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Abstract 

The studies described in this thesis were designed to investigate the control of inhibin 

production, secretion and localization in the primate ovary. A heterologous 

radioimmunoassay was established and validated for the measurement of inhibin 

during the normal menstrual cycle in the stumptailed macaque (Macaca arctoides) and 

ovulatory cycle in the common marmoset monkey (Callithrix jacchus). The pattern of 

immunoreactive inhibin secretion was low during the follicular phase, reaching 

maximum levels during the mid -luteal phase in both species. This is similar to the 

pattern observed in the human. These results suggest that the corpus luteum is a major 

source of immunoreactive inhibin secretion in the primate. Inhibin concentrations 

remained elevated in pregnant marmosets throughout gestation. 

The gonadotrophic control of inhibin production was investigated in vivo by 

administration of a luteinizing hormone releasing - hormone (LHRH) antagonist in the 

stumptailed macaque during the mid -luteal phase. Treatment with LHRH antagonist 

for 3 days resulted in permanent suppression of luteal function as shown by low 

serum concentrations of progesterone and immunoreactive inhibin. Replacement of 

gonadotrophin with human chorionic gonadotrophin (hCG) but not follicle - 

stimulating hormone (FSH) prevented gonadotrophin induced suppression by 

antagonist suggesting that inhibin, similar to progesterone, is integrated with the 

luteinizing hormone (LH) control of the corpus luteum. The control of inhibin 

secretion was further investigated in an in vitro luteal cell culture system. Human 

luteal cells secreted progesterone, oestradiol and inhibin in culture. Inhibin secretion 

by the luteal cells was stimulated by hCG in a dose -dependent manner providing 

further evidence that the secretion of inhibin is under the control of LH. 

In an attempt to obtain a model of transitory suppression of luteal function, the effect 

of treatment with LHRH antagonist for 1 or 2 days during the mid -luteal phase on 

serum concentrations of progesterone and inhibin was compared. Recovery of 

progesterone and inhibin secretion was observed in two out of six macaques treated 

with two injections of antagonist and in three out of six treated with a single injection 

of antagonist. Therefore, with the regimens of LHRH antagonist employed, this 

approach was not conducive to obtaining a reliable transitory suppression of luteal 

function. The effect of ovarian hyperstimulation with FSH on serum concentrations of 

immunoreactive inhibin in stumptailed macaques in which endogenous gonadotrophin 

secretion and ovarian activity had been suppressed by an LHRH agonist implant was 
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studied. LHRH agonist treatment suppressed both steroids and inhibin. 

Administration of FSH for 9 days, 8 weeks after agonist implant, resulted in marked 

elevations in oestradiol and immunoreactive inhibin. This nonphysiological situation 

demonstrated that developing follicles may be a source of inhibin. However it requires 

the growth of multiple antral follicles to induce a marked rise in immunoreactive 

inhibin during follicular development. 

Inhibin was localized immunocytochemically in the primate ovary using an avidin- 

biotin immunoperoxidase technique. Intense immunostaining for inhibin a- and I3- 

subunits was detected within the granulosa- lutein cells of the human corpus luteum. 

Similar distribution of inhibin a- subunit immunostaining was observed in 12 corpora 

lutea obtained during early -, mid- and late -luteal phases of the menstrual cycle and no 

changes in intensity or distribution of staining were apparent at these different stages. 

The specific localization of inhibin within the granulosa- lutein cells suggests that 

inhibin production may originate from a discrete cell population within the corpus 

luteum. 
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Chapter 1- Literature Review 

Introduction 
The control of female reproduction in human and non -human primates is the result of a 

complex series of hormonal interactions between the hypothalamus, pituitary and 

ovary. The aim of this review is to discuss this neuroendocrine axis and the 

physiological and pharmacological models which have been used to elucidate the 

feedback control mechanisms involved. In particular, this review will focus on the 

luteal phase of the primate menstrual cycle, the endocrine role of inhibin and the 

gonadotrophic control of inhibin by the primate corpus luteum. 

1. Hypothalamic control of gonadotrophin secretion 
The hypothalamic- pituitary- ovarian axis in primates is primarily under the control of 

luteinizing hormone -releasing hormone (LHRH) from the hypothalamus. This 

decapeptide acts on the pituitary to promote the synthesis and release of the two major 

gonadotrophic hormones involved in the regulation of reproduction, luteinizing 

hormone (LH) and follicle stimulating hormone (FSH). LH and FSH are composed 

of a common a- subunit and a 13- subunit which confers specificity. These subunits are 

encoded by single genes which are regulated separately (Lalloz et al., 1988). Some 

studies on purification of hypothalamic extracts have suggested that FSH is controlled 

by a separate releasing hormone (McCann et al., 1986). However, after two decades 

of speculation an FSH -releasing hormone remains to be chemically identified and the 

consensus of opinion is that LHRH also controls FSH secretion. For the purpose of 

this thesis, the hormone responsible for the release of both gonadotrophins will be 

designated as LHRH. 

1.1 Structure of LHRH 

LHRH is produced from the post -translational processing of a larger molecule 

(Seeburg & Adelman, 1984; Seeburg et al., 1987). The precursor consists of a signal 

sequence, the ten amino acid LHRH sequence, a site for enzymatic processing and a 

56 amino acid -long peptide which has been termed gonadotrophin hormone releasing 

hormone- associated peptide (GAP) (Seeburg & Adelman, 1984). The structure of 

LHRH is identical in all mammalian species and the amino acid composition of GAP is 

conserved about 85% between human, rat and mouse (Seeburg et al., 1987). 
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1.2 Localisation of LHRH 
LHRH is synthesized in hypothalamic neurosecretory cells and is transported along 

axons and stored in the nerve terminals of the median eminence. Co- localization of 

LHRH and GAP within the cell bodies and terminals of this area was demonstrated 

immunocytochemically in the rat (Phillips et al., 1985) and primate (Song et al., 1986) 

brain. Furthermore, Ronnekleiv et al. (1987) showed that LHRH decapeptide was 

present within the cell bodies, nerve fibres and nerve terminals of the macaque and 

baboon pre -optic basal hypothalamus, whereas the precursor (proLHRH) was present 

only in the cells bodies. These results demonstrated that processing events within the 

LHRH neurons occur primarily in the cell soma and the cleavage products are then 

transported to the nerve terminals. 

1.3 Secretion of LHRH 
The central component governing the release of LHRH is a'pulse generator' which is 

located in the region of the arcuate nucleus of the mediobasal hypothalamus (MBH) 

(Goodman & Karsch, 1981; Knobil, 1981). This pulse generator initiates a cascade of 

events beginning with the release of a bolus of LHRH into the pituitary portal system 

(Sherwood et al., 1976) approximately once every hour and transported down the 

infundibulum to the anterior pituitary gonadotrophs (for review see Sawyer, 1978). 

The study of the normal physiology of LHRH has been complicated by difficulties in 

the measurement of LHRH. The vast majority of LHRH secreted from the 

hypothalamus is predominantly confined to the portal blood supply linking the central 

nervous system to the anterior pituitary. As a result, levels of LHRH in the periphery 

are very low and its measurement is further confounded by its rapid half -life of 2 -4 

min (Arimura et al., 1974). Consequently, the study of the physiology of LHRH 

secretion involves a series of inferential approaches which must be taken into account 

when results are interpreted. 

1.4 Pulsatility of LHRH 

The evidence to support the pulsatile discharge of LHRH was obtained from 3 

sources: 

(i) LHRH was measured in blood samples collected from the pituitary stalk portal 

system of anaesthetized ovariectomized rhesus monkeys (Carmel et al., 1976) and rats 

(Sarkar & Fink, 1980; Soper & Weick, 1980). 

(ii) Immunoneutralization of LHRH abolished the pulsatile secretion of LH in the ewe 

(Clarke et al., 1978; McNeilly et al., 1984), ram (Lincoln & Fraser, 1979), 

ovariectomized female rats (Snabels & Kelch, 1979) and stumptailed macaque (Fraser 
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et al., 1982; Fraser, 1986). In the female rat and sheep, but not stumptailed macque, 

this treatment inhibited the naturally occurring or steroid -induced preovulatory LH 

surge (Koch et al., 1973; Fraser, 1986; Fraser & McNeilly, 1982; 1983). 

(iii) In the 'hypothalamic clamp' experiments of Knobil (1980), radiofrequency 

lesions were placed in the medial basal hypothalamus of ovariectomized rhesus 

monkeys. This promptly reduced plasma LH and FSH concentrations to undetectable 

levels. Using this model it was demonstrated that replacement of LHRH by short 

regular pulses restored normal gonadotrophin secretory profiles and induced regular 

menstrual cycles. Secondly, they established that the 'pattern' of the 

hypophysiotrophic stimulus was important in the control of gonadotrophin secretion. 

Continuous infusion of LHRH into the hypothalamic lesioned animals resulted in 

transient increase in gonadotrophin secretion followed by refractoriness of the pituitary 

gonadotrophs to LHRH. Plasma LH and FSH concentrations then fell to undetectable 

levels (Belchetz et al., 1978). A similar outcome was obtained when the frequency of 

LHRH administration was increased from one pulse per hour to two, three or five 

pulses per hour. Furthermore, decreasing the frequency of LHRH administration not 

only changed the levels of gonadotrophin in the blood but altered the ratio of LH to 

FSH (Wildt et al., 1981). 

1.5 Relationship of LHRH to LH 

The consequence of the rhythmic discharge of LHRH is the pulsatile secretion of LH 

and FSH by the gonadotrophs into the peripheral circulation. Although Carmel et al. 

(1976) provided direct evidence that a hypothalamic input was the cause of circhoral 

LH rhythm, their model in the rhesus monkey necessitated complete pituitary stalk 

section and it was therefore not possible to correlate LHRH and LH pulses. However, 

Clarke & Cummins (1982) overcame this by lesioning the hypophysial portal vessels 

only partially across the pituitary stalk thereby maintaining partial pituitary function. 

This enabled them to measure LHRH in hypothalamo -hypophyseal portal blood in 

conscious ovariectomized ewes and LH in the peripheral (jugular) plasma. Their 

results demonstrated a one -to -one relationship between large LHRH and LH pulses. 

This was also demonstrated by Levine et al. (1982) using the 'push -pull' perfusion 

technique in ovariectomized ewes. Both of these techniques also demonstrated LHRH 

pulses which were not associated with LH pulses and therefore peripheral LH 

measurements may underestimate hypothalamic activity. The synchrony of LHRH 

and LH pulses was also demonstrated by Van Vugt et al. (1983) who fitted 

ovariectomized monkeys with intraventricular cannulae and collected cerebro- spinal 

fluid from the third ventricle and peripheral blood simultaneously. 
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1.6 LHRH secretion during the normal human menstrual cycle 

The normal pattern of secretion of LHRH, as inferred by hormonal profiles of LH, 

was examined in detail by Crowley et al. (1985). During the early follicular phase, 

LH pulses exhibited a low frequency (approximately every 90 min) and moderate 

amplitude and were almost suspended during sleep. By the mid -follicular phase, the 

pattern of gonadotrophin release changed markedly. The frequency of LH pulses 

increased to approximately one every hour (circhoral), the amplitude of each pulse 

decreased and the sleep -related suspension of pulsatility disappeared. During the late 

follicular phase, there was a further increase in amplitude of the LH pulses although an 

increase in frequency could not be defined at this sampling frequency. The pattern of 

gonadotropin secretion changed again during the early luteal phase with the formation 

of the corpus luteum. There was a marked slowing of the LH -pulse frequency, with 

large infrequent pulses of apparently bimodal appearance. These characteristics were 

exaggerated during the mid -luteal phase. By the end of the luteal phase, the LH pulse 

frequency continued to slow until only one or two large pulses were observed within a 

24h period. The pattern of LH secretion then returned to the more regular, higher 

amplitude pattern during the transition from the late luteal to the early follicular phase. 

1.7 Mechanism of action of LHRH 
The action of LHRH is transmitted via binding to specific, high affinity receptors 

localised on the plasma membrane of pituitary gonadotrophs which then generate 

intracellular messengers (Clayton, 1987; Conn et al., 1987). This involves the 

breakdown of polyphosphoinositides to generate inositol triphosphate and 

diacylglycerol (Clayton, 1987; Conn et al., 1987). These messengers activate protein 

kinase C resulting in calcium mobilisation and the generation of a cellular response. 

The number of LHRH receptors is influenced by the pattern of LHRH exposure, being 

reduced when exposure is removed and 'up- regulated' by pulses of LHRH (Fraser, 

1986; Sandow, 1983; Clayton, 1987). These changes may contribute to changes in 

gonadotroph responsiveness. As with other peptides, there are large numbers of 

'spare' receptors on the pituitary gonadotroph so alteration of post- receptor 

mechanisms is likely to be of more physiological importance than modulation of 

receptor numbers (Clayton, 1987). 



5 

2. Ovarian control of gonadotrophin secretion. 
While LHRH is essential for gonadotrophin secretion by the pituitary gland, the major 

regulator of LH and FSH secretion is via the negative and positive feedback actions of 
steroid hormones and possibly inhibin and other related proteins produced by the 

ovary. 

2.1 Oestradiol 
2.1.1 Negative feedback 
Pituitary gland 

The negative feedback action of oestradiol was described by Yamaji et al. (1972), who 

demonstrated that infusion of a dose of oestradiol, which restored the level of 
circulating steroid to that found in the early to mid -follicular phase of the menstrual 

cycle, led to a profound suppression of the circhoral release of LH pulses in 

ovariectomized rhesus monkeys. This dosage often blocked the next expected 
secretory episode. Subsequent studies revealed that this inhibition could be sustained 

for many months (Karsch et al., 1973a; 1973b) and Knobil (1974) concluded that the 

negative feedback effect of oestradiol played a major role in the regulation of tonic LH 

secretion during the course of the menstrual cycle in the rhesus monkey. Using their 
model of the rhesus monkey with hypothalamic lesions to block endogenous LHRH 

release and restoring hypophysiotrophic support with hourly infusions of LHRH, 

administration of oestradiol to such animals produced a fall in LH and a decrease in 

pulsatile LH secretion (Plant et al., 1978). Similar effects of oestradiol at the level of 
the pituitary gland were noted in intact monkeys in which oestradiol given systemically 

dampened the increase in serum LH observed after infusion of LHRH (Spies & 

Norman, 1975). These studies present a strong argument that the negative feedback 

effects of oestradiol in the monkey are produced by an action on the pituitary gland to 

suppress the response to LHRH. 

Hypothalamus 

It was first suggested that the negative feedback effect of oestradiol may act at a site in 

the hypothalamus by the findings of Bhattacharya et al. (1972). They found that the 

inhibitory effect of oestradiol on LH pulses in the ovariectomized monkeys could be 

mimicked by the administration of drugs that blocked alpha -adrenergic or 

dopaminergic neurotransmission. These drugs have recently been shown to block the 

rhythmic bursts of hypothalamic multi -unit electrical activity that accompany the 

rhythmic oscillations of LH, and presumably LHRH, in the ovariectomized monkeys 

(Kaufman et al., 1985). Further evidence for a hypothalamic site for oestradiol was 
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provided by the observations of Ferin et al. (1974 ) in which pulsatile LH release was 

blocked by microinjections of oestradiol directly into the hypothalamus and from 

further studies (Ferin et al., 1984) where oestradiol was found to inhibit pulsatile 

secretion of LHRH. Furthermore, using autoradiography, neurons sequestering 

oestradiol were concentrated in the same area of brain as LHRH -producing neurons, in 

the medial basal hypothalamus (Pfaff et al., 1976; Silverman et al., 1982). 

Alternatively, it has been suggested that oestradiol exerted its inhibitory feedback on 

both pituitary and central nervous system, with an initial transitory effect on the 

pituitary followed by a longer lasting effect on the hypothalamus (Weick et al., 1982). 

2.1.2 Positive feedback 
Pituitary 

The initiation of the preovulatory surge of gonadotrophins is the result of positive 

feedback by oestradiol. When the rising plasma oestradiol concentration during the 

late follicular phase exceeds a 'threshold' of approximately 200 pg/ml for 48 h, the 

result is an oestradiol- induced gonadotrophin surge as shown in women (Leyendecker 

et al., 1979; Monroe et al., 1972; Tsai & Yen, 1971; Yen & Tsai, 1971) and monkeys 

(Karsch et al., 1973c; Yamaji et al., 1972). Oestradiol has been demonstrated to 

enhance the response to LHRH at the level of the pituitary gland in the ewe (Clarke & 

Cummins, 1984; Jackson, 1975) and rhesus monkey (Nakai et al., 1978). It has been 

suggested that the actions of oestradiol may contribute to the increased amplitude of 

LH pulses during the surge and its effects are likely to reflect changes in both 

gonadotrophin biosynthesis and the numbers of LHRH receptors (Karsch, 1987). 

The number of receptors for LHRH on pituitary cells has been shown to increase at the 

time of the LH surge in monkeys (Adams et al., 1981), sheep (Crowder & Nett, 1984; 

Moss et al., 1981) and rats (Savoy -Moore et al., 1980; 1981). 

Hypothalamus 

A hypothalamic site has also been suggested for the positive feedback actions of 

oestradiol. An increase in LHRH has been reported in hypophyseal portal blood and 

in push -pull perfusates from the median eminence during the LH surge in the monkey 

(Levine et al., 1985; Neill et al., 1977) and sheep (Clarke & Cummins, 1985; Schillo 

et al., 1985). In the sheep, this effect was described as resulting from an increase in 

frequency of the LHRH pulse (Clarke & Cummins, 1985) whereas in monkeys it was 

associated with an increase in pulse amplitude (Levine et al., 1985). 
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2.2 Progesterone 
It is well established that progesterone reduces the frequency of LH pulses in a number 

of species, including primates (Pohl & Knobil, 1982). This has been demonstrated by 

the dramatic slowing of LH pulses during the luteal phase of the menstrual cycle in 

women (Filicori et al., 1984) and monkeys (Norman et al., 1984). This suggests that 

progesterone mediates its primary neuroendocrine effects by acting upon the frequency 

of the hypothalamic LHRH pulse generator. In women, progesterone administration 

in the follicular phase can produce a slowing of LH pulse frequency and an 

augmentation in LH pulse amplitude (Soules et al., 1984). In the ovariectomized 

monkey, the frequency of gonadotrophin discharges was reduced by administration of 
progesterone (Knobil, 1981). 

Involvement of opiates 

It has been suggested that endogenous opiates may be involved in the actions of 
ovarian steroids on gonadotrophin. Ferin et al. (1984) concluded that oestradiol and 

progesterone acted at a hypothalamic site to modulate LHRH signals, oestradiol 

primarily affecting the amplitude of the pulses while progesterone decreased the 

frequency. Furthermore, the secretion of (3- endorphin into the hypophyseal portal 

circulation was found to fluctuate cyclically with maximum levels during the luteal 

phase of the menstrual cycle (Wehrenberg et al., 1982). Following ovariectomy in 

rhesus monkeys, concentrations of [3- endorphin became undetectable (Wehrenberg et 

al., 1982). Replacement of ovarian steroids restored portal blood concentrations of ß- 

endorphin immunoreactivity indicating that ovarian sex steroids were necessary for the 

release of hypothalamic [3-endorphin (Wardlaw et al., 1982). They also examined the 

effects of single injections of naloxone, an opiate antagonist, on LH secretion 

throughout the menstrual cycle and found LH was stimulated only during the luteal 

phase. This suggested that LH secretion was most suppressed during the luteal phase 

of the menstrual cycle, when progesterone and 13-endorphin levels are maximal. 

3. Manipulation of LHRH action 
The isolation and structural characterization of LHRH in 1971 by the groups of 

Schally and Guillemin led to the development of LHRH agonists and antagonists for 

manipulation of LHRH input to the gonadotroph. These compounds provided an 

insight into the physiological role of LHRH which resulted in potential clinical and 

contraceptive applications (for review see Fraser & Baird, 1987; Fraser, 1988a, 

1988b). 
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3.1 LHRH analogues 
3.1.1 LHRH agonists 

Chemistry and Mechanism of action 

LHRH agonists were designed by identifying the sites of enzymatic degradation of 
LHRH and modifying these positions to increase resistance to peptidases and to 

enhance affinity of receptor binding. It was found that substitution of a bulky 

hydrophobic D -amino acid in position 6 resulted in the development of highly active 

compounds (Table 1). In several compounds the C- terminal glycinamide residue was 

replaced by an ethylamide group and this was found to have an additive effect (Conn et 

al., 1987; Vickery & Nestor, 1987). The agonists are 50 -200 times more potent than 

LHRH in releasing gonadotrophins. However, their main application has been the 

suppression of gonadotrophin release by chronic exposure. 

Down -regulation by LHRH agonists 

Chronic exposure of the pituitary gonadotrophs to LHRH agonists leads to 

suppression of pituitary- gonadal function by several complex mechanisms (Fraser, 

1988a). The most important of these are : 

(i) The over -riding of pulsatile gonadotrophin release. 

(ii) Desensitization of the gonadotroph, particularly at the post- receptor level. 

(iii) Inducing production of altered forms of gonadotrophin with reduced biological 

activity. 

The initial exposure to LHRH agonist is characterized by marked elevations in serum 

gonadotrophin concentrations which last for several hours. Continued administration 

results in decreased pituitary responsiveness which leads to disruption and 

suppression of the pituitary- ovarian axis. This effect is dependent on the potency of 

the agonist and the dose, time and frequency of administration. LHRH agonists are 

inactivated orally and may be administered by injection (for review see Fraser, 1988b), 

nasal spray (Hardt & Schmidt -Gollwitzer, 1984), pump infusion (Akhtar et al., 1983; 

Healy et al., 1986) and slow release depots (Walker et al., 1984; 1986). LHRH 

agonists have proved to have many clinical and therapeutic applications in conditions 

which respond to removal of the gonadotrophic stimulus to the gonad eg. 

endometriosis, fibromyomata, menorrhagia, dysmenorrhoea, polycystic ovary 

syndrome, hirsutism, induction of ovulation with exogenous gonadotrophins, breast 
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cancer and in addition may have potential for contraceptive use (for reviews see Fraser 

& Baird, 1987; Fraser, 1988b). 

3.1.2 LHRH antagonists 
Chemistry 

The development of LHRH antagonists involved a stepwise introduction of 
hydrophobic residues which block proteolysis, increase LHRH receptor affinity and 

prolong pharmacokinetics of the molecule in the absence of LH- releasing activity 

(Vickery & Nestor, 1987; Folkers et al., 1987). The progress in the development of 
LHRH antagonists was hampered by side effects as a result of histamine release, a 

phenomenon associated with peptides having positively charged D -amino acids, in 

particular with antagonists having a D -Arg in position 6 (Vickery & Nestor, 1987). 

Over 2000 increasingly potent antagonists have been synthesized and current 
antagonists contain complex unnatural and for D -amino acids so that only positions 4 

and 9 of native LHRH are maintained without change (table 1). The most recently 

developed LHRH antagonists are long- acting and have produced gonadotrophin- 

suppressing action lasting for several days after a single administration in monkeys 

(Leal et al., 1989). This long action may be related to the solubility properties of the 

antagonists, which are dissolved in propylene glycol and come out of solution after 

injection, forming a depot. These compounds have low histamine- releasing activity 

and should be useful in clinical studies. 

Mechanism of action 

LHRH antagonists exert their action by binding to LHRH receptors with high affinity. 

The receptors are not internalised or down -regulated and even after treatment with 

potent antagonists, administration of high doses of LHRH can still induce LH release 

(Weinberger et al., 1984; Marshall et al., 1986; Chillik et al., 1987; Kenigsberg & 

Hodgen, 1986). It is possible that it is difficult to occupy all LHRH receptors and 

activation of the unoccupied receptors may lead to a biological response or a high local 

concentration of LHRH is capable of displacing LHRH antagonist from the receptors 

(Fraser, 1988a). 

LHRH antagonists have the advantage of inducing immediate inhibition of LH and 

FSH release and a reduction in gonadal activity without the initial stimulatory phase 

observed with the LHRH agonists. Administration of antagonists to macaques during 

the early -or mid -follicular phase for 3 -6 days prevented follicular development (Fraser 

et al., 1987a). Antagonist administration for 3 days around day 7 of the follicular 
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phase resulted in an abrupt fall in serum oestradiol levels which probably reflected the 

functional demise of the follicle selected for ovulation (Kenigsberg & Hodgen, 1986; 

Mais et al., 1986; Fraser et al., 1987a). Ovulation was prevented and a new follicular 

phase began once recovery from antagonist was complete. Repeated administration of 
LHRH antagonist as a large weekly dose in rhesus monkeys was associated with rises 

in serum oestradiol to mid -follicular phase values with absence of ovulation 
(Kenigsberg & Hodgen, 1986). This treatment in combination with a progestogen 

(norgestimate) was successful in inhibiting ovulation in the cynomolgus monkey 

(Danforth et al., 1990). This regimen may prove to be suitable for further 
development as a contraceptive. 

LHRH antagonists as investigative tools during luteal phase. 

The development of LHRH antagonists provided a convenient approach for the 

investigation of the gonadotrophic control of luteal function. Various studies 

involving the use of LHRH antagonists have established that progesterone secretion by 

the corpus luteum of women and non -human primates is dependent on pituitary LH 

secretion. A single injection of LHRH antagonist during the mid- to late - luteal phase 

in the stumptailed macaque and rhesus monkeys resulted in marked suppression of 
progesterone secretion (Fraser et al., 1985; Fraser et al., 1986; Vickery, 1986). 

Furthermore, even during the early -luteal phase, this treatment reduced progesterone 

secretion (Fraser, 1986). Monkeys treated in the early- to mid -luteal phase with a 

single injection of LHRH antagonist demonstrated a recovery of normal luteal function 

after the action of antagonist had subsided. Treatment with LHRH antagonist for 3 

days starting during the early -luteal phase caused a permanent suppression of serum 

progesterone concentrations for the remainder of the cycle (Fraser et al., 1987a). 

Similarly, in women (Mais et al., 1986) and rhesus monkeys (Collins et al., 1986) 

LHRH antagonist administration for 3 days or more during the mid- to late- luteal 

phase resulted in sustained suppression of luteal function. More recently, the 

inhibitory effects of this treatment during the early luteal phase in women has also been 

demonstrated (B. Charbonnel, personal communication) 

The concurrent administration of human chorionic gonadotrophin (hCG) and LHRH 

antagonist during the mid -luteal phase resulted in an over -riding of the suppressive 

effects of the antagonist in women (Mais et al., 1986), stumptailed macaque (Fraser et 

al., 1987a) and cynomolgus monkey (Collins et al., 1986). The latter study also 

showing that concurrent administration of FSH with antagonist failed to sustain 

progesterone concentrations. This suggests that LHRH antagonists could be used to 
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provide a model in which putative luteotrophic agents could be tested to determine their 

stimulatory actions. 

3.2 Investigation into luteal function by surgical means. 
A more invasive approach to investigate luteal function was used in the studies of 
Hutchison & Zeleznik (1984; 1985). Experiments were conducted using the rhesus 

monkey as a model, rendered anovulatory by radiofrequency lesions in the arcuate 
region of the medial basal hypothalamus. Endogenous gonadotrophin secretion and 

ovulatory cycles were subsequently re- established by chronic pulsatile infusion of 
LHRH. Endogenous gonadotrophin secretion was interrupted during the early- and 

mid -luteal phase by stopping the infusion of LHRH (Hutchison & Zeleznik, 1984). 

Plasma progesterone concentrations declined to undetectable levels resulting in 

premature menses and it was concluded that the normal functional lifespan of the 

primate corpus luteum required the presence of circulating pituitary gonadotrophin 

during the early- and mid -luteal phase. Endogenous gonadotrophin secretion was then 

interrupted for a 3 day period during the early -, mid- and late -luteal phases (Hutchison 

& Zeleznik, 1985). During the deprivation period, immunoreactive serum LH was 

undetectable and was followed by a rapid fall in progesterone. Restoration of 

gonadotrophin secretion when the gonadotrophin deprivation period was imposed 

during the early- or mid -luteal phase resulted in resumption of progesterone secretion 

which continued until the end of the luteal phase. This failed to occur when 

gonadotrophin secretion was interrupted during the late luteal phase. These results 

further confirmed that progesterone secretion during the luteal phase was dependent on 

pituitary gonadotrophin support. The corpus luteum can recover from transient 

withdrawal resulting in functional luteolysis, but the degree to which luteal function is 

restored varies with the age of the corpus luteum. 

4. Structure and function of the Corpus Luteum 

4.1 Formation 
A corpus luteum is formed as a result of the action of the preovulatory LH surge on the 

membrana granulosa and theca interna cells of the mature Graafian follicle. This 

induces a series of morphological and biochemical changes known as luteinization 

(Rothchild, 1965; 1981). After ovulation, the basement membrane breaks down and 

blood vessels from the theca interna invade the cavity of the ruptured follicle. 

Fibroblasts accompany the vessels and form a dense reticulum network within the 

granulosa layer as well as an inner fibrous layer which lines the central cavity (McKay 
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et al, 1961). When mature, the corpus luteum has a diameter of 1.5 -2.5 cm and is a 

yellow structure with festooned contours and a cystic centre filled with a haemorrhagic 

coagulum (Clement, 1987). On the 8th or 9th day after ovulation, involutional 

changes begin resulting in luteal regression or luteolysis (Corner, 1956). During this 

process the granulosa- lutein cells decrease in size, accumulate cytoplasmic lipid and 

develop pyknotic nuclei (Clement, 1987). There is a decrease in enzymes associated 

with steroid biosynthesis and an increase in hydrolytic enzymes (Deane et al., 1962) 

and eventually the cells undergo dissolution and phagocytosis (Adams & Hertig, 

1969). This is followed by a progressive fibrosis and shrinkage over several months 

and conversion into a corpus albicans. 

4.2 Cell types within the corpus luteum 
Histologically, the human corpus luteum, similar to a variety of other mammalian 

species, is thought to be composed of at least two morphologically distinguishable cell 

types, the larger cells (25 -50µm) being derived from the granulosa cells of the 

preovulatory follicle and the smaller cells (15 -25µm) being derived from the cells of 
the theca interna (Corner, 1956). In contrast to the granulosa cells of the follicle, 

granulosa- lutein cells are larger, polygonal shaped cells with abundant eosinophilic 

cytoplasm which may contain lipid droplets (Gillim et al., 1969). Granulosa- lutein 

cells contain a spherical nucleus with one or two nucleoli and the histochemical pattern 

of these cells varies with the age of the corpus luteum (Deane et al., 1962; Feinberg & 

Cohen, 1965; Wiley & Esterly, 1976). The theca interna forms an irregular and often 

interrupted layer around the circumference of the corpus luteum which is several layers 

in thickness and also surrounds the vascular septa that extend into the centre of the 

tissue (Clement, 1987). These cells contain a round to oval nucleus with a single 

prominent nucleolus. In contrast to the granulosa- lutein cells, they have less 

abundant, more darkly- stained cytoplasm with larger lipid droplets. Both granulosa- 

lutein and theca -lutein cells contain abundant tubular smooth endoplasmic reticulum, 

mitochondria with tubular cristae and numerous free ribosomes (Crisp et al., 1970), 

structural features characteristic of steroid secreting cells. A third cell type, the 'K' 

cell, is present in small numbers within the theca interna of the mature follicle and 

within the granulosa- lutein cell layer of the early corpus luteum. These cells are 

characterized by a stellate shape, deeply eosinophilic cytoplasm and a pyknotic nucleus 

and persist until menstruation, at which time they degenerate. The cytoplasm is 

sudanophilic due to the presence of phospholipid (White et al., 1951). 'K' cells do 

not have the histochemical pattern of steroidogenic cells and have been considered as 

perivascular macrophages or cells of granulosa or thecal origin which have been 
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subjected to degenerative changes or altered metabolic activity (Adams & Hertig, 1969; 

Nelson & Greene, 1958; White et al., 1951). 

4.3 Steroid production by luteal cell types 
Several different techniques have been employed to attempt to separate and analyse 
different cell populations within the corpus luteum in different species. Some groups 
have applied density gradient centrifugation in the cow (Ursely & Leymarie, 1979; 

Koos & Hansel, 1981), sow (Lemon & Loir, 1977), ewe (Rodgers & O'Shea, 1982) 

and human (Ohara et al., 1987). Elutriation methods have been employed in the ewe 

(Fitz et al.,1982) and various groups have used flow cytometry in the cow (Davis et 
al., 1988a; Alila et al., 1988a, 1988b) and monkey (Hild -Petito et al., 1989). 

Following separation, studies in vitro have shown that both large and small cells from 
primate corpora lutea synthesize and secrete progesterone and oestradiol. The small 

cells have a greater capacity for progesterone production in response to LH or hCG 

than the large cells, the latter containing few if any receptors for LH or hCG (Ohara et 

al., 1987; Hild -Petito et al., 1989). Oestradiol secretion in vitro was stimulated by 

androgens in large luteal cells but not in small luteal cells from mid luteal phase 

corpora lutea (Ohara et al., 1987; Hild -Petito et al., 1989): however, androgen 

production was greater in theca -lutein cells (Macnaughton et al., 1981). Furthermore, 

small cells responded to LH whereas large cells did not (Hild -Petito et al., 1989; 

Macnaughton et al., 1981). Sasano et al. (1989) have demonstrated 
immunocytochemically the presence of P450 aromatase activity in the granulosa- lutein 

cells and P450 17 a- hydroxylase activity in the theca -lutein cells of the human corpus 

luteum. 

It has been suggested that progesterone production by large luteal cells from the sheep 

may be regulated by prostaglandins (Fitz et al., 1982; 1984a; 1984b). Moreover, 

nonhormonal activators of adenylate cyclase increased cyclic adenosine 
monophosphate (cAMP) accumulation in both large and small luteal cells but did not 

increase progesterone production by large luteal cells (Hoyer et al., 1984; Hoyer & 

Niswender, 1986). This suggested that progesterone production by large and small 

luteal cells in the sheep may be regulated by different mechanisms. Hild -Petito et al. 

(1989) found that gonadotrophin, prostaglandin E2 and an analogue of cAMP 

stimulated progesterone production to the same extent in both large and small luteal 

cells populations isolated from the monkey corpus luteum. In contrast, Ohara et al. 

(1987) demonstrated that large and small luteal cells populations from the human 

corpus luteum exhibited different responsiveness to gonadotrophic stimulation. In the 
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unstimulated state, large cells were approximately 2 -fold more potent in progesterone 

formation and aromatase activity but only half as potent in androstenedione and 

testosterone formation as small cells. When stimulated by hCG, small cells responded 

with significant increases in progesterone, androstenedione and testosterone release 

but large cells did not. Both cell types secreted oestrone and 17ß- oestradiol in the 

presence of androgen substrate but the addition of FSH significantly stimulated 

aromatization in large cells. It is possible that the discrepancies between the findings 

of Hild -Petito et al. (1989) and Ohara et al. (1987) are due to differences in 

methodology used - the latter study employed Percoll gradient centrifugation whereas 

flow cytometry was used by Hild -Petito et al. (1989). However, both gonadotrophins 

and prostaglandins have been shown to stimulate adenylate cyclase activity in the 

primate corpus luteum (Eyster & Stouffer, 1985; Molskness et al., 1987) suggesting 

these substances may regulate primate luteal cells via a cAMP -dependent pathway. 

5. Control of luteal function 

Sheep 

In sheep, luteolysis occurs as the result of uterine synthesis and secretion of 
prostaglandin Fla (PGF2a )(fig.1.1) (Goding, 1974; Horton & Poyser, 1976; 

Niswender et al., 1985). A positive feedback loop operates during luteolysis between 

the ovary and the uterus, PGF2a releases oxytocin from the ovary and oxytocin in turn 

has the ability to release PGF2a from the uterus (Flint & Sheldrick, 1986) and this 

cycle continues until luteolysis is complete. The close anatomical proximity of the 

uterine veins and ovarian arteries permits diffusion of PGF2a directly into the ovarian 

arteries by a countercurrent diffusion mechanism. This bypasses the general 

circulation and avoids the rapid destruction of prostaglandin in the lungs (McCracken 

et al., 1981). Immunization against oxytocin resulted in prolonged luteal cycles in 

sheep (Sheldrick et al., 1980; Schams et al., 1983) during which oestrus could be 

induced by injections of exogenous PGF2a. When oxytocin injections were 

administered to sheep, this shortened oestrous cycle length and caused luteal 

regression (Milne, 1983). It has also been suggested that oxytocin acts to decrease 

luteal progesterone synthesis (Auletta & Flint, 1988). Active immunization against 

PGF2a in cyclic ewes results in prevention of luteolysis (Scaramuzzi et al., 1973), 

providing further evidence for this theory. 
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[PGF2a]4 

Corpus luteum 

[ Oxytocin] 
large luteal cells 

[Progesterone] 

T 

small luteal cells 

Ovarian blood flow 

4 
[PGF2a]4 

Fig. 1.1 Positive feedback loop of luteolysis in the sheep. Oxytocin released from the 
large cells of the corpus luteum acts on the uterus to release PGF2a. This results in 

luteolysis either by restriction of ovarian blood flow or by an action on the large cells 

of the corpus luteum to decrease progesterone and increase oxytocin secretion. 



17 

The receptors for PGF2a and oestradiol are primarily associated with the large cells of 
the corpus luteum in the sheep (Fitz et al., 1982; Schwall & Niswender, 1985; 

Niswender et al., 1985). It is possible that oxytocin is released from the large cells in 

response to PGF2a which exerts a lytic effect on small cells. Alternatively, it is 

possible that the luteolytic action could be extended from the large cells to the small 

cells through an inhibitory effect of PGF2a on local blood flow. An initial release of 
PGF2afrom the uterus could result in an increase in oxytocin and reduction in 

progesterone production by large luteal cells (Savard et al. 1965). The decrease in 

circulating progesterone results in an increase in oxytocin receptors, interacting with 

secreted oxytocin to stimulate further release of PGF2a (Auletta & Flint, 1988). 

Primates 

The primate corpus luteum has a fixed life -span of approximately 14 days. However, 

the exact mechanisms involved in the regulation of primate luteal function remain to be 

defined. Ovarian cyclicity occurs normally in women with congenital absence of the 

uterus (Fraser et al., 1973) or following hysterectomy (Beling et al., 1970) 

demonstrating that luteal regression in the human must involve a different mechanism 

in comparison with sheep and cattle. The mechanism of luteolysis in non -human 

primates and women remains a subject of great controversy and the involvement of 

many different factors has been suggested (for review see Auletta & Flint, 1988; 

Auletta et al., 1990). A luteotrophic agent has been defined as one which promotes the 

production and /or release of progesterone from the corpus luteum whereas a luteolytic 

agent stops the secretion of progesterone resulting in luteal regression (Rothchild, 

1981). 

5.1 Luteotrophic agents 

LH/hCG 

In most mammalian species studied, LH is necessary for steroid secretion by the 

corpus luteum. LH and hCG interact with the same cell surface receptor (Dufau & 

Catt, 1978) which is a glycolipoprotein (Gospodarowicz, 1973). The result of the 

interaction of a trophic hormone with its receptors includes the formation of 

intracellular cyclic adenosine monophosphate (cAMP) (for review see Richardson, 

1986). cAMP or the protein kinase it activates has a number of steroidogenic actions 

in steroidogenic cells, one of which is the stimulation of cholesterol side -chain 

cleavage enzyme complex in the mitochondrion (Richards et al., 1987) which results 

in increased production of pregnenolone (Hall, 1985). There is evidence to suggest 

that cAMP is not the sole second messenger system in the corpus luteum. Incubation 
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of bovine luteal cells in the presence of hCG (Davis et al., 1986a) or LH (Davis et al., 

1987a) resulted in elevated inositol- 1,4,5 -triphosphate (IP3) and other inositol 

phosphates and induced rapid, concentration -dependent increases in intracellular Ca2+. 

These phospholipid- related effects were independent of increased cAMP. There is 

conflicting evidence concerning stimulation of progesterone in vitro by either 
diacylglycerol (DAG) or IP3. Phorbol esters, which mimic the actions of DAG, 

induced a dose- and time- dependent increase in the accumulation of progesterone by 

rat granulosa cells (Kawai & Clark, 1985) and bovine luteal cells (Hansel & Dowd, 

1986; Brunswig et al., 1986; Alila et al., 1988a). These results suggested that 

phosphatidylinositol -derived second messengers were involved in LH- induced 

progesterone synthesis. However, Veldhuis & Demers, (1986) found that while 

phorbol esters activated kinase in porcine granulosa cell in vitro , the overall effect was 

inhibition of cholesterol side chain cleavage and reduction in the rate of progesterone 

synthesis. The luteotrophic nature of LH was demonstrated in vivo by the 

experiments of Hutchison & Zeleznik (1984; 1985)(see 3.2). 

5.2 Luteolytic agents 
5.2.1 Role of LH 

The idea of involvement of LH in luteolysis originated from the observation that the 

pulsatile frequency and amplitude of LH in women (Filicori et al., 1984) and rhesus 

monkeys (Ellinwood et al., 1984) are markedly reduced during the late luteal phase, in 

comparison with the early and mid -luteal phase. Further evidence for this theory was 

provided by results obtained from Schoonmaker et al.(1984) and Ellinwood & Resko 

(1983) where a decrease in bioactive LH was noted during the late luteal phase in the 

rhesus monkey. However, this observation has not been observed in women (Beitins 

& Dufau, 1986). Furthermore, Hutchison et al. (1986) reduced the LH pulse 

frequency to 1 pulse every 8 hours in rhesus monkeys with hypothalamic lesions and 

luteal function was maintained. The results from these studies concluded that a 

decrease in pulsatile LH secretion alone was not sufficient to promote luteolysis but 

may contribute to declining luteal function in primates. 

5.2.2 Role of the LH receptor 

The possibility that spontaneous luteolysis results from the inability of LH to bind to 

its specific receptor on the corpus luteum has also been investigated. In the sheep, the 

number of occupied and unoccupied LH receptors correlates with the weight of the 

corpus luteum and with luteal and serum levels of progesterone. Furthermore, the 

total and occupied concentrations of LH receptor are more highly correlated with the 
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secretion of progesterone than with circulating LH (Niswender et al., 1985). Diekman 

et aí.(1978) demonstrated a decrease in both serum progesterone and concentration of 
LH receptor as luteolysis approaches. However the fall in progesterone preceeded the 

fall in LH receptor concentrations and they concluded that receptor loss is therefore not 

an initial step in luteolysis. Similar findings have been reported in non -human 

primates and in women (McNeilly et al, 1980; Bramley et al., 1987; Rao et al., 1977a; 

Halme et al., 1978). 

5.2.3 PGF2a 
There is some evidence that PGF2a is a luteolysin in non -human primates and women. 

Intraluteal infusions of PGF2a in rhesus monkeys resulted in luteal regression ( Auletta 

et al., 1984a). Transient reductions in circulating progesterone have been reported in 

rhesus monkeys after intra- luteal (Sotrel et al., 1981) or systemic (Kirton et al., 1970) 

administration of pharmacological doses of PGF2a. Similar results have been 

reported in women (Korda et al., 1975; Wentz & Jones, 1973 ) and also following 

intra- arterial infusion (Auletta et al., 1973) and intraluteal injection of PGF2a (Sotrel et 

al., 1981). However, failure of systemically administered PGF2a in causing 
luteolysis has also been reported which may be accounted for by refractoriness of the 

corpus luteum at certain times (Stouffer et al., 1979) or by rapid metabolism of 
prostaglandin during the first passage through the pulmonary circulation. 

PGF2a is synthesized by the primate (Wilks et al. 1972; Johnson et al., 1988) and 

human corpus luteum (Challis et aL, 1976) and PGF2a receptors have been identified 

in human luteal membrane preparations (Powell et aL, 1974; Rao et al., 1977b ). The 

concentration of PGF2a in human luteal tissue during luteolysis has been shown to be 

higher than in any other stage of the cycle by some groups (Shutt et al., 1976; 

Patwardhan & Lanthier, 1980; Vijayakumar & Walters, 1983). However, this has 

been contradicted by others (Challis et al., 1976; Swanston et al., 1977). It has been 

shown that PGF2a can stimulate progesterone secretion from large and small luteal 

cells (Hild -Petito et al., 1989). Administration of ibuprofen, a cyclo- oxygenase 

inhibitor, directly into the rhesus monkey corpus luteum during the mid -luteal phase, 

resulted in higher progesterone levels and a slightly prolonged luteal phase (Auletta et 

al., 1988a). Furthermore, Sargent et aí.(1988) observed premature luteolysis using 

intraluteal infusion of meclofenamate, a non -steroidal anti- inflammatory drug which 

irreversibly blocks the enzyme cyclooxygenase, during the mid -luteal phase, 

suggesting a luteotrophic role for prostaglandins at this time. The major circulating 

metabolite of PGF2a is 13,14- dihydro- 15- keto-PGF2a (DHKF2a) and levels of this 
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metabolite have been shown to be significantly higher in ovarian venous effluent 

ipsilateral to the corpus luteum, when compared to the contralateral side during the late 

luteal phase in the rhesus monkey (Auletta et al., 1984a). Concurrent measurements of 
DHKF2a in peripheral plasma failed to show any change in concentrations at the time 

of luteolysis (Auletta et al., 1984a). This has also been demonstrated in women (Van 

Orden et al., 1977). 

Taken together, this evidence suggests that PGF2a may be involved in luteolysis 

through appropriately timed luteal synthesis (Auletta et al., 1990). It is possible that 

PGF2a may act via a direct action on the luteal cells and/or decreased or redistribution 

of blood flow away from the corpus luteum. However, the mechanisms of such a 

process remains to be determined. 

5.2.4 Role of Oestradiol 
It has been suggested that oestradiol is also a physiological luteolysin in primates. 

Oestrogens are synthesized by the monkey and human corpus luteum throughout the 

luteal phase (Savard et al., 1965; Butler et al., 1975; Richardson & Masson, 1981). 

Oestradiol suppresses basal and/or gonadotrophin - stimulated progesterone production 

by monkey (Stouffer et al., 1977) and human (Williams et al., 1979) luteal cells in 

vitro. Exogenously administered oestrogens given systemically or locally into the 

corpus luteum cause premature, functional luteolysis (Auletta et al., 1972; Karsch et 

al., 1973d; Karsch & Sutton, 1976; Gore et al., 1973). Furthermore, Ravindranath & 

Moudgal (1987) reported that the anti -oestrogen, tamoxifen, prolonged luteal phase 

length in the bonnet monkey and suggested this effect may be mediated by an increase 

in basal concentrations of LH or by antagonizing a natural luteolytic action of 

oestradiol. However, no statistical analysis of progesterone or oestradiol levels was 

provided and no additional hormonal data were assessed. In a later study by Olive et 

al. (1990) it was reported that low or high doses of tamoxifen had no effect on luteal 

phase length in the cynomolgus monkey. No differences in gonadotrophin levels were 

observed and oestradiol and progesterone levels remained unaltered. It was concluded 

from this study that tamoxifen had no effect on spontaneous luteal function in the 

cynomolgus monkey. 

Three sites of action have been proposed for oestrogen- induced luteal regression: 

hypothalamus, pituitary and corpus luteum. 
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Hypothalamus 

Maruncic & Casper (1987) demonstrated an increase in LH pulse frequency but not in 

amplitude after administration of an anti -oestrogen, clomiphene citrate, to normal 

women in the luteal phase, suggesting a central action probably involving 

hypothalamic LHRH release. Following treatment, elevations in serum oestradiol and 

progesterone levels was observed with a lengthening of the luteal phase. 

Pituitary 

In the rhesus monkey, intraluteal administeration of oestradiol resulted in depressed 

progesterone secretion without any detectable changes in circulating LH (Stouffer et 

al., 1979; Karsch & Sutton, 1976). However, some studies have noted a decrease in 

peripheral LH following administration of oestradiol (Schoonmaker et al., 1984; 

Ellinwood & Resko, 1983; Karsch et al., 1973d) and the discrepancies in these 

findings are probably dose -related (Auletta et al, 1985). 

Corpus Luteum 

Oestradiol did not inhibit cyclic adenosine monophosphate (cAMP) accumulation by 

hCG in cultures of human luteal tissue (Williams et al., 1979; Hahlin et al., 1986) or 

the action of dibutyryl -cAMP on progesterone synthesis (Williams et al., 1979). 

These studies suggest that oestradiol may act directly at a site after adenylate cyclase, 

possibly on the enzymes involved in steroidogenesis (Depp et al., 1973; Caffrey et al., 

1979). However, Hild -Petito et al. (1988) failed to detect oestrogen receptors in 

monkey corpora lutea by immunocytochemistry which does not support the concept of 

a local receptor -mediated role for oestrogen in inducing luteal regression in primates. 

The authors suggested that the control of steroid receptor expression is not via an 

oestrogen receptor -mediated pathway and may be directly or indirectly regulated by 

gonadotrophin. 

Another theory for oestrogen induced luteolysis is through stimulating local production 

of PGF2a through the corpus luteum or ovary. This is suggested from studies where 

infusion of oestradiol in vivo resulted in release of PGF2a from the ovary bearing the 

corpus luteum in rhesus monkeys (Auletta et al., 1978) whereas acute in vitro 

incubation of luteal cells with oestradiol failed to cause release of prostaglandin 

(Johnson et al., 1988). Studies using incubations of dispersed primate luteal cells 

(Stouffer et al., 1977; Laherty et al., 1985; Williams et al., 1979) and luteal tissue 

(Hahlin et al., 1986) have shown that exposure to oestradiol depresses both basal and 
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LH/hCG stimulated progesterone production, indicating a direct action on the corpus 

luteum. 

5.2.5 Oxytocin 
There is a great deal of evidence demonstrating the presence of oxytocin in the 

ruminant corpus luteum (Flint & Sheldrick, 1982; Wathes & Swann, 1982) and its 

role in luteolysis in sheep and cattle (Flint & Sheldrick, 1986). However, the 

production of oxytocin in primate luteal tissue is still very controversial. Many groups 

have attempted to measure oxytocin in the primate corpus luteum by various methods; 

(i) High pressure liquid chromatography (HPLC) /radioimmunoassay (RIA). 

Oxytocin was first reported in human corpora lutea by Wathes et al. (1982) at much 

lower levels in comparison with the concentration found in the sheep by HPLC and 

RIA. These results were later confirmed by other groups using HPLC and different 

radioimmunoassays (Khan- Dawood & Dawood, 1983; Dawood & Khan- Dawood, 

1986; Schaeffer et al., 1984). However, Richardson (1986) was unable to detect 

oxytocin in the human corpus luteum by HPLC/RIA. In addition, Auletta et al (1988b) 

have been unable to detect oxytocin in ovarian venous blood in the rhesus monkey and 

in the corpus luteum of the marmoset whereas Khan -Dawood et al. (1989) have 

detected oxytocin in human peripheral plasma and ovarian blood, the concentration of 

oxytocin being highest in the vein draining the ovary bearing the corpus luteum. 

(ii) mRNA analysis. A single observation has been reported of the presence of 
oxytocin -neurophysin prohormone mRNA in human luteal tissue by dot -blot analysis 

(Rehbein et al., 1986). However, Auletta et al.(1988b) did not detect oxytocin in 

luteal tissue by Northern blotting using a cDNA probe derived from the same sequence 

as Rehbein et al.(1986) where sheep tissue gave positive results. 

(iii) Oxytocin has been detected immunocytochemically in the human (Khan- Dawood, 

1987b), cynomolgus monkey (Khan -Dawood et al., 1983) and baboon corpus luteum 

(Khan- Dawood, 1986) and again these results have been contradicted by Auletta et al 

(1988b). 

It has also been suggested that oxytocin could act in a paracrine manner to control 

luteal function. Oxytocin biosynthesis has been demonstrated in serum -free cultures 

of human granulosa cells (Plevarkis et al., 1990) and oxytocin has also been shown to 

inhibit progesterone secretion by human luteal cells in vitro (Bennegard et al., 1987). 

Furthermore, oxytocin infused directly into the corpus luteum of the rhesus monkey 

resulted in luteolysis (Auletta et al., 1984b) suggesting that oxytocin may be luteolytic 

via local production and action within the corpus luteum. 
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The discrepancies in the findings of oxytocin in the primate corpus luteum could be 

explained firstly by the fact that if the primate corpus luteum contains oxytocin, it is 

present in extremely low concentrations. This would explain why there is no rise in 

circulating concentrations of oxytocin during the luteal phase of the human menstrual 

cycle (Amico et al., 1981). Secondly, oxytocin may not be present throughout the life 

of the corpus luteum. Although Dawood & Khan- Dawood (1986) did report oxytocin 

to be present throughout the luteal phase, they reported it to be present only between 

days 19 and 24 of the cycle by immunocytochemistry (Khan -Dawood, 1987b). 

Finally, the discrepancies in these results could be explained by the differences in 

methodology between groups, especially the specificity of the antibodies used in 

radioimmunoassays. This was noted by Fuchs (1988) who demonstrated differences 

in specificity between different antibodies. In this study, Fuchs found the antibody 

used by Dawood et al. (1978) detected a mid -cycle peak in oxytocin concentrations 

from 8 normal women whereas the antibody produced by Morris et aí.(1980), did not 

reveal any rise in oxytocin during this period. Furthermore, the antibody from 

Dawood et al. (1978) was found to cross -react with an oestrogen- induced oxytocin 

metabolite. This peptide was first noted by Amico et aí.(1985) who found it could 

induce large molecular weight proteins into the circulation, induce enzymes to cleave 

oxytocin and induce the synthesis of another unidentified secretory product. In 

contrast, Flint et al.(1988) found purified acid extracts from human corpus luteum to 

contain a peptide of close resemblance to haemoglobin which may question the 

specificity of the radioimmunoassays. In a recent study (Ivell et al., 1990), mRNA 

copies of the oxytocin gene were detected in both human and baboon corpus luteum. 

However, the levels of mRNA present were found to be extremely low and the authors 

suggested that oxytocin may therefore play a modulatory role in ovarian 

steroidogenesis, perhaps in conjunction with other local factors. 

6.0 Inhibin and related peptides 
While it is accepted that ovarian cyclicity is dependent on the negative feedback actions 

of progesterone and oestradiol at the level of the hypothalamus and pituitary, for many 

years evidence has been provided for a non - steroidal factor named inhibin, which 

specifically suppresses the secretion of FSH by a direct action on the anterior pituitary. 

Indeed, the concept of inhibin was proposed even before LH and FSH were defined as 

separate entities. Inhibin was first described by McCullagh (1932) as a water soluble 

extract of bovine testis which had the capacity to suppress the formation of castration 

cells in the anterior pituitary gland. In 1976, de Jong and Sharpe provided the first 

direct evidence for the presence of inhibin when they discovered that steroid -free 
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extracts of ovarian follicular fluid prevented the post -castration rise in FSH but not 

LH. 

6.1 Isolation and purification 
The subsequent isolation of inhibin proved difficult due to the hydrophobic nature of 
the molecule and the low levels of inhibin present in tissues. Hence there was a delay 

in development of suitable assays with adequate sensitivity for measurement of inhibin 

in the circulation. The initial isolation of inhibin was achieved from bovine follicular 

fluid as a 58 kDa glycoprotein consisting of two disulphide -linked subunits of 43 kDa 

and 15 kDa (Robertson et al., 1985). The introduction of a pH precipitation step 

during the purification procedures led to the isolation of a 31 kDa form consisting of 

subunits of 20 kDa and 11 kDa (Robertson et al., 1986). A similar form also from 

bovine follicular fluid was reported by Fukada et al. (1986). Miyamoto et al. (1985) 

reported the isolation of a 32 kDa form from porcine follicular fluid consisting of 

subunits of 20 kDa and 13 kDa. This finding was confirmed by Ling et al. (1985) and 

Rivier et al. (1985). Two forms of inhibin (a and ß) were isolated from bovine 

(Robertson et al., 1985) and porcine follicular fluid (Ling et al., 1985). The amino 

acid sequence of inhibin was elucidated from the cloning of genes controlling the 

production of the mRNA for inhibin subunits from bovine and porcine sources. Two 

different forms of ß- subunit were detected (ßA and 13B) and each of the subunits was 

found to be encoded by separate genes (Mason et al., 1985; Forage et al., 1986). The 

structures of the genes encoding for the inhibin subunits in human, ovine and rat 

inhibin are now known (Mason et al., 1986; Mayo et al., 1986; Stewart et al., 1986; 

Bardin et al., 1987; Woodruff et al., 1987). 

6.2 Structure of inhibin and inhibin -like peptides 
Inhibin is a disulphide -linked heterodimer consisting of two dissimilar subunits termed 

a and ß, which are joined by disulphide bonds (Robertson et al., 1985). Inhibin 

dimers exists as inhibin A (a(3A) and inhibin B (a13B) (fig1.2 ). Both forms consist of 

identical a- subunits and different 0-subunits (Ling et al., 1985). The ßA subunit is 

one amino acid longer than the ßB subunit and there is 70% homology between the 13 

subunits (Mason et al., 1985). The inhibin subunits belong to the transforming 

growth factor 13 (TGF -ß) family of proteins which include Müllerian inhibiting 

substance, decapentaplegic gene complex of Drosophila and the VG1 gene in Xenopus 

(for review see de Kretser & Robertson, 1989). There is approximately 70% 

structural homology between the a and 13 chains of inhibin within a species. Between 



6k
 1 

20
k 

1 

I 
aC

 

pr
o 

-a
C

 

aN
 

28
k 

57
k 

44
k 

* 
20

k 
* 

aN
 

aC
 

a 
P

re
pr

op
ro

te
in

 
' 

57
k 

44
k 
/ 

-A
l 

33
k 

* 
13

k ß
A

 

P
A

 P
ro

pr
ot

ei
n 

' 

33
k 

* 
13

k ß
6 

: 
13

B
 
P

ro
pr

ot
ei

n 

20
k 

* 
aN

 
aC

 

a 
P

re
pr

op
ro

te
in

 
P

 
pr

ot
ei

n 

44
k 

* 
i 20

k 
* Si

 ß
 

13
k 

aN
 

aC
 

57
k 

in
hi

bi
n 

32
k 

in
hi

bi
n 

F
ig

. 
1.

2 
B

io
sy

nt
he

si
s 

of
 in

hi
bi

n 
an

d 
ac

tiv
in

 

. . 1 
20

k 
* i SS

 

R
 

13
k 

aC
 

ss
 ß
 

13
k 

: 

y 
y 

y 

ß
B

 

s
s
 

s
s
 

s
s
 

R
B

 

A
ct

iv
in

 A
 

A
ct

iv
in

 B
 

A
ct

iv
in

 A
B

 

P
A

 
ß

B
 * 

G
ly

co
sy

la
tio

n 



26 

species, there is approximately 82% homology between the human, bovine and 
porcine a- subunits whereas the 0-subunit DNA sequence is completely conserved 

(Stewart et al., 1986). 

The inhibin a- subunit is initially synthesized as a preproprotein and the 0-subunit as a 

proprotein . The a- subunit precursor consists of three segments; a signal peptide and 

prosequences (pro), an amino region of the a- subunit (ac) and a carboxy region (an). 

The 13- subunit precursor also consists of a precursor region prior to the ß- subunit 

sequence. Large molecular weight forms of inhibin have been identified in follicular 
fluid based on molecular mass determinations (65, 88, 108, 120 kDa) using a- and (3- 

subunit specific monoclonal antibodies (Miyamoto et al., 1986). Inhibin of molecular 

weight 32kD has been the predominant form isolated and consists of ac together with 

the 13kD 0-subunit (Robertson, 1990). In bovine follicular fluid, the predominant 

form of inhibin is 58kD, consisting of ac and an together with the 0-subunit. The 

presence of 32kD in extracts is the result of purification procedures (Robertson et al., 

1986). In serum however, 58kD inhibin is processed to the 32kD form (McLachlan et 

al., 1986a). 

6.3 Other forms of inhibin 
Various forms of inhibin protein fragments have been detected in biological fluids. A 

25kDa form consisting of ac subunit has been isolated from bovine follicular fluid 

(Knight et al., 1989) and identified by immunoblotting and a 4410 species has been 

identifed in rat granulosa cell cultures (Bicsak et al., 1988). In addition, an a- subunit 

precursor consisting of the pro- region of the a- subunit, disulphide linked to the 

mature a- subunit (pro-ac) has been isolated from bovine follicular fluid (Robertson et 

al., 1989) as well as the an subunit (Robertson et al., 1989; Sugino et al., 1989). an 

is a 166 amino acid peptide of approximately 28kDa (Robertson et al., 1989). It is 

possible that an has a different biological role in comparison with inhibin as active 

immunization with the an subunit in the sheep results in reduced fertility (Findlay et 

al., 1989b). 

6.4 Activins 
Activins are dimers of the ß- subunits of inhibin and exist as activin A (PAPA) and 

activin AB (ßA DB)(fig.1.2)(Vale et al., 1986; Ling et al., 1986a). Both forms 

stimulate FSH secretion by pituitary cells in vitro, opposing the action of the inhibins 

(Vale et al., 1986; Ling et al., 1986a,1986b). Thus, the activins are endogenous 

inhibin antagonists. More recently activin B ((38ßB) has been synthesized in 
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recombinant form (Mason et al., 1989). Activin A has been shown to promote 

differentiation of a variety of erythroleukemic cells in vitro and synergize with 

erthropoietin in stimulating erythroid colony formation in primary bone marrow 

cultures (Eto et al., 1987; Kitaoka et al., 1987; Yu et al., 1987; Broxmeyer et al., 
1988). Furthermore, a second TGF(3 subunit has been identified which also appears 

in both homodimeric and heterodimeric configurations (Chiefetz et al., 1987) and it is 

possible that activin and TGF(3 act synergistically to antagonize the actions of inhibin 

in a paracrine manner (Sugino et al., 1988). 

6.5 Follistatin 
Another group of proteins which affect FSH release but are structurally distinct from 

inhibin have been isolated from bovine and porcine follicular fluid. These proteins are 

termed FSH -suppressing proteins (FSP) or follistatin (Robertson et al., 1987; Ueno et 

al., 1987). Three molecular weight forms have been identified with molecular weights 

of 39, 35 and 31kD and all have a common NH2- terminal sequence. The gene 

sequences encoding for rat, human and porcine FSP have been isolated and share no 

structural homology with inhibin subunits. However, they exhibit homology to 

human pancreatic trypsin inhibitor and epidermal growth factor (Esch et al., 1987; 

Shimasaki et al., 1988; 1989). mRNA to FSP has been identified in ovary, kidney 

and brain (Shimasaki et al., 1989) and FSP has been shown to inhibit luteinization of 

granulosa cells in vitro (Xiao et al., 1990). Follistatin has been implicated as a binding 

protein for activin (Nakamura et al., 1990). 

6.6 Measurement of Inhibin 
6.6.1 Radioimmunoassay 
The measurement of inhibin in biological fluids by RIA is complicated by the presence 

of these various forms of non- bioactive a- subunits which may cross react with assay 

antisera. Two types of radioimmunoassay have been developed. The first type of 

assay is based on antisera raised to the synthetic amino terminal region (amino acids 1- 

26, 1 -30, 1 -32) of the 20kD a- subunit of inhibin and the results are expressed in 

terms of mass of synthetic peptide (Rivier et al., 1986; Schanbacher 1988; Sharpe et 

al., 1988; Knight et al., 1989). These assays utilise iodinated amino terminal peptide 

or intact inhibin as tracer. While it is stated that activin, transforming growth factor 13 

and Müllerian inhibitory substance cross -react minimally in these assays, these peptide 

assays will detect a- subunit as well as the whole inhibin molecule. These assays 

express sufficient sensitivity for the measurement of inhibin in peripheral plasma of 

several species excluding human. 
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The second type of assay is based on antisera raised against native 58kD or 30 -32kD 

whole bovine inhibin molecule prepared from bovine follicular fluid using iodinated 

whole bovine inhibin as tracer and standards prepared from partially purified human 

follicular fluid (McLachlan et al., 1986a; Hasegawa et al., 1987; Robertson et al., 

1988a, 1988b). Under optimal conditions, the displacement caused by inhibin -free 

serum is minimal (±10 %) although it is usual practice to supplement the standard with 

an equal volume of serum from gonadectomized animals or postmenopausal women. 

These assays show little or no cross- reaction with a range of inhibin -related proteins 

including activin, transforming growth factor -0, FSH- suppressing protein and the a- 
id 0-subunits of inhibin obtained after reductive alkylation. However, cross reaction 

with other forms of inhibin has been suggested (Robertson et al., 1989; Schneyer et 

al., 1990). These assays have been used extensively in the measurement of serum 

inhibin in the human (for review see de Kretser & Robertson, 1989), stumptailed 

macaque (Fraser et al., 1989; Fingscheidt et al., 1989), sheep (Findlay et al., 1990a), 

pig, cow (Hasegawa et al., 1987;1988), rat (Hasegawa et al., 1987; Robertson et al., 

1988b), goat, cat, dog and horse (Hamada et al., 1989). 

A further type of assay system is currently being investigated. A two -site 

immunoradiometric assay (IRMA) using antibodies raised against the synthetic amino 

terminal region (amino acids 1 -32) of the a- subunit together with antibodies raised 

against amino acids 97 -113 of the 0-subunit of inhibin is currently being developed 

(A.S.McNeilly, unpublished observations). This assay system would presumably 

detect only the whole inhibin molecule. 

6.6.2 Bioassays 

The biological assays for inhibin involve the use of monolayer cultures of rat or ovine 

dispersed pituitary cells and the measurement by radioimmunoassay of the FSH 

content of the cells (Scott et al., 1980; Scott & Burger, 1981), the release of FSH and 

LH into the culture medium (Steinberger & Steinberger, 1976, De Paolo et al., 1979, 

Tsonis et al., 1986) or the FSH and LH secreted in response to LHRH stimulation (de 

Jong et al., 1979; Eddie et al., 1979). There are many complications associated with 

the use of bioassays. The rat monolayer cultures are relatively insensitive and are not 

suitable for the measurement of inhibin in plasma. Sheep pituitary cells are an order 

of magnitiude more sensitive and have been used in the measurement of inhibin in 

peripheral and ovarian venous plasma (Tsonis et al., 1986). All samples used in this 

system must be stripped of steroids to prevent any effects of oestradiol and 

testosterone on FSH secretion (Eddie et al., 1979). However, the serum of some 
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species eg. stumptailed macaque has been shown to be toxic in this bioassay system 

(C.G.Tsonis, R.Leask & H.M.Fraser, unpublished observations). It is possible that 

the presence of activin and follistatin may influence results obtained in bioassays. In 

inhibin radioimmunoassays, FSP does not cross react with antisera (Robertson et al., 

1987) and the levels of activin and FSP in ovarian and testicular extracts are believed 

to be lower (10 -20 %) than those of inhibin, suggesting that bioassay estimates of 
inhibin activity are not markedly influenced by FSP (Robertson, 1990). 

6.7 Physiological role of inhibin in the female. 

6.7.1 Follicle 
Evidence from early studies suggested that the developing follicle was the major 

source of circulating inhibin in all species investigated at that time. The demonstration 

by de Jong and Sharpe (1976) that follicular fluid was a potent source of inhibin 

activity was followed by the findings of Erickson & Hsueh (1978) who showed that 

rat granulosa cells in culture produced bioactive inhibin. These results were confirmed 

in various studies using both in vitro bioassay and radioimmunoassay in the rat 

(Hermans et al., 1982; Croze & Franchimont, 1984; Sander et al., 1984), cow 

(Henderson & Franchimont, 1981), pig (Channing et al., 1982), monkey (Noguchi et 

al., 1987) and human ( Channing et al., 1984). Furthermore, the amount of inhibin 

produced by granulosa cells from large follicles is greater than that from small follicles 

(Channing et al., 1982) and there is a greater concentration of inhibin in the follicular 

fluid of larger follicles (Tsonis et al., 1983). The latter study also demonstrated a 

significant correlation of inhibin with oestradiol concentrations and inhibin activity 

within the follicle. Similarly, a good correlation was obtained between circulating 

levels of oestradiol and inhibin in women undergoing ovarian hyperstimulation for in 

vitro fertilization (IVF) (McLachlan et al., 1986c). The latter study also showed that 

the concentrations of oestradiol and inhibin were closely correlated with the number of 

large antral follicles. The stimulation of inhibin by FSH is also observed during the 

normal human menstrual cycle where a small rise in inhibin is noted during the peri- 

ovulatory period (Tsonis et al., 1988; McLachlan et al., 1990). These results 

suggested that inhibin secretion by the follicle is dependant on continued stimulation 

by FSH. The increasing amounts of oestradiol secreted by the pre- ovulatory follicle 

decreases the plasma concentrations of FSH by negative feedback. As a consequence, 

inhibin secretion declines until the sharp increase in FSH at the LH surge, when 

inhibin also rises (McNeilly et al., 1988). 
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FSH has been shown to be the predominant endocrine regulator of the production of 
inhibin by granulosa cells, while LH at low doses is able to cause release of inhibin 

from granulosa cells after their exposure to FSH (Bicsak et al., 1986; Zhiwen et al., 

1988a). Higher doses of LH/hCG inhibit PMSG/FSH- induced production of inhibin 

in vitro (Zhiwen et al., 1987a; 1988a) and in vivo (Lee, 1983). Furthermore, analysis 

of ovarian mRNA has shown a relative increase in the amount encoding for the a 
(Davis et al., 1986b) and ßA subunits of inhibin (Davis et al., 1988b) following 

treatment of rats in vivo with PMSG. 

6.7.2 Corpus luteum 
The development of radioimmunoassays with sufficient sensitivity for the detection of 

circulating inhibin concentrations in human plasma led to the first indication that the 

corpus luteum was a major source of immunoreactive inhibin. Using a heterologous 

radioimmunoassay developed by Monash University, Melbourne, Australia 

(McLachlan et al., 1986a; McLachlan et al., 1987a) it was demonstrated that serum 

concentrations of immunoreactive inhibin were highest during the luteal phase in the 

normal human menstrual cycle (McLachlan et al., 1987a; Buckler et al., 1988). 

Similar findings were obtained in the Old World primate, the stumptailed macaque 

(Fraser et al., 1989). This view was also supported by in vitro studies demonstrating 

that human luteinized granulosa cells in culture have the capacity to produce inhibin 

(Tsonis et al., 1987a, 1987b). Furthermore, the mRNA for the a- subunit has been 

identified in RNA isolated from luteal tissue from human (Davis et al., 1987b) and 

primates (Hillier et al., 1989; Basseti et al., 1990). In addition, evidence for both a 
and ßA subunit expression using in situ hybridization has been demonstrated in the 

primate corpus luteum (Schwall et al., 1990). 

In contrast with the human, current evidence from non -primate species indicates that 

the corpus luteum is not the source of circulating inhibin. Studies in the cow 

(Hasegawa et al., 1987), sheep (McNeilly et al, 1989) pig (Hasegawa et al., 1988) 

and rat (Rivier et al., 1989; Taya et al., 1989) fail to show a rise in inhibin 

concentrations during the luteal phase. Inhibin has been detected 

immunocytochemically in the recently formed corpus luteum of the rat (Cuevas et al., 

1987) and low levels of a- inhibin mRNA expression are present at this stage of 

development. However both immunocytochemical staining and mRNA expression 

were absent in the mature corpus luteum (Davis et al., 1986b; Woodruff et al., 1987; 
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Meunier et al, 1988a). In corpora lutea of cattle and sheep, a- inhibin mRNA was 

found to be undetectable (Rodgers et al., 1989; Torney et al., 1989). 

6.7.3 Paracrine role 

Two paracrine actions of inhibin have been reported. Firstly, inhibin has been shown 

to enhance LH- induced androgen production by rat thecal cell preparations, an effect 

which is attenuated by activin (Hseuh et al., 1987). Secondly, inhibin (bovine a(3A) 

has been shown to inhibit meiotic maturation of oocytes obtained from immature rats 

(O et al., 1989). As well as being under the endocrine control of FSH, inhibin may 

also be controlled via autocrine and paracrine mechanisms. IGF -1 either alone or in 

synergism with FSH, stimulated inhibin production by rat granulosa cells in a time - 

and dose -dependent manner (Bicsak et al., 1986; Zhiwen et al., 1987a). There is now 

substantial evidence for hormonally- regulated ( FSH, growth hormone and oestradiol) 

production of IGF -1 by granulosa cells suggesting that the actions of IGF -1 may 

control inhibin via an autocrine mechanism (Findlay et al., 1990b). Furthermore, 

TGF -ß caused a dose -dependent increase in basal and FSH - stimulated production of 

inhibin (Zhiwen et al., 1988b). The effects of TGF -ß and FSH were additive, TGF - 3 

increasing the sensitivity of granulosa cells to FSH. As rat and bovine tissue produce 

TGF -(3 this suggests a paracrine action on inhibin production by granulosa cells. 

6.7.4 Extra -gonadal actions of inhibin and activin 
Meunier et al. (1988b) demonstrated a- and (3- subunits in a number of extra -gonadal 

locations such as brain, spleen, adrenal gland, pituitary, kidney and bone marrow, 

supporting the view that the inhibins and activins may have more widespread actions 

in addition to those in the reproductive system. Eto et al. (1987) implicated activin A 

as an erythroid differentiation factor in leukemic cell lines. Furthermore, Yu et al. 

(1987) noted that activin synergized with erythropoietin in stimulating erythroid 

differentiation, an action opposed by inhibin. Thus, activin could be produced in 

normal bone marrow cells and could be regulated by inhibin from other sources. An 

immunomodulatory role for inhibin and activin has also been suggested. Inhibin 

stimulates and activin A inhibits the uptake of 3H- thymidine into rat thymocytes in the 

presence and absence of lectins (Hedger et al., 1989). In contrast, bovine activin A 

stimulates 3H- thymidine incorporation into 3T3 fibroblasts demonstrating that the 

effects on cell proliferation are cell specific (Hedger et al., 1989). 

The demonstration of mRNA for inhibin in the brain and spinal cord (Meunier et al., 

1988b) was confirmed by Roberts et al. (1989) who found that a- and ß- subunits 
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were co- localized in the majority of FSH- and LH- immunoreactive gonadotrophs in rat 

brain. Ovariectomy dramatically increased the size and number of immunopositive 

gonadotrophs and the mRNAs encoding the subunits also increased. These increases 

were prevented by oestrogen replacement suggesting that expression of these subunits 

is regulated by ovarian hormones. Furthermore, Sawchenko et al.(1988) 

demonstrated immunohistochemical staining for inhibin 13- subunit in neurons of the 

nucleus tractus solitarius that project to the paraventricular nucleus. When examined 

ultrastructurally, (3- subunit immunoreactive terminals were found to be in synaptic 

contact with oxytocin -immunoreactive dendrites. Stimulation of the nucleus tractus 

solitarius resulted in oxytocin release into the peripheral circulation as did infusion of 

activin into the paraventricular nucleus. Administration of antisera against the [3-chain 

attenuated suckling- induced oxytocin release (Roberts et al., 1989). The results from 

these studies suggested that activin may mediate suckling- induced and perhaps 

parturition -related oxytocin release. 

7. Aims of thesis 
The overall aim of the experiments performed in this thesis was to investigate the 

production and secretion of ovarian inhibin in the primate. The stumptailed macaque 

and common marmoset were ideal models for investigations of inhibin secretion in the 

primate as the hormonal profile of inhibin during the menstrual/ovulatory cycle was 

very similar to that of the human, with elevations in peripheral inhibin concentrations 

during the luteal phase. This profile is very different to the inhibin concentrations 

observed in sheep, cow and rat where elevations of inhibin during the luteal phase are 

not noted. 

In chapter 2, the endocrine role of inhibin was investigated by establishing and 

validating an inhibin RIA for use in the stumptailed macaque and common marmoset 

monkey. This assay was then used to measure inhibin during the normal menstrual 

cycle in the macaque, the ovulatory cycle and pregnancy in the marmoset and to 

investigate the source and control of inhibin secretion in the human. In chapter 3, the 

aims were to examine the control of inhibin secretion in vivo using LHRH antagonist 

treatment, to investigate whether suppression of inhibin secretion by LHRH antagonist 

could be prevented by hCG or FSH and to examine the control of inhibin secretion in 

vitro using a monolayer culture system for dispersed human luteal cells. In chapter 4, 

the aim was to examine the effects of LHRH agonist implant in macaque, marmoset 

and human and following ovarian hyperstimulation in the macaque. Finally, in chapter 
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5, the aim was to examine the cellular localization of inhibin within the primate ovary 

using immunocytochemistry. 
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Chapter 2 

The measurement of Inhibin in Primates: 
Stumptailed Macaque, Common Marmoset 
Monkey and Human. 

Part I: Inhibin concentrations during the Normal Menstrual 
Cycle in the Stumptailed Macaque. 

2.1.1 Introduction 
The stumptailed macaque (Macaca arctoides), an Old World primate, is an excellent 

model for the study of reproductive endocrinology in primates. Similar to the human, 

these animals have menstrual cycles consisting of a follicular phase of approximately 

10 -14 days and a luteal phase of 14 -16 days. Menstrual cycles can be monitored by 

hormonal measurements in daily blood samples and by recording menstrual bleeding. 

The important contributions to reproductive biology using the stumptailed macaque as 

a model are exemplified by the studies involving LHRH antagonists (described in 

chapter 1) which demonstrated that progesterone secretion by the corpus luteum is 

dependent on pituitary gonadotrophin support. 

The aim of the studies described in part I was to establish and validate a 

radioimmunoassay for the measurement of inhibin during the normal menstrual cycle 

in the stumptailed macaque. The radioimmunoassay for inhibin was developed in 

Melbourne and at the time when these studies were carried out, there were no reports 

of the use of this assay in non -human primates, although unpublished observations 

from the Melbourne group showed that the assay was valid for use in the stumptailed 

macaque. 

2.1.2 Materials and Methods 

2.1.2.1 Animals 
Eighteen adult female macaques (Macaca arctoides) weighing 8 -13kg were used to 

obtain control cycles. The animals were caged singly or in pairs in rooms at a 

temperature of 24 -26 °C. The rooms were open to daylight but also lit artificially 

between 07.00 and 19.00h. The animals were fed a primate diet (Old World Monkey 

diet; B.P.Nutrition, Witham, Essex) daily and given fresh fruit five times per week, 

with water available ad libitum. All animals demonstrated regular menstrual cycles as 
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defined by regular elevations in progesterone concentrations >12 nmol/L for 12 -14 

days and regular bleeds. This was determined by examination of daily menstrual 

bleeding records and serum profiles of progesterone, measured in samples taken three 

times per week. Blood samples (4m1) were collected daily by femoral venepuncture 

without anaesthesia throughout the menstrual cycle and the animals were rewarded 

with 2m1 syrup containing ferrous fumarate (Fersamal, Duncan Flockhart & Co. Ltd., 

Greenford, Middlesex). Blood samples were centrifuged at 1000g for 20 min and the 

serum stored at -20°C until assayed for LH, progesterone and inhibin. 

2.1.2.2 Radioimmunoassays 
Ovulation was determined by use of a rapid progesterone radioimmunoassay (RIA) 

together with an LH RIA. 

All additions were made using an automatic dispensing system (Microlab M) into 

75mm x 10mm LP3 plastic test -tubes (Sarstedt, Leicester). All assays included 

duplicate estimations of total binding (TC), non - specific binding (NSB), standards and 

samples. 

(i)LH assay 
125I -ovine LH (iodination material: oLH LER- 1056 -C2) was prepared using the 

lactoperoxidase technique by Mrs Gwen Cowen. The antiserum (GDN -15, provided 

by Dr.G.Niswender) was raised in rabbits against ovine LH and was used at an initial 

dilution of 1:15,000 (Niswender et al., 1971). LH concentrations were expressed in 

terms of macaque hormone reference preparation NICHD -rhLH -RPI (1.25 -320 

ng/ml). The detection limit of the assay was 4014/L and intra- and interassay 

coefficients of variation were 8% and 14% respectively. 

LH Assay buffer 

0.O1M phosphate buffered saline /0.1% BSA (bovine serum albumin, RIA grade, 

fraction V, Sigma Chemical Co., Poole) (pH 7.4) containing: 

NaCl 9g/L 

Na2HPO4 0.35g/L 

Na2PO42H20 1.18g/L 

Thiomersalate 0.1 g/L 

All chemicals from BDH Chemicals Ltd., Poole. 

LH Assay procedure 

Day 1: 100111 standard (or sample), 300111 buffer, 50111 antibody 
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Day 2: 501.1.1 tracer 

Day 3: l00111 each of normal rabbit serum (Scottish Antibody Production Unit, 

Carluke, batch no. 5263M at a dilution of 1:800) and donkey anti -rabbit serum 

(Scottish Antibody Production Unit, batch no. 5257M at a dilution of 1:32). 

Day 4: 1ml 0.9% saline, assay was then spun at 2500 rpm for 30 min at 40C. 

Supernatant was decanted and the assay then counted in a gamma counter (Pharmacia- 

Wallac 1261 Multigamma manual gamma counter) linked to a digital data logger 

(Mutek Data Grabber). 

Data analysis 

Data were calculated using 'Assayzap Universal Assay Calculator' developed by 

Dr.P.L.Taylor for Elsevier, Biosoft, U.K. This programme uses log -logit 

transformation of the binding data for the standards and a weighted four parameter 

logistic to adjust the non - specific binding (NSB), the zero value (B0), the slope of the 

curve at its steepest point and the point of inflection. This minimizes the effects of 

outlying points in the standard curve until the optimum fit is obtained. AssayZap 

stores information from previous assays allowing current assays to be compared with 

previous assays i.e. between assay and within assay variation, quality control values 

and standard curves stored in a 'graveyard' can be compared between each assay. All 

samples above or below the assay detection limit were re- assayed at the appropriate 

volume. 

(ii) Progesterone Assay 

Progesterone concentrations were measured using a non - extraction RIA. The 

antiserum (361) was raised by immunizing sheep against progesterone-11a- 

hemisuccinate- bovine serum albumin conjugate by R.J.Scaramuzzi, using procedures 

similar to those reported by Scaramuzzi, Corker, Young and Baird (1974). The 

antiserum was used at an initial dilution of 1:10000 and had cross reactivity of 
<0.001% with cortisol and oestradiol -17f and <0.1% with testosterone, 

androstenedione and pregnenolone (Clarke, 1976). Progesterone was iodinated by Mr. 

Ian Swanston using the chloramine T method (Corn et al., 1982) and purified on a 15 

cm LH2O column (Amicon Ltd., Stonehouse, Gloucestershire), eluted with 

methanol/ethyl acetate (60:40). A progesterone l la- glucuronide- tyramine conjugate 

was used for iodination and Pregn -4 -ene 3, 20 -dione (Sigma Chemical Co. Ltd.) 

(P0130) used as reference standard. The sensitivity of the progesterone assay was 

0.07 pmol/tube and inter- and intra -assay coefficients of variation were 15% and 4% 

respectively. 
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Progesterone Assay Buffer 

Phosphate Citrate (pH 6) 

containing: 

Na2HPO4 17.85g/L 

Citric Acid Powder 7.75g/L 

Thiomersalate 0.1 g/L 

Buffer was corrected to pH 6 and lg/L gelatin added. All chemicals from BDH 

Chemicals Ltd. 

Progesterone Assay procedure 

Day 1. 100111 standard (or 5O111 sample), 100111 antiserum (diluted 1:10,000 in assay 

buffer), 100111 tracer (12- 15,000 cpm/tube diluted in assay buffer without gelatin, with 

1mg/m1 ANS (8- anilino- 1- naphthalene sulphonic acid, (Sigma Chemical Co.)) 

Assay was then incubated for 3 hours at room temperature or overnight at 4°C. 

Day 2. 10011l of donkey anti-goat serum (Scottish Antibody Production Unit, batch 

no. 5365N at a dilution of 1:64) and l00111 of normal sheep serum (Scottish Antibody 

Production Unit, batch no. 5387N at a dilution of 1:3200). Assay was then incubated 

overnight at 4 °C. 

Day 3. lml of 0.9% sodium chloride containing 0.2% triton X -100 and 4% 

polyethylene glycol (all chemicals from BDH Chemical Co., Ltd.). Assay spun at 

2500 rpm for 30 minutes at 4 °C and supernatant decanted. Assay then counted in a 

gamma counter and data analysed as per LH assay. 

(iii) Inhibin Radioimmunoassay 
The antiserum and hormone for iodination were purchased from Monash University, 

Melbourne, Australia. The antiserum (no.1989) was raised in a rabbit against 31kDa 

bovine inhibin using the method described by McLachlan et al. (1986a). 350111 of 

freeze dried antiserum was obtained from Monash and this was rehydrated with an 

equal volume of distilled water and stored in aliquots at 1:100 at -20°C. The hormone 

for iodination was prepared according to the method described by McLachlan et al. 

(1987a). It was redissolved in 300111 of distilled water and stored in aliquots of 2O111 

for labelling at -70°C. 

(a) Iodination of bovine 31kD inhibin 
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Iodination buffers 

Buffer (1) 0.5M phosphate buffer (pH 7.4) 

Solution A. 0.5M NaH2PO4.2H2O (BDH Chemicals Ltd.) 7.8g/100m1 distilled 

water. 

Solution B. 0.5M Na2HPO4 anhydrous (BDH Chemicals Ltd.) 7.1g/100m1 

Buffer preparation: 

23.5m1 solution A + 100m1 solution B were mixed, adjusted to pH to 7.4 and frozen 

in 20m1 aliquots. 

Buffer (2) 0.2M phosphate buffer (pH 6.0) + 0.1% BSA 

Solution A. 0.2M NaH2PO4.2H2O 31.2g/L 

Solution B. 0.2M Na2HPO4 anhydrous (BDH Chemicals Ltd.) 28.39g/L 

89ml solution A + 11ml solution B were mixed and made up to 100m1. 0.1g BSA was 

then added. 

Buffer (3) 0.O1M phosphate buffer (pH 7.4) + 0.1% Triton X -100 

A 20m1 aliquot of buffer (1) was thawed and made up to 1000m1. 0.5% BSA , 0.15M 

sodium chloride (BDH Chemicals Ltd.) and 0.1% Triton X -100 (Sigma Chemical 

Company Ltd.) was added. 

Iodination method 

Iodination and subsequent purification of bovine 31kD inhibin was performed as 

described by McLachlan et al (1986a) and Robertson et al (1988a,1988b). 40111 of 

buffer (1) was added to 20111 of inhibin iodination material in a 1.5ml Eppendorf tube 

(BDH Chemicals Ltd.). l0111 of Na 125 -I (1mCi) (Amersham International, 

Buckinghamshire)was then added and the mixture counted (TC) using a Geiger 

counter (type 540m with type 5 -42 probe, Mini- Instruments Ltd., Essex). 8O111 of 

400p.g/ml chloramine T (trihydrate) (BDH Chemicals Ltd.) in buffer (1) was added to 

start the reaction which was mixed at room temperature for 60 seconds. The reaction 

was terminated by adding 40µ1 of 3mg/m1 sodium metabisulphite (BDH Chemicals 

Ltd.)in distilled water followed by 800µ1 of buffer (2). 

The mixture was then applied to PD10 column (5cm; Sephadex G25, Pharmacia Ltd., 

Milton Keynes) previously equilibrated with 30mis of buffer (2). (The Eppendorf tube 

and glass pipette used for applying solution to the column were also counted and 

residue (R) noted). The total amount of activity applied to the column is (TC -R). The 

mixture was eluted using buffer (2) and 6 drops per fraction were collected using a 
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Figure 2. 1: Example iodination: 

(all values expressed as counts per 10 sec (cplOs) ) 

TC = 426028, R = 10225 

Therefore, activity applied to column = 415803 

Fraction number/Radioactivity (cp l0s) 

1. 121 12. 23243 23. 1794 34. 29752 

2. 116 13. 30034 24. 3004 35. 26419 

3. 142 14. 25467 25. 6084 36. 22871 

4. 122 15. 13255 26. 8040 37. 15174 

5. 137 16. 6761 27. 8073 38. 10311 

6. 151 17. 3581 28. 10196 39. 7082 

7. 151 18. 2488 29. 13984 40. 4540 

8. 134 19. 1958 30. 19175 41. 3108 

9. 220 20. 1716 31. 24487 42. 2030 

10. 1185 21. 1532 32. 28964 43. 1481 

11. 9435 22. 1609 33. 30498 44. 754 
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Figure 2.1 contd. 

Pool fractions 11 -18, make up to 20m1. 

lml of pool = 4421, therefore total activity in pool = 20 x 4421 = 88420 

W1; lml = 1254, total activity in W1 = 20 x 1254 = 25080. This is 28% of the total 

activity applied to column. Purification procedure may therefore continue. 

R1= 42305, R2 = 7081 

PD1; 1m1= 13269, total activity = 3 x 13269 = 39807 

PD2; lml = 1929, total activity = 3 x 1929 = 5787 

Total activity = PD1 + PD2 =45594 

To calculate total amount of activity incorporated: 

1mCi = 426028 

45594 = 11% of 1mCi 

Therefore, total activity incorporated = i 10µCi 

Total counts pooled from fractions 11- 18= 114264. This is 27% of the total activity 

applied to column. Since 11% was incorporated (110.tCi), this leaves 16% (160p.Ci) 

solid waste and 73% (7301.1Cí) liquid waste. 
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fraction collector (model 203, Anachem Ltd., Luton). All fractions were counted at 15 

cm with a Geiger counter and fractions containing the iodinated peak were pooled 

(usually fractions 11 -18) and diluted to 20 mls with buffer (2). lml of the diluted 

tracer was then counted (P) and thus the total activity was (20xP). The tracer pool was 

then further purified as follows: 

A Red Sepharose column was prepared by applying 400111 Red Sepharose gel 

(Pharmacia Ltd.) to a short glass pipette which was stoppered at the end with a glass 

bead. The column was washed with 10mis of buffer (2). The diluted tracer was then 

added to the column and the wash collected (W1). lml of the wash was counted and 

the total activity noted (20xW1). If the activity was <40% of the total amount applied 

to the column, the purification procedure was continued. If however the activity was 

>40% , the wash was reapplied to the column and the activity of the eluate measured 

once again. The column was washed with 3xlml of buffer (2) which was then 

discarded. The tracer was eluted with 2xlml of buffer (2) containing 1M potassium 

chloride (BDH Chemicals Ltd.), 4M urea (BDH Chemicals Ltd., Poole) and the two 

fractions collected and counted (R1 and R2). 

Two PD10 5cm columns (Pharmacia Ltd.) were equilibrated with 30mis of buffer (3). 

R1 and R2 were then applied to separate columns followed by 1.5mis of buffer (3). 

The eluant was discarded and a further 3mls of the wash buffer applied. A 3m1 

fraction from each column was collected (PD1 and PD2). lml from each fraction was 

counted and the total activity calculated [(3)(PD1) + (3xPD2)]. Fractions were then 

pooled, aliquoted into 500111 fractions and stored at -20°C. An example iodination is 

shown in figure 2.1. Figure 2.2 is a representative elution profile from an inhibin 

iodination. Peak 1 represents labelled 125I- inhibin which is eluted before 'free' 125 

iodine (peak 2). 

(b) Preparation of Inhibin Standard 

The inhibin standard was prepared from partially purified human follicular fluid by Dr. 

Kogie Reddi (Reddi et al, 1990a). A pool of human follicular fluid was obtained from 

patients undergoing oocyte retrieval. The pH of the pool was adjusted to 7.2 and it 

was then applied to a Red Sepharose column (Pharmacia Ltd.) (Miyamoto et al, 1985). 

The inhibin- containing fraction was further purified by immunoaffinity 

chromatography using an antibody raised against a synthetic N- terminal 1 -26 amino 

acid porcine inhibin a- subunit peptide (from Dr.Alan McNeilly). The inhibin- 

containing fraction was eluted in 8M urea -1M potassium chloride and dialysed against 

10mM phosphate buffer. The bioactivity of the preparation was measured against the 

activity of ovine rete testis fluid standard (oRTF) using an in vitro sheep pituitary cell 
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Fig.2.2. Representative elution profile from inhibin iodination- Peak 1 contains 
labelled 125 I- inhibin. Peak 2 contains free 125- iodine. 
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Fig. 2.3 Activity of ovine rete testis fluid ( O ) and partially purified human follicular 
fluid ( ) expressed as % suppression of FSH in the sheep pituitary cell bioassay 
(from Dr. Kogie Reddi). 
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bioassay (Tsonis et al, 1986). The mean activity from seven bioassays was found to 

be 23.0±1.2 U/L (mean±SEM). This is shown in figure 2.3 which demonstrates the 

parallelism obtained between our partially purified human follicular fluid standard and 

the activity of ovine rete testis fluid, expressed in terms of % suppression of FSH in 

the sheep pituitary cell bioassay. 

(c) Second Antibody Titrations 

To reduce any non - specific effect of serum in the RIA, it was necessary to titrate the 

second antibodies used in order to obtain the concentration at which maximal binding 

was obtained where differences in binding between serum and buffer were negligible. 

Normal rabbit serum (NRS) (Scottish Antibody Production Unit, batch no.5162L) and 

donkey anti -rabbit serum (DARS) (Scottish Antibody Production Unit, batch 

no.5257M) were titrated at dilutions of 1:200 -1:1600 and 1:4 -1:64 respectively. The 

results are shown in figure 2.4. Maximum binding of 28% was obtained with NRS at 

a dilution of 1:600 and DARS at a dilution of 1:32 (graph (c)). The antibodies were 

therefore used in the RIA at these dilutions. 

(d) Inhibin Radioimmunoassay procedure 

Assay buffer 

As buffer (3) above, without the addition of Triton X -100. 

Day 1. l00111 of standard (prepared by 1:10 dilution of stock standard described in (b) 

and then double diluting to give standards ranging from 230 -3.6 mU /0.1m1) or l00111 

of serum sample, 200µ1 assay buffer and l00111 of antiserum (1:3000 diluted in assay 

buffer containing 1:600 normal rabbit serum). All samples assayed at <100.t1 were 

equalised with a pool of post -menopausal plasma, assayed previously and shown to 

contain undetectable amounts of inhibin. Assay incubated for 24 hours at room 

temperature. 

Day 2. l00µ1 of radiolabelled tracer ( ±10,000 cpm per tube, diluted in buffer (3)). 

Assay incubated for 24 hours at room temperature. 

Day 3. l00111 of donkey anti -rabbit serum (diluted 1:32 in assay buffer) was then 

added. Assay incubated for 24 hours at 40C. 



45 

30 c) NRS 1:600 

o 

10- 

0- 

30 e) NRS 1:200 

20- 

10- 

O - r- 
0 20 40 60 

DARS concentration 

o- 

20 

10- 

d) NRS 1:400 

0 
0 20 40 60 

DARS concentration 

Fig.2.4 Second antibody titrations of DARS and NRS for use in inhibin 

radioimmunoassay ( plasma, O buffer). Maximum binding (28 %) was obtained 

with NRS (1:600) and DARS (1:32) as shown in graph (c). 
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Day 4. 2mls of 0.9% saline were added and assay spun in a centrifuge at 3000rpm for 

45 min at 4 °C. Centrifuge buckets were placed in ice while supernatant was aspirated. 

Assay was counted in a gamma counter and data analysed as per LH assay. 

(e) Inter -, intra -assay variation and quality controls. 

Two high quality controls (QC)were obtained by pooling luteal phase plasma samples 

from women and luteal phase serum samples from stumptailed macaques. Two low 

quality controls were obtained from pooled follicular phase plasma samples from 

women and pooled follicular phase serum samples from stumptailed macaques. The 

intra -assay coefficient of variation was 4% (n =10) and the interassay coefficient of 

variation was 21% (n =6). Maximum binding of tracer at the working dilution of the 

antibody ranged between 25% and 30% and the detection limit of the assay based on 

the 80% effective dose level was 10mU /tube. 

Serial dilutions of the macaque high QC gave a dose -response curve parallel to that of 

the pooled partially purified human follicular fluid standard, as shown by an absence 

of significant differences in the slopes of the logit -log dose -response curves (fig. 2.5) 

and a regression coefficient of 0.99 (fig. 2.6). Substitution of post -menopausal serum 

with serum from two stump -tailed macaques castrated 2 weeks previously produced 

identical standard curves (fig. 2.7). However, due to the short supply of castrate 

macaque serum, human post -menopausal plasma (pmp) was used as a substitute. 

(f) Separation methods 

To determine if significant differences in binding were obtained when different assay 

wash buffers were added before centrifugation, partially purified human follicular fluid 

standard, low human quality control and postmenopausal plasma were serially diluted 

in the inhibin assay and either 2m1 of (i) 0.9% saline or (ii) 0.9% saline containing 4% 

polyethylene glycol (BDH Chemicals Ltd.) and 0.1% Triton X -100 (Sigma Chemical 

Co. Ltd.) were added to each assay tube before centrifugation. Figure 2.8 

demonstrates no significant differences in standard curves were obtained using wash 

buffers. Furthermore, no significant differences were obtained in the serial dilutions 

of low quality control and postmenopausal plasma. 

(g) Comparison of plasma and serum in assay 

To compare if differences in binding were obtained between plasma and serum 

samples, daily blood samples (4ml) were collected by femoral venepuncture without 

anaesthesia from two macaques (animal housing and sample collection as previously 
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described in chapter). Blood samples (2m1) were placed in a lithium heparin blood tube 

for plasma collection and the remaining sample into a 2m1 plastic sample tube and left 

at room temperature to clot for 3h for serum collection. Samples were spun at 2500g 

for 20 min at 4 °C and plasma or serum collected and frozen at -20°C until assayed for 

inhibin. Results are shown in figs. 2.9a (no.74) and 2.9b (no.75). These data 

demonstrate clearly that no significant differences were obtained in inhibin 

concentrations between plasma and serum and this was further shown when data were 

combined and subjected to regression analysis resulting in a regression coefficient of 

0.912 (fig.2.10). 

2.1.3 Results 
Serum concentrations of progesterone and inhibin during the normal menstrual cycle in 

the macaque are shown in figure.2. i 1. Progesterone levels remained low during the 

follicular phase and began to rise following the LH surge. Progesterone 

concentrations continued to rise and reached maximal levels between days 8 and 12 of 

the luteal phase before declining. Inhibin levels were also low during the follicular 

phase. A periovulatory rise was noted in 74% of macaque cycles when assessed 

individually. Inhibin concentrations then increased following the LH surge, the rise 

being delayed when compared with progesterone. Inhibin concentrations also reached 

a maximum during the mid -luteal phase and the following decline in inhibin then 

lagged behind the fall in progesterone. 

2.1.4 Discussion 
The inhibin assay used throughout this thesis has been extensively utilized in the 

measurement of immunoreactive inhibin in a variety of species such as the sheep 

(Findlay et al., 1990a), rat (Robertson et al., 1988b), cynomolgus and rhesus 

monkeys (Basseti et al., 1990; Fingscheidt et al., 1989) as well as stumptailed 

macaque (Fraser et al., 1989) and women (McLachlan et al., 1986b, 1986c, 

1987a,1990). In this chapter, the assay conditions were optimised for use in our 

laboratory and the assay validated for measuring serum immunoreactive inhibin levels 

in the stumptailed macaque. The heterodimeric nature of the inhibin molecule may 

raise the question of assay specificity. Initially, it was stated that inhibin subunits 

obtained after reductive alkylation as well as other inhibin -related proteins show 

limited cross -reaction in this assay (Robertson et al., 1988b). However, it has since 

been found that an a subunit precursor (pro -aC), isolated from bovine follicular fluid, 

cross reacts >100% in the assay. Pro -aC consists of the pro region of the a- subunit, 

disulphide- linked to the mature a- subunit (Robertson et al., 1989) (fig. 1.2). 
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In addition, supernatants containing an admixture of partially purified recombinant a- 
inhibin subunits of 21,000 -57,000 Mr have also been shown to displace binding 
(Schneyer et al., 1990). However, the presence of pro -aC and free a- subunit has not 

been demonstrated in the circulation or in other biological fluids in primates and 

therefore the biological significance of these findings has yet to be determined. We 
were unable to determine bioactive concentrations of inhibin in this study as previous 

experience using macaque samples in the sheep pituitary cell bioassay resulted in cell 

death due to the toxic effect of macaque serum in the bioassay system (C.G.Tsonis, 

R.Leask and H.M.Fraser, unpublished observations). 

The serum concentrations of progesterone and inhibin throughout the normal 

menstrual cycle in the stumptailed macaque were similar to those obtained previously 

in a study where samples were assayed at Monash University, Australia (Fraser et al., 

1989). Immunoreactive inhibin and progesterone were detectable in the circulation 

throughout the menstrual cycle, being low during the follicular phase and reaching 

maximal levels during the mid -luteal phase. Furthermore, the patterns of progesterone 

and inhibin secretion were similar to hormonal profiles obtained in women (McLachlan 

et al., 1987a). The low concentrations of inhibin during the follicular phase suggests 

that the substantial fall in serum FSH during this period is not attributable to rising 

inhibin levels. There was a rise in inhibin concentrations following ovulation to reach 

maximal levels during the mid -luteal phase. A periovulatory rise in inhibin was noted 

in 74% of the macaque menstrual cycles studied and has also been noted during the 

normal human menstrual cycle (McLachlan et al., 1987a; 1990). The slower rise and 

fall of inhibin when compared with progesterone suggest either that inhibin has a 

longer half -life or that the intercellular actions controlling inhibin secretion respond 

more slowly to changing gonadotrophin levels in comparison with progesterone. This 

has also been confirmed in studies in the human (McLachlan et al., 1989). 

The close correlation of serum immunoreactive inhibin and progesterone 

concentrations throughout the menstrual cycle and the fact that inhibin concentrations 

reached a maximum during the mid -luteal phase suggests that the corpus luteum is a 

major source of inhibin during the primate menstrual cycle. mRNA for inhibin a- 

subunit has been identified in RNA isolated from luteal tissue in women (Davis et al., 

1987b), cynomolgus monkey (Basseti et al., 1990) and marmoset monkey (Hillier et 

al., 1989). In addition, evidence for both a and ßA subunit gene expression using in 

situ hybridization has recently been demonstrated in the primate corpus luteum 

(Schwall et al., 1990). Furthermore, Basseti et al., (1990) demonstrated luteectomy 
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during the mid -luteal phase in cynomologus monkeys resulted in a suppression of 
serum inhibin by 24h, providing further evidence that the corpus luteum is a major 

source of inhibin in the primate. 

Part II: Inhibin Concentrations during the Ovulatory Cycle 
and Pregnancy in the Common Marmoset Monkey. 

2.2.1 Introduction 
The common marmoset monkey, Callithrix jacchus , is an appropriate model to study 

reproductive endocrinology in New World Primates because of its availability, ease of 

use, and the fact that its basic reproductive biology is well documented and shows 

many similarities to that of man (Hearn, 1983). Measurement of plasma hormone 

concentrations has shown that the marmoset has an ovarian cycle of 28 -30 days, 

comprising a follicular phase of 8 -9 days and a luteal phase of 19 -22 days (Harding et 

al. 1982; Harlow et al., 1983). Following conception, implantation commences on 

day 12 after ovulation (Moore et al, 1985), and the young, normally twins, are 

delivered after a gestation period of 144 days (Chambers & Hearn, 1979). The corpus 

luteum is necessary to maintain the pregnancy for the first 6 -9 weeks of gestation 

(Hearn, 1978; 1983) after which time progesterone is secreted in sufficient quantity 

from the feto- placental unit (Hodges et al., 1983). 

The aims of the following studies in Part II were firstly, to determine plasma 

concentrations of immunoreactive inhibin in the common marmoset monkey during the 

ovarian cycle, pregnancy and in anovular and ovariectomized states; secondly, to 

compare these results with values obtained in the adult female macaque and human 

using the same heterologous radioimmunoassay and finally, in collaboration with Dr. 

Georgina Webley, a pilot study was performed to examine the effect of administration 

of a PGF2a analogue, cloprostenol, on immunoreactive inhibin secretion during early 

pregnancy in the marmoset. 

2.2.2 Materials and Methods 
(i) Marmosets (Callithrix jacchus) 
Adult marmosets weighing 350 -400g were selected. Animals were housed in rooms 

maintained at temperatures between 20 °C and 25 °C. Rooms were artificially lit 

between 07.00 and 19.00. Animals were fed on 'Mazuri' New World Diet (Scientific 

Diet Services Ltd., Stepfield, Essex), fresh fruit, vegetables and seeds daily with 

water available ad libitum. Blood samples (30011l) were drawn from the upper region 
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of the femoral vein using a 27 gauge needle and a 1ml heparinised syringe while the 

animals were held in a restraining device (Hearn et al., 1978). This device allows the 

animals to be held securely without discomfort. All blood samples were taken by Dr. 

T'hillai Koothan and the technical staff at the primate unit. 

(a) Normal Cycles 

Blood samples (0.5m1) were collected twice per week for a 4 month period in six adult 

female animals. The overall pattern of change in progesterone plasma concentrations 

was examined, and those animals in which there were regular increases in plasma 

progesterone to concentrations greater than 6Onmol/L at approximately 30 -day 

intervals were considered to be representative of animals with ovulatory ovarian cycles 

(n =5). 

(b) Pregnancy 

Six marmosets with normal cycles based on increases in progesterone as defined 

above were housed with male marmosets of proven fertility. Blood samples were 

collected twice per week until day 70 of pregnancy and were continued at 

approximately 2- weekly intervals from days 68 -138 of pregnancy in individual 

animals. Sampling was reduced during the second half of pregnancy to avoid undue 

stress to the mother. The stage of gestation was retrospectively dated from the day of 

delivery, which was assumed to be full -term (144 days) on the basis of the appearance 

of the young. 

(c) Ovariectomized and acyclic marmosets. 

The concentration of inhibin obtained in terminal blood samples from four female 

marmosets which had been ovariectomized for at least 12 weeks was measured. A 

plasma pool was obtained from samples collected in four intact adult female animals in 

which the progesterone concentration remained undetectable throughout a period of > 

10 weeks, indicating a failure of ovarian cyclicity. 

(ii) Macaques (Macaca arctoides) 

Serum samples were collected daily from five stumptailed macaques throughout a 

normal ovulatory menstrual cycle, such cycles being defined on the basis of serum 

concentrations of progesterone as described in Part I. All blood samples were 

centrifuged at 1000g for 30 mins and serum was stored at -20°C until assayed for 

progesterone and inhibin. 
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(iii) Human samples 
Blood samples were collected daily from 5 normal women by Dr. Kogie Reddi for one 

complete menstrual cycle, subject to the criteria detailed in Part III. Blood samples 

were centrifuged at 1000g for 30 min and plasma stored at -20°C until assayed for 
progesterone and inhibin. 

Pooled data 
For the purpose of comparison between species, the marmoset data were pooled 

according to the stages of cycle as follows: Data obtained from plasma samples 

collected from the five adult female marmosets bled twice weekly for 4 months were 

pooled according to stage of the ovarian cycle on the basis of plasma progesterone 

concentrations. The follicular phase was taken as that period during which 

progesterone concentrations were below 60nmol/L. This limit was derived from 

observations by Chambers & Hearn (1979) and Harding et al., (1982) who selected a 

concentration of 30 nmol/L of progesterone as indicative of ovulation and conception. 

In the current study, to ensure that animals were indeed in the luteal phase this limit 

was increased to 60 nmol/L. As a result of the bleeding frequency, progesterone 

levels were normally below 60 nmol/L for only two or three consecutive samples; the 

first of these was taken as representative of the early follicular phase, the second or 

third as the late follicular period. The early luteal phase samples were those in which 

plasma progesterone had started to rise above the 60nmol/L value, and the late luteal 

phase comprised samples in which progesterone had shown a fall to levels just above 

those seen in the follicular phase. Mid -luteal phase values were taken at a stage 

intermediate between the early and late luteal phases, when progesterone was 

increased and in a plateau phase. The mean value for progesterone and inhibin at these 

stages was calculated from the means obtained from the cycles of each of the five 

animals. All samples in this portion of the study were measured in three separate 

inhibin assays. Macaque data were pooled to allow direct comparison according to 

stage of the menstrual cycle. Day 1 of the follicular phase was taken as the day on 

which serum progesterone concentrations fell to follicular phase values and the results 

pooled as follows: days 1 -5 (early follicular), days 6 -10 (late follicular), post - 

ovulation days 1 -5 (early luteal), days 6 -10 (mid luteal) and days 11 -15 (late luteal). 

Human data were pooled using the same criteria. 

Assays 
(i) Progesterone assay 

Progesterone concentrations were measured as described in Part I. 
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(ii) Inhibin assay 

Inhibin concentrations were measured using the heterologous RIA as described in Part 

I. Initial studies were carried out to validate the assay for measurement of inhibin in 

the marmoset. A pool of marmoset plasma from the luteal phase was assayed at 2O0- 

2.5µ1. For this pool, volumes >10µ1 gave values greater than the upper detection limit 
of the assay. The sensitivity of the assay with a sample volume of 10111 was 1000 

U/L. Plasma from female marmosets was pooled and serially diluted from O.625- 

5.0µ1 in the inhibin assay. This pool gave a dose response curve parallel to that of the 

partially purified human follicular fluid standard, as shown by an absence of 
significant differences in the slopes of the dose response curves (fig.2.12). 

Samples were assayed using a volume of 1O111 plasma from cyclic and pregnant 

females, and 2O111 for ovariectomized and anovulatory females. Macaque serum 
samples were assayed at a volume of 100µ1. The intra -assay coefficient of variation 

was 4% (n =10) and the inter -assay variance was 21% (n =6). 

Statistical analysis 
Data which were used to provide the pooled information were subjected to one way 

analysis of variance without transformation and subsequently examined using 

Newman-Keuls test (ANOVA; Clear Lake Research, Houston, Texas, U.S.A.). 

2.2.3 Results 
Plasma concentrations of inhibin and progesterone during four sequential cycles from 

each of two representative marmosets are shown in figure 2.13. All five animals 

studied in this group demonstrated increases in inhibin during the luteal phase of the 

cycle. When the data were pooled according to stage of the cycle determined from 

plasma progesterone concentrations (fig. 2.14), it was evident that progesterone rose 

significantly (p <0.01) during the early -, mid- and late - luteal phase in comparison with 

the follicular phase while inhibin was significantly elevated (p <0.01) during the mid 

and late luteal phase. 

Figure 2.14 also illustrates the inter -species comparison of inhibin and progesterone 

concentrations at different stages of the cycle in the marmoset, stumptailed macaque 

and human. The hormonal patterns were similar in the 3 species; however, the mean 

progesterone concentration during the follicular phase in the marmoset was 

approximately 35 times that of the macaque and 23 times that of the human during the 

same period. During the luteal phase, progesterone concentrations in the marmoset 
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were 14 times that of the macaque and 6 times that of the human. The differences in 

inhibin concentrations between species were even more pronounced. During the 
follicular phase, inhibin concentrations in marmoset were 46 times greater than the 
macaque and 89 times that in the human while during the luteal phase, inhibin 
concentrations in the marmoset were 28 and 56 times greater than that found in 

macaque and human respectively. 

In the six marmosets which became pregnant, representation of the data according to 

stage of pregnancy (fig.2.15) shows that after conception plasma concentrations of 
inhibin, like those of progesterone, remained elevated and were maintained at a high 

concentration until week 10 of gestation. Less frequent sampling between 11 and 21 

weeks of gestation demonstrated maintenance of these increased levels of progesterone 

and inhibin. Three of the animals delivered twins, two animals delivered triplets and 

one produced a singleton. No correlation was evident between the number of 
offspring produced and circulating levels of progesterone and inhibin. 

Values were below the detection limit of the assay ( <1000 U/L) in anovulatory and 

ovariectomized marmosets. 

2.2.4 Discussion 
The inhibin concentrations during the ovulatory cycle in the marmoset were found to 

follow a pattern similar to that observed in man (McLachlan et al. 1987a) and macaque 

(Part I). The relationship between the levels of plasma progesterone and inhibin 

indicates that the corpus luteum is also the source of both hormones in the marmoset. 

Marmoset luteal tissue also produces immunoreactive inhibin in vitro and expresses 

an inhibin a- subunit mRNA of - 1.5kb, suggesting that the corpus luteum is a source 

of immunoreactive inhibin in this species (Hillier et al. 1989). 

This situation in these species contrasts with that in non -primate species such as the 

cow (Hasegawa et al. 1987), sheep (McNeilly et al. 1989), pig (Hasegawa et al. 

1988) and rat (Taya et al. 1989; Rivier et al. 1989) in which an elevation in circulating 

inhibin during the luteal phase was not observed. Furthermore, a- inhibin mRNA was 

undetectable in corpora lutea of cattle and sheep by Northern Blot analysis or in situ 

hybridization, (Rodgers et al., 1989; Torney et al., 1989) and although a- inhibin 

mRNA was demonstrated in the rat corpus luteum, it was expressed at low levels, 

with the greatest expression in the follicle of this species (Davis et al.1986b: Woodruff 

et al. 1987; Meunier et al. 1988a). 
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An interesting finding in the present study was the high plasma concentration of 
inhibin during the ovarian cycle in the marmoset in comparison with those in the 
macaque and human. While part of the explanation may be attributed to the fact that 

the marmoset normally produces two or three corpora lutea as opposed to one in the 

macaque and human it would appear that the marmoset tissue is particularly active in 

producing inhibin. Also, inhibin concentrations during the follicular phase in the 

marmoset were clearly above those observed in anovulatory or ovariectomized 
marmosets, indicating that inhibin produced by ovarian follicles is secreted into the 

peripheral circulation in significant quantifies in the marmoset. 

Plasma concentrations of progesterone were also high in the marmoset in comparison 

with Old World primates and man (Lipsett et aí.1985). In the marmoset, progesterone 

concentrations can rise to in excess of 300nmol/L in the luteal phase (Harding, et al. 

1982; Harlow et al., 1984); comparable luteal phase values are 15 -45 nmol/L in the 

rhesus macaque (Bosu et al., 1972; Elvidge & Roper, 1977), 5- 45nmol/L in the 

stumptailed macaque as shown in the present study and by Fraser et al. 1986 and 10- 

65nmol/L in man (Abraham et al., 1972). These increased levels of progesterone in 

the marmoset are associated with the presence of a cortisol- binding globulin of very 

low capacity and increased plasma cortisol concentrations; thus the majority of the 

circulating progesterone is in the free form. As a result of these increased plasma 

steroid concentrations, there is a compensatory end -organ steroid resistance. Although 

the uterine cytosolic progesterone receptor has similar affinity to that in the Old World 

primate, it is present in concentrations four- to eight- fold less. A similar reduction is 

seen in the number of pituitary progesterone receptors (for review see Lipsett et 

al.1985). The relevance of high plasma concentrations of inhibin in the marmoset and 

its interrelationship with target tissue receptors remains to be investigated. 

Although the marmoset is not the ideal model for pregnancy in man since, for 

example, there are differences in steroid metabolism (Shackleton, 1974; Shackleton & 

Mitchell, 1975), and in the pattern of chorionic gonadotrophin excretion (Hobson et 

al., 1977) between the two species, the former has the advantage of being one of the 

most fecund primates studied to date. The observation of a sustained plateau in 

inhibin during pregnancy in the marmoset is similar to that described in women 

(McLachlan et al, 1988). In addition to the corpus luteum, the human placenta has 

also been shown to produce inhibin (McLachlan et al. 1986b; Davis et al. 1987b). 

However, this study does not allow differentiation between the contribution of the 

corpora lutea of pregnancy and the early embryo or decidua in inhibin production. 
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2.2.5 Effects of Cloprostenol during early pregnancy in the 
common marmoset monkey. 
In collaboration with Dr. Georgina Webley from the Institute of Zoology, Regent's 

Park, London, a preliminary study was carried out to investigate the acute and chronic 

effects of administration of a PGF2a analogue, cloprostenol, on immunoreactive 

inhibin concentrations during early pregnancy in the common marmoset. 

(i) Chronic effects. Blood samples from two pregnant marmosets were taken 

approximately every two days from days 12 -31 after ovulation. 0.514 cloprostenol 

(Estrumate: I.C.I. Macclesfield, U.K.: lot nos. HS 12, P411) was administered i.m. 

on day 26 after ovulation. 

(ii) Acute effects. Four marmosets received 0.514 cloprostenol via i.m.injection on 

days 17 -20 after ovulation. Blood samples were taken 2 min before and 0.5h, 1h, 

1.5h, 2h and 4h after cloprostenol. Blood samples were taken from 3 control animals 

at the same time intervals as the cloprostenol- treated animals. 

The experimental procedure and progesterone assays were carried out at Regent's Park 

and the plasma samples were sent to Edinburgh in dry ice for the measurement of 

immunoreactive inhibin using the RIA described in 2.2.2. 

2.2.6 Results 
Plasma inhibin and progesterone concentrations in the animals receiving cloprostenol 

on day 26 after ovulation are shown in figures 2.16a and 2.16b. Inhibin and 

progesterone concentrations remain elevated at luteal phase concentrations until 

administration of cloprostenol. Plasma levels of inhibin and progesterone then fell 

rapidly, reaching preovulatory levels by the following sampling period. Figure 2.17a 

and 2.17b represent the mean levels of progesterone and inhibin in control (n =3) and 

treated (n=4) animals in the acute group. Following administration of cloprostenol, 

there was a marked fall in both progesterone and inhibin concentrations by 30min and 

60min respectively. Inhibin concentrations fell to less than half the initial concentration 

by 90min whereas progesterone concentrations were halved after lh. 

2.2.7 Discussion 
The fmdings from this study provide further evidence that the corpus luteum is a major 

source of immunoreactive inhibin in the common marmoset. The rapid decline in both 

progesterone and inhibin concentrations following administration of cloprostenol 

suggests that these hormones are under similar control mechanisms in the marmoset. 

Previous studies using a LHRH antagonist in the marmoset (Hodges et al., 1988) 
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demonstrated that progesterone is under the control of LH in this species , similar to 

the situation in Old World primates (Fraser et al., 1989) and women (McLachlan et al., 

1989). The present findings suggest that inhibin, like progesterone, may also be 

under the control of LH in the marmoset. 

The precise mechanism of action of PGF2a in the primate remains to be elucidated but 

the most likely mechanism involves interference with gonadotrophin effects. Several 

studies using minces or slices of rhesus monkey (McNatty et al., 1975; Henderson & 

McNatty, 1977; Auletta et al., 1984a) and human (Hamberger et al., 1979; Dennefors 

et al., 1982; Patwardhan & Lanthier, 1984) luteal tissue have shown a consistent anti- 

gonadotrophin action of PGF2a on LH/hCG- stimulated progesterone synthesis and 

cAMP formation during the mid- to late -luteal phase. It is also possible that the 

luteolytic action of PGF2a involves a decrease in blood flow to the corpus luteum or 

corpus luteum- bearing ovary which may occur as a result of its vasoconstrictor 

properties (Niswender et al., 1976). 

Using the RIA developed at Monash University, the findings from this study have 

demonstrated that inhibin concentrations during pregnancy remained at mid -luteal 

phase concentrations. Studies by Webley et aí.(1991) however demonstrated a 

significant increase in inhibin concentrations during pregnancy, approximately 1.8 fold 

greater in comparison with mid -luteal concentrations. This discrepancy may be 

explained by the different RIA's employed in these studies. The RIA used by Webley 

et al. (1991) utilized an antiserum raised against the N- terminal sequence of the a- 

subunit of human inhibin (Beard et al., 1990). Furthermore, monomeric inhibin a- 

subunit isolated from bovine follicular fluid (Knight et al., 1989) was used as tracer. 

It is therefore possible that this assay was detecting a higher proportion of non - 

bioactive forms of inhibin (i.e. free a- subunit). However, the determination of 
bioactive concentrations of inhibin throughout the ovulatory cycle in the marmoset are 

necessary to confirm this. 

Part III- Inhibin secretion in the human. 

2.3.1 Clinical Study 1. The source of inhibin secretion 
during the human menstrual cycle. 
To complement the in vivo experiments using the stumptailed macaque and common 

marmoset monkey described in Parts I and II, I collaborated in two clinical studies in 

women to investigate inhibin secretion. 
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The aim of this study was to determine the source of inhibin secretion during the 

normal human menstrual cycle. As with other hormones, conclusive evidence for the 

source of secretion would be the demonstration of either an increased concentration in 

the venous effluent of the proposed site of release or a fall in peripheral concentration 

after its removal. In this study we have therefore measured the inhibin concentrations 

in the peripheral and ovarian veins of women undergoing laparotomy at different 

stages of the menstrual cycle as well as measuring the peripheral inhibin concentration 

before and for 24h after enucleation of the corpus luteum. 

2.3.2 Materials and Methods 
(i) Subjects 
Forty -one women aged between 29 and 45 (median 39.4) years undergoing 

hysterectomy were studied. All subjects were in good health, had regular menstrual 

cycles (26 -35 days) and had two healthy ovaries. None had received any hormonal 

therapy within the previous three months. Informed consent was obtained from all 

subjects and ethical approval for the study was obtained from the Lothian Area Ethical 

Committee, Reproductive Medicine Subcommittee, Edinburgh. 

(ii) Cycle dating 
Where possible (17 out of the 24 luteal phase subjects), subjects were recruited prior 

to admission and daily urine samples were collected by these subjects throughout the 

cycle of ovarian vein sampling. The LH concentration was subsequently assayed in 

these samples by Dr.Peter Illingworth and the day of ovulation taken as the day of the 

urinary LH peak. In addition, the stage of the cycle was also determined from the 

histological appearance of endometrial sections obtained during surgery (Noyes et al., 

1950; Hertig & Rock, 1950; Li et al., 1988) and the date of the last menstrual period. 

The stage of the menstrual cycle for the subjects in the follicular phase was classed as 

early follicular (EF) when they were within 7 days of their last menstrual period with 

no follicle present greater than 10mm diameter (n =7) and as late follicular (LF) when 

there was a follicle present of more than 10mm diameter (n= 7).The subjects in the 

luteal phase were grouped according to the time since ovulation as follows: early luteal 

(EL), 1 -4 days since ovulation (n =9); mid luteal (ML), 5 -9 days since ovulation (n=9); 

late luteal (LL), 10 -14 days since ovulation (n =9). 
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(iii) Collection of ovarian vein samples 
In order to examine the effects of general anaesthesia on inhibin levels, a sample was 

collected prior to anaesthesia in a group of 13 subjects at different stages of the 

menstrual cycle. Samples were then collected simultaneously at the time of operation 

from a peripheral vein and the veins draining both ovaries. Ovarian vein samples were 

obtained according to the method described by Baird & Fraser (1975) by Dr. Peter 

Illingworth. The samples were collected into heparinised tubes, separated by 

centrifugation for 15 min at 800g and stored at -20°C until assayed for oestradiol, 

progesterone and inhibin. The peripheral samples were in addition assayed for 

gonadotrophins by Dr.Peter Illingworth. 

(iv) Measurement of hormone concentrations after enucleation of the 
corpus luteum. 
In 13 of the subjects (4 EL, 5 ML, 4 LL), the corpus luteum was enucleated at the time 

of operation after collection of the ovarian vein samples. Peripheral samples were then 

obtained through an indwelling cannula at 30, 60, 120, 240, 480 and 1440 min after 

luteectomy. These samples were subsequently processed as above and assayed for 

inhibin, progesterone, LH and FSH. 

(v) Assays 
Inhibin, progesterone and oestradiol were measured by radioimmunoassay described 

previously in Part I of this chapter and in chapter 4. LH and FSH were measured by 

Dr.Peter Illingworth using radioimmunoassays previously described (Backstrom et 

al., 1982). 

(vi) Statistical analyses 
In the calculation of results a log -normal distribution was assumed. Results are 

expressed as geometric means with 67% confidence intervals and all subsequent 

statistical analysis was carried out on logarithmically transformed data. The ovarian 

data were assessed by two -way analysis of variance (ANOVA) using a commercial 

statistics software package (CLR Anova, Clear Lake Research) to examine the effects 

of cycle stage (between- subject variable) and site of sampling (within -subject variable) 

on hormone concentrations. Where the initial analysis revealed a statistically 

significant effect, this effect was further investigated with Duncan's multiple range 

tests. The data on peripheral concentrations after luteectomy were examined by one - 

way ANOVA using the time of collection as a within- subject variable. Where this 
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revealed a significant effect of time, individual comparisons were carried out between 

the value before enucleation and the value for each time -point after enucleation. 

2.3.3 Results 
(i) Effects of general anaesthesia on peripheral inhibin levels. 

Figure 2.18 shows the individual peripheral inhibin concentrations of the 13 subjects 

measured before and during general anaesthesia. There was no significant difference 

between the mean peripheral inhibin level in these subjects prior to anaesthesia and that 

found during anaesthesia. 

(ii) Peripheral vein hormone concentrations (prior to luteectomy). 
In the early follicular phase, the peripheral concentrations of oestradiol, progesterone 

and inhibin (fig.2.19) were at basal levels. The concentration of oestradiol was 

highest in the late follicular phase, while the peripheral concentrations of progesterone 

and inhibin showed a small increase from early follicular phase values. The peripheral 

concentration of oestradiol in the mid -luteal phase, although higher than that in the 

early follicular phase, was lower than the late follicular level. The peripheral 

concentrations of both inhibin and progesterone during the luteal phase were, 

however, significantly higher than those in the follicular phase with maximal values of 

152.5 U/L and 24.3 nmol/L respectively seen in the mid -luteal phase group. 

(iii) Ovarian vein hormone concentrations 
(a) Oestradiol 
During the early follicular phase, the oestradiol concentrations on both the left and 

right ovarian veins were significantly higher than that in the peripheral vein (p <0.001) 

(fig.2.19). During the late follicular phase, the oestradiol concentration in the non - 

dominant ovarian vein was significantly higher than that in the peripheral vein 

(p <0.001). The peak oestradiol concentration was found in the vein draining the 

dominant follicle in the late follicular phase, which was substantially higher than in the 

contralateral ovarian vein (p <0.01). Significant differences between the oestradiol 

concentrations in the dominant and non -dominant ovarian veins were also apparent 

during the early- (p <0.02), mid- (p <0.001) and late- (p <0.001) luteal phases. 

(b) Progesterone 
No differences were observed between the progesterone concentrations in the non - 

dominant ovarian veins and peripheral veins at any stage of the cycle (fig.2.19). There 

was similarly no significant difference between the progesterone concentrations in the 
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dominant and non -dominant ovarian veins during the early or late follicular phases of 

the cycle. The progesterone concentration in the dominant ovarian vein was however 

significantly greater than that of the non -dominant ovarian vein throughout the luteal 

phase (Early p <0.001: Mid p <0.01: Late p <0.001). 

(c) Inhibin 
During the early follicular phase, the mean inhibin concentrations in both the right and 

left ovarian veins were significantly higher than the peripheral vein concentration 

(p <0.02)(fig.2.19 ). A significant difference was also seen in the late follicular phase, 

between the mean inhibin concentration in the peripheral vein (p <0.02) and those in 

the dominant and non -dominant ovarian veins. No difference was however observed 

between the inhibin concentrations in the dominant ovarian vein and the non -dominant 

ovarian vein at this stage. During the early luteal phase, the inhibin concentration in 

the non -dominant ovarian vein was again significantly higher than that in the peripheral 

ovarian vein (p <0.02) while no significant difference was seen between the inhibin 

concentration in the dominant and non -dominant ovarian veins. The ovarian vein 

inhibin concentrations were maximal in the mid - luteal phase of the cycle, in the vein 

draining the ovary bearing a corpus luteum, and significantly higher than that from the 

contralateral ovary (p <0.02). A significant difference was also seen during the late 

luteal phase, between the inhibin concentrations in the dominant and non -dominant 

(p <0.01) ovarian veins. 

(iv) Peripheral concentrations following enucleation of the corpus 
luteum 
Following enucleation of the corpus luteum, there was a fall in the peripheral 

concentration of inhibin (fig.2.20) from a mean value in these women of 134.4 U/L 

prior to luteectomy to a level of 80.0 U/L at 24 hours after operation. There was a 

highly significant effect of time after enucleation on the inhibin concentration 

(p<0.001) with the inhibin concentration showing a significant change from time 0 at 

120 (p <0.01), 240 (p <0.05), 480 and 1440 min (p <0.01). An approximate estimate 

of the half -life of the initial fall was obtained by taking the inhibin concentrations at 

24h as representative of the basal inhibin concentrations after luteectomy. The half -life 

of the initial component of the disappearance curve was obtained from the slope of the 

resulting logarithmically transformed values. When calculated in this way, the first 

component of the half -life of inhibin was found to be 86.1 min (S.E.10.8min). There 

was also a significant effect of time on the peripheral progesterone concentration 
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(p<0.001) with the level falling from 14.97 nmol/L prior to operation to 2.43 nmol/L 

at 24 h. 

2.3.4 Discussion 
The observations in this study of higher concentrations of inhibin in the veins draining 

the corpus luteum, and of a fall in the peripheral concentration of inhibin after 

luteectomy, provides conclusive evidence for the secretion of inhibin into the 

circulation by the human corpus luteum. These findings are in agreement with 

previous data (McLachlan et al., 1987a) demonstrating that the peak values for inhibin 

in peripheral blood are seen in the luteal phase of women. 

Although there was significantly more inhibin in the ovarian veins than in the 

peripheral veins, the apparent magnitude of the difference was not as great as that seen 

for the sex steroids. This probably reflects differences between the relative half -lives 

of the respective hormones. While the metabolic clearance rates for oestradiol and 

progesterone are 1350 L /day and 2200 L /day respectively, that for inhibin appears to 

be substantially slower with a value as low as 21.3 ml/min having been reported in the 

sheep (McNeilly et al., 1989). The half -life of the initial decline in peripheral inhibin 

concentration after luteectomy in this study was found to be 86min. This calculation 

was based on the assumption that the fall in inhibin concentration follows a single 

exponential equation. However, it has previously been shown for other glycoprotein 

hormones that the plasma disappearance curve is the result of two exponentials 

comprising an initial rapid component and a second slower component (Yen et al., 

1968). This may also be the case for inhibin, but due to the limited number of time 

points in this experiment, it was only possible to perform a limited calculation to obtain 

a crude estimate of the initial rapid component of inhibin clearance. 

The difference in the early follicular phase between the inhibin concentrations in the 

ovarian and peripheral veins demonstrates that the ovary secretes inhibin at this time 

even though the only follicles present are small and immature. It was also found 

however, that while the dominant follicle of the late follicular phase secretes massive 

amounts of oestradiol, there was no evidence of a significant increase in inhibin 

secretion by the dominant follicle. This finding was unexpected since follicular fluid 

contains very large amounts of inhibin. In addition, it has previously been shown in 

women that follicular fluid inhibin bioactivity is related to the degree of maturation of 

the follicle (Marrs et al., 1984) and in marmosets that granulosa cells from larger 
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follicles show increased inhibin secretion in vitro both basally and in response to FSH 

(Hillier et al., 1989). 

Considered along with the in vivo observation that the peripheral concentration of 

inhibin remains unchanged during the early follicular phase, the absence of significant 

inhibin secretion by the dominant follicle is further evidence that inhibin is not the 

factor responsible for the fall in plasma FSH concentration seen during the follicular 

phase of the cycle. 

2.3.5 Clinical Study 2. Inhibin production by the corpus 
luteum following 'pharmacological rescue' by hCG. 
The aim of the second clinical study was to further investigate the secretion of inhibin 

in the human by measuring the concentration of inhibin following 'pharmacological 

rescue' of the corpus luteum with increasing doses of exogenous hCG. 

2.3.6 Materials and Methods 
(i) Subjects 
Four healthy volunteers aged from 25 -33 years were recruited for the study. All had a 

history of regular menstrual cycles of 25 -35 days, were within 10% of ideal body 

weight and none were taking any form of drug therapy or had taken any form of 

steroidal contraception within the previous three months. Informed consent was 

obtained from all subjects and ethical approval was obtained from the Lothian Area 

Ethical Committee, Reproductive Medicine Subcommittee, Edinburgh. 

(ii) Protocol 
Daily blood samples (10m1) were collected from each subject for one control menstrual 

cycle prior to treatment with hCG. The timing of the mid -cycle gonadotrophin surge 

was monitored prospectively by daily rapid LH RIA (Djahanbakhch et al., 1981). 

Daily blood samples were continued into a second cycle and hCG (Profasi, Serono) 

was administered by intramuscular injection starting 7 days after the LH surge. hCG 

was administered for seven consecutive days in incremental doses of 125, 250, 500, 

1000, 2000, 4000 and 8000 IU and blood sampling continued for the remainder of 

the cycle until the next LH surge. These procedures were performed by Dr.Peter 

lllingworth. The plasma was separated by centrifugation and stored at -20°C. 
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(iii) Assays 

The plasma samples were assayed for progesterone, oestradiol and inhibin using 

methods previously described in this chapter. Some of the inhibin samples were 

assayed by Dr.Kogie Reddi. The samples were measured for LH, FSH and hCG by 

immunoradiometric assays using commercially obtained kits (Maiaclone, Serono UK 

Ltd.) by Dr.Peter Illingworth. 

(iv) Statistical analyses 
A log- normal distribution was assumed in the calculation of results. They are 

presented as geometric means with 67% confidence intervals and all subsequent 

statistical analyses were carried out on logarithmically transformed data. The effect of 

hCG on circulating hormone levels was evaluated by two -way analysis of variance 

using a commercial statistics software package (CLR Anova, Clear Lake Research). 

In this analysis, days 1 -9 (before the rise in plasma hCG levels) and days 10 -19 (after 

the rise in plasma hCG levels) were considered separately and the day and hCG 

treatment assigned as within -subject variables. Where this initial analysis 

demonstrated a significant effect of hCG treatment, individual results for each day 

were compared by paired t -test. 

2.3.7 Results 
(i) Control cycle 

Figure 2.21 shows the mean plasma concentrations of inhibin, progesterone and 

oestradiol in all four subjects during the control cycle. The results are expressed 

relative to the previous and following LH surges. The inhibin concentrations 

increased to a plateau between days 5 and 9 after the LH surge, reaching a maximum 

level of 159 U/1 on day 9. Inhibin concentrations then returned to early follicular 

phase levels by day 14 after the LH peak. There was no change in peripheral 

concentrations of inhibin during the follicular phase of the cycle until two days prior to 

the LH peak, when concentrations began to rise. In the follicular phase there was a 

progressive increase in the concentration of oestradiol. There was a rise in both 

progesterone and oestradiol towards the mid -luteal phase with a fall to early follicular 

phase levels by 14 days after the LH peak. 

(ii) hCG treated cycle 

Figure 2.22 shows the mean plasma concentrations of inhibin, progesterone and 

oestradiol in hCG- treated cycles from subjects 1 -3. The equivalent concentration for 
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the same day in the control cycle is shown in the shaded area. As in the control cycle, 

inhibin concentrations rose in the mid -luteal phase. Following hCG treatment, the 

inhibin concentrations continued to rise, reaching a maximal value of 347 U/1 on day 

15 after the LH surge. Inhibin levels fell thereafter returning to early follicular phase 

levels by day 21 after the LH peak. The inhibin concentrations from days 10 to 19 in 

the hCG cycle were significantly greater than the concentrations on the equivalent days 

of the control cycle (P<0.05) with significant differences in the paired values being 

seen on days 14, 15, 16,17 and 18. 

After rising through the mid -luteal phase, the progesterone concentration remained 

elevated at 26.3 nmol/L on day 15 after the LH peak before returning to the follicular 

phase concentration by day 19, 2 days before the inhibin concentration returned to this 

level. The effect of hCG on progesterone levels from days 10 to 19 was significant, 

(P <0.05) with significant differences in the paired values being seen on days 13, 15 

and 17. The plasma oestradiol level similarly rose following hCG (P <0.05) to reach a 

maximal mean value of 1333 pmol/1 on day 16 before returning to basal levels by day 

22. 

(iii) Subject 4 

This subject had a prolonged follicular phase in the control cycle with a false peak of 

LH 9 days prior to ovulation. This resulted in her starting hCG just before the LH 

peak leading to maximal hCG levels on day 6 after the LH peak. There was no 

evidence of luteal rescue in this subject as no difference was seen in the plasma 

concentrations of inhibin, oestradiol or progesterone between the control cycle and the 

hCG cycle. 

2.3.8 Discussion 
The concentrations of inhibin found during the control menstrual cycle were similar to 

those reported previously (McLachlan et al., 1987a; Robertson et al., 1988a). The 

concentrations reported in this study are however substantially lower in absolute terms 

in comparison with these previous studies. The explanation for this discrepancy is that 

our in -house partially purified human follicular fluid standard is of a different 
calibrated bioactivity (Reddi et al., 1989). This finding emphasizes the requirement 

for a universal reference standard preparation. 

The findings from this study demonstrate that the human corpus luteum responds to 

stimulation with hCG by producing significantly increased amounts of inhibin. This 
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confirms that the corpus luteum is an important source of inhibin in early pregnancy. 

There are two previous reports of plasma concentrations of inhibin in early pregnancy 

(McLachlan et al., 1987b,c). In the first study, the luteal response may be atypical, as 

it was carried out on women who had undergone a superovulation induction for the 

purposes of in -vitro fertilization followed by follicular aspiration. In the second study, 

raised inhibin levels were found in agonadal women who had conceived by means of 

in -vitro fertilization with steroidal support. It was thus concluded that inhibin in early 

pregnancy largely originates from the trophoblast, implying that the corpus luteum is a 

relatively unimportant source of inhibin at this time. However, most of the 

measurements of inhibin concentrations in the agonadal women were carried out in 

later pregnancy and there was only one measurement before 28 days following embryo 

transfer. It is possible that inhibin secretion from the corpus luteum is a short-lived 

phenomenon in the very early days of pregnancy before being superseded by hormone 

of trophoblastic origin. The maximal plasma concentrations of inhibin during the 

luteal phase are however coincident with suppression of the plasma FSH level at this 

time, and the further suppression of FSH levels following luteal rescue highlights the 

role of luteal products, possibly inhibin, in the suppression of FSH after conception. 

Tsonis et al (1987b) demonstrated that in vitro release of inhibin by luteinized 

granulosa cells is stimulated by LH but not FSH. This study has demonstrated that 

injection of hCG resulted in a marked increase in the plasma concentration of inhibin, 

providing further evidence that inhibin release from the corpus luteum is controlled 

through the LH receptor. Although the intracellular mechanism mediating this response 

remains uncertain, the involvement of cAMP is likely as it is known that inhibin 

release from follicular granulosa cells is cAMP dependent (Bicsak et al., 1986) as are 

the parallel responses of progesterone and oestradiol to hCG. 
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Chapter 3 

Control of Inhibin production in vivo 
and in vitro 

The aims of the studies in this chapter were firstly to examine the control of 

progesterone and inhibin secretion in vivo in the stumptailed macaque using an LHRH 

antagonist with and without replacement of gonadotrophin and secondly, to 

investigate the control of inhibin secretion in vitro using a cell culture system which 

would maintain the growth of steroidogenically active human luteal cells. 

Part 1. Control of progesterone and inhibin secretion 
during the luteal phase in the macaque 

3.1.1 Introduction 
A convenient approach for investigations of the gonadotrophic control of luteal 

function is by treatment with luteinizing hormone -releasing hormone (LHRH) 

antagonists to block pituitary secretion of LH and FSH. Various studies involving the 

use of LHRH antagonists have established that progesterone secretion by the corpus 

luteum of women (Mais et al., 1986), Old World primates (Collins et al., 1986; Fraser 

et al., 1985; 1986; 1987a) and New World primates (Hodges et al., 1988) is 

dependent on pituitary LH secretion . Treatment with a LHRH antagonist for 3 days, 

starting during the mid luteal phase, also caused permanent suppression of serum 

inhibin concentrations for the remainder of the cycle, as demonstrated in chapter 2 and 

by Fraser et al. (1989) and McLachlan et al. (1989). The ability of the corpus luteum 

to recover from transitory suppression of gonadotrophin secretion has also been 

investigated in monkeys with induced hypothalamic lesions. In the rhesus monkey, 

where endogenous gonadotrophin was abolished using radiofrequency lesions and 

restored by chronic pulsatile infusion of LHRH, withdrawal of gonadotrophic support 

for 3 days resulted in luteolysis or recovery of luteal function depending on the age of 

the corpus luteum (Hutchison & Zeleznik, 1985). 

The aim of the following in vivo studies in the stumptailed macaque were threefold. 

Firstly, to examine the temporal relationship between the serum concentrations of 
inhibin and progesterone after LHRH antagonist treatment secondly, since treatment 

with LHRH antagonist for 3 days during the mid -luteal phase to induce continued 

luteal suppression can be used to test the luteal response to exogenous factors, it was 
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determined whether suppression of inhibin secretion induced by LHRH antagonist 

treatment in the macaque could be prevented with either human chorionic 

gonadotrophin (hCG) or FSH and finally, since the results of Hutchison & Zeleznik 

(1985) indicated that transitory suppression of LHRH during the mid -luteal phase 

could create a period of suppression of luteal function followed by recovery to normal 

for the remainder of the luteal phase, it was investigated whether this could be 

achieved by reducing the administration of LHRH antagonist to 1 or 2 days. 

Induction of such a response could be used to identify the action of putative luteolytic 

agents, the effects of which might be obscured in the presence of endogenous 

gonadotrophins, but which could have a deleterious effect on luteal function when 

gonadotrophins were transitorily suppressed, resulting in abolition of the recovery 

phase. Such an approach might help to identify strategies for overcoming the ability 

of hCG to "rescue" the corpus luteum and lead to improved methods of post -ovulatory 

fertility control. 

3.1.2 Materials and Methods 

3.1.2.1 Animals 
Eighteen adult female macaques (Macaca arctoides) weighing 8 -13kg were used in 

these studies. All animals demonstrated regular menstrual cycles with normal luteal 

phases as determined by hormonal estimations three times per week, fulfilling the 

criteria previously described in chapter 2. When animals were used in more than one 

aspect of the study, at least 3 months were allowed to elapse between treatment 

intervals. Blood samples (4m1) were collected daily throughout the late follicular 

phase and luteal phase as described in chapter 2. The day of the LH surge was 

considered as day 0 of the luteal phase if followed immediately by an increase in 

subsequent daily serum progesterone concentrations. 

3.1.2.2 Treatment with an LHRH antagonist. 
To determine the ability of the corpus luteum to recover from various periods of 

suppression of gonadotrophin, macaques were injected with the LHRH antagonist [N- 

Ac- D- NaI( 2) 1, D- pCl- Phe2, D- Trp3,D- hArg(Et2)6,D- Ala101LHRH (Detirelix:Syntex, 

Palo Alto, CA, USA.) dissolved in 0.9% NaCl /propylene glycol (1:1v /v) and 

administered s.c. at a dose of 30011.g/kg, once daily for 1, 2 or 3 days (n =6 per 

group), beginning on day 6 -8 after the mid -cycle LH surge. Previous studies have 

shown that 30011.g/kg causes suppression of the pituitary- gonadal axis for 24h in both 

female and male monkeys, while lower doses result in partial recovery of gonadal 
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steroid production during the 24h period (Fraser et al., 1985; 1986; Adams et al., 

1986). Daily samples were collected throughout the luteal phase with samples 
collected at 0,2,4,6,8 and 12h from the time of first administration of antagonist in 12 

of the treated animals. Six macaques receiving vehicle alone and studied over the 

same time period acted as controls. Blood samples were centrifuged at 1000g for 30 

min and stored at -20 °C until assayed for progesterone, LH and inhibin. Luteal 
function was considered to have recovered if serum progesterone concentrations rose 

to >5nmol/L for 2 consecutive days after starting treatment. 

3.1.2.3 Gonadotrophin replacement 
To elucidate the gonadotrophic control of the corpus luteum further, six macaques 

were treated with 30014 antagonist /kg once daily for 3 consecutive days beginning 

on day 6 -8 of the luteal phase i.e. a regimen shown previously to produce a permanent 

suppression of luteal progesterone and inhibin secretion (chapter 2). In addition, they 

received concomitantly either hCG (Chorulon, Intervet, Cambridge) in incremental 

doses of 30,60,90,180 and 360 IU i.m. for 5 days, or FSH (Metrodin, Serono 
Laboratories (U.K.) Ltd., Welwyn Garden City, Herts.) at 36 lU/ day for 5 days 

(n =3 per group). Blood samples were collected daily throughout the luteal phase. 

3.1.2.4 Assays 

Occurrence of ovulation was determined by use of a rapid progesterone 
radioimmunoassay, together with an LH radioimmunoassay, to determine the day of 

the mid -cycle LH surge as described in chapter 2. Inhibin concentrations were 

measured using a heterologous radioimmunoassay as described in chapter 2. 

3.1.2.5 Statistical analyses 
Data were subjected to one and two factor analyses of variance (ANOVA) following 

log transformation to reduce heterogeneity of variance. Where significant differences 

were observed, data were further analysed using Newman -Keuls test. 

3.1.3 Results 
The short term (24h) response of progesterone and inhibin to the effects of LHRH 

antagonist treatment are shown in figure 3.1. Serum progesterone was significantly 

(p <0.01) suppressed by 6 h after injection while inhibin was not significantly affected 

during the 24h period. Thereafter, progesterone concentrations remained significantly 



86 

1000- 

800- 
-J 

. - 600 - 

"15 

-c 400 - c 

200 - 

0 

30 
...-.. 

o 
E 

20 - 
0 c . o 

10- 
c 
o) o 

o_ 
o 

1 

i 

1 r I, I .1 .1 I .1 
0 4 8 12 16 20 24 

Time after Antagonist (h) 

Fig. 3.1. Serum concentrations of progesterone and inhibin during the mid -luteal 

phase in control macaques () (n =6) and in macaques receiving 30014/kg LHRH 

antagonist (arrow) (0) (n =12). Values are means ± S.E.M. 



a 

a, 
loo- 
7- 

25 0
°
 :25a 

1.0 
-50- 

1 

0
 

b 
c 

10 
0 

2 
4 

6 
8 

10 
10 

T
he (D

ays) 

pig, 32. 
Serum

 concentrations of progesterone and inhibin, expressed as %
 baseline levels in control m

acaques (), and in anim
als 

receiving s.e, injections of 300µs L
H

R
H

 antagonist /kg during the m
id-luteal phase for (a) 3, (b) 2 or (e) 

1 day (m
ow

s), 
E

ach group 
consisted of six anim

als, 
In the anfrrfale treated for lor 2 days, data are divided according to w

hether progesterone secretion rem
ained 

suppressed ( ®
 ) ®

r dem
onstrated recovery (A

 ), 
V

alues are m
eans 

S.E
.M

. 



88 

1200 - 

1000- 
-21 800 - 

- 

= 600 - 
_.Q - 

400 - 

200 - 

0 

iiiiihOG or FSH 

iiiLHRH antagonist 

40 - 

30 - 

20 - 

1 1 1 I 1 I I I' I I I 
I 

I 
I 

1 

-8 -6 -4 -2 0 2 4 6 8 10 

Time relative to start of treatment (Days) 

Fig. 3.3. Serum concentrations of progesterone and inhibin in macaques receiving 

3001..tg LHRH antagonist /kg for 3 days starting during the mid -luteal phase and 5 

daily injections of either hCG ( ) or FSH (0) beginning on the day of first LHRH 

antagonist injection (n =3 per group). Values are means ± S.E.M. 



89 

suppressed and inhibin concentrations also declined, being significantly (p< 0.01) 
reduced by 48 hours after starting antagonist treatment (fig.3.2). 

Treatment with LHRH antagonist for 3 consecutive days caused a permanent 
suppression of serum concentrations of inhibin and progesterone for the remainder of 
the luteal phase in all six animals. The attempt to induce a transitory suppression of 
luteal function by reducing the duration of treatment to 2 days or 1 day resulted in 

recovery in two and three out of six animals respectively (úg.3.2). 

The effect of gonadotrophin replacement with either hCG or FSH following 
antagonist administration is shown in figure 3.3. Treatment with hCG completely 
reversed the inhibitory effects of gonadotrophin suppression on serum concentrations 

of progesterone and inhibin, while administration of FSH failed to prevent the 

antagonist -induced fall in progesterone or inhibin. 

3.1.4 Discussion 
The finding that the rate of suppression of serum concentrations of progesterone was 

faster than that of inhibin after administration of LHRH antagonist during the mid - 

luteal phase, suggests that the steroid progesterone and glycoprotein inhibin have 

different rates of production and metabolic clearance rates in the macaque. The slower 

rise and fall of inhibin, in comparison with progesterone, was also observed in the 

normal menstrual cycle in chapter 2. Similar results have been recently described in 

the human by McLachlan et al. (1989). 

The contention that the corpus luteum is the major source of inhibin in the macaque 

has recently been supported by the findings of Basseti et al. (1990) who demonstrated 

that luteectomy during the mid -luteal phase in cynomologus monkeys results in a 

suppression of serum inhibin, as measured by the same radioimmunoassay used here, 

by 24 h. The more rapid fall in serum inhibin after luteectomy, than after LHRH 

antagonist treatment may indicate that the gonadotrophic stimulus to the corpus luteum 

results in a relatively long term action on inhibin secretion and possibly its synthesis. 

The complete and sustained suppression of progesterone and inhibin secretion 

obtained by gonadotrophin withdrawal by three daily injections of LHRH antagonist 

was overcome by concomitant administration of hCG but not FSH. The conclusion 

that LH but not FSH is the gonadotrophin controlling inhibin secretion during the 

luteal phase in primates is supported by in vitro studies on human luteinized granulosa 
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cells (Tsonis et al., 1987b) and a recent study in which an LHRH antagonist was 

administered to women during the luteal phase of the cycle with a single injection of 
hCG (McLachlan et al., 1989). 

By reducing the duration of treatment to 1 or 2 days, we investigated whether a 

recovery to normal luteal function would occur. A corpus luteum deprived of 
gonadotrophin support by an LHRH antagonist could provide a "window" within the 

luteal phase during which the action of putative luteotrophic or luteolytic agents could 

be compared. For a valid model it would be necessary to administer sufficient LHRH 

antagonist to achieve a marked suppression of luteal function over a period of 1 -2 

days. Administration of 30014/kg antagonist for 2 days was successful in 

suppressing serum concentrations of progesterone and inhibin to follicular phase 

levels during this period. However, in only two of six animals did serum 

progesterone return to the normal luteal phase range during the post -treatment period. 

Reducing the duration of antagonist treatment resulted in partial recovery in three of 

six macaques. A recovery has been observed in the rhesus monkey in which LHRH 

stimulation was controlled by exogenous LHRH which was stopped and restarted 

after 3 days (Hutchison & Zeleznik, 1985). The reason for this difference between 

macaques, in which gonadotrophin secretion is transitorily suppressed by an LHRH 

antagonist, and macaques in which exogenous LHRH is withdrawn for 3 days and 

then restored is probably related to the differences in pituitary output of LH during 

recovery from the LHRH antagonist and re- initiation of LHRH pulses. In the latter, 

the pituitary LH response to restoration of LHRH is above normal (Hutchison & 

Zeleznik, 1985). Presumably, while LH is not released when the LHRH pulses are 

stopped, synthesis continues for some time. The stored hormone is then released in 

response to the large pulse of exogenous LHRH. In contrast, the recovery period 

from LHRH antagonist is likely to be gradual as the endogenous LHRH combines 

with LHRH receptors, the availability of which will be governed in part by the rate of 

metabolism of the antagonist. Detailed analysis of LH pulse frequency during the 

recovery period was not possible in the macaques. However, studies in the ram show 

that after a single injection of LHRH antagonist, the recovery period is associated with 

a gradual return of LH pulses which are also of increased frequency, presumably due 

to a response of the LHRH hypothalamic pulse generator to withdrawal of negative 

feedback (Lincoln & Fraser,1987;1990). Since the frequency of LHRH pulses is 

thought to be under the influence of negative feedback from progesterone (Ferin et al., 

1984), a similar response may occur after LHRH antagonist administration during the 

luteal phase in the macaque. It is possible that the recovery of apparently normal 
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progesterone secretion in the lesioned animals is a response to the highly favourable 

elevated level of LH in the blood while the poor recovery after LHRH antagonist is 

due to the gradual re- initiation of LH secretion. While the extent of "carry over" 

during the recovery period may be lessened by reducing the dose of LHRH 

antagonist, experience with lower doses of this antagonist indicates that suppression 

of gonadal function is not sustained for a 24h period. Perhaps the use of an 

antagonist with a more rapid clearance rate may provide a more suitable model. 

It appears that while the use of LHRH antagonists provides a non -invasive method for 

studying the gonadotrophic dependence of ovarian function in experimental animals 

and in women, their potential in creating a 'window' of suppression followed by a 

return to normal pituitary-ovarian function may be limited. It is likely that return of 

gonadotrophin secretion during the recovery period is gradual and may be subject to 

individual variation. Although the studies of Hutchison & Zeleznik, (1985) imply that 

the corpus luteum retains a normal function after a 3 day suppression of 

gonadotrophin secretion, this may have been due to a marked unphysiological increase 

in LH output on re- initiation of LHRH administration, which would promote a return 

of progesterone secretion. Further work is required to obtain a more precise control 

of endogenous gonadotrophin secretion during treatment with LHRH antagonists. The 

recent report that exogenous LHRH administration can result in uniform pulses of LH 

in ovariectomized monkeys treated with an LHRH antagonist (Leal et al., 1989), 

suggests that such an approach may be developed as a suitable model. 

Part II. Investigation into the control of Inhibin production 
in vitro using a human luteal cell culture system. 

3.2.1 Introduction 

To complement the in vivo experiments in the stumptailed macaque, a cell culture 

system was established to investigate if human luteal cells in culture secreted inhibin. 

The aim of the following set of experiments was firstly, to establish a monolayer 

culture system which would support the growth of steroid- secreting human luteal cells 

and secondly to investigate if human luteal cells in culture secreted inhibin, and finally 

to examine the control of inhibin secretion in vitro by administration of hCG. 
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3.2.2 Materials and Methods 

3.2.2.1 Subjects and tissue dating 
Corpora lutea at early (1 -4 days since ovulation), mid (5 -9 days since ovulation) and 

late (10 -14 days since ovulation) stages of the luteal phase were obtained from patients 
undergoing hysterectomy. None of the patients had received hormonal therapy for 
three months prior to surgery and informed consent was obtained from all subjects. 

Ethical approval was obtained from Lothian Area Ethical Committee, Reproductive 

Medicine Subcommittee, Edinburgh. The stage of the menstrual cycle was determined 
from the measurement of urinary LH concentrations collected daily for two weeks 
prior to surgery, histological appearance of endometrial sections obtained during 
surgery (Noyes et al., 1950; Li et al., 1988) and the date of the last menstrual period. 

3.2.2.2 CL enucleation 
Corpora lutea were enucleated at the time of surgery by Dr. Peter Illingworth. A 

circular incision was made through the superficial ovarian capsule and around the 

circumference of the corpus luteum. The corpus luteum was then enucleated by blunt 

separation from the surrounding ovarian stroma. The tissue was collected into a 

sterile jar containing ice -cold phosphate buffered saline (PBS) (Dulbecco's formula, 

modified, ICN Flow Ltd., Rickmansworth, Herts.) which was then placed in ice for 
transportation to the laboratory. Adherent connective tissue, epithelium and blood 

clots were removed using a dissecting microscope and the corpus luteum was then 

weighed. After rinsing with fresh PBS, the tissue was minced into small fragments 

using sterile scalpel blades. 

3.2.2.3 Cell Dispersion 
Human luteal cells were dispersed by a method similar to that described by Fisch et al. 

(1989). The culture medium used throughout the experiments was Medium 199 

containing Earle's salts, 25mM Hepes buffer and 2mM L- glutamine [with added 

donor calf serum (5% v/v), streptomycin (5000pg/ml) and penicillin (50001U/ml) 

from Flow Laboratories]. The procedure for the dispersal of luteal cells was 

performed in all experiments as follows: 

The tissue fragments were added to a sterile glass vial with 5 mis of culture medium 

containing 0.1% w/v collagenase (type 1A, 570 units/mg solid), and 0.001 DNase 

(type W, 2200 Kunitz Units/mg protein ) and 0.1% bovine serum albumin (BSA) (all 

from Sigma Chemical Co. Ltd.). The vial was incubated in a %baking water bath (160 
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cycles /min) for 30 min at 37 °C. Following gentle pipetting of undigested fragments 

using dispersal pipettes of varying sizes, the suspended cells were collected using a 

short form glass pipette and fresh enzyme solution replaced in the glass vial. The 

incubation and cell dispersal procedure was then repeated and suspensions from both 

incubations pooled. The pool was then filtered through four layers of 12 ply surgical 

gauze (Smith & Nephew Medical Ltd., Hull) and collected into a 15ml plastic test - 

tube. The tube was centrifuged at 100xg for 5 min, the resulting pellet re- suspended 

in a further 5 mis of culture medium/enzyme solution and re- centrifuged. The re- 

suspension and re- centrifugation step was repeated once more and the cells then 

resuspended in 1 ml of culture medium. Cell viability was then determined using 

trypan blue exclusion test in a haemocytometer. This was found to be > 95% in all 

experiments. 

3.2.2.4 Density gradient fractionation 
Two Percoll gradients (30% v /v) were then prepared as follows: 1 ml of medium 199 

x 10 (Gibco) was added to 9 ml of Percoll (Pharmacia, Uppsala, Sweden), mixed 

well and further diluted with 23 ml of culture medium. 10 ml of Percoll /culture 

medium solution was added to two Percoll gradient tubes (Pharmacia) and centrifuged 

for 30 min at 30,000xg in an ultracentrifuge (Beckman model J2 -21) in an angle head 

rotor (Beckman model JA -20). The cell suspension (1m1) was layered onto one of the 

gradients and a suspension of marker beads of density ranging from 1.017g/ml to 

1.141g/ml (Pharmacia) was applied to the other gradient. This ensured that cells of 

the same density were used consistently throughout all experiments. The loaded 

gradients were centrifuged at 800 x g for 20 min. 

Following centrifugation, three visible bands of cells appeared as shown 

diagrammatically in figure 3.4. Red blood cells had a density of 1.14 g/ml, 

connective tissue at 1.01g/ml and luteal cells at approximately 1.05 g/ml . An 18 -G 

lumbar puncture needle was inserted into the gradient containing the separated cell 

populations and twenty 0.5 ml fractions were collected into sterile diluting tubes by 

aspiration. Cells numbers and viability were assessed as before in each of the 

fractions. Luteal cells were usually concentrated in fractions 3 -7 which were pooled, 

diluted in culture medium to the appropriate dilution and plated in Coming multi-well 

culture plates (Corning Glass Works, Corning, New York, U.S.A.) according to the 

particular experiment. All plates were incubated at 37 °C in a humidified atmosphere 

of 5% CO2 (v /v) in air. A summary of the method is shown in figure 3.5. 
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1. Luteectomy 

2. Dissection 

3. Cell Dispersion 

4. Cell Isolation 

5. Cell Culture 

Protocol for Luteal Cell Culture 

Ennclearion of corpus luteurn. 

Removal of connective tissue and blood clots 

Incubation with 0.1% w /v collagenase and 0.001% 
wav DNase (x2). 

Pool suspensions and filter. 

Centrifuge at 100g for 5min (x3). 

Cell count. 

Layer cells over Percoll gradient and spin for 
800g 

Aliquot fractions and cell count 

it rlillll 111 

Dilute cells to appropriate ns and plate. 

Fug. 35. Summary of method for dispersion and isolation of human I 
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3.2.2.5 Radioimmunoassays 
The concentrations of oestradiol, progesterone and inhibin in culture medium were 
measured as described in chapters 2 and 4, except that the standards for these assays 
were diluted in culture medium. 

3.2.2.6 Statistical analyses 
Where appropriate, data were subjected to one- or two- way analyses of variance with 

log transformation to reduce heterogeneity of variance and subsequently examined 

using Newman -Keuls test (ANOVA; Clear Lake Research). 

3.2.3 Results 
3.2.3.1 Experiment 1 

The aims of the first experiment were firstly, to establish the method for obtaining 

enriched populations of steroid- producing human luteal cells, secondly to determine 

which of the fractions contained the steroid -producing cells and finally, to investigate 

the production of steroids over a 96h period. 

Luteal cells were isolated and dispersed as described in 3.2.2. Sixteen cellular 

fractions were aspirated from the Percoll gradient and diluted to 3mis with culture 

medium. 250111 of cell suspension from each fraction was added to Corning multi- 

well culture plates in triplicate and the following treatments were set up for each 

fraction in triplicate: 

(i) no treatment (control) 

(ii) 15ng/ml hCG (CR 125 hCG, specific biologic activity 11 900 lU /mg from 

NIDDK and NHPP, University of Maryland School of Medicine, Baltimore, 

Maryland, U.S.A.) 

(iii) 10-6M testosterone (Sigma Chemical Co. Ltd.) 

(iv) 15ng/ml hCG + 106M testosterone. 

Culture medium was changed at 48h and 96h and stored at -20°C until assayed for 

progesterone and oestradiol. This experiment was repeated three times using different 

corpora lutea. 

30- hydroxysteroid dehydrogenase cytochemistry 
To further identify which fractions contained the steroidogenic lineal cells, a sample of 

cells from each fraction was stained cytochemically for the presence of 3ß- 

hydroxysteroid dehydrogenase (313-HSD) activity. The cytochemical reaction utilizes 

nitro -blue tetrazolium as hydrogen acceptor and dehydroisoandrostenone as a 
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substrate. Intracellular sites of 3ß -HSD activity are demonstrated by the presence of 

blue granules in the cytoplasm. 

The cytochemical procedure was carried out using a modification of the procedure 

described by Steinberger et al. (1966). Cells from each fraction were plated in 

triplicate at 50 000 cells /well and incubated for 24h. The culture medium was then 
removed and the cells washed three times with PBS -BSA. 3O0111 of 3 3 -HSD staining 

solution (0.07M phosphate -buffered saline containing 1 mg/ml niacinamide, 6mg/m1 

(3- nicotinamide adenine dinucleotide, 1.5 mg/ml nitro-blue tetrazolium and 10014/m1 

dehydroisoandrosterone) was added to each well and incubated for 2h at 37 °C. 
Control wells were set up containing 30-HSD solution without substrate to 

demonstrate the specificity of the staining reaction. All chemicals were obtained from 

Sigma Chemical Co. Ltd. This experiment was carried out on three separate corpora 

lutea and representative results are shown and described as follows: 

Results- Experiment 1 

Steroid production in culture. 

Both progesterone and oestradiol were produced by the luteal cells throughout the 96h 

period. The mean progesterone production from sixteen fractions in control and 

treated wells is shown in figure 3.6 (0 -48h) and figure 3.7 (48 -96h). The cells with 

the greatest progesterone producing capacity were concentrated in fraction 4. There 

was an increase in progesterone secretion during the second 48h period in culture. 

Oestradiol production from the sixteen fractions is shown in figure 3.8 (0 -48h) and 

figure 3.9 (48 -96h). The fractions producing the greatest amount of oestradiol were 

also in fractions 4. In contrast with progesterone, there was a decline in oestradiol 

production during the second 48h, regardless of the presence of testosterone as an 

aromatase substrate. 

3(3 -HSD cytochemistry 

Positive staining corresponding to 3f3-HSD activity was first detected at 30min in the 

wells containing cells from fractions 2 -9. However by 2h, the greatest intensity of 

staining was present in the wells containing cells from fractions 2 -7, demonstrating 

that the steroidogenic cells were predominantly located in these fractions. 

Steroid response to hCG and testosterone. 

To examine the steroid response to treatments more closely, progesterone and 

oestradiol production during 0 -48h and 48 -96h from fraction 3 is shown in figure 

3.10 
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Fig. 3.6. Progesterone production from cellular fractions from 0 -48h. 
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Fig. 3.8. Oestradiol production from cellular fractions from 0 -48h. 
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and figure 3.11. There was a significant increase in progesterone production between 

control wells and hCG treated wells (p <0.01) and between control wells and wells 

treated with hCG + testosterone (p<0.01) over 96h in culture. There was also a 

significant increase in progesterone production between wells with added testosterone 

only and wells with hCG + testosterone over the 96h period. 

There was a significant decline in oestradiol production (p <0.01) from 0 -48h to 48- 

96h in both control and treated wells. There was a significant increase in oestradiol 

production between control wells and wells containing hCG (p <0.05), testosterone 

(p <0.05) and hCG + testosterone (p<0.05). There was also a significant increase 

between wells containing testosterone and hCG + testosterone (p<0.05). 

3.2.3.2 Experiment 2 

The aim of the second experiment was to examine the differences in responsiveness of 

luteal cells in culture to different preparations of hCG, a crude preparation (Chorulon 

[ 1500IU /vial], Intervet U.K., Ltd., Milton Road, Cambridge) and a purified 

preparation of hCG (CR 125 hCG, specific biologic activity 11 900 lU /mg from 

NIDDK and NHPP, University of Maryland School of Medicine, Baltimore, 

Maryland, U.S.A.). Luteal cells were isolated and dispersed as described in 3.2.2. 

Fractions 2 -7 were pooled as before and culture wells were set up in triplicate 

containing 50 000 cells /well with doses of 0, 1, 10 and 100 ng/ml of crude or purified 

hCG preparation (12 wells for each hCG preparation). The luteal cells were cultured 

for 48h with a medium change after 24h. Culture medium was stored at -200C until 

assayed for progesterone. This experiment was carried out using three separate 

corpora lutea and representative results are described as follows: 

Results- Experiment 2 

Crude preparation 

Figure 3.12 shows the progesterone production in response to doses of crude hCG 

over 48h. There was a significant increase in progesterone production between control 

wells and wells containing lOng/ml and 10Ong /m1 hCG (p<0.05). There was a 

significant decline in progesterone production between 0 -24h and 24 -48h in the wells 

containing 10Ong/m1 hCG. 
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Fig. 3.12. Progesterone production by luteal cells in culture from 0 -24h and 24 -48h 
in response to 0- 100ng/m1 of a crude preparation of hCG (Chorulon). 

0-24h 

® 24-48h 

0 0.1 1 10 100 

'Purified hCG' concentration (ng /ml) 

Fig. 3.13. Progesterone production by luteal cells in culture from 0 -24h and 24 -48h 

in response to 0- 100ng/m1 of a pure preparation of hCG (CR 125). 
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Pure preparation 

The progesterone production in response to doses of purified hCG is shown in figure 

3.13. There was a significant increase in progesterone production between the control 

wells and the wells containing 0.1, 1.0 and lOng/ml hCG (p <0.05). 

3.2.3.3 Experiment 3 

The aim of the third experiment was to examine the production of progesterone, 

oestradiol and inhibin by luteal cells in culture over 7 days in the presence of 0 and 

lOng/ml of purified hCG. Fractions 2 -7 were pooled as described in 3.2.2 and 

culture wells set up containing 50 000 cells ± lOng/ml purified hCG (6 wells control 

and 6 wells containing lOng/ml CR 125 hCG). Cells were incubated for 7 days with 

culture medium changed daily. Culture medium was stored at -20°C until assayed for 

progesterone, oestradiol and inhibin. This experiment was carried out on three 

separate corpora lutea and representative results are described as follows: 

Results- Experiment 3 

In the presence of hCG, there was an increase in progesterone secretion until day 4 in 

culture. Progesterone secretion then remained relatively constant until day 6 in culture 

after which time progesterone secretion declined (3.14a). Oestradiol secretion was 

initially very high in the presence and absence of hCG (3.14b). Oestradiol secretion 

then rapidly declined by day 2 in culture due to lack of aromatase substrate. There 

was an increase in inhibin production in the presence of hCG during the first 4 days in 

culture. After day 4, there was a decline in inhibin production in both control and 

treated wells (3.14c). 

3.2.3.4 Experiment 4 

The aim of experiment 4 was to examine the secretion of inhibin more closely in 

response to increasing doses of hCG over 96 h. Fractions 2 -7 were pooled as 

described in 3.2.2 and diluted to give 50 000 cells/ well. Culture wells were set up 

(n =6 per treatment) containing 0, 0.01, 0.1, 1, and 10 ng/ml hCG (CR 125 hCG). 

Culture medium was changed at 48 and 96h and stored at -20°C until assayed for 

progesterone and inhibin. 

Results- Experiment 4 

A significant increase in progesterone production between control and 0.01, 0.1, 1 

and 10 ng/ml hCG (p<0.05) was observed (fig. 3.15). A significant increase in 

inhibin production between control and hCG treated wells was also observed at all 
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Fig. 3.15. Progesterone production by luteal cells in culture from 0 -48h and 48 -96h 
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in response to 0- 10ng/ml hCG. 
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concentrations (p<0.05) and inhibin production increased in a dose -dependent manner 
(fig. 3.16). 

3.2.4 Discussion 
The results from these experiments demonstrate that human luteal cells produce 
progesterone, oestradiol and inhibin in culture. There have been many reports on the 
production of steroids by primate luteal cells in culture (Hammerstein et al., 1964; 
Gulyas et al., 1979; Marut et al., 1983; Fisch et al. 1989; Ohara et al., 1987). 
However, this is the first report of inhibin secretion by human luteal cells in vitro. 
Previous studies of primate luteal function in vitro were unable to establish a clear 
relationship between steroidogenesis and age of the corpus luteum (Stouffer et al., 
1977; Hunter & Baker, 1981; Dennefors et al., 1982; Casper & Cotterell, 1984). 
However, Fisch et al., (1989) demonstrated that the steroidogenic capacity of human 
luteal cells diminished progressively during the course of the luteal phase. 
Unfortunately, in this study there were insufficient numbers of corpora lutea at 
different stages of the luteal phase to investigate the relationship between the maturity 
of the corpus luteum and hormone production. 

Previous studies have suggested that the corpus luteum consists of two 
steroidogenically -active cell types with distinctive morphological and functional 
characteristics which are derived from the granulosa and theca cells in the follicle. This 
concept has been suggested in the cow (Lemon & Loir, 1977; Ursely et al., 1981), 

pig (Lemon & Mauleon, 1982), sheep (Rodgers et al., 1984), monkey (Gulyas et aL, 

1979, Hild -Petito et al., 1989) and human (Ohara et al., 1987). However, the results 

from these studies have been based on separation by cell size using either Percoll 

density gradient separation, elutriation or flow cytometry and hence cross - 

contamination between cell types is possible. The possibility of two different cell 

populations within the human corpus luteum was not examined in this study and 

further work is required to investigate cellular interactions between granulosa- lutein 

and theca -lutein cells. 

Previous studies examining the production of inhibin secretion in vitro have focussed 

on granulosa cells. Bioactive inhibin is produced by human granulosa cells in vitro 

and its release is stimulated by FSH and LH (Tsonis et al., 1987b). The stimulation 

of inhibin production by granulosa cells from marmoset and women by FSH is further 

enhanced by both testosterone and oestradiol (Hillier et al., 1989). Furthermore, in a 

detailed study by Hillier et al. (1991a) the capacity of granulosa cells to produce 



immunoreactive inhibin in vitro was demonstrated to increase with follicular maturity. 

FSH but not LH was shown to stimulate inhibin production by immature granulosa 
cells whereas during advanced preovulatory development, inhibin production is 

responsive to LH. The findings from the studies in Part II of this chapter 
demonstrated that cellular production of inhibin in vitro is directly stimulated by hCG. 
The differing responses obtained using the crude and purified hCG preparations, 
although equivalent units of each were added to the cells in culture, may be explained 

by the possibility that the preparations were standardised in different bioassay 
systems. The inference that LH is the gonadotrophin controlling g inhibin secretion was 

also suggested in chapter 1 where hCG maintained both inhibin and progesterone 

concentrations when administered during the mid luteal phase and in Part I of this 

chapter, where hCG administration could overcome LHRH antagonist induced 

suppression of inhibin and progesterone during the mid -luteal phase. 

When the production of inhibin was examined in culture over 7 days, there was a 

decline in inhibin production after 3 days whereas progesterone secretion was 

maintained until day 6. This may sai in of a facer ci,rchit for inhi 

production by lineal cells or may indicate. " _ , a different mechanism exists for LIi- 

dependent inhibin production in co rru;ir, r for with progesterone_ This has been 

aur 

suggested previously in an in vivo study by Naka'i i, 

correlation was found between the pulsatile 4 e;s of 
inhibin concentrations in women during the mid -luteal phase. 
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Chapter 4 

Inhibin secretion following LHRH agonist 
treatment. 

Part 1. LHRH agonist treatment and ovarian 
hyperstimulation during the follicular phase in the macaque. 

4.1.1 Introduction 
Ovarian hyperstimulation by exogenous gonadotrophins is widely used both in 

women and in monkeys to obtain large numbers of oocytes for use in in vitro 
fertilization programmes (Boatman et al., 1986; McLachlan et al., 1986c; Messinis & 

Templeton, 1987, 1989; Glasier et al., 1988; Tsonis et al., 1988). There are 
indications that stimulation of the ovary in this way can induce alterations in the 
normal positive feedback relationship between oestradiol and the pituitary. The 

incidence of an LH surge is reduced and its magnitude is always attenuated. It has 

been suggested that this adverse effect is brought about by a non -steroidal product of 
the developing follicles (Littman & Hodgen, 1984; Schenken & Hodgen, 1983; 

Stillman et al., 1983; Messinis & Templeton, 1987, 1989). 

The aim of this study was to use exogenous FSH to induce follicular hyperstimulation 

in the stumptailed macaque. The effects of this treatment on immunoreactive inhibin 

concentrations in peripheral blood were compared to the situation found during the 

normal cycle. Before FSH treatment, follicular development and ovulation were 

suppressed by inducing pituitary desensitization with an implant of an agonist of 
luteinizing hormone- releasing hormone (LHRH) (Fraser et al., 1987b; Fraser & Lunn, 

1989). This permitted synchronization of the timing of the stimulatory treatment and 

restricted the observations to follicular development by avoiding the induction of 

ovulation which is known to be associated with an elevation in inhibin concentrations. 

4.1.2 Materials and Methods 

4.1.2.1 Control cycles 

Ten adult female stumptailed macaques (Macaca arctoides) weighing 9 -14 kg were 

used. The animals had exhibited regular menstrual cycles with normal luteal phases, as 

determined by hormonal estimations 3 times per week, fulfilling the criteria described 

previously in chapter 2. Blood samples (4 ml) were collected daily by femoral 
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venepuncture without anaesthesia, as described in chapter 2, beginning during the 

early follicular phase and continuing until the end of the cycle. Samples were 

centrifuged at 1000 g for 20 min, the serum divided into two aliquots and stored at - 

20°C until assayed for progesterone, oestradiol -1713, LH and inhibin. 

4.1.2.2 LHRH agonist implant 
Four adult female stump -tailed macaques with regular menstrual cycles each received a 

single implant containing 3 mg of buserelin, ([D -Ser (tBu)6,Pro9 -NHEt] LHRH 1 -9 

(Dr J. Sandow and H. Siedel, Hoechst AG, Frankfurt, FRG). The implants measured 

0.8 x 0.12 cm and were made of slowly biodegradable polylactic / glycolide (molar 

ratio 75:25) sterilized by exposure to 1.2Mrad of gamma radiation. The LHRH agonist 

implant was administered during the early follicular phase of the cycle. The macaques 

were lightly sedated using ketamine hydrochloride (10mg/kg) (Vetalar: Parke, Davis 

and Co., Pontypool, Gwent) and the implant was injected s.c. in the lateral region of 

the abdominal wall using a sterile applicator by Dr.Hamish Fraser. This was a very 

simple procedure with no sutures required. Blood samples were collected at least 3 

times per week after implant administration. 

4.1.2.3 LHRH test 
At 1week before the treatment with FSH, an LHRH test was performed by i.v. 

injection of 50 p.g LHRH (Gonadorelin: Ayerst Laboratories Ltd., Andover, Hants, 

U.K.). This was procedure was carried out by Dr. Hamish Fraser. Blood samples 

were collected at 0, 30 and 60 min. The test was repeated on the final day of FSH 

treatment. Results were compared with those obtained after carrying out the same 

LHRH test in 6 control animals during the early follicular phase of the normal cycle. 

4.1.2.4 FSH treatment 
At 8 weeks after receiving the implant, the macaques were treated with FSH 

(Metrodin, Serono Laboratories, Welwyn Garden City, Herts, UK) in 1 ml 0.9% w/v 

sodium chloride solution i.m. once daily for 9 days (75 i.u. on Day 0, 35 i.u. on Days 

1 -8). This was carried out by Dr. Hamish Fraser and the staff at the Primate Unit. 

4.1.2.5 Assays 
Serum LH concentrations during the LHRH tests were determined using an in vitro 

bioassay by Dr.Stephen Lunn based on the production of testosterone by dispersed 

mouse Leydig cells as described previously (Fraser et al., 1986). Sensitivity of the 

assay was 1.0 ng LH NICHHD rhesus monkey pituitary standard RP-1/ml. Inter- and 
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intra -assay coefficients of variance were 15 and 11% respectively. To determine the 

day of the preovulatory LH surge, serum LH and progesterone were measured by 

radioimmunoassay as described in chapter 2. Inhibin concentrations were measured 

by the heterologous RIA described in chapter 2. 

Oestradiol 17 -3 assay 

General radioimmunoassay procedure was followed as described in chapter 2. Serum 

oestradiol concentrations were measured by a specific RIA following diethyl ether 

extraction of serum (Glasier et al., 1989). The oestradiol -125I iodohistamine tracer 

was prepared by Mr.George Johnston essentially as described by Hunter et al., 1975, 

with the modified extraction procedure which increased the recovery of radiolabelled 

product after iodination (Hillier & Read, 1975). The reference standard used was 

17ß- oestradiol (Sigma Chemical Co. Ltd.) (E8875) at concentrations of 2.5 -320 

pg/0.1m1. A specific sheep anti -oestradiol antibody (BW 26/9/80) (provided by 

Dr.R.Webb, ABRO, Midlothian) was used at an initial dilution of 1:2,000,000. 

Sensitivity of the RIA was 20pg/m1 and inter- and intra -assay coefficients of variation 

were 11% and 5% respectively. 

Assay buffer 

Phosphate buffered saline with gelatine (PBGS) pH 7.4 

NaC1 9g/L 

Na2HPO4 8.6g/L 

Na2PO42H2O 6.08g/L 

Gelatin 1.0g/L 

Thiomersalate 0.1 g/L 

All chemicals were purchased from BDH Chemicals Ltd. 

Sample Extraction 

300µ1 of each sample was aliquoted singly. 3mls of fresh diethyl ether (BDH 

Chemicals Ltd., Poole) was added to each tube and mixed for 5 min. The organic and 

aqueous phases were separated by freezing in a dry ice /methanol mixture, supernatants 

were decanted and evaporated to dryness on a heated block. Standards (100µ1) were 

aliquoted and treated in a similar manner. 

Calculation of extraction recovery 

150µ1 of recovery tracer (2,4,6,7 -3H oestradiol in toluene /ether (9:1), Amersham 

International, P.L.C.) was added to 300111 of a macaque quality control pool in 



113 

duplicate. Diethyl ether (3m1) was then added to each of the duplicates which were 
then treated as before. The recovery samples were reconstituted with 200µ1 of PBGS 
and incubated overnight at 4 °C. Scintillation fluid (3m1) (Ecoscint, National 
Diagonistics, Aylesbury, Bucks.) was then added to l00111 of recovery sample and 
counted for 1 min in a ß counter (Rack Beta 'Primo' Liquid Scintillation Counter, 
LKB Wallac, Turku, Finland). The cpm were then doubled and % recovery calculated. 

Radioimmunoassay procedure 

Day 1. 200111 of antibody and 200111 tracer were added to each extracted assay tube. 

Assay was then incubated for 2 hours at room temperature. 

Day 2. 500µ1 of 1.25% dextran (170, Pharmacia) /1.25% charcoal(activated, Sigma 

Chemical Co., Ltd., Poole) was then added to each tube. All tubes were mixed, placed 
in ice for 10 min and spun at 3000 rpm for 10min at 4 °C. Supernatants were then 

poured into new assay tubes and counted in a gamma counter as before. 

4.1.3 Results 

Serum concentrations of oestradiol, progesterone and inhibin, centred around the day 

of the mid -cycle LH surge (Day 0) in 10 control animals, are shown in figure 4.1(a). 

Inhibin concentrations were low during the follicular phase in all animals before the 

onset of a sustained rise from Day 4 or 5 after the LH surge. Levels of inhibin 

increased to maximal values during the mid -luteal phase before falling as the luteal 

phase came to an end. 

The LHRH agonist implant injection induced a transitory rise in oestradiol and inhibin 

(fig.4.1(b)). Thereafter, buserelin -implanted animals had low serum concentrations of 

inhibin, similar to those found during the early -mid follicular phase of the cycle and 

oestradiol was suppressed to early follicular phase values. 

In the 6 control animals receiving an LHRH test during the early follicular phase of 

the cycle, serum LH concentrations increased from 18.1±0.3 ng/ml at time 0 to 

39.3 ±6.7 and 34.2 ±4.1 ng/ml at 30 and 60 min respectively. In contrast, in animals 

treated with LHRH agonist implant and challenged acutely prior to the administration 

of FSH, serum LH concentrations were around the detection limit of the LH bioassay 

(1.7 ±0.6 ng/ml) at time 0, rising to 5.8 ±3.2 ng/ml and 5.1±2.6 ng/ml at 30 and 60 

min. This small rise was attributable to a response in one animal (no. 85). 
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Fig. 4.1. Serum concentrations of progesterone, oestradiol and inhibin in 10 control 

macaques, data centred around the time of the pre -ovulatory LH surge (day 0), in 4 

macaques after treatment with an LHRH agonist implant starting during the early 

follicular phase and in the same animals after treatment with daily i.m. injections of 

FSH from days 0 -8. Values are plotted as the mean ± S.E.M. 
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The treatment with FSH resulted in marked rises in serum concentrations of inhibin 

and oestradiol beginning 3 -4 days after starting treatment (fig.4.1(c)). There was 

considerable individual variation in response as shown in figure 4.2, but the pattern of 
oestradiol and inhibin response was similar, the correlation between inhibin and 
oestradiol being r =0.871 (P< 0.001). 

On the last day of treatment with FSH, basal LH concentration was still around the 

detection limit of the assay, 2.1 ± 0.2 ng/ml, and virtually no response was obtained 

to the LHRH test, LH concentrations being 3.2±0.2 and 2.5±0.5 ng/ml at 30 and 60 

min, respectively. After cessation of FSH treatment, serum concentrations of inhibin 

and oestradiol declined (fig. 4.2). The LHRH agonist implant maintained suppression 

of ovarian activity in the animals for a further 8 weeks, ovulation occurring 19.9 ± 1.3 

weeks (mean ± S.E.M.) after starting treatment. 

4.1.4 Discussion 
Treatment with the LHRH agonist caused a suppression of serum inhibin and 

oestradiol levels confining the suppression of follicular development and ovulation 

associated with this treatment (Fraser et al.,1987b). In the presence of extremely low 

serum LH concentrations, FSH treatment induced follicular hyperstimulation in the 

agonist implanted animals, resulting in a marked rise in serum inhibin concentrations 

associated with an elevation in oestradiol secretion. The correlation between inhibin 

and oestradiol concentrations, in the absence of luteal progesterone secretion, is a 

strong indication that the developing follicles are the source of the inhibin. Such a 

relationship would be in accord with earlier observations in women receiving 

exogenous LH and FSH combination regimens to induce ovarian hyperstimulation 

(McLachlan et al ., 1986c; Buckler et al .,1988; Tsonis et al., 1988) and would be 

expected from the 'classical' concept of inhibin being predominantly a product of the 

granulosa cells of the developing follicle (Channing et al., 1982). However, it seems 

that it requires growth of multiple antral follicles to induce the marked rises in serum 

inhibin during the period of follicular development, suggesting the increase is an 

amplification of the small rise in serum inhibin observed during the Iate follicular 

phase of the normal cycle (Tsonis et al., 1988). 

Studies of macaques and women receiving gonadotrophin treatment to induce ovarian 

hyperstimulation have revealed an attenuation or inhibition of the LH surge, decreased 

responsiveness to LHRH, and prevention of ovulation (Schenken & Hodgen, 1983; 

Littman & Hodgen, 1984; Messinis & Templeton, 1987, 1989). It has been 
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suggested that these inhibitory effects are the result of the production of a 

gonadotrophin surge inhibitory factor which is peptidic in nature (Stillman et al., 
1983). Although it was thought originally that this substance might be inhibin, the 
demonstration of a substance in extracts of porcine and human follicular fluid which 
suppressed LHRH- stimulated LH and FSH release was in contrast to the effects of an 
inhibin preparation which suppressed FSH selectively in an in vitro bioassay. Since 
the substance with these properties also had different physiochemical characteristics 
from inhibin, this suggested the presence of an additional gonadotrophin surge 
inhibitory factor (Danforth et al., 1987; Fowler et al., 1989). 

In conclusion, it is apparent that a number of substances are pharmacologically 
elevated in blood by hyperstimulation protocols. These results emphasize the non- 
physiological nature of the rise in inhibin, resulting from the induction of follicular 
hyperstimulation following FSH treatment. 

4.2 
Part II. LHRH agonist implant during luteal phase in the 
macaque. 
The effect of administration of an LHRH agonist implant during the luteal phase in the 

stumptailed macaque was investigated. Five adult female macaques were implanted 

with buserelin rods during the mid -luteal phase as described in part I. Blood samples 

were collected at least three times per week thereafter and samples treated as described 

in part I. Serum progesterone and inhibin concentrations are shown in figure 4.3. 

Progesterone and inhibin were initially at luteal phase levels and (similar to 

administration of implant during the follicular phase) there was a decline in serum 

concentrations of both hormones following agonist administration, the fall in inhibin 

being delayed in comparison with progesterone. Serum concentrations of 
progesterone and inhibin then remained suppressed for the remainder of the sampling 

period. 

4.3 
Part III. Recovery Period following LHRH agonist implant 
in the macaque. 
Blood sampling was continued three times per week in LHRH agonist implanted 

macaques treated in both the follicular and luteal phases (n =5 per group) until the first 

recovery cycle. The time to return to ovulation varied between individual animals 

ranging from 85 to 144 days in follicular phase -treated animals and 87 to 161 days in 
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luteal phase implanted animals. Serum progesterone and inhibin concentrations during 
the recovery cycle in 10 animals is shown in figure 4.4. Inhibin concentrations rose in 
a similar manner to the normal cycle and the mean recovery cycle can be defined as 
normal according to the criteria described in chapter 2. However, when menstrual 
cycles were examined individually, an inadequate luteal phase was found during the 
first recovery cycle in 2 animals. 

4.4 
Part IV. LHRH agonist implant during the luteal phase in 
the marmoset. 
The effects of LHRH agonist implant in the common marmoset was investigated. Six 

adult female marmosets were implanted with buserelin rods (0.5cm) according to the 
method described in part I. Blood samples were taken approximately 4 -5 weeks prior 
to administration of implant and continued for 7 -9 weeks. Serum progesterone and 
inhibin concentrations in the six agonist - treated marmosets are shown in figure 4.5. 

There was a fall in both progesterone and inhibin concentrations following 
administration of the implant in all animals. Progesterone and inhibin concentrations 
remained suppressed until the end of the sampling period in 5 out of 6 animals. In one 

animal however (444R), progesterone and inhibin concentrations began to recover 

after day 30. 

4.5 
Part V. Inhibin secretion following LHRH agonist treatment 
in women with endometriosis 

In an extensive clinical study designed by Dr. Hamish Fraser, with the clinical 

collaboration of Dr. R. Haining and Dr. S.K.Smith, the long -term suppression of 

ovarian function by a luteinizing- hormone releasing -hormone agonist implant was 

investigated in patients with endometriosis (Fraser et al., 1990). Ten endometriosis 

patients received luteinizing hormone releasing hormone (LHRH) agonist (buserelin) 

implant injections (3.3mg (n=4) and 6.6mg (n =6) s.c.). Serum LH and FSH were 

lowered by day 14. Luteinizing hormone remained at basal concentrations while FSH 

returned to values in the low -normal range of the menstrual cycle by day 35. At the 

end of the luteal phase during which treatment commenced, urinary oestrone and 

pregnanediol declined. Time to first ovulation ranged from 100 -194 days (median 118 

days ) in the 3.3mg group and 79 -290 (median 178 days) in the 6.6mg group. 
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Measurement of inhibin 

Serum inhibin concentrations were measured in the samples from the ten subjects from 
the day of administration of implant until approximately 200 days post -treatment. 
Serum concentrations of inhibin in two of the subjects in the study are illustrated in 
figure 4.6 . The profile of inhibin levels in subject Y is representative of 9 out of the 
10 subjects. Inhibin concentrations were initially very high due to implant 
administration during the luteal phase of the menstrual cycle. Serum concentrations of 
inhibin then declined rapidly and remained suppressed until the end of the sampling 

period. 

Subject X however demonstrated abnormally high levels of inhibin -like activity which 
remained elevated throughout the entire sampling period. Serum samples from subject 

X were pooled into pre- and post- implant and serially diluted in the inhibin 

radioimmunoassay. Both pools were found to be non -parallel to the partially purified 

human follicular fluid standard in the inhibin assay (úg.4.7). To investigate if this 

effect was due to a non - specific interaction of products in the subject's serum with the 

inhibin RIA, plasma and serum from the same blood sample collected post -treatment 

were assayed and both were found to be non parallel to the standard curve (úg.4.8). 

It was then investigated if protease enzymes present in the subject's serum were 

resulting in tracer degradation. Pre- and post -treatment pools were assayed with or 

without protease inhibitors (20mM ethylenediaminetetraaceticacid (EDTA) and 20mM 

N- ethylmaleimide (NEM) (initial concentrations), Sigma Chemical Co. Ltd., Poole) 

and no significant differences in binding of tracer, with or without protease inhibitors, 

was found (fig.4.9). Furthermore, the pre- and post -treatment pools were assayed in 

the in vitro sheep pituitary cell inhibin bioassay (Tsonis et al., 1986) by Miss Linda 

Harkness and no bioactivity was present. 

4.6 Discussion 
The administration of LHRH agonist resulted in a suppression of pituitary- ovarian 

function in the stumptailed macaque, common marmoset monkey and human. 

Treatment with LHRH agonist during the follicular and luteal phase in the macaque 

resulted in a transitory rise in both steroids and inhibin. Thereafter, these hormones 

were suppressed to follicular phase values. All animals returned to ovulation by 23 

weeks after implant. Administration of LHRH agonist in the marmoset resulted in 

suppression of progesterone and inhibin in all animals. The initial stimulation of 

steroids and inhibin, noted in the macaque and human, was not observed in the 

marmoset. However, this may be the result of infrequent sampling. The degree of 

suppression by LHRH agonist in the marmoset was variable. Inhibin and 
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progesterone were suppressed to below follicular phase levels in 4 out of 6 animals. 

The recovery period was also variable with one animal achieving normal luteal phase 

inhibin and progesterone levels by day 30 after agonist administration. Inhibin levels 

were also suppressed to below follicular phase values following agonist administration 

in women. 

The demonstration of non -parallelism of subject X serum or plasma with the partially 

purified human follicular fluid standard in the inhibin assay, suggests that the 

substance measured in high concentrations in the circulation of subject X is not 

immunoreactive inhibin. Furthermore, the substance had no inhibin bioactivity. It is 

possible that a large molecular weight precursor of an inhibin subunit, similar to pro - 

aC and pro-aN isolated from bovine follicular fluid (Robertson et al., 1989), is 

present in the serum of subject X and this is cross - reacting in the assay. Further 

studies are clearly required such as gel chromatography to determine the molecular size 

of this substance before an attempt at identification can be made. 
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Chapter 5 

Immunocytochemical localization of inhibin in 
the primate ovary. 

Part I. Development of immunocytochemical method. 

5.1.1 Introduction 
The aim of the studies in this chapter was to develop an immunocytochemical method 

for the cellular localization of inhibin subunits within the primate ovary. The initial 

intention was to set up the technique of immunocytochemistry in the laboratory using 

an established method and to adapt this to localise inhibin subunits. The technique for 

the immunolocalization of oxytocin was chosen as the presence of oxytocin has been 

well established in a variety of species such as the cow (Guldenaar, 1984; Kruip et al., 

1985) and sheep (Watkins, 1983). Oxytocin has also been demonstrated 

immunocytochemically in the cynomolgus monkey (Khan- Dawood et al., 1983), 

baboon (Khan- Dawood, 1987a) and human (Khan- Dawood, 1987b). However, these 

findings in the primate have been disputed by others (Auletta et al., 1988b). 

Therefore, the localization of oxytocin in the bovine corpus luteum by the peroxidase - 

anti-peroxidase (PAP) method was set up as a model according to the method of 

Guldenaar (1984). 

This chapter details the development of the immunocytochemical method which was 

eventually employed to localize inhibin subunits in the primate ovary. The initial PAP 

method used resulted in specific localization of oxytocin but with a high proportion of 

non -specific background staining. Experiments were therefore set up to try and 

improve the amount of background staining by modifying: 

(a) tissue pretreatment to reduce: 

(i) endogenous peroxidase activity 

(ii) hydrophobic interactions 

(iii) antigenic masking. 

(b) tissue processing 

(c) tissue fixation 

(d) antibody dilution and incubation time 

(e) chromagen 
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These modifications were then applied to a more sensitive avidin -biotin 
immunoperoxidase technique which proved to be the most sensitive and produced 
specific immunostaining with minimum background staining. 

5.1.2 Materials and Methods 
5.1.2.1 Tissue collection and fixation 
Bovine ovaries were collected from the abattoir and corpora lutea dissected out within 
2h of removal from the animal. Whole corpora lutea were fixed by immersion using 
2.5% glutaraldehyde (v /v) (TAAB Laboratories Equipment Ltd., Aldermaston, 
Berkshire) and 4.0% paraformaldehyde (w /v) (Aldrich Chemical Company Ltd., 

Gillingham, Dorset) in 0.1M sodium cacodylate buffer (Agar Scientific Ltd., Stansted, 

Essex) (fixative 1) at pH 7.4 for 24h. 

5.1.2.2 Preparation of tissue sections 
After fixation, corpora lutea were frozen and tissue sections (201am) were cut with a 

cryostat (2800 Frigocut, Reichert-Jung, Cambridge Instruments, Bar Hill, 
Cambridge). All frozen sections throughout these studies were cut by Mr. Mike Millar 

and paraffin sections were prepared by myself and Mike Millar. 

5.1.2.3 Peroxidase- anti- peroxidase method 
Tissue sections were collected into small glass vials containing Tris -NaC1 buffer 

(0.05M Tris(hydroxymethyl)methylamine (BDH Chemicals Ltd.), 0.9% NaCl, pH 

7.6) and washed in Tris -NaCl- Triton -X (iris -NaCI buffer containing 0.5% Triton -X- 

100 (Sigma Chemical Company Ltd., Poole, Dorset). The sections were incubated 

with primary antiserum (rabbit anti- oxytocin antibody R1-5 (Guldenaar, 1984), gift 

from Dr. I.C.A.F. Robinson, National Institute for Medical Research, Mill Hill) at a 

dilution of 1:100 for 1 h at room temperature followed by overnight incubation at 4°C. 

Control sections were set up using normal rabbit serum (DAKO Ltd., High Wycombe, 

Bucks.) at a dilution of 1:100 in place of primary antibody. The sections were then 

immunostained using a peroxidase -antiperoxidase (PAP) technique (Stemberger, 

1979). Following a wash in Tris-NaC1 containing 2% normal swine serum (DAKO 

Ltd.), sections were incubated with secondary antibody (swine -anti- rabbit) (DAKO 

Ltd.) at a dilution of 1:30 for 30 min. Sections were washed again for 15 min in Tris- 

NaC1 containing 2% normal swine serum (DAKO Ltd.). Rabbit peroxidase anti - 

peroxidase complex (PAP complex) (DAKO Ltd.) at a dilution of 1: 100 was then 

applied for 30 min. Sections were then washed for 15 min in Tris - aCL The 

product was then visualized using 0.5 mg 3,3'- diaminobenzidine 
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tetrahydrochloride /ml (DAB) (Sigma Chemical Company Ltd.) in Tris -NaC1 

containing 0.1m1 3% hydrogen peroxide (BDH Chemicals Ltd.). A few drops of the 

DAB solution were applied to the tissue sections for 3 -5 min. Following a wash in 

Tris -NaC1, the sections were counterstained in haemotoxylin (BDH Chemicals Ltd.), 

dehydrated and mounted using Histomount (National Diagnostics, Highland Park, 

New Jersey, U.S.A.) for microscopic examination. 

5.1.3 Results 
PAP method 
Specific staining corresponding to oxytocin in three bovine corpora lutea with absence 

of staining in the control sections was obtained using this protocol in three separate 

immunocytochemical experiments. However, there was excessive background 

staining in both treated and control tissue sections. The experimental protocol 

therefore had to be modified in order to achieve the optimum conditions for specific 

immunostaining with the minimum background staining. 

5.1.4 Modifications to immunostaining protocol 
Problems: causes and solutions 

5.1.4.1 Background staining: Tissue pre- treatment 
(a) Endogenous peroxidase activity 

Endogenous peroxidase activity is a major cause of non -specific background staining. 

Peroxidase activity results in the decomposition of H2O 2 and is a common property of 

all haemoproteins such as haemoglobin. The highly vascularised structure of the 

corpus luteum suggests that this tissue may contain a lot of endogenous peroxidase 

activity. The most frequently used procedure for the suppression of endogenous 

peroxidase activity is the incubation of sections with hydrogen peroxide in methanol. 

Therefore in an attempt to reduce background staining due to endogenous peroxidase 

activity, sections were incubated with 3% (v /v) hydrogen peroxide (BDH Chemicals 

Ltd.) in methanol (BDH Chemicals Ltd.) for 30 min. This resulted in a decrease in the 

amount of background staining in tissue sections from three bovine corpora lutea in 

two separate immunocytochemical experiments. 

(b) Hydrophobic interactions 

Another major cause of backgound is due to the hydrophobic binding between tissue 

proteins and the antibody molecules. The most widely practiced measure to reduce 

background due to hydrophobic interaction is the use of an incubation step with a 
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blocking protein either separately or added to the diluent, prior to application of 
primary antibody. Tissue sections were therefore incubated for 30 min with a normal 
non -immune swine serum (DAKO Ltd.) (at a dilution of 1: 5 with Tris -NaC1 buffer). 
This treatment was found to reduce background following the hydrogen peroxide 
treatment in tissue sections from three bovine corpora lutea tested in three 
immunocytochemical experiments. Furthermore, in the previous experiments, the 
addition of 5% bovine serum albumin (Sigma Chemical Co.Ltd.) to the blocking 
serum together with antibody diluents consisting of 1:5 normal swine serum/Tris -NaCI 

further reduced background staining. The combination of all of these pre -treatments 
further reduced the background staining and these pre -treatments were all adopted in 

the immunocytochemical protocol. Examples of results obtained are shown in plate 

5.1 (A and B). 5.1A shows specific staining representing oxytocin in the large luteal 

cells of the bovine corpus luteum. No specific staining was present in 5.1B where 
primary antibody was substituted by normal rabbit serum. However, a high degree of 
non -specific background staining was present in both control and treated tissue and 

hence further modifications to the protocol were necessary. 

(c) Antigenic masking 

A further source of background staining may be the result of tissue fixation. Tissue 

proteins are rendered more hydrophobic by fixation with aldehyde- containing reagents 

such as formalin and glutaraldehyde. The increased hydrophobicity is often the result 

of cross - linking of reactive epsilon- and alpha -amino acids, both within and between 

adjacent protein molecules, which mask antigenic binding sites. An intermediate step 

between hydrogen peroxide /methanol and blocking serum treatments of incubation of 

tissue sections in 0.1% trypsin (BDH Chemicals Ltd.) in 0.1% calcium chloride (BDH 

Chemicals Ltd.) at 37 °C was therefore included. This treatment was tested to 

determine if it would 'unmask' any antigenic sites masked by the fixative. However, 

the trypsin treatment was included in four immunocytochemical experiments and had 

no effect in reducing background. Trypsin pretreatment was therefore not included in 

the protocol. 

5.1.4.2 Tissue Processing 
The above experiments were carried out on tissue sections of 201.1m thickness. The 

immunostaining obtained with tissue of varying thickness was then compared and also 

the results obtained between frozen and paraffin - embedded tissue sections. Three 

bovine corpora lutea were frozen and tissue sections cut at 3µm and 71.tm in a cryostat, 

fixed in acetone (BDH Chemicals Ltd.) for 15min and stained for the presence of 

oxytocin as described previously. Specific staining for oxytocin is shown in plate 



132 

Plate 5.1. Localization of oxytocin in 20µm sections of bovine corpus luteum (A) 

using PAP method. In section B, primary antiserum was substituted by normal rabbit 

serum. High degree of background staining is present. (x 25). 
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Plate 5.2. Localization of oxytocin in 7µm frozen sections of bovine corpus luteum 

using PAP method. In section B, primary antiserum was substituted by normal rabbit 

serum. High degree of tissue damage and background staining is present. (x 25). 



134 

5.2A. Absence of staining is noted in 5.2B where normal rabbit serum was used as a 

control. However, although specific staining was obtained, there was substantial 
background staining and poor tissue morphology was maintained. This was most 
likely due to crystal formation in the tissue sections during the freezing process 
resulting in tissue damage. 

The results obtained with frozen tissue were then compared with fixed, paraffin - 

embedded sections. Following fixation in fixative 1, three corpora lutea were 

dehydrated in a series of alcohols (70 %, 80 %, 90 %, 95 %, absolute), Histoclear 

(National Diagnostics, Highland Park, New Jersey, U.S.A.) and wax in a tissue 

processor (model 2LE, Shandon, Runcorn, Cheshire). The tissues were then 

embedded in paraffin wax in a tissue embedding centre (Reichert Jung, Cambridge 

Instruments). 41.tm sections were then cut with a microtome (Supercut 2050, Reichert 

Jung, Cambridge Instruments). By applying the PAP method to these sections, 

specific immunostaining representing oxytocin was obtained with decreased 

background when compared with the frozen tissue sections (plate 5.3A) and absence 

of staining was noted in the control section (5.3B). 4µm, paraffin embedded 

sections were therefore used in preference to frozen sections in the 

immunocytochemical staining method. However, it was considered that the level of 

background staining could be reduced so that further modifications were investigated. 

5.1.4.3 Tissue fixation 
The ideal fixative for immunoperoxidase studies should give good morphological 

preservation without destroying the immunoreactivity of the antigen. It should prevent 

extraction, diffusion and displacement of the antigen and not interfere with subsequent 

antigen /antibody reactions. The effect of using different fixatives on the resultant 

immunostaining was therefore investigated. 

Three corpora lutea were fixed for 24h in either: 

(i) fixative 1 

(ii) 4% paraformaldehyde 

(ii) Bouin's fixative (75ml of saturated (1.2% w /v) of aqueous picric acid, 25ml 

formalin (40% w/v formaldehyde) and 5ml glacial acetic acid, all purchased from BDH 

Chemicals Ltd.). 

Tissues were then processed as described above for paraffin sections. 4µm tissue 

sections were then immunostained for oxytocin using the PAP method. The most 
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Plate 5.3. Localization of oxytocin in 41.1m paraffin sections of bovine corpus luteum 

using PAP method. In section B, primary antiserum was substituted by normal rabbit 

serum. Background staining is reduced. (x 50). 
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Plate 5.4. Localization of oxytocin in 41.tm paraffin sections of bovine corpus luteum 

using avidin -biotin method shown in low power (A, x 40) and high power (B, x 400). 
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specific staining with decreased background was achieved using fixative 1 (plates 5.3 
and 5.4). Thus fixative 1 was used routinely in the immunocytochemical method. 

5.1.4.4 Antibody 
The optimum antibody titre is defined as the highest dilution of an antiserum which 
results in optimal specific staining with the least amount of background staining. The 
antibody (R1 -5) was used at dilutions of 1:100 -1:10000 incubating from 30 min at 

room temperature to overnight at 4 °C in tissue sections from four different corpora 
lutea. 1:400 was found to be the optimum dilution when incubated for lh at room 

temperature (plate 5.4) and this procedure was adopted in the immunocytochemical 
protocol. 

5.1.4.5 Chromagens 
The key enzyme involved in the immunocytochemical reaction in this chapter is 

horseradish peroxidase. Peroxidase activity in the presence of an electron donor 

results in the formation of an enzyme -substrate complex followed by the oxidation of 

the electron donor. There are several electron donors which, upon being oxidised, 

become coloured products and are therefore called chromagens. 3,3'- 

Diaminobenzidine tetrahydrochloride (DAB) produces a brown end product which is 

highly insoluble in alcohol and other organic solvents. Oxidation of DAB also causes 

polymerization, resulting in the ability to react with osmium tetroxide, and thus 

increasing its staining intensity and electron density. DAB was found to be an 

extremely effective chromagen for localizing oxytocin (plate 5.3). However, in an 

experiment to investigate the enhancing properties of osmium tetroxide, sections of 

two corpora lutea were immunostained for oxytocin using DAB and visualized with 

and without osmium tetroxide exposure. Exposure to osmium tetroxide resulted in 

increased background staining and DAB was therefore used in the 

immunocytochemical protocol without osmium tetroxide exposure. 

3- Amino -9- ethylcarbazole (AEC) produces a red end -product upon oxidation which is 

alcohol soluble. Specimens processed with AEC must therefore not be immersed in 

alcohol or alcoholic solutions. Instead, an aqueous counterstain and mounting 

medium must be used. AEC is also susceptible to further oxidation and when exposed 

to excessive light, will fade in intensity. Tissue sections treated with AEC must 

therefore be stored in the dark. In an experiment to investigate the visualizing 

properties of AEC, two corpora lutea were immunostained for oxytocin using either 

AEC or DAB as a chromagen. AEC was found to produce more intense 
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Fig. 5.1. Schematic diagram of avidin- biotin technique. 
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immunostaining (plate 5.4) when compared with DAB although it had the 
disadvantage of fading within 2 -3 days after the experiment was performed. 
5.1.4.6 Avidin- biotin method 
In combination with the modifications of 5.1.4.1 -5 to improve specific staining and 
decrease non - specific background, an avidin- biotin method, based on the original 
method of Hsu et al. (1981) of immunostaining was applied. This method utilizes the 
high affinity of avidin for biotin and requires a biotinylated antibody as the secondary 
antibody (see fig.5.1). The strong affinity of avidin for biotin and the mild 
biotinylation process makes the avidin- biotin method more sensitive than the PAP 
method (Hsu et al., 1981). 

Four bovine corpora lutea were collected, processed into paraffin blocks and cut at 

4µm as previously described. In addition, twenty human corpora lutea were also 

collected as described in chapter 3 and processed as for bovine corpora lutea. 

Paraffin- embedded human tonsil was obtained as a control tissue from the Department 

of Pathology, University of Edinburgh. Paraffin- embedded tissue sections were 

deparaffinized, rehydrated and treated with 3% (v /v) hydrogen peroxide (BDH 

Chemicals Ltd.) in methanol (BDH Chemicals Ltd.) for 30 min to remove endogenous 

peroxidase activity. The sections were washed in 0.05mol/L Tris -HC1 buffer (0.5M 

Tris(hydroxymethyl)methylamine (BDH Chemicals Ltd.), 0.9% NaC1 , pH 7.6)(Tris- 

NaC1) containing 0.5% (v /v) Triton -X -100 (Sigma Chemical Company Ltd.) for 10 

min, distilled water for 5 min and Tris -NaC1 for 5 min. The sections were incubated 

with normal swine serum (DAKO Ltd.) diluted 1:5 in Tris-NaC1 containing 5% bovine 

serum albumin (Sigma Chemical Company Ltd.) for 30 min to reduce non - specific 

background staining. The primary antiserum (R1 -5) was diluted 1:400 in Tris -NaC1, 

applied to tissue sections and incubated for 1h at room temperature. The sections were 

then washed twice in Tris-NaC1 for 5 min and then were incubated for 30 min with the 

secondary antibody, biotinylated swine anti- rabbit antiserum, (DAKO Ltd.) diluted 

1:500 in Tris -NaCl. Following two washes in Tris -NaC1 for 5 min, a few drops of 

peroxidase- conjugated avidin- biotin complex (DAKOPATTS, DAKO Ltd.) was 

applied to each section which were then incubated for 30 min. The sections were 

again washed twice in Tris -NaC1 for 5 min. The peroxidase activity was then 

visualized using 0.5mg 3,3'- diaminobenzidine tetrahydrochloride / ml (DAB)(Sigma 

Chemical Company Ltd.) in Tris-NaC1 containing 0.1m1 of 3% hydrogen peroxide 

(BDH Chemicals Ltd.) which was applied to the sections for 3 -5 min. Alternatively, 

3- amino -9 -ethyl carbazole (AEC) (Sigma Chemical Company Ltd.) was applied as a 

chromagen. 4 mg of 3 - amino - 9 - ethyl carbazole was dissolved in 1ml of 
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N,N- dimethylformamide (BDH Chemicals Ltd.). 14ml of acetate buffer, pH 5.2, 
(prepared from 210m1 of 0.1N acetic acid and 790m1 of 0.1M sodium acetate, both 
from BDH Chemicals Ltd.) and 0.15m1 of 3% hydrogen peroxide then added. The 
mixture was then filtered, applied to the tissue and incubated for 5 -15min at room 
temperature. Following a wash in Tris -NaC1, the sections were counterstained in 
haemotoxylin (BDH Chemicals Ltd.), dehydrated and mounted using Histomount 
(National Diagnostics) for DAB -treated sections or Aquamount (National Diagnostics) 
for AEC- treated sections and examined microscopically. 

To test the specificity of staining, control sections were set up with antiserum which 
had been preabsorbed overnight with 10µM oxytocin (Cambridge Research 
Biochemicals Ltd., Harston, Cambridge) in place of primary antiserum. Control 
sections were also set up substituting primary antiserum with normal rabbit serum at 

1:400. 

5.1.5 Results 
Avidin- biotin method 
The results from this method are shown in plate 5.4A and 5.4B. The avidin -biotin 

system demonstrated specific staining in the large luteal cells of the bovine corpus 
luteum with minimum background staining as shown in low power (5.4A) and high 

power (5.4B). Less background staining was obtained using this method in 

comparison with the PAP method (plate.5.3). No immunostaining was present in the 

tissue sections where primary antiserum was preabsorbed with oxytocin or when 

normal swine serum was used in place of primary antibody. No immunostaining was 

present in the sections of human tonsil (plate. 5.7A). The optimum staining protocol 

had therefore been obtained. No immunostaining was detected in tissue sections from 

twenty different human corpora lutea from various stages of the luteal phase which 

were examined for the presence of oxytocin in ten immunocytochemical experiments. 

5.1.6 Discussion- part I. 
The finalized protocol for the immunocytochemical method is shown in figure 5.2. 

The absence of staining in control tissue sections and in human tonsil demonstrated 

antibody specificity. The finding of oxytocin in the large luteal cells of the bovine 

corpus luteum is in agreement with the findings of Guldenaar et al. (1984) and Kruip 

et al. (1985). 
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Treatment Time 

3% hydrogen peroxide in methanol 30 min 

Tris- NaCl/Triton -X wash 10 min 

Distilled water 5 min 

Tris-NaC1 5 min 

Blocking serum 30 min 

Primary antiserum 30 min 

Tris-NaC1 wash 2 x 5min 

Secondary antiserum 30 min 

Tris-NaC1 wash 2 x 5 min 

AB complex 30 min 

Tris -NaCI wash 2 x 5 min 

DAB /AEC 3 - 5 min 

Tris -NaC1 wash 5 min 

Counterstain 

Fig. 5.2 Final protocol for immunostaining method 
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The absence of staining in any of the human corpora lutea is in agreement with the 
findings of Auletta et al. (1988b) but in contrast with those of Khan- Dawood (1987b). 
However, the presence of oxytocin in the human corpus luteum is a controversial issue 
which has still to be resolved (see chapter 1). 

Part II Immunocytochemical localization of inhibin in the 
primate ovary 

5.2.1 Introduction 
At the time when these studies were carried out, there were no reports of 
immunocytochemical localization of inhibin in the primate corpus luteum. 
Furthermore, there were no reports on the localization of inhibin within a specific cell 
type in the ovary. The aim of the following study was therefore to determine, firstly, 
whether inhibin a- subunit could be detected immunocytochemically within the human 

corpus luteum, human follicle and in pre -ovulatory follicles and corpora lutea from the 
stumptailed macaque; secondly, whether inhibin a- subunit is localized in a specific cell 

type in the primate corpus luteum and whether the intensity or distribution of inhibin 
a- subunit immunostaining in the human corpus luteum varies throughout the different 

stages of the luteal phase and finally, in a preliminary study, to determine if inhibin 

PA-subunit could be detected immunocytochemically within the human corpus luteum 

and if so, was inhibin 13A- subunit localized to a specific cell type. 

5.2.2 Materials and Methods 

5.2.2.1 Tissue Preparation 
(i) Human tissue 

Human corpora lutea at early (1 -4 days since ovulation), mid (5 -9 days since 

ovulation) and late (10 -14 days since ovulation) stages of the luteal phase (n =4 per 

group) were obtained from patients undergoing hysterectomy by Dr. Peter Illingworth. 

The stage of the menstrual cycle was determined as described in chapter 2. Informed 

consent was obtained from all subjects and ethical approval for the study was obtained 

from the Lothian Area Ethical Committee, Reproductive Medicine Subcommittee, 

Edinburgh. 

Human corpora lutea were collected into ice -cold phosphate- buffered saline (ICN 

Flow Ltd., Rickmansworth, Herts., U.K.) and blood clots and excess connective 

tissue removed as described in chapter 3. Five human follicles were also collected in a 
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similar manner. The tissues were fixed for 24 h in fixative 1, dehydrated, embedded 
in paraffin wax and cut into 41.tm serial sections as described in part 1. 

(ii) Macaque tissue 
Four macaque ovaries were collected by Dr. Hamish Fraser and immersed immediately 
into liquid nitrogen (one ovary from no. 66 and one ovary from 83) or into fixative 
1(for 24h) (two ovaries from no.78). 4µm sections were then cut using a 

cryostat /microtome. The frozen sections were then fixed in a buffered picric acid - 
formaldehyde solution (a modification of Bouin's fluid) for 10min at 4 °C prepared as 

follows: 

20g of paraformaldehyde was added to 150m1 of a double -filtered, saturated aqueous 

solution of picric acid. The solution was then heated and cleared with a few drops of 
concentrated sodium hydroxide. The solution was then filtered, cooled and made up 

to 1000mis with phosphate buffer (prepared with 3.31g/L of NaH2PO4.H2O and 

33.77g/L of Na2HPO4.7H20). Following fixation, tissue sections were washed in 

phosphate buffered - saline pH 7.4 (prepared from 9g/L NaC1, 3.5g/L Na2HPO4 and 

11.88g/L Na2PO42H20) for 30min at 4 °C. All chemicals were purchased from BDH 

Chemicals Ltd. 

The stage of the menstrual cycle was determined by radioimmunoassay for 
progesterone, oestradiol and FSH from blood samples taken daily ( as described in 

chapter 2) for two weeks prior to removal of the ovaries. Radioimmunoassays used as 

described in chapters 2 -4. 

5.2.2.2 Antiserum 
Several antibodies, raised by Dr. Alan McNeilly, were initially tested for the ability to 

immunolocalize inhibin a- subunit in the human corpus luteum. Three antisera (R146, 

R147 and R150) were raised in rabbits against the first 1 -26 amino acids of the N- 

terminus of the porcine a- subunit conjugated to ovalbumin. These antisera were 

titrated at dilutions of 1:100 -1:10 000 for various incubation times (30 or 60min at 

room temperature or overnight at 4 °C) using the avidin - biotin method described in part 

I. However, no immunostaining was obtained using these antisera, at these dilutions 

or incubation periods, in six human corpora lutea from different stages of the luteal 

phase. 

Two antisera (Y29 and Y33) were raised in sheep against the first 1 -23 amino acid 

sequence of the N- terminus of the human a- subunit (Cambridge Research 

Biochemicals) conjugated to rabbit gamma globulin (Y29) or porcine thyroglobulin 
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(Y33) by means of carbodiimide (1- ethyl -3 -[3- dimethyl -aminopropyl] carbodiimide 
hydrochloride; Sigma Chemical Co. Ltd.). These antisera were used to establish a 
radioimmunoassay for the detection of human a- subunit (A.S.McNeilly and 

W.J.Crow, unpublished). 

5.2.2.3 Inhibin a- subunit radioimmunoassay 
(i) Assay buffer- 1% bovine serum albumin (BSA) / phosphate buffered saline (PBS) 

prepared from: 

0.5M phosphate buffer stock consisting of: 

133.5g NaHPO4.2H20 /1.5L 

39g NaH2PO4.2H20 /0.5L 

Chemicals from BDH Chemicals Ltd. 

Buffer preparation: 

300mis of 0.5M stock + 1700m1 distilled water 

8.76g/L NaC1 (BDH Chemicals Ltd.) 

0.2g/L thiomersal (Sigma Chemical Co.Ltd.) 

20g/L bovine serum albumin (Sigma Chemical Co.Ltd.) 

(ii) Assay set -up 

Assays included duplicate estimations of total binding, non -specific binding and 

standards /samples. The following additions were made to each assay tube as 

described in chapter 2. 

100111 standard (Peninsula human 1 -23a inhibin standards, range 1 -15600 pg/0.1m1, 

Peninsula Laboratories Inc., Belmont, CA., U.S.A.) 

200µ1 assay buffer 

100µl antibody (Y29; 1:2000 or Y33; 1:6000) conjugated to fluorescein isothiocyanate 

(FITC) by Serono Laboratories, Woking, Surrey. 

100µ1 tracer (125I- Peninsula human 1 -23a inhibin, 15 000 counts per tube, iodinated 

by Miss W.J.Crow using the chloramine T method ). 

Assays then incubated for lh at 37 °C. 

(iii) Assay separation 

The immunoreactive - bound iodinated tracer was separated using anti -FITC magnetic 

particle separation (Serono Laboratories, Woking, Surrey). 200µ1 of anti -FITC 

magnetic particles were added to all tubes except the total counts. All tubes were 

mixed gently and allowed to stand for 5 min. Assay tubes were then placed 
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onto a magnetic separator (Serono Laboratories) for 2 min, decanted and blotted. 

500µ1 of 0.9% saline /0.2% triton X -100 was then added to all tubes except total 
counts. The separating and decanting procedure was then repeated and tubes counted 
in a gamma counter as described in chapter 2. The antisera gave 30% binding of 125I- 

labelled 1 -23a- human inhibin at an initial dilution of 1:2000 (Y29) and 1:6000 (Y33) 

and parallel displacement curves were obtained with the human 1 -23 inhibin standard. 

Furthermore, parallel displacement curves were obtained with human, ovine and 

bovine follicular fluid using both Y33 and Y29 (fig.5.3A and 5.3B). In addition, 

parallel displacements curves were also obtained with dilutions (1:2- 1:128) of an 

extract of a mid -luteal phase human corpus luteum (fig.5.4), prepared by 

homogenizing lg tissue /10m1 assay buffer. The homogenate was assayed in the 

presence of two protease inhibitors to prevent tracer degradation: ethylenediaminetetra 

acetic acid (EDTA) and N -ethyl malaeimide (NEM) both at an final concentration of 

2mM in the assay. These protease inhibitors had no effect on the assay as no 

significant differences were obtained in standard curves with and without protease 

inhibitors. 

5.2.2.4 Immunocytochemistry 

The avidin- biotin immunoperoxidase technique, developed in part I was used to 

localize human inhibin a- subunit and ßA- subunit in the primate ovary with the 

following modifications: 

A. Inhibin a- subunit 

(i) Normal rabbit serum (DAKO Ltd.) diluted 1:5 in Tris -NaC1 containing 5% bovine 

serum albumin for 30 min was applied prior to primary antibody to reduce non- 

specific background staining. 

(ii) In a preliminary study to obtain optimum antibody dilution and incubation times, 

six human corpora lutea were immunostained for inhibin a- subunit using Y29 or Y33 

diluted 1:100 -1:10 000 in Tris -NaC1 containing 1:5 diluted normal rabbit serum and 

incubated for 30min or lh at room temperature or 24h at 40C. Less background 

staining was obtained with Y33 in comparison with Y29, presumably due to the 

conjugate used in raising Y29 (rabbit gamma globulin) interfering with the 

immunostaining system. Y33 was therefore the preferred antibody to use in the 

staining protocol. 

(iii) secondary antibody, biotinylated rabbit anti -sheep, (Vector Laboratories, 

Peterborough, Cambs., U.K.) diluted 1:500 in Tris -NaC1 containing 1:5 diluted 

normal rabbit serum. 
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Fig. 5.3. Parallelism was obtained using antisera Y33 (A) and Y29 (B) with human 

follicular fluid ( ), ovine follicular fluid (0) and bovine follicular fluid (I ) in the 

inhibin a- subunit RIA. 
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148 

To test the specificity of the staining, control sections were set up with primary 
antiserum which had been preabsorbed overnight with 1014 human 1 -23 a inhibin 

immunogen in place of primary antiserum. Control tissue sections were also set up 
substituting primary antiserum with normal sheep serum (DAKO Ltd.) at 1:2000. The 

specificity was further substantiated by serially diluting the primary antiserum from 
1:250 to 1:2000, which resulted in a gradual decrease in the overall intensity of 
staining. Human tonsil was included as a negative control tissue and rat antral follicles 

as a positive control tissue. 

To determine whether intensity of staining changed during the luteal phase, the 12 

human corpora lutea were subjected to the above procedure in a single assay. 

Antiserum was added at a dilution of 1:2000. Slides were given a code and examined 

'blind' by four separate individuals scoring as intense, moderate, weak or nil 

according to overall intensity of staining. 

B. Inhibin 13A- subunit 

A monoclonal antibody against amino acids 84 -112 of the human inhibin (3A- subunit 

(gifted by Dr. Nigel Groome, Oxford Polytechnic) was used in a preliminary study to 

localize inhibin ßA- subunit within two mid -luteal phase human corpora lutea. The 

avidin- biotin immunocytochemical technique was used as described for inhibin a- 

subunit with the exception that the primary antibody was used at dilutions of 1:100 and 

1:200 and incubated overnight at 4 °C. To test specificity of staining, control sections 

were set up using primary antibody which had been preabsorbed overnight with 1014 

inhibin 13A peptide. Furthermore, tissue sections were also set up using a non -immune 

normal mouse serum (DAKO Ltd.) in place of primary antibody. 

5.2.3 Results 

Intense immunostaining corresponding to inhibin a- subunit was obtained in all human 

corpora lutea studied (eg. Plate 5.5A). The staining was confined to the granulosa- 

lutein cells (GL) of the human corpus luteum and varied in intensity within this cell 

population (Plate 5.6). Absence of staining was obtained within the intrusion of theca - 

lutein cells (TL) and in surrounding ovarian stromal tissue. No differences were 

observed between age of the corpus luteum and intensity or distribution of staining and 

no significant correlation was obtained between 'score' and age of corpus luteum. 
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Preabsorption of the antiserum with human 1 -23 a inhibin immunogen and 

substitution of antiserum with normal rabbit serum abolished immunostaining (Plate 
5.5B), demonstrating specificity of the antibody. No immunostaining was present in 

sections of human tonsil (5.7A). Positive immunostaining was obtained within 
granulosa cells of follicles of a premature rat ovary (day 21) (5.7B). 

Moderate immunostaining corresponding to inhibin 13A- subunit was obtained in both 

human corpora lutea studied (Plate 5.8 ). Furthermore, the staining was also confined 

to the granulosa- lutein cells within the tissue (Plate 5.9A) and no staining was noted 
within the theca -lutein cells. Preabsorption of the antibody with human ßA- inhibin 

immunogen (not shown) and substitution of antibody with normal mouse serum (Plate 

5.9B) abolished immunostaining. 

It was also attempted to localize inhibin a- subunit in human antral follicles. Positive 

staining was observed in the granulosa cells (G) of one small follicle (4mm diameter) 

with absence of staining within the theca cell layers (T) (Plate 5.10). No staining was 

seen in the four other follicles studied. 

Intense inhibin a- subunit immunostaining was observed in the granulosa cells of a 

large preovulatory macaque follicle no.66 (Plate 5.11). This ovary was obtained on 

day 12 of the follicular phase on the day of the LH/FSH surge, when oestradiol 

concentrations were rising and progesterone levels were basal (fig.5.5). No staining 

was observed within the thecal cell layer, although differentiation between cell 

populations was more difficult to distinguish in these frozen tissue sections (Plate 

5.12A, 5.12B). Moderate immunostaining was observed in a second macaque ovary 

containing a corpus luteum (no.83) (Plate 5.13). This ovary was removed on days 2- 

3 of the luteal phase when peripheral progesterone and oestradiol concentrations were 

rising (fig.5.6). Unfortunately, the cellular morphology of the corpus luteum in frozen 

tissue sections was poor and cell types could not be distinguished. A corpus albicans 

from the previous menstrual cycle was also present in this ovary. No immunostaining 

was noted in the corpus albicans. No staining was observed in a third macaque ovary 

(no.78)(Plate 5.14) which contained many large follicles. This animal had been 

actively immunized against the first 1 -23 amino acids of the N- terminus of the inhibin 

a- subunit. It is possible that the absence of staining could be explained by the 

immunization procedure, with the antigenic sites for inhibin being blocked by the anti- 

inhibin antibody. 
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Plate 5.5. Immunocytochemical localization of immunoreactive inhibin in mid -luteal 

phase corpus luteum (A). Intense immunostaining is present within the granulosa- 

lutein cells (GL) with absence of staining in the intrusion of theca -lutein cells (TL). 

Note variation of intensity of staining within the GL cell population. In section B, the 

polyclonal antiserum was preabsorbed with excess inhibin peptide immunogen. No 

immunostaining is present. (x 33). 
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Plate 5.6. High magnification of mid -luteal phase human corpus luteum showing 

immunocytochemical localization of inhibin. Intense immunostaining is present in the 

granulosa- lutein cells (GL) with absence of staining in the intrusion of theca -lutein 

cells (TL) (x 132). 
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Plate 5.7. Human tonsil (A) was used as a negative control tissue and no 

immunostaining was obtained (x 25). Positive immunostaining for inhibin a- subunit 

was obtained within antral follicles from a immature rat ovary (B) (x 25). 
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Plate 5.8. Immunocytochemical localization of inhibin (3A- subunit within the human 

corpus luteum (x 20). 
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Plate 5.9. High magnification (x 40) of immunocytochemical localization of inhibin 

PA- subunit in the human corpus luteum (A). Negative staining was obtained when 

primary antibody was substituted with normal mouse serum (B) (x 40). 
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Plate 5.10. Immunocytochemical localization of inhibin a- subunit within the 

granulosa cell layers (G) of a human antral follicle with absence of staining in the theca 

cell layer CO. The follicular cavity is denoted by F. Positive staining was obtained in 

one out of five follicles studied (x 50). 
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Fig. 5.5. Serum concentrations of progesterone ( ), oestradiol (0) (A), FSH II ) 

and inhibin (0 ) (B) during the follicular phase prior to removal of the large macaque 
preovulatory follicle shown in plate 5.11. 

Plate 5.11. Immunocytochemical localization of inhibin a- subunit within the 

granulosa cell layer of a large preovulatory macaque follicle (arrow) (x 3.3). 
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Plate 5.12. Higher magnification of immunocytochemical localization of inhibin a- 

subunit in macaque preovulatory follicle (A, x 67; B, x 132). 
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Fig. 5.6. Serum concentrations of progesterone ( ), oestradiol ( O) (A) and inhibin 

([J) (B) prior to removal of macaque ovary shown in plate 5.13. 

Plate 5.13. Immunocytochemical localization of inhibin a- subunit in macaque corpus 

luteum (CL). No immunostaining is present in the corpus albicans (CA) 

(x 2.5). 
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Plate 5.14. Low power section of macaque ovary (x 2.5) from an animal actively 

immunized against inhibin a- subunit. No immunostaining is present. Note large 

numbers of follicles in ovary. 
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5.2.4 Discussion 
These results are consistent with the concept that the corpus luteum is a major source 
of immunoreactive inhibin during the primate menstrual cycle. Immunostaining for 
inhibin a- subunit was present at all stages of the luteal phase studied in the human and 
in the early corpus luteum of the macaque. There were no apparent changes in the 
intensity of staining. This is in agreement with the observation that there were no 
differences in immunoreactive inhibin concentrations in luteal tissue homogenates from 
various stages of the luteal phase in cynomolgous monkeys (Basseti et al. 1990) and 
with the findings of Reddi et al.(1990b) demonstrating that expression of inhibin a- 
subunit mRNA was present throughout the lifespan of the corpus luteum and that no 
correlation was found between the level of expression and age of the tissue. The 
changes in serum concentrations of immunoreactive inhibin during the luteal phase 
may therefore be due to factors other than alterations in the rate of transcription and 
translation of the a- subunit gene. The absence of staining in the corpus albicans in the 

macaque ovary was not surprising and suggests that it is unable to produce 
immunoreactive inhibin at this degenerative stage. Since biologically active inhibin 
consists of a ß- subunit combined to the a- subunit, the findings of 
immunocytochemical localization of ßA- subunit within the granulosa- lutein cells of the 

mid -luteal phase human corpus luteum, although preliminary, suggests that the corpus 

luteum may produce biologically active inhibin. Further studies are required to 
investigate the localization of ßA- subunit throughout the different stages of the luteal 

phase. 

Inhibin a- subunit was localized in the granulosa cell layer of one small human antral 

follicle and in one macaque preovulatory follicle. The reason for the failure of staining 

in four out of five human antral follicles is unknown. Immunoreactive inhibin is 

present in high concentrations in follicular fluid (deJong & Sharpe, 1976; Schwartz & 

Channing, 1977; Chari et al., 1979) and is produced in culture by the granulosa cells 

of many species including man (Tsonis et al., 1987b). In the rat, inhibin a- subunit 

immunostaining was demonstrated in ovarian follicular granulosa cells as a positive 

control tissue as immunostaining for inhibin a- subunit had been demonstrated 

previously at all stages of maturation (Cuevas et al., 1987; Meunier et al., 1988a) . 

Little is known about the factors regulating the production of inhibin by different 

follicles. In the rhesus monkey not all follicles express both a- and D- subunits 

necessary for the synthesis of inhibin (Schwall et al., 1990). In women and non- 

human primates, the concentration of immunoreactive inhibin during the follicular 
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phase of the cycle is much lower than during the luteal phase (McLachlan et al., 1987a; 

Fraser et al., 1989). Thus in the human it may be that only a minority of follicles 
produce immunoreactive inhibin in amounts sufficient to be detected by 

immunocytochemistry. 

Inhibin a- and ßp- subunits were localized specifically in the large granulosa- lutein 

cells of the corpus luteum with no staining in the smaller theca - lutein cells. Similarly, 

P450 aromatase has also been demonstrated specifically in the granulosa- lutein cells of 
the human corpus luteum whereas P450 17a- hydroxylase was localized in the theca - 

lutein cells (Sasano et aí.,1989) suggesting that the secretion of oestradiol by the 

corpus luteum may be dependent on aromatization in the granulosa- lutein cells of 
androgen substrate produced by theca -lutein cells. The specific cellular localization of 
inhibin a- subunit may suggest that immunoreactive inhibin is also involved in a 

paracrine mechanism within the corpus luteum as well as its putative endocrine role in 

suppressing pituitary FSH secretion. Current evidence suggests that immunoreactive 

progesterone and inhibin secretion into the peripheral circulation during the luteal 

phase is under the control of LH. In chapter 3, treatment with LH- releasing hormone 

antagonist for 3 days starting during the mid -luteal phase in the stumptailed macaque 

caused a permanent suppression of serum immunoreactive progesterone and inhibin 

concentrations for the remainder of the cycle. Furthermore, in chapter 3 human 

chorionic gonadotrophin but not follicle -stimulating hormone could overcome the 

inhibitory effects of the gonadotrophin withdrawal by the antagonist in the stumptailed 

macaque. However, the significance of the gonadotrophic control of progesterone and 

inhibin and the paracrine role which immunoreactive inhibin may play within the 

corpus luteum remains to be investigated. 
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Chapter 6 

General Discussion- The source of Inhibin 
secretion and its physiological role 

6.1 Endocrine Role 
Although the concept of 'inhibin' as a substance which selectively suppresses FSH 
secretion has been recognised for over fifty years, it is only within the past 5 years 
following the elucidation of the structure in 1985 and the development and expansion 
of techniques available for investigation, that significant advances have been made in 
determining the physiological properties of this glycoprotein. The studies described in 
this thesis have investigated the endocrine role of inhibin and the control of inhibin 
secretion using LHRH analogues and gonadotrophins in vivo, hCG on luteal cells in 
in vitro and finally immunocytochemistry, to determine the cellular localization of 
inhibin within the primate ovary. 

Both the stumptailed macaque and the common marmoset monkey demonstrated 
elevations of inhibin levels during the luteal phase similar to the normal human 
menstrual cycle, suggesting that the corpus luteum is a major source of inhibin 
secretion (Chapter 2). The observations from the clinical studies of higher 
concentrations of inhibin in the vein draining the corpus luteum and of a fall in the 

peripheral concentration of inhibin after luteectomy, provide further evidence for the 

secretion of inhibin into the circulation by the corpus luteum (Chapter 2). It is 

tempting to speculate from these results that inhibin plays an endocrine role in the 

suppression of FSH during the luteal phase. It is already known that oestradiol 

contributes to the suppression of FSH at this time because administration of anti - 

oestrogens such as clomiphene or tamoxifen (Lumsden et al., 1989) or antiserum to 

oestradiol (Zeleznik et al., 1987) results in a rise in the circulating FSH concentrations. 

The suppression of FSH during the luteal phase may therefore be due to the 

synergistic effects of both inhibin and oestradiol. Studies involving passive 

immunization against inhibin during the luteal phase will provide further information 

on the role of inhibin at this time. 

During the follicular phase, the concentration of inhibin in venous plasma draining the 

dominant follicle is no higher than that draining the contralateral side (Chapter 2). It 

therefore seems unlikely that the secretion of inhibin by the dominant follicle is 

responsible for the fall in FSH concentrations at this stage of the cycle. As inhibin 

suppresses the secretion of FSH selectively without affecting LH, it might be expected 
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that its concentration would rise during the follicular phase of the cycle as the secretion 
of FSH falls. However there is no change in the concentration of bioactive or 
immunoactive inhibin during the follicular phase of the cycle until within 2 days of 
ovulation, at the time of the midcycle surge of FSH and LH (Baird et al., 1990). The 
negative correlation between the concentration of oestradiol and the concentration of 
FSH suggests rather that oestradiol plays a dominant role at this stage of the cycle 
(Tsonis et al., 1987a). As demonstrated in chapter 4, it requires the growth of 
multiple antral follicles to induce marked rises in inhibin secretion in the blood during 
follicular development as in the nonphysiological situation of hyperstimulation 
regimens. 

6.2 Paracrine Role 
High concentrations of inhibin are present in human follicular fluid (Channing et al., 
1984). In sheep, inhibin concentrations in follicular fluid vary from 2000 to 29000 
U/L, being highest in oestrogenic follicles of greater than 3mm in diameter, whereas 
inhibin levels in human follicular fluid are lower by one to two orders of magnitude 
(Baird et al., 1988). Baird et al. (1990) have separated inhibin in human follicular 
fluid by gel filtration using a high -resolution Sephacryl gel matrix and have identified 
two peaks of immunoactive inhibin corresponding to approximate molecular weights 
of 32kD and 110kD, both of which are biologically active. The presence of high 
concentrations of inhibin in human follicular fluid suggests that inhibin may have a 

paracrine role during the follicular phase of the menstrual cycle. 

In the rat, FSH was shown to be the predominant endocrine regulator of the 

production of inhibin by granulosa cells in vitro, while LH at low doses was able to 

cause a release of inhibin after exposure to FSH (Bicsak et al., 1986; Zhiwen et al., 

1988a). Inhibin is produced by human granulosa cells in culture in vitro and its 

release is stimulated by FSH and LH (Tsonis et al., 1987b). The stimulation of 

inhibin production by granulosa cells from marmoset and women by FSH is further 

enhanced by both testosterone and oestradiol (Hillier et al., 1989). Insulin -like growth 

factor -1 (IGF -1), either alone or in synergism with FSH, stimulated inhibin 

production by rat granulosa cells in a time- and dose -dependent manner ( Bicsak et al., 

1986; Zhiwen et al., 1987a) whereas epidermal growth factor (EGF) inhibited FSH - 

stimulated production of inhibin by rat granulosa cells in vitro (Bicsak et al., 1986; 

Franchimont et al., 1986; Zhiwen et al., 1987b). Therefore, while FSH induces 

differentiation of the functions of the granulosa cell eg. aromatase and inhibin 

secretion, these actions are further regulated in the granulosa cell by paracrine factors. 
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The specific localization of inhibin within the granulosa- lutein cells of the corpus 
luteum (chapter 5) suggests that inhibin may also have a paracrine role during the luteal 
phase. P450 aromatase enzyme has also been localized immunocytochemically within 
the granulosa- lutein cells of the human corpus luteum. This suggests that the 
luteinized granulosa- lutein cells of the primate corpus luteum retain the specialized 
functions present before the transformation from follicle to corpus luteum following 
ovulation such as the 'two cell -two gonadotrophin theory' of oestradiol synthesis and 
the presence of inhibin within the granulosa cells. The significant homology of inhibin 
with substances such as TGF-13 may suggest that the role of inhibin extends far 
beyond the original proposed role of selective suppression of FSH. Both inhibin and 
activin have actions on erythropoiesis (Eto et al., 1987; Yu et al., 1987) and thymocyte 
cell division (Hedger et al., 1989). The follicle and corpus luteum are dynamic tissues 

and their structures change rapidly over the course of the menstrual cycle. It could be 

speculated that inhibin and activin could have a role to play in cellular growth and 

differentiation in the ovary. 

6.3 Control of Inhibin secretion 
6.3.1 Follicular Phase 
It has recently been demonstrated that the capacity of human granulosa cells to produce 

immunoreactive inhibin in vitro is developmentally regulated (Hillier et al., 1991a). 

Initially FSH acts directly to induce inhibin production and steroidogenesis in 

nondifferentiated granulosa cells and this response is modulated by androgen. 

However, as these cells undergo preovulatory development, the production of inhibin 

and progesterone becomes increasingly responsive to direct stimulation by LH. These 

findings are consistent with the idea that postovulation, granulosa- lutein cells are sites 

of LH- responsive inhibin as well as steroid synthesis in the corpus luteum. 

6.3.2 Luteal Phase 
The findings in chapter 3 that hCG, but not FSH, was able to overcome LHRH 

antagonist- induced suppression of luteal function in the stumptailed macaque has 

recently been demonstrated in women (McLachlan et al., 1989). Furthermore, the 

finding that inhibin production by human luteal cells in vitro could be stimulated by 

hCG was demonstrated in luteinized granulosa cells in culture by Tsonis et al. 

(1987b). These findings taken together with the results in chapter 2, where the human 

corpus luteum responded to stimulation with hCG by producing significantly increased 

amounts of inhibin, suggest that the secretion of inhibin by the corpus luteum is LH- 

dependent. In a recent study, Nakajima et aí.(1990) demonstrated that mid -luteal 
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immunoreactive inhibin levels, similar to LH and progesterone, exhibited a pulsatile 
pattern. However, the inhibin secretory pattern was more rapid and of lower 
amplitude in comparison with progesterone. Although luteal inhibin concentrations 
parallel progesterone levels (McLachlan et al., 1987a), the results indicated only a 
loose association between inhibin and progesterone secretory patterns and analysis of 
intermittent hormone pulses did not suggest a coupled secretion pattern. These 
findings are in agreement with a study in the ewe (McNeilly & Baird, 1989) which 
reported pulsatile inhibin release from preovulatory follicles was unrelated to pulses of 
LH or oestradiol. Thus, it is possible that a different mechanism exists for LH- 
dependent luteal inhibin production in comparison with progesterone. 

6.3.3 Periovulatory Phase 
McLachlan et al. (1990) examined the secretion of inhibin during the periovulatory 
phase in detail. They concluded that the maturing follicle secretes both oestradiol and 
inhibin in parallel until 18h before ovulation, at which time the process of luteinization 

is initiated by the onset of the LH surge. Oestradiol secretion then falls while inhibin 
secretion rises indicating different regulation of secretion of these hormones by the 

maturing follicle. Furthermore, the close positive correlation between inhibin and 
gonadotrophin levels around midcycle suggests that FSH and/or LH stimulates inhibin 

secretion and that the presumed negative feedback effect of inhibin on FSH secretion is 

overcome at this time. After midcycle, inhibin secretion initially falls then rises while 

progesterone rises progressively. This transient divergence of progesterone and 

inhibin secretion may occur during the transformation of the preovulatory follicle into 

the corpus luteum. The rise in inhibin concentrations in serum at mid -cycle may also 

be related to the breakdown of the basement membrane between the granulosa and 

theca layers under the action of the LH surge. Inhibin is present in concentrations 50- 

100 -fold higher in follicular fluid than in ovarian venous blood and hence there must 

be some barrier present to prevent the free passage of inhibin out of the follicle. 

It has been demonstrated that androgens stimulate inhibin secretion by granulosa cells 

in vitro (Henderson & Franchimont, 1981; Tsonis et al., 1987b) and also that 

androgen levels decline in human follicular fluid in the days leading up to ovulation 

(McNatty et al., 1976). Furthermore, in primate ovaries, mRNA for inhibin/activin ßg 

subunit is expressed in greatest amounts by granulosa cells in small antral follicles 

decreasing to undetectable levels in preovulatory follicles (Schwall et al., 1990). A 

decline in androgen stimulation of granulosa cell inhibin secretion may therefore be a 

component in the transient decline of inhibin levels immediately after the LH surge. In 
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contrast, recombinant human activin A causes a dose -dependent inhibition of androgen 
production by human thecal cells in vitro (Hillier et al. 199 lb). Thus it is possible that 
a loop of paracrine interactions controls the production of inhibin during follicular 
development i.e. androgens stimulate inhibin production while the formation of activin 
inhibits androgen production. 

6.4 Clinical Applications in Women 
Inhibin measurements have been demonstrated to be useful in evaluating a variety of 
pathophysiological conditions. Serum inhibin concentrations have been shown to be a 

useful marker of the trophoblastic disease, hydatidiform mole (Yohkaichiya et al., 
1989). Inhibin levels were much higher in patients with this disease than in normal 
pregnant women and inhibin was found to be a more specific marker for such tumours 
in comparison with hCG, with inhibin concentrations declining to follicular phase 
values in less than 10 days if removal of molar tissue was complete. Inhibin has also 

been shown to be secreted in abnormally high concentrations in women with granulosa 

cell tumours (Lappohn et al., 1989). Since serum inhibin levels correlated with the 

size of the tumour, measurements of inhibin may be used as a marker for primary as 

well as recurrent disease. Soules et al. (1989) have shown that inhibin secretion 

during the follicular phase of cycles in women with luteal phase deficiency is low 

which suggests that the origin of luteal phase deficiency may lie in defective 
folliculogenesis. Several investigators have proposed that inhibin may play a role in 

producing the high LH:FSH ratio found in women with polycystic ovarian disease 

which was supported by the finding of high bioactive inhibin levels in the follicles of 

women with this disease (Tanabe et al., 1983). However, in an extensive study by 

Buckler et al. (1988), they could find no difference in serum inhibin concentrations in 

women with polycystic ovarian disease, regardless of the stage of their cycle. 

Furthermore, the substance which was found to cross -react in the inhibin assay from 

subject X in the endometriosis study (chapter 4) may prove to be an inhibin -like 

peptide and may be related in some way to the pathology of the disease or infertility. 

6.5 The Measurement of Inhibin and Future Prospects 

The existence of non -bioactive inhibin -like forms such as pro -aC and free a- subunit, 

which have been identified in bovine follicular fluid, have complicated the 

measurement of biologically active inhibin due to cross reaction of these substances in 

the available radioimmunoassays. However, these forms of inhibin have not been 

detected in biological fluids in primates. It is now necessary to develop specific assays 

with antisera directed to epitopes on both a -and 0-subunits (two -site assays) to ensure 
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that only whole bioactive inhibin is being detected. A universal standard preparation is 

not available at present and this is essential to enable comparison of immunoreactive 
inhibin levels between studies performed by different research groups throughout the 
world. Research into the physiology of inhibin has been hampered further by the 
difficulty in obtaining sufficient quantities of purified inhibin for experimental 
purposes. The molecular species of inhibin in human peripheral blood and ovarian 
vein blood is unknown, as is the half -life and metabolism of inhibin. The inhibin 

receptor, most likely to be present in pituitary and ovary, has yet to be characterized. 

Although the measurement of inhibin immunoreactivity may be used as a reliable 

marker for detecting pathophysiological conditions, the administration of inhibin as a 

contraceptive agent by suppressing FSH is unlikely at present, from both a chemical 

and physiological point of view, due to the size of the molecule and the wide range of 

other actions this peptide may have which may lead to unwanted side -effects. It is 

possible that inhibin or inhibin -like forms might be used for veterinary purposes as 

active immunization of sheep against the ac subunit, which produced antibodies 

recognizing bioactive inhibin, increased FSH production (Findlay et al., 1989a), 

ovulation rate (Forage et al., 1987) and lambing rate (Tsonis et al., 1989) whereas 

immunization against the as- subunit in the sheep has been shown to result in reduced 

fertility (Findlay et al., 1989b). The recent isolation of recombinant human inhibin A 

from mammalian cell culture media (Tierney et al., 1990) and its application in both in 

vivo and in vitro experiments, will help to increase our knowledge of the endocrine 

and paracrine actions of inhibin and its related peptides. 



168 

Bibliography 

Abraham, GE, Odell, W.D. Swerdloff, R.S. & Hopper, K. (1972) 
Simultaneous radioimmunoassay of plasma FSH, LH, progesterone, 17a- 
hydroxyprogesterone and estradio1-1713 during the menstrual cycle. Journal of 
Clinical Endocrinology and Metabolism 34, 312 -318 

Adams, E.C. & Hertig, A.T. (1969). Studies of the human corpus luteum. I. 

Observations of the ultrastructure of development and regression of the luteal 
cells during the menstrual cycle. Journal of Cell Biology 41, 696 -715. 

Adams, L.A., Bremner, W.J., Nestor, J.J., Vickery, B.H. & Steiner, 
R.A. (1986). Suppression of plasma gonadotrophins and testosterone in 

adult male monkeys (Macaca fascicularis) by a potent inhibitory analog of 
gonadotrophin- releasing hormone. Journal of Clinical Endocrinology and 
Metabolism 62, 58 -63. 

Adams, T.E., Norman, R.L. & Spies, H.G. (1981). Gonadotrophin- 
releasing hormone receptor binding and pituitary responsiveness in estradiol- 

treated monkeys. Science 213, 1388 -1390 

Akhtar, B.F, Marshall, G.R., Wickings, E.J. & Nieschlag, E. (1983). 

Reversible induction of azoospermia in rhesus monkeys by constant infusion of 

a gonadotrophin- releasing hormone agonist using osmotic minipumps. Journal 

of Clinical Endocrinology and Metabolism 56, 534 -540. 

Alita, H.W., Corradino, R.A. & Hansel, W. (1988a). A comparison of 

the effects of cycloxygenase prostanoids on progesterone production by small 

and large bovine luteal cells. Prostaglandins 36(2), 259 -267. 

Alita, H.W., Dowd, J.P., Corradino, R.A., Harris, W.V. & Hansel, 

W. (1988b). Control of progesterone production in small and large bovine 

luteal cells separated by flow cytometry. Journal of Reproduction and Fertility 

82 (2), 645 -655. 



169 
Amico, J.A., Ervin, M.G., Leake, R.D., Fisher, D.A., Finn, F.M. & 

Robinson, A.G. (1985). A novel oxytocin -like and vasotocin -like peptide 
in human plasma after administration of oestrogen. Journal of Clinical 
Endocrinology and Metabolism 60(1), 5 -12. 

Amico, J.A., Seif, S.M. & Robinson, A.G. (1981). Elevation of oxytocin 
and the oxytocin associated neurophysin in the plasma of normal women during 
midcycle. Journal of Clinical Endocrinology and Metabolism 53, 1229 -1232. 

Arimura, A., Kastin, A.J., Gonzalez -Barcena, D., Silier, J., Weaver, 
R.E. & Schally, A.V. (1974). Disappearance of LH- releasing hormone 
in man as determined by radioimmunoassay. Clinical Endocrinology 3, 421- 
425. 

Auletta, F.J., Caldwell, B.V., van Wagenen, G. & Morris, J.M. 
(1972). The effect of postovulatory oestrogen on progesterone and 

prostaglandin F levels in the monkey. Contraception 6, 411 -421. 

Auletta, F.J., Agins, H. & Scommegna, A. (1978). Prostaglandin F 

mediation of the inhibitory effect of oestrogen on the corpus luteum of the rhesus 

monkey. Endocrinology 103, 1183 -1189. 

Auletta, F.J. & Flint, A.P.F. (1988). Mechanisms controlling corpus luteum 

function in sheep, cows, nonhuman primates and women especially in relation to 

the time of luteolysis. Endocrine Reviews 9 (1), 88 -105. 

Auletta, F.J., Jones, D.S.C. & Flint, A.P.F. (1988b). Does the human 

corpus luteum synthesize neurohypophysial hormones? Journal of 

Endocrinology 116, 163 -165. 

Auletta, F.J., Kamps, D.L., Wesley, M. & Gibson, M. (1984a). 

Luteolysis in the rhesus monkey: Ovarian venous oestrogen, progesterone and 

prostaglandin Fla metabolite. Prostaglandins 27, 299 -310. 

Auletta, F.J., Paradis, D.K. & Gibson, M. (1985). Luteolysis in the 

rhesus monkey: effect of chronic intra- corpus luteum infusion of oestrogens on 

luteal function. Fertility and Sterility Abstract P -137, p127. 



170 

Auletta, F.J., Paradis, D.K., Wesley, M. & Duby, R.T. (1984b). 
Oxytocin is luteolytic in the rhesus monkey (Macaca mulatta). Journal of 
Reproduction and Fertility 72, 401 -406. 

Auletta, F.J., Robertson, L.M. & Schofield, M.J. (1988a). Luteal 
maintenance in the rhesus monkey: effect of ibuprofen and human chorionic 
gonadotrophin. 8th International Congress of Endocrinology, Kyoto, Japan. 
Abstract 454. 

Auletta, F.J., Schofield, M.J. & Abae, M. (1990). The mechanisms 
controlling luteolysis in non -human primates and women. Seminars in 

Reproductive Endocrinology 8 (2), 122 -129. 

Auletta, F.J., Speroff, L. & Caldwell, B.V. (1973). Prostaglandin F2a- 
induced steroidogenesis and luteolysis in the primate corpus luteum. Journal of 
Clinical Endocrinology and Metabolism 36, 405 -407. 

Backstrom, C.T., McNeilly, A.S., Leask, R.M. & Baird, D.T. (1982). 

Pulsatile secretion of LH, FSH, prolactin, oestradiol and progesterone during 

the human menstrual cycle. Clinical Endocrinology 17, 29 -42. 

Baird, D.T., Fraser, H.M., Hillier, S.G., Illingworth, P.J., McNeilly, 

A.S., Reddi, K. & Smith, K. (1990). Production and secretion of 
ovarian inhibin in women. In 'Neuroendocrine Regulation of Reproduction in 

Women.' pp 195 -205. Eds. S.S.C.Yen & W.W.Vale. Serono Symposia 

U.S.A. 

Baird, D.T. & Fraser, I.S. (1975). Concentration of oestrone and oestradiol 

in follicular fluid and ovarian venous blood of women. Clinical Endocrinology 

4, 259 -266. 

Baird, D.T., Tsonis, C.G., Messinis, I.E., Templeton, A.A., 

McNeilly, A.S. (1988). Inhibin levels in gonadotropin- treated cycles. 

Annals of New York Academy of Sciences 541, 153 -161. 



171 

Bardin, C.W., Morris, P.L., Chen, C.L., Shaha, C., Voglmayr, J., 
Rivier, J., Spiess, J. & Vale, W.W. (1987). Testicular inhibin: 
structure and regulation by FSH, androgens and EGF. In: Inhibin Non - 
Steroidal Regulation of Follicle Stimulating Hormone Secretion. 42: 179 -190. 
Eds. H.G. Burger, D.M. de Kretser, J.K. Findlay & M. Igarashi. New York: 
Serono Symposia, Raven Press. 

Basseti, S.G., Winters, S.J., Keeping, H.S. & Zeleznik, A.J. (1990). 
Serum immunoreactive inhibin levels before and after luteectomy in the 
cynomolgus monkey (Macaca fascicularis). Journal of Clinical Endocrinology 
and Metabolism 70, 590 -594. 

Beard, A.J., Castillo, R.J., McLeod, B.J., Glencross, R.G. & Knight, 
P.G. (1990). Comparison of the effects of crude and highly purified bovine 
inhibin (Mr 32000) on plasma concentrations of FSH and LH in chronically 

ovariectomized prepubertal heifers. Journal of Endocrinology 125, 21 -30. 

Beitins, I.Z. & Dufau, M.L. (1986). Pulsatile secretion of progesterone from 

the human corpus luteum: Poor correlation with bioactive LH pulses. Acta 

Endocrinologica 111, 553 -557. 

Belchetz, P., Plant, T.M., Nakai, Y., Keogh, E.J. & Knobil, E. 

(1978). Hypophysial responses to continuous and intermittent delivery of 

hypothalamic gonadotrophin releasing hormone. Science 202, 631 -633. 

Beling, C.G., Marius, S.L.& Markham, S.M. (1970). Functional activity 

of the corpus luteum following hysterectomy. Journal of Clinical Endocrinology 

and Metabolism 30, 30 -39. 

Bennegard, B., Hahlin, M. & Dennefors, B. (1987). Antigonadotrophic 

effect of oxytocin on the isolated corpus luteum. Fertility and Sterility 47, 431- 

435. 

Bhattacharya, A.N., Dierschke, D.J., Yamaji, T. & Knobil, E. (1972). 

The pharmacologic blockade of the circhoral mode of LH secretion in the 

ovariectomized rhesus monkey. Endocrinology 90, 778 -786. 



172 
Bicsak, T.A., Cajander, S.B., Vale, W. & Hseuh, A.J.W. (1988). 

Inhibin: studies of stored and secreted forms by biosynthetic labelling and 
immunodetection in cultured rat granulosa cells. Endocrinology 122, 741 -748. 

Bicsak, T.A., Tucker, E.N., Cappel, S., Vaughan, J., Rivier, J., Vale, 
W. & Hsueh, A.W. (1986). Hormonal regulation of granulosa cell 
inhibin biosynthesis. Endocrinology 119, 2711 -2719. 

Boatman, D.E., Morgan, P.M. & Bavister, B.D. (1986) Variables 
affecting the yield and developmental potential of embryos following 
superstimulation and in vitro fertilization in rhesus monkeys. Gamete Research 
13, 327 -338. 

Bosu, W.T.K., Holmdahl, T.H., Johansson, E.D.B. & Gemzell, C.A. 
(1972) Peripheral plasma levels of oestrogens, progesterone and 17a- 
hydroxyprogesterone during the menstrual cycle of the rhesus monkey. Acta 
Endocrinologica 71, 755 -764 

Bramley, T.A., Stirling, D., Swanston, I.A., Menzies, G.S., 
McNeilly, A.S. & Baird, D.T. (1987). Specific binding sites for 
gonadotrophin -releasing hormone, luteinizing hormone /chorionic 
gonadotrophin, low density lipoprotein, prolactin and follicle -stimulating 

hormone in homogenates of human corpus luteum. II. Concentrations 

throughout the luteal phase of the menstrual cycle and early pregnancy. Journal 

of Endocrinology 113, 317 -327. 

Broxmeyer, H.E., Lu, L., Cooper, S., Schwall, R.H., Mason, A.J. & 

Nikolics, K. (1988). Selective and indirect modulation of human 

multipotential and erythroid hematopoietic progenitor cell proliferation by 

recombinant human activin and inhibin. Proceedings of the National Academy 

of Sciences 85, 9052 -9056. 

Brunswig, B., Mukhopadhyay, A.K., Budnik, L.T., Bohnet, H.G. & 

Leidenberger, F.A. (1986). Phorbol ester stimulated progesterone 

production by isolated bovine luteal cells. Endocrinology 118, 743 -749. 



173 
Buckler, H.M., McLachlan, R.I., McLachlan, V.B., Healy, D.L. & 

Burger, H.G. (1988). Serum inhibin levels in polycystic ovary syndrome: 
basal levels in response to luteinizing hormone- releasing hormone agonist and 
exogenous gonadotrophin administration. Journal of Clinical Endocrinology 
and Metabolism 66, 798 -803. 

Butler, W.R., Hotchkiss, J. & Knobil, E. (1975). Functional luteolysis in 
the rhesus monkey: ovarian oestrogen and progesterone during the luteal phase 
of the menstrual cycle. Endocrinology 96, 1509 -1512. 

Caffrey, J.L., Nett, T.M., Abel, Jr.J.H. & Niswender, G.D. (1979). 
Activity of 30- hydroxy -A5 steroid dehydrogenase -05-4 isomerase in the ovine 

corpus luteum. Biology of Reproduction 20, 279 -287. 

Carmel, P.W., Araki, S. & Ferin, M. (1976). Pituitary stalk portal blood 

collection in rhesus monkeys: evidence for pulsatile release of gonadotrophin- 

releasing hormone (GnRH). Endocrinology 99, 243 -248. 

Casper, R.F., & Cotterell, M.A. (1984). The effect of adrenergic and 

cholinergic agents on progesterone production by human corpus luteum tissue in 

organ culture. American Journal of Obstetrics and Gynecology 148, 663 -669. 

Challis, J.R.G., Calder, A.A., Dilley, S., Forster, C.S., Hillier, K., 

Hunter, D.J.S., Mackenzie, I.Z. & Thorburn, G.D. (1976). 

Production of prostaglandins E and F by corpora lutea, corpora albicantes and 

stroma from the human ovary. Journal of Endocrinology 68, 401 -408. 

Chambers, P.L. & Hearn, J.P. (1979) Peripheral plasma levels of 

progesterone, oestradiol -170, oestrone, testosterone, androstenedione and 

chorionic gonadotrophin during pregnancy in the marmoset monkey, Callithrix 

jacchus. Journal of Reproduction and Fertility 56, 23 -32 

Channing, C.P., Anderson, L.D., Hoover, D.G., Kolena, J., Osteen, 

K.G., Pomerantz, S.H. & Tanabe, K. (1982). The role of 

nonsteroidal regulators in control of oocyte and follicular maturation. Recent 

Progress in Hormone Research 38, 331 -340. 



174 
Channing, C.P., Chacom, M., Tanabe, K., Gagliano, P. & Tildon, T. 

(1984). Follicular fluid inhibin activity and steroid levels in ovarian tissue 
obtained at autopsy from human infants from 18 to 200 days of age. Fertility 
and Sterility 42, 861 -869. 

Chari, S., Hopkinson, C.R.N., Darene, E. & Sturm, G. (1979). 
Purification of "inhibin" from ovarian follicular fluid. Acta Endocrinologica 
90,157 -166. 

Cheifetz, S., Weatherbee, J.A., Tsang, M.L.S., Anderson, J.K., 
Mole, J.E., Lucas, R. & Massague, J. (1987). The transforming 
growth factor -a- system, a complex pattern of cross -reactive ligands and 
receptors. Cell 48, 409 -415. 

Chillik, C.F., Itskovitz, J., Hanh, D.W., McGuire, J.L., Danforth, 
D.R. & Hodgen, G.D. (1987). Characterizing pituitary response to a 

gonadotrophin- releasing hormone (GnRH) antagonist in monkeys: tonic follicle - 

stimulating hormone/luteinizing hormone secretion versus acute GnRH challenge 

tests before, during and after treatment. Fertility and Sterility 48, 480 -485. 

Clarke, I.J. (1976). The effect of prenatal testosterone on reproductive patterns in 

ewes. Ph.D.thesis. University of Edinburgh. 

Clarke, I.J. & Cummins, J.T. (1982). The temporal relationship between 

gonadotrophin releasing hormone (GnRH) and luteinizing hormone (LH) in 

ovariectomized ewes. Endocrinology 111, 1737 -1739. 

Clarke, I.J. & Cummins, J.T. (1984). Direct pituitary effects of estrogen and 

progesterone on gonadotrophin secretion in the ovariectomized ewe. 

Neuroendocrinology 39, 267 -274. 

Clarke, I.J. & Cummins, J.T. (1985). GnRH pulse frequency determines 

LH pulse amplitude by altering the amount of releasable LH in the pituitary 

glands of ewes. Journal of Reproduction and Fertility 73, 425 -431. 



175 

Clarke, I.J., Fraser, H.M. & McNeilly, A.S. (1978). Active 
immunization of ewes against luteinizing hormone releasing hormone and its 
effects on ovulation and gonadotrophin, prolactin and ovarian steroid secretion. 
Journal of Endocrinology 78, 39 -47. 

Clayton, R.N. (1987). Gonadotrophin releasing hormone: from physiology to 

pharmacology. Clinical Endocrinology 26, 361 -384. 

Clement, P.B. (1987). Histology of the ovary. The American Journal of 
Surgical Pathologists 11(4), 277 -303. 

Collins, R.L., Sopelak, V.M., Williams, R.F. & Hodgen, G.D. 
(1986). Prevention of gonadotrophin- releasing hormone antagonist induced 

luteal regression by concurrent exogenous pulsatile gonadotrophin 
administration in monkeys. Fertility and Sterility 46, 945 -953. 

Conn, P.M., Huckle, W.R., Andrews, W.V. & McArdle, C.A. (1987). 

The molecular mechanism of action of gonadotrophin releasing hormone 

(GnRH) in the pituitary. Recent Progress in Hormone Research 43: 29 -67. 

Corner, G.W. (1956). The histological dating of the human corpus luteum of 

menstruation. American Journal of Anatomy 98, 377 -401. 

Corrie, J.E.T., Ratcliffe, W.A. & Macpherson, J.S. (1982) The provision 

of 125I- labelled tracers for radioimmunoassay of haptens: a general approach? 

Journal of Immunological Methods 51, 159 -166 

Crisp, T.M., Dessouky, D.A. & Denys, F.R. (1970). The fine structure 

of the human corpus luteum of early pregnancy and during the progestational 

phase of the menstrual cycle. American Journal of Anatomy 127, 37 -70. 

Crowder, M.E. & Nett, T.M. (1984). Pituitary content of gonadotrophins 

and receptors for gonadotrophin- releasing hormone (GnRH) and hypothalamic 

content of GnRH during the peri- ovulatory period of the ewe. Endocrinology 

114, 234 -239. 



1 76 

Crowley, W.F.Jr., Filicori, M., Spratt, D.I. & Santoro, N.F. (1985). 
The physiology of gonadotrophin- releasing hormone (GnRH) secretion in men 
and women. Recent Progress in Hormone Research 41, 473 -531. 

Croze, F. & Franchimont, P. (1984). Biological determination of inhibin in 

rat ovarian cell culture medium. Journal of Reproduction and Fertility 72, 237- 

248. 

Cuevas, P., Ying, S.Y., Ling, N., Ueno, N., Esch, F. & Guillemin, 
R. (1987). Immunohistochemical detection of inhibin in the gonad. 
Biochemical and Biophysical Research Communications 142 (1), 23 -30. 

Danforth, D.R., Sinosich, M.J., Anderson, T.L., Yan Cheng, C., 
Bardin, C.W. & Hodgen G.D. (1987) Identification of gonadotropin 

surge- inhibiting factor (GnSIF) in follicular fluid and its differentiation from 

inhibin. Biology of Reproduction 37, 1075 -1082. 

Danforth, D.R., Williams, R.F., Hsiu, J.G., Roh, S.I., Hahn, D., 

McGuire, J.L. & Hodgen, G.D. (1990). Intermittent GnRH antagonist 

plus progestin contraception conserving tonic ovarian estrogen secretion and 

reducing progestin exposure. Contraception 41(6), 623 -631. 

Davis, J.S., Alila, H.W., West, L.A., Corradino, R.A. & Hansel, W. 

(1988a). Acute effects of prostaglandin Fla on inositol phospholipid 

hydrolysis in the large and small luteal cells of the bovine corpus luteum. 

Molecular and Cellular Endocrinology 58 (1), 43 -50. 

Davis, J.S., Weakland, L.L., Farese, R.V. & West, L.A. (1987a). 

Luteinizing hormone increases inositol triphosphate and cytosolic free Calf- in 

isolated bovine luteal cells. Journal of Biological Chemistry 262, 8515 -8521. 

Davis, J.S., West, L.A., Weakland, L.L. & Farese, R.V. (1986a). 

Human chorionic gonadotrophin activates the inositol 1,4,5- triphosphate -Ca2+ 

intracellular signalling system in bovine luteal cells. FEBS Letters 208, 287- 

291. 



177 

Davis, S.R., Burger, H.G., Robertson, D.M., Farnworth, P.G., 
Carson, R.S. & Krozowski, Z. (1988b). Pregnant mare's serum 
gonadotrophin stimulates inhibin subunit gene expression in the immature rat 
ovary: dose response characteristics and relationships to serum gonadotrophins, 
inhibin and ovarian steroid content. Endocrinology 123, 2399 -2407 

Davis, S.R., Dench, F., Nikolaidis, I., Clementz, J.A., Forage, R.G., 
Krozowski, Z. & Burger, H.G. (1986b). Inhibin a- subunit gene is 

stimulated by pregnant mare serum gonadotrophin. Biochemical and 
Biophysical Research Communications 138, 1191 -1195. 

Davis, S.R., Krozowski, Z., McLachlan, R.I. & Burger, H.G. 
(1987b). Inhibin gene expression in the human corpus luteum. Journal of 
Endocrinology 115, R21 -R23. 

Dawood, M.Y. & Khan -Dawood, F.S. (1986). Human ovarian oxytocin: 

its source and relationship to steroid hormones. American Journal of Obstetrics 

and Gynaecology 154, 756 -763. 

Dawood, M.Y., Raghaven, K.S., & Pociask, C. (1978). 

Radioimmunoassay of oxytocin. Journal of Endocrinology 76, 261-270. 

Deane, H.W., Lobel, B.L. & Romney, S.L. (1962). Enzymatic 
histochemistry of normal human ovaries of the menstrual cycle, pregnancy and 

the early puerperium. American Journal of Obstetrics and Gynaecology 83, 

281 -294. 

de Jong, F.H. & Sharpe, R.M. (1976). Evidence for inhibin -like activity in 

bovine follicular fluid. Nature 263, 71 -72. 

de Jong, F.H., Smith, S.D. & van der Molen, H.J. (1979). Bioassay of 

inhibin -like activity using pituitary cells in vitro. Journal of Endocrinology 80, 

91 -102. 

de Kretser, D.M. & Robertson, D.M. (1989). The isolation and physiology 

of inhibin and related proteins. Biology of Reproduction 40, 33 -47. 



178 
Dennefors, B.L., Sjogren, A. & Hamberger, L. (1982). Progesterone 

and adenosine 3', 5'- monophophate formation by isolated human corpora lutea 
of different ages: influence of human chorionic gonadotrophin and 
prostaglandins. Journal of Clinical Endocrinology and Metabolism 55, 102- 
107. 

De Paolo, L.V., Hirshfield, A.N., Anderson, L.D., Barraclough, C.A. 
& Channing, C.P. (1979). Suppression of pituitary secretion of follicle - 
stimulating hormone by porcine follicular fluid during pro -oestrus and oestrus in 
the rat: effects on gonadotrophin and steroid secretion, follicular development 
and ovulation during the following cycle. Journal of Endocrinology 83, 355- 
368. 

Depp, R., Cox, D.W., Pion, R.J., Conrad, S.H., & Heinrichs, W.L. 
(1973). Inhibition of the pregnenolone A5-4 -313- hydroxysteroid 
dehydrogenase- 6,54isomerase systems of human placenta and corpus luteum of 
pregnancy. Gynecological Investigation 4, 106 -120. 

Diekman, M.A., O'Callahan, P.L., Nett, T.M. & Niswender, G.D. 
(1978). Validation of methods and quantification of luteal receptors for LH 

throughout the oestrous cycle and early pregnancy in ewes. Biology of 
Reproduction 19, 999 -1009. 

Djahanbakhch, O., McNeilly, A.S., Hobson, B.M. & Templeton, A.A. 

(1981). A rapid luteinizing hormone radioimmunoassay for the prediction of 

ovulation. British Journal of Obstetrics and Gynaecology 88, 1016 -1020. 

Dufau, M.L. & Catt, K.J. (1978). Gonadotrophin receptors and regulation of 

steroidogenesis in the testis and ovary. Vitamins and Hormones 36, 462 -592. 

Eddie, L.W., Baker, H.W.G., Higginson, R.E. & Hudson, B. (1979). 

A bioassay for inhibin using pituitary cells in culture. Journal of Endocrinology 

81, 49 -60. 

Ellinwood, W.E., Norman, R.L.& Spies, H.G. (1984). Changing 

frequency of pulsatile LH and progesterone secretion during the luteal phase of 

the menstrual cycle of rhesus monkeys. Biology of Reproduction 31, 714 -722. 



1 79 

Ellinwood, W.E. & Resko, J.A. (1983). Effect of inhibition of oestrogen 
synthesis during the luteal phase on function of the corpus luteum in rhesus 
monkeys. Biology of Reproduction 28, 636 -644. 

Elvidge, H. & Roper, C. (1977) Year to year breeding of primates (Macaca 
mulatta.) Journal of the Institute of Animal Technicians 28, 37 -45. 

Erickson, L.W. & Hsueh, A.J.W. (1978). Secretion of "inhibin" by rat 
granulosa cells in vitro. Endocrinology 103, 1960 -1961. 

Esch, F.S., Shimasaki, S., Mercado, M., Cooksey, K., Ling, N., 
Ying, S., Ueno, N. & Guillemin, R. (1987). Structural 
characterization of follistatin: a novel follicle stimulating hormone release 
inhibiting polypeptide from the gonad. Molecular Endocrinology 1, 849 -855. 

Eto., Y., Tsuji., T., Takezawa, M., Takano, S., Yokogawa, Y.& 
Shibai, H. (1987). Purification and characterization of erythroid 
differentiation factor (EDF) isolated from human leukemia cell line THP -1. 

Biochemical and Biophysical Research Communications 42, 1095 -1103. 

Eyster, K.M., & Stouffer, R.L. (1985). Adenylate cyclase in the corpus 

luteum of the rhesus monkey. II. Sensitivity to nucleotides, gonadotropins, 

catecholamines and nonhormonal activators. Endocrinology 116, 1552 -1558. 

Feinberg, R. & Cohen, R.B. (1965). A comparative histochemical study of 

the ovarian stromal lipid band, stromal theca cell, and normal ovarian follicular 

apparatus. American Journal of Obstetrics and Gynaecology 92, 958 -969. 

Ferin, M., Carmel, P.W., Zimmerman, E.A., Warren, M., Perez, R. & 

Vande Wiele, R.I. (1974). Location of intrahypothalamic estrogen - 

responsive sites influencing LH secretion in the female rhesus monkey. 

Endocrinology 95, 1059 -1068. 

Ferin, M., Van Vugt, D. & Wardlaw, S. (1984). The hypothalamic control 

of the menstrual cycle and the role of endogenous opioids. Recent Progress in 

Hormone Research 40, 441 -480. 



180 

Filicori, M., Butler, J.P. & Crowley, W.F.Jr. (1984). Neuroendocrine 
regulation of the corpus luteum in the human. Journal of Clinical Investigation 
73, 1638 -1647. 

Findlay, J.K., Clarke, I.J. & Robertson, D.M. (1990a). I n h i b i n 
concentrations in ovarian and jugular venous plasma and the relationship of 
inhibin with FSH and LH during the ovine oestrous cycle. Endocrinology 
126, 528 -535. 

Findlay, J.K., Doughton, B., Robertson, D.M. & Forage, R.G. 
(1989a). Effects of immunization against recombinant bovine inhibin a- 
subunit on circulating concentrations of gonadotrophins in ewes. Journal of 
Endocrinology 120, 59 -65. 

Findlay, J.K., Sai, X. & Shukovski, L. (1990b). Role of inhibin -related 
peptides as intragonadal regulators. Reproduction, Fertility and Development 

2, 205 -218. 

Findlay, J.K., Tsonis, C.G., Doughton, B. & Forage, R.G. (1989b). 
Immunization against the amino-terminal peptide (an) subunit of inhibin impairs 

fertility in sheep. Endocrinology 124, 3122 -3124. 

Fingscheidt, U., Weinbauer, G.F., Robertson, D.M., de Kretser, D.M. 

& Nieschlag, E. (1989). Radioimmunoassay of inhibin in the serum of 

male monkeys. Journal of Endocrinology 122, 477 -483. 

Fisch, B., Margare, R.A., Winston, R.M.L. & Hillier, S.G. (1989). 

Cellular basis of luteal steroidogenesis in the human ovary. Journal of 

Reproduction and Fertility 122, 303 -311. 

Fitz, T.A., Hoyer, P.B. & Niswender, G.D. (1984a). Interactions of 

prostaglandins with subpopulations of ovine luteal cells. I. Stimulatory effects 

of prostaglandins E1, E2 and I2. Prostaglandins 28, 119 -126. 



181 

Fitz, T.A., Mayan, M.H., Sawyer, H.R. & Niswender, G.D. (1982). 
Characterization of two steroidogenic cell types in the ovine corpus luteum. 
Biology of Reproduction 27, 703 -711. 

Fitz, T.A., Mock, E.J., Mayan, M.H. & Niswender, G.D. (1984b) 
Interactions of prostaglandins with subpopulations of ovine luteal cells. II. 

Inhibitory effects of PGF2a and protection by PGE2. Prostaglandins 287, 
127 -135. 

Flint, A.P.F., Auletta, F.J. & Barker, P.J. (1988). Isolation and 
sequence determination of a peptide detected by oxytocin radioimmunoassay in 

human corpus luteum. Society for the Study of Reproduction Abstract 90. 

Flint, A.P.F. & Sheldrick, E.L. (1982). Ovarian secretion of oxytocin is 

stimulated by prostaglandin. Nature 297, 587 -588. 

Flint, A.P.F. & Sheldrick, E.L. (1986). Ovarian oxytocin and the maternal 

recognition of pregnancy. Journal of Reproduction and Fertility 76, 831 -839. 

Folkers, K., Bowers, C., Tang, P.F.L., Feng, D.M., Okamoto, T., 

Zhang, Y. & Ljungqvist, A. (1987). Specificity of design to achieve 

antagonists of LHRH of increasing effectiveness in therapeutic activity, In: 

LHRH and its Analogs: Contraceptive and Therapeutic Applications. Part 2. , 

pp. 17 -24, Eds. B.H.Vickery and J.J.Nestor, Jr. M.T.P.Press, Lancaster. 

Forage, R.G., Brown, R.W., Oliver, K.J., Atrache, B.T., Devine, 

P.L., Hudson, G.C., Goss, N.H., Bertram, K.C., Tolstoshev, 

P., Robertson, D.M., de Kretser, D.M., Doughton, B., Burger, 

H.G. & Findlay, J.K. (1987). Immunization against an inhibin subunit 

produced by recombinant DNA techniques results in increased ovulation rate in 

sheep. Journal of Endocrinology 114, R1 -R4. 



182 
Forage, R.G., Ring, J.M., Brown, R.W., McInerney, B.V., Cobon, 

G.S., Gregson, R.P., Robertson, D.M., Morgan, F.J., Hearn, 
M.T.W., Findlay, J.K., Wettenhall, R.E.H., Burger, H.G. & de 
Kretser, D.M. (1986). Cloning and sequence analysis of cDNA species 
coding for the two subunits of inhibin from bovine follicular fluid. Proceedings 
of the National Academy of Sciences 83, 3091 -3095. 

Fowler, P.A., Messinis, I.E. & Templeton, A.A. (1989) Gonadotrophin 
surge- attenuating factor (GnSAF) activity in human follicular fluid is different 
from inhibin. Journal of Reproduction and Fertility, Abstract Series No. 4, 

30,abstract. 

Franchimont, P., Hazee -Hagelstein, M.T., Charlet- Renard, Ch., & 

Jasper, J.N. (1986). The effect of mouse epidermal growth factor on 

DNA and protein synthesis progesterone and inhibin production by bovine 

granulosa cells in culture. Acta Endocrinologica 111, 122 -127. 

Fraser, H.M. (1986). LHRH immunoneutralization -basic studies and prospects 

for practical application. In: Immunological Approaches to Contraception and 

Promotion of Fertility. Ed. G.P.Talwar. Plenum Press. New York and 

London. 

Fraser, H.M. (1988a). LHRH analogues: their clinical physiology and delivery 

systems. Bailliere's Clinical Obstetrics and Gynaecology 2 (3), 639 -658. 

Fraser, H.M. (1988b). LHRH analogues: manipulation of pituitary ovarian 

function in macaques and potential clinical and contraceptive applications. In 

Hormone Antagonists for Fertility Regulation pp35 -61. Eds. C.P.Puri, 

P.F.A.Van Look. Indian Society for the Study of Fertility. 

Fraser, H.M., Abbott, M., Laird, N.C., McNeilly, A.S., Nestor, J.J. 

& Vickery, B.H. (1986). Effects of an LHRH antagonist on the secretion 

of LH, FSH, prolactin and ovarian steroids at different stages of the luteal phase 

in the stumptailed macaque (Macaca arctoides). Journal of Endocrinology 111, 

83 -90. 



183 
Fraser, H.M. & Baird, D.T. (1987). Clinical applications of LHRH 

analogues. In Bailliere's Clinical Obstetrics and Gynaecology 1 (1), 43 -70. 

Fraser, H.M., Baird, D.T., McRae, G.I., Nestor, J.J. & Vickery, 
B.H. (1985). Suppression of luteal progesterone secretion in the 
stumptailed macaque by an antagonist analogue of luteinizing hormone- releasing 
hormone. Journal of Endocrinology 104, R1 -R4. 

Fraser, H.M. & Lunn, S.F. (1989) Rapid inhibitory effects of an LHRH 
agonist implant on the oestrogen- induced LH surge and the induction of a 

defective luteal phase after an agonist -induced ovulation in the macaque. Human 
Reproduction 4, 506 -512. 

Fraser, H.M. & McNeilly, A.S. (1982). Effects of immunoneutralization of 
luteinizing hormone releasing hormone on the oestrogen- induced luteinizing 

hormone and follicle stimulating hormone surges in the ewe. Biology of 
Reproduction 27, 548 -555. 

Fraser, H.M. & McNeilly, A.S. (1983). Differential effects of LHRH 

immunoneutralization on LH and FSH secretion in the ewe. Journal of 
Reproduction and Fertility 69, 569 -577. 

Fraser, H.M., McNeilly, A.S., Abbott, M. & Steiner, R.A. (1982). 

Effect of LHRH immunoneutralization on follicular development, the LH surge 

and luteal function in the stumptailed macaque monkey (Macaca arctoides). 

Journal of Reproduction and Fertility 76, 299 -309. 

Fraser, H.M., Nestor, J.J.Jr. & Vickery, B.H. (1987a). Suppression of 

luteal function by a luteinizing hormone -releasing hormone antagonist during the 

early luteal phase in the stumptailed macaque monkey and the effects of 

subsequent administration of human chorionic gonadotrophin. Endocrinology 

121, 612 -618. 

Fraser, H.M., Robertson, D.M. & de Kretser, D.M. (1989). Inhibin 

concentrations in serum throughout the menstrual cycle of the macaque: 

suppression of inhibin during the luteal phase after treatment with an LHRH 

antagonist. Journal of Endocrinology 121, R9 -R12. 



184 

Fraser, H.M., Sandow, J., Cowen, G.M., Lumsden, M.A., Haining, 
R. & Smith, S.K. (1990). Long -term suppression of ovarian function by 
a luteinizing- hormone releasing hormone agonist implant in patients with 
endometriosis. Fertility and Sterility 53, 61 -68. 

Fraser, H.M., Sandow, J., Seidel, H. & von Rechenberg, W. (1987b) 
An implant of a gonadotropin releasing hormone agonist (buserelin) which 
suppresses ovarian function in the macaque for 3 -5 months. Acta 
Endocrinologica 115, 521 -527. 

Fraser, I.S., Baird, D.T., Hobson, B.M., Michie, E.A. & Hunter, W. 
(1973). Cyclical ovarian function in women with congenital absence of the 

uterus and vagina. Journal of Clinical Endocrinology and Metabolism 36, 634- 

637. 

Fukada, M., Miyamoto, K., Hasegawa, Y., Nomura, M., Igarashi, M., 

Kangawa, K. & Matsuo, H. (1986). Isolation of bovine follicular fluid 

of about 32 kDa. Molecular and Cellular Endocrinology 44, 55 -60. 

Fuchs, A.R. (1988). Oxytocin and ovarian function. Journal of Reproduction 

and Fertility (Suppl.) 36, 39 -47. 

Gillim, S.W., Christensen, A.K.& McLennan, C.E. (1969). Fine 
structure of the human menstrual corpus luteum at its stage of maximum 

secretory activity. American Journal of Anatomy 126, 409 -428. 

Glasier, A.F., Irvine, D.S., Wickings, E.J., Hillier, S.G. & Baird, 

D.T. (1989). A comparison of the effects on follicular development between 

clomiphene citrate, its two separate isomers and spontaneous cycles. Human 

Reproduction 4 (3), 252 -256. 

Glasier, A., Thatcher, S.S., Wickings, E.J., Hillier, S.G. & Baird, 

D.T. (1988). Superovulation with exogenous gonadotropins does not inhibit 

the luteinizing hormone surge. Fertility and Sterility 49, 81 -85. 



185 

Goding, J.R. (1974). The demonstration that PGF is the uterine luteolysin in the 

ewe. Journal of Reproduction and Fertility 38, 261 -271. 

Goodman, R.L. & Karsch, F.J. (1981). Control of seasonal breeding in the 
ewe: importance of changes in response to sex - steroid feedback. In Biological 
Clocks in Seasonal Reproductive Cycles. pp 223 -236. Eds. B.K.Follett, 
D.E.Follett. Bristol: John Wright and Sons Ltd. 

Gore, B.Z., Caldwell, B.V. & Speroff, L. (1973). Oestrogen- induced 
human luteolysis. Journal of Clinical Endocrinology and Metabolism 36, 615- 

617. 

Gospodarowicz, D. (1973). Properties of the luteinizing hormone receptor of 

the isolated bovine corpus luteum membrane. Journal of Biological Chemistry 

248, 5042 -5049. 

Guldenaar, S.E.F. (1984). Immunocytochemical evidence for the presence of 

oxytocin and neurophysin in the large cells of the bovine corpus luteum. Cell 

and Tissue Research 237, 349 -352. 

Gulyas, B.J., Stouffer, R.L. & Hodgen, G.D. (1979). Progesterone 
synthesis and ime structure of dissociated monkey (Macaca mulatta) luteal cells 

maintained in culture. Biology of Reproduction 20, 779 -792. 

Hahlin, M., Bennegard, B. & Dennefors, B. (1986). Human luteolysis- 

interaction between hCG and oestradiol -1713 in an in vitro model. Human 

Reproduction 1, 75 -79. 

Hall, P.F. (1985). Trophic stimulation of steroidogenesis: In search of the elusive 

trigger. Recent Progress in Hormone Research 82, 559 -568. 

Halme, J., Ikonen, M., Rutanen, E.M. & Seppala, M. (1978). 

Gonadotrophin receptors of human corpus luteum during the menstrual cycle 

and pregnancy. American Journal of Obstetrics and Gynaecology 131, 728- 

734. 



186 
Hamada, T., Watanabe, G., Kokuho, T., Taya, K., Sasamoto, S., 

Hasegawa, Y., Miyamoto, K. & Igarashi, M. (1989). 
Radioimmunoassay of inhibin in various mammals. Journal of Endocrinology 
122, 697 -704. 

Hamberger, L., Dennefors, B., Khan, I. & Sjogren, A. (1979). Cyclic 
AMP formation of isolated human corpora lutea in response to hCG- interference 

by PGF2a. Prostaglandins 17, 615 -621. 

Hammerstein, J., Rice, B.F. & Savard, K. (1964). Steroid hormone 
formation in the human ovary: I. Identification of steroids formed in vitro from 

acetate -1 -14C in the corpus luteum. Journal of Clinical Endocrinology and 
Metabolism 24, 597 -605. 

Hansel, W. & Dowd, J.P. (1986). New concepts of the control of corpus 

luteum function. Journal of Reproduction and Fertility 78, 755 -768. 

Harding, R.D., Hulme, M.J., Lunn,S.F., Henderson, C. & Aitken, 

R.J. (1982). Plasma progesterone levels throughout the ovarian cycle of the 

common marmoset (Callithrix jacchus). Journal of Medical Primatology 11, 

43 -51 

Hardt, W. & Schmidt -Gollwitzer, M. (1984). Sustained gonadal 

suppression in fertile women with the LHRH agonist buserelin. Clinical 

Endocrinology 19, 613 -617. 

Harlow, C.R., Gems, S., Hodges, J.K. & Hearn, J.P. (1983) The 

relationship between plasma progesterone and the timing of ovulation and early 

embryonic development in the marmoset monkey, Callithrix jacchus. Journal of 

Zoology, 201, 265 -278 

Harlow, C.R., Hearn, J.P. & Hodges, J.K. (1984) Ovulation in the 

marmoset monkey: endocrinology, prediction and detection. Journal of 

Endocrinology 103, 17 -24 



187 
Hasegawa, Y., Miyamoto, K., Igarashi, M., Yanaka, T., Sasaki, K. & 

Iwamura, S. (1987). Changes in serum concentrations of inhibin during 
the oestrous cycle of the rat, pig and cow. In 'Inhibin: Non -steroidal regulation 
and follicle stimulating hormone secretion.' vol.42, 149 -162. Eds. H.G.Burger, 
D.M.de Kretser, J.K.Findlay and M. Igarashi. Serono Symposium, 
Tokyo.Raven Press 

Hasegawa, Y., Miyamoto, K., Iwamura, S. & Igarashi, M. (1988). 
Changes in serum concentrations of inhibin in cyclic pigs. Journal of 
Endocrinology 118, 211 -219. 

Healy, D.L., Lawson, S.R., Abbott, M., Baird, D.T. & Fraser, H.M. 
(1986). Towards removing uterine fibroids without surgery: subcutaneous 

infusion of a luteinizing hormone- releasing hormone agonist commencing in the 

luteal phase. Journal of Clinical Endocrinology and Metabolism 63, 619 -625. 

Hearn, J.P. (1978) The endocrinology of reproduction in the common marmoset, 

Callithrix jacchus . In: The Biology and Conservation of Marmosets pp.163- 

171 Ed. D.G.Kleiman.Washington: Smithsonian Press. 

Hearn, J.P. (1983) The common marmoset (Callithrix jacchus) . In: Reproduction 

in New World Primates pp 181 -215. Ed. J.P.Hearn. Lancaster: MTP Press 

Hearn, J.P., Abbott, D.H., Chambers, P.C., Hodges, J.K. & Lunn, 

S.F.(1978) Use of the common marmoset, Callithrix jaccus, in reproductive 

research. In: Primates in Medicine Vol., 10, 40 -49. Eds. E.I.Goldsmith & 

J.Moor -Jankowski.Basel: Karger 

Hedger, M.P., Drummond, A.E., Robertson, D.M., Risbridger, G.P.& 

de Kretser, D.M. (1989). Inhibin and activin regulate 3H- thymidine 

uptake by rat thymocytes and 3T3 cells in vitro. Molecular and Cellular 

Endocrinology 61, 133 -138. 

Henderson, K.M. & Franchimont, P. (1981). Regulation of inhibin 

production by bovine ovarian cells in vitro. Journal of Reproduction and 

Fertility 63, 431 -442. 



188 
Henderson, K.M. & McNatty, K.P. (1977). A possible inter -relationship 

between gonadotrophin stimulation and prostaglandin Fla inhibition of 
steroidogenesis by granulosa- luteal cells in vitro. Journal of Endocrinology 73, 
71 -78 

Hermans, W.P., van Leeuwen, E.C.M., Debets, M.H.M., Sander, H.J. 
& de Jong, F.H. (1982). Estimation of inhibin -like activity in spent 
medium from rat ovarian granulosa cells during long term culture. Molecular 
and Cellular Endocrinology 27, 277 -290. 

Hild -Petito, S.A., Shiigi, S.M. & Stouffer, R.L. (1989). Isolation and 
characterization of cell populations from the monkey corpus luteum of the 

menstrual cycle. Biology of Reproduction 40, 1075 -1085. 

Hild -Petito, S., Stouffer, R.L. & Brenner, R.M. (1988). 
Immunocytochemical localization of estradiol and progesterone receptors in the 

monkey ovary throughout the menstrual cycle. Endocrinology 123, 2896- 

2905. 

Hillier, S.G. & Read, G.F. (1975). Radioimmunoassay for plasma 

norethisterone and testosterone using anti -sera raised against C -11 conjugated 

haptens and radio -iodinated ligands. Journal of Endocrinology 67, 5P -6P 

Hillier, S.G., Wickings, E. 

Reichert, L.E., Baird, D.T. 

inhibin production by human 

Clinical Endocrinology. 

J., Illingworth, P.J., Yong, E.L., 

& McNeilly, A.S. (1991a). Control of 

granulosa cells. Submitted for publication. 

Hillier, S.G., Wickings, E.J., Saunders, P.T.K., Dixson, A.F., 

Shimasaki, S., Swanston, I.A., Reichert, L.E.Jr. & McNeilly, 

A.S. (1989). Control of inhibin production by primate granulosa cells. 

Journal of Endocrinology 123, 65 -73. 

Hillier, S.G., Yong, E.L., Illingworth, P.J., Baird, D.T., Schwall, 

R.H. & Mason, A.J. (1991b). Inhibitory effect of recombinant human 

activin A on androgen synthesis in cultured human thecal cells. Journal of 

Clinical Endocrinology and Metabolism. in press. 



189 

Hobson, B.M., Hearn, J.P., Lunn, S.F. & Flockhart, J.P. (1977). 
Urinary excretion of biologically active chorionic gonadotrophin by the pregnant 
marmoset (Callithrix jacchus). Folia Primatologica 28, 251 -258 

Hodges J.K., Green, P.G., Cottingham, P.G., Sauer, M.J., Edwards, 
C. & Lightman S.L. (1988). Induction of luteal regression in the 
marmoset monkey (Callithrix jacchus) by a gonadotrophin- releasing hormone 
antagonist and the effects on subsequent follicular development. Journal of 
Reproduction and Fertility 82, 743 -752. 

Hodges, J.K., Henderson, C. & Hearn, J.P. (1983) Relationship between 
ovarian and placental steroid production during early pregnancy in the marmoset 
monkey. Journal of Reproduction and Fertility 69, 613 -621 

Horton, E.W. & Poyser, N.L. (1976). Uterine luteolytic hormone: a 

physiological role for prostaglandin Fla. Physiological Reviews 56, 595- 

Hoyer, P.B., Fitz, T.A. & Niswender, G.D. (1984). Hormone- 
dependent activation of adenylate cyclase in large steroidogenic ovine luteal cells 

does not result in increased progesterone secretion. Endocrinology 114, 604- 

608. 

Hoyer, P.B. & Niswender, G.D. (1986). Adenosine 3', 5'- monophosphate 

binding capacity in small and large ovine luteal cells. Endocrinology 119, 

1822 -1829. 

Hsu, S.M., Raine, L & Fanger, H. (1981). Use of avidin- biotin- peroxidase 

complex (ABC) in immunoperoxidase techniques: a comparison between ABC 

and unlabelled antibody (PAP) procedures. Journal of Histochemistry and 

Cytochemistry 29, 577 -580. 

Hsueh, A.W., Dahl, K.D., Vaughan, J., Tucker, E., Rivier, J., 

Bardin, C.W. & Vale, W. (1987). Heterodimers and homodimers of 

inhibin subunits have different paracrine action in the modulation of luteinizing 

hormone- stimulated androgen biosynthesis. Proceeding of the National 

Academy of Sciences USA 84, 5082 -5086. 



190 

Hunter, M.G. & Baker, T.G. (1981). Effect of hCG, CAMP and FSH on 
steroidogenesis by human corpora lutea in vitro. Journal of Reproduction and 
Fertility 63, 285 -288. 

Hunter, W.M., Nors, P.W. & Rutherford, F.J. (1975). Preparations and 
behaviour of 125I labelled radioligand for phenolic and neutral steroids. In 
Steroid Immunoassay. Proceeedings of the Vth Tenovus Workshop. Meron. 
pp 141 -152. Eds. Cameron, E.H.D., Hillier, S.G. & Griffiths, J.K. Alpha 
Omega Alpha Publishing Ltd, Cardiff. 

Hutchison, J.S., Nelson, P.B. & Zeleznik, A.J. (1986). Effects of 
different gonadotrophin pulse frequencies on corpus luteum function during the 

menstrual cycle of rhesus monkey. Endocrinology 119, 1964 -1971. 

Hutchison, J.S. & Zeleznik, A.J. (1984). The rhesus monkey corpus 
luteum is dependent on pituitary gonadotrophin secretion throughout the luteal 

phase of the menstrual cycle. Endocrinology 115, 1780 -1786. 

Hutchison, J.S. & Zeleznik, A.J. (1985). The corpus luteum of the primate 

menstrual cycle is capable of recovering from a transient withdrawal of pituitary 

gonadotrophin support. Endocrinology 117, 1043 -1049. 

Ivell, R., Furuya, K., Brackmann, B., Dawood, Y. & Khan -Dawood, 

F. (1990). Expression of the oxytocin and vasopressin genes in human and 

baboon gonadal tissues. Endocrinology 127, 2990 -2996. 

Jackson, G.L. (1975). Blockage of estrogen- induced release of luteinizing 

hormone by reserpine and potentiation of synthetic gonadotrophin- releasing 

hormone- induced release of luteinizing hormone by estrogen in the 

ovariectomized ewe. Endocrinology 97, 1300 -1307. 

Johnson, M.S., Ottobre, A.C. & Ottobre, J.S. (1988). Prostaglandin 

production by corpora lutea of rhesus monkeys: characterization of incubation 

conditions and examination of putative regulators. Biology of Reproduction 

39, 839 -846. 



191 
Karsch, F.J. (1987). Central actions of ovarian steroids in the feedback 

regulation of pulsatile secretion of luteinizing hormone. Annual Review of 
Physiology 49, 365 -382. 

Karsch, F.J., Dierschke, D.J., Weick, R.F., Yamaji, T., Hotchkiss, J. 
& Knobil, E. (1973a). Positive and negative feedback control by oestrogen 
of luteinizing hormone secretion in the rhesus monkey. Endocrinology 92, 799- 
804. 

Karsch, F.J., Krey, L.C., Weick, R.F., Dierschke, D.J. & Knobil, E. 
(1973b). Functional luteolysis in the rhesus monkey: role of oestrogens. 
Endocrinology 92, 1148 -1152. 

Karsch, F.J. & Sutton, G.P. (1976). An intra- ovarian site for the luteolytic 
action of oestrogen in the rhesus monkey. Endocrinology 98, 553 -561. 

Karsch, F.J., Weick, R.F., Butler, W.R., Dierschke, D.J., Krey, 
L.C., Weiss, G., Hotchkiss, J., Yamaji, T. & Knobil, E. (1973c). 

Induced LH surges in the rhesus monkey: Strength -duration characteristics of 

the oestrogen stimulus. Endocrinology 92, 1740 -1747. 

Karsch, F.J., Weick, R.F., Hotchkiss, J., Dierschke, D.J. & Knobil, 

E. (1973d). An analysis of the negative feedback control of gonadotrophin 

secretion utilizing chronic implantation of ovarian steroids in ovariectomized 

rhesus monkeys. Endocrinology 93, 478 -486. 

Kaufman, M., Kesner, S.J., Wilson, R.C. & Knobil, E. (1985). 

Electrophysiological manifestation of luteinizing hormone- releasing hormone 

pulse generator activity in the Rhesus monkey: influence of a- adrenergic and 

dopaminergic blocking agents. Endocrinology 116, 1327 -1333. 

Kawai, Y. & Clark, M.R. (1985). Phorbol ester regulation of rat granulosa 

cell prostaglandin and progesterone accumulation. Endocrinology 116, 2320- 

2326. 



192 
Kenigsberg, D. & Hodgen, G.D. (1986). Ovulation inhibition by 

administration of weekly gonadotrophin- releasing hormone antagonist. Journal 
of Clinical Endocrinology and Metabolism 62, 734 -736. 

Khan -Dawood, F.S. (1986). Localization of oxytocin and neurophysin in 
baboon (Papio anubis) corpus luteum by immunocytochemistry. Acta 
Endocrinologica 113, 570 -575. 

Khan -Dawood, F.S. (1987a). Oxytocin in baboon (Papio anubis) corpus 
luteum. Biology of Reproduction 37, 659 -664. 

Khan -Dawood, F.S. (1987b). Immunocytochemical localization of oxytocin 
and neurophysin in human corpus luteum. American Journal of Anatomy 

179, 18 -24. 

Khan -Dawood, F.S. & Dawood, M.Y. (1983). Human ovaries contain 

immunoreactive oxytocin. Journal of Clinical Endocrinology and Metabolism 

57, 1129 -1132. 

Khan -Dawood, F.S., Goldsmith, L.T., Weiss, G. & Dawood, M.Y. 

(1989). Human corpus luteum secretion of relaxin, oxytocin and 

progesterone. Journal of Clinical Endocrinology and Metabolism 68, 627 -631. 

Khan -Dawood, F.S., Marut, E.L. & Dawood, M.Y. (1983). Oxytocin in 

the corpus luteum of the cynomolgus monkey (Macaca fas cicularis). 

Endocrinology 115, 570 -574. 

Kirton, K.T., Pharriss, B.B.& Forbes, A.D. (1970). Luteolytic effects of 

PGF2a, in primates. Proceedings of the Society for Experimental Biology and 

Medicine 133, 341 -350 

Kitaoka, M., Yamashita, N., Eto, Y., Shibai, H. & Ogata, E. (1987). 

Stimulation of FSH release by erythroid differentiation factor (EDF). 

Biochemical and Biophysical Research Communications 146, 1382 -1385. 



193 
Knight, P.G., Beard, A.J., Wrathall, J.H.M. & Castillo, R.J. (1989). 

Evidence that the bovine ovary secretes large amounts of monomeric inhibin a- 
subunit and its isolation from bovine follicular fluid. Journal of Molecular 
Endocrinology 2, 189 -200. 

Knobil, E. (1974). On the control of gonadotrophin secretion in the rhesus 
monkey. Recent Progress in Hormone Research 30, 1 -46. 

Knobil, E. (1980). The neuroendocrine control of the menstrual cycle. Recent 
Progress in Hormone Research 36, 53 -89. 

Knobil, E. (1981). Patterns of hypophysiotropic signals and gonadotrophin 
secretion in the rhesus monkey. Biology of Reproduction 24, 44 -49. 

Koch, Y., Chobsieng, P., Zor, U., Fridkin, M. & Lindner, H.R. 
(1973). Suppression of gonadotrophin secretion and prevention of ovulation 

in the rat by antiserum to synthetic gonadotrophin releasing hormone. 

Biochemical and Biophysical Research Communications 55, 623 -629. 

Koos, R.D. & Hansel, W. (1981). The large and small cells of the bovine 

corpus luteum: ultrastructural and functional differences. In: Dynamics of 

Ovarian Function. pp 197 -202. Eds. N.B. Schwartz, M. Hunzicker -Dunn. 

Raven Press. New York. 

Korda, A.R., Shutt, D.A., Smith, I.D., Shearman, R.P. & Lyneham, 

R.C. (1975). Assessment of possible luteolytic effect of infra- ovarian 

injection of prostaglandin Fes,, in the human. Prostaglandins 9, 443 -449. 

Kruip, T.A.M., Vullings, H.G.B., Schamms, D., Jonis, J. & 

Klarenbeck, A. (1985). Immunocytochemical demonstration of oxytocin 

in bovine ovarian tissues. Acta Endocrinologica 109, 537 -542. 

Laherty, R.F., Rotten, D., Yamamoto, M. & Jaffe, R.B. (1985). 

Effects of oestradiol and prolactin on progesterone production by rhesus monkey 

luteal cells in vitro. Acta Endocrinologica 79, 329 -336. 



194 
Lalloz, M.R.A., Detta, A. & Clayton, R.N. (1988). Gonadotrophin- 

releasing hormone desensitization preferentially inhibits expression of the 
luteinizing hormone ß subunit gene in vivo. Endocrinology 122, 1689 -1694. 

Lappohn, R.E., Burger, H.G., Bouma, J., Bangah, M., Krans, M. & 

de Bruijn, H.W.A. (1989). Inhibin as a marker for granulosa -cell 
tumors. The New England Journal of Medicine 321, 790 -793. 

Leal, J.A., Gordon, K., Williams, R.F., Danforth, D.R., Roh, S.I. & 

Hodgen, G.D. (1989). Probing studies on multiple dose effects of antide 
(NAL -LYS) GnRH antagonist in ovariectomized monkeys. Contraception 40, 

623 -633. 

Lee, V.W.K. (1983). PMSG- treated immature female rat- a model system for 

studying control of inhibin secretion. In 'Factors Regulating Ovarian Function.' 

p. 157 -161. Eds. G.S.Greenwald and P.F.Terranova. Raven Press: New York. 

Lemon, M. & Loir, M. (1977). Steroid release in vitro by two cell types in the 

corpus luteum of the pregnant sow. Journal of Endocrinology 72, 351 -359. 

Lemon, M. & Mauleon, P. (1982). Interaction between two luteal cell types in 

the corpus luteum of the sow in progesterone synthesis in vitro. Journal of 

Reproduction and Fertility 64, 315 -323. 

Levine, J.E., Pau, K -Y, Ramirez, V.D. & Jackson, G.I. (1982). 

Simultaneous measurement of luteinizing hormone- releasing hormone and 

luteinizing hormone release in unanaesthetized, ovariectomized sheep. 

Endocrinology 111, 1449 -1455. 



195 
Levine, J.E., Norman, R.L., Gleissman, P.M., Oyama, T.T., 

Bangsberg, D.R. & Spies, H.G. (1985). In vivo gonadotrophin- 
releasing hormone release in serum luteinizing hormone measurements in 
ovariectomized, estrogen -treated rhesus macaques. Endocrinology 117, 711- 
721. 

Leyendecker, G., Wardlaw, S. & Nocke, W. (1972). Experimental 
studies on the endocrine regulations during the periovulatory phase of the human 
menstrual cycle. Acta Endocrinologica 71, 160 -178. 

Li, T.C., Rogers, A.W., Dockery, P., Lenton, E.A. & Cooke, I.D. 
(1988). A new method of histologic dating of human endometrium in the 
luteal phase. Fertility and Sterility 50, 52 -60. 

Lincoln, G.A. & Fraser, H.M. (1979). Blockade of episodic secretion of 
luteinizing hormone in the ram by the administration of antibodies to luteinizing 

hormone releasing hormone. Biology of Reproduction 21, 1239 -1245. 

Lincoln, G.A. & Fraser, H.M. (1987). Compensatory response of the 

luteinizing- hormone (LH)- releasing hormone (LHRH)/LH pulse generator after 

administration of a potent LHRH antagonist in the ram. Endocrinology 120, 

2245 -2250 

Lincoln, G.A. & Fraser, H.M. (1990). Negative feedback regulation of 

pulsatile LH secretion during treatment with an LHRH antagonist in rams. 

Journal of Andrology 11, 287 -292. 

Ling, N., Ying, S.Y., Ueno, H., Esch, F., Denorary, L. & Guillemin, 

R. (1985). Isolation and partial characterization of a Mw 32,000 protein with 

inhibin activity from porcine follicular fluid. Proceedings of the National 

Academy of Sciences U.S.A. 82, 7217 -7221. 

Ling, N., Ying, S.Y., Ueno, H., Shimasaki, S., Esch, F., Hotta, M. 

& Guillemin, R. (1986a). A homodimer of the 13 subunits of inhibin A 

stimulates the secretion of pituitary follicle -stimulating hormone. Biochemical 

and Biophysical Research Communications 138, 1129 -1137. 



196 
Ling, N., Ying, S.Y., Ueno, H., Shimasaki, S., Esch, F., Hotta, M. 

& Guillemin, R. (1986b). Pituitary FSH is released by a heterodimer of 
the ß subunits of the two forms of inhibin. Nature 321, 779 -782. 

Lipsett, M. B., Chrousos, G.P., Tornita, M., Brandon, D. D. & 
Loriaux, D.L. (1985). The defective glucocorticoid receptor in man and 
nonhuman primates. Recent Progress in Hormone Research 41, 199 -247 

Littman, B.A. & Hodgen, G.D. (1984) Human menopausal gonadotropin 
stimulation in monkeys: blockade of the luteinizing hormone surge by a highly 
transient ovarian factor. Fertility and Sterility 41, 440 -447. 

Lumsden, M.A., West, C.P. & Baird, D.T. (1989). Tamoxifen prolongs 
luteal phase in premenopausal women but has no effect of the size of uterine 
fibroids. Clinical Endocrinology 31, 335 -344. 

Macnaughton, M.C., Kader, A.S., Gaukroger, J. & Coutts, J.R.T. 
(1981). Steroid production by the human corpus luteum. In Functional 
morphology of the human ovary. pp137 -153. Ed. J.R.T. Coutts :Lancaster: 

M.T.P.Press Ltd. 

Mais, V., Kazer, R.R., Cetel, N.S., Rivier, J., Vale, W. & Yen, 

S.S.C. (1986). The dependency of folliculogenesis and corpus luteum 

function on pulsatile gonadotrophin secretion in cycling women using a 

gonadotrophin- releasing hormone antagonist as a probe. Journal of Clinical 

Endocrinology and Metabolism 62, 1250 -1255. 

Marrs, R.P., Lobo, R., Campeau, J.D., Nakamura, R.M., Brown, J., 

Ujita, E.L. & diZerega, G.S. (1984). Correlation of human follicular 

fluid inhibin activity with spontaneous and induced follicle maturation. Journal 

of Clinical Endocrinology and Metabolism 58, 704 -709. 

Marshall, G.R., Aktar, F.B., Weinbauer, G.F. & Nieschlag, E. 

(1986). Gonadotrophin- releasing hormone (GnRH) overcomes GnRH 

antagonist- induced suppression of LH secretion in primates. Journal of 

Endocrinology 110, 145 -150. 



197 
Mason, A.J., Berkemeier, L.M., Schmelzer, C.H. & Schwall, R.H. 

(1989). Activin B- precursor sequences, genomic structure and in vitro 
activities. Molecular Endocrinology 3(9), 1352 -1358. 

Mason, A.J., Hayflick, J.S., Esch, F., Ueno, H., Ying, S.Y., 
Guillemin, R., Niall, H. & Seeburg, P.H. (1985). Complementary 
DNA sequences of ovarian follicular fluid inhibin show precursor structure and 
homology with transforming growth factor -(3. Nature 318, 659 -663. 

Mason, A.J., Niall, H.D. & Seeburg, P.H. (1986). Structure of two 
human ovarian inhibins. Biochemical and Biophysical Research 
Communications 135, 957 -964. 

Maruncic, M. & Casper, R.F. (1987). The effect of luteal phase estrogen 

antagonism on luteinizing hormone pulsatility and luteal function in women. 

Journal of Clinical Endocrinology and Metabolism 64, 148 -152. 

Marut, E.L., Huang, S -C. & Hodgen, G.D. (1983). Distinguishing the 

steroidogenic roles of granulosa and theca cells of the dominant ovarian follicle 

and corpus luteum. Journal of Clinical Endocrinology and Metabolism 57, 

925 -930. 

Mayo, K.E., Cerelli, C.M., Spies, J., Rivier, J., Rosenfield, M.G., 

Evans, R.M. & Vale, W. (1986). Inhibin a- subunit cDNA from porcine 

ovary and human placenta. Proceedings of the National Academy of Sciences 

U.S.A. 83, 5849 -5853. 

McCann, S.M., Samson, W.K. & Aguila, M.C., (1986). The role of 

brain peptides in the control of anterior pituitary hormone secretion. In 

Neuroendocrine Molecular Biology, pp101 -112. Eds. Fink, G., Harmer, A.J., 

McKerns, K.W. New York: Plenum Press. 

McCracken, J.A., Schramm, W., Barcikowski, B. & Wilson, L. 

(1981). The identification of prostaglandin Fes,, as a uterine luteolytic hormone 

in the sheep and the endocrine control of its synthesis. Acta Veterinaria 

Scandinavia (Suppl.) 77, 71 -88. 



198 
McCullagh, D.R. (1932). Dual endocrine activity of the testes. Science 76, 19- 

20. 

McKay, D.G., Pinkerton, J.H.M., Hertig, A.T. & Danziger, S. 
(1961). The adult human ovary: a histochemical study. Obstetrics and 
Gynaecology 18, 13 -39. 

McLachlan, R.I., Burger, H.G., Healy, D.L., de Kretser, D.M. & 
Robertson, D.M. (1987c). Circulating immunoreactive inhibin in the 
luteal phase and early gestation of women undergoing ovulation induction. 
Fertility and Sterility 48, 1001 -1005. 

McLachlan, R.I., Cohen, N.L., Dahl, K.D., Bremner, W.J. & Soules, 
M.R. (1990). Serum inhibin levels during the periovulatory interval in 

normal women: relationships with sex steroids and gonadotrophin levels. 

Clinical Endocrinology 32, 39 -48. 

McLachlan, R.I., Cohen, N.L., Vale, W.W., Rivier, J.E., Burger, 
H.G., Bremner, W.J. & Soules, M.R. (1989). The importance of 

luteinizing hormone in the control of inhibin and progesterone secretion in the 

human corpus luteum. Journal of Clinical Endocrinology and Metabolism 68, 

1078 -1085. 

McLachlan, R.I., Healy, D.L., Lutjen, P.J., Findlay, J.K., de Kretser, 

D.M. & Burger, H.G. (1987b). The maternal ovary is not the source of 

circulating inhibin levels during human pregnancy. Clinical Endocrinology 27, 

663 -668. 

McLachlan, R.I., Healy, D.L., Robertson, D.M., Burger, H.G. and de 

Kretser, D.M. (1986b). The human placenta: a novel source of inhibin. 

Biochemical and Biophysical Research Communications 140, 485 -490. 

McLachlan, R.I., Robertson, D.M., Burger, H.G. & de Kretser, D.M. 

(1986a). The radioimmunoassay of bovine and human follicular fluid and 

serum inhibin. Molecular and Cellular Endocrinology 46, 175 -185. 



199 
McLachlan, R.I., Robertson, D.M., de Kretser, D.M. & Burger, H.G. 

(1988) Advances in the physiology of inhibin and inhibin -related peptides. 
Clinical Endocrinology 29, 77 -114. 

McLachlan, R.I., Robertson, D.M., Healy, D.L., de Kretser, D.M. & 
Burger, H.G. (1986c). Plasma inhibin levels during gonadotrophin- 
induced ovarian hyperstimulation for IVF: a new index of follicular maturation? 
Lancet i, 1233 -1234. 

McLachlan, R.I., Robertson, D.M., Healy, D.L., Burger, H.G. & de 
Kretser, D.M. (1987a). Circulating immunoreactive inhibin levels during 
the normal human menstrual cycle. Journal of Clinical Endocrinology and 
Metabolism 65, 954 -961. 

McNatty, K.P., Baird, D.T., Bolton, A., Chambers, P.S., Corker, 
C.S. & McLean, H. (1976). Concentration of oestrogens and androgens 
in human ovarian venous plasma and follicular fluid throughout the menstrual 

cycle. Journal of Endocrinology 71, 77 -85. 

McNatty, K.P., Henderson, K.M. & Sawers, R.S. (1975). Effects of 

prostaglandin Fla and E2 on the production of progesterone by human granulosa 

cells in tissue culture. Journal of Endocrinology 67, 231 -240. 

McNeilly, A.S. & Baird, D.T. (1989). Episodic secretion of inhibin into the 

ovarian vein during the follicular phase of the oestrous cycle in the ewe. Journal 

of Endocrinology 122, 287 -292. 

McNeilly, A.S., Fraser, H.M. & Baird, D.T. (1984). Effect of 

immunoneutralization of luteinizing hormone releasing hormone on LH, FSH 

and ovarian steroid secretion in the preovulatory phase of the oestrus cycle in the 

ewe. Journal of Endocrinology 101, 213 -219. 

McNeilly, A.S., Kerin, J., Swanston, I.A., Bramley, T.A. & Baird, 

D.T. (1980). Changes in the binding of human chorionic 

gonadotrophin/luteinizing hormone and prolactin to human corpora lutea during 

the menstrual cycle and early pregnancy. Journal of Endocrinology 87, 315- 

325. 



200 

McNeilly, A.S., Swanston, I.A., Crow, W., Tsonis, C.G. & Baird, 
D.T. (1989). Changes in plasma concentrations of inhibin throughout the 
normal sheep oestrous cycle and after the infusion of FSH. Journal of 
Endocrinology 120, 295 -305. 

McNeilly, A.S., Tsonis, C.G. & Baird, D.T. (1988). Inhibin. Human 
Reproduction 3 (1), 45 -49. 

Messinis, I.E. & Templeton, A.A. (1987) Endocrine and follicle 
characteristics of cycles with and without endogenous luteinizing hormone 
surges during superovulation induction with pulsatile follicle -stimulating 
hormone. Human Reproduction 2, 11 -16. 

Messinis, I.E. & Templeton, A.A. (1989) Pituitary response to exogenous 
LHRH in superovulated women. Journal of Reproduction and Fertility 87, 

633 -639. 

Meunier, H., Cajander, S.B., Roberts, V.J., Sawchenko, P.E., Hsueh, 

A.J.W. & Vale, W. (1988a). Rapid changes in the expression of inhibin 

a -, RA- and RB- subunits in ovarian cell types during the rat oestrous cycle. 

Molecular Endocrinology 2, 1352 -1363. 

Meunier, H., Rivier, C., Evans, R.M. & Vale, W. (1988b). Gonadal 

and extragonadal expression of inhibin a, ßA and ßB subunits in various tissues 

predicts diverse functions. Proceedings of the National Academy of Sciences 

U.S.A. 85, 247 -251. 

Milne, J.A. (1983). Effects of oxytocin on the oestrus cycle of the ewe. 

Australian Veterinary Journal 39, 51 -52. 

Miyamoto, K., Hasegawa, Y., Fukada, M. and Igarashi, M. (1986). 

Demonstration of high molecular weight forms of inhibin in bovine follicular 

fluid (bff) by using monoclonal antibodies to bff 32K inhibin. Biochemical and 

Biophysical Research Communications 136, 1103 -1109. 



201 
Miyamoto, K., Hasegawa, Y., Fukada, M., Nomura, M., Igarashi, M., 

Kangawa, M. & Matsuo, H. (1985). Isolation of porcine follicular fluid 
inhibin of 32 kDa. Biochemical and Biophysical Research Communications 
129, 396 -403. 

Molskness, T.A., Van de Voort, C.A. & Stouffer, R.L. (1987). 
Stimulatory and inhibitory effects of prostaglandins on the gonadotrophin- 
sensitive adenylate cyclase in the monkey corpus luteum. Prostaglandins 34, 
279 -290. 

Monroe, S.E., Jaffe, R.B. & Midgely, A.R.Jr. (1972). Regulation of 
human gonadotropins XII. Increase in serum gonadotropins in response to 
estradiol. Journal of Clinical Endocrinology and Metabolism 34, 342 -347. 

Moore, H.D.M., Gems, S. & Hearn, J.P. (1985) Early implantation stages 
in the marmoset monkey (Callithrix jacchus). American Journal of Anatomy 

172, 265 -278 

Morris, M., Stevens, S.W. & Adams, M.R. (1980). Plasma oxytocin 

during pregnancy and lactation in the cynomolgus monkey (Macaca fascicularis). 

Biology of Reproduction 23, 782 -787. 

Moss, G.E., Crowder, M.E. & Nett, T.M. (1981). GnRH- receptor and 

interaction.VI. Effect of progesterone and estradiol on hypophyseal receptors for 

GnRH and serum and hypophyseal concentrations of gonadotrophins in 

ovariectomized ewes. Biology of Reproduction 25, 938 -944. 

Nakai, Y., Plant, T.M., Hess, D.L., Keogh, E.J. & Knobil, E. 

(1978). On the sites of the negative and positive feedback actions of estradiol 

in the control of gonadotrophin secretion in the rhesus monkey. Endocrinology 

102, 1008 -1014. 

Nakajima, S.T., McLachlan, R.I., Cohen, N.L., Clifton, D.K., 

Bremner, W.J. & Soules, M.R. (1990). The immunoreactive inhibin 

secretion pattern in the midluteal phase: relationships with luteinizing hormone 

and progesterone. Clinical Endocrinology 33, 709 -717. 



202 
Nakamura, T., Takio, K., Eto, Y., Shibai, H., Titani, K. & Sugino, 

H. (1990). Activin- binding protein from rat ovary is follistatin. Science 
247, 836 -838. 

Neill, J.D., Patton, J.M., Dailey, R.A., Tsou, R.C. & Tindall, G.T. 
(1977). Luteinizing hormone releasing hormone (LHRH) in pituitary stalk 
blood of rhesus monkeys: relationship to level of LH release. Endocrinology 

101, 430 -434. 

Nelson, W.W. & Greene, R.R. (1958). Some observations of the histology 

of the human ovary during pregnancy. American Journal of Obstetrics and 

Gynaecology 76, 66 -89. 

Niswender, G.D., Monroe, S.E., Peckman, W.D., Midgley, A.R., 

Knobil, E. & Reichert, L.E. (1971). Radioimmunoassay of rhesus 

monkey luteinizing hormone (LH) with anti -ovine LH serum and ovine LH -1311. 

Endocrinology 88, 1327 -1331. 

Niswender, G.D., Reimers, T.J., Diekman, M.A. & Nett, T.M. 

(1976). Blood flow: a mediator of ovarian function. Biology of Reproduction 

14, 64 -81. 

Niswender, G.D., Schwall, R.H., Fitz, T.A., Farin, C. & Sawyer, 

H.R. (1985). Regulation of luteal function in domestic ruminants: new 

concepts. Recent Progress in Hormone Research 41, 101 -151. 

Noguchi, K., Keeping, H.S., Winters, S.J., Oshima, H. & Troen, P. 

(1987). Identification of inhibin secreted by cynomolgus monkey Sertoli cell 

cultures. Journal of Clinical Endocrinology and Metabolism 64, 783 -788. 

Norman, R.L., Lindstrom, S.A., Bangsberg, D., Ellinwood, W.E., 

Gleissman, P, & Spies, H.G. (1984). Pulsatile secretion of luteinizing 

hormone during the menstrual cycle of rhesus macaques. Endocrinology 115, 

261 -266. 

Noyes, R.W., Hertig, A.T. & Rock, J. (1950) Dating the endometrial 

biopsy. Fertility and Sterility 1, 3 -25. 



203 

O, W. -S., Robertson, D.M. & de Kretser, D.M. (1989). Inhibin as an 
oocyte meiotic inhibitor. Molecular and Cellular Endocrinology 62, 307 -311. 

Ohara, A., Mori, T., Taii, S., Ban, C. & Narimoto, K. (1987). 
Functional differentiation in steroidogenesis of two cell types of luteal cells 
isolated from mature human corpora lutea of menstrual cycle. Journal of Clinical 
Endocrinology and Metabolism 65, 1192 -1200. 

Olive, D.L., Schultz, N., Riehl, R.M., Groff, T.R. & Schenken, R.S. 
(1990). Effects of tamoxifen on corpus luteum function and luteal phase 
length in cynomolgus monkeys. Fertility and Sterility 54 (2), 333 -338. 

Patwardhan, V.V. & Lanthier, A. (1980). Concentration of prostaglandins, 
PGE, PGF, oestrone, oestradiol and progesterone in human corpora lutea. 
Prostaglandins 20, 963 -969. 

Patwardhan, V.V. & Lanthier, A. (1984). Effect of prostaglandin Fla on 

the hCG- stimulated progesterone production from human corpora lutea. 

Prostaglandins 27, 465 -473. 

Pfaff, D.W., Gerlach, J.L., McEwen, B.S., Ferin, M., Carmel, P. & 

Zimmerman, E.A. (1976). Autoradiographic localization of hormone - 

concentrating cells in the brain of the female rhesus monkey. Journal of 

Comparative Neurology 170, 279 -294. 

Phillips, H.S., Nikolics, K., Branton, D. & Seeburg, P.H. (1985). 

Immunocytochemical localization in rat brain of a prolactin release -inhibiting 

sequence of gonadotrophin- releasing hormone prohormone. Nature 316, 542- 

545. 

Plant, T.M., Nakai, Y., Belchetz, P., Keogh, E.J. & Knobil, E. 

(1978). The sites of action of estradiol and phentolamine in the inhibition of 

the pulsatile, circhoral discharges of LH in the rhesus monkey (Macaca mulatta). 

Endocrinology 102, 1015 -1018. 



204 
Plevrakis, I., Clamagirand, C. & Pontonnier, G. (1990). Oxytocin 

biosynthesis in serum -free cultures of human granulosa cells. Journal of 
Endocrinology 124, R5 -R8. 

Pohl, C.R. & Knobil, E. (1982). The role of the central nervous system in the 
control of ovarian function in higher primates. Annual Review of Physiology 
44, 583 -593. 

Powell, W.S., Hammarstrom, S., Samuelsson, B. & Sjoberg, B. 
(1974). Prostaglandin Fla receptor in human corpora lutea. Lancet 1, 1120. 

Rao, Ch.V., Griffin, L.P. & Carmen, Jr.F.R. (1977a). Gonadotrophin 
receptors in human corpora lutea of the menstrual cycle and pregnancy. 
American Journal of Obsetetrics and Gynaecology 128, 146 -153. 

Rao, Ch.V., Griffin, L.P. & Carmen, Jr.F.R. (1977b). Prostaglandin 
Fla, binding sites in human corpora lutea. Journal of Clinical Endocrinology and 

Metabolism 44, 1032 -1037. 

Ravindranath, N. & Moudgal, N.R. (1987). Use of tamoxifen, an 

antioestrogen, in establishing a need for oestrogen in early pregnancy in the 

bonnet monkey (Macaca radiata). Journal of Reproduction and Fertility 81, 

327 -336. 

Reddi, K., Illingworth, P.J., Saunders, P.T.K., Smith, K.B., Hillier, 

S.G. & Baird, D.T. (1990b). Expression of inhibin alpha subunit 

mRNA in the human corpus luteum is maintained throughout the luteal phase. 

Journal of Endocrinology 124(Suppl), Abstract No.75. 

Reddi, K., Wickings, E.J., Hillier, S.G. & Baird, D.T. (1989). 

Bioactive FSH and inhibin concentrations during ovulation induction in patients 

with polycystic ovarian disease. Journal of Endocrinology 123 (Suppl.), 

Abstract 26. 



205 

Reddi, K., Wickings, E.J., McNeilly, A.S., Baird, D.T. & Hillier, 
S.G. (1990a). Circulating bioactive follicle stimulating hormone and 
immunoreactive inhibin during the normal human menstrual cycle. Clinical 
Endocrinology 33, 547 -557. 

Rehbein, M., Hillers, M., Mohr, E., Ivell, R., Morley, S., Schmale, 
H. & Richter, D. (1986). The neurohypophyseal hormones vasopressin 
and oxytocin. Precursor structure, synthesis and regulation. Biological 
Chemistry Hoppe Seyler 367, 695 -704. 

Richards, J.S., Jahnsen, T., Hedin, L., Lifka, J., Ratoosh, S., 
Durica, J.M. & Goldring, N.B. (1987). Ovarian follicular 
development: from physiology to molecular biology. Recent Progress in 

Hormone Research 43, 231 -270. 

Richardson, M.C. (1986). Hormonal control of ovarian luteal cells. Oxford 
Reviews in Reproductive Biology 8, 321 -378. 

Richardson, M.C. & Masson, G.M. (1981). Stimulation by human 

chorionic gonadotrophin of oestradiol production by dispersed cells from human 

corpus luteum: comparison with progesterone production; utilization of 

exogenous testosterone. Journal of Endocrinology 91, 197 -203. 

Rivier, C., Rivier, J. & Vale, W. (1986). Inhibin- mediated feedback 

control of follicle -stimulating hormone secretion in the female rat. Science 234, 

205 -208. 

Rivier, C., Roberts, V. & Vale, W. (1989). Possible role of luteinizing 

hormone and follicle stimulating hormone on modulating inhibin secretion and 

expression during the estrous cycle of the rat. Endocrinology 125, 876 -882. 

Rivier, J., Spiers, J., McClintock, R., Vaughan, J. & Vale, W. 

(1985). Purification and partial characterization of inhibin from porcine 

follicular fluid. Biochemical and Biophysical Research Communications 133, 

120 -127. 



206 
Roberts, V.J., Meunier, H., Plotsky, P.M., Rivier, C., Sawchenko, 

P.E. & Vale, W. (1989). Inhibin /activin proteins in pituitary and brain. 
In 'Neuroendocrine Regulation of Reproduction,' pp269 -277. Proceedings of 
Serono Symposium, Napa Valley, U.S.A. . 

Robertson, D.M., (1990). The measurement of inhibin. Reproduction, Fertility 
and Development 2, 101 -105. 

Robertson, D.M., de Vos, F.L., Foulds, L.M., McLachlan, R.I., 
Burger, H.G., Morgan, F.J., Hearn, M.T.W. & de Kretser, D.M. 
(1986). Isolation of 31kDa form of inhibin from bovine follicular fluid. 
Molecular and Cellular Endocrinology 44, 271 -277. 

Robertson, D.M., Foulds, L.M., Leversha, L., Morgan, F.J., Hearn, 
M.T.W., Burger, H.G., Wettenhall, R.E.H. and de Kretser, D.M. 
(1985). Isolation of inhibin from bovine follicular fluid. Biochemical and 
Biophysical Research Communications 126, 220 -226. 

Robertson, D.M., Giacometti, M., Foulds, L.M., Lahnstein, J., Goss, 
N.H., Hearn, M.T.W, & de Kretser, D.M. (1989). Isolation of 
inhibin a- subunit precursor proteins from bovine follicular fluid. Endocrinology 

125, 2141 -2149. 

Robertson, D.M., Hayward, S., Irby, D., Jacobsen, J., Clarke, L., 

McLachlan, R.I. & de Kretser, D.M. (1988b). Radioimmunoassay of 

rat serum inhibin: changes after PMSG stimulation and gonadectomy. Molecular 

and Cellular Endocrinology 58, 1 -8. 

Robertson, D.M., Klein, R., de Vos, F.L., McLachlan, R.I., 

Wettenhall, R.E., Hearn, M.T., Burger, H.G. & de Kretser, D.M. 

(1987). The isolation of polypeptides with FSH suppressing activity from 

bovine follicular fluid which are structurally different to inhibin. Biochemical 

and Biophysical Research Communications 149, 744 -749. 



207 
Robertson, D.M., Tsonis, C.G., McLachlan, R.I., Handelsman, D.J., 

Leask, R., Baird, D.T., McNeilly, A.S., Hayward, S., Healy, 
D.L., Findlay, J.K., Burger, H.G. & de Kretser, D.M. (1988a). 
Comparison of inhibin immunological and in vitro biological activities in human 

serum. Journal of Clinical Endocrinology and Metabolism 67, 438 -443. 

Rodgers, R.J. & O'Shea, J.D. (1982). Purification, morphology and 
progesterone production and content of three cell types isolated from the corpus 
luteum of sheep. Australian Journal of Biological Sciences 35, 441 -455. 

Rodgers, R.J., O'Shea, J.D. & Bruce, N.W. (1984). Morphometric 
analysis of the cellular composition of the ovine corpus luteum. Journal of 
Anatomy 138, 757 -769. 

Rodgers, R.J., Stuchbery, S.J. & Findlay, J.K. (1989). Inhibin 
mRNAs in ovine and bovine ovarian follicles and corpora lutea throughout the 

oestrous cycle and gestation. Molecular and Cellular Endocrinology 62, 95- 

101. 

Ronnekleiv, O.K., Adelman, J.P., Weber, E., Herbert, E. & Kelly, 
M.J. (1987). Immunohistochemical demonstration of proGnRH and GnRH 

in the preoptic -basal hypothalamus of the primate. Neuroendocrinology 45, 

518 -521. 

Rothchild, I. (1965). Interrelations between progesterone and the ovary, 

pituitary and central nervous system in the control of ovulation and the regulation 

of progesterone secretion. Vitamins and Hormones 23, 209 -327. 

Rothchild, I. (1981). The regulation of the mammalian corpus luteum. Recent 

Progress in Hormone Research 37, 183 -298. 

Sander, H.J., van Leeuwen, E.C.M. & de Jong, F.H. (1984). Inhibin- 

like activity in media from cultured rat granulosa cells collected throughout the 

oestrous cycle. Journal of Endocrinology 103, 77 -84. 

Sandow, J. (1983). The regulation of LHRH action at the pituitary and gonadal 

receptor level: a review. Psychoneuroendocrinology 8, 277 -297. 



208 

Sargent, E.L., Baughman, W.L., Novy, M.J. & Stouffer, R.L. 
(1988). Intraluteal infusion of a prostaglandin synthesis inhibitor, sodium 
meclofenamate, causes premature luteolysis in rhesus monkeys. Endocrinology 
123, 2261 -2269 

Sarker, D.K. & Fink, G. (1980). Luteinizing hormone releasing factor in 

pituitary stalk plasma from long -term ovariectomized rats: effect of steroids. 

Journal of Endocrinology 86, 511 -524. 

Sasano, H., Okamoto, M., Mason, J.I., Simpson, E.R., Mendelson, 
C.R., Sasano, N. & Silverberg, S.G. (1989). 17a- hydroxylase and 

side chain cleavage P450 in the human ovary. Journal of Reproduction and 
Fertility 85, 163 -169. 

Savard, K., Marsh, J.M. & Rice, B.F. (1965). Gonadotrophins and 
ovarian steroidogenesis. Recent Progress in Hormone Research 21, 285 -365. 

Savoy- Moore, R.T., Schwartz, N.B., Duncan, J.A. & Marshall, J.C. 
(1980). Pituitary gonadotrophin- releasing hormone receptors during the rat 

estrous cycle. Science 209, 942 -944. 

Savoy- Moore, R.T., Schwartz, N.B., Duncan, J.A. & Marshall, J.C. 
(1981). Pituitary gonadotrophin- releasing hormone receptors on proestrus: 

effects of pentobarbital blockade of ovulation in the rat. Endocrinology 109, 

1360 -1364. 

Sawchenko, P.E., Plotsky, P.M., Pfeiffer, S.W., Cunningham, 
E.T.Jr., Vaughan, J., Rivier, J & Vale, W. (1988). Inhibin ß in 

central neural pathways involved in the control of oxytocin secretion. Nature 

334, 615 -617. 

Sawyer, C.H. (1978). History of the neurovascular concept of 

hypothalamohypophyseal control. Biology of Reproduction 18, 325 -328. 



209 

Scaramuzzi, R.J., Baird, D.T., Wheeler, A.G. & Land, R.B. (1973). 
The oestrus cycle of the ewe following active immunization against 
prostaglandin F2a. Acta Endocrinologica [Suppi] 177, 318. 

Scaramuzzi, R.J., Corker, C.S., Young, G. & Baird, D.T. (1974). 
Production of antisera to steroid hormones in sheep. In: Steroid Immunoassay, 
pp111 -122. Eds. E.H.D. Cameron, S.G. Hillier, K. Griffiths. 

Schaeffer, J.M., Liu, J., Hseuh, A.J. & Yen, S.S.C. (1984). Presence 
of oxytocin and arginine vasopressin in human ovary, oviduct and follicular 
fluid. Journal of Clinical Endocrinology and Metabolism 59, 970 -973. 

Schams, D., Prokopp, S. & Barth, D. (1983). The effect of active and 

passive immunization against oxytocin on ovarian cyclicity in ewes. Acta 
Endocrinologica 103, 337 -344. 

Schanbacher, B. (1988). Radioimmunoassay of inhibin. Serum responses to 

unilateral and bilateral orchidectomy. Endocrinology 123, 2323 -2330. 

Schenken, R.S. & Hodgen, G.D. (1983) Follicle stimulating hormone 

induced ovarian hyperstimulation in monkeys: blockade of the luteinizing 

hormone surge. Journal of Clinical Endocrinology and Metabolism 57, 50 -55. 

Schillo, K.K., Leshin, L.S., Kuehl, D. & Jackson, G.L. (1985). 

Simultaneous measurement of luteinizing hormone- releasing hormone and 

luteinizing hormone during estradiol- induced luteinizing hormone surges in the 

ovariectomized ewe. Biology of Reproduction 33, 644 -652. 

Schneyer, A.L., Mason, A.J., Burton, L.E., Ziegner, J.R.& Crowley, 

W.F. (1990). Immunoreactive inhibin a- subunit in human serum: 

implications for radioimmunoassay. Journal of Clinical Endocrinology and 

Metabolism 70, 1208 -1212. 

Schoonmaker, J.N., Bergman, K.S., Steiner, R.A. & Karsch, F.J. 
(1984). Oestradiol- induced luteal regression in the rhesus monkey: evidence 

for an extra -ovarian site of action. Endocrinology 110, 1708 -1715. 



21 0 

Schwall, R.H., Mason, A.J., Wilcox, J.N., Bassett, S.G. & Zeleznik, 
A.J. (1990). Localization of inhibin /activin subunit mRNA's within the 
primate ovary. Molecular Endocrinology 4, 75 -79. 

Schwall, R.H.& Niswender, G.D. (1985). Two types of steroidogenic 
luteal cells in the ewe: morphological and biochemical characteristics. In: 

Implantation of the Human Embryo. p31 -45. R.G. Edwards, J.M. Purdy, P.C. 

Steptoe. Academic Press, London. 

Schwartz, N.B. & Channing, C.P. (1977). Evidence for ovarian inhibin: 
suppression of the secondary rise in serum follicle stimulating hormone levels in 

proestrous rats by injection of porcine follicular fluid. Proceedings of the 

National Academy of Science U.S.A. 74, 5721. 

Scott, R.S. & Burger, H.G. (1981). Mechanism of action of inhibin. 
Biology of Reproduction 24, 541 -550. 

Scott, R.S., Burger, H.G. & Quigg, H. (1980). A simple and rapid in- 
vitro bioassay for inhibin. Endocrinology 107, 1536 -1542. 

Seeburg, P.H. & Adelman, J.P. (1984). Characterization of cDNA for 
precursor of human luteinizing hormone releasing hormone. Nature 311, 666- 

668. 

Seeburg, P.H., Mason, A.J., Stewart, T.A. & Nikolics, K. (1987). 

The mammalian GnRH gene and its pivotal role in reproduction. Recent 

Progress in Hormone Research 42, 69 -98. 

Shackleton, C. H. L. (1974). Progesterone and oestradiol metabolism in the 

pregnant marmoset (Callithrix jacchus). Journal of Steroid Biochemistry 5, 

597 -600 

Shackleton, C. H. L. & Mitchell, F. L. (1975) The comparison of perinatal 

steroid endocrinology in simians with a view to finding a suitable animal model 

to study human problems. Laboratory Animal Handbooks 6, 159 -181 



211 

Sharpe, R.M., Swanston, I.A., Cooper, C.G., Tsonis, C.G. & 

McNeilly, A.S. (1988). Factors influencing the secretion of 
immunoreactive inhibin into testicular interstitial fluid in rats. Journal of 
Endocrinology 119, 315 -336. 

Sheldrick, E.L., Mitchell, M.D. & Flint, A.P.F. (1980). Delayed luteal 
regression in ewes immunized against oxytocin. Journal of Reproduction and 
Fertility 59, 37 -42. 

Sherwood, N.M., Chiappa, S.A. & Fink, G. (1976). Immunoreactive 
luteinizing releasing factor in pituitary stalk blood from female rats: sex steroid 

modulation of response to electrical stimulation of preoptic area or median 

eminence. Journal of Endocrinology 70, 501 -511, 

Shimasaki, S., Koga, M., Esch, F., Cooksey, K., Mercado, M., Koba, 
A., Ueno, N., Ying, S.Y., Ling, N. & Guillemin, R. (1988). 
Primary structure of the human follistatin precursor and its genomic 

organisation. Proceedings of the National Academy of Sciences USA 85, 
4218 -4222. 

Shimasaki, S., Koga, M., Buscaglia, Simmons, D.M., Bicsak, 
T.A. & Ling, N. (1989). Follistatin gene expression in the ovary and 

extragonadal tissues. Molecular Endocrinology 3, 651 -659, 

Shutt, D.A., Clark, A.H., Fraser, I.S., Goh, P., McMahon, G.P., 
Saunders, D.M. & Shearman, D.M. (1976). Changes in concentrations 

of prostaglandin F and steroids in human corpora lutea in relation to growth of 

the corpus luteum and luteolysis. Journal of Endocrinology 71, 453 -454. 

Silverman, A.J., Antunes, J.L., Abrams, G.M., Nilaver, G., Thau, 
R., Robinson, J.A., Ferin, M. & Krey, L.C. (1982). The luteinizing 

hormone -releasing hormone pathways in rhesus (Macaca mulatta) and pigtailed 

(Macaca nemestrina) monkeys. New observations on thick, unbedded sections. 

Journal of Comparative Neurology 211, 309 -317. 



212 

Snabels, M.C. & Kelch, R.P. (1979). Acute inhibitory effects of antiserum to 

gonadotrophin- releasing hormone in ovariectomized rats. Neuroendocrinology 
29, 34 -41. 

Song, T., Nikolics, K., Seeburg, P.H. & Goldsmith, P.C. (1986). 
GnRH prohormone immunoreactivity in the primate forebrain and hypothalamus 

(Abstract). 1st International Congress of Neuroendocrinology, p89. 

Soper, B.D. & Weick, R.F. (1980). Hypothalamic and extrahypothalamic 
mediation of pulsatile discharges of luteinizing hormone in the ovariectomized 

rat. Endocrinology 106, 348 -355. 

Sotrel, G., Helvacioglu, A., Dowers, S., Scommegna, A. & Auletta, 
F.J. (1981). Mechanisms of luteolysis: Effect of oestradiol and PGF2a on 

corpus luteum. Americal Journal of Obstetrics and Gynaecology 139, 134- 

140. 

Soules, M.R., McLachlan, R.I., Ek, M., Dahl, K.D., Cohen, N.L. & 

Bremner, W.J. (1989). Luteal phase deficiency: Characterization of 
reproductive hormones over the menstrual cycle. Journal of Clinical 
Endocrinology and Metabolism 69, 804- 812. 

Soules, M.R., Steiner, R.A., Clifton, D.K., Cohen, N.L., Aksel, S. & 

Bremner, W.J. (1984). Progesterone modulation of pulsatile luteinizing 

hormone secretion in normal women. Journal of Clinical Endocrinology and 

Metabolism 58, 378 -383. 

Spies, H.G. & Norman, R.L. (1975). Interaction of estradiol and LHRH on 

LH release in rhesus monkeys: Evidence for a neural site of action. 

Endocrinology 97, 685 -691. 

Steinberger, A. & Steinberger, E. (1976). Secretion of an FSH- inhibiting 

factor by cultured Sertoli cells. Endocrinology 99, 918 -921. 

Steinberger, E., Steinberger, A. & Vilar, O. (1966). Cytochemical study 

of A5 3 -13- hydroxysteroid dehydrogenase in testicular cells grown in vitro. 

Endocrinology 79, 406 -410. 



213 

Sternberger, L.A. (1979). Immunocytochemistry. Second Edition. John 
Wiley & Sons. New York. 

Stewart, A.G., Milborrow, H.M., Ring, J.M., Crowther, C.E. & 

Forage, R.G. (1986). Human inhibin genes: genomic characterisation and 
sequencing. FEBS Letters 206, 329 -334. 

Stillman, R.J., Williams, R.F., Lynch, A. & Hodgen, G.D. (1983) 
Selective inhibition of follicle stimulating hormone by porcine follicular fluid 

extracts in the monkey: effects on midcycle surges and pulsatile secretion. 
Fertility and Sterility 40, 823 -828. 

Stouffer, R.L., Nixon, W.E. & Hodgen, G.D. (1979). Disparate effects 
of prostaglandins on basal and gonadotrophin- stimulated progesterone 
production by luteal cells isolated from rhesus monkeys during the menstrual 

cycle and pregnancy. Biology of Reproduction 20, 897 -903. 

Stouffer, R.L., Nixon, W.E. & Hodgen, G.D. (1977). Oestrogen 
inhibition of basal and gonadotrophin- stimulated progesterone production by 

rhesus monkey luteal cells in vitro. Endocrinology -1163. 

Swanston, I.A., McNatty, K.P. & Baird, D.T. (1977). Concentration of 
prostaglandin F and steroids in the human corpus luteum. Journal of 
Endocrinology 73, 155- 

Sugino, H., Nakamura, T., Hasegawa, Y., Miyamoto, K., Abe, Y., 

Igarashi, M., Eto, Y., Shibai, H. & Titani, K. (1988). Erythroid 
differentiation factor can modulate follicular granulosa cell functions. 

Biochemical and Biophysical Research Communications 153, 281 -288. 

Sugino, K., Nakamura, T., Takio, N., Titami, K., Miyamoto, K., 

Hasegawa, Y., Igarashi, M. & Sugino, H. (1989). Inhibin a- 

subunit monomer is present in follicular fluid. Biochemical and Biophysical 

Research Communications 159, 1323 -1329. 



214 

Tanabe, K., Gagliano, P., Channing, C.P., Nakamura, Y., Yoshimura, 
Y., Izuka, R., Fortury, A., Sulewski, J. & Rezao, N. (1983). 
Levels of inhibin -F activity and steroids in human follicular fluid from normal 
women and women with polycystic ovarian disease. Journal of Clinical 
Endocrinology and Metabolism 57, 24 -31. 

Taya, K., Komura, H., Watanabe, G. & Sasamoto, S. (1989). 
Peripheral blood levels of immunoreactive inhibin during pseudopregnancy, 
pregnancy and lactation in the rat. Journal of Endocrinology 121, 545 -552. 

Tierney, M.L., Goss, N.H., Tomkins, S.M., Kerr, D.B., Pitt, D.E., 
Forage, R.G., Robertson, D.M., Hearn, M.T.W & de Kretser, 
D.M. (1990). Physicochemical and biological characterization of 
recombinant human inhibin A. Endocrinology 126 3268 -3270. 

Torney, A.H., Hodgson, Y.M., Forage, R. & de Kretser, D.M. 
(1989). Cellular localization of inhibin mRNA in the bovine ovary by in situ 

hybridization. Journal of Reproduction and Fertility 86, 391 -399. 

Tsai, C.C. & Yen, S.S.C. (1971). Acute effects of intravenous infusion of 
17f3-estradiol on gonadotropin release in pre- and post -menopausal women. 

Journal of Clinical Endocrinology and Metabolism 32, 766 -761. 

Tsonis, C.G., Hillier, S.G. & Baird, D.T. (1987b). Production of 
inhibin bioactivity by human granulosa- lutein cells: stimulation by LH and 

testosterone in vitro. Journal of Endocrinology 112, R11 -R14. 

Tsonis, C.G., McNeilly, A.S. & Baird, D.T. (1986). Measurement of 

exogenous and endogenous inhibin in sheep serum using a new and extremely 

sensitive bioassay for inhibin based on inhibition of ovine pituitary FSH 

secretion in vitro. Journal of Endocrinology 110, 341 -352. 

Tsonis, C.G., McNeilly, A.S. & Baird, D.T. (1987a). Production and 

secretion of ovarian inhibin. In: Inhibin- non -steroidal regulation of follicle 

stimulating hormone secretion. pp203 -218. Eds. H.G.Burger, D.M. de 

Kretser, J.K. Findlay, M. Igarashi. New York: Raven Press. 



Tsonis, C.G., Messinis, I.E., Templeton, A.A., McNeilly, A.S. & 

Baird, D.T. (1988). Gonadotrophic stimulation of inhibin secretion into 
peripheral blood by the human ovary during the follicular and early luteal phase 
of the cycle. Journal of Clinical Endocrinology and Metabolism 66 (5), 915- 
921. 

Tsonis, C.G., Pearson, M., Hungerford, J., Borchers, C.E., 
Greenwood, P.E., Forage, R.G., Doughton, B., Findlay, J.K. 
(1989). Immunizing sheep with recombinant inhibin a- subunit increases the 

number of lambs born. Proceedings of the Australian Society for Reproductive 
Biology 21, Abstract no.99. 

Tsonis, C.G., Quigg, H., Lee, V.W.K., Leversha, L., Trounson, A.O. 
& Findlay, J.K. (1983). Inhibin in individual ovine follicles in relation to 

diameter and atresia. Journal of Reproduction and Fertility 67, 83 -90. 

Ueno, N., Ling, N., Ying, S.Y., Esch, F., Shimasaki, S. & 

Guillemin, R. (1987). Isolation and partial characterization of follistatin: a 

single chain Mr 35000 monomeric protein that inhibits the release of follicle 

stimulating hormone. Proceedings of the National Academy of Sciences USA 

84, 8282 -8286. 

Ursely, J., Darbon, J.M. & Lemarie, P. (1981). Aromatization of 
testosterone in large and small bovine luteal cells. Conflicting results between 

radioimmunoassay and cocrystallization data. Steroids 38, 271 -279. 

Ursely, J. & Leymarie, P. (1979). Varying responses of two luteal cell types 

isolated from bovine corpus luteum. Journal of Endocrinology 83, 303. 

Vale, W., Rivier, J., Vaughan, J., 
Woo, W., Karr, D. & Spiess, 

characterization of an FSH releasing 

Nature 326, 776 -779. 

McClintock, R., Corrigan, A., 

J. (1986). Purification and 

protein from porcine follicular fluid. 

215 



216 
Van Orden, D.E., Swanston, J.A., Clancey, C.J. & Farley, D.H. 

(1977). Plasma prostaglandins in the normal menstrual cycle. Obstetrics and 
Gynaecology 50, 639 -643. 

Van Vugt, D.A., Bakst, G., Dyrenfurth, I. & Ferin, M. (1983). 
Naloxone stimulation of LH secretion in the female monkey: influence of 
endocrine and experimental conditions. Endocrinology 113, 1858 -1864. 

Veldhuis, J.D. & Demers, L.M. (1986). An inhibitory role for protein 
kinase C pathway in ovarian steroidogenesis. Biochemical Journal 239, 505- 
511. 

Vickery, B.H. (1986). Pharmacology of LHRH antagonists. In: Pharmacology 
and clinical use of inhibitors of hormone secretion and action. p385. Eds. 
B.J.A. Fun, A. Wakeling. Bailliere Tindall, Eastbourne. 

Vickery, B.H. & Nestor, J.J.Jr. (1987). Luteinizing hormone -releasing 
hormone analogs: development and mechanism of action. Seminars in 

Reproductive Biology 5, 353 -369. 

Vijayakumar, R. & Walters, W.A.W. (1983). Human luteal tissue 
prostaglandins, 173- oestradiol and progesterone in relation to the growth and 

senescence of the corpus luteum. Fertility and Sterility 39, 298 -303. 

Walker, K.J., Turkes, A.O., Turkes, A., Zwink, R., Peacock, C., 
Buck, A.C., Peeling, W.B. & Griffiths, K. (1984). Treatment of 

patients with advanced cancer of the prostate using a slow -release (depot) 

formulation of the LHRH agonist ICI 118630 (Zoladex). Journal of 
Endocrinology 103, R1 -R4. 

Walker, K.J., Turkes, A., Williams, M.R., Blarney, R.W. & 

Nicholson, R.I. (1986). Preliminary endocrinological evaluation of a 

sustained- release formulation of the LH- releasing hormone agonist D- Ser(But)6 

Azg1y10LHRH in premenopausal women with advanced breast cancer. Journal 

of Endocrinology 111, 349 -353. 



217 

Wardlaw, S.L., Wehrenberg, W.B., Ferin, M., Antunes, J.L. & 

Frantz, A.G. (1982). Effect of sex steroids on 13-endorphin in 
hypophyseal portal blood. Journal of Clinical Endocrinology and Metabolism 
55, 877 -881. 

Wathes, D.C., Pickering, B.T., Swann, R.W., Porter, D.G., Hull, 
M.G.R. & Drife, J.O. (1982). Neurohypophyseal hormones in the 
human ovary. Lancet ii, 410 -412. 

Wathes, D.C. & Swann, R.W. (1982). Is oxytocin an ovarian hormone? 
Nature 297, 225 -227. 

Watkins, W.B. (1983). Immunohistochemical localization of neurophysin and 

oxytocin in the sheep corpus luteum. Neuropeptides 4, 51 -54. 

Webley, G.E., Knight, P.G., Given, A. & Hodges, J.K. (1991). 
Increased concentrations of immunoreactive inhibin during conception in the 

marmoset monkey: suppression with an LHRH antagonist and cloprostenol. 

Journal of Endocrinology in press. 

Weick, R.F., Pitelka, V. & Thompson, D.L. (1982). Separate negative 

feedback effects of estrogen on the pituitary and the central nervous system in 

the ovariectomized rhesus monkey. Endocrinology 112, 1862 -1864. 

Weinberger, G.F., Surmann, F.J., Akhtar, F.B., Shah, G.V., Vickery, 
B.H. & Nieschlag, E. (1984). Reversible inhibition of testicular 

function by a gonadotrophin hormone releasing hormone antagonist in monkeys 

(Macaca fascicularis). Fertility and Sterility 42, 906 -914. 

Wentz, A.C. & Jones, G.S. (1973). Transient luteolytic effect of 

prostaglandin Fla in the human. Obstetrics and Gynaecology 42, 172 -181. 

Wehrenberg, W.W., Wardlaw, S.L., Frantz, A.G. & Ferin, M. 

(1982). 13-endorphin in hypophyseal portal blood: variations throughout the 

menstrual cycle. Endocrinology 111, 879 -881. 



21 8 

White, R.F., Hertig, A.T., Rock, J. & Adams, E. (1951). Histological 
and histochemical observations on the corpus luteum of human pregnancy with 
special reference to corpora lutea associated with early normal and abnormal ova. 
Contributions to Embryology 34, 55 -74. 

Wildt, L., Hausler, A., Marshall, J., Hutchison, J.S., Plant, T.M., 
Belchetz, P.E. & Knobil, E. (1981). Frequency and amplitude of 
gonadotrophin- releasing hormone stimulation and gonadotrophin secretion in the 
rhesus monkey. Endocrinology 109, 376 -385. 

Wiley, C.A. & Esterly, J.R. (1976). Observations on the human corpus 
luteum: histochemical changes during development and involution. American 
Journal of Obstetrics and Gynaecology 125, 514 -519. 

Wilks, J.W., Forbes, K.K. & Norland, J.F. (1972). Synthesis of 
prostaglandin Fla by the ovary and uterus. In: Prostaglandins. p42 -55 Ed. 

E.M. Souterine Mt Kitso, NY: Futura Publishing Co. 

Williams, M.T., Roth, M.S., Marsh, J.M. & Lemaire, W.J. (1979). 
Inhibition of human chorionic gonadotrophin -induced progesterone synthesis by 

oestradiol in isolated human luteal cells. Journal of Clinical Endocrinology and 
Metabolism 48, 437 -440. 

Woodruff, T.K., Meunier, H., Jones, P.B.C., Hsueh, A.J.W. & 

Mayo, K.E. (1987). Rat inhibin: molecular cloning of a- and ß- subunit 

complementary deoxyribonucleic acids and expression in the ovary. Molecular 

Endocrinology 1, 561 -568. 

Xiao, S., Findlay, J.K. & Robertson, D.M. (1990). The effect of bovine 

activin and FSH suppressing protein /follistatin on FSH- induced differentiation 

of rat granulosa cells in vitro. Molecular and Cellular Endocrinology 69 (1), 1- 

8. 

Yamaji, T., Dierschke, D.J., Bhattacharya, A.N. & Knobil, E. (1972). 

The negative feedback control by oestradiol and progesterone of LH secretion in 

the ovariectomized rhesus monkeys. Endocrinology 90, 771 -777. 



219 

Yen, S.S.C., Llerena, O., Little, B.& Pearson, O.H. (1968). 
Disappearance rates of endogenous luteinizing hormone and chorionic 
gonadotrophin in man. Journal of Clinical Endocrinology and Metabolism 28, 

1763 -1767. 

Yen, S.S.C. & Tsai, C.C. (1971). The biphasic pattern in the feedback action 
of ethinyl estradiol on the release of pituitary FSH and LH. Journal of Clinical 
Endocrinology and Metabolism 33, 882 -887. 

Yohkaichiya, T., Fukaya, T., Hoshiai, H., Yajima, A. & de Kretser, 
D.M. (1989). Inhibin: a new circulating marker of hydatidiform mole ? 

British Medical Journal 298, 1684 -1686. 

Yu, J., Shao, Li -en, Lemas, V., Yu, A.L., Vaughan, J., Rivier, J. & 

Vale, W. (1987). Importance of FSH -releasing protein and inhibin in 

erythrodifferentiation. Nature 330, 765 -767. 

Zeleznik, A.J., Hutchison, J.S. & Schuler, H.M. (1987). Passive 
immunization with anti -oestradiol antibodies during the luteal phase of the 

menstrual cycle potentiates the perimenstrual rise in serum gonadotrophin 

concentrations and stimulates follicular growth in the cynomologus monkey 

(Macaca fascicularis). Journal of Reproduction and Fertility 80, 403 -410. 

Zhiwen, Z., Carson, R.S., Herington, A.C., Lee, W.K. & Burger, 
H.G. (1987a). Follicle -stimulating hormone and somatomedin C stimulate 

inhibin production by rat granulosa cells in vitro. Endocrinology 120, 1633- 

1638. 

Zhiwen, Z., Herington, A.C., Carson, R.S., Findlay, J.K. & Burger, 

H.G. (1987b). Direct inhibition of rat granulosa cell inhibin production by 

epidermal growth factor in vitro. Molecular and Cellular Endocrinology 54, 

213 -220. 

Zhiwen, Z., Carson, R.S. & Burger, H.G. (1988a). Selective control of 

rat granulosa cell inhibin production by FSH and LH in vitro. Molecular and 

Cellular Endocrinology 58, 161 -166. 



220 

Zhiwen, Z., Findlay, J.K., Carson, R.S., Herington, A.C. & Burger, 
H.F. (1988b). Transforming growth factor -ß enhances basal and FSH 

stimulated inhibin production by rat granulosa cells in vitro. Molecular and 

Cellular Endocrinology 58, 161 -166. 


