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Abstract
Commercial and private cloud providers offer virtualized resources via a set of co-

located and dedicated hosts that are exclusively reserved for the purpose of offering

a cloud service. While both cloud models appeal to the mass market, there are many

cases where outsourcing to a remote platform or procuring an in-house infrastructure

may not be ideal or even possible.

To offer an attractive alternative, we introduce and develop an ad hoc cloud com-

puting platform to transform spare resource capacity from an infrastructure owner’s

locally available, but non-exclusive and unreliable infrastructure, into an overlay cloud

platform. The foundation of the ad hoc cloud relies on transferring and instantiating

lightweight virtual machines on-demand upon near-optimal hosts while virtual ma-

chine checkpoints are distributed in a P2P fashion to other members of the ad hoc

cloud. Virtual machines found to be non-operational are restored elsewhere ensuring

the continuity of cloud jobs.

In this thesis we investigate the feasibility, reliability and performance of ad hoc

cloud computing infrastructures. We firstly show that the combination of both volun-

teer computing and virtualization is the backbone of the ad hoc cloud. We outline the

process of virtualizing the volunteer system BOINC to create V-BOINC. V-BOINC

distributes virtual machines to volunteer hosts allowing volunteer applications to be

executed in the sandbox environment to solve many of the downfalls of BOINC; this

however also provides the basis for an ad hoc cloud computing platform to be devel-

oped.

We detail the challenges of transforming V-BOINC into an ad hoc cloud and outline

the transformational process and integrated extensions. These include a BOINC job

submission system, cloud job and virtual machine restoration schedulers and a periodic

P2P checkpoint distribution component. Furthermore, as current monitoring tools are

unable to cope with the dynamic nature of ad hoc clouds, a dynamic infrastructure

monitoring and management tool called the Cloudlet Control Monitoring System is

developed and presented.

We evaluate each of our individual contributions as well as the reliability, per-

formance and overheads associated with an ad hoc cloud deployed on a realistically

simulated unreliable infrastructure. We conclude that the ad hoc cloud is not only a

feasible concept but also a viable computational alternative that offers high levels of

reliability and can at least offer reasonable performance, which at times may exceed

the performance of a commercial cloud infrastructure.
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Lay Summary

Cloud computing is the ability to run applications and consume computer resources

(e.g processors, memory, storage) that are offered from other computers over the In-

ternet, which then can be accessed anywhere with an Internet connection. Well known

examples of cloud services are iCloud and Gmail, both served from clouds owned by

Apple and Google respectively. In contrast to providing services, many clouds are de-

signed to primarily offer computing resources. This allows users to run tasks in the

cloud, as if these were running locally on their own computer, and pay for cloud usage.

Such clouds are typically offered from a set of co-located machines that are ded-

icated to providing the cloud. While this is an attractive method of offering services

and resources, there are many who are unable to employ cloud computing and benefit

from its advantages. For example, an organisation may have private data that cannot

be run in a public cloud, they may not be able to afford cloud operating costs or have

the ability to procure and support their own in-house cloud.

To provide a solution to this problem, we introduce and realize an ad hoc cloud

computing platform that operates over an organization’s or research institution’s cur-

rent set of computers to transform spare resources into a cloud. We outline how the ad

hoc cloud ensures cloud continuity while operating over a set of potentially unreliable

and unpredictable machines. We show that the ad hoc cloud is a feasible concept and

that it offers high levels of reliability and performance, therefore making the ad hoc

cloud a viable alternative to other available clouds.
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Chapter 1

Introduction

“Cloud computing is a model for enabling ubiquitous, convenient, on-demand network

access to a shared pool of configurable computing resources (e.g., networks, servers,

storage, applications, and services) that can be rapidly provisioned and released with

minimal management effort or service provider interaction.” [176].

Cloud computing has evidently allowed businesses, research institutions and per-

sonal infrastructure users to reduce their capital investment by reducing upfront in-

vestment in infrastructure and to convert previously inflexible operating costs such as

electricity, cooling, maintenance and security, into costs that are largely incurred only

when there is a revenue stream against which to charge them. This model therefore has

caused a marked growth in the popularity of cloud computing and fuelled predictions

that it will become the dominant computing paradigm.

Despite its popularity, and like cluster and Grid computing, resources and services

are offered from a remote and dedicated infrastructure. This thesis focusses on in-

troducing, developing and evaluating an alternative cloud platform, called the ad hoc

cloud, to fill a gap where computational end-users (i.e users requiring the use of a com-

putational platform) are unable to or are disadvantaged by making use of any dedicated

or remote infrastructure.

1.1 Motivation

Nowadays, businesses and personal infrastructure users typically perform computa-

tional tasks on in-house private clusters, while many research institutions take advan-

tage of both cluster and Grid computing. This is however changing due to the intro-

duction of public and private cloud computing infrastructures [3, 26, 21, 31, 17] that
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2 Chapter 1. Introduction

have revolutionized the way these computational end-users can execute jobs. Cloud

computing makes it possible to scale according to the demand, increase collaboration

and share information easily, as well as potentially reduce operating expenses, access

apparently unlimited computational resources and benefit from the other advantages

cloud computing offers.

There are however many situations where these computational models are not suit-

able for an end-user’s requirements:

• The application or data cannot be moved to the public cloud: the application’s

data may be too large to migrate to the remote platform and hence the end-user

may find the migration process of little value due to its difficulty. The data may

also be sensitive (e.g for medical, commercial or political reasons) and cannot

be outsourced for analysis. Furthermore, an application may rely on proprietary

licensed software that cannot be migrated to the public cloud easily.

• The end-user does not want to move to the public cloud: the migration process

may prove costly as well as the cost of application execution over a long period

of time. End-users may also require per-month predictable outgoings; a feature

that does not currently exist in the public cloud model. By migrating to the

public cloud, end-users may also feel they will lose the required control of their

data. Furthermore, the issues surrounding public cloud security may deter some

end-users from adopting this model.

• The application is not suited to a public cloud model: applications that do not

have strong performance guarantees or those where execution costs outweigh

the value of the actual results, are typically not suitable for the public cloud [80].

The application may also be under development and therefore the number of

failed executions may prove costly.

These problems can be alleviated by the procurement of an in-house private dedicated

cloud; data will remain local and the unpredictable costs of deploying applications

that are not suited to the commercial cloud is avoided. Similarly, an end-user need

not worry about variable or unknown demand if they have a suitably sized dedicated

infrastructure where per-month costs can be calculated relatively easily. Despite this, a

long tail of businesses, research institutions and personal infrastructure users exist that

are unable to utilize the private cloud model:
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• The end-user is unable to deploy a private cloud: this may be due to the lack

of required dedicated infrastructure to install a private cloud or limited finan-

cial backing to procure and support an internal dedicated private cloud. Such

end-users may include internal departments of large world-wide organizations,

smaller businesses or universities that have limited budgets, or even users of

smaller personal infrastructures.

It has been shown that approximately 45%, 25% 15% and 15% of the costs of

procuring a data centre is attributed to buying servers, power distribution and

cooling, electricity and network equipment, respectively [113]. Staff costs to

procure, manage and run the infrastructure will also be significant. These costs

will of course reduce when one buys a smaller private infrastructure. However

the additional costs of buying servers, cooling and equipment as well as con-

tinued support may not be financially viable or simply deter an end-user from

procuring a private infrastructure.

An end-user who has computational tasks and cannot or will not adopt either cloud

model can turn to cluster or Grid computing. However, similar to the potential hin-

drances of end-user uptake with the aforementioned cloud models, an end-user may

not be able to outsource to the Grid or remote cluster or be able to procure and manage

an internal cluster. As a consequence, end-users that are unable to outsource compu-

tation or deploy a dedicated platform locally are left with very few options of how to

execute their computational tasks.

1.2 Ad hoc Cloud Computing

To offer an attractive alternative, an ad hoc cloud computing framework is developed to

transform spare resource capacity from an end-user’s locally available, non-dedicated

and non-exclusive infrastructure into an overlay cloud platform. We define a non-

dedicated infrastructure as one where the hosts providing the cloud service are spo-

radically available and unreliable in nature. Furthermore, we define a non-exclusive

infrastructure as one whose hosts are reserved for some other primary purpose, e.g

employee workstations running company applications. Examples of such end-users

may range from personal infrastructure users with underutilized computers, to startup

companies through to large-scale infrastructures. The core of this concept deploys an

ad hoc cloud on top of the end-user’s existing non-dedicated and non-exclusive infras-
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tructure to harvest resources from ad hoc hosts; hosts of the infrastructure assigned to

the ad hoc cloud. These resources are then exposed to other potential end-users within

a particular domain as a cloud platform. Figure 1.1 shows a high-level overview of this

new cloud computing model.

ad hoc 
Server

Job Submission

Job

ad-hoc guest
(VM)Host

Cloudlet

End-user Infrastructure

1

2 3

ad hoc Cloud

Scheduling/
Deployment

Figure 1.1: Ad hoc Cloud Architecture

The end-user’s infrastructure, which may be large or small, consists of a number of ad

hoc hosts that are primarily used for some other tasks; we define these tasks as host

processes. Each host’s spare resources are harvested and are utilized by a series of ad

hoc guests (guests); virtual machines that execute cloud jobs while offering protection

for host and guest processes.

Cloud jobs are submitted to the ad hoc cloud platform by cloud users and their

jobs are then forwarded to the appropriate cloudlet for execution; a cloudlet is a set

of connected ad hoc guests that provide a particular service or execution environment.

We see from Figure 1.1 that many cloudlets may exist and can be deployed over mul-

tiple ad hoc hosts. In the diagram above, cloudlet ‘1’ and ‘2’ may hold the necessary

environments for Matlab and BLAST applications to execute respectively. Note that

cloudlet members are likely to be distributed across an infrastructure and not co-located

as depicted above. However, a host may either be dedicated to a single cloudlet or at-

tached to many to allow applications from different domains to run concurrently upon

the same host.
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1.2.1 What is Different About Ad hoc Cloud Computing?

The ad hoc cloud computing model is similar in many ways to cloud, cluster or Grid

computing. Likewise, the ad hoc cloud is also similar to the volunteer computing

paradigms employed by the Berkeley Open Infrastructure for Network Computing

(BOINC) [7] and Condor [204] where host resources are harvested and are made avail-

able to volunteer computational tasks. Regardless of the computational model chosen,

each share common challenges that must be overcome to provide a fully functioning

environment to the end-user; the ability to effectively monitor, manage and test the

infrastructure are three of the most important.

In order to successfully develop an ad hoc cloud, various features must be taken

from cloud computing, virtualization and volunteer computing, monitoring, manage-

ment and testing; we define these as the six founding principles of ad hoc cloud com-

puting. Despite being similar to cloud, cluster, volunteer and Grid computing, the ad

hoc cloud computing paradigm has many key differences. The ad hoc cloud model:

• operates over a set of non-exclusive and sporadically available hosts, which may

be unpredictable in nature. This is in contrast to offering a service from a dedi-

cated cloud, cluster or Grid infrastructure where each host’s resources are fully

committed to the service.

• does not assume a level of trust exists between an end-user and the infrastructure

provider; a relationship that currently exists between end-users, clouds, clusters

and Grids.

• maintains service availability in the presence of host or guest membership churn

or failure to ensure job continuity over a set of unreliable hosts.

• does not interfere with executing host processes, especially in cases where these

important processes dynamically consume a varying amount of resources at any

given time.

• targets a set of more diverse applications such as memory, I/O and disk-intensive

tasks as opposed to typical CPU-intensive applications commonly executed by

volunteer computing frameworks.

Due to the complexities of operating a cloud platform on a non-exclusive and poten-

tially highly unreliable infrastructure, there are also other subsequent challenges that

must be addressed. The ad hoc cloud must:
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• quickly and accurately determine the presence and status of hosts and guests.

This firstly ensures that those available are assigned cloud jobs and secondly,

hosts and guests that possess a cloud job but later become non-operational, are

detected promptly and the guest that executes the cloud job is migrated and exe-

cuted elsewhere.

• dynamically cope with a system where the total computational and storage po-

tential of the entire platform changes frequently.

• schedule cloud jobs to near-optimal hosts and guests based on host availability,

specifications, reliability and load in order to maximize a job’s performance and

probability of successfully completing.

• dynamically monitor sporadically available guests and cloudlets to ensure that

the system scheduler has the most accurate state information of each host, cloudlet

and the entire system to make appropriate scheduling decisions.

• dynamically control sporadically available guests to ensure the infrastructure ad-

ministrator or end-user has the ability to effectively control the operation of the

ad hoc cloud platform, dependent on their requirements.

• be simple to download, deploy and utilize. Typically clusters, Grids and clouds

require technically minded individuals to make use of the infrastructure however

not all cloud users within a particular domain may be highly technical system

administrators (e.g biology researchers).

Our research has developed solutions to each of the research challenges above and to

our knowledge, no other research in this field has been undertaken on such a large

scale to offer these solutions. Therefore, end-users, who were unable to outsource

computation or deploy a dedicated cloud or cluster locally are now able to employ ad

hoc cloud computing to execute their computational tasks. This in turn may act as an

intellectual ramp for those who wish to use either the public or private cloud models

at a later stage. Furthermore, this alternative platform may also be complimentary to

existing pubic and private cloud models.

1.2.2 Is There A Market for Ad hoc Cloud Computing?

Nowadays, businesses are able to gain a competitive advantage by improving their

analysis of data, running complex models and improving future planning, for example.
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In order to achieve this, businesses are increasingly moving towards IT and therefore

the proportion of computers available is also growing. This increase of available in-

frastructure is leading to an increase in resource underutilzation, in turn strengthening

the case for the deployment of an ad hoc cloud platform.

To determine the potential target market and uptake of an ad hoc cloud computing

platform, we analyzed UK government statistics to select a subset of UK-only busi-

nesses that may suit this paradigm. In order to adopt ad hoc cloud computing and gain

from the benefits it offers, it is reasonable to assume that a business’s current infras-

tructure size is large enough to allow cloud jobs to continue to execute in the face of

failures. Therefore, we assume that the minimum infrastructure size consists of ap-

proximately ten hosts, however the maximum size can potentially be limitless. With

this in mind and only considering UK businesses with more than ten employees (as-

suming each has their own host), we approximately calculate the number of businesses

that could potentially adopt the ad hoc cloud computing paradigm.

We analysed UK government statistics outlining the number and types of private

sector businesses in the UK. In the UK alone, approximately 4.8 million private sec-

tor businesses exist where 4.5% (214,155) of these have at least 10 employees [104].

However as many businesses will either not be able to employ ad hoc cloud computing

or simply would not find it useful, the figure can be reduced. The potential business

areas that may find ad hoc cloud computing useful based on the Standard Industrial

Classification (SIC) codes [105] are highlighted in Figure 1.2.

Figure 1.2: UK Private Business Categories [104]
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The potential total of UK businesses that may find ad hoc cloud computing useful is

1,274,000. However, by omitting those with fewer than 10 employees and assuming

that only 4.5% of these businesses could employ ad hoc cloud computing, approxi-

mately 57,330 UK organizations could potentially employ ad hoc cloud computing.

At first glance, this figure may seen low, however the UK business statistics study of

2012 [104] does omit key factors. These being non-profit and public organizations (i.e

research institutions, universities etc) and organizations that are not registered in the

UK but have operations located in the UK.

Many businesses in Europe and indeed the rest of the World could employ ad hoc

cloud computing who have the difficulties aforementioned. Furthermore, by includ-

ing research institutions and the ‘personal use’ market, the possible user-base will be

increase substantially. Together with the increase of available infrastructure, as many

businesses and research communities increasingly move towards IT, the proportion that

could benefit and employ ad hoc cloud computing is growing. Hence, a large market

does exist for ad hoc cloud computing and this market is likely to be many orders of

magnitude greater than the figure quoted above.

Therefore, by introducing a cloud platform that is able to take advantage of an

existing infrastructure, while offering high levels of performance and reliability, we

would expect the level of uptake from the outlined user-base to be high, especially in

markets that are driven by decreasing operating costs.

1.3 Research Statement

Based on the need and potential uptake of the ad hoc cloud computing paradigm, the

objective of this research is to determine the feasibility, reliability and performance of

ad hoc cloud computing infrastructures. We hypothesise that:

• operating this new cloud concept over unreliable infrastructures is a reliable

method to execute cloud applications.

• the performance of the ad hoc cloud platform proposed can be at times, com-

parable to dedicated cloud models, and at others, offers acceptable performance

for end-users to effectively run computations.

• the ad hoc cloud is a feasible and viable alternative computational platform to

commercial or private clouds as well as clusters and Grid infrastructures.



1.4. Terminology 9

1.4 Terminology

For convenience, a summary of key terms used in this thesis are shown in Table 1.1.

Term Definition

end-user a potential user of a computational platform. For example, a

cluster, Grid, cloud, volunteer infrastructure, ad hoc cloud,

etc.

volunteer user a user of a volunteer computing infrastructure.

volunteer host a host whose resources are donated to a volunteer comput-

ing infrastructure under the instruction of a volunteer user.

volunteer application

developer

a developer or researcher who implements the volunteer sci-

entific application to be executed on volunteer hosts.

BOINC server admin-

istrator

an individual who manages a BOINC, V-BOINC or ad hoc

server.

cloud user a user of a cloud infrastructure. For example, the ad hoc

cloud, Amazon EC2, Microsoft Azure and Google Ap-

pEngine.

cloud provider the provider of a cloud service that a cloud user may utilize.

ad hoc host a physical machine whose resources are donated to the ad

hoc cloud but is used for some other primary purpose.

ad hoc guest a virtual machine that executes on the ad hoc host.

ad hoc host user a user of the ad hoc host, e.g. a company employee.

ad hoc host owner the owner of the ad hoc host. This may be the ad hoc host

user or another person or entity, for example, a company or

research institution.

Table 1.1: Terminology
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1.5 Assumptions

For an initial ad hoc cloud computing platform to operate successfully, we make a few

assumptions relating to the end-user’s infrastructure and the applications that can be

deployed using our ad hoc cloud computing platform.

Firstly, we define ‘cloud computing’ as various definitions of the term currently

exist. We use the definition from NIST which specifies that “cloud computing is a

model for enabling ubiquitous, convenient, on-demand network access to a shared pool

of configurable computing resources (e.g., networks, servers, storage, applications,

and services) that can be rapidly provisioned and released with minimal management

effort or service provider interaction.” [176]. We define ‘on-demand’ access to an

ad hoc cloud when the time to acquire resources is similar to or less than the latency

to provision a virtual machine on a commercial cloud infrastructure. For example,

an Amazon Elastic Compute Cloud instance takes on average, 90 seconds to become

available; we report the provision latency of ad hoc resources in Chapter 6. We further

assume that a cloud job has to be encapsulated in a virtual machine for its management

and protection as well as the protection of host processes.

Secondly, we assume that hosts have enough spare resource capacity, e.g CPU

cycles, storage, etc to offer to the ad hoc cloud computing platform. In cases where

the capacity available is sufficiently low and jobs cannot run effectively or at all, we

assume that it is possible for an end-user’s infrastructure to temporarily outburst to

the commercial cloud (or any other available cloud platform); this can be achieved by

integrating both the ad hoc and remote cloud via the remote cloud provider’s APIs.

Conversely, applications developed to run on public cloud platforms can be imported

with relative ease to the ad hoc infrastructure. The method of outbursting is out of the

scope of this thesis, however we instead direct you to the following related research

for more information [183, 75, 152, 94, 163].

For the sake of protection and easy management of the ad hoc cloud platform, we

restrict our implementation to private networks; we assume the ad hoc cloud paradigm

to be predominately deployed on Local Area Networks (LANs). Hence we can be

assured that the network and member machines are relatively secure and the network

is reasonably fast to operate our reliability mechanisms on. In cases where the pri-

vate network operates over a Wide Area Network (WAN), we assume that the relevant

security protocols are in place to provide adequate protection for both host and guest

machines within the infrastructure.
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Finally, we also note that our first prototype of an ad hoc cloud specifically only

deals with the following tested applications: CPU, memory, I/O and disk-intensive

applications. We outline in Chapters 6 and 7 which of these applications are suitable

for execution on an ad hoc cloud. Applications that write to external dependencies

(i.e. those located on other virtual machines or physical hosts) may or may not func-

tion as expected due to data read and write inconsistencies when a host or guest fails

abruptly. Such applications may need further reliability mechanisms incorporated in

their implementation to cope with frequent unexpected failures. Furthermore, applica-

tions that require high levels of security and isolation from other processes may not be

suited to the ad hoc cloud.

1.6 Thesis Contributions

The main contributions of this thesis are summarized as follows:

1.6.1 Feasibility

1. The development of a model to run virtual machines over volunteer infrastruc-

tures through the virtualization of the Berkeley Open Infrastructure for Network

Computing (BOINC), called V-BOINC.

2. The development of a method allowing BOINC project developers and researchers

to execute applications with dependencies on volunteer infrastructures through

the use of V-BOINC.

3. The development of ad hoc client and ad hoc server components based on the

extension of V-BOINC’s equivalents.

4. The development of a BOINC job submission system.

5. The development of a scheduling algorithm to select the near-optimal ad hoc

host for cloud processes to execute upon as well as select the near-optimal host

to relocate a failed cloud job and ad hoc guest.

6. The development of an ad hoc reliability algorithm ensuring the continuity of

cloud jobs.

7. The development of an easy to use platform for use by computer literate but

non-system administrator personnel.
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1.6.2 Management and Monitoring

8. The development of a dynamic infrastructure monitoring and management tool

called the Cloudlet Control and Monitoring System (C2MS).

1.6.3 Cost, Performance and Reliability

9. A method of evaluation for ad hoc cloud computing infrastructures.

10. An analysis of the performance and reliability of an ad hoc cloud computing

platform.

11. A performance analysis between ad hoc cloud infrastructures and commercial

cloud platforms, such as Amazon EC2.

12. An in-depth cost and performance analysis of the popular commercial cloud

provider; Amazon Elastic Compute Cloud (EC2).

1.7 Thesis Structure

The rest of the thesis is structured as follows:

Background: Chapter 2 gives a background of the six founding principles of ad hoc

cloud computing: virtualization, cloud computing, volunteer computing, infrastructure

monitoring, management and testing. Chapter 2 first outlines various virtualization

technologies and their evaluated performance followed by a discussion of the different

service and deployment models of cloud computing. A detailed overview of Amazon

EC2 is also given. Chapter 2 then details volunteer computing, and in particular the

volunteer infrastructure BOINC. Finally, the infrastructure monitoring and manage-

ment tools used later in the thesis as well as the applications used to evaluate our ad

hoc cloud are described.

V-BOINC: The Virtualization of BOINC: Chapter 3 details how virtualization and

volunteer computing are integrated to create a virtualized volunteer infrastructure,

which we call V-BOINC, to provide a firm basis for the development of an ad hoc

cloud platform. Chapter 3 also describes how V-BOINC is able to execute a vast range

of applications rather than CPU applications volunteer infrastructures typically exe-

cute. The penultimate section of Chapter 3 outlines the performance measurements
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and overheads of V-BOINC by executing selected benchmarks upon the system. Fi-

nally, Chapter 3 discusses what effects virtual machine checkpointing has on the lim-

ited storage available on volunteer hosts.

From Volunteer to Ad hoc Cloud Computing: Chapter 4 describes the major steps

to transform V-BOINC into an ad hoc cloud computing platform. Firstly, Chapter 4

outlines related work and secondly, details the ad hoc cloud platform architecture and

components as well as the interactions between them. Chapter 4 then describes our

contributions from BOINC job submission to scheduling cloud jobs and the restora-

tion of ad hoc guests on near-optimal ad hoc hosts. Chapter 4 also describes one of

our primary contributions of how to make an unreliable infrastructure reliable. The

penultimate section of Chapter 4 details possible methods to minimize the host pro-

cess interference caused by cloud processes and finally, the installation and use of our

ad hoc cloud prototype is discussed.

Monitoring and Controlling Dynamic ad hoc Infrastructures: Chapter 5 focusses

on the final components required in any ad hoc cloud platform; the ability to moni-

tor and manage the dynamic infrastructure. Chapter 5 describes how our monitoring

tool, the Cloudlet Control and Monitoring System (C2MS), uses and extends Ganglia

to monitor cloudlets of machines whose members dynamically enter and leave fre-

quently. Similarly, Chapter 5 outlines how an infrastructure control component can

be integrated with the extended version of Ganglia. Finally, Chapter 5 outlines the

performance overheads of the C2MS and how quickly a dynamic infrastructure can be

controlled.

Evaluating the ad hoc Cloud: Chapter 6 outlines our evaluation of the ad hoc cloud.

Firstly, Chapter 6 explains the criteria to be measured when evaluating any ad hoc

cloud and secondly the experimental setup is discussed. Thirdly, the reliability of our

ad hoc cloud is evaluated when operating over a simulated unreliable infrastructure.

Fourthly, the overall performance and overheads associated with the ad hoc cloud are

evaluated. The latter includes a cloud job’s pre- and post-execution overheads, check-

pointing overheads and ad hoc guest restoration overheads. Chapter 6 also evaluates

network performance as well as the performance of our ad hoc server. A comparison

between the ad hoc cloud platform performance and Amazon EC2 is also given.
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Conclusions: Chapter 7 gives a summary of the thesis and highlights future work to be

undertaken to develop the ad hoc cloud computing paradigm further. Finally Chapter

7 concludes by determining whether our research hypothesis was proved correct.

Cloudy Waters: Tapping into the Unknown: Appendix A discusses the background

knowledge of cloud computing we acquired before setting out to develop an ad hoc

cloud platform. While this background is necessary for those researching and develop-

ing cloud platforms, it is not fundamental to understand the concepts, development and

evaluation of the ad hoc cloud. Appendix A begins by describing how a commercial

cloud’s performance can vary significantly dependent on time of day, the given load of

a cloud instance and which type of processor an instance is deployed upon. A method

of underutilizing instance processors to increase performance and reduce variabilities

is also described. The cost implications of these variabilities are outlined as well as

the cost differences seen by an end-user dependent on where in the world a cloud job

is submitted from. Appendix A also explores the idea of employing a cost model in ad

hoc cloud computing infrastructures.



Chapter 2

Background

2.1 Introduction

In this chapter, we provide a background of the literature required to understand the six

founding principles of ad hoc cloud computing: virtualization, cloud computing, vol-

unteer computing, monitoring, management and testing. This chapter may be skipped

at the first reading if each of the founding principles are well known to the reader.

We first give an overview of virtualization and then outline the various technologies

and their respective benefits and drawbacks to help determine the most suitable for use

in an ad hoc cloud computing infrastructure. As virtualization is commonly seen as

a major enabler of cloud computing, we are then able to provide an in-depth review

of cloud computing and the various service and deployment models clouds typically

conform to. We then describe a cloud platform provider in detail for reference later in

the thesis.

We then discuss the alternative computing model offered by volunteer computing,

the current state of research in that area and give a brief overview of Grid computing as

there are many similarities shared between the two models. We then give an in-depth

description of a volunteer system that we use within the ad hoc cloud.

This is followed by an overview of the importance of infrastructure monitoring

and an outline of current infrastructure monitoring and management tools that are used

later in the thesis to later show that a functionality gap exists between these tools and

those that must monitor and manage ad hoc infrastructures. Finally, we describe the

applications and benchmarks used during the development and evaluation of our ad

hoc cloud platform.

15
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2.2 Virtualization

Virtualization is the process of creating an abstract version of a resource or entity,

whether it may be a single hardware component or an entire system [218]. Virtual-

ization was first invented by IBM in the 1960s [198] and is used to provide features

such as increased utilization, economies of scale, easy management, scalability, agility,

reliability and security. These benefits have become an integral part of the cloud com-

puting model where virtualization is commonly seen as its major enabler. We therefore

discuss how virtualization is achieved and the types of virtualization that exist. We also

outline the major virtualization technologies that are available as well as their merits

and downfalls.

2.2.1 Overview

By virtualizing a resource or entire system, multiple and distinct versions of a single

physical resource are created, giving the impression that a user has full and exclusive

access to the resource. This allows users of virtualized infrastructures to run multi-

ple operating systems on the same piece of hardware. Infrastructure administrators are

then able to exploit a one-to-many relationship between hardware and end-user respec-

tively in order to obtain the economic benefits of large-scale resource sharing [212].

This is in contrast to the typical cluster model where one-to-one mappings are com-

monly exercised. The ability to concurrently share a single piece of hardware is made

possible by a hypervisor, or virtual machine monitor, as shown in Figure 2.1.

CPU Memory Storage Network

Hardware

Operating System

Hypervisor / Virtual Machine Monitor

Virtual Machine Virtual Machine Virtual Machine Virtual Machine

Guest OS Guest OS Guest OS Guest OS

Application Application Application Application

Figure 2.1: Hypervisor: Partitioning Physical and Virtual Resources
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The hypervisor resides between the host operating system and guest virtual machines

and performs a specific job dependent on the type of virtualization employed: full

virtualization, paravirtualization, or hardware-assisted virtualization.

Full virtualization is a virtualization technique that provides a complete virtual

environment to simulate the underlying hardware allowing a guest operating system

to run on the host without any modifications [207]. Non-sensitive guest code, such as

instructions that do not control hardware, typically run directly on the host otherwise

the instructions are trapped by the hypervisor, translated by the software and sent to

the hardware; requests return via the same route. Due to instruction emulation, the

performance of full virtualization technologies can be greatly affected [189], however

it is particularly useful for security and isolating users from one another. Note that full

virtualization is different from emulation where every machine instruction is translated

[190].

Paravirtualization is a virtualization technique that provides a software interface

used by the guest operating system to execute sensitive instructions [189]. This re-

quires a modification to the guest operating system kernel, where calls to these sensi-

tive instructions are replaced with calls to the hypervisor. Paravirtualization is designed

to lower virtualization overhead and increase performance, however operating systems

that cannot be modified (e.g Windows XP) are unsupported.

Hardware-assisted virtualization is a virtualization technique that takes advantage

specialized instruction sets VT-x and AMD-V on x86 architectures [207]. Guest oper-

ating systems do not need to be modified as sensitive instruction calls are trapped by

the hypervisor running in privileged mode and can execute the instruction calls directly

upon the hardware via VT-x or AMD-V [209]. Hardware-assisted virtualization can

offer substantial performance gains, however it is only available on architectures that

have the VT-x or AMD-V instructions sets available.

2.2.2 Technologies

Many different virtualization technologies exist, each offering various levels of ab-

straction and features. We now outline a select number of popular virtualization tech-

nologies that have the potential to be used in an ad hoc cloud computing platform.

• QEMU: is an open source virtual machine emulator that operates on x86, x86-64

and PowerPC architectures and is able to emulate x86, x86-64, ARM, SPARC,

PowerPC and MIPS systems [62]. In order to increase the reasonable perfor-



18 Chapter 2. Background

mance of QEMU, the Kernel Virtual Machine (KVM) component can be used.

KVM is a special operating mode of QEMU and takes advantage of hardware-

assisted virtualization via the extensions Intel VT-x or AMD-V [103] found on

recent Linux kernels.

• VirtualBox: is a x86 and AMD64/Intel64 open source virtualization product de-

veloped and maintained by Oracle [40]. VirtualBox can be run on all major

platforms and supports many guest operating systems. VirtualBox does how-

ever have components based on QEMU [160] but offers full virtualization rather

than complete emulation. Furthermore, VirtualBox supports hardware-assisted

virtualization via Intel’s VT-x and AMD’s AMD-V.

• VMware Player: is a free virtualization suite developed and maintained by the

software company VMware [41]. VMware Player is not however open source

like the aforementioned virtualization packages. Like VirtualBox, it offers a full

virtualization suite for deploying virtual machines but also supports hardware-

assisted virtualization.

• Xen: is an open source x86 hypervisor allowing multiple virtual machine occu-

pancy that can offer near-native performance [60]. Unlike other virtualization

suites where the package is installed upon the host operating system, Xen is im-

plemented as a native hypervisor. Therefore, Xen is installed on the bare-metal

and takes control of the physical machine. Xen is an example of paravirtualiza-

tion but also supports full and hardware-assisted virtualization [223]; the latter

is known as a Hardware Virtual Machine (HVM) by Xen.

2.2.3 A Performance Comparison

There have been many studies investigating the affects and overheads of virtualization

on both host and application performance, as well as the differences in performance

between virtualization technologies. Dominques et al. investigate the performance

overheads of VMware Player, QEMU and VirtualBox [91]. The authors execute CPU,

I/O and network benchmarks on the respective virtual guests and compare the results

by executing the same benchmarks on the native host.

The network benchmark that measures the network speed showed that VMware

Player gave the greatest network performance when using bridged networking, i.e. the

virtual machine is connected to the network using the host’s Ethernet adapter. This
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is followed by QEMU and then VMware Player and VirtualBox when both are con-

figured using Network Address Translation (NAT). The CPU benchmark, which mea-

sures floating and non-floating point performance, and the I/O benchmark measuring

the read and write performance to and from disk, both showed that QEMU performs

slowest with VMware Player performing the best. Other research has found QEMU

offers reasonable performance [62]. With the exception of QEMU, Dominques et al.

quote that between 15% and 35% of an overhead exists when running CPU-bound

benchmarks. Other studies quote an overhead of less than 15% [60, 110, 224].

Dominques et al. also note an interesting result where the performance of a vir-

tual machine is correlated to the impact on the host OS. Their findings show that as a

virtual machine performs better, a host’s application performance drops. By fully con-

suming the virtual CPU and individually running a CPU and memory single-threaded

benchmark on the host, little performance overheads were measured for all virtual-

ization technologies. For multi-threaded applications running on the dual-core ma-

chine (180% CPU availability including OS overhead), VirtualBox performs best by

being able to access approximately 168% of the CPU capacity followed by QEMU and

VMware Player at 160% and 120% respectively.

Younge et al. investigate the performance of the hypervisors VirtualBox, Xen and

KVM in the context of High Performance Computing (HPC) environments. The au-

thors use FutureGrid as their testbed; a geographically distributed set of heterogeneous

hosts [18], however they only use a set of four nodes from one location. The benchmark

suites HPCC [23] and SPEC [35] were used that contain various benchmarks testing

CPU, memory, I/O and disk performance; these may be single or multi-threaded.

Executing the HPCC Linpack benchmark, which measures the floating point rates

of execution when solving linear equations, showed that KVM and VirtualBox achieve

51.8 and 51.3 Gflops respectively when compared to a native execution of 73.5 Gflops.

Xen managed to achieve 49.1 Gflops on average, however it experienced a high de-

gree of variability. Secondly, a similar benchmark measuring floating point rates of

execution when solving complex one-dimensional Fourier Transforms was then used.

Without detailing specifics, the results show that all virtualization technologies can in

some cases achieve near-native performance. In other cases, KVM and VirtualBox

perform well overall however Xen experiences high variability and under-performs.

The authors finally evaluate the technologies using the SPEC OpenMP benchmark

that executes shared-memory parallel tests. The results show that KVM almost offers

near-native performance with a SPEC score 0.3% lower than the native execution. The
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performance of Xen and VirtualBox are 0.9% and 0.91% lower respectively.

In summary, we have introduced the background necessary to understand virtual-

ization and analysed previous research outlining the performance differences of cur-

rently popular virtualization technologies. Table 2.1 summarizes the performance of

the virtualization technologies from the studies of Dominques et al. (Dom) and Younge

et al. (Youn) ranked in order from best performing to least.

Benchmark CPU Memory Network IO

Author Dom. Youn. Dom Youn. Dom Youn. Dom Youn.

Rank 1 VMw KVM NA KVM VMw (B) VBox VMw NA

Rank 2 VBox VBox NA XEN QEMU Xen VBox NA

Rank 3 QEMU Xen NA VBox VMw (N) KVM QEMU NA

Rank 4 NA NA NA NA VBox NA NA NA

Table 2.1: Summary of Virtualization Technology Performance

Table 2.1 shows that KVM, VMware Player (VMw: (N)AT, (B)ridged) and VirtualBox

(VBox) all perform well, although this is dependent on the host’s hardware specifica-

tions and the executing application. The performance of Xen has been shown to be

lower than the other virtualization technologies outlined, however others find that it

offers high performance and also out-performs VMware [60]. Even though the virtu-

alization technologies are ranked, there are cases where the difference between ranks

is minimal. We offer our own comparison of virtualization technologies in Chapter 3.

2.3 Cloud Computing

In this section, we outline the various definitions related to cloud computing and then

provide a brief overview of cloud computing describing the most important features of

the cloud. We then provide an in-depth overview of Amazon EC2 which is required to

understand a substantial portion of literature presented later in the thesis. We finally

discuss the cloud platform OpenStack and specifically its scheduling component which

is modified and used within our ad hoc cloud. This also aims to give an alternative view

of the available cloud platforms.
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2.3.1 Definitions

Ever since the introduction of cloud computing, a single precise definition of the term

has not been coined although most definitions reference the delivery of services, ap-

plications and resources from a set of remote host servers that are accessed over the

commodity Internet [56, 57, 127, 64, 156]. There are however widely agreed defini-

tions that describe the various deployment and service models and we outline those

here. Cloud computing platforms exist in many forms and typically conform to com-

mon deployment and service models. A cloud may either be deployed as a public,

private or hybrid cloud, as shown in Figure 2.2.

Public Cloud Private Cloud

Hybrid Cloud

Cloud Stack Cloud Stack

Apps

Data

Figure 2.2: Cloud Computing Deployment Models; derived from [42]

Public cloud computing models are made available to the general public and resource

use is charged like the pay-as-you-go model for charging electricity. Private cloud

computing infrastructures typically reside behind organizational firewalls and are used

in accordance to the goals they aim to achieve. Hybrid clouds are private clouds that

are extended by cloudbursting [55] to the public cloud in order to cope with additional

demand or to take advantage of additional services.

Cloud providers also conform to either a single or number of common service

models: Infrastructure as a Service (IaaS), Platform as a Service (PaaS) and Software

as a Service (SaaS), each of which provide differing levels of environment abstraction

[93]. Figure 2.3 depicts these different service models and the level of abstraction

offered to the end-user.
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Figure 2.3: Cloud Computing Service Models; derived from [13]

IaaS is a popular service model offered by cloud providers where raw compute, stor-

age and network capabilities are delivered as a service to the end-user. End-users are

only able to customize the infrastructure from the Operating System (OS) level up-

wards to the application. This is in contrast to owning a dedicated cluster, where an

administrator would control raw compute, storage and network resources. Within the

IaaS model, these resources are available to cloud users via virtualization giving the

impression that a single cloud user has full and exclusive access to the resource. Fur-

thermore, virtualization reduces the barrier to entry for many as end-users do not have

to make substantial changes to their applications to deploy them on a virtual machine,

or instance. A common example of an IaaS cloud infrastructure is Amazon Elastic

Compute Cloud (EC2).

PaaS on the other hand delivers an application environment to the end-user who

only needs to be concerned with their application and data. The cloud provider man-

ages the underlying infrastructure and can offer various application stacks such as Java

and Python for example. This model is particularly useful for those who wish to avoid

the complexities of system administration and are only concerned by running applica-

tions. Common examples of PaaS cloud infrastructures are Google App Engine (GAE)
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and Microsoft Azure.

Finally, at a higher layer of abstraction, SaaS is a method of delivering applications

over the Internet. Like PaaS, the cloud provider manages the underlying infrastruc-

ture but applications and associated data are created, managed and delivered by the

cloud provider. Common examples of SaaS cloud applications are Google Mail and

Microsoft Office 365.

Like Saas, both IaaS and PaaS cloud providers also offer products and services

alongside their infrastructure offering. This may be scalable storage (e.g. Amazon S3

and GAE Datastore), relational databases (e.g. Amazon Relational Database Service

and SQL Azure), monitoring tools (e.g. Amazon CloudWatch) or even authentication

software (Amazon Web Services Identity and Access Management and Azure Active

Directory). These services are easily integrated into a cloud user’s virtual infrastructure

either via web interfaces or simple APIs.

2.3.2 Overview

Cloud computing has become a disruptive yet popular technology due to the advan-

tages it offers both cloud provider and cloud user. By employing virtualization, ware-

house scale cluster management reduces the management overhead per customer and

the size of the user-base that can be served is much larger when compared to non-

virtualized infrastructures. As a result, server utilization has increased, while the over-

all energy consumed [150] has decreased, in turn promoting greener IT. Increased

server utilization often leads to reduced operating expenses and these savings can ei-

ther be passed to the customers of public cloud infrastructures or manifested in profit.

Cost is one major factor as to why public cloud computing has also become popular

in recent years. Cloud computing’s ‘pay-as-you-go’ charging model, where resources

are paid for per unit consumed per hour, can often be claimed to be a cheaper model

than procuring a dedicated infrastructure [136, 184, 143]. Such claims are typically

based on individual cases and should not be generalized.

Furthermore, estimating the true cost of a dedicated infrastructure is not well under-

stood, even by those who currently administer such systems [202]. Additionally, cloud

computing is often cited as being more expensive for long term use [202]. However,

these additional costs may be offset by taking advantage of recent research to decrease

costs; for example, by dynamically auto-scaling virtual instances based on workload

information and performance targets [158]. Alternatively, expensive long-term costs
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may be out-weighted by the other advantages cloud computing offers [56, 57].

One advantage is the scalable and elastic nature of the cloud; the ability to match

a workload’s resource demand in an autonomic fashion by dynamically adding or re-

moving resources. Elasticity is particularly useful for applications that have sporadic

and unpredictable demand. A good example of this is the Animoto use case [5]. Ani-

moto is a software company that creates video slideshows from uploaded photos, music

and video clips. The company experienced substantial growth when their application

gained popularity and therefore scaled from 40 to 5000 EC2 instances in three days.

Unfortunately, elasticity is not a feature commonly employed by other infrastruc-

tures, such a clusters and Grids. Cluster and Grid users must either perform as much

work as they can with the available resources or system administrators must procure

enough hardware to cope with peak levels of usage if they strive to satisfy demand.

Furthermore, unlike cluster and Grid infrastructures, the cloud is perceived to be

a flexible computational model where an apparently ‘unlimited’ number of resources

can be deployed and utilized on-demand from any host with an Internet connection.

The cloud also offers high levels of availability. For example, Amazon EC2 commits

to provide 99.95% availability as outlined in their Service Level Agreement (SLA) [3];

a contract between cloud customer and provider outlining the standards of service the

provider has guaranteed to deliver.

Although levels of performance are not specified within SLAs, there exists a strong

notion of trust between cloud user and provider on what levels of performance should

be delivered. However it has been shown that actual performance delivered can vary

significantly due to resource contention from the use of virtualization and relatively

poor network performance [56, 117, 127, 130, 168, 194]. We give further performance

measurements of a commercial cloud platform in Appendix A.

We have just given a brief overview of cloud computing as well as a number of

its benefits and drawbacks. This however is by no means a full in-depth overview of

the topic and aims to serve as a background for further discussion later in the thesis.

More information about cloud computing can be found at [72, 131]. We now give an

overview of the commercial cloud infrastructure Amazon EC2.

2.3.3 Amazon EC2

Amazon Web Services (AWS) [4] offer their Elastic Compute Cloud (EC2) as a public

Infrastructure as a Service (IaaS) cloud where virtual machine instances are provided
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on top of a bare-bones environment, based on Xen virtualization [212, 60]. Ama-

zon EC2 instances come in many flavours and sizes to give a user a greater choice to

correctly fit an instance type to an application’s requirements. There are also a large

selection of Amazon Machine Images (AMI) available to create and launch instances.

An AMI stores the information needed to launch an instance, e.g. the OS, access per-

missions, storage volumes to attach etc. Cloud users are able to create, publish and

share their own AMIs to allow others to launch equivalent instances.

2.3.3.1 Compute

At the time of first using Amazon EC2 for experimentation (approximately May 2011),

we used a variety of EC2’s Standard On-Demand General Purpose instances; those that

charge users for compute capacity by the hour and offer no performance enhancements

or extra resources, for example additional storage. Upon subsequent experimenta-

tion at a later date, we used instances of the same type and size to remain consistent

throughout.

Despite this, Amazon EC2 instances have changed in configuration and cost since

2011. We show the available instance sizes, specifications and costs as of 2011 in

Table 2.2. We only describe those that are used during our experiments and are hence

mentioned later in the thesis. Full details of EC2 instances can be found on the Amazon

EC2 website [3].

Size vCPU ECU RAM (GB) Storage (GB) I/O $/hr
m1.small 1 1 1.7 160 Moderate 0.085

m1.large 2 4 7.5 850 High 0.34

m1.xlarge 4 8 15 1690 High 0.68

Table 2.2: Amazon EC2 Instance Specifications and Costs (2011)

As of 2011, only three Standard On-Demand General Purpose instances sizes existed:

small, large and extra large. The number of virtual cores (vCPU), Elastic Compute

Units (ECU), virtual resources and costs increase proportionally according to instance

size; an ECU provides the equivalent CPU performance of a 1.0-1.2 GHz 2007 AMD

Opteron or Intel Xeon processor and is calculated based on Amazon’s own unpublished

benchmarks. EC2 processor research has shown that the small, large and extra large

instances can run on Intel Xeon E5430 4 core 2.66 GHz processors or in some cases
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(less than 10%), small instances may run on AMD Dual-Core Opteron 2.6 GHz 2218

HE Processors [125]. Since 2011, the available instances sizes, specifications and costs

have changed and these changes are reflected in Table 2.3

Size vCPU ECU RAM (GB) Storage (GB) I/O $/hr
m1.small 1 1 1.7 160 Low 0.044

m1.medium 1 2 3.75 410 Low 0.087

m1.large 2 4 7.5 840 Moderate 0.175

m1.xlarge 4 8 15 1680 High 0.350

Table 2.3: Amazon EC2 Instance Specifications and Costs (2014)

In 2012, the medium sized instance was introduced offering approximately twice the

amount resources of a small instance for twice the cost. However, these instances

also experienced a slight loss of virtual resources when compared to those offered in

2011. A large and extra large instance lost 10 GB’s of storage and the level of I/O

performance of a small and large instance was reduced to low and moderate respec-

tively. This may be one of the many reasons why costs of the same sized instances are

cheaper today than in 2011.

Note that the costs displayed in Table 2.2 and Table 2.3 are specific to the US East

Region (Northern Virginia) of Amazon’s cloud infrastructure. Regions are defined as

separate geographical areas whose data centres are completely isolated from those in

other Amazon EC2 Regions. At the time of writing, eight Amazon EC2 Regions exist

and their approximate locations are depicted (in red) in Figure 2.4.

2.3.3.2 Data Transfer

Within each Amazon EC2 Region, multiple Availability Zones exist. Availability

Zones are isolated and distinct areas that are designed to be fault tolerant from other

Availability Zone failures in the same Region, i.e. if an instance fails in one Avail-

ability Zone, a service can still operate provided that it has another instance running

in another Availability Zone. As a result of the segregated nature of the infrastruc-

ture, each Region has different costs for computation and storage. Transferring data

between and within Regions and Availability Zones can also incur different costs due

to the different data transfer types:

• Internet Data Transfer (IDT): data transferred from an instance (or any Amazon



2.3. Cloud Computing 27

Figure 2.4: Amazon EC2 Regions

Web Service) to the Internet and vice versa. Data transferred between Regions

also are classed as IDT.

• Regional Data Transfer (RDT): data transferred between instances in the same

Region that are in different Availability Zones.

• Availability Zone Data Transfer (ADT): data transferred between instances in

the same Availability Zone.

In order to reference experimental costs of Amazon EC2 in Appendix A, the costs of

transferring data in May 2011 are outlined in Table 2.4; 2014 costs are included for

completeness.

We see from Table 2.4 that the costs for RDT in both the outward and inward

directions are set at $0.01 per GB, while inward IDT is now free compared to 3 years

previously where this was set at $0.1 per GB. Furthermore, in 2011 the outward IDT

charge was only based on the tiered charge model where users pay based on the amount

they transfer. At the time of writing, outward IDT is charged at two different rates: one

for transferring data to another Region, currently set at $ 0.02 per GB, and another to

the Internet which is based on the cheaper tiered charging model.

2.3.3.3 Storage

Amazon also offer various persistent storage mechanisms such as Amazon Simple

Storage Service (S3) and Amazon Elastic Block Storage (EBS); the former was the
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Data Transfer Type Price (May 2011) Price (March 2014)
Data Transfer In (per GB)

RDT $ 0.01 $ 0.01

IDT $ 0.10 $ 0.00

Data Transfer Out (per GB)

RDT $ 0.01 $ 0.01

IDT (to Region) NA $ 0.02

IDT (to Internet)

First 1GB / month $ 0.00 $ 0.00

Up to 10TB / month $ 0.15 $ 0.12

Table 2.4: Amazon EC2 Data Transfer Costs (2011/2014)

first service AWS publicly offered. Amazon S3 is an Internet-accessible, persistent

and scalable storage platform providing limitless storage capabilities [172] that can be

used for general persistence, backups, data distribution and sharing [4].

Amazon S3 is based on a simple architecture revolved around objects and buckets.

A cloud user’s data and metadata are stored as objects and these are placed in buck-

ets. Once stored, objects are copied to multiple locations, by default, to improve data

availability. Like any Amazon service, S3 is charged using the pay-as-you-go model

based on the number of gigabytes stored as well as the number of requests performed

on the data store.

Amazon EBS is a mountable storage, conceptually equivalent to a USB disk, that

can be created and attached to a virtual machine [4]. Volumes of up to 1TB can be

created and data may or may not be persistent dependent on the cloud user’s choice.

Amazon EBS offers data access speeds that are typically faster than S3 due to the

locality of the volume mounted. Similar to S3, EBS is also charged based on the

number of gigabytes stored as well as the number of requests sent to the storage service.

2.3.3.4 Billing and Usage Reports

Amazon EC2 charges for compute, data transfer and storage by monitoring the con-

sumption rates for each of these resources and bills the cloud user at the end of each

month; an example section of an EC2 bill is shown in Figure 2.5
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Figure 2.5: Example Amazon EC2 End-of-Month Bill

Figure 2.5 shows the breakdown of costs for each of the instances used during one

month, as well as the associated charges relating to Amazon EBS. The cloud user also

has the ability to check the amount of resources they consumed during a specified

period by downloading a copy of their Usage Report. The Usage Report is an XML

or CSV file that displays the amount of resources consumed per service; an example

section of a Usage Report is shown in Figure 2.6.

<OperationUsage>
<ServiceName>AmazonEC2</ServiceName>
<OperationName>InterZone-Out</OperationName>
<UsageType>DataTransfer-Regional-Bytes</UsageType>
<StartTime>10/05/11 20:00:00</StartTime>
<EndTime>10/05/11 21:00:00</EndTime>
<UsageValue>7512592218</UsageValue>

</OperationUsage>

<OperationUsage>
<ServiceName>AmazonEC2</ServiceName>
<OperationName>InterZone-In</OperationName>
<UsageType>DataTransfer-Regional-Bytes</UsageType>
<StartTime>10/05/11 20:00:00</StartTime>
<EndTime>10/05/11 21:00:00</EndTime>
<UsageValue>7756651392</UsageValue>

</OperationUsage>

Figure 2.6: Example AWS XML Usage Report

Figure 2.6 shows the number of RDT bytes transferred inwards and outwards from

an instance. Note that Usage Reports can be large in size as they detail the resources

consumed per hour for each AWS service. The Usage Report is updated each hour to

reflect the cloud user’s current resource usage, however costs may be updated up to

one day after a particular resource has been consumed by the cloud user’s instance.
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We have now explored all of the concepts of Amazon EC2 that are necessary for

understanding the experiments performed and results obtained that are outlined later

in the thesis.

2.4 Volunteer Computing

The number of privately owned devices such as desktops, laptops, tablets and smart-

phones for example, are estimated to account for one billion of the computational

devices currently within the digital consumer market [48]. Crin et al. assume that a

typical PC consists of 4GB RAM, 1TB storage and has a 10Mbps network connection

and therefore outline that a theoretical infrastructure exists that has the computational

capability of 100 ExaFLOPS, 10 Exabytes of storage and can achieve a bandwidth of

1 Petabit per second [79].

Though many devices may be switched off or disconnected at any time, the avail-

able resource pool will still be large. While many will be concurrently in use, the po-

tential spare resource capacity available is of a great magnitude as PC devices typically

remain idle for large periods [111]. This therefore makes this theoretical infrastructure

potentially one of the most powerful distributed systems on the planet [142].

In this section, we give an overview of volunteer computing and how even a subset

of computational and storage resources can be utilized from this theoretical infrastruc-

ture. We then discuss Grid computing; a form of distributed computing that is closely

linked to the volunteer computing model. We also describe its differences in relation

to volunteer computing and cloud computing as well as its benefits and drawbacks.

Finally we describe the Grid middleware platform BOINC.

2.4.1 Overview

Volunteer computing is a form of distributed computing where members of the pub-

lic are able to offer computational and storage resources to scientific research projects

[52]; or indeed to other projects that capture the public imagination. Introduced in 2006

by Luis Sarmenta [191], volunteer computing became popular with the SETI@Home

project [47]. SETI@Home allows distributed volunteer users to offer computational

and storage resources from their commodity devices to help in the search for extrater-

restrial intelligence.
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Nowadays, a wide range of scientific projects are available from various scien-

tific fields such as computational biology, climate prediction and high-energy physics

[142]; members of the general public are even able to create their own scientific

project if they have the technical skills to do so. The latest known figures show that

900,000 volunteer users donate their computational and storage resources to 60 scien-

tific projects [48].

Volunteer computing typically conforms to a basic master-slave architecture where

slaves request jobs, the job is executed and the results are returned to the master for

analysis. The simplicity of the approach is one reason why volunteer computing has

been a popular computational model. However, volunteer computing comes with ad-

ditional challenges that are as common in cluster and Grid computing.

Volunteer users cannot be trusted to return valid results, reliability protocols must

ensure each task is completed in the face of volunteer host churn and tracking all avail-

able volunteer hosts and tasks within the system must be performed accurately. The

scientific application must also be engineered for the context. Furthermore, dealing

with host heterogeneity, maintaining scalability and minimizing overheads are also

great technical challenges showing the complexities volunteer systems must overcome

in order to successfully contribute to science.

While these systems are technically successful, there are however unavoidable

downfalls of volunteer computing, in particular for those who donate resources. For

example, volunteer users may observe a decrease in performance when volunteer tasks

are executing. This in turn may also cause CPU fans to spin faster and increase noise;

CPU overheating may occur if the fans are unable to cope. Furthermore, an increase

in power consumption will occur if a CPU is executing tasks when it otherwise would

be idle. Security is also another issue where volunteer users must trust the volunteer

project does not distribute malicious or untrustworthy applications or that certified sci-

entific tasks do not behave abnormally.

The technical aspects of volunteer computing have received much attention since

its introduction however attracting and retaining volunteers has proved one of the most

difficult challenges. Volunteer users may be attracted to a particular project to help ad-

vance research or be engaged in the social interaction that volunteer computing offers.

Furthermore, volunteer computing platforms typically offer credits when volunteer re-

sources are utilized hence in turn, competition and recognition of achievement also

provides volunteer users incentives to donate resources [79]. Nov et al. aimed to de-

termine why volunteer users donate resources and their level of resource contribution
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by investigating the popular SETI@Home project [174]. Their findings show that en-

joyment and reputation do not significantly impact on contribution however the goals

and values of the project do.

Darch et al. classify volunteer users either as Super Crunchers, Lay Public and

Alpha-Testers [87]. Super Crunchers compute a large quantity of scientific data, the

Lay Public make a smaller contribution and Alpha-Testers are recruited by volunteer

projects to perform early testing. The authors find that Super Crunchers contribute due

to the credit system and praise they receive for contributing lots of resources. The Lay

Public may also find the credit system a major pull factor as well as contributing to

science and society. The Alpha-Testers are typically engaged by the reputation they

receive by testing the early features of volunteer projects.

2.4.2 The Grid

Due to the similarity between volunteer and Grid computing, the Grid model also

offers similar advantages but equal challenges to overcome. Grid computing is a form

of distributed computing that combines geographically distributed resources to create

a high throughput computing infrastructure [108]. This global infrastructure facilitates

the sharing of resources and access to a large-scale computational platform that would

otherwise be unavailable. Without the advances of networking technology in the mid-

1990s, the Grid would not have been able to provide an effective collaborative data

sharing and analytical infrastructure for use by researchers [217].

The Grid infrastructure is typically composed of geographically distributed and

voluntary resources provided by an organization, for example a university or business.

Within these institutional boundaries, an organization has the responsibility of provid-

ing a scalable, flexible and secure environment for researchers [217]. An organization

must conform to a set of open standards and protocols when developing Grid solutions.

For example, the Open Grid Services Architecture (OGSA) exists to define policies of

how to share data between various institutional boundaries [30].

Due to the distributed nature of the Grid, the infrastructure is inherently hetero-

geneous, loosely coupled and dynamic [63]. However, a shared global platform also

fosters global collaboration between organizations to execute tasks which solve prob-

lems to reach common goals; a primary reason why Grid computing was born [157].

Grid infrastructures can execute a variety of tasks from many research project areas

such as high-energy physics, bioinformatics and chemistry, for example. These appli-
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cations may be also be distributed in nature and require high-throughput or fast data

processing capabilities. A well cited use of Grids is the work being performed at CERN

to help analyze and store the vast amounts of data produced from the Large Hadron

Collider (LHC) experiments [217, 109, 157]. Data is transferred over the World LHC

Computing Grid (WLCG) [44] from Geneva to various organizations called Tiers; an

example of the scale of data transfers is shown in Figure 2.7.

Figure 2.7: WLCG Data Transfers [43]

Three types of tiers exist: Tier-0, Tier-1 and Tier-2 [114]. The Tier-0 centre consists

of the shared infrastructure available at CERN and has the purpose of data recording,

performing initial analyses and distributing data from their experiments. Tier-1 cen-

tres store data, perform large-scale preprocessing and store subsequent results. Tier-2

centres are typically universities and organizations who can store and analyze small

amounts of data. Figure 2.7 shows that at the time of writing, the aggregated band-

width usage was 5.32 GB/s and this data was being sent from CERN to 106 sites

over 1069 links. The coordination of data and distributing computations over the Grid

infrastructure are a few of the many technical challenges that must be overcome to

successfully operate over the Grid.

Many of these challenges are solved by Grid middleware such as Globus [78, 107],

gLite [149, 159] and Condor [154, 204]. However these middleware frameworks can

be complex and target the use of an organization’s dedicated resources within the Grid.

There are however substantial idle resources within organizations that could be uti-

lized, hence Grid middleware such as BOINC [47] and Xtermweb [100], as well as

Condor aim to take advantage of these resources to create a Desktop Grid.
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While conceptually similar to volunteer computing, Desktop Grids are composed

of a more homogeneous set of resources and are either under the same ownership

or owners agree to common management policies to achieve a goal. On the other

hand, volunteer computing is composed of a wide range of heterogeneous resources

dispersed worldwide that are unreliable in nature. We now focus on one Desktop Grid

middleware and volunteer computing system that is core to our ad hoc cloud computing

model.

2.4.3 BOINC

The Berkeley Open Infrastructure for Network Computing (BOINC) is an open source

client-server middleware system created to allow projects with large computational

requirements, usually set in the scientific domain, to utilize a technically unlimited

number of volunteer machines distributed over large physical distances [47]. Created

in 2002, BOINC has become one of the most popular volunteer computing middleware

systems.

2.4.3.1 Overview

The success of BOINC can be attributed due to its simplicity and ease of use from

a volunteer user’s perspective as well as its architecture in general. BOINC follows

a basic client-server model. Volunteer users must download BOINC and select or

enter their desired project in order to obtain tasks from the appropriate BOINC server;

there are very few actions that must be performed afterwards and BOINC can execute

indefinitely without user intervention. The BOINC architecture is shown in Figure 2.8.

Two important components are depicted: the BOINC client and the BOINC server.

The BOINC client is an application that is installed on the volunteer host and has the

purpose of communicating with the server, attaching the client to single or multiple

projects, organizing the computation and returning results. The BOINC client is com-

posed of four components as shown in Figure 2.8 [49]:

• The core client: communicates with the server, attaches clients to projects, orga-

nizes the computation, executes the application and returns the result.

• The boinccmd API: a command-line interface for controlling the core client. It is

able to obtain new tasks, suspend computations, upload results, reset the project,

etc.
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Figure 2.8: BOINC Architecture; derived from [98]

• The BOINC Manager: a Graphical User Interface (GUI) representation of the

boinccmd API. The Manager also shows all attached projects, current down-

loads, computational progress, etc.

• Screensaver: a project specific screensaver displaying graphics of a running task;

whether a screensaver exists is project dependent.

2.4.3.2 The BOINC Process

Upon running the BOINC client for the first time, a series of benchmarks are executed

to determine the true speed of a host’s CPU. The total resource capacities and available

disk space are also recorded. Once connected to a scientific project, the BOINC client

will receive an application from the BOINC server to execute.

The application itself typically consists of an application executable, that has previ-

ously been compiled on the target host type, and a series of input and output files [79].

The application must have checkpointing measures in place to allow the computation

to continue if BOINC is quit by the user or the host terminates or fails [49]. During the
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execution of an application, the BOINC client records the amount of work performed

by the volunteer host and issues credits to the user which are published on-line. Credits

are calculated by multiplying the application’s CPU time by benchmark scores.

Conceptually the BOINC client is a simple application however much of the sys-

tem’s complexity resides on the BOINC server. The BOINC server has the main pur-

pose of hosting the scientific project (e.g SETI@Home) and creating, distributing, col-

lecting, storing and validating Results from many clients [111]. Results are instances

of a particular BOINC Work Unit (i.e. a particular scientific task) regardless if the

Work Unit has been completed or not. To store and distribute these Results, the server

uses MySQL for data storage, while Apache and PHP are used for web access; for

example, to allow a volunteer user to modify project preferences or a project adminis-

trator to configure the project.

The BOINC server is underpinned by a set of running daemons that create and

coordinate entities related to the project [51]. A set of default daemons are provided

however additional daemons can be added dependent on the project characteristics

and functionality required. After an application developer has created their scientific

project, and as shown in Figure 2.8, the work generator daemon begins creating project

Work Units and stores these in the ‘Download’ folder. The transitioner, whose task it

is to manage the state transitions of Work Units and Results, then generates multiple

Results from a single Work Unit and stores these in the database.

The feeder periodically extracts these Results and enters them into a shared mem-

ory region. The scheduler, which has the purpose of communicating with client us-

ing XML messages, coordinates outbound Results from the shared memory region

to clients while concurrently dealing with completed Results. Received Results are

placed in the ‘Upload’ folder and the transitioner is informed. The validator is then

instructed to validate the received Results. BOINC does this by adopting replication

where each job is executed on multiple hosts. By comparing the Results received from

different clients, BOINC ensures that host errors or security breaches have not influ-

enced the Results. Credits are issued to hosts only if the Result is deemed as valid

[51].

Once a Result has been validated, a Canonical Result is created; a Result which is

the simplest and best of those validated. Optionally, the assimilator may perform an

administrator-defined action such as archiving Canonical Results to long-term storage.

In order to reduce storage space consumption on the server, the file deleter removes

Work Unit data files and Results that are no longer required.



2.4. Volunteer Computing 37

2.4.3.3 The Performance of BOINC

In order to attract and retain volunteer users, the performance of both the BOINC

server and client must be acceptable. The BOINC client should not cause significant

overheads or slowdown of the volunteer host and the processes currently running on it.

This however is managed by the volunteer user via project preferences.

The volunteer user is able to control aspects of the job by adjusting these pref-

erences via their account hosted on the BOINC server [49]. They can control the

minimum interval between checkpoints, the maximum utilization of a processor, the

total disk, memory and network usage allowed or even the time of day the volunteer

host can be used; many other options exist but for brevity, are not explained here. We

show in Chapter 4 that no significant overheads exist while executing an application

using BOINC.

As most of the complexity of the BOINC system resides on the server, achieving

good performance is critical to meet the demands of BOINC clients. As the number of

volunteer hosts can range from tens of volunteers to potentially hundreds of millions

[51], it is especially important that the server scales well when there is an increase in

the number of client requests for work or Results uploaded.

Anderson in 2005 [51] performed an analysis of the BOINC server performance

and found that an inexpensive computer ( 2GB RAM, 2 x 2.4 GHz processors and 480

GB storage) hosting the server can distribute approximately 8.8 million tasks per day.

Excluding file upload and download, which is project dependent, a network offering

approximately 8.2 Mbps would be needed to cope with this number of tasks. The main

performance bottleneck was the CPU which reduced database performance and limited

the number of tasks per day that could be distributed.

Amdahl’s Law dictates that CPU speeds double approximately every 18 months,

hence nowadays, we would expect the BOINC server to process and distribute more

tasks per day. Hence, based on these measurements, it is reasonable to assume that any

modification to the BOINC server would have little effect on performance, which we

show in Chapter 6, and the ability to achieve 8.8 million tasks per day.

However, as the trend in CPU speed progresses, the available network bandwidth

will become the bottleneck, especially in the future as applications become more data-

intensive. The number of volunteer resources may also have to increase substantially

in order to cope with large storage demands if disk technology and performance does

not keep pace with the increase in CPU speed.
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2.4.4 Grids, Clouds and Volunteer Infrastructures

Now that we have described all computational models that are either directly or indi-

rectly related to ad hoc cloud computing, we offer a brief comparison between Grid,

cloud and volunteer computing.

Grid computing has provided cloud computing with fundamental aspects of dis-

tributed computing enabling it to thrive in recent years. They both share common

entities such as being available via an Internet connection and offer geographically

distributed resources [108, 56]. They are also scalable, created for multi-tenancy and

both are trusted to provide reasonable performance and security.

Clouds and Grids are however different in many ways. Perhaps the most signif-

icant difference is the use of virtualization in cloud infrastructures for reasons previ-

ously mentioned. Furthermore, cloud mandates the use of virtualization whereas Grid

permits it but does not require it. Therefore applications do not need to be modified

for use on the cloud as a virtual machine can be modelled on an end-user’s OS and

local resources. On the other hand, Grid does require applications to be modified and

submission scripts must be created to execute the application.

Another significant difference is that Grid computing components are owned by a

consortium of organizations who agree to conform to a common implementation op-

eration and use model, whereas cloud computing infrastructures are owned and main-

tained by a single organization that chooses its own model. Although a degree of

trust exists between both the users of cloud and Grid infrastructure providers, the core

concept of Grid builds upon stronger levels of trust between organizations in order to

foster collaboration. This was highlighted when Ashley et al. were the first to con-

nect organizations from three continents into a single large-scale research Grid in the

Asia-Pacific region [155].

As Grid computing was built on the premise of data sharing and collaboration,

cloud computing is typically known to offer a commercialized version of this compu-

tational model and is targeted at businesses rather than researchers. This has resulted in

cloud infrastructures becoming service orientated for business requirements, whereas

Grids that offer service-based functionality, are typically aimed at scientific research or

large-scale computations; for example, the WLCG. Furthermore, HPC applications are

less well suited to running effectively on the cloud, however they are suitably matched

to the Grid. The location of data is also unknown when utilizing commercial and pri-

vate cloud infrastructures.
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Two features that are core to the cloud computing model but are typically omitted

from Grid infrastructures are on-demand resources and elasticity. The high through-

put nature of the Grid as well as the large number of computations to be performed,

typically results in well populated queues containing applications waiting to access

resources. Therefore obtaining resources on-demand within a Grid infrastructure is

uncommon, however on-demand access to Grid resources could be possible if the Grid

were underutilized. Despite this, the static provisioning of resources typically em-

ployed by batch job submissions also prevents resources from being available almost

instantly, as well as being elastic. However as computational demand increases, the

elastic nature of cloud computing may decrease as resources become stretched.

Volunteer and cloud computing are two completely different computational models

and their differences have previously been outlined in Chapter 1. However in addition,

unlike cloud computing, volunteer computing does require that an application is mod-

ified for it to be executed on volunteer resources; these volunteer resources may be

from cloud or Grid infrastructures. Volunteer and Grid computing are closely linked

where resources are harnessed and offered to scientific research, however these re-

sources are typically not available on-demand. For example, volunteer resources may

be unavailable and Grid resources may only be accessed through a batch system and

subsequent queue. Although the potential resources available to volunteer infrastruc-

tures are of great magnitudes, Grid computing should offer better performance due to

the co-location of compute resources and the reliability of resources.

Volunteer computing does however offer access to computational resource at a

much lower cost compared with an organization that purchases and maintains resources

for the Grid. Volunteer infrastructures do have a greater host churn and failure rate and

volunteer resources cannot be trusted; this is in direct contrast to Grid computing. Grid

computing is however able to execute a larger range of applications whereas volunteer

infrastructures mainly execute embarrassingly parallel CPU-intensive tasks. The sim-

ilarities outlined are in no way a complete list and opinions may differ. However, al-

though the aforementioned similarities may appear minute in some cases, the research

and technical challenges enabling each of these computational models is substantial.

2.5 Monitoring and Management

Server monitoring and management are critical components of infrastructure admin-

istration allowing the verification of resource use, observation of server performance,
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identification of failures and control of servers. These components are especially use-

ful in complex systems where administrators are not able to understand and control

their infrastructure directly; this is especially true in the case of ad hoc clouds.

In this section, we give a brief overview of the basics of server monitoring and

management; we define the latter as the ability to control individual or multiple servers

concurrently to acquire a desired state. We then discuss two existing monitoring tools,

Ganglia and Nagios, to help understand the literature presented in Chapters 5 and

Chapter 6 respectively. Finally, we outline various infrastructure management tools

that have the potential to be used in an ad hoc cloud and how they are able to offer

infrastructure control.

2.5.1 Overview

The rise of high throughput computing posed many challenges on how to operate such

large and dynamic infrastructures efficiently and successfully. As the number of hosts

increased and the nature of the system became more distributed, system monitoring

and management became an important yet complex task, without which computational

platforms such as the Grid may not have become successful.

The technological advances of the last decade have increased the functionality of

modern monitoring and management software. Hence, there exists a large number

of Grid and HPC monitoring tools such as: MapCenter [68], GridICE [53], R-GMA

[83], GridRM [58] and Supermon [201], to name a few. This is in addition to smaller

tightly integrated command-line tools for monitoring specific aspects of a system; for

example iperf [24] and tcpdump [38]. However, as new tools are created or further

technological advances are made, we must still consider the why, what, how and when

of monitoring and managing systems.

2.5.1.1 Why monitor and manage?

The reasons to monitor and manage an infrastructure are typically well known and have

been previously mentioned. For example, Grids require monitoring for performance

analysis, tuning and prediction as well as for scheduling and fault detection [59]. How-

ever some may require monitoring and management in order to maintain high availabil-

ity or cut costs by dynamically powering down underutilized machines. Management

is also a critical component to ensure an infrastructure requires less skilled effort to

operate and is under administrator control at all times.
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2.5.1.2 What to monitor and manage?

Past and present monitoring software typically monitors a set of common metrics such

as CPU, memory, network and disk usage. Nowadays, some monitoring software adds

administrator alerting and autonomic response to events or failures [27]; others allow

system administrators to extend the set of metrics [162].

There are however two entities that can be monitored: the entire infrastructure or

a particular service running upon the infrastructure [153]. Infrastructure-based moni-

toring gathers performance metrics relating to the entire infrastructure. Service-based

monitoring measures metrics related to a specific service running on an infrastructure.

Management software can also conform to either of these models, however if system

administrators have to the ability to control hosts, they also have basic control of the

services running on these hosts, e.g. restart, stop and start.

2.5.1.3 How and when to monitor and manage?

Various monitoring software packages have different approaches of how to monitor

an infrastructure or service effectively. This depends on why monitoring is being ad-

dressed and what are the entities to be measured.

A large number of monitoring tools follow a standard model of how to monitor an

infrastructure; the Grid Monitoring Architecture (GMA) [205] developed by the Global

Grid Forum [29] (now the Open Grid Forum) offers a good overview of this standard

model. This has provided many monitoring software developers with a foundation to

build on. We briefly describe the standard architectures employed by many current

monitoring tools whose architecture is similar to that proposed by the GMA.

Many system monitoring tools subscribe to the model where both a producer of

data and a consumer of data [225] work together to provide a monitoring service. The

producer executes on the host to be monitored or the host that executes a service,

dependent on the type of monitoring employed. The producer of data periodically

polls the underlying system for data at a rate set by the system administrator. This

data is then either pushed to a consumer and/or is pulled by a consumer running on a

different host; this is dependent on the data transfer model implemented and this must

be tolerant towards host failures.

The consumer process typically resides on a dedicated server [213] that stores and

displays the monitoring data in a human-presentable format to a system administrator.

This data can also be analyzed periodically by applications that check quality of service
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delivered, check for intrusion and compute cumulative operational statistics. Some of

these are made inspectable by the system’s users and all are available to the providers

of the infrastructure.

As many monitoring software packages utilize the standard monitoring model,

these packages are also advertised as being scalable, reliable, available, highly ac-

curate and having low network overheads. However, studies have found many tools do

not offer the features as advertised. For example, Volk et al. note that scalability is not

well implemented in current monitoring tools and that data visualization will no longer

be adequate as data grows [210]. Furthermore, monitoring software is inflexible and

unable to cope with dynamic infrastructures [82, 213, 220] due to the static way these

tools are configured.

Management software is also known to face similar problems of inflexibility and

in many ways have challenges similar to monitoring software packages due to the

architecture it employs. Like monitoring tools, the core of a system management soft-

ware package typically resides on dedicated servers for centralized control, displaying

changes in system state and ensuring local and remote host security is managed ap-

propriately. Similarly, infrastructure control may only be possible if the tool is also

installed on the hosts to be managed. Alternatively, many tools do not need software

installed on the monitored hosts as exchanging SSH keys can be used to allow remote

control via password-less login [61].

2.5.2 Infrastructure Monitoring Tools

We now discuss the Ganglia and Nagios monitoring tools, both of which are described

to understand the literature presented in Chapters 5 and 6 respectively.

2.5.2.1 Ganglia

Ganglia is a scalable and distributed monitoring system designed for high performance

computing infrastructures such as clusters and Grids [162]. Ganglia is designed to

monitor infrastructures by using a hierarchical approach where multicast messages are

distributed within a cluster to disseminate the current state of the system to every other

host within the system [188]. Like the standard monitoring model aforementioned,

Ganglia is composed of two daemons as shown in Figure 2.9.

The gmond daemon collects information about the host it runs upon in an XML

format and sends periodic heartbeat messages, via a UDP multicast protocol, to the
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Figure 2.9: Ganglia Architecture [162]

entire cluster. Figure 2.9 shows that two clusters exist which may be within the same

local network or be geographically distributed over a Wide Area Network (WAN).

In order to specify which cluster a node belongs to, the file /etc/ganglia/gmond.conf

can be manually edited to include the name of the cluster; further parameters can be set

but are not described here. Within each cluster, heartbeat messages are sent via the Ex-

ternal Data Representation (XDR) format; this is used for data transfer efficiency. Due

to the distributed and hierarchical nature of the approach, the monitoring mechanisms

in a cluster are highly decentralized and fault tolerant.

The data in each cluster is periodically polled by the gmetad daemon which collects

and aggregates the resulting XML containing the data; this daemon can be configured

by manually editing the /etc/ganglia/gmetad.conf file. If any cluster node fails to re-

spond to a request, the daemon selects the next cluster node in the hierarchy to request

data from. Upon a client’s request (e.g. via the Ganglia web interface), the gmetad

daemon will export the aggregated XML data from multiple clusters to the PHP web

interface for viewing.

Ganglia provides these graphical representations by integrating RRDtool (Round

Robin Database) [34]. This is an open source tool for data logging and graphing his-

torical data between a time series selected by the viewer. Figure 2.10 shows a typical

graph that RRD can display to the infrastructure administrator. This graph shows a
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Figure 2.10: RRDtool Graph Example

stacked graph of CPU utilization for each node over a period of one hour; each node is

labelled and depicted using distinct colours. Although it may be difficult to distinguish

one node from another in this example, RRD allows administrators to inspect graphs

in further detail and display the features they would like to view.

Discussion: Massie et al. in their initial Ganglia proposal outline the local overheads

of the gmond and gmetad daemons. The authors show that the gmond overhead is

low when executing on 102 nodes of PlanetLab [162]. CPU utilization is less than

0.1% and physical and virtual memory use 0.9 MB and 15.2 MB respectively. No

disk I/O overhead is incurred as gmond daemons only maintain soft state. Massie et

al. also outline the overheads of running the data aggregation daemon gmetad. CPU

utilization was again less that 0.1% and physical and virtual memory was 2.4 MB and

96.2 MB respectively. Despite these values being low, the I/O overhead of gmetad was

significant by using 15564.8 kbits/s.

The global overhead of the system is described as being low where monitoring and

aggregation nodes use 6 Kbits/s and 272 Kbits/s of network bandwidth respectively;

the latter amounts to sending 19.15 GB of monitoring data over the network per week.

In contrast, other studies have found that Ganglia introduces considerable overheads

[225, 213]. Wei et al. realize that many problems exist with Ganglia, such as reliability

and that Ganglia may reduce the performance of a network that is performing poorly
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[214]. The authors propose an alternative ring structure between aggregation nodes as

opposed to the tree structure currently implemented. The authors also propose sending

a reduced but common set of metric data around the network as well as limiting how

deeply the XML data is recursively displayed. These methods aim to reduce band-

width consumption and increase the responsiveness of the Ganglia interface for a large

number of nodes.

2.5.2.2 Nagios

Nagios is “the industry standard in IT infrastructure monitoring” [27] which monitors

system metrics, network protocols, servers, network infrastructure and services. Na-

gios is also scalable to thousands of nodes, stores historical data and is open source;

some however dispute its claims of scalability [220]. The centralized Nagios server

that hosts the web interface and monitoring core, polls each monitoring source to ac-

quire data.

Despite being primarily used as monitoring tool, Nagios also implements admin-

istrator alerting and can respond to failures. In such situations, administrators are

notified of any infrastructure problems and can define event handlers that respond to

these problems automatically. Like Ganglia, Nagios is also configured by modifying a

number of complicated configuration files [129], inherently making it a statically con-

figured monitoring tool. We refer to Nagios in Chapters 5 and 6 during our discussions

of how monitor an ad hoc cloud effectively and our evaluation of the ad hoc cloud,

respectively.

2.5.3 Infrastructure Management Tools

Reviewing all existing infrastructure management tools is out of the scope of this the-

sis, however we describe a select number of infrastructure management tools that are

required to understand the literature presented in Chapter 5. The tools investigated are:

Webmin, Capistrano and cexec.

Webmin is a browser-based system administration tool for Unix [76]. Webmin

allows remote command and configuration changes to be performed through a web in-

terface rather than the traditional approach of manually editing configuration files. The

design of Webmin has evolved around the concept of modules where a basic service is

provided to the administrator and functionality can be extended by adding download-

able modules. For example, modules exist to allow File Manager browsing of remote
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hosts and others modules are available to control a variety of servers (e.g Apache,

MySQL). Webmin requires that software is installed on both the server and clients to

allow the former to control the latter.

Capistrano is an open source remote host automation tool that can execute scripts

and commands concurrently over multiple hosts [9]. Capistrano does not require any

installation of software on remote hosts as it assumes SSH keys have been exchanged

between the central server and remote hosts to allow password-less login. This is in

contrast to Webmin that uses the software installed on remote hosts to create tunnels

to send instructions over. Remote hosts can be controlled by editing the Capistrano

configuration file called a capfile. An example of this file is shown in Figure 2.11.

role :hosts , "129.215.90.83" , "129.215.90.84"

task :upload_and_execute , :roles => :hosts do

set :default_shell , "bash"

set :user , "ubuntu"

set :home_dir , "/home/ubuntu/"

system("cd /home/fedora/ && tar cvzf ’test.tar.gz’ Test/")

upload("/home/fedora/test.tar.gz","#{home_dir}",:via => :scp)

run("cd #{home_dir} && tar xvzf test.tar.gz")

end

Figure 2.11: Example Capistrano Capfile

This file must contain a task which is executed by Capistrano. The task’s name (e.g

upload and execute) and the hosts the task will be executed upon are specified; the

latter is expressed via a role. Capistrano will perform this task when the following

command is executed:

cap upload_and_execute -f /path/to/capfile

In this example, the shell is set to ‘bash’ and the remote host user and directory are

set to ‘ubuntu’ and ‘/home/ubuntu/’ respectively. The system command executes local

commands where upload copies a file to the remote hosts. The run directive executes

a command on each of these remote hosts. In this example, a local folder is com-

pressed, uploaded to each remote host and then decompressed; all of these operations

are performed concurrently over all remote hosts.

cexec is a cluster tool that simply executes commands over multiple hosts con-

currently [132]. Like Capistrano, cexec does not require any software installation on

target machines as it assumes SSH keys are exchanged between hosts. To execute an
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instruction concurrently over a set of hosts, the following command is executed from

the command line:

cexec -f hosts.txt ‘/etc/init.d/gmond restart ’

In this example, cexec takes two arguments: a configuration file listing the hostname or

IP address of the hosts and the command to execute, i.e. restart the Ganglia monitoring

daemon.

In this section, we have outlined the why, what, how and when of infrastructure

monitoring and management and the basics of these topics. We gave Ganglia and

Nagios as two examples of monitoring software. The former is used within our C2MS

monitoring tool and the latter’s output is used to create an experiment to help simulate

a number of hosts that an ad hoc cloud platform may operate on; both are described

in Chapters 5 and 6 respectively. We then outlined the three simple infrastructure

management tools Webmin, Capistrano and cexec and how they are able to offer basic

control of an infrastructure. These tools are analysed in further detail in Chapter 5.

2.6 Platform Testing and Evaluation

The introduction of any new computational method or system involves performing

an in-depth evaluation to determine its relative benefits and downfalls. This section

describes the benchmarks used to determine the performance, overheads and reliability

of an ad hoc cloud computing infrastructure.

2.6.1 Overview

Ad hoc cloud computing infrastructures are significantly different in terms of the un-

derlying implementation when compared to established cloud platforms and traditional

clusters. As the ad hoc cloud is a unique computational model that has not yet been

realized, previous work has been unable to determine the performance, overheads and

reliability of ad hoc cloud computing infrastructures. Various studies however have

managed to analyse some performance aspects of the six founding principles of ad hoc

cloud computing.

We built upon this previous work by confirming the accuracy of those results and

then evaluated the performance, overheads and reliability of an ad hoc cloud prototype.

The wealth of research available outlining the performance and unique characteristics

of commercial clouds also allowed us to make a comparison with ad hoc clouds.
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We have used four benchmark applications to determine the CPU, memory, I/O

and disk performance and overheads of various subcomponents of the ad hoc cloud

platform. They are also used to test the performance and reliability of the platform as a

whole. The benchmarks used are the stress workload generator, Primes and CreateGB

and SPRINT, each of which are described below.

2.6.2 Stress Workload Generator

The stress workload generator is a simple benchmarking tool for POSIX systems [37].

The tool has the capability to simulate a variety of workloads such as those that are

either CPU, memory, I/O and disk-intensive. Furthermore, the tool tests workloads

that are resource-bound in many ways, for example an application that is both CPU

and I/O-intensive.

The stress workload generator is also able to simulate both single and mulit-threaded

applications. These features, as well as its extremely easy to use command-line in-

terface, was why this benchmark suite was chosen. In order to stress a number of

resources, a workload can be created using the command-line interface. For exam-

ple, to simulate a workload that is CPU and I/O and memory-bound, the following

command-line arguments can be specified:

stress --cpu 2 --io 1 --vm 1 --vm-bytes 128M --verbose

This command creates two CPU-bound processes and one I/O-bound process. A fur-

ther memory process is created that allocates 128 MB of memory to the process; this

figure can be increased to achieve the utilization level desired.

The current operation of stress executes a particular workload indefinitely however

we have modified the tool to fully utilize a resource up until a specified number of

iterations. We therefore can obtain a completion time that can be used across different

platforms to aid a comparison. The number of iterations for each resource vary for

different experiments and the reasoning behind this, as well as the actual values will

be outlined during the description of each experiment in later Chapters.

Despite the stress benchmark covering a wide range of workloads, we select other

benchmarks to obtain in greater detail the affect of a varying set of other resource-

intensive applications that will cover a large class of applications that may run on an

ad hoc cloud.
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2.6.3 Prime Number Calculator

Primes is a CPU intensive application used to calculate prime numbers up to a specified

value. We use this benchmark to primarily test the performance of V-BOINC. We

display the code used to calculate a set number of primes in Figure 2.12. The limit

on the number of primes to be calculated are outlined during the description of each

experiment in later chapters.

#!/bin/sh

start_time=$(date +%s)

echo 2

j=3

rng=300

while test $j -le $rng

do

i=2

x=‘expr $j - 1‘

while test $i -le $x

do

if [ ‘expr $j % $i‘ -ne 0 ]

then

i=‘expr $i + 1‘

else

break

fi

done

if [ $i -eq $j ]

then

echo $j

fi

j=‘expr $j + 1‘

done

end_time=$(date +%s)

diff=$((end_time - start_time))

echo ’Runtime: $((diff/60)) minutes and $((diff % 60)) seconds ’

Figure 2.12: Primes Benchmark Source Code
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2.6.4 CreateGB

CreateGB is a memory and I/O intensive function used to create a file of a specific size

using the Linux function dd [20]. The function dd is used to covert and copy files and

displays the read and write speed once the function has completed. We use dd to read

and write to and from varying sized files dependent on the experiment being run. We

give example commands for both of these scenarios.

dd if=/dev/random of=1GBFile bs=512M count=2 &> write.txt

dd of=/dev/zero if=1GBFile bs=512M count=2 &> read.txt

The former command takes random numbers generated from /dev/random and creates

a 1 GB file with a block size of 512 MB (i.e 512 MB must be written at a time) and

writes two blocks to the file ‘1GBFile’. The read and write speeds are then written to

a file for analysis. Reading a file of 1 GB has similar arguments, however the input is

re-directed to the data sink /dev/zero. Similar to other experiments, the parameters of

CreateGB are outlined during the description of each experiment in later chapters.

2.6.5 SPRINT

The Simple Parallel R INTerface (SPRINT) is a package providing parallel functions of

the statistical package R, allowing data to be analysed over multiple processors rather

than being performed on a single node [120, 177]. SPRINT was selected because it is

a widely used tool in the biomedical community therefore allowing us to obtain real

data on how our system copes with a real application.

Due to the ever increasing data set sizes from the biomedical community, many

bioinformatics computing infrastructures are being stretched to their computational

limits, where performing genomic analyses has now become a lengthy process. In

order for such a community to use HPC resources, a researcher may have to learn

the HPC infrastructure, as well as parallel programming to take full advantage of the

resources. SPRINT allows the researcher to focus on their task at hand by reducing the

HPC knowledge required and eliminates the need for users to write parallel programs.

By loading SPRINT onto every computational node via the R programming lan-

guage, a master node controls each worker node via a task farm approach. When

a parallel function is encountered, the work is distributed between the worker nodes

using MPI [106]. Figure 2.13 shows an architectural diagram of this approach.
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Figure 2.13: The SPRINT Master and Worker Node Relationship [36, 90]

In a large number of cases, both the master and worker nodes will execute SPRINT

with equivalent hardware and software specifications, however SPRINT has the ability

to run over heterogeneous environments allowing each end-user to tailor their use of

SPRINT to their own infrastructure or requirements. Currently SPRINT offers many

parallel functions from R, however we only concern ourselves with pcor and pmaxT.

2.6.5.1 pcor

The function pcor is the parallel version of the R serial function cor and is a CPU

and memory-intensive function. As its name may suggest, it performs correlation on

a given data set; Pearson’s correlation is used by default. Rather than running this on

a single node, pcor implements a master-slave approach where the master node coor-

dinates the rest of the processors. Each processor takes a row of the data to correlate

with all others in the data set and this occurs on a first-come first serve basis. When

a processor completes its task, it is given another until all rows have been correlated.

This achieves appropriate load balancing even with heterogeneous worker nodes. Both

the serialized and parallel correlation functions take the same input arguments (in a

simple case):

pcor(x, y=x), where x and y are the data to be correlated.

Data may include a matrix containing differing genes each with different samples for

different subjects. If this were the case, because R by default calculates pairwise cor-

relations between columns (samples), we instead use:

pcor(t(data))
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This transposes the matrix, ensuring that we determine the relationship between dif-

ferent samples from the same gene rather than different samples from different genes.

This is the configuration we have used for our experiments and we outline the number

of genes and samples used in each experiment later in the thesis.

2.6.5.2 pmaxT

The function pmaxT is the parallel version of the serial function mt.maxT from the R

multtest package and is a CPU-intensive function. Both the serial and parallel versions

of pmaxT perform a permutation test to determine the statistical significance of the

data, expressed through p-values [177]. The p-value is the probability that a gene’s

expression level is statistically significant between different conditions, e.g. two types

of cancerous tumours. It is common place that a p-value lower than 5% (0.05), signifies

that the gene expression value in one condition, when compared to another, can occur

by chance alone [122]. To calculate this significance, we call:

pmaxT(X=data, classlabel=classlabel, B=15000)

The variable data is the data set and classlabel gives an index that separates the data

into equal chunks to be assigned to available processes. By dividing and assigning a

portion of data to each process, once the necessary number of permutations is com-

plete, each process will have a partial observation of the data. These observations are

then sent to the master node where, once all observations are received, the adjusted

p-values are calculated.

The latter argument B is the number of permutations to be performed, either com-

plete or random, dependent on the data input sizes. If the data size is small, one can

afford to perform complete permutation testing, i.e. testing all possible permutations.

Complete permutations of a large data set may take a significant amount of time, hence

a set number of random permutations will be more appropriate. We outline the number

of genes, samples and permutation count used in each experiment later in the thesis.

2.7 Summary

In this chapter, we have discussed the six founding principles of ad hoc cloud comput-

ing: virtualization, cloud computing, volunteer computing, monitoring, management

and testing. Firstly we outlined the basics of virtualization and detailed a select number

of virtualization technologies that have the potential to be used within an ad hoc cloud
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computing infrastructure. An analysis of current research showed that most virtualiza-

tion technologies perform well, however this is dependent on the underlying hardware

and the application executing on the virtual machine. We then gave an overview of

cloud computing and the benefits and drawbacks other studies have exposed. This led

to an analysis of Amazon EC2, its architecture and the typical costs and performance

one may expect.

The background then focussed on volunteer and Grid computing as well as the

important research that has led to the success of these computational models. By out-

lining the difference between the two models, we were able to distinguish which model

is suited to ad hoc clouds. We then gave a detailed overview of the BOINC volunteer

system and analyzed previous research to determine its benefits and drawbacks; in par-

ticular its performance-related aspects. BOINC however was shown to perform well

overall.

Our overview then discussed the current state of a subset of infrastructure monitor-

ing and managements tools. In particular, we focussed on Ganglia, its architecture and

performance. Other studies found that Ganglia has a high overhead in relation to the

amount of data it transfers over the network. We also gave a brief description of Na-

gios and the logs it produced. We then outlined three infrastructure management tools

called Webmin, Capistrano and cexec and showed how they are able to offer concurrent

command execution over a set of hosts.

In order to evaluate many of the ad hoc cloud computing founding principles above

as well as the ad hoc cloud as a fully functioning platform, we selected a number of

applications, namely the stress workload generator, Primes, CreateGB and SPRINT.

We also use these applications to test the reliability and performance of the ad hoc

cloud as a fully integrated system.
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V-BOINC: The Virtualization of BOINC

3.1 Introduction

In this chapter, we discuss how two of the six founding principles of ad hoc cloud com-

puting are integrated to provide the basis of our ad hoc platform; these are volunteer

computing and virtualization. Volunteer computing systems, and in particular BOINC,

deal with many of the complexities surrounding non-dedicated hosts. BOINC also

provides an infrastructure where computational jobs can be created, sent to volunteers,

executed and returned for analysis.

By integrating virtualization into BOINC, we not only create an initial platform that

can be extended to solve our research challenges outlined in Section 1.2.1 of Chapter

1, but we can also solve many of BOINC’s drawbacks. The drawbacks of BOINC

relate to running applications in the user space of the volunteer machine; the portion

of system memory where user processes execute. These drawbacks are:

• Project developers are required to port their application to every target machine

architecture.

• Project developers need to provide application-level checkpointing to ensure job

progress is not lost upon host termination or failures.

• Project developers are limited to creating applications that have no dependencies.

• Users of BOINC must trust that project servers they attach to, will not distribute

malicious or untrustworthy applications.

By virtualizing BOINC, an application developer only needs to port an application to

a single virtual machine architecture, host security is addressed by sandboxing there-

55
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fore protecting the host from third party applications and system-level checkpointing

is available. Applications with dependencies can also easily execute where dependen-

cies may be pre-installed or attached to a virtual machine. This enables application

developers to create more complex applications to obtain results of more value. These

challenges are solved by our implementation of virtual BOINC, or V-BOINC.

The foundation of our approach relies on sending lightweight virtual machine im-

ages to volunteer clients allowing BOINC applications to run in the virtual machine

itself rather than in the user space of the host. This is implemented by installing a

BOINC client within the virtual machine image to fetch applications for a user spec-

ified project. This is in addition to the BOINC client installed on the user’s host to

download the virtual machine image.

Our approach to virtualization within BOINC allows V-BOINC to execute appli-

cations from typical BOINC projects such as SETI@Home and future projects with

applications that have dependencies. This will in turn increase the number of potential

applications volunteer infrastructures are able to execute. The use of V-BOINC there-

fore aims to enable access to computations that could not otherwise be performed,

enabling more science, design and business to be done.

In this chapter, we first give an overview of related research describing other stud-

ies that have attempted to incorporate virtualization into volunteer infrastructures. This

is followed by our own comparison of virtualization technologies to determine which

is best suited for V-BOINC as well as ad hoc cloud platforms. We then outline the

architecture and internal operational processes of V-BOINC while describing its im-

plementation details. This includes how we introduce, distribute and operate virtual

machines as well as how to ensure virtual machine sizes are kept as small as possi-

ble and how to perform automatic checkpointing. This is followed by an evaluation

of our V-BOINC platform. Firstly we determine the performance differences between

V-BOINC and regular BOINC. We then show the performance of V-BOINC when ex-

ecuting SPRINT. Finally, we explore the affects of virtual machine checkpointing on

volunteer hosts dependent on the class of scientific application executing.

3.2 Related Work

Several other research projects have added virtualization to BOINC. This section re-

views this research while paying specific attention to the differences between our own

approach and others.



3.2. Related Work 57

Ferreira et al. [102] aim to provide solutions to BOINC’s downfalls; namely port-

ing applications to all participant machines and security. The authors employ a virtu-

alization approach to create a BOINC middleware component for use with VMware

and VirtualBox called libboincexec. Their implementation shows the virtualization

approach increases the execution time of an application by 196 seconds for VMware

Player [41] and 229 seconds for VirtualBox [40] on average, when compared to run-

ning the same applications via the BOINC framework.

While the authors achieve good results, their implementation assumes a virtual

machine image is already present and is configured correctly on the volunteer machine

and no application dependencies exist. The authors show that in order to run a job

within the virtual machine, the application must first be transferred to the host machine

and copied to the virtual machine. Similarly, output data must be transferred to the

BOINC server via the host machine. This method may however introduce security

weaknesses where an application and data can be corrupted before they are copied to

the virtual machine and vice versa. Furthermore, when an application and its data are

large in size, transferring these to the host and then to the virtual machine will increase

the job pre-execution time significantly.

The authors implementation also breaks the BOINC policy of being transparent to

the user where many changes are required to the host due to the external dependencies

of libboincexec. Also the effects of virtual machine checkpointing, for example, the

time to create a snapshot and the storage requirements on a volunteer host are not

explored; we cover these items in the following sections.

González et al. [111] realize that running interpreted applications in BOINC (e.g

R, Matlab, Java etc) is difficult when firstly, an application will have lots of depen-

dencies and secondly, it is not possible to send an application environment such as

Matlab to a host; licensing issues may however prevent Matlab being installed locally

if the package does not already exist. Currently, a BOINC Wrapper exists that allows

legacy applications to be run within BOINC, however the authors go further and create

a starter tool that detects whether the correct environment is present for the application

to run successfully and if not, detects missing parts and downloads them. The environ-

ment is then deleted after the computation has finished. A problem may occur however

if URLs of packages change overtime.

The authors also realize that interpreted applications do not have application-level

checkpointing and introduce virtualization via VMware Player to provide system-level

checkpointing. By using VMware Player, users of the authors’ system will be pre-
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sented with the virtual machine, violating the BOINC policy of being transparent to

the user. In our case, we use VirtualBox to allow headless virtual machines; virtual

machines that do not display a window at runtime. Despite the authors use of virtual

machine checkpointing, they do not explore its effects on a volunteer host.

González et al.s’ method may be useful for typical scientific BOINC applications

with no dependencies, however our approach also targets applications with dependen-

cies and we also try to customize and open up BOINC so that researchers and orga-

nizations can make use of V-BOINC easily and effectively. Similarly, developers at

LHC CERN have developed the CernVM that runs data analyses from LHC experi-

ments [71]. The virtual machine image is available to run on many hypervisors such

as VirtualBox, KVM, VMware, Xen and Hyper-V Server.

The CernVM/VBoxWrapper Test Project [10] is similar to our project, where vir-

tual machine images can be downloaded to execute computations, however the frame-

work is not customizable to the point where users are able to select the project they

would like to join; only LHC computations can be performed. Their server imple-

mentation is also not available however V-BOINC’s is publicly available [39] and the

V-BOINC virtual machine image size is smaller than the CernVM, in turn reducing the

transfer time between the server and clients belonging to the general public.

Recently, BOINC offered virtual machine functionality [6] via its vboxwrapper

program that acts as an interface between the BOINC client and VirtualBox. This

program as well as the application and its data are stored in a shared folder between

the host and guest, where the computation is then executed. Our approach differs

as virtual machine images can be automatically downloaded to the host and execute

applications from any BOINC project.

3.3 Virtualizing BOINC

V-BOINC is the virtualized version of BOINC allowing users to avoid the drawbacks

of BOINC and take advantage of virtualization [165]. We chose BOINC as our under-

lying volunteer computing platform not only because it is the most popular and easiest

to use volunteer platform, but it also has features that are useful for developing an ad

hoc cloud computing infrastructure.

We considered other volunteer computing platforms such as Condor, however for

example, Condor assumes volunteer hosts are constantly connected and can be trusted

[52]; this is commonly seen in Grid environments which Condor was designed for.
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BOINC does not make these assumptions and nor does our concept of the ad hoc

cloud. The architecture of BOINC is also easier to adjust to develop the features we

need as part of our ad hoc cloud. Furthermore, Anderson et al. find that BOINC is

able to scale up to two times greater than Condor [52]. Other volunteer computing

platforms were analysed and were either deemed to be unfit for our purposes or did not

provide enough functionality.

In order to transform regular BOINC into V-BOINC, some complex additions are

required. Namely the V-BOINC server distributes virtual machine images, from a

BOINC project named V-BOINC, as opposed to distributing scientific applications

while the V-BOINC client not only controls the host’s BOINC core client but also the

virtual machine and it’s inner BOINC client. These components are relatively difficult

to create and hence they can be downloaded alongside their source code on the V-

BOINC page at [39]; this chapter discusses the latter’s implementation.

3.3.1 Virtualization Technologies

In order to integrate virtualization into a volunteer computing infrastructure, we must

firstly define the characteristics we require of the virtualization software package.

These requirements are listed in Table 3.1 alongside the three most relevant virtual-

ization technologies and whether they satisfy our conditions.

Requirement QEMU/KVM VirtualBox VMware Player
Unique IP Address Allocation 41 4 4

Headless VM 4 4 41

Image Size < 235MB (tar.gz) 4 4 4

Boot Time < 20s 42 4 4

Basic VM Control 4 4 41

Remote Command Execution 7 4 41

Checkpointing 4 4 4

Portability (Mac & Linux) 43 4 7

1 additional configuration and/or installation required on host
2 only when used with KVM enabled
3 KVM component not available on Mac OS X

Table 3.1: Virtualization Technology vs V-BOINC Requirements



60 Chapter 3. V-BOINC: The Virtualization of BOINC

The software packages chosen are QEMU/KVM, VirtualBox and VMware Player.

Other technologies were analysed and were either deemed to be unfit for our purposes

or did not provide enough functionality. For example, Xen was not included in our

comparisons as it is primarily a bare-mental hypervisor.

We require that these virtualization technologies allow bridged networking to give

the virtual machine a unique and Internet accessible public IP address, enabling the

virtual machine’s inner BOINC client to directly receive jobs and return results to a

BOINC project server. The chosen package must also adhere to the BOINC policy of

being unobtrusive to the user, offer API’s for basic virtual machine control (e.g. start,

stop, etc) and allow command execution on the virtual machine.

Furthermore virtual machine checkpointing must be available and the chosen pack-

age must be portable to both Linux and Mac OS X machines; the platforms V-BOINC

targets; future work will include Windows platforms. We also specify that the virtual

machine image must boot within 20 seconds; this is significantly faster the startup

times of an instance on Amazon EC2 [175, 127, 194]. Finally we require that the size

of the virtual machine image file while compressed is less than 235 MB, therefore

being smaller than the current size of the CernVM; the project most similar to ours.

We see from Table 3.1 that QEMU/KVM satisfies the majority of our requirements,

however it does not offer an API for executing commands upon the guest. Further-

more, to obtain a unique IP address, QEMU/KVM requires configuration changes and

additional installations on the host that are unreasonable to ask a volunteer user to

undertake. The resulting virtual machine does satisfy our boot time requirement by

instantiating in 11 seconds, however this is only when the KVM component is enabled

to increase performance; a component that is not available on Mac OS X. Without the

use of KVM, the performance of the virtual machine would decrease significantly.

As VirtualBox is based on many QEMU components, VirtualBox also satisfies our

boot time requirement by instantiating the same image on the same host in approxi-

mately 13 seconds. Most importantly, the major advantage of VirtualBox is the ability

to easily start the virtual machine image with a Network Bridge Adapter via Ethernet

or wireless giving the machine a unique IP address and identity. The VirtualBox API

called VBoxManage, also simplifies the task of controlling virtual machines where

QEMU’s equivalent provides less relevant options and remote commands can be exe-

cuted upon the guest via the guestcontrol function.

VMware Player satisfies most of our requirements but the virtualization technol-

ogy is not available on both Mac OSX and Linux. VMware Player only offers headless
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virtual machines, basic control and remote command execution if the VIX API is in-

stalled.

To avoid additional installation of packages and configuration on the volunteer host

and with ease of use for the volunteer user in mind, the most suitable candidate for use

within V-BOINC, and therefore the ad hoc cloud, is VirtualBox; other studies have

shown that VirtualBox is a suitable choice for virtualizing HPC [223] and volunteer

[102, 6, 10] environments.

V-BOINC currently supports the VirtualBox versions 4.1.8, 4.2.18 and 4.3.6; how-

ever later versions should also work but they remain untested. In the future, V-BOINC

will support the above hypervisors to increase the user base of this volunteer comput-

ing paradigm. We now give an overview of how V-BOINC operates and runs compu-

tational jobs.

3.3.2 Methodology Overview

The foundation of V-BOINC relies upon five components each shown in Figure 3.1:
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Figure 3.1: V-BOINC Implementation Overview

• V-BOINC server: A modified BOINC server distributing virtual machine im-

ages, as opposed to scientific applications, to attached volunteer hosts.

• V-BOINC client: A downloadable package encapsulating a modified BOINC

client and a GUI with the purpose of communicating with the V-BOINC and

BOINC Servers as well as the host virtualization hypervisor.
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• The virtual machine (VM): The platform the BOINC scientific application will

execute on. The V-BOINC virtual machine uses the Ubuntu Server 11.04 OS and

runs on a VirtualBox Virtual Disk Image (VDI). A single OS is currently used

for initial deployment of the project to the volunteer user community, however

we envisage an extensive variety in the future. By default, the V-BOINC virtual

machine is set to use at most 1 GB of RAM and 1 processor however this can be

changed by the volunteer user.

• BOINC server: A typical BOINC project server that provides scientific appli-

cations to attached volunteer hosts.

• Dependency Disks (DepDisk): A separate VDI containing the application’s

dependencies.

We see from Figure 3.1 that after a volunteer user submits the details of the BOINC

scientific project they wish to attach to via the V-BOINC client (e.g the BOINC project

server URL and their BOINC project weak account key), the host BOINC client is in-

structed to request a virtual machine image (1). Concurrently, the V-BOINC client

probes the BOINC server to determine if any dependencies exist for the specified

project (1.1). If dependencies exist, a VDI (or .vdi) file containing the dependencies is

retrieved (1.1.2) and transferred to the V-BOINC client via curl.

In the event that multiple BOINC projects exist on the same BOINC server, the

BOINC project’s URL can be used as a unique identifier to allow the V-BOINC project

to correctly determine whether dependencies exist for the volunteer user’s chosen

BOINC project. This ensures the V-BOINC client always receives the correct de-

pendencies for the application that will execute in the virtual machine. We assume that

developers of BOINC projects who wish to deploy applications with dependencies

are prepared to create a VDI file containing the dependencies and make this publicly

available on the BOINC server to allow the V-BOINC client to determine whether a

DepDisk needs to be downloaded.

Concurrently while a DepDisk is downloading, the virtual machine image and an

executable script are downloaded to the volunteer host’s BOINC client (2); both down-

load processes must complete before proceeding to the next step. The V-BOINC client

either attaches the DepDisk, if the application is found to have dependencies, or al-

ternatively creates an empty disk and mounts this to the virtual machine image (3).

The virtual machine image is then started (4) allowing it to request (5) and receive (6)

BOINC jobs and return job results (7).
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3.3.3 Lightweight, Flexible and Robust VMs

The purpose of attaching/creating mountable DepDisks above (1.1/3) is well justified

for a number of reasons. We do not want to rely on volunteer host dependencies where

packages must be present and in a specific location on a volunteer machine. This

limits the number of hosts available to a specific project due to the many different host

configurations possible. Instead we use virtual mountable disks making it an easy and

effective method for applications with dependencies to run.

An alternative model would involve storing application dependencies on the virtual

machine before sending it to the volunteer host. However due to the potentially large

number of updates BOINC developers may make to their dependencies, additional

bandwidth would be consumed by transferring VDIs from the BOINC developer to the

V-BOINC server, in turn frequently triggering the re-build process of virtual machines.

Note that software packages (e.g MPI, R, Java, etc) could be transferred and utilized

via regular BOINC, however one would not be able to benefit from advantages of

virtualization.

To reduce the bandwidth consumed by transferring V-BOINC virtual machine im-

ages to volunteer hosts, the virtual machine has been stripped of all unnecessary com-

ponents such as Linux swap space and nonessential packages. As a consequence, no

extra disk space exists, hence virtual mountable disks are required, not only for adding

application dependencies, but for adding disk space for applications to use. Where

no dependencies are required, a fresh disk is locally created on the volunteer host and

mounted; the default disk size is 8 GB however this value can be adjusted by the volun-

teer user. In both cases, Linux swap space is re-established to ensure the performance

of the virtual machine is not degraded. As a result of distributing stripped virtual ma-

chines, no bandwidth is wasted by transferring these images with unused disk capacity.

In order to create the smallest usable virtual machine image possible, our virtual

machine uses the VirtualBox Fixed Disk Image (FDI) type as opposed to the Dynamic

Disk Image (DDI). The former is of fixed size and the latter has the capability to

grow according to how much is stored on it, up to a specified maximum; this image

however does not decrease in size when items are removed from a virtual machine,

therefore making it difficult to keep the image as small as possible. For example, an

FDI file with the OS components installed could reach 681MB, however with the same

components installed, a DDI could be 700MB. It is important to keep the size of the

virtual machine VDI at an absolute minimum to reduce the data transferred and stored
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on the host. The current size of our virtual machine VDI is 649 MB uncompressed and

207 MB compressed.

On the other hand, DepDisks use the DDI type to minimize the initial storage re-

quired on the host. For example, when the virtual machine image is downloaded and

the DepDisk attached, the minimal storage possible is consumed due to the combina-

tion of different disk types used. By essentially partitioning a virtual machine over

two VDI files, we ensure that when a user attaches to another BOINC project, a new

DepDisk need only be mounted to the virtual machine as opposed to downloading both

a new virtual machine image and a DepDisk.

3.3.4 Taking Control

After the virtual machine image has been transferred to the volunteer machine via

the host BOINC client; an operation that would only take 3 minutes assuming that the

current average UK bandwidth of 9 Mbps [28] applies; it must be unpacked, configured

and started; a process that is performed both by the instantiation script downloaded in

step (2) of Figure 3.1 and the V-BOINC client. The instantiation script simply:

• Decompresses the virtual machine image tar file.

• Signals the V-BOINC client to take control of the instantiation process.

The V-BOINC client is then responsible for the continued operation of both the virtual

machine and the job executing on it. Afterwards the V-BOINC client must:

• Register the virtual machine image with VirtualBox.

• Create a fresh VDI or attach a pre-created DepDisk to the virtual machine.

• Start the virtual machine image.

• Take periodic checkpoints once the virtual machine is running.

• Wait for the virtual machine process to finish. This firstly shows to the volun-

teer user that the virtual machine process is still running if they use the BOINC

Manager and that any virtual machine errors are caught during execution, which

can then be uploaded to the server for debugging.

Once the virtual machine process is running, further complexities are introduced as

a second BOINC client located on the virtual machine needs to be controlled from
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the host to execute typical BOINC commands, such as requesting tasks and uploading

results; this is performed by using the boinccmd command line tool through the V-

BOINC Client GUI. Figure 3.2 shows how the V-BOINC client GUI must interact

with both BOINC clients and the VirtualBox API.

BOINC Task

V-BOINC Middleware

V-BOINC Client GUI

(Modified) BOINC Core Client

Downloaded Virtual Machine

BOINC Core 
Client

Resource Monitor Failure Detection

VirtualBox API

Application 
Dependencies

Figure 3.2: V-BOINC Volunteer Host Components

The V-BOINC client GUI provides a similar interface to that of the BOINC Manager,

offering options to control either BOINC client’s state to either running, suspended

and halted via the boinccmd component. For example, if a volunteer user wishes to

suspend a job running on the virtual machine, one has to use the suspend directive via

the boinccmd tool on the virtual guest. BOINC offers other command options such

as: reset, detach, update, resume, nomorework and allowmorework. These commands

must be passed to the V-BOINC Middleware component which wraps them in a Vir-

tualBox API method call to the guestcontrol function and executes them on the virtual

machine; the virtual machine has Guest Additions installed to allow this.

These commands will control a BOINC job’s execution within the virtual machine

process, however controlling the virtual machine itself is more complex as the host

BOINC Client cannot (easily) control separate non-BOINC processes. For example,

the above boinccmd suspend command would not suspend the virtual machine process

if executed locally on the host. Commands such as these must be performed via the

VirtualBox API by calling the controlvm component. Additionally, the Middleware

component also provides resource monitoring and virtual machine failure detection to

inform the user in real time, the current state of V-BOINC.
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3.3.5 Checkpointing and Recovery

Currently, BOINC project developers must ensure application-level checkpointing mech-

anisms are in place to allow an application to continue to run in the face of volunteer

host failures or termination. When the volunteer host returns to a steady state after such

an event occurs, the BOINC client restores the application from the last checkpoint.

In order to replace the requirement of application-level checkpointing implemented by

BOINC application developers, V-BOINC implements periodic virtual machine check-

pointing, with the interval between checkpoints chosen by the volunteer user.

After recovering from volunteer host’s termination or failure, the V-BOINC client

instead restores the virtual machine that was previously executing the application, in-

stead of restoring the application itself. This not only makes the task of application

development easier for BOINC project developers, but it also allows volunteer users

of the V-BOINC client to take checkpoints when they wish. Therefore, the project de-

veloper and/or research scientist can be confident this functionality is an improvement

on the existing application checkpointing mechanisms employed by BOINC.

Periodically the V-BOINC client will make a call to the snapshot function of the

VirtualBox API located in the V-BOINC Middleware (see Figure 3.2). By executing

this command for a particular virtual machine on a volunteer host, VirtualBox will

pause the virtual machine and take the checkpoint. The appropriate checkpoint files in

placed in the Snapshots folder located in the virtual machine’s configuration directory;

a folder containing the virtual machine settings and the VDI images of both the virtual

machine and DepDisk. The files created when checkpointing via VirtualBox are:

• A copy of the virtual machine settings. These settings include the hardware con-

figuration, such as the memory allocated to the machine, as well as any attached

disks.

• The current state of all VDI’s attached to the virtual machine. VirtualBox imple-

ments this by storing differencing images; images that store all write operations

after a checkpoint is taken.

• The current state of memory if a checkpoint is taken while the virtual machine

is running. This memory state file can be quite large — up to the memory size

allocated to the machine — and is dependent on the application memory usage.

Allocating less memory, limits the size of the memory dump file but reduces

application performance for those dependent on memory.
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To restore a checkpoint, the correct differencing image is activated and the current

checkpoint/virtual machine state is deactivated. To reduce the storage space consumed

on the host, previous stale checkpoint files that are not required are deleted by V-

BOINC; for example the memory state file of all previous checkpoints.

3.4 Experiments and Results

We now outline the experiments performed to firstly show the achievable resource per-

formance of V-BOINC when compared to regular BOINC and secondly, to outline our

use case showing that the V-BOINC platform can be used for computations requiring

dependencies. Thirdly we show what affect periodic system-level checkpointing has

on the valuable storage space reserved for BOINC jobs and on the BOINC job itself.

All experiments were performed on a Dell OptiPlex 790 host that has two Intel

i3-2100 Core 3.10 GHz processors and 3.8 GB of memory. By default, the V-BOINC

virtual machine is set to use the hardware-assisted virtualization instruction sets VT-

x/AMD-V and the default values of using 1 GB of RAM and 1 processor are increased

to the maximum VirtualBox allows; 2 processors and 2.9 GB of RAM.

3.4.1 BOINC vs V-BOINC

To evaluate V-BOINC, we measured the performance of V-BOINC when compared to

regular BOINC. This was performed by running a series of benchmarks and a use case

application and collecting their execution times.

3.4.1.1 Benchmark Performance

We used six benchmarks each with different resource usage demands to demonstrate

the performance of a range of workloads. Each benchmark was executed ten times in

a variety of configurations described below. Upon completion, each benchmark would

output its own wallclock execution time which were then stored for analysis. The

average execution times of each benchmark were then calculated and plotted in Figure

3.3. We display 95% confidence intervals to show that in most cases, the true mean

will lie within the specified range.

Primes calculated the first 300 prime numbers while CreateGB created and wrote

to a file of 5 GB. CPU, Memory, I/O and Disk strained each of the resources up
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BOINC vs V-BOINC ExperimentsBOINC vs V-BOINC ExperimentsBOINC vs V-BOINC Experiments

Bare host: running the application on the host operating system (no BOINC running)Bare host: running the application on the host operating system (no BOINC running)Bare host: running the application on the host operating system (no BOINC running)Bare host: running the application on the host operating system (no BOINC running)Bare host: running the application on the host operating system (no BOINC running)Bare host: running the application on the host operating system (no BOINC running)Bare host: running the application on the host operating system (no BOINC running)
Bare vm: running the application on the vm guest (no BOINC/v-BOINC running)Bare vm: running the application on the vm guest (no BOINC/v-BOINC running)Bare vm: running the application on the vm guest (no BOINC/v-BOINC running)Bare vm: running the application on the vm guest (no BOINC/v-BOINC running)Bare vm: running the application on the vm guest (no BOINC/v-BOINC running)Bare vm: running the application on the vm guest (no BOINC/v-BOINC running)

BOINC: running the application via the BOINC frameworkBOINC: running the application via the BOINC frameworkBOINC: running the application via the BOINC frameworkBOINC: running the application via the BOINC frameworkBOINC: running the application via the BOINC framework
V-BOINC: running the application via the V-BOINC implementation V-BOINC: running the application via the V-BOINC implementation V-BOINC: running the application via the V-BOINC implementation V-BOINC: running the application via the V-BOINC implementation V-BOINC: running the application via the V-BOINC implementation V-BOINC: running the application via the V-BOINC implementation 

Average VAR STDDEV CONF Going With
Primes Calculates primes up until 300Calculates primes up until 300Calculates primes up until 300
Bare Host 12.105 12.068 12.034 12 18 13.2414 7.0778588 2.66042455259 2.33192208784 12
Bare VM 88 87 77 90 93 87 86.75 9.3139680051 8.16390289868 77
BOINC 16 17 17 12 13 15 14.75 3.84057287393 3.36634869273 12
V-BOINC 93 101 97 78 81 90 89.25 9.44722181385 8.28070286566 78

Create 5G Creates a 5GB using dd --version 8.5Creates a 5GB using dd --version 8.5Creates a 5GB using dd --version 8.5Creates a 5GB using dd --version 8.5
Bare Host 67.606 69.74 73.018 57.893 65.002 66.6518 66.41325 8.14943249558 7.14316127528 57.893
Bare VM 46.047 50.347 45.397 50.831 46.747 47.8738 48.3305 6.95201409665 6.09359705812 50
BOINC 76 91 59 57 65 69.6 68 8.24621125124 7.22799003606 57
V-BOINC 72 58 55 54 52 58.2 54.75 7.39932429347 6.48567452827 52

Stress-cpu Uses the stress tool, calculates sqrts and loops until 2000000000Uses the stress tool, calculates sqrts and loops until 2000000000Uses the stress tool, calculates sqrts and loops until 2000000000Uses the stress tool, calculates sqrts and loops until 2000000000Uses the stress tool, calculates sqrts and loops until 2000000000Uses the stress tool, calculates sqrts and loops until 2000000000
Bare Host 39 38 38 38 38 38.2 38 6.16441400297 5.40324782305 38
Bare VM 62 61 61 61 61 61.2 61 7.81024967591 6.84585988846 61
BOINC 38 38 38 38 38 38 38 6.16441400297 5.40324782305 38
V-BOINC 65 66 66 62 65 64.8 64.75 8.04673846972 7.05314764683 62

Stress-mem Uses the stress tool, uses 2560MB memory (2.5GB)Uses the stress tool, uses 2560MB memory (2.5GB)Uses the stress tool, uses 2560MB memory (2.5GB)Uses the stress tool, uses 2560MB memory (2.5GB)Uses the stress tool, uses 2560MB memory (2.5GB)
Bare Host 58 58 59 58 58 66.9% of total memory66.9% of total memory 58.2 58.25 7.63216876124 6.68976795271 58
Bare VM 191 191 188 190 191 85.2% of total memory85.2% of total memory 190.2 190 13.7840487521 12.0820294316 188
BOINC 59 58 58 58 58 58.2 58 7.61577310586 6.67539679121 58
V-BOINC 187 187 187 187 187 187 187 13.6747943312 11.986265469 187

Because vm and host do not have same memory we test when use same percentageBecause vm and host do not have same memory we test when use same percentageBecause vm and host do not have same memory we test when use same percentageBecause vm and host do not have same memory we test when use same percentageBecause vm and host do not have same memory we test when use same percentageBecause vm and host do not have same memory we test when use same percentageBecause vm and host do not have same memory we test when use same percentage
of memory compared to their actual totalof memory compared to their actual totalof memory compared to their actual totalof memory compared to their actual total

Bare Host has 3824MB available3824MB available
Bare VM has 3004 MB available 3004 MB available 

So try host with 85.2% (3259MB) memory usedSo try host with 85.2% (3259MB) memory usedSo try host with 85.2% (3259MB) memory usedSo try host with 85.2% (3259MB) memory used
Bare Host 63 62 67 64 67 64.6 65 8.0622577483 7.06675064432 62

And also try the vm with 66.9% (2009MB) memory usedAnd also try the vm with 66.9% (2009MB) memory usedAnd also try the vm with 66.9% (2009MB) memory usedAnd also try the vm with 66.9% (2009MB) memory usedAnd also try the vm with 66.9% (2009MB) memory used
Bare VM 167 166 166 175 166 168 168.25 12.9711217711 11.3694806089 166

Stress-io
Bare Host 25 26 25 25 25 25.2 25.25 5.02493781056 4.40447125595 25
Bare VM 63 63 63 63 63 63 63 7.93725393319 6.95718198272 63
BOINC 26 25 26 25 26 25.6 25.5 5.04975246918 4.42622186357 25
V-BOINC 64 65 67 67 64 65.4 65.75 8.10863737011 7.10740342827 64

Stress-disk
Bare Host 41 42 46 43 43 43 43.5 6.59545297914 5.78106320153 41
Bare VM 61 81 60 72 68 68.4 70.25 8.38152730712 7.34659760915 81
BOINC 44 39 46 41 41 42.2 41.75 6.46142399166 5.66358377291 41
V-BOINC 93 89 82 85 87 87.2 85.75 9.26012958873 8.11671231318 82

The Graph Primes Create5GB CPU Memory I/O Disk
Host 13.2414 66.6518 38.2 58.2 25.2 43
BOINC 15 69.6 38 58.2 25.6 42.2
VM 87 47.8738 61.2 190.2 63 68.4
V-BOINC 90 58.2 64.8 187 65.4 87.2

Application Dependency ExperimentApplication Dependency ExperimentApplication Dependency Experiment
Obtain the execution times for running SPRINT using dependency disks with both n = 2 Obtain the execution times for running SPRINT using dependency disks with both n = 2 Obtain the execution times for running SPRINT using dependency disks with both n = 2 Obtain the execution times for running SPRINT using dependency disks with both n = 2 Obtain the execution times for running SPRINT using dependency disks with both n = 2 Obtain the execution times for running SPRINT using dependency disks with both n = 2 
and n = 4. Checking to see if Vbox executable effects the execution time and n = 4. Checking to see if Vbox executable effects the execution time and n = 4. Checking to see if Vbox executable effects the execution time and n = 4. Checking to see if Vbox executable effects the execution time and n = 4. Checking to see if Vbox executable effects the execution time 
as it looks like it takes up %100 of one core.as it looks like it takes up %100 of one core.as it looks like it takes up %100 of one core.

Bare Host Average VAR STDDEV CONF Min
N = 2 Load: 42.18 42.498 42.338 42.338666667 0.0252813333 0.1590010482 0.1393680027 42.18

Exec: 60.338 66.356 59.763 62.152333333 13.335766333 3.6518168538 3.2008997864 59.763

N = 4 Load: 83.833 85.159 85.313 84.768333333 0.6620653333 0.8136739724 0.7132035775 83.833
Exec: 63.37 63.085 63.157 63.204 0.021963 0.1481991903 0.1298999308 63.085

BOINC
N = 2 Load: 42.809 42.805 42.202 42.605333333 0.1220123333 0.3493026386 0.3061716362 42.202

Exec: 67.238 60.601 66.545 64.794666667 13.310192333 3.6483136287 3.1978291306 60.601

N = 4 Load: 83.878 84.594 83.6 84.024 0.262996 0.5128313563 0.4495082433 83.6
Exec: 62.808 62.751 62.832 62.797 0.001731 0.0416052881 0.0364679728 62.751

Bare VM
N = 2 Load: 77.325 75.493 74.016 75.611333333 2.7478723333 1.6576707554 1.452985782 74.016

Exec: 161.974 156.032 153.447 157.151 19.116553 4.3722480488 3.8323739677 153.447

N = 4 Load: 152.008 154.929 151.885 152.94066667 2.9688843333 1.7230450758 1.5102878474 151.885
Exec: 117.621 117.466 116.885 117.324 0.150547 0.388003866 0.3400941343 116.885

VBOINC
N = 2 Load: 76.525 78.295 77.934 77.584666667 0.8747503333 0.9352808847 0.8197947772 76.525

Exec: 160.571 160.162 163.365 161.366 3.038821 1.7432214432 1.5279728882 160.162

N = 4 Load: 157.106 156.95 155.607 156.55433333 0.6791643333 0.824114272 0.7223547354 155.607
Exec: 149.609 128.264 122.939 133.604 199.208925 14.114139187 12.371361139 122.939

Bare Host vs BOINCBare Host vs BOINC

Bare Host 2 4 BOINC 2 4
Load: 42.18 83.833 Load: 42.202 83.6
Exec 59.763 63.085 Exec: 60.601 62.751

Bare VM 2 4 VBOINC 2 4
Load: 74.016 151.885 Load: 76.525 155.607
Exec: 153.447 116.885 Exec: 160.162 122.939

Load Exec
42.18 59.763

42.202 60.601
74.016 153.447
76.525 160.162
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Figure 3.3: V-BOINC Benchmark Execution Times

to a specified number of iterations via a single stress process. Note that the Mem-

ory benchmarks allocates 2.5 GB of memory, e.g. –vm-bytes 2560M; details of these

benchmarks can be found in Section 2.6 of Chapter 2. Each benchmark is then run

over four different platform configurations:

1. execution just on the Host without the use of BOINC.

2. execution on the Host using BOINC.

3. execution just on the VirtualBox virtual machine without the use of V-BOINC.

4. execution on the V-BOINC virtual machine using V-BOINC.

Figure 3.3 shows the execution times obtained by running the benchmarks in each of

the computational environments above. Firstly we see that the overhead of BOINC is

negligible when comparing cases (1) and (2). Secondly and most importantly, we see

that in most cases V-BOINC is slower than traditional BOINC with the exception of the

CreateGB benchmark. Thirdly we see that the implementation of V-BOINC introduces

little overhead when comparing cases (3) and (4). This shows that the performance

difference between BOINC and V-BOINC is introduced by VirtualBox and not the

implementation of V-BOINC.

Although the performance overhead of virtualization is often quoted as being up

to 35% when executing CPU-bound applications [91], the performance overhead of

our CPU benchmark is almost double. This is expected as overheads depend on a
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number of factors such as the virtualization technology chosen, the application, the

configuration of the virtual environment, the available resources to the virtual machine

and the physical hardware of the host.

This slowdown is caused by many factors relating to the virtual machine settings

and hypervisor. When a virtual machine image is registered with VirtualBox, one must

specify the memory, number of CPU’s to use as well as a CPU execution cap, i.e only

use 90% of the processor for example. However because the virtual machine is not able

to use the full amount of memory and processing power available to the host machine,

it is predictable that V-BOINC would perform slower; as only 2.9 GB of RAM could be

allocated to the virtual machine, the memory-intensive benchmarks performed much

slower. This is a problem facing full and para-virtualization technologies; only bare-

mental hypervisors such as Xen may be able to overcome such problems.

Our memory benchmark execution time above uses 2.5 GB of memory; approxi-

mately 66.9% and 85.2% of the total available host and virtual machine memory re-

spectively. If we normalize the percentage of memory used to 66.9% for each host, the

execution time difference reduces from 190 seconds to approximately 160 seconds,

showing the true virtualization overhead. However, the remaining memory intensive

benchmark CreateGB shows that not all applications may run slower when using vir-

tualization and this is dependent on the internal components of the application. We can

only assume that the hypervisor’s caching strategy is better than that of the underlying

system as both the versions of dd are equal on the virtual machine and underlying host.

Similar to the memory deficit, the processing power available to the virtual machine

is also lower than the total available to the underlying host. This is caused by the

resources used by processes running and supporting the hypervisor on top of those

running the OS. Hence the performance differences between host and virtual machine

executions can be partly attributed to the maximum settings VirtualBox allows for

any particular virtual machine but also the performance of VirtualBox itself, where

others have found the performance difference much slower than execution upon the

host [102, 223, 91].

3.4.1.2 Case Study: SPRINT-R

To illustrate that V-BOINC can not only execute standalone applications and to also

show the performance achieved for a real use-case application, we execute the Simple

Parallel R INTerface (SPRINT) [178]; as previously mentioned in Section 2.6.5 of

Chapter 2, SPRINT has MPI and the statistical package R as dependencies.
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For our experiment, we ran SPRINT’s pcor function that performed parallel cor-

relation on a randomly generated data set with 11,000 genes (rows) and 321 samples

(columns) using two processes. Upon completion, each function would output its own

wallclock execution time, which were then stored for analysis. The function was ex-

ecuted five times and the average execution times of each benchmark were then cal-

culated and plotted in Figure 3.4. We display 95% confidence intervals to show that

in most cases, the true mean will lie within the specified range. Again we provide a

comparison between running the application via a variety of configurations, i.e Host,

BOINC, VM and V-BOINC.

Figure 3.4: SPRINT Data Load and Execution Times

Figure 3.4 depicts three results similar to those outlined in Figure 3.3, however in order

for pcor to perform the analysis, data must be loaded (Load) into R and then executed

(Exec). We see that running SPRINT on BOINC shows little or no overhead when

compared to running SPRINT on the host itself. The overhead of the V-BOINC imple-

mentation is also minimal where little difference can be seen when running SPRINT

via the cases (3) and (4) above. Most importantly, we see the performance difference

between V-BOINC and regular BOINC. This is caused by the overhead of virtualiza-

tion, as shown by the green columns, therefore increasing the time for loading and

execution to approximately double and triple respectively in these cases; a fact that

must be accepted when using virtualization to solve other problems.
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3.4.2 The Effect of Checkpointing

To enable BOINC project developers to omit application-level checkpointing from

their code, V-BOINC offers periodic checkpointing. However, because the total disk

capacity BOINC is permitted to use is potentially limited by the volunteer user’s spec-

ified preferences, storage space is extremely valuable. To determine the likely storage

space consumed by our system-level checkpointing approach, we executed a series of

benchmarks representing different workloads while taking checkpoints at one minute

intervals over a ten minute period.

We recorded the time to take a checkpoint, the size of the memory dump file and the

size of the resulting differencing images of the DepDisk and virtual machine. The time

to take the checkpoint was measured by executing the snapshot function of the Virtu-

alBox API in conjunction with the Unix-based function time. The differencing image

sizes were obtained by using a Java program we created to list file sizes. Each bench-

mark was performed five times on the V-BOINC virtual machine with an attached

8 GB DDI DepDisk containing experiment files and the necessary dependencies for

SPRINT. The average checkpoint capture times and checkpoint file sizes were then

calculated and the results are shown in Table 3.2.

Benchmark
Snapshot
Time (s)

Memory
Size (MB)

DepDisk Snapshot
Size (KB)

VM Snapshot
Size (KB)

CPU 1.1779 86.9 36 8

Memory 1.7142 56.76 36 8

I/O 0.9425 43.57 36 8

Disk 24.6023 1126.4 54374.4 8

Primes 1.2153 98.1 36 8

SPRINT 31.4665 2334.72 36 8

Table 3.2: Snapshot Sizes and Times per Benchmark

In four of the six resource intensive benchmarks (CPU, Memory, I/O and Primes),

the average snapshot time is approximately one second. In these cases, the memory

dump file size is lower than 100 MB and the differencing DepDisk and virtual machine

images also remain small at 36 KB and 8 KB respectively; the lowest possible snapshot

sizes for these two disks in this configuration. This shows that the differencing images

are not written to during execution as only CPU, memory and I/O resources were used.
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The remaining Disk and SPRINT benchmarks show different results where check-

point times and memory dump file sizes are larger. This is caused by a large amount

of memory consumed in both cases and a large amount of writes to disk in the former.

In these cases, the largest memory dump file recorded was 2.28 GB using SPRINT

and 1.1 GB using the disk-intensive benchmark; this benchmark also has the largest

DepDisk snapshot VDI size of approximately 53 MB.

These results show that applications that do not write to disk, or perform lots of

memory operations (e.g cache writes, etc), are unlikely to consume large amounts of

storage space on the volunteer host when periodic checkpoints are taken. However

applications that intensively perform memory or disk operations are likely to produce

larger memory dump and checkpoint files. This is reassuring as typically BOINC

applications tend to be CPU intensive operating over little data (e.g SETI@Home uses

about 10MB per host [50]) therefore the checkpointing process should be quick and

consume very little storage space.

3.4.3 The V-BOINC Server

One common problem of running a BOINC server is the difficulty of initially installing

the server. This is due to the complex tasks a BOINC server administrator must per-

form, as well as the lack of documentation on such procedures [66, 187]. We provide

documentation [164] on how to install a regular BOINC server to make the installation

process easier for BOINC administrators as well as increase the end-user uptake of

BOINC.

By extending a regular BOINC server in order to create a V-BOINC server, we

have naturally made the installation process more difficult due to the incorporation of

additional functionalities and complexities. To solve this problem, we have created a

deployment script named configure that automatically performs all of the operations to

successfully install the server.

For example, the script creates the V-BOINC project, copies pre-created files to

the appropriate locations (e.g. the virtual machine to the BOINC download folder;

see Section 2.4.3 of Chapter 2), configures the BOINC daemons and modifies per-

missions. This process usually takes one minute to complete however this may take

longer depending on how long the BOINC project takes generating encryption keys.

Afterwards, the V-BOINC server is ready to serve virtual machines to volunteer hosts.
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Similar to the performance degradation caused by virtualization on the volunteer

host, we expect the performance of the V-BOINC server to be less than that of a regular

BOINC project server deployed on the same host. Previous research has shown that a

BOINC server hosted on a single inexpensive computer can distribute up to 8.8 million

tasks per day with the CPU and network bandwidth being the main bottlenecks [51].

In the case of V-BOINC, we expect that the number of tasks per day the server

can distribute will be significantly lower than that of a regular BOINC server, with the

network bandwidth being the major bottleneck when volunteer BOINC clients request

a virtual machine image to be downloaded on their machine. We investigate this further

is Chapter 6 when we evaluate the performance of our ad hoc cloud prototype.

3.5 Summary

V-BOINC is a tool providing solutions to the drawbacks of regular BOINC by allowing

project developers to port their application only to the V-BOINC virtual machine and

omit application-level checkpointing from their code. Developers with applications

that have dependencies can easily utilize V-BOINC, where users of regular BOINC

cannot (easily) run such applications. Finally end user worries relating to security

and untrustworthy applications are also solved via the sandbox environment of virtual

machines. Note that V-BOINC does not currently deal with providing correct credit to

BOINC users nor does it accurately adhere to volunteer user-based preferences.

The design and implementation of V-BOINC plays a major role of how regular

BOINC applications and those with dependencies can easily be run upon V-BOINC.

In the former case, our inner virtual machine BOINC client allows regular BOINC

applications to be run in the virtual presence without modification and furthermore,

four stage transfers between the virtual machine and host do not occur compared with

other approaches [102, 160].

Applications with dependencies are able to run using V-BOINC due to its attach-

able disk mechanism that automatically mounts dependencies. Furthermore system-

level checkpointing is available in order to allow BOINC project developers to omit

application checkpointing code from their BOINC application. In the same way regu-

lar BOINC restores applications when volunteer hosts return to an available and usable

state, V-BOINC instead restores the previous virtual machine checkpoint allowing the

BOINC application to continue executing.



74 Chapter 3. V-BOINC: The Virtualization of BOINC

We have also shown how the performance of V-BOINC compares with regular

BOINC and how the implementation of V-BOINC introduces a negligible overhead

when compared to VirtualBox. As expected, the performance of regular BOINC is

better than that of V-BOINC due to the virtual machine overhead. The actual overhead

caused by the implementation of V-BOINC is however negligible when compared with

running the same application on a standalone virtual machine. Therefore one must

weigh up the advantages of V-BOINC compared to the increased performance of tra-

ditional BOINC and whether the performance cost from virtualization is acceptable for

volunteer computing. Investigating this with real volunteer users, application commu-

nities and different hypervisors, such as QEMU/KVM and VWware Player, are worthy

of extensive future investigation.

This chapter has shown how it is possible to successfully integrate volunteer com-

puting and virtualization. Many users within the volunteer community have taken

advantage of V-BOINC; approximately 200 users have downloaded V-BOINC since

its introduction. A large subset of these actively used our Amazon EC2 V-BOINC

on-line service that acted as a V-BOINC server by distributing virtual machines to the

general public for those who wished to run BOINC applications in a secure environ-

ment. Currently this service is unavailable due to the lack of credits available from

our previously acquired Amazon EC2 research grant. We aim to restore this service in

the future; information of how V-BOINC can be downloaded and used can be found at

[39].

By developing V-BOINC, we have not only solved many of the issues surrounding

volunteer computing infrastructures, but most importantly, we have also implemented

a platform that can be developed further to ultimately transform it into an ad hoc cloud

computing platform. We discuss how this is achieved in the following Chapter.



Chapter 4

From Volunteer to ad hoc Cloud

Computing

4.1 Introduction

In this chapter, we outline in detail how each of our contributions are implemented

that relate to transforming our virtualized volunteer computing infrastructure into an

ad hoc cloud computing platform. We first give an overview of the related research in

the field of ad hoc cloud computing by outlining two distinct and important studies that

introduce the topic and provide a foundation for similar research, including our own,

to build on. We also discuss similar studies that aim to transform volunteer computing

models into cloud computing infrastructures.

This is followed by outlining the architecture and implementation of our ad hoc

cloud prototype as well as how a volunteer infrastructure, normally controlled by dis-

tributed volunteer hosts, is converted into a centrally controlled infrastructure. We then

describe how an ad hoc cloud user is able to submit a job to BOINC running on a mod-

ified V-BOINC server and the processes involved when scheduling a virtual machine

to a near-optimal ad hoc host.

An in-depth overview of the key enabler of ad hoc cloud computing is then de-

scribed, i.e. introducing reliability into the unreliable infrastructure V-BOINC. This in-

volves periodic checkpointing, distribution, scheduling and restoration. Penultimately,

we outline potential measures to reduce the level of interference an ad hoc cloud user’s

task has on the ad hoc host and finally, we describe the effort required to install and

operate the components of the ad hoc cloud.

75
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4.2 Related Work

The topic of ad hoc computing encompasses a variety a topics ranging from ad hoc

networks and protocols [151] to more recently, ad hoc cloud computing. Up until

2009, research primarily involved the former, however the concept of creating a dis-

tributed infrastructure over non-exclusive and sporadically available hosts and devices

has grown in popularity. This section will focus solely on the latter.

Firstly we outline the two most important studies of ad hoc and volunteer cloud

computing as well as the current state of research in this area. We omit low-level

network and protocol details as this is out of the scope of this thesis. We do however

assume that by incorporating the outcomes of ad hoc network and protocol research,

our ad hoc cloud computing platform will benefit both in terms of performance and

relevance to the potential user community.

4.2.1 The Two Pillars

The concept of ad hoc cloud computing was first introduced and discussed by Kirby

et al. [141]. Those authors propose the concept of the ad hoc cloud within enterprise

settings to harness unused resources to improve overall utilization, reduce net energy

consumption and allow enterprises to take advantage of operating their own in-house

cloud.

Their work focusses on the major research and implementation challenges to real-

ize the ad hoc cloud computing concept and describes one approach on how to do so.

The primary challenges relate to coping with sporadically available hosts and minimiz-

ing the impact on non-cloud processes to an acceptable level; these are analogous to the

contributions described in Chapter 1. Additionally the authors list further challenges,

for example:

• What are the architectural requirements for an ad hoc cloud infrastructure?

• How can the membership of the set of machines in an ad hoc cloud be controlled?

• In which situations should an ad hoc cloud be scaled out or contracted?

• To what extent can planning decisions be improved using measurements and

predictions of previous, current and future workloads?
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These research challenges are analogous to our secondary contributions listed in Chap-

ter 1. With comparable challenges to be solved, our proposed approach has some sim-

ilarities to that proposed by Kirby et al. The approach taken in this thesis also involves

creating groups of hosts called cloudlets that contain the necessary environment or ser-

vices, termed cloud elements, for a task to run on any abstract class of host, e.g. virtual

machine, Java virtual machine etc.

Figure 4.1: Kirby et al. Node Structure [141].

Figure 4.1 depicts their proposed architecture, where each cloud element contains a

modeller/manager component that is installed on the abstract machine. This interacts

with the host OS to monitor the host resource usage and performance. Its counterpart

installed on the host itself, monitors the effect of the cloud element on the host. The

Broker and Dispatcher pattern deploys tasks to appropriate nodes based on program

characteristics and specified Quality of Service (QoS) targets. These are components

which we believe are fundamental to the ad hoc cloud model and as such, are adopted

within our methodology.

The work performed by Kirby et al. has therefore provided our research with a

foundation on which to build. However, with the exception of these similarities, the

differences between the proposed approaches are substantial; namely scheduling poli-

cies, QoS guarantees and how to introduce reliability into an unreliable infrastructure.

We describe these differences further while describing our own approach later in this

chapter.

Although the term ad hoc cloud computing was proposed by Kirby et al. in 2010,

research into creating clouds from voluntary resources had already been started earlier

by Chandra et al. Like Kirby et al., Chandra et al. also outline the challenges of
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creating clouds, termed Nebulas, from unreliable and sporadically available resources.

Chandra et al. also outline a possible approach to realize the concept [80, 81]. The

differences between the ideas of Kirby et al. and Chandra et al. are minimal as both

aim to solve the same class of problems but in different ways. These studies also

outline the importance of taking features from both volunteer and cloud computing to

enable a dynamic infrastructure, such as an ad hoc cloud or Nebula, to be developed.

Chandra et al. outline the problems with current cloud models, such as applications

may not suit the dedicated cloud model or end-users may not or cannot take advantage

of such platforms; these are similar to the challenges we identified in Chapter 1 and aim

to solve. For example, an application may not require strong performance guarantees

or be experimental in nature. Furthermore, the cloud may be too expensive to migrate

to, especially in cases when an application relies on large amounts of distributed data;

preferably the computation should be moved to these data sets and not vice versa [112].

A Nebula and an ad hoc cloud offer an alternative computational platform to solve such

problems, however Chandra et al. identify further challenges to be solved, namely how

to:

• maintain the state of cloud job, volunteer nodes and concurrent user requests,

• deal with a high level of heterogeneity between volunteer hosts,

• provide robustness to localized failures and be self-recovering,

• provide easy management for both cloud users and those who donate resources,

• provide protection for the volunteer resources against malicious actions,

• calculate the performance tradeoff between computation and data placement.

With the exception of the latter, our approach offers a solution to each of these chal-

lenges. The approach of Chandra et al. offers potential solutions to a few of these

points, namely how to handle host heterogeneity, failures and data-compute locality.

As heterogeneity has a direct impact on the performance of an application, the authors

note that resource scheduling must occur to deploy the correct application onto a set

of suitable resources. For example, larger applications can be deployed on faster hosts

to mitigate the effect the slowest host has on the overall performance; these hosts must

also be selected based on reliability.

Failure handing is an important component of operating any task over an unreli-

able infrastructure and Chandra et al. propose two solutions: employ replication by
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executing a job on multiple hosts concurrently or perform aggressive application or

virtual machine checkpointing and restore these checkpoints upon any host failures;

the latter is a feature we have incorporated into our ad hoc cloud platform. We do

not employ task redundancy as we imagine that the ad hoc cloud will typically run on

small-medium scale infrastructures where the number of hosts are limited. Therefore

by employing task redundancy, the number of available ad hoc hosts that can execute

new cloud jobs is reduced by a factor of the set redundancy value.

To minimize the potential performance degradation caused by sub-optimal data and

compute locations, Chandra et al. proposed either to calculate the network distance

between these entities or estimate network performance. Although we do not consider

data and compute locality, by incorporating these features in our ad hoc cloud platform

as part of future work, we would expect further performance improvements.

The Nebula concept was then partially-realized by Sundarrajan et al. who discuss

their early experiences with a prototype of the system [216]. Those authors re-iterate

current cloud unsuitability when executing dispersed data-intensive applications on

centralized infrastructures. They therefore use a data-intensive blog-analysis use case

to test their prototype distributed over the global research testbed PlanetLab [32] to

aid in a comparison. In order to analyse the blog data set on PlanetLab, the data is

distributed over data nodes and in order to analyse the data, execution nodes request

the data of a particular data node under the instruction of a centrally managed master

node. This architecture is shown in Figure 4.2.

Figure 4.2: Nebula System Architecture [81]
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The Nebula master contains the central node; a front-end interface allowing users to

join the cloud and administrators to create and upload applications as well as moni-

tor and manage the system. The DataStore and ComputePool components manage a

number of volunteer nodes that offer storage and compute respectively.

When analysing an increasing number of blogs, Nebula achieved time savings of

53% on average and data transfer savings when compared to a running on a centralized

cloud emulator. This analysis assumed no host failures occurred, however, it has been

shown that Nebula is able to outperform the centralized cloud model when a small

number of failures occur. Nebula implements a reactive approach to fault tolerance by

using task replication and task re-execution.

4.2.2 Volunteer Systems and Cloud Computing

The previous work outlined has highlighted the research and implementation chal-

lenges surrounding ad hoc cloud computing as well as initial results showing the

promise of such a paradigm.

Andrezejak et al. explore the idea of allowing a web-service provider, for example

DropBox, to use resources from the non-dedicated hosts they serve [54]. This aims to

reduce the number of dedicated servers a web-service provider owns or provisions from

cloud services, in turn reducing costs. The authors restrict the use of their proposed

approach to the web service domain, where non-dedicated hosts are primarily used

for their processing capabilities. This is due to the limited bandwidth and sporadic

availability of non-dedicated hosts.

Andrezejak et al. identify that the availability of non-dedicated resources is a pri-

mary problem, however they assume that a web service has fault tolerance and re-

dundancy mechanisms in place to cope with highly volatile non-dedicated hosts; we

develop and present our solution to this problem later in this chapter. Those authors

focus on a number of other research challenges.

Firstly Andrezejak et al. review techniques for predicting short-term availabil-

ity of non-dedicated hosts in order to help predict their long-term availability. Sec-

ondly, they outline a method to identify optimal combinations of dedicated and non-

dedicated hosts to reduce costs or reduce the number of migrations performed when

non-dedicated hosts fail. Processes previously running on a failed non-dedicated host

are restored by migrating the process’s data to another non-dedicated host. Unlike our

ad hoc cloud platform, this is performed periodically and not when the failure occurs;
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the details of this migration and restoration process are not described. Finally, the au-

thors investigate the trade-offs between using a greater number of dedicated hosts or

non-dedicated hosts.

In order for a web-service provider to utilise resources from a non-dedicated host,

the host’s availability is first calculated based on monitoring data collected over several

weeks. Well known Machine Learning predictors such as Last Value, Naı̈ve Bayes and

Gaussian predictions are used to group the hosts according to their predicted short-

term availability; a non-dedicated host is however deemed to be available if 100% of

its CPU is free, which in many cases will not occur.

Non-dedicated hosts in a group with the lowest rank (i.e. those that are likely to

be available) are used first by the web-service provider before lower groups are ex-

ploited in descending order; the authors consider the case where non-dedicated hosts

are ranked in groups ranked from 1 to 4. By combining simple prediction mechanisms

with host ranking, Andrezejak et al. claim this allows accurate long-term predictions

to be made. Their results show that their average highest and lowest error rates of

long-term availability prediction are approximately 21% and 14% respectively. Fur-

thermore, as the number of non-dedicated hosts increases, the probability of meeting

availability guarantees decreases, and vice versa.

Also by increasing the level of data redundancy, the number of dedicated hosts

required to meet availability guarantees decreases. Our implementation of the ad hoc

cloud does not utilise redundancy but instead takes a reactive approach to deal with

non-dedicated host failures. We assume that by incorporating task redundancy into the

ad hoc cloud, the success rate of task completion will increase further.

Andrezejak et al. then propose an optimisation method to either reduce costs for

the web-service provider or reduce the number of migrations performed. The authors

assume a web-service provider’s dedicated resources are served from a cloud provider

such as Amazon EC2 and therefore incur costs of 10 US cents per hour for each ded-

icated host; this is comparable to a particular Amazon EC2 instance. Similarly data

transferred between non-dedicated and dedicated hosts is charged at a rate of 10 US

cents per GB.

Andrezejak et al. find that for a group of rank 1 non-dedicated hosts, the optimal

number of dedicated hosts required to meet availability guarantees while also reducing

costs is 25 dedicated hosts from a set of 55. For a group of rank 4 non-dedicated hosts,

the total number of hosts a web service must use must increase to 62 in order to keep

costs as low as possible. By only considering rank 1 non-dedicated hosts, 44 dedicated
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hosts from a possible set of 52 are required to minimise the number of migrations.

In the case of rank 4 non-dedicated hosts, the migration rate is lowest when more

dedicated hosts are used, in particular, 49 dedicated hosts from a set of 52.

As our concept of the ad hoc cloud only involves one dedicated host and a po-

tentially unlimited number of non-dedicated volunteer hosts, Andrezejak et al. show

that volunteer hosts have a great potential to perform tasks that are typically executed

on dedicated hosts. Those authors’ work presents an approach that complements our

own, particularly regarding the calculation of a host’s short and long-term availability

as well as reducing the number of migrations between volunteer hosts. We detail our

solutions to these problems as well as a method to handle volunteer host failures later

in this chapter.

Mori et al. discuss their sophisticated ad hoc cloud computing environment, named

SpACCE, that is tailored for application sharing and distributed collaboration [170].

Their idea is based on creating a cloud environment by offering services from an ad

hoc server, called CollaboTray, that may at any time, migrate to another node in the

network. An example service outlined is Microsoft Powerpoint. The server may mi-

grate if the node currently hosting the server has an increase in utilization or will reduce

the performance of the service delivered to the clients. If an application requires more

capacity to execute effectively, other clients can be converted into servers to avoid the

total server resource capacity from diminishing.

Due to the ad hoc nature of their project, our goals are similar; namely how to

effectively co-exist with user processes, deal with dynamic hosts and the migration of

components between hosts. Their results show that large performance latencies can

occur if the server does not have 40% of the CPU available to use. This means that

applications that are resource intensive will be unable to utilise CollaboTray. In order

to migrate CollaboTray, it is first closed, its state is then transferred to another node and

finally it is restarted; a similar process we use to migrate and restore virtual machines

between hosts.

However CollaboTray does not use virtualization, hence the security of the system

is questionable if the server is migrated to an untrustworthy node. There is also no

concept of host reliability which will result in poor application performance if the

server is migrated to an unreliable node. Our implementation of the ad hoc cloud

provides solutions to the downfalls mentioned as well as additional features such as

effective monitoring and scheduling.
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Cunsolo et al. argue that cloud computing is a computational model directed to-

wards businesses, therefore restricting its usefulness for scientific purposes [85]. Those

authors propose an alternative to the data centre model where individual users are able

to donate their resources to form a unified cloud. As this is similar to volunteer com-

puting, they name this Cloud@Home. By merging volunteer and cloud computing,

users may either offer their resources for free to an OpenCloud or buy and sell re-

sources from a cloud called HybridCloud. These two cloud models are then able to

exist independently, link with one another, or link to other public and private cloud

computing platforms.

In their proposal, the authors identify that resource management, security, relia-

bility and Quality of Service (QoS) are some of they key challenges to overcome.

Resources are managed centrally and security is provided by virtualization, data en-

cryption and secure transmission protocols. Reliability is however based on negotia-

tions with volunteer users specifying their contribution; a volunteer host could however

leave at any time and no mechanisms for recovery are proposed. In turn, no QoS guar-

antees could be made. Furthermore, the authors do not specify, among other things, the

volunteer system to be used and how this could be transformed into a cloud platform.

Wu et al. create a private cloud based on BOINC for the purpose of executing

parallel and distributed simulation tasks [221]. Much of this focus is on scheduling

tasks to nodes within the system by using BOINC as a dispatcher according to the

authors own load-balancing algorithms. Although no reference is made to how their

architecture is in fact a cloud or how BOINC is part of their architecture, the authors

do note that scheduling and infrastructure monitoring are important components within

private clouds.

4.2.3 Mobile ad hoc Cloud Computing

Despite the relatively few successful studies of ad hoc cloud computing and the merg-

ing of volunteer and cloud computing, the field of mobile computing has shown more

promise and has been popular since 2009 [186].

Mobile devices are well known to be ‘resource poor’ where the compute capacity,

memory size and storage space is extremely limited [193, 101]. They also are limited

by battery life and network connectivity. However, there are cases where offloading

to another remote mobile device or computational platform is useful; for example,

to render a high quality image when power is low. Most studies focus of whether
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it is feasible to execute applications within mobile device clouds and whether any

performance gains can be achieved. There are generally varied success stories on the

matter [101, 208] and benefits are perceived to be dependent on the application [146].

Applications that are suited to remote clusters or clouds typically cannot be of-

floaded effectively due to the high latencies of WANs [208, 101]. However some dis-

pute these claims and show that offloading computation to Amazon EC2 is feasible as

well as desirable for latency-tolerant applications [169]. To take advantage of locality,

an independent group of mobile nodes, called cloudlets, are proposed to allow devices

within a cloudlet, to offload tasks to other members [171, 208, 101, 193].

Satyanarayanan et al. outline their proposal for a mobile cloud computing envi-

ronment that closely matches our own approach with non-mobile devices [193]. The

authors propose to use VirtualBox virtual machines upon mobile devices; some studies

however find that VM-based approaches are ineffective [208]. Satyanarayanan et al.

focus a significant part of their research on how to minimize virtual machine sizes and

how to transfer them effectively between devices.

These authors’ approach of hosting pre-configured virtual machines on devices

and only transferring overlays (checkpoints) over the network matches ours. Satya-

narayanan et al. do not consider scheduling, monitoring or how to deal with mobile

churn and task restoration. However, it is encouraging that their results show that

the transmission of virtual machine overlays to offload computation between mobile

devices performs well; we expect greater performance on a ‘resource-rich’ platform.

4.3 Architecture of the ad hoc Cloud

In this section, we first outline an initial conceptual architecture of the ad hoc cloud

describing the high-level components required to create such a platform. This is then

followed by a detailed architecture of our implemented prototype.

4.3.1 Conceptual Architecture

The conceptual architecture of any ad hoc cloud should be primarily composed of

components taken from the ad hoc cloud computing founding principles previously in-

troduced. We believe an ad hoc cloud should contain core elements from the following

high-level components shown in Figure 4.3. Due to the challenges and complexities

an ad hoc cloud poses, the ad hoc cloud should be based on:
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Figure 4.3: Conceptual Architecture of the ad hoc Cloud

• Volunteer computing: the foundation of an ad hoc cloud should rely on a com-

ponent that is able to control and coordinate a potentially large set of distributed,

heterogeneous and unpredictable sporadically available resources. Furthermore,

the ad hoc cloud should rely on a component that realizes the importance of the

host user having access to their resources when needed. Volunteer computing

infrastructures, in particular BOINC, offer these functionalities and therefore we

chose BOINC as the core of our ad hoc cloud computing prototype.

• Virtualization: the potentially untrustworthy nature of volunteer resources re-

quires that host resources and processes as well as a cloud job running on an

ad hoc host are protected. We employ virtualization to overcome this challenge

and to allow easy management of the general infrastructure; the importance of

virtualization was shown in the previous chapter describing V-BOINC. In order

to extend a volunteer infrastructure and provide a reliable environment for cloud

jobs to continuously operate in the face of host failure or churn, the features of

virtualization such as checkpointing must be exploited.

• Scheduling: due to the unreliable nature of an ad hoc cloud as well as the need for

cloud jobs to execute as quickly as possible, additional scheduling methods must

be created to take into account host availability, resource specification, resource

load and reliability.

• Monitoring: additional scheduling mechanisms require additional monitoring

mechanisms, above those that are provided by volunteer computing infrastruc-

tures, to provide data for such scheduling decisions. Advanced monitoring is
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also required to enable cloudlet-based monitoring allowing cloudlet resources to

be expanded or contracted dependent on administrator-defined goals.

• Management: infrastructure management allows cloudlet-based host migrations

to be performed as well as giving the administrator of the ad hoc cloud the ca-

pability to control hosts in the event of any problems or allow necessary tasks to

be performed over a group of ad hoc hosts.

• Resource adjustment: the ability to minimize host process interference caused

by cloud processes will determine the success and up-take of the ad hoc cloud

computing paradigm. While we do not introduce such functionality in our proto-

type, the underlying virtualization technology or various open-source tools can

be used to provide this feature.

• Cloud computing: the concepts from both public and commercial cloud plat-

forms play important parts in defining the ad hoc cloud and as such there are

many similarities between the models. For example, the ad hoc cloud operates

as a PaaS cloud, permits multi-tenancy, must obtain resources on-demand, be

easy to use, strive to provide an adequate level of QoS, etc. Developing an ad

hoc cloud which is similar to popular cloud platforms will play a key role in the

success of ad hoc cloud computing.

We now discuss how each of these components are implemented and incorporated into

our ad hoc cloud computing prototype.

4.3.2 Prototype Architecture

In order to develop our ad hoc cloud computing platform, we have used our virtualized

volunteer infrastructure V-BOINC as a foundation to build on and extend. Therefore

we inherit many of the functionalities V-BOINC has to offer as well as an initial client-

server architecture.

We now give an architectural overview of the ad hoc cloud while focussing on the

differences when compared to the V-BOINC server and client components. We then

outline how these components interact and give an overview of how the ad hoc cloud

operates. These descriptions are then used in subsequent sections to describe in greater

detail the implementation and features of the ad hoc cloud.
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4.3.2.1 The ad hoc Server

The ad hoc server is an extension of the V-BOINC server previously described in Chap-

ter 3. While an ad hoc and V-BOINC server share one primary purpose of distributing

virtual machines to volunteer hosts, the ad hoc server is able perform more complex

operations. Unlike a V-BOINC or regular BOINC server, the ad hoc server is able to:

• allow ad hoc cloud users to submit jobs to BOINC,

• schedule cloud jobs and virtual machine migrations to near-optimal ad hoc hosts

based on host availability, specifications, resource load (i.e. the current utiliza-

tion of a resource) and reliability,

• send instructions to ad hoc hosts for execution,

• monitor and manage the state of the system easily.

These additional functionalities help transform our V-BOINC infrastructure into one

half of an ad hoc cloud computing platform. We are able to provide these functionali-

ties by creating two BOINC projects: VM Service and Job Service. This is in contrast

to our V-BOINC server where volunteer users are served from a single BOINC project

named V-BOINC. The architecture of the ad hoc server is shown in Figure 4.4.

The ad hoc Server

Job Service 

BOINC Scheduler

jobs/work 
creator

Database

VM Service 

BOINC Scheduler

availability 
checker

workunit 
listener

ad hoc Scheduler

ad hoc Cloud Interface

ad hoc 
Cloud User

ad hoc
 Host Owner

Virtual
Machine

Ad hoc
Host

Figure 4.4: The ad hoc Cloud Server Architecture
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The Job Service project has the purpose of receiving cloud jobs from ad hoc cloud

users, via the ad hoc Cloud Interface, and registering these jobs with BOINC. Once

registered, the Job Service has the task of informing the VM Service that the cloud

job is ready to be executed on an ad hoc guest running on an ad hoc host. The ad

hoc Cloud Interface also allows ad hoc cloud users and ad hoc server administrators to

manage their respective BOINC accounts.

The VM Service project, conceptually similar to the V-BOINC project that runs

on a V-BOINC server, has the task of distributing virtual machines to ad hoc hosts.

Additionally, the VM Service project schedules jobs to near-optimal ad hoc hosts and

virtual machine migrations, sends instructions to both ad hoc hosts and ad hoc guests

and monitors and controls the entire system state. Ideally it would be beneficial for

development and management purposes if both cloud jobs and virtual machines could

be served from a single BOINC project however this is not possible as we need to

distinguish between the two entities to allow the former to execute on the latter. Al-

though the ad hoc server is substantially different to a regular BOINC server and offers

a greater number of features, we have ensured that architectures of both have remained

similar; a comparison can be made between Figures 4.4 and 2.8. We describe how the

ad hoc server is able to offer the outlined features in greater detail later in the chapter.

4.3.2.2 The ad hoc Client

The ad hoc client is an extension of the V-BOINC client previously described in Chap-

ter 3. While an ad hoc and V-BOINC client share the primary purpose of executing

volunteer applications that run volunteer host virtual machines, the former has a greater

number of responsibilities, in particularly to help provide a reliable environment for job

execution. Unlike a regular BOINC or V-BOINC client, the ad hoc client is able to:

• receive instructions from the ad hoc server to be executed,

• periodically take checkpoints of the virtual machine,

• schedule and send checkpoints to a near-optimal number of ad hoc hosts,

• receive virtual machine checkpoints from other ad hoc hosts,

• restore virtual machine checkpoints sent from previously terminated or failed ad

hoc hosts or guests,

• effectively monitor both ad hoc hosts and guests.
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Due to the large number of features integrated into the V-BOINC client to create the

ad hoc client, the architectures of both are significantly different with the latter being

more complex. The architecture of the ad hoc client is shown in Figure 4.5.

The ad hoc Client

Communication

BOINC Scheduler
Periodic Updater

ad hoc Client Interface

Listener

Snapshot 
Receiver

Snapshot 
Restorer

Host Resetter

Snapshot 
Deleter

Job Receiver

DepDisk

Disk 
Detector

Disk 
Downloader

VM Operations
Accessible 
Detector

VirtualBox API

Reliability
Snapshotter

P2P 
Scheduler

Running 
Detector

Resource 
Monitor

ad hoc 
Host User

ad hoc 
Server

ad hoc 
Server

P2P 
Distributer

Figure 4.5: The ad hoc Cloud Client Architecture

We see that the ad hoc client is composed of six major components: the ad hoc Client

Interface, Communication, Listener, VM Operations, DepDisk and Reliability. The ad

hoc Client Interface provides a GUI, similar to the BOINC Manager (see Section 2.4.3

of Chapter 2), to control the ad hoc host’s membership within the ad hoc cloud. The

Communication component interacts with the ad hoc server while the Listener listens

for any instructions sent from the server to be executed. This may include performing

operations on the virtual machine via the VM Operations component which has the

responsibility of dealing with all aspects related to the interactions between VirtualBox

and the virtual machine.
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The DepDisk component checks the ad hoc server for dependency disks and down-

loads the correct DepDisk for an application if it requires it. Finally and most impor-

tantly, the Reliability component ensures the continuity of cloud jobs by periodically

taking virtual machine checkpoints and distributing these in a P2P fashion within a

cloudlet; a set of connected ad hoc guests that provide a particular service or execution

environment, i.e. those that possess the same application dependencies and DepDisk.

We describe how the ad hoc client is able to offer the aforementioned features via the

six major client components in greater detail later in the chapter.

4.3.3 Client-Server Interaction

The ad hoc server and client interact through the communication mechanisms BOINC

already provides. However modifications have been to made to BOINC and V-BOINC

allowing these ad hoc components to transfer customized data between them and the

server. This is required to instruct an ad hoc client or to allow an ad hoc client to

update the server on the current status of the virtual machine, for example.

BOINC implements client-server communication by exchanging XML messages

which are then parsed locally allowing the receiving entity to determine the appropriate

actions to subsequently take. Figure 4.6 shows an excerpt of a message sent from the

client to the server. In this example, we see that a message is composed of many XML

elements that are grouped according to the information they provide. In reality, BOINC

server or client messages are composed of many information groups and messages are

much larger in length; on average messages are approximately 10 KB [51].

Figure 4.6 shows that important information about the host is passed to the server.

For example, the authenticator uniquely identifying the host, the ad hoc host’s des-

ignated hostid, the version of BOINC running and the type of platform. User-based

preferences specified on the host rather than via the BOINC server are also sent; for

example, we see that the volunteer user restricts BOINC to use at most 90% of the

available memory when the volunteer host is idle. A message also provides details of

currently executing or completed jobs. For example, Figure 4.6 shows that the volun-

teer host was executing a V-BOINC job that completed in approximately 60 minutes.
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<scheduler_request>

<!-- Host and BOINC Information -->

<authenticator>2_9fec55ffe011154092f0bde825</authenticator>

<hostid>11</hostid>

<core_client_major_version>7</core_client_major_version>

<core_client_minor_version>0</core_client_minor_version>

<platform_name>x86_64 -pc-linux -gnu</platform_name>

<!-- Local User Preferences -->

<working_global_preferences>

<global_preferences>

<source_project>http://IPADDR/VBOINC/</source_project>

<run_if_user_active>1</run_if_user_active>

<ram_max_used_idle_pct>90.000000</ram_max_used_idle_pct>

</global_preferences>

</working_global_preferences>

<!-- Details of the Executing Job -->

<result>

<name>VBOINC_1384477492_0_0</name>

<final_elapsed_time>3600.236996</final_elapsed_time>

<state>5</state>

</result>

<!-- Virtual Machine Elements -->

<vm_ip_addr>129.215.90.90</vm_ip_addr>

<vm_has_job>true</vm_has_job>

<vm_failure>false</vm_failure>

<!-- Ad hoc Client Elements -->

<cwd>/home/boincadm/BOINC</cwd>

<received_snapshot_ip>129.215.92.92</received_snapshot_ip>

<received_snapshot_id>13</received_snapshot_id>

<restored_snapshot_ip>129.215.91.91</restored_snapshot_ip>

<restored_snapshot_id>12</restored_snapshot_id>

<deleted_snapshot_id>29</deleted_snapshot_id>

<snapshots_to_hosts>129.215.92.92</snapshots_to_hosts>

<sizes_to_hosts>85.76</sizes_to_hosts>

<send_times_to_hosts>11.04</send_times_to_hosts>

<time_sent_to_hosts>1397679933</time_sent_to_hosts>

</scheduler_request>

Figure 4.6: Example BOINC Client Request
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In order to allow custom messages to be sent between the ad hoc client and server,

we have modified the BOINC scheduler to allow our own subset of ad hoc XML el-

ements and values to be entered. Figure 4.6 shows these additional XML elements

that either describe the state of the virtual machine or the ad hoc host. In the former

case, additional elements include the virtual machine’s IP address, whether the virtual

machine has been assigned a cloud job and whether the virtual machine has failed.

The elements describing the state of the ad hoc host include the directory of the

ad hoc client and whether the ad hoc host has just received, restored or deleted a vir-

tual machine checkpoint; the ID and IP addresses uniquely identify these checkpoints.

Conversely, the ad hoc client also describes whether it has sent any virtual machine

checkpoints to other ad hoc hosts as well as the size of checkpoint, the time when it

was sent and the estimated transfer time. We describe how the additions made to the

BOINC communication mechanisms are used in subsequent sections of this chapter.

4.3.4 Operational Overview

In this section, we give a high level overview of how the ad hoc cloud operates in

comparison to the operations and features of V-BOINC shown in the V-BOINC client-

server architecture of Figure 3.1. The differences include the tasks performed by the ad

hoc client and server and the communication mechanisms between them. The client-

server architecture of the ad hoc cloud computing platform is shown in Figure 4.7.
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Figure 4.7: The ad hoc Cloud Client-Server Architecture

Firstly, an ad hoc host owner installs and instantiates the ad hoc client on the ad hoc

host (0) which then triggers the ad hoc client to automatically request a virtual machine
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from the ad hoc server (1). A virtual machine image and an executable script used to

decompress the virtual machine are then sent to the ad hoc host (2).

These initial steps are similar to the those performed by V-BOINC, however V-

BOINC assumes that a virtual machine is only downloaded when it has a job to execute.

This is in contrast to the ad hoc cloud where a virtual machine is instantly installed

when an ad hoc host connects to an ad hoc server and waits on an instruction to start

(3). On a number of occasions where the number of cloud jobs is less than the available

ad hoc hosts, some virtual machine images may never be used. However, we argue that

by initially downloading the virtual machine image, the reduced time taken to begin

executing a cloud job is necessary in order to reduce the overall time cloud users wait

for their results to materialize. New virtual machine images are only downloaded when

the ad hoc host user or owner deletes the virtual machine image.

A job is then submitted to the ad hoc server by the ad hoc cloud user (4) and the

ad hoc client is then instructed to prepare for executing a job (5). This message will

include whether the job has any dependencies and if so, the correct DepDisk uploaded

by the ad hoc cloud user during job submission, is downloaded from the ad hoc server

(6/6.1). Subsequent processes follow the operations performed by V-BOINC. The De-

pDisk is either attached or if a DepDisk does not exist, a fresh virtual disk is created

and attached (7). The virtual machine is then started (8) and instructed to ask for the

job it has been prepared for (9). The cloud job and data are then sent to the virtual

machine (10), executed and upon completion, the results are returned to the server (11)

for the ad hoc cloud user to view and download.

Despite the relatively small differences between the client-server architectures of

V-BOINC and the ad hoc cloud, the individual client and server components, as well as

the communication mechanisms between them, are substantially different. The ad hoc

cloud offers a vast array of features that both BOINC and V-BOINC cannot offer; these

features are what has transformed the virtualized volunteer infrastructure V-BOINC

into an ad hoc cloud computing platform.

We now describe in detail how the additional features offered by both the ad hoc

client and server are implemented and integrated with one another to create a success-

fully operating ad hoc cloud computing platform. We order our discussion starting

from the processes involved when an ad hoc cloud user first submits a job until the

moment the user receives their results.
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4.4 BOINC Job Submission

To use the resources available in the ad hoc cloud, an ad hoc cloud user must submit

a job to the ad hoc server. However in the case of both BOINC and V-BOINC, ap-

plications that volunteer hosts execute are statically created before the server begins

distributing these applications. Both BOINC and V-BOINC applications are first com-

plied for the target architectures the applications will execute on and are then uploaded

to the ad hoc server and registered with BOINC. Therefore, dynamically allowing ad

hoc cloud users to arbitrary submit applications at any time is not a trivial task. Other

studies have investigated how to effectively enable job submission to BOINC.

4.4.1 Overview of BOINC Submission Systems

WS-PGRADE/gUse was one of the first tools to allow job submission to BOINC via

the CancerGrid [135]. WS-PGRADE/gUse enables a large number of communities to

access Grid, Desktop Grid and cloud infrastructures without having to spend a signif-

icant amount of time creating scripts to deploy their application on the infrastructure

[134]. WS-PGRADE/gUse provides a workflow-based GUI created from the open

source Liferay portal [25] served from an Apache Tomcat server. This may either be

installed on a host local to an end-user’s infrastructure or on a remote host such as the

public gUse service located at [22]. In order to provide job submission capabilities for

a large number of infrastructures, WS-PGRADE uses DCI-Bridge; a service that offers

standardized access to a variety of computational infrastructures [144].

One infrastructure WS-PGRADE is compatible with is BOINC, however WS-

PGRADE/gUse is not a solution that is integrated into BOINC but is rather a service

that interacts with BOINC. Despite providing standardized access to multiple com-

putational platforms as well as being popular in the scientific communities, the effort

required to integrate WS-PGRADE/gUSE with the ad hoc cloud would be too great

for this type of platform.

For example, we would be required to install WS-PGRADE/gUSE locally and cre-

ate a customized web-portal environment for job submission to the ad hoc cloud. This

requires the installation of further libraries and packages, e.g. the portal project Liferay.

Furthermore, as WS-PGRADE/gUse is a framework providing many functionalities,

many of which we do not require, the computational overhead of using the framework

may also be larger than required. WS-PGRADE is also used for submitting workflows

to computational infrastructures, however many of the jobs submitted to the ad hoc
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cloud will not be workflow-based. However it is not unreasonable to assume that in

the future, the ad hoc cloud platform will become another infrastructure WS-PGRADE

and DCI-Bridge are able to submit jobs to.

Rios et al. also have a similar goal of reducing the barriers of use to BOINC and

therefore have created a tool called Legion to generate web portals to perform a variety

of tasks; one of those is submitting workflows to BOINC [187]. This is performed by

creating a web interface that interacts with a Legion web service that is able to interact

with the BOINC server via SOAP.

However in order to interact with BOINC tasks, Legion stores additional informa-

tion about these tasks within the BOINC database, however BOINC already creates

and stores this information within the database by default, and therefore a degree of

unnecessary data redundancy occurs. Furthermore, Legion requires additional libraries

to allow job submission to BOINC.

For similar reasons to why we didn’t adopt WS-PGRADE/gUSE to submit jobs to

BOINC, Legion also requires too much effort to integrate into the ad hoc cloud plat-

form and may also generate an additional computational overhead due to the variety of

other tasks Legion performs.

After investigating other available frameworks claiming to allow job submission to

BOINC, we found that they were either deemed unfit for our purposes, for reasons sim-

ilar to above, or did not offer the simple functionality we require. We therefore decided

to implement our own job submission system that is integrated into BOINC. Our sys-

tem is composed of two components: the ad hoc Cloud Interface and the work creator,

both of which were depicted in Figure 4.4 showing the ad hoc server architecture.

4.4.2 Ad hoc Cloud Interface

The ad hoc Cloud Interface is a modified version of the default user interface BOINC

provides to its volunteer users. This gives users instructions about how to use BOINC

as well as access to their on-line account allowing volunteer user-based preferences to

be modified or the state of current or previously run tasks to be viewed. The default

volunteer host-user interface BOINC provides is shown on the left-hand side of Figure

4.8.

To enable job submission using the BOINC default interface, we have modified the

interface to allow ad hoc cloud users to upload an application executable and optional

data to be analysed as well as a DepDisk if the application requires it. As mentioned in
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Figure 4.8: The ad hoc Cloud Interface with Job Submission

Section 1.5 of Chapter 1, applications that contain an executable and data are the types

of applications we have only tested on the ad hoc cloud, however other applications

may be able to execute successfully; testing additional application types is left for fu-

ture work. Furthermore, we only test applications that are able to execute on an Ubuntu

Server 11.04 OS, however a large selection of Operating Systems can potentially be

selected by and provided to the ad hoc cloud user to allow them to execute a vast array

of different applications on different environments.

The modified interface also shows basic monitoring of jobs that have been submit-

ted by the ad hoc cloud user; detailed job information can be viewed by browsing

BOINC’s default task pages. After an ad hoc cloud user uploads and submits their

application and optional data and DepDisk to the ad hoc server, these files are placed

into a numbered directory in a folder named jobs/ in the Job Service project; this is

shown in ad hoc server architecture of Figure 4.4.

For example, the third application to be submitted can be found in the directory

jobs/3. Within each numbered directory, the application and related files are labelled

dependent on which argument they were uploaded using the interface. For example,

the application SPRINT and its data genes samples are relabelled to SPRINT.app and

genes samples.data respectively.
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4.4.3 Creating Work

In order to register the application and optional entities with BOINC, we have created

and added a daemon to BOINC called work creator, as shown in Figure 4.4. This

daemon periodically checks the jobs/ directory to determine if any new applications

have been submitted and if so, the application and the optional entities are segregated

into application and input files. This information is used to create a BOINC input

template file; a file describing the properties of a job in XML, such as the application

and its input files. A output template file is also created describing the application’s

output files; we assume that an application’s results are written to a single output file

for testing. These templates are then used to register the application with BOINC using

BOINC’s C++ create work function. An example method call is shown in Figure 4.9.

int create_work(

DB_WORKUNIT& workunit ,

const char* input_template , // input template contents

const char* output_template_filename , // output template name

const char* output_template_filepath , // output template path

const char** infiles , // array of input files

int ninfiles // number of input files

SCHED_CONFIG& config

);

Figure 4.9: BOINC Workunit Creation

The function create work takes a DB Workunit object as the first argument describing

the various features of the workunit (i.e.the cloud job) to be created such as the max-

imum disk or memory it is allowed to consume during execution. As the cloud job

will execute in a virtual machine which itself has a restricted level of resources it is

able to consume from the ad hoc host, we allow the workunit to consume 100% of

each virtual resource. The following three arguments are the input template contents

as well as the name and path of the output template. The infiles array stores references

to the application’s input files, e.g. the data to be analysed. Note that a DepDisk is not

included as an input file as it must be sent to the ad hoc host before the virtual machine

starts. This is shown in Figure 4.7 where an ad hoc host is told to prepare for a job (5)

before the job is executed on the virtual machine (10).

Finally a SCHED CONFIG object that contains various items about the BOINC

project (e.g the Job Service project), such as paths to the project and download fold-
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ers, must be passed to create work. Once the function has successfully completed,

a BOINC workunit is created and is automatically stored in the database of the Job

Service project. The workunit’s metadata is also stored such as the workunit ID, cre-

ation time and current state. The workunit then waits in the Job Service database to be

distributed to an ad hoc guest.

4.5 Job Scheduling

After the successful submission of a job to BOINC, the selection of a near-optimal ad

hoc host now takes place, a decision that is made by the VM Service ad hoc Sched-

uler shown in Figure 4.4. However as the VM Service and Job Service projects are

independent, the former does not know when a job has been submitted to the latter.

Therefore, to determine whether a cloud job has been submitted to the Job Service,

we have added a workunit listener daemon to the VM Service that checks the Job

Service database for new workunits. As cloud jobs may be submitted at any time, the

workunit listener periodically checks the Job Service database. On the discovery of

a new Job Service workunit, the workunit listener notifies the ad hoc Scheduler; in

effect, this daemon acts as a cross-project feeder daemon.

When the ad hoc Scheduler knows how many cloud jobs are awaiting to be dis-

tributed to ad hoc guests, it begins the process of selecting a near-optimal ad hoc host

on which to instantiate the ad hoc guest and begin executing cloud jobs. This decision

is based on a combination of factors: ad hoc host availability, specification, resource

load and reliability. We assume that a number of ad hoc hosts are available in the ad

hoc cloud to allow cloud job scheduling to occur. In cases where no ad hoc hosts are

present or available, cloud jobs will remain in the Job Service project database.

As developing a complex job scheduler is out of the scope of this research, we

outline our proposal for a simple ad hoc Scheduler below. We build on the large

number of previous scheduling studies in the HPC, Grid and cloud computing fields

while noting the many improvements that can be made to our scheduler.

4.5.1 Overview of Relevant Schedulers

The regular BOINC server scheduler is a simple scheduler that follows a ‘bag of tasks’

approach where a job is only sent to a volunteer host that has enough memory and

disk space and can complete the job within its deadline [51, 52]; the estimated mem-
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ory usage, disk usage and deadline are specified via the DB Workunit object when

using regular BOINC. Additional scheduling mechanisms are available to cope with

the heterogeneous environments of volunteer hosts such as dealing with varying cores,

numerical variability and the job size, for example. To ensure a job is successfully

executed as well as ensuring volunteer hosts return valid results, BOINC executes a

single task on multiple volunteer hosts and compares the results.

The RIDGE system is a reliability-aware platform that takes into account a host’s

previous performance, behaviour and reliability [70]. RIDGE has been developed on

top of BOINC to determine the optimal job redundancy level for each BOINC job. This

is in contrast to the regular BOINC server scheduler that statically sets the redundancy

level for each job. By dynamically adjusting redundancy levels according to the current

state of the volunteer infrastructure as well as scheduling jobs to reliable and well

performing volunteer hosts, RIDGE is able to outperform the regular BOINC scheduler

in terms of task throughput and can also reduce a job’s execution time; RIDGE was

tested under a variety of reliability conditions on PlanetLab [70, 200].

Although the ad hoc cloud does not employ job redundancy to achieve reliability,

the methods of scheduling according to a host’s past performance and reliability are

similar; a host’s reliability is calculated in a similar manner. Reliability or redundancy-

based schedulers, such as RIDGE, can be complimented with algorithms that also

take into account volunteer host reputation to ensure groups of volunteer hosts do not

collude to upload incorrect results [77].

Reputation-based schedulers have also been found to increase the probability of a

task being correctly executed [199], while others may also simultaneously minimize

the completion time [118, 115]. Furthermore, reliability schedulers may also predict

the future availability of volunteer hosts [54, 180, 181] to determine whether volunteer

tasks should execute on a host any time soon.

Where possible, volunteer tasks can decomposed into smaller variable sized sub-

tasks that can then be dispersed over many volunteer hosts. By matching the capability

and performance of each volunteer host to the resource requirements of the sub-task,

the overall completion time of the whole task can potentially be reduced in a large

number of cases [206]. For data-intensive applications running on volunteer infras-

tructures, volunteer hosts can be ranked based on their estimated download time of

a piece of data from the volunteer server [138, 139, 140]. The volunteer host that is

predicted to offer the best download time is then chosen to execute the volunteer task.



100 Chapter 4. From Volunteer to ad hoc Cloud Computing

Scheduling may also be based on whitebox [167] or blackbox [197] methods where

either a large or small amount of information is known about the application before

execution respectively. Jobs can also be scheduled to near-optimal hosts based on the

job’s predicted resource requirements. This is achieved by comparing the job to all

others that have previously executed [67, 45, 182]. A near-optimal host can then be

chosen if it has the required resources available.

The requirements of an end-user can also be a factor during scheduler decisions, for

example, a required completion deadline or cost budget [226, 74, 73]. Others sched-

ulers may aim to minimize the computation time [95, 96], strike a balance between

cost and performance [88, 119], increase the profit of the service provider [179] or

ensure that provider-specified SLAs are fulfilled [182, 222, 46].

This is by no means a complete overview of the current state of scheduling in com-

putational environments. The studies outlined above are a small subset of relevant

material to show the potential improvements that could be made to our ad hoc Sched-

uler described below. By incorporating a number of these scheduling methods, the

accuracy of our own scheduling proposal would increase the success rate of cloud jobs

running on the ad hoc cloud, decrease their overall completion time and improve task

throughput.

4.5.2 Host Filtering

We model our job scheduling mechanism on the virtual machine scheduler of Open-

Stack. OpenStack is an open source and scalable operating platform for building public

and private clouds [31]. Its virtual machine scheduler, called nova-scheduler, calcu-

lates the near-optimal host to deploy a virtual machine on. This decision is based on

host availability, specification and resource load. The nova-scheduler has two phases:

filtering and weighing. Filtering determines if a host is eligible for a virtual machine

to be dispatched to it.

Commonly applied filters are CoreFilter, RamFilter, DiskFilter that determine if

a host has enough processors, memory and storage space respectively. This eligibil-

ity list is then passed to the weighing phase where hosts are ordered according to

administrator-defined weights to determine the best hosts for a virtual machine to be

deployed upon. We discuss how cloud jobs are scheduled according to ad hoc host

availability, specification, resource load and reliability based on a modified version of

the OpenStack nova-scheduler.
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4.5.2.1 Availability

In order to select an available ad hoc host, the ad hoc server maintains a list of available

hosts determined via the availability checker daemon added to the VM Service project

of the ad hoc server shown in Figure 4.4. To ascertain whether an ad hoc host is

available, the availability checker periodically queries the VM Service database to

determine when an ad hoc client last polled the server. If the ad hoc client polled the

server within the last two minutes, the ad hoc host is deemed available for use.

Currently, regular BOINC clients only contact the server to obtain a job, return

results or when a volunteer host explicitly instructs the BOINC client to contact the

server. Therefore in most cases, a BOINC client will not poll the BOINC server for

long periods of time despite being still available to execute applications. To solve this,

we have added a Periodic Updater component to the ad hoc client, as shown in Figure

4.5, that polls the ad hoc server every minute; this to similar in the case of OpenStack

where compute nodes (i.e. those that run virtual machines) periodically signal to the

compute service that they are still available. The Periodic Updater is implemented as

a pthread which is created when the ad hoc client is instantiated; POSIX threads, or

pthreads, is a standard for threads in the Portable Operating System Interface (POSIX)

family of standards [196].

Upon each poll from an ad hoc client, the ad hoc server stores the contact time

in the VM Service project database. This allows the availability checker to determine

whether the ad hoc client has indeed polled in the last two minutes. Those who have

not polled within this time period are set to unavailable. The ad hoc Scheduler queries

the VM Service database to obtain a list of all available ad hoc hosts.

4.5.2.2 Host Hardware Specifications

Available ad hoc hosts are then analyzed to determine if they physically have enough

resources available to execute both an ad hoc guest and cloud job. Although we do

not know the amount of resources a cloud job, and consequently an ad hoc guest will

use before execution, we assume that both require a reasonable amount of resources

to execute effectively. We therefore assume that each ad hoc host has at least 1 CPU

core, 1 GB of RAM and 20 GB of storage space.

It is possible to monitor and store the execution times and resource usage levels

of previously executed cloud jobs or benchmarks and predict a newly submitted cloud

job’s execution time and resource usage levels based on the similarity. While there are
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many studies that outline the process and value of employing this approach [95, 96,

145, 128, 67, 45], the difficultly of determining whether a cloud job, before it has even

been executed, shares characteristics with those previously run is an extremely difficult

task and is worthy of being investigated in a new course of research.

As previously mentioned in Section 2.4.2 of Chapter 2, a BOINC client automati-

cally records the amount of resources the volunteer host has when it is first run. How-

ever volunteer user-based preferences limit both the BOINC client’s and volunteer

application’s use of these resources. Based on both these data sets, the ad hoc Sched-

uler analyses the amount of resources an ad hoc guest and cloud job could potentially

access. Ad hoc hosts that do not satisfy the resource criteria above are removed from

the list of potential cloud job execution candidates. This is similar to the operations

performed by the OpenStack nova-scheduler that calculates suitable hosts for virtual

machine placement based on the filters CoreFilter, RamFilter and DiskFilter.

4.5.2.3 Resource Load

The resource load of the remaining ad hoc hosts is then retrieved. This is made possible

by incorporating Ganglia (see Section 2.5.2 of Chapter 2) into the ad hoc client, which

is depicted as the Resource Monitor in Figure 4.5. Upon installing the ad hoc client,

an ad hoc host user or owner therefore does not need to install Ganglia separately; we

discuss the installation of the ad hoc cloud components in Section 4.8 of this chapter.

The Ganglia gmond daemon runs locally on the ad hoc host and collects CPU and

memory load as well as disk consumption and network usage. While network usage

may be useful to determine which cloud jobs are best suited to a particular ad hoc host,

we omit network usage from our scheduling calculations and leave this for future work.

The Ganglia gmetad daemon runs upon the ad hoc server and collects the monitoring

data from the ad hoc hosts. As previously mentioned in Chapter 2, data collected

by Ganglia are stored in rrd files. To enable the ad hoc Scheduler to read the stored

values, the rrd files for each ad hoc host are queried to obtain the latest resource loads.

Resource loads can be obtained by using the following command:

rrdtool fetch cpu_system.rrd AVERAGE -r 120 -s -120

This rrdtool fetch command fetches the average CPU loads calculated for each 15

second period over a total of two minutes. By default, Ganglia averages monitoring

data over each 15 second period, however we average the load over each two minute
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period to smooth the fluctuations of real-time monitoring data and get a good indication

of the current load.

If an OpenStack scheduler was integrated into the ad hoc Scheduler, at this point

the nova-scheduler would begin the weighing process and then reserve an ad hoc host

that is available, has enough hardware to exploit and has the least memory usage; the

latter can be modified to filter and weigh according other metrics. However, we assume

that for the ad hoc cloud to offer reasonable performance to cloud jobs, ad hoc host

processes should not utilize more than 70% of the CPU and have at least 512 MB of

memory available when the cloud job is executing. The output from the above com-

mand is passed to the ad hoc Scheduler which decides if the current load is acceptable

for ad hoc guest and cloud job execution. Ad hoc hosts that have an average greater

than the values specified are removed from the list of potential execution candidates.

These average resource usage values are stored alongside the potential ad hoc hosts

database entries that could be used to execute currently awaiting cloud jobs.

In summary, an ad hoc host must have the hardware specifications previously men-

tioned and have enough of these resources available to offer reasonable performance.

For example, although an ad hoc host with a total of 768 MB of RAM (i.e. less than

our 1GB requirement) could be frequently underutilized, therefore meeting our mini-

mum available amount of memory set at 512 MB, the lack of potential access to more

resources does not give the cloud job the opportunity to perform better when it requires

more resources. Therefore this is why the ad hoc Scheduler filters ad hoc hosts based

on both hardware specifications and resource load.

4.5.3 Calculating Host Reliability

Due to the uncertain nature of ad hoc cloud computing where hosts may leave or fail

at any moment, the reliability of ad hoc hosts must be taken into account. An ad hoc

host’s reliability is based on five factors:

1. the total number of cloud jobs previously assigned to the ad hoc host,

2. the total number of cloud jobs previously completed by the ad hoc host,

3. the number of ad hoc host failures,

4. the number of ad hoc guest failures,

5. the current resource load of an ad hoc host.
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Examples of ad hoc host failures include host termination or any hardware or OS fail-

ure that causes the ad hoc client to stop operating; for example, kernel panic. Examples

of ad hoc guest failures include failures related to virtual machine configuration, in-

stantiation, execution, and shutdown. The reliability factors (1)-(3) are monitored by

the ad hoc server. For each ad hoc host, the number of assigned and successfully

completed cloud jobs by default are recorded in the Job Service database by BOINC.

However as the ad hoc Scheduler is part of the VM Service project, it must query the

Job Service database to obtain these figures. The number of ad hoc host failures can

be monitored by the VM Service’s availability checker daemon which will set an ad

hoc host to terminated or failed after two minutes of inactivity.

The reliability factors (4)-(5) are monitored by the ad hoc client when a cloud job

is executing. Any failure relating to the ad hoc guest is detected by either the Running

Detector or Accessible Detector components shown in Figure 4.5. Virtual machine

configuration error, such a failure during registration with VirtualBox or a DepDisk

not attaching, are detected by timeouts. Similarly, an ad hoc guest is deemed failed if

it has not instantiated or shutdown within a certain time period. To determine whether

an ad hoc guest is still executing, it is periodically polled every ten seconds using

VirtualBox’s VBoxManage API; this ensures that a non-operational ad hoc guest is

detected quickly with minimal resource overheads. The runningvms function outputs

a list of running virtual machines and is parsed to determine if the virtual machine is

still running.

The current resource loads of an ad hoc host can be monitored either by Ganglia

or via BOINC’s basic monitoring mechanisms. The regular BOINC client monitors

the total CPU usage of non-BOINC processes to determine when to suspend BOINC

if non-BOINC processes exceeded a threshold specified by the volunteer user. Regard-

less of the monitoring mechanism employed, an ad hoc host’s current resource usage

may affect reliability when the host becomes heavily utilized by host processes, i.e.

those executed on behalf of the ad hoc host user, for long periods of time. There-

fore the performance of the cloud job will suffer and may take a substantial time to

complete; this is unacceptable when running tasks on any cloud platform. Although

the current resource loads of an ad hoc host may affect the probability of a cloud job

completing, we do not incorporate this resource load functionality into our reliability

calculations and therefore leave it as future work.

Upon the detection of an ad hoc guest failure, the ad hoc client informs the ad

hoc server by inserting the failure type into the <failure></failure>XML element of
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the modified BOINC communication mechanism as shown in Figure 4.6. The ad hoc

server could also be informed of any ad hoc host performance issues in the same way.

Based on the data sent from the ad hoc client and the data collected on the ad hoc

server, the server is then able to calculate the reliability of each ad hoc host using the

following formula:

host reliability =

8
>><

>>:

0 if NF =CA

100 if NF = 0

(CC/CA)⇤100 otherwise

where,

NF = the total number of ad hoc host and guest failures,

CA = the total number of cloud jobs assigned to the ad hoc host,

CC = the total number of cloud jobs completed by the ad hoc host.

An ad hoc host’s reliability is calculated after cloud job has completed, the ad hoc

guest has become non-operational or the ad hoc host has not polled within the last two

minutes. The calculated reliabilities are then stored in the VM Service project database

alongside the information of each candidate ad hoc host. This reliability calculation

gives an estimate of the ad hoc host’s behaviour for the entire time the host is part of the

ad hoc cloud. This calculation could however be improved to reflect an ad hoc host’s

recent reliability, e.g over the last few hours. Furthermore, daily or weekly patterns

could also be detected to determine whether or not to assign a cloud job to the ad hoc

host. We leave the investigation and potential incorporation of these possible additions

as future work.

4.5.4 Making a Decision

The ad hoc server now has a filtered list of potential execution candidates based on

ad hoc host availability, hardware specifications and current resource load. This list is

then sorted in descending order according to the reliability of each ad hoc host. Table

4.1 shows an example candidate list.

To schedule a cloud job to a single ad hoc host, the ad hoc scheduler selects the

head element of the list, i.e. the ad hoc host that is most reliable. Similarly, the first

x candidates are selected when scheduling a batch of x cloud jobs. This ensures that

reliable ad hoc hosts that are able to offer reasonable resources to a cloud job always

have a job to execute. This is a simple scheduler and many improvements could be
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Reliability Host ID CPU Free Memory Free Disk Free
99 12 40% 678 MB 160 GB

82 89 88% 2 GB 850 GB

68 17 95% 6 GB 200 GB

44 2 45% 1.1 GB 20 GB

Table 4.1: Example Scheduling Candidate List

made to optimize the scheduling process. For example, it may be better to schedule

a single cloud job to ad hoc host 89 which is still reliable but offers more resources

for the cloud job to consume. As developing a complex job scheduler is out of the

scope of this research, we leave the evaluation and possible incorporation of these

improvements as future work.

4.5.5 Preparing and Executing a Cloud Job

After an appropriate ad hoc host has been selected to execute a cloud job, the host is

instructed to perform the necessary steps to allow the cloud job to begin executing in

the virtual machine; this is step (5) shown in Figure 4.7 depicting the high-level ad

hoc cloud client-server architecture. However as both regular BOINC and V-BOINC

are volunteer infrastructures and are therefore controlled by the volunteer host user,

both implementations do not typically allow require server-initiated communication

functionality. Hence BOINC clients typically do not receive messages from a server

unless they initiate a request.

To solve this problem, we developed five Listeners, shown in Figure 4.5, to allow

the ad hoc server to communicate with ad hoc clients without waiting for clients to

initiate the communication. The Listeners available are: the Job Receiver, Host Re-

setter, Snapshot Deleter, Snapshot Receiver and Snapshot Restorer. The ad hoc server

instructs ad hoc clients by appending additional XML elements to the default BOINC

server message sent to BOINC clients; this typically includes information about the

volunteer host such as its host identifier, the projects it is attached to and BOINC tasks

it possesses, for example. Each Listener then parses the appropriate section of the mes-

sage to determine whether to perform any actions. The following four XML elements,

shown in Figure 4.10, are appended to a BOINC server message to instruct an ad hoc

client to begin preparing the ad hoc host for executing the cloud job.
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<job_service_url> http: //129.215.90.11/ Job_Service</job_service_url>

<job_service_auth>2_9fec55ffe011154092f0wef24f</job_service_auth>

<job_service_depdisk>MPI_R.vdi</job_service_depdisk>

<job_service_job_id>235</job_service_job_id>

Figure 4.10: Section of job Preparation Instruction

The Job Receiver Listener, whose task it is to start the preparation of the ad hoc

host, will store the parsed values and begin downloading the DepDisk MPI R.vdi

from the ad hoc server (Figure 4.7 step 6). Similar to the V-BOINC process, the

DepDisk will attach to the already downloaded virtual machine and the virtual ma-

chine will then be started. The Job Receiver will then instruct the inner BOINC client

installed in the virtual machine, to attach to the Job Service project located at the

URL http://129.215.90.11/Job Service using the weak authenticator supplied (Figure

4.7 step 9); the ad hoc client uses the guestcontrol function of the VirtualBox API to

allow commands to be executed in the virtual machine.

Although the ad hoc server knows the correct workunits to supply to each ad hoc

guest, the ad hoc guest relays the workunit ID back to the server when attaching to the

Job Service project. This confirms that the correct ad hoc guest will receive the correct

cloud job for the environment prepared.

4.6 Making the Unreliable Reliable

After a cloud job has been downloaded to the ad hoc guest and begins executing, it

relies on the successful operation and availability of both the ad hoc host and guest.

By executing a cloud infrastructure over an unreliable set of volunteer hosts, cloud

jobs will however be greatly affected by the premature termination and failures of ad

hoc hosts. There have been many studies researching how to introduce reliability into

unreliable infrastructures.

4.6.1 Overview of Fault Tolerant Computing

Three common fault tolerance recovery measures used in Grid infrastructures are [86]:

checkpointing, replication and rescheduling.

Checkpointing allows the state of an executing task to be periodically saved. Grid

tasks that fail can either be restarted from a previous checkpoint on the same host
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[124], or migrated to another host for continued execution [148]. For a large number

of scientific applications that use MPI to achieve parallelism, various studies show that

it is possible to implement coordinated checkpointing within MPI [219].

Replication provides fault tolerance by allowing many replicas of a single task to be

distributed to multiple hosts with the hope that one succeeds. Systems such as RIDGE

[70], BOINC [51] and other studies [200] employ task replication. Replication not

only benefits the Grid user but can also benefit the Grid provider in order to fulfil their

defined SLAs [147]. Replication is also common in cloud computing environments to

provide reliable storage service; Amazon S3 is an example of such a service [4].

Rescheduling restarts failed tasks on different hosts; this is contrast to checkpoint-

ing where a task can begin executing from a previous state. This is particularly use-

ful to reduce the overheads associated with checkpointing and replication [86]. Task

rescheduling has found be a reasonable approach for providing reliability to a Grid user

[123] however for long-running processes, it may introduce significant overheads.

Weissman investigates whether checkpoint-recovery or wide-area replication can

introduce fault tolerance measures for Single Program Multiple Data (SPMD) parallel

applications distributed over WANs [215]. Checkpointing measures are implemented

within the application code and periodically the data the code operates on is saved to

either an NFS-mounted disk or a parallel array of local disks. Wide-area replication

is performed by the Gallop scheduler, which is primarily used to select the best exe-

cution sites for applications. Weissman finds that for SPMD parallel applications in

the configurations mentioned, checkpointing may offer a lower performance overhead

for small applications when fast local disks are present. Wide-area replication is more

suited to applications on a much larger scale. It is noted however that one fault tol-

erance approach may not be acceptable for all classes of application. Furthermore,

this study does not investigate the overheads of recovery and the optimal fault tolerant

method for a variety of environments, e.g the Grid versus the ad hoc cloud for example.

Fault tolerance measures have also been introduced into volunteer or Desktop Grid

infrastructures. Saramenta introduces fault tolerant measures to ensure the validity of

results while reducing the overheads of redundancy-based fault tolerance [192]. The

author combines redundancy with spot-checking, where a spot-check job is sent to a

volunteer host for execution but the result of that job is already known beforehand. If

the volunteer host returns a bad result, the server (e.g. the BOINC server) knows not

to trust that particular host and can invalidate the results from all previous workunits

this host has executed or blacklist the host to ensure it never computes a task again.
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Domingues et al. propose a novel technique that aims to identify malicious hosts by

employing task redundancy with checkpoint-based verification [92]. Before a task is

started, a specific set of future checkpoints are selected by the server (e.g. the BOINC

server). The task is then instructed to execute and while doing so, it periodically check-

points. Upon reaching a server-specified checkpoint (e.g. number 24), each redundant

task computes the hash of the checkpoint and sends this to the server upon the next

communication. The server is then able to compare checkpoints to determine the va-

lidity of the currently executing redundant tasks.

The use of virtualization also makes it possible for applications to execute in a

reliable and fault tolerant manner. Nagarajan et al. propose a method where Xen virtual

machines executing MPI tasks are migrated from a source host to a target host when the

former is determined to have substantially high temperatures, fan speeds and voltage

usage [173]. The target host is selected based on the least CPU load as monitored by

Ganglia. The authors use live migration; a method of transferring a virtual machine

from one host to another without affecting the availability of the virtual machine.

Note that in order to enable live migration, Xen requires that firstly, the source and

target hosts have the same hardware and have equal CPU specifications and secondly,

shared storage such as NFS is used. In the event a source host fails without any warning

and before the virtual machine is migrated to another host, Nagarajan et al. dictate that

the virtual machine is simply restored on the source host from its last checkpoint.

Nagarajan et al. claim that their working prototype minimizes the transfer times

and overall downtime experienced by live migrating the virtual machine executing MPI

tasks. However, the perceived primary contribution of the work is not evaluated, i.e.

an investigation into the effectiveness of their health monitoring algorithm that decides

when to migrate a virtual machine. Therefore the results obtained are similar to those

from benchmarking Xen’s live migration feature when MPI tasks are executed.

Cully et al. propose a similar method where virtual machines are live migrated us-

ing Xen to ensure reliable application execution [84]. The authors employ an aggres-

sive checkpointing approach where checkpoints are taken at very high frequencies, for

example, one checkpoint every 25ms. Their architecture is based on a primary host

that performs checkpointing and these are then replicated on a backup host. The sys-

tem state is not available or is perceived not to have been modified until the checkpoint

has successfully been sent to the backup host. If the primary host fails, the virtual

machine stored in memory on the backup host can begin execution once the failure has

been detected. In the event both the primary and backup host fails, the virtual machine
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can be restored from a mirror of the backup host’s disks elsewhere.

The aggressive checkpointing approach does however introduce a variety of prob-

lems. The speed in which checkpoints are taken may place extreme resource demands

on the source host. Furthermore, each checkpoint must stop the virtual machine for a

brief amount of time and the application output and network packets must be buffered

until a checkpoint has been committed to the backup host. Afterwards, these they

can be replayed to the virtualization user. Cully et al. find that their outlined solu-

tion is able to offer high-availability in the face of failures, however their system can

introduce 50% and 25% performance penalties when executing general-purpose and

network-dependent tasks respectively; the latter is caused by buffering network pack-

ets until checkpoints are committed.

4.6.2 P2P Reliability Algorithm

The ad hoc cloud, and in particular the working relationship between the ad hoc client

and server, provides fault tolerance by also employing checkpointing of the ad hoc

guest. However in contrast to similar research outlined above, we have developed a

P2P reliability algorithm where the ad hoc host periodically checkpoints an ad hoc

guest throughout its execution and distributes these checkpoints in a P2P fashion to a

near-optimal number of ad hoc hosts, preferably in the same cloudlet. As previously

mentioned, a cloudlet is a set of connected ad hoc guests that provide a particular

service or execution environment, i.e. those that posses the same application depen-

dencies and DepDisk.

In the event of an ad hoc host prematurely terminating or failing, or the ad hoc

guest simply fails, the ad hoc server instructs one of the ad hoc guest’s checkpoints to

be restored on another ad hoc host elsewhere. An example of our P2P reliability algo-

rithm is shown in Figure 4.11. We describe the implementation details in subsequent

sections.

In this example, fourteen ad hoc hosts, each with an ad hoc guest labelled from

A to N, either run and execute a cloud job on the guest or are await instruction to

configure and boot the guest. Firstly, ad hoc guest A receives and begins the execution

of a cloud job. During the ad hoc guest’s execution, it is periodically checkpointed and

the resulting checkpoints are distributed to a select number of ad hoc hosts based on

their reliability; in this example, the checkpoint is sent to ad hoc hosts’ B, E and K.

However after a period of time, ad hoc host A prematurely terminates therefore inter-
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Figure 4.11: P2P Reliability Snapshot Overview

rupting the execution of ad hoc guest A and its cloud job. This failure is detected by

the ad hoc server and the process of restoring the ad hoc guest’s checkpoints is started.

The ad hoc server then selects a near-optimal ad hoc host, in this case ad hoc host K,

and instructs its ad hoc client to restore the previously interrupted ad hoc guest A’s

checkpoint. The following sections describe exactly how this P2P reliability algorithm

is implemented.

4.6.3 Periodic Checkpointing

After a cloud job begins executing on an ad hoc guest, the Snapshotter component

of the ad hoc client, shown in Figure 4.5, begins taking periodic checkpoints of the

ad hoc guest. By default checkpoints are taken every five minutes, i.e. 12 per hour;

the reasoning behind this figure is described in Chapter 6. The ad hoc client is able

to instruct VirtualBox to take a live checkpoint when the ad hoc guest is running by

issuing the following command to the VirtualBox API VBoxManage:

VBoxManage snapshot vboinc_vm take snapshot001 --pause

This command calls the snapshot function passing as arguments, the name of the ad

hoc guest, the operation to perform, the name of the checkpoint and an instruction to

pause the ad hoc guest when taking the checkpoint. In our experience, omitting the

latter can cause the checkpointing process to fail. In this example the name of the
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ad hoc guest is vboinc vm, the operation is take and the name of the checkpoint is

snapshot001. Upon the successful completion of the snapshot function, a copy of the

virtual machine’s settings, new differencing VDI images for each virtual disk and a

memory state file are placed within the ad hoc guest’s Snapshots/ folder; see Section

3.3.5 of Chapter 3 for a more detailed description of VirtualBox checkpoints.

4.6.4 Checkpoint Scheduling and Distribution

After each checkpoint is taken, the files in the Snapshots/ folder are checked by the P2P

Distribution component (shown in Figure 4.5) to determine whether they are needed

in the future. Differencing images, which store write operations between checkpoint

intervals, are required to sequentially build the correct state of the ad hoc guest during a

restore operation. Memory state files of previous checkpoints are however not required

as the contents of an ad hoc guest’s memory is restored from a single memory state file

rather than from multiple sequentially linked memory state files.

Due to the potentially large size of memory state files (i.e. up to the memory size

allocated to the virtual machine), previous memory state files are deleted. Following

the removal of extraneous files from the Snapshots/ folder, the ad hoc host’s IP and

host ID are extracted from the underlying BOINC client and the Snapshots/ folder is

then compressed as a .tar.gz file conforming to the naming convention IP ID.tar.gz; we

explain why this is required later in this chapter.

4.6.4.1 Scheduling

The P2P Scheduler component of the ad hoc client then begins the process of deciding

which ad hoc hosts, or potential checkpoint receivers, the compressed checkpoint file

should be sent to; the scheduling process is executed after each checkpoint is taken. It

does this by selecting the available and most reliable potential checkpoint receivers in

the same cloudlet. By selecting members in the same cloudlet, an ad hoc guest can be

restored quickly due to the locally available DepDisk. In the event that there are no

other members in the same cloudlet, a cloud job’s dependencies must be downloaded

to the checkpoint receiver before the checkpoint can be restored.

The ad hoc client is able to determine the cloudlet membership, availability and

reliability of all other ad hoc hosts by polling the ad hoc server. As previously men-

tioned, each ad hoc client periodically polls the ad hoc server, via the Periodic Updater

component, to signify its availability to the ad hoc cloud. Upon each poll, the ad hoc
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server returns the cloudlet membership, reliability value, IP address and the working

directory of the remote ad hoc clients of other available ad hoc hosts to the checkpoint

sender’s BOINC Scheduler. This data is then parsed and passed to the P2P Scheduler

component to begin the scheduling process. The P2P Scheduler:

1. filters the list of potential checkpoint receivers based on whether they are in use,

i.e. running an ad hoc guest and cloud job.

2. filters the list of potential checkpoint receivers based on sender’s cloudlet mem-

bership,

3. orders the list in descending order based on the reliability of the potential check-

point receivers,

4. selects the first n hosts that have less than a 5% chance of all n failing.

Ad hoc hosts that are in use are not chosen as they cannot restore the checkpoint if

the checkpoint sender’s guest becomes non-operational. It is possible to execute two

virtual machines concurrently on an ad hoc host, however the performance overheads

would be significantly larger. In the event no ad hoc hosts are free, the P2P Scheduler

will schedule checkpoints to ad hoc hosts that are currently in-use with the hope that

one becomes available. To solve the problem where other ad hoc hosts instead be-

come available, it is possible to migrate the checkpoint from the in-use ad hoc host to

those that are available and then perform the restoration; this however is not currently

implemented and is left for future work.

The P2P Scheduler then schedules according to which cloudlet the potential check-

point receivers are members of. The checkpoint sender is able to determine which

cloudlet it belongs to based on the name of the DepDisk attached to the ad hoc guest.

If the cloud job was not submitted with a DepDisk, the ad hoc host belongs to the de-

fault cloudlet. If a potential checkpoint receiver does not belong to the same cloudlet

as the checkpoint sender, it is removed from the list of potential checkpoint receivers;

this newly generated list is then order according the reliability. However, in the event

that there are no other potential checkpoint receivers in the same cloudlet, the P2P

Scheduler will not filter any ad hoc hosts, therefore leaving all available ad hoc hosts

as potential checkpoint receivers.

The P2P Scheduler then selects a number of reliable hosts that have a less than

5% chance of all selected hosts failing. A target that we aim to achieve is to ensure a
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cloud job will successfully complete 95% of the time. We believe it is unreasonable to

assume that an ad hoc cloud could successfully complete a cloud job 100% of the time

due to its unpredictable and volatile nature. When an ad hoc guest must be restored on

another ad hoc host, the 95% success rate requirement can only be met if at least one of

the checkpoint receivers still possess the ad hoc guest’s checkpoint and the combined

probability of all of these receivers failing is 5% or less. This is because the presence

of a checkpoint is directly related to the future success of an application in the event

an ad hoc guest must be migrated and restored for whatever reason.

The combined probability of a selected number of all ad hoc hosts failing can be

calculated by multiplying the respective failure probabilities (or reliabilities) of each

host. For example, Figure 4.11 shows that the probability of a cloud job never complet-

ing when running on virtual machine A, is approximately 1.7%; the multiplication of

the failure probabilities for the ad hoc hosts B, E, and K. The P2P Scheduler assumes

that at least three checkpoint receivers should be selected regardless whether the com-

bined failure probability of one or two receivers is less than 5%. For example, as each

ad hoc host is assumed to be 100% reliable when it first joins, an ad hoc host may fail

to complete a single cloud job therefore reducing its reliability to zero. By ensuring

that a checkpoint is sent to at least three other ad hoc hosts, we can be reassured that

the ad hoc guest can be restored on another ad hoc host in most cases.

This scheduling method does however mean that reliable destinations may end up

storing many checkpoints. However, the maximum host storage that can be used by

the ad hoc cloud (e.g. the ad hoc client, checkpoints, etc) can be specified by the ad

hoc host user via regular BOINC, if the host user wished to limit disk consumption.

In the event an ad hoc host reaches its maximum storage preference limits, the ad hoc

server does not send the details of that host to polling ad hoc clients, therefore ensuring

further checkpoints are not sent to the host. Furthermore, reliable hosts may at times

become busy by continuously receiving checkpoints from others. This is especially

inconvenient for cloud jobs that require acceptable levels of network performance;

the exact extent of the performance overheads caused by checkpoint distribution is

outlined in the following Chapter.

Scheduling checkpoints to reliable ad hoc hosts does however favour ad hoc clients

that have to send large checkpoints to other ad hoc hosts. In this scenario, the reliability-

based scheduler by default sends these checkpoints to the fewest but most reliable

hosts, in turn reducing the total bandwidth used during the P2P reliability algorithm.

There are however improvements that can be to our P2P Scheduler.
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For example, checkpoints that are small (e.g. under 100 MB) could be sent to

a larger number of unreliable hosts while still meeting the completion target. This

would leave the fewer but the most reliable ad hoc hosts to be used only for storing

larger checkpoints. Furthermore, the P2P Scheduler does not know the storage capac-

ity available on other ad hoc hosts and whether the remote host can actually store the

checkpoint. Although we leave this addition for future work, this information is not

vital as if a transmission of a checkpoint fails, for example due to the lack of storage

space, the failure is detected and at least one other potential checkpoint receiver is se-

lected to ensure the 95% success rate requirement is satisfied. We leave the evaluation

of these features for future work.

4.6.4.2 Distribution

Once the checkpoint receivers have been selected, the compressed file containing the

checkpoint is concurrently distributed to the selected ad hoc hosts. To achieve this,

we use the tool pscp; a program for performing parallel file transfers using the Secure

Copy Protocol, or scp [33]. Figure 4.12 shows the number of arguments passed to

pscp.

pscp -h hosts.txt ./slots /0/129.125.96.96 _543.tar.gz.REMOVE

/home/user/adhoc_client/host_snapshots/

Figure 4.12: Example pscp Command

Firstly, a hosts.txt file is given that contains the IP addresses of the selected checkpoint

receivers; this information is collected from the data sent to the ad hoc host from the

ad hoc server. Secondly, the relative or absolute path to the compressed checkpoint file

is then given; we append .REMOVE to the file for reasons explained later. Finally, the

remote directory where the checkpoint should be stored on the checkpoint receiver is

given; we specify that a checkpoint should be sent to the adhoc client/host snapshots/

folder of the remote ad hoc client.

The ad hoc client then executes the pscp program and parses its output to deter-

mine if any copies of the checkpoint were not successfully transmitted. As previously

mentioned, in the event a copy is not transmitted successfully, the ad hoc client will

select at least one other potential checkpoint receiver ensuring that the combined prob-

ability of all of receivers failing is 5% or less. After all of the checkpoint copies are
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successfully sent, the ad hoc client sends an empty file named IP ID complete to each

of the receivers to specify that the transfer operation has been completed.

The ad hoc client then informs the ad hoc server which ad hoc hosts have been

sent a copy of the checkpoint by sending the IP address of each checkpoint receiver,

the size of the compressed checkpoint file, the estimated total transfer time, and the

wallclock time when the file was transferred; these are expressed via the latter four

XML elements shown in Figure 4.6. Upon receiving this data, the ad hoc server stores

each entity in a temporary storage table in the VM Service project database.

The Snapshot Receiver component of the receiving ad hoc client periodically checks

the adhoc client/host snapshots/ folder to detect if any new checkpoints have been re-

ceived. If a compressed checkpoint file and complete file exist with equal IP addresses

and host IDs, the ad hoc client knows that the compressed file has been successfully

transferred from an ad hoc host with the extracted IP address and host ID. The ad hoc

client can then remove the additional .REMOVE part previously added to the .tar.gz

file signifying the file can be used to restore an ad hoc guest, upon instruction from the

ad hoc server.

In the common event that multiple checkpoints are received from the same ad hoc

host, consequently a new .tar.gz.REMOVE file will be renamed to .tar.gz once the file

has been fully received. This simple mechanism aims to save storage space as well

as the amount of work an ad hoc host has to perform as it does not need to identify

and delete previous checkpoints from each host; by renaming, we instead overwrite a

previous checkpoint.

Once a checkpoint has been successfully received and is renamed, the ad hoc client

then sends the checkpoint sender’s host IP address and ID, taken from the checkpoint

file name, to the ad hoc server. The ad hoc server then matches and stores the data from

the temporary storage table into a table recording all checkpoint transfers between ad

hoc hosts confirming the fact that a checkpoint has been successfully sent from one ad

hoc host to another. These reliability measures outlined will continue to execute in the

background until the virtual machine completes its assigned cloud job or prematurely

terminates.

4.6.5 Checkpoint Restoration

While periodic checkpointing and distribution are important to help introduce reliabil-

ity into an unreliable infrastructure, the ability to restore ad hoc guests in an effective
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and near-optimal fashion are equally important. The restoration procedure only begins

when it is assumed or is known that an event has occurred on an ad hoc host that has

halted the operation of the ad hoc guest and executing cloud job. As previously men-

tioned, events may include premature termination or failures as well as failures related

to the ad hoc guest or client. Furthermore, these failures are either determined by the

ad hoc server’s availability daemon when an ad hoc host has not polled within the last

two minutes or the ad hoc client informs the ad hoc server that a failure has occurred.

In the event of the ad hoc server detecting or being informed of a ad hoc host,

guest or client failure, the server follows a set procedure to restore the ad hoc guest on

another ad hoc host. The ad hoc server first retrieves the IP address and host ID of the

ad hoc host that executed the halted ad hoc guest. This information is then passed to the

ad hoc Scheduler. In the same way the scheduler selected a near-optimal ad hoc host to

instantiate an ad hoc guest, which in turn executes the cloud job, the ad hoc Scheduler

also selects a near-optimal ad hoc host, from those that posses the checkpoint, based

on the same scheduling features: host availability, hardware specifications, resource

load and reliability.

As a consequence of the P2P Scheduler only distributing an ad hoc guest’s check-

points to only those in the same cloudlet, the ad hoc Scheduler by default only instructs

the restoration to be performed within the same cloudlet. The selected ad hoc host is

instructed to restore the failed ad hoc guest’s checkpoint by appending an additional

<snapshot to restore> XML element to the BOINC server-client message. In order

for the ad hoc client to receive such messages, the Snapshot Restorer component shown

in Figure 4.5, checks each BOINC server message to determine if the additional XML

element is present. This element takes as an argument the IP address and host ID of

the ad hoc host that possessed the failed guest.

After the receiving ad hoc client extracts the IP and host ID, it is then able to search

for appropriate checkpoint in its adhoc client/host snapshots/ folder. When found,

the compressed checkpoint file is decompressed and moved to the folder containing

the already downloaded virtual machine; in our case this is the initial folder regular

BOINC uses to execute scientific applications, i.e. slots/0. As each virtual machine

and attached disks have the same unique identifier, no problems exist when transferring

checkpoints from one virtual machine to another. The ad hoc client then re-registers

the virtual machine to pick up the addition of the checkpoint and restores the virtual

machine to allow the cloud job to continue executing; both the re-registration and

restoration processes are performed by interacting with the VirtualBox API.
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It may be the case that due to errors that persist between migrations, an ad hoc

guest may continue to fail and be migrated continuously. To avoid this scenario, the ad

hoc server limits the number of consecutively failed restorations to five. Furthermore,

we also give the cloud user the ability to view how many times their cloud job has been

migrated allowing them to decide when it is best for their cloud job and its assigned

ad hoc guest to terminate; the latter functionality can also be used when a cloud user

simply wishes to stop their cloud job.

Once the ad hoc guest is found to be successfully running, via the Running and

Accessible Detector components, the ad hoc client informs the ad hoc server that the

guest has been successfully restored. This is performed by relaying the received check-

point IP address and host ID back to the ad hoc server in the <restored snapshot id>

and <restored snapshot ip> XML elements, as shown in Figure 4.6. In order to save

as much space on each ad hoc host as possible, the ad hoc server then instructs all ad

hoc hosts to delete checkpoints they received from the previously failed ad hoc guest

or for a guest that has successfully completed its cloud job. An instruction to delete an

unnecessary checkpoint is received and performed by the Snapshot Deleter component

shown in Figure 4.5.

4.7 Minimizing Host Process Interference

We now discuss possible methods of how to reduce the interference experienced by ad

hoc host processes caused by processes related to the operation of the ad hoc cloud.

Host processes may include web browser, text editor, command line or development

software processes that are initiated by the ad hoc host user. Processes and operations

of the ad hoc cloud include the execution BOINC, the operations performed by the ad

hoc client and the processes created by VirtualBox to execute and manage a virtual

machine. As the resources of the ad hoc cloud are donated, executing host processes

should have priority over executing ad hoc cloud operations and cloud jobs.

4.7.1 Suspending Tasks

Fortunately, BOINC does provide one solution to this problem. By default, if the total

CPU utilization consumed by host processes of non-BOINC related processes exceeds

25% of the CPU, then the BOINC client will suspend the execution of the scientific

application; this default limit can be changed by the volunteer user via user-based pref-
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erences. However, in the case of the ad hoc cloud and V-BOINC, the BOINC client

does not execute scientific applications, but instead executes virtual machines con-

trolled by VirtualBox. As the VirtualBox virtual machine is executed as a standalone

process, the BOINC client is not able to control or interact with this process in anyway.

Therefore the BOINC client is not able to suspend the virtual machine if the total CPU

utilization of host processes exceeds the volunteer user’s specified limit.

We solve this problem by allowing our ad hoc client to suspend virtual machines if

the set CPU utilization level is exceed. This is similar to suspending a regular BOINC

task in memory if the volunteer user allows this; this option is also set via volunteer

user-based preferences. However in order to suspend the virtual machine at the correct

moment, the ad hoc client must determine which processes are BOINC related and

those that are not and whether they exceed the ad hoc host user’s specified limits.

By modifying the regular BOINC client to create our ad hoc client, any overheads

introduced by the implementation of the ad hoc client are encapsulated within the

original processes of BOINC. However as VirtualBox virtual machines are executed

as standalone processes, the ad hoc client will classify these processes as host pro-

cesses. However, these are in fact processes related to the operation of the ad hoc

cloud. To solve this problem, we monitor the CPU utilization of the VirtualBox pro-

cesses VBoxHeadless, VBoxManage, VBoxXPCOMIPCD and VBoxSVC as well as the

ad hoc client, by periodically parsing the usage levels output from the UNIX-based

command top.

The remaining percentage of CPU utilization can therefore be assumed to be con-

sumed by non-BOINC processes. Therefore, if this value exceeds the ad hoc host

user’s limits, the virtual machine is suspended. Like BOINC, the virtual machine is re-

sumed when the CPU usage of non-BOINC processes drops below the specified limit.

In our development and evaluation of the ad hoc cloud, we set such limits to 100%

allowing all the CPU to be used to avoid frequent suspending and resuming of the ad

hoc guest.

Furthermore, BOINC offers no options to suspend and resume scientific applica-

tions when memory, storage or network usage levels are exceeded. We leave it as future

work to incorporate these features in relation to suspending and resuming virtual ma-

chines. We also intend to migrate a virtual machine when it is suspended frequently

and for long periods, as well as when the performance of the ad hoc host becomes

poor.
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4.7.2 Dynamic Resource Use Adjustment

Suspending a virtual machine, and therefore a cloud job, when resource use exceeds

an ad hoc host user’s preferences is a useful technique to ensure that host processes

experience little interference from cloud processes. This however assumes that an ad

hoc host user correctly sets the resource use limit, i.e. the user knows that their own

host processes will not consume more than its specified share of resources. An ad hoc

host user is however unlikely to know the resources their processes would ideally like

to consume before or during execution.

Therefore we propose an alternative method of minimizing host process interfer-

ence by dynamically adjusting the maximum level of resources that the ad hoc client

and virtual machine are able to consume dependent on current utilization rates of host

processes. Figure 4.13 gives an example.
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Figure 4.13: Dynamic Resource Use Adjustment Example

The example graph above shows the CPU utilization levels of cloud processes (green)

based on the utilization level of the host processes (blue); we assume a 10% utilization

rate for OS processes (white). For example, at time t=20, we see that the host processes

and OS overhead consume approximately 55% of the CPU. This therefore restricts

CPU use of cloud processes to the remaining 45%. At t=21, the total percentage of the

CPU used by host processes and the OS increases to approximately 75%, only leaving
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25% of the CPU available for cloud process execution. By dynamically adjusting the

maximum CPU utilization percentage for cloud processes, we can in theory allow host

processes to execute with no interference.

4.7.3 Potential Solutions

Although we have not developed a solution to provide this functionality, we give a brief

outline of tools and techniques that can minimize the interference host processes expe-

rience. The dynamic behaviour we regard as future work could potentially be achieved

by VirtualBox where the number of physical CPUs and a maximum CPU utilization

can be set before a virtual machine is started. However, it would be unreasonable

to restart the virtual machine if new resource levels were required. VirtualBox does

however support CPU hot-plugging [40]; the ability to add or remove virtual CPUs.

The major advantage of CPU hot-plugging is that virtual CPUs can be added or re-

moved during the execution of a virtual machine. Therefore, as the behaviour and CPU

consumption rates of host processes change over time, it is possible to add and remove

virtual CPUs dependent on host process CPU utilization. For example, if an ad hoc

host has one CPU but the virtual machine is assigned four virtual CPUs, where each

provide 25% of the available CPU capacity, a single virtual CPU could be removed if

the total CPU usage of the host processes increase by 25%.

This solution however would not allow cloud processes to fully utilize the resources

not consumed by host processes as blocks of CPU resources are being added or remove

at any time. As VirtualBox or any other virtualization technology does not allow max-

imum resource usage limits to be set during a virtual machine’s execution, introducing

dynamic resource adjustment is likely to be difficult. Despite this, we envisage that

this functionality will become available in the future, either as part of hypervisor or via

open source solutions such as those outlined previously. If fully implemented, the ad

hoc client would only have to interact with the VirtualBox API to achieve this.

Although using CPU hot-plugging is one potential option to achieve this, there

are publicly available open-source tools that could also be integrated into the ad hoc

client. cpulimit is a tool that aims to limit the CPU usage of any executing process

[11]. The program takes the process name or ID to be limited, as well as the maximum

percentage of the CPU the process is allowed to consume. The tool works by frequently

suspending and resuming the specified process at appropriate moments by sending

SIGSTOP and SIGCONT signals respectively [11] .
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By integrating cpulimit into our ad hoc client, a potentially viable solution can be

created. The ad hoc client would have to periodically monitor the CPU usage of host

processes and dynamically set the maximum levels cloud processes are allowed to con-

sume. For example, if the CPU usage of non-BOINC processes (including cpulimit)

rises from 55% to 75%, the processes related to VirtualBox as well as the BOINC

process would be now limited to consuming 25% of the CPU as opposed to 45%

previously. There are however challenges related to how often processes should be

‘re-limited’. For example, performing this frequently may reduce the interference ex-

perienced by host processes but the performance overheads of doing this may be large.

We have outlined some potential solutions that would allow an ad hoc client to

dynamically adjust the maximum resources cloud processes could consume depen-

dent on the resource usage levels of host processes. As virtualization technologies do

not support this, we believe this shows the difficultly of adding this functionality to the

hypervisor, however current open source tools may be provide a viable solution if com-

bined and integrated properly. As the development of such a solution is future work, it

is important that this dynamic behaviour is achieved not only for CPU resources, but

also for memory, disk and network resources.

4.8 Installation and Ease of Use

We now discuss how the ad hoc cloud computing platform is installed and whether it

is easy to use in comparison to installing and using regular BOINC. We first outline

the installation and ease of use of the ad hoc client followed by the ad hoc server.

4.8.1 The ad hoc Client

If an ad hoc or volunteer host user can install the regular BOINC client, they can

install the ad hoc client. Installing regular BOINC on UNIX-based hosts involves

either installing the BOINC client via a repository (e.g apt-get install boinc-client) or

downloading a .zip or .sh file that is either decompressed or executed respectively, to

extract the contents of a standalone BOINC client. By opening the BOINC Manager,

a volunteer host is able to attach to a BOINC project and interact with BOINC in

many simple ways. For example, reset, suspend and abort the project. This shows the

simplicity of installing and using BOINC; one of the key reasons why a large number

of volunteer hosts currently participate in volunteer projects.
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Installing and using the ad hoc client is just as easy. As the ad hoc client is inte-

grated into a regular BOINC client, the installation process is exactly the same; an ad

hoc host user or owner can simply download and decompress a tar.gz file and begin

using the ad hoc client instantly. Instead of providing a BOINC Manager, we offer a

much simpler GUI interface implemented in Java as shown in Figure 4.14.

(a) (b)

Figure 4.14: The ad hoc Client Interface

The ad hoc client interface simply offers the ad hoc host user a choice of whether to

attach to or detach from the ad hoc cloud, as shown in Figure 4.14(a); this feature is

provided by a single button. This option to control the host’s membership is all that is

required to allow ad hoc host users to add or remove their host from the ad hoc cloud;

all the aforementioned features of the ad hoc cloud are hidden from the user. The ad

hoc host’s state in relation to its contribution to the ad hoc cloud is shown via a simple

status bar. Furthermore, we have also added a button that links to the job submission

portal (see Figure 4.8) to allow ad hoc host users to submit cloud jobs if they wish to

do so. As previously mentioned, the process of submitting a cloud job to the ad hoc

cloud is also simple.

Figure 4.14(b) shows a reduced number of settings an ad hoc user can set locally,

however we provide two almost equivalent GUI settings interfaces for two deployment

scenarios. The first deployment scenario is when regular volunteer users join the ad

hoc cloud. These users are in control of their own host’s resources and as such can

specify how the ad hoc client, as well as the ad hoc guest use them. In this scenario,

the ad hoc host user is able to join the ad hoc cloud they wish to join and specifiy basic

preferences without having to direct their web browser to their BOINC account stored

on the ad hoc server.

The second deployment scenario is when an organization who owns the ad hoc

hosts (i.e. the host owners) wish to create an ad hoc cloud from the hosts being used
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by their employees, for example. In this scenario, it is likely the organization will want

to specify how much resources are to be allocated to the ad hoc cloud, for example,

to perform an analysis to meet an upcoming deadline. The ad hoc host owners would

therefore like to set values that cannot be changed by the ad hoc host users. Therefore

we offer a second GUI interface that does not allow values to be entered in the setting

fields; these values are set by the ad hoc server and are decided by the organization.

User-based preferences located on the ad hoc server that can also by accessed by ad

hoc host users are also unmodifiable. In either scenario, using the ad hoc client is

also just as simple as using the regular BOINC client, if not even easier. It is however

possible to modify the BOINC Manager to include such features and we leave it to

future work to achieve this.

4.8.2 The ad hoc Server

The regular BOINC computational model conforms to an architecture where scientific

applications are sent from a centrally managed server to volunteer hosts. However the

installation of a BOINC server is known to be extremely difficult [66, 187] due to the

manual effort required and lack of documentation on the process. We aim to ease the

process of installing a BOINC server by providing detailed installation documentation

[164].

However the manual effort still required may be difficult for those who are not

system administrators. Therefore, to solve this problem and similar to our solution

regarding installing a V-BOINC server (see Section 3.4.3 of Chapter 3), we have also

created a deployment script named configure to automatically perform all of the oper-

ations required to successfully install the ad hoc cloud server. For example, the script

creates both the VM Service and Job Service projects, copies pre-created files to the

appropriate locations (e.g. the virtual machine to the BOINC download folder, dae-

mons to a bin/ folder, etc), configures the BOINC daemons and modifies permissions.

This process usually takes one minute to complete however this may take longer de-

pending on how long the script takes generating encryption keys. Afterwards, the ad

hoc server is ready to perform the tasks outlined in this chapter.

As a BOINC, V-BOINC or ad hoc server must be installed on a centrally managed

host, difficulties may arise when the underlying host fails causing the server to become

unavailable. However, due to the design of the BOINC, multiple BOINC servers are

able to operate concurrently on multiple hosts and individual server components such
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as BOINC daemons can also be distributed over multiple hosts. Therefore by replicat-

ing and distributing a BOINC server over multiple hosts, issues such as reliability and

availability should be of little concern in an ad hoc cloud computing infrastructure.

The management of an ad hoc server is also easy due to the default web inter-

face BOINC provides with its regular BOINC server. Figure 4.15 shows the BOINC

management console.

Figure 4.15: The ad hoc Server Dashboard

This console allows the ad hoc server administrator to view the current state of the VM

Service and Job Service databases as well view and manage the state of each cloud

job. Furthermore, an ad hoc server administrator is also able to view and manage all

ad hoc hosts within the cloud; for example block specific ad hoc hosts due to their

malicious actions. As previously mentioned, we assume that cloud jobs produce an

output file which is then returned to the ad hoc server after successful completion. We

make this output file viewable and downloadable to the cloud user through the server’s

web interface. Therefore by making the installation of the server relatively simple and

adopting BOINC’s current web interfaces for server management, deploying and using

an ad hoc server is now easy.
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4.9 Summary

In this chapter we have outlined how to transform our virtualized volunteer computing

infrastructure V-BOINC into an ad hoc cloud platform.

Firstly we gave a literature review of the current state of research in the ad hoc

cloud computing field. Two exemplary research projects were shown to be the major

enablers of this new computational model by viewing the concept in two different

lights and proposing an approach to each. Research from the mobile device cloud field

showed promising results. However with the exception of the major enablers of ad hoc

cloud computing-like platforms, studies that focussed on merging cloud computing and

volunteer computing showed less promising results despite being a popular research

topic for the last five years. We believe this is because many research projects either

fail to identify or address key issues related to ad hoc cloud computing. Other than the

work we have presented in this chapter, little technical realization and evaluation has

so far been reported. This could be attributed to the difficulty of integrating volunteer

systems with features taken from the cloud computing field.

We then gave an architectural overview of the ad hoc server and ad hoc client and

the interactions that exist between them. We also gave an overview of the processes in-

volved from job submission, to cloud job execution and retrieval of results. We showed

how cloud users are able to easily submit cloud jobs to BOINC using our submission

system, especially in comparison with other studies that would introduce unnecessary

overheads when performing such a simple task. Next we focussed on how a cloud

job is scheduled to a near-optimal ad hoc host based on host availability, hardware

specifications, resource load and reliability, with the latter being the dominant factor in

selecting a host. We then described how the chosen ad hoc host is prepared to receive

the cloud job and indeed how the job is executed.

This was followed by describing the implementation of our major contribution of

making an unreliable infrastructure reliable. We then outlined our P2P reliability al-

gorithm that periodically takes and distributes virtual machine checkpoints to other ad

hoc hosts in the ad hoc cloud. Similar to cloud job scheduling, checkpoint scheduling

was also primarily based on the reliability of other ad hoc hosts. In order to achieve

a reliable system, we outlined our methods of how to restore virtual machine check-

points on other ad hoc hosts when an ad hoc guest fails or is believed to have failed.

Similarly, checkpoint scheduling also was key in determining the near-optimal ad hoc

host to restore a checkpoint on.
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Penultimately, we described a possible method intended to limit the interference of

host processes caused by executing ad hoc clients and ad hoc guests. We have pos-

tulated that this feature may be based on dynamically adjusting the number of virtual

CPUs assigned to the ad hoc guest or through the use of external tools, both of which

are based on the current load of executing host processes. Although a necessity in an

ad hoc cloud, we believe either our chosen virtualization technology VirtualBox will

implement this feature in the near future or open-source tools will become available to

work towards a solution to this problem.

Finally, we showed that like the BOINC client, the ad hoc client is extremely easy

to install and use, in turn potentially allowing those who are not technically skilled to

donate their resources to the ad hoc cloud. In a similar fashion, we showed that the ad

hoc server, unlike the BOINC server, is easy to install due to our single deployment

script that can create a ready-to-use ad hoc server in a matter of minutes.

By outlining how to transform V-BOINC into an ad hoc cloud computing platform,

we have provided solutions to many of the research challenges outlined in Section 1.2.1

of Chapter 1.





Chapter 5

Monitoring and Controlling Dynamic

ad hoc Infrastructures

5.1 Introduction

In this chapter, we discuss how it is possible to monitor and manage dynamic groups

of hosts where hosts frequently migrate between groups or are members of multiple

groups; these dynamic groups are synonymous to the cloudlet as part of the ad hoc

cloud. However this chapter may be skipped at the first reading if the reader only

wishes to focus on the core concepts of the ad hoc cloud.

Monitoring dynamic groups of hosts is useful in a number of settings. Monitoring

the state of each cloudlet in an ad hoc cloud could help to make a number of scheduling

decisions such as determining the set of near-optimal ad hoc hosts that should execute

specific applications, e.g. SPRINT applications, on specific ad hoc guests. Cloudlet-

based monitoring could also be used to shape the available resources of ad hoc hosts to

the resource demands of each cloudlet application as well as determine when to move

hosts from underutilized cloudlets to those that are overloaded.

Group-based monitoring is not only useful in ad hoc clouds but also for those who

need to monitor and manage dynamic groups of hosts in other computational infras-

tructure such as Grids, clusters and clouds. For instance, an organization may em-

ploy server clustering to ensure high availability, scalability and easier management

of their infrastructure. Server clustering is the grouping of a set of hosts based on

administrator-defined characteristics, for example, servers may be clustered accord-

ing to the service they provide. In order to optimize performance, manage load and

maintain availability, hosts may migrate from one group to another.

129
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As group-based monitoring is useful in a number of scenarios other than the ad hoc

cloud, we refer to these dynamic groups of hosts as cloudlets regardless of whether

group-based monitoring is used in the ad hoc cloud or other computational infras-

tructures. Subsequently, we also do not make a direct reference to the ad hoc cloud

but we note that a host and server are synonymous with an ad hoc host and ad hoc

server respectively. Furthermore, an infrastructure administrator is synonymous with

an administrator of the ad hoc cloud.

Throughout this thesis we have assumed that cloudlet-based monitoring is a trivial

task in relation to the frequent migration of hosts between cloudlets or as those that

are part of many cloudlets, however many challenges exist when monitoring cloudlets.

Typically monitoring tools are statically configured hence any change of a host’s mem-

bership, requires an administrator of the infrastructure to:

• manually change the monitoring tool’s configuration file to specify the new

cloudlet the host belongs to. System configuration tools could be used, how-

ever this increases the complexity and effort needed to monitor cloudlets,

• restart the monitoring processes upon the host being monitored. This is required

for the host to adopt the changes. In the event configuration files reside on a

remote server, the following action applies,

• restart the data collection process (located on a central server); a process that

may take several minutes for the changes to take effect. This therefore restricts

the use of the monitoring tool during this period.

Within a large dynamic infrastructure where hosts frequently migrate between cloudlets,

the manual effort to perform these tasks upon each membership change would be sig-

nificant. Many monitoring tools exist for hosts that need little or no configuration

changes over a host’s lifetime, however none are designed to monitor dynamically

changing groups of hosts.

To solve the aforementioned problems, we introduce the Cloudlet Control and

Monitoring System (C2MS) [166] which extends Ganglia to allow infrastructure ad-

ministrators to create cloudlets to be monitored and managed and hosts to be migrated

between cloudlets. Furthermore, the C2MS prevents the re-configuration of servers

and restart of monitoring processes when hosts migrate between cloudlets. Infrastruc-

ture administrators are then able to define and monitor the overall state of cloudlets

independently without explicitly reconfiguring and restarting the monitoring tool, in
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turn making it easy to view monitoring data of cloudlets. The C2MS is an innova-

tion that overcomes the time-consuming limitations of previous monitoring tools in

turn freeing administrators of large-scale systems to focus on operational challenges

with improved information. We have also made a series of extensions/improvements

to Ganglia with the aim of making infrastructure monitoring and management easier

for administrators. We introduce:

• further metrics than those provided by Ganglia that are commonly monitored

nowadays; these are power usage and CPU temperature monitoring,

• a management element on top of Ganglia to give administrators the ability to

quickly take control of individual hosts or entire cloudlets by issuing administra-

tor commands. This may be used for ensuring ad hoc hosts behave as expected,

upgrading existing software (e.g. the ad hoc client) or installing new software

over many hosts, for example.

A large number of server monitoring and management tools exist independently, how-

ever very few provide both of these functions. As such, we also reduce the effort

required for installation and maintenance of these independent packages by combining

these features into a single tool. The C2MS can be used on a number of infrastructures

such as clusters, clouds and Grids and is available to download online at [8]. The afore-

mentioned features and the implementation of this tool were primarily undertaken by

Íñigo Goiri, Josep Ruis and I [166].

In this chapter, we discuss how the C2MS offers the aforementioned features in de-

tail and how they are implemented. We first discuss related research showing how cur-

rent monitoring tools are unable to monitor dynamic groups of hosts. This is followed

by a system overview of our tool. We then describe how the C2MS is implemented

to solve the aforementioned problems as well as introduce power usage and CPU tem-

perature monitoring and infrastructure management. Finally we evaluate the C2MS in

comparison with Ganglia and how well it can manage large-scale infrastructures.

5.2 Related Work

The number of system monitoring and management tools are plentiful however none

are able to monitor dynamically changing groups of hosts without the need for explicit

manual reconfiguration upon any group membership changes. We outline some of the
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current leading monitoring and management tools in the field while paying specific

attention to the different features offered by our work.

The C2MS uses Ganglia as its foundation for infrastructure monitoring due to its

popularity, easy installation process, easy to use web interface and its extensibility.

Ganglia monitors different groups of hosts, which Ganglia terms ‘clusters’, by allow-

ing the infrastructure administrator to define the cluster name within the host’s config-

uration file; see Section 2.5.2 of Chapter 2 for more information. This allows Ganglia’s

PHP web interface located on a central server to display the aggregated data for this

group. Any host changing to an alternative cluster requires manual reconfiguration

and the restart of the gmond and gmetad daemons on the host and central server re-

spectively. The C2MS offers an abstract layer built on top of Ganglia allowing group

membership changes without the need for reconfiguration or daemon restarts upon any

host.

The monitoring tool Nagios does however allow groups of static hosts to be moni-

tored but this is only to simplify the configuration of these hosts and to make navigation

via the Nagios GUI easier; this is not for monitoring dynamic groups of hosts. Nagios

is also configured by modifying a number of configuration files, however these are

located on a central server rather than on the remote hosts like Ganglia. The configu-

ration files define all hosts to be monitored as well as the operations to be performed,

for example, check availability, monitor host resource usage, etc. As a result, any

modifications to the configuration files requires Nagios to be restarted. Therefore the

statically configured Nagios makes monitoring sporadically available hosts within a

cloudlet difficult; the C2MS provides this functionality.

Wright et al. outline their view of a dynamic cloud management and monitoring

system tailored towards services, e.g. a web server [220]. The authors note the lack

of dynamic tools for cloud environments; others have also noted the lack of tools for

rapidly changing environments, particularly for cloud environments [153, 213]. Wright

et al. therefore have created the Cloud Management System (CMS). Their CMS is sim-

ilar to the C2MS and Ganglia in many ways, however their implementation monitors

services running on cloud instances rather than the instances themselves. Furthermore,

the CMS is only a proposal of a potential monitoring service and no prototype or im-

plemented system exist yet to our knowledge.

Birman et al outline their distributed self-configuring monitoring and adaptation

tool called Astrolabe [65]. Astrolabe works like any other monitoring tool by observ-

ing the state of an infrastructure where the tool is installed. However it differs by
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essentially creating a virtual system-wide hierarchical relational database based on a

peer-to-peer protocol meaning no central server needs to exist to collect monitoring

data. By performing distributed data analysis, Astrolabe can create performance sum-

maries of zones — machines typically grouped based on the shortest latency between

pairs or simply an administrator-specified group — by data aggregation; a method we

use to create graphs of cloudlets.

A major advantage of Astrolabe is its ability to adapt to configuration changes

without the need of restarting the monitoring tool, however administrator-specified

groups and the resources to be monitored need to be manually configured in their

configuration certificate file; an infeasible task for a large dynamically changing cloud

infrastructure.

5.3 System Overview

The C2MS consists of three major components: the Monitoring, Cloudlet Creator and

Control components shown in Figure 5.1. These components relate to the web pages

that an infrastructure administrator can navigate to in order to exploit the functionality

of the C2MS.

C2MS Interface

Cloudlet Creator

System 
Monitoring

Cloudlet
Monitoring

Ganglia

Cloudlet Control

SSH (with keys)

Monitoring Control

Figure 5.1: The C2MS Architecture

The Monitoring component is a modified version of Ganglia that allows individual,

cloudlet or entire system monitoring, where the former and latter are provided by Gan-

glia by default. The Control component gives administrators the ability to control ei-

ther single hosts or entire cloudlets via SSH. Both components use the output from the

Cloudlet Creator; a component allowing administrators to create cloudlets to be mon-

itored. For example, an administrator of the ad hoc cloud could create three cloudlets
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to monitor ad hoc hosts that execute MySQL, BLAST and Matlab applications respec-

tively. In order to interact with these components, the C2MS interface displaying the

three tabs Overview, Monitoring and Control are shown in Figure 5.2.

Figure 5.2: C2MS PHP Interface Overview Page

The Overview tab displays all hosts in the system that have the gmond daemon running

and allows cloudlets to be created for combined monitoring and control. Administra-

tors can create cloudlets by selecting a host from the list of all those available (right)

and entering the desired cloudlet name on a pop-up text field; hosts are added to exist-

ing cloudlets in the same way however the cloudlet name can be selected. Figure 5.2

shows a number of example cloudlets such as MySQL and MPI cloudlets each with

four member hosts. The administrator is then able to view cloudlet or system specific

graphs by clicking on the cloudlet name or via the Monitoring tab.

To remove a host from a cloudlet, an administrator is required to click on the ‘X’

marked besides the host name. Entire cloudlets can also be deleted or member hosts

can be migrated from one cloudlet to another. Furthermore, administrators are able

to view basic monitoring characteristics (bottom left) showing whether each host is

up/down and the CPU and network load based on the check button selected; this infor-

mation is displayed via color-coding the hosts.

The Control tab provides a similar page, that is shown and explained in detail

later in this chapter, allowing administrator-defined commands to be executed either
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on individual hosts or over entire cloudlets. Typically, Ganglia allows public users to

view a host’s resource usage data, however because this tool is intended for private

use (i.e., administrators only) due to the Cloudlet Creator and Control components, we

provide a login page with changeable credentials to prevent public users accessing the

system and performing malicious tasks. We leave it to the administrator to provide

additional security measures if required.

5.4 Implementation

We now explore how the functionalities behind the three interface components are

implemented and integrated to create the C2MS.

5.4.1 Creating Cloudlets

In order to monitor and view the state of an entire cloudlet, the C2MS must be aware

that a cloudlet exists and which hosts belong to the cloudlet. Upon installing and con-

figuring Ganglia, an infrastructure administrator simply needs to modify each host’s

gmond configuration file to include the hostname or IP address of the Ganglia inter-

face located on a central server and specify the Ganglia cluster as Initial. This allows

the gmetad daemon running on a central server to receive monitoring data that is per-

ceived to be from a single group of hosts.

Upon receiving this data, the C2MS will register that each of the monitored hosts

are present and display them to the user as shown in the right hand side of Figure 5.2;

as hosts enter and leave the Ganglia monitoring system, the C2MS dynamically adjusts

those that are available. By giving each host the same Ganglia cluster name, we can

virtually partition this group of Initial hosts at a higher level to allow cloudlets to be

created. Details of how to configure Ganglia can obtained from [19] and instructions

on how to setup the C2MS are presented in the C2MS downloadable [8].

When an administrator creates a cloudlet via the C2MS interface, the host and

cloudlet name specified is recorded in a file named clusters within the /etc/ganglia/

folder; this file contains a list of cloudlets and their member hosts. We use this file

to record cloudlet membership changes to minimize the additions made to Gangalia

as well as minimize overheads associated of performing this simple a task. For ex-

ample, a MySQL database could be integrated into Ganglia, however the effort and

computational overhead would be unnecessary.
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The C2MS interface then displays cloudlets by reading and parsing the clusters

file. However at this point, Ganglia will not be able to display cloudlet-based moni-

toring data as it is unaware a cloudlet or a number of them exist. To enable cloudlet

based monitoring, Ganglia requires that each Ganglia cloudlet has a folder present in

/var/lib/ganglia/rrds/. This cloudlet folder contains directories for each of the cloudlet’s

member hosts which themselves contain monitoring data (.rrd files) for the host as dis-

cussed in Section 2.5.2 of Chapter 2.

Upon cloudlet creation, the C2MS creates the appropriate cloudlet folder within the

/var/lib/ganglia/rrds/ directory and links to the original .rrd files of each host within

the Initial folder created by Ganglia. We therefore do not need to replicate any data,

which would in turn introduce overheads. Hence with the creation of a new cloudlet,

Ganglia is lead to believe that it has received monitoring data from a new cluster which

contains the hosts listed in the /var/lib/ganglia/rrds/cloudlet name directory.

In the event of cloudlet creation, deletion or a change of a host’s cloudlet mem-

bership from one to another, only modifications to configuration files linked to the

C2MS and the cloudlet folders within /var/lib/ganglia/rrds/ are needed; this allows

us to avoid restarting the Ganglia daemons upon any changes. For example, if an ad

hoc host migrates from one cloudlet to another, the C2MS modifies the /etc/gangli-

a/clusters file to reflect the changes on the C2MS interface. Symbolic links are then

created from the new cloudlet directory in /var/lib/ganglia/rrds/cloudlet name to the

original host data present in /var/lib/ganglia/rrds/Initial/host name. These configura-

tion changes are obscured from the administrator and are automatically performed by

the C2MS interface.

5.4.2 Monitoring Cloudlets

The information we are interested in displaying to the administrator is the entire state

of multiple cloudlets via summary graphs for each Ganglia metric; this data can also

be fed into the ad hoc Scheduler (described in Section 4.5 of Chapter 4). Each page

displaying monitoring data of a cloudlet allows users to either view a summary of the

current cloudlet state or select individual hosts to examine their resource usage in more

detail. Figure 5.3 shows both these features which are inherited from Ganglia.

Firstly, we see that four hosts exist within the ‘MySQL’ cloudlet, both from the

number of ‘hosts up’ and the total of CPUs. The graphs shown are only specific to

the ‘MySQL’ cloudlet with colours making the distinction between individual hosts
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Figure 5.3: Monitoring Data of a Cloudlet

present in the cloudlet. To create cloudlet summary graphs, data aggregation is used

and this is apparent in the graphs above, where data from one host is stacked upon

another, in turn displaying the total resource use for the selected cloudlet; different

cloudlets can be selected via the ‘Overview’ page of Figure 5.2.

The depicted graphs automatically change when hosts are added to or removed

from the cloudlet. To create aggregated graphs dynamically, Ganglia calls its /var/www

/ganglia-web/stacked.php file when the page is viewed; a default file of the Ganglia

implementation. We have modified this file to only create stacked graphs for hosts

present in a cloudlet rather than an entire system as regular Ganglia would do; the

same has been applied to the number of ‘hosts up’, ‘hosts down’, and ‘CPUs Total’.

The PHP file returns PNG files of the created graphs and these are displayed via the

C2MS interface.

Graph data aggregation can be easily achieved through the use of RRDtool. We

implement this through PHP calls to RRDtool, however this can be easily explained by

the use of rrdtool’s graph function shown in Figure 5.4.

rrdtool graph agg_graph.png --imgformat=PNG

DEF:one=host1_metric.rrd:sum:AVERAGE

AREA:one#00CF06::STACK

DEF:two=host2_metric.rrd:sum:AVERAGE

AREA:two#CC0000::STACK --start timeX --end timeY

Figure 5.4: Stacked Graphs using RRDtool
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First we define variables, one for each of the host’s .rrd files to be aggregated (e.g.

one and two). The data sum is then plotted using the average utilization for each 15

second period, as performed by Ganglia by default. We use the AREA shape to plot

the variable values with different colours and in the form of a STACK, where one

dataset is placed on top of another. We also enter a start and end time specified by the

administrator via the C2MS interface to allow historical cloudlet monitoring data to be

accessed. Other arguments are omitted here for clarity that relate to the appearance of

graphs such as the width, height and labels.

5.4.3 Additional Metrics

The C2MS not only measures basic resource usage such as CPU, memory, etc, but by

installing additional modules, one can also monitor power consumption and tempera-

ture. Monitoring temperature requires a host’s CPU(s) to possess built-in temperature

monitoring capabilities such as those found in Intel Core based processors and oth-

ers [185]. The C2MS collects temperature data by adding a monitoring module to the

gmond daemon of every host, which periodically polls the CPU’s Digital Thermal Sen-

sor to obtain temperature data. This data is then available to the gmetad daemon which

in turn can display this information. Similarly, this information can be aggregated to

show data for single cloudlets or for single hosts. Figure 5.5 shows one other method

we use for displaying this data where servers are presented as a heat map in the rack

format.

Figure 5.5: CPU Temperature Data Output
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Similar to temperature monitoring, power observation requires the appropriate power

monitoring hardware or a Power Distribution Unit (PDU). The data recorded by the

PDU is then periodically queried and stored in RRD files following the Ganglia RRD

structure. These are then exported to graphs and added to the Ganglia interface for

viewing. We also allow power consumption to be monitored for cloudlets and the data

is also exported using graph aggregation. To distinguish power usage for hosts con-

nected to the same PDU, the administrator must identify each PDU and its connected

hosts in a file accessed by the C2MS. These details include the host name, the MAC

address, the PDU identifier and the outlet the host is connected to. In the context of

an ad hoc cloud, it is highly unlikely PDUs will be available and connected to ad hoc

hosts. Therefore this functionality is reserved for monitoring cloudlets in dedicated

cloud, cluster and Grid environments.

5.4.4 Controlling Cloudlets

Our final contribution incorporates a host management component into the C2MS.

Administrators are not only able to control individual hosts but can issue specified

instructions over cloudlets.

Figure 5.6: Controlling a Cloudlet

Figure 5.6 shows the members of each cloudlet (left) and by selecting the cloudlet

name, an administrator is able to issue a pre-populated or self-defined (middle) com-

mand over the set of hosts. The results of command execution of each host are also

shown (right). In order to introduce control functionality, we investigated a number of

popular tools to determine whether they satisfied our requirements. Such a tool must:
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1. allow the grouping of hosts and concurrent command execution upon these groups,

2. not require the installation of software on remote hosts within cloudlets,

3. be easy to integrate into the C2MS.

The tools we investigated were: Webmin, Capistrano and cexec (see Section 2.5 of

Chapter 2). Webmin allows the grouping of hosts into cloudlets and commands to

be executed per-cloudlet. However Webmin requires the installation of software on

remote hosts and the integration process of Webmin into the C2MS would not be sim-

ple as the underlying core of Webmin would have to be modified. For example, the

creation of a cloudlet via the C2MS interface would have to be reflected in the GUI in-

terface of Webmin to avoid administrators creating a cloudlet twice on both interfaces.

Capistrano also allows the grouping of hosts by simply specifying these groups in their

configuration capfile. This file can be easily accessed and modified by the C2MS. Fur-

thermore, Capistrano does not require any installation of software on remote hosts due

to its use of SSH keys between hosts.

Finally, cexec is also able to execute commands over a set of hosts. cexec re-

quires that a configuration file exists listing the hostname or IP address of the hosts

in a cloudlet alongside the cloudlet name; multiple cloudlets can exist allowing the

administrator to specify the cloudlet to execute the command over. Like Capistrano,

we can automatically generate this file by entering the hostnames of the cloudlet mem-

bers, taken from the /etc/ganglia/clusters file, into cexec’s configuration file, making

integration into the C2MS easy. Furthermore, cexec does not require any software in-

stallation on target hosts. The C2MS currently uses cexec as its control component.

This is based on the simplicity of the tool as well as its performance as explored in the

following section.

5.5 Evaluation

Ganglia is commonly used in the HPC and Grid communities where clusters, like

cloud infrastructures and potentially ad hoc clouds, typically contain a large number

of hosts. We now investigate how effectively the C2MS can monitor such systems

by determining whether our implementation introduces any additional overhead above

that already introduced by regular Ganglia. We then determine the optimal method of

host management and if the C2MS can execute administrator commands over a large
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number of machines quickly. We perform these experiments on Amazon EC2 with the

C2MS interface running on a Large Ubuntu 12.04 instance and hosts running on Micro

instances of the same type.

5.5.1 Monitoring Performance

Ganglia is well known for its scalable implementation hence the modifications we

have made must also be able to cope with an increase in the number of hosts. We use

at most 130 hosts; the maximum number of instances we could instantiate on Amazon

EC2. First we tested whether our method of graph aggregation and the operations

that underpin it introduce any overheads when compared with regular Ganglia. To test

this, we split the experiment into two parts: one to record the page load times of both

systems and another to determine the impact on the Apache server displaying the data

via the Ganglia and C2MS interfaces.

5.5.1.1 Page Load Times

We first explore whether viewing a cloudlet’s monitoring output via the C2MS takes

additional time to load when compared with regular Ganglia. For example, if we view

the monitoring output of a 50 host regular Ganglia cluster, does the C2MS introduce

any overhead when we view a cloudlet of the same size? We compare the page load

times of an increasing Ganglia cluster and C2MS cloudlet size. By adding a simple

PHP page load counter to the page displaying monitoring data, loading each page 15

times and taking the average value, we obtain the results shown in Figure 5.7

Figure 5.7: Page Load Time Comparison between Ganglia and the C2MS
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We initially see that the page load times are small using both Ganglia (blue) and the

C2MS (red) with data being displayed in a matter of milliseconds. By using 95% confi-

dence intervals, we see that any system can potentially produce equal page load times.

Variations of recorded page load times can be seen, however this is expected due to the

unit we measure in, i.e. milliseconds. We also see that as the number of hosts increase

in the cloudlet, the page load times increase slightly, however with the exception of the

recorded times at 110 servers when using Ganglia. This can be attributed to host per-

formance variation as the C2MS data point at 20 nodes also provides a larger variation

than expected. We see that no major time differences of page loads exist between the

two tools and this can be attributed to avoiding data replication upon cloudlet creation

and linking to original host’s data as well as the low overhead of our additional code

to achieve cloudlet-based graph aggregation.

5.5.1.2 Apache Load

Secondly we determine if viewing a cloudlet’s monitoring output via the C2MS places

additional load on the Apache server displaying the data in comparison to regular

Ganglia. Upon loading a page 5 times, we recorded the total CPU load placed on

the Apache server; this is performed three times (i.e, 15 page loads in total) for each

cloudlet size and the average value is taken. We used Apache’s Server Status module

to obtain the data values recorded [133]. Figure 5.8 shows our results.

Figure 5.8: Apache Load Comparison between Ganglia and the C2MS

As expected, with a greater amount of data to display, a greater percentage of the CPU

is used. Both tools show similar results until 80 nodes, after which the C2MS uses
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slightly more resources after a dip in utilization. The average results of the two tools

then oscillate from 100 nodes onwards where the differences are then negligible. We

also display 95% confidence intervals to show that in most cases, readings from both

tool executions will provide similar results. Hence the overhead introduced by the

C2MS and our modified version of the /var/www/ganglia-web/stacked.php file is in

most cases is negligible. Hence administrators familiar with Ganglia should see no

additional latencies when using the C2MS on relatively large cloud infrastructures. As

such, the performance differences between the C2MS and other monitoring tools will

be similar to the differences between Ganglia and these tools, therefore we need not

conduct a performance comparison between the C2MS and other monitoring tools.

5.5.2 Control Performance

We now investigate whther the C2MS can execute administrator-specified commands

quickly over a large set of hosts. Currently two versions of the control component

are available: serial and parallel SSH command execution. The cluster management

tools Capistrano, cexec and Webmin were tested for providing concurrent command

execution functionality. We expect the parallel version to outperform serial execution

but which management tool offers the best performance? We investigated the time

taken for parallel tools to execute a simple uptime command over an increasing number

of hosts. Each command is run 5 times per method and the results are averaged as

shown in Figure 5.9.

Figure 5.9: Speedup Comparison of Management Tools
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Figure 5.9 displays the speedup achieved for each parallel execution tool while Figure

5.10 shows the execution times of each of these tools with 95% confidence intervals;

due to the small variation between runs for the cexec and Webmin tools, these are

difficult to view.

Figure 5.10: Parallel Execution Time Comparison of Management Tools

We see that the cexec tool offers the lowest execution time and greatest speedup when

executing a command over up to 130 hosts. Webmin follows closely where execution

times and speedup equal that of cexec’s at some stages. Capistrano being the slowest

of the three still offers fast parallel command execution over 130 hosts taking only

approximately 9 seconds but with greater variability.

Although the greatest speedup achieved is approximately 3.6 times below the ideal,

the speedup of 82 at 130 hosts is a vast improvement on the serial version originally

employed; a gap of 328 seconds exists when executing the same command over 130

hosts via the serial execution in comparison to Capistrano. By using cexec we achieve

the greatest performance and least variability of execution times over a varying number

of hosts; further experimentation would be required to determine the upper limits of

cexec as well as the other control tools.
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5.6 Summary

In this chapter, we have outlined the C2MS; a dynamic host monitoring and control

tool designed specifically for those who need to effectively monitor a dynamic group of

hosts which we call cloudlets. Cloudlet-based monitoring is especially useful in ad hoc

clouds where administrators and ad hoc cloud scheduling mechanisms can determine

the near-optimal ad hoc hosts that should execute a particular class of applications or

assign additional ad hoc hosts to cloudlets that are more important than others.

Furthermore, organizations that employ server clustering will also find cloudlet-

based monitoring useful to help maintain availability and scalability as well as to make

infrastructure management and planning easier. This is especially useful when seeking

to understand individual cloudlet demand and to judge whether to increase or decrease

a cloudlet’s capacity. However in order to provide this functionality, the limitations of

monitoring tools must be overcome. Current monitoring tools tend to be static meaning

that any change in an infrastructure’s configuration, requires hosts to be reconfigured

and monitoring processes restarted to allow the monitoring tool to successfully adopt

the new setup; an unreasonable task to undertake on medium to large-scale infrastruc-

tures. We solve this challenge by developing the C2MS.

We have shown how the C2MS allows administrators to define cloudlets as well

as easily add and remove hosts to and from these groups via our easy to use C2MS

web interface. Administrators can then easily monitor individual cloudlets by view-

ing dynamically aggregated graphs for the many metrics that Ganglia offers as well as

cloudlet power usage and CPU temperature monitoring data available by adding the

appropriate module. All operations related to the C2MS are hidden from the adminis-

trator meaning regular Ganglia users will have no problems using the C2MS.

From the experiments we have performed, we have shown that the C2MS offers

quick control of hosts as well as effective monitoring with little or no overhead com-

pared with the tool it is built on. It is important to note that the C2MS can not only be

used on clouds but any platform where Ganglia can be installed, for example, clusters,

Grids, personal infrastructures, etc. Infrastructure administrators who wish to down-

load the tool, can do so at [8].

Originally, the C2MS was created for use in a software production company but it

has also successfully been used to monitor hosts within our ad hoc cloud computing

environment during our evaluation of the platform. We detail the use of the C2MS in

our evaluation of the ad hoc cloud in the following Chapter.
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Evaluating the ad hoc Cloud

6.1 Introduction

In this chapter, we evaluate our ad hoc cloud computing prototype to determine its

feasibility, reliability and performance when run on a realistically simulated unreliable

infrastructure. Based on our results, we argue that the ad hoc cloud is not only a

feasible concept but also a viable computational alternative that offers high levels of

reliability and can at least offer reasonable performance, which at times may exceed

Amazon EC2. We measure the success of these criteria according to our evaluation

model that specifies which aspects of any ad hoc cloud should be evaluated.

We first outline the computational platform used to evaluate our ad hoc cloud pro-

totype in Section 6.3 and then conduct our evaluation in two parts. The first investigates

the reliability of our ad hoc cloud when operating on a simulated unreliable infrastruc-

ture run on our chosen computational platform (Section 6.4). We explain how this is

performed by obtaining host availability data from an operational infrastructure and

replaying the events to simulate a set of sporadically available ad hoc hosts.

The second part of our evaluation measures the performance and overheads of our

ad hoc cloud (Section 6.5). We execute a series of benchmarks representing a wide

range of workloads to determine typical cloud job completion times. However, we

show that a variety of overheads unique to the ad hoc cloud can increase the execution

time of a cloud job. This includes pre- and post-execution overheads, periodic check-

pointing overheads and virtual machine restoration overheads. We also investigate

what affect our major contribution of P2P checkpoint distribution has on the network

and whether a large number of checkpoints can be concurrently sent between ad hoc

hosts.

147
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In order to determine whether the measured ad hoc cloud performance including all

associated overheads is acceptable, we execute the same set of benchmarks on Amazon

EC2 and find that an ad hoc cloud can offer comparable performance with an instance

that has comparable resources. We finally investigate whether the ad hoc server at the

core of the ad hoc cloud can scale well or whether it is a performance bottleneck.

6.2 Evaluation Model

We now outline our evaluation model defining the criteria that should be measured

when evaluating any implementation of any ad hoc cloud. These criteria are:

1. Reliability: determines whether the reliability of the ad hoc cloud is sufficient

enough to complete cloud jobs. We define an ad hoc cloud as reliable when

it successfully completes cloud jobs 95% of the time assuming the underlying

infrastructure is unreliable and that the host(s) a cloud job runs upon, may fail a

number of times throughout the job’s lifetime. We also assume that the cloud job

is not prevented from completing, for example, due to errors in development.

The reliability of the ad hoc cloud can be measured by running a series of bench-

mark applications either over an actual unreliable or realistically simulated in-

frastructure expressing a range of reliability conditions and measuring the aver-

age application success rate.

2. Platform performance: determines whether the overall performance of the ad

hoc cloud is at least reasonable for executing cloud jobs. We define an ad hoc

cloud as offering reasonable performance when the difference of job execution

times between the ad hoc cloud and a commercial cloud infrastructure are min-

imal, i.e. all cloud jobs take less than 25% longer to complete on average when

no host failures occur and that each host failure must not increase all cloud job

completion times by more than a further 10% on average. The ad hoc cloud job

completion times take into account, the time for job submission, queuing, host

scheduling, job execution and data transfer while the time to instantiate a vir-

tual machine as well as data transfer is taken into account for commercial cloud

infrastructures.

The performance of the ad hoc cloud can be measured by benchmarking and

comparing results from running the benchmarks on other computational infras-

tructures, for example, commercial cloud infrastructures.
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3. Component performance: determines whether the performance of each individ-

ual component is sufficient to be included in an ad hoc cloud. Those that have

the greatest affect on performance are:

• virtualization: does the chosen virtual technology have low overheads?

• monitoring: does monitoring all hosts in an ad hoc cloud have low over-

heads?

• scheduling: are scheduling components efficient and accurate?

• host process interference: are host processes greatly affected by ad hoc

cloud operations and processes?

4. Usability: determines whether the ad hoc cloud software is easy to install and

use for ad hoc cloud host users as well as the cloud’s system administrators. This

includes the time for each user to learn their respective interfaces, the actions

they can perform and the ability to operate with little support. These can be

measured by performing usability trials for all sets of ad hoc cloud users and

determining whether the ad hoc cloud has similar interfaces and operations that

current commercial cloud and volunteer users are familiar with.

In this chapter, we primarily evaluate the reliability and platform performance of our

ad hoc cloud computing platform according to metrics outlined above. We define an ad

hoc cloud as successful when all the above success criteria have been satisfied. Com-

ponent performance and the likely usability of our ad hoc cloud computing platform

have been evaluated in Chapters 3, 4 and 5.

6.3 Evaluation Platform

The majority of our experiments outlined later took place on the Edinburgh Data In-

tensive Machine 1 (EDIM1) [161, 14]. EDIM1 is a cluster primarily used by the Data

Intensive Research (DIR) group [12] and associated partners to analyse large amounts

of data; the cluster is hosted and managed by the EPCC [16]. The architecture of

EDIM1 is shown in Figure 6.1. EDIM1 consists of 120 backend nodes distributed over

three racks and has three frontend nodes dir0, dir1 and dir2. Each backend node has:

• one 1.60 GHz Intel Atom 300 dual core processor with hyperthreading,

• 4 GB memory,
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Figure 6.1: EDIM1 Architecture [15]

• 3 2TB SATA disks and 1 250GB SSD disk,

• 1Gb Ethernet interconnect.

As the primary purpose of EDIM1 is to analyse and store large amounts of data, storage

capacity is favoured over compute resources. EDIM1 is securely operated from behind

University firewalls therefore these resources can be accessed via a terminal session

from the frontend login node dir0. However, if a publicly visible service is required, a

virtual machine can be instantiated on dir1 allowing the compute and storage resources

to be exposed to the Internet. The frontend node dir2 gives data a temporary storage

location before the data is migrated to the cluster for analysis. Each of the frontend

nodes are connected to the Internet by 1Gb Ethernet links while only dir1 is connected

to the backend nodes via a 1 Gb link; both dir0 and dir2 are connected to the backend

nodes via a 10 Gb Ethernet link.

In order to test our prototype of an ad hoc cloud, we managed to obtain access

to 30 backend nodes distributed over rack’s one and two; a larger set of nodes was

not available as the remaining nodes were being revised to have improved caching

therefore leaving only 30 available non-virtualized nodes at that time. Each backend

node was configured using Cobbler and Puppet and had the Scientific Linux 6.4 OS

installed. The ad hoc client was installed on each of the nodes and henceforth they
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are referred to as the ad hoc hosts. The ad hoc server was installed on a publicly

accessible virtual machine located on dir1 which used 2 CPUs and 2 GB of memory

from a machine that has a total of 32 CPU cores and 32 GB of memory available; the

OS installed was Ubuntu 12.04.

The virtual machine also had 100 GB of attached block storage which the server

was installed and run on. Note that we did not use dir0 and dir2 in the course of our

experiments. We chose EDIM1 to evaluate our ad hoc cloud prototype as firstly, we

required access to potentially a large number of available and non-virtualized nodes

and secondly, in the event of any difficulties, support was available from the EPCC.

6.4 Reliability

In this section, we describe how we evaluate the reliability of our ad hoc cloud com-

puting platform deployed on EDIM1. As we do not have access to an organizational

infrastructure to test the reliability of our platform in a realistic setting, we describe

how we accurately simulated such an environment by controlling the behaviour of 30

ad hoc hosts. We then detail our results showing that the ad hoc cloud is a reliable

platform in the face of host failure or churn.

6.4.1 Simulating Ad hoc Host Behaviours

The primary aim of this experiment is to find the potential reliability an ad hoc cloud

could offer in a realistic setting. Therefore we accurately simulated an unreliable in-

frastructure by obtaining Nagios monitoring data over a period of 36 months from 650

hosts in The School of Informatics at The University of Edinburgh. An example of the

data we received is shown in Figure 6.2.

[1294472199] HOST ALERT: host256 UP SOFT 1 PING CRITICAL

[1294472210] HOST ALERT: host259 UP SOFT 1 PING CRITICAL

[1294472220] HOST ALERT: host174 DOWN SOFT 3 PING WARNING

[1294473745] HOST ALERT: host271 UP SOFT 1 PING CRITICAL

[1294473756] HOST ALERT: host259 DOWN HARD 1 PING CRITICAL

Figure 6.2: Nagios Example Output

The example output displays various forms of information. However the three most im-

portant entities are the timestamp when an event occurred, the hostname that the event
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relates to and the host state. For example, the first line of Figure 6.2 shows that host256

became available on 8/1/2011 at 7:36:39 AM (i.e. the epoch time 1294472199) and

this new state was determined using ping.

We parsed this large amount of monitoring data by creating a Nagios data tool that

calculated the host activity for every hour, i.e the number of unique UP and DOWN

state events for each host. Despite finding that hosts within Informatics are highly

reliable and rarely fail or become unavailable, there were times when groups of hosts

did become sporadically available over short periods of time. In one of the most active

hours, at least 30 hosts acted in a sporadic manner. We therefore used this set of hosts

to simulate the behaviour of an ad hoc cloud; this hour was between approximately

04:45 and 05:40 am on the 13th of September 2012. Therefore by using monitoring

data from an actual infrastructure, we can determine the reliability of an ad hoc cloud

as if it was operated over the selected set of hosts at the selected time.

Figure 6.3 shows the availability map depicting the group of selected host’s be-

haviour during the selected hour. A host is initially assumed to be available until a

red marker signifies the host has become unavailable or has failed. A green marker

signifies that the host has now become available and the downtime can be calculated

between the time of the two events, depicted by the dark grey area between the two.

We include the time and date when each event occurred on the left hand side of the

availability map with each blue area showing the number of events that occurred in

each ten minute period.

Most importantly, we also show the reliability of each host. This was calculated as

the ratio of the total number of downtime seconds over the total number of available

seconds the host was available, from when monitoring records began until the begin-

ning of the selected hour. We also show the last three digits of the IP address assigned

to the ad hoc guest that runs cloud jobs; we define this as the VM ID. These virtual

machines may run on any EDIM1 host depending on the order the installed ad hoc

clients register with the ad hoc server.

In order to simulate the behaviour outlined in the availability map, we created and

added a simulator daemon to the VM Service project. This daemon takes the Nagios

monitoring data for the selected hour and replays the UP and DOWN state events for

each of the ad hoc hosts on the EDIM1 infrastructure. Simulating an ad hoc host

could be performed by instructing each EDIM1 node to shutdown and boot up when

a DOWN and UP event occur respectively, however this solution is impractical and

difficult to manage remotely.
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Instead we informed the ad hoc server of the infrastructure state changes by mod-

ifying the VM Service project database. For example, when a DOWN event occurs,

the respective ad hoc host and EDIM1 node is set to unavailable by setting the host’s

availability value to false. This then triggers the ad hoc server to initiate the virtual

machine migration process when it detects the ad hoc host, that previously was exe-

cuting a cloud job, is now unavailable. Similarly, when an UP state event occurs, the

ad hoc host’s availability value is set to true allowing the ad hoc host to receive cloud

jobs or to restore virtual machine checkpoints. By replaying availability data from an

infrastructure that an ad hoc cloud could have been deployed on, we can reasonably

gauge the reliability of our prototype in similar realistic settings.
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Figure 6.3: Informatics Host Activity Availability Map
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6.4.2 Experiment Design

In order to test the reliability of our ad hoc cloud prototype, we submitted 15 CPU

cloud jobs to the Job Service project via the mechanisms previously mentioned. Al-

though this may not represent a large number of typical loads deployed on an ad hoc

cloud, we decided not to utilize more than 50% of the available infrastructure so that in

the event of any failures, a cloud job is not queued until another ad hoc host becomes

available or the job does not run on an ad hoc host that currently executes another

cloud job; both of which will increase the completion time of a cloud job. As we were

only interested in finding the potential reliability an ad hoc cloud could offer at this

point, we restricted the number of jobs submitted during our experiments to 15.

These jobs are then distributed by the ad hoc server to the most reliable ad hoc

hosts as other scheduling criteria are inherently satisfied; the host is available, has

appropriate hardware specifications and all are lightly loaded. Figure 6.3 also shows

that the ad hoc server correctly distributes cloud jobs to the most reliable ad hoc hosts

available; each ad hoc host assigned a job is labelled ‘Job’ in their first state event.

Once each ad hoc host has been prepared for receiving a cloud job, the cloud jobs

begin executing. Periodic checkpointing occurs once per minute and other ad hoc

client operations that were described in Chapter 4, concurrently execute. The simulator

daemon is then started to simulate the behaviour of 30 Informatics hosts on the 13th of

September 2012 approximately between the times 04:45 and 05:40 am.

During the simulation, we recorded many aspects related to the reliability of the

platform; our observed performance metrics are discussed later in the chapter. We

record the source and target ad hoc hosts for each checkpoint sent in the platform, the

source and target ad hoc hosts during an ad hoc guest migration and the number of

jobs that were successfully completed when cloud job results were returned to the Job

Service project. This experiment was performed three times to determine the overall

reliability of running an ad hoc cloud on the Informatics infrastructure at the select

time and date; we were restricted to running the experiment three times due to time

constraints, however we are confident that upon further experimentation the results

obtained would be similar, if not equal, to those outlined in the following section.

6.4.3 Results and Analysis

Our results from the three experimental runs show that under the environmental condi-

tions simulated, the ad hoc cloud can offer a high level of reliability. Table 6.1 shows
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the summary of the cloud job success rates, the number of completed jobs and vir-

tual machine migrations as well as and the type of failures experienced during each

experimental run.

Experimental
Run

Success
Rate

No. of Jobs
Completed

No. of VM
Migrations

Failure Types

1 86.6 13 11 VM and BOINC

2 80 12 10 VM and BOINC

3 93.3 14 11 BOINC

Table 6.1: Reliability and Failure Statistics of the ad hoc Cloud

We see that during the first experimental run, 13 out of a possible 15 cloud jobs are

successfully completed despite the unreliability of the simulated ad hoc cloud; this

equates to 86.6% of the jobs being completed. The number of VM migrations that were

triggered by the simulation was 11, therefore at least 4 cloud jobs did not experience

any ad hoc host or guest failures. Similarly, experimental runs 2 and 3 showed that

80% and 93.3% of the respective submitted cloud jobs completed successfully.

Experiment two also showed that one less virtual machine migration occurred due

to better selection of an ad hoc host to restore the checkpoint on. The failures that

terminated cloud jobs were caused by either virtual machine or BOINC errors. Virtual

machine errors were caused by the virtual machine becoming inaccessible to the ad

hoc client when tested by the Accessible Detector component, or the virtual machine

failed to restore properly. BOINC errors were caused by a failure to upload the cloud

job’s results despite the cloud job being completed.

We now show the virtual machine migration traces for each experimental run in

Figures 6.4, 6.5 and 6.6 respectively. These traces firstly show the ad hoc hosts se-

lected to initially execute each cloud job, labelled ‘Job’ on their first DOWN state

event and the series of an ad hoc guest migrations from one ad hoc host to another.

This is depicted by the coloured transition paths between hosts which also indicate the

identifier of the job being migrated. For example, Figure 6.4 shows that Job13’s ad

hoc guest with the VM ID 184, is migrated from EDIM1 host 159 to EDIM1 host 163

that has a reliability of 99.90791%; reliability values are adjusted after each failure,

completed cloud job and state event.

We see that in Figure 6.4, the most virtual machine restoration activity takes place

during the first 25 minutes and we also see in some cases, after an ad hoc guest has
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been migrated, it may have to migrate once again if the underlying ad hoc host be-

comes non-operational; a series of virtual machine migrations between ad hoc hosts

are depicted by the same colour of transition paths. For example, Job1 of Figure 6.4

is first migrated from EDIM1 host 155 to 167 and then onward to EDIM1 host 152 a

short time later. The restoration fails on the next virtual machine migration to EDIM1

host 144 indicated by the error message state event.

A failure during restoration is caused by an unsuccessful restoration procedure by

VirtualBox. The virtual machine either simply does not restore or the virtual machine

is not accessible after the restore operation; features that we hope are fixed in future

versions of VirtualBox. The second failure of the same experimental run is caused by

BOINC not uploading the results of Job8 even though the ad hoc server is operational

and reachable. Figure 6.4 also shows that ad hoc guests are restored on the most re-

liable ad hoc hosts and that ad hoc guests can be restored on ad hoc hosts that have

successfully completed their previously assigned job (e.g EDIM1 host 165); we as-

sume all cloud jobs run to completion unless explicitly specified with the ‘Complete’

state event.

The virtual machine migration trace of Figure 6.5 is similar to the previous experi-

mental run in terms of the ad hoc hosts chosen to restore an ad hoc guest, however the

significant difference is that three cloud jobs do not successfully complete. The ad hoc

guests executing the cloud jobs Job3 and Job12 failed to restore and the BOINC client

executing Job10 did not upload the cloud job’s results; coincidently, Job3 and Job10

fail to successfully complete on the same ad hoc host. The single cloud job Job5 did

not return due to a result upload failure in the third experimental run shown in Figure

6.6 by the ’Upload Error’ state event.

For all experimental runs, the average cloud job successful completion rate is

86.6% despite our aim to successfully complete 95% of all cloud jobs. Although in

the success rate of 93.3% for experimental run three is close, we fail to meet this crite-

rion in our experiments. However, it is important to note that the failures reducing the

overall reliability of the ad hoc cloud were not caused by failures within our prototype.

We hope that future releases of both VirtualBox and BOINC will provide solutions to

their unrecoverable failures and increase the likelihood of a virtual machine restoring

or a result being uploaded.

Therefore it is encouraging that the implementation of our prototype can indeed

perform well and that by executing 15 cloud jobs over an unreliable simulated infras-

tructure, the ad hoc is still able to successfully complete cloud jobs more than 85% of
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the time; a figure that may increase with future improvements made to the ad hoc cloud

development and the technologies it uses. Furthermore, we assume that the sporadic

behaviour of the Informatics infrastructure at the aforementioned date and time, accu-

rately simulates a typical infrastructure an ad hoc cloud will be deployed on, however

there will be many cases when operational infrastructures are more unpredictable and

unreliable. Only by deploying our ad hoc cloud computing prototype on a number of

operational infrastructures with a wider range of workloads will we determine the true

reliability of the ad hoc cloud.
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Figure 6.4: Simulated Host Failures and Job Relocations for Experimental Run 1
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Figure 6.5: Simulated Host Failures and Job Relocations for Experimental Run 2
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Figure 6.6: Simulated Host Failures and Job Relocations for Experimental Run 3
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6.5 Platform Performance

We now investigate the platform performance of our ad hoc cloud prototype deployed

on EDIM1. Firstly, we evaluate the performance of the ad hoc cloud by benchmarking

our prototype deployed on EDIM1. Secondly we discuss the pre- and post-execution

overheads unique to the ad hoc cloud that can ultimately increase the completion time

of a cloud job. We then explore the affects of periodic checkpointing and checkpoint

distribution have on both the cloud job as well as the sending and receiving ad hoc hosts

and the network. This is followed by discussing virtual machine restoration overheads

and we then give a comparison between the performance of the ad hoc cloud with

Amazon EC2. Finally, we discuss the performance of our ad hoc server.

6.5.1 Benchmarking the ad hoc Cloud

We now investigate the performance of running cloud jobs in variety of different con-

figurations on EDIM1 in order to determine the extent of overheads introduced by the

ad hoc client. Similar to the V-BOINC experiments outlined in Section 3.4 of Chapter

3, we ran the CPU, Memory, I/O and Disk benchmarks in the following configurations:

• native execution on the EDIM1 node,

• execution on a virtual machine (VM) on an EDIM1 backend node. The virtual

machine has 2 CPUs and 2 GB of memory,

• execution via V-BOINC and the V-BOINC client. The V-BOINC virtual ma-

chine also has 2 CPUs and 2 GB of memory,

• execution via the ad hoc cloud. A single ad hoc client’s components and threads

execute while periodic 1 minute checkpoints are distributed to three other ad hoc

hosts,

• execution on Amazon EC2. A single m1.medium instance has 1 vCPU with 2

ECUs and 3.75 GB of memory.

Each benchmark was executed five times in each of the configurations above and on its

completion, each benchmark would output its execution time, i.e the time it spent exe-

cuting; we define this as the cloud job execution time. Note that each stress benchmark

was executed as a single process and that the Memory benchmark allocated 2 GB of

memory, e.g. –vm-bytes 2048M. In the case of running each benchmark via the ad hoc
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client, the cloud job execution time does not include other factors that may affect the

total time a cloud job is present in the ad hoc cloud. For example, the time a job awaits

to be scheduled to an ad hoc host, the time to configure and instantiate a virtual ma-

chine, the time taken by periodic checkpointing or the time caused by virtual machine

migration; we discuss such overheads later in the chapter. The average cloud job exe-

cution times of each benchmark are shown in Figure 6.7. We display 95% confidence

intervals to show that in most cases, the true mean will lie within the specified range.

Figure 6.7: EDIM1 Benchmark Results and ad hoc Client Overhead

Figure 6.7 shows the cloud job execution times of the benchmarks running in their

respective configurations. As expected, we see that running each benchmark natively

typically offers the lowest execution time with the exception of the I/O benchmark.

Similar to the results obtained by evaluating V-BOINC, this phenomenon may be

caused by the virtualization technology having better caching mechanisms than the

native host. We also see that running a virtual machine on EDIM1 introduces sig-

nificant virtualization overheads. This is shown by the difference of execution times

between the Native and VM configurations; the greatest virtualization overhead occurs

when the Memory benchmark takes almost half an order of magnitude longer to com-

plete when using virtualization. The virtualization overheads experienced on EDIM1

are significant and are due to the use of Intel Atom CPUs in the backend nodes where

hardware virtualization is not supported.

As expected, we also see that the cloud job execution time is typically lower on

Amazon EC2 than any configuration that uses virtualization on EDIM1, with the ex-

ception of the I/O benchmark. As outlined in Chapter 4, the overhead between the VM

and V-BOINC configurations is minimal, but we see that executing the same bench-
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marks via the ad hoc client, the overhead is substantially greater for the Memory and

Disk benchmarks.

At first glance, it would reasonable to assume the additional functionality of an

ad hoc client in comparison to a V-BOINC client would explain the additional over-

heads. For example, periodic checkpointing, compressing and distribution may con-

sume memory and disk space that otherwise would be used by the executing cloud

job. Furthermore, the additional operations that occur in the background, such as the

Resource Monitor, Running Detector, Accessible Detector and many of the Listener

components waiting on a specific event to occur, may also consume resources required

by the virtual machine and cloud job.

Although these additional functionalities do introduce overheads, they are negligi-

ble in comparison to the additional and significant overheads introduced by executing

the Memory and Disk benchmarks via the ad hoc client on EDIM1. We hypothesise

that during these benchmarks, the combination of a large number of instruction calls

to the hypervisor (which must be trapped by the hypervisor, translated by the software,

sent to the hardware and the request returned via the same route), as well as the ex-

ecution of the virtual machine, the internal cloud job and the ad hoc clients are large

enough to introduce the significant slowdown. However, in the event that a workload

demands more resources from the ad hoc host, the overhead of the ad hoc client will

not increase as the virtual machine will only be offered resource capacity that is not

used by host processes or by BOINC and the ad hoc client. It is worth noting that

if insufficient resources are available for the ad hoc client to consume, the execution

times for workloads may increase, however by migrating the virtual machine to a more

viable host, workload performance reductions can be minimized.

However, in order to prove the ad hoc cloud does not introduce significant over-

heads when executing both of these benchmarks, we executed the same benchmarks

on four other hosts each with different hardware specifications. We define these hosts

as general purpose hosts as they have hardware specifications comparable to standard

models of laptops and Desktops; the class of hosts we believe host owners are likely to

deploy an ad hoc cloud on. The specifications of these hosts are shown in Table 6.2.

Table 6.2 shows the variety of hardware specifications of our general purpose hosts,

however most importantly, hardware-assisted virtualization is available on all of these

hosts to help increase the performance of the hypervisor. In order to confirm that our ad

hoc client does not introduce significant overheads, we executed the stress benchmarks

on an ad hoc cloud deployed on our general purpose hosts and recorded the cloud job
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Name Processor Type Memory VT-x/AMD-V
MacBook Pro 2007 2.2 GHz Intel Core 2 Duo 2 GB Yes

MacBook Pro 2010 2.4 GHz Intel Core 2 Duo 8 GB Yes

Dell Optiplex 755 3 GHz Intel Core 2 Duo 4 GB Yes

Dell Optiplex 790 3.1 GHz Intel Core i3-2100 4 GB Yes

Table 6.2: General Purpose Host Benchmark Results

execution times. As the results obtained were similar for each host, we only outline

the results obtained from an ad hoc cloud consisting of a server and client operating

on the Dell Optiplex 790 and 755 hosts respectively. We do not display results for the

CPU benchmark as it failed to complete on a virtual machine running on our general

purpose hosts. Our results are shown in Figure 6.8.

Figure 6.8: Dell Optiplex Benchmark Results and Ad hoc Client Overheads

Firstly we see that by executing these benchmarks on a general purpose host, the cloud

job execution time is substantially reduced. For example, executing the Memory, I/O

and Disk benchmarks via the VM configuration on the Dell Optiplex 755 takes approx-

imately 11, 13.4 and 12.8 minutes less respectively.

Secondly, we see that in comparison to EDIM1, the performance overheads intro-

duced when executing the Memory benchmark via the ad hoc client on a general pur-

pose host is lower; this overhead is reduced from a cloud job taking 4.5 times longer to

complete on EDIM1 to 2.5 on the general purpose host. Similarly, we also see that the
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performance overheads introduced when executing the Disk benchmark via the ad hoc

client on a general purpose host is lower in comparison with running the same bench-

marks on EDIM1; this overhead is reduced from a cloud job taking 3.3 times longer to

complete on EDIM1 to 2.5 on the general purpose host.

Conversely, the overhead increases when executing the I/O benchmark via the ad

hoc client on the general purpose host; this overhead previously took 1.3 times longer

to complete on EDIM1 but now takes 4.2 times longer. Note that the execution time

of this benchmark on an ad hoc client is still lower than the native execution on the

general purpose host.

Despite the more realistic overheads observed from a general purpose host, the

cloud job execution times for each benchmark are lower when executing on a general

purpose host in comparison to executing the same benchmarks on an Amazon EC2

m1.medium instance that has similar resources to the Dell Optiplex 755. The ad hoc

client running on this host executes the Memory, I/O and Disk benchmarks, approxi-

mately 68%, 98% and 21% faster than on the m1.medium instance.

By executing the series of stress benchmarks on EDIM1 and a number of hosts

that are likely to be used by a large majority who employ ad hoc cloud computing, we

have shown that the overheads introduced by the ad hoc client are minimal for a cloud

platform of this nature. Furthermore, we have shown that an ad hoc client running on

a general purpose host is able to perform better than executing on an Amazon EC2

instance with comparable resources.

We investigate whether the ad hoc cloud is still able to outperform Amazon EC2

later in the chapter, after we outline the affects of the many unique overheads associated

with the ad hoc cloud have on a cloud job’s execution time.

6.5.2 Pre- and Post-Execution Overheads

We now know the true execution overheads introduced by virtualization and the ad

hoc client, as well as the likely cloud job execution times when these jobs are run

on EDIM1 or hosts with similar hardware specifications to the general purpose hosts

aforementioned. However, the time between an ad hoc cloud user submitting their job

and the user receiving their results will be greater than the execution time of the cloud

job running on the ad hoc cloud; we define this as the total completion time. Other

than the execution time of a cloud job, the total completion time of a job includes the

times associated with performing the following tasks:
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• the ad hoc server to detect a submitted cloud job as well as create and queue the

workunit,

• the ad hoc server to select a near-optimal ad hoc host to assign the cloud job to.

A job may have to wait until an ad hoc host becomes available,

• the ad hoc client to prepare the ad hoc host for receiving the cloud job. This in-

cludes the time for downloading or creating a DepDisk, disk attachment, virtual

machine boot up and configuration.

• the ad hoc client to request and download the cloud job as well as upload any

results after completion.

We investigate what affects each of these pre- and post-execution tasks have on the

total completion time of a cloud job; we discuss other overheads that occur during the

execution of a cloud job in the next section. Our experimental setup was as follows: we

submitted a Primes job to the ad hoc cloud and measured the wallclock execution time

for each of the above tasks. To measure these times, we modified our ad hoc client

by adding a simple counter that recorded the start and end times when the task started

and ended respectively. The ad hoc client then calculated the difference and output the

task completion times to file which were then analysed.

The experiment was performed on both EDIM1 and the general purpose ad hoc

clouds hosts five times and the results were averaged. In the latter case, as the results

obtained were similar for each host, we only outline the results obtained from an ad

hoc cloud consisting of a server and client operating on the Dell Optiplex 790 and 755

hosts respectively.

Figure 6.9: Pre- and Post-Execution Overheads
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We see from Figure 6.9, that the pre- and post-execution overheads by running Primes

on both the general purpose host and EDIM1 differ significantly. In the former case,

the contribution to the total completion time is minimal; approximately 90 seconds.

This overhead is comparable to the acquisition of a single virtual machine on Amazon

EC2 [175, 126].

On the other hand, the pre- and post-execution overheads observed when Primes is

executed on EDIM1, are in some cases substantial; note the difference of y-axis scales.

The time to configure and boot the virtual machine are approximately 5.8 and 12.6

times greater than performing the same tasks on a general purpose host. These large

overheads can be attributed to the lack of support for hardware-assisted virtualization

on EDIM1s Intel Atom processors as well as their relatively low processing capacity.

The overheads of performing the remaining tasks on both a general purpose host

and EDIM1 are small. Both ad hoc servers are able to detect a cloud job, create a

workunit and schedule a workunit to an ad hoc host in approximately 13 seconds;

this assumes that an ad hoc host is available, otherwise a workunit may have to wait

to be scheduled. Furthermore, both ad hoc clients are able to download and prepare

the Primes application for execution in approximately 22 and 34 seconds on a general

purpose host and EDIM1 respectively.

However note that the download time of a job is directly related to its size and the

available bandwidth between the ad hoc server and client. The time to upload the job

in both cases takes approximately 1 second after which the ad hoc cloud user is able

to view and download their results. Note that there are no other overheads related to

downloading a new virtual machine image for every cloud job as the virtual machine

can be reset and re-used after the cloud job completes or the virtual machine fails or

terminates abruptly. By considering the results from the types of general purpose hosts

that are likely to be used by a large majority who employ ad hoc cloud computing,

we see that the pre- and post-execution overheads introduced by the ad hoc server and

client minimally contribute to the total completion time of a cloud job.

6.5.3 Checkpointing Overheads

Pre- and post-execution overheads may minimal, however there are other overheads

that may increase the total completion time of a cloud job during its execution on the

ad hoc guest. We perceived that such overheads existed by comparing the job execution

time (see Figure 6.7) and the completion time recorded by BOINC system as part of
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the Job Service project; we define the latter as the BOINC execution time. Note that

the former, measures only the time the job spent executing and not the wallclock time

between the start and end time of the cloud job.

By default, BOINC records the time when it sends a job to an ad hoc guest and the

time when it receives the job’s the results. The difference between the start and end

times is therefore the BOINC execution time and this can obtained either by querying

the Job Service database or through the project’s administration web interface.

In order to determine the performance overheads of our ad hoc client while an ad

hoc guest executes a cloud job, we submitted each benchmark to our EDIM1 ad hoc

cloud five times and collected their BOINC execution times once completed. During

the execution of the benchmark, the ad hoc client was set to periodically checkpoint

once per minute and distribute the compressed checkpoint to three other ad hoc hosts.

The results of all experiments were averaged and these are shown in Table 6.3.

Benchmark
BOINC

Execution
Time (s)

Job
Execution
Time (s)

Execution
Overheads

(s)

Unaccounted
Overheads

(s)
CPU 829 763.92 65.08 30.08

Memory 3341 2938.96 402.04 367.04

I/O 1156.60 1067.49 89.11 54.11

Disk 2918.60 2788.34 130.26 95.26

Table 6.3: Overheads Unaccounted for when Executing Cloud Jobs

We see that by subtracting the cloud job execution time from the BOINC execution

time, we obtain the time introduced by the overheads associated with the ad hoc client.

The BOINC execution time does however include the time for the ad hoc server to

send the cloud job to the ad hoc guest and for the guest’s BOINC client to return the

results. We know from Figure 6.9 that the time to perform these operations on EDIM1

is 34 seconds and 1 second respectively. Therefore we can update the additional time

introduced by the ad hoc client to exclude these overheads. This leaves an unaccounted

period of time introduced by other ad hoc client overheads.

Table 6.3 also shows that these overheads differ dependent on the type of cloud

job running. Although an ad hoc client is composed of many threads concurrently

executing various tasks, we can rule out this as a primary factor of variable overheads
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between each benchmark. The only feature of an ad hoc client that could introduce

such overheads is periodic checkpointing. We investigate what affect periodic check-

pointing has on the total completion time of a cloud job.

6.5.3.1 Checkpoint Downtime

Periodic checkpointing is one of the many important processes used improve the re-

liability of the inherently unreliable ad hoc cloud model. While we show later in the

chapter that this is an effective method of providing reliability, periodic checkpoint-

ing does however have one potentially significant limitation; during each checkpoint-

ing operation, the virtual machine must be paused therefore suspending the executing

cloud job; we define this as the checkpoint penalty.

Previously in Section 3.4.2 of Chapter 3, we investigated what affects of taking

checkpoints each minute had on the storage space of a volunteer host that uses V-

BOINC. We found that for CPU, Memory and I/O stress benchmarks, the average time

to take a checkpoint was approximately 1.5 seconds while the same operation took the

Disk benchmark on average 25 seconds to complete; the exact figures can be found in

Table 3.2.

For the respective benchmarks, the downtime incurred while taking checkpoints is

low, however taking per minute checkpoints may not be optimal for both the cloud job

or the ad hoc host. For example, as a cloud job consumes a larger portion of storage

space or memory, or the checkpointing frequency decreases, the size of the checkpoint

may increase, in turn increasing the time to take the checkpoint.

In order to determine the potential checkpoint times for a range of checkpointing

frequencies, we varied the frequency over the period of one hour for each benchmark.

This was performed by instantiating our V-BOINC virtual machine with 1 GB of mem-

ory on our MacBook Pro 2007 general purpose host and running each of our stress

benchmarks individually while taking either 1, 2, 3, 4, 6, 12, 30 or 60 equally spaced

checkpoints per hour.

For example, we started by taking 60 checkpoints per hour while the CPU bench-

mark was executing. In the second hour, the same benchmark was executed while

30 checkpoints were taken, and so on; this process was repeated for each benchmark.

After each hour, the virtual machine was terminated and a new one was instantiated

for the following hour to ensure each experiment was independent and that no virtual

machine or host caching affected the results of the subsequent experiment.

Checkpoint times were obtained by the ad hoc client via the UNIX-based time com-
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mand when executing the VirtualBox snapshot function. Note that as this experiment

was performed on a different host which had a different virtual machine configuration

from the V-BOINC checkpoint experiment (see Section 3.4.2) , the per minute check-

point times for each benchmark are slightly different to those outlined in Chapter 3.

Table 6.4 shows the minimum and maximum checkpoint times experienced when exe-

cuting the benchmarks while a varying number of checkpoints were taken each hour.

Benchmark Min. Checkpoint Time (s) Max. Checkpoint Time (s)
CPU 2.3 (CF 60) 13.21 (CF 1)

Memory 5.83 (CF 4) 16.46 (CF 2)

I/O 2.37 (CF 60) 13.05 (CF 4)

Disk 43.4 (CF 30) 54.71 (CF 4)

Table 6.4: Checkpoint Frequency and Time Relationship

Table 6.4 only displays the minimum and maximum checkpoint times as there is no

strict correlation between the checkpointing frequency and checkpoint time; we indi-

cate which checkpoint frequency (CF) produces the minimum and maximum check-

point times in Table 6.4. We sometimes see that a pattern can emerge where lower

checkpoint frequencies produce higher checkpoint times and vice versa. For exam-

ple, we see that the maximum checkpoint times are produced when the checkpoint

frequency is 4 or lower, however the checkpoint frequencies that produce the minimal

checkpoint times are not consistent for each benchmark.

We see that a checkpoint frequency of 60 produces the minimal checkpoint times

for the CPU and I/O benchmarks while a checkpoint frequency of 4 produces the min-

imal checkpoint time for the Memory benchmark. Therefore the differences between

the minimum and maximum checkpoint times are partially dependent on the check-

point frequency, but not for all classes of application.

Despite the checkpointing frequency employed, we can be reassured that the check-

point downtime penalties of periodic checkpointing are minimal for the CPU, Memory

and I/O benchmarks. However, we see that the Disk benchmark has a high checkpoint

downtime penalty of at most 54.71 seconds per checkpoint. If per minute checkpoints

were taken while the ad hoc guest executes a disk-intensive benchmark, we would see

that for every minute, the cloud job could potentially be suspended for the following

54.71 seconds.
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6.5.3.2 Checkpoint Size

During the same experiment, we also recorded the checkpoint sizes dependent on the

checkpoint frequency used. The results are shown in Table 6.5. Note that as this

experiment was performed on a different host which had a different virtual machine

configuration from the V-BOINC checkpoint experiment (see Section 3.4.2), the per

minute checkpoint sizes for each benchmark are slightly different to those outlined in

Chapter 3.

Benchmark Checkpoint Size (MB)
Snapshots per Hour CPU Memory I/O Disk

60 37.2 56.6 36.9 89.5

30 37.3 43.5 37.7 89.7

12 37.8 44.0 39.0 90.1

6 38.2 45.0 38.5 92.2

4 38.6 43.3 41.2 91.0

3 38.2 43.3 37.0 2370.9

2 36.5 57.8 38.4 1574.8

1 37.0 44.3 36.9 1393.3

Table 6.5: Checkpoint Interval and Size Relationship

We see that in most cases, a decrease of the checkpoint frequency does not necessarily

increase the size of the checkpoint; this is particularly true for benchmarks that do

not write to disk or consume large amounts of memory. Surprisingly, the Memory

benchmark also follows this pattern and produces checkpoint sizes of approximately

44 MB despite utilizing over 90% of the virtual machine’s memory. Unsurprisingly,

as the Disk benchmark continues to write data to the virtual disk, the checkpoint size

increases. A dramatic increase is observed when the checkpoint frequency is three per

hour or fewer; we attribute this to the behaviour of the benchmark. We can therefore

be reassured that if a checkpoint frequency of 4 per hour or higher is used by each ad

hoc client, the checkpoint sizes and downtime penalties will be relatively small.

6.5.3.3 The Near-Optimal Checkpoint Frequency

This therefore introduces the problem of how to decide which checkpoint frequency

is best with the aim of reducing both the checkpoint time and size; we define this
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as the near-optimal checkpoint frequency. However, the near-optimal checkpointing

frequency is not only a factor of checkpoint sizes and capture times, but also the desired

reliability of the ad hoc cloud and the load placed on the ad hoc host’s CPU and

network by checkpoint compression and distribution respectively.

A high checkpoint frequency will produce a greater number of checkpoints that

must be distributed to other ad hoc hosts. This in turn will increase the likelihood

of a cloud job completing if the job is interrupted by ad hoc host or guest termina-

tions or failures. This will however introduce greater CPU and network loads. A low

checkpoint frequency will produce fewer checkpoints, which in some cases may be

larger in size, but the reliability of the ad hoc platform would suffer. Calculating the

near-optimal checkpoint frequency for each application submitted to the ad hoc cloud

would be extremely difficult, therefore we only outline a possible solution to provide a

rough estimate of the near-optimal frequency for each class of stress benchmark. We

base our assumptions on the data presented in Tables 6.4 and 6.5.

Our analysis first begins by discarding checkpoint frequencies that are 3 or less for

the Disk benchmark due to sudden increase of checkpoint size; it would be unwise

to distribute this amount of data over the network periodically. Furthermore, we also

discount checkpoint frequencies 4 or less for all benchmarks as it is unreasonable to

assume that if the cloud job fails and its ad hoc guest is restored on another ad hoc

host, the ad hoc cloud user would have to wait an additional 15 minutes while the

cloud job returns to the previous state before the ad hoc guest failed; we define this as

the re-computation overhead.

As checkpoint frequencies greater than 4 per hour result in similar checkpoint sizes

and capture times, reducing network load and achieving a desired reliability level are

the only entities that must now be factored into determining the near-optimal check-

point frequency; we omit CPU load in this decision making process as we assume that

compressing checkpoints no greater than 100 MB consumes little CPU resources. We

also assume that by compressing checkpoints as a .tar.gz file with a low compression

ratio of 5:4, produces an 80 MB compressed file, we can estimate the amount of likely

checkpointing traffic sent over the network to other ad hoc hosts per hour. Figure 6.10

shows our estimations.

We see that if 60 checkpoints are taken per hour and each is sent to one other ad hoc

host, 4.6 GB will be distributed every hour until the benchmark completes. Similarly,

in the case when 30, 12 and 6 checkpoints are taken every hour, the total amount of data

distributed to a single ad hoc host would be 2.3 GB, 0.9 GB and 0.4 GB respectively.
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Figure 6.10: Estimated Checkpoint Data Transfer Per Hour

However, our implementation specifies that the P2P Scheduler selects at least three

other ad hoc hosts to receive a single checkpoint to provide a reliable environment for

cloud job execution. Therefore an ad hoc host must transfer a total of 14.06 GB, 7.03

GB, 2.81 GB or 1.4 GB if 60, 30, 12 or 6 checkpoints are taken every hour, respectively.

We believe that in most cases, an ad hoc host will not have to send checkpoints

to more than six other ad hoc hosts at a time due our ad hoc scheduler’s scheduling

rule that the most reliable hosts are selected first to receive checkpoints. For example,

in the event that the six most reliable ad hoc hosts each have a probability of 60% of

failing or terminating at any time, each ad hoc host in the ad hoc cloud must send every

checkpoint to these six ad hoc hosts in order to satisfy the 95% successful completion

rate for cloud jobs.

In this possible worst case scenario, we see that if the checkpoint frequency is 60 or

30 per hour, an ad hoc host must transfer a total of 28.12 GB and 14.06 GB respectively

per hour to other ad hoc hosts. This is in contrast to a total 2.81 GB of data transferred

per hour when the checkpoint frequency is 6 per hour. With the aim of striking a

balance between desired reliability and reducing network load, we believe that taking

and distributing 60 or 30 checkpoints per hour results in a significant amount of data

being transferred over the network. Furthermore, we assume that a checkpointing

frequency of 6 per hour (i.e. 1 checkpoint every 10 minutes) does not provide enough

reliability and that the re-computation overhead is still quite high.
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Therefore we believe that a reasonable estimation of the near-optimal checkpoint-

ing frequency based on checkpoint size, capture time, desired reliability for a job and

the reduction of load for CPU and network resources is 12 checkpoints per hour for our

particular benchmarks. It is important to note however, that this estimation is based on

the results from our benchmarks, which may be atypical in terms of checkpoints sizes

compared with normal workloads and have significantly different resource demands or

usage patterns. Furthermore, we realize that our chosen static near-optimal checkpoint

frequency may not be optimal for small cloud jobs that complete in under five minutes,

for example. We also realize that the network of EDIM1 may be significantly different

from those of commodity networks, however as mentioned in Section 1.5 of Chapter

1, we do assume that in most cases the ad hoc cloud will be deployed on a LAN that

offers reasonable performance, e.g organization and research institution networks.

Currently, the chosen near-optimal checkpoint frequency is a static value set within

our ad hoc cloud implementation however we aim to dynamically adjust this frequency

based on the reliability of the ad hoc host executing the cloud job. For example, as the

reliability of the ad hoc host increases, fewer checkpoints can be taken and subse-

quently distributed, and vice versa; we leave the addition of this functionality as future

work.

6.5.4 Network Performance

Our chosen near-optimal checkpoint frequency of 12 per hour results in at least 2.81

GB of data being transferred per hour from each ad hoc host if the policy that check-

points must be distributed to a minimum of three ad hoc host receivers is enforced. In

our possible worst case scenario where six ad hoc hosts receive a checkpoint from a

checkpoint sender, the sender must transfer 5.6 GB of data per hour. A commodity

network could easily handle one ad hoc host distributing this amount of data per hour,

however we expect an ad hoc cloud to have many available ad hoc hosts each execut-

ing an ad hoc guest. Therefore, as the number of executing ad hoc guests and cloud

jobs increase, the network may become a bottleneck if many concurrently distribute

checkpoints.

We therefore investigate whether the network of EDIM1, which offers similar

bandwidth rates to commodity cloud networks when data is exchanged between racks,

is able to cope with the concurrent distribution of large number of checkpoints between

ad hoc hosts. We assume that the size of a checkpoint when compressed is 80 MB and
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that each of the 30 EDIM1 ad hoc hosts concurrently transfer a checkpoint to the other

29 ad hoc hosts. We determine whether the EDIM1 network is capable by recording

the total completion time for all ad hoc hosts to successfully distribute their checkpoint

to the other 29 hosts.

This experiment was performed by a bash script that concurrently logged in to

each ad hoc host and executed the pscp command (see Section 4.6.4) that triggered

the checkpoint distribution to begin. On each of the ad hoc hosts, the compressed

checkpoint is placed in a directory which is referenced by the pscp command as well

as a hosts.txt file specifying the ad hoc hosts the checkpoint should be sent to. The

completion time of each pscp command is recorded by the UNIX-based time command

and sent back to a central location for analysis. This experiment was performed five

times and the completion times for all ad hoc hosts to successfully distribute their

checkpoint are shown in Figure 6.11.

Figure 6.11: Concurrent Checkpoint Distribution

We see that each experimental run on average completes in 5.7 minutes where the

differences between runs is minimal; 95% confidence intervals show that in most cases,

the true mean will lie within the specified range. By concurrently sending an 80 MB

checkpoint from each of the 30 EDIM1 ad hoc hosts to the remaining 29 ad hoc hosts,

870 checkpoints totalling to 67.9 GB of data are being concurrently sent at a single

moment. This also shows that ad hoc hosts have the ability to concurrently send and

receive a large number of checkpoints. By sending 870 checkpoints per hour, this

equates to 290 ad hoc hosts each concurrently sending a checkpoint to 3 other ad hoc
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hosts or 145 ad hoc hosts each concurrently sending checkpoints to 6 other ad hoc

hosts.

Based on these results, we can be assured that if an ad hoc cloud has a large num-

ber of ad hoc guests executing cloud jobs, the ad hoc cloud should be able to quickly

distribute checkpoints and scale well assuming the network is not heavily utilized. Fur-

thermore, it is also reasonable to assume that a commodity network should be able han-

dle a reasonably large number of concurrently distributed checkpoints; this of course

is dependent on the network and the amount of traffic however. In order to reduce the

load imposed on the network, we can take advantage of recent virtual machine migra-

tion developments. For example, the size of checkpoints can be reduced by techniques

such as data deduplication between the source and destination ad hoc hosts [89], delta

compression ensuring only dirty memory pages are transferred to the destination host

[203] or pre-copying disk access requests to the destination host [69], for example; we

leave the incorporation of these techniques into the ad hoc cloud as future work.

It is important to note that in our reliability analysis experiment described in Sec-

tion 6.4 and the results from our performance experiments shown in Figures 6.7 and

6.8 as well as Table 6.3, we employed per minute checkpoint frequencies and not the

near-optimal checkpoint frequency outlined above during this network performance

analysis. A per-minute checkpoint frequency was selected to firstly determine po-

tential upper limits of reliability of our EDIM1 ad hoc cloud and secondly, remain

consistent with previous V-BOINC experiments. This also allowed us to determine

that the EDIM1 network can handle much higher checkpointing traffic.

6.5.5 Virtual Machine Restoration

Checkpoints that are successfully distributed between ad hoc hosts must be instanti-

ated at any moment after an instruction from the ad hoc server. We have previously

shown that the performance overheads associated with periodic checkpointing and that

a commodity network could potentially handle the traffic generated by our P2P Reli-

ability Algorithm. We now outline the performance overheads associated with virtual

machine restoration which also affect the total completion time of a cloud job.

We consider the situation where an ad hoc client detects that an ad hoc guest is

non-operational and informs the ad hoc server that the cloud job is no longer running.

As previously mentioned, the ad hoc scheduler then selects a near-optimal ad hoc host

to restore the ad hoc guest on. After receiving the instruction to restore the appropriate
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checkpoint, the ad hoc client then decompresses the checkpoint, re-registers the virtual

machine with VirtualBox and performs the restoration. In order to determine the affects

that these operations have on the total completion time of a cloud job, the maximum

execution times of performing these tasks are measured and are shown in Figure 6.12.

Figure 6.12: Ad hoc Guest Restoration Overheads

We see that from the time an ad hoc client detects an ad hoc guest is non-operational,

to the time the ad hoc guest is restored on another ad hoc host, the entire process is

likely to take under one minute. We measured the total time for this process during our

reliability analysis experiment and found that on average, the restoration process took

24.4 seconds. In a scenario where the ad hoc host or client fails, meaning the ad hoc

server cannot be informed of any failures, the time for the server to detect the failure

increases the time of the restoration process by approximately two minutes; the ad hoc

server classifies that an ad hoc host has failed when it has not polled the ad hoc server

during the last two minutes.

Furthermore, we also assume that at least one ad hoc host is available for restora-

tion scheduling, otherwise the time until an ad hoc host becomes available lengthens

the total process of checkpoint restoration. As mentioned in Section 4.6.5 of Chapter

4, the ad hoc client of the selected ad hoc host to restore the checkpoint, must inform

the ad hoc server that the restoration process has completed successfully, allowing the

server to instruct other ad hoc hosts who received the same checkpoint to delete it.

We do not display the timings for these tasks as they have no effect of the total

completion time of a cloud job, however we estimate these tasks to take at most 40

seconds based on the shared tasks above. For example, the ad hoc client informs

the ad hoc server that the checkpoint has been restored, the server then performs ad

hoc host selection and issues an instruction; this only leaves the time to delete the

checkpoint to be estimated, which we believe takes a short period of time. Note that

as these results were obtained from running our ad hoc cloud platform on EDIM1, it
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is likely that some of the task execution times shown in Figure 6.12 would be slightly

lower. In either case, it is encouraging that if a cloud job is interrupted in any way, the

job can potentially begin executing again within one minute.

6.5.6 The Ad hoc Cloud vs Amazon EC2

In this section, we give a comparison between the performance achieved by executing

cloud jobs on our ad hoc cloud computing prototype, deployed both on EDIM1 and our

general purpose hosts, to executing the same cloud jobs on Amazon EC2. In particular,

this evaluation incorporates the additional times introduced by the overheads of the

ad hoc cloud that were omitted in earlier experiments. This includes pre- and post-

execution, checkpointing and virtual machine restoration overheads.

We calculate the total completion time of a cloud job running on an ad hoc cloud

by adding the times associated with each overhead giving the wallclock time from job

submission to results retrieval. The checkpoint frequency for this experiment was set

to 60 per hour and in order to incorporate virtual machine restoration overheads, we

assume that an ad hoc guest has been migrated to one other ad hoc host during its

execution; an operation that took 24.3 seconds to complete. Executing a cloud job

on EC2 does not involve many of the overheads associated with the ad hoc cloud.

However a cloud user must wait for an EC2 instance to boot and then transfer their job

to the instance before it can be executed, much in the same way an ad hoc cloud job

waits on an ad hoc guest booting which is then transferred to the guest for execution;

we incorporate these pre-execution overheads in our use of the EC2 instance. We

assume that an instance takes approximately 60 seconds to boot and that uploading

the same job used in previous experiments (see Figure 6.9) takes 22.5 seconds, as the

network performance of both EDIM1 and Amazon EC2 are similar. Amazon EC2’s

total cloud job completion times are calculated by adding the times introduced by these

overheads, to the cloud job execution times displayed in Figure 6.7.

We executed our Memory, I/O and Disk benchmarks on the EDIM1 ad hoc cloud

as well as the ad hoc cloud run over our general purpose hosts; in the latter case,

the ad hoc server and client ran on the Dell Optiplex 790 and 755 hosts respectively.

The same benchmarks were executed on a m1.medium EC2 instance that has similar

resources to the Dell Optiplex 755 host. Our results do not show the execution of the

CPU benchmark due to reasons outlined previously. Figure 6.13 shows the total cloud

job execution time differences between the ad hoc cloud and Amazon EC2.
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Figure 6.13: The Ad hoc Cloud Performance vs Amazon EC2

As predicted, we see that there is a significant difference between the total cloud job

completion times when executing the cloud job on the EDIM1 ad hoc cloud to the

same cloud job executing on an m1.medium EC2 instance. Again we attribute such

differences to the lack of hardware-assisted virtualization of EDIM1 processors and

their relatively low processing capacity in comparison with the EC2 instance. Despite

this, only an 6.5% increase of the completion time is observed when executing the I/O

benchmark on EDIM1.

Most importantly, the differences between the total cloud job completion times

when executing a cloud job on an ad hoc cloud deployed on general purpose hosts

and Amazon EC2, is minimal; these differences would decrease by 24.3 seconds if

one virtual machine migration was not assumed to occur. Conversely, a larger num-

ber of migrations will increase the total completion time accordingly. We see that if

one migration is performed on the ad hoc cloud, the Memory and Disk benchmarks

approximately take 25% and 30% longer to execute on our general purpose host ad

hoc cloud respectively, while the I/O benchmark outperforms EC2 by over an order

of magnitude. However, if no migrations occur, we see that the Memory benchmark

produces a similar execution time to Amazon EC2.

Despite the slight increase of a cloud job’s total completion time in some cases

when executing on the general purpose ad hoc cloud, users of the ad hoc cloud can

be reassured that their job will continue to execute (in most cases) in the face of host

failure or churn. If an instance fails on Amazon EC2, the current state of the instance



6.5. Platform Performance 181

is lost unless strict state-saving measures are employed. Therefore, whether zero or

many virtual machine migrations occur during the operation of an ad hoc cloud, we

can be confident that the platform will offer reasonable and comparable performance

to an EC2 instance with equivalent resources. This is encouraging especially as the

ad hoc cloud has to operate on an unreliable infrastructure in contrast to offering the

cloud service from a dedicated infrastructure.

6.5.7 Ad hoc Server Performance

So far in this chapter, we have primarily evaluated our ad hoc client and the overheads

of the operations it performs. We now focus on the performance of our ad hoc server

and more specifically, how well the server operates in our realistically simulated ad

hoc cloud environment. Throughout our simulated ad hoc experiments, the C2MS

monitored the ad hoc server’s CPU, memory, storage and network load.

Figure 6.14: Ad hoc Server CPU Utilization

Figure 6.14 shows that during the one hour of our reliability analysis experiment, the

2 cores available to the ad hoc server are at most 25% utilized. The periodic spikes

of CPU usage correlate to the periodic nature of BOINC daemons from both the VM

Service and Job Service projects as well as the periodic polls from ad hoc clients.

Figure 6.15 shows that during the same hour, 1.95 GB of memory is consistently

utilized from the ad hoc server’s available 2 GB of memory. This is due to the storage

of outbound BOINC workunits from the VM Service project; we specify that the num-

ber of workunits containing the virtual machines to be distributed to ad hoc hosts is
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Figure 6.15: Ad hoc Server Memory Utilization

limited to 30. The BOINC daemons of both the VM Service and Job Service projects

and the subsequent and frequent database accesses, will also consume a small portion

of the ad hoc server’s memory.

Figure 6.16: Ad hoc Server Disk Utilization

Figure 6.16 shows that the disk space consumed by the ad hoc cloud implementation

is consistent and also relates to the physical disk space consumed by outbound BOINC

workunits, but a large amount of storage space is also consumed by the VM Service

and Job Service projects as well as the BOINC server installation.

Finally, Figure 6.17 shows the network traffic to and from ad hoc clients. A large

spike of outward traffic is initially shown when the ad hoc server instructs 15 ad hoc
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Figure 6.17: Ad hoc Server Network Utilization

clients to configure their ad hoc host and download the job. The latter network usage

spikes are contributed by the web interface and command line analysis of results.

Figure 6.17 does not however show the network bandwidth consumed by the 15 ad

hoc clients each downloading an initial virtual machine before the experiment began.

While the ad hoc server is capable of concurrently serving 15 virtual machine requests

at any given moment, if the number of requests increase substantially, the bandwidth

available to the ad hoc server will eventually become a bottleneck.

A number of solutions exist to overcome this problem. Firstly, in the event the

server is overloaded with requests, the exponential backoff algorithm BOINC employs

can be used to instruct ad hoc clients to perform the virtual machine request at a random

time later in the near future. In most cases, this will be acceptable as downloading a

virtual machine is not a time critical operation unless the ad hoc cloud is heavily loaded

and requires more resources.

Secondly, the size of the virtual machine image can be reduced to accommodate

a larger number of requests to be satisfied. As previously mentioned, our V-BOINC

virtual machine has been stripped of all unnecessary components and therefore it is

small as it could possibly be. However, different virtual images can be used which will

result in different virtual machine image sizes. For example, the mini desktop Linux

OS Damn Small Linux is approximately 50MB and would allow a substantially larger

amount of virtual machine images to be served concurrently.

Thirdly, an image’s size can be reduced further by employing high-ratio compres-

sion algorithms, for example, 7-zip [1]. Penultimately, due to the architecture of the

BOINC server, the ad hoc server can be replicated multiple times and placed on dif-



184 Chapter 6. Evaluating the ad hoc Cloud

ferent networks to load balance the distribution of virtual machine image requests.

Finally, it may be more efficient to distribute virtual machine images from one ad hoc

host to another in a P2P fashion. This could be achieved by determining the physical

proximity and network bandwidth available between each possible sender and the re-

ceiving ad hoc host and then selecting a sender based on the near-optimal connection;

we also aim to investigate the effectiveness of this method in the near future.

In our experiments, we have shown that during the operation of an ad hoc cloud

with 30 ad hoc hosts, half of which execute cloud jobs, the consumption of the ad hoc

server’s resources is minimal at any given time. Based on these results, we are confi-

dent that the ad hoc server is scalable and could easily handle larger infrastructures as

regular BOINC is designed to do; the limits of the ad hoc server’s capabilities in the

current configuration is left as future work.

6.6 Summary

We have now evaluated the reliability and performance of our ad hoc cloud deployed

on EDIM1. Firstly, we showed that by deploying our ad hoc cloud prototype on

EDIM1 and accurately simulating a currently operational infrastructure, the reliabil-

ity of our ad hoc cloud was found to be high and could successfully complete up to

93.3% of cloud jobs.

We are encouraged by the fact that the remaining cloud jobs did not complete

due to errors in the underlying technologies of BOINC and VirtualBox and not our

implementation of our prototype; though many things could be improved to increase

the reliability further. Therefore, we are confident that the reliability of our ad hoc

cloud development can increase in a range of other scenarios when solutions to the

aforementioned errors are implemented.

Secondly, we outlined the performance of running our set of stress benchmarks

on EDIM1 in a variety of configurations to determine the cloud job execution times

and overheads unique to EDIM1. Due to the low performance of the platform’s CPUs

and lack of hardware-assisted virtualization, the cloud job execution times and over-

heads were substantial in comparison to a number of general purpose hosts each with

hardware-assisted virtualization and standard hardware specifications. We then showed

that by executing cloud jobs on an ad hoc cloud deployed on general purpose hosts,

cloud job execution times in many cases were lower than executing the same jobs on

Amazon EC2.
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Thirdly, we discussed the pre- and post-execution performance overheads of the ad

hoc cloud such as cloud job registration, ad hoc host job scheduling and preparation

as well as result uploading to the BOINC project. We showed that these overheads

are significant when an ad hoc cloud is deployed on EDIM1, again due to the low

performance of the platform’s CPUs and lack of hardware-assisted virtualization. In

contrast, pre- and post-execution overheads were low when deploying an ad hoc cloud

on general purpose hosts.

Fourthly, we outlined the performance overheads introduced when a cloud job ex-

ecutes on an ad hoc guest. We showed that such overheads are primarily caused by

virtual machine suspension due to periodic checkpointing. This was followed by a dis-

cussion of calculating the near-optimal checkpoint frequency to minimize checkpoint-

ing overheads but also to minimize network bandwidth usage and increase reliability.

We found that for our particular classes of applications, the near-optimal checkpoint

frequency was 12 checkpoints per hour. This value may however not be applicable to

the large number of different applications submitted to the ad hoc cloud.

We then investigated what affect periodically distributing checkpoints between ad

hoc hosts in a P2P fashion has on network performance. We showed that if 870 check-

points were distributed at any given moment, the network of EDIM1 would be able to

easily handle the generated traffic. Furthermore, this substantiates our claim that the ad

hoc cloud could operate over a large number of ad hoc hosts and is able to scale. This

was followed by outlining the overheads associated with virtual machine restoration

and we found that when an ad hoc guest or host fails that executes a cloud job, the ad

hoc guest can be restored elsewhere in under one minute.

Penultimately, we compared the performance of executing a cloud job on an ad hoc

cloud, deployed both on EDIM1 and a set of general purpose hosts, to executing the

same cloud job on an Amazon EC2 instance with equivalent resources. We showed that

while an EDIM1 ad hoc cloud typically does not match the performance of EC2, an ad

hoc cloud deployed on our general purpose hosts can offer similar performance even in

the event of one or multiple ad hoc guest failures. Furthermore, cloud jobs operating

on an ad hoc cloud are by default protected from any ad hoc host or guest failures or

terminations, however this is not the case when utilizing the EC2 infrastructure.

Finally we showed the affects our experimental setup has on the ad hoc server.

Due to the efficiency of BOINC, the underlying V-BOINC platform and the additional

server components, a host with standard hardware specifications can successfully act

as an ad hoc server without degrading the performance of the entire ad hoc cloud;
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we believe that deploying the ad hoc server on a host with state of the art processors

and large amounts of memory and disk space would have little affect on the overall

performance of the ad hoc cloud due to the low resource utilization levels seen during

our experiments.

Overall, our evaluation has shown that our ad hoc cloud prototype is a feasible and

reliable platform that can offer at least reasonable performance to cloud jobs, in some

cases which may be better than running the same job on Amazon EC2. We believe

that the simulated behaviour of an unreliable infrastructure will represent typical in-

frastructures an ad hoc cloud runs on, however there will be many other cases when

the underlying infrastructure is more unpredictable and unreliable. We believe the ad

hoc cloud will have the ability to overcomes these untested challenges.

We also believe that by testing a range of workloads, we show that CPU, memory

and I/O-intensive applications are well suited to the ad hoc cloud, particularly when

the cloud operates over a set of general purpose hosts that have hardware support for

virtualization. For these workloads, the performance overheads introduced by the ad

hoc client are minimal and the checkpoint sizes are typically small, resulting in less

bandwidth being consumed by our P2P checkpointing approach.

Disk-intensive workloads are less suited to the ad hoc cloud as checkpoint sizes

and capture times are large, resulting in greater checkpoint penalties and a greater

amount of data being distributed over the network. In the former case, a greater check-

point penalty results in less checkpoints being taken overall, ultimately affecting the

reliability provided to the job via the P2P checkpointing approach. In the latter case,

commodity networks may not be able handle such large traffic volumes therefore af-

fecting the performance and reliability of other cloud jobs.

For similar reasons, data-intensive workloads are currently limited by the local net-

work accessible to the ad hoc cloud. While we do not explicitly investigate such work-

loads, Kijsipongse et al. do however show that performing data-intensive analyses by

using a modified version of V-BOINC that supports Hadoop, data-intensive workloads

can effectively run on volunteer infrastructures [137], and therefore an ad hoc cloud.

The benchmarks we have used to test the performance and overheads of our ad hoc

cloud will represent a large number of cloud jobs submitted to the cloud, however the

investigation of data-intensive workloads and many other applications that have differ-

ent characteristics, for example CPU-memory-intensive applications, are left for future

investigation.
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While we believe that our ad hoc cloud can operate under a variety of unreliable

conditions, as well as effectively execute a vast range of different workloads, these

extrapolations are based on assumptions that need to be tested by deploying the ad hoc

cloud on a live operational infrastructure with real workloads in the near future.





Chapter 7

Conclusions

In this chapter, we conclude this thesis by giving a summary of the work presented.

This is followed by outlining the possible future research to be undertaken to improve

the ad hoc cloud computing paradigm. Finally, we end this thesis by offering our

concluding remarks in relation to our research hypothesis.

7.1 Summary

This thesis has outlined our proposal for an ad hoc cloud computing platform to allow

end-users who are unable to outsource computation or deploy a dedicated computa-

tional platform locally, to take advantage of a new cloud computing paradigm that uses

the spare capacity from their non-exclusive and unreliable infrastructure.

This use of an ad hoc cloud may be due to their inability to migrate their ap-

plications and data to a remote infrastructure, the unsuitability of that computational

platform to the application’s or end-user’s requirements. Or it may be economically

impractical for them to procure and operate an internal dedicated computational plat-

form. Infrastructure owners who simply wish to improve the utilization and return

on investment of their current infrastructure are also able to take advantage of ad hoc

cloud computing.

We hypothesised in Chapter 1 that the concept of an ad hoc cloud is a feasible and

reliable and platform that is able to at least offer reasonable levels of performance. We

argue that this hypothesis is correct based on the evaluation of our ad hoc cloud proto-

type. Our prototype is the based on the combination of the six founding principles of

ad hoc cloud computing: virtualization, cloud computing, volunteer computing, mon-

itoring, management and testing. We discussed each principle in Chapter 2 and the

189
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subsequent chapters detailed how each principle was sequentially integrated with the

others to create an ad hoc cloud computing platform; this allowed the case to be made

and development of an effective ad hoc cloud computing platform to be prototyped.

This prototype is built on an extended version of our virtualized volunteer infrastruc-

ture V-BOINC, therefore transforming it into an ad hoc cloud computing platform.

7.1.1 V-BOINC

V-BOINC, or the virtualized version of BOINC, is perhaps the important enabler of the

ad hoc cloud; this is our first listed contribution of Section 1.6 in Chapter 1. Described

in Chapter 3, V-BOINC takes advantage of both the features of BOINC, such as the

ability to run tasks on volunteer heterogeneous hosts, and also virtualization where

security issues between host and guest are inherently addressed; the latter also provides

easier management of the infrastructure.

V-BOINC builds on BOINC’s strengths and overcomes many of the disadvantages

of regular BOINC. For example, BOINC project developers must port their application

to each target host architecture, implement application-level checkpointing and are

limited to deploying applications that have no external dependencies. Furthermore,

BOINC users must trust the BOINC project they attach to.

V-BOINC overcomes these challenges by allowing applications to be ported to

a single host and a wider range of applications to be executed; unlike typical CPU-

intensive applications BOINC executes (Section 1.6, contribution 2). Furthermore

system-level checkpointing is available and security issues are inherently addressed

by the sandbox environment. The solutions to these disadvantages, combined with the

ability to transfer and interact with virtual machines, makes V-BOINC a fundamental

component of an ad hoc cloud.

Our evaluation shows that the implementation of V-BOINC introduces negligible

overheads above those introduced by virtualization alone when executing a wide range

of applications. This also is the case for applications that require external dependencies

such as MPI or R, for example. With the exception of disk-intensive applications, the

checkpointing functionality of V-BOINC also consumes little storage space and the

checkpoint penalty is low. Although the development of V-BOINC is necessary for

creating a successful ad hoc cloud, as a standalone service, V-BOINC is popular in the

volunteer community where approximately 200 users have downloaded the package as

well as made use of the on-line V-BOINC service.
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7.1.2 Ad hoc Cloud Prototype

In order to transform V-BOINC into an ad hoc cloud computing platform, we first

identified many of the research challenges involved of creating such an infrastructure in

Chapter 4. A summary of challenges that are addressed by our ad hoc cloud prototype

are how to:

• operate a cloud over a set of non-exclusive, untrustworthy and sporadically avail-

able hosts that are unpredictable in nature and where the total computational and

storage potential of the cloud changes frequently,

• maintain service availability in the presence of host or guest churn or failure to

ensure the job continuity,

• minimize the affect cloud processes have on host processes,

• schedule cloud jobs to near-optimal hosts and guests,

• monitor and control dynamic groups of hosts,

• develop a platform that is simple to download, deploy and use.

We then explored the current state of research into ad hoc cloud computing or simi-

lar computational infrastructures and found two important studies by Kirby et al. and

Chandra et al. that provided the basis for all subsequent ad hoc cloud research to build

on. Many other studies investigated the concept of merging volunteer and cloud com-

puting to create an ad hoc cloud, however most fail to identify the important research

challenges to be solved and little technical realization was reported. We attribute this

to the difficulty of integrating features taken from both volunteer and cloud computing

platforms. Studies from the field of mobile clouds did however show more promising

results, but aim to solve a different set of problems.

By building on previous research and identifying the key issues to be addressed, we

outlined the extensions required to transform V-BOINC into an ad hoc cloud comput-

ing platform in Chapter 4. This primarily involved introducing new functionalities into

the V-BOINC server and client in order to create the ad hoc cloud equivalents (Section

1.6, contribution 3). This included a simple BOINC job submission system (Section

1.6, contribution 4), an ad hoc cloud scheduler allowing cloud jobs to be executed and

ad hoc guest checkpoints to be restored on near-optimal ad hoc hosts (Section 1.6, con-

tribution 5) and a P2P checkpoint distribution mechanism (Section 1.6, contribution 6),

respectively.
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The latter is our primary contribution that introduces reliability into an unreliable

infrastructure. This works by distributing periodic checkpoints of an ad hoc guest to

other ad hoc hosts in the ad hoc cloud to allow the guest to be restored elsewhere in

the event the original becomes non-operational. We then outlined possible solutions to

minimize the affect cloud processes have on host processes followed by showing that,

unlike regular BOINC, the ad hoc client and server components are easy to install and

use due to the modifications we have made (Section 1.6, contribution 7). V-BOINC

and all of the subsequent extensions aforementioned, realize our concept of the ad hoc

cloud and make it a feasible computational alternative to commercial or private clouds,

clusters and Grids.

A key facet of any computational infrastructure is resource monitoring, either for

individual hosts or the entire infrastructure. However due to the architecture of the ad

hoc cloud, where ad hoc hosts may migrate between cloudlets, it becomes difficult to

monitor highly dynamic hosts within these groups; we believe no current monitoring

tool is able to offer cloudlet-based monitoring due to being statically configured.

As cloudlet-based monitoring is not only useful in an ad hoc cloud setting, but

also organizational settings that employ server clustering, we developed the Cloudlet

Control and Monitoring System (Section 1.6, contribution 8). By extending Ganglia

to allow cloudlet-based monitoring, as well as introducing additional metrics and a

infrastructure management component, we showed that the C2MS does not introduce

any overheads above those of Ganglia and can execute administrator-specified com-

mands over a large infrastructure quickly.

7.1.3 Prototype Evaluation

We define an evaluation model that all ad hoc cloud prototypes should be measured

against (Section 1.6, contribution 9). Primarily, we evaluated the reliability and per-

formance of the ad hoc when all the aforementioned components are integrated and

deployed on EDIM1, as well as a number of general purpose hosts (contribution 10).

Our experimental results showed that the ad hoc cloud was capable of successfully

completing up to 93.3% of cloud jobs in the face of realistically simulated host churn

or failure. Despite failing to meet our target of successfully completing at least 95% of

all cloud jobs due to the errors introduced by BOINC and VirtualBox, we are confident

that a cloud job would exceed our specified success threshold if these errors were

remedied.
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The performance of our ad hoc cloud deployed on EDIM1, as well as the over-

heads introduced by our implementation in comparison to V-BOINC, were found to

be excessive. This was caused by the lack of hardware-assisted virtualization and the

relatively low performance of the processors used in the cluster. Due to the large num-

ber of instruction calls to the hypervisor and the executing ad hoc guest and cloud job

all under command of the executing ad hoc client, the low processing capacity avail-

able was not enough to satisfy computational demand. To prove that this is unique

to EDIM1, we ran our ad hoc cloud in the same conditions on a number of general

purpose hosts. This showed that both the performance and overheads are substantially

reduced to acceptable levels.

Our evaluation then focussed on the features of the ad hoc cloud that could increase

the total completion time of a cloud job. Pre- and post-execution overheads were shown

to be large on EDIM1, which are unique to the platform, and low when an ad hoc cloud

operates on general purpose hosts. Checkpointing overheads, namely the checkpoint

penalty, are also low for compute, I/O and memory-intensive applications but can be

high for disk-intensive applications. Similarly, the checkpoint size for the latter is

found to be high when the checkpoint frequency is lower than 4; conversely checkpoint

sizes were low for all other resource-intensive applications.

This therefore posed the question of how to determine the near-optimal checkpoint

frequency based on minimizing the checkpoint penalty, the amount of data distributed

over the network and increase reliability. We found that based on our benchmarking

results, the near-optimal checkpoint frequency is 12 checkpoints per hour.

We then investigated whether the checkpointing traffic generated by this checkpoint

frequency would degrade the performance of the EDIM1 network. Our results showed

that the network could easily cope with 870 checkpoints being distributed at a time.

Therefore is it reasonable to assume that commodity networks could also distribute

a large number of checkpoints, if not already heavily utilized. The final overhead

investigated was the affect of virtual machine restoration. Our results showed that if an

ad hoc guest running a cloud job is detected as non-operational, it is possible to restore

the guest elsewhere in under one minute.

By combining the affect of all overheads associated with an ad hoc cloud that in-

crease the total completion time of a cloud job, we were able to offer a fair comparison

between the performance of an ad hoc cloud and Amazon EC2 (Section 1.6, contribu-

tion 11). Our results found that despite all associated overheads, the performance of

the ad hoc cloud can be similar, if not better, than Amazon EC2. During the course
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of our experiments, we evaluated the resource loads imposed on our ad hoc server

deployed on a host with standard hardware specifications. While many experiments

were performed over a long period of time, the server’s resources were typically un-

derutilized, proving that this single and centrally managed host would not become a

bottleneck if the number of ad hoc hosts, guests and cloud jobs increased.

7.2 Future Work

Throughout the course of this research, we noted many improvements that could have

been made to our approach of solving the aforementioned research challenges, the

functionality offered by our ad hoc cloud and our evaluation methodology. We discuss

these improvements in the following sections.

7.2.1 Approach

Our initial research into the feasibility of ad hoc cloud computing came at a time when

open source private cloud computing platforms were in their early stages of develop-

ment. However, the requirements of an ad hoc cloud were found to be similar to those

present in volunteer computing and therefore, our chosen approach was to transform

a volunteer infrastructure into a cloud platform. Nowadays, that open source private

cloud platforms are more mature, it would be interesting to investigate a contrasting

approach by transforming a cloud platform into an ad hoc cloud computing platform

and then evaluate the merits and drawbacks of each approach.

After regular use of OpenStack [31], the conceptual architecture and many of its

components now have similar purposes to those as part of an ad hoc cloud computing

platform. The development of the latter via the modification of OpenStack therefore

may be less difficult than our proposed approach and many of OpenStack’s features

would be exposed by default. For example, the authentication service Keystone, the

virtual machine image service Glance and the networking service Quantum.

Whether modifying OpenStack to create an ad hoc cloud is a more efficient and

an advantageous approach would have to be investigated further. For example, the

system and software features complexities as well as the maintenance and performance

overheads of the two approaches could be compared. Furthermore, the effort required

to introduce reliability and its subsequent success could also be measured.
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7.2.2 Additional Features

Throughout this thesis, we have outlined the additional features that should be added

to our ad hoc cloud prototype to increase its usability, acceptability, reliability and per-

formance. The features we would like to include in our research and implementation

are:

• Virtualization: currently our ad hoc cloud computing prototype only allows one

type of virtual machine to be distributed to the hosts within the infrastructure.

We propose that ad hoc cloud users should have the ability to upload their own

virtual machine, in turn allowing their submitted applications to run in an envi-

ronment they choose.

Due to the well known existence of virtualization performance overheads, which

in some cases may be large, we propose to evaluate the performance overheads

of other virtualization technologies for possible inclusion into both the V-BOINC

and ad hoc cloud implementations. Furthermore, we propose to investigate

methods of how to accurately suspend virtual machines based not only on non-

BOINC CPU usage, but also memory, disk and network usage. This provides a

basis to migrate ad hoc guests to other ad hoc hosts when the number of virtual

machine suspensions is frequent signifying that performance of the host is poor.

Currently, our ad hoc cloud implementation is only available for installation on

Unix-based hosts; we plan to create platform installable for Windows platforms

at a later date.

• Performance and reliability: the success of an ad hoc cloud deployment is pri-

marily based on the performance and reliability of the implementation. We have

shown that overheads caused by our ad hoc client can have an affect on the per-

formance of the executing cloud job. Therefore it is vital that our implementation

is optimized to reduce these overheads. Furthermore, we also plan to develop so-

lutions to the errors caused by BOINC and VirtualBox that affected the success

rate of cloud jobs during our experiments.

The performance and reliability of our ad hoc cloud may be enhanced if task

redundancy is also employed, therefore we intend to investigate whether both

approaches can compliment one another. We also propose to investigate whether

our current host reliability formula could be improved by taking into account an

ad hoc host’s recent reliability, instead of the calculating the host’s reliability
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based on its behaviour since it first became a member of the ad hoc cloud; recent

reliability may be a better indicator of an ad hoc host’s true reliability.

• Cloud job and checkpoint scheduling: we propose to include an ad hoc host’s

current network usage into scheduling decisions that determine whether the host

is suitable to execute cloud jobs. Furthermore, we also propose to include an ad

hoc host’s current load into scheduling decisions that determine whether the ad

hoc host should receive a particular checkpoint.

To improve the accuracy of scheduling checkpoints to near-optimal ad hoc hosts,

we believe that it is important to factor in the checkpoint size and estimated

transfer time. The reliability of the ad hoc cloud could be increased and the total

bandwidth usage reduced by sending smaller checkpoints to a larger number of

unreliable hosts and larger checkpoints to fewer more reliable hosts, while still

satisfying the 95% cloud job success rate property. We believe that this check-

point scheduling approach would improve reliability and reduce bandwidth us-

age between ad hoc hosts, however this hypothesis would have to be investi-

gated.

Furthermore, we propose to investigate the effectiveness of monitoring and stor-

ing previous cloud job execution times and resource usage patterns in order to

predict the estimation time and resource use for a current cloud job based on

similarity. This would allow cloud jobs to execute on suitable ad hoc hosts with

the enough resources and that are usually available for the duration of a cloud

job’s predicted runtime. We believe this would substantially improve the accu-

racy of scheduling decisions and ultimately reduce the total completion time of

a cloud job.

• Network performance: in order to ensure checkpoint transfer speeds are as low

as possible, we intend to employ a number of reduction mechanisms such as

checkpoint transfer deduplication, delta compression or checkpoint pre-copying,

for example. We would have to investigate which mechanism effectively reduces

checkpointing traffic and whether a combination of approaches could be used to

further reduce the amount of checkpoint traffic distributed in an ad hoc cloud.

Furthermore, we propose to dynamically adjust the checkpoint frequency during

the execution of a cloud job in order to reduce the load on the network. We aim

to firstly modify the checkpoint frequency not only based on the checkpoint size,
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capture time, desired reliability for a job and the reduction of load for CPU and

network resources, but also the reliability of the ad hoc host executing the virtual

machine. For example, the initial checkpoint frequency could be set proportional

to the bandwidth available and the predicted checkpoint sizes. These could then

be dynamically adjusted based on the number of jobs a particular host completes

or fails. In such cases the checkpoint frequencies could be decreased and in-

creased respectively, for example, by a factor of two until a future event occurs.

An investigation into possible algorithms to adjust checkpoint frequencies would

need to be undertaken.

Also, the current network load, monitored by the ad hoc server, can influence

which ad hoc host’s should be allowed to transfer a checkpoint at any given

time. For example, if the network is congested, the ad hoc server may instruct

only a select number of unreliable ad hoc hosts to distribute checkpoints until

the network congestion has eased. Note that the checkpoint frequency can also

be dynamically adjusted to increase reliability, reduce re-computation overheads

or improve the performance of the ad hoc host.

• Minimizing cloud process interference: an important component of an ad hoc

cloud, mentioned in a number of other studies, is how to effectively reduce the

interference cloud processes have on the host processes. Previously we outlined

possible methods to overcome this problem. We propose to include the use of

the tool cpulimit to dynamically adjust the CPU resources available to cloud pro-

cesses dependent on host process CPU usage. An investigation into other tools

or methods that successfully control memory, network and storage consumption

must be performed.

• Usability: Although installing, using and managing the ad hoc cloud was proven

to be extremely simple, further improvements can be made. The familiarity of

the BOINC Manager in the volunteer community makes it reasonable to suggest

that our own GUI interface components should be integrated into the current

BOINC Manager. We could also take advantage of popular platform interfacing

tools such as WS-PGRADE/gUse and SCI-BUS [134]. In the event the ad hoc

cloud becomes resource limited for short periods of time, we also propose to in-

clude mechanisms to outburst to another private or commercial clouds, provided

they have a publicly accessible API.
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7.2.3 Evaluation

Additional experimentation would need to be performed in the event the above features

are integrated into our ad hoc cloud prototype. There are however further improve-

ments that can made to our current evaluation methodology.

In order to determine the true benefits and drawbacks of our ad hoc cloud, a greater

range of applications must be executed. Our research concentrated on executing simple

applications, however those that require parallelism, write to external databases or sim-

ply have different resource usage patterns, for example, must be analysed when run-

ning on the ad hoc cloud. Furthermore, a greater number of platforms must be tested

when operating an ad hoc cloud in order to provide a comparison between the plat-

forms outlined in this thesis and others. This analysis would also determine whether

the performance and overheads recorded on EDIM1 is a unique occurrence. Our sim-

ulated infrastructure also did not simulate CPU, memory, I/O and network resources

being consumed by ad hoc hosts. We propose to execute random workload generators

on each ad hoc host and determine the reliability and performance differences.

However, the true success of our ad hoc cloud prototype can only be measured by

deploying the cloud on an unreliable but operational infrastructure, such as one within

an organization or research institution, for a long period of time. By default, this would

allow the ad hoc cloud to execute a wide range of applications and experience different

situations involving host churn or failure. Furthermore, the feedback from the ad hoc

cloud system administrators as well as host users and cloud users, would be invaluable

to help improve the acceptability, usability and performance of our implementation.

7.3 Concluding Remarks

This thesis has proposed the concept and development on an ad hoc cloud computing

platform. We initially hypothesised that the ad hoc cloud was a feasible, yet reliable

alternative computational platform. Furthermore, we also hypothesised that the ad

hoc cloud could offer at least reasonable performance, especially in comparison with

commercial cloud infrastructures.

Throughout this thesis we have shown that the ad hoc cloud is a reliable platform

even when operating over an unreliable infrastructure. We expect the reliability of

our prototype to increase when the underlying technologies used as well as our own

implementation improves over time. We have also shown that the performance offered
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by the ad hoc cloud is comparable to an Amazon EC2 instance with similar resources,

despite operating on an unreliable infrastructure and with the unavoidable overheads

associated with ad hoc cloud computing.

We found that CPU, memory and I/O-intensive applications are well suited to the

ad hoc cloud, however disk and data-intensive workloads may not be, due to the large

checkpoint penalties, ultimately affecting the reliability of the job. Checkpoint sizes

were also typically found to be large resulting in a large amount of data being dis-

tributed over the network to ensure job continuity; this in turn may affect the perfor-

mance and reliability of other ad hoc cloud jobs.

Therefore, based on an extensive investigation of the research issues, a complete

implementation of an experimental prototype and hitherto unprecedented evaluation of

the ad hoc cloud, the ad hoc cloud is not only a potentially worthwhile form of compu-

tational provision, but also a viable platform that provides a computational alternative

to commercial or private clouds as well as clusters and Grid infrastructures.





Appendix A

Cloudy Waters: Tapping into the

Unknown

This accompanying chapter sets out the additional background knowledge of cloud

computing we acquired before development and evaluation of the ad hoc cloud.

A.1 Introduction

Introducing a new cloud computing paradigm first requires an in-depth analysis of the

research surrounding cloud computing. This is especially important for our research

as both the ad hoc and commercial cloud computing models share similar features.

For example, users and their applications share the same hardware and resource con-

tentions may arise; the ad hoc cloud does however try to minimize the affect of the

latter.

In this chapter we analyse and benchmark Amazon EC2 to obtain a greater under-

standing of cloud computing and to determine whether the ad hoc cloud computing

paradigm is a feasible concept when compared with commercial clouds; contribution

12 listed in Section 1.6 of Chapter 1. We chose Amazon EC2 as it is a popular IaaS

cloud provider and offers Unix-based virtual machines.

Firstly we provide an overview of related work from the scientific community out-

lining the benchmarks performed on Amazon EC2. We then briefly discuss the cost-

related difficulties when employing cloud computing in scientific settings. Next we

describe our own benchmarking approach that aims to investigate the performance and

cost variabilities of the cloud dependent on resource contention, time of day and the

physical processor an instance uses.

201



202 Appendix A. Cloudy Waters: Tapping into the Unknown

This is followed by a discussion on how to improve cloud performance via in-

stance underutilization. Finally we determine whether it would be possible to charge

cloud users for using resources from the ad hoc cloud and discuss the challenges and

likelihood of doing so.

A.2 Science on the Cloud

Due to the obscure nature surrounding commercial cloud providers and their under-

lying infrastructure and software solutions, there exists a large research pool that has

investigated the cost and performance of these infrastructures.

The common finding from most cloud benchmarking research is that commercial

clouds need to improve, especially for those in the HPC and scientific communities.

Some studies have found that Amazon EC2 is capable of running certain scientific

applications better than on high performance clusters [64] while others show that only

a single EC2 instance offers comparable performance [168]. Other studies show that

while this is unlikely, Amazon EC2 is able to match the performance offered by a local

commodity cluster [99].

A large portion of research does however challenge these claims given that com-

mercial clouds are designed for commercial use [117]. Furthermore, commercial

clouds are known not to satisfy many of the performance requirements of scientific

applications [117, 211, 121, 175, 127]. For example, Amazon EC2 is quoted as being

up to 6 times slower than a commodity cluster and twenty times slower than a high

performance cluster [130]. Resource contention may cause such performance differ-

ences [130]. Armbrust et al. find that CPU and memory can be shared surprisingly

well [56] while others find this is not the case [125], especially when a cache is shared

by multiple virtual machines [121].

Scientific applications typically rely on being able to achieve good disk I/O per-

formance however Amazon EC2 is known to be poor in this respect [56] despite disk

I/O performance levels varying between Regions and Availability Zones, due to the

difference disks employed [194]. Virtualization overhead also may [175] or may not

[117] reduce the performance of executing scientific applications. These applications

are typically parallel in nature [99] and individual tasks must communicate and/or

transfer data between each other. The poor network performance of Amazon EC2

[56, 117, 127, 130, 168, 194], which is comparable to a commodity Ethernet net-

work [121], therefore significantly reduces the performance of scientific applications.
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Studies have shown that MPI-based applications experience significant latencies of the

order of one or two magnitudes slower than traditional clusters [99, 168, 194]. Until

high performance interconnects are widely adopted within Amazon EC2, HPC appli-

cations will not be able to run effectively within Amazon EC2; this is especially true

as applications become increasingly compute or data-intensive.

There are however cases where small-scale HPC applications are able to effectively

run on Amazon EC2 [121, 99]. In order to potentially increase the performance of a

scientific application running on Amazon EC2, it is possible to tune the application

for use on the target platform [175]. Despite this, surprising some studies question

the reliability of Amazon EC2 for scientific applications. For example, instances may

fail to launch or network instabilities may cause instances to crash [168]. A cloud

user’s defined network configuration may also fail to take effect and instances may

hang. A single error occurs enough that running scientific applications on Amazon

EC2 can become difficult [130]. The single or combined effects of these performance

and reliability issues may deter scientific researchers from migrating to the cloud.

Recently however, Amazon EC2 has attempted to address the concerns of scien-

tific researchers and those that require increased CPU, memory, disk and network per-

formance. In addition to Amazon EC2’s general purpose instances, they now offer

compute, memory and storage-optimized instances that are tailored towards offering a

better service for applications; these instances typically have more of one resource but

less of others [3].

For example, a compute-optimized instance offers slightly more CPU resources

than a general purpose instance of the same size but has approximately half of the

memory. Although this instance providers five times more computational resources

than a small instance, studies have shown it is not five times faster [99]; it does however

offer double the I/O performance. Despite the potential performance downfalls of these

types of instances, they are designed to help a cloud user appropriately fit an instance

to an application’s ideal resource use. The situation is also similar with memory and

storage-optimized instances. To increase the disk I/O performance and reduce the

affects of resource contention, Amazon offer EBS-optimized instances which provide

a dedicated throughput to an EBS volume at a chosen rate between 500 and 2,000

Megabits per second. Amazon have also recognized the network performance issues

relating to scientific applications and have recently introduced Enhanced Networking.

Enhanced Networking introduces a higher packet per second performance, lower

latencies and lower network jitter by using Single Root I/O Virtualization (SR-IOV).
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SR-IOV allows a network adapter to appear as separate devices in order to be accessed

effectively by many data sources [195]. Enhanced networking can only be used with

HVM AMI compute and storage-optimized instances that have an appropriate driver

installed and that are part of an Amazon Virtual Private Cloud (VPC); a logically iso-

lated area of AWS that allows a cloud user to take advantage of having control of their

own virtual network [3].

Similarly, some instances are able to take advantage of Cluster Networking where

instances are grouped into a logical cluster to provide high-bandwidth and low la-

tency connections between cluster instances [3]. This is different from Amazon’s VPC

where instances are operated within a segregated platform that allows virtual network-

ing. Instances within a Cluster Network are run in a single flat network shared with

other cloud users. However, perhaps the most important development to help those

that require higher CPU, memory, disk and network performance is the introduction

of Dedicated Instances. These instances are run on hardware dedicated to a single

cloud user therefore eliminating the resource contention and security issues that arise

from resource sharing. The per hour costs of these instances are slightly higher than

Amazon’s general purpose instances plus an additional $2 ‘Per Region’ fee per hour.

At the time of writing, the performance and costs of using these cloud offerings has

largely been untested by the scientific community however we would expect that some

scientific applications would benefit from these features. Furthermore, as much of the

related research mentioned above is a snapshot of the Amazon EC2 taken from over

the last few years, we expect that as the number of technological developments will

increase, a greater percentage of scientific applications will be able to run effectively

on the cloud.

One such improvement that is vital to solve is the issue surrounding networking.

Technological solutions such as Enhanced Networking will only delay the inevitable

reduction in network performance during a time where applications are becoming in-

creasingly data-intensive and the number of cloud users is increasing. Only an upgrade

of the physical network will partially solve problems faced when executing scientific

or HPC applications on the cloud. While these developments are aimed at encouraging

more scientific users to the cloud, there is one other aspect that needs improving to

achieve that goal; the issues surrounding recurrent costs and capital funding from UK

Research Councils. Currently, the funding policies of UK Research Councils do not

suit the typical cost model of cloud computing [97]. As the research costs of using the

cloud as not known beforehand, UK Research Councils are unable to allocate funding
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to researchers and projects. Furthermore, it is not yet possible to charge research costs

based on recurrent spending or through an individual researcher’s credit card [116].

Cloud computing providers may be improving their infrastructures for scientific

applications, however we will only see a substantial growth in the number of scien-

tific researchers using cloud computing when the financial relationship between the

researcher and funding body improves. Until such a time, the number of studies com-

paring the performance of the cloud to local commodity or high performance clusters

will increase and so too will the differences of results obtained from these studies.

Therefore it is important to note that similar comparisons of performance and cost

should also be performed before researchers decide whether to migrate to the cloud.

A.3 Cloud Performance Variations

We have shown that there are sufficient studies relating to the benchmarking of Ama-

zon EC2 and outlined the common results obtained from each evaluation. A few of

these studies suggest that moderate to extreme performance variabilities exist when

running applications on the cloud. This may be due to contention for non-virtualized

resources [194, 99], the physical processors that instances must use [127, 130], the

scheduling of virtual machines to different physical servers [194], or even a cloud

user’s application. At a time when cloud benchmarking was popular (2010/2011), we

also measured the extent of these performance variabilities to determine those that

might be shared when running applications on the ad hoc cloud where hardware is

shared and resource contention may occur.

A.3.1 Resource Contention and The Time of Day

We now outline the experiment performed to determine if existing performance and

cost variabilities are caused by either the time of day or resource contention.

Our experimental setup was as follows: we instantiated a small Standard On-

Demand General Purpose instance within the us-east-1a Availability Zone which has

the AMI ID ami-a6f504cf (this is now unavailable but appears to have changed to ami-

e2f67bd2); this AMI has the OS Ubuntu Maverick i386 server installed. SPRINT’s

pcor function (see Section 2.6.5 of Chapter 2) was executed 13 times at various times

throughout a day with the number of genes and samples set to 11,000 and 321 respec-

tively. The function’s execution time was output on completion and stored for analysis.
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Figure A.1: Execution Time vs Time of Day (m1.small)

Figure A.1 shows that an application’s execution time can vary significantly. In our

case, we experienced a minimum and maximum execution time of approximately 19

minutes and 61 minutes respectively when executing SPRINT over a 12 hour period.

This performance gap is not only inconvenient but also has cost implications for the

cloud user when instances are charged per hour. A researcher executing SPRINT at

16:00 on that particular day, would have had to wait 61 minutes for the job to complete

and despite only requiring the instance to be available for one more minute extra,

would have been charged double when compared to executing the same job at other

times throughout the day.

Iakymchuk et al. also conduct a similar investigation but in greater detail [125].

The authors execute the DGEMM application, which calculates the product of dou-

ble precision matrices, on an extra large compute-optimized instance (c1.xlarge) in an

unspecified Availability Zone. Their results are shown in Figure A.2.

Figure A.2: Execution Time vs Time of Day (c1.xlarge) [125]
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Those authors results, as well as our own, show significant performance and subse-

quent cost variabilities that are seen when executing an application multiple times

throughout the day. This also shows that such variabilities are not only limited to

one single instance but are common to different instance types, and indeed all general

purpose instance types.

Similarly, these variabilities are not only a unique characteristic of SPRINT and can

affect the performance of any application running on Amazon EC2. We must note

that the results from Iakymchuk et al. and our own do not imply that an application’s

execution time is equal at the same time each day; they vary significantly dependent on

a number of factors that are out of the cloud user’s control. In fact, it is likely that the

performance delivered is independent of the time of day itself; although there may be

times where the cloud is more busy than others which in turn will have a slight effect

on performance [194, 127]. The performance variabilities exhibited when running

SPRINT are likely to be caused by CPU, memory and disk I/O resource contention

on the physical host; negligible network bandwidth was consumed by SPRINT in our

experiment.

Therefore we have shown that the performance of a single application contained on

a single EC2 instance can suffer significant performance variabilities; in many cases

this will increase the costs charged to a cloud user’s monthly bill. This investigation

also gives us a better understanding of what type of applications are not suited to the

commercial cloud, for example, those that need to be completed before a strict dead-

line. Such applications may also not be suited to the ad hoc cloud where minimal

resource contentions arise and the performance can be greatly affected by the termina-

tion or failures of ad hoc hosts and ad hoc guests.

A.3.2 Instance Processors and ECUs

Amazon EC2 introduced the concept of an Elastic Compute Unit (ECU) to provide

standardized and consistent CPU performance for EC2 instances. As a reminder, an

ECU provides the equivalent CPU performance of a 1.0-1.2 GHz 2007 AMD Opteron

or Intel Xeon processor. For example, if two instances each have 2 ECUs of compute

capacity and are deployed onto two different types of CPU, in theory they should

offer equivalent performance if no other resource contentions arise. We outline an

experiment to determine whether an ECU offers equivalent performance regardless of

the different types of physical processor an instance uses.
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We first determined the number and types of processors used when running a large

Standard On-Demand General Purpose instance (m1.large) in the us-east-1d Availabil-

ity Zone. Note that a cloud user is not able to select the processor their instance uses

hence this was performed by trial and error. In order to determine the physical CPU

type of a running instance, we ran the following command on the instance:

cat /proc/cpuinfo | grep "model name"

We found that a large instance uses two physical processors of the same type. As a

reminder, a large instance has two virtual cores each with 2 ECUs of compute capac-

ity, i.e. 2.0-2.4 GHz per core. Therefore one physical processor, or a portion of it, is

equivalent to one virtual core of a large instance. We also found that the types of phys-

ical processor can be different on a per-instance basis; a number of studies describe

other processors used in Amazon’s infrastructure [130, 194]. The three processor types

commonly used when deploying large instances in the us-east-1d Availability Zone are

shown in Table A.1.

CPU Type Min. Usage Max. Usage
Intel Xeon E5507 2.27 GHz 88.1% 100%

Intel Xeon E5645 2.4 GHz 83.3% 100%

Intel Xeon E5430 2.66 GHz 75.1% 90.2%

Table A.1: Large Instance Physical CPU types and Per-Core Usage Levels

We see that a large instance may use either two Intel Xeon E5507, E5645 or E5430 pro-

cessors each with varying cycle-per-second frequencies. Table A.1 also shows the cal-

culated minimum and maximum utilization rates of each processor to deliver 2 ECUs

of compute capacity per core. We calculate these rates using basic mathematics. For

example, in order for a virtual core to at least achieve the minimum performance of 2

ECUs (i.e. 2 GHz), 88.1% of the E5507 2.27 GHz processor should be utilized when

the instance requires it. Similarly, in order for a virtual core to achieve the maximum

performance of 2 ECUs (i.e. 2.4 GHz), all of the E5507 2.27 GHz processor should be

utilized; these utilization rates are calculated for each of the other processor types.

In the case of the E5430 2.66 GHz processor, we see that it offers a compute capac-

ity greater than the maximum limit of 2 ECUs (i.e. 2.4 GHz). Therefore a maximum

of 90.2% of the processor must be utilized. In order to ensure the minimum and max-

imum utilization rates of each processor are adhered to, Amazon’s EC2 infrastructure
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steals CPU cycles from processors. The percentage of cycles stolen can be verified by

running the top command on UNIX-based instances [99]. In our case, the steal percent-

age %st was as we expected. To determine whether a virtual machine offers consistent

performance regardless of which physical processor it uses, we ran a benchmark over

the various processor types and analysed its execution times and CPU loads.

Our experimental setup was as follows: we instantiated three Standard On-Demand

General Purpose large instances which had the AMI ID ami-a6f504cf (this is now un-

available but appears to have changed to ami-e2f67bd2); this AMI has the OS Ubuntu

Maverick i386 server installed. These instances were run in the us-east-1d Availabil-

ity Zone and each had three different physical processors selected from those in Table

A.1. The instances executed the SPRINT functions pcor and pmaxT. The former pro-

cessed a randomly generated dataset consisting of 11,000 genes and 321 samples and

the latter processed a dataset consisting of 1000 genes and 50 samples with the number

of permutations set to 150,000.

Both functions spawned two processes to utilize each core of the instance. Dur-

ing the execution of each function, we measured their execution times as well as the

average and peak CPU utilization rates for the various processors. The CPU load was

measured by polling the CPU for usage information every second by capturing the out-

put from the command top and these values were confirmed by Ganglia. The average

and peak utilization rates for each processor were then calculated. This experiment

was performed five times and the results were averaged. We display 95% confidence

intervals to show that in most cases, the true mean will lie within the specified range;

some confidence intervals may not appear due to the small variations between runs.

Furthermore, the experiment was performed multiple times on different days to ensure

the overall conclusions were valid and not specific to a certain day and time.

Figure A.3 shows the execution times of the SPRINT functions dependent on the un-

derlying physical processor and both the average and peak CPU loads each function

was able to achieve. Our results clearly show that the execution times of the SPRINT

functions are dependent on which processor an instance is set to use. Iosup et al. also

find that one factor causing performance variability is the underlying processor [127]

while Schad et al. and Jackson et al. find that Intel Xeon processors offer the best per-

formance when compared to AMD Opteron processors [194, 130]. Our results show

that the E5645 2.4 GHz processor offers the best performance for pcor which on av-

erage used 90% of both CPU cores and was able to reach a peak utilization of 96%;

executing pcor on this processor met the minimum usage levels set out in Table A.1.
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Figure A.3: Average and Peak CPU Loads Achieved by pcor and pmaxT

The E5507 2.27 GHz processor offered the poorest performance where pcor was

only able to achieve an average CPU utilization of 66% and a peak utilization of 81%;

both of which are lower than the minimum usage levels to offer 2 ECUs per core. The

E5430 2.66 GHz processor offered reasonable performance, however pcor’s average

utilization did not meet the required minimum usage of 75.1%. The function did man-

age a peak utilization of 95% showing that when the CPU is under-utilized, a higher

share of the CPU can be used when available [194].

Intuitively it is reasonable to assume that the fastest processor will offer the best

performance and conversely, the slowest processor will offer the least performance.

However due to the CPU stealing mechanisms employed by Amazon, the E5507 2.27

GHz and E5430 2.4 GHz processors have more CPU cycles stolen from them when

executing pcor. Interestingly, the least performing processor has the greatest number

of CPU cycles stolen. This is shown by the relative average and peak CPU loads pcor

was able to achieve on the E5507 2.27 GHz processor. One would expect a slower

processor to be fully utilized if it were to offer 2 ECUs per core as Amazon specify.

The execution of pmaxT shows similar results, however the differences in perfor-

mance between the processors are much less. Once again, the E5507 2.27 GHz proces-

sor offers the least performance with an average CPU utilization rate of 72%; a figure

that suggests the physical processor does not offer 2 ECUs to the virtual machine. Both

the E5430 2.4 GHz and E5430 2.66 GHz processors complete the pmaxT function in

approximately 30 seconds and have an average CPU utilization rate of 95% and 69%
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respectively; the latter does not meet the minimum usage target set out in Table A.1

All processors in this case are however able to achieve a peak CPU utilization of 99%.

These results not only show that the underlying processor an instance uses can

effect the completion time of an application but the application may also be suited

to a particular processor. Our results show that pcor is suited to the E5430 2.4 GHz

processor and pmaxT is suited to either of the E5430 2.4 GHz or E5430 2.66 GHz

processors. Furthermore, we see the small variation of execution times for the pro-

cessors and particularly the E5645 2.4 GHz processor when executing both pcor and

pmaxT; this shows that it is possible to achieve consistent application performance on

Amazon EC2. Based on our results, it is reasonable to suggest that the E5430 2.4 GHz

processor performs best overall when executing the pcor and pmaxT functions. This

experiment was performed on other sets of m1.large and m1.xlarge instances and our

findings were the same each time.

Due to the large infrastructure Amazon offers to its cloud service as well as the

dynamic conditions the infrastructure is faced with, we are unable to select a processor

that offers the greatest performance for all sets of applications in our selected Avail-

ability Zone. Therefore, in order for a cloud user to get the best performance for their

application, a cloud user must perform preliminary experiments, such as those out-

lined above, to determine the processor that best suits their application. We believe

this places a high expectation on cloud users to firstly have the expertise to perform

such tasks and to secondly contribute a large amount of time and effort to find the best

cloud configuration for their application.

A.3.3 Instance Underutilization

We have shown that both resource contention, perhaps influenced by the time of day,

and the processor used by an instance can affect the performance on an application.

These are problems that cloud users are typically unaware of or are initially unable to

address. We discuss one approach to increasing an application’s performance by using

instance underutilization. We define this as reserving a larger instance than required

and only using a small percentage of the available resources [178].

The concept of underutilization is based on reserving a larger instance than re-

quired into order to reduce the interference caused by other instances resident on the

same physical server. Reserving more resources than required may however introduce

additional costs for cores that are not needed. One important study has shown that
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instance underutilization is an effective method to increase performance and reduce

costs [125], however another was unable to see any improvements [121]. We inves-

tigate this concept further and offer our own perspective on using underutilization to

increase performance and potentially reduce costs.

Our experimental setup was as follows: we executed the SPRINT functions pcor

and pmaxT on a varying number of large Standard On-Demand General Purpose in-

stances (m1.large) located in the us-east-1d Availability Zone. The instances had the

AMI ID ami-a6f504cf (this is now unavailable but appears to have changed to ami-

e2f67bd2); which has the OS Ubuntu Maverick i386 server installed. The function

pcor processed a randomly generated dataset consisting of 11,000 genes and 321 sam-

ples while pmaxT processed a dataset consisting of 1000 genes and 50 samples; the

function performed 150,000 permutations.

To test the effectiveness of underutilization, the experiment was split into three

parts. First SPRINT was executed five times using two cores but spread over a different

number of instances. The remaining two parts also involved executing SPRINT five

times when using four and eight cores but again spread over a different number of

instances. We give an example of how we test the effectiveness for underutilization in

Figure A.4.
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Figure A.4: SPRINT Running on Large Instance 4 Cores

For example, if four SPRINT processes are to be executed (i.e. one on each core), we

can test underutilization by executing SPRINT over both four and two large instances.

In the former scenario, SPRINT consumes one core on each of the four large instances
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as shown in Figure A.4(a). In the latter scenario, SPRINT consumes all four cores

available from the two large instances as shown in Figure A.4(b). In order to test

underutilization, the number of instances to use can be expressed by the following

formulas:

• Underutilization: No. of Large Instances = Number of Cores Required

• Full utilization: No. of Large Instances = 0.5 * Number of Cores Required

By instantiating an equal number of processes and cores in both scenarios, we can test

whether reserving more resources than required can reduce an application’s comple-

tion time as well as potentially reduce costs. In this experiment, we ran the SPRINT

functions using between two and eight cores; each run was performed five times and

the average values taken. Furthermore, the experiment was performed multiple times

on different days, as well as in different Availability Zones, to ensure the overall con-

clusions were valid and not specific to a certain day and time of set of physical servers.

We show the results for both pcor and pmaxT in Figures A.5 and A.6 respectively.
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Figure A.5: pcor Underutilization

At a first glance, we see from Figure A.5 that there is little difference between pcor’s

completion times regardless of whether underutilization is employed or not. Underuti-

lization actually increases the execution time when running two pcor processes over

two large instances when compared to using the same number of cores on two large

instances. This is attributed to the network communication involved between the in-

stances but also Amazon’s poor network performance. As the number of cores and
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processes increase, underutilization slightly reduces pcor’s completion time by ap-

proximately 11 seconds when eight cores are used.
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Figure A.6: pmaxT Underutilization

On the other hand, we see from Figure A.6 that the execution of pmaxT shows more

promising results. Similar to the execution of pcor, employing underutilization ini-

tially increases the completion time of the function, however, underutilization does

allow pmaxT to execute much faster when the number of cores is greater than two.

The performance gap is most noticeable when four pmaxT processes are executed us-

ing both underutilization and full utilization where the former completes the pmaxT

function approximately 70 seconds faster. Similarly, by employing underutilization,

pmaxT completes approximately 30 seconds faster when 8 cores are used.

It is possible the performance gaps mentioned may save the total instance hours

needed therefore reducing costs. Over a long period, these savings may turn out to be

substantial. For example, the 70 second time difference between the four core scenario

of running pmaxT in the two different configurations, could increase running costs

by $0.68 per execution if underutilization is not employed. If this job were repeated

multiple times per day each day, the money potentially saved via underutilization could

be substantial after the period of one year. For small cash-flow sensitive businesses

or research institutions, reducing the time and money consumed while running jobs,

should be of great importance.

Iakymchuk et al found that underutilization can reduce an application’s execution

time by two orders of magnitude when running a series of benchmarks on Amazon
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EC2’s compute-optimized extra large (c1.xlarge) instances [125]. This performance

gap will no doubt allow cost savings to be made when using Amazon EC2. Hence, this

raises interesting research questions on whether cloud users should spend more time,

effort and money to find their optimal job configuration to lower costs overall, over a

longer time period.

We have shown that it is possible to use underutilization to obtain greater appli-

cation performance, which in turn may reduce the amount charged to the cloud user.

Although commercial cloud infrastructure details are unpublished, the effects of em-

ploying underutilization are likely to be caused by the reduction in resource contention.

The benefits of underutilization are likely to increase when the size of the instance in-

creases where more of the physical server is occupied, however this remains as future

work to determine whether this hypothesis is correct.

A.4 A Pay As You Go Ad hoc Cloud?

Previous studies have proposed a cloud model where clouds are created from volunteer

resources and cloud users are charged for utilizing these volunteer resources [85]. We

now investigate whether the ad hoc cloud computing could also employ the ‘pay-as-

you-go’ charging model. We do this by determining the difficulties and subsequent

cost variations of the charging model offered by Amazon EC2.

A.4.1 Charging for Data Usage

Amazon EC2’s ‘pay-as-you-go’ charging model charges for instance use per hour and

storage and data transfer per GB. We expect charging for instance and storage use to

be relatively simple when compared to charging for data transfer; instance hours and

the amount stored on Amazon’s infrastructure can be counted per account.

Charging for data transfer however is slightly more complex as this involves accu-

rately monitoring the number and size of packets sent from an instance, either directly

to another instance or to a customer’s web browser. Data transfer monitoring and me-

tering is further complicated by the various types of data transfers between instances

in different Regions and Availability Zones; for example, IDT and RDT as previously

mentioned in Section 2.3.3 of Chapter 2. We test whether the data transfer charging

model implemented by Amazon EC2 can accurately monitor and charge cloud users

for the amount of data they transfer.
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Our experimental setup was as follows: we instantiated a single small Standard

On-Demand General Purpose instance (m1.small) in the Availability Zone us-east-

1b which has the AMI ID ami-a6f504cf (this is now unavailable but appears to have

changed to ami-e2f67bd2); this contains the OS Ubuntu Maverick i386 server. We then

sent small amounts of data to the instance from various sources and measured whether

Amazon EC2 could correctly determine the amount of data transferred; we assume that

large amounts of data transferred are easy to record and hence are accurately charged

for. The volumes of data sent to the instance was on the order of MBs and we used

the installation of SPRINT as our example. The packages required to run SPRINT

on the instance are taken from both the EC2 Ubuntu repository and our own local

machine. The instances therefore receivies 84.3 MB of RDT and 3.6 MB of IDT data

respectively; this gives a total of 87.9 MB being transferred to the instance.

These packages were sent to the instance every hour and after each hour, we were

able to determine the amount Amazon thought was transferred via the Usage Report.

This was compared with the data transfer measurements taken from tcpdump [38] and

Amazon CloudWatch [2]. The former is a command line packet analyser for monitor-

ing server communication and the latter is Amazon’s own implementation for moni-

toring AWS services. Our results are shown in Figure A.7.
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Figure A.7: Data Transfer Measurement: EC2 Usage Report, tcpdump and CloudWatch

Figure A.7 shows twelve equal data transfers taking place. The first eight of those dis-

play the number of MBs Amazon thought were transferred to the instance; these figures
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were obtained from the EC2 Usage Report. Despite transferring the same amount of

data in each experimental run, we see that Amazon does not correctly record the vol-

ume of data transferred in a lot of cases. For example, Amazon’s billing mechanisms

only records that the instance only receives 11 MB instead of 87.9 MB of data.

The variations seen over the first eight runs then prompted us to use tcpdump and

Amazon CloudWatch to determine whether the figures from the Usage Report were

correct. For example, the discrepancies of results could have been a result of some

caching mechanisms employed by Amazon. By using both tcpdump and CloudWatch,

we see that the data is actually received by the instance therefore ruling out any reasons

regarding caching. For example, experimental runs ten and twelve show that Amazon

EC2’s charging mechanisms do not record 87.9 MB of data being transferred however

the dedicated CloudWatch service and tcpdump do.

The recorded values from both of these services also fluctuate, however in the case

of tcpdump, the fast arrival rate of packages meant it was unable to record all data

incoming to the instances. Based on the size and number of dropped packets, at least

a total of approximately 87 MB would have been received. CloudWatch on the other

hand records greater than 87.9 MB being transferred to the instance in some cases; this

is likely to be due to data being transferred from an SSH connection initiated from our

local client.

We also examined the accuracy of the data recorded by Amazon EC2 when trans-

ferring data out from the instance; the results were also similar where KBs or MBs

were unaccounted for. This not only occurs for IDT transfers but also for RDT trans-

fers between Availability Zones. As predicted, we were only charged for the data

transfers that Amazon EC2 recorded and displays in their EC2 Usage Report. There-

fore cloud users can take advantage of potentially cheaper data transfers if they have

applications that periodically transfer small amounts of data to other instances within

Amazon EC2 or beyond it.

A.4.2 The Effects of End-User Location

Regional cost differences, dependent on where an instance is deployed, are known to

exist in Amazon EC2. For example, instantiating two instances in different Amazon

Regions will be charged at two different rates. We, however, chose to test whether

differences exist dependent on a user’s job submission location and whether they are

significant enough to make it advantageous for an end-user to submit a job to Amazon
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EC2 from one location rather than any other. To examine such differences, we sub-

mitted a job from two widely separated and distinct locations in the world as shown in

Figure A.8; the UK and Thailand.

Figure A.8: Experiment Setup

Our experimental setup was as follows: we ran our the SPRINT function pcor over

two large Standard On-Demand General Purpose instances (m1.large); the function

processed a randomly generated dataset consisting of 11,000 genes and 321 samples.

The instances had the AMI ID ami-9b9091ef and were located in the US East Region

within the us-east-1b Availability Zone. In order to ensure a fair and consistent exper-

iment was performed by both submission locations, a collection of scripts was created

to automatically instantiate instances, setup the experiment, run the experiment and

teardown instances.

In collaboration with Dr Sornthep Vannarat, Head of the Large Scale Simulation

Laboratory from the National Electronics and Computer Technology Center (NECTEC),

the experiment could be performed in Thailand. Once the computation was complete

in both locations, the Amazon invoices and the AWS Usage Reports were obtained.

To ensure the results were valid, confirmation was required that Dr Vannarats Amazon

EC2 account was tied to an address in Thailand, otherwise if not, different charges

could be seen. We show the costs and resource usage details in Table A.2.

We can see that the total cost of running two large instances for the same period of

time, including other associated costs such as data transfer and I/O requests, is more

expensive when the job is submitted from the UK than in Thailand. This is caused by

the level of taxation in the two countries where at the time of writing, UK charges Value
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Location Cost Data In Data Out Storage I/O Req.
Scotland $2.52 0.274 GB 0.008 GB 0.151 GB 46,523

Thailand $2.10 0.205 GB 0.007 GB 0.151 GB 84,103

Table A.2: Difference in Resource Usages across Experiments

Added Tax (VAT) at 20%. This explains why running the job from the UK increases

the costs by in $0.42, whereas Thailand charges no taxes. For small and cash-flow

sensitive businesses and research institutions, this difference may have a significant

impact on growth, for example, a business spending $4000 on cloud costs per month.

For one year of use, the contribution to VAT at 20% would be $9600; more than two

months of cloud usage.

In the case of Amazon EC2, these taxes are calculated based on the address of a

users account allowing the cloud user to outsource computation to a tax-free region

in order to reducing the direct cost of the final service. Taxes are not the only aspect

that can affect cost variations. Location affects currency exposure, and as currencies

vary in relation to each other, this changes the final price upon payment to Amazon in

American Dollars; a process of conversion that is also charged for by the bank.

In addition to cost variations, Table A.2 also shows variations in the levels of Data

In, Data Out and I/O Requests. Submitting the SPRINT job from the UK incurred

70MB’s of extra data transferred inwards to the US Region, accounting for an addition

of $0.01 compared to the Thailand run. This is either caused by data retransmissions

when transferring data to the instances or further proves that Amazon does not correctly

record data transfer.

We also see that there are 37580 fewer recorded I/O requests from the UK, ac-

counting for $0.01 less than its counterpart therefore levelling the costs incurred due

to resource use variation; the costs in Table A.2 therefore show only the differences

due to tax. Why the number of I/O requests differ significantly is likely a result of

EC2’s underlying storage reading and writing mechanisms however experimentation

to uncover the exact cause of this variability is future work.

Furthermore, by submitting the job from Thailand, pcor’s execution time took on

average 79 seconds longer to complete. We attribute this to the relative differences in

the cloud load at the times the experiments were performed.
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A.5 Summary

In this section, we have shown that performance variabilities exist due to resource con-

tention, perhaps the time of day the cloud is used and the processor that an instances

uses. Performance can be enhanced by employing instance underutilization however

this is likely to be dependent on an application’s resource usage. The results from the

three investigations show the many uncertainties that exist surrounding cloud comput-

ing.

If a cloud user of Amazon EC2 wishes to achieve near-optimal application per-

formance, he or she must have in-depth knowledge of their application and hope that

the EC2 instance scheduler selects a near-optimal physical server, both in terms of

available hardware and resource contention. Furthermore, the cloud user must then

determine and select the most appropriate processor and level of underutilization. This

therefore places a huge workload upon cloud users and especially scientific application

users, if they want to achieve the greatest levels of performance from their application.

Additionally, the results from the other studies make this task extremely difficult

where the instance choice and overall cloud configuation are critical. For example,

large instances can outperform an extra large instance for MPI applications [121]

or performance variability can differ dependent on the Availability Zone used [194].

Therefore it is extremely unlikely that a cloud user is able to knowingly achieve opti-

mal performance for their application.

Unfortunately, this is a problem that is likely to plague other commercial cloud

infrastructures as well as the ad hoc cloud; resource contention, the time of day and

the underlying processor a virtual machine uses will also affect performance in these

cases. Therefore, as these downfalls are not unique to the ad hoc cloud, it therefore

has the potential to offer equivalent performance to commercial clouds if the research

challenges outlined in Chapter 1 have been overcome.

We have also shown that various cost variations can exist on Amazon EC2. Cost

variations may be caused by data transfer not being accurately recorded and therefore

correctly charged or by the location of a cloud-user and the local tax rates. These

cost variations may benefit the cloud user if they reside in a tax-free Region or have

applications that send small amounts of data over the network which may or may not

be recorded by Amazon EC2.

However it is highly unlikely that a charging model could be integrated into an

ad hoc cloud computing infrastructure. The fact that cost variations are present clearly
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show the difficulty of monitoring and metering cloud resources. Furthermore, charging

end-users of an ad hoc cloud may not be possible due to the concerns surrounding the

security of local resource monitoring systems that could be modified to inflate charges.

The situation would be further complicated when an ad hoc cloud is distributed over

countries with different tax systems. Although the concept of a ‘pay-as-you-go’ ad

hoc cloud is appealing, many research challenges would have to be overcome hence

we leave this for future work.
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Live Wide-area Migration of Virtual Machines Including Local Persistent State.

In Proceedings of the 3rd International Conference on Virtual Execution Envi-

ronments, VEE ’07, pages 169–179, New York, NY, USA, 2007. ACM.

[70] Krishnaveni Budati, Jason Sonnek, Abhishek Chandra, and Jon Weissman.

RIDGE: Combining Reliability and Performance in Open Grid Platforms. In

Proceedings of the 16th International Symposium on High Performance Dis-

tributed Computing, HPDC ’07, pages 55–64, New York, NY, USA, 2007.

ACM.

[71] P. Buncic, C. Aguado Sanchez, J. Bloomer, L. Franco, S. Klemer, and P. Mato.

CernVM A Virtual Software Appliance for LHC Applications. In Proceed-

ings of the XII. International Workshop on Advanced Computing and Analysis

Techniques in Physics Research, 2008.

[72] Rajkumar Buyya, James Broberg, and Andrzej Goscinski. Cloud Computing

Principles and Paradigms. Wiley, 2011.

[73] Rajkumar Buyya and Manzur Murshed. GridSim: A Toolkit for the Modeling

and Simulation of Distributed Resource Management and Scheduling for Grid

Computing. Concurreny and Computation: Practice and Experience (CCPE),

14(13):1175–1220, 2002.

[74] Rajkumar Buyya, Manzur Murshed, and David Abramson. A Deadline and

Budget Constrained Cost-Time Optimisation Algorithm for Scheduling Task

Farming Applications on Global Grids. In International Conference on Parallel

and Distributed Processing Techniques and Applications, 2001.



Bibliography 229

[75] Rajkumar Buyya and Rajiv Ranjan. Federated Rresource Management in

Grid and Cloud Computing Systems. Future Generation Computer Systems,

26(8):1189–1191, October 2010.

[76] Jamie Cameron. Managing Linux Systems with Webmin. Prentice Hall Profes-

sional, 2004.

[77] Louis-Claude Canon, Emmanuel Jeannot, and Jon B. Weissman. A Schedul-

ing and Certification Algorithm for Defeating Collusion in Desktop Grids. In

ICDCS, pages 343–352. IEEE Computer Society, 2011.

[78] Ian Foster Carl and Carl Kesselman. Globus: A Metacomputing Infrastruc-

ture Toolkit. International Journal of Supercomputer Applications, 11:115–128,

1996.

[79] Christophe Cerin and Gilles Fedak. Desktop Grid Computing. Chapman and

Hall/CRC, 2012.

[80] Abhishek Chandra and Jon Weissman. Nebulas: Using Distributed Voluntary

Resources to Build Clouds. In Proceedings of the 2009 Conference on Hot

Topics in Cloud Computing, HotCloud’09, Berkeley, CA, USA, 2009. USENIX

Association.

[81] Abhishek Chandra, Jon Weissman, and Benjamin Heintz. Decentralized Edge

Clouds. IEEE Internet Computing, 17(5):70–73, September 2013.

[82] R.G Clegg, S. Clayman, G. Pavlou, L. Mamatas, and A. Galis. On the Selec-

tion of Management/Monitoring Nodes in Highly Dynamic Networks. IEEE

Transactions on Computers, 62(6):1207 – 1220, June 2013.

[83] A. W. Cooke, A. J. G. Gray, W. Nutt, J. Magowan, M. Oevers, P. Taylor,

R. Cordenonsi, R. Byrom, L. Cornwall, A. Djaoui, L. Field, S. M. Fisher,

S. Hicks, J. Leake, R. Middleton, A. Wilson, X. Zhu, N. Podhorszki, B. Cogh-

lan, S. Kenny, and J. Ryan. The Relational Grid Monitoring Architecture: Me-

diating Information about the Grid. Journal of Grid Computing, 2, 2004.

[84] Brendan Cully, Geoffrey Lefebvre, Dutch Meyer, Mike Feeley, Norm Hutchin-

son, and Andrew Warfield. Remus: High Availability via Asynchronous Virtual



230 Bibliography

Machine Replication. In Proceedings of the 5th USENIX Symposium on Net-

worked Systems Design and Implementation, NSDI’08, pages 161–174, Berke-

ley, CA, USA, 2008. USENIX Association.

[85] Vincenzo D. Cunsolo, Salvatore Distefano, Antonio Puliafito, and Marco

Scarpa. Volunteer Computing and Desktop Cloud: The Cloud@Home

Paradigm. In Proceedings of the 2009 Eighth IEEE International Symposium

on Network Computing and Applications, NCA ’09, pages 134–139, Washing-

ton, DC, USA, 2009. IEEE Computer Society.

[86] Christopher Dabrowski. Reliability in Grid Computing Systems. Concurr. Com-

put. : Pract. Exper., 21(8):927–959, June 2009.

[87] Peter Darch and Annamaria Carusi. Retaining Volunteers in Volunteer Com-

puting Projects. Philosophical Transactions: Mathematical, Physical and En-

gineering Sciences, 368:41774192, 2010.

[88] Ewa Deelman, Gurmeet Singh, Miron Livny, Bruce Berriman, and John Good.

The Cost of Doing Science on the Cloud: The Montage Example. In Pro-

ceedings of the 2008 ACM/IEEE conference on Supercomputing, pages 1–12,

Piscataway, NJ, USA, 2008. IEEE Press.

[89] Umesh Deshpande, Brandon Schlinker, Eitan Adler, and Kartik Gopalan. Gang

Migration of Virtual Machines Using Cluster-wide Deduplication. In CCGRID,

pages 394–401. IEEE Computer Society, 2013.

[90] Bartosz Dobrzelecki, Amrey Krause, Michal Piotrowski, and Neil Chue Hong.

Managing and Analysing Geomic Data using HPC and Clouds, chapter 13,

pages 261–277. Springer, January 2011.

[91] Patricio Domingues, Filipe Araujo, and Luis Silva. Evaluating the Performance

and Intrusiveness of Virtual Machines for Desktop Grid Computing. In Pro-

ceedings of the 2009 IEEE International Symposium on Parallel and Distributed

Processing, IPDPS ’09, pages 1–8, Washington, DC, USA, 2009. IEEE Com-

puter Society.

[92] Patrcio Domingues, Bruno Sousa, and Lus Moura Silva. Sabotage-tolerance

and Trust Management in Desktop Grid Computing. Future Generation Comp.

Syst., 23(7):904–912, 2007.



Bibliography 231

[93] Dave Durkee. Why Cloud Computing Will Never Be Free. Communications of

the ACM, 8(4):20–29, April 2010.

[94] Erik Elmroth and Lars Larsson. Interfaces for Placement, Migration, and Mon-

itoring of Virtual Machines in Federated Clouds. In Proceedings of the 2009

Eighth International Conference on Grid and Cooperative Computing, GCC

’09, pages 253–260, Washington, DC, USA, 2009. IEEE Computer Society.

[95] Erik Elmroth and Johan Tordsson. A Grid Resource Broker Supporting Advance

Reservations and Benchmark-based Resource Selection. In Lecture Notes in

Computer Science, pages 1061–1070. Springer-Verlag, 2005.

[96] Erik Elmroth and Johan Tordsson. A Standards-based Grid Resource Brokering

Service Supporting Advance Reservations, Coallocation, and cross-Grid Inter-

operability. Concurr. Comput. : Pract. Exper., 21(18):2298–2335, December

2009.

[97] EPSRC. Research Councils Workshop on Cloud Computing for Research. EP-

SRC, July 2010.

[98] Trilce Estrada, Michela Taufer, and David P. Anderson. Performance Prediction

and Analysis of BOINC Projects: An Empirical Study with EmBOINC. Journal

of Grid Computing, 7(4):537–554, 2009.

[99] Constantinos Evangelinos and Chris N. Hill. Cloud Computing for Parallel Sci-

entific HPC Applications: Feasibility of Running Coupled Atmosphere-Ocean

Climate Models on Amazons EC2. In In The 1st Workshop on Cloud Computing

and its Applications (CCA), 2008.

[100] Gilles Fedak, Cecile Germain, Vincent Neri, and Franck Cappello. XtremWeb:

A Generic Global Computing System. In Proceedings of the IEEE International

Symposium on Cluster Computing and the Grid (CCGrid’01), pages 582–587,

2001.

[101] Niroshinie Fernando, Seng W. Loke, and Wenny Rahayu. Dynamic Mobile

Cloud Computing: Ad Hoc and Opportunistic Job Sharing. In Proceedings of

the 2011 Fourth IEEE International Conference on Utility and Cloud Comput-

ing, UCC ’11, pages 281–286, Washington, DC, USA, 2011. IEEE Computer

Society.



232 Bibliography

[102] Diogo Ferreira, Filipe Araujo, and Patricio Domingues. libboincexec: A

Generic Virtualization Approach for the BOINC Middleware. In Proceedings of

the 2011 IEEE International Symposium on Parallel and Distributed Processing

Workshops and PhD Forum, IPDPSW ’11, pages 1903–1908, Washington, DC,

USA, 2011. IEEE Computer Society.

[103] J Fisher-Ogden. Hardware Support for Efficient Virtualization. Technical report,

University of California, San Diego, 2006.

[104] Department for Business Innovation and Skills (BIS). Business Population Es-

timates for the UK and Regions. In Business Population Estimates 2012, 2012.

[105] Office for National Statistics. UK Standard Industrial Classification of Eco-

nomic Activities 2007 (SIC 2007). In Lindsay Prosser, editor, Office for Na-

tional Statistics. Palgrave Macmillan, 2007.

[106] Message P Forum. MPI: A Message-Passing Interface Standard. Technical

report, Knoxville, TN, USA, 1994.

[107] Ian Foster. Globus Online: Accelerating and Democratizing Science through

Cloud-Based Services. IEEE Internet Computing, 15(3):70–73, 2011.

[108] Ian Foster and Carl Kesselman, editors. The Grid: Blueprint for a New Com-

puting Infrastructure. Morgan Kaufmann Publishers Inc., San Francisco, CA,

USA, 1999.

[109] Ian Foster, Carl Kesselman, and Steven Tuecke. The Anatomy of the Grid:

Enabling Scalable Virtual Organizations. Int. J. High Perform. Comput. Appl.,

15(3):200–222, August 2001.

[110] Laura Gilbert, Jeff Tseng, Rhys Newman, Saeed Iqbal, Ronald Pepper, Onur

Celebioglu, Jenwei Hsieh, and Mark Cobban. Performance Implications of Vir-

tualization and Hyper-Threading on High Energy Physics Applications in a Grid

Environment. In 19th IEEE International Parallel and Distributed Processing

Symposium, 2005.

[111] Daniel Lombrana Gonzalez, Francisco Fernandez de Vega, L. Trujillo,

G. Olague, M. Cardenas, L. Araujo, P. Castillo, K. Sharman, and A. Silva. In-

terpreted Applications within BOINC Infrastructure. In Fernando Silva, Gaspar



Bibliography 233

Barreira, and Ligia Ribeiro, editors, IBERGRID 2nd Iberian Grid Infrastructure

Conference Proceedings, pages 261–272, Porto, Portugal, 12-14 May 2008.

[112] Jim Gray. Distributed Computing Economics. Queue, 6(3):63–68, May 2008.

[113] Albert Greenberg, James Hamilton, David A. Maltz, and Parveen Patel. The

cost of a cloud: research problems in data center networks. SIGCOMM Comput.

Commun. Rev., 39(1):68–73, December 2008.

[114] LHCb Computing Group. LHCb Computing Model. Technical report, CERN,

2005.

[115] M. Hakem and F. Butelle. Reliability and Scheduling on Systems Subject to

Failures. In International Conference on Parallel Processing, page 38. IEEE,

2007.

[116] Max Hammond, Rob Hawtin, Lee Gillam, and Charles Oppenheim. Cloud

Computing for Research. Technical report, Curties and Cartwright, June 2010.

[117] Qiming He, Shujia Zhou, Ben Kobler, Dan Duffy, and Tom McGlynn. Case

Study for Running HPC Applications in Public Clouds. In HPDC ’10: Pro-

ceedings of the 19th ACM International Symposium on High Performance Dis-

tributed Computing, pages 395–401, New York, NY, USA, 2010. ACM.

[118] Yi He, Zili Shao, Bin Xiao, Qingfeng Zhuge, and Edwin Sha. Reliability Driven

Task Scheduling for Heterogeneous Systems. In The International Conference

on Parallel and Distributed Computing and Systems, pages 465–470. ACTA

Press, 2003.

[119] Thomas A. Henzinger, Anmol V. Singh, Vasu Singh, Thomas Wies, and Damien

Zufferey. Static Scheduling in Clouds. In Proceedings of the 3rd USENIX

Conference on Hot Topics in Cloud Computing, HotCloud’11, Berkeley, CA,

USA, 2011. USENIX Association.

[120] Jon Hill, Matthew Hambley, Thorsten Forster, Muriel Mewissen, Terence M.

Sloan, Florian Scharinger, Arthur Trew, and Peter Ghazal. SPRINT: A New

Parallel Framework for R. BMC Bioinformatics, 9(1):558+, 2008.

[121] Z Hill and M Humphrey. A Quantitative Analysis of High Performance Com-

puting with Amazon’s EC2 Infrastructure: The Death of the Local Cluster? In



234 Bibliography

10th IEEE/ACM International Conference on Grid Computing, pages 26 – 33,

2009.

[122] Will Hopkins. A New View of Statisics. Internet Society for Sport Science,

2000.

[123] Eduardo Huedo, Rubén S. Montero, and Ignacio M. Llorente. Evaluating the

Reliability of Computational Grids from the End User’s Point of View. J. Syst.

Archit., 52(12):727–736, December 2006.

[124] Soonwook Hwang and Carl Kesselman. A Flexible Framework for Fault Toler-

ance in the Grid. Journal of Grid Computing, 1(3):251–272, 2003.

[125] Roman Iakymchuk, Jeff Napper, and Paolo Bientinesi. Improving High-

performance Computations on Clouds Through Resource Underutilization. In

Proceedings of the 2011 ACM Symposium on Applied Computing, SAC ’11,

pages 119–126, New York, NY, USA, 2011. ACM.

[126] A. Iosup, N. Yigitbasi, and D. Epema. On the Performance Variability of Pro-

duction Cloud Services. In IEEE/ACM International Symposium on Cluster,

Cloud, and Grid Computing (CCGrid 2011), 2011.

[127] Alexandru Iosup, Simon Ostermann, Nezih Yigitbasi, Radu Prodan, Thomas

Fahringer, and Dick Epema. Performance Analysis of Cloud Computing Ser-

vices for Many-Tasks Scientific Computing. IEEE Trans. Parallel Distrib. Syst.,

22(6):931–945, June 2011.

[128] Sadeka Islam, Jacky Keung, Kevin Lee, and Anna Liu. An Empirical Study into

Adaptive Resource Provisioning in the Cloud. In IEEE International Confer-

ence on Utility and Cloud Computing (UCC 2010), page 8, Chennai/ India, 12

2010. IEEE.

[129] C Issariyapat, P Pongpaibool, S Mongkolluksame, and K Meesublak. Using

Nagios as a Groundwork for Developing a Better Network Monitoring System.

In Proceedings of Technology Management for Emerging Technologies, 2012.

[130] K.R. Jackson, L. Ramakrishnan, K. Muriki, S. Canon, S. Cholia, J. Shalf, H.J.

Wasserman, and N.J. Wright. Performance Analysis of High Performance Com-

puting Applications on the Amazon Web Services Cloud. In IEEE Second Inter-



Bibliography 235

national Conference on Cloud Computing Technology and Science (CloudCom),

2010.

[131] Kris Jamsa. Cloud Computing. Jones & Bartlett, 2013.

[132] Zoltan Juhasz, Peter Kacsuk, and Dieter Kranzlmuller, editors. Distributed and

Parallel Systems: Cluster and Grid Computing. Springer, 2004.

[133] Mohammed J. Kabir. Apache Server Bible. IDG Books Worldwide, Inc., Foster

City, CA, USA, 1st edition, 1998.

[134] Peter Kacsuk. Science Gateways for Distributed Computing Infrastructures:

Development Framework and Exploitation by Scientific User Communities.

Springer Verlag, August 2014.

[135] Peter Kacsuk, Zoltan Farkas, Miklos Kozlovszky, Gabor Hermann, Akos Bal-

asko, Krisztian Karoczkai, and Istvan Marton. WS-PGRADE/gUSE Generic

DCI Gateway Framework for a Large Variety of User Communities. J. Grid

Comput., 10(4):601–630, December 2012.

[136] Ali Khajeh-Hosseini, David Greenwood, and Ian Sommerville. Cloud Migra-

tion: A Case Study of Migrating an Enterprise IT System to IaaS. In Pro-

ceedings of the 2010 IEEE 3rd International Conference on Cloud Computing,

CLOUD ’10, pages 450–457, Washington, DC, USA, 2010. IEEE Computer

Society.

[137] Ekasit Kijsipongse and Suriya U-ruekolan. Scaling Hadoop Clusters with Vir-

tualized Volunteer Computing Environment. In Proceedings of the 11th In-

ternational Joint Conference on Computer Science and Software Engineering

(JCSSE), pages 146–151. IEEE, May 2014.

[138] Jinoh Kim, Abhishek Chandra, and Jon B. Weissman. Exploiting Heterogeneity

for Collective Data Downloading in Volunteer-based Networks. In 7th IEEE

International Symposium on Cluster Computing and the Grid (CCGrid), pages

275–282, 2007.

[139] Jinoh Kim, Abhishek Chandra, and Jon B. Weissman. Accessibility-based Re-

source Selection in Loosely-coupled Distributed Systems. In Proceedings of the

28th International Conference on Distributed Computing Systems, pages 777–

784, 2008.



236 Bibliography

[140] Jinoh Kim, Abhishek Chandra, and Jon B. Weissman. Using Data Accessibil-

ity for Resource Selection in Large-Scale Distributed Systems. IEEE Trans.

Parallel Distrib. Syst., 20(6):788–801, June 2009.

[141] Graham Kirby, Alan Dearle, Angus McDonald, and Alvaro Fernandes. An Ap-

proach to Ad-Hoc Cloud Computing. University of St Andrews, Whitepaper,

2010.

[142] D. Kondo, B. Javadi, P. Malecot, F. Cappello, and D.P. Anderson. Cost-Benefit

Analysis of Cloud Computing versus Desktop Grids. IEEE International Sym-

posium on Parallel Distributed Processing, pages 1 –12, May 2009.

[143] Donald Kossmann, Tim Kraska, and Simon Loesing. An Evaluation of Alter-

native Architectures for Transaction Processing in the Cloud. In Proceedings

of the 2010 ACM SIGMOD International Conference on Management of Data,

SIGMOD ’10, pages 579–590, New York, NY, USA, 2010. ACM.

[144] M Kozlowszky, K Karoczkai, I Marton, A Balasko, A Marosi, and P Kac-

suk. Enabling Generic Distributed Compuuting Infrastructure Compatibility for

Workflow Management Systems. Computer Science, 13(3):61–78, 2012.

[145] Shonali Krishnaswamy, Seng Wai Loke, and Arkady Zaslavsky. Estimating

Computation Times of Data-Intensive Applications. IEEE Distributed Syst. On-

line, 5, 2004.

[146] Hyun Jung La and Soo Dong Kim. A Self-Stabilizing Process for Mobile Cloud

Computing. In Proceedings of the 2013 IEEE Seventh International Symposium

on Service-Oriented System Engineering, SOSE ’13, pages 454–462, Washing-

ton, DC, USA, 2013. IEEE Computer Society.

[147] C Lac and S Ramanathan. A Resilient Telco Grid Middleware. In 11th IEEE

Symposium on Computers and Communications, pages 306–311, June 2006.

[148] G Lanfermann, G Allen, T Radke, and E Seidel. Nomadic Migration: Fault

Tolerance in a Disruptive Grid Environment. In 2nd IEEE/ACM International

Symposium om Cluster Computing and the Grid, 2002.

[149] E. Laure, C. Gr, S. Fisher, A. Frohner, P. Kunszt, A. Krenek, O. Mulmo,

F. Pacini, F. Prelz, J. White, M. Barroso, P. Buncic, R. Byrom, L. Cornwall,



Bibliography 237

M. Craig, A. Di Meglio, A. Djaoui, F. Giacomini, J. Hahkala, F. Hemmer,

S. Hicks, A. Edlund, A. Maraschini, R. Middleton, M. Sgaravatto, M. Steen-

bakkers, J. Walk, and A. Wilson. Programming the Grid with gLite. In Compu-

tational Methods in Science and Technology, page 2006, 2006.

[150] Craig A. Lee. A Perspective on Scientific Cloud Computing. In HPDC ’10:

Proceedings of the 19th ACM International Symposium on High Performance

Distributed Computing, pages 451–459, New York, NY, USA, 2010. ACM.

[151] Ricardo Lent and Javier Barria. Towards Reliable Mobile Ad hoc Networks,

chapter 6. InTech, 2011.

[152] Wubin Li, Johan Tordsson, and Erik Elmroth. Modeling for Dynamic Cloud

Scheduling Via Migration of Virtual Machines. In Proceedings of the 2011

IEEE Third International Conference on Cloud Computing Technology and Sci-

ence, CLOUDCOM ’11, pages 163–171, Washington, DC, USA, 2011. IEEE

Computer Society.

[153] Maik Lindner, Fermn Galán, Clovis Chapman, Stuart Clayman, Daniel Henriks-

son, and Erik Elmroth. The Cloud Supply Chain: A Framework for Information,

Monitoring, Accounting and Billing. In 2nd International ICST Conference on

Cloud Computing (CloudComp 2010). Springer Verlag, 2010.

[154] Michael Litzkow, Miron Livny, and Matthew Mutka. Condor - A Hunter of Idle

Workstations. In Proceedings of the 8th International Conference of Distributed

Computing Systems, June 1988.

[155] Ashley D. Lloyd and Terence M. Sloan. Intercontinental Grids: An Infrastruc-

ture for Demand-Driven Innovation. J. Grid Comput., 9:185–200, June 2011.

[156] Wei Lu, Jared Jackson, and Roger Barga. AzureBlast: A Case Study of Devel-

oping Science Applications on the Cloud. In HPDC ’10: Proceedings of the

19th ACM International Symposium on High Performance Distributed Comput-

ing, pages 413–420, New York, NY, USA, 2010. ACM.

[157] Frederic Magoules. Fundamentals of Grid Computing: Theory, Algorithms and

Technologies. Chapman & Hall/CRC, 2010.



238 Bibliography

[158] Ming Mao, Jie Li, and Marty Humphrey. Cloud Auto-scaling with Deadline and

Budget Constraints. In Proceedings of the 2010 11th IEEE/ACM International

Conference on Grid Computing, pages 41–48, October 2010.

[159] Cecchi Marco, Capannini Fabio, Dorigo Alvise, Ghiselli Antonia, Gi-

anelle Alessio abd Giacomini Francesco, Maraschini Alessandro, Molinari Elis-

abetta, Monforte Salvatore, and Petronzio Luca. The gLite Workload Manage-

ment System. Journal of Physics, 219, 2010.
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