show the effect of varying �����	�
in the suburban, urban car and urban pedestrian scenarios re-
spectively. The suburban model is only realistic for high val-
ues of � ���
� . As would be expected performance improves
with increasing � ���
� . This is most noticeable in the pedes-
trian example where at low �����	� due to low spatial diversity
performance is poor.

It should be noted that during the urban car and suburban
scenarios the MS underwent unrealistic instantaneous direc-
tion changes so the actual location errors predicted are prob-
ably quite pessimistic as they include errors as the filters ad-
apted to the manoeuvre.

5. CONCLUSIONS

The simulation results show that utilising potentially avail-
able AOA information at the serving BS in the location func-
tion can lead to a significant improvement in location error
performance (20%-60%) in most scenarios.

In the pedestrian environment no improvement was possible
as the KF implementation fails to cope with the high level
of correlation in the NLOS AOA errors. In such a scenario
long term averaging of the filtered AOA may be a sensible
strategy and this is the subject of ongoing work.

A further advantage of using the AOA measurement is in
coverage. The system can operate with reduced detection of
surrounding BS’s that might, for instance, occur at the edge
of a cell network or in rural areas where BS’s are distantly
spaced.
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Parameter Value

Carrier frequency 1.92GHz
Chip rate 3.86Mchips/s
Over sampling rate 4
Sample distance @c=3e8ms 
� 19.5m
Modulation scheme QPSK
Pilot length 256 chips
Max. frame desynchronisation 0 chips
Pulse shaping roll off rate ( � ) 0.22
Idle period frequency 5Hz
Idle period length 2560 chips

Table 1: System parameters

Parameter Rural Suburban Urban

CoDiT model rural suburban urban
Cell radius (km) 10.0 2.0 0.5
�
���
� 1.0 0.8 0.2� ���
� (m) N/A 30 15� � (m) N/A 20 5

Table 2: Scenario specific parameters

Scenario � � ���
Rural 1 1–16
Suburban 1 16
Urban car 4 25
Urban ped 4 40

Table 3: Values for variance correction factors

211



Original Publications

Analysis of IPDL Patterns for Increased Signal Detection Probability in UMTS
N. J. Thomas, D. G. M. Cruickshank, D. I. Laurenson

Department of Electronics and Electrical Engineering,
University of Edinburgh, UK

email:njt@ee.ed.ac.uk

ABSTRACT

To support mobile location services in UMTS systems, idle
period downlink (IPDL) techniques have been proposed to
avoid the near–far effect in CDMA systems and thus to facil-
itate the measurement of time difference of arrivals. In this
paper the effects of the idle period pattern and variable co-
herent and non–coherent integration lengths on the detection
of signals from distant base stations are evaluated theoretic-
ally under some simplifying assumptions and by simulation.
The proposed clustered idle period patterns are assessed and
shown to outperform regular patterns in certain conditions.

1. INTRODUCTION

In wireless systems the need for accurate mobile station (MS)
location estimation has been motivated by the US FCC’s
E911 mandate for emergency services [1], as well as cus-
tomer services (e.g. fleet navigation, location based billing),
and network aspects (e.g. improved traffic management).

Currently favoured for UMTS, the 3rd generation CDMA
system, is to use a time difference of arrival (TDOA) method
which utilises timing measurements from a pilot channel
(PC), either the primary synchronisation channel (pSCH) or
primary common pilot channel (pCPICH), obtained from at
least 3 base stations (BS’s). The primary problem in such
a scheme is that all BS’s transmit on the same broadband
frequency. Therefore obtaining the required timing meas-
urements from distant BS’s becomes impossible when close
to the serving BS. In these situations the interference power
from the serving BS can be more than 40dB above the power
of the distant BS. To reduce this interference effect IPDL
techniques have been proposed ([2],[3]) whereby the serving
BS ceases transmission during idle periods, allowing distant
BS’s to be detected. Such systems introduce a capacity loss
to the downlink which should not cause an unacceptable loss
in quality of service (QoS) in real time communication, such
as speech and video services. Therefore choice of an efficient
idle period pattern is important.

In this paper the effects on the detection probability of dis-
tant BS’s of varying the idle period pattern are presented.
The performance of a matched filter (MF) receiver with vari-
able coherent and non–coherent integration lengths is presen-
ted. The effect of Rician and Rayleigh fading, shadowing and
different MS speeds are investigated. Specifically it is of in-
terest to evaluate any trade off in idle period spacing between
decreased spacing, to allow longer coherent integration time,

and increased spacing, to allow greater fading and shadow-
ing diversity. In the following section the IPDL and PC struc-
tures are discussed in more detail. The receiver architecture
is then introduced and some theoretical performance calcula-
tions made under some simplifying assumptions. Simulation
results are then presented.

2. IDLE PERIOD DOWNLINK AND PILOT CHANNEL

The pSCH is a pulsed pilot symbol of length ���������
	����
chips transmitted once per 2560 chip slot (slot period,����� ��� 	���� �������� ). Each BS uses one of sixteen differ-

ent code alignments in the slot at 160 chip intervals. pSCH
symbols from different BS’s therefore overlap fractionally in
time at the transmission instance. At the MS there can be fur-
ther overlapping of pilot codes due to varying propagation
times between BS’s and MS. The pCPICH is a continuous
transmission of the scrambling code with no data modula-
tion, its primary function being scrambling code acquisition
and a phase reference for other channels [4].

In the pseudo random IPDL (PR–IPDL) proposal [2] idle
UMTS frames are transmitted at regular intervals, see Fig-
ure 1. In each frame of period

���! #"�$ � 	&% �'����� ��� , a random
idle period position (IPP) is chosen in which the serving BS
switches off, allowing the MS to take timing measurements
from the PC of other transmitting BS’s. As interference
will be present during the idle period using the continuous
pCPICH ( � ������� 	(�*) � � � ) for timing measurements is prefer-
able due to the increased processing gain available.

The length of the idle period, �*) � � � and the separation
between idle frames, � � �,+ are key parameters. Practical val-
ues of �-) � � � 	.��� �'����� ��� or

����� ��� and /0) � � � 	 �21 %!�354 to
avoid QoS degradation have been proposed in [5]. If the idle
periods are regularly spaced then the idle period frequency,
� � �,+ is simply the reciprocal of /0) � � � . In this paper clustered
idle period patterns, implying � � �,+76 %!8�/0) � � � , are also in-
vestigated. Idle period clusters are only considered regularly
spaced with frequency, /*� � 9� �:�  . Figure 2 defines the para-
meters more clearly. Note that when � � �,+ 	;�-) � � � the idle
periods become consecutive and that between each cluster
there is a spacing larger than � � �,+ .
In PR–IPDL the probability that any non–serving BS will be
transmitting during the serving BS idle period, < �  #"�=>� , can
be evaluated as

< �  #"�=>� 	?% 1@�-) � � ��A�! #"�$ � (1)
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Figure 1: IPDL frame structures

[3] proposed a time aligned scheme (TA–IPDL) whereby all
BS’s cease all transmission, except their PC with probability9;:=<?>A@CB

, at the same time (see Figure 1). If the pSCH is used
then

9;:D<?>A@CBFEHG
since the arriving codes will be almost non–

overlapping in time and measurements will be noise limited
during idle periods. If the pCPICH is used

9I:D<A>?@JBKEMLON P
has been proposed in [5]. An advantage of TA–IPDL is that
the PC power can be boosted to 100% of the transmit power
during the idle period.

Continuous and burst mode operation [6] may also be sup-
ported. In burst mode the idle periods are transmitted only
in regular bursts with enough idle periods present in each
burst to make the timing measurements. Burst mode can re-
duce capacity loss if MS location updates are required infre-
quently.

In this paper a TA–IPDL system utilising the pSCH for tim-
ing measurements is analysed. However with consideration
of
9Q:=<?>A@CB

the conclusions apply to other methods.

The IPP is assumed fixed within a cluster
Fcluster

FidleNumber of idle periods in cluster=

cluster1/F

L sep

Idle Cluster

L idle T frame IPP

Figure 2: IPDL parameter definitions

3. RECEIVER ARCHITECTURE

The receiver architecture, R1, (see Figure 3) is based on a
conventional matched filter (MF) synchronisation circuit. It
is supposed that the receiver can adapt the coherent and non–
coherent integration lengths to maximise the power of the
output signal, ROSUTWV .
The coherent integration length is described as a multiple,XZY

, of the UMTS slot length ( [I\D]A^ _ Ea`bB ^ c : ). The Doppler

frequencies are low enough that the channel can be assumed
constant over the slot length. The non–coherent integration
length is described as a multiple,

X @
, of coherent parts. For

simplicity
XZY

and
Xd@

are always whole powers of two, andXfeg>AhiEjXZYkXf@
is the number of stored idle periods.

3.1. COHERENT INTEGRATION

The MF output is stored slotwise, M(i,s) ( T is the sample in
slot index and l is the idle slot index ), and integrated overXZY

idle slots. In R1 it should be noted that due to the variable
gain factor,

X Y
, the MF output power must be normalised by

a factor
GnmoXZY

to allow power levels to be compared. The
output of the coherent integration stage, pqSUTsrutvV (t is the co-
herent segment index), is the signal power envelope.

The normalised power gain of the matched filter depends
on the Doppler shift of the channel and, for a simple single
phasor channel, can be expressed aswfxny?zq{ E G[}|Y c~]A_ �~��� | SU�b��] `bY [ Y c~]?_nV�~� � | SW����] `bY V (2)

where
`�Y

is the chip duration and ��] is the Doppler shift. For
variable coherent integration length with a pulsed pilot code
the gain is defined with

X Yk������� rA� E�LON�N~� ��� | S X e�>?h V?� to
maximisewf� yAzq{ E XZY �~� � | SU�b��] `bY SU[ Y cs]?_F��[ B _D�OS XZYF��G VsV~VSU[ Y cs]?_F��[ B _D��S XZYF��G VsV | �~� � | SW����] `�Y V (3)

where [ B _D� is measured in chips. For computational simpli-
city only

X�Y�E � �
, � �KR values are used.

C(i,p) with no signal and complex Gaussian noise present
has chi squared pdf with 2 degrees of freedom of the form

�¢¡ @CB SU£�V E G��¤ |@F¥�¦ §¨U© ¨ª
(4)

where
��¤ |@ is the total noise power (identical in «aSUTsr?lnV andpqSUT~rUtvV ), assumed constant, which must first be estimated,

for which there are several strategies. C(i,p) with signal
present has a non–central chi squared pdf with 2 degrees of
freedom of the form

��¡ B SU£�V E G��¤ |@}¥ ¬  ¨~® §°¯¨U© ¨ª R�± ²�³ £H´��¤ |@Fµ (5)

where R�¶bSU·�V is the ¸ th order modified Bessel function of the
first kind, and ´ | is the signal power in pqSWT~rUt�V , assumed
constant over

X�Y
idle periods, and

X�Y
times that the signal

power in «aSUTsr?lnV . In Rayleigh fading ´ | has a chi squared
distribution about the short term mean signal power ¹´ | . In
Rician fading a non–central chi squared distribution applies.

3.1.1. THRESHOLD CALCULATION

A Neyman–Pearson decision threshold,
`Qº

, can be calcu-
lated based on an acceptable false alarm probability,

9 {b»
,
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Figure 3: Receiver architecture R1

of the noise process. ��� (expressed in power) can be calcu-
lated from (4) as �������	� 
�� � ���������� (6)

In practice the autocorrelation sidelobes of the pilot code
may be greater than ��� in high SNR conditions. So a fur-
ther additive threshold is required to ensure that the autocor-
relation sidelobes do not exceed the threshold. In this paper
low SNR’s are assumed so the effect of the autocorrelation
threshold is not considered.

The probability of detecting a signal,
�������

, can be calculated
from (5) as ��� �!� �#"%$�&�' (*),+.-� �0/21 � �� ��3 (7)

where "�4 ),5 /�6 - is Marcum’s Q function of order 7 .

3.2. NON–COHERENT INTEGRATION(*),+ /.8 - for the last 9 � idle periods are summed non–
coherently to give : ).+.- . Values of : ).+.- larger than � ).+,-are selected as arrival peaks. Again a normalisation factor,�<; 9 � , is applied to allow power levels to be compared when
selecting an optimum 9 � value. Assuming �=� 
� is constant
over 9 � idle periods � ),+.- �>��� .: ).+,- with no signal present has a chi squared pdf with �	9 �
degrees of freedom of the form?A@ �2B ).C	- � 9 �� 
ED�F� � D F=G ) 9 � - ) 9 � C	- D�F2H $JI HLK F=MN,O NF

(8)

With signal present : ).+,- has a non–central chi squared pdf
with �	9 � degrees of freedom of the form?<@ B ).C	- ��9 � � 9 � C� 
 � K F	P2QN I�R S NET K F	M!UN.O NF�=� 
� : DVF	H $ � ' 9 � C ��=� 
� �

(9)
where

� 

is the sum of 9 � partially correlated W 


values.

The false alarm probability after the non-coherent detection
stage,

� ���YX[Z�\]�,^
, assuming constant noise power, can be eval-

uated as � ����X Z!\_�.^ � I H K F<`baN.O NF D F H $cdAe�f �g�h � 9 � ����=� 
� � d
(10)

Figure 4(a) shows
� ����X Z!\_�.^

against
�����

for various val-
ues of 9 � . Clearly the effect of increasing 9 � is to reduce� ���YX[Z�\]�,^

for the same
� ���

.
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Figure 4: (a)
� ���YX[Z�\]�.^

against
�����

, (b)
� �����!X Z!\_�.^

against��� �!�
, for various 9 � values

Similarly : ).+,- with signal present has a non–central chi
squared distribution with �=9 � degrees of freedom. The de-
tection probability after the non-coherent detection stage,� � �!��X[Z�\]�.^

can be evaluated as� � �!�!X Z!\_�.^ ��" D�F & 1 �� �i/=1 9 � ���� �j3 (11)

Figure 4(b) shows
� ���!��X[Z�\]�,^

against
� �����

for various values
of 9 � . For

�Y�����Vkmlon p2qr� �����!X[Z�\_�.^
is increased and for

�������Vslon p2qL� �����!X[Z�\_�.^
is decreased.

If
� ���YX[Z�\]�,^

is fixed then (from Figure 4) as 9 � is increased�����
can be increased and subsequently ��� lowered. This al-

lows signals at lower SNR’s to have increased
� �����!X[Z�\]�,^

val-
ues. Figure 5 shows the effective SNR gain from threshold
reduction against 9 � and for various values of

� �����!X[Z�\]�,^
and� ���YX[Z�\]�,^

. For small
� ����X Z!\_�.^

values the gain available is
close to 3dB/octave. For more useful values of

� ����X Z!\_�.^
the
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gain is close to 2dB/octave. As the ������� value drops the SNR
gain possible from non–coherent integration decreases. For
signals well below the noise power non–coherent integration
can produce little gain.
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Figure 5: SNR gain against �	� for fixed ��
��� ��� ���
3.3. FADING AND SHADOWING EFFECTS

Assuming a fixed coherent gain over �	������������� idle periods
and uncorrelated Rayleigh fading between idle periods, � �
has a chi squared distribution with pdf of the form!#"%$ �'&(��) �*�+-,. $�0/ ��1�243 1�265 �'�*�7� ���*�8&9� 1�26:%;=< :?>

2(@AB $ (12)

In Rician fading a non–central chi squared distribution will
apply.

The pdf for the lognormal shadowing term after the non–
coherent integration can be derived as

!DC�E �'&9�4)GF �*�F 3(HI CJE < :LK > 2M@�N
$$ > 2MO $PRQ (13)

where I C�E is the standard deviation of shadowing in dB.

In both fading and shadowing cases it can be seen that in-
creasing �*� averages the power. Therefore it is interesting to
examine if using a low �S� value, to allow peaks on the fad-
ing/shadowing profile to be exploited, would be beneficial.
Figures 6(a), (b) show the minimum fading and shadowing
gain occurring with 50% probability (i.e. the median gain)
against number of uncorrelated measurements for � � )UT9�JV .
Both shadowing and fading provide a potential gain.
However the fading gain is quite low; typically the fading
gain from using a low �S� is less than the threshold reduc-
tion gain from using a high �S� (see Figure 5). However
the shadowing gain can far outweight the threshold reduc-
tion gain. Therefore an effective idle period pattern should
be able to exploit any shadowing diversity. The figures also
show the gain available by using continuous as opposed to
burst mode. Of course in a real scenario measurements will
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Figure 6: (a) Minimum fading gain, (b) Minimum shadowing
gain, against number of uncorrelated measurements

be correlated, so the diversity gain available will decrease
and will depend on the MS speed and environment.

In practice due to movement of the MS the position of MF
peaks will stray or slip across the � � idle periods. Thus the
total integration time must be limited by the MS radial speed.
For moving scenarios this might be less than 5 seconds.

4. SIMULATION RESULTS

Simulations were carried out for Rayleigh and Rician (Nak-
agami WX)YT[Z ) fading environments. In the Rician fading
environment 4dB standard deviation lognormal shadowing is
modelled, in the Rayleigh environment 8dB is used. An ex-
ponential decaying shadowing decorrelation length of 20m
is used. A hexagonal cell geometry is modelled. For TDOA
location purposes timing measurements from three BS’s are
required, therefore the BS’s of most interest are the 2nd and
3rd closest BS’s (the serving BS will always be detectable).

100k random placements of MS with random bearing were
simulated. Two MS speeds were used: 5kmph, 50kmph,
corresponding to maximum Doppler frequencies, with a
1.92GHz carrier frequency, of 8.90, 89.0Hz respectively.

215



Original Publications

Mean path loss variation was not modelled. An idle fre-
quency, ������� � , of 8Hz was simulated, which allowed �	�
� ������
�
values of 1, 2, 4Hz. The maximum integration time was set
at 1 second for simplicity and to limit the rms radial error to
below the desired location accuracy in all cases. In practice
it may of course be desirable to increase the integration time
if the MS is stationary. The threshold power reduction for��������� ������� �"! #%$'&)(+*�,.- and

� ���
� � � �����/�0('!�& from Figure 5
was used. Burst and continuous mode were simulated. In
burst mode one set of measurements were taken (1 second)
in continuous mode measurements were taken for 5 seconds.
The results reported are the maximum SNR gain possible in
that time averaged over the all placements and the 2 BS’s.

Figures 7(a), (b) show the results for Rician/LOS and
Rayleigh/NLOS conditions respectively in burst mode. It
should be noted that the minimum 12�3�54 value (1 slot) implies
that the idle periods are consecutive, effectively creating idle
periods with �����6� � �7&)8:9 , 1������ � �0;�< �3� � � . The maximum
1	�3�54 value ( &>= ���?�6� � ) implies idle periods regularly spaced
and therefore no clustering is present (results for all �@�
� ������
�
values are identical). Also included is the performance of a
fixed non–coherent gain receiver for comparison.

The results show that clustering idle periods together can in-
crease the SNR gain available, and thus the detection prob-
ability of the signal. In the LOS case, with low shadow-
ing variation, performance is defined by the coherency of the
channel and �A��� �B�
����� � 1Hz provides the greatest SNR gain.
However in the NLOS case, with larger shadowing variation,
performance is determined more by the shadowing diversity
available. At 1@�3�54 �C& UMTS frame, which might be a
practical minimum due to QoS considerations, the SNR in-
crease over the non clustered gain is about 1.5dB at 5kmph.
In the NLOS case using � �
� �B�
�5�
� � 2Hz marginally improves
the performance over �A�
� �������� � 1Hz. At 50kmph cluster-
ing in the NLOS case can have a detrimental effect. With
����� �������� �D&)8:9 the SNR gain is down by 1dB over the un-
clustered case. A higher �A�
� ������
� value is required to provide
some shadowing diversity.

The unexpected peaks present occur when coincidental ali-
asing of the Doppler frequency to � �?�6� � provide apparent co-
herency in the channel. In practice these peaks would be time
varying as the MS’s Doppler frequencies will also time vary.

Results for contiuous mode showed similar trends, but were
about 2.5dB and 5dB improved in the LOS and NLOS envir-
onments respectively, a cause of the greater shadowing di-
versity available in the measurement window.

5. CONCLUSIONS AND FURTHER COMMENTS

In this paper it has been shown that clustering idle periods
together and utilising an adaptive receiver can increase the
SNR of weak signals. The preformance of the receiver de-

E
This F'G"HJI�K�LNM O was found to give a good location accuracy perform-
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Figure 7: Maximum SNR gain per second (dB) against 12�P��4
in burst mode for (a) Rician/LOS, (b) Rayleigh/NLOS cells

pends on the coherency of the channel and also the shadow-
ing diversity available. Fading diversity is less significant.

The actual gain available depends on the number of measure-
ments taken and the detection probability of the signals. In
the simulations reported 8 measurements were utilised. Clus-
tering to a realistic 1@�P��4 value gave a 1.5dB SNR improve-
ment over the regularly spaced pattern. To avoid deteriorated
performance at higher speeds �A�
� �B�
�5�
�RQ 1Hz is essential.
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Calculation of mobile location using scatterer information
N. J. Thomas, D. G. M. Cruickshank, D. I. Laurenson

A technique using scatterer information and backwards ray tracing is proposed
which can locate a target precisely in non–line of sight multipath conditions. The tech-
nique requires accurate measurement of angle of arrival, time of arrival (with reference
to the first arriving ray) and Doppler shift for six arriving rays. Utilisingauxiliary signal
strength measurements can improve performance when measurement noise is present.
Further improvement is demonstrated using a Kalman filter in a tracking scenario.

Introduction: Non–line of sight (NLOS) conditions can dramatically reduce the
performance of conventional triangulation based mobile location techniques [1]. How-
ever even in NLOS when sufficient resolvable multipaths are present the MS may be
precisely located by back tracing the arriving rays under a single reflection assumption.
Even in a multiple reflection scenario the technique may work if the reflection points
are spatially close.

In this Letter location is calculated based on a single reflection assumption using
angle of arrival (AOA), time of arrival (TOA) with respect to first arriving ray, and
Doppler shift measurements from each arriving ray. The equations derived solve sim-
ultaneously the MS location, MS velocity and excess time delay of the first arriving
ray. The equations are non–linear thus a simple minimisation based estimator is used to
solve them. In simulation the CoDiT urban geometrically based single reflection radio
channel model is used [2]. As the power of the Gaussian distributed noise corrupting
the measurements is increased, performance deteriorates quickly, so an enhancement
is proposed using signal strength measurements to give an approximate range estimate.
Finally a further improvement is presented by utilising a 1st order 2D Kalman filter
(KF) on the estimator output in a tracking scenario using a similar method to [3].

Formulation of Equations: Figure 1 shows a possible geometry for a single reflec-
tion scatterer, ��� . The scatterer and base station (BS) are assumed fixed; the MS has
speed � in direction � with respect to line of sight to the BS.

The measured parameters are the angle of arrival, ��� , and Doppler shift, �	� , for
the first arriving scatterer. For subsequent arriving scatterers ( 
����� � � ) relative time
delay ����� � is also measured to give ������������������� ��� .

There are 5 unknowns, the MS polar coordinates, ���� !���� "� , velocity magnitude
and bearing, ��������� , and time delay of the first arriving ray relative to the true LOS
arriving time, �#��� $ .

Using the temporal knowledge of the channel for each scatterer

�%�'&(�)�*�  ,+-�) .�./)���*� ��&,/)�0��� $ (1)

where / is the speed of light and the distances � are the magnitude of the corresponding
vectors shown in Figure 1. Using the cosine rule gives

�)���  1�32 �#4� &,�54 +(6�)���) �7)869#���� ,+(���*� (2)

Substituting this into (1) and rearranging gives

�%�:� ��/)���*� ��&,/)�0��� $)� 4 &,*��/)���*� ��&(/%����� $%�;�% 
����% (&</%����� �=&,/)����� $>+(�) �7%8?90���� 1+-�����;� (3)

Using the geometrical knowledge of the channel for each scatterer@A5B & @A#B � C.+ @A CD� @E
(4)
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Therefore for each scatterer (for convenience in the following equation complex nota-
tion is used to represent geometry)���������	��
������������������������������� �� �"! # �$
��%� ����& � �'(�����)��& � ���*'+� # ��
,��������� # �-�.��������� # �����/

(5)

where, & � ��0�'.� # '.132+�4�5�76�8:9<; ��=>@? (6)

where
=

is the carrier wavelength.
Substituting (2) and (3) into (5) gives a set of non–linear equations,

� �
, in the 5

unknowns
��� #3A � #3A > A 1 ACB 8 ! D � for each scatterer E � . In the presence of measurement

noise
� �

may not equal zero, therefore a unique solution can be found by minimising
the sum of F � � F G for H �JI�K�K L

with
LNMPO

scatterers (
LQ�@R

is insufficient due to
ambiguity of (6)). This leads to the simple estimatorS �UTV�XW 8 F � � F G (7)

Using a signal strength measure, assumed to have a lognormal distribution, a range
pdf can be evaluated. Utilising the conditional probability density of

� #
given the

estimate Y��# , ;�Z[ ���4# F�Y��#	� , leads to the enhanced estimatorS]\ � ; Z[ ��� # F�Y� # � TV�^W 8 F � � F G (8)

Simulation: The simulation uses the CoDiT urban model scatterer definition. TheLU�_O
earliest arriving rays are used in the estimator. The simplex method [4] is

used to minimise
S

and
S)\

. A cell radius of 500m is used, with a path loss exponent
of 3.76 and lognormal shadowing of 8dB. 1000 randomly placed MS’s are located
within the cell, travelling at 50kmph ( ;5`baCc�c%d \ c �eI�K f�g

GHz, maximum Doppler shift; # aCh �if5g�K j
Hz). The line of sight probability is set to 0.2. In the tracking scenario

with KF a spatially correlated LOS model is applied [5] whose shadowing decorrelation
length and scatterer mean survival length are 5m.

Figures 2(a), (b) show the rms location accuracy achieved for the simple, enhanced
by signal strength, and enhanced by signal strength with KF post tracking receivers
against Gaussian distributed noise power added to the measuremed parameters as fol-
lows: Figure 2(a) shows results for low Doppler noise power, kG �lI�/ 6-m ;�G# anh ; and
Figure 2(b) shows results for high Doppler noise power, k�G �QI7/ 6 o ; G# anh ; for each
estimator the performance is shown with two different noise powers added to p B���! 8 of/�K�I7q G (the lower line of the pair) and

I7/5/�/5q G (the upper line); noise power added
to
� �

is shown on the x–axis. The performance of locating the MS by cell location;
first received AOA and signal strength; and first received AOA and TOA are shown for
comparison. The performance of the latter is also shown with a KF tracking filter.

Discussion and Conclusions: At low noise the location performance is almost per-
fect. At more practical noise levels the performance tails off severely and becomes
worse than the AOA–TOA combination receiver. The enhanced estimator performs
significantly better than the simple estimator in the high Doppler noise case, Figure
2(b). Utilising a KF a fourfold increase in location accuracy is observed. Results are
pessimistic as manoeuvres during the track are instantaneous, thus the KF loses track

218



Original Publications

momentarily. Individual KF tracking of ���������	�
������ ��� could be used to further reduce
the input noise variance [6].

The technique gives simulated performance of below 50m rms for a MS moving at
50kmph, a significant improvement over conventional methods. Non–stationary scat-
terers and multiple scatterer reflections are potentially problematic to the technique.
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