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Abstract 

This thesis describes (1) a simple and effective method for growing large numbers 

of fern gametophytes under field conditions and (2) the application of this method to 

investigate the sequence and timing of events in the fern life-cycle following spore 

dispersal or soil disturbance at different times of the year. Long-term field 

experiments involving Athyrium filix-femina, Blechnum spicant, Polystichum setiferum 

and Phyliltis scolopendrium were initiated at 2 sites near Edinburgh in January and 

October 1988. During these experiments (which continued till January 1990) both 

sites experienced a series of exceptionally mild Winters. The results for the 4 species 

were strikingly similar. Spores sown in January germinated in the Spring and 

gametophytes became sexual in the Summer. Spores sown in October germinated 

in the Winter and gametophytes became sexual in the following year between mid-

Spring and mid-Summer. Germination was synchronous although many spores did' 

not produce gametophytes. Gametophytes quickly became 2-dimensional; no 

protonemata were observed. Sex organs developed and matured rapidly and their 

production was continuous. Most populations consisted of male, female and bisexual 

gametophytes. In general, female gametophytes were larger than bisexual 

gametophytes and all archegoniate gametophytes were larger than male 

gametophytes. All archegoniate gametophytes were meristic; all male gametophytes 

were ameristic. Most populations were predominantly male. Female gametophytes  

were always more abundant than bisexual gametophytes. All bisexual gametophytes, 

were protandrous. Fertilization was often rapid, often occurred at high frequency and 

was not seasonal. Polyembryony was rare. All gametophytes from the January. 

sowing survived the Winter of 1988/'89 but male and fertilized archegoniate 

'gametophytes began to die in the Spring or Summer of 1989. No sporelings died. 

All gametophytes and sporelings from the October sowing survived throughout the 

experiment. A third (short) field experiment involving A. fihix-femina, B. spicant, P. 

setiferum, P. scolopendrium, Dryopteris affinis subsp. borrer Dryopteris dilatata,: 

Dryopteris fihix-mas and Pteridium aquillnum was initiated in August 1989. Spores of' 

all 8 species germinated more or less immediately but only gametophytes of P., 

aquiIinum became sexual before Winter. In one population fertilization occurred, 

before the end of the year. 
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Chapter 1 



Introduction 

Objectives 

To pioneer a simple experimental approach to facilitate and encourage long-term 

studies of fern gametophyte development in natural habitats. 

To use this approach to investigate the sequence and timing of events in the fern 

life cycle following 'spore dispersal' or 'soil disturbance' at different times of the 

year. 

Background 

The Filicales is the largest group of living pteridophytes. There are more than 12,000 

species in at least 400 genera (Page, 1979a). Such species diversity and the fact 

that many of the largest genera of Filicales evolved and radiated concurrently with the 

angiosperms (Lovis, 1977) belies the popular belief that ferns as a whole are ancient 

and in decline. 

The majority of ferns is homosporous (P1/u/aria globuilfera is the only heterosporous 

species in the British Isles). Like all homosporous pteridophytes, homosporous ferns 

have a life cycle which involves an alternation of 2 free-living generations; the 

sporophyte which is large, vascular and long-lived produces the spores; the 

gametophyte which is tiny, non-vascular and short-lived produces the sex organs [i.e. 

antheridia (a") and/or archegonia (s)]. Three types of mating events are possible 

(Kiekowski, 1969; Lloyd, 1974): 1. inter-gametophytic crossing, the cross-fertilization 

of gametophytes derived from the spores of different sporophytes (out-crossing), 2. 

inter-gametophytic se/fing, the cross-fertilization of gametophytes derived from the 

spores of a single sporophyte (which is analogous to selfing in seed plants) and 3. 

intra-gametophytic se/fing, the self-fertilization of a bisexual gametophyte (this results 

in a completely homozygous sporophyte). The term inter-gametophytic mating is 

used to describe the fusion of sperm and egg from different gametophytes if the origin 

of the gametophytes is uncertain (Klekowski, 1979). 
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The distribution of the sporophyte is determined by spore dispersal and the 

establishment and fertilization of the gametophyte. Successful sexual reproduction 

in a fern thus requires a site where conditions support first the gametophyte, with 

many features reminiscent of a thalloid liverwort, and then the sporophyte, with some 

of the characteristics of a terrestrial angiosperm. This dual requirement imposes a 

restriction on the number of 'safe sites' for each species (Cousens etal., 1985, 1988). 

The only escape from this restriction is the vegetative spread of perennial 

sporophytes which can thus invade habitats unsuitable for gametophyte establishment 

and the asexual propagation of gametophytes by gemmae which can perpetuate 

species beyond the range of the sporophyte (Farrar, 1967, 1971, 1985; Rumsey et 

al., 1992). 

The first illustrated description of fern spore germination and gametophyte 

development was published by John Lindsay in 1794 but it was not until around 1850 

that the cycle of alternating free-living gametophytes and sporophytes was properly 

understood (references in Dyer, 1979a). Since then the 'classic' description of the 

fern life cycle has become firmly established in almost every introductory botanical 

textbook and most botanists would now profess to 'know the fern life cycle'. 

However, the classic description and most of the information on gametophytes that 

has accumulated since [several thousand studies are reviewed by Miller (1968), 

Nayar and Kaur (1971), Atkinson (1973), Lloyd (1974), Dyer (1 979b), Cousens (1988) 

and Raghavan (1989)] is based almost entirely on observations of material grown 

under artificial laboratory and greenhouse conditions. In reality, almost nothing is 

known about the natural fern life-cycle. 

Laboratory cultures differ from natural populations in many respects (Cousens et al., 

1985; Schneller etal., 1990). They are monocultures of uniform age; they are grown 

in constant abnormally low light conditions; they are grown at constant abnormally 

high temperatures; most are grown on artificial arbitrarily defined mineral agar and 

they are protected from drought, frost, erosion, competitors, herbivores and 

pathogens. Recent studies have revealed that mineral agar can influence the sexual 

development of gametophytes (Rubin and Paolillo, 1983; Rubin et aL, 1985) and that 

many brands contain impurities that are toxic to plants (Debergh, 1983; Kordan, 

1988). 



Despite the obvious need for field studies of fern gametophytes there have been very 

few e.g. Farrar (1967, 1971, 1985), Cousens (1973, 1979, 1981), Farrar and Gooch 

(1975), Tryon and Vitale (1977), Schneller (1979, 1988), Peck (1980), von Aderkas 

(1983 ), Kelly (1987), Cousens etal. (1988) and Peck et al. (1990). This deficiency 

is largely attributed to the reluctance of researchers -td attempt field studies of natural 

gametophyte populations, which are difficult, when most species can be easily and 

quickly grown from spores in the laboratory. 

To date, all detailed investigations of fern gametophyte development in nature have 

involved destructive sampling of natural populations. This approach can be 

informative, especially while so little is known, but it does have serious limitations. 

For instance, it yields information about gametophyte populations at only one moment 

in time; development cannot be followed because natural populations tend to be small 

and quickly depleted. Moreover, gametophytes are usually difficult or impossible to 

identify and their ages are always unknown. The environmental conditions with 

respect to substrate and microhabitat are also unknown and variable between 

populations. This variation, combined with the inability to devise a standard unbiased 

sampling procedure, creates serious difficulties when trying to interpret the results. 

Destructive sampling on more than one occasion from large semi-natural 

gametophyte populations (initiated in the field by sowing spores of known origin onto 

natural substrates) would, at least in theory, be more informative but in practice 

growth on the chosen substrate cannot be guaranteed e.g. Peck (1980) and P. 

Glaves, Derbyshire College of Higher Education (personal communication). 

Incidentally, attempts to initiate semi-natural populations of Equisetum te!m ate/a have 

also failed (J.N.B. Milton in Duckett, 1985). Even if semi-natural populations could 

be grown there would still be a risk of contamination by spores naturally deposited on 

the substrate either before or after the deliberate deposition. Clearly, an approach 

allowing greater experimental control is necessary if more meaningful results are to 

be obtained. 

An experimental approach was developed (and tested in the Botany department 

garden in the Summer of 1987) to overcome the practical difficulties inherent in 

studies of natural and semi-natural gametophyte populations. In particular, it was 
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designed to: 

employ a standard, well defined inoculum (i.e. known identity, density and date). 

use a standard but natural substrate. 

provide conditions that will support growth (to sporeling stage) and that are as 

close as possible to natural conditions. 

ensure abundant replicate material for destructive sampling. 

allow an easy, standard, non-disruptive method of sampling. 

enable clear interpretation of results. 

The intention was to initiate one large field experiment in the Autumn of 1987 to 

coincide with the main spore release period and to monitor gametophyte development 

for 2 years. However, the surprise discovery in 1987 of soil spore banks at the study 

sites (Lindsay and Dyer, 1990; see Appendix) added a new and exciting dimension 

to this study. Soil spore banks are of interest because they create opportunities for 

gametophyte establishment at any time of the year following soil disturbance. 

Successful gametophyte establishment might result more often from spores that 

germinate in the Spring, from soil spore banks, than from spores that germinate in 

the Autumn immediately after dispersal. In view of this possibility, field experiments 

can, with good reason, be initiated at any time of the year. 
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Materials and methods 

Selection of species 

For practical reasons the main study species had to have epigean gametophytes, had 

to produce a large number of spores most of which would survive for at least one 

year in storage, and had to be locally abundant and easily accessible. Several other 

selection criteria were applied which were not essential for this study but were used 

to ensure that the species selected were among those most likely to be chosen by 

other researchers for future field studies. By taking this into consideration, the results 

obtained in this study ought to have greater scientific value. These additional 

selection criteria restricted the choice to species that reproduce largely or solely by 

spores, that have sporophytes which are easily distinguishable from related species, 

that do not hybridize freely with other local species, that have recognizable spores 

and that are not exclusively epiphytic or lithophytic. 

All native fern species were considered; 4 were chosen. These were Athyrium flux-

femina (L.) Roth (Woodland Lady Fern), Blechnum spicant (L.) Roth (Hard/Ladder 

Fern), Phyllitis scolopendrium (L.) Newm. (Hart's Tongue Fern) and Polystichum 

setiferum (Forsk.) Woynar (Soft Shield Fern). 

Selection of sites 

Advice on the present local distribution of the four selected species was sought from 

amateur and professional botanists currently undertaking site surveys for a new flora 

(Botany of the Lothians) which is in preparation. Potential sites were then visited to 

assess their suitability for this study. An ideal field site was considered to be one 

where one or more of the selected fern species was abundant and sexually 

reproducing, close to the laboratory and easily accessible but in a protected area with 

little or no public access. Sites that had already been surveyed and for which 

botanical and geological information was available were favoured. Similar site 

selection criteria were used by Farrar and Gooch (1975), Cousens etal. (1985) and 

Werth and Cousens (1990). 

5 



Two field sites were chosen (Figure 2.1). Suitable populations of A. fihix-femina and 

B. spicant co-exist in Roslin Glen (RG), 11 km south of Edinburgh, inland, near the 

village of Roslin in Midlothian (N.G.R. NT 27 62). The closest site for suitable 

populations of both P. setiferum and P. scolopendrium is Pease Bridge Glen (PBG), 

50 km east of Edinburgh/Roslin, near the sea and the village of Cockburnspath in 

Berwickshire (N.G.R. NT 79 70). 

Climatic data 

Climatic data (maximum and minimum air temperature and precipitation) for 1988 and 

1989 and for the previous 8 years were obtained from the Met. Office Advisory 

Service, Edinburgh. The nearest climatological station to each site is shown in Figure 

2.1. Bush House (altitude = 185 m above mean sea level) is 2.5 km west of Roslin 

Glen (altitude = 100-200 m a.m.s.l). Dunbar (altitude = 25 m a.m.s.l) is 11.5 km 

north-west of Pease Bridge Glen (altitude = 25-90 m a.m.s.l) and is also on the coast. 

Field experiments 

There were 3 field experiments (Table 2.1). Experiment 1, the largest, was initiated 

in January 1988 and ran for 2 years. Experiment 2 was initiated in October 1988 and 

ran for 15 months. Experiment 3 was initiated in August 1989 and ran for 5 months 

only. 

Additional species 

Experiment 3 involved 4 additional species. These were Dryopteris affinis subsp. 

borreri (Lowe) Fraser-Jenkins (Common Golden-scaled Male Fern), Dryopteris dilatata 

(Hoffm.) A. Gray (Broad Buckler Fern), Dryopteris filix-mas (L.) Schott (Common Male 

Fern) and Pteridium aquilinum (L.) Kuhn (Bracken). These species were not selected 

using the criteria listed on page 5; they were investigated simply because they grow 

near P. setiferum and P. scolopendrium at Pease Bridge Glen and amongst A. fillx-

femina and B. spicant at Roslin Glen. 



Spore collections 

The spores used to initiate Experiment 1 were collected in 1987. The spores used 

to initiate Experiments 2 and 3 were collected in 1988 (Table 2.2). In each year 

fronds were collected from approximately 30 individuals of each species and spores 

were harvested in the laboratory as described by Dyer (1979c). Sporangial debris, 

insects, etc., were removed by sieving the liberated spores through 4 layers of lens 

cleaning tissue. Spores were stored in micro-centrifuge tubes at 4°C until required. 

Preparing pots 

Gametophytes were grown in 500 small plastic pots (5 cm diameter, 5 cm deep; 

Figure 2.2) which were planted in the ground. Holes were made in the sides of these 

pots with a soldering iron to ensure that the soil in the pots would receive water [and 

possibly beneficial micro-organisms (Page, 1979b)] from the surrounding soil. Pots 

were lined with filter paper (biodegradable) to prevent soil from falling through the 

holes during transport to the sites. Each pot had a tight-fitting transparent plastic lid 

(the base of a 5 cm diameter, 2 cm deep, Petri dish). A small ventilation hole was 

made in the side of each lid with a hot needle to prevent the build-up of potentially 

harmful gases e.g. Carbon dioxide and ethylene (References in Raghavan, 1989). 

Lids and pots were labelled with waterproof and light stable ink to ensure that they 

could be reunited if separated in the field (or during transport). 

Soil collections 

Pots were filled either with soil from Pease Bridge Glen or with soil from Roslin Glen; 

approximately 20 litres (enough to fill 250 pots) of surface soil (0-10 cm) was 

collected in small amounts, near natural gametophyte populations, at each site during 

October and November 1987. At both sites, gametophytes were most abundant on 

recently exposed mineral soil. The soil collections were thoroughly mixed, passed 

through a 1 cm aperture riddle, and stored in 2 large containers until required. 
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Soil analysis 

A small sample of each soil mixture was sent to the Scottish Agricultural Colleges' 

Central Analytical Laboratory, Edinburgh, for routine physical and chemical analyses. 

Spore bank analysis 

Each soil mixture was tested for the presence of viable fern spores by culturing 

replicate samples for 4 weeks, in the light (photon flux density = 20pEm 2s 1 ), at 

c.20°C. Large numbers of fern gametophytes (and bryophytes) developed on the 

surface of these soil samples revealing that large numbers of viable fern spores were 

present in the soil. Subsequent studies, involving detailed analysis of soil cores 

extracted from the ground in June 1988, just before the spore release season, 

confirmed that spore banks are present all year round at Pease Bridge Glen and at 

Roslin Glen (see Appendix). Re-examination of the spore bank cultures reported in 

Lindsay and Dyer (1990), once sporophytes had developed, confirmed the presence 

of A. fllix-femina, B. spicant, P. setiferum, P. scolopendrium and Dryopteris spp., 

(Dyer and Lindsay, 1992). 

Spore bank elimination 

Natural but spore-free soil was required for the field experiments. Conventional 

methods for partial or complete soil sterilization were considered to be unsuitable. 

Chemical treatments were avoided because of the possibility of unknown and/or toxic 

residues being left behind. High temperature treatments were avoided because they 

always alter the structure and chemical composition of the soil. Gamma radiation can 

be used to sterilize soil without any rise in temperature but this was also avoided 

because its effects on the chemical composition of soil are still poorly understood 

(Cawse, 1975). Gametophytes of Onoclea sensibills do not grow on autoclaved soil 

and develop abnormally on gamma-irradiated soil (Rubin and Paolillo, 1984). 

Soil was partially sterilized by a novel low temperature treatment. One week prior to 

the start of each field experiment the appropriate amount of soil was drenched with 

water and 'incubated' at room temperature for 72 hours to ensure that the fern spores 



in the soil were fully imbibed and physiologically active. The soil was then immersing 

in liquid Nitrogen (-196°C) for 24 hours and allowed to thaw at room temperature. 

This was an effective method of killing all resident spores (pteridophyte and bryophyte 

but probably not microbial) and seeds and was assumed to do less damage to the 

soil than the alternative treatments. Pots were filled to the brim with the spore-free 

soil and refrigerated until the spores of known origin were ready to be sown. 

Preparing plots 

The 3 field experiments were set up in two 1 m 2  plots at each site. These plots were 

located as close as possible to natural gametophyte populations and out of direct 

sunlight (to avoid or at least minimize any 'greenhouse' effect). The plots were dug 

over to a depth of 10 cm in November/December 1987 and all large stones, roots, 

and bulbs (mostly Alilum ursinum) were removed to facilitate the planting of pots at 

later dates. A 1 m 2  sheet of thin absorbent matting (normally used on glasshouse 

benches), with pre-cut holes for pots, was placed over the surface of each plot and 

secured with large stones (Figure 2.3). This was intended to prevent recolonization 

(especially by bryophytes) without interfering with the moisture status of the plot. 

Sowing spores 

Spores were sown in the laboratory, one species at a time. The appropriate number 

of pots (for each species and of each soil mixture) were removed from the refrigerator 

and placed in a random fashion inside a 1 m 2  box drawn on the floor. Spores were 

then sown from suspension using an aerosol (after Schwabe, 1951). The amount of 

spores that was required, from each spore collection, to achieve a standard density 

of approximately 500 viable spores CM-2  is given in Table 2.2. Fern spores can be 

deposited at this density in woodland habitats [Schneller, 1974, 1975, 1979; P. 

Glaves, Derbyshire College of Higher Education (personal communication)]. The 

spores were suspended in cold water (a trace of detergent was required to obtain a 

good suspension) and sown quickly to prevent any from becoming photosensitive. 

A few Petri dishes containing soil were placed at random among the pots on the floor. 

These were cultured for 4 weeks, in the light, at 20°C to verify that the desired 

concentration of viable spores had been achieved. In fact, the numbers of 

gametophytes (and so presumably the number of viable spores) ranged from 300-500 

cm -2 
. 
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Immediately after sowing, the lids were fitted and the pots were returned to the 

refrigerator where they were stored in darkness, usually for less than 24 hours, before 

being placed in the field. The lids were intended to create a humid environment 

(essential for the growth of gametophytes), to prevent spores from being washed into 

the soil and gametophytes from being washed away by rain, and to exclude 

extraneous moss and fern spores and surface-dwelling herbivores. 

Planting pots 

At each plot, pots of the different fern species were mixed and planted in a random 

fashion in a 10 pot  10 pot arrangement (Figure 2.3). Each pot was separated from 

its neighbours by at least 5 cm. The plots were watered immediately after planting 

new pots (in January and October 1988, and August 1989) to help the freshly 

disturbed soil settle and to ensure good contact between the walls of the pots and the 

surrounding soil. Watering was not attempted at any other times. 

Precautions 

Table 2.1 shows the number of pots that were required to obtain the data presented 

in Chapters 4-6 but it must be emphasized that all plots had extra pots of each 

species just in case some were lost or damaged. As another precaution, in case 

gametophytes did not grow at the field sites, 2 plots, identical to those at the field 

sites (one using soil from Pease Bridge Glen, the other using soil from Roslin Glen), 

were set up in a secluded shady (but unfortunately very dry) corner of the Botany 

department garden. These plots were watered as necessary to ensure their survival 

for 2 years. Fortunately, they were not required. 

Maintenance and sampling 

Sites were visited at least once a month for sampling and/or general maintenance of 

plots. More frequent visits were necessary in the Autumns of 1988 and 1989 to 

remove leaf litter. The sampling dates are shown on the graphs (below the x-axes) 

in Chapters 4-6. On each of these occasions, one pot of each species (in the 

appropriate experiment) was removed from each of the 4 plots. Pots to be sampled 
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were selected in the laboratory before the site visits using plot maps and a random 

co-ordinate system. Back at the laboratory, pots were placed in moisture retaining 

plastic boxes and stored in darkness at 4°C until it was convenient to examine them. 

A few samples were stored under these conditions for almost 2 months without any 

apparent deterioration. It was assumed that no growth occurred during storage. 

Processing specimens 

A tiny cluster of gametophytes was carefully but quickly (to avoid dehydration) 

removed from near the centre of each pot and transferred to water in a Petri dish 

using watchmakers forceps and a selection of fine dissection needles (made by 

dipping tungsten wire in molten Sodium Nitrite). This, and most subsequent 

manipulations required the use of a good dissection microscope (magnification range 

xl 0 - x30) and a powerful fibre optic system. Gametophytes were carefully separated 

under water and as much soil as possible was dislodged from the rhizoids. Additional 

clusters were treated in the same way until a total of 50-100 gametophytes were 

obtained. These were then transferred to micro-centrifuge tubes filled with a mixture 

of chloral hydrate and acetocarmine (recipe in Edwards and Miller, 1972) and 

incubated at 50°C in a water bath for 2 hours. This stain is excellent for detecting 

antheridia and archegonia at all stages of development. Some specimens were 

stored in chloral hydrate-acetocarmine for more than 1 year without any apparent 

deterioration. 

Stained specimens were rinsed in water then examined under water. Gametophytes 

without sex organs were classed as 'pre-sexual'. Gametophytes with sex organs 

were classed as 'male', 'female' or 'bisexual' even when the organs were obviously 

too immature or too old to function. Gametophytes of each sex were placed in 

separate Petri dishes so that they could be counted more easily. The number of 

embryos and leaves on sporelings, and general observations on the shape and 

condition of gametophytes was also recorded. 

Ten intact gametophytes of each sex (including pre-sexual) were selected at random 

for area measurements. If there were less than 10 gametophytes then all intact 

specimens were measured. The selected gametophytes were carefully mounted in 
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water on glass slides and sealed under coverslips using thick transparent nail varnish 

(any attached sporelings were removed first). Areas were determined using a 

Quantimet 970 Image Analyzing computer (Cambridge Instruments, Cambridge) 

connected to a microscope. An on-screen editing facility enabled rhizoids to be 

'removed' before areas were calculated. The programme was written especially for 

this purpose by Dr. C.E. Jeifree, director of the Electron Microscopy Unit at 

Edinburgh University. Hickok and Schwarz (1986) used a similar image analysis 

system to measure fern gametophytes. Some mounted specimens were stored for 

several weeks (at 4°C) before they were measured. 

Processing data 

The raw area data were processed on the Edinburgh University mainframe computer 

(EMAS) using 'Minitab' (a widely available statistics package for mainframes and 

PC's). All graphs were produced on an IBM compatible PC using 'Fig-P' (a scientific 

graphics package available in the U.K. from Biosoft Ltd. Cambridge). 
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Figure 2.1. Location of field sites (s) and nearest climatological stations (0). 
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Experiment 3 
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Table 2.1. Plan of the field experiments. Shading indicates months in which samples 

were collected. 
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Table 2.2. Origin, viability and amount of spores used for the field experiments. The viability (final percentage germination) 

of each spore collection was determined by culturing samples on mineral agar (See Dyer, 1979c p282 for recipe), in the light 

(photon flux density = 20 pEm 2s 1) at 20°C, for 3 weeks. It was estimated [using a 'Sedgewick Rafter' counting cell (Graticules 

Ltd., Tonbridge)] that there were approximately 60,000 spores in 1 mg of each spore collection. 
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Figure 2.2. Gametophytes were grown in small plastic pots fitted with transparent 

plastic lids. This photograph was taken before the need for paper liners was realized. 
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Figure 2.3. One of the 4 experimental plots (PBG.2. May 1989). 
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Species, sites and climate 

Species 

The following species descriptions relate to Table 3. 1, Table 3.2 and Figure 3.1. They 

are based on published information and on personal observations. 

Main species 

Athyrium fihix-femina 

fihix-femina is widespread and abundant throughout most of the British Isles and 

to an altitude of 850 m. It grows in a wide range of natural and man-made habitats 

but only on moist acidic soil. A. fihix-femina is frequently associated with B. spicant. 

At Roslin Glen the fronds emerge in mid-Spring and expansion is complete by early 

Summer. All fronds are fertile. Most spores are released between mid-August and 

mid-September. Spore release continues until the first Autumn frost when fronds 

collapse and then die rapidly. A few spores of A. fihix-femina can germinate in the 

dark but 'most are photoblastic [i.e. require light to germinate (Stoutjesdijk, 1972)]. Many can 

survive in the soil for at least 2 years (Dyer and Lindsay, 1992). Most sporophytes are the 

products of inter-gametophytic crossing mediated to some extent by a pheromone 

(antheridlogen) which promotes dioecy. There are 2 other species of Athyrium in the British 

Isles but no hybrids have been reported. 

Blechnum spicant 

spicant is widespread throughout the wetter parts of the British Isles (i.e. in western 

and/or upland areas). It grows in a wide range of habitats from near sea level to 

mountain tops but only on moist acidic soil. B. spicant is frequently associated with 

A. fihix-femina. B. spicant is dimorphic. Only the phenology of fertile fronds is shown 

in Figure 3.1. At Roslin Glen the sterile and fertile fronds emerge at the same time 

(contra Page, 1982) in mid-Spring. Spores are produced in linear sori and most are 
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released between mid-September and mid-October. Fertile fronds die with the onset 

of Winter; sterile fronds are Winter-green and begin to die in the Spring shortly before 

new fronds emerge. All spores of B. spicant are photoblastic. Many can survive in 

the soil for at least 2 years (Dyer and Lindsay, 1992). Most sporophytes are the 

products of inter-gametophytic crossing mediated to some extent by an antheridiogen. 

B. spicant is the only native member of the genus Blechnum in the British Isles. 

Polystichum setiferum 

P. setiferum grows only at low altitude. It is widespread in western and southern 

parts of the Britain Isles but is scarce in northern England and rare in Scotland except 

near the west coast. P. setiferum grows only on moist base-rich soil and in Scotland 

is largely restricted to river-valley woodlands that have high humidity and offer good 

shelter and shade. P. setiferum is frequently associated with P. scolopendrium. At 

Pease Bridge Glen the fronds emerge in mid-Spring and expansion is complete by 

early Summer. Most fronds are fertile. Spores mature quickly and are released from 

mid-July to mid-September. Most spores are released in August. Fronds are Winter-

green and begin to die in the Spring shortly before new fronds emerge. All spores 

of P. setiferum are photoblastic. Many can survive in the soil for at least 1 year. A 

laboratory experiment (Lindsay and Dyer, 1989; Lindsay etal., 1992; see Appendix) 

suggests that some spores might survive much longer. The mating system of P. 

setiferum is not known. P. setiferum can hybridize with Polysti chum acu!eatum (Hard 

Shield Fern) and Polystichum !onchitis (Holly Fern). 

Phyllitis scolopendrium 

P. scolopendrium grows only at low altitude. It is widespread and abundant in 

western and southern parts of the British Isles but becomes less abundant further 

east and north. It is rare in central and northern Scotland. P. scolopendrium grows 

in a wide range of natural and man-made habitats on moist base-rich soil or moist 

base-yielding rocks and walls. In Scotland P. scolopendrium is largely restricted to 

river-valley woodlands that have high humidity and offer good shelter and shade. P. 

scolopendrium is frequently associated with P. setiferum. At Pease Bridge Glen the 

fronds emerge in mid-Spring and expansion is complete by mid-Summer. Most 
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fronds (even small ones) are fertile. Spores, produced in linear son, are released 

throughout Autumn and early Winter. This exceptionally long spore release period 

results from the fact that the fronds are ever-green and the fact that many spores 

become trapped deep inside sori and are only released as dehisced sporangia near 

the surface are lost. Most spores are released in October. All spores of P. 

scolopendrium are photoblastic. Many can survive in the soil for at least 1 year. A 

laboratory experiment (see Appendix) suggests that some spores might survive much 

longer. The mating system of P. scolopendrium is not known. P. scolopendrium can 

hybridize with Asplenium adiantum-nigrum (Black Spleenwort), Asplenium billotii 

(Lanceolate Spleenwort) and Aplenium trichomanes subsp. quadnvalens (Common 

Maidenhair Spleenwort). 

Additional species 

Dryopteris affinis subsp. borreri 

D. affinis subsp. borreri is apogamous. Archegonia are not produced. Antheridia are 

produced and although sperm cannot fertilize other gametophytes of the same 

species they can fertilize archegoniate gametophytes of D. filix-mas. Viable spores 

of Dryopteris spp. exist in the soil at Pease Bridge Glen and at Roslin Glen but it has 

still to be established that at least some are D. affinis. 

Dryopteris dilatata 

The sex expression of D. dilatata on mineral agar suggests that it is an out-crossing 

species (with no antheridiogen) but this has still to be confirmed by genetic analyses 

and field studies. D. dilatata can hybridize with Dryopteris carthusiana (Narrow 

Buckler Fern) and Dryopteris expansa (Northern Buckler Fern). Viable spores of 

Dryopteris spp. exist in the soil at Pease Bridge Glen and at Roslin Glen but it has 

still to be established that at least some are D. dilatata. 
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Dryopteris fihix-mas 

The sex expression of D. filix-mas on mineral agar suggests that it is an out-crossing 

species (with an antheridiogen) but this has still to be confirmed by genetic analyses 	_ 

and field studies. D. fihix-mas can hybridize with D. affinis agg., D. carthusiana and 

Dryopteris oreades (Mountain Male Fern). Viable spores of Dryopteris spp. exist in 

the soil at Pease Bridge Glen and at Roslin Glen but it has still to be established that 

at, least some are D. fillx-mas. 

Pteridium aquilinum 

P. aquillnum can reproduce sexually but most of its spread is attributed to enormous 

rhizomes which grow rapidly and fragment into smaller plants. Some clones are over 

1000 years old (Sheffield et al., 1989). Although it produces more spores per frond 

than any other British species, gametophytes are rarely found in nature. Most 

sporophytes are the products of inter-gametophytic crossing mediated to some extent 

by an antheridiogen. Spores of P. aquilinum are unusual in that as many as 58% 

germinate in the dark. A recent study (Lindsay, Sheffield and Dyer, unpublished) has 

confirmed that spores of P. aquilinum survive for only a few months in the soil. P. 

aquilinum is the only species in the genus Pteridium. 

Sites 

In Scotland, ancient deciduous woodland is scarce and in decline. It only exists as 

small patches in steep-sided river valleys that are unsuitable for cultivation and 

inaccessible to large grazing animals. 

Pease Bridge Glen and Roslin Glen shelter two of the largest remaining fragments 

of primary mixed oakwoods in south-east Scotland. For this reason, both have been 

designated Nature Reserves and are presently managed by the Scottish Wildlife Trust 

(S.W.T.). Both have also been designated Sites of Special Scientific Interest 

(S.S.S.I.); Pease Bridge Glen for its ancient woodland status and for some locally rare 

bryophytes and beetles; Roslin Glen for its ancient woodland status and its impressive 

gorge. 
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Pease Bridge Glen 

Pease Bridge Glen (Figure 3.2a) is a narrow, steep-sided, rocky river valley, 0.5 km 

from the sea. It is known locally as 'Pease Dean' and it contains the Pease Burn. 

The geology of Pease Bridge Glen is diverse and difficult to describe because of large 

deposits of glacial drift material. The underlying rock which is exposed in many 

places in and along the sides of the burn is mostly Silurian greywacke and Upper Old 

Red Sandstone. The greywacke is reputed to be somewhat, but not strongly, base-

yielding. 

The soil collected in the dean, near natural gametophyte populations, for use in the 

field experiments, was low in organic matter and was classed after Particle Size 

Analysis as 'sandy loam' (Table 3.3). It had a circum-neutral pH of 6.1 and compared 

to most agricultural soils it was rich in Potassium and even richer in Magnesium. 

Local records indicate that Pease Bridge Glen has been under native deciduous 

woodland since at least the middle of the sixteenth century. Today, 13 native tree 

species are present: Alnus glutinosa (Alder), Betula pubescens (Birch), Gory/us 

avellana (Hazel), Crataegus monogyna (Hawthorn), Fraxinus excelsior (Ash), hex 

aquifollum (Holly), Prunusavium (Gean), Quercuspetraea (Sessile Oak), Salixcaprea 

(Great Sallow), Sallx cinerea (Common Sallow), Sambucus nigra (Elder), Sorbus 

aucuparia (Rowan), and Ulmus glabra (Wych Elm). There are also 3 introduced tree 

species: Aesculus hippocastanum (Horse-chestnut), Acer pseudoplatanus (Sycamore) 

and Fagus sylvatica (Beech). A. hippocastanum and F. sylvatica are infrequent but 

A. pseudoplatanus has become the dominant tree species in Pease Bridge Glen and 

its regeneration is being actively discouraged. 

On the woodland floor there are over 170 species of flowering plants including many 

that are indicative of ancient woodland e.g. A/hum ursinum (Ramsons), Anemone 

nemorosa (Wood Anemone), Geum urbanum (Herb Bennet), Mercurialls perennis 

(Dog's Mercury), Oxalis acetosella (Wood-sorrel) and Silene dioica (Red Campion). 

M. perennis and A. ursinum are ubiquitous. 
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The depth of the dean (up to 25 m), its proximity to the sea, the presence of the burn 

(2-5 m wide), and the dense tree canopy between Spring and Autumn result in 

conditions of shelter and humidity that are exceptionally high for eastern Britain. 

Indeed, conditions in Pease Bridge Glen are so unique that several  lvq~ rare 

bryophytes are present. The most notable are Cololejeunea rossettiana, Lejeunea 

lamacerina and Lophocolea fragrans. These oceanic liverworts are normally 

restricted to the south-west of Britain and even there C. rossettiana and L. fragrans 

are rare (Hill etal., 1991). Pease Bridge Glen is their only known eastern locality. 

Conditions in Pease Bridge Glen are also suitable for large populations of P. 

setiferum and Equisetum telmateia (Great Horsetail); both species are extremely rare 

in south-east Scotland. 

Table 3.4 lists all the pteridophytes recorded at Pease Bridge Glen since 1985. A. 

adiantum-nigrum and B. spicant were not observed during this study. P. setiferum, 

P. sco!opendrium, A. fillx-femina, D. affinis agg., D. dilatata, and D. fillx-mas are the 

most common ferns. P. setiferum and P. sco!opendrium are restricted to the steep, 

base-rich lower slopes near rocky outcrops. A. fillx-femina, Dryopteris spp. and P. 

aquillnum are most abundant in the acid woodland above. 

All the study species produced spores each year from 1986 - 1989. Fern 

gametophytes and sporelings were frequently observed indicating that at least some 

species are sexually reproducing at this site. 

Pease Bridge Glen receives a large number of visitor but few of them stray from the 

Southern Upland Way long-distance footpath which is high on the east bank, or from 

a specially constructed walkway high on the west bank. Much of the dean is not 

visible from these paths and there is no easy access to the burn from them. 

The experimental plots were located on the west bank, 10 m apart, and 2 m from the 

burn. Plot 1 (PBG.1.) was located on level ground. Plot 2 (PBG.2.; Figure 2.3) was 

located on a slope because there was not another 1M2  area of level ground. Both 

plots were surrounded by P. setiferum and P. scolopendrium and were within 50 cm 

of natural gametophyte populations. The soil in both plots was permanently moist. 
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Roslin Glen 

Roslin Glen is an extremely deep gorge, 12.5 km from the sea, containing a 2.5 km 

section of the River North Esk. 

The geology of Roslin Glen is diverse. There are numerous exposed strata and large 

deposits of glacial drift material. The underlying Carboniferous rock consists of coal 

seams, red sandstones, limestones, clays, shales and ironstone. 

The soil collected in the glen, near natural gametophyte populations, for use in the 

field experiments, was low in organic matter and was classed, after Particle Size 

Analysis as 'loam' (Table 3.3). It had an acidic pH of 4.8 and compared to most 

agricultural soils it was deficient in Calcium and even more deficient in Phosphorous. 

Local records indicate that Roslin Glen has been under native deciduous woodland 

since at least the middle of the eighteenth century. Today, 13 native tree species are 

present: A. glutinosa, B. pubescens, C. avellana, C. monogyna, F. excelsior, I. 

aquifollum, Pinus sylvestris (Scots Pine), P. avium, Prunus padus (Bird-Cherry), 

Quercus robur (Common Oak), S. nigra, S. aucuparia and U. glabra. There are also 

6 introduced tree species: A. hippocastanum, A. pseudoplatanus, F. sylvatica, Larix 

decidua (Larch), Picea abies (Norway Spuce), and Ti/ia x vulgaris (Common Lime). 

A. pseudoplatanus has become the dominant tree species in Roslin Glen and its 

regeneration is being actively discouraged. 

On the woodland floor there are over 200 species of flowering plants including many 

that are indicative of ancient woodland e.g. A. ursinum, A. nemorosa, G. urbanum, M. 

perennis, 0. acetosella, S. dioica, and Ste//aria nemorum (Wood Chickweed). 

The depth of the glen (up to 45 m), the presence of the River North Esk (10-15 m 

wide), and the dense tree canopy between Spring and Autumn result in an extremely 

sheltered and humid environment. Consequently, ferns are the most conspicuous 

feature of this woodland at ground level. 
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Table 3.4 lists all the pteridophytes recorded at Roslin Glen since 1985. E. hyemale 

and E. telmateia are extremely rare in south-east Scotland. A. adiantum-nigrum, D. 

carthusiana, P. connectills, P. scolopendrium, E. fluviatile and E. telmateia were not 

observed during this study. There is only one plant of P. setiferum. A. filix-femina, 

B. spicant, D. affinis agg., D. dilatata and D. filix-mas are the most common species. 

All the study species, except P. aquillnum, produced spores each year from 1986 - 

1989; P. aquilinum was consistently sterile. Fern gametophytes and sporelings were 

frequently observed indicating that at least some species are sexually reproducing at 

this site. 

The woodland on the east bank of the River North Esk receives very few visitors. 

The experimental plots were located in this woodland on the banks of a small stream 

(1 m wide) which feeds the River North Esk. Plot 1 (RG.1.) was located on the south 

bank, 10 m from the stream, on level ground. Plot 2 (RG.2.) was located on the north 

bank 50 m downstream from Plot 1. It was 2 m from the stream and also on level 

ground (Figure 3.2b). Both plots were surrounded by many ferns (including A. flux-

femina and B. spicant) and were within 1 m of natural gametophyte populations. The 

soil in plot 1 was permanently moist but the soil in plot 2 was frequently dry. 

Climate 

Temperature and precipitation :1980 - 1989 

The mean daily, and mean monthly, maximum and minimum air temperatures at 

Dunbar and Bush House, for the 10 year period, 1980 - 1989, are shown in Figures 

3.3 and 3.4. These graphs span a 2 year period so that they can be more easily 

compared with Figures 3.7 and 3.8. 

In an average year, air temperatures at Dunbar (Figure 3.3) would range from -4°C 

in January to 24°C in July/August; mean daily minima would range from 2°C in 

January to 11°C in July/August; mean daily maxima would range from 7°C in January 

to 18°C in July/August. There would be 33 days with frost and frost would occur in 

24 



each month from early November to mid-April. Temperatures (except the mean daily, 

and monthly, maxima in May, June and July) at Bush House would be slightly lower 

(Figure 3.4). Air temperatures at Bush House would range from -7°C in January to 

24°C in July; mean daily minima would range from 0°C in January to 10°C in July; 

mean daily maxima would range from 5°C in January to 18°C in July. There would 

be 59 days with frost and frost would occur in each month from mid-October to late 

April. 

The mean monthly precipitation, at Dunbar and Bush House, for the 10 year period, 

1980-1989 is shown in Figures 3.5 and 3.6. These bar charts span a 2 year period 

so that they can be more easily compared with Figures 3.9 and 3.10. 

In an average year, Dunbar would receive 594 mm of precipitation (Figure 3.5) and 

Bush House would receive 933 mm (Figure 3.6). At both sites, most of this 

precipitation would fall as rain and would be distributed as follows: Dunbar - Spring 

= 127 mm, Summer = 162 mm, Autumn = 176 mm and Winter = 129 mm; Bush 

House - Spring = 198 mm, Summer = 222 mm, Autumn = 271 mm and Winter = 242 

mm. Very little snow would fall at Dunbar and would lie for only 5 days. More snow 

would fall at Bush House and would lie for 25 days. 

Temperature and precipitation :1988 and 1989 

The mean daily, and monthly, maximum and minimum air temperatures at Dunbar 

and Bush House, for the 2 year period, January 1988 - January 1990, are shown in 

Figures 3.7 and 3.8. By comparing these figures with Figures 3.3 and 3.4 it becomes 

obvious that the Winters 1987/'88, 1988/'89 and 1989190 were somewhat atypical. 

Winter 1987188 was, at the time, the mildest Winter since the mid 1970's with 

temperatures in January and February as much as 2.5°C above the average for 

Dunbar and as much as 4.5°C above the average for Bush House. Winter 1988/89 

was even milder and was in fact the mildest Winter in Scotland since the mid 1940's. 

Temperatures in December and January were as much as 4.5°C above the average 

for Dunbar and as much as 7°C above the average for Bush House. Winter 1989/90 

was not as mild as the previous Winter but was milder than Winter 1987/88. 
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Although December was colder than average, temperatures in January were as much 

as 3.5°C above the average for Dunbar and as much as 6°C above the average for 

Bush House. 

At Dunbar, there were 18 days with frost in 1988 and 25 days with frost in 1989. The 

last Spring frost of 1988 was 13 April and the first Autumn frost was 29 October. 

There was no frost in December 1988 or in January 1989. The last Spring frost of 

1989 was 26 April and the first Autumn frost was 23 November. There was no frost 

in January 1990. 

At Bush House, there were 42 days with frost in 1988 and 47 days with frost in 1989. 

The last Spring frost of 1988 was 28 April and the first Autumn frost was 11 October. 

There was only one day of frost in December 1988 (-1°C) and one in January 1989 

(-0.1 0C). The last Spring frost of 1989 was 28 April and the first Autumn frost was 6 

November. 

Mean daily, and monthly, maximum temperatures in May, June and July 1989, at both 

sites, were 1-3°C above average. 

The monthly precipitation, at Dunbar and Bush House, for the 2 year, period, January 

1988 - January 1990, is shown in Figures 3.9 and 3.10. These figures should be 

compared with Figures 3.3 and 3.4. 

Despite being flanked by 2 mild Winters, the amount, form, and pattern of 

precipitation throughout most of 1988, was not unusual. Dunbar received 550 mm; 

Bush House received 900 mm. Most of this precipitation fell as rain and was 

distributed as follows: Dunbar - Winter 1987/88 = 125 mm, Spring = 122 mm, 

Summer = 185 mm, Autumn = 130 mm and Winter 1988/89 = 64 mm; Bush House - 

Winter 1987188 = 239 mm, Spring = 196 mm, Summer = 273 mm, Autumn = 226 mm 

and Winter 1988189 = 224 mm. A little snow fell at Dunbar but did not lie. More 

snow fell at Bush House but lay for only 7 days. 

1989 was unusually dry. Dunbar received only 366 mm of precipitation; Bush House 

received only 715 mm. Most of this precipitation fell as rain and was distributed as 



follows: Dunbar - Winter 1988/89 = 64 mm, Spring = 72 mm, Summer = 121 mm, 

Autumn = 87 mm, and Winter 1989/90 = 130 mm; Bush House - Winter 1988/'89 = 

224 mm, Spring = 160 mm, Summer = 198 mm, Autumn = 109 mm and Winter 

1989/90 = 398 mm. A little snow fell at Dunbar but as in 1988 did not lie. As usual, 

more snow fell at Bush House but lay for only 11 days. 
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Experiments 1-3 

Common name 

Family 

Ploidy level (in Europe) 

Relative size 

Geographic range in Europe 

Maximum altitude in British Isles 

pH preference 

Primary mode of reproduction 

Length of fertile frond 

Number I length of son (per frond) 

Spore production (per frond) 

Spore size (area) 

Mating system 

Known to hybridize with 

Dark germination 

Soil spore bank 

Antheridiogen 

A. fihix-femina 

Woodland Lady Fern 

Athyriaceae 

Diploid (n=40, 2n=80) 

Medium - Large 

Northern-Continental 

850 m 

Calcifuge 

Sexual 

Largely out-crossing 

0 species 

Yes 

B. spicant 

Hard I Ladder Fern 

Blechnaceae 

Diploid (n=34,2n=68) 

Small - Medium 

Sub-Atlantic 

1150 m 

Calcifuge 

Sexual 

Largely out-crossing 

0 species 

Yes 

P. setlferum 

Soft Shield Fern 

Aspidiaceae 

Diploid (n=41 ,2n=82) 

Medium - Large 

Mediterranean-Atlantic 

300 m 

Calcicole 

Sexual 

? 

2 species  

P. scolopendrlum 

Harts Tongue Fern 

Aspleniaceae 

Diploid (n=36, 2n=72) 

Small - Medium 

Mediterranean-Atlantic 

500 m 

Calcicole 

Sexual 

3 species 

? 

Table 3.1. Main study species. Shading indicates personal observations. Other information from Cousens (1973, 1979, 1981), 

Darrow and Gastony (1982), Jermy etal. (1978), Page (1982, 1988), Schneller (1979, 1988) and Soltis and Soltis (1987, 1988). 
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Experiment 3 

Common name 

Family 

Ploidy level (in Europe) 

Relative size 

Geographic range in Europe 

Maximum altitude in British Isles 

pH preference 

Primary mode of reproduction 

Length of fertile frond 

Number I length of sari (per frond) 

Spore production (per frond) 

Spore size (area) 

Mating system 

Known to hybridize with 

Dark germination 

Soil spore bank 

Antheridiogen 

D. afflnis 

Golden-scaled Male Fern 

Aspidiaceae 

Triploid (n=123, 2n=123) 

Medium-Large 

Atlantic / Sub-Atlantic 

1000 m 

Wide pH tolerance 

Apomixis 

(Apogamy) 

1 species 

D. dilatata 

Broad Buckler Fern 

Aspidiaceae 

Tetraploid (n=82, 2n=164) 

Medium-Large 

Sub-Atlantic 

900 m 

Wide pH tolerance 

Sexual 

?(Largely out-crossing) 

2 species 

No 

D. fihix-mas 

Common Male Fern 

Aspidiaceae 

Tetraploid (n=82, 2n=164) 

Medium-Large 

Northern - Continental 

900 m 

Wide pH tolerance 

Sexual 

?(Largely out-crossing) 

3 species 

Yes 

P. aqulllnum 

Bracken 

Hypolepidaceae 

Tetraploid (n=52, 2n=104) 

Extra large 

Northern - Continental 

600 m 

Calcifuge 

Asexual 

300 Million 

Largely out-crossing 

0 species 

Yes 

Table 3.2. Additional study species. Shading indicates personal observations. Other information from Barker and Willmot (1985), 

Conway (1949, 1957), Jermy etal. (1978), Nâf (1958), Nâf etal. (1975), Page (1982, 1988), Wolf (1986), and Wolf etal. (1988). 
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Figure 3.1. 'Phenograms' (after Page, 1982) for sporophylls of 1. D. dilafata, 2. P. setiferum, 3. D. filix-mas, 4. A. filix-femina, 

5. P. aquilinum, 6. D. affinis subsp. borreri, 7. B. spicant, and 8. P. scolopendrium. They show, the period of frond expansion 

(first dashed line), the period from complete expansion to spore maturity (first solid line), the spore release period (thick line), 

the peak spore release period (shaded region), any period after spore release when fronds remain green (second solid line) 

and the period during which the fronds die (second dashed line). [Personal observations]. 



Figure 3.2. a. Pease Bridge Glen in May 1988. Experimental plots were located on 

the left bank 25 m upsteam (not visible). b. Roslin Glen in June 1988. Plot 2 was 

located on the level ground to the left of the stream (not visible); plot 1 was located 

50 m upstream on the opposite side. 
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Organic matter 2.3 2.2 

Coarse sand 26.5 22.9 
Physical analysis 

(/0) 
Fine sand 25.7 24.4 

Silt 30.4 30.8 

Clay 15.1 19.7 

Textural class Sandy loam Loam 

pH 6.1 4.8 

Phosphorus 31.0 6.3 

Potassium 285.0 101.0 

Chemical analysis Magnesium 383.0 205.0 

(mgkg 1  dry wt.) Sodium 50.0 35.0 

Calcium 1505.0 597.0 

Total Nitrogen 1900.0 1300.0 

Table 3.3. Physical and chemical analyses of the soil used for the field experiments. 

The values for Phosphorous, Potassium, Magnesium, Sodium and Calcium are 

estimates of the amounts available for plant uptake. Soil from Pease Bridge Glen has 

a higher pH and a higher nutrient status than soil from Roslin Glen. 
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CI, 

Species (Latin name) PBG RG Species (Common Name) 

Asplenium adiantum-nigrum L. + + Black Spleenwort 
Asplenium trichomanes L subsp.quadrivalens D.E. Meyer emend. Lovis + - Delicate I Common Maidenhair Spleenwort Athyrium fihix-femina (L) Roth + + Woodland Lady Fern 
Blechnum spicant (L) Roth + + Hard / Ladder Fern 
Dryopteris afflnis (Lowe) Fraser-Jenkins subsp. borreri (Newman) Fraser-Jenkins + + Common Golden-scaled Male Fern. Dryopteris affinis (Lowe) Fraser-Jenkins subsp. robusta Oberhoizer et von Tavel ex Fraser-Jenkins + + Robust Golden-scaled Male Fern 
Dryopteris carihusiana (Viii.) H.P. Fuchs - + Narrow Buckler Fern 
Dryopteris dihatata (Hoff m.) A. Gray + + Broad Buckler Fern 
Dryopteris expansa (C. Presi) Fraser-Jenkins & Jermy - + Northern Buckler Fern 
Dryopteris fillx-mas (L.) Schott + + Common Male Fern 
Gymnocarpiurn dryopteris (L) Newm. - + Woodland Oak Fern 
Oreopteris limbosperma (All.) Holub - + Sweet / Lemon-scented Mountain Fern 
Phegoptens connectilis (Michx) Watt - + Beech Fern 
Phyllitis scolopendnum (L) Newm. + + Harts Tongue Fern 
Polypodiurn interjecturn Shivas + - Western Polypody 
Polypodium vulgare L + + Common Polypody 
Polystichurn aculea turn (L) Roth + + Hard Shield Fern Polystichurn setiferum (Forsk.) Woynar + + Soft Shield Fern 
Pteridium aquihinum (L) Kuhn + + Bracken 

Equiseturn fluviatile L - + Water Horsetail 
Equisetum hyernale L - + Dutch Rush / Rough Horsetail Equisetum palustre L - + Marsh Horsetail 
Equiseturn sylvaticurn L + + Wood Horsetail 
Equiseturn telmateia Ehrh. + + Great Horsetail 

Table 3.4. Pteridophytes at Pease Bridge Glen and Roslin Glen (recorded since 1985). 



Figures 3.3 and 3.4. Mean daily, and mean monthly, maximum and minimum air 

temperatures at Dunbar (Figure 3.3) and Bush House (Figure 3.4) for the 10 year 

period, 1980 - 1989; mean daily minimum (.), mean daily maximum (i), mean 

monthly minimum (0) and mean monthly maximum (a). Compare with Figures 3.7 

and 3.8. 

Figures 3.5 and 3.6. Mean monthly precipitation at Dunbar (Figure 3.5) and Bush 

House (Figure 3.6) for the 10 year period, 1980 - 1989. Compare with Figures 3.9 

and 3.10. 

Figures 3.7 and 3.8. Mean daily, and monthly, maximum and minimum air 

temperatures at Dunbar (Figure 3.7) and Bush House (Figure 3.8) for the 2 year 

period, January 1988 - January 1990; mean daily minimun (.), mean daily maximum 

(.), monthly minimum (0) and monthly maximum (o). Compare with Figures 3.3 

and 3.4. 

Figures 3.9 and 3.10. Monthly precipitation at Dunbar (Figure 3.9) and Bush House 

(Figure 3.10) for the 2 year period, January 1988 - January 1990. Compare with 

Figures 3.5 and 3.6. 
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Figures 3.3 and 3.4. Mean daily, and mean monthly, maximum and minimum air 

temperatures at Dunbar (Figure 3.3) ad Bush House (Figure 3.4) for the 10 year 

period, 1980 - 1989; mean daily minimum (•), mean daily maximum (.), mean 

monthly minimum (0) and mean monthly maximum (o). Compare with Figures 3.7 

and 3.8. 
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Figures 3.5 and 3.6. Mean monthly pLecipitation  at Dunbar (Figure 3.5) and Bush 

House (Figure 3.6) for the 10 yearoi1od, 1980 - 1989. Compare with Figures 3.9 

and 3.10. 
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Figures 3.7 and 3.8. Mean daily, and monthly, maximum and minimum air 

temperatures at Dunbar (Figure 3.7) and Bush House (Figure 3.8) for the 2 year 

period, January 1988- January 1990; mean daily minimun (.), mean daily maximum 

(.), monthly minimum (0)  and monthly maximum (o). Compare with Figures 3.3 

and 3.4. 
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Figures 3.9 and 3.10. Monthly precipitation at Dunbar (Figure 3.9) and Bush House 

(Figure 3.10) for the 2 year period, January 1988 - January 1990. Compare with 

Figures 3.5 and 3.6. 
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Chapter 4 



Results of Experiment I 

Introduction 

Soil spore banks are of interest because they create opportunities for gametophyte 

establishment at any time of the year following soil disturbance. Successful 

gametophyte establishment might result more often from spores that germinate in the 

Spring, from soil spore banks, than from spores that germinate in the Autumn 

immediately after dispersal. 

Experiment 1 was initiated in January 1988, several months after the main spore 

release season (Figure 3.1), to investigate the events in the fern life-cycle following 

'soil disturbance' in Winter. 

Pease Bridge Glen 

The following text relates to Table 4.1 and Figures 4.1 - 4.8. 

Germination 

Spores were sown in January 1988. Tiny gametophytes (mean areas: 0.0045 mm 2  - 

0.0089 mm 2) of A. fillx-femina, P. setiferum and P. scolopendrium were first detected, 

in both plots, in April 1988. The largest gametophytes (comprising 3-4 chlorocytes) 

were already 2-dimensional. Gametophytes of B. spicant were first detected, in both 

plots, in May 1988. Most of these were also 2-dimensional. Within each species 

there was no evidence of staggered germination (Figures 4.1b - 4.8b). The numbers 

of gametophytes in the pots were not accurately determined but densities were 

estimated to range from approximately 50-250 gametophytes cm -'. 
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Sex expression 

Most populations were pre-sexual for only 1-2 months. Antheridia or antheridia and 

archegonia first appeared in most populations (including both populations of B. 

spicant) in June or July 1988. Sexual development in 2 populations, P. setiferum [2] 

and P. scolopendrium [2], was a little slower; male, female and bisexual 

gametophytes first appeared in these in August 1988. Most antheridia were already 

mature when they were first detected. 

The sexual transition periods were surprisingly short; 80-100% of gametophytes in all 

populations were sexual by July or August 1988; all gametophytes in all populations 

were sexual by November 1988. 

The sexual composition of all populations remained relatively constant from near the 

end of the sexual transition periods to the Spring or early Summer of 1989 (see 

'equilibrium periods' in Table 4.1; Figures 4.1a - 4.8a). P. scolopendrium [1] had an 

approximately equal number of male and archegoniate gametophytes but all the other 

populations were predominantly (i.e. 55-90%) male. 

Bisexual gametophytes were detected in all populations but most archegoniate 

gametophytes were female. All bisexual gametophytes were protandrous. 

Size and shape 

In general, in all populations, female gametophytes were larger than bisexual 

gametophytes and all archegoniate gametophytes were considerably larger than male 

gametophytes. All archegoniate gametophytes were meristic (somewhat heart-

shaped); all male gametophytes were ameristic (spathulate when young, various 

shapes when older but never heart-shaped). The shape of pre-sexual gametophytes 

was not recorded. In all populations the first archegoniate gametophytes were 

considerably larger than the largest pre-sexual gametophytes in the sample 1 month 

before (Figures 4.1b - 4.8b). 
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Fertilization 

Fertilization occurred in all populations and was not restricted to any particular period 

of the year. Embryos first appeared as early as July 1988 (less than 1 month after 

the first appearance of archegonia e.g. A. fihix-femina [1] and P. scolopendrium [1]) 

and as late as January 1989 (5 months after the first appearance of archegonia e.g. 

B. spicant [2]). 

By January 1989 (1 year after sowing) the majority of archegoniate gametophytes in 

most populations and all archegoniate gametophytes in A. filix-femina [1] and P. 

scolopendrium [1] had been fertilized. Only 1% of archegoniate gametophytes in B. 

spicant [2] had been fertilized but 74% had been fertilized in B. spicant [1]. By the 

end of the second year all archegoniate gametophytes in all populations, including B. 

spicant [2], had been fertilized. Polyembryony was not observed. 

Mortality 

All gametophytes survived the Winter of 1988189. Male gametophytes in all 

populations began to die in the Spring of 1989. Decomposition was rapid and their 

decline was noticed by the increasingly frequent absence of male gametophytes from 

samples rather than by the presence of dead or dying gametophytes. Some 

archegoniate gametophytes attached to sporelings also began to die during late 

Spring or early Summer. Their death was more easily observed. Between the Spring 

or Summer of 1989 (see Figures 4.1a - 4.8a for exact time in each population) and 

the end of the experiment, all male and nearly all archegoniate gametophytes died. 

During this period all populations changed from being composed entirely of 

gametophytes to being composed almost entirely of established sporelings. 

Curiously, only archegoniate gametophytes attached to sporelings died; archegoniate 

gametophytes bearing embryos and unfertilized archegoniate gametophytes (although 

very few of these remained at this stage) did not. Some of the unfertilized 

gametophytes developed one or more lobes resembling new archegoniate 

gametophytes. One 'daughter' gametophyte on each lobed gametophyte was 

fertilized during the second half of 1989 by the few remaining functional males 

(polyembryony was not observed). Lobed gametophytes were most frequent in B. 

spicant [2] but there were a few similar individuals in all populations. 
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Sporelings of B. spicant, P. setiferum and P. scolopendrium were Winter-green but --- - 
the larger leaves of A. fihix-femina died during the Winter of 1989/90. Despite the 

death of older leaves new ones continued to emerge. No sporelings died. 

Maximum development 

The largest gametophyte in most populations was female but in P. setiferum [1] and 

P. scolopendrium [1] it was a bisexual. The largest gametophyte observed at this 

site, during this experiment, was a female in B. spicant [1] which had an area of 

114.12 mm 2  (not illustrated in Figure 4.3b because it is off the scale). The most 

advanced sporophyte in each population in January 1990 had 5-9 leaves. 

Roslin Glen 

The following text relates to Table 4.2 and Figures 4.9 - 4.16. 

Germination 

Spores were sown in January 1988. Tiny gametophytes (mean areas: 0.0040 mm 2 -

0.0065 mm 2) of A. fillx-femina, P. setiferum and P. scolopendrium were first detected, 

in both plots, in April 1988. The largest gametophytes (comprising 3 chlorocytes) 

were already 2-dimensional. Gametophytes of B. spicant were first detected, in both 

plots, in May 1988. Some of these were also 2-dimensional. Within in each species 

there was no evidence of staggered germination (Figures 4.9b - 4.16b). The numbers 

of gametophytes in the pots were not accurately determined but densities were 

estimated to range from approximately 50-250 gametophytes CM-2. 

Sex expression 

Both populations of A. fihix-femina and B. spicant were pre-sexual for 1 month or less; 

antheridia appeared in June or July 1988 before archegonia. Both populations (but 

especially those in plot 2) of P. setiferum and P. scolopendrium were pre-sexual for 

much longer. In all populations most antheridia were already mature when they were 

first detected. 
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The sexual transition periods in Plot 1 were surprisingly short; the sexual transition 

periods in plot 2 were much longer. Indeed, all gametophytes in plot 1 were sexual 

by November 1988, whereas not all gametophytes in plot 2 were sexual until June 

1989. 

The sexual composition of all populations remained relatively constant from near the 

end of the sexual transition periods to late Spring or early Summer of 1989 (see 

'equilibrium periods' in Table 4.2; Figures 4.9a - 4.16a). All populations were 

predominantly (i.e. 75-90%) male. 

Bisexual gametophytes were detected in all populations but most archegoniate 

gametophytes were female. All bisexual gametophytes were protandrous. 

Size and shape 

In general, in all populations, female gametophytes were larger than bisexual 

gametophytes and all archegoniate gametophytes were considerably larger than male 

gametophytes. All archegoniate gametophytes were meristic (somewhat heart-

shaped); all male gametophytes were ameristic (spathulate when young, various 

shapes when older but never heart-shaped). The shape of pre-sexual gametophytes 

was not recorded. In all populations the first archegoniate gametophytes were 

considerably larger than the largest pre-sexual gametophytes in the sample 1 month 

before (Figures 4.9b - 4.16b). 

Fertilization 

Fertilization occurred in all populations and was not restricted to any particular period 

of the year. In plot 1 embryos first developed in A. fillx-femina, B. spicant and P. 

setiferum in September 1988 but embryos did not appear in P. scolopendrium until 

almost a year later. No embryos appeared in plot 2 in the first year; embryos first 

developed in A. fihix-femina, B. spicant and P. setiferum in June 1989 and embryos 

did not appear in P. scolopendrium until the Winter of 1989/90. 
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By January 1990 (2 years after sowing), nearly all archegoniate gametophytes in all 

populations (except P. scolopendrium [2]) had been fertilized. Polyembryony was not 

observed. 

Mortality 

All gametophytes survived the winter of 1988189. Male gametophytes in P. 

scolopendrium [1] began to die between April and June 1989. Fertilized archegoniate 

gametophytes in this population and many male and fertilized archegoniate 

gametophytes in all the other populations died sometime after June 1989 (Figures 

4.9a - 4.16a) but the precise times are not known because no samples were collected 

for 5 months between June and November 1989. By November 1989, 6 of the 8 

populations had almost no male gametophytes. The two remaining populations B. 

spicant [2] and P. scolopendrium [2] still had many healthy and fertile male 

gametophytes. Also by November, most gametophytes attached to sporelings in 

most populations were in poor condition. However, all sporelings still had 

gametophytes attached. This was also true in January 1990 (at the end of the 

experiment) for most populations but there were many established sporelings in A. 

fihix-femina [1] and B. spicant [1]. Unfertilized archegoniate gametophytes always 

remained healthy. Many of these developed one or more lobes resembling new 

archegoniate gametophytes (observed in November 1989 and January 1990). All 

populations in plot 2 had some gametophytes like this but only one population (P. 

setiferum) in plot 1 had any. None of these lobed gametophytes were fertilized. 

Sporelings of B. spicant, P. setiferum and P. scolopendrium were Winter-green but 

the larger leaves of A. fihix-femina died during the Winter of 1989/90. Despite the 

death of older leaves new ones continued to emerge. No sporelings died. 

Maximum development 

The largest gametophyte in all populations was female. The largest gametophyte 

observed at this site, during this experiment, was a female in P. setiferum [2] which 

had an area of 40.53 mm 2. The most advanced sporophyte in each population in 

January 1990 had 2-6 leaves. 
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Summary 

The results for A. filix-femina, B. spicant, P. setiferum and P. scolopendrium were 

strikingly similar. 

At both sites, gametophytes of all 4 species appeared in the Spring but at a lower 

density than in the laboratory (see page 9). There was no staggered germination and 

no obvious protonemal phase (Rag havan, 1989). 

The majority of gametophytes became sexual in the first Summer; transition periods 

were often surprisingly short; most antheridia and some archegonia were mature 

when they were first detected. The sexual composition of all populations remained 

relatively constant from near the end of the sexual transition period to the Spring or 

Summer of the following year. During this equilibrium period most populations were 

predominantly male (and to a greater degree at Roslin Glen than at Pease Bridge 

Glen). Bisexual gametophytes were detected in all populations but most archegoniate 

gametophytes were female. All bisexual gametophytes were protandrous. 

In general, female gametophytes were larger than bisexual gametophytes and all 

archegoniate gametophytes were considerably larger than male gametophytes. All 

archegoniate gametophytes were meristic; all male gametophytes were ameristic. 

Curiously, the first archegoniate gametophytes in all populations were considerably 

larger than the largest pre-sexual gametophytes in the sample 1 month before. 

Fertilization occurred in all populations and was not seasonal (embryos continued to 

appear throughout the Winters of 1988/89 and 1989/90). In some populations 

embryos appeared less than 1 month after the first appearance of archegonia. By 

the end of the experiment (i.e. after 2 years) all archegoniate gametophytes at Pease 

Bridge Glen and most archegoniate gametophytes at Roslin Glen had been fertilized. 

Polyembryony was not observed. 

All gametophytes survived for at least 1 year (and through the Winter of 1988/89). 

Male and fertilized archegoniate gametophytes began to die in the Spring or Summer 

of 1989. Unfertilized archegoniate gametophytes did not die (some of these 
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developed lobes, bearing new batches of archegonia, during the last 6 months of the 

experiment). No sporelings died. 

In terms of the rates of early (i.e. pre-sexual) gametophyte development, the rates at 

which populations became sexual, the percentages of archegoniate gametophytes at 

equilibrium, the percentages of fertilization and the rates of fertilization and leaf 

production, all 4 species grew better at Pease Bridge Glen than at Roslin Glen. 

Moreover, all 4 species grew as well in PBG.1. as in PBG.2. At Roslin Glen all 4 

species grew much better in plot 1 than in plot 2. 
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Figures 4.1 - 4.16. Sex expression, fertilization and size of gametophytes in each 

population during Experiment 1. Note: 

Sampling dates are shown below the x-axes. 

Symbols: spores or pre-sexual gametophytes (0), male gametophytes ( ), 

female gametophytes (a), bisexual gametophytes (U), archegoniate 

gametophytes (A) and percentage of archegoniate gametophytes that were 

fertilized (A). 

It has been necessary to use a log scale on the y-axes of Figures 4.1b - 4.16b 

to accommodate the largest and smallest values. Log scales are somewhat 

misleading for larger values; big differences in area can be represented by small 

differences in the position of symbols. Range bars: spores or pre-sexual 

gametophytes (2.0 mm), male gametophytes(1 .0 mm), female gametophytes (1.5 

mm) and bisexual gametophytes (0.5 mm). 

Identification of sterile, male, and archegoniate gametophytes was easy and the 

values presented for these are accurate. 	Sub-dividing archegoniate 

gametophytes into 'females' and 'bisexuals was more difficult because soil 

particles adhering to the rhizoids often obscured the rhizoid region where 

antheridia are usually located. Consequently, some gametophytes scored as 

female might have been bisexual and the values presented for these sex 

categories should probably be regarded as overestimates and underestimates 

respectively. 

The vertical line in Figures 4.1a - 4.16a represents the point at which some 

gametophytes began to die. Thereafter an increasing number of gametophytes 

were either in poor condition or had perished and it became impossible to select 

a representative sample for area measurements. Established sporelings were 

scored as 'fertilized archegoniate gametophytes' even though the gametophytes 

were no longer present. 
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Symbols: spores or pre-sexual gametophytes (0) male gametophytes (•), 

female gametophytes (o), bisexual gametophytes (.), archegoniate 

gametophytes (A) and percentage of archegoniate gametophytes that were 

fertilized (t). 
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Symbols: spores or pre-sexual gametophytes (0), male gametophytes (•), 

female gametophytes (o), bisexual gametophytes (u), archegoniate 

gametophytes (A) and percentage of archegoniate gametophytes that were 

fertilized (). 
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Symbols: spores or pre-sexual gametophytes (o) male gametophytes ( ), 

female gametophytes (o), bisexual gametophytes (.), archegoniate 

gametophytes (A) and percentage of archegoniate gametophytes that were 

fertilized (L). 
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Symbols: spores or pre-sexual gametophytes (0), male gametophytes ( ), 

female gametophytes (o), bisexual gametophytes (.), 
archegoniate 

gametophytes (A) and percentage of archegoniate gametophytes that were 

fertilized (tx). 
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Symbols: spores or pre-sexual gametophytes (0), male gametophytes ( ), 

female gametophytes (o), bisexual gametophytes (a), archegoniate 

gametophytes (A) and percentage of archegoniate gametophytes that were 

fertilized (a). 
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Symbols: spores or pre-sexual gametophytes (o) male gametophytes ( ), 

female gametophytes (o), bisexual gametophytes (s), archegoniate 

gametophytes (A) and percentage of archegoniate gametophytes that were 

fertilized (h). 
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Symbols: spores or pre-sexual gametophytes (o), male gametophyteS ( ), 

female gametophytes (0), bisexual gametophytes (a), archegoniate 

gametophytes (A) and percentage of archegoniate gametophytes that were 

fertilized (tx). 
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Symbols: spores or pre-sexual gametophytes (o) male gametophytes (.), 

female gametophytes (o), bisexual gametophytes (u), archegoniate 

gametophytes (A) and percentage of archegoniate gametophytes that were 

fertilized (t). 
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Symbols: spores or pre-sexual gametophytes (o) male gametophytes ( ), 

female gametophytes (0), bisexual gametophytes (.), archegoniate 

gametophytes (A) and percentage of archegoniate gametophytes that were 

fertilized (a). 
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Symbols: spores or pre-sexual gametophytes (0), male gametophytes ( ), 

female gametophytes (o), bisexual gametophytes (.), archegoniate 

gametophytes (A) and percentage of archegoniate gametophytes that were 

fertilized (s). 
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Symbols: spores or pre-sexual gametophytes (0), male gametophytes ( ), 

female gametophytes (o), bisexual gametophytes (.), archegoniate 

gametophytes (A) and percentage of archegoniate gametophytes that were 

fertilized (A). 
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Symbols: spores or pre-sexual gametophytes (0), male gametophyteS ( ), 

female gametophytes (o), bisexual gametophytes (i), archegoniate 

gametophytes (A) and percentage of archegoniate gametophytes that were 

fertilized (t). 
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Symbols: spores or pre-sexual gametophytes (0), male gametophytes ( ), 

female gametophytes (o) bisexual gametophytes (.), archegoniate 

gametophytes (A) and percentage of archegoniate gametophytes that were 

fertilized (). 
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Symbols: spores or pre-sexual gametophytes (0), male gametophytes ( ), 

female gametophytes (o), bisexual gametophytes (s), @rchegoniate 

gametophytes (A) and percentage of archegoniate gametophytes that were 

fertilized (t). 
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Chapter 5 



Results of Experiment 2 

Introduction 

The most logical time to initiate field experiments on the development of fern 

gametophytes is of course during the peak spore release period of each species. 

The peak spore release period for P. setiferum was August, for A. fillx-femina it was 

mid-August to mid-September, for B. spicant it was mid-September to mid-October 

and for P. scolopendrium it was October (Figure 3.1). Clearly, there is no ideal date 

to initiate a field experiment involving (and requiring spores of) these 4 species. To 

reduce this problem, 2 field experiments were conducted. 

The first experiment was initiated in October 1988, near the end of the main spore 

release season, and was more appropriate for B. spicant and P. scolopendrium than 

for P. setiferum and A. fihix-femina. The second experiment was initiated in August 

1989, near the beginning of the main spore release season and was more 

appropriate for P. setiferum and A. fillx-femina than for B. spicant and P. 

scolopendrium. 

The results of the experiment initiated in October 1988 are presented in this chapter; 

the results of the experiment initiated in August 1989 are presented in chapter 6. 

Pease Bridge Glen 

The following text relates to Table 5.1 and Figures 5.1 - 5.8. 

Germination 

Spores were sown in October 1988. Tiny gametophytes (mean area: 0.0017 MM-2 - 

0.0079 mm -) of A. filix-femina, P. setiferum and P. scolopendrium were first detected, 

In both plots, in January 1989. The largest gametophytes [comprising 3 chlorocytes (Dyer, 

1979c)] were already 2-dimensional. Gametophytes of B. spicant were first detected In early 
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March 1989 but note that no samples were collected in February when gametophytes 

were probably present. Within each species there was no evidence of staggered 

germination (Figures 5.1b - 5.8b). The numbers of gametophytes in the pots were 

not accurately determined but densities were estimated to range from approximately 

50-200 gametophytes CM-2. 

Sex expression 

Most populations were pre-sexual for 3 months. Antheridia or antheridia and 

archegonia first appeared in May or June 1988. Most antheridia were already mature 

when they were first detected. 

The sexual transition periods were surprisingly short; 80-100% of gametophytes in all 

populations were sexual by June 1988; all gametophytes in all populations were 

sexual by July 1988. 

The sexual composition of all populations remained relatively constant from near the 

end of the sexual transition periods to the end of the experiment in January 1990 (see 

'equilibrium periods' in Table 5.1 and Figures 5.1a - 5.8a). Five populations consisted 

of approximately equal numbers of male and archegoniate gametophytes. Three 

populations, P. setiferum [1 & 2] and P. scolopendrium [2], were predominantly (i.e. 

60-70%) male. 

Most archegoniate gametophytes were female. Bisexual gametophytes were 

detected in all populations except in B. spicant [2]. All bisexual gametophytes were 

protandrous. 

Size and shape 

In general, in all populations, female gametophytes were larger than bisexual 

gametophytes and all archegoniate gametophytes were considerably larger than male 

gametophytes. All archegoniate gametophytes were meristic (heart-shaped); all male 

gametophytes were ameristic (spathulatewhen young, various shapes when older but 

never heart-shaped). The shape of pre-sexual gametophytes was not recorded. In 



all populations the first archegoniate gametophytes were considerably larger than the 

largest pre-sexual gametophytes in the sample 1 month before (Figures 5.1b - 5.8b). 

Fertilization 

Fertilization occurred in all populations throughout the Summer and Autumn of 1989 

and the Winter of 1989/'90. Embryos first appeared in most populations only 1-2 

months after the first appearance of archegonia. Fertilization was particularly fast in 

A. filix-femina [2]; almost one third of archegoniate gametophytes, when they were 

first detected, had embryos. 

By October 1989 (one year after sowing) the majority of archegoniate gametophytes 

in most populations and all archegoniate gametophytes in A. filix-femina [1] had been 

fertilized. Only in B. spicant [1] and P. scolopendrium [2] were most still unfertilized 

but by the end of the experiment (January 1990) the majority of archegoniate 

gametophytes in these populations also had been fertilized. 

Polyembryony was observed twice. In October 1989, there was one female 

gametophyte in P. setiferum [2] with 2 embryos and in January 1990, there was one 

female in B. spicant [2] with 2 sporelings attached. 

Mortality 

At the end of the experiment all gametophytes, even those with sporophytes attached, 

were healthy and intact; no gametophytes died during this experiment. There were 

no lobed gametophytes (of. Experiment 1). Sporelings of B. spicant, P. setiferum and 

P. scolopendrium were Winter-green but the larger leaves of A. filix-femina died 

during the Winter of 1989/90. Despite the death of older leaves new ones continued 

to emerge. No sporelings died. 

Maximum development 

The largest gametophyte in all populations was female. The largest gametophyte 

observed at this site, during this experiment, was a female in B. spicant [2] which had 



an area of 93.29 mm 2. The most advanced sporophyte in each population in January 

1990 had 2-5 leaves. 

Roslin Glen 

The following text relates to Table 5.2 and Figures 5.9 - 5.16. 

Germination 

Spores were sown in October 1988. Tiny gametophytes (mean area: 0.0027 mm 2  - 

0.0060 MM-2)  of all 4 species were first detected, in both plots, in January 1989. The 

largest gametophytes (comprising 3 chlorocytes) were already 2-dimensional. There 

was no evidence of staggered germination (Figures 5.9b - 5.16b). The numbers of 

gametophytes in the pots were not accurately determined but densities were 

estimated to range from approximately 50-200 gametophytes cm -'. 

Sex expression 

Most populations were pre-sexual for 4 months. Antheridia or antheridia and 

archegonia first appeared in these, in June 1989. P. scolopendrium [2] was pre-

sexual for at least 6 months. Antheridia were first observed in this population in 

November 1989 but note that no samples were examined between July and 

November. 

80-100% of gametophytes in all populations in plot 1 were sexual by July 1989 but 

sexual transition in all populations in plot 2 was much slower. In fact, it was not even 

possible to determine the sexual transition periods for P. setiferum and P. 

scolopendrium in Plot 2 because not all gametophytes had become sexual by the end 

of the experiment. 

The sexual composition of most populations remained relatively constant once all (or 

nearly all) gametophytes had become sexual (see 'equilibrium periods' in Table 5.2 

and Figure 5.9a - 5.16a). All populations (including those that did not reach 

equilibrium by January 1990) were predominantly (i.e. 65-90%) male. 
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Most archegoniate gametophytes were female. A few bisexual gametophytes were 

detected in all populations except in A. filix-femina [2] and P. setiferum [2]. All 

bisexual gametophytes were protandrous. 

Size and shape 

In general, in all populations, female gametophytes were larger than bisexual 

gametophytes and all archegoniate gametophytes were considerably larger than male 

gametophytes. All archegoniate gametophytes were meristic (heart-shaped); all male 

gametophytes were ameristic (spathulatewhen young, various shapes when older but 

never heart-shaped). The shape of pre-sexual gametophytes was not recorded. In 

all populations the first archegoniate gametophytes were considerably larger than the 

largest pre-sexual gametophytes in the sample 1 month before (Figures 5.9b - 5.16b). 

Fertilization 

By October 1989 (one year after sowing) only 3 populations (all in plot 1) had 

evidence of fertilization. However, by the end of the experiment (January 1990) 7 

populations contained at least some sporelings and/or embryos and in A. filix-femina 

[1] all archegoniate gametophytes had been fertilized. There was no fertilization in 

P. scolopendrium [2]. Polyembryony was not observed. 

Mortality 

At the end of the experiment all gametophytes, even those with sporophytes attached, 

were healthy and intact; no gametophytes died during this experiment. There were 

no lobed gametophytes (cf. Experiment 1). All sporelings, including those of A. flux-

femina were Winter-green. No sporelings died. 

Maximum development 

The largest gametophyte in all populations was female. The largest gametophyte 

observed at this site, during this experiment, was a female in P. setiferum [1] which 

had an area of 40.23 mm 2 . The most advanced sporophyte in each population in 

January 1990 was an embryo or a 1-2 leaved sporeling. 



Summary 

In this experiment, as in Experiment 1, the results for A. fihix-femina, B. spicant, P. 

setiferum and P. scolopendrium were strikingly similar. 

At both sites gametophytes of all 4 species appeared in the Winter but at a lower 

density than in the laboratory (see page 9). There was no staggered germination and 

no obvious protonemal phase (Raghavan, 1989). 

Most gametophytes became sexual between mid-Spring and mid-Summer; transition 

periods were often surprisingly short; most antheridia and some archegonia were 

mature when they were first detected. The sexual composition of those populations 

which reached equilibrium remained relatively constant to the end of the experiment 

(January 1990). Three populations at Pease Bridge Glen and all populations at 

Roslin Glen were predominantly male. The other 5 populations (at Pease Bridge 

Glen) consisted of approximately equal numbers of male and archegoniate 

gametophytes. Most archegoniate gametophytes were female. Bisexual 

gametophytes were detected in all but 3 populations. All bisexual gametophytes were 

protandrous. 

In general, female gametophytes were larger than bisexual gametophytes and all 

archegoniate gametophytes were considerably larger than male gametophytes. All 

archegoniate gametophytes were meristic; all male gametophytes were ameristic. 

Curiously, the first archegoniate gametophytes in all populations were considerably 

larger than the largest pre-sexual gametophytes in the sample 1 month before. 

Fertilization occurred in all populations and was not seasonal (embryos appeared 

throughout the Summer and Autumn of 1989 and the Winter of 1989190). Embryos 

first appeared in many populations only 1-2 months after the first appearance of 

archegonia. In one population many archegoniate gametophytes, when they were 

first detected, had already been fertilized. By the end of the experiment most 

archegoniate gametophytes at Pease Bridge Glen had been fertilized but most 

archegoniate gametophytes at Roslin Glen had still to be fertilized. Polyembryony 

was not observed. 



No gametophytes died during this experiment (i.e. all gametophytes survived for 1 

year). No sporelings died either. 

In terms of the rates of early (i.e. pre-sexual) gametophyte development, the rates at 

which populations became sexual, the percentages of archegoniate gametophytes at 

equilibrium, the percentages of fertilization and the rates of fertilization and leaf 

production, all 4 species grew better at Pease Bridge Glen than at Roslin Glen. 

Moreover, all 4 species grew as well in PBG.1. as in PBG.2. At Roslin Glen all 4 

species grew much better in plot 1 than in plot 2. 
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Figures 5.1 - 5.16. Sex expression, fertilization and size of gametophytes in each 

population during Experiment 2. Note: 

Sampling dates are shown below the x-axes. 

Symbols: spores or pre-sexual gametophytes (0), male gametophytes ( ), 

female gametophytes (o), bisexual gametophytes (.), archegoniate 

gametophytes (A) and percentage of archegoniate gametophytes that were 

fertilized (s). 

It has been necessary to use a log scale on the y-axes of Figures 5.1b - 5.16b 

to accommodate the largest and smallest values. Log scales are somewhat 

misleading for larger values; big differences in area can be represented by small 

differences in the position of symbols. Range bars: spores or pre-sexual 

gametophytes (2.0 mm), male gametophytes(1 .0 mm), female gametophytes (1.5 

mm) and bisexual gametophytes (0.5 mm). 

Identification of sterile, male, and archegoniate gametophytes was easy and the 

values presented for these are accurate. 	Sub-dividing archegoniate 

gametophytes into 'females' and 'bisexuals' was more difficult because soil 

particles adhering to the rhizoids often obscured the rhizoid region where 

antheridia are usually located. Consequently, some gametophytes scored as 

female might have been bisexual and the values presented for these sex 

categories should probably be regarded as overestimates and underestimates 

respectively. 



Symbols: spores or pre-sexual gametophytes (o), male gametophytes (•), 

female gametophytes (o), bisexual gametophytes (•), archegoniate 

gametophytes (A) and percentage of archegoniate gametophytes that were 

fertilized  
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Symbols: spores or pre-sexual gametophytes (0), male gametophytes (.), 

female gametophytes (o), bisexual gametophytes (.), archegoniate 

gametophytes (A) and percentage of archegoniate gametophytes that were 

fertilized(A). 
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Symbols: spores or pre-sexual gametophytes (0), male gametophytes (.), 

female gametophytes (o), bisexual gametophytes (i), archegoniate 

gametophytes (A) and percentage of archegoniate gametophytes that were 

fertilized (A) 
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Symbols: spores or pre-sexual gametophytes (0), male gametophytes (i) 

female gametophytes (a), bisexual gametophytes (u), archegoniate 

gametophytes (A) and percentage of archegoniate gametophytes that were 

fertilized (A) 
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Symbols: spores or pre-sexual gametophytes (o), male gametophytes (I), 

female gametophytes (o), bisexual gametophytes (i), archegoniate 

gametophytes (A) and percentage of archegoniate gametophytes that were 

fertilized (). 
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Symbols: spores or pre-sexual gametophytes (0), male gametophytes (•), 

female gametophytes (o), bisexual gametophytes (i), archegoniate 

gametophytes (A) and percentage of archegoniate gametophytes that were 

fertilized (a). 
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Symbols: spores or pre-sexual gametophytes (o), male gametophytes (•), 

female gametophytes (o), bisexual gametophytes (•), archegoniate 

gametophytes (A) and percentage of archegoniate gametophytes that were 

fertilized (a). 



C 
0 80 
(V 
N 

100 -i 

a, 
LL 	60- 

40 

20 

Cl) 

Figure 5.7a 

O N D J 'F M A M J J A S 0 N D J 
16 	15 	12 	17 	8/3 	21 	19 	16 	17 	18 	17 	 24 	 12 

October 1988 - January 1990 
PBG.1. P. SCOLOPENDRIUM 

Figure 5.7b 

102  

4-
- 101 

E 
E 

CO 	rO 
a) 	" 
I- 
(V 

C 

E 10 1  
ad 

10 

C 
(V 
a) 
M 10-3 

iD-4 
	

F 	I 	I 	I 	I 	I 	U 	I 	I 	I 	I 	I 	I 	I 	I 	I 

0 N D J F M A M J J A S 0 N D J 
16 	15 	12 	17 	8/3 	21 	19 	16 	17 	18 	17 	 24 	 12 

October 1988 - January 1990 
PBG.1. P. SCOLOPENDRIUM 

103 



Symbols: spores or pre-sexual gametophytes (o), male gametophytes (•), 

female gametophytes (o), bisexual gametophytes (i), archegoniate 
gametophytes (A) and percentage of archegoniate gametophytes that were 

fertilized (a). 
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Symbols: spores or pre-sexual gametophytes (o), male gametophytes (•), 

female gametophytes (o), bisexual gametophytes (i), archegoniate 

gametophytes (A) and percentage of archegoniate gametophytes that were 

fertilized (t). 
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Symbols: spores or pre-sexual gametophytes (0), male gametophytes (•), 

female gametophytes (o), bisexual gametophytes (u), archegoniate 

gametophytes (A) and percentage of archegoniate gametophytes that were 

fertilized (A). 
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Symbols: spores or pre-sexual gametophytes (o), male gametophytes (•), 

female gametophytes (o), bisexual gametophytes (i), archegoniate 

gametophytes (A) and percentage of archegoniate gametophytes that were 

fertilized (t). 
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Symbols: spores or pre-sexual gametophytes (0), male gametophytes (•), 

female gametophytes (o), bisexual gametophytes (.), archegoniate 

gametophytes (A) and percentage of archegoniate gametophytes that were 

fertilized (n). 
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Symbols: spores or pre-sexual gametophytes (0), male gametophytes (•), 

female gametophytes (o), bisexual gametophytes (i), archegoniate 

gametophytes (A) and percentage of archegoniate gametophytes that were 

fertilized (h). 
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Symbols: spores or pre-sexual gametophytes (0), male gametophytes (•), 

female gametophytes (o), bisexual gametophytes (u), archegoniate 

gametophytes (A) and percentage of archegoniate gametophytes that were 

fertilized (). 
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Symbols: spores or pre-sexual gametophytes (0), male gametophytes (.), 

female gametophytes (o), bisexual gametophytes (a), archegoniate 

gametophytes (A) and percentage of archegoniate gametophytes that were 

fertilized (s). 
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Symbols: spores or pre-sexual gametophytes (0), male gametophytes (I), 

female gametophytes (o), bisexual gametophytes (•), archegoniate 

gametophytes (A) and percentage of archegoniate gametophytes that were 

fertilized (h). 
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Chapter 6 



Results of Experiment 3 

Introduction 

In the previous experiment, spores sown in October 1988, near the end of the main 

spore release season, did not germinate until the following year. Experiment 3 was 

initiated in August 1989 to discover if spores 'dispersed' (or 'exhumed') near the 

beginning of the main spore release season can develop into gametophytes before 

Winter. 

Experiments 1 and 2 revealed no major differences between A. filix-femina, B. 

spicant, P. setiferum and P. scolopendrium. D. affinis, D. dilatata, D. fillx-mas and P. 

aquilinum were incorporated into this experiment in a final attempt to discover if major 

differences exist between species. Their spore release periods are shown in Figure 3.1. 

Pease Bridge Glen 

The following text relates to Table 6.1 and Figures 6.1 - 6.16 

Germination 

Spores were sown in August 1989. No samples were collected in September but 

gametophytes of all 8 species were detected, in both plots, in October 1989. These 

gametophytes were much larger [mean areas: 0.03 mm 2  (sterile) - 1.49 mm 2  (female)] 

than the first gametophytes detected in Experiments 1 and 2, suggesting that 

germination had occurred soon after spore 'dispersal'. All the gametophytes were 2-

dimensional and there was no evidence that they had developed from protonemata. 

There was also no evidence of staggered germination (Figures 6.1b - 6.16b). The 

numbers of gametophytes in the pots were not accurately determined but densities 

were estimated to range from approximately 100-300 gametophytes cm -'. 
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Sex expression 

In this experiment the pre-sexual, sexual transition, and equilibrium periods are not 

known. 

All populations except those of A. fihix-femina and P. aquilinum were pre-sexual 

throughout the experiment. Male gametophytes were detected in both populations 

of A. fihix-femina in January 1990; all the antheridia were immature suggesting that 

they had only appeared recently. Both populations of P. aquilinum were sexual by 

October 1989; a few male gametophytes (with mature antheridia) were observed in 

P. aquilinum [2]; P. aquilinum [1] consisted entirely of male, female and bisexual 

gametophytes. This suggests that spores germinated soon after they were sown and 

that both populations were pre-sexual for only a few weeks. Almost all gametophytes 

in P. aquillnum [2] were sexual by January 1990. 

The sexual composition of neither population of P. aquilinum had reached equilibrium 

by the end of the experiment. Nevertheless there were (and at equilibrium there 

would have been) approximately equal numbers of male and archegoniate 

gametophytes in P. aquilinum [1]. P. aquilinum [2] would have remained 

predominantly male. 

Bisexual gametophytes were detected in both populations but most archegoniate 

gametophytes were female. All bisexual gametophytes were protandrous. 

Size and shape 

In general, female gametophytes were larger than bisexual gametophytes and all 

archegoniate gametophytes were considerably larger than male gametophytes. All 

archegoniate gametophytes were meristic (heart-shaped); all male gametophytes 

were ameristic (spathulate). The shape of pre-sexual gametophytes was not recorded. 

In both populations of P. aquilinum the first archegoniate gametophytes were 

considerably larger than the largest pre-sexual gametophytes in the sample 1 month 

before (Figures 6.15b - 6.16b). 
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Fertilization 

A few embryos had developed in P. aquilinum [1] by January 1990; fertilization must 

have occurred at the end of Autumn 1989 and/or during the Winter of 1989/90. 

Polyembryony was not observed. 

Mortality 

At the end of the experiment all gametophytes were healthy and intact; no 

gametophytes died during this experiment. 

Maximum development 

The largest gametophyte in both populations of P. aquillnum was female. The largest 

gametophyte observed at this site, during this experiment, was a female in P. 

aquillnum [1] which had an area of 5.69 mm 2  The most advanced sporophyte was an 

embryo. 

Roslin Glen 

The following text relates to Table 6.2 and Figures 6.17 - 6.32. 

Germination 

Spores were sown in August 1988. No samples were collected in September but 

gametophytes of all 8 species were detected, in both plots, in October 1989. These 

gametophytes were much larger [mean areas: 0.01 mm 2  (sterile) - 0.06 mm 2  (sterile)] 

than the first gametophytes detected in Experiments 1 and 2, suggesting that 

germination had occurred soon after spore 'dispersal'. All the gametophytes were 2-

dimensional and there was no evidence that they had developed from protonemata. 

There was also no evidence of staggered germination (Figures 6.17b - 6.32b). The 

numbers of gametophyte in the pots were not accurately determined but densities 

were estimated to range from approximately 100-300 gametophytes CM-2. 
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Sex expression 

In this experiment the pre-sexual, sexual transition, and equilibrium periods are not 

known. 

All populations except those of P. aquilinum were pre-sexual throughout the 

experiment. Male gametophytes (with mature antheridia) were first detected in both 

populations of P. aquilinum in January 1990 but note that no samples were collected 

in November and December 1989. No archegoniate gametophytes were observed 

in this experiment. 

Shape 

All male gametophytes were ameristic (spathulate). The shape of pre-sexual 

gametophytes was not recorded. 

Fertilization 

Not applicable. 

Mortality 

At the end of the experiment all gametophytes were healthy and intact; no 

gametophytes died during this experiment. 

Maximum development 

The largest gametophyte in both populations of P. aquillnum was male. The largest 

gametophyte observed at this site, during this experiment, was a pre-sexual in A. fillx-

femina [1] which had an area of 0.28 MM-2. 
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Summary 

The results for A. fillx-femina, B. spicant, P. setiferum, P. scolopendrium, D. affinis, 

D. dilatata and D. filix-mas were strikingly similar; the results for P. aquilinum were 

strikingly different. 

At both sites spores of all 8 species germinated soon after 'dispersal'. There was no 

staggered germination and no obvious protonemal phase. Gametophyte densities 

were lower than in the laboratory (see page 9). 

Only gametophytes of P. aquillnum became sexual before Winter. Bisexual 

gametophytes were detected but most archegoniate gametophytes were female. All 

bisexual gametophytes were protandrous. 

In general, female gametophytes were larger than bisexual gametophytes and all 

archegoniate gametophytes were considerably larger than male gametophytes. All 

archegoniate gametophytes were meristic; all male gametophytes were ameristic. 

Fertilization occurred in one population of P. aquilinum at the end of Autumn 1989 

and/or during the Winter of 1989/90. 

No gametophytes died during this experiment (i.e. all gametophytes survived for 5 

months). 

In terms of the rates of early (i.e. pre-sexual) gametophyte development, the rates at 

which populations became sexual and the rates of fertilization, all 8 species grew 

better at Pease Bridge Glen than at Roslin Glen. 

117 



Cr 

CD )  

CD :-' 

B:ij 
CD 

o 
(l) 

CD m 
X 

CD o 
— 3 

CD 

Co 

-u 
CD 
U) 
Cl) 
CD 

w 
0. 

CD 

C) 
CD 

(I) 
U) 
0. 

Ca 

0 
C, 

CD 
U) 

CD 
C,) 

-D 
CD 
C) 
CD 
CO 

-& 

-& 

00 
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See Figure 

Spores sown 

Germination 

Pre-sexual period (months) 

Size of last sterile gametophytes (mm) 

First male gametophytes 

Size of first male gametophytes (mm2) 

First female gametophytes 

Size of first female gametophytes (mm2) 

First bisexual gametophytes 

Size of first bisexual gametophytes (mm2) 

All gametophytes sexual by 

Transition period (months) 

Equilibrium period (months) 

% of population mate at equilibrium 

% of population archegoniate at equilibrium 

First embryo 
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? ? 
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? ? 

>5 >5 

> 0.20 	> 0.25 

% of archegoniates fertilized by Jan.90 	 : 	 - 	 - 	 - 	 - 	 - 

Largest gametophyte by Jan 90 (mm) (sex) 	1 46 p-s 069 p-s 	043 p-s 	0 26 p  s 	035 p  s 	0 74 p-s 	032 p  s 	046 p  s 

Most advanced sporeling by Jan.90 (leaves) 	 - 	 •, 	 - 	 - 	 - 	 - 
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See Figure 
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Transition period (months) - - - - - - - - 

Equilibrium period (months) - - - - - - - 
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Most advanced sporeling by Jan.'90 (leaves) - - - - - - - - 



Figures 6.1 - 6.32. Sex expression, fertilization and size of gametophytes in each 

population during Experiment 3. Note: 

Sampling dates are shown below the x-axes. 

Symbols: spores or pre-sexual gametophytes (0), male gametophytes ( ), 

female gametophytes (a), bisexual gametophytes (.), archegoniate 

gametophytes (A) and percentage of archegoniate gametophytes that were 

fertilized (.A). 

It has been necessary to use a log scale on the y-axes of Figures 6.1b - 6.32b 

to accommodate the largest and smallest values. Log scales are somewhat 

misleading for larger values; big differences in area can be represented by small 

differences in the position of symbols. Range bars: spores or pre-sexual 

gametophytes (2.0 mm), male gametophyte1 .0 mm), female gametophytes (1.5 

mm) and bisexual gametophytes (0.5 mm). 

Identification of sterile, male, and archegoniate gametophytes was easy and the 

values presented for these are accurate. 	Sub-dividing archegoniate 

gametophytes into 'females' and 'bisexuals' was more difficult because soil 

particles adhering to the rhizoids often obscured the rhizoid region where 

antheridia are usually located. Consequently, some gametophytes scored as 

female might have been bisexual and the values presented for these sex 

categories should probably be regarded as overestimates and underestimates 

respectively. 
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Symbols: spores or pre-sexual gametophytes (0), male gametophytes (•), 

female gametophytes (o), bisexual gametophytes (u), archegoniate 

gametophytes (A) and percentage of archegoniate gametophytes that were 

fertilized (t). 
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Symbols: spores or pre-sexual gametophytes (0), male gametophytes (.), 

female gametophytes (o), bisexual gametophytes (i), archegoniate 

gametophytes (A) and percentage of archegoniate gametophytes that were 

fertilized (t). 
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Symbols: spores or pre-sexual gametophytes (o) male gametophytes (i), 

female gametophytes (o), bisexual gametophytes (•), archegoniate 

gametophytes (A) and percentage of archegoniate gametophytes that were 

fertilized (A). 
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Symbols: spores or pre-sexual gametophytes (0), male gametophytes (•), 

female gametophytes (o), bisexual gametophytes (i), archegoniate 
gametophytes (A) and percentage of archegoniate gametophytes that were 

fertilized (n). 
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Symbols: spores or pre-sexual gametophytes (0), male gametophytes (•), 

female gametophytes (o), bisexual gametophytes 
(.), archegoniate 

gametophytes (A) and percentage of archegoniate gametophytes that were 

fertilized (h). 
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Symbols: spores or pre-sexual gametophytes (0), male gametophytes (•), 

female gametophytes (o), bisexual gametophytes (•), archegoniate 
gametophytes (A) and percentage of archegoniate gametophytes that were 

fertilized (a). 
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Symbols: spores or pre-sexual gametophytes (0), male gametophytes (•), 

female gametophytes (o), bisexual gametophytes (u), archegoniate 
gametophytes (A) and percentage of archegoniate gametophytes that were 

fertilized (ia). 
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Symbols: spores or pre-sexual gametophytes (0), male gametophytes (•), 

female gametophytes (o), bisexual gametophytes (i), archegoniate 

gametophytes (A) and percentage of archegoniate gametophytes that were 

fertilized 
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Symbols: spores or pre-sexual gametophytes (o), male gametophytes (•), 

female gametophytes (o), bisexual gametophytes (u), archegoniate 

gametophytes (A) and percentage of archegoniate gametophytes that were 

fertilized (L). 
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Symbols: spores or pre-sexual gametophytes (0), male gametophytes (•), 

female gametophytes (o), bisexual gametophytes (•), archegoniate 
gametophytes (A) and percentage of archegoniate gametophytes that were 

fertilized (A). 
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Symbols; spores or pre-sexual gametophytes (0), male gametophytes (.), 

female gametophytes (o), bisexual gametophytes 
(.), archegoniate 

gametophytes (A) and percentage of archegoniate gametophytes that were 

fertilized (t). 
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Symbols: spores or pre-sexual gametophytes (o) male gametophytes (I), 

female gametophytes (o), bisexual gametophytes (m), archegoniate 

gametophytes (A) and percentage of archegoniate gametophytes that were 

fertilized (A). 
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Symbols: spores or pre-sexual gametophytes (o) male gaçnetophytes (•), 

female gametophytes (o), bisexual gametophytes (i), archegoniate 

gametophytes (A) and percentage of archegoniate gametophytes that were 

fertilized (A). 
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Symbols: spores or pre-sexual gametophytes (o), male gametophytes (•), 

female gametophytes (o), bisexual gametophytes (.), archegoniate 

gametophytes (A) and percentage of archegoniate gametophytes that were 

fertilized (h). 
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Symbols: spores or pre-sexual gametophytes (0), male gametophytes (i), 

female gametophytes (o), bisexual gametophytes (i), archegoniate 
gametophytes (A) and percentage of archegoniate gametophytes that were 

fertilized (s). 
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Symbols: spores or pre-sexual gametophytes (o), male gametophytes (•), 

female gametophytes (o), bisexual gametophytes (i), archegoniate 

gametophytes (A) and percentage of archegoniate gametophytes that were 

fertilized (h). 
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Chapter 7 



Discussion 

Experimental approach 

The field experiments were simple but effective. Large numbers of gametophytes 

were obtained and most populations produced sporelings. Watering was not 

necessary. 

Detailed examination of the gametophytes has yielded new and interesting information 

about when and how gametophyte populations develop in the wild if fundamental 

growth requirements are satisfied. The experiments were not designed to yield 

information on why gametophytes grow where in the wild. 

Transparent plastic lids were fitted on the pots to create 'safe sites' for gametophyte 

and subsequently sporeling establishment. These safe sites were artificially created 

but the conditions within them [particularly humidity, temperature (assuming no 

'greenhouse' effect), light, soil type and soil moisture] were probably not significantly 

different from the conditions experienced by natural gametophyte populations in safe 

sites nearby. Of course, the experimental populations were artificial in some 

respects; they were monocultures of uniform age and they were protected from 

erosion, competitors and surface dwelling herbivores. 

The experimental plots had to be large enough to provide material for study on a 

more or less monthly basis for 2 years but they also had to be as small as possible 

to minimize micro-habitat differences between pots (and to be inconspicuous). To 

prevent the plots from exceeding 1M2  only enough pots for one of each species to be 

removed on each sampling date were planted in the field. Ideally, each plot should 

have contained enough pots for replicate samples. The solution, in future 

experiments, would be either to use smaller pots so that at least twice as many could 

be planted in the same area or to use the same number of pots and sample less 

frequently with replication. 
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The results of the field experiments are interpreted using air temperature data 

recorded at climatological stations near the field sites. This is not ideal; conditions 

within natural habitats can be very different from those recorded at nearby 

climatological stations (Peck, 1980). Moreover, temperatures at 1.25 m above the 

ground (the conventional height for recording air temperature) can be very different 

from those at ground level where, of course, gametophytes grow. Ideally, 

computerized Data Loggers should have been left in the field throughout this study I 
to monitor the micro-climate in each plot at ground level. Data Loggers are currently 

being used to monitor the micro-climate of sites occupied by gametophytes of 

Trichomanes speciosum [F. Rumsey and E. Sheffield, Manchester University 

(personal communication)]. 

Results 

In all 3 experiments spores germinated simultaneously at Pease Bridge Glen and at 

Roslin Glen suggesting that a critical daylength and/or temperature was required for 

germination. 

Spores of A. filix-femina, B. spicant, P. setiferum and P. scolopendrium germinated 

in Winter (Experiment 2), Spring (Experiment 1), and Summer (Experiment 3), and 

in each experiment there was no staggered germination. These observations indicate 

that there is no photoperiodic control of spore germination in these species (cf. Eakle, 

1975; references in Dyer and Lindsay, 1992). There is insufficient information to 

assess whether or not daylength controls spore germination in D. affinis, D. dilatata, 

D. fihix-mas and P. aquilinum. 

In Experiment 3, spores of 8 species were sown in August, near the beginning of the 

main spore release season, and it appears that they germinated more or less 

immediately. This is hardly surprising; July and August are the warmest months of 

the year. 

In Experiment 2, most spores germinated in the middle of Winter. This is contrary to 

expectation but it must be remembered that temperatures in December 1988 and 

January 1989 were well above average and were in fact more typical of temperatures 
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- not normally experienced until April or May. This suggests that if this field experiment 

had been conducted in a more typical year, the spores would not have germinated 

until the Spring. This, in turn, implies that in south-east Scotland spores released 

near the end of the main spore release season (October), or exhumed during Winter, 

do not normally germinate until the following Spring. This theory receives support 

from the results of Experiment 1 where even with the mild Winter of 1987188 spores 

sown in January did not germinate until April or May. It is worth noting that 

gametophytes which began their development in Winter did not produce sporophytes 

much earlier than gametophytes which began their development in the following 

Spring. 

Although the results of Experiment 2 might be atypical for the study species at Pease 

Bridge Glen and Roslin Glen, they should not be regarded as misleading. This 

experiment has demonstrated that spores of these species can and do germinate in 

Winter, albeit rarely, in south-east Scotland. Moreover, Winter germination might 

even be a common phenomenon in more southern parts of the British Isles where, 

of course, P. setiferum and P. scolopendrium are more abundant. 

The results of all 3 experiments suggest that in a typical year in south-east Scotland 

spores of A. fillx-femina, B. spicant, P. setiferum and P. scolopendrium would not 

germinate before April or after September (i.e. temperatures would be inadequate for 

germination for 6 months of the year). It is surely no coincidence that sporophytes 

of these species also remain dormant until April. 

In each field experiment, many viable spores did not produce gametophytes. Spore 

'loss in a completely natural situation could easily be explained by the fact that many 

spores are washed into the soil by rain (Lindsay and Dyer, 1990; see Appendix) or 

are eaten e.g. by CollemboIa,Myriopoda, Dermaptera, and Trichoniscidae (Schneller, 

1975, 1979). However, in the field experiments the spores were protected from rain 

and surface dwelling herbivores. Nevertheless, water droplets formed by 

condensation on the plastic lids might have washed some spores into the soil. 

Fewer gametophytes developed in Experiments 1 and 2 than in Experiment 3. In 

Experiments 1 and 2 there was an interval of at least 3 months before temperatures 
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were suitable for germination. During that time many spores might have been 

washed into the soil by water droplets formed by condensation. Moreover, 

germinating spores in Experiments 1 and 2 might have been killed by sub-zero 

temperatures. 

Light transmitted through a forest canopy contains very little radiation in the 

wavelengths 400-700 nm and is relatively rich in far red and near infrared. 

Stoutjesdijk (1972) discovered that while many seeds cannot germinate under a leaf 

canopy spores of D. fillx-mas and P. vulgare can. Experiment 3 confirms 

Stoutjesdijk's results for D. filix-mas and proves that spores of 7 other fern species 

can also germinate in woodland habitats while the canopy is closed. 

Many introductory botanical textbooks state and/or imply by illustration (e.g. Grounds, 

1979; Raven et al., 1986) that all fern gametophytes develop from filamentous 

protonemata. However, no protonemata were observed in this study; gametophytes 

became 2-dimensional after the second or third cell division and the first chlorocytes 

were isodiametrical. This suggests that protonemata do not feature as often, or as 

prominently, in the real fern life cycle as they do in laboratory cultures. 

Most of the experimental populations consisted of male, female and bisexual 

gametophytes [i.e. they were trigametophytic (Klekowski, 1969)]. Female 

gametophytes were larger than bisexual gametophytes and all archegoniate 

gametophytes were considerably larger than male gametophytes. This correlation 

between size and sex expression also exists in natural populations e.g. Tryon and 

Vitale (1977), Cousens (1979, 1981), Cousens etal. (1988) and Hamilton (1988). 

In several species [including A. fi!ix-femina (Schneller, 1979, 1988), B. spicant 

(Cousens, 1973, 1979) and P. aqui!inum (Näf, 1958, 1979)] the differentiation of 

gametophyte populations into 3 sexual types (male, female and bisexual), each of a 

different size, is mediated by antheridiogens. The results of this study support the 

previous reports of antheridiogens in A. fillx-femina, B. spicant and P. aquilinum and 

suggest, for the first time, that sexual development in P. setiferum and P. 

sco!opendrium is also mediated by antheridiogens. Experiment 3 was terminated too 

early to assess whether or not antheridiogens control sex expression in D. affinis, D. 

dilatata and D. filix-mas (but see Chapter 3). 
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Antheridiogens are pheromones secreted by large meristic gametophytes which 

induce the formation of antheridia on young gametophytes. Antheridiogens are active 

at very low concentrations, have high chemical and biological stability and are water 

soluble (Nâf et al., 1975; Schneller et al., 1990). Consequently, they can act rapidly 

at distances of up to 15 cm through soil and up to 30 cm through agar (Schraudolf, 

1985; Schraudolf in Schneller, 1988). The following paragraph, based on Nàf (1958, 

1979) and Schraudolf (1985), summarizes the accepted model for the action of 

antheridiogen in laboratory cultures. 

In any population of gametophytes, individuals develop at different rates. The most 

rapidly developing individuals become insensitive to antheridiogen a few days after 

becoming heart-shaped and before they have started to produce the pheromone (or 

before they have produced it at an effective concentration). As a result, they are 

destined to become female gametophytes (all meristic gametophytes produce 

archegonia sooner or later). Even before archegonial initials are visible 

(approximately 1 week after becoming heart-shaped) these pre-female gametophytes 

begin to secrete antheridiogen. Consequently, the less rapidly developing 

gametophytes, which are heart-shaped but are not yet insensitive to antheridiogen, 

develop antheridia. These heart-shaped male gametophytes will, within a few days, 

become insensitive to antheridiogen and also become antheridiogen producers. 

Within 1-2 weeks they too will develop archegonia (and so become bisexual 

gametophytes). The slowest-growing gametophytes (those that are not yet heart-

shaped) respond, 2-3 days after antheridiogen is first detected, by producing large 

numbers of antheridia. Antheridium formation in the growing region of these juvenile 

gametophytes interferes with the organization of the meristem that is necessary for 

transition to the heart-shape. Consequently, male gametophytes remain ameristic, 

small, sensitive to antheridiogen and incapable of producing archegonia. 

The results of this study suggest (a) that such a sequence of events occurred in the 

experimental populations and (b) that antheridiogens act rapidly in the field as well 

as in culture. 

Regrettably, no attempt was made to distinguish pre-sexual gametophytes that were 

heart-shaped from pre-sexual gametophytes that were not. Presumably, the largest 
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pre-sexual gametophytes in the samples one month before antheridia first appeared 

were heart-shaped and secreting or preparing to secrete antheridiogen. If this was 

true, then the antheridiogens must have acted rapidly because within 1 month some 

gametophytes (up to 90%) in all populations had developed mature antheridia. In 

almost half of the populations in this study, male and archegoniate gametophytes 

were first detected in the same sample. More frequent sampling would probably have 

revealed that even in these populations antheridia developed first. 

In all populations, the first archegoniate gametophytes were considerably larger (up 

to 33 x) than the largest pre-sexual (putative pre-archegoniate) gametophytes in the 

sample 1 month before. Nâf (1979) made a similar observation and suggested that 

the acquisition by a pre-archegoniate gametophyte of a highly organized meristem 

results in accelerated growth. Male gametophytes grow more slowly, not simply 

because they fail to develop highly organized meristems but also because much of 

their growth potential is diverted from the formation of vegetative cells to the formation 

of antheridial cells Näf 1979). 

Laboratory experiments have shown that antheridiogens can induce photoblastic 

spores of some species to germinate, and produce protonemata bearing antheridia, 

in the dark. These experiments and field observations by Schneller (1988) suggest 

that antheridiogens are important in nature for recruiting male gametophytes from soil 

spore banks. Earlier, it was suggested that a large number of spores in the field 

experiments had been washed into the soil before they could germinate. However, 

if antheridiogens were operating in the experimental populations then many of these 

'lost' spores still ought to have germinated. Since no etiolated gametophytes were 

detected, it seems more likely that the spores which did not produce gametophytes 

had died and were not simply dormant in the soil. 

Archegonia first appeared in most populations in the Summer, less than 1 month after 

the first appearance of antheridia (in accordance with the 'antheridiogen model'). In 

3 populations (1 each of B. spicant, P. setiferum and P. scolopendrium) the first 

archegonia appeared in Winter. Archegonia at all stages of development were 

detected in Spring and Autumn. These observations indicate that the production of 

archegonia in A. fillx-femina, B. spicant, P. setiferum and P. scolopendrium is not 
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under photoperiodic control. There is no evidence yet that archegonial production in 

any fern gametophyte is controlled by daylength but this is largely because the 

subject has not been investigated. Many thalloid liverworts which resemble fern 

gametophytes and grow in similar micro-habitats require long days for the production 

of sex organs (Hartman and Jenkins, 1984). 

In many populations embryos appeared less than 1 month after the first appearance 

of archegonia. This demonstrates that, like antheridia, archegonia mature rapidly in 

the field. 

All populations were predominantly male. Female gametophytes were always more 

abundant than bisexual gametophytes. All bisexual gametophytes were completely 

dichogamous; those with mature antheridia always bore immature archegonia; those 

with mature archegonia always bore old and empty antheridia. These observations 

indicate that all the sporophytes observed during this study were the products of inter-

gametophytic mating. This is contrary to the popular belief (based on the prevalence 

of bisexual gametophytes in laboratory cultures) that most sporophytes are the 

products of intra-gametophytic selfing, but is compatible with the results of recent 

electrophoretic studies which prove that inter-gametophytic crossing is the norm in 

many natural populations e.g. Haufler and Soltis (1984), Wolf (1986), Soltis and Soltis 

(1987, 1988, 1990) and Wolf etal. (1988). 

Fertilization occurred throughout the year (including Winter) confirming that mature 

antheridia and archegonia were always present. It is conceivable that if the 

experimental populations had not experienced mild Winters the production and 

fertilization of gametes might have been more seasonal. Cousens et aL (1988) 

observed seasonally produced bands of antheridia on gametophytes of Lorinseria 

areolata. 

The sexual composition of all populations in Experiments 1 and 2 remained relatively 

constant for periods of up to 10 months. Such apparent 'equilibrium periods' were 

probably artifacts created by growing the artificial populations in somewhat protected 

environments and resulting from the fact that no gametophytes were dying (all 

gametophytes survived for at least 1 year) and none were being recruited. In natural 
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populations gametophyte mortality can be extremely high (Cousens 1973, 1981; 

Peck, 1980; von Aderkas, 1983; Kelly, 1987; Cousens etal., 1988; Peck etal., 1990) 

and there are probably numerous opportunities for gametophytes to be recruited 

either from spores deposited into existing populations or from spores in the soil under 

populations (Schneller, 1979, 1988; Schneller etal., 1990). 

The lack of gametophyte mortality resulted in extremely dense populations ranging 

from 50-300 gametophytes cm 2. From the limited information in the literature, it 

appears that densities in nature rarely exceed 75 gametophytes CM-2  (references in 

Cousens, 1988). In future experiments spores should be sown at lower density to 

create more realistic gametophyte populations. 

All 8 species grew better at Pease Bridge Glen than at Roslin Glen. This was despite 

the fact that at Pease Bridge Glen gametophytes (and sporelings) of A. fihix-femina, 

B. spicant, D. affinis, D. dilatata, D. filix-mas and P. aquilinum were grown on soil on 

which mature sporophytes of these species do not grow naturally. Additional 

laboratory and field experiments would be required to determine whether it was the 

higher nutrient status of the soil or some other feature of the habitat at Pease Bridge 

Glen (e.g. the slightly higher temperatures) that promoted this better growth. At 

Roslin Glen there was little evidence to suggest that growth of P. setiferum and P. 

sco!opendrium (on alien soil) was any poorer than that of A. filix-femina and B. 

spicant (on native soil). These observations indicate that gametophytes of A. fillx-

femina, B. spicant, P. setiferum, P. sco!opendrium, D. affinis, D. dilatata, D. fillx-mas 

and P. aquillnum can readily grow and fulfil their function in habitats that are 

unsuitable for further sporophyte development. Consequently, these species could 

be more widespread than the distribution of their sporophytes suggests. 

At Roslin Glen all species grew much better in plot 1 than in plot 2. Doubtless this 

was because the soil in plot 1 was permanently moist whereas the soil in plot 2 was 

frequently dry. Gametophytes developed slowly in plot 2 but not abnormally; embryos 

appeared eventually. All populations in RG.2. had a greater percentage of male 

gametophytes than all populations in RG.1. Conditions unfavourable for rapid 

growth, even in the absence of antheridiogen, are frequently correlated with a 

preponderance of male gametophytes (references in Miller, 1968). This would also 
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explain why all populations at Roslin Glen had a slightly greater percentage of male 

gametophytes than all populations at Pease Bridge Glen. 

Experiment 3 was short but particularly informative. It demonstrated that germination 

can occur in the same year as dispersal but that gametophytes of most species do 

not become sexual until the following year (presumably in the Spring and assuming 

that they survive the Winter). This experiment also revealed (by the fortuitous 

inclusion of P. aquilinum) that there can be major phenological differences between 

species. Unlike all the other species, gametophytes of P. aquillnum became sexual 

before Winter and in one population fertilization occurred before the end of the year. 

This confirms Conways inkling that spores of P. aquilinum germinate immediately 

after dispersal and that under good conditions, fertilization can occur before Winter 

(Conway, 1957). Incidentally, Experiment 2 confirmed her other suspicion that spores 

released as late as mid-October would be unable to germinate before Winter. This 

remarkable ability of P. aquilinum to produce sporelings before Winter is probably a 

survival strategy related to the fact that spores of this species cannot survive 

overwinter [Lindsay, Sheffield and Dyer (unpublished)]. 

Conclusion and future work 

This study has demonstrated that field experiments on the development of fern 

gametophytes are possible. It has also provided a timescale for events in the fern 

life-cycle in south-east Scotland. 

The results for the 4 main species and for 3 of the additional species were strikingly 

similar. In view of this, future phenological studies should concentrate on fewer 

species and greater replication. Field experiments should also be conducted on a 

smaller scale so that more research time can be allocated to complementary 

laboratory experiments. For example, in this study, there was an obvious need for 

laboratory experiments to discover the minimum and optimum temperatures for spore 

germination; to examine the possibility that meristic gametophytes of P. setiferum and P. 

soolopendrium produce antheridiogen; to examine the possibility that photoperiod does not 

control sexual development in A. filix-femina, B. spicant, P. setiferum or P. scolopendrlum and 

to establish the reason why all 8 species grew better at Pease Bridge Glen than at Roslin Glen. 
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Fern spore banks: implications for gametophyte establishment 

STUART LINDSAY & ADRIAN DYER 

Department of Botany, University of Edinburgh, Mayfield Road, Edinburgh. 

EH9 3JH. U.K. 

Abstract 

Although angiosperm seed banks have been well documented, almost nothing is 

known about fern spore banks. This paper reviews the published evidence for spore 

banks and presents new observations made during a wider investigation of 

gametophyte establishment at two woodland sites near Edinburgh, Scotland. Analysis 

of soil cores has revealed the existence of large numbers of viable spores, of more 

than one species, to a depth of at least 30 cm at one site and to at least 95 cm at the 

other. Moreover, these spore banks are present throughout the year. Additional 

investigations in other habitats indicate that fern spore banks are widespread. The 

biological significance of these observations is discussed. 

Key words: Fern, Spore bank, Gametophyte establishment. 

Introduction 

Extensive studies since the middle of the nineteenth century have shown that 

reservoirs of viable seeds exist beneath the soil surface in many habitats. These 

'seed banks' play a vital role in the survival strategies of some angiosperm species, 

particularly short-lived colonizers of disturbed ground. However, the possibility that 

spores may fulfil a similar function in the second largest group of vascular plants, the 

ferns, has not been properly explored. Although there are several indications that 

fern 'spore banks' might be widespread (Table 1), there is little information in the 

literature to confirm this or indicate their importance in fern biology. Grime (1985) 

considers that fern spore banks are unlikely to have a significant role. 
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Spores of many species require light to trigger germination. 

Spores of many species.remain viable for years when stored under relatively 

dry conditions. 

Large numbers of viable spores exist for many months on the soil surface 

after dispersal. 

Spores of species with subterranean gametophytes can enter the soil. 

Many mosses have spore banks. 

Table 1. Indications that fern spore banks might be widespread. 

All the published reports of viable fern spores in soil are listed in chronological order 

in Table 2. In a study of weeds in pineapple plantations in Malaysia, Wee (1974) 

reported that viable spores of nine fern species greatly outnumbered the angiosperm 

seeds in the top 15 cm of the soil. Strickler and Edgerton (1976) detected viable 

spores of Cystopteris fragilis in only the top 2 cm of soil during an investigation of 

seed banks in mixed coniferous forests in Oregon, USA. There is a brief reference 

in an account of a biosystematic investigation on Athyrium filix-femina in Europe 

(Schneller, 1979) to the occurrence in the soil of spores capable of germinating nearly 

a year after the last period of spore release but the habitat, precise locality and soil 

depth were not specified. Peck (1980) made similar observations on spores of 

Dryopteris go/diana which had overwintered on the soil surface beneath fertile plants. 

In a study of bryophyte diaspores in soil, During and ter Horst (1983) noted the 

presence, over a period of twelve months, of at least two unidentified fern species in 

soil sampled to a depth of 6 cm from chalk grasslands in the Netherlands. In another 

very similar investigation of bryophyte diaspore banks, During etal. (1987) discovered 

at least two species in the top 2 cm of soil from several different habitats in Spain. 

A detailed investigation of seeds in the top 10 cm of soil from freshwater tidal 

wetlands on the Delaware River, USA, yielded information on the accompanying 

spore bank of bryophytes and pteridophytes which was published separately (Leck 

and Simpson, 1987). Although Onoc!ea sensibilis was the largest component of the 

spore bank, a total of seven species was recorded. Van Tooren and During (1988) 

found viable spores of at least two unidentified fern species in the top 1 cm of soil 
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Habitat(s) Locality Species Depth (cm) Reference 

Blechnum indicum Burm. 
Dicranopteris linearis Und. 
Histiopteris incisa J.Sm. 
Lygodium scandens Sw. 

Pineapple fields West Malaysia Nephrolepis biserrata Schott 0-15 Wee (1974) 
Pityrogramma calomelanos Link 
Pteridium esculentum Nakai 
Stenochlaena palustris Bedd. 
One other species (not identified) 

Coniferous forests Eastern Oregon, USA Cystoptens fragiis (L) Bernh. 0-2 Strickler & Edgerton (1976) 

Not Specified Europe Athyrium filix-femina (L.) Roth Not specified Schneller (1979) 

Deciduous woodland Central Iowa, USA Diyopteris go/diana (Hooker) A.Gray Surface Peck (1980) 

Chalk grasslands The Netherlands At least 2 species (not identified) 0-6 During & ter Horst (1983) 

Coastal shrubland 
Deciduous woodland Barcelona, Spain At least 2 species (not identified) 0-2 During et al. (1987) 

Athyrium filix-femina L. var. angustum (Small) Rydb. 
Dennstaedtia punctilobula (Michx.) Moore 
Dryopteris spp. 

Tidal Marsh Delaware River, USA Onoclea sensibilis L 0-10 Leck & Simpson (1987) 
The/ypteris palustris Schott 
Woodwardia areolata (L.) Moore 
Woodwardia virginica (L) Smith 

Chalk grasslands 
Grazed pasture The Netherlands At least 2 species (not identified) 0-1 van Tooren & During (1988) 
Deciduous woodland 

Forests Switzerland 
Athyrium fllix-femina (L.) Roth 0-65 Schneller (1988) 
Diyopteris spp. 

Table 2. Published reports of viable fern spores in soil. 



from several habitats in the Netherlands and discovered that some fern spores retain 

their viability after passing through the guts of earthworms. Recently, in a short 

account of spore bank studies at four forest sites in Switzerland, Schneller (1988) 

showed that soil taken from within populations of fertile sporophytes shortly after 

spore release, contained viable spores of the locally dominant ferns to a depth of at 

least 65 cm, with the majority in the first 10 to 15 cm. 

Although Schneller identified some of the possible implications of these observations, 

current knowledge of spore banks is too fragmentary to permit their contribution to 

the reproductive strategies of ferns to be fully understood. Much more information 

is needed on the ecological distribution, identity, movement, longevity and potential 

for establishment of buried spores. Wherever possible, investigations should be 

conducted throughout the year as part of a broader enquiry into the biology of 

particular species and especially into the dispersal of spores and the establishment 

of gametophytes in the wild. 

Most of the observations presented here derive from studies commenced in 1987 as 

part of a wider investigation of gametophyte establishment in four species native to 

Scotland. 

Materials and methods 

The four species chosen for this study were: Athyrium fIllx-femina (L.) Roth, Blechnum 

spicant (L.) Roth, Polystichum setiferum (Forsk.) Woynar, and Phyliltis scolopendrium 

(L.) Newm. A. fihix-femina and B. spicant have a northerly distribution and a 

preference for acidic soils. In contrast, P. setiferum and P. scolopendrium have a 

southerly distribution and a preference for calcareous soils.. Suitable populations of 

A. fillx-femina and B. spicant occur near each other at Roslin Glen Wildlife Reserve, 

near Roslin, 11 km south of Edinburgh. Pease Bridge Glen, near Cockburnspath, 50 

km east of Roslin, is the nearest site with suitable populations of P. setiferum and P. 

scolopendrium. Both study sites are areas of mixed deciduous woodland in small 

river valleys where ferns are abundant and sexually reproducing. 
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The possible existence of viable fern spores in the soil was investigated using a 

simple technique based on that used by Furness and Hall (1981). Using a 9 cm 

diameter corer, cores of soil were removed from the ground near mature sporophytes 

and transferred directly to polythene bags to prevent contamination by air-borne 

spores. In the laboratory, the cores were chopped into 5 cm strata from the centre 

of which smaller cores were taken as subsamples in a further attempt to minimize 

contamination. Finally, two replicate subsamples from each stratum were separately 

sealed in small plastic Petri dishes (diameter = 5 cm, area = c.20 cm) and cultured 

in a growth chamber at 20°C ± 2°C under continuous illumination (photon flux density 

= 20pEm 2s) provided by four 30 Watt 'Warm White' fluorescent tubes. The samples 

were kept moist during the culture period by adding sterile distilled water to the Petri 

dishes when necessary. After approximately 8 weeks, the presence of fern 

gametophytes was determined with a dissecting microscope. The total number of 

visible prothalli was recorded, distinguishing between those with trichomes and those 

without. In these investigations, no attempt was made to identify the gametophytes 

further. 

This method of analyzing soil cores has disadvantages. For instance, it only reveals 

the number of viable spores on or near the soil surface that are exposed to light and 

subsequently germinate. It is not possible to deduce from these values the total 

number of viable spores in the soil samples. In addition, nothing is learnt about the 

number and identity of non-viable spores in the soil. This information is clearly 

essential if spore banks are to be defined accurately. 

In future, detailed information on the total number of spores, their identity and 

distribution might be obtained more rapidly by extracting viable and non-viable spores 

directly from soil and subsequently identifying them using a light microscope. 

Percentage viability could then be determined by culturing these spores on mineral 

agar. 
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Observations 

This investigation is still in its early stages and only preliminary results are available. 

However, it is already possible to recognize several important characteristics of fern 

spore banks. 

Fern spore banks are widespread. 

Viable fern spores have been found in every soil core collected at the two main study 

sites. Unpublished observations at other sites have revealed spore banks in the soil 

on open hillsides and in pastures, arable fields and urban parks in Scotland and in 

the soils of forests and abandoned fields in North Carolina, USA. These 

observations, taken in conjunction with the limited information in the literature, are 

clear indications that fern spore banks are widespread both geographically and 

ecologically. Further studies are underway to define more accurately the extent of 

their distribution. 

Fern spore banks are found to a considerable depth. 

Viable fern spores have been repeatedly found at depths of 20-30 cm. On two 

occasions, viable spores were found 95 cm below the surface. It is likely that viable 

spores exist even deeper in suitable soils but practical difficulties were encountered 

when trying to obtain soil samples one metre or more below the surface. 

Typically, the number of viable spores producing gametophytes on the surface of the 

cultured soil declines as the sampling depth increases (Figure 1). This might be 

simply due to a reduction with depth in the total number of spores present because 

of their restricted downward movement in the soil. However, it is also conceivable 

that the proportion of spores that are viable might decline with increasing depth. For 

instance, there is likely to be a loss of viability with age and the age of spores might 

increase with depth as successive annual depositions move downwards through the 

soil. In addition, the inherent longevity of spores might decline with depth because 

certain types of spores, for example small ones with less stored reserves, move 

further in the soil. The viability of more deeply buried spores might also be adversely 

affected by increasing anaerobiosis or accumulating phytotoxic or allelopathic 

substances. 
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Figure 1. A typical distribution of viable fern spores in soil. 

Relative estimates of the number of viable spores at various depths were obtained 

by culturing soil samples, each with a surface area of approximately 20 cm 2, and 

counting the gametophytes produced. Gametophytes with trichomes (. ), were 

distinguished from those without (0). The results shown here were obtained by 

analyzing a soil core collected from Roslin Glen Wildlife Reserve in June 1988, a few 

weeks before spore release. 
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Another intriguing observation is that the gametophytes appearing on the deeper soil 

samples develop more slowly than those on soil samples collected from nearer the 

surface. Again the reasons are not yet known. Slower development might be a 

precursor of spore death caused by one or more of the factors suggested above. It 

is known that spores stored for several years in herbaria or laboratories germinate 

more slowly than fresh ones (Windham etal., 1986). It might also be significant that 

smaller spores develop more slowly, at least initially, than larger spores of the same 

species (Schedlbauer, 1976; Dyer, unpublished observations). A further possibility, 

in view of the fact that the spores are cultured on the soil from which they were 

sampled, is that soil taken from below the surface limits the rate of development 

through nutritional deficiency or some other inadequacy. 

Further investigations are in progess to establish which of these explanations account 

for our observations. 

Fern spore banks are present from one spore release period to the next. 

Analysis of soil cores collected at the end of June, just before a new crop of spores 

was released, showed that substantial numbers of viable spores were still present in 

the soil at all sampled depths (Figure 1). Clearly, some spores can survive in the soil 

for at least one year. Despite reports that spores of some species can survive 

several decades when stored under relatively dry conditions (Sussman, 1965; Lloyd 

and Klekowski, 1970; Windham et al., 1986) it has not yet been established that 

spores can survive for more than one year in the soil, where they are likely to be 

partially or fully imbibed. However, laboratory experiments have now shown that the 

viability of imbibed spores of A. fi!ix-femina, B. spicant, P. setiferum and P. 

scolopendrium does not decline during the first 8 months of storage in darkness at 

20°C. Other long-term storage experiments currently in progress will yield additional 

information about the longevity of imbibed spores. 

Fern spore banks consist of more than one species. 

In almost every case, even when cores are taken immediately beneath sporing 

fronds, the appearance of some gametophytes with trichomes and some without, 
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indicates that at least two species are present. Gametophytes differing in trichome 

characteristics were sometimes observed, indicating that there were more than two 

species present, but accurate identification to species using gametophtye morphology 

is difficult and. was not attempted. However, gametóphytes can be identified further 

if necessary. Gametophytes can be cultured longer and those which produce 

sporophytes can be identified on the basis of sporeling morphology. Alternatively, 

starch gel electrophoresis, although destructive and expensive, could be used to 

discriminate between species with morphologically indistinguishable gam etophytes 

(Soltis etal., 1983; Kelly & Cousens, 1985). 

Implications 

Clearly, much more information is required to fully understand the role of fern spore 

banks. Nevertheless, it is possible to speculate on the biological significance of our 

observations and some other observations reported in the literature. 

Spore bank formation. 

There are three main ways in which spores could become buried in the soil: by the 

deposition of soil or humus above them; by percolation, the passive transport of 

spores by water; or by animal activity. Whatever the process, it is tempting to believe 

that the viable fern spores found buried to a depth of 95 cm are very old, having 

reached this level over many years. However, this conclusion is premature while so 

little is known about the method(s) or rate of movement of spores in soil. 

There is no evidence that fern spores have an inherent dormancy when released. 

Indeed, most fern spores will germinate as soon as they receive adequate moisture 

and light and experience a suitable temperature. Darkness can enforce dormancy 

on photoblastic spores but only if germination has not already been initiated by light. 

These observations suggest that if spores are to remain dormant in nature, they must 

either settle on a surface where there is insufficient moisture for imbibition and/or 

inadequate light to trigger germination, or they must enter the dark recesses of the 

soil before germination is initiated. Laboratory experiments conducted at 15°C have 

shown that 50% of spores of B. spicant become photosensitive and will germinate, 
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even in subsequent darkness, after receiving moisture and light for approximately 6 

days. The time required to trigger germination of 50% of spores of A. fihix-femina, 

under the same experimental conditions is less than 2 days (Figure 2). These 

experiments imply that the initial movement of spores into soil must be rapid. The 

depth to which light can penetrate soil depends on the soil type and its physical state 

(Woolley and Stoller, 1978). Thus, while some spores might experience total 

darkness within a few millimetres of the soil surface, others must reach a depth of a 

few centimetres before they can escape from light and contribute to a spore bank. 

Except in situations where there is rapid soil deposition or leaf fall, the recruitment of 

spores into spore banks within hours or days of deposition is most likely to result from 

percolation. The rate of percolation is probably influenced by spore size, shape and 

degree of surface sculpturing and this might in turn result in different species being 

represented at different depths in the soil. Percolation of spores could be extremely 

rapid if spores are washed into channels in the soil left by decayed roots or burrowing 

animals. In some habitats, transport by the animals themselves might be the major 

cause of spore movement within the spore bank and in certain soils, the activity of 

earthworms could be particularly important. Van Tooren & During (1988) report that 

some fern spores retain their viability after passing through the guts of earthworms 

and other investigations have shown that earthworms can transport pollen grains 

through a vertical distance of 55 cm in 6 weeks (Walch et al., 1970). These 

observations strongly suggest that earthworms could be responsible, not only for 

downward movement of spores in soil but also for upward movement, returning 

spores to the surface where conditions might be suitable for germination and 

gametophyte establishment. 

Dark germination. 

Laboratory experiments have shown that antheridiogens produced by gametophytes 

of some species can induce photoblastic spores to germinate in the dark. For 

instance, an antheridiogen produced by cultured prothalli of Athyrium filix-femina 

triggered germination of spores and resulted in the development of dwarf males of 

that species 1 cm below the soil surface (Schneller, 1988). An ,antheridiogen of 

Anemia phyllitis is reported to have had a similar effect on spores of that species as 
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Figure 2. The time required for light to trigger germination of spores of A. fihix-femina 

(•) and B. spicant (o) at 15°C. 

The spores were sown on mineral agar in small Petri dishes and placed in a growth 

chamber providing a constant temperature of 15°C and continuous illumination 

(photon flux density = 20pEm 2s 1 ). One Petri dish of each species was removed from 

the growth chamber every 24 hours for the next 14 days and cultured for another 20 

days at the same temperature but in complete darkness. Percentage germination 

was determined at the end of the dark treatment. Photoblastic spore do not normally 

germinate in darkness but they will if germinartion has already been initiated by light. 

Accordingly, any germination observed in these experiments must have been 

triggered by the light treatment received prior to the dark treatment. 
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much as 15 cm below the soil surface (see Schraudolf in Schneller, 1988). These, 

and other observations (Näf, 1979; Schneller, 1979) suggest that antheridiogenS 

might be important in nature for recruiting male-fertile gametophytes from spores that 

are not exposed to light. This is certainly an intriguing possibility but it has still to be 

established that antheridiogens do function like this in nature. 

Colonization. 

Viable spores can exist in the soil from one spore release period to the next. This 

suggests that even in a seasonal climate, where spore release is restricted to a few 

months of the year, there is a potential at any time of the year, for gametophyte 

establishment following soil disturbance. For instance, successful gametophyte 

establishment might take place in the Spring, as well as, or even instead of, the 

Autumn. Soil disturbance, such as that caused by wind-throw of trees, erosion by 

water, or animal activity, will encourage gametophyte establishment, not only by 

exposing spores to light but also by providing a bare substrate which many 

gametophytes appear to prefer. In addition, spores in the soil will be protected from 

many of the hazards present on the surface and soil disturbance following an 

above-ground catastrophe such as fire could result in rapid re-colonization by species 

represented in the spore bank. 

Accumulation. 

A long-lived spore bank will accumulate deposited spores from year to year. This will 

increase the chances of colonization of fern species which are rare or distant. 

Accumulation of spores in the soil is likely to be particularly important for peripheral 

or disjunct populations where conditions suitable for spore production and/or 

gametophyte establishment might be infrequent. The concentration of spores in the 

soil, amongst other factors, might indirectly influence the breeding systems of 

gametophytes. For instance, as the number of viable spores in the soil increases, 

then so too will the opportunity for inter-gametophytic mating between gametophtyes 

of the same species, including those from different sporophyte populations or even 

from different generations. 

168 



Hybridization. 

A spore bank consisting of two or more species has the potential to initiate mixed 

gametophyte colonies and some of these might produce hybrid zygotes. Obviously, 

for hybridization to occur, not only must the participating species be closely related 

but the gametophytes of these species must have similar ecological requirements. 

Where only some of the species in a mixed spore bank are capable of establishing 

on the soil surface, opportunities for hybridization might be restricted. 

Conservation. 

It is conceivable that a long-lived spore bank could conserve a larger gene pool than 

is present in the sporophyte population on the surface. Recruitment from these spore 

banks could re-introduce alleles that have been eliminated by selection. Moreover, 

long-lived spore banks might even provide a means of re-establishing native 

populations at sites where they are thought to have become extinct. 

Conclusion 

It is now evident that reservoirs of viable fern spores do exist throughout the year 

beneath the soil surface in many temperate habitats. Although most spores in the 

soil undoubtedly die, fern spore banks can have important implications for 

gametophyte establishment in some species. 

Further studies are underway to confirm the importance of spore banks in the biology 

of temperate ferns and to compare their role with that of angiosperm seed banks. 
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The effect of imbibition and temperature on the longevity of fern 

spores 

STUART LINDSAY & ADRIAN DYER 

Department of Botany, University of Edinburgh, Mayfield Road, Edinburgh. 

EH9 3JH. U.K. 

Abstract 

There are several reports describing the ability of fern spores, of certain species, to 

survive remarkably long periods of storage (up to 100 years!) under relatively dry 

conditions (1). Most of these reports derive from studies of herbarium specimens. 

A comparative study of the survival potential of different species, housed in more than 

one herbarium, is not possible because storage conditions are not standardized and 

are rarely fully documented. 

There is no published information on the survival and potential longevity of imbibed 

fern spores. However, such information is now particularly important following recent 

discoveries of large reservoirs of viable spores in the soil in many habitats (2). 

For these reasons, we are conducting an experiment in the laboratory to compare the 

longevity of four species, stored either dry or imbibed, at two temperatures. 

The species chosen for this study were: Athyrium filix-femina (L.) Roth, Blechnum 

spicant (L.) Roth, Polystichum setiferum (Forsk.) Woynar and Phyllitis scolopendrium 

(L.) Newm. Spores of these species will germinate only if imbibed and exposed to 

light. 

Imbibition was achieved by sowing dry spores onto mineral agar in compartmentalized 

Petri dishes. These Petri dishes were sealed and stored in complete darkness at 4°C 

or at 20°C. Vials containing dry spores were stored under the same conditions. 

Percentage germination (viability) of dry and imbibed spores was determined every 

2 months by culturing samples on mineral agar, in the light, at 20°C for 3 weeks. 
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The results obtained in the first year of storage are summarized in the table below: 

Mean percentage change in germination after 12 months 

4°C 20°C 

Species Dry Imbibed Dry Imbibed 

A. flux femina +5 +3 72* -11 

B. spicant -11 +3 97* +1 

P. setiferum -16 +2 100* +3 

P. scolopendrium +17 +4 96* +4 

* Statistically significant changes (P<0. 05) 

These results show that the longevity of imbibed spores of A. fihix-femina, B. spicant, 

P. setiferum and P. scolopendrium is equal to, or greater than, the longevity of dry 

spores stored at the same temperature. This is contrary to the popular belief that 

fern spore viability is retained best under dry conditions, but is in agreement with 

reports that seeds of some angiosperms survive longer when fully imbibed (3). 

This study suggests that spores, of at least some species, might survive even longer 

in the soil than on herbarium specimens. Consequently, some fern spore banks could 

be extremely long-lived and have important implications for population genetics and 

conservation (2). However, microbial activity in soil and fluctuations in temperature 

might play an important role in limiting spore longevity under natural conditions. 

Our experiment provides the first evidence that imbibed fern spores can survive 

longer than dry spores under certain conditions. 

WINDHAM, M.D., WOLF, P.G. and RANKER, T.A. (1986). American Fern 

Journal, 76: 141-148. 

LINDSAY, S. and DYER, A.F. In: TaxonomIa, BiogeografIa y Conservación de 

Pteridófitos. Proceedings of the symposium held in Menorca, October 27-30, 1988 

(In press). 

VILLIERS, T.A. (1974). Plant Physiology, 53: 875-878. 
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Wet storage of fern spores: unconventional but far more effective! 

STUART LINDSAY, NEAL WILLIAMS & ADRIAN DYER 

Institute of Cell and Molecular Biology, University of Edinburgh, Mayfield Road, 

Edinburgh. EH9 3JH. U.K. 

Introduction 

Although many pteridologists (including the BPS and AFS Spore Exchange 

organizers) store fern spores air-dry at room temperature, it was until recently 

believed that the viability of most spores was best retained under very dry and cold 

conditions (e.g. Scheuerlein etal., 1989 and references in Dyer, 1979, page 258). 

However, the recent discoveries of viable fern spores in soil many months after spore 

dispersal (reviewed by Lindsay and Dyer, 1990), imply that fern spores can survive 

for long periods in a hydrated state. This apparent anomaly prompted a comparative 

study of the survival at room temperature (approximately 2000)  of spores stored air-

dry with that of spores stored fully hydrated. 

Materials and methods 

Five species, from different genera, were selected for this study: Todea barbara (L.) 

Moore (Crape/King Fern), Athyrium fihix-femina (L.) Roth (Woodland Lady Fern), 

Blechnum spicant (L.) Roth (Hard/Ladder Fern), Polystichum setiferum (Forsk.) 

Woynar (Soft Shield Fern) and Phyllitis scolopendrium (L.) Newm. (Hart's Tongue 

Fern). 

T. barbara, a native of South Africa and Australasia, belongs to the Osmundaceae. 

Like all species in this family, including the British native, Osmunda regalis (L.), T. 

barbara produces 'green' (i.e. chlorophyllous) spores which cannot be stored for long 

by conventional methods. The other four species are common in Britain. They, like 

the majority of ferns, produce 'non-green' (i.e. non-chlorophyllous) spores which are 
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more amenable to storage. Various aspects of chlorophyllous and non-chlorophyllous 

spores are described by Lloyd and Klekowski (1970). 

Spores were fully hydrated by sowing them onto mineral agar (See Dyer 1979, page 

282 for recipe) in sterile plastic Petri dishes. Petri dishes were sealed with 'Parafilm-

M'; a self-sealing waterproof film manufactured by American Can Company 

(Greenwich, Connecticut) and frequently used in laboratories to prevent water loss 

and shrinkage of agar. The fully hydrated spores were prevented from germinating 

by storing the Petri dishes in complete darkness (spores of most fern species require 

light to germinate and so darkness enforces dormancy). Air-dry spores were stored 

alongside in vials also in complete darkness. T. barbara was stored for almost 5 

months. The other species were stored for 2 years. 

At regular intervals during storage, spores were tested for their ability to germinate 

by culturing samples on mineral agar, in the light (photon flux density = 20pEm 2s 1 ), 

at 20°C. Germination was carefully monitored by recording percentage germination 

at regular intervals during culture. Final percentage germination (= 'viability') was 

scored after 21 days by which time there was no further significant increase in 

germination. 

Results 

The results are presented in Figures 1-9; no data on germination rates were obtained 

for T. barbara. Each point represents the mean of at least two replicates. 

Air-dry spores of all 5 species deteriorated markedly during storage, as revealed by 

a progressive loss of viability (Figures 1-5) and an increase in the time required to 

germinate (Figures 6a, 7a, 8a and 9a). 

Surprisingly, fully hydrated 'green' spores deteriorated much more slowly than those 

stored air-dry (Figure 1). Even more striking results were obtained for fully hydrated 

'non-green' spores. Their ability to germinate [i.e. viability (Figures 2-5) and rate 

(Figures 6b, 7b, 8b, and 9b)] was unchanged even after 2 years of storage at room 

temperature! 
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Figure 1 
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T. BARBARA 

Figure 1. Final percent germination after 21 days culture (='viability) of 'green' 

spores of I barbara stored at c.20°C either air-dry (•) or fully hydrated (0) for 

periods of up to nearly 5 months. Dry spores died within 5 months; most wet spores 

remained viable. 
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Figures 2-5. Final percentage germination after 21 days culture (='viability') of 'non-

green' spores stored at C. 20°C either air-dry (•) or fully hydrated (0) for periods of 

up to 2 years. Figure 2: A. fihix-femina, Figure 3: B. .spicant, Figure 4: P. setiferum, 

and Figure 5: P. scolopendrium. After 2 years storage, few dry spores of A. fillx-

femina remained viable and all dry spores of the other 3 species were dead. For wet 

spores of all species, there was no loss of viability. 

Figures 6-9. Germination curves for 'non-green' spores stored at c.20°C either air-

dry (Figures 6a, 7a, 8a and 9a) or fully hydrated (Figures 6b, 7b, 8b and 9b) for 

0 (•), 2 (h),  4 (U), 8 (0), 12 (A) and 24 (o) months. Figure 6: A. fihix-femina, 

Figure 7: B. spicant, Figure 8: P. setiferum and Figure 9: P. scolopendrium. For dry 

spores, germination became slower with increasing time in storage but for wet spores 

there was no change in the rate of germination even after 2 years. 
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Figure 4 
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Figure 6a 
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Figure 7a 
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Figure 8a 
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Figure 9a 
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Discussion 

Our observations on 5 unrelated species suggest that this response of spores to 

hydration might be widespread among ferns. Furthermore, a recent report that 

spores of Psilotum nudum (L.) Pal. Beauv. also survive longer if stored on mineral 

agar (Whittier, 1990), reveals that this effect is not restricted to ferns. It is therefore 

surprising that it has not been previously detected in any pteridophyte. 

In contrast, it has been recognized for almost 40 years (Toole and Toole, 1953) that 

seeds of some angiosperms (e.g. Brussels sprout, Lettuce, Onion) will survive longer 

if stored fully hydrated in aerobic conditions. It is now known that this is due to the 

activation, in fully hydrated seeds, of mechanisms which continuously repair or 

replace old and damaged cellular components (including chromosomes) and thereby 

counteract the normal deteriorative process of ageing (Villiers, 1974, 1975; Villiers 

and Edgcumbe, 1975). In dry seeds, the damage associated with ageing simply 

accumulates, making germination difficult (i.e. slow) and ultimately impossible (i.e. 

death). 

Our results are easily explained if similar 'turnover' mechanisms operate in fully 

hydrated fern spores. 

It was once thought that wet storage techniques would have a major role to play in 

the genetic conservation of flowering plants but, in practice, such techniques are now 

rarely used in seed gene banks because of the technical difficulties of maintaining 

seeds in a simultaneously fully hydrated, aerobic, and dormant condition (Roberts, 

1989). The success and simplicity of the experiment described here clearly indicates 

that fern spores are much better suited for wet storage techniques. Further 

investigation will show whether our technique can be simplified, for example by 

storing spores in vials of oxygenated sterile water or liquid mineral media, without 

reducing its effectiveness. 
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Conclusion 

Wet storage of fern spores deserves further study as an alternative, more natural, 

and more effective method for long-term storage especially a) for 'green' spores, b) 

when a high degree of genetic stability is required and C) where low temperature 

facilities are not available. 
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Supplement to Lindsay, Williams and Dyer (1992) 

In 1989, Lindsay and Dyer published interim results of a survival experiment in which 

spores of Athyrium fihix-femina, (L.) Roth, Blechnum spicant, (L.) Roth, Polystichum 

setiferum (Forsk.) Woynar and Phyllitis scolopendrium (L.) Newm. were being stored 

either air-dry or fully hydrated at 4°C or at 20°C [Appendix (2)]. The final results for 

storage at 20°C were published [with comparable data for Todea barbara (Williams 

and Dyer)] in Lindsay, Williams and Dyer (1992) [Appendix (3)]. The final results for 

storage at 4°C have not been published. They are presented here (Figures 1-8) in 

the same format as in Lindsay, Williams and Dyer (1992). Air-dry spores of all 4 

species deteriorated during storage at 4°C but more slowly than those stored at 20°C. 

As at 20°C, fully hydrated spores did not deteriorate. 

Figures 1-4. Final percentage germination after 21 days culture (='viability') of 'non-

green' spores stored at c.4°C either air-dry (•) or fully hydrated (0) for periods of 

up to 2 years. Figure 1: A. fihix-femina, Figure 2: B. spicant, Figure 3: P. setiferum, 

and Figure 4: P. scolopendrium. Many air-dry spores of B. spicant and some air-dry 

spores of the other 3 species died within 2 years. For wet spores of all species there 

was no loss of viability. Compare with Figures 2-5 in Lindsay, Williams and Dyer 

(1992). 

Figures 5-8. Germination curves for 'non-green' spores stored at c. 40C either air-dry 

(Figures 5a, 6a, 7a and 8a) or fully hydrated (Figures 5b, 6b, 7b and 8b) for 0 ( ), 

12 (A) and 24 (0) months. Figure 5: A. fihix-femina, Figure 6: B. spicant, Figure 7: 

P. setiferum and Figure 8: P. scolopendrium. For dry spores, germination became 

slower with increasing time in storage but for wet spores there was no change in the 

rate of germination even after 2 years. Compare with Figures 6-9 in Lindsay, 

Williams and Dyer, 1992. 
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Figure 3 
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Figure 7a 
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Figure 8a 
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