
Self-Timed Field Programmable Gate Array 
Architectures 

Robert Payne 

Doctor of Philosophy 
University of Edinburgh 

1997 

0 



Abstract 
Dynamic hardware systems exploit the in-system reconfigurability of Field 

Programmable Gate Arrays (FPGAs), but are currently limited by the delay 

properties of synchronous FPGA architectures. Synchronous circuits are dif -

ficult to manipulate dynamically, since this alters their internal delays. The 

speed-independent properties of self-timed circuits overcome this problem, 

thus allowing the full benefits of dynamic reconfiguration to be exploited. The 

general properties of self-timed systems, such as modularity, low power and 

data dependent delays also provide benefits to less dynamic FPGA systems as 

well. 
This thesis introduces a model for self-timed FPGA architectures called 

STACC (Self-Timed Array of Configurable Cells). STACC architectures replace 

the global clock of an FPGA with an array of timing cells that provide local 

self-timed control to a region of logic blocks. STACC differs from previous 

self-timed FPGA architectures in that it does not disrupt the structure of the 

logic blocks. 
The STACC model is used to produced a self-timed version of the Xilinx 

XC6200 FPGA. Example circuits for the self-timed XC6200 demonstrate the be-

nefits of self-timing for implementing dynamic hardware systems. Evaluation 

of the architecture shows that the implementation overhead of the timing array 

is reasonable, and that the self-timed XC6200 has the potential to out-perform 

the synchronous XC6200 through use of data dependent delays. 
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Chapter 1 

Introduction 

1.1 Reconfigurability and Self-Timing 

Field Programmable Gate Arrays (FPGAs) are a form of programmable logic; 

they are devices designed to implement a wide range of different logic circuits. 

The key property of programmable logics that differentiates them from cus-

tom hardware is their reconfigurability. Such devices cannot compete with a 

custom hardware implementation in terms of density or speed, but their recon-

figurability allows hardware designs to be created and changed rapidly, thus 

reducing time-to-market and costs over custom hardware. 

Traditionally, programmable logics have been configured in special pro-

grammers that are external to the host system. However, many current FPGAs 

have SRAM configuration memories, which can be programmed in-system. 

Thus, a configuration can be loaded into the FPGA and run, just like a soft-

ware program, but with performance closer to that of dedicated hardware. 

Dynamic hardware systems attempt to exploit the software-like reconfigurab-

ility of SRAM FPGAs. For example, such systems can be used to implement 

circuits larger than the size of the FPGA, by swapping parts of the circuitry to 

and from the FPGA; or circuits can be customised for a particular problem on 

the fly. 

However, the exploitation of reconfigurability in dynamic hardware sys-

tems is limited by the delay properties of the FPGA architecture. Changing 

the environment or shape of a circuit alters the delay properties of the circuit, 

which means it can fail to meet the global clock in synchronous systems. The 

starting point for this thesis is the proposal to utilise the speed-independence 

of self-timed circuits to allow the rapid manipulation of circuits in dynamic 

hardware systems. Such an approach promises to allow the full dynamic re-

configurability of FPGAs to be exploited. 
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Current synchronous-oriented FPGA architectures pose problems for the 

implementation of self-timed circuits. The assumptions made in self-timed 

communication protocols are often not maintained by synchronous FPGA ar-

chitectures. The approach taken in this thesis is to develop self-timed FPGA 

architectures to overcome the problems with current FPGAs. 

The thesis introduces a new model for self-timed FPGA architectures called 

STACC (Self-Timed Array of Configurable Cells). In STACC, the global clock 

of a synchronous FPGA architecture is replaced with an array of timing cells. 

These timing cells provide local timing control to regions of logic blocks, which 

are left unaltered from the original synchronous FPGA architecture. The clear 

split between timing cells and data cells (logic blocks) in STACC reflects the 

split in self-timed bundled-data protocols between control path and data path. 

To demonstrate the viability of STACC, the STACC model is applied to the 

Xilinx XC6200 FPGA architecture. The Xilinx XC6200 was chosen since it is a 

recent architecture (first silicon in 1995), and that it includes features for the 

use of dynamic hardware. The self-timed XC6200 architecture is used to con-

struct circuits parameterised at run-time, which demonstrate the benefits of 

self-timing for dynamic hardware systems. 

1.2 Thesis Structure 

The thesis consists of four main parts. The introductory chapters present back-

ground material on FPGAs and self-timed systems, and outline the potential 

benefits of self-timed FPGA systems. The second part of the thesis introduces 

the STACC model for self-timed FPGA architectures, and develops the circuit 

elements required for the construction of STACC architectures. The third part 

of the thesis concerns the application of the STACC model to the Xilinx XC6200 

FPGA architecture. Finally, the thesis concludes with a summary of the main 

results and a discussion of possible future work. 

Figure 1.1 summaries the structure of the thesis and shows the relationship 

between the chapters. Below, a chapter by chapter summary for each part of 

the thesis is given. 

1.2.1 Introduction 

Chapter 2 covers background material on FPGAs. A key part of this chapter is 

the discussion of dynamic hardware systems, virtual hardware, and run-time 
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parameterised circuits. Chapter 3 introduces self-timed systems and includes 

a detailed discussion of bundled-data systems. 

Chapter 4 is central to the rest of the thesis. It considers the potential bene-

fits and drawbacks of self-timing for FPGA systems in general, and dynamic 

hardware in particular. The chapter also reviews the current research on self-

timed circuits using synchronous FPGAs and proposed self-timed FPGA ar -

chitectures. 

1.2.2 STACC 

Chapter 5 introduces a model for self-timed FPGA architectures: STACC (Self-

Timed Array of Configurable Cells). The STACC model involves replacing the 

global clock in a synchronous FPGA with an array of timing cells that provide 

local clock signals. 
The next three chapters focus on the implementation of the timing array in 

STACC architectures. Chapter 6 introduces several new self-timed elements, 

suchas the Q-Merge/Select pair and the reconfigurable C-Muller gate, which 

are used as building blocks for the timing array. Chapter 7 describes in detail 

the design of timing cells for STACC. The timing cell is developed from a basic 

reconfigurable C-Muller gate into a timing cell capable of selective communic-

ation and arbitration. Chapter 8 concerns routing structures for handshaking 

signals in the STACC timing array. These structures are based on another de-

velopment of the reconfigurable C-Muller gate: the handshaking crossbar. 

1.2.3 A Self-Timed XC6200 

Chapters 9 to 11 concern the application of the STACC model to a contempor-

ary FPGA architecture: the Xilinx XC6200. Chapter 9 introduces the current 

XC6200 architecture, concentrating on the features useful for dynamic hard-

ware, and then presents the design of a self-timed XC6200 using the STACC 

model. Chapter 10 contains a case study of the use of the self-timed XC6200 

for implementing dynamic hardware systems. The example circuits are run-

time parameterised circuits for finite field operations with application to Reed-

Solomon error correction. Finally, Chapter 11 compares the self-timed XC6200 

relative to the synchronous XC6200, considering its delay performance and the 

implementation overhead of the timing array. 
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1.2.4 Conclusions 

Chapter 12 summarises the main results of the work. The chapter ends with a 

discussion of possible directions for future research. 

1.3 Contributions 

This thesis makes original contributions in a number of areas. The main contri-

butions are listed below. These points are expanded upon in Chapter 12, which 

summarises the conclusions of the thesis. 

Self-timed Dynamic Hardware: A key contribution of the thesis is the iden-

tification of the benefits of self-timed circuits for implementing dynamic 

hardware systems. Previous work on self-timed circuits for FPGAs have 

concentrated only on the prototyping of self-timed systems. 

STACC: is a new model for creating self-timed reconfigurable architectures. 

Unlike previous self-timed FPGA architectures (MONTAGE, PGA-STC), 

STACC-based architectures do not alter the structure of the logic blocks 

for self-timing. 

Self-timed Reconfigurable Elements: The thesis introduces a number of new 

self-timed elements, potentially of wider use in self-timed design: the Q-

Merge/Select Pair, the reconfigurable C-Muller gate, the STACC timing 

cell and handshaking crossbars. 

Self-timed XC6200: Using the STACC model, this thesis presents the design, 

simulation and evaluation of a new self-timed FPGA architecture based 

on the Xilinx XC6200. 

Run-Time Parameterised Circuits: The circuits developed for run-time para-

meterisation on the self-timed XC6200 are of note, due to the hierarchy of 

parameterisation, and the benefits arising from self-timing. Some of the 

design techniques developed, such as the abstract block size, are applic-

able to XC6200 designs in general. 

Current Sensing Completion Detection (CSCD): The thesis provides insight 

into the potential benefits of the CSCD delay scheme and proposes the 

use of CSCD for meta-stability resolution. 
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Chapter 2 

Field Programmable Gate Arrays 

2.1 Background 

FPGAs are the successors to earlier forms of programmable logic such as PLAs 

and PALs. The initial need for programmable logics has been to integrate a 

number of SSI (Small Scale Integration) or MSI (Medium Scale Integration) 

parts on a single chip, without the expense or time of building a custom part. 

A key difference of FPGAs from these previous forms of programmable logic 

is the size of circuit that can be implemented on one device. Whilst earlier 

programmable logic devices could replace a small number of SSI or MSI parts, 

FPGAs can implement VLSI parts (over 10,000 gate equivalents) within a single 

programmable device. The implementation of larger circuits within FPGAs 

has necessitated a change in architecture. Earlier programmable logic devices, 

such as PLAs (see Figure 2.1), implemented circuits as a two-level logic func-

tion, i.e., a boolean sum of products. Such devices had two planes of logic: an 

AND plane that produced the product terms from the inputs and an OR-plane 

that summed the products to produce the outputs. 

However, the use of two-level logic functions becomes cumbersome for lar-

ger circuits, since the size of each plane increases more rapidly than the com-

plexity of the circuit. A solution is to factorise the two-level logic functions and 

implement the circuits using multi-level logic functions. To implement multi-

level logic functions, FPGA architects have drawn on the design of Mask Pro-

grammable Gate Arrays (MPGAs). MPGAs are a semi-custom implementation 

style for ASICs (Application Specific Integrated Circuits). MPGAs save cost on 

expensive custom masks, by having a fixed set of masks defining a collection 

of basic building block gates (such as NAND gates), and then use a few cus-

tom masks to define the routing between them. The key difference between 

MPGAs and FPGAs is the method of configuration. In MPGAs, the config- 



Outputs 

1 

Inputs 

Figure 2.1: PLA Architecture 

uration is defined by the routing masks whilst, in FPGAs, it is defined by a 

configuration memory. MPGAs and FPGAs are sufficiently related that FPGA 

designs can be migrated directly to MPGAs with similar architectures. For ex-

ample, CLA is an MPGA version of the Algotronix CAL architecture [65], and 

the Xilinx HARDWIRE architecture is an MPGA version of the XC4000 FPGA 

[124]. 

2.2 Elements of an FPGA Architecture 

Figure 2.2 shows an idealised FPGA architecture. The architecture consists 

of an array of function blocks. Each function block can be configured to im-

plement a variety of basic gates and a basic memory element, such as a D-

type flip-flop. The function blocks are wired together to form a circuit us-

ing reconfigurable interconnect. Switchboxes connect a function block's in-

puts and outputs to the interconnect. Typically, architectures provide separate 

interconnect for routing local and non-local signals. At the edge of the ar-

ray, special input/output switchboxes are provided to connect to external sig-

nals. The circuit implemented by the FPGA is determined by values stored in 

the FPGA's configuration memory. The configuration memory determines the 

functions implemented by the function blocks and the routing implemented 
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Configuration 
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Figure 2.2: Elements of an FPGA Architecture 

by the switchboxes. 

Currently, a large number of FPGA architectures are available commer-

cially, with little agreement on a common design. The following sections exam-

ine the decisions made in current FPGA architectures. They discuss the design 

of the function blocks (Section 2.3), reconfigurable interconnect (Section 2.4) 

and configuration memory (Section 2.5). Some desirable properties of how 

these elements are assembled to create an FPGA architecture are discussed in 

Section 2.6. The use of FPGAs in dynamic hardware applications is discussed 

in Section 2.7. 

2.3 Function Blocks 

Current architectures use a wide variety of function blocks. A basic require-

ment of the function blocks is that any logic function can be constructed given 

a sufficient supply of them. Two-input NAND or NOR gates are sufficient for 

this purpose, however most FPGA architectures choose to use function blocks 

that can implement any boolean function of between 2-5 boolean variables. 

Current FPGA architectures use five basic styles of function block: prim-

itive gates, LUTs (Look-Up Tables), multiplexors, PALs (Programmable Array 

Logic) and CAMs (Content Addressable Memories). These styles are described 

below. In addition, most architectures embellish the basic choice of function 
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block with additional features to improve the implementation of certain func-

tions, such as dedicated carry logic for adders and counters. 

Primitive Gate Function Blocks 

The simplest function block possible for an FPGA is to supply a primitive gate 

such as two-input NAND or NOR gate. All other logic functions can be built 

given a sufficient supply of these gates. This approach has been adopted suc-

cessfully in 'sea of gates' MPGAs. The advantage of using primitive gates is 

that the function block is easy to design and small, so can be replicated in large 

numbers. The main drawback of using such basic elements for FPGAs is that 

it requires a large amount of slow reconfigurable interconnect. Most FPGA 

architectures use more complex cells, with mostly fixed internal, routing for 

speed. At the time of writing, the only FPGA architecture to use a primitive 

gate function block has been the GEC-Plessey ERA architecture [33, 45]. 

Look-Up Table Function Blocks 

Figure 2.3 shows the design of a Look-Up Table (LUT) function block. The 

multiplexor is used to select an output value from a configuration memory. Es-

sentially, each function block acts as a small ROM (Read Only Memory), whose 

output is selected by the input signals. To provide one boolean function of N 

input variables requires 2" configuration bits. Architectures such as the Xilinx 

XC4000 [124] and AT&T ORCA [9] allow the LUT to be split into sub-LUTs to 

provide more functions, but of fewer variables. For example, the Xilinx XC4000 

[124] architecture allows a function block to provide two boolean functions of 

four variables each or one boolean function of five variables. 

Inputs 

000 

C 	I 
.2 	I 

CZ  

E 	 Output I 
WI 

0 	I 

Figure 23: Look-Up Table Function Block 
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Multiplexor Based Function Blocks 

Figure 2.4 shows the function block of a multiplexor based FPGA. A multi-

plexor with N select inputs is capable of implementing all boolean functions of 

N + 1 input variables. In contrast to a LUT based function block, a multiplexor 

based function block is not directly configured by a configuration memory. In-

stead, the function is determined by configuring routing to the select and data 

inputs of the multiplexor. Configuring this routing becomes costly for large 

multiplexors, so typically FPGA architectures, such as the Algotronix CAL1024 

[3] and Actel Act1000 [2] use small multiplexors with only one or two select in-

puts. 

Many FPGA architectures add additional logic to the multiplexor. The 

Act1000 FPGA [21 includes a two input NOR gate on one of the select inputs of 

the multiplexor. The Cypress pASIC380 [24] includes a number of wide input 

AND gates that can be tapped separately as outputs. Architectures like the At-

mel AT6000 [10] add so much additional logic to the multiplexor that they can 

be regarded as being a separate type of 'complex gate' function block. 

U) 
04- 

- 5 

C/) 

CZ Output 

Figure 2.4: Multiplexor Function Block 

PAL Based Function Blocks 

PAL based architectures can be considered as an evolutionary step from older 

two-level programmable logics to current FPGA architectures. FPGAs like the 

Altera MAX series [4], can be considered as 'Mega-PALs' where a small num-

ber of traditional PALs are placed on the same chip with limited reconfigurable 

interconnect to join them. 

Figure 2.5 shows a PAL (Programmable Array Logic) based function block. 

Each output is implemented as a boolean sum of products. Product terms are 

generated by wide input AND gates and then summed together using a fixed 

OR gate; in Figure 2.5, De Morgan's rule allows NAND gates to be used in 
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place of AND and OR gates. The functions implementable by a PAL based 

function block are limited by the number of available product terms. Cer -

tain functions, in particular XOR like functions, use a large number of product 

terms, so map poorly to PAL based function blocks. However, most logic func-

tions need considerably less product terms than the worst case. Furthermore, 

PAL based designs lead to very dense implementation when used with fuse 

based configuration memories (see Section 2.5). 

Output 

Inputs 

Figure 2.5: PAL Function Block 

Content Addressable Memory Function Block 

Figure 2.6 shows a novel Content Addressable Memory (CAM) function block 

that has been designed by Oxford Parallel [110]. The CAM based function 

block can act in two modes. In the first mode, the cell can act as a Random 

Access Memory (RAM). A word of the RAM is selected with the word select 

lines. Data can be read or written using the data out and data in signals in 

conjunction with a read/write signal. When reading in this mode, the CAM 

cell acts in a similar way to a LUT based function block. In the second mode, 

the cell compares the contents of the data input with the RAM contents. If the 

data matches, then the appropriate match line goes high. In this mode, the 

CAM cell acts in a similar way to the product terms in a PAL based function 

unit, which only go high when they match a particular data input pattern. 

The advantage of the CAM based design over the other function blocks is the 

variety of structures it can implement. As well as being able to implement 

LUT and PAL structures, it can easily implement dense RAM and CAMs in the 

FPGA. 
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Data Out 

WordLines MatchLines 

Read/Write 	Data In 

Figure 2.6: CAM based Function Block 

2.3.1 Memory Elements 

Most FPGA architectures provide a dedicated memory element as part of the 

function block. Exceptions are the Actel Act1000 [2], and GEC-Plessey ERA 

[33, 45] architectures, which require the memory elements to be implemented 

from the basic function block. Typically, architectures have D-type registers or 

latches as the basic memory elements. In architectures with more than one out-

put from the function block, usually only some of the outputs are connected to 

memory elements. In all architectures, the configuration can choose to bypass 

the memory element if the output of the logic block is not registered. 

Most FPGAs are poor at implementing dense memory structures such as 

RAM. The Xilinx XC4000 [124] architecture overcomes this by allowing the 

configuration memory of the LUT to be used alternatively as a block of SRAM. 

The Oxford Parallel FPGA [110] also allows dense memory structures to be 

implemented using its CAM based function blocks. 

2.4 Reconfigurable Interconnect 

Current FPGAs use a wide range of interconnect architectures. The architec-

tures can be classified according to the type of basic interconnection resource 

provided and how the basic interconnect elements are joined together to form 

the routing network. Most architectures also provide special routing resources 
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for signals, such as reset and clock signals. 

2.4.1 Interconnect Elements 

FPGAs use a number of basic elements to interconnect their routing resources. 

These are described below. 

Bidirectional Interconnect 

In FPGAs using fuse based configuration (see Section 2.5), two wire segments 

can be joined simply by blowing a fuse. The connections are bidirectional, since 

signals can flow in either direction through the fuse. Crossbar switches can be 

constructed from a grid of overlap wires with fuses at the intersections. In FP-

GAs using SRAM configuration memories, bidirectional connections require 

pass transistors controlled by configuration bits. These interconnect elements 

require more silicon area than in fuse based architectures. Also, pass transist-

ors have a higher electrical resistance than fuses, so bidirectional buffering is 

required. The direction of buffering must be determined by additional config-

uration bits, as in the Xilinx XC3000 and XC4000 architectures [124]. 

Unidirectional Interconnect 

To avoid implementing bidirectional buffers, many FPGAs with SRAM con-

figuration memories, such as the Algotronix CAL [3],  constrain wires to hav-

ing one fixed driver. This constrains the direction of signal flow along wires 

within the architecture to be unidirectional. Unidirectional signalling leads to 

less flexibility in the use of the routing resources, but single direction drivers 

avoid the possibility of driver conflicts where multiple drivers drive signals to 

opposing values. 

Open Collector and Tristate Interconnect 

Architectures, such as the XC4000 [124] and Oxford Parallel [110], include in-

terconnect with open collector drivers. The advantage of open collector drivers 

is that wide input OR and AND gates can be constructed using wired logic. 

Indeed, older two-level programmable logics used wired logic to implement 

the bulk of their circuitry. The Xilinx XC3000 and XC4000 [124] architectures 

include tristate drivers, to allow bus-like structures to be built on the FPGA. 

When using tristate drivers, the designer has the responsibility of avoiding 
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driver conflicts, arising from more than one tristate driver driving the signal at 

any one time. 

2.4.2 Routing Networks 

Current FPGA. architectures provide two basic styles of interconnection net-

work based on separate routing channels or integrated routing and function 

blocks. The choice of interconnect network is strongly influenced by whether 

signals are unidirectional or bidirectional. Unidirectional architectures favour 

the point to point links used in integrated architectures, whilst bidirectional 

architectures favour the use of separate routing channels. 

Separate Routing Channels 

FPGAs that use a channel based interconnect network (such as Actel [2], Altera 

[4] and Xilinx [124]), emulate the style of routing in many MFGAs. In chan-

nel based routing topologies, routing channels run horizontally and vertically 

through the architecture. At the intersection of the channels, switchboxes al-

low signals to move from horizontal to vertical channels. Other switchboxes 

allow the function blocks to connect to the routing channels. Channel based 

routers usually supply a variety of different lengths of wire segments in the 

routing channel for local and non-local routing. Typically, many short seg-

ments are provided for local interconnect, with fewer medium length and full 

length wire segments for non-local routing. 

Integrated Routing and Logic 

Architectures such as the Algotronix CAL [3] have integrated routing and logic 

blocks. There is no clear differentiation between function block and routing as 

there is with channel based routing. Typically, routing in these architectures is 

based on a nearest neighbour mesh. A problem with nearest neighbour meshes 

is the lack of non-local routing. Earlier architectures, such as the CAL1024 [3], 

chose not to supply any at all. Later architectures such as the Xilinx XC6200 

[123] architecture include a hierarchy of non-local routing structures. 

Hybrid Routing Schemes 

The TRIPTYCH [55] and Atmel AT6000 [10] architectures combine aspects of 

both channel and integrated routing schemes. In TRIPTYCH, most connec- 

tions use local point-to-point links along a nearest diagonal neighbour mesh. 
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Additionally, function blocks are connected to vertical routing channels for 

non-local signals. In the AT6000 architecture, vertical and horizontal buses 

are provided in addition to the nearest neighbour mesh. 

2.4.3 Clock Routing 

Currently, all commercial FPGA architectures are geared towards the design 

of synchronous systems. Most architectures have dedicated clock routing to 

allow the distribution of a global clock signal with minimum skew across the 

FPGA. Typically, a choice of several global clock signals is given to allow two 

and four phase synchronous clocking schemes to be implemented. Most archi-

tectures also allow clocks to be driven from the local routing, but this option 

is rarely used, as it lacks the low skew characteristics of the dedicated clock 

routing. Furthermore, a number of different clocks operating asynchronously 

to each other creates interfacing problems. 

The alternative to implementing synchronous circuits on FPGAs is to use 

self-timed or asynchronous circuits, which do not require a global clock signal. 

Implementing self-timed circuits on current FPGAs is discussed in Chapter 4, 

and the design of dedicated FPGA architectures for implementing self-timed 

circuits is the subject of the rest of the thesis. 

2.4.4 Input/Output Interface 

At the edge of an FPGA, special blocks are needed to allow the input and out-

put of signals to and from the FPGA. Most commercial FPGA architectures 

try to limit the number of input and output pins to save on packaging costs. 

Several schemes are used to minimise the number of pins. 

The simplest is only to provide some of the inputs/outputs from the ar-

rhy as pins. Another alternative is to share input/output pins with the con-

figuration interface, since in most FPGA architectures, once the FPGA is pro-

grammed these pins are not used. However, this requires additional circuitry 

to implement the switching from configuration mode to input/output mode. 

An approach adopted in the Algotronix CAL1024 [3] architecture is to use tern-

ary signalling. Ternary signalling uses special circuitry to share an input and 

an output on the same pin. The illegal state when the output is being driven to 

a different value from the input is detected by special circuitry, and the value 

being received can be reconstructed from knowledge of the signal being driven 

on the line. FPGAs using addressable SRAM as configuration memory, such as 
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CAL [3], provide another option for input/output. Data can be read and writ-

ten into the array using the SRAM interface. Potentially, using this interface 

could alleviate the need for other input/output pins altogether, but currently 

no FPGAs have adopted this approach. 

A conflicting objective to minimising the number of pins is to allow the 

array to be naturally extended, which requires all input and outputs to be 

provided as pins. This is extremely costly; of all the FPGAs discussed, only 

CAL [3] manages this, and this is through its use of ternary signalling. Even 

providing all the necessary extensions, an array of FPGAs cannot be treated as 

a uniform array due to the magnitude of off-chip delays. 

One method of providing a large array of FPGA chips, which is as close as 

possible to one uniform array of function blocks is WSI (Wafer Scale Integra-

tion). An example of this approach is the Teramac [108] system built by HP 

Laboratories, which integrates several FPGAs on one MCM (Multi-Chip Mod-

ule). Also Isshiki et al [64] have built a MCM with 12 Xilinx XC3042 chips and 

an Aptix FPID (Field Programmable Interconnect Device) as additional inter-

connect. 

2.5 Configuration Memory 

Current FPGAs use two basic types of configuration memories: fuse based and 

SRAM based. The key difference between these two types of configuration 

memory is that SRAM based designs have the the potential to be reconfigured 

in-system, whilst fuse based designs need to be programmed externally to the 

system in a special programmer. However, fuses can be implemented more 

compactly, which leads to a different style of architecture from SRAM based 

ones, where the configuration memory is relatively expensive to implement. 

These two types of configuration memory are discussed below. 

2.5.1 Fuse based Configuration Memory 

Fuse based FPGAs use the same configuration method as the older two-level 

forms of programmable logic, such as PALs. In fuse based FPGAs, the con-

figuration is determined by the pattern of blown and unblown fuses. The 

principal advantage of fuse based configuration over SRAM, is that fuses are 

efficient to implement on silicon. At the silicon level, a fuse can be created 

at the crossing point of two wires. Special processing steps are used to make 

a thin layer of semi-conductor between the two wires that can be made non- 
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conducting (blown) by the application of high voltages. Many manufacturers 

[24, 4] use anti-fuses instead. An anti-fuse is the opposite of a fuse: it is non-

conducting until a high voltage is applied to it. Other types of fuses allow the 

configuration to be erased electrically or using ultra-violet light. Compact ar-

rays of fuses can be created using a grid of wires as in PLA-type architectures. 

The configuration of fuse based FPGAs requires a special programmer to 

generate the high voltages required to blow the fuses. The configuration in-

terface of fuse based FPGA allows the programmer to apply these voltages to 

each fuse individually in the architecture by having each fuse at the crossing 

point of a row and column to which the appropriate voltage can be applied. 

2.5.2 Static RAM Configuration Memory 

A major development of some FPGA architectures from older programmable 

logics is the use of SRAM for the configuration memory. The benefit of SRAM 

is that the configuration of the FPGA can be altered in-system, rather than 

needing the device to be removed from the system to a special programmer. 

A drawback of using SRAM is that it requires more silicon area since a SRAM 

cell implementation requires several transistors and associated wiring, whilst 

a fuse can be created simply at the crossing point of two wires. Another draw-

back is that the configuration is volatile, so needs to be reloaded every time the 

system is powered up. 
Two methods are used for configuring SRAM FPGAs. One option is to con-

figure the SRAM serially, as in the Xilinx XC4000 architecture [124] by provid-

ing all the configuration data to configure the FPGA in sequence. In serial 

access SRAM FPGAs, the configuration memory of the FPGA is implemented 

as a very long shift register. The use of the term SRAM (Static Random Ac-

cess Memory) by such FPGA manufacturers in this case is a misnomer, since 

clearly the access is not random. The advantage of a serial interface is that 

there is no need to supply address signals to the FPGA, to indicate which part 

of the SRAM is to be programmed. This leads to a saving in silicon area and 

pins required for the configuration interface. 

The alternative to serial access is a normal addressable SRAM interface as 

used in the Algotronix [3] and Atmel [10] FPGA architectures. The advantage 

of a true random access interface is that parts of the chip can be selectively re-

configured. In addition, the interface can be used to read back results from the 

array. The Xilinx XC6200 architecture [23] extends the basic SRAM access by al-

lowing the use of 'wild cards' in the address given to the SRAM, so that arrays 
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of repeated circuit elements in the array can be configured in one operation. 

2.6 Repetition, Hierarchy and Symmetry 

The previous sections have concentrated on the basic elements and structures 

used in FPGA architectures. This section focusses on some desirable higher 

level properties of an FPGA architecture, which arise from the way elements 

are put together. These features are particularly important to FPGA design 

tools which are used to generate the configuration of the FPGA. 

A fundamental requirement of an FPGA architecture is that the basic cell 

of the architecture can be replicated to form a regular array. A result of this 

repetition is that a design placed at one point in the array can generally be 

transposed to another position without change. All current FPGAs are based 

on a rectangular repeat pattern, but other shapes that give a regular covering 

of the silicon could be used, such as hexagons or equilateral triangles. Some 

FPGAs build the architecture as a hierarchy of elements, rather than using a 

simple repeating structure. The top level of the hierarchy is repeated across 

the silicon. For instance the Altera Flex 8000 [4] architecture consists of Logic 

Element Blocks grouped together into Logic Array Blocks. 

Another desirable property of an FPGA architecture is symmetry, which al-

lows designs to be rotated and flipped. This property is desirable for placement 

and routing software, since it allows more options for placement and routing 

of designs. Many architectures display reflective symmetry in one direction 

(such as the Cypress [24]) and some in two directions (such as TRIPTYCH [55]). 

Some also have rotational symmetry, for example, the Oxford Parallel [110] ar-

chitecture has rotational symmetry of order two, whilst the AT6000 [10] has 

rotational symmetry of order four. Another useful property, related to sym-

metry, is for the architecture to provide function blocks with interchangeable 

inputs. For example, LUT based function blocks allow any permutation of in-

puts to be used. This flexibility allows routing software more options in how 

to route signals to a function block. 

Many architectures add irregular features to their function blocks to im-

prove the implementation of certain functions. For example Xilinx [124] and 

Altera [4] provide special carry generators to improve implementation of coun-

ters and adders. With the emergence of the PREP [1] benchmarks as an indus-

trial standard, such features may increase with manufacturers striving to im-

prove their benchmark performance. However, less regular features are more 
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difficult for synthesis tools to use. For example the XC4000 [124] carry logic can 

only be used by a special XBLOX generator program rather than the standard 

placement and routing software. This is a similar observation to that made by 

RISC processor designers: complex features are difficult for compilers to use 

effectively. 

2.7 Dynamic Hardware Systems 

A key difference of many FPGA architectures over older forms of program-

mable logic is the use of SRAM for the configuration memory. Rather than 

needing a special programmer to be reconfigured, such devices can be recon-

figured in-system. The reconfigurability of SRAM FPGAs is more akin to soft-

ware than hardware: a configuration file can be loaded into the FPGA's con-

figuration memory and then rim in a similar way to software. In other words, 

SRAM FPGAs can act as 'soft-hardware'. Systems that exploit the reconfigur -

ability of SRAM FPGAs are often referred to as dynamic hardware systems. 

Current dynamic hardware systems can be classified into two groups de-

pendent on the system architecture. The first class of dynamic hardware sys-

tem consists of an FPGA and microprocessor with the FPGA being used as a 

co-processor. The second class of dynamic hardware system consists of a large 

array of FPGAs connected by a routing network, similar in structure to current 

parallel computers. 

2.7.1 Co-processor Dynamic Hardware Systems 

Co-processor dynamic hardware systems consist of a closely coupled system 

of FPGA and microprocessor. Computation is shared between the micropro-

cessor and the FPGA. In such systems, the FPGA is configured with a set of 

instructions adapted to the application problem. Good candidates for migra-

tion from software to the FPGA are inner loops of program code. Work at 

UMIST [85] is examining the automatic and user guided migration of target 

code from software to hardware. 

For co-processor systems to show significant performance gains, the per-

formance gain of the FPGA must outweigh the additional communication cost 

of going to the co-processor. Hence, it is preferable in co-processor dynamic 

hardware systems to place the microprocessor and FPGA on the same local 

bus, as in the HARP board [93] and EVC [21]. Both Page [94] and DeHon [28] 

argue that the natural progression is for FPGA co-processors to be integrated 
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on the same piece of silicon, very much as floating point units have migrated 

from being co-processors to being an integrated part of microprocessors. 

2.7.2 Large Array Dynamic Hardware Systems 

Large array dynamic hardware systems resemble parallel systems in many 

ways, and in particular massively parallel systems, such as the Connection 

Machine [58] or DAP [59] . Both consist of a large array of processing ele-

ments joined by a routing network, and are loosely coupled to a host com-

puter that deals with input/output and reconfiguration. The main difference 

between massively parallel computers and large array dynamic hardware sys-

tems is that the dynamic hardware systems do not have a global instruction 

issue. Instead, in dynamic hardware systems, the program is hardwired by the 

configuration. Another difference is that large array dynamic hardware sys-

tems have a more flexible interconnect architecture, but again it is fixed by the 

configuration. 

Both massively parallel computers and large array dynamic hardware sys-

tems have been targeted at similar application domains. Large array dynamic 

hardware systems have demonstrated superior performance on several prob-

lems compared to far more expensive parallel systems. The Splash and Splash2 

systems [6] have shown considerable speed-up on the searching of genetic 

databases [98] and the travelling salesman problem [49]. The PAM architec-

ture [12] has recorded the fastest implementation of the RSA cryptography 

algorithm [79]. The SPACE machine [89] has been used for road traffic simu-

lations. Cellular automata applications have been implemented by a number 

of researchers [90, 65, 63]. However, the lack of dedicated floating point units 

in large array dynamic hardware systems make them a poor match for many 

high performance computing applications. 

2.7.3 Models of Dynamic Hardware Systems 

In the previous section, current dynamic hardware systems were classified 

broadly into two groups based on the system architecture. Some machines 

do not fit well into either group. For example, systems such as ArMen [99] 

and CM2X [101] combine aspects of the co-processor and parallel system ap-

proaches. Both these machines are parallel computers where the processors 

have FPGA co-processors attached. 

Boloski et al [13] and Guccione [53] have suggested alternative methods of 
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classifying dynamic hardware systems, to the one adopted here. Both authors 

introduce a broad definition of reconfigurability. For example, an ALU in a nor-

mal processor can be regarded as a reconfigurable unit, with a small number 

of reconfiguration bits that define which arithmetic function that it performs. 

Boloski et al [13] use this idea to compare SIMD (Single Instruction Mul-

tiple Data) parallel computers and FPGAs. They consider FPGAs as a class 

of ELIW (Extremely Long Instruction Word) architecture. Since the instruc-

tion is so long, systems either load the instruction infrequently, as in FPGAs, 

or shorten the instruction by sending the same instructions to all parts of the 

array, as in SIMD parallel computers. Boloski et al argue for a hybrid architec-

ture, which consists of a local configuration as in a FPGA, along with a global 

instruction issue as in a SIMD array. 

Guccione [53] uses the concept of reconfigurable units to propose a clas-

sification scheme similar in spirit to Flynn's classification of parallel systems. 

He chooses to classify dynamic hardware systems by whether they have large 

or small reconfigurable units, and whether they include on-board memory. 

However, the difference between what constitutes a large or small reconfig-

urable unit is unclear, and does not lead to a clear classification scheme. 

2.7.4 Virtual Hardware 

Dynamic hardware systems introduce a new resource into computing archi-

tectures, namely reconfigurable hardware. Like other resources within a com-

puter, reconfigurable hardware is limited and often the need for more reconfig-

urable hardware than is available will arise. Virtual hardware systems attempt 

to give the illusion of more reconfigurable hardware than is actually avail-

able. Conceptually, virtual hardware is analogous to virtual memory. Virtual 

memory emulates a much larger memory space by swapping pages of memory 

between a much smaller physical memory space and a backing store. In vir-

tual hardware, a much larger area of reconfigurable hardware is emulated by 

swapping configuration data between reconfigurable hardware and a backing 

store. 

The term 'virtual hardware' is used by many authors to refer to any system 

composed of reconfigurable FPGAs. In this thesis, virtual hardware is used to 

refer to the class of system which involves swapping parts of a circuits to and 

from the FPGA during the operation of the circuit. The term dynamic hard-

ware system is used to refer to the more general class of system that utilises 

the reconfigurability of SRAM based FPGAs. 
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A key consideration in the design of virtual hardware systems is the time 

taken to reconfigure the array. If the reconfiguration takes longer than the time 

to perform the operations in software then there is no performance gain. Sev-

eral researchers, such as Ling [72] and DeHon [28],  have suggested minimising 

configuration times by having FPGA architectures with more than one con-

figuration memory so that one configuration can be changed whilst another 

configuration is in use. The benefits of such an approach are debatable, since 

configuration memory represents a large proportion of the silicon real estate of 

an FPGA architecture. It may be as effective to provide more reconfigurable lo-

gic, rather than provide extra configuration memories with additional circuitry 

to switch between different configuration memories. 

2.7.5 Current Virtual Hardware Systems 

Most implementations of virtual hardware to date have been limited to a fixed 

pattern of swapping circuits to and from known locations on the reconfigur -

able hardware. The advantage of such systems is that, as the pattern of swap-

ping is fixed and the location of the circuits known, then each configuration 

of the reconfigurable hardware can be simulated to check for correct opera-

tion. However, this approach requires algorithms that have clear boundaries 

between different stages. 

Several such applications have been in the domain of neural networks. The 

RRANN system [32, 31] divided the circuit between the different phases of the 

neural network, so different circuits were loaded for the back propagation and 

forward propagation stages of the algorithm. Lysaght et al [76, 75] adopt a 

different approach to implementing neural networks by swapping in different 

circuits for each layer of the neural network. 

More general virtual hardware systems have been built where the pattern 

of swapping and location of circuits within the virtual hardware is less limited. 

French et al [34] proposed a co-processor dynamic hardware system where the 

FPGA is used as instruction cache: instructions not already in the FPGA are 

loaded in when required. Writhlin and Hutchings [122] have implemented 

such a scheme called DISC (Dynamic Instruction Set Computer). Instructions 

may be dynamically loaded at any position in a one-dimensional space on the 

FPGA. An interesting feature of this system is that the microprocessor has been 

removed from the system and instead a small processor is configured on the 

FPGA itself. A dynamic paging system has been developed by Brebner and 

Gray [18] for a fax decoding circuit. In this system, pages of the fax decoding 
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circuit are loaded on demand when the circuit indicates a page fault. Work by 

Brebner [16,17] has also examined virtual hardware operating systems. 

Simulation work by Ling [72] has investigated the idea of performing the 

whole of a computation using virtual hardware. This complicates the archi-

tecture as circuits can communicate between pages of the virtual hardware. A 

mechanism must be provided for transferring results between two hardware 

pages, when potentially one of the hardware pages is not loaded into the re-

configurable hardware. 

2.7.6 Run-Time Parameterised Circuits 

Parameterisation of circuits is now a common part of many FPGA design tools. 

For instance, many graphical design tools allow the definition of a bit sliced 

component of arbitrary width, such as a N-bit wide adder. More comprehens-

ive parameterisation can often be achieved through use of a Hardware Design 

Language, for example, VHDL [62] or Ruby [74]. 

However, the parameterisation of these designs is fixed at compile time. 

Often, it would be useful for an application to specify the parameterisation of 

a hardware accelerator at run time rather than compile time. For example, a 

constant multiplier circuit is quicker and more compact than a general multi-

plier circuit. If a large number of data values are to be multiplied by a constant 

value, then it is beneficial to configure an instance of a parameterised circuit at 

run time, rather than using a general purpose multiplier circuit. 

Similar concepts are being explored in the context of partial evaluation in 

functional programming languages by Singh et al [107]. An important prop-

erty of run-time parameterised circuits is that they have the potential to out-

perform a dedicated hardware implementation. This arises since the dedicated 

hardware is optimised for solving a class of problems, whilst a run-time para-

meterised circuit is optimised to solve a particular instance of a problem. 

Run-time parameterised circuits share many of the same problems with vir -

tual hardware systems. The central issue is that the generation of the configur -

ation must be done quickly, otherwise the speed-up of using virtual hardware 

is lost in the time taken to generate the configuration and then reconfigure the 

FPGA. The central challenge to designers of these systems is ensuring that the 

configuration works as expected without having time to use complex place and 

route algorithms and delay analysis algorithms that are used in design tools. 
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2.8 Summary 

This chapter has discussed the basic elements of an FPGA architecture, and 

described the wide variety of architectures currently available. The latter part 

of the chapter described how the in-system reconfigurability of FPGAs with 

SRAM configuration memories is being used in dynamic hardware systems. 

Virtual hardware systems and run-time parameterised circuits were identified 

as classes of dynamic hardware system which present particularly challenging 

problems to researchers, since the FPGA configuration is often determined on 

the fly. 
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Chapter 3 

Self-Timed Systems 

3.1 Background 

Today, most digital systems are built synchronously. The synchronous ap-

proach has not always been dominant. Machines such as ORDVAC (1951) and 

MU5 (1969) were built asynchronously [35]. The synchronous design style has 

come to dominate for a variety of reasons, principally to do with ease of design 

and ease of testing. In the meantime, asynchronous design has been relegated 

to a niche academic discipline. However, the problems of clock distribution 

and power dissipation as clock frequencies increase are bringing the future 

dominance of synchronous systems into doubt. These problems coupled with 

improved asynchronous design styles, have led to a resurgence of interest in 

asynchronous design from academia over the last few years. Industry is now 

taking an interest in asynchronous design with Phillips [116], Intel [120] and 

Sun [109] funding research. 

3.2 Synchrony, Asynchrony and Self-Timing 

The terms synchronous and asynchronous are used in a variety of different 

ways and different contexts in both hardware and software communities. In 

this section, the definitions used in this thesis are introduced. At the systems 

level, a synchronous system is one where all the communication actions are syn-

chronised, typically by a global clock signal. In contrast, each communication 

Within an asynchronous system is independent of any other; there is no global 

synchronisation of the whole system. However, within an asynchronous sys-

tem, individual communications may be synchronised locally depending on 

the form of communication protocol used. 

Figure 3.1(a) illustrates the communication protocol used in synchronous 
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Figure 3.1: Communication Protocols 

systems. Data is transfered from sender to receiver on the tick of a global clock 

signal. Every communication in the system is synchronised by the global clock. 

Figure 3.1(b) shows another form of synchronised communication: a hand-

shaking protocol. The sender transmits data to the receiver together with an 

implicit or explicit request signal. Having received the request signal and 

the data, the receiver indicates receipt using the acknowledge signal. This re-

quest/acknowledge handshake synchronises the communication; the sender can-

not send more data until it has received an acknowledge from the receiver. 

Though the communication is synchronised, a system built using handshak-

ing protocols is asynchronous, since each communication is independent. 

An unsynchronised communication protocol is shown in Figure 3.1(c). The 

only difference from the handshaking protocol is the lack of acknowledge sig-

nal, but as a result the communication is not synchronised: the sender sends 

data when it wants, without waiting for the receiver. 

These communication protocols make a variety of different assumptions 

about the delays in the communication channel between sender and receiver. 

The globally clocked communication protocol assumes the data from the send-

er will be valid at the receiver before the next clock tick. This requirement 
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places a rigid limit on the delay of all modules in the system; every module's 

delay must always be less than the clock period. For the asynchronous com-

munication protocol of Figure 31(c), the assumption is that the receiver must 

always be able to process communications as fast as the sender can produce 

them, since there is no way for the receiver to regulate the incoming data flow. 

Thus, in the globally clocked protocol, the speed of the module is determined 

by the clock, and in the unsynchronised protocol, the speed of a module is 

determined by the rate of communications from the sender. 

In contrast to the other two protocols, the handshaking protocol of Figure 

3.1(b) is speed-independent: the protocol places constraints on the ordering of 

signals, but not on the time taken to produce or consume the communications 

by a module. Systems composed using handshaking protocols are known as 

self-timed; each part of the system proceeds at its own pace, rather than having 

its pace determined externally by a clock signal or by the arrival of data. Most 

modern asynchronous systems are self-timed and the terms are often used syn-

onymously in the literature. 

Though self-timed protocols make no assumptions about the time taken to 

produce or consume communications, different protocols do make different 

assumptions concerning the delays within the communication channel. Delay-

sensitive protocols make an assumption of similar wiring delays, so that an 

ordering in time of signals at the sender will arrive in the same order at the 

receiver. Seitz [104] refers to a region within a system where this assumption 

can be made as an equi-potential region. No such assumption is made by delay-

insensitive protocols: such protocols assume that any signal can be arbitrarily 

delayed, so an ordering in time of signals at the sender may arrive in a different 

order at the receiver. 

3.3 A Comparison of Self-Timed and Synchronous 
Systems 

The differences in the communication protocols described above lead to a wide 

range of differences in the systems composed using them. Below the benefits 

and drawbacks of self-timed systems relative to synchronous systems are con-

sidered. In the comparison, systems that use unsynchronised communication 

(i.e. asynchronous but not self-timed) are excluded. Such systems have prop-

erties of both self-timed and synchronous systems, but do not possess some of 

the key advantages of self-timed systems such as robustness and modularity. 
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Asynchronous communication comes into its own when communicating over 

• distance, so that waiting for the acknowledge signal to return, or distributing 

• clock incurs a significant performance penalty. Asynchronous communica-

tion protocols are considered in [113]. 

3.3.1 Advantages of Self-Timed Systems 

Modularity 

Self-timed modules may easily be composed into a working system. For delay-

insensitive modules, the modules can simply be joined together and the com-

position will work. For delay-sensitive modules, the modules must be connec-

ted using similar wiring, so that signals are not re-ordered. The modularity 

of self-timed systems allows incremental change; a module can be replaced by 

one with similar functionality, but different performance and the composition 

will still work. In contrast, synchronous systems are less modular, since the 

designer is always concerned with whether each module and the wiring will 

meet the global clock constraint. 

Robustness 

Synchronous systems are generally dependent on an external clock source for 

timing. Localised effects, such as temperature and operating voltage, that af -

fect the delays within the system do not affect the external clock source. Hence, 

a synchronous system may fail at higher temperatures, or at low voltages when 

the internal delays exceed the clock period. 

Self-timed systems are more robust since they rely on internal sources of 

timing for their operation, so all the delays in the system are scaled by the 

environmental effects. As a result, self-timed systems have the potential for 

increased performance over synchronous systems where the worst case envir-

onmental conditions have to be assumed. 

Delay-insensitive self-timed systems are particularly robust with respect 

to environmental effects, since there are no assumptions made about signal 

delays except for isochronic forks (see Section 3.4.3). Such systems are robust 

to large changes in temperature and voltage [83]. Also, delay-insensitive cir-

cuits can easily be migrated to different implementation technologies (such as 

Gallium Arsenide [1121). 



No Global Clock 

In synchronous systems, much effort has to be spent in ensuring that the global 

clock signal goes reliably to all parts of the circuit. Avoiding clock skew be-

comes very costly in terms of power, and clock routing area as a synchronous 

system becomes larger and the clock frequency becomes higher. It is reported 

that the DEC 21064 Alpha [30] uses six levels of clock buffering in distributing 

the clock signal, and has 'a 30W power requirement. In self-timed circuits, the 

timing information only has to be consistent locally rather than globally, which 

is much simpler to ensure. 

Average Case Performance 

Self-timed modules generate their own timing signals, so can pass on results 

at their own speed, instead of having to wait for the next global clock change. 

This allows self-timed circuits to utilise the average case performance of the 

circuit rather than being limited by the worse case performance as synchronous 

systems are. 
This fact also allows the use of area efficient implementations, which are 

impractical in synchronous systems because the worse case delay is so much 

larger than the average case delay. For example, with an N-bit adder, a circuit 

where the carry ripples up the circuit can be used, as the worst case will only 

occur on average once in 2s  additions (see [44] for a more detailed analysis of 

self-timed adders). 

Low Power 

In CMOS circuits, the static power consumption is almost zero. However, 

the constant changing of a global clock signal in a synchronous system causes 

transitions to be continually passing through the system, resulting in dynamic 

power consumption even when no valid data is passing through. In self-timed 

systems, transitions are only produced when data is passing through the sys-

tem; there is no dynamic power consumption when the system is idle. 

Meta-stability 

All synchronous systems have the potential for failure when interfacing with 

their external environment. The problem arises when sampling an external 

signal that is not synchronised to the global clock. The signal may be changing 

when sampled, which can lead to the sampling flip-flop entering a meta-stable 
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state: a state where it is unable to decide whether the sample was a logic one 

or zero. This meta-stable state will eventually resolve to logic one or logic zero, 

but takes an arbitrary amount of time to do so. 

Circuits can be built that detect the end of a meta-stable state, but the signal 

that indicates the end of meta-stable state is itself not synchronised to the clock, 

so the problem repeats itself. However, in a self-timed system, there is no 

clock to synchronise to, so the self-timed system can wait for the resolution of 

the meta-stable state before continuing. Seitz [104] discusses meta-stability in 

more detail. 

Flow Control 

Many systems need to regulate the flow of data between different parts of the 

system, for example, to prevent a buffer over filling or to share a resource 

between different processes. Within synchronous systems, flow control has 

to be implemented using additional circuitry which mimics the handshaking 

protocols of self-timed systems. In self-timed systems, flow control comes for 

free as part of the communication protocol. 

3.3.2 Disadvantages of Self-Timed Systems 

Extra Circuitry 

Self-timed circuitry is generally larger than equivalent synchronous circuitry 

as they must generate their own timing signals. The degree of overhead de-

pends on the communication protocol used. Bundled-data protocols (see Sec-

tion 3.4.2) only require two extra signals, a request and an acknowledge, so 

are efficient to implement if the data bundle is relatively large. Simple delay-

insensitive protocols (see Section 3.4.3) use two wires to transmit one data bit 

so have greater area overheads. 

Testing 

Testing self-timed systems for defects is harder than in the synchronous case. 

In a synchronous system there is a clear transition from one global state to 

another on the tick of the global clock. The clock can be used to single step 

the system so that there is time to ascertain the current system state. Addi-

tionally, if a manufacturing defect results in increased internal delays within 

a synchronous system, then the system can simply be run at a slower clock 
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speed. In a delay-sensitive self-timed system, the part may be useless, unless 

some method for altering the internal timing delays is provided. 

Difficult to Design 

Asynchronous circuits have a reputation for being difficult to design. Partly 

this is because they lack the clean change of global state that occurs in syn-

chronous circuits, and partly it is due to the possibility of race and hazard con-

ditions. This is one of the most frequently quoted reasons why most circuits 

are built in a synchronous fashion. 

The actual difficulty of asynchronous design depends on the style chosen. 

Many early asynchronous design styles [114,71] used unsynchronised commu-

nication protocols rather than self-timed protocols. Such circuits were depend-

ent on the fact that the feedback loop to establish the new state of the circuit 

was faster than the time taken for a new input to arrive (known as fundamental 
and input/output mode circuits). Such design styles needed careful design to 

avoid races and hazards. 

Most modern asynchronous circuits use self-timed protocols. Bundled-data 

systems (see Section 3.4.2) are similar to synchronous systems in that the same 

data path is used. Once the different timing style has been understood, they are 

no more difficult to design then synchronous systems. Delay-insensitive proto-

cols are more difficult to design because the designer must still be conscious of 

possible races and hazards. However, synthesis tools (such as [82, 119]) have 

been developed that automate this translation process, eliminating race and 

hazard conditions from designs. On a larger scale, self-timed circuits become 

easier to design due to other properties such as modularity and robustness. 

3.4 Self-Timed Communication Protocols 

So far, only the general nature of self-timed communication protocols has been 

discussed. This section examines in detail the wide range of self-timed com-

munication protocols that are used. The protocols can be classified at sev-

eral levels. At the lowest level, protocols have to attach significance to the 

transitions of individual signals within the protocol. Once the significance of 

individual transitions is determined, the protocols need to encode the data 

and request signals. The encoding of the data and request signals determine 

whether the protocol is delay-sensitive or delay-insensitive. Finally, the proto-

cols need to determine the conventions for the ordering of the handshaking sig- 
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nals. These issues are discussed below. Hauck [54] gives further background 

on self-timed communication protocols. 

3.4.1 Signalling Conventions 

In self-timed protocols, transitions on wires are often more important than the 

actual level. Most self-timed communication protocols come in several variet-

ies that differ in which transitions are significant within the protocol. Proto-

cols where all transitions on wires are significant are termed two-phase, trans-

ition, event or non-return-to-zero (NRZ) protocols. The term two-phase proto-

cols refers to the two transitions used in the request/ acknowledge handshake. 

Protocols where transitions in one direction only (logic zero to one or logic one 

to zero) are significant are termed return-to-zero (RZ) or four-phase protocols. 

Four-phase signalling requires an additional redundant return-to-zero or re-
covery transition before the next significant transition, thus four transitions are 

involved in the request/ acknowledge handshake. In four-phase signalling, 

the choice of which transition is significant can be different for different wires 

within a system. 

Both two-phase and four-phase signalling have advantages. Two-phase 

signalling involves fewer transitions on a wire so can be faster and use less 

power than four-phase signalling, which requires two redundant transitions. 

However, the redundant transitions in four-phase protocols can be overlapped 

with the computation phase within a module. Hence, two-phase signalling is 

only significantly faster when communication time for the handshake is longer 

than computation within the module. An advantage of four-phase signalling 

is that the circuitry is often much simpler as the signals are in the same state at 

the end of the handshake, which can lead to performance advantages merely 

because of smaller circuit size [95]. Another option is to use the redundant 

transitions in a four-phase protocol to indicate another sequential event, for 

example, acknowledge and release signals in four-phase arbiters can be com-

bined. 

An alternative to two-phase and four-phase signalling is single-track hand-

shaking [115]. Single-track handshake circuits use the same wire for request 

and acknowledge signals. The sender pulls the wire high to indicate a request 

and the receiver pulls it back low to indicate an acknowledge. A benefit of 

this approach is that it only uses a single wire with two phases and returns the 

signal to its initial state. However, complex driving and detection circuits are 

required for the single-track approach. 
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3.4.2 Bundled-Data Protocols 

In bundled-data protocols (Figure 3.2), a data bundle is passed to the receiver 

together with a separate request signal. A transition on the request signal sig-

nifies valid data on the data bundle. Hence the request must only be asserted 

after the data is valid; this is known as the bundling constraint. Bundled-data 

protocols are delay-sensitive, since even though the request wire is asserted 

after the data at the sender, arbitrary delays in wires could result in this order-

ing not holding at the receiver. 

Sender DataN Receiver 

DataO 

Figure 3.2: Bundled-Data Protocol 

Request 

Acknowledge 

Data 

Two-Phase Bundled-Data Protocol 

Request 

Acknowledge 

Data 

Four-Phase Bundled-Data Protocol 

Figure 33: Bundled-Data Protocol Timing 

Figure 3.3 illustrates the timing of two-phase and four-phase bundled-data 

protocols. In both protocols, a transition on the request signal signifies that the 

data is valid. When the receiver has captured the data, it asserts the acknow-

ledge signal to signify to the sender that it can change the values on its data 

lines. In the two-phase protocol of Figure 33(a), this completes the handshake, 
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and the protocol is repeated for transitions on the handshaking signals in op-

posite directions. In contrast, the four-phase bundled-data protocol (Figure 

3.3(b)) has an additional recovery phase during which the request followed by 

the acknowledge signals are reset to their original states. 

3.4.3 Delay-insensitive Protocols 

Delay-insensitive protocols make the assumption that arbitrary delays can be 

introduced on any signal. Hence an ordering in time of signals at the sender is 

not necessarily preserved at the receiver. 

Martin [81] shows that only a very restricted class of circuit can be made 

delay-insensitive at the transistor level. He argues that the best compromise to 

delay-insensitivity that can be made is the use of isochronic forks. An isochronic 

fork places a one-sided bound on certain delay paths of transitions from a fork-

ing (fanning out) signal. By using isochronic forks at the transistor level, gates 

with delay-insensitive interfaces can be built, so at higher levels of abstraction, 

delay-insensitive systems can be built. 

Due to the arbitrary signal delay, a single request signal that indicates the 

validity of the data cannot be used, since the request signal may be re-ordered, 

so it arrives before the data signals. Instead, delay-insensitive protocols com-

bine the data and request signals into a codeword. The codewords are ar-

ranged such that any subset of the transitions composing a codeword are not 

codewords themselves. Hence, when a receiver receives a codeword, it knows 

that it has received all the transitions from the sender, and can safely return 

an acknowledge signal. Verhoeff [117] discusses the mathematics of delay-

insensitive codes in more detail. 

Acknowledge 	I 	I 	I 	I Acknowledge 

Sender 	Datal • Receiver 	Sender 	 Data • Receiver 

DataO 	 Parity 

(a) Dual Rail Code 	 (b) Data/Parity Code 

Figure 3.4: Delay-Insensitive Communication of One Bit 

The simplest delay-insensitive protocols transmit one bit of data, and hence 

require two codewords. The most common one-bit code is the dual-rail code 
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(Figure 3.4(a)). In the dual rail-code a transition on one wire indicates the value 

one and a transition on the other indicates the value zero. An alternative is to 

use a data/parity code (Figure 3.4(b)). The data/parity code uses a data signal 

that signals a change in the data value, and a parity wire that signals when 

there is no change in the data value. An advantage of this code as a two-phase 

encoding scheme (as used by McAuley [84]) is that the data value is always 

available on the data line. Such codes where the data is available without the 

need for encoding/ decoding, are known as systematic codes. 

A variety of codes exist to transmit more than one bit of data. The simplest 

technique is simply to encode each bit using the one-bit protocols discussed 

previously. However, this requires two wires for each data bit, which is costly. 

Delay-insensitive codes that use less than two wires per bit require more com-

plex encoding/decoding. An example are k-out-of-n protocols. Each codeword 

involves k transitions from n wires, thus k-out-of-n protocols allow n choose k 
values to be communicated. 

Sperner codes, a class of k-out-of-n code, are the optimal delay-insensitive 

code, in the sense that they maximise the number of codewords for a given 

number of wires, but are difficult to encode/decode. Knuth codes are a subset 

of Sperner codes which are easier to encode/decode. A disadvantage of both 

Sperner and Knuth codes are that they are non-systematic. An alternative sys-

tematic encoding that uses less than two wires per bit are Berger codes. In a 

Berger code the data is transmitted along with a binary number (known as the 

parity) indicating the number of zeros in the data. 

3.4.4 Handshaking Conventions 

Several options exist within handshaking protocols, concerning whether the 

sender or receiver initiates the handshake. Protocols initiated by the sender 

are known as push handshaking protocols (the sender 'pushes' the data to the 

receiver). Receiver initiated handshaking protocols are known as pull protocols 

(the receiver 'pulls' the data from the sender). Another option within the hand-

shaking protocol is to implement a two-way data transfer. Data is transfered on 

both the request and acknowledge phases of the handshake. 

3.5 Self-Timed Circuit Implementation 

The preceding discussion focussed on the protocols themselves rather than 

on their implementation. This section examines some basic circuit elements 



used in the implementation of self-timed circuits, which will be used in later 

chapters. 

In particular, the C-Muller gate is described, which forms the basic syn-

chronisation element in a large number of self-timed implementation styles. 

Building on the C-Muller gate, self-timed pipelines are discussed using the ex-

ample of Sutherland's Micropipelines [111]. Also, Sutherland's choice of con-

trol blocks is examined, since these are typical of the control blocks used in a 

variety of self-timed circuit design styles. 

3.5.1 The C-Muller Gate 

The C-Muller gate or Rendezvous element (see Figure 3.5) forms the basic syn-

chronisation element in many self-timed circuits. In event-based (two-phase) 

signalling, the C-Muller gate can be thought of as acting as an AND gate for 

events: the C-Muller gate will not generate an output event until events have 

occured on all of its inputs. 

Figure 3.5: Two-Input C-Muller Gate 

The statement that the C-Muller gate acts as an AND gate for events re-

quires two caveats. Firstly it is costly to implement a true event-based AND 

gate where the direction of transition is completely irrelevant. It is much easier 

to implement a gate if the initial level of the input and output signals is known. 

Typically, it is assumed that initially the C-Muller gate's output is logic zero 

and that all inputs are logic one. Given these initial conditions, the behaviour 

of the C-Muller gate can be described easily as a two state finite state machine 

(Table 3.1). 

Inputs Output 
all logic 0 logic 0 
dissimilar no change 
all logic 1 logic 1 

Table 3.1: C-Muller Gate Next State Table 

The second aspect of the C-Muller gate's behaviour that differs from the 

AND gate for events model concerns the effect of multiple events on an input 
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whilst there is no output event. Ideally, an AND gate for events would allow 

multiple events to queue up, but it is impossible for a C-Muller gate imple-

mentation to store an unbounded number of events. Hence, the C-Muller im-

plementation restricts the inputs such that only one event may occur on each 

input before an output event occurs. If a second event does occur then they 

cancel each other out. 

Figure 3.6: Asymmetric C-Muller Gate 

In four-phase signalling protocols, transitions in only one direction are sig-

nificant. This leads to circuits where synchronisation is only required on trans-

itions to one particular logic value of a signal. Asymmetric C-Muller gates allow 

synchronisation on transitions in one direction only. Figure 3.6 shows a three-

input asymmetric C-Muller gate. The inputs marked with + and - signs, only 

synchronise on transitions to logic '1' and logic '0' respectively. The unmarked 

input acts as a normal C-Muller gate input and synchronises on transitions to 

both levels. 

3.5.2 Micropipelines 

Micropipelines are a style of two-phase bundled-data pipeline introduced by 

Sutherland [111]. Figure 3.7 illustrates a generic bundled-data pipeline. The 

data path is similar to a synchronous pipeline, except that the latches are con-

nected to a local timing control block, rather than being connected to a global 

clock. The timing control block deals with generating the request and acknow-

ledge signals for the self-timed protocol and provides the necessary capture 

and pass signals for the latches. A Micropipeline is a specific example of a 

self-timed pipeline that uses a two-phase bundled-data protocol. 

Figure 3.8 shows the basic timing block for Micropipelines, and a complete 

Micropipeline is shown in Figure 3.9. The behaviour required of the timing 

control block is that it will not capture data until there is a request event from 

the previous stage and an acknowledge event from the next stage. Synchron-

isation on these two events is done by the two-input C-Muller gate which 

forms the basis of the timing block. The pass signal is generated directly from 
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Figure 3.7: A Self-timed Pipeline 

the output acknowledge, since once the next stage has latched the data, the 

current stage's latches can go to the pass state. 

Rin 	I 	 Aout 

C) 

	

Ain 	 c------- Rout 

Capture Pass 

Figure 3.8: Micropipeline Timing Block 

Two additional elements are added to the basic C-Muller gate. First, the 

output acknowledge signal, Aout, is inverted. The effect of this is that when 

the first request event is received, there is no need to wait for an acknowledge, 

since Aout is already at the required level. This is the required behaviour, since 

when the first request is received, there is no data further along the pipeline 

that needs to be acknowledged. 
The second addition is a delay element, represented by the oval on the out-

put request wire. This delay is required so that the output request Rout is 

asserted after the data is valid, so that the bundling constraint of the bundled-

data protocol is met. In Micropipelines [111], Sutherland uses the routing delay 

on distributing the capture and pass signals to delay stages, with the addition 

of delay elements, if required, to meet the bundling constraint. 

Typically, data and the associated request acknowledge events are regarded 

as moving forward in the Micropipeline. However, when the pipeline is nearly 

full, it is useful to consider, events propagating back from the output, as a 

bubble or empty register stage passes back in the pipeline, and all the data 

stored passes forward by one stage. Greenstreet et al [52] argue that the num- 
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Figure 3.9: A Micropipeline 

ber of bubbles is critical to the behaviour of self-timed pipelines when they are 

nearly full. 

An observation that Sutherland is keen to point out is the symmetry in Mi-

cropipelines. First, there is a clear symmetry between the request and acknow-

ledge signals which are identical apart from the inversion of the acknowledge. 

Second, there is the symmetry of viewing the pipeline as data propagating 

forward through the pipeline or as bubbles propagating backwards. Suther-

land is also keen to point out the analogous behaviour of such pipelines with 

other phenomena such as wave propagation, and to compare bubbles with 

hole propagation in semiconductors. 

3.5.3 Micropipeline Control Blocks 

Sutherland uses a variety of control blocks for Micropipelines, which provide 

similar functions to control blocks proposed for other self-timed design meth-

odologies. The functions provided by these blocks allow the branching and 

merging of control flow in self-timed circuits. The Micropipeline control blocks 

are illustrated in Figure 3.10 and are described below. 

Merge Gate 

Figure 3.10(a) illustrates the Merge gate. As the name suggests, its behaviour 

is to merge event flows together. Events on either Rini or R±n2 cause an 

output event on Rout. In two-phase protocols, the Merge gate is generally 

implemented using an XOR gate. However, this can causes problems, when 

the events Rini and R1n2 are not mutually exclusive, since when both input 

events occur, the output will return to its original level. If mutual exclusion 

cannot be guaranteed then the Merge gate's behaviour has to be extended to 

arbitrate between its inputs. 
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Figure 3.10: Micropipeline Control Blocks 

Select Gate 

The Select gate causes a branch in the control flow. The input event Rin is 

directed to one of two outputs depending on the value of the select input, D. 

The value of D must be established before Rin occurs for correct operation of 

the Select gate. 

Toggle Gate 

The Toggle gate, is similar to the select gate in that it causes a branching in 

the event flow, but it lacks a select signal. Instead input events are passed 

alternately to the outputs. The dotted output on a Toggle gate indicates that 

this is the output to which the first input event is directed. 

Call Module 

The Call module performs an analogous function to a software procedure call: 

it allows a common section of data path to be accessed from several different 

points. Unlike the previous control blocks, the Call module operates on pairs 

of request/ acknowledge handshaking signals. Incoming requests are directed 

to the output request Rout. When the output acknowledge Aout is received, 

this is directed back to the appropriate input acknowledge. If the input request 
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events are not mutually exclusive then some form of arbitration is required 

within the Call module. 

Arbiter 

Figure 3.10(e) shows Sutherland's Arbiter module. The Arbiter module arbit-

rates between two possibly concurrent requests Ri and R2 and will only pass 

one through at a time to the grant outputs Gi and G2. The Dl and D2 signals 

are used to release the resource. Either the grant signals or the release signals 

can be used to generate acknowledge signals for the input request, depending 

on the behaviour required of the Arbiter. 

3.6 Current Research 

Much of the research into asynchronous systems has concentrated on the syn-

thesis of delay-insensitive circuits. Such circuits are suited to automated syn-

thesis, since only the ordering of events is important and not their actual tim-

ing. Hence, reasoning about actual delays is not required, so a good mapping 

of the problems can be made to abstract formalisms, such as process algebras. 

Martin [80] developed a synthesis method based on CSP, whilst Weber et al 

[119] synthesised circuits using CCS. Others researchers have used specialised 

representational forms such as trace theory [29]. Petri Net based State Trans-

ition Graph (STG) representations [70] are another common representational 

form for the synthesis of asynchronous circuits. However most current tools 

such as Assassin [125] involve creating a reachability graph of the Petri Net 

that suffers from the state explosion problem. Semenov et al [105] are looking 

at compact representations using partial orders to solve this problem. 

The most mature of the synthesis tools that have been developed is the 

TANGRAM compiler [67] developed at Phillips Research. TANGRAM has 

been used in the synthesis of a Digital Compact Cassette (DCC) decoder sys-

tem. An interesting feature of the TANGRAM tool is that it is flexible enough 

to produce both delay-insensitive dual-rail encoded circuits and bundled-data 

circuits. The bundled-data version [116] of the DCC chip out performs the 

dual-rail version in area by 40% and in speed by a factor of three. In compar-

ison to a synchronous design, the bundled-data design had an area overhead of 

less than 20% and used five times less power. When a novel voltage switching 

scheme was introduced, the power saving increased to a factor of twenty. 

The most complex systems that self-timed design has been applied to are 
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microprocessors. Martin, using CSP synthesis methods implemented a small 

processor [82] that displayed increased resilience to temperature and voltage 

effects [83]. The AMULET project at the University of Manchester have been 

involved in the implementation of self-timed versions of the ARM micropro-

cessor. The AMULET1 chip [39] is a functionally equivalent version of the 

ARM microprocessor built using Micropipelines. Though AMULET1 demon-

strated the viability of producing large scale self-timed parts, AMULET1 used 

more silicon and power for less performance than the comparable ARM6 pro-

cessor. The successor AMULET2e [36, 38] includes additional features such as 

on-board RAM for embedded systems applications. The main difference in the 

underlying implementation is a switch from two-phase to four-phase bundled-

data protocol. AMILJLET2e gives performance at 33V which is better than the 

ARM7 chip, but behind that of the ARM8. However, the power/performance 

ratio is comparable with that of the ARM8 chip. 

Other researchers have examined alternative processor architectures spe-

cifically designed for asynchronous control. The Counterfiow processor archi-

tecture [109] has two pipelines, one for results and one for instructions and 

operands, which flow in opposite directions. Instructions and results interact 

as they move along the pipelines. The MAP architecture [8, 1001 introduces 

a model for decentralising control in a microprocessor to the functional units 

called 'Micronets'. Current work [7] is looking at the design of a super-scalar 

asynchronous processor using Micronets. 

Other researchers have examined systems that combine elements of both 

asynchronous and synchronous design styles in what are often termed Globally 

Asynchronous Locally Synchronous (GALS) systems. The aim of these approaches 

is to allow the incorporation of synchronous designs into larger asynchronous 

systems with minimal modification, so that synchronous design experience 

and tools can be used within asynchronous systems. Arguably, bundled-data 

systems in general can be classed as a GALS approach, since the only modifica-

tion to a synchronous data path that is required is to source the register control 

signals from a local timing control block rather than from a global clock, and 

possibly change the style of memory elements (as in Micropipelines [111]). Go-

palakrishnan and Josephson [48] give a good overview of various GALS meth-

odologies, and their terminology is adopted here. Most approaches can be 

classified as using either a stoppable clock, that is restarted by the arrival of data, 

for example Asynchronous Wrappers [14,15] and Chapiro's original work on 

GALS [22]. Others approaches use a stretchable clock (eg. Q-Flops [103], Go- 
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palakrishnan and Josephson's work [48] and STRiP [27]), which delay the next 

clock cycle until meta-stability has been resolved and/or a data-path comple-

tion signal is received. 

3.7 Summary 

The key benefit of self-timed protocols is their speed-independence, which al-

lows different parts of a system to run at their own rate, rather than being 

forced to operate at a rate determined by a global clock. This leads to increased 

modularity and robustness, in comparison to synchronous systems, and allows 

data dependent delays to be exploited. The latter part of the chapter discussed 

various self-timed protocols, and in particular the bundled-data protocols that 

are used in the self-timed FPGA architectures developed in this thesis. 
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Chapter 4 

Self-Timed FPGAs 

4.1 Introduction 

The key idea of this thesis is that the speed-independence of self-timed proto-

cols make them ideally suited to the reconfigurabiity of FPGAs. In particu-

lar, current dynamic hardware systems are limited by synchronous protocols, 

since changes to the structure or environment of a circuit, change its delay char-

acteristics and hence may increase the circuit's delay beyond that of the global 

clock period. This chapter takes this initial idea and refines it by addressing 

two questions: what benefits can be expected from self-timed FPGA systems 

and what is the best way to obtain these benefits? 

The first question is addressed in Section 4.2, which considers the bene-

fits of self-timed FPGA systems in general, and Section 4.3 which considers the 

specific benefits of self-timed dynamic hardware systems. The second question 

of how to obtain these benefits is considered in the latter half of the chapter. 

Section 4.4 discusses implementation of self-timed circuits on current FPGA ar-

chitectures. The problems encountered with implementing self-timed circuits 

on current FPGAs has led to the proposal of dedicated asynchronous FPGA 

architectures; these are discussed in Section 4.5. The solution proposed in this 

thesis, STACC, is described in the following chapter. 

4.2 Motivation for Self-Timed FPGA Systems 

In the previous chapter, the benefits and drawbacks of self-timed systems rel-

ative to synchronous systems in general were discussed. This section examines 

how these properties can be gainfully utilised or avoided in the specific con-

text of FPGAs. Many of the potential benefits are specific to dynamic hardware 

systems, and are left for discussion in the following section on the motivation 
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for self-timed dynamic hardware systems. 

Several assumptions are made below when discussing the advantages of 

self-timed circuits on FPGAs. First, it is assumed that the mapping algorithms 

(i.e. partitioning, placement and routing) are working with self-timed ele-

ments. If the underlying function blocks of the FPGA architecture are not self-

timed elements then self-timed elements need to be produced from the func-

tion blocks by performing some local placement and routing. Additionally, for 

bundled-data systems, it is assumed that the routing of the FPGA architecture 

is such that the bundling constraint will be maintained. The validity of these 

assumptions is considered later in Section 4.5 

4.2.1 Benefits of Self-Timed Circuits on FPGAs 

Partitioning and Extensibility 

Compared to other ASIC implementation styles, FPGAs can implement less 

logic per device, so the partitioning of designs is more common. Problems 

arise in partitioned systems from the difference between off-chip and on-chip 

delays; in synchronous designs, the off-chip delays can drastically reduce the 

clock speed of a design. Partitioning algorithms can help with the problem, but 

often re-design of the system is needed to explicitly cope with the partitioning. 

In contrast, self-timed protocols allow designs to extend naturally across 

several chips. An array of FPGAs can be treated as a uniform array of cells, 

since the self-timed protocols accommodate the additional off-chip delays. A 

further advantage of self-timed FPGAs is that the performance degradation 

from off-chip links will only affect the systems performance when the off-chip 

links are in use. In a synchronous systems, unless the system is re-designed to 

wait multiple clock periods for the off-chip links, the performance penalty of a 

longer clock period is incurred whether or not the off-chip link is used during 

a particular clock cycle. 

Saturated Routing 

In FPGA designs with high logic utilisation, the interconnect can become sat-

urated, causing many signals to be placed on long snaking paths through the 

FPGA. This can severely limit the clock rate of synchronous designs. In self-

timed designs, these paths can be allocated to infrequently used signals, which 

will only limit performance when the signal path is used. 



Faster Mapping and Design Turn Around 

In synchronous systems, detailed timing analysis of all signal paths is needed 

to ensure that the result of routing, placement and partitioning of a design 

meets the global clock constraint. Because of the speed-independence of self-

timed designs, any route, place and partition of self-timed modules that imple-

ments the required connectivity will produce a correctly functioning system. 

Detailed timing analysis is only required to improve the performance of the 

mapping rather than to ensure a working system. Thus, initial mappings may 

be done quickly, enabling faster design turn-around. Detailed timing analysis 

for improved performance can be reserved for the mapping of the final design. 

Migration to Different FPGA Architectures 

Currently, there are a large number of commercial FPGA architectures pro-

duced with a wide range of speed grades and array sizes. The robustness of 

self-timed designs to delays eases the process of migrating designs between 

different FPGA architectures. 

4.2.2 Disadvantages of Self-Timed Circuits on FPGAs 

Area Overhead 

This drawback has already been mentioned when discussing the disadvant-

ages of self-timed circuits in general. However, the problem with FPGAs is 

more acute, since FPGAs use of the order of ten times the area of a dedicated 

silicon circuit to implement the same system. Thus, the extra area required for 

a self-timed circuit is consuming a scarce resource. 

Interfacing with Synchronous Systems 

FPGAs are commonly used for implementing sub-systems within larger sys-

tems. If the rest of the system is synchronous, it makes little sense to use an 

asynchronous FPGA. 

4.3 Self-Timed Dynamic Hardware Systems 

The previous section outlined the potential benefits of self-timed FPGAs with 

regard to static designs. However, the speed-independence of self-timed cir- 

cuits makes them ideal for use in dynamic hardware systems. The ability to 
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alter the shape or layout of a circuit, and hence the delay without it causing the 

circuit to fail seems to be the key to exploiting dynamic hardware. 

Figure 4.1: Idealised Model of Virtual Hardware 

The benefits are illustrated by the idealised model of a virtual hardware 

system shown in Figure 4.1. The system is composed of a 3 x 3 array of FPGA 

chips, each containing a 4 x 4 array of hardware pages. A number of different 

circuits are swapped in; these are represented by the different coloured blocks 

in the figure. The management of the virtual hardware for such a system is 

essentially a two-dimensional version of the problem in a segment based vir-

tual memory. The virtual hardware manager must allocate a contiguous two-

dimensional area of reconfigurable hardware which is of the correct shape for 

the circuit that is to be swapped in (the problem is in many ways similar to that 

encountered in the computer game Tetris). 

An attempt to build such a system using synchronous technology is go-

ing to run into several problems. One problem is determining the clocking 

period for the reconfigurable hardware. This is determined by the slowest cir-

cuit swapped in, but changes every time a new circuit is swapped in. Also, the 

virtual hardware manager must ensure that no circuit is split across several 

FPGAs, otherwise the off-chip delays will cause the circuit to fail to meet the 

global clock constraint. Other problems occur with the interfacing of software 

to hardware. The speeds at which hardware and software are running are dif-

ferent, so some kind of flow control is required between the two. Indeed, flow 
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control is also needed between hardware communicating with hardware, since 

it is possible that one circuit has not yet been swapped into the virtual hard-

ware. 

The problems with synchronous dynamic hardware systems are expanded 

on below, and it is shown how self-timed circuits overcome these problems. 

Modules Operate Independently 

In a synchronous dynamic hardware system, all the circuits would be forced 

to run at the speed of the slowest circuit loaded. The alternative would be to 

have multiple clocks, but this would require additional routing and circuitry, 

and would cause interfacing problems between circuits with clocks running at 

different rates. 

In practice, the reconfigurable hardware would probably be clocked at a 

fixed rate and circuits would have to be designed with this in mind. To accom-

modate most reasonable designs, the clock would have to be set to go fairly 

slowly, leading to poor performance. In contrast, the circuits within a self-

timed dynamic hardware system are independent of each other, so the speed 

at which one circuit runs does not limit the speed at which the others run. 

Large Arrays 

Dynamic hardware systems will often require a large amount of reconfigur-

able hardware resource, which requires circuits to be split over several FPGAs. 

Synchronous designs cannot easily be partitioned over several chips unless ori-

ginally designed as such, since the off-chip delays require a recalculation of the 

delays within the circuit. In contrast, self-timed circuits are naturally extens-

ible to large multiple chip arrays since the self-timed protocols accommodate 

the extra off-chip delays. Different self-timed modules of a circuits can easily 

be split over several different chips. 

Natural Interface to Software 

FPGA and host microprocessor in a dynamic hardware system compute at dif -

ferent rates, so some form of flow control is required to regulate the flow of 

data between software and reconfigurable hardware. In self-timed designs, 

the flow control comes as part of the protocol. Synchronous dynamic hard-

ware would require the use of additional circuitry to regulate the flow of data 

between host and FPGA. 
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Flexible Mapping 

The ability to map circuits quickly and flexibly is essential for virtual hardware 

so that efficient use of the reconfigurable hardware resource can be made. Syn-

chronous designs can not be mapped quickly, since this alters the layout of the 

circuit, so the clock speed would have to be recalculated. Alternatively, the 

clock speed could be set low enough so that correct operation was guaranteed 

for all possible mappings, but this leads to poor performance. 

Self-timed FPGAs allow circuits to be separated to make efficient use of the 

reconfigurable hardware resource. For example, there may be sufficient free 

reconfigurable hardware in a synchronous virtual hardware system to swap 

a circuit in, but if this space is different from the shape of the circuit to be 

swapped in then this forces a circuit to be swapped out. In a self-timed virtual 

hardware system, the circuit's shape could be altered so it fits into the available 

space. 

Circuits can Block 

In virtual hardware, if two circuits are communicating directly in the hardware 

then potentially a communication between the circuits would have to block 

whilst waiting for one of the circuits to be swapped in. In general, synchronous 

circuits could not be used as they could only be blocked by stopping the clock, 

and hence, all the circuits in the reconfigurable hardware. However, all self-

timed circuits would block naturally, since they could only continue when the 

other circuit had been swapped in and had generated an acknowledge signal. 

4.4 Self-Timed Systems on Current FPGAs 

Most of the current research on self-timed circuits using FPGAs has concen-

trated on using commercially available synchronous FPGAs. The main focus 

of these researchers has been on whether asynchronous circuits can be proto-

typed using current FPGA architectures. 

Several researchers have built Micropipeline [111] circuits. Oldfield and 

Kappler [92] implemented Micropipeline FIFO circuits using the Algotronix 

CAL1024 [3]. Both Maheswaran and Akella [78], and Gamble et al [41] have 

implemented Micropipeline circuits using Xilinx [124] FPGAs. Brunvand [20], 

also built a library of Micropipeline elements, but this time using the Actel 

FPGA [2]. Subsequently he used the library to implement a small self-timed 
processor [191. 
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To date, the only dynamic hardware system that has used self-timed circuits 

is Shaw and Mime's SPACE (Scalable Parallel Architecture for Concurrency 

Experiments) machine [106]. SPACE was used to implement delay-insensitive 

asynchronous circuits for road traffic simulation [88].  However, the focus of 

Shaw and Milne's research was on the formal synthesis of delay-insensitive 

circuits rather than the potential for self-timed dynamic hardware systems. 

The above works have illustrated the feasibility of using current FPGA ar-

chitectures to build self-timed circuits, and that large self-timed circuits such 

as processors can be built using them. Furthermore, the use of current FPGAs 

for implementing asynchronous systems is advantageous, since the chips are 

readily available standard parts, and can implement synchronous systems as 

well. However, the above works have shown that self-timed circuits on current 

FPGAs required careful design to overcome the deficiencies of current archi-

tectures for implementing self-timed circuits. These problems are discussed 

below. 

Hazards 

Within synchronous systems, signals are only sampled when the global clock 

ticks. A signal may go through several different logic values before reaching 
its final value (a hazard condition), as long as it reaches its final value before the 

next clock tick. However, in delay-insensitive circuits, and the control path of 

bundled-data circuits, signals are being continuously monitored, and so must 

be free from hazards. 

Current synchronous FPGAs are not designed to produce hazard free sig-

nals. Furthermore, hazards may be introduced by the circuit decomposition 

performed by technology mappers for synchronous FPGA architectures. Care-

ful design is required to avoid introducing hazards in synchronous designs; 

Maheswaran and Akella [78] discuss methods to avoid hazards in the Xilinx 

XC4000 FPGA. 

Ordering and Delaying Signals 

Self-timed circuits rely on the ordering of signals for their correct operation. 

In delay-insensitive circuits, this manifests itself as a need for isochronic forks, 

whilst in bundled-data systems, it requires that the bundling constraint is met. 

Current FPGA routing architectures can easily re-order signals and make such 

ordering constraints difficult to meet. In addition, for bundled-data systems, 

the delay of the request signal relative to the data-bundle should be as small 
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as possible for performance reasons. Again, this can be difficult to achieve in 

current FPGA architectures. 

Arbitration 

Arbitration is a common function within asynchronous circuits. Current FPGA 

architectures provide no support for building the special circuitry needed in ar-

biters for providing clean output signals from the meta-stable states that such 

circuits can enter. Arbiters can be built in synchronous FPGAs, but require 

careful design and have a finite chance of failure. Brurivand [20] gives a com-

prehensive account of building an arbiter using Actel FPGAs including a mean 

time between failure analysis for his design. 

4.5 Current Asynchronous FPGA Architectures 

At the start of this chapter, the benefits of self-timed circuits on FPGAs were 

discussed. However, these benefits were based on the assumption that self-

timed elements can be created on the FPGA architecture. Furthermore, for 

bundled-data systems it was also assumed that the routing architecture would 

preserve the bundling constraint. The previous section has discussed the prob-

lems encountered with current synchronous architectures in fulfilling these 

conditions. Hazards, signal re-ordering and the lack of arbitration elements 

make design of self-timed elements and their routing on current architectures 

problematic. 

Thus, the potential benefits of self-timed circuits on FPGAs are difficult to 

obtain, due to the constraints placed on self-timed designs using current archi-

tectures. In particular, the benefits for self-timed dynamic hardware systems 

are hard to realise, since the swapping algorithms will need to solve these prob-

lems on the fly rather than during the circuit design. To overcome the problems 

with current synchronous-oriented FPGAs, asynchronous FPGA architectures 

have been proposed. Asynchronous FPGA architectures shift the burden of 

solving these problems from the circuit designer to the architecture designer. 

The aim of dedicated asynchronous architectures is to provide a clean archi-

tecture for circuit designers and tools to work on, so that the advantages of 

self-timed design can be exploited to the full. 

Currently, two self-timed FPGA architectures have been proposed: MONT-

AGE [57] and PGA-STC [77]. These two architectures are described below, with 

particular focus on how the architectures overcome the problems of hazards, 
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signal re-ordering and arbitration encountered in current FPGA architectures. 

GALSA [42], an architecture designed for massively parallel processing (MPP) 

is also discussed, as such architectures are closely related to FPGA architec-

tures. The discussion of GALSA focuses on how it converts a synchronous 

processing element to use asynchronous communication. 

4.5.1 MONTAGE 

MONTAGE [57], designed at the University of Washington, was the first asyn-

chronous FPGA, though it includes two global clock signals for implementing 

synchronous circuits as well. It is closely based on the TRIPTYCH [56] architec-

ture. MONTAGE extends TRIPTYCH by adding special arbitration cells, and 

modifying the function block to allow the creation of state retaining elements. 

The design of MONTAGE with respect to its function block design, arbitration, 

and signal delaying is discussed below. 

Function Block Design 

The MONTAGE function block (Figure 4.2), in common with many synchron-

ous FPGAs, uses a LUT (Look Up Table) based function block. The inputs A, 

B and C are used to select a value from the LUT's configuration memory. A 

LUT-based implementation was chosen as it is free from hazards on single in-

put changes. Though free from hazards on single input changes, a LUT based 

function block may still create output hazards on multiple input changes. For 

the example configuration, the transition of ABC from 010 to 100 can cause a 

momentary 1 to occur on the output of the LUT. MONTAGE leaves the prob-

lem of multiple input changes as a problem for mapping tools to avoid. 

A feature of delay-insensitive circuits is their use of feedback to create state 

holding elements. Problems may occur if the next state has not been estab-

lished before the next input change. Hence, MONTAGE includes a feedback 

path within the function block, to allow new states to be established quickly; 

any of the inputs to the LUT may be replaced with a feedback signal from the 

output. In the example configuration of Figure 4.2, the C input is used as an 

output feedback, whilst A and B are used as the inputs of the C-Muller gate. 

MONTAGE uses the smallest LUT that is feasible for an asynchronous archi-

tecture since, for a basic two input state retaining function, two inputs and one 

internal feedback are required. 

A surprising feature of the MONTAGE function block is the inclusion of 

a D-latch. The D-latch is included since MONTAGE was designed as a hy- 
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Figure 4.2: The MONTAGE Function Block (Configured as a C-Muller Gate) 

brid FPGA suitable for asynchronous and synchronous circuits. The D-latch is 

used when building synchronous circuits and is normally bypassed in asyn-

chronous designs. However, the MONTAGE designers utilise the D-latch in 

asynchronous mode to allow initialisation of state retaining functions. Since 

the state of any output feedback path can be indeterminate at initialisation, the 

output is taken from the D-latch. The D-latch can be preset or cleared to the 

correct value for the initial circuit feedback. Once the initial state is established, 

the D-latch is bypassed in asynchronous operation. 

Ordering Signals and Delay Elements 

MONTAGE does not have dedicated delay elements, instead it relies upon a 

tight regular routing structure. Figure 4.3(a) shows how isochronic forks are 

created by placing each branch of a fork on similar routing paths. Also, since 

MONTAGE has integrated routing and function blocks, asymmetric forks can 

be generated by routing the signal for the longer fork from the destination cell 

of the short fork. This is illustrated in Figure 43(b). 

Bundled-data systems have a two-sided delay bound. The request signal 

has to be asserted after the data is valid, but for performance it should match 

the delay of the data as closely as possible. MONTAGE does not have special 

delay elements, so for bundled-data systems, it has to use routing and function 
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(a) Isochronic 	 (b) Asymmetric 

Figure 4.3: Isochronic and Asymmetric Forks in MONTAGE 

blocks to build a chain of buffer elements with the appropriate delay. 

Arbitration 

Arbitration in MONTAGE is provided by special arbitration function blocks 

that are distributed through out the architecture to replace standard function 

blocks. The ratio of standard to arbitration function blocks is 15:1. The MONT-

AGE arbitration block is shown in Figure 4.4; the block is centred around a 

mutual exclusion element. The mutual exclusion element ensures that only one 

of the request signals Ri or R2 is granted by Gi or G2 at any one time. 

Ri 

ENABLE 

R2 

Gi 

G2 

Figure 4.4: MONTAGE Arbitration Function Block 

The MONTAGE arbitration block has been designed to implement a range 
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of common four-phase arbitration blocks. By setting the ENABLE signal to logic 

one, and connecting the feedback multiplexors to logic zero, the block can be 

used simply as a mutual exclusion element. Connecting a signal to the ENABLE 

input allows the block to be used as an enabled-arbiter: arbitration will not begin 

until the ENABLE signal goes high. A synchroniser circuit, that samples an input 

signal when triggered by a clock signal, can be built by connecting Ri to the 

signal to be sampled, R2 to its inverse, and ENABLE to the sampling clock. 

The feedback paths via the OR gates allow the grant signals, Gi and G2, to 

remain valid after some of the outputs are de-asserted. For example, choosing 

to feed the grant signals back through the OR gates connected to the request 

lines, means the result of arbitration will remain valid until the ENABLE sig-

nal is de-asserted. Two-phase arbitration elements can be produced by using 

additional logic from standard function blocks. 

4.5.2 PGA-STC 

Concurrent with the work in this thesis, the PGA-STC architecture has been 

proposed by Maheswaran [77]. It is targeted at the implementation of two-

phase bundled-data systems such as Micropipelines [111]. The architecture 

is loosely based on that of the Xilinx XC4000 series [124], with modifications 

to the function block, and the addition of arbitration cells and programmable 

delay elements. 

Function Block Design 

Figure 4.5 shows the PGA-STC function block. It has a similar structure to the 

MONTAGE function block, using a LUT with an output feedback. Also, logic 

is provided for initialising state-holding elements. Rather than a D-latch, PGA-

STC uses a multiplexor that chooses between the LUT output and constant zero 

and one inputs. 

The principal difference from the MONTAGE function block is the inclu-

sion of the Programmable Delay Element (PDE). The PDE is included since 

PGA-STC is targeted at implementing bundled-data systems, where request 

signals have to be delayed to match the delay in the data path. The PDE is 

considered in more detail, below. 
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Figure 4.5: The PGA-STC Function-Block 

Ordering Signals and Delay Elements 

Providing accurate delays for bundled-data without a timing signal such as a 

clock is a difficult task. Without a clock, gate delays have to be utilised for 

timing. PGA-STC uses a programmable delay element that produces a delay 

by taking taps off a chain of inverters. However, in the PGA-STC architecture, 

the designers were concerned that the delay should match the delay of the 

function block as closely as possible. This is a natural concern in the PGA-STC 

architecture, since the delays are matched to each function block and a delay 

chain that is too coarse will introduce quite a large error for the delay over a 

series of function blocks. Hence, the PGA-STC design includes a fine delay 

generator as well as using an inverter chain as a coarse delay generator. 

To produce a delay finer than one gate delay, the PGA-STC design utilises 

a novel structure called a coupled ring oscillator. The basic oscillator structure 

is shown in Figure 4.6. It uses a set of inverter ring oscillators (the horizontal 

connections). The inverter ring oscillators are coupled to the oscillators below 

using special two-input inverter elements (the vertical connections). The con-

struction of the two-input inverter elements consists of two inverters driving 

the same output. Typically, having two elements drive the same output can 

cause problems with driver conflict, but the inputs to them are coupled by the 

oscillator structure. 

The coupling of the inverter rings causes the oscillation of an inverter ring 

to be a delayed copy of the oscillation in the ring above. By coupling the bot-

tom oscillator, to the top oscillator (effectively forming a ring of ring oscillat-

ors), the phase shift around the whole loop is forced to be two inverter delays. 
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Figure 4.6: PGA-STC Coupled Ring Oscillator 
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So the phase difference between neighbouring oscillators is two inverter delays 

divided by the number of inverter ring oscillators. With addition of special 

control logic, delays of a fraction of a buffer delay can be generated. 

There are two major problems with the coupled ring oscillator in PGA-STC. 

First, the oscillator is a big power drain, annulling the low power advantages 

of an asynchronous design. Second, the coupled ring oscillator takes up a 

large amount of silicon area that could be used for extra function blocks. To 

overcome these problems, a possible adaptation of the PGA-STC architecture 

would be to only have programmable delay elements in some of the function 

blocks, or to only use the coarse delay chain. 

Arbitration 
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Ri I D-Latch  Ri 	
Gi 	EN ___I 	

I 
________ 

Al  

Mut-Ex 
A2 

I;f 	 II 
R2 

0-Latch 
D 0 	G2 

Figure 4.7: PGA-STC Arbitration Function 

In common with MONTAGE, PGA-STC replaces some of the standard func-

tion blocks in the architecture with arbitration blocks based on the mutual ex-

clusion circuit. Since the mutual exclusion element is a four-phase element, 

and PGA-STC is targeted at two-phase circuits, extra logic is added that allows 

the mutual exclusion element to be configured as a two-phase arbiter as well. 

The PGA-STC arbitration cell is shown in Figure 4.7. The grant signals from 

the Mutual Exclusion element are used to enable the D-latches, so that the re-

quest signals can only pass once they have been granted. The acknowledge 

signals, Al and A2, are used to acknowledge when the resource has been used, 

so that the grant signal can be disabled. 

4.5.3 GALSA 

GALSA (Globally Asynchronous Locally Synchronous Array) is an architec- 

ture developed at the University of Edinburgh by Gao. The architecture was 
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developed for massively parallel computing architectures. Massively paral-

lel computers that use single-bit processing elements, such as the Connection 

Machine [58] and DAP [59], have many architectural similarities to FPGAs, so 

GALSA can be considered as a form of asynchronous FPGA architecture. 

Gao's GALS approach is similar to other GALS approaches such as Asyn-

chronous Wrappers [14, 15] in that it surrounds traditional synchronous logic 

with additional circuitry for asynchronous data transfer (See Section 3.6 for dis-

cussion of other GALS approaches). However Gao's work differs from others 

GALS methodologies in that it neither uses a stoppable clock that is restarted 

by the arrival of data, or a stretchable clock that waits for meta-stability res-

olution and/or a data-completion signal. In both stoppable and stretchable 

clock approaches, the clock is generated locally. However in Gao's scheme the 

local clock is generated from a global clock signal which cannot be stopped or 

stretched. Each local clock is a gated version of the global clock. In GALSA, 

when no data has arrived for processing via the data transfer interface, the, 

local clock is disenabled. 

When gating the clock, meta-stability can arise between the global clock 

and the clock enable signal. Gao carefully designs a synchroniser to minimise 

the chances of meta-stability, but meta-stability still has a finite chance of oc-

curing since the global clock is not stopped or stretched in any way to account 

for time required for meta-stability resolution. 

Figure 4.8 illustrates the basic structure of a GALSA module (adapted from 

Figures 5.17 and 5.9 in [42]; the original signal names are marked in italics). 

The core of the module is a synchronous processing element. The architecture 

simulated in [42] is similar to other massively parallel processing elements, 

consisting of a single bit adder and various single bit registers. The synchron-

ous processing element is surrounded by circuitry which implements the asyn-

chronous data transfer using a two-phase bundled-data protocol. 

The data transfer interface (DTI) consists of an asynchronous control block 

and the 3-state register element. The asynchronous control block generates the 

two-phase handshaking signals for the input and output of data, whilst the 

3-state register stores the input data. The 3-state register is so called as each 

bit in the register has three states: logic zero, logic one and an empty state. 

The register clear signal is used to reset the register to the empty state, and 

the write enable signal is used to allow the input data to write to the contents 

of the register. When valid data has been written to the register, the register 

completion output signal is set. 
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Figure 4.8: GALSA Module Structure 

In operation, input data arrival is indicated by a transition on Reqln. If the 

previous output data has been received (indicated by a transition on Ackln), 

the asynchronous control block write enables the 3-state register. Once valid 

data has been established in the register it is indicated by the setting of the 

register completion signal which feeds to the clock management unit. 

The clock management unit provides a gated clock from a global clock 

source (GcLK). The local gated clock is enabled when valid data has been re-

ceived on the data inputs, as indicated by the register completion signal. Since 

the register completion signal is asynchronous to the global clock, a synchron-

iser is required to overcome the meta-stability that can arise. Since, the global 

clock cannot be stopped of stretched in anyway, there is no way to wait for the 

potential meta-stable state to resolve itself, thus there is always a small chance 

of meta-stability occuring. A central aspect of Gao's design is minimising the 

chance of this occuring. 

In addition to generating the local clock, the clock management unit gen-

erates the logic completion signal to indicate that the processing element has 

completed processing. The number of clock cycles that this takes is determined 

by an input to the clock management unit from a field in the ECR (Execution 
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Code Register) in the processing element. The ECR contains the instruction 

that the processing element is executing together with the number of clock 

cycles that it takes to produce a result. The logic completion signal is passed 

back to the asynchronous control block, which initiates the output handshake 

and resets the 3-state register to the empty state. 

A feature of Gao's interface described in [42], and elaborated in [43] is that it 

contains no reconfigurable elements, except for the programmable delay in the 

ECR. All configuration is via the routing network. Since the elements are not 

reconfigurable, the approach for the processing element can be considered as 

a different style of 'asynchronous wrapper' that is placed around a synchron-

ous core. The principal difference from the Asynchronous Wrappers work at 

Imperial [15, 14] is that the global clock is gated rather than generated locally. 

4.6 Summary 

This chapter has set the agenda for the rest of the thesis. The motivating factors 

for self-timed circuits on FPGAs have been discussed, in particular, the bene-

fits for self-timed dynamic hardware systems. The idea central to the thesis 

is that the speed-independence of self-timed circuits supports dynamic recon-

figuration, since the shape of the circuit and its operating environment can be 

changed and the self-timed circuit will adapt, unlike in synchronous systems 

where the clocking period may have to be changed. 

Furthermore, it was argued that current FPGA architectures design for syn-

chronous circuits do not allow the full advantages of self-timed circuits to be 

exploited, due to problems with hazards, signal re-ordering and arbitration. 

Asynchronous FPGA architectures attempt to overcome these problems; the 

two currently proposed architectures, MONTAGE and PGA-STC were dis-

cussed. The GALSA architecture for massively parallel processing was also 

discussed. The GALSA architecture illustrates an alternative approach to con-

verting a synchronous architecture for asynchronous operation. 
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Chapter 5 

STACC 

5.1 Introduction 

This chapter introduces a new model for self-timed FPGA architectures called 

STACC (Self-Timed Array of Configurable Cells). An objective of the model 

is that it is suited towards the implementation of self-timed dynamic hard-

ware systems. This is an important difference from MONTAGE and PGA-STC, 

which are primarily intended for prototyping applications. 

Before presenting the model, a number of the design decisions for STACC 

are discussed in Section 5.2. In this section, it is argued that dynamic hard-

ware applications, in contrast to prototyping applications, favour an architec-

ture dedicated towards a particular protocol. Subsequently, the reasons for 

choosing a bundled-data protocol in STACC are considered. Finally, before 

introducing the STACC model, the various ways in which synchronous archi-

tectures can be adapted to self-timed operation are considered. 

The STACC model is introduced in Section 5.3. STACC involves replacing 

the global clock of a synchronous FPGA with an array of timing cells that 

provide local timing control. To illustrate the use of the timing array, example 

configurations using a simple STACC architecture are provided in Section 5.4. 

This chapter does not discuss the implementation of the timing array. This is 

the subject of the following three chapters. 

5.2 STACC Design Decisions 

5.2.1 Architectures and Protocols 

Given the wide range of self-timed protocols, a major decision in the design 

of a self-timed FPGA architecture is whether to support the implementation 
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of a wide variety of protocols, or whether to specialise the architecture for a 

particular self-timed protocol. 
Of the architectures discussed in the previous chapter, MONTAGE is the 

least specialised. It is designed for the implementation of both delay-insens-

itive and bundled-data circuits, and also includes two global clocks for the 

implementation of synchronous circuits as well. However, the lack of dedic-

ated delay elements makes MONTAGE more suited towards delay-insensitive 

circuits. PGA-STC is a more specialised architecture; it is designed for im-

plementing two-phase bundled-data systems. Both the choice of program-

mable delay element and arbiter block are designed for two-phase operation. 

Though the elements are chosen for two-phase operation, the routing archi-

tecture does not force the elements to be used in this way, so four-phase and 

delay-insensitive circuits can be constructed in the PGA-STC architecture. 

The decision whether to have a general purpose or specialised architecture 

is largely motivated by the intended application for the FPGA. Prototyping 

applications suit an architecture that can implement a large variety of proto-

cols, so that only one type of FPGA is required to implement all the different 

self-timed protocols. Specialisation to a particular protocol limits the style of 

circuits that can be implemented, but it does not limit the functionality that 

can be implemented, since equivalent circuits can be implemented using dif -

ferent protocols. Also, it allows the architecture to be optimised for a particular 

protocol; very much as today's commercial FPGAs are optimised for the im-

plementation of synchronous circuits. 

In particular, specialisation to a specific protocol is unimportant, when the 

application for the self-timed FPGA is dynamic hardware rather than proto-

typing. As long as the architecture facilitates the construction of self-timed 

circuits that can easily be manipulated by the dynamic hardware management 

software, then the actual protocol used is not critical. Since, the focus of this 

thesis is on the benefits of self-timing for dynamic hardware, a specialised ar-

chitecture is considered. 

5.2.2 Protocol Choice 

Having decided to examine a self-timed architecture dedicated to the imple- 

mentation of a specific protocol, this section considers the choice between spe- 

cialising the architecture for delay-insensitive circuits or bundled-data circuits. 

Delay-insensitive protocols have favourable properties for dynamic hard- 

ware systems; once self-timed elements have been built that contain isochronic 



forks, the circuits are resilient to arbitrary delays that may be introduced by 

the routing. However, delay-insensitive circuits commonly use dual-rail en-

coding, which requires two wires to encode one bit of data. This overhead 

is highlighted by McAuley [84], who designed circuits using just one type of 

cell: a delay-insensitive two-input multiplexor. He reports an area overhead of 

between two to six times depending on the design. 

The area overhead of bundled-data protocols is determined by the width 

of the data bundle. For the worst case of a data bundle of one signal, the 

overhead is the same as for dual-rail encoding. Kean considered a self-timed 

cell for the CAL architecture (Section 2.4.1 in [65]),  but rejected it because initial 

designs used three times the area of a synchronous design. This large overhead 

results from trying to self-time single bits in the architecture. By increasing the 

number of bits in the data bundle, the area overhead reduces rapidly, since the 

overhead is inversely proportional to the number of bits in the data bundle. 

However, the architecture cannot force the data bundle to be too large, since 

many signals will be left unused in large bundles. 

An additional benefit of bundled-data protocols is their similarity to syn-

chronous designs, since the data path of a bundled-data circuit is the same 

as that for an equivalent synchronous circuit. This allows designers to move 

readily from synchronous design to bundled-data design. Also, design tools 

for synchronous circuits can often be applied to the design of bundled-data 

circuits. 

Due to the overheads of delay-insensitive designs, the decision was made 

in this work to concentrate on an architecture dedicated towards the imple-

mentation of bundled-data systems. 

5.2.3 Self-Timing Synchronous Architectures 

Both MONTAGE and PGA-STC are derived from synchronous FPGA archi-

tectures; MONTAGE from TRIPTYCH, and PGA-STC from the Xilinx XC4000. 

Self-timing a synchronous FPGA architecture is advantageous, since it allows 

many of the tools and much of the design experience of the synchronous archi-

tecture to be carried over to the self-timed architecture. 

Although, both MONTAGE and PGA-STC derive their architectures from 

synchronous forebears, their designers do not explicitly consider the methodo-

logy in which the architectures have been made asynchronous. However, both 

architectures perform similar transformations on the synchronous architecture. 

Both change the design of the function block to aid the implementation of asyn- 
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chronous circuits, and both also completely replace some function blocks with 

special arbitration blocks. The clock signal is either removed (PGA-STC) or 

not used (MONTAGE). The drawback to tinkering with the function blocks is 

that it makes the translation of designs and experience from the synchronous 

architecture more difficult. 

5.3 The STACC Model 

For bundled-data systems, an alternative approach from the one adopted by 

MONTAGE and PGA-STC is possible for deriving a self-timed architecture 

from a synchronous one. Bundled-data systems differ from their synchronous 

counterparts in how the register control signals are generated; synchronous 

systems use a global clock, whilst bundled-data systems use special circuitry to 

produce local register control signals. This suggests that, rather than scrapping 

the clock, a bundled-data FPGA architecture could replace it, with an array of 
timing cells that generate local register control signals. This model forms the 

basis of the self-timed FPGAs developed in this thesis, and is termed STACC 
(Self-Timed Array of Configurable Cells). 

The STACC model has several benefits. First, it does not alter the func-

tion blocks of the synchronous architecture as MONTAGE and PGA-STC do, 

so tools and experience from a synchronous FPGA architecture can be trans-

ferred to a self-timed version of the architecture. Second, all the self-timed 

control logic is contained within the timing array, hence the timing cells can 

be optimised for this task, rather than requiring cells capable of implementing 

both timing control and logic blocks. A final benefit is that the STACC ap-

proach to transforming a synchronous architecture has wide applicability. In 

fact, the original architecture need not be a FPGA, but could be any array of 

processing devices that are synchronised by a global clock. 

Figure 5.1 illustrates the basic concept of the STACC approach. The logic 

blocks and routing of the synchronous architecture are retained and form the 

data array. Instead of a clock, timing control is implemented by cells in the 

timing array. Each timing cell provides register control (in other words, a local 

clock signal) to a region of cells in the data array. The shaded region in Figure 

5.1 illustrates a group of data cells that are provided with a local clock from 

one of the cells in the timing array. The timing cell and the group of data cells 

that it controls form a self-timed region. 

Within the timing array, routing is provided to connect the timing cells to- 
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Figure 5.1: Basic Structure of the STACC Architecture 



gether. In the example of Figure 5.1, a nearest neighbour mesh is used. Each 

timing cell is connected to its neighbours by two wires, one in each direction. 

These handshaking links are used to perform request/ acknowledge handshakes 

with other timing cells. The timing array configuration determines whether 

timing cells joined by a handshaking link communicate, and the direction of 

the data flow between them. Thus, the configuration of the timing array re-

flects the pattern of data flow in the data array. 

More complex patterns of data flow can be implemented by allowing the 

timing cells to sample values from the data array. These select signals allow 

conditional communication in the timing array, so that results from the data 

array can influence the flow of control. The arbitration function required by 

self-timed circuits is also integrated in the the timing cell. This allows the tim-

ing cell to decide which of several competing communications to service. In 

many cases, it is useful to provide the result of the arbitration to the data array, 

so that the data path can process data accordingly. To do this, probe signals are 

fed from the timing array to the data array. 

A complete self-timed region is illustrated in Figure 5.2. The lower half of 

the figure illustrates the logic implemented by the data cells in the data array. 

The data array implements a Finite State Machine (FSM). The inputs to the 

FSM are data bundles from other self-timed regions, and probe signals from 

the timing cell. The outputs of the FSM are data bundles to other self-timed re-

gions and select signals that control the pattern of communication in the timing 

array. The next state output of the FSM is fed back as an input to the logic via 

the register. Variations on this basic model of a self-timed region are possible 

depending on the relative position of the registers to the logic block. 

The timing cell provides timing control for the FSM implemented by the 

data cells. The timing cell will clock the registers when all the input request sig-

nals and output acknowledges have been received on the handshaking links. 

After clocking the register, the timing cell acknowledges receipt of the input 

data bundles. The timing cell then waits a period of time dependent on the 

delay in the logic block. When the logic block has completed evaluating, the 

timing cell generates requests for the output data bundles. At this point the 

cycle of timing cell and FSM operation has completed, so the self-timed region 

can proceed to processing the next set of inputs. 

The handshaking links from the timing cell in Figure 5.2 connect to the 

timing array routing. In the example of Figure 5.1, no timing array routing 

structures are present, the timing cells are simply connected directly to each 
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other in a nearest neighbour mesh. However, in general, the timing cells would 

connect to handshaking switchboxes, which route the handshaking signals in the 

timing array to match the routing of the data bundles in the data array. The 

handshaking switchboxes allow one-to-one connection of handshaking links, 

but may also allow many-to-one or many-to-many connections of handshaking 

links, to match the fan-in and fan-out of data bundles in the data array routing. 

The STACC model could loosely be classed as a GALS model, as it aims to 

preserve the synchronous data path structure but utilises asynchronous com-

munication. However it differs from other models, such as GALSA [43, 42] 

and Asynchronous Wrappers [14, 15], in the more general way it provides in-

teraction between the data path and control path. 

In GALSA, no provision is provided for interaction between the data path 

and control path; there is no way for the data path to influence the pattern of 

control flow. The Asynchronous Wrappers approach does include provision 

to allow the data path to influence the pattern of control flow using the Port 

Select Block (see Figure 1 in [15]). However, Asynchronous Wrappers currently 

have no provision for arbitrating between competing requests. The STACC 

model (first described in [961) provides both mechanisms. The data path can 

influence the pattern of control flow via the select signals. Additionally, the 

STACC model allows competing requests to be arbitrated between and then 

for the result to be passed from the timing cell to the data cells via the probe 

signals. 

Another key difference of STACC from Wrappers and GALSA is that the 

behaviour of the timing cell is configurable. Even though GALSA is a config-

urable array architecture, the data transfer interface in GALSA is fixed. All 

the reconfigurability arises from configuring the routing between processing 

elements and not in the GALSA wrapper itself. Another difference of STACC 

from GALSA is that in GALSA there is a one-to-one relationship between pro-

cessing elements and timing control blocks. The STACC model uses one timing 

control block to control many processing elements. 

5.4 Example Timing Array Configurations 

This section illustrates how the timing cells can be used to control a wide range 

of data flow patterns in the data array. The issue of how the timing cell is de-

signed to implement all these possible configurations is left for later chapters. 

The configuration of the timing array determines how the timing cells corn- 
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Figure 53: Pipeline and Configuration Data 

municate using the handshaking links. The timing array configuration has to 

match the pattern of data flow configured in the data array. Two key aspects of 

the data flow along a handshaking link have to be determined. First, whether 

the two timing cells do communicate with each other. This can implemented 

by a single configuration bit DC (Don't Care), which determines whether a tim-

ing cell communicates on a handshaking link or not. The second aspect of a 

link that has to be determined, is the direction of the data flow that it con-

trols. This can be implemented with a second configuration bit D I R (Direction) 

which determines the direction of communication along a handshaking link. 

In other words, D I R determines which signal in a handshaking link is a request 

and which is an acknowledge. 

These two configuration bits are sufficient to implement a large number of 

fan-in and fan-out data flows. Figure 5.3 shows how the timing cells can be 

configured to build a pipeline, using a simple nearest neighbour mesh of tim-

ing cells (as illustrated in Figure 5.1). The elements in the figure are designed to 

resemble the timing control circuitry for a two-phase bundled-data pipeline, as 

used in Micropipelines. The core of the timing cell is a C-Muller gate, represen-

ted by a circle in these diagrams. Instead of being marked with a 'C', the gate 

is marked with a name that describes the data path operation performed by 

the data cells in the self-timed region. Request signals from the C-Muller gate 

are marked with oval shapes representing delay elements. Acknowledge sig - 
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nals, which are inverted with respect to the request signals in Micropipelines, 

are marked by the bubbled inputs to the C-Muller gates. The direction of data 

flow is emphasised by the inclusion of the large arrows in the figure. 

A feature of Figure 5.3 is a lack of connections to the environment external 

to the FPGA. Though such connections can easily be made, structures can be 

tested simply by configuring cells to model the environment. Timing cells that 

are configured with only output data flows are termed source cells, and cells 

configured with only input data flows are termed sink cells. 

C 

Figure 5.4: Forking and Joining Pipeline 

The timing cell configuration bits described so far are flexible enough to 

implement a large range of forking and joining pipelines, including structures 

such as the 2D-Micropipelines described by Gopalakrishnan [46]. A simple 

example of forking and joining pipelines is illustrated in Figure 5.4. In this 

example, the source cell in the bottom left-hand corner sends data into two 

different pipelines which process the data concurrently. The sink cell in the 

top right-hand corner receives data from both pipelines. The choice of an ex-

ample with a symmetrical fan-out and fan-in of data was made to illustrate the 
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symmetry in how the timing cell deals with the fan-in and fan-out of hand-

shaking links. A similar structure is used in the other examples in this section 

to show the symmetry between structures configured using fan-in and fan-out 

handshaking links. 

Req 
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Ack 

Figure 5.5: Selective Communication Example 

The examples so far have only allowed a fixed pattern of data flow. To al-

low the branching and merging of data flows involves using the select signals 

from the data array to change the flow of control in the timing array. Figure 

5.5 shows an example of selective communication. Selective links are indicated 

by the drawing of select boxes on the links. The input to the select box can be 

inverted; this is indicated by placing a bubble on the select input. When the 

handshaking link is selected, the handshaking link is connected normally to 

the neighbouring timing cell. When the link is not selected, the output hand-

shaking signal is fed directly back to the timing cell, so the C-Muller gate ac-

knowledges its own request. This select box performs a similar role to the 

Select gates in Micropipelines. For selective communication, the DC configura-

tion bit can be replaced by RDZ (Rendezvous) configuration bits which determ- 
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me whether the link is never used by a timing cell, always used, or selectively 

used. 
The example illustrated in Figure 5.5 is similar to the forking and joining 

pipelines of Figure 5.4, but instead of sending data down both pipelines, the 

ToggleOut cell sends data down different pipelines on alternate cycles, since 

the select signal of one link is inverted with respect to the other. The Toggle In 

cell performs the opposite process to the ToggleOut cell; it accepts data from 

each pipeline on alternate cycles. This example illustrates how work could be 

shared between two pipelines that perform the same function, so potentially 

doubling throughput. 

Req 

Pipe 	 1:36rbln 
Ack 	

10918S 

cr1 	I 	 cr1 	,. 
WI 	lo 	 WI 	Q 

Select Req 

rbOut) 	I I 	 ( Pipe 

Ack 

Figure 5.6: Non-Deterministic Communication Example 

The branching and merging in the previous example was deterministic. 

Figure 5.6 illustrates a refinement of the work sharing pipelines of the previous 

example, where the timing cells arbitrate between competing communications. 

Instead of sending work down alternate pipelines as previously, the ArbOut 

cell probes the acknowledge signals of both output links to see which are ready 

to process data. The probing behaviour is shown by the plus or minus signs in 
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circles, which indicates whether the acknowledge signal causes the arbitration 

function to resolve to '0' (minus) or '1' (plus). The result of the arbitration is 

used as an input to the select boxes. The result of arbitration is also passed to 

the data array via the probe signals, so it can act accordingly. The Arbln cell 

implements the opposite function to the ArbOut cell. It probes the request sig-

nals of it incoming links and accepts data from whichever one has data ready. 

This is similar to the use of an arbitrated Merge gate in Micropipelines. 

This example shows how work can be dynamically distributed between 

processes using the probing behaviour. In contrast to the deterministic beha-

viour of the last example, this arrangement can re-order data, depending on 

the delays encountered in each pipeline. 

5.5 Summary 

This chapter introduced the STACC model for self-timed FPGA architectures, 

which will be developed in the rest of the thesis. STACC differs from previ-

ous asynchronous FPGA architectures in two important respects. First, it is 

designed with dynamic hardware systems in mind, rather than exclusively for 

prototyping. Second, rather than scrapping the global clock, it replaces it with 

an array of timing cells. The generality of this approach allows it to be applied 

to a variety of synchronous FPGA architectures, and also to architectures other 

than FPGAs. 

The basic unit in a STACC architecture is a self-timed region composed of 

a timing cell and the data cells that it provides timing control for. The timing 

cells and data cells interact via the select signals which allow the data array to 

influence the flow of control, and the probe signals which pass the results of ar-

bitration to the data cells. A number of examples in the chapter illustrated how 

the timing array could be configured for a wide range of data flow patterns. 

The actual implementation of the timing array has not been discussed. This 

is the subject of the following three chapters. The next chapter looks at the 

design of basic reconfigurable circuit elements. These reconfigurable elements 

are used in Chapters 7 and 8, which discuss the design of the timing cells and 

timing array routing respectively. 
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Chapter 6 

Reconfigurable Elements 

6.1 Introduction 

Bundled-data control circuits, such as those used in Micropipelines, consist of 

three basic elements: a synchronisation element (normally the C-Muller gate), 

elements for the branching and merging of control, and delay elements to en-

sure that the bundling constraint is met. This chapter considers the imple-

mentation of these three types of element reconfigurably for use in a self-timed 

FPGA architecture. Though the chapter focusses on the design of elements for 

self-timed FPGA architectures, many of the elements introduced seem useful 

enough to find other applications in asynchronous circuit design. No attempt 

is made in this chapter to integrate these elements to construct a timing array 

for STACC. This is left to the following two chapters, which discuss the design 

of the timing cells (Chapter 7) and the timing array routing (Chapter 8). 

6.2 Reconfigurable C-Muller Gates 

The C-Muller gate forms the basic synchronisation structure in most self-timed 

circuits. This section introduces the reconfigurable C-Muller gate, which allows 

a reconfigurable synchronisation pattern to be defined between a set of inputs. 

In effect, an N input reconfigurable C-Muller gate allows all C-Muller gates of 

N inputs or less to be implemented between an arbitrary subset of its inputs. 

6.2.1 Gate Level Implementation 

Figure 6.1 shows a gate level implementation of a reconfigurable C-Muller 

gate. One reconfigurable input is shown, configured by the configuration bit 

DC (Don't Care). When DC is false, the multiplexor passes the input normally, 



Figure 6.1: Reconfigurable C-Muller Gate: Gate Level Implementation 

so the input is involved in the gate's synchronisation. However, when DC is 

true, the multiplexor passes the inverted output of the C-Muller gate back to 

itself. Since the inverted output of a C-Muller gate is always the next value that 

the C-Muller gate is waiting to synchronise on, the input becomes a don't care 

input. Hence, the nc configuration bit determines whether or not the input is 

involved in the gate's synchronisation. 

The definition of the reconfigurable C-Muller gate leaves undefined its be-

haviour when no inputs are synchronised by it (i.e. when all the inputs are 

configured as don't cares). In this case, the behaviour of the gate is implement-

ation dependent. For the gate level implementation in Figure 6.1, the gate's 

output oscillates. 

The reconfigurable C-Muller gate requires far fewer configuration bits than 

using a general purpose function block. For example, a LUT based implement-

ation of an N input C-Muller gate requires an N + 1 input LUT using 2N+1 

configuration bits. The reconfigurable C-Muller gate only requires N configur-

ation bits, i.e. one per input. 

An alternative way of implementing the behaviour of the reconfigurable C-

Muller gate could be achieved by routing. A C-Muller gate synchronising on 

less than N inputs could be created from an N-input C-Muller gate by routing 

duplicates of the input signals to make up the N inputs. However, this ap-

proach is less satisfactory as it places additional load on the input signals, and 

hence increases the transition times on the duplicated inputs. Another draw-

back to duplicating inputs is that it requires more configuration bits, since the 

same synchronisation pattern can be configured in several different ways. 
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6.2.2 Transistor Level Implementation 

Figure 6.2 illustrates a transistor level implementation of a reconfigurable C-

Muller gate. The circuit is based on a standard implementation of a C-Muller 

gate that uses a weak feedback inverter to maintain the gate's state [25]. Two 

multiplexors have been added which are controlled by the DC configuration 

bit. When DC is false the input is passed normally to the N-tree and the P-tree 

of the transistor structure. When DC is true, the inputs to the N-tree and P-tree 

transistor chains are connected to power and ground respectively, so that the 

transistors in both trees are always turned on. Hence the input has no effect on 

the gate's switching and becomes a don't care input. 

Figure 6.2: Reconfigurable C-Muller Gate: Transistor Level Implementation 

The transistor level design is preferable to the gate level design as it does 

not have a feedback path from the C-Muller gate's output to its inputs. In the 

gate level design, this results in each input to the C-Muller gate going through 

a transition on each cycle, whether the input is involved in the synchronisation 

or not. In the transistor level design, these inputs are held at constant values 

so there are fewer transitions, and hence less power dissipation. 

A problem with the transistor level implementation occurs when all the 

inputs are configured as don't care, which results in power being shorted to 

ground. To prevent this, one input should either be unreconfigurable or use 

the feedback implementation of the gate level design. 



6.2.3 Reconfigurable Asymmetric C-Muller Gates 

Figure 6.3 illustrates how the transistor level implementation of the reconfig-

urable C-Muller gate can be generalised to a reconfigurable asymmetric C-Muller 

gate. The DC configuration bit is separated into two configuration bits DCO and 

Dcl that allow synchronisation on the input being logic zero and logic one re-

spectively. Hence, each input can be configured to synchronise on only a logic 

one input, on only a logic zero input, on both, or on none (the don't care case). 

J-1 __1 
DCO 
DC1 

Ti 	 I 
I 

Figure 63: Reconfigurable Asymmetric C-Muller Gate 

6.2.4 Distributed Reconfigurable C-Muller Gates 

The process technology used for implementing transistor circuits limits the 

number of transistors that can be placed in series, usually to around four [121]. 

This in turn limits the fan-in of the basic C-Muller gate implementation. Wider 

fan-in C-Muller gates can be made by creating a tree of C-Muller gates, as in 

Figure 6.4. The root C-Muller gate synchronises on the outputs of the leaf C-

Muller gates, which synchronise on the input signals. 

Figure 6.5 illustrates another circuit for implementing wide input C-Muller 

gates. Figure 6.5(a) shows an implementation of a C-Muller gate using a SR 

flip-flop and two AND gates. The AND gates are used to detect when all the 

inputs are one, and when all the inputs are zero. These conditions are used to 

set and reset the flip-flop respectively. Wired logic can be used to implement 

the wide fan-in AND gates to create a wide fan-in C-Muller gate [103]. In wired 
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Figure 6.4: Wide Fan-In C-Muller Gate 
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(b) Reconfigurable Distributed C-Muller Gate 

Figure 6.5: Distributed Reconfigurable C-Muller Gate Implementation 



logic, open-collector (or open-drain) drivers are used to drive the inputs; the 

AND state is detected when all the open collector drivers stop driving the wire, 

which is then pulled high by a weak pull-up resistor. 

Figure 6.5(b) illustrates a reconfigurable C-Muller gate implemented using 

wired logic. The two AND gates of Figure 6.5(a) are replaced by two synchron-

isation wires, which detect synchronisation to logic one and logic zero. In ef-

fect, the logic for the C-Muller gate is distributed over the two synchronisation 

wires, hence this implementation is termed a distributed C-Muller gate. 
In contrast to previous reconfigurable C-Muller gate implementations, Fig-

ure 6.5(b) does not use an SRAM configuration memory. Instead, the DC con-

figuration bits are replaced by fuses, marked by the crosses in the figure. When 

the fuses are intact, the inputs are involved in the synchronisation. When the 

fuses are blown, the outputs cannot drive either synchronisation wire so the 

input becomes a don't care input. Asymmetric gates can be made by only 

blowing one of the fuses, so only the appropriate synchronisation line is used. 

For SRAM based configuration memories, the distributed C-Muller gate can 

be implemented by using the configuration bits to act as enable signals for the 

open-collector drivers. 

A fuse based implementation was illustrated, since it suits a wired logic im-

plementation. The low resistance of fuses and their bidirectional transmission 

of signals, allows wire segments to be connected to form long low resistance 

wires. SRAM based configuration memories have to use pass transistors which 

have a higher resistance. 

The advantage of the distributed design is that it allows wide fan-in C-

Muller gates to be implemented using only two wires. Effectively, the logic 

is implemented in the routing. Furthermore, the distributed design can save 

routing resources, as instead of routing all the inputs to a single centralised 

gate, only the two synchronisation wires are routed to the inputs and the out-

put SR flip-flop. However, a drawback to the distributed design is that wired 

logic has a slow transition time. Also, wired logic designs have static power 

dissipation, when the open collector drivers are switched on. Finally, careful 

design is required to avoid problems with transmission line effects. 

6.3 Branch and Merge Elements 

Current self-timed methodologies use a diverse range of control blocks [54]. 

Creating a reconfigurable control block capable of implementing all these van- 
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ants is a difficult task. However, fundamentally these control blocks are only 

providing two functions: the branching and merging of control. 

This section develops a reconfigurable control block for branching and mer-

ging. The approach taken is to restructure the control blocks introduced by 

Sutherland for Micropipelines (see Figure 3.10). Though Micropipelines use a 

two-phase protocol, Sutherland's control blocks can be implemented using a 

four-phase protocol as well. Hence, the development here can be applied to 

produce both two-phase and four-phase reconfigurable elements. 
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Figure 6.6: Branch and Q-Call Modules 

Examining the control modules used by Sutherland [111], there is a lack of 

regularity and symmetry, which Sutherland is keen to point out in the rest of 

his Micropipeline paper. In particular, there is a difference between the Merge, 

Select and Toggle gates, which operate on individual handshaking signals, and 

the Call and Arbiter modules which operate on handshaking channels (i.e. re-

quest/acknowledge handshaking pairs). 

This suggests that one way to standardise the control modules is to make all 

the modules operate on handshaking channels. To standardise these modules, 



the original Select, Merge or Toggle gate can be used to generate the request 

signal path and then additional behaviour is defined for the generation of the 

acknowledge signals. 

Figure 6.6(a) illustrates the extension to the Select gate to operate on hand-

shaking channels; this is termed a Branch module. Like the Select gate, the 

Branch module accepts an incoming request and directs it to one of its two 

output channels depending on the value of the Select input D. When the se-

lected output channel generates an acknowledge, this is directed back to the 

input channel. The implementation of the Branch module is illustrated in Fig-

ure 6.6(c). As would be expected, a Select gate is used to generate the output 

requst signals. The input acknowledge signal is generated by using a Merge 

gate. 
Extending the Merge gate to operate on handshaking channels results in a 

module where incoming requests are merged into one channel and the output 

acknowledge is directed back to the calling channel. This behaviour is already 

defined by Sutherland as the Call module. The Call module is shown in Figure 

6.6(b), and Figure 6.6(d) shows its implementation. The output request path 

is generated by a Merge gate. For the acknowledge path, a gate is required 

that steers the output acknowledge back to the calling input channel. This can 

be implemented using a Select gate if there is a signal which indicates which 

input channel called the module. 
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0 

(a) Q-Merge  
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Figure 6.7: Q-Merge and Select Gates 

One way to generate this signal is to extend the behaviour of the Merge 

gate, so it generates an additional output Q,  that indicates on which of its inputs 

the last event occured. The name Q-Merge is introduced for such an element. 

The Q-Merge gate is illustrated in Figure 6.7(a). The Call module of Figure 

6.6(b) has also been extended to provide Q  as an output from the module, and 

is termed a Q-Call module. Supplying Q as an output is useful as it allows the 

data path to know which calling channel is being serviced. 



A reflective symmetry exists between the Select and Q-Merge gates, as can 

be seen in Figure 6.7. In fact, the two gates are inverses of each other. The Select 

gate can be considered as a converter from the bundled-data signals Rin and 

ID to the dual rail encoded signals Rtrue and Rfalse. The Q-Merge element 

performs the inverse operation; it converts from the dual-rail encoded signals 

to the bundled data signals. The Branch and Q-Call modules are also inverses 

of each other. This is reflected in the symmetrical structure of the two modules, 

as shown in Figure 6.6. 

Useful behaviour also arises when the direction of the data flow through 

the Q-Call and Branch modules is reversed, i.e. pull handshaking channels are 

used instead of push handshake channels. In the case of the Q-Call module, the 

module now arbitrates between competing requests for data, which is pulled 

from the output channel. This behaviour can be used to farm data between 

pipelines. When used in reverse, the Branch module allows an input channel 

to choose which of two output channels it wants to pull its data from. 

The fact that both Q-Call and Branch modules can be constructed using 

one Select and one Q-Merge gate suggests that this pair of gates would be a 

good candidate for a reconfigurable control block. It can be seen in Figure 6.6, 

that to configure from a Branch module to aQ-Call module requires only one 

configuration bit that determines whether the Q  and D signals are connected or 

not. 

The Select and Q-Merge gates can be used to build the other modules used 

by Sutherland. Figure 6.8 shows how a Select and Q-Merge pair can be used 

to construct an Arbiter module. Since events on the two inputs can occur sim-

ultaneously, the Q-Merge gate has to be capable of arbitrating between events 

on the two inputs. One difficulty in the circuit occurs when the arbitrating 

Q-Merge element determines the beginning of the next arbitration phase. A 

four-phase Q-Merge element can use the recovery phase on the serviced input 

request line to determine this. However, this is not an option in the two-phase 

protocol, so an additional signal needs to be supplied from the acknowledge 

signals to the Q-Merge element to specify when to accept the next input re-

quest. 

The other module used by Sutherland is the Toggle gate. Figure 6.9 shows 

a Toggled-Branch module; an extension of the Toggle gate to operate on hand-

shaking channels. The Q  output of the Q-Merge gate is used to remember 

which output channel was selected, so that the other channel is selected on 

the next input request. 
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Figure 6.10: Times-by-Two and Divide-by-Two Modules 

Figure 6.10 shows how the Toggled-Branch module can be used to cre-

ate Times-by-Two and Divide-by-Two modules. These are useful modules 

since they convert between two-phase signalling and four-phase signalling. 

The Divide-by-Two module operates by directing alternate transitions down 

a channel, which connects directly back to the Toggle module. As a result, 

only alternate transitions on Rin causes a transition on Rout. However the 

module is not the best converter from four-phase to two-phase since it has to 

wait for the two-phase acknowledge before the four-phase cycle can continue; 

whilst it is possible to overlap parts of the two-phase and four-phase cycles. 

Gopalakrishnan [47] considers circuits that do overlap parts of the two cycles. 

The Times-by-Two module is constructed in the same way as the Divide-by-

Two module but is simply used in the reverse direction to convert from two-

phase to four-phase. 

6.4 Delay Elements 

Delay elements are required in bundled-data circuits to ensure that the request 

signal is asserted after its associated data is valid. Also, for performance, the 

delay of the request relative to the data should be as small as possible. Delay 

elements can be classified according to how closely they match the request 

delay to the data delay. Fixed delay elements simply ensure that the bundling 

constraint is met, whilst variable delay elements match the delay to the current 

computation. 

Fixed delay elements must be set at the worst case delay through the logic 

to ensure correct operation. For a simple pipeline, this restricts performance to 

that of the slowest stage in the pipeline; the same as for a synchronous pipeline. 

However, for more complex data flows, the difference in delays down differ- 



ent branches in the data flow can be utilised, which gives benefits over the 

synchronous case. 
Variable delay elements allow the average case performance to be utilised 

by matching the request delay to each individual computation. Such elements 

work by generating a completion signal by some means from the data path. 

The generation of completion signals requires more complex circuitry than 

generating a fixed delay, and often requires substantial alteration to the struc-

ture of the data path. 

6.4.1 Delay Generation 

Below, various delay generation strategies for reconfigurable architectures are 

considered. Essentially these options for the delay element represent a trade-

off between performance and complexity of the delay element. 

Uniform Fixed Delay 

The simplest delay strategy is to have an unreconfigurable fixed delay for all 

self-timed regions in a self-timed FPGA architecture. The worst case delay of 

any self-timed region would be calculated during the architecture design and 

then implemented in the delay element. 
The easiest way to create such a fixed delay is to use an inverter, or a chain 

of inverters for a longer delay. The delay characteristics of an inverter can 

be modified by varying the dimensions of the transistors in the inverter, and 

varying the capacitive load it has to drive. Even though we have termed it 
as a fixed delay, the delay that an inverter gives is not constant since it can 

vary because of variations in temperature and voltage level. However, these 

variations also effect the logic delay accordingly. 
Fixing the delay for all self-timed regions gives an extremely poor perform-

ance, as no attempt is made to utilise variable delay within individual data 

paths. The performance of a circuit is limited by the worst case delay of the 

architecture rather than the circuit. 

Reconfigurable Fixed Delay 

An alternative to a uniform delay for all self-timed regions in the architecture 

is to allow configuration data to set the delay of the delay element. One way to 

implement this is to allow configuration data to select between various taps off 

an inverter chain. If delays finer than one gate delay are required, then config- 



uration data could choose between inverters with different delay characterist-

ics. An alternative method of generating delays finer than one gate delay is the 

ring-coupled oscillator used by the PGA-STC architecture (see Section 4.5.2). 

However, it is questionable whether the additional circuitry required for the 

ring-coupled oscillator is worth the increased accuracy in the delay. 

Fixed Delays determined by Layout 

In Sutherland's Micropipelines [111], the delay between the stages is partly 

determined by layout. The request and acknowledge signals are routed to the 

latches for use as capture or pass signals before reaching their destination. This 

ensures that the latches have received the control signals before the C-Muller 

gates can change. It is not a complete delay strategy, since additional delay 

elements are required to account for the logic delay in the data path. 

A problem arises when this method is applied to a self-timed FPGA archi-

tecture, since registers in a FPGA are typically spread across a two-dimensional 

area rather than arranged in a column as in Micropipelines. To route the re-

quest through the registers in a two-dimensional space requires a long snaking 

signal that generates a delay far greater than is required. Alternatively, the 

request signal could fan out to route more quickly to the registers, but this re-

quires C-Muller gates to synchronise the various fan-out request signals once 

they have reached the registers. 

Completion Signal generated by Data Path 

This method of generating a variable delay places the onus on the data path to 

indicate when it has completed evaluating. The timing cell delays its outgoing 

request until a completion signal is received from the data path. The problem 

with this method is that it involves a major re-design of the data path to gen-

erate a completion signal. Furthermore, the completion signal must be made 

glitch free using data cells that are not designed to produce glitch free signals. 

DCVSL (Differential Cascade Voltage Switch Logic) 

DCVSL (Differential Cascade Voltage Switch Logic) [86, 871 is a dynamic logic 

family that generates its own completion signal using four-phase control. Lu 

[73] introduces a two-phase version for Micropipeline style implementations. 

Figure 6.11 illustrates a DCVSL gate. Two NMOS transistor trees generate dual 

rail outputs for the function and its inverse. When the request signal is logic 

zero, the two output nodes are pre-charged to Vcc. When the request changes 
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to logic one, the NMOS trees are connected to Gnd and evaluate. When either 

output becomes logic zero, the gate has completed evaluation. The NAND gate 

is used to generate a completion signal when this occurs. DCVSL provides 

a variable delay since it completes as soon as either dual-rail output finishes 

evaluating. 

Request 

Inputs 

Completion 

Out 

-Out 

Figure 6.11: Differential Cascade Voltage Switch Logic 

Although DCVSL requires altering the design of the function blocks, the 

same reconfigurable function can be implemented by a DCVSL function block 

as by a standard function block, so designs can be transferred from a synchron-

ous FPGA to a self-timed FPGA using DCVSL. A disadvantage of DCVSL is 

that it requires twice the area for logic implementation since both the function 

and its inverse have to be evaluated. Also, the generation of a request for a 

data bundle needs wide fan-in C-Muller gates to collect the completion signals 

from each DCVSL gate. 

CSCD (Current Sensing Completion Detection) 

Figure 6.12 shows the concept behind CSCD [26].  CSCD utilises the fact that 

CMOS circuits draw close to zero current from the supply rails when the logic 

function has completed. By placing current sensing circuits between the sup-

ply rails and the logic function, a completion signal can be generated when the 

current drawn from the supply rails drops towards zero. 

CSCD gives the optimum delay plus a delay for generating the completion 

signal for all possible combinations of inputs to the logic block. It can exploit 
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Figure 6.12: Current Sensing Completion Detection 

similarity in the input data; for example, if the same values are presented to 

the logic block in succession then it will complete straight away. The delay 

incurred by generating the completion signal ensures that the bundling con-

straint is met. This extra delay only affects performance if the request signal 

reaches the next stage after its associated data has finished evaluating. 

A disadvantage of CSCD is that analogue circuitry is required to imple-

ment the current sensors. Dean et al [26] favour bipolar transistors for the 

implementation of the current sensors, which requires a BiCMOS process tech-

nology. In addition, separate supply rails are preferable for the analogue and 

digital circuits. Also, the current sensors have a static power dissipation that 

negates some of the low power advantage of using asynchronous circuitry. 

Another problem is the resolution of the current sensors; the sensor must 

be able to detect the current drawn by one changing signal. This becomes 

increasingly difficult as the circuit becomes larger. A solution proposed by 

Grass and Jones [50] is to use multiple localised current sensing circuits and 

produce the final result as the AND of the local completion signals. Careful 

design is required to ensure that transitions going from one localised area to 

another do not cause a false completion signal to be generated. 

Recently Grass et al [51] proposed a related method of completion detec- 



tion called Activity Monitoring Completion Detection (AMCD). AMCD uses a 

special activity monitor circuit attached to the outputs of gates in the circuit. 

However, attaching a activity monitor to every output in a self-timed archi-

tecture would require a substantial amount of silicon area devoted to activity 

monitors. 

Despite the technical difficulties posed by CSCD and AMCD, they are an at-

tractive technique as they generate a data dependent delay, without requiring 

alteration to the other parts of the data array design. 

6.4.2 Choice of Delay Element 

A number of delay strategies have been presented above. Of the fixed delay 

strategies considered, using a reconfigurable fixed delay formed by taking 

taps off an inverter chain gives the best delay matching. Though the delay 

of each stage is fixed, average case performance can arise by data taking differ-

ent branches through the data path. Despite the implementation difficulties, 

CSCD is the most promising of the variable delay approaches, since it involves 

the least disruption to the data array, whilst generating an optimal data de-

pendent delay. These two delay strategies are compared in Chapter 11, which 

investigates a self-timed version of the Xilinx XC6200 architecture using a re-

configurable fixed delay and CSCD. 

6.5 Summary 

This chapter has introduced reconfigurable elements for synchronisation, the 

branching and merging of control, and delay in bundled-data circuits. For 

synchronisation, the reconfigurable C-Muller gate was introduced. The recon-

figurable C-Muller gate, and the circuits derived from it, allow a wide range 

of synchronisation patterns to be defined reconfigurably. For control, the Q-

Merge and Select gate pair was developed, and it was shown how a wide 

range of self-timed control blocks could be implemented with them. Finally, 

delay generation strategies were reviewed in the context of self-timed FPGA 

architectures. The reconfigurable elements described in this chapter form the 

basis for the development of an integrated timing cell which is described in the 

next chapter, and the timing array routing structures developed in Chapter 8. 
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Chapter 7 

Timing Cells 

7.1 Introduction 

The STACC model, introduced in Chapter 5, takes a synchronous FPGA archi-

tecture and replaces the global clock with an array of timing cells. Each timing 

cell provides self-timed control to a localised region of the data array. This 

chapter draws upon the reconfigurable elements introduced in the previous 

chapter, to develop a reconfigurable timing cell for the STACC architecture. 

This timing cell integrates all the basic bundled-data control functions of syn-

chronisation, branching and merging, arbitration and delay in one reconfigur-

able unit. 

The timing cell in this chapter is developed, as far as possible independ-

ently of the data array's structure. This is possible due to the clean split in the 

STACC model between the control path, which is implemented by the timing 

array, and the data path, which is implemented by the data array. However, 

the design of the timing array does depend on the type and positioning of the 

memory elements in the data array. Another important effect on the design of 

the timing array is the choice of protocol used on the handshaking links. These 

design decisions are discussed in Section 7.2 

The timing cells developed in this chapter use a four-phase protocol with 

registers situated on the inputs to the function block. However, initially a two-

phase timing cell without selective communication is introduced, as the design 

is simpler to describe. Various other design options are explored using the two-

phase design. Subsequently, a series of four-phase timing cells are developed 

with increasing complexity to deal with selective communication and arbitra-

tion in the timing cell. 



7.2 Timing Cell Design Decisions 

The design of the STACC timing cell is affected by a number of different de-

cisions, concerning the type and positioning of the memory elements in the 

data array, and the protocol chosen on the handshaking links. These decisions 

are discussed below. 

7.2.1 Type of Memory Element 

The choice of memory element determines the interface used by the timing cell 

to control the memory elements. Current FPGAs provide two basic types of 

memory element which have different control interfaces: latches and registers. 

Latches require two control events: a capture event that causes input data to 

be stored, and a pass event that causes data to be passed data directly to the 

latch's output. In contrast, registers only require one control event: the capture 

event which causes them to store the data on their inputs. 

Different latch and register implementations are required for two-phase 

and four-phase protocols. Four-phase memory elements are commonly en-

countered in hardware design: the four-phase latch is the D-latch and the four-

phase register is a D-type register. Both four-phase memory elements only re-

quire one control signal; in the case of the D-latch, the pass and capture events 

are combined into a single signal. This is possible since the control events al-

ternate; transitions in one direction indicate capture events and transitions in 

the other direction indicate pass events. 

Two-phase memory elements are less commonly encountered in hardware 

design. Two-phase latches, called event latches, were used by Sutherland[1111 

in micropipelines. Two-phase registers have been used by Yun et al [126], and 

were termed double-edge D-types. A problem with two-phase memory elements 

is that the circuitry is more complex than that for their four-phase equivalents. 

The event latch and double-edge D-type circuits, essentially involve the con-

struction of two four-phase latches or registers that are used on alternate hand-

shake cycles. For this reason, Sutherland suggests using four-phase latches 

and a two-phase to four-phase conversion circuit for wider data bundles in 

Micropipelines. 

The choice between using latches and registers is a trade-off between com-

plexity of the memory element and complexity of the control logic. Latch cir-

cuits are simpler to implement, and thus generally faster than registers, but re-

quire more complex control circuitry as two control events must be generated. 
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Registers are more complex circuits to build, normally requiring a master and a 

slave latch, but require simpler control, as only a capture signal is required. An 

additional benefit of register elements is that unlike latches they do not have 

a pass state. This means that they can easily be used to build state-retaining 

blocks such as Finite State Machines (FSMs). 

In this chapter, the timing cells are designed to use registers, since most cur-

rent FPGA architectures include registers in their function blocks. Latch based 

designs can be developed from these register based timing cells using addi-

tional logic to generate the pass events. The alterations required to produce 

latch based timing cells from register based designs are outlined in the text, 

though the circuits are not given. 

7.2.2 Position of Memory Elements 

Another way in which the memory elements influence the design of the timing 

array is by their position within the function block. In most current FPGAs, 

the memory elements are placed on the output of the logic function imple-

mented by the function block. This influences the design of the timing cell, as 

it requires that the delay element matched to the logic function comes before 

the synchronisation element that generates the control signals for the memory 

element. Similarly, placing the memory elements on the inputs to the logic 

-function, requires that the delay element be placed after the synchronisation 

element. 

When providing timing control for a region of data cells, the memory ele-

ments may occur between two logic functions. In this case, delay elements 

must be provided for the logic delay to the memory elements' inputs and for 

the logic delay from the memory elements' outputs. This requires delay ele-

ments placed before and after the synchronisation element for memory con-

trol. 

In this chapter, timing cell designs are described for function blocks with 

memory elements on the input and outputs to the logic function. However, 

designs for function blocks with memory elements on the inputs are preferred, 

since this leads to simpler timing cell circuits, which are easier to describe. 

7.2.3 Choice of Handshaking Link Protocol 

An important design decision for the timing cell is the protocol to use on the 

handshaking links. The main decision is between using a two-phase or a four- 



phase protocol. Two-phase protocols are conceptually simpler, since every 

event on a signal is significant, whilst four-phase protocols requires an idle 

return-to-zero or recovery phase. Though conceptually simpler, the circuitry 

for two-phase control circuits is often more complex. For example, Figure 7.1 

illustrates two-phase and four-phase Select gates. The two-phase gate is more 

complex, requiring two XOR gates and two D-latches, compared to two AND 

gates for the four-phase version. Two-phase designs also require more com-

plex memory elements, such as Sutherland's event latches or double-edge flip-

flops. 
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Figure 7.1: Comparison of Select Gate Implementations 

Four-phase circuits are potentially slower than two-phase circuits, due to 

the extra recovery phase. However, the performance disadvantages of four-

phase signalling can be hidden by performing the recovery phase concurrently 

with the computation. As a result, two-phase signalling only gives a significant 

performance advantage when communication times rather than computation 

times are critical. 
Due to the simpler circuits for four-phase memory elements and control 

blocks, the four-phase protocol is preferred here for implementing the timing 

cell. A similar decision was made by Furber [36],  for the second generation of 

the AM1JLET processor, and by Rebello [100] for the MAP processor. However, 

initially two-phase timing cells are developed, since the circuits are simpler to 

explain than the four-phase ones. 

Another aspect of the handshaking link protocol that has to be chosen is 



whether to use a push, pull or two-way data passing protocol. Push proto-

cols, where the sender of data initiates the handshake protocol are the most 

commonly used style of handshake protocol, so are developed in this chapter. 

Design of timing cells to implement pull and two-way data passing protocols 

are discussed in Section 7.3.3. 

7.3 Two-Phase Timing Cells 

7.3.1 Input Registered Two-Phase Timing Cell 

This section develops a simple input registered two-phase timing cell. The 

timing cell allows data to fan-in and fan-out on handshaking links from the 

timing cell, but does not support selective communication. 

Figure 7.2(a) illustrates the family of timing blocks that the timing cell im-

plements. The timing block can be used to control a self-timed region with N 

data bundles fanning in and M data bundles fanning out. N and M can be 

zero, so that a timing block with no input or output handshaking channels can 

be defined. The interface to the timing blocks consist of N fan-in handshak-

ing links and M fan-out handshaking links. The other signal in the interface is 

the capture signal, which control the registers in the data array. A pass signal 

is also shown, to illustrate how the timing block could be adapted to control 

latches. 

Figure 7.2(b) illustrates a family of circuits that implements the timing block 

logic. The various stages in the timing block match the flow of data in the data 

array. The stages correspond to the fan-in of the input data bundles, the cap-

ture of the inputs in the registers, the computation by the logic function and 

the fan-out of the output data bundles. For each stage, the circuitry maintains 

the bundling constraint between the data and the handshaking signals. The 

basis of the circuit is the memory control C-Muller gate CM.  This is the same 

control block which is used in Micropipelines (see Figure 3.9). The CR and CA 

C-Muller gates are used to synchronise the fan-in of the request and acknow-

ledge signals. 

The circuit of Figure 7.2(b) can be simplified by combining the synchron-

isation in the fan-in C-Muller gate CR and memory control C-Muller gate CM 

into one C-Muller gate. For timing cells controlling registers, the pass signal is 

not required, so the circuit can be simplified further by combining the fan-out 

C-Muller CA gate with the others to form one C-Muller gate CMRA.  This gives 

the simplified circuit of Figure 7.2(c). 
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The family of timing blocks illustrated in Figure 7.2 represent the possible 

behaviours of a simple timing cell. The configuration bits required to define the 

behaviour of a timing cell were discussed in Section 5.4. Two configuration bits 

per handshaking link were used. The DC (Don't Care) bit determined whether 

the link was used or not. The D I R (Direction) configuration bit determined the 

direction of data flow synchronised by the link. 

Figure 7.3 illustrates circuitry to implement a timing cell that can imple-

ment the timing blocks illustrated in Figure 7.2. The figure shows the circuitry 

required for one handshaking link. The circuitry controlled by the configura-

tion bits is replicated for every other handshaking link into the timing cell. The 

C-Muller gate and delay element in the timing cell circuit corresponds to the 

CMRA C-Muller gate and delay element in Figure 7.2(c). 

The circuit can be thought of as a development of the gate level reconfigur-

able C-Muller gate. The DC configuration bit is common to both circuits, and is 

used in a similar way to create a don't care connection. When DC is false, the 

inputs and outputs to the neighbouring timing cell pass normally along the 

handshaking link. When DC is true, the timing C-Muller gate's output is fed 

back to itself to create a don't care connection. 

100 



The DIR configuration bit, determines whether the handshaking link is an 

input or output link. Since acknowledge signals in the timing block of Figure 

7.2(c) are inverted, the D I R bit chooses between the inverted and non-inverted 

form of the output handshaking signal. Additionally in the timing block, re-

quest signals must be delayed to match the logic delay in the data array, so 

the non-inverted handshaking signal is taken from the output of the delay ele-

ment. 

7.3.2 Output Registered Two-Phase Timing-Cell 

Figure 7.4(a) shows a timing block designed for a data array with the register 

elements situated on the outputs of the logic block. Unlike the timing block for 

memory elements on the inputs, the fan-in C-Muller gate CR and memory ele-

ment control C-Muller gate CM cannot be combined, due to the delay element 

in between them. However, for register based memory elements, no pass sig-

nal is required, so the fan-out C-Muller gate CA and memory control C-Muller 
gate CM can be combined, resulting in the family of timing block circuits illus-

trated in Figure 7.4(b). 

Since the timing block cannot be simplified as much as for the input re-

gistered design, a more complex reconfigurable timing cell results, as shown 

in Figure 7.5. As in Figure 7.3, the circuitry for one handshaking link is shown. 

The circuit has a similar structure to the input registered design. Both designs 

use the same circuitry controlled by DC for feeding back the outgoing hand-

shaking signal to create a don't care link. The designs differ in the circuitry 

controlled by the D I R configuration bit. In the input registered design, the D I R 

bit only has to control the inversion of the handshaking signal. In the output 

registered design, it also has to control which C-Muller gate the handshaking 

signal synchronises with. To implement this, two reconfigurable C-Muller gate 

structures are used, controlled by the DIR configuration bit. These determine 

whether the handshaking signal is an input to the CR or CMA  C-Muller gates. 

To account for the inversion of the acknowledge signals, the inputs to the fan-

out C-Muller gate CMA  are inverted. 

7.3.3 Pull Channels and Two-way Data Passing 

The timing cells described so far use a push bundled-data protocol. In the push 

protocol, the request signal is bundled with a data transfer. The pull and two- 

way data passing protocols differ in which handshaking signals are bundled 
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Figure 7.5: Output Registered Two-Phase Timing Cell 

with a data transfer. In the pull protocol, the acknowledge signal is bundled 

with a data transfer, whilst in the two-way data passing protocol, both request 

and acknowledge are bundled with data transfers. 

In all these protocols, if the handshaking signal is associated with a data 

transfer, then the handshaking signal must be delayed, so that the bundling 

constraint is met. If the handshaking signal is not associated with a data trans-

fer then it is purely for synchronisation, so there is no need to delay it. Hence, 

to implement the pull protocol the acknowledge signal rather than the request 

signal should come from the delay element. For the two-way data passing 

protocol, both request and acknowledge signals should be sourced from the 

the delay element. 

To allow a timing cell to implement all these protocols, a configuration bit 

can be added that controls which handshaking signals are delayed. Figure 7.6 

shows the new delay control unit for the timing cell of Figure 7.3. An addi-

tional configuration bit IDLY has been added that determines whether an out-

going handshaking signal is delayed. As each output handshaking signal has 

its own iDLY configuration bit, push, pull, two-way data passing and pure syn-

chronisation channels (neither request nor acknowledge are delayed) can be 
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mixed freely. However, it is questionable if the additional circuitry and con-

figuration bits are worthwhile, since many circuits will typically only use one 

style of communication protocol. 

Another design decision in the timing cell related to the use of the delay 

element is whether a reconfigurable delay element is provided individually 

for each link, or provided for the timing cell as a whole. Delay matching for 

each link provides some performance benefits in terms of improved latency, 

however throughput will not be markedly improved, since this is limited by 

the worst case delay of the timing cell. In general, the additional circuitry 

required for a reconfigurable delay element per link, rather than per cell, is not 

worth the small performance benefits. 

7.3.4 Reconfiguration and Initialisation 

One aspect of the timing array that has not been considered so far is initial-

isation. Initialisation is required after reconfiguration, so the method of re-

configuration is an important influence on the method of initialisation. For 

example, timing arrays that use global reconfiguration, would be initialised 

using a global reset signal. After reconfiguration, the global reset signal would 

feed into all the timing cells, and reset the C-Muller gate to its initial value. 

Partial reconfiguration, as provided by addressable SRAM FPGAs, requires 

a more sophisticated initialisation strategy, since global initialisation is not suit-

able when only part of the array is being changed. A simple strategy for ini-

tialising the timing cell would be to reset it when its configuration is changed. 
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However, the timing cell is only part of a larger circuit, so a reconfigured tim-

ing cell could communicate with other timing cells in the circuit which have 

not been configured. Hence, some means of initialising a portion of the timing 

array is required. 

A solution is to provide an extra configuration bit in each timing cell that 

determines whether the timing cell is being reconfigured. This bit is named the 

RESET bit. When the RESET bit is set, the timing cell is reset and held in the 

reset state. When the RESET configuration bit is cleared, the timing cell will be 

activated. Thus, to reconfigure a region of the timing array, first the RESET bits 

in all the timing cells to be reconfigured would be set. This can be done in a 

small number of write actions if a wild card addressing scheme is being used. 

Next, each self-timed region in the array is reconfigured. After reconfiguration 

of a self-timed region, the RESET bit is cleared. Since all the unconfigured tim-

ing cells are locked in the reset state until reconfigured, a reconfigured timing 

cell will only be able to communicate with other reconfigured timing cells. A 

benefit of this approach is that the timing cells in the circuit become active as 

soon as reconfigured. By configuring from the inputs of a circuit to the outputs, 

the circuit will begin processing whilst the rest of it is being configured. 

The RESET bit is also useful for deactivating unused timing cells in the 

array. Unused timing cells within the timing array would generally be con-

figured with all the links as don't care connections. However, this causes the 

C-Muller gate in the timing cell to oscillate, in a similar fashion to the gate 

level reconfigurable C-Muller gate, as discussed in Section 6.2.1. When Se-

lective communication is introduced, this behaviour is useful as it allows the 

timing cell to go through several internal states before communicating, but in 

an unused timing cell, this behaviour is undesirable, since it consumes power. 

The RESET bit can be used to overcome this problem by setting the RESET bit 

in all unused timing cells, which prevents them from oscillating. 

Another issue relating to initialisation, is which state the timing cells should 

be initialised to. So far, it has been assumed that the timing cells are initialised 

waiting for events on their input handshaking links. In some situations, it can 

be useful to initialise the timing cells so they immediately generate events on 

the output handshaking links. For example, feedback loops in designs, re-

quire one of the timing cells to be activated to initialise the loop. This can be 

provided by allowing the initial state of the timing cell to be determined at ini-

tialisation. An alternative, is to use the selective communication mechanisms 

described later in this chapter, so the feedback value is not required for the first 
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data item which enters the feedback loop. 

7.4 Four-Phase Timing Cells 

The two-phase protocols used so far are easier to describe than the equival-

ent four-phase protocols, since every transition is significant. However, four-

phase protocols are preferable in general, since they require simpler memory 

elements and simpler branching and merging control blocks. The key issue in 

four-phase design is how to hide the redundant recovery-phase by performing 

it concurrently with the computation in the timing cells. Two-phase protocols 

become preferable when the recovery phase cannot be hidden, for example, 

when communication times dominate over computation times. Various ways 

to hide the recovery phase in four-phase protocols are considered below. 

7.4.1 Implementation of Four-Phase Control 

Figure 7.7(a) illustrates the simplest form of four-phase control that uses the 

same circuit as the two-phase protocols. Since only alternate events are signi-

ficant, only alternate stages in the pipeline are active, so throughput is halved. 

This is a severe penalty over the two-phase design. Some improvement can be 

made by using asymmetric delay elements, that only delay signals on the rising 

or falling edge. These elements can be used to allow the recovery transitions 

to pass without delay. Though this gives some improvement in performance, 

alternate stages are still inactive. 

By using additional circuitry, it is possible to allow the recovery to occur 

concurrently with the computation in the four-phase protocol. One method, 

used by Arvind and Rebello [8, 100], for allowing the recovery phase to occur 

concurrently is to use a second C-Muller gate, as in Figure 7.7(b). The second 

C-Muller gate CD acts as a place-holder for return-to-zero events, so that all 

the CM C-Muller gates in a pipeline can be in the active (logic one) state simul-

taneously. 

The circuit of Figure 7.7(b) is only suitable for controlling registers. To 

control four-phase latches a combined capture/pass signal is required, which 

keeps the latches in the capture state until the four-phase handshake is com-

pleted. Hence, the capture/pass signal must remain in the capture state until 

both C-Muller gates have returned to zero. This requires a two-input OR-gate 

that takes the OR of the outputs of CM and CD to produce the capture/pass 

signal. 
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Figure 7.7(c) shows a four-phase memory control circuit, used by the AMU-

LET Group [25, 371, which utilises asymmetric C-Muller gates. Unlike the sym-

metric C-Muller gate circuit, the asymmetric C-Muller gate circuit can be used 

to control latches without modification. This asymmetric C-Muller gate circuit 

can be considered as a development of the single symmetric C-Muller gate of 

Figure 7.7(a). In Figure 7.7(c), the symmetric C-Muller gate has been split into 

two asymmetric C-Muller gates; the Aout synchronisation being split into two 

separate synchronisations on rising and falling events. Since the two asym-

metric C-Muller gates synchronise on the same events as the single symmetric 

gate, both circuits provide the same behaviour for the Rout signal. 

The decoupling behaviour of the circuit is provided by taking the input 

acknowledge Ain from the output of the CM C-Muller gate rather than from 

CR. For CM to change from logic one to logic zero, it must wait for Aout to 
reach logic one. This value of Aout indicates that the next stage has stored the 

output of this stage. However, CM does not synchronise with Aout equal to 
logic zero, which is the recovery transition on Aout. Thus, events on the input 

channel are decoupled from the recovery transitions on the output channel. 

Though the input channel is decoupled from the recovery transitions on 

the output channel, the circuit must ensure that the recovery transition has 

occurred on Aout before CM synchronises on Aout equal to logic one again. 
For this reason, the feedback connection is included from CR to CM.  Without 
this connection, if Aout remained at logic one, then a number of Rin and Am 

events could occur on the input handshaking channel without any event be-

ing generated on the output channel. The feedback connection overcomes this 

problem by ensuring that every transition on CM must generate a transition on 

CD before CM can change again. 

The circuit of Figure 7.7(c) is known as a semi-decoupled handshaking circuit, 
since it decouples the input handshaking channel from synchronising with the 

recovery phase on the output channel, but does not decouple the output hand-

shaking channel from synchronising on the recovery transitions on the input 

channel. A fully-decoupled control circuit can be produced by replicating the 

decoupling circuitry for the other handshaking channel as shown in Figure 

7.7(d). 

Both the decoupling symmetric and asymmetric decoupling methods de-

scribed above, allow the recovery phases to occur on each channel independ-

ently. The asymmetric C-Muller gate circuit uses more gates, but is preferable 

when using latches, since no extra logic is required to generate a capture/pass 



signal. The symmetric C-Muller decoupling circuit requires an additional OR 

gate to control latches. In the rest of the chapter, the symmetric C-Muller gate 

implementation is used, since it leads to clearer circuits and is more suited to 

register based memory elements which are used in most FPGA architectures. 

7.4.2 Position of Decoupling 

In the symmetric C-Muller gate circuit of Figure 7.7(b), the decoupling C-

Muller gate CD can be separated from the memory control C-Muller gate CM 

by inserting other stages, such as the delay stage or the fan-in and fan-out 

stages, between CM and CD.  Figure 7.8 shows two positions for the decoup-

ling C-Muller gate in an output registered timing block. Figure 7.8(a) has the 

decoupling after the fan-in of the links, so all the input links are decoupled as 

a group, whilst Figure 7.8(b) has each link decoupled individually, before the 

fan-in of the inputs. 

Decoupling the links as a group is advantageous as it uses only one de-

coupling C-Muller gate per timing block, whilst decoupling on the links re-

quires one C-Muller gate per link. However, decoupling on the links has the 

potential for superior performance as the decoupling on each link is independ-

ent. With the central decoupling, all the links are decoupled as a group, so the 

delay of the slowest link determines the delay of the recovery phase on all the 

links. 

An additional benefit of decoupling per link, is that it allows the decoupling 

C-Muller gate to be placed in the centre of the link, halfway between the two 

communicating timing blocks. This leads to a performance advantage, since 

the request and acknowledges only have to travel halfway along the link rather 

than travel the whole length of the link. However, a problem with having 

decoupling on each link is that links cannot be easily chained together, since 

multiple decoupling C-Muller gates between memory control C-Muller gates 

cause the four-phase protocol to fail. 

For the asymmetric C-Muller decoupling of Figures 7.7(c) and 7.7(d), the 

decoupling gates cannot be separated, due to the feedback paths from the CR 

and CA C -Muller gates to CM.  As a result, the position of the decoupling cannot 

be moved, without the additional cost of routing the feedback wires. However, 

the decoupling can still be provided as a group or on individual links, depend-

ing on how the fan-in/fan-out stages are combined with the timing block. 
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7.4.3 Input Registered Four-Phase Timing Cell 

This section describes a four-phase timing cell, which will be developed later 

in the chapter to include selective communication and arbitration. The timing 

cell is illustrated in Figure 7.9. It is designed to control input registered designs, 

and provides decoupling on each link using symmetric C-Muller gates. 
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Figure 7.9: Input Registered Four-Phase Timing Cell 

This choice of timing cell was chosen, since it produces simpler circuitry 

for explanation. As discussed previously, input registered designs allow more 

simplifications to be applied to the basic timing block, giving simpler timing 

cell circuitry. Also, using symmetric C-Muller gates for decoupling on each 

link was chosen as it allows the decoupling to be clearly separated from the 

rest of the timing cell. 

The timing cell is similar to the two-phase input registered timing cell of 

Figure 7.3, however there are a number of difference in the four-phase design. 

Two additional multiplexors have been added: the first additional multiplexor 

is controlled by the DIR configuration bit and is used to control the inversion 

of the output of the decoupling C-Muller gate. The second new multiplexor 
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is controlled by the DC configuration bit and is used to prevent transitions on 

the output handshaking signal when the link is configured as a Don't Care 

connection. This modification is not necessary when selective communication 

is not used, as the other side of the link will also be in a Don't Care state, 

so will ignore any transitions that occur on the handshaking signal output. 

However, when selective communication is introduced, this multiplexor is ne-

cessary, since the other timing cell on the link may be waiting for communica-

tion on the handshaking link. 

Another difference in this timing cell is the feedback of the delay element 

directly to the C-Muller gate. The feedback connection ensures correct op-

eration when the timing cell is disconnected from other timing cells. Again, 

this behaviour is useful when selective communication is introduced, since it 

allows the timing cell to loop through several internal states before communic-

ating with any other timing cells. 

7.5 Selective Communication Timing Cell 

So far, a timing cell capable of implementing self-timed pipelines with fan-in 

and fan-out has been described. However, selective communication has not 

been supported. There has been no means for data values within the data 

array to influence the control flow in the timing array. This section introduces 

a timing cell capable of deterministic branching and merging in the control 

flow. 
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Figure 7.10: Link Between Two Timing Cells using Branch Modules 

The behaviour of a handshaking link using selective communication is il-

lustrated in Figure 7.10. The figure shows one link between two timing cells 

constructed using Branch modules. The request signals flow from left to right 

in the figure, whilst acknowledge signals flow from right to left. The Branch 

module on the left determines when to initiate a communication on the link. 

When the link is not selected, the request events on Rin are passed directly 
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back to Am. When the link is selected, the request event passes to the Branch 

module at the other end of the handshaking link, and the sender waits for an 

acknowledge event from the receiver. The Branch module at the receiver oper -

ates in a similar fashion. When not selected, events cycle around the Aout and 

Rout loop. When the link is selected, the receiver waits for a request event on 

the handshaking link before generating an acknowledgement. 
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Selective communication cannot be implemented in the timing cells de-

scribed so far, however communication patterns can be altered by changing 

the configuration data. This suggests that a way to implement selective com-

munication would be to pass control of the communication pattern from the 

configuration data to select signals generated by the data array. The idea is 

illustrated in Figure 7.11, which shows an adapted version of the timing cell in 

Figure 7.9, where the ic configuration bit has been replaced by a signal that 
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can be driven from the data array. 

This signal determines whether communication takes place on the hand-

shaking link during the current cycle of the timing cell. The signal is generated 

by a new multiplexor controlled by the RDZ (Rendezvous) configuration bits. 

The RDZ configuration bits allow the choice of an inverted or non-inverted se-

lect signal from the data array. The choice of inversion allows the initial value 

of the select signal to be defined (assuming that the D-type is reset to a pre-

defined value). The RDZ configuration bits can also choose the constants logic 

zero and logic one, so that the common functions of 'never communicate' and 

'always communicate' can be implemented without using resources in the data 

array. 

In addition to the RDZ multiplexor, extra circuitry is included to capture the 

select signal. An edge-triggered D-type flip-flop is supplied for capturing the 

select signal. The triggering of the D-type is different depending on whether 

the link is an input or output link, hence an additional multiplexor controlled 

by the D I R bit is included to choose the triggering signal. For output links, the 

select signal is captured before communication with the neighbouring cell. For 

input links, the select signal is not captured until the completion of the current 

communication, to prevent problems with the select value changing during a 

communication on the link. 

An extra fixed delay element is included after the reconfigurable delay 

in the delay stage. This delay is included to ensure that the select signal is 

sampled, and its value is established through the RDZ multiplexors before the 

out going handshaking signal reaches the 'Choose Rendezvous' multiplexors. 

This fixed delay element sets a minimum delay for the timing cell; the timing 

cell cannot go faster than the minimum delay set by the time to sample the 

select values. 

It can be seen from Figure 7.11 that much of the circuitry for selective com-

munication is for sampling the select signal. The amount of circuitry can be 

decreased by reducing the number of select signals from one per link, though 

this reduces the possible behaviours that can be implemented by one timing 

cell. For example, only one select signal could be provided per timing cell. The 

select signal's inverse can be generated using the RDZ configuration bits. This 

allows basic 'if-else' style communication structures to be built. However, this 

is limiting in that more sophisticated branching structures such as multiple 

way branches, cannot be configured in a single timing cell. 
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7.6 Arbitrating Timing Cell 

The timing cell developed so far allows selective communication, so the timing 

cell and associated region of the data array can make deterministic decisions 

based on their own internal states. However, the timing cell cannot choose 

which links to select on the basis of which neighbouring timing cells are wait-

ing to communicate. This requires some method to sample the state of incom-

ing handshaking links. Since, the signals on these links are not synchronised 

to the timing cell, some form of arbitration or synchroniser element is required 

to allow the state of the links to be sampled. 
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Figure 7.12: Q-Flop Arbitration Scheme 

Below, two arbitration schemes are considered. Both use special arbiter 

elements in the timing array to resolve potential meta-stable states. The ap-

proaches differ in where the functions to be arbitrated between are gener-

ated. The first scheme evaluates the arbitration functions in the data array, 
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the second evaluates them in the timing array. 

7.6.1 Data Array Arbitration Function 

One way to perform arbitration is to probe the state of the links to neighbour-

ing timing cells, and provide these as inputs to the data array. The data ar-

ray can make a decision based on these probe values and then use selective 

communication to choose which channels to communicate on. This arbitration 

scheme is flexible, since it does not fix the choice of arbitration function. Any 

arbitration function can be implemented, if sufficient data cells are used. 

Figure 7.12 shows the development of Figure 7.11 that allows the state of 

the handshaking inputs from neighbouring timing cells to be probed. Since the 

probe signals are asynchronous to the cell, some form of synchroniser element 

must be used to sample the inputs. In this case, a Q-flop [103] is used. The 

Q-flop samples its data input after a transition on its request signal. After 

any meta-stable state has been resolved, the Q-flop generates an acknowledge. 

This is fed to the delay element. The delay phase will not begin until all the 

acknowledge signals from the Q-flops have been received. 

There are several drawbacks to the Q-flop scheme. First, arbitrating ele-

ments such as the Q-flop are relatively complex circuit elements to implement, 

and the Q-flop scheme requires one Q-flop per link which adds substantially 

to the size of the timing cell. Furthermore, the Q-flop scheme requires the use 

of data cells in the data array to generate the arbitration function. However, 

as a result of using the data array to implement the arbitration function, no 

additional configuration bits are required in the timing array to implement the 
Q-flop scheme. 

A further drawback to the Q-flop scheme is that the arbitration function is 

evaluated concurrently with the data path function implemented in the self-

timed region. This means the result of the arbitration can only be used to select 

links at the end of the timing cell's cycle. Hence, input links cannot be selected 

in the same cycle as the arbitration function is evaluated, since the input links 

are selected at the start of the timing cell cycle rather than at the end. This leads 

to long latencies for arbitration on input links. For example, to implement an 

arbitrated Merge gate, two cycles of the timing cell would be required. In the 

first cycle the input links are probed and the arbitration function is evaluated, 

in the second cycle, the result of the arbitration is used to select the appropriate 
input link. 

An alternative approach is to use Q-flops in place of the D-types to sample 
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the select signals. In this scheme, the probe signals from the links would be 

passed unsynchronised into the data array. The arbitration function is evalu-

ated in the data array, and then passed as a select signal to the timing array. 

The select signal is synchronised using the Q-flop. This scheme has the ad-

vantage that the output of the arbitration function is synchronised rather than 

its inputs, so the two cycle arbitrate /select loop can be avoided. However, this 

scheme means that the probe signals from the handshaking links cannot be 

used in the data array as inputs to the data path function, since they are not 

synchronised to the self-timed region. Hence, the synchronised select signals 

from the Q-flops also have to be fed back as probe signals to the data array, to 

allow the data path to respond to the result of the arbitration. 

7.6.2 Timing Array Arbitration Function 

The previous arbitration schemes are very flexible as they leave the choice of 

arbitration function to the circuit designer, but incur a high cost in terms of the 

number of arbitration elements required and the number of data cells required 

to implement the arbitration function. An alternative approach is to use a ded-

icated arbitration function implemented in the timing array, which saves on 

data cells and interfacing logic between the timing and data arrays. 

Request Acknowledge 

Probe 

Handshaking Signals 

Figure 7.13: Dedicated Arbitration Block 

A simple dedicated arbitration block that covers many common arbitration 

functions such as Merge gates is shown in Figure 7.13. The programmable-

AND (pAND) gates form product terms from a subset of the handshaking sig-

nals. This subset is determined by configuration data. One pAND gate causes 

the output probe value to be high (the plus input), the other causes the probe 
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output to be low (the minus input). More sophisticated arbitration functions 

can be used that include inputs from the data array as well as the handshaking 

links. 

Another advantage of using a dedicated arbitration block over the Q-flop 

scheme is that the arbitration function is evaluated within the timing cell, so 

the result can be used directly to select the input link to the timing cell without 

using the data array and the problem of the two cycle arbitrate /select loop for 

input arbitration can be avoided. Furthermore, the pAND arbiter waits until 

either one of the AND gates goes high before sending an acknowledge to the 

timing cell. In the Q-flop arbitration scheme there is no such waiting state. For 

example, if the Q-flop scheme is used to implement an arbitrated Merge gate, 

then if neither input is active, the timing cell busy waits, continually sampling 

the input links until one becomes active. 

7.7 Summary 

This chapter has developed a reconfigurable timing cell for use in the STACC 

architecture. The final timing cell integrates the basic functions of self-timed 

control: synchronisation, selective communication, arbitration and delay. The 

chapter also illustrated how basic decisions concerning the memory elements 

and protocols affected the design of the timing cell. 



Chapter 8 

Timing Array Routing 

8.1 Introduction 

The previous chapter developed the STACC timing cell independently of the 

routing network used to interconnect the timing cells. In this chapter, struc-

tures are developed to allow handshaking signals to be routed in the tim-

ing array. Much of the discussion is applicable beyond FPGAs to any style 

of self-timed routing network, for example, the passing of data between self-

timed processors. In particular, the chapter has relevance to the design of self-

timed versions of FPIDs (Field Programmable Interconnect Devices), such as 

the Aptix [5] and I-Cube [61, 60] devices. 

A benefit of self-timed routing is that the routing can be changed between 

modules and the circuit will still operate. As long as the bundling constraint is 

maintained the routing is transparent to the sender and receiver, so buffering 

and multiplexing can be included transparently. Section 8.2 discusses how 

these structures could be used in self-timed FPGA routing and I/O interfaces. 

The routing of handshaking signal pairs in the STACC timing array requires 

the design of handshaking switchboxes that can match the routing of switch-

boxes in the data array. Section 8.3 develops handshaking switchboxes from 

the reconfigurable C-Muller gate, which can synchronise the fan-in and fan-

out of data bundles in the timing array routing. 

A different style of timing array routing can be developed using the distrib-

uted reconfigurable C-Muller gate; this is discussed in Section 8.4. The benefits 

of the distributed routing structures are best utilised with a different style of 

timing cell to that developed in the previous chapter. An outline development 

of such a distributed timing cell is given, which provides an interesting com-

parison with the centralised C-Muller gate timing cell developed previously. 
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8.2 Transparent Routing Structures 

An important benefit of the self-timed approach is that it allows designs to 

operate independently of the routing delay between the various parts of the 

system. This allows routing structures that alter the delay on a route to be 

inserted 'transparently' into a self-timed FPGA architecture. The designer need 

not be aware of their presence, yet the design will still work. This cannot be 

done with synchronous systems, since changing the routing delay could cause 

the system to fail to meet the global clock constraint. 

Below, three routing structures that can be inserted transparently into the 

routing are considered: buffering, route multiplexing and alternative routing 

schemes. These structure are of particular use over longer routes and for shar-

ing input/output resources. 

8.2.1 Buffering 

Any number of buffering stages can be inserted transparently into the routing 

of a self-timed system. Including a buffer in a route increases the latency of the 

route, due to the additional delay for capturing the data in the buffer's memory 

elements, but throughput is increased, since the route can contain more than 

one value at a time. 

Buffering is particularly useful over long routes, since the handshaking sig-

nal routing delay may be the critical source of delay, especially in four-phase 

protocols, where there are additional recovery transitions. In pipelines, it is the 

longest cycle time of all the stages in the pipeline that determines the speed of 

the pipeline. By splitting the route using a buffer, the latency of the route is 

marginally increased. However, if the route was on the critical path, the cycle 

times of the handshaking protocols to and from the buffer are less than the 

cycle time of the unbuffered route, so the performance of the pipeline is im-

proved. 

Buffering has also been shown to be important in self-timed systems with 

variable length delay schemes [66]. In such systems, when the worst case delay 

is encountered in a stage, it results in idle stages before and after the stage. 

With buffering between stages, stages in the pipeline can stay active by using 

data that is stored in the buffers. 

In general, a buffer cannot be included transparently in a synchronous sys-

tem, since it would delay the arrival of the data by a clock cycle. However, 

synchronous systems with flow control can include buffering, though the cost 
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of inserting a buffer is greater, since the additional latency is one clock cycle, 

whilst the additional latency in the self-timed protocol is simply the time taken 

to capture the data. 

8.2.2 Route Multiplexing 

In the field of Communications, routes are commonly shared between a num-

ber of sources and destinations by using some form of multiplexing. The flow 

control properties of self-timed systems also allow such schemes to be incor-

porated transparently into self-timed routing for FPGAs. 

7 

Figure 8.1: Route Multiplexing using Q-Call and Branch Modules 

Figure 8.1 illustrates a multiplexing scheme using the Q-Call and Branch 

modules introduced in Chapter 6. The Q-Call module arbitrates between re-

quests to use the route. The result of the arbitration Q  is used to select the 

output data for the route via a bus multiplexor. The Q  signal is also routed 

with the data bundle to indicate which route is using the shared channel. At 

the other end of the channel, the data is routed to its two destinations. The 

handshaking signals are separated by the Branch module that is controlled by 

the Q  signal. 

Route multiplexing has particular use in FPGAs, for multiplexing data on 

input/output pins. Most current FPGA architectures have far more signals 

on the edge of the array then can be routed via the I/O pins. This coupled 

with the additional off-chip delays prevents arrays being extended uniformly 

across multiple devices. Self-timed routing accommodates for the additional, 

off-chip delays, and with the addition of route multiplexing, this allows self -

timed FPGAs to be extended uniformly to multi-device arrays. 
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Pin sharing via multiplexing can be used in synchronous FPGAs. For ex-

ample, the Virtual Wires System [11] used multiplexing to overcome the pin 

limitations in a multi-FPGA logic emulation system. However, these schemes 

need some form of flow control to be explicitly introduced into the design, and 

thus cannot be included transparently as in the self-timed case. 

8.2.3 Alternative Routes 

Typically, in FPGAs, each data bus is provided with a dedicated signal path, 

from sender to receiver. Thus, there is no need to provide alternative routes 

in the architecture to overcome bottlenecks. However, if route multiplexing 

is introduced, or if the timing array routing architecture is used in other self-

timed routing applications, it may be be useful to provide alternative routes 

between sender and receiver, to overcome bottlenecks. 

CO 

P1 
/Z 

Figure 8.2: Alternative Routes 

Figure 8.2 illustrates an alternative route scheme. It is similar to the work 

sharing pipeline examples from Section 5.4, but instead of sharing the pro-

cessing load between two pipelines, communications are shared between two 

routing channels. For the routing channels to be used concurrently, the routes 

must contain some buffering, otherwise, the communication on one channel 

has to be completed before communication on the next channel can begin. 

Either Toggled-Branch modules or Q-Call modules can be used as the con-

trol blocks. When Toggled-Branch modules are used, the left hand control 

block distributes the data alternately to each channel. The right-hand control 

block, a Toggled-Branch module connected in reverse, is used to alternately 
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take data from each channel. Thus the potential bandwidth of the channel is 

doubled, by distributing the data between two channels. 

When Q-Call modules are used as control blocks, a slightly different beha-

viour emerges. The control block on the left, a Q-Call module connected in 

reverse, sends data down whichever channel is free. The right-hand Q-Call 

block takes data from whichever channel has data available. The advantage of 

the Q-Call scheme is that it dynamically chooses which channel to use, and so 

can avoid blockages in the routing. However, it can re-order data, so either the 

order of data has to be unimportant, or the data has to be routed with a tag to 

identify its order. 

8.3 Routing Handshaking Signals 

The purpose of the STACC timing array routing is to route handshaking sig-

nal pairs, in a way which matches the routing of their associated data bundles 

in the data array. Routing of handshaking signal pairs rather than individual 

handshaking signals is advantageous, since the request and acknowledge sig-

nals in a handshaking pair are routed in opposite directions, and so the same 

configuration data can be used to configure the routing of both signals. Also, 

the routing of handshaking signal pairs, rather than individual handshaking 

signals provides a clean interface between the routing architecture and the tim-

ing cells. 

In routing handshaking signal pairs, it is important that the bundling con-

straint is maintained by the routing. For this to be achieved, the routing struc-

ture in the timing array should match as far as possible that in the data array. 

As a result, the interconnection network used in the data array has a strong 

influence on that used in the timing array. Depending on the routing structure 

of the data array, it may be necessary to include delay elements in the tim-

ing array routing to ensure that the bundling constraint is maintained. Delay 

matching is considered in Section 8.3.2. 

The timing array routing limits the number of data bundles that may be 

routed through the data array. It is easy to construct routing patterns in the 

data array that would require an enormous number of handshaking pairs to be 

routed in the timing array. For example, designs with data bundles of single 

bits fanning out to many different destinations would require a massive quant-

ity of handshaking pairs routed in the timing array. The overhead of provid-

ing timing array routing resources that could route such designs is massive, 
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since two handshaking signals are being routed for each bit in the data array. 

Thus, unless a disproportionate amount of circuitry is given over to the tim-

ing array routing, there will always be data array routing patterns that could 

be implemented in a synchronous version of the architecture that cannot be 

implemented similarly in the self-timed architecture. 

Although it is impractical to provide sufficient timing array routing re-

sources that can cover every conceivable pattern of data flow in the data array, 

the timing array routing should be capable of implementing common patterns 

of data flow for a reasonable number of data bundles. Generally, the pattern of 

data flow is more structured than the scenario envisaged above of individual 

bits being routed to multiple different destinations. Even if timing cells only 

produce a data bundle of a single bit, these can generally be grouped together 

with other timing cells producing single bits to form a bundle of signals that 

are routed to a destination. Similarly, the destination for a bundle may not be 

a single self-timed region, but may be a group of self-timed regions, with each 

timing cell only requiring certain signals from the bundle. This suggests that 

the routing architecture should allow the fan-in and fan-out of data bundles 

within the architecture. 
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Since the routing of handshaking pairs has to match the routing of their as-

sociated data bundles, the topology of the data array routing determines the 

topology of the timing array routing. Rather than discuss the merits of various 

routing topologies, this section concentrates on the two basic routing opera-

tions of fan-in and fan-out of data bundles. To illustrate the discussion, the 

simple one-dimensional data array and timing array routing architectures of 

Figure 8.3 are used. The data array consists of logic blocks that are connec-

ted by a number of input and output signals to one routing switchbox. These 

routing switchboxes are connected to from a one-dimensional array. A sim-

ilar timing array routing structure is used consisting of timing cells connected 

by a number of handshaking links to a one-dimensional array of handshaking 

switchboxes. 

Figure 8.4 illustrates the fan-out and fan-in of data using the routing archi-

tecture introduced in Figure 8.3. In Figure 8.4(a), data signals fan out from one 

logic block to three destination blocks. Figure 8.4(b) illustrates the reverse data 

flow pattern; data fans in from three source logic blocks to a single destination. 

Both fan-in and fan-out of data flow can be synchronised using three tim-

ing cell to timing cell links as illustrated in Figure 8.4(c). The routing of the 

handshaking signals consists of two separate signal paths, one for the request 

signals and one for the acknowledge signals. One path consists of the hand-

shaking signals fanning out from the timing cell on the left to the three timing 

cells on the right; the other path consists of three timing cells on the right fan-

ning in to the timing cell on the left. The routing paths are inverses of each 

other; this allow the same routing to be used for both the fan-in and fan-out 

data flows by just swapping which signals are requests and which are acknow-

ledges. This is configured using the DIR configuration bits in the timing cells 

rather than by the timing array routing configuration. 

In Figure 8.4(c), the synchronisation of the fan-in handshaking signal oc- 

curs in the timing cells; each fanning in handshaking signal is routed to the 

destination timing cell on the left, which synchronises the three handshaking 

signals as a group. Likewise, the fan out of the handshaking signals also occurs 

in the timing cell; the three fanning out handshaking signals are routed separ- 

ately after leaving the timing cell. This pattern of routing fan-out handshaking 

signals is wasteful, as the same signal is routed separately to three destinations. 

Rather than routing the same signal three times through the timing array, 

it could be routed once, fanning out when required in the routing. However, 

this would break the symmetry in routing of the handshaking pairs. This sym- 
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metry is important as it allows the same configuration data to be used to con-

figure the flow of handshaking signals in both directions, since the signal paths 

are the reverse of each other. Also, the routing of handshaking pairs rather 

than handshaking signals provides a clean interface to the timing cells and 

other routing structures, such as those discussed in Section 8.2. 

To allow handshaking signals to fan out in the routing, and to continue to 

route handshaking pairs requires synchronisation to be included in the tim-

ing array routing to synchronise the fan-in of handshaking signals. This is 

illustrated in Figure 8.4(d). The implementation of the timing array routing is 

more complex, since it requires that the routing be capable of implementing 

C-Muller gates rather than simply routing signals. However, allowing syn-

chronisation saves on routing resources. Only one handshaking pair is routed 

through the timing array, fanning out and synchronising when required. Also, 

only one timing cell link is required into the timing array on the left, rather 

than the three used when synchronisation could only occur in the timing cell. 

The above example has illustrated the complexity of routing handshaking 

pairs if synchronisation of handshaking signals is not implemented in the rout-

ing. For a data bundle, if synchronisation is not implemented in the routing, 

every source timing cell of the bundle must route a handshaking pair to every 

destination timing cell of the bundle. Hence, for N timing cells communicating 
to M other timing cells using a common data bundle, NM timing cell to tim-
ing cell links are required. In comparison, if synchronisation is included in the 

routing then only one path through the timing array routing is required, which 

synchronises all the timing cells that connect to the data bundle. Structures for 

synchronising handshaking signals in the routing are described below. 

8.3.1 Handshaking Crossbars 

For routing data, the most general routing switchbox is the crossbar switch, 

since it allows any input signal to be routed to any output signal. Other data 

routing switchboxes can be considered as a subset of the routing in the cross-

bar switch. Hence, a handshaking switchbox which can synchronise flows for 

a crossbar switch in the data array is the most general type of handshaking 

switchbox. Such a handshaking switchbox is termed a handshaking crossbar. Be-
low, handshaking crossbars are developed using the reconfigurable C-Muller 
gate. 

It is useful to consider in a crossbar switch how bundles of data signals 

are routed, rather than individual signals. For bundles of data signals being 
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Figure 8.5: 3:2 Reconfigurable C-Muller Crossbar 

routed to and from a crossbar switch in the data array, any output data bundle 

can take input signals from any subset of the input data bundles. Similarly, 

a signal from any input data bundle may route to any subset of the output 

data bundles. To synchronise such a data flow in a handshaking switchbox, 

each output handshaking signal must be able to synchronise on any subset 

of the input handshaking signals. This behaviour can be implemented by a 

reconfigurable C-Muller gate with connections to all the input handshaking 

signals. For multiple outputs, the reconfigurable C-Muller gate is duplicated. 

This structure is called a reconfigurable C-Muller crossbar (rC-crossbar). Figure 

8.5 illustrates a 3:2 rC-crossbar; the two output handshaking signals can syn-

chronise on any subset of three input handshaking signals. 

The rC-crossbar only synchronises individual handshaking signals, not the 

handshaking signal pairs which are routed in the timing array. Two ways exist 

to create a structure that works on handshaking pairs. The first way is to use a 

rC-crossbar with the same number of input handshaking signals as outputs. As 

• result, each input handshaking signal can be paired with an output to create 

• handshaking signal pair. Such a structure is termed a common input/output 

handshaking crossbar. Figure 8.6 illustrates a 3:3 rC-crossbar used to create a 

common input/output handshaking crossbar. 

The common input/output handshaking crossbar is termed as a crossbar 

since it allows any handshaking signal pair to synchronise with any other 

handshaking signal pair. It is termed as common input/output as it does not 

assign a direction of data flow to the handshaking pairs that it synchronises. 

Thus, it can be used to synchronise data flow across crossbar switches which 



have bidirectional data flows, i.e. every input/output connected to every other 

input/output. 

Hini 
Houti 

Hin2 
Hout2 

Hin3 
Hout3 

Figure 8.6: Common Input/Output Handshaking Crossbar 

The second way of taking the rC-crossbar and creating a structure that op-

erates on handshaking pairs is to take two rC-crossbars and use them to route 

handshaking signals in either direction. Figure 8.7 shows a 3:2 rC-crossbar 

coupled with a 2:3 rC-crossbar; it can synchronise any of the handshaking pairs 

on the left with any subset of the handshaking pairs on the the right. This struc-

ture is called a disjoint handshaking crossbar. It is termed disjoint as data flows 

can only be synchronised that flow from left to right or right to left. There is no 

way to synchronise data that exits on the same side that it enters. The disjoint 

handshaking crossbar can be used to synchronise data flows across crossbar 

switches with fixed input and output connections. 

The disjoint handshaking crossbar can be considered as a subset of the pos-

sible synchronisations of a common input/output handshaking crossbar with 

the same total number of handshaking pairs. For instance, the 3:2 disjoint 

handshaking crossbar is a subset of the common input/output handshaking 

crossbar with five handshaking pairs. 

The number of configuration bits needed for the reconfigurable C-Muller 

gates in a handshaking crossbar can be halved by sharing configuration bits. 

Configuration bits can be shared, since both the forward and reverse paths of 

the handshaking signals are Synchronised in the handshaking crossbar. Thus, 

if the output of handshaking pair X is configured to synchronise on the input 
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Figure 8.7: 3:2 Disjoint Input/Output Handshaking Crossbar 

of handshaking pair Y, then the output of handshaking pair Y must synchron-
ise on the input of handshaking pair X. This allows the same configuration bit 

to be used to configure both synchronisations. 

8.3.2 Delay Matching 

A critical property of the timing array routing is that it has to maintain the 

bundling constraint for handshaking signals that are associated with a data 

transfer. So far, this has been achieved by using the same topology of routing 

network to connect the switchboxes in the timing array and data array. The 

main difference between the two structures is that in the data array switchbox 

a multiplexor is typically used to implement the routing, whilst in the timing 

array a reconfigurable C-Muller gate is used to implement the routing. 

To ensure the bundling constraint is met, it has been assumed that the re-

configurable C-Muller gate has a longer delay then the multiplexor. In some 

cases, this may not be so, for example, heavily loaded data signals may take 

longer to change than the time for the reconfigurable C-Muller gate to change. 

If this can occur, then additional delay elements need to be included with the 

C-Muller gates to ensure the bundling constraint is met. Generally, fixed delay 

elements would be added, as the cost of providing variable delay elements 

would be prohibitive. 

A problem with placing additional delay on the C-Muller gate is that it adds 

additional delay to handshaking signals that are not bundled with a data trans- 
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fer, as well as those which are. The handshaking crossbar can be adapted in 

several ways so that handshaking signals not bundled with data transfers are 

not delayed. One way is to add configuration bits, one per C-Muller gate, that 

determine whether the additional delay is required to ensure the bundling con-

straint is met. The disadvantage of this is that it requires extra circuitry, which 

also increases the delay. Another way to ensure that handshaking signals not 

bundled with a data transfer are not delayed would be to fix which handshak-

ing signals in the routing are associated with a data transfer and which are 

not. This approach saves on configuration bits, but reduces the flexibility of 

the timing array routing, since it forces the handshaking pair to transfer data 
in a specified direction. 

An alternative to trying to maintain the bundling constraint is to use a 

delay-insensitive protocol in the routing. As discussed in Chapter 3, delay-

insensitive codes can be expensive to implement. Dual-rail encoding requires 

two wires per data bit, whilst delay-insensitive codes that require less wires, 

such as Sperner or Berger codes, require more complex decoding /encoding 

circuitry. In general, it is not worthwhile to implement these schemes intern-

ally to the FPGA, since the FPGA designer has a large degree of control over 

the internal chip delays. However, delay-insensitive protocols are useful for 

off-chip connections, since the FPGA designer has no control over the off-chip 

routing delays. Due to the packaging cost of input/output pins, the use of 

delay-insensitive codes that minimise the number of signal wires would be 

preferable for such routing. The circuitry required for encoding and decoding 

can be shared, along with I/O pins, by using the route multiplexing scheme 
described in Section 8.2.2. 

8.4 Distributed C-Muller Gate Routing 

In the handshaking crossbar structures developed so far, the implementation 

of the C-Muller gate has not been specified; either centralised or distributed re-

configurable C-Muller gates could be used. Unless large fan-in C-Muller gates 

are required, a centralised gate would be favoured, since all the handshaking 

signals are already routed to a central switchbox. However, the distributed 

C-Muller gate has the potential for a different style of timing array routing, 

where the synchronisation is distributed across the wires, and wires are joined 

using standard routing switchboxes rather than the handshaking crossbars de-
veloped earlier. 
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Figure 8.8 illustrates the control circuitry for a two-phase pipeline imple-

mented using distributed C-Muller gates. For reasons of clarity, the weak pull-

up resistors and delay elements have been omitted from the figure. The out-

puts of the distributed C-Muller gates drive two synchronisation wire pairs. 

The right-hand set of open-collector drivers are request inputs to the next dis-

tributed C-Muller gate, whilst the left-hand set of open-collector drivers are 

acknowledge inputs to the previous distributed C-Muller gate. Since the ac-

knowledge inputs to the C-Muller gate are inverted, the acknowledge drivers 

are inverted with respected to the request drivers. Data can be routed in the 

opposite direction through the pipeline using the same control structure, by 

swapping the request and acknowledge signals. 

Labelling of the off-figure connections is more difficult with the distrib-

uted implementation, since rather than labelling individual wires, pairs of syn-

chronisation wires must be labelled. Also, since the synchronisation wires are 

bidirectional, it is not possible to identify inputs and outputs to the circuit. 

However, Figure 8.8 is labelled in a similar way to the previous pipeline cir-

cuits. This labelling, rather than being based on the direction of signal flow, 

is based on the direction of event flow in the figure. Events are considered to 

travel from the open-collector drivers to the SR flip-flops. Once the direction 

of event flow is identified, then the off-figure connections can be labelled, in a 

similar way to previous pipeline control circuits. 

In comparison to the implementation of Micropipelines using centralised 

C-Muller gates, the distributed C-Muller gate pipeline is more complex, since 

instead of one signal being routed for each handshaking signal, two wired logic 

signals are required. However, to create larger fan-in gates, no further signals 

are required, merely the extension of the synchronisation wire pair. This is 

illustrated in Figure 8.9, which shows a fan-out of two from the stage on the left 

to the two stages on the right. The fan-in of the acknowledge signals from the 
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Figure 8.9: Two Way Fan-Out 

two stages on the right can be implemented by connecting all the timing block 

acknowledge drivers to the same pair of synchronisation wires. In contrast to 

the centralised C-Muller gate, no additional signals are required. 

However, the reverse process of fan-out of the request signals becomes 

more complex. In the centralised C-Muller gate architecture, the fan-out of 

these signals can be done by simply routing the same signal to all the destin-

ations. In the distributed architecture, each synchronisation wire pair must be 

isolated; i.e. driven by separate drivers. In Figure 8.9, the left-hand stage has 

two separate sets of request drivers, to ensure that the fan-out request signals 

are isolated. If the synchronisation wire pairs are not isolated, then all the fan-

out stages are synchronised together, as a group. Hence, although there is a 

gain in the ease of creating large fan-in C-Muller gates, the complexity of the 

fan-out routing is increased, which generally negates any advantage from the 

ease of creating large fan-in gates. 

One exception to this is when the desired behaviour is to synchronise a 

group of timing blocks. Figure 8.10 illustrates a timing block on the left com-

municating to a group of two timing blocks on the right. The group of two 

timing blocks are duplicates; both are connected to the same input synchron-

isation wires and drive the same output synchronisation wires. This duplic-

ation seems wasteful, but the alternative scheme would be to use one timing 

block and distribute the memory control signals over the region covered by 

two timing blocks. This requires extra routing; the cost is not insignificant con-

sidering that the minimal circuitry for the timing block is only a SR flip-flop 

plus open collector drivers. 
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Figure 8.10: Grouping of Two Timing Blocks 

Furthermore, synchronising groups of timing blocks is advantageous for 

its delay properties. The group of timing blocks is constrained to wait for the 

slowest timing block in the group before proceeding. This allows locally de-

termined delay schemes to be used for the timing block group. The alternative 

scheme, of grouping data cells by using one timing block to control a larger 

region of the data array, requires a more sophisticated delay scheme, so that 

the single timing block could account for the wider range of delays. Thus, the 

ease of grouping timing blocks in the distributed architecture allows simpler 

local based delay schemes to be used. 

8.4.1 Distributed Timing Cell 

The routing structures based on the distributed C-Muller gate differ greatly 

from those developed for the centralised C-Muller gate. These differences, es-

pecially the minimal amount of circuitry required for a timing block, suggest 

that a different style of timing cell could be developed which is suited towards 

a distributed C-Muller gate routing architecture. As discussed in chapter 6, the 

distributed C-Muller gate suits fuse based configuration, since the wired logic 

requires low resistance bidirectional lines. Fuse based configuration precludes 

dynamic reconfiguration which is the focus of this thesis. However, the work 

is included as it illustrates both the wide applicability of the STACC architec-

tural model, and also how a different configuration technology influences the 

design of the timing array. 

The minimum circuitry required for the distributed timing cell is a SR flip-

flop plus open-collector drivers. This circuitry is small enough that for many 

choices of data cell design, the overhead of providing one timing cell per data 
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cell would not be unreasonable. Furthermore, the previous section has illus-

trated that the main advantage of the distributed architecture is its ability to 

group timing blocks together. This suggests that a reconfigurable distributed 

timing cell could be provided at a fine level of granularity and then grouped 

together to from larger timing cell groups. 

Figure 8.11 illustrates a distributed timing cell providing memory control 

to one data cell. The timing cell is similar to that used in the previous pipeline 

example with the addition of the delay element to the cell. The figure is laid 

out to highlight similarities with fuse based architectures such as the Cypress 

pASIC380 [24] series of FPGAs. The architecture maintains the clear separation 

between timing cell and data cell that was a design aim of the STACC architec-

tural model. This differentiation is also maintained by using separate routing 

for the data signals and timing control synchronisation wires. 

The only additional element to the distributed C-Muller gate in the timing 

cell is the delay element. Since the timing cell is going to be provided at a fine 

level of granularity, a simple delay element, such as a fixed unreconfigurable 

delay element, is preferable. More complex delay elements will significantly 

increase the size of the basic timing cell. Even though no variation is intro-

duced by the individual fixed delay elements, variation in the delays of groups 

of cells occur, as larger groups will take longer to distribute the synchronisation 
wire values to all cells. 

In contrast to the centralised timing cell design, the two-phase protocol is 

preferable in the distributed design. In the centralised timing cell, the four-

phase protocol was preferred, since it made the basic branching structure sim-

pler and allowed simpler memory elements to be used. This was at the expense 

of more complex synchronisation circuitry to deal with the recovery phase of 

the handshaking protocol. However, in the distributed design, a fine granu-

larity of timing cell is being used, so making the timing cell more complicated 

incurs a greater area overhead. Also, communication time is an issue in the 

distributed architecture; the rise times on the synchronisation wires are slow, 

since the wires are only driven high by weak pull-up resistors. Thus, the ad-

ditional recovery phase in a four-phase protocol may cause communication 

times to dominate over computation time. Hence, two-phase signalling is the 

preferred protocol for a distributed implementation. 
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8.4.2 Distributed Control Blocks 

In the centralised timing cell, developed previously, branching and merging 

were done on a per link basis. Each link could be individually selected on each 

cycle of the timing cell. This is hard to achieve in the distributed timing cell, 

since individuals links are not routed, only the synchronisation wires. Also, 

the previous section has argued for providing a fine level of granularity of 

timing cell to data cells. Adding the complexity of branching and merging 

could significantly increase the size of the timing cell. To maintain a small size 

of timing cell, it is better to provide branching and merging as separate cells, 

though this does not integrate the two functions, which was an advantage of 

the centralised design. 
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Figure 8.12: Distributed Control Structures 

The Select and Q-Merge pair introduced in chapter 6 are good candidates 

for such branching elements, since they provide a wide range of control func-

tion with a minimum of circuitry. More complex branching and merging struc-

tures can be made by connecting several of the Select and Q-Merge gates to the 

rge 
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same input or output synchronisation wire pairs. 

Figure 8.12 illustrates the use of the Select and Q-Merge gates to allow 

branching and merging in the distributed architecture. These gates operate 

directly on synchronisation wires; this allows fan-in or fan-out synchronisa-

tion of the signals going into and out of the control blocks. Q-Merge and Select 

gates that operate on synchronisation wire pairs, rather than single wires can 

be implemented by placing SR flip-flops on the input synchronisation wires, to 

convert to a single wire, and then using the standard implementations of the 

Q-Merge and Select gates. The output of the gates and their inverses are used 

to drive open collector drivers for the output synchronisation wires. 

8.4.3 Comparison with Centralised Timing Cells 

This section has developed a distributed timing cell for STACC, which is very 

different from the centralised one. Many of the design decisions made for the 

centralised timing cell are made differently in the distributed architecture to 

exploit the different routing architecture. 

Compared to the centralised timing cell, the simplicity of the basic distrib-

uted timing cell favours a fine granularity architecture where a timing cell can 

be provided per data cell. This large number of fine grain cells are grouped 

together using the distributed routing architecture. The simplicity of the basic 

timing cell also leads to the decision to separate branching and merging ele-

ments from the timing cell. This differs from the centralised timing cell where 

an integrated approach is favoured. Finally, the slow transitions of the wired 

logic signals favours a two-phase implementation rather than the four-phase 

one that was adopted for the centralised timing cell. 

8.5 Summary 

This chapter has illustrated the benefits of self-timed routing. Routing struc-

tures can be placed transparently in the routing, whilst maintaining the opera-

tion of the system. These structures have important use, in improving through-

put of routes, and in sharing I/O resources in self-timed FPGAs. The chapter 

also developed structures for routing handshaking signal pairs in the STACC 

timing array based on the reconfigurable C-Muller gate. Handshaking switch-

boxes based on the handshaking crossbar allowed the fan-in and fan-out of 

data bundles to be synchronised in the timing array. 
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The final part of the chapter considered routing structures based on the dis-

tributed C-Muller gate. The distributed synchronisation structures were flex-

ible enough to enable all the synchronisation to be performed in the timing 

array routing, rather than in the timing cell. This led to a very basic, stripped 

down form of timing cell, which could be provided in large numbers and syn-

chronised as a group using the distributed routing architecture. The distrib-

uted timing cell is not developed further, since it suits fuse based configuration, 

and hence is not suitable for the dynamic hardware applications on which this 

thesis is concentrating. 
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Chapter 9 

Self-Timing the Xilinx XC6200 

9.1 Introduction 

This chapter is the first of three concerned with applying the STACC model 

to create a new self-timed version of the Xilinx XC6200 architecture. In this 

chapter, the synchronous XC6200 architecture is introduced and a self-timed 

version created using the STACC model. The following chapters demonstrate 

the use of the self-timed XC6200 for dynamic hardware and evaluate the archi-

tecture with respect to the original synchronous XC6200. Chapter 10 presents 

a case study concerning the design of run-time parameterised circuits for finite 

field operations using the self-timed XC6200 architecture. Chapter 11 compares 

the synchronous and self-timed XC6200 architectures, and proposes improve-

ments to the self-timed architecture. 

For the study, it was decided to design a STACC architecture using a cur-

rent synchronous FPGA architecture for the data array. Using a current archi-

tecture for the data array, allowed design experience and design tools to be 

transfered to the new self-timed version of the architecture. Also, choosing a 

current architecture allowed comparison to be made between the synchronous 

and self-timed versions of architectures with the same data array. 

The XC6200 in particular was chosen for several reasons. It is a contem-

porary FPGA architecture (first silicon 1995), and includes features that make 

it suitable for dynamic hardware systems, an area where self-timing would be 

expected to provide most benefits. Another factor in choosing the XC6200 was 

that it's predecessor, the Algotronix CAL was also developed at Edinburgh. 
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9.2 XC6200 Architecture 

9.2.1 Background 

The Xilinx XC6200 FPGA [123] is the successor to the Algotronix CAL1024 

FPGA [65, 3]. The CAL1024 is a fine grain random access SRAM FPGA com-

posed of a nearest neighbour array of integrated routing and logic cells. The 

XC6200 architecture extends this structure by including non-local routing sig -

nals called flyovers (or fast lanes in later versions of the data sheet), based on a 

hierarchy of 4 x 4 blocks of cells. 

The other main difference of the XC6200 from CAL is that the XC6200 has 

been designed specifically for use in dynamic hardware systems, especially 

the 'co-processor' type (see Section 2.7.1) with a close coupling between FPGA 

and microprocessor. To support this, the XC6200 has a sophisticated control in-

terface, to minimise the read/write cycles required for configuration and data 

transfer between FPGA and microprocessor. 

9.2.2 Function Block 

Figure 9.1 illustrates the multiplexor based function block used in the XC6200. 

The inputs to the function block are chosen by three 8: 1 multiplexors: xl, x2 

and X3. The inputs to these multiplexors are sourced from the four local inputs 

to the cell (N, E, S and w) and the four flyover signals (N4, E4, S4 and w4) that 

cross the cell. 

The cell's logic function is built around a 2 : 1 multiplexor, which generates 

the combinatorial output function C. The select input to the multiplexor comes 

from the xl multiplexor. The data inputs to the C multiplexor come from the 

Y2 and Y3 multiplexors; these multiplexors can choose between the inverted 

and non-inverted forms of the inputs from the x2 and X3 multiplexors. Thus, 

the logic function can be used to create a 2 : 1 multiplexor with optional in-

put inversions. Such a reconfigurable gate is capable of creating any boolean 

function of two inputs. The Y2 and Y3 multiplexors also allow the output of 

the memory element to be fed back and used as an input to the logic function 

without using external routing resources. 

The memory element used in the function block is a single bit D-type re-

gister, which can be read and written via the configuration interface. The 

memory element takes its input from the output of the RP (Register Protect) 

multiplexor. When RP is clear, the register takes its input from the output of 

combinatorial logic function C. However, when RP is set, the output of the re- 
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Figure 9.1: XC6200 Function Block 

gister is fed back to its input; this protects the register from being updated. The 

protected register state is useful, as it allows a constant zero or one input to be 

fed into the function block without using external routing resources. The out-

put of the register feeds into the Cs (Combinatorial/Sequential) multiplexor. 

The CS multiplexor determines whether the function block output F is sourced 

from the register or from the output of the combinatorial logic C. 

In addition to the function block output F. the function block also provides 

an output called Magic. The Magic signal is a special routing resource that 

routes to the edge of a 4 x 4 cell block. The Magic signal is driven from either 

the X2 or X3 multiplexors; this reduces the number of configuration bits re-

quired in the function block, since the x2 or X3 multiplexors are used to make 

the decision of which input to route. However, this means that the Magic out-

put can only be used if the configuration of the logic function uses the required 

signals on X2 or X3. 

9.2.3 Interconnect 

Figure 9.2 illustrates the basic routing/logic cell used in the XC6200; these cells 

are arranged in a nearest neighbour grid to form the basic routing structure for 

the XC6200. The routing function implemented by each cell is a variation on 

a crossbar switch. Each of the local outputs (N, E, s, w) may be sourced from 

any local input, except from the direction that the output goes to. Instead, this 
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Figure 9.2: XC6200 Cell Routing 

The flyover wires (N4, E4, S4, w4) that cross the cell are sourced directly 

into the function block. For these signals to be sourced onto the local routing, 

rather than being used as an input to the function block, the function block has 

to be configured as a buffer. The CLK and CLR inputs connect directly into the 
function block; CLK signals cross the cell in a North-bound direction, CLR cross 
the cell in a South-bound direction. 

On top of the nearest neighbour grid, the XC6200 implements a hierarchical 

routing structure. Cells are grouped into 4 x 4 blocks as illustrated in Figure 

9.3. In turn, the 4 x 4 blocks are grouped into 16 x 16 blocks and 64 x 64 blocks. 

Each level of the hierarchy has its own routing resources known as flyovers. 
Signals can only be routed on to flyovers via boundary multiplexors on the 

edge of the blocks so, for example, level-16 flyovers can only be driven from 

boundary multiplexors at the edge of a 16 x 16 block. Signals can be routed 

from any level of flyover onto the local and level-4 flyovers by multiplexors on 
the 4 x 4 boundaries. 

The 4 x 4 blocks in the architecture differ from the higher levels of the hier -

archy in two ways. First, the level-4 flyovers can be used directly as inputs 
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to the cells. Other flyover signals have to route via the local routing or the 

level-4 flyovers to reach the cells. The second difference of the 4 x 4 blocks 

from the higher levels is that they have additional routing resources provided 

by the Magic signals. Magic signals pass from .each cell to the edge of the 

4 x 4 blocks. Figure 9.4 shows the routing of the Magic signals to one edge of 

a 4 x 4 block. Two Magic signals route to each boundary multiplexor, known 

as the M and MA signals. The signals are designed to allow efficient corner 

turning in designs. The routing exhibits rotational symmetry, so the pattern 

of Magic routing is duplicated for every other direction. Though, the Magic 

signals exhibit rotational symmetry, the signals do not exhibit reflective sym-

metry, which prevents designs using the Magic signals from being 'flipped' by 

design software. 

4x4 
	

1 6x1 6 
boundary 
	

boundary 

4x4 cell 

16x16 cell 

Ii 	 ii 

Magic Routing 

Figure 9.5: Cross-section of XC6200 Routing 

The overall routing structure of the XC6200 series is illustrated in Figure 

9.5, which shows a cross-section of the routing. Figure 9.5 is valid in both 

the North-South and East-West directions, since the basic routing architecture 

exhibits rotational symmetry. 

The CLK and CLR routing are not included in Figure 9.5, since they do not 

exhibit rotational symmetry. The CLK signals are driven from 4 x 4 block 

boundary multiplexors and cross the chip in a northerly direction. The CLR 

signals are driven from 16 x 16 boundary multiplexors and cross the chip in 

a southerly direction. To ease the distribution of clock and clear signals, four 

global signals Gi, G2, GCLK and GCLR are supplied, and can be used as inputs 

to the boundary multiplexors that drive the CLR, CLK and N4 signals. 
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9.2.4 Configuration Memory and Interface 

The configuration memory in the XC6200 uses an SRAM with a random access 

interface. In addition, the XC6200 also supports a number of serial configura-

tion modes. The XC6200 is designed to be closely coupled to a microprocessor 

for dynamic hardware applications, so includes two features to facilitate rapid 

reconfiguration by a microprocessor: the mask register and the wild card address 
register. 

The mask register allows individual bits in a word of configuration memory 

to be addressed. Effectively, the mask register gives read/write access per-

mission to certain bits of a word. On writing to the XC6200, masked bits are 

left unchanged, whilst on reading from the XC6200, masked bits become zero. 

Without the mask register, to change certain bits in the configuration memory 

would require a read operation from the SRAM, followed by a series of bitwise 

logical operations by the microprocessor, followed by a write operation. With 

the mask register, only one write operation is required, plus the initial set up 

of the mask register. 

To allow a microprocessor to reconfigure large regular designs quickly, the 

XC6200 includes a wild card address register. The wild card register allows 

the same value to be written to a group of addresses in one write operation. 

All configuration memory locations with addresses that match the write ad-

dress but ignoring those bits set in the wild card register, are written to in one 

operation. The wild card addressing logic is bypassed on read operations. 

Together, the two registers provide a powerful reconfiguration interface. 

Configuration bits relating to certain functions can be set over a large region 

of the array in one operation. Regular designs can be configured in very few 

operations via this interface. Semi-regular designs can be configured by a two-

phase configuration scheme of configuring the regular design, and then con-

figuring the exceptional cases. In effect, the XC6200 allows the compression of 

regular and semi-regular design configurations. This compression is import-

ant for dynamic hardware designs as it allows fast reconfiguration. However, 

it does not compress irregular designs; compression of irregular configurations 

would require a more general compression scheme. 

9.2.5 Input/Output Interface 

The XC6200 provides two I/O interfaces: I/O blocks (lOBs) that link the edge 

of the array to device pins, and register based I/O that utilises the configura- 
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tion interface to access the memory elements of individual cells. 

The XC6200 JOBs provides output to and from the device pins, for signals 

at the edge of the array. Input data from the JOB pins are routed via modi-

fied boundary multiplexors onto the XC6200 routing. The output drivers of 

the JOBs consists of a data input and an enable input; the data input is driven 

from the local boundary multiplexor, whilst the enable signal is driven from 

the level-4 boundary multiplexor. Many of the JOB pins are shared with device 

control pins. This minimises the pin count of the device, though does mean 

that not all JOBs may be used in all designs. The control signals interface 

through the same data/enable arrangement as the data signals. Pins that are 

not shared with device control pins, may instead be shared with a 'padless' 

JOB, which interfaces via the unused control signal interface. 

A novel feature of the XC6200 is that it allows the FPGA to directly connect 

to its own control signals via the JOBs. This could be useful, for example, to 

allow the XC6200 to perform some control functions for itself. For example, 

it could be configured to control some of the bus control signals, or to per-

form its own address decoding. An intriguing possibility of this scheme, is 

self-reconfiguration of the FPGA. For example in a neural net application, the 

FPGA could change the connections of the neurons depending on an evalu-

ation function. However, self-modifying hardware is likely to be as difficult to 

implement, use and control as self-modifying code in software. 

The other input/output interface to the XC6200 is the register I/O interface, 

which allows the values of the registers within each cell to be read and writ-

ten via the configuration interface. A similar mechanism was provided in the 

CAL1024, but access was only allowed to one cell at a time, since the value was 

stored with the configuration data for the cell. This limited reading and writ-

ing of values to one bit at a time. To overcome this, the XC6200 has separately 

addressed memories for configuration data and register values. 

The register I/O interface is addressed by column; each column of cells in 

the XC6200 can be selected, and read or written in one read/write cycle. Since 

the height of the array (64 bits for the XC6020) is larger than the configura-

tion bus width, the XC6200 includes a map register, to map the bus values to 

memory elements in the selected column. The map register signifies which of 

the cells in the selected column is to be read or written. For read operations, the 

mapping circuitry takes the register output of the column in the array, and re-

moves unselected bits from the result, and shifts the other bits down. For write 

operations, the reverse process occurs. The map register is advantageous as it 
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saves the microprocessor from performing a whole series of shift and logical 

operations to format the data that is transferred between it and the FPGA. 

The signals that select the column of registers to be accessed in the XC6200 

are named RegWord. The Regword signals may be routed into designs from 

the drivers for the level-16 and level-64 flyovers in the North and South JOBs. 

By routing the RegWord signal to designs, it is possible for designs to detect 

with the addition of special circuitry when data has been written to or read 

from a register. This can be used to implement a restricted form of flow control 

between microprocessor and FPGA. This is discussed below. 

Implementing Flow Control in the Synchronous XC6200 

An important property of self-timed systems is their flow control behaviour. 

The routing of the Regword signals to circuits in the XC6200 allows a simple 

form of synchronous flow control to be implemented in the I/O interface. 

Circuits can detect when data has been read or written from them using the 

RegWord signals. These signals effectively form a request or acknowledge sig-

nal from the microprocessor. 

An assumption in this form of flow control is that the FPGA is ready to 

accept the data or that the data is ready to be read. In simple designs, it can 

generally be assumed that the FPGA processes data faster than the micropro-

cessor, so that it will always be ready to accept data, and that the FPGA will 

always produce a result before the microprocessor comes to read it. However, 

this may not hold when more sophisticated functions are implemented in the 

FPGA. 

For true flow control, where both FPGA and microprocessor can go at their 

own speed, the microprocessor must check that the FPGA has requested or 

acknowledged a data transfer. For writing to registers, in the XC6200 this re-

quires an extra read cycle to read back a validity bit to indicate that the FPGA 

is ready to accept data. For reading from registers, only one cycle would be 

required if the data validity bit is combined with the data, though extra in-

structions in the microprocessor would be required to extract this status bit. 

Both these schemes essentially require busy waiting by the microprocessor un-

til the request or acknowledge signal becomes valid from the FPGA. 

An alternative to busy waiting would be to use interrupts. The request 

or acknowledge signal from the FPGA could be routed to the microprocessor 

interrupt lines via the JOBs. Given the overheads of interrupt processing in 

microprocessors, this will only be a good idea when the FPGA takes a long 



time to produce a result. In virtual hardware systems, interrupts could also be 

used to indicate virtual hardware faults. 

9.3 STACC Architecture Design Process 

Before applying the STACC model to create a self-timed version of the XC6200, 

this section discusses in general terms the overall design process of creating a 

self-timed FPGA architecture using the STACC model. 

9.3.1 Granularity 

The key decision in the design process is choosing the granularity of the self-

timed architecture. In this context, the grain size being referred to is the size of 

the self-timed region, i.e. timing cell and the data cells controlled by it, rather 

than the granularity of individual data cells which is normally referred to in 

terms such as 'fine grain FPGA architecture'. 

The limiting factor in this choice is the overhead involved in implementing 

and using the timing array for a particular choice of granularity. The overhead 

has two components, the fixed overhead of implementing the timing array 

and a configuration dependent overhead, that arises from fitting circuits to the 

granularity imposed by the architecture. 

Architectural Overhead: The architectural overhead arises from the extra cir-

cuitry required to implement the timing array, which is not required in a 

synchronous FPGA architecture. Using a larger size of self-timed region, 

reduces the overhead since fewer timing cells are required. However, lar-

ger self-timed regions require timing cells with more handshaking links 

and more complex arbitration functions to match the complexities of the 

data flow in a larger region of the data array. Smaller self-timed regions 

will generally have simpler patterns of data flow, so can use timing cells 

with less handshaking links and simpler arbitration functions. 

Configuration Dependent Overhead: The second component of the overhead 

arises from data cells that cannot be used in the data array due to lack of 

timing cells. Unlike the architectural overhead, this overhead is config-

uration dependent, since some circuits will fit to the imposed granular-

ity better than others. Smaller self-timed regions have less potential for 

wasting cells, whilst larger self-timed regions have the potential for wast-

ing large numbers of data cells through only a small number of cells in 
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a self-timed region being used. Since the overhead is configuration de-

pendent, designers will tend to modify the design of circuits to fit the 

granularity imposed by the architecture. 

The above discussion has emphasised two conflicting trends in the choice 

of self-timed granularity. Large self-timed regions minimise the architectural 

overhead, but increase the potential waste of data cells through insufficient 

timing cells being available. The granularity chosen for a STACC based archi-

tecture needs to strike a balance between these two trends. 

9.3.2 Variable Granularity 

Architectures with a fixed granularity force circuits to be fitted to the granular-

ity imposed on them by the architecture, even if this is at odds with the natural 

granularity of the circuit. Variable granularity architectures allow the size of 

self-timed region to be adapted to match the natural granularity of the circuit. 

Even with the architectures discussed so far, some variability in the size of 

self-timed regions can be provided. The fixed pattern of local clock routing 

only bounds the locations of the memory elements within the self-timed re-

gion. Other data cells implementing a purely combinatorial function can be 

located outside this area. However, the larger the self-timed grain becomes, 

the more difficult it becomes to route signals to and from the registers located 

in the area covered by the local clock. Thus, this method is only suited to small 

variations in granularity. 

Greater variability in granularity requires specific support by the architec-

ture. Two ways of achieving flexible granularity are possible: a more flexible 

distribution of local clock signals from timing cells, or the grouping of timing 

cells together. These two methods are discussed below: 

Flexible Local Clock Distribution: Variability in the size of self-timed region 

can be achieved by allowing data cells to source local clock signals from 

a number of different timing cells, rather than just one. Several problems 

exist with this approach. Timing cells can distribute their local clock sig-

nal over a wide area, so the required size of the local clock drivers and 

local clock skew become problems. Flexible local clock distribution also 

requires more configuration bits to determine the pattern of local clock 

routing. However, potentially the most severe problem is that the com-

plexity of the timing cell may not match the complexity of the data flow 

that it controls, especially if one timing cell is used to synchronise a large 
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region of the data array. Thus, this technique is more suited to allowing 

small variations in granularity. 

Grouping Timing Cells: The other approach to providing variable granular-

ity is for a group of timing cells to synchronise before generating their 

local clock signals. Potentially, grouped timing cells can provide the fa-

cilities of one large timing cell, for example, two timing cells with four 

links could be grouped to provide one with potentially eight links. This 

is advantageous, since the complexity of the timing cell scales with the 

complexity of the associated data array. 

Of the two methods described above, flexibility in the local clock routing is 

easier to implement, since the forms of clock distribution used in synchronous 

FPGA architectures can be adapted for it. However, this approach does not 

scale the complexity of the timing cell with the complexity of the associated 

data array region. Hence, the second approach of grouping timing cells is bet-

ter, however this requires new self-timed structures to implement the group-

ing. Possible structures for grouping timing cells in the self-timed XC6200 are 

discussed in Chapter 11. 

9.3.3 Other Design Decisions 

The choice of granularity is the most important design decision in the creation 

of a self-timed FPGA architecture using the STACC model. Once the choice of 

granularity has been made, the other design decisions in the architecture can 

be made. Essentially, most of these decisions involve defining the interfaces of 

the timing cell to other parts of the architecture: the timing cell to timing cell 

interface (timing array routing); timing cell to data array interface (the probe 

and select routing); timing cell to environment interface (timing cell I/O inter-

face) and the timing cell to microprocessor interface (configuration interface). 

Finally some design decisions need to made concerning the behaviour and im-

plementation of the timing cell, in particular, the choice of delay element. 

These decisions are discussed below: 

Timing Array Routing: Chapter 8 discussed timing array routing structures. 

The most important aspect of the timing array routing is that it should be 

able to match the routing patterns and delays of data bundles in the data 
array. 
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Select Routing: The routing of select signals can be made with minimal dis-

ruption to the data array by including additional outputs for the select 

signals from routing switchboxes that are already present in the data ar-

ray. Signals are routed to the select output via the standard data array 

routing resources. To minimise the use of routing resources to them, 

switchboxes with select outputs should be well connected to the other 

parts of the self-timed region. 

Arbitration and Probe Routing: An aspect of the timing cell behaviour that 

has to be defined is the type of arbitration block it uses. Arbitration 

schemes were discussed in Section 7.6. The choice of arbitration function 

determines how many probe signals have to be routed to the data array. 

The routing of probe signals to the data array can be done by providing 

additional inputs to routing switchboxes already present in the data ar-

ray. It is preferable that undefined routing configuration values in the 

routing switchbox are used, otherwise additional configuration bits are 

required and the format of the configuration memory would be disrup-

ted. Once the probe values have entered the data array, they are routed 

using the data array routing resources to their destination. 

Timing Array I/O Interface: I/O interfaces for the timing array signals were 

considered in the previous chapter. The discussion showed how self-

timing can allow self-timed FPGAs to be extended transparently to multi-
chip arrays. 

Configuration Interface: For fuse based configuration memories, no change 

is required to the configuration interface in a self-timed FPGA. For serial 

SRAM configuration interfaces, self-timed FIFOs are used instead of shift 

registers for the configuration memory elements. Finally, random ac-

cess SRAM based interfaces require an acknowledge signal to be gen-

erated when the read or write from the SRAM has been completed. This 

needs the additional of a bundled delay element matched to the SRAM 
read/write delay.. 

Another issue in the design of the configuration interface is the mapping 

of configuration bits into the configuration memory space. Placing the 

data array and timing array configurations in separate memory spaces 

ensures a regular layout of both memory spaces. This regular layout is 

useful when wild card addressing schemes are used. 
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Delay Methodology: The choice between a fixed delay and variable delay 

methodology has important implementations for the performance of the 

self-timed architecture, and the complexity of its implementation. Delay 

elements were discussed in Section 6.4. 

Timing Cell Implementation: A number of implementation decisions are left 

which determine the internal behaviour of the timing cell. These imple-

mentation decisions, such as the choice of protocol and decoupling, can 

have important implications for the performance of the timing cell. These 

issues were discussed in Chapter 7. 

9.4 Self-Timing the XC6200 

The previous section has outlined the design decisions required in creating 

a self-timed architecture using the STACC model. This section describes the 

decisions taken in self-timing the Xilinx XC6200. 

9.4.1 Granularity 

The hierarchical structure of the XC6200 provides a series of natural sizes for 

the self-timed region. The smallest of these is the basic cell in the architecture. 

Providing self-timed control for individual cells results in a massive overhead 

for implementing the timing array. The maximum size of a data bundle is one 

bit, so the overhead of providing separate request and acknowledge signals is 

enormous. Additionally, the timing cell is liable to be far slower than the data 

cell so leading to poor performance. However, providing self-timed control 

for single data cells has the benefit that data cells cannot be wasted through 

insufficient timing cells being available. 

The next block size up is the 4 x 4 block. In one direction, this gives a 

potential data bundle width of eight bits, if all the local and level-4 flyover 

connections are used. The overhead of providing handshaking signals for this 

size of data bundle is far more reasonable than for individual cells. Another 

benefit of using the 4 x 4 block is that it encloses other asymmetric aspects of 

the XC6200 architecture, such as the Magic routing, and the special status of 

level-4 flyovers, which unlike other flyovers can be directly used as inputs into 
the cells. 

The larger groupings of 16 x 16 and 64 x 64 cells give very large data bundles. 

For these sizes of block the overhead of providing the handshaking signals is 
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minimal, but the potential waste of data cells when only a small part of the 

self-timed region is used is massive. Thus, the 4 x 4 block provides the most 

suitable granularity for self-timing the architecture. The choice of the 4 x 4 

block as a unit of minimum granularity was also made by Brebner and Kwok 

[16, 69] in their work on virtual hardware operating systems for the XC6200. 

In the XC6200 data sheet [123], the repeating unit of the 4 x 4 cell block 

is defined to include the boundary multiplexors that drive the outputs from 

the 4 x 4 block of cells. Instead, here the 4 x 4 block is defined as including 

boundary multiplexors that drive the inputs to the 4 x 4 block of cells. The 

reason for this choice is that it allows routing between cells in a 4 x 4 block that 

uses the level-4 flyover signals to be included logically in one 4 x 4 block. This 

is a common routing structure in the XC6200. For example, to route between 

cells in the same row or column but on opposite sides of a 4 x 4 block, the signal 
delay is smaller if the signal is routed via the level-4 flyover rather than via the 
local routing. 

9.4.2 Variable Granularity 

Section 9.3.2 presented two schemes for implementing variable granularity. 

The first, based on a local clock distribution network, could be implemented to 

a limited extent using structures already present in the synchronous XC6200. 

The XC6200 provides local clock routing for each column through clock drivers 

situated in the Northbound boundary multiplexors of each 4 x 4 block. In the 

self-timed XC6200, these clock multiplexors could source their inputs from a 

number of local clock signals generated by nearby timing cells. However, the 

problem with local clock distribution schemes is that the complexity of a tim-

ing cell does not scale with the size of its associated data array. 

The second scheme discussed for implementing variable granularity in-

volves grouping timing cells together. This is advantageous, since it can scale 

the complexity of the timing control with the size of data array controlled. 

However, structures for grouping timing cells have an additional implement-

ation cost for the timing array. 

For this work it was decided to use a fixed size of self-timed region consist-
ing of a timing cell and a 4 x 4 block of data cells. This decision to use a fixed 

granularity was made, partly for reasons of simplicity in the design of the ar-

chitecture, and partly as it allows the problems with using a fixed granularity 

to be assessed. Potential extensions to the self-timed XC6200 architecture to 

allow the grouping of timing cells are considered in Chapter 11. 
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Data Array 

9.4.3 Timing Array Routing 

As discussed in Chapter 8, it is important that the timing array routing delays 

should match the delay of data bundles in the data array. The simplest way to 

achieve this is by using similar structures for the timing array routing and data 

array routing. This approach is adopted in Figure 9.6, which shows a cross-

section of the routing structure used in the self-timed XC6200. The timing array 

routing is split into different levels, just as the data array routing has different 

levels of flyovers. The similarities in the timing array and data array routing 

can be seen by comparing the interconnect of the handshaking switchboxes in 

the timing array, and the interconnect of the boundary multiplexors in the data 
array. 

Level 	Timing Level  Timing 	Level16 
Handshaking Handshaking Handshaking Cell SwitchBox 

I 
SwitchBox 

I 

Cell 
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I 	 I 
I 

V 	 V 
I 
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I 	 I 
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Level16 Routing 

Leve14 Routing 
(Two Routes) 

Local Routing 

 

Local IOCK 	 Local UIOCI( 

Figure 9.6: Cross-section of Timing Array Routing 

An important decision in the design of the timing array routing is how 

many handshaking pairs to provide at each level in the routing. As discussed 

in Chapter 8, each handshaking pair can be used to synchronise the flow of 

one data bundle, and due to the symmetrical nature of the handshaking pro-

tocol, each handshaking pair can be used to synchronise data flowing in either 

direction. The more handshaking pairs provided in the timing array routing, 

the more data bundles can be synchronised in the data array, flowing in either 

direction. However, more timing array routing results in a larger overhead for 

implementing the self-timed architecture relative to the synchronous XC6200 
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architecture. 

The choice made in Figure 9.6 represents a trade-off between flexibility in 

the timing array routing against theoverhead of implementing the timing ar-

ray. At the local level, the number of handshaking routes is naturally determ-

ined by the nearest neighbour arrangement of the timing cells. Thus, one hand-

shaking pair route is provided from each side of a timing cell. At higher levels 

in the architecture the number of routes is not constrained by the nearest neigh-

bour interconnect of the timing cells. More routing resources are required at 

the lower levels in the timing array routing, since the higher level timing array 

routes must connect to the timing cells, via the lower level timing array rout-

ing. This is reflected in Figure 9.6, where two handshaking pairs are provided 

at level-4 in the timing array routing against one handshaking pair for level-

16. The choice of two handshaking routes at level-4 against one at level-16 was 

made on the basis of the needs of initial example circuits, set against the desire 

to minimise implementation costs. 

No level-64 timing array routing is provided in Figure 9.6, since in the cur-

rent XC6216 chip, the array consists of only one 64 x 64 block of cells. Thus, the 

level-64 flyover signals must be routed to cells within this one 64 x 64 block. 

These data bundles must be synchronised using lower levels in the timing ar-
ray routing. 

Although the timing array routing structure matches the structure in the 

data array routing, it does not follow that data using a certain level of flyover 

in the data array will use the same level of routing in the timing array. For 

example, consider a data bundle routed on a level-16 flyover that fans out to a 
number of 4 x 4 blocks within the 16 >< 16 block it crosses. Handshaking pairs 

must be routed to the timing cells associated with the destination 4 x 4 blocks. 

Routing these handshaking pairs requires the use of local and level-4 timing 

array routing. The level-16 timing array routing is only used if the data bundle 

crosses into the neighbouring 16 x 16 block. 

This example illustrates that more timing array routing resources are re-

quired at lower levels in the routing hierarchy, since the higher level timing 

array routing resources must connect to the timing cells via the lower level 

timing array routing resources. 

The handshaking switchboxes only implement a subset of the routes in 

a full handshaking crossbar, which mirror the connections available in the 

boundary multiplexors. For example, the flyover routing in the data array 

does not allow signals routed on one flyover to be routed back in the opposite 
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direction at the same level, so in the handshaking switchboxes, handshaking 

pairs cannot be connected to other handshaking pairs at the same level. 

So far, the routing structures have been very one-dimensional, albeit du-

plicated in two dimensions. This reflects the structuring of the XC6200 fly -

over routing, which is one-dimensional in nature. However, the XC6200 does 

provide Magic signals for routing corners. These flows can be implemented 

by handshaking pairs routed through a timing cell and associated 4 x 4 block. 

However, this prevents the timing cell from being used for anything else but 

routing. The problem could be solved by having corner turning handshaking 

pairs in the timing array routing. Magic routing was found to be rarely used in 

the designs, so the final self-timed XC6200 architecture used in the later chapter 

omits these corner routes. 

9.4.4 Input/Output Interface 

The XC6200 provides two I/O interfaces: lOBs at the edge of the array and 

register based I/O via the configuration interface. The JOB interface for the 

self-timed XC6200 can be simply extended by providing extra pins and JOBs 

for the handshaking signals. For simplicity, this is the approach adopted for 

the self-timed XC6200 architecture discussed in later chapters. 

However, as discussed in Chapter 8, self-timing gives the opportunity to 

share routes transparently, which allows devices to be extended naturally to 

multi-device arrays without excessive numbers of pins. However, this ap-

proach is not compatible with the synchronous XC6200, and also makes it dif-

ficult to create dedicated input/output paths. A possible solution would be to 

implement both multiplexing and dedicated input/output schemes and have 

a flag in the configuration memory to choose which scheme was used. 

The second I/O interface in the XC6200 is based on direct access to the 

registers. The same mechanism can be implemented in the self-timed XC6200. 

Since the cells in the self-timed XC6200 are not synchronised to a global clock, 

a register's state could be changing when sampled, leading to a meta-stable 

state. Hence, meta-stable resolving elements, such as Q-flops [103], have to be 

used in the output path of the register values. 

As discussed previously, the synchronous XC6200 supports a partial form 

of flow control by routing the RegWord signals into the array. This signal acts 

as a request or acknowledge to the circuit in the array indicating that it has 

been read or written. However, it does not provide a mechanism for a circuit 

on the FPGA to indicate to the microprocessor that it has data ready, or is ready 
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to accept data. Full flow control can be provided in the self-timed XC6200 by 

routing the RegWord signals on to the timing array routing instead of the data 
array routing. The RegWord signal acts as a request or acknowledge signal to 

the circuit on the FPGA. Handshaking pairs are routed in the timing array, so 
the RegWord signal will be paired with a handshaking signal, which is routed 

back from the circuit to the edge of the array. The signal paired to RegWord 

indicates to the microprocessor whether the circuit is ready to be read or writ-

ten. Thus, routing RegWord using the timing array allows full flow control 

between FPGA and microprocessor to be implemented. 

Simple request/ acknowledge handshaking does not suit microprocessor 

interfaces, since if the circuit on the FPGA being accessed is not ready to be 

read or written, this locks the microprocessor bus waiting for the request or ac-

knowledge signal to return. More sophisticated microprocessor interfaces can 

be used to overcome this. For example, if the circuit is not ready for the com-

munication, then the condition could be returned to the microprocessor, in-

stead of locking the bus. Alternatively, rather than wait for the microprocessor 

to access the circuit, the circuit could signal its readiness to the microprocessor 

using an interrupt signal. The microprocessor could determine which circuit 

on the FPGA had caused the interrupt by reading an additional control register 

containing the values of the handshaking signals paired to each RegWord in-
put. 

9.4.5 Configuration Interface 

The timing array configuration memory is placed in a separate memory space 

for the self-timed XC6200. This allows the configuration bit layout of the syn-

chronous XC6200 to be maintained. Also, separate memory spaces allow the 

wild card addressing to be used effectively to configure regular structures in 

the timing array or data array. To provide self-timed read and write to the 

SRAM, an additional output is required from the configuration interface to in-

dicate that the read/write to the SRAM has been completed. 

9.4.6 Select Routing 

Figure 9.7(a) illustrates one of the multiplexors which choose the select input 

to the timing cell. The select inputs for the other three timing cell links are gen-

erated using the same routing pattern, but their orientation is rotated around 

the 4 x 4 block. An exhaustive study of which inputs to the select multiplexor 
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to use was not performed, but a number of criteria were used in choosing the 

input. First, the input pattern should be symmetrical to allow designs to be 

flipped and rotated without problems. Second, the select multiplexor should 

be well connected to other parts of the self-timed region, using both flyovers 

and local routing, but the signals should naturally pass close to the select mul-

tiplexor. Finally, only four inputs to the select multiplexor were chosen as this 

only requires two configuration bits to be used. 

(a) Select Routing 
	

(b) Probe Routing 

Figure 9.7: Select and Probe Routing 

9.4.7 Arbitration and Probe Routing 

Arbitration blocks were discussed in Section 7.6. The arbitration block used 

in the self-timed XC6200 timing cell uses programmable AND gates, as this 

is less costly to implement than the Q-flop scheme. The pAND scheme only 

generates one probe signal per timing cell. 

Figure 9.7(b) illustrates the probe routing pattern for one side of the 4 x 4 

block; the pattern is repeated for the other sides of the 4 x 4 block. As with 

the select routing, an exhaustive study of the possible probe routing patterns 

was not performed. However, similar criteria were applied to its design; the 

pattern is symmetrical to allow designs to be flipped and rotated and allows 

the probe signal to be routed using a small number of multiplexors to all parts 

of the self-timed region. Finally, the number of configuration bits is minimised 

by using unused configuration values in the boundary multiplexors. 
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9.4.8 Delay Methodology 

In the self-timed XC6200, since the memory elements of the 4 x 4 block are 

not situated on the boundaries of the self-timed region, two delay elements are 

required in the timing cell, one for the delay from the 4 x 4 block's inputs to 

the registers and one from the registers to the 4 x 4 block's outputs. Having 

two delay elements results in an increased implementation cost compared to a 

logic block where registers are either situated on inputs or outputs to the block. 

In the simulations of run-time parameterised circuits discussed in the next 

chapter, two delay methodologies are used and compared for the self-timed 

XC6200: a fixed reconfigurable delay using taps off an inverter chain and 

a variable delay using Current Sensing Completion Detection (CSCD). The 

choice between fixed and variable delay elements has an important effect on 

the performance of the architecture. This is discussed in Chapter 11. 

For the CSCD implementation, two delay elements are not required, since 

the completion detection of both stages can be provided using the same current 

monitoring circuitry. However, a problem occurs if the next set of input data 

enters the 4 x 4 block before the output data has left the block. The CSCD cir-

cuitry cannot tell the difference between output signals leaving the block or in-

put signals entering the block. Thus, the output CSCD completion is extended 

until the new input data has finished evaluating. To overcome this problem, a 

fixed reconfigurable delay could be used for the output delay element. 

9.4.9 Timing Cell Implementation 

The various options for implementing the timing cell were discussed at length 

in Chapter 7. For the reasons discussed there, the implementation of the timing 

cell used in the self-timed XC6200 uses a four-phase protocol. The decoupling 

in the four-phase protocol is performed as a group for the handshaking links 

to minimise implementation cost (see Section 7.4.2). 

9.5 Summary 

This chapter has developed a self-timed version of the Xilinx XC6200 archi-

tecture based on the STACC architectural model. The chapter has also dis-

cussed in general terms, the decisions required in creating a self-timed FPGA 

architecture using STACC. Amongst these decisions, the most important is the 

choice of granularity of the self-timed region, which effects all the other design 

160 



decisions made about the architecture. The consequences of these design de-

cisions are the subject of the next two chapters, which describe the use of the 

self-timed XC6200 for dynamic hardware applications (Chapter 10), and eval-

uate it with respect to the synchronous XC6200 (Chapter 11). 

161 



Chapter 10 

Circuit Design for the Self-Timed 
XC6200 

10.1 Introduction 

This chapter describes the design of run-time parameterised circuits for finite 

field operations on the self-timed XC6200. The examples are used to highlight 

the way that designs exploit the features of the self-timed XC6200 and over-

come its limitations. Several of the design techniques used are specific to the 

XC6200 data array, so are equally applicable to the self-timed and synchron-

ous versions of the XC6200. As well as illustrating the design of circuits for the 

self-timed XC6200, the examples provide insight into the design of run-time 

parameterised circuits in general. 

The chapter is organised as follows. The design and simulation tools used 

for the example circuits are described in Section 10.2. The majority of the 

chapter is given over to Section 10.3 which contains detailed descriptions of 

the example circuits for finite field operations. Finite field arithmetic and its 

application are described in Appendix A. The design experience gained from 

implementing these circuits is summarised in Section 10.4. 

10.2 Design Tools and Simulation 

Current design tools support parameterisation, but these parameters are fixed 

at compile time. Once the parameters are fixed at compile-time, the circuit 

is passed through the standard place and route tools. Such tools do not sup-

port the run-time parameterised circuits, which were discussed in Section 2.7.6. 

The output of a tool for run-time parameterised circuits would not be an FPGA 

configuration, but would be a program that could generate the configuration at 
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run time. To allow the circuits to be generated quickly at run time, traditional 

place and route tools cannot be used, as they take too long. Instead, run-time 

parameterised circuits require regular placement and routing to allow fast as-

sembly of the FPGA configuration. 

Given the requirements for run-time parameterisation, the circuits in this 

study did not use the standard Xilinx place and route tools. Instead, the config-

urations were generated by programs written in VHDL [62, 911. Since the sim-

ulation models of the self-timed and synchronous XC6200 were also written 

in VHDL, this simplified the interfacing from design to simulator. For visual 

debugging of circuits, a VFIDL library was designed to output configurations 

in the Xilinx XC6200 . cfg format. This allowed circuits to be viewed and the 

diagrams in the text to be generated. Fixed parts of the circuit were also de-

signed manually without using the Xilinx place and route tools, since at the 

start of the study, these tools were still in the initial stages of development. 

The drawback to designing circuits without place and route tools is the 

amount of effort involved; comparable in software terms to writing purely in 

assembly language. At this point in time, now that the Xiliiix tools have ma-

tured, a promising approach would be to design the fixed parts of the run-time 

parameterised circuits using the synthesis tools. These parts could then be as-

sembled on the fly, together with parameterised parts generated by software, 

to produce the final run-time parameterised circuit. 

An issue in constructing run-time parameterised circuits for STACC archi-

tectures is the basic block used to build them. To gain the benefits of the self-

timed implementation, the circuits must be defined in terms of the basic self-

timed building blocks used in the architecture. For the self-timed XC6200, this 

is the 4 x 4 cell block. However, the definition of parameterised circuits is often 

easier at the level of individual cells in the XC6200 architecture, rather than at 

the level of 4 x 4 blocks. To allow the design of parameterised circuits at the 

cell level, the concept of an abstract N x M block of cells is introduced. The 

abstract cell blocks are then mapped on to the 4 x 4 blocks of the architecture. 

Figure 10.1(a) illustrates an abstract 3 x 5 block. The abstract block has a 

similar structure to the 4 x 4 block. It consists of an array of cells surrounded by 

boundary multiplexors; the boundary multiplexors determine the routing for 

the flyover signals that cross the block. Figure 10.1(b) illustrates the conversion 

of the abstract block to the 4 x 4 blocks used in the architecture. The conversion 

works by mapping cells in the abstract block directly on to an array of 4 x 

4 blocks large enough to accommodate the abstract block. Unused cells and 
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(a) Abstract 3 x 5 Block 	 (b) 4 x 4 Blocks 

Figure 10.1: Converting from an abstract N x M block to 4 x 4 blocks 
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boundary multiplexors (unshaded in the figure) are configured so that signals 

pass through them unaffected and continue in the same direction. 

The fixed granularity of the self-timed XC6200 architecture at the level of 

4 x 4 blocks also presents other problems. Each 4 x 4 block forms a self-timed re-

gion, so must capture in registers the values of its outputs. This requires some 

cells that are not configured as registers in the abstract block to be configured 

as registers in the 4 x 4 blocks. The pattern of data flow between 4 x 4 blocks 

must also be reflected in the configuration of the timing array. Furthermore, in 

variants of the self-timed architecture that use a configurable fixed delay (i.e. 

not CSCD), the delay of each 4 x 4 block must be established. This may require 

delay analysis, though often some simple rule can be constructed for the delay 

of each 4 x 4 block from the structure of the parameterised circuit. 

The problems with defining parameterised circuits at the level of individual 

cells, when the self-timed blocks of the architecture are defined in terms of 4 x 4 

blocks, are discussed later in the chapter using specific design examples. 

10.3 Example Circuits 

This section details the implementation of circuits for finite field operations on 

the self-timed XC6200. The initial examples illustrate circuits with simple pat-

terns of data flow and limited parameterisation. The later examples illustrate 

more complex patterns of data flow and a wider degree of parameterisation. 

The application area of finite field operations is described in Section 10.3.1. 

Section 10.3.2 describes the standard format used to describe the examples. 

Sections 10.3.3 to 10.3.9 describe the example circuits. 

10.3.1 Finite Field Operations 

The example circuits implement run-time parameterised circuits for finite field 

operations. Finite field operations have application to error detection and cor-

rection, such as Reed-Solomon codes [97] and erasure codes [102]. Finite field 

operations were chosen for the study, since they have a number of parameters 

which can be varied. Varying these parameters alters the error detection and 

correction power of codes based on them. Klindworth [68] has proposed using 

such circuits to build a communication system where the power of the error 

correction code is dynamically altered to match the current noise conditions 

on the transmission medium. 
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For self-timed implementation, finite field operations do not have any par -

ticular features that suit self-timed operation. However, the error correction 

applications based on them are well matched to a self-timed implementation, 

because of the large difference in work load between checking codewords and 

correcting them. Normally an error processor is only checking that the received 

message is a valid codeword, but an invalid codeword requires a complex er-

ror correction process. This difference in workload has been exploited by Kes-

sels et al [67] in a self-timed Reed-Solomon error corrector to achieve superior 

power efficiency over a synchronous implementation. 

The basics of finite field theory and the error correction applications based 

on them are reviewed in Appendix A. For more details on finite fields refer to 

Pretzel [97]. Details of how the data array implements the finite field opera-

tions is not required for the example circuits; only an appreciation of how the 

dataflow in the data array is reflected in the configuration of the timing array. 

More detailed description of the data array configuration is given for circuits 

with interesting parameterisation. 

10.3.2 Example Format 

The examples are described using a standard format, so that the reader may 

easily find relevant information on earlier examples that are used as compon-

ents in later examples. In this section the format is introduced using a FIFO 

as a simple example. Each of the sections of the standard format are described 

below. 

Description: Each example begins with a high level description of the circuit 

and its parameterisation. The FIFO is a simple circuit with only one parameter 

which specifies the number of stages in the FIFO. 

In 	ON 

	
Out 

Figure 10.2: FIFO: Data Flow 

Data Flow: An overview of the circuit operation is given using a diagram to 

illustrate the data flow in the circuit. Figure 10.2 illustrates the data flow for 

a three-stage FIFO. The symbols used in the data flow diagrams are shown in 
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Single Bit Signal (usually control flow) 

Bundled Signal (usually data flow) 

Operation (Addition) 

Register 

De-Multiplexor 

Figure Figure 10.3: Data Flow Diagram Symbols 

Figure 10.3. No processing is performed in the FIFO, so the only components 

in the data flow diagram of Figure 10.2 are registers and the flows connecting 

them. The placement of components in the data flow diagrams have been ar-

ranged so that they correspond with the layout used in the timing and data 

array configurations. 

Timing Array Configuration: Figure 10.4(a) illustrates the configuration of 

the timing array for the FIFO. The timing array configuration is shown together 

with the data array configuration to illustrate how the pattern of timing array 

routing matches the pattern of routing in the data array. The timing array 

configuration is illustrated using the output of a tool developed specifically to 

allow the visualisation of the timing array simulations. The full tool allows 

simulation values to be animated on the diagram. 

Figure 10.4(a) illustrates the configuration of the timing array for the FIFO. 

The representation used is the same as for the simple timing array examples 

given in Section 5.4. Circular elements marked with the name of the self-timed 

region represent the C-Muller gate controlling the registers in the self-timed re-

gion. These elements are connected by handshaking links. Request signals are 

marked by oval delay elements. Acknowledge signals are marked by bubbled 

inputs into the timing cell. Additional to the output of the visualisation tool, 

other symbols have been superimposed on the output of the visualisation tool 

to highlight the structure of the configuration. These additional symbols are 
shown in Figure 10.5. 

167 



Reqin 	 Req 	 Req  ReqOut 	@--a 

 

Ackin 	 'AckOut 	0 

(a) Timing Array 

C 
0 

(b) Data Array 

Figure 10.4: Three Stage FIFO 

In Figure 10.4(a), each Fifo timing cell uses two handshaking links, the 

left link for the input data, and the right link for the output data. The C-

Muller gates on the handshaking links represent the routing implemented by 

the handshaking switchboxes. In the current example of a FIFO, there is no 

fan-in or fan-out of data, so each C-Muller gate has only one input. In gen-

eral, several handshaking signals may be inputs to these C-Muller gates, to 

synchronise the fan-in and fan-out of data bundles. 

Data Array Configuration: Following the description of the timing array, the 

data array configuration is described. The Xilinx Development Tools [123] are 

used to produce these figures. Each cell is shown by a box, which is marked 

with the function it performs (e.g. BUF for buffer, MUX for multiplexor, etc.). 

Cells that use their D-type register are additionally marked with the letters 

REG. Local wiring is marked by solid lines joining cells. Level-4 flyovers and 

level-16 flyovers are marked by dotted connecting wires. Figure 10.4(b) illus-

trates the data array configuration for the FIFO. Input inversion is not dis-

played by the Xilinx tools, so the BUF cells in the FIFO could also be imple-

menting an inverting buffer. 
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The data array configuration is shown to illustrate how the timing array 

configuration matches the pattern of data flow in the data array. The output of 

the Xilinx tools does not clearly mark the direction of signal flow, so supple-

mentary symbols have been superimposed to show the pattern of signal flow 

between 4 x 4 blocks. These symbols are shown in Figure 10.6. 

Discussion: Finally, each example is completed with a discussion section 

which highlights the interesting aspects of the circuit's design and implement-

ation. Analysis of the delay behaviour of the circuits is left to Chapter 11 which 

evaluates the performance of the self-timed XC6200 relative to the synchron-

ous XC6200. 

10.3.3 GF(24 ) Multiplier 

Description: The circuit multiplies two numbers over GF(24 ). The example 
illustrates the use of the timing array routing to synchronise the fan-in and 

fan-out of data bundles in the data array. 

Data Flow: As described in Appendix A, operations over GF(2k)  can be 
defined in terms of operations over polynomials with terms in GF(2) modulo 
an irreducible polynomial. Each bit of the result polynomial can be evaluated 

separately, so a bit-sliced implementation can be used. Figure 10.7 illustrates 

the data flow for a bit-sliced multiplier. Each bit slice takes both input values 

Ain and BIn and generates one bit of the result, which fans in to form the 

result data bundle Out. 

Am 
Bin  

Multiplier 	Multiplier 	 Multiplier 
Bit Slice 	Bit Slice 	. . . 	 Bit Slice 

N-i 	 N-2 	 0 

Out 	 -- 

Figure 10.7: Data Flow for Multiplier over GF(2') 

Timing Array Configuration: Figure 10.8(a) illustrates how the timing array 

routing is used to synchronise the fan-in and fan-out of data bundles in the 

data array. The input data Ain and Bin fans out to each bit slice. Ain and 
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Bin are bundled with the ReqABin and AckABin handshaking pair which 

are routed on the level-4 handshaking routing. The handshaking pair is routed 

to the right-hand link of each Mu 1 tB it timing cell. The ReqAB in signals fans 

out from the level-4 handshaking routing to each timing cell. The AckABin 

follows the reverse path, with the acknowledge signals being combined using 

a chain of C-Muller gates so that the multiplier only acknowledges receipt of 

the data when all the stages have completed. 

One bit of the output data Out is produced by each bit slice. The data is 

associated with the ReqOut and AckOut handshaking pair which comes from 

the left-hand link of each Mul tBi it timing cell. The local ReqOut signals fan-

in onto the level-4 handshaking routing, being synchronised by a chain of C-

Muller gates, so that the output ReqOut is only produced when bits have been 

produced by all the bit slices. The AckOut signal fans out to all the bit slices to 

indicate that the Out been received. 

Data Array Configuration: The correspondence of the data array routing and 

the timing array routing can be seen by the pattern of the dataflow in Figure 

10.8(b). The input data Ain and Bin are routed to each bit slice using the E4 

and El 6 flyovers respectively. The data generated by each bit slice Out fans in 

on the W4 flyovers. It can be seen from the data flow across the 4 x 4 blocks that 

the data bundle starts as a single bit on the rightmost 4 x 4 block. Each bit-slice 

adds its output to the bus, until the full 4-bit wide output is reached on the left. 

For those interested in the internal operation of each self-timed region, a 

description is provided below. It can be skipped by those only interested in 

how the timing array routing matches the pattern of data array routing. 

Multiplication can be expressed using the following equation derived in 

Section A.2.2: 

A.B 
=

xh. 	aj.> 	b3 . Fh1I 	 (10.1) 

Each coefficient of xh  in the final sum can be evaluated separately, so a 

bit-sliced circuit implementation can be adopted. The evaluation within each 

bit-slice involves a bitwise AND of the terms b3  with the jth coefficients of 

Fh. The result of the bitwise AND are them summed (using XOR gates) to 

produce intermediate partial sums which are then ANDed with the terms a. 

Finally, these are then summed to produce the output coefficient. 

Figure 10.9 shows the internal dataflow for the calculation for each bit of 

the result. The two operators shown are the dot operator (bitwise AND) of 
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Figure 10.9: Internal Structure of Multiplier Bit Slice 

the coefficients of two polynomials and the summing operator which sums 

the coefficients of a polynomial to produce a single bit output. Single GF(2) 

coefficients are represented by thin lines, whilst polynomials over GF(2) are 

shown by thick lines. In the actual circuit, the bitwise AND of B and Fh, is not 

required since Fh, is a constant. Hence, the first summing operator is a partial 

sum of terms b3  for which Fhi = 1 

The structure of this evaluation can be seen in the structure of each bit slice 

in Figure 10.8(b). The right two columns of each MultEit 4 x 4 block are sets 

of XOR gates that generate the partial sums of the b3  coefficients. These partial 

sums are ANDed with the ai terms in the second column from the left and 

summed using XOR gates in the leftmost column. 

The multiplier uses the normal basis for the representation of the polyno-

mials. A important property of the representation is that the same function can 

be used to produce each bit of the result, by just cyclically shifting the inputs 

(see Section A.2.1). However, cyclically shifting the inputs in the flyover rout-

ing is difficult. Instead, the routing in the circuitry for each bit slice has been 

modified to do the shifting. An alternative approach to this problem would 

be to 'cyclically shift the circuit'. Such an approach is possible in the XC6200, 

since by using the feedback flyover connections, a toroidal routing structure 

can be created within a 4 x 4 block. This would allows the interconnect pattern 

of the cells to be maintained whilst cyclically shifting the location of the cells. 
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Discussion: This example has illustrated the use of the timing array routing 

to synchronise the fan-in and fan-out of data bundles. It has shown how the 

timing array routing structures can be routed in a similar fashion to the routing 

for the data bundles in the data array. 

10.3.4 Constant GF(2k)  Multiplier 

Description: The circuit multiplies a number in GF(2') by a constant over 
GF(2c). The example illustrates the technique of mapping a circuit defined for 

a N x M block of cells onto the 4 x 4 blocks of the XC6200. The example also 

illustrates the benefits of run-time parameterisation over the general GF(2k) 

multiplier discussed in Section 10.3.3. 

Data Flow: The constant multiplier is much smaller than the general multi-

plier described in Section 10.3.3. Figure 10.10 shows the simple data flow of the 

circuit; the input enters the circuit and is scaled by a constant C. The internal 

data flow and parameterisation of the circuit is described when the data array 

configuration is discussed. 

In 

Figure 10.10: Constant Multiplier Data Flow 

Timing Array Configuration: For small fields GF(2') with k < 4, only one 

timing cell is required. Figure 10.11(a) shows the configuration of one such tim-

ing cell. The timing array configuration is a simple pipeline stage, consisting 

of one input link from the bottom and one output link to the right. 

However, when the parameterised circuit is too large for a 4 x 4 block, the 

circuit has to be divided into separate 4 x 4 blocks, which are different self-

timed regions. The timing array needs to be configured to reflect the flow of 

data between the individual self-timed regions of the multiplier This is illus-

trated in Figure 10.12(a) for GF(25 ). This shows how the input data is treated 

as being composed of two data bundles. The bundles ml (4 bits) and 1n2 (1 

bit) are distributed to the 4 x 4 blocks using the level-4 handshaking signals. 
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The partial results from each block then flow from left to right in the data array, 

to become two separate output data bundles Outi and Out2. 

ReqOut 

Scalar 

AckOut 

4 
In 

(a) Timing Array 

Scalar 

BUF 	 OR XORREu 

U1 
I 

~~XOR  

In 
(b) Data Array 

Figure 10.11: Constant Multiplier over GF(24 ) 

Data Array Configuration: Figure 10.11(b) illustrates the data array config-

uration of a constant multiplier over GF(24 ). The inputs to each circuit enter 
on the N4 flyovers at the bottom of the block and the outputs exit on the local 
E signals on the right of the block. The internal data flow consists of partial 

sums being calculated by chains of XOR gates, with results flowing from left 

to right. The details of the finite field arithmetic are described below. 

The circuit can be extended to deal with base fields GF(2') with k > 4 by 
using the concept of an abstract N x M block that was introduced in Section 
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Figure 10.12: Constant Multiplier over GF(25 ) 
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10.1. Figure 10.12(b) illustrates a constant multiplier for GF(25 ). The choice of 
GF(25 ) was made to show an example of a poor mapping to 4 x 4 blocks. In 

this case, most of the cells, in all but the bottom left 4 x 4 block, are unused. 

As discussed in Section 10.1, the fixed granularity of the self-timed XC6200, 

forces designs to be pipelined internally for each 4 x 4 block. The extra registers 

that are required can be seen on the figure by examining the cells that generate 

the outputs of the left-hand 4 x 4 blocks, which have REG elements added. 

For those interested in the internal finite field arithmetic of the multiplier 

the details are given here. Equation A.12 can be re-expressed as: 

k-i 	k-i 

A.B = 	 a. ChI 	 (10.2) 
h=O 	i=O 

Where 

ChI =b.  FhjI 	 (10.3) 

Ch is constant as B and Fh, are constant. Thus each coefficient x   can be cal-
culated by a bitwise AND of Ch with A, and then summing the resultant bits. 

Figure 10.13 illustrates the internal data flow. It consists of several bitwise 

AND operators followed by summing operators, which evaluate each output 
bit OUth. Since Ch is constant, the bitwise AND and the summing operators can 
be reduced to a partial sum of terms ai for which Ch = 1. This is the structure 
used in the data array configuration of Figures 10.11(b) and 10.12(b). 

Co 

Cl 

I 	• 	 S  
I 	S 	 S  

Ck1 	 I!

OUtk4 I I 	-i 	Out 

A 

Figure 10.13: Constant Multiplier Internal Data Flow 

Discussion: This example has illustrated the advantages of parameterised 

circuits. The circuits for multiplying by a constant are far more compact than a 
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general multiplier circuit. A general multiplier requires k bit slices for a mul-

tiplier over GF(2k),  where each bit slice is approximately the same size as one 

constant multiplier. This gives a saving of approximately k times by using a 

parameterised circuit. 

The example has highlighted the problems with mapping a circuit which is 

defined in terms of an array of cells onto the fixed granularity of 4 x 4 blocks of 

cells. In the data array, the technique of mapping from an abstract N x M block 

was used. The GF(25 ) multiplier illustrated the potential waste of cells when 

circuits are a poor match to the imposed granularity. Also, the timing array 

configuration has to reflect the internal pattern of data flow. This could be 

harder to implement if the pattern of data flow internally was more complex. 

In many cases it would be preferable if the timing cells could be grouped to 

form one large self-timed region. 

10.3.5 Division by a Fixed Polynomial 

Description: The circuit divides an input polynomial with terms in GF(2k) 

by a fixed polynomial with terms in GF(2'). Division by a fixed polynomial 

can be used for the generation of Reed-Solomon error correction codes (See 

Section A.3.1). The example illustrates the construction of a run-time paramet-

erised circuits with a large number of parameters. The circuit is parameterised 

with respect to the length of divisor and dividend polynomials, and the terms 

A 2  of fixed divisor polynomial A ,, Xn + A_ 1  x' + . . .A ix + A 0 . 

Data Flow: Figure 10.14 illustrates the data flow for the fixed polynomial di-

vision circuit. It is similar to the linear feedback shift registers used for division 

by a fixed polynomial over GF(2) in the generation of CRCs (Cyclic Redund-

ancy Codes). The terms of the dividend are shifted down the shift register on 

the right. On each shift, a multiple of the divisor is subtracted from the value 

in the shift register. Adders are shown in Figure 10.14, since addition and sub-

traction are identical over GF(2k).  In CRC circuits, generating the multiples 

is simple, since the only multiples possible in GF(2) are zero and one. For 
GF(2k), constant multiplier circuits must be used for each term in the divisor 

polynomial. The constant multiplier circuits developed in Section 10.3.4 can 

be used for this purpose. When the whole dividend has been shifted in, the 

End flag is set, which zeros the feedback path and allows the remainder to be 

shifted out. 
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Timing Array Configuration: Figure 10.15(a) illustrates the timing array con-

figuration for a small divisor polynomial of length two with terms in GF(24 ). 

The layout is similar to the layout of the data flow shown in Figure 10.14. The 

Adder blocks integrate the addition and shifting stages shown in the data flow. 

The Scale blocks perform the constant multiplication, using the circuits dis-

cussed in the Section 10.3.4. The Tj unc block routes the output and feedback 

values. The Corner block zeros the feedback when the remainder is shifted 

out. The Counter block generates the End condition, which determines when 

to zero the feedback. The F if o block routes the output value to the edge of 

the circuit. 
The feedback value in the data flow diagram fans out to all the Scale 

blocks. This is implemented in the timing array using the level-4 handshak-

ing routing; the ReqFeedback signal fans out from the Corner block to all 

the Scale blocks. The AckFeedback fans in the acknowledges from all the 

Scale blocks back to the Corner block. This fan-in synchronisation is done 

using a chain of two-input C-Muller gates; one input of each C-Muller gate 

comes from the local Scale block, and the other enters on the level-4 hand-

shaking routing from above. 
The fixed polynomial division circuit is the first example of a looping struc-

ture in a timing array configuration, rather than a straight pipeline. As dis-

cussed in Section 7.3.4, loops in the timing array need to be initialised. In this 

case, the loop is initialised by resetting the Adder blocks to an active state, so 

on initialisation, the shift register is effectively already filled with zero values. 

Data Array Configuration: The data array configuration reflects the break 

down into self-timed regions discussed for the timing array. The Counter 

block is parameterised to count up to a value N before returning to zero. This 

allows the length of the input polynomial to be set. The length of the fixed 

divisor polynomial sets the overall size of the circuit. Finally, the individual 

terms A i  of the fixed divisor polynomial determines the constant values used 

in the Scale blocks. 

Discussion: The example has illustrated run-time parameterisation of a cir-

cuit with a complex degree of parameterisation. The main parameter is the 

choice of the fixed polynomial divisor. The coefficients of the fixed polyno-

mial are altered by changing the constant scalar multiplier (Scale) blocks. 

As these are themselves parameterised circuits, the circuit illustrates a hier- 
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archy of parameterised circuits. The length of the fixed polynomial divisor 

affects the number of stages in the shift register. In the case of Figure 10.15, 

the polynomial has a length of two. Longer generator polynomials are used 

in Reed-Solomon codes to increase the error detection and correction ability of 

the code. 
The change in size of the circuit for different fixed polynomial divisors is 

a good example of the advantages of self-timed parameterised circuits. Due 

to the self-timed behaviour, no delay calculations are required by the config-

uration software to account for the different lengths of the feedback path. The 

feedback path could include off-chip routing and the circuit would still operate 

correctly. This would not be the case for a synchronous version of this para-

meterised circuit, since the delay along the feedback loop would have to be 

recalculated. 

10.3.6 Polynomial Evaluation at a Fixed Value 

Description: The circuit evaluates an input polynomial A(x) with terms in 
GF(2k) for x = C. The circuit can be used to evaluate the syndromes for Reed-

Solomon error correction (see Section A.3.1). The example illustrates the use 

of selective links, and the problems encountered when a self-timed region re-

quires more links than are available in the timing cell. 

Data Flow: Polynomials can be evaluated as a series of additions and multi-

plications using the Homer form: 

A(x) = a0  + x(a i  + x(a 2  + x(. . . (a + 0) . . . ))) 	(10.4) 

Figure 10.16 shows the data flow for evaluating an input polynomial using 

the Homer form. At the start of the evaluation the Start flag is set, so that the 

first coefficient of PolyIn is stored in the accumulator register. The Homer 

form evaluation continues by multiplying the value stored in the accumulator 

register by C and then adding the next term from the polynomial, and storing 

the result back in the accumulator. The end of the evaluation is signified by the 

End flag which signals that the value of Out from the accumulator is the result 

of the evaluation. 

Timing Array Configuration: Figure 10.17(a) shows the configuration of the 

timing array. The evaluation loop is composed from the Multiplier and 

Feedback blocks. In the example, two copies of the evaluation circuit are 
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Figure 10.16: Data Flow for Polynomial Evaluation at a Fixed Value 

shown for evaluating a polynomial at two different values. This is useful as it 

allows the syndromes of a Reed-Solomon code to be evaluated in parallel. 

The multiplier block performs the multiplication by the constant C. It 

is similar to the constant multiplier blocks introduced in Section 10.3.4, except 

that the input enters on the West link rather than the South link. This illustrates 

a problem with the layout of blocks used within several different circuits: the 

layout of a block for one circuit may not be suited for its use in another. 

The Feedback blocks integrate the adder, accumulator and multiplexor 

from the data flow shown in Figure 10.16. The Feedback block is the most 

complex example of timing cell use so far. The block takes three inputs, the 

input polynomial coefficients PolyIn (using ReqPolyln and AckPolyln on 

the North link), the Start signals from the Counter block on the South link 

(using ReqStartln and AckStartln), and the input from the Multiplier 

block on its West Link (using ReqResult and AckResult). The block also 

generates one output, the value of the accumulator on its east link, which fans 

out using the timing cell routing to the Mu 1 tip lie r block and to the outputs 

using the ReqAcc and AckAcc handshaking signals. 

A problem encountered in the circuit is that the final result should be im-

plemented as a selective link, as it is only required when the last coefficient of 

the polynomial is read in, as signified by the End flag. However, the output 

to the constant multiplier is required on every cycle. To implement one out-

put link selectively, and the other non-selectively, requires two separate links. 

However, insufficient links from the timing cell are available. To overcome 

this, the EnabledOut blocks are used. The unselective output link from the 

feedbackblock fans out to the Multiplier and the EnabledOut timing cells. 
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Figure 10.17: Polynomial Evaluation at a Fixed Value 



The EnabledOut timing cell is then used to generate the selective output link 

that is required. The Counter blocks generate the Start and End signals for 

the circuits. Each counter counts down from the length of the input polyno-

mial, and generates the flag when reaching zero. Using two separate Counter 

blocks that count down from the same value could be considered a wasteful 

use of data array resources. However, implementing the counters separately 

allows the counters to proceed at different speeds, so Feedback blocks are not 

dependent on the EnabledOut blocks. 

Data Array Configuration: The data array configuration reflects the break-

down into self-timed regions described for the timing array. Level-4 flyovers 

are used to route the input polynomial and the Start flag to the Feedback 

blocks. The EnabledOut blocks are implemented as FIFOs, but their output is 

only selected when the End flag is set. The select inputs for the EnabledOut 

blocks are driven directly from the level-4 flyover which carries the End flag. 

Discussion: The example is a further illustration of creating a parameterised 

circuit from component blocks which themselves are parameterised. Changing 

the number of errors that a Reed-Solomon code can correct alters the number of 

syndromes required. The circuit can cope with this by adding more polynomial 

evaluation circuits to evaluate the extra syndromes. The circuit can also be 

parameterised to deal with longer polynomials by changing the value counted 

down from by the Counter blocks. 

The example has also illustrated the limitations in terms of the number of 

links available to a single timing cell. If some form of variable granularity was 

available, then for example, the Feedback and Multiplier blocks could be 

combined to form one self-timed region, with more handshaking links. Thus, 

the EnabledOut blocks would not be required. 

10.3.7 General Polynomial Evaluation 

Description: The circuit described in Section 10.3.6 evaluated a polynomial 

over GF(2") at a fixed value. This circuit evaluates a circuit at an arbitrary 

value, which is required during Reed-Solomon error correcting (see Section 

A.3.i). 

Data Flow: Figure 10.18 illustrates the data flow for the circuit. The circuit 

again uses the Homer form (Equation 10.4) to evaluate the polynomial. The 
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part of the dataflow which reads in the polynomial PolyIn and includes the 

adder, accumulator, and reset multiplexor is the the same as the data flow for 

the fixed value evaluation shown in Figure 10.16. The key difference from 

the fixed value evaluation circuit is the additional circuitry which reads in the 

value to be evaluated at, Xin. In the data flow of Figure 10.18, the value of XIn 

is read in to the evaluation value register when Start is set, and then fixed for 

the rest of the evaluation. The constant multiplier of the fixed evaluation circuit 

is replaced in this data flow with a general multiplier that takes one input from 

the accumulator and from the other from the evaluation value register. 

End 	 Start 

Figure 10.18: Data Flow for General Polynomial Evaluation 

Timing/Data Array Configuration: The timing array and data array config-

uration of Figure 10.19 reflects the layout in Figure 10.18. The MuitBit blocks 

on the left are an instance of the GF(24 ) multiplier circuit from Section 10.3.3. 

The multiplier needs to be aligned on a 16 x 16 block as it uses level-16 flyovers. 

The Feedback and EnabledOut blocks were used in the fixed evaluation cir-

cuit, though their orientation is different in this example. The F if o block is 

used to route to the edge of the 16 x 16 block. 

The main new block in the example is the HornCtrl block, which is used 

to read in the value of XIn and output its value to the multiplier block on each 

cycle of the evaluation. Another Counter block is included which supplies 

the Start control signal to the HornCtrl block. Again, duplication of the 

counter is wasteful on data array cells, but allows the individual parts of the 

circuit to proceed independently of each other. 
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Figure 10.19: General Polynomial Evaluation 



Discussion: This example again illustrates the differences in parameterised 

circuits and general purpose circuits. The general evaluation circuit requires 

more complex control and a more complex multiplier circuit than the fixed 

value evaluation of Section 10.3.6. 

10.3.8 GF(2'') Division 

Description: The circuit divides two numbers in GF(2k). 

Data Flow: Division can be expressed as the product of the dividend and a 

series of squares of the divisor, as discussed in Section A.2.3. Thus to divide y 

by x: 

2 1  22 	2k-1 
y/x = yx x .. . x 	 (10.5) 

a total of k —1 multiplications are required. Squaring is simplified by using the 

normalised polynomial representation, since squaring is simply implemented 

by a cyclic shift of the coefficients in the polynomial. 

Dividend 	 Divider 	 Result 

Start 	 End 

Figure 10.20: Data Flow for GF(2k)  Division 

Figure 10.20 illustrates the data flow for the division circuit. Initially, the 

Start flag is set and the dividend is read into an accumulator and the divisor 

is squared and stored in the squaring register. On each cycle of the evaluation, 

the contents of the accumulator and squaring register are multiplied, and the 

result placed in the accumulator, whilst the contents of the squaring register 

are squared. The End flag indicates the end of the evaluation, and signals the 

validity of the output. 
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Figure 10.21: GF(2') Division 



Timing and Data Array Configuration: Figure 10.21 illustrates the config-

uration of the division circuit for the timing array and data array. The right 

hand four blocks are an instance of the GF(2k)  multiplier circuit from Section 

10.3.3. The invE block reads in the dividend and acts as accumulator for the 

calculation. The Corner block routes the divisor to the invA block which 

implements the squaring register. The normalised polynomial representation 

is used so squaring can be achieved by a cyclic shift (see Appendix A). The 

invC block acts in a similar way to the EnabledOut blocks used in previous 

examples; it reads out the result at the end of the calculation. 

A difference of the invA, ±nvB and invC control blocks from previous con-

trol blocks is that they do not require separate Counter blocks to generate the 

End signals. This is because only a small counter that counts to k - 1 is re-

quired. This is implemented internally to the blocks using a single 'one' bit 

circulating in a shift register. 

Discussion: The example is similar in layout to the general polynomial eval-

uation circuit discussed in Section 10.3.7. Both circuits use the GF(2k)  multi-

plier circuit of Section 10.3.3 in their data paths. The main difference is in the 

generation of the End signals in the respective circuits. In the general poly-

nomial evaluation circuit, the counter has to be implemented in a separate 

Counter block, whilst in the division circuit, the counters are small enough 

to fit within the self-timed regions that they control. Thus, the two examples 

illustrate how the breakdown into self-timed regions depends on the complex-

ity of the different parts of the circuits. 

10.3.9 Polynomial Remainder 

Description: The circuit generates the remainder after dividing two polyno-

mials A(x) and B(x) of the same length. The circuit is important as it forms the 

central loop in the Euclid's algorithm calculation that forms the basis of Reed-

Solomon error processing [97]. The example illustrates some of the problems 

of constructing large circuits from parameterised building blocks. 

Data Flow: The circuit generates R(x) in the following equation: 

A(x) = q.B(x) + R(x) 	 (10.6) 

In the equation, q is the quotient, A(x) is the dividend, B(x) is the divisor 

and R(x) is the remainder. The condition that A(x) and B(x) are polynomials 
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of the same length ensures that q is not a polynomial but a scalar in GF(21 ). 

Calculation of the remainder involves dividing the first two (highest order) 

terms of the divisor and dividend polynomial to give q. Having calculated 

the quotient, q.B(x) is subtracted from A(x) to give the remainder R(x). The 

generation of q.B(x) could be done in one cycle given one GF(2c)  multiplier 

for each term in B(x); however this number of multipliers would be expensive 

to implement. Instead the multiplication is performed for each term of the 

polynomial in different cycles using only one multiplier. 

Start 	Remainder 

Figure 10.22: Data Flow for Polynomial Remainder over GF(2k) 

Figure 10.22 illustrates the data flow for the polynomial remainder circuit. 

The divisor and dividend polynomials enter on the left. The first term in each 

polynomial is sent to the division operator by the de-multiplexors. The result 

of the division is then read via a multiplexor into a register that supplies one 

of the inputs to the multiplier. The rest of the divisor polynomial B(x) is fed 

to the multiplier, which multiplies it by q. This is then subtracted from the 

dividend polynomial A(x) by the adder (addition and subtraction are identical 

over GF(2') ), which generates the remainder R(x). 

Timing Array and Data Array Configuration: Figures 10.23 and 10.24 illus-

trate the timing array and data array configurations of the polynomial re-

mainder circuit. It contains several circuits developed previously: the GF(2') 

multiplier block was described in Section 10.3.3 and the GF(2v)  division block 

was described in Section 10.3.8. The other principal data-path operator is the 
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Adder block. 

The rest of the circuit is principally routing. The TJS elect (T-Junction Se-

lect) blocks implement the de-multiplexors that are used to route the first terms 

of the divisor and dividend polynomials to the divisor block rather than to the 

multiply/add data-path. The result of the division is fed into the HornCtrl 

block, which was used in the polynomial evaluation circuit of Section 10.3.7. 

As before, the HornCtrl block reads in a new value when the Start flag is 

set and retains this value for the rest of the calculation. The Counter blocks 

are used to generate the Start control signals that mark the start of a new 

polynomials. The F i f o and Corner blocks are used for routing. 

Discussion: The circuit illustrates problems in the layout of parameterised 

circuits. The various parameterised circuits previously defined do not fit to-

gether well. This leads to a large number of blocks being unused in the rect-

angle which naturally bounds the circuit. Also, many of the blocks are being 

used purely for routing, such as the Fl fo and Corner blocks. When para-

meterising circuits at run time, ease of layout is likely to be more important 

than optimal use of resources, so this wasteful style of layout is likely to be a 

common occurrence. 

10.4 Design Techniques and Experience 

The previous section detailed the implementation of run-time parameterised 

circuits for finite field operations. The example circuits illustrated a number 

of techniques for the design of circuits using the self-timed XC6200, as well 

as techniques for run-time parameterisation. These design techniques and the 

experience of the design process for the self-timed XC6200 are summarised 

below. Section 10.4.1 looks at the difference between the self-timed and syn-

chronous design processes. Section 10.4.2 looks at the effect of granularity of 

the self-timed XC6200 architecture on designs. Sections 10.4.3, 10.4.4 and 10.4.5 

discusses issues relating to the layout, utilisation and routing of the run-time 

parameterised designs. 

10.4.1 Self-Timed Design Process 

It is interesting to compare the difference between self-timed design and syn-

chronous design processes. As shown in the examples, the design process for 

the self-timed system is similar to that for a synchronous circuit. The high level 
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description of the circuit was expressed using a data flow diagram that gave 

a high-level view of the components required in the data path, and how these 

were interconnected. The data path elements were then refined into the basic 

gates to be implemented by the data cells in the data array. 

The similarities of the data path between the synchronous and self-timed 

systems arise from using the bundled-data protocol. One of the principles be-

hind the STACC architecture was to exploit this similarity to allow the transfer 

of design tools and experience from the synchronous architecture. This trans-

fer was demonstrated in the examples by the use of the Xilinx tools to generate 

the pictures of the data array configuration. 

Furthermore, despite the circuits being aesigned for the self-timed XC6200, 

the same data array configuration can be used directly in many cases to im-

plement an equivalent synchronous design. In many other designs, the only 

alteration required is the removal of register elements. These elements are re-

quired in the self-timed XC6200, so each self-timed region can retain state. In 

synchronous designs, these registers delay the data by a clock cycle, which can 

change the values calculated by a circuit when there are loops in the data flow. 

The key difference between the synchronous and self-timed design pro-

cesses is the definition of the control path, which controls the flow of data 

between the data path elements. In synchronous circuits, additional circuitry 

has to be implemented in the data array to control the flow of data. In self-

timed designs, the timing array configuration defines the pattern of data flow 

between data path elements, and imposes a style for implementing the control 

of the data flow between them. 
This contrasts with synchronous designs where the methodology for con-

trolling the flow of data between data path elements is left to the designer. 

For simple pipelines, no control is required: results are forwarded down the 

pipeline on each clock cycle. However, most designs involve more complex 

patterns of data flow that require explicit control. Synchronous circuits de-

signers can use a distributed control methodology similar to the self-timed 

handshaking protocol to control the flow of data. Often, the control of a syn-

chronous system is centralised, so that all the logic used to control the data 

path is grouped into one control block. Sometimes, a mixture of centralised 

and distributed control is used. 

Synchronous versions of many of the example circuits would need addi-

tional circuitry to control the flow of data. For instance, the polynomial re-

mainder circuit of Section 10.3.8 makes explicit use of flow control in the im- 
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plementation of the circuit. The flow control involves sending the first term of 

each polynomial to the division circuit, whilst sending the rest of the polyno-

mial terms to the multiply /subtract section of the data path. In the self-timed 

circuit, the calculation in the division block and the multiply/ subtract blocks 

is triggered by the arrival of data. A synchronous version of the remainder 

circuit would require control circuitry to coordinate the flow of data between 

the division circuit and the multiply /subtract data path. 

Apart from the difference in control implementation, the examples have 

illustrated the benefits of self-timed circuits for constructing run-time para-

meterised circuits. Many of the examples were composed from a number of 

blocks which themselves were parameterised, and had a wide range of differ-

ent delays. When these blocks were assembled together to create a run-time 

parameterised circuit, the composition worked correctly, due to the modular-

ity of the self-timed protocol. This is not possible with a synchronous run-time 

parameterised circuit, since delay analysis would be required to determine the 

speed at which the circuit could be clocked. Furthermore, parts of the self-

timed run-time parameterised circuit could be separated, and even split across 

different FPGA chips, and the circuit would still operate, due to the speed-

independence of the self-timed protocols. 

10.4.2 Granularity 

The fixed granularity of the self-timed XC6200 using 4 x 4 cell blocks as self-

timed regions imposes structuring constraints on the data array and the timing 

array. It is often easier to define parameterised circuits at the level of individual 

cells rather than 4 x 4 blocks. For this reason, the technique of mapping from 

an abstract N x M block to the 4 x 4 blocks in the architecture was introduced. 

Breaking down self-timed regions larger than a 4 x 4 block into self-timed 

regions of 4 x 4 blocks poses difficulties. Since each self-timed region must 

retain state, the granularity of the architecture forces designs to be pipelined at 

the level of 4 x 4 blocks. Though pipelining in self-timed designs can be done 

transparently, this has implications for performance of designs. This matter is 

discussed in the Chapter 11. 

The breakdown into 4 x 4 blocks also requires the definition of the control 

flow between the component self-timed regions. In some cases, with linear 

flow of data from input to output, such as the constant multiplier of Section 

10.3.4, this is simple. However, designs with less regular flow of data, such 

as large state machines, may be more difficult to partition between self-timed 
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regions. 
Another aspect of the granularity of timing array was illustrated with the 

Feedback block in the polynomial evaluation circuit of Section 10.3.6. In this 

circuit, insufficient timing cell links were available to implement a selective 

output link, so instead an extra timing cell had to be used to implement the 

selective output link. This resulted in a large number of wasted cells in the 

data array. 
Many of the problems with the granularity can be solved by allowing more 

flexibility in the granularity of the self-timed regions. Possible extensions to 

the architecture to implement this are discussed in Section 11.5. 

10.4.3 Layout 

When parameterised circuits are composed into hierarchies, problems with 

joining the circuits together are encountered. For compile-time parameterised 
circuits, the problems of joining the parameterised parts together can be left 

for routing and placement algorithms to solve. However, run-time paramet-

erised circuits require that the configuration can be constructed quickly, which 

requires a simple and regular pattern of routing and layout. 

In the process of design, many of the smaller parameterised blocks had 

to be adapted to fit into larger designs. For example, the constant multiplier 

circuit of Section 10.3.4 was originally designed, with input and output data 

bundles at right angles, but a different version had to be designed for use in 

the syndrome evaluation circuit of Section 10.3.6 with inputs and outputs on 

the same side of the block. To give some flexibility in the use of blocks, the 

symmetry of the underlying XC6200 architecture was used extensively to allow 

designs to be flipped and rotated. To exploit this, asymmetrical features, such 

as the Magic routing were avoided in designs. 

Despite using these techniques, fitting parameterised designs together still 

proved to be difficult. The general polynomial division circuit illustrates the 

problems; many of the blocks in the bounding box of the design are unused 

or simply used for routing. The design of such complex run-time paramet-

erised circuits could benefit from the development of tools that allowed the 

circuit layout to be defined in terms of variable sized blocks. This would allow 

a more thorough exploration and design of 'virtual layouts' where the dimen-

sions are not fixed until the run-time parameterised circuit is instantiated by 

configuration software. 
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10.4.4 Utilisation 

Another noticeable aspect of many of the circuits is the poor utilisation of logic 

cells. For example, the polynomial remainder circuit of Figure 10.24 has a cell 

utilisation below 50%. It is possible to place and route the circuits using the 

)(ilinx Tools, to give a superior place and route. The automatic place and route 

of the polynomial remainder circuit is shown in Figure 10.25. The utilisation 

of this circuit is superior, but is at the cost of losing the regular structure of 

the circuit. Circuits with such an irregular structure are difficult to construct 

rapidly at ran-time. Thus, a penalty of the regular layout required for run-time 

parameterisation is that poor utilisation may often result. 

Another aspect of the circuits leading to poor utilisation is that many cells 

are purely used for routing, and not for logic. This partially results from the 

regular layouts for different subcomponents not abutting well. Another cause 

is that the limited routing resources in the XC6200, forcing designs to be laid 

out in a more spacious fashion to ensure that they can be routed in a regular 

fashion. 

A final cause of the poor utilisation is the fixed self-timed granularity of 

4 x 4 blocks. Thus, cells are wasted as they do not fit within the 4 x 4 block. 

The constant multiplier of Figure 10.12(b) illustrated how this can lead to poor 

utilisation. A solution to this problem would be to allow greater flexibility in 
the  granularity of the self-timed regions. This is discussed in Section 11.5. 

An expected secondary effect of the poor utilisation and spacious layout of 

the run-time parameterised designs would be a degradation in performance 

due to longer routing paths being required. However, examining the auto-

matic place and route in Figure 10.25, it can be seen that a lot of complex rout-

ing paths are found with signals taking long routes, sometimes with looping 

structures so that they can access the required routing resources. Thus, a cost 

of the more compact placement is that routing resource is more scarce, so more 

complex routing is required in many cases. This highlights the importance of 

balancing logic and routing resource in the design of FPGA architectures in 

general. 

10.4.5 Routing 

The design of run-time parameterised circuits with a regular routing structure 

illustrated a number of problems in the use of routing in the XC6200 data array. 

In particular, the use of the level-4 flyovers proved problematic. In general, 



Figure 10.25: Polynomial Remainder laid out with no constraints 
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the level-4 flyovers were used for connecting the self-timed regions together. 

However, it is often useful to use the level-4 flyovers for routing within a 4 x 4 

block. For example, the connection of two cells in the same row or column of a 

4 x 4 block, but on different sides of the block, is quicker by using the flyover 

routing than by using the local routing. 

This use of level-4 flyovers for routing internal to the self-timed region con-

flicts with its use for routing between self-timed regions. For instance, a single 

level-4 route used for routing internally to a self-timed region can prevent the 

regular routing of a bundle of data across the self-timed region. To avoid these 

conflicts the parameterised blocks were designed as far as possible to use the 

local routing. 

Another conflict in the use of routing resources occurs with data buses turn-

ing corners. The XC6200 architecture provides the Magic signals to implement 

such corner turning. However, these signals can only be used if the X2 or X3 

multiplexors in the cell at the corner can be suitably configured. To avoid such 

conflicts, buses that turned corners used blocks exclusively for routing, such as 

the Corner blocks that are used in the polynomial remainder circuit of Section 

10.3.9. 

The other aspect of the XC6200 routing architecture that caused problems 

in designs was the difficulty of routing from row to row or from column to 

column. The XC6200 routing architecture is good at routing signals within 

a single column or row, but changing rows or columns causes problems, es-

pecially when trying to construct regular designs suitable for parameterised 

circuits. For example, the general multiplier circuit of Section 10.3.3 was im-

plemented as a number of bit slices, but with different cyclic shifts of the in-

puts. However, this cyclic rotation was difficult to implement in the flyover 

routing. Instead, the layout of the bit slices was modified to perform the cyclic 

shift internally. 

10.5 Summary 

This chapter has illustrated the construction of run-time parameterised circuits 

for the self-timed XC6200. The implementation of finite field operations is 

similar to the work by Klindworth [68]. However, the designs have been de-

veloped so that they can be constructed by a program on the fly, rather than 

synthesised by place and route tools as done by Klindworth. Configuration on 

the fly is made possible by the use of self-timed circuits; this allows the size 
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of circuits to be altered, without having to perform delay analysis on the cir-

cuit. This allows the dynamic alteration of the power of an error correction 

code proposed by Klindworth to become possible over a wide range of codes, 

rather than being limited to the swapping in of pre-synthesised circuits for a 

small number of the different values of the parameters. 
The chapter has also discussed a variety of design techniques for the self-

timed XC6200. The designs have illustrated the way the timing array routing 

structure mirrors the routing patterns in the data array, and how the choice of 

a fixed granularity imposes constraints on the way designs are implemented. 
Also, the problems in construction of parameterised circuits have been shown: 

how the need for regular routing and layout structures causes problems in 

creating efficient designs. This chapter has not considered the performance 

aspects of the designs. This is discussed in the next chapter, which compares 

the self-timed XC6200 to the synchronous version. 
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Chapter 11 

Self-Timed XC6200 Evaluation 

11.1 Introduction 

This chapter evaluates the self-timed XC6200 architecture relative to the syn-

chronous XC6200. Detailed evaluation data is included in Appendix B. The 

self-timed XC6200 is evaluated in terms of delay performance and the im-

plementation overhead of the timing array. The simulation of the self-timed 

XC6200 was not detailed enough to evaluate the power use of the architecture. 

The timing array implementation overhead is considered in two ways. Sec-

tion 11.2 evaluates how much additional circuitry is required to implement the 

timing array. Section 11.3 turns this question around, and considers how many 

data cells would be required to implement the timing cell behaviour using 

the synchronous XC6200. Section 11.4 examines the delay performance of the 

self-timed XC6200 architecture. Two delay methodologies are compared: re-

configurable fixed delays and Current Sensing Completion Detection (CSCD). 

Finally, in Section 11.5 the results of the evaluation are used to suggest im-

provements to the timing array and data array. In particular, the ability to 

group timing cells together to form larger self-timed regions is considered. 

11.2 Implementation Overhead 

This section examines the costs of implementing the timing array in the self-

timed XC6200. The comparison does not try to assess whether the additional 

circuitry is justified by the additional functionality provided by the timing ar-

ray. These benefits are considered in Section 11.3 which discusses the costs of 

implementing flow control in the synchronous XC6200 architecture. 

There are several ways of evaluating the implementation costs of the archi-

tecture. A direct method of evaluation would be to compare the silicon area 
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used by VLSI layouts of the synchronous and self-timed XC6200. However, 

creating a VLSI layout is a time consuming task, and gives a comparison that 

is highly dependent on the choice of process technology, and whether the cir-

cuits are designed for speed or compactness. Instead, three different metrics 

were used to evaluate the implementation cost: configuration bit count, wiring 

density and transistor count. Using all three metrics gives a range of assess-

ments of the overhead of the architecture, largely free of concerns over the 

process technology used. 

The comparison in this section is based on the fixed delay variant of the 

self-timed XC6200. A comparison based on the CSCD variant would give bet-

ter figures for the self-timed architecture, since it uses fewer configuration bits 

and fewer transistors. However, the current sensing technology is best imple-

mented using bipolar transistors, thus requiring a BiCMOS process technology 

[26]; this additional implementation cost is not easily evaluated by the metrics 

used. 

11.2.1 Configuration Bit Count 

The configuration bit count gives a measure of the extra information required 

to configure the timing array. Furthermore, the configuration memory forms a 

significant part of the circuitry to be implemented in the timing cell. The num-

ber of configuration bits can be used to give a rough guide to implementation 

cost of the circuitry, by assuming that the complexity of the circuitry is in pro-

portion to the number of configuration bits. Though this assumption holds in 

general, there is a trade-off in the design of an FPGA between minimising the 

number of configuration bits and minimising the circuitry required to decode 

from the configuration bits to the control signals required by the FPGA. 

Part Data Timing Overhead 
4 x 4 Block of Cells 256 34 13% 
Boundary Routing 96 10 10% 
Total 352 44 13% 

Table 11.1: Configuration Bit Usage for 4 x 4 Block 

A detailed breakdown of the configuration bits used in the timing array 

and data array in the XC6200 for a self-timed region is shown in Tables B.1 and 

B.2. The data is summarised in Table 11.1. Considering the configuration bits 

used for the timing cell (detailed breakdown in Table B.1(b)), most of the bits 

are used for functions that are configured for each link in the timing cell. The 
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number of configuration bits for these functions could be reduced by either 

using a timing cell with less links, or centralising some functionality of the 

timing cell, for example, using one select input per timing cell rather than one 

per link. The disadvantage of this approach is that it reduces the potential 

behaviour of the timing cell. 

Examining the figures for the boundary routing in Table 11.1, the timing ar-

ray routing only uses an additional 10 configuration bits. However, this figure 

includes a deduction for the clock routing multiplexors, which are not required 

in the self-timed XC6200 architecture. Without this deduction, 26 configuration 

bits are required for the timing array routing relative to 96 for the data array. 

This gives an overhead of 27% for the timing array routing. This figure gives 

a fairer estimate of the complexity of the timing array routing relative to the 

data array routing. 
Overall, the configuration bit overhead of the timing cell and timing array 

routing for a 4 x 4 block is 13%. The contribution from the timing array routing 

and the timing cells are similar in percentage overhead, but as the timing cell 

contributes a larger number of configuration bits to the total, the timing cell 

would be the best place to look for savings in the number of configuration bits. 

11.2.2 Wiring Density 

Wiring density gives an indication of the complexity of the routing, which is 

a significant implementation cost in VLSI systems. In the calculations, only 

signals connecting cells within the XC6200 are considered, rather than the im-

plementation dependent routing internal to the cells. Also, the wiring required 

to implement the configuration SRAM is not included in the comparison, since 

it is again implementation dependent, but the costs could be expected to be in 

proportion to the number of configuration bits. 

Part 	Number of Wires 
per 4 x 4 block 

Data Array 	 43 
Timing Array 	 6 
Overhead 	 14% 

Table 11.2: Wiring Density in one dimension 

Table B.3 has the breakdown of wires used in one dimension for the XC6200. 

The data is summarised in Table 11.2. Routing, such as the CLK and CLR sig-

nals, which only occur in one dimension, are averaged over the two dimen- 
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sions in the data. The global signals GCLK, Gi, G2, GCLR used for global clock-

ing and reset in the synchronous XC6200 are not required in the self-timed 

XC6200. Global clock signals are not required, since timing is implemented 

locally, and global reset is not required, since reset is implemented in the self-

timed XC6200 using the RESET configuration bit in the timing cell (See Section 

7.3.4). 

Comparing the wires required for the synchronous and self-timed versions, 

only 6 extra wires are required for the self-timed 4 x 4 block per dimension, 

giving an overhead of 14%. This measures the complexity of the circuit in terms 

of the additional inputs and outputs that need to be produced. However, if the 

routing area is the limiting factor in the silicon area used by an implementation 

then the one dimensional figure has to be squared, giving an overhead of 30%. 

11.2.3 Transistor Count 

The final metric used is transistor count; this metric should be used with cau-

tion, since the number of transistors is subject to variations depending on the 

implementation chosen for the circuitry. Also, transistors are not of constant 

size, since they require scaling according to the load that they drive. 

Part 	 Transistors 
Synchronisation 134 
Select 224 
Select Routing 96 
To Register Delay 92 
From Register Delay 54 
Arbitration 108 
RESET 6 
Total 714 

Table 11.3: Timing Cell Components Transistor Count 

Part Data Timing Overhead 
4 x 4 block 4096 714 17% 
Boundary Routing 1536 324 21% 
Total 5632 1038 18% 

Table 11.4: Transistor Count Summary 

Table B.5(b) gives the breakdown of transistor usage in the timing cell; it is 

summarised in Table 11.3. The biggest component of the transistor count is the 

Select circuitry, largely due to the D-type registers required to sample the select 

state. The number of D-types could be reduced by using fewer select inputs. 
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Tables B.5 and B.6 detail the number of transistors used in the self-timed 

XC6200. The implementation used for the components is given in Table B.4. 

The data is summarised in Table 11.4. Overall the overhead for a 4 x 4 block 

of data cells, including routing is 18%. On these figures, the timing cell uses 

circuitry of equivalent complexity to three data cells. 

11.2.4 Summary of Implementation Overheads 

Table 11.5 summarises the overhead figures for the three different metrics used. 

The metrics cover a relatively small range from 13% to 18%. Thus, the timing 

array overhead is equivalent to between 2.5 and 3 data cells per 4 x 4 block. 

Metric 	 Value 
Configuration Bits 	13% 
Wiring Density 	14% 
Transistor Count 	18% 

Table 11.5: Summary of Implementation Overheads 

In the table, the one dimensional wiring density is used. This gives a meas-

ure of the extra inputs and outputs required in the circuitry and thus is a meas-

ure of the circuit complexity. However, if the limiting factor in a design is fitting 

the wiring on to the chip, then the one-dimensional figure needs to be squared 

to give the additional chip area required. This gives a far higher overhead of 

30%. The main cost if routing area is the limiting factor would probably be the 

need for extra routing layers in a VLSI implementation. 

Overall, the figures suggest that the implementation overhead is less than 

20%. Such an overhead is comparable with the overhead reported for other 

bundled-data systems [67, 39]. It is more difficult to extrapolate results from 

the self-timed XC6200 to STACC architectures in general. Other STACC ar-

chitectures will have a different ratio of timing cells to data cells, which has a 

critical effect on the implementation overhead. 

11.3 Flow Control without the Timing Array 

One of the principal benefits of using a self-timed protocol is that flow control 

comes as part of the handshaking protocol. Hence, a useful way to evaluate 

the effectiveness of the timing cell is to consider how flow control can be im-

plemented in the XC6200 without the timing array 
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Flow control can be implemented in the XC6200 in two ways: synchron-

ously and asynchronously. Synchronous flow control uses a modified style of 

handshaking protocol within the constraints of the clocked protocol. Asyn-

chronous flow control tries to directly implement the self-timed control struc-

tures that have been implemented in the timing array using cells in the data 

array. These two approaches are discussed below. 

11.3.1 Synchronous Flow Control 

Figure 11.1 shows the implementation of flow control for a FIFO using the 

synchronous XC6200. The request/ acknowledge handshake of the self-timed 

protocol is not directly implemented, since this would require two clock cycles 

for a two-phase handshake and four clock cycles for a four-phase handshake. 

Instead, the synchronous flow control uses the valid and Ready signals. The 

Valid signals are similar to request signals as they indicate that the data from 

a stage is valid, whilst the Ready signals are similar to acknowledge signals 

as they indicate that the stage is ready to accept data. In contrast to the local 

change of state that occurs in a self-timed pipeline, the next state of the whole 

synchronous pipeline is calculated on each clock cycle. 

Data Path 
r MUX/REG 1 

B - 
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C13 - 

I MUX%REG 

I 
I 	 i 
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Vali din OR 	-  ValidOut 

Readyin ReadyOut 

Control Path 

Figure 11.1: Synchronous Flow Control 

The implementation shown in Figure 11.1, uses two cells for flow control: 

one cell generates the Va 1 i dOu t output which indicates whether the stage 

is full or empty; the other cell generates the Readyln output. In a pipeline, 

the Readyln signals are generated by a chain of OR gates, one per stage, 

which takes the inverted Va 1± dOu t signals as inputs. Thus, if a stage is empty 
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(ValidOut for the stage is low), the Readyln outputs in the current stage 

and the stages before it go high, indicating that data can be shifted along the 

pipeline up to this point. The Val idOut output that indicates whether a stage 

is full is generated from the Readyln and validln signals. A stage will re-

main full (i.e. validOut high), if all the following stages including the stage 

in question are full (indicated by Readyln being low), or will become full if 

the Val idln input from the previous stage is high. 

The Readyln output is also used as an enable signal for the registers con-

trolled by the flow control circuit. Using Readyln as the enable signal means 

that spurious data can be captured into the registers when Validln is not set, 

but this data is ignored as ValidOut is only set when validln is high. The 

capturing of spurious data does not overwrite useful data, since the Readyln 

signal indicates that the stage is ready to accept data. The implementation of 

registers with an enable signal in the XC6200 requires one cell per register ele-

ment. Enabled registers are configured using multiplexors. When enabled, the 

register input comes from the circuit's inputs, when disabled, the output of the 

register is fed back to itself to retain the same state. 

An alternative implementation of synchronous flow control, which does 

not require enabled registers would be to use a gated clock. This design would 

generate a local clock, by ANDing the Readyln signal with GCLK, and then 

distributing the result using the CLK routing to the cells. However, this in-

troduces extra delays in the clocking, and also has problems with clock skew 

between CLK signals in different columns. 

Considering the cell usage in Figure 11.1, to implement the flow control 

for a simple pipeline requires two cells for control plus one cell per register 

element to build an enabled register. This gives a minimum cell usage of three 

cells for a one bit wide FIFO. In comparison, the timing cell is equivalent to 

just under three data cells based on the transistor count metric. Implementing 

wider data paths in the synchronous flow control circuit requires more cells 

to be used to build enabled registers, whilst no penalty is incurred using the 

timing cell. 
The FIFO represents the simplest flow control that could be required by a 

pipeline stage. In the self-timed XC6200, the timing cell can control more com-

plex flows including the fan-in and fan-out of links and selective communica-

tion. Extending the synchronous flow control to deal with fan-in and fan-out 

signals requires extra data cells to AND the input validln or ReadyOut sig-

nals together. Extending the flow control to provide selective communication 
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would require additional data cells to be configured as AND gates to act as 

enables for the validOut and Readyln signals. 

From this discussion it can be seen that implementing the functionality of 

a full timing cell in a synchronous XC6200, with many links, selective commu-

nication, arbitration plus a dedicated routing structure for handshaking signals 

requires a large number of data cells. The timing cell implements this for a cost 

of three data cell equivalents based on the transistor count metric. 

11.3.2 Asynchronous Flow Control 

The alternative to synchronous flow control described above, is to directly im-

plement self-timed flow control in the data array. The basic element required 

for flow control in self-timed systems is the C-Muller gate. Figure 11.2 shows 

an implementation using the XC6200 logic cells of a two input C-Muller gate 

with inputs A and B, and output C. The circuit implements the C-Muller as the 

logic function C = A(B + C) + A(BC). The OR cell implements the B + C term, 

the AND cell implements the BC term, and these are combined to produce C 
using the MUX with A as the select input. This C-Muller gate design uses one 

less cell than the design in the CAL1024 architecture by Oldfield and Kappler 

[92]. 

Figure 11.2: C-Muller Gate using XC6200 Logic Cells 

A single C-Muller gate can control a two-phase pipeline, but two-phase 

memory elements are required. The two-phase memory element used by Old-

field and Kappler's designs [92] for the CAL1204 showed that the implementa-

tion of two-phase memory elements in a fine grained architecture is costly. An 

alternative would be to use four-phase handshaking and standard four-phase 

registers, but this option requires additional C-Muller gates for decoupling (see 

Section 7.4.1). To implement four-phase flow control using one C-Muller gate 

for controlling the registers and one C-Muller gate for decoupling would re- 
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quire six data cells. This is far greater than the overhead of implementing the 

timing cell (three data cell equivalents based on transistor count), even before 

considering more complex patterns of data flow that the timing cell can imple-

ment. 

11.4 Delay Performance 

This section compares the delay performance of the self-timed and synchron-

ous versions of the XC6200. Two different delay strategies are compared for the 

self-timed XC6200, based on a fixed reconfigurable delay element and CSCD 

based delay element. 

The discussion of delay performance is broken into three parts: in the first 

part, the method of calculating the delays is considered. The second part il-

lustrates the different delays of the architectures using a number of example 

circuits. Finally, the delay performance of the circuits discussed in the previ-

ous chapter are tabulated and discussed. 

11.4.1 Delay Calculation 

The delays for the data array were calculated using the worst case delay val-

ues from the XC6200 data sheet [123]; these values are reproduced in Table 

B.7. The delay analysis was performed using specially written routines in the 

VHDL simulator. These routines give higher delay values than Xilinx's own 

tools, by about 20%. This difference occurs since the Xilinx tools take into 

account asymmetries in the delays for each direction of signal flow in the ar-

chitecture, which are not published in the data sheet. The difference between 

the delays calculated within the simulator and by the Xilinx tools is illustrated 

in Figure B.1 which shows a profile of delays measured between logic blocks 

for a sample circuit by the simulator and the Xilinx tools. 

The delay calculation routines were used to set the clock period in the sim-

ulation of the synchronous architecture, and to set the value of the delay ele-

ments in the self-timed version. In the simulations, it was assumed that both 

the global clock and the delay elements could take a continuous range of val-

ues. In practice, the reconfigurable delay element is restricted to a discrete 

number of delays by its implementation, and the clock is generally restricted 

to be a multiple of a master clock period generated by an off-the-shelf oscil-

lator module. Thus, when implemented, both system clock period and delay 

element values would have to be be rounded up to the nearest discrete delay 
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period. 

The CSCD based architecture did not need delay analysis of the self-timed 

regions, since CSCD generates completion signals by monitoring the data ar-

ray. In the simulator, the CSCD monitoring circuitry was attached to the power 

rails for the local routing multiplexors. The CSCD simulations had to use 

a value for the time taken by the CSCD circuit to determine that the circuit 

has completed; the value used in simulations was 5ns. The figure of 5ns was 

chosen as it is slightly longer than the longest possible un-monitored path that 

exists in a 4 x 4 block. 

The simulation results for the CSCD architecture are based on the worst 

case delays given in Table B.7. The worst case values were used as no typical 

case data is given in the XC6200 data sheet. Thus, the CSCD values are con-

servative; actual CSCD implementations will have lower delays depending on 

how much better the actual operational delays are than the worst case. 

In the timing array, the delay of the handshaking switchboxes was set to 

match the worst case delay of the level-16 boundary multiplexors (2.5ns). Sig-

nals routed via level-64 flyovers have longer delays (5ns) but are only routed 

from level-64 boundaries. Thus, level-64 signals can be accommodated by in-

cluding additional delay into the the output of reconfigurable C-Muller gates 

on level-64 boundaries. 

11.4.2 Synchronous and Self-Timed Circuit Implementations 

In the following sections, self-timed and synchronous implementations of cir-

cuits are compared. To keep the comparison as fair as possible, the data array 

implementation has been altered as little as possible. However, the flow control 

that is part of the self-timed protocol does force some changes in synchronous 

versions of circuits, since some of the circuits rely on the flow control for cor-

rect operation. Synchronous implementations with the same behaviour would 

have to include flow control structures as outlined in Section 11.3.1. 

Inclusion of flow control in synchronous designs can seriously disrupt the 

circuit structure; extra cells are required for the flow control logic and the en-

abled registers, and extra routing for the register enable signals. Rather than 

disrupt the data array, the synchronous circuits do not directly include the flow 

control. In most of the circuits, the flow control can be implemented separately, 

since the output is generated a fixed number of clock cycles after an input ar-

rives. Instead, a counter can be used to generate a completion signal. However, 

for comparison purposes, the delay performance of synchronous flow control 
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is discussed in Section 11.4.3. 

The other difference of the synchronous circuits from the self-timed circuits 

is the nature of the pipelining. The fixed granularity of the current elf-timed 

architecture forces pipelining (i.e. registers) to be included in each 4 x 4 block. 

In synchronous designs, there is more freedom on how designs are pipelined. 

However, in the case of loops in the design, the pipelining in the self-timed 

design must be removed for the synchronous design, otherwise the results be-

ing fed back will be delayed, changing the circuit's behaviour. 

11.4.3 Case Studies 

This section examines in detail the delays in four different circuits to illustrate 

the sources of delay in the different XC6200 architectures. The first example 

compares the delays for FIFOs; this compares the delays of the protocols, since 

no computation is done in the data array. The second case study examines the 

GF(2") multiplier circuit to examine the delays in the timing array. The third 

case study looks at the delays in the fixed polynomial generator circuit; this 

example illustrates the delays arising from the pipelining imposed by the self-

timed architecture. The final example looks at the data dependent delays for 

CSCD in a counter circuit. 

FIFOs: Protocol Delays 

FIFOs are pipelines without processing elements; as such they are a good com-

parison of the delays inherent in the synchronous and self-timed protocols, 

rather than the delays in the data array. The delays for various implement-

ations of the FIFO are shown in Table 11.6. Two versions of the circuit are 

compared for the synchronous XC6200; one version includes no flow control 

circuitry and so effectively implements a shift register; the other includes the 

flow control circuitry described in Section 11.3.1. 

Implementation 	 Delay /ns 
Synchronous Shift Register 13.5 
Synchronous Flow Control 7.5 + 11.5 Nstages  

Self-timed Fixed 14.4 
Self-timed CSCD 17.8 

Table 11.6: FIFO delays 

The synchronous shift-register implementation has a similar delay to the 

self-timed fixed delay version; both are close to the data path delay of 11.5 ns. 
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In the case of the synchronous shift register, there is the overhead of clock dis-

tribution (2 ns), whilst in the self-timed fixed delay version there is the over-

head of returning the acknowledge signal to the previous stage (2.5ns), plus 

some small delays in the timing cell logic (0.4ns), which have not been ac-

counted for in the delay element value. The main overhead in the self-timed 

architecture of returning the acknowledge signal could potentially be hidden 

by anticipating the completion of the logic block (a similar idea is used in [ 40]). 
The synchronous implementation with flow control has a far larger delay 

than the shift-register implementation. The delay is proportional to the num-

ber of stages, Nstages , in the FIFO. This relationship with the number of stages 

arises from calculating the signals in the Ready chain; the longer the Ready 

chain, the longer the delay. Though in comparison with other FIFO imple-

mentations the delay is large, in general the flow control will only reduce 

the clock period of a pipeline when the processing between registers takes a 

shorter time than for the calculation of the flow control. For shorter pipelines, 

the processing will generally take longer, but for longer pipelines, the flow 

control may form the worst case path in the design. In this case, the Ready 

chain has to be broken by the introduction of registers into it. This lowers the 

performance of the pipeline, since a Ready signal propagating back from the 

end of the pipeline will take several clock cycles to reach the beginning of the 

pipeline. 
The final value given in the table is the delay for a self-timed CSCD im-

plementation. The period of 17.8ns is worse than the self-timed fixed delay 

implementation. The poor performance of the CSCD implementation occurs 

because there are few data dependent delays to be exploited in the FIFO. All 

the path lengths of signals in the FIFO are the same length, so the only data 

dependent delay to be exploited is when the same values are sent down the 

FIFO in succession. This did not occur in the test conditions used. With no 

data dependent delays to exploit, the same delays as for the self-timed fixed 

delay architecture are encountered by the CSCD architecture, plus an addi-

tional delay for generating the completion signal from the CSCD logic. Thus, 

this example represents the worst case example for CSCD; in later examples, 

data dependent delays can be exploited. 

GF(2') Multiplier Example: Timing Array Routing Delays 

This section considers the delays in the timing array routing by examining the 
GF(2k) multiplier circuit described in Section 10.3.3. The circuit is composed 
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of a number of 4 x 4 blocks that each generate one bit of the result. The inputs 

and outputs fan in and fan out using the level-4 and level-16 flyover routing. 

The timing array routing mirrors the data array routing with fanning in and 

fanning out routing to each timing cell using the level-4 handshaking routing. 

Implementation 	Average 
Delay Ins 

Synchronous 	50.5 
Self-timed 	Fixed 60.2 
Self-timed 	CSCD 42.9 

Table 11.7: GF(2k)  Multiplier delays 

Table 11.7 summarises the delays for the different architectures. The syn-

chronous implementation has a delay of 50.5ns. The critical path is composed 

of the delay from the 4 x 4 block furthest from inputs (42.5ns) plus the routing 

delay of the inputs on the level-4 flyovers through three boundary multiplex-

ors (3 x 2.Ons), and clock distribution overheads (2.Ons). 

For the self-timed fixed delay architecture, the average cycle time is 60.2ns. 

Again, the major component of the delay is the logic delay of the block fur-

thest from the inputs (42.5ns). Additional to this, there is the delay of the re-

quest signal which passes through three reconfigurable C-Muller gates in the 

timing array routing (the delay of the reconfigurable C-Muller gate in the local 

routing is included in the fixed delay of the timing cell). The routing delay of 

the request signal in the timing array routing (3 x 2.5ns) is a close match for 

the delay of the input data routing through three boundary multiplexors (3 x 

2.Ons), giving an overall request routing overhead of 1.5ns. A far larger over-

head is the overhead of routing the acknowledge signal; this passes through 

four reconfigurable C-Muller gates giving a delay of iOns. Thus, the example 

illustrates that the delay in the timing array routing can significantly delay the 

acknowledge signal, so leading to a large overhead relative to the synchronous 

architecture. 

Despite the overhead in the acknowledge signal routing, the self-timed 

CSCD architecture has a shorter delay period than the synchronous architec-

ture, showing that there are plenty of data dependent delays to be exploited in 

the circuit. Furthermore, the CSCD architecture overcomes the request signal 

routing overhead (1.5ns), since the late arrival of the request signal does not 

delay the data evaluation. The late arrival of the request signal will only delay 

the block if the request arrives after the block has finished evaluating. This 

property of CSCD can be used to give a greater margin between request and 
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data to ensure the bundling constraint is met. 

Fixed Polynomial Division: Pipelining Overheads 

This section examines the delays in the fixed polynomial division circuit de-

scribed in the previous chapter (Section 10.3.5). The circuit is an interesting 

example as it includes a feedback loop, rather than being a simple pipeline. 

The self-timed and synchronous versions of the circuit differ in the pipelin-

ing (i.e. register usage) in the designs. In the self-timed designs, the architec-

ture requires that each 4 x 4 block can retain state. In contrast, in the synchron-

ous design, all the registers have to be removed, except in the Adder blocks, 

otherwise the feedback value would take more than one clock cycle to be fed 

back around the loop. 

Implementation 	 Delay Ins 
Synchronous 	 57.5 ns 
Self-timed 	Fixed Delay 73.3 
Self-timed 	CSCD 	54.4 

Implementation Delays 

Block To Reg From Reg Total 
Delay Ins Delay Ins Delay Ins 

Corner 16 5.5 21.5 
Scale 17.5 4 21.5 
Adder 14.5 1 15.5 
Tjunc 10.5 1 11.5 
Total 70.0 

Fixed Delay Breakdown 

Table 11.8: Fixed Polynomial Division Delays 

Table 11.8(a) summarises the delays for the fixed polynomial division cir-

cuit for a polynomial of length two. In the self-timed fixed delay architecture, 

the rate determining path is the feedback path through the bottom-most Adder 

block back to itself. This loop in the fixed delay self-timed architecture has a 

cycle time of 73.3ns. However, in the synchronous version the delay of the un-

pipelined loop is only 53.5ns. Thus the unnecessary pipelining of the loop in 

the self-timed version has increased the delay by almost 20ns. 

Table 11.8(b) shows the delay values used by the two delay elements in each 

4 x 4 block that is part of the loop. The loop, which in the un-pipelined syn- 
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chronous version is one continuous path, is broken into eight separate parts in 

the self-timed version. Each delay element represents the delay of the critical 

path through a small part of the loop. The only case when the worst case delay 

in the pipelined loop would equal the worst case delay in the un-pipelined 

loop would be when the critical path through the un-pipelined loop was com-

posed from the critical paths of all the stages in the pipelined loop. This is very 

unlikely, especially when the loop is split into eight parts. 

Thus, pipelining increases the delay around the loop, since the critical path 

through the pipelined stages of the loop does not correspond to the critical path 

through the un-pipelined loop. The problem can be overcome by moving the 

positions of registers in designs, so that new critical paths are not introduced. 

This is difficult to achieve in the the current self-timed architecture as there is 

not complete freedom on the positioning of registers, since registers must be 

placed in every 4 x 4 block. However, by moving the registers within the 4 x 4 

block, the delay performance of the block can be improved. 

For example, Figure 11.3 illustrates the alteration of the Tj unc and Adder 

blocks to prevent the introduction of new critical paths. Without the registers, 

all the paths through the Tj unc block are critical as they are of equal length. 

However, the natural positioning of the registers in the original implement-

ation of the Tj unc block changes the critical path (Figure 11.3(a)); the input 

critical path goes to the bottom left cell, whilst the output critical path comes 

from the top right cell. The delay performance is improved in the new version 

of the Tj unc block (Figure 11.3(b)) that has all the registers close to the out-

puts. This block does not disrupt the critical path through the block, so saving 

4.5 ns relative to the old block (See Figure 11.3(e)). 

Figure 113(c) illustrates the old version of the Adder block. In the un-

pipelined Adder block, all the signal paths are critical, since they are of the 

same length, but in the pipelined version the critical path is changed. Again, 

this can be avoided by moving the registers to the edge of the block, as in 

Figure 11.3(d). However, to use the registers at the edge of the block, additional 

buffer (BuF) cells are introduced. These increase the length of the critical path, 

so that it is only 0.5ns faster than the original version of the Adder block (See 

Figure 11.3(e)). 
Returning to the comparison of delay performance shown in Table 11.8(a), 

the synchronous implementation has a different critical path to the self-timed 

version. The critical path in the synchronous version is not the delay around 

the bottom-most feedback loop as in the self-timed version, but is the delay of 
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Saving 	 0.5 

(e) Delay Table 

Figure 11.3: Moving Register Locations 
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from the bottom-most Adder block, around the feedback loop to the topmost 

Adder block. This gives a cycle period for the synchronous architecture of 

57.5ns. Despite the pipelining overheads of the self-timed architecture, the 

CSCD implementation manages to out-perform the synchronous version of the 

circuit, illustrating the large number of data dependent delays in the circuit. 

Counter Example: CSCD Delays 

Figure 11.4(a) illustrates an example of a parameterised circuit that counts 

down from a set value to zero. The example is used to illustrate the exploita-

tion of data dependent delays in the CSCD architecture implementation. 

The functions of groups of cells in the circuit are marked on Figure 11.4(a). 

The state memory of the counter is implemented using the top row of cells 

which are configured as Toggle registers. The row of cells below are concerned 

with resetting the Toggle registers to a pre-defined value; these cells are para-

meterised according to the desired reset value. In the example, the counter is 

reset to the value 14 (this is, not apparent as the Xiinx tools do not show the 

inversions in the circuit). The next row of cells generate the next state for the 

counter by determining which registers to toggle. Finally, the bottom row of 

cells detects the reset state, which is when all the toggle registers are zero. The 

reset signal is also available as an output from the circuit. 

Table 11.4(b) lists the delays for each architecture. The delays for the syn-

chronous and the self-timed fixed delay architectures are similar. This is to be 

expected, since there is no alteration in the circuit between the synchronous 

and self-timed architectures in this case. The cycle time for both architectures 

is determined by worst case delay through the circuit which occurs when the 

counter is reset from 0 to 14. The worst case delay runs from the output of the 

most significant Toggle register along the chain of AND gates used to detect 

the reset state, and then back along the line of multiplexor (Mux) cells used to 

reset the Toggle registers. 

The CSCD architecture is far quicker, giving an average delay that is half 

the time of the other architectures. Figure 11.4(c) shows the distribution of 

delays. Seven of the 15 possible state changes only result in the lowest bit 

being changed, so the minimum delay of 16.5ns is encountered. As more bits 

are changed, the delays increase up to the worst case for the reset from 0 to 14, 

where the maximum delay of 25.5ns is encountered 

Unexpectedly, the worst case delay for the CSCD circuit is not the same as 

the cycle time for the other architectures. This apparently anomalous beha- 
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viour can be explained by examining the circuit in more detail. The critical 

path of the circuit in Figure 11.4(a) runs through a chain of AND gates that de-

tect the reset state. The delay along the critical path through the logic is 42ns, 

but the CSCD architecture takes advantage of the actual sequence of states that 

the circuit goes through. When the actual reset state is reached, all except the 

least significant Toggle register are already zero, so the worst case delay only 

runs through the last AND gate in the reset detect chain. 

Thus, the CSCD analysis shows that the counter can actually be run at a 

clocking period of 25.5ns for the fixed delay and synchronous architectures. 

However, there is no way for tools that simply calculate the critical path delay 

through the combinatorial logic of the circuit to calculate this value. Tools that 

analyse the worst case delay time for each possible state change are not in 

general use, due to the combinatorial explosion problem for large state spaces. 

Despite the special circumstances of the counter, the average cycle time for 

the CSCD architecture is 7 ns (25%) better than the cycle time that the self-timed 

fixed delay and synchronous architectures could be run at. 

11.4.4 Delay Performance Summary 

This section has examined the sources of delay in the self-timed XC6200 archi-

tecture. The delays for the circuits discussed in this chapter and the previous 

chapter are summarised in Table 11.9. The calculation of the figures in each 

column of the table are summarised in Table 11.10. 
The examples discussed above have highlighted several sources of the over -

head for the self-timed XC6200. The FIFO example showed that the basic 

delays of the self-timed and synchronous protocols were comparable. In the 

synchronous protocol, the main overhead is clock distribution whilst in the 

self-timed protocol the main overhead is returning the acknowledge signal. 

The acknowledge overhead can be significant when it is routed through the 

timing array routing, as illustrated by the GF(2k)  multiplier. The distribution 

of the request signal is a smaller overhead, since it matches the routing delay 

of the data signals. 

The fixed polynomial division example illustrated the delay overheads en-

countered through the enforced pipelining of the self-timed architecture at the 

level of 4 x 4 blocks. The overhead arises from the pipelined circuit having 

different critical paths from the critical path in the un-pipelined circuit. These 

delays are particularly significant in loops, which form the rate determining 

step in many of the circuits listed in Table 11.9. In these cases, it would be 
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FIFO 13.5 13.5 1 13.5 14.4 6.7% 17.8 31.9% 23.6% 
3 Stage Synchronous FIFO N.A. 42.0 1 42.0 N.A. N.A. N.A. N.A. N.A. 

Count Down to 14 42.0 N.A. 1 42.0 40.2 -4.4% 19.5 -53.6% -51.5% 

GF(2') Multiplier 50.5 50.5 1 50.5 60.2 19.2% 45.9 -9.1% -23.8% 

Fixed Polynomial Division 42.0 57.5 1 57.5 73.3 27.5% 54.4 -5.5% -25.8% 
Fixed Polynomial Evaluation 27.5 40.5 4 162.0 213.6 31.9% 137.0 -15.4% -35.9% 
General Polynomial Evaluation 53.0 78.5 4 314.0 387.6 23.4% 267.8 -14.5% -30.9% 
GF(2k) Division 59.0 82.5 4 330.0 323.7 -1.9% 272.1 -18.5% -15.9% 

Polynomial Division 59.0 98.5 1 98.5 1 	94.7 -3.9% 85.1 -13.6% -10.1% 

Average 13.1% -12.5% -21.3% 

Table 11.9: Performance Figures 



Clock Period (self-timed pipelining): Clock period with pipelining at level of 
4 x 4 blocks as used in self-timed circuit. Potential speed of synchronous circuit 
with flow control at this level of pipeliriing. 
Clock Period (sync. pipelining): Clock period with pipelimng removed to en-
sure correct operation in synchronous circuit without flow control; e.g. pipelimng 
removed from around loops in circuit. 
Cycles per Result: Number of clock cycles for synchronous circuit to produce 
result 
Synchronous Result Period: Time between results being produced. Product of 
Clock Period (synchronous) and Cycles per result. 
Self-Timed (Fixed Delay) : Sync Result Period: Average time between results 
output for self-timed XC6200 using fixed reconfigurable delay. Fixed delay archi-
tecture cannot exploit data-dependent delays within self-timed region. 
Self-Timed (Fixed Delay) : Sync Difference: Percentage difference from syn-
chronous result period. 
Self-Timed (CSCD) Result Period: Average time between results output for self-
timed XC6200 using CSCD delay. CSCD architecture can exploit data-dependent 
delays within self-timed region. 
Self-Timed (CSCD): Sync Difference: Percentage difference from synchronous 
result period. 
CSCD: Fixed Delay Difference: Percentage difference of CSCD average result 
period from fixed delay result period. Indicates amount of data-dependent delays 
to be exploited within self-timed regions. 

Table 11.10: Description of Performance Results Figures 

222 



preferable if the pipeliriing was not required; in other words that the loop was 

one self-timed region rather than several. This requires a self-timed architec-

ture with variable granularity, which is discussed in the next section. 

Despite the performance overheads of the self-timed XC6200 architecture, 

some of the larger examples listed in Table 11.9, such as the GF(2k)  divider 

and polynomial remainder circuits, have better average delay times for the 

fixed delay self-timed implementation than the synchronous implementation. 

This arises because these examples include selective communication, so are not 

simple pipelines. Whilst the synchronous implementation is always limited to 

the worst case delay in the entire circuit, the self-timed circuit is exploiting the 

average case delays arising from the worst case delay parts of the circuit only 

being used selectively. 

Examining the figures in Table 11.9 for the CSCD architecture, it can be seen 

that, except for the FIFO, the CSCD architecture out-performs the synchronous 

and self-timed architectures. These figures are conservative, because the CSCD 

delays are based on worst case delay data, rather than typical case delay data 

which is unavailable for the XC6200. 

As well as exploiting data dependent delays, the CSCD implementation is 

beneficial as it masks the overhead of routing the request signals; a timing cell 

will only be delayed if the request signal arrives after the next pipeline stage 

has completed evaluation. Thus, the margin between the request and data 

signals can be increased to ensure the bundling constraint is met. 

The final column in Table 11.9 highlights the difference between the self-

timed architecture with fixed delay scheme and CSCD scheme. The fixed delay 

scheme represents the worst delay that the self-timed system could achieve, 

since their is no way to utilise data dependent delays within the self-timed 

regions; only data-dependent delays between self-timed regions can be ex-

ploited. In contrast, the CSCD architecture can exploit all data-dependent 

delays within the self-timed regions. Thus, the difference between these two 

figures give the range of performance that other self-timed delay methods (see 

Section 6.4) could expect to achieve. 

11.5 Extensions to the Architecture 

Following on from the delay performance analysis above, this section con- 

siders possible alterations and extensions to the self-timed XC6200 architec- 

ture to improve performance. First, alterations to the data array to improve 
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performance for both the fixed reconfigurable delay and CSCD architectures 

are considered. These alterations were not included in the simulated architec-

ture, since they conflicted with the aim of producing a self-timed XC6200 with 

the same data array as the synchronous XC6200. 

The majority of this section is devoted to considering extensions to the tim-

ing array to allow variability in the size of self-timed regions. Many of the 

performance problems of the current architecture arise from pipelining being 

enforced at the level of 4 x 4 blocks. 

11.5.1 Data Array Alterations for Fixed Reconfigurable Delays 

A major source of performance overhead in the current self-timed XC6200 ar-

chitecture is the requirement for each 4 x 4 block to be a pipelined stage. Thus, 

the critical path through the logic is split into smaller stages with their own 

critical paths, which make the overall critical path longer. This problem is 

compounded by the fact that registers occur internally to the 4 x 4 block in the 

XC6200. This means that two delay elements are required per 4 x 4 block; one 

for the delay from the edge of the 4 x 4 block to the register and one for delay 

from the output of the registers to the edge of the 4 x 4 block. Thus, the delay 

internal to a 4 x 4 block is split into two parts which may not correspond with 

the critical path of the block as a whole. 

In Section 11.4.3, it was shown how the performance of 4 x 4 blocks could be 

improved by moving registers to the edge of the block, to balance the delays. 

Thus, the architecture could be improved by modifying the data array so that 

registers were located on the edge of 4 x 4 blocks rather than in the data cells. 

As a result only one delay element would be required per timing cell for the 

delay from the inputs of the 4 x 4 block to the outputs of the 4 x 4 block. 

11.5.2 Data Array Alterations for CSCD 

The simulations have demonstrated the performance benefits of exploiting 

data dependent delays using CSCD. However, the data dependent delays are 

limited by the use of registers for the memory elements in the architecture. 

Registers block any results from propagating further until they are clocked. 

In contrast, latches are transparent; results will propagate through them and 

be stored when the whole stage has completed. Hence, using latches as the 

memory elements in a CSCD based architecture would be advantageous, since 

partial results can propagate forward, and lead to early completion by CSCD 
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detection mechanisms. Furthermore, using latches overcomes the extra delay 

encountered with pipelining in the current self-timed architecture as the flow 

of signals along the critical path is not blocked by registers. 

Register memory elements are still required for storing the state in finite 

state machines. This can be implemented by adding a configuration bit to the 

memory element that determines whether it is configured as a latch or a re-

gister. As with the fixed delay architecture, placing registers on the edge of 

4 x 4 blocks is advantageous, as it simplifies the timing cell logic because only 

one, rather than two, delay phases are required. 

11.5.3 Variable Granularity 

The performance analysis has shown that many of the overheads in the archi-

tecture arise from the fixed granularity imposed by the self-timed architecture, 

which results in unnecessary pipelining. This also leads to unnecessary com-

plexity in the design of circuits, since designs have to be broken down into 4 x 4 

blocks, regardless of their natural granularity. To overcome these problems, a 

mechanism to allow variability in the size of self-timed regions is required. 

Two main criteria have to be met by such a scheme: 

Uniform Local Clock Distribution: The local clock should be distributed uni-

formly across the self-timed region, otherwise local clock skew can occur. 

This becomes increasingly problematic for larger self-timed regions. 

Scalable Behaviour: Larger self-timed regions will often require more com-

plex timing cell behaviour than smaller self-timed regions. Furthermore, 

larger self-timed regions will generally have longer delays, so the range 

of delays of the self-timed region should scale as well. 

Section 9.3.2 discussed two methods of implementing variable granularity. 

The first method was based on a flexible local clock distribution. The local 

clock from a timing cell could be distributed over a range of different areas to 

allow flexibility in the granularity. However, this method does not give scal-

able behaviour, since only one timing cell is ever used to control a self-timed 

region. The second method discussed in Section 9.3.2 was to group timing cells 

to provide scalable behaviour. Potential mechanisms for grouping timing cells 

and extensions to the self-timed XC6200 architecture are discussed here. 

The basic mechanism for grouping timing cells is shown in Figure 11.5. The 

behaviour of the timing cells is modified so that, before generating their local 
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Synchronisation Network 

T-Cell 	T-Cell 	T-Cell 	T-Cell 

Figure 11.5: Grouping Model 

clock signals, the timing cells are synchronised together, to produce a common 

local clock signal. In Figure 11.5, three timing cells are shown synchronising 

together to form a self-timed region with a common local clock (the solid line 

indicates synchronisation signals, the dotted lines represents the local clock 

signal). The timing cell on the right in the figure does not synchronise with 

any other timing cells; this is indicated by the synchronisation signal being fed 

directly back as the local clock signal. 

The synchronisation network requires the implementation of a C-Muller 

gate with a potentially large fan-in. Constructing such C-Muller gates in a 

way that allows timing cells to be grouped flexibly into self-timed regions is 

difficult. Several schemes are discussed below. 

Distributed C-Muller Gate Grouping 

The distributed C-Muller gate seems a natural candidate for implementing the 

synchronisation network. Figure 11.6 illustrates a scheme that uses the distrib-

uted C-Muller's gate structure to synchronise a 3 x 2 group of timing cells. All 

the timing cells are connected to two synchronisation wires, which are used to 

construct the distributed C-Muller gate. The synchronisation wires are connec-

ted together using fuses. These fuses can be blown to isolate sections of syn-

chronisation wires. Timing cells on connected pairs of synchronisation wires 

form a self-timed group. 
The advantage of this scheme is the flexibility in forming self-timed regions. 

Any timing cells that can be connected by a pair of synchronisation wires can 

form a self-timed region. The problems with the scheme are similar to prob-

lems mentioned with other distributed C-Muller gate circuits. The wired-OR 

circuits require low resistance connections found in fuse based designs rather 

than SRAM FPGAs, and the wired-OR rise time is slow. Finally, the problems 

in where to place pull-up resistors and voltage gradient between these and the 
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Figure 11.6: Wired-OR grouping 

open-collector pull-down transistors, limit the size of self-timed region that can 

be formed using a distributed C-Muller gate implementation. 

C-Muller Gate Tree using Local Handshaking Links 

When timing cells are being used to form a self-timed region, the nearest neigh-

bour links internal to the self-timed region are not used. Figure 11.7 illustrates 

a scheme that uses these links to create a synchronisation network. 

© 	C-Muller Gate 

Synchronisation Wire 

Local Clock Distribution 

Figure 11.7: Grouping using Nearest Neighbour Links 

In the scheme, each timing cell has an additional reconfigurable C-Muller 

gate associated with it. The synchronisation network is formed from a tree of 

these C-Muller gates. Each reconfigurable C-Muller gate takes the synchron-

isation input from the local timing cell as an input, plus optionally synchron-

isation inputs from other timing cells which are distributed on the nearest-

neighbour links. If the reconfigurable C-Muller gate is the root of the syn-

chronisation tree then the output of the C-Muller gate is the local clock signal 

for the self-timed region. The clock is distributed to all the timing cells using 

the nearest neighbour links, following the reverse path to the fan-in of the syn-

chronisation signals. If the reconfigurable C-Muller gate is not the root of the 

C-Muller gate tree then the output is passed along a nearest-neighbour link to 
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Figure 11.8: Hierarchical Grouping 

the next C-Muller gate up the synchronisation tree. The return signal on this 

link is the local clock signal, which is distributed to the timing cell and back 

down the synchronisation tree 

This scheme has a relatively low cost to implement, since it only requires 

an extra reconfigurable C-Muller gate per cell. and uses the nearest neighbour 

links. Also, it can implement any possible shape that can be formed using 

nearest neighbour connections. The disadvantage is that the distribution pat-

tern for the local clock signal is unbalanced. In the example of Figure 11.7, the 

local clock can go through zero, one or two distribution nodes before reaching 

the timing cell and its associated data cells. Hence, the distribution of the local 

clocks is not uniform, potentially leading to local clock skew. 

Hierarchy of Timing Cells 

The problem with the previous scheme is that it forms an unbalanced tree for 

distributing the local clock distribution. One solution to ensure uniform clock 

distribution would be to always to ensure that a balanced clock distribution 

tree was formed. This can be achieved by using a hierarchy of reconfigur-

able C-Muller gates to form the synchronisation network. Figure 11.8 shows a 

simple hierarchy based on groups of two timing cells. Three timing cells are 

grouped through a tree of C-Muller gates. Each reconfigurable C-Muller gate 

in the tree can pass its output to a higher level in the tree. If the reconfigurable 

C-Muller gate is the root node in the tree, then its output is routed back down 

the tree as the local clock signal for the self-timed region. 

A problem with this hierarchical grouping is that there is less flexibility 

in the grouping of timing cells to form self-timed regions. For example, the 

rightmost C-Muller gate in Figure 11.8 cannot form a self-timed region with 

cells to its right, since the C-Muller gate above it in the hierarchy is already 
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Figure 11.9: Grouping using Timing Array Routing 

being used to form another group. The previous schemes have been more 

flexible in that any self-timed region could be formed regardless of the shape 

of other self-timed regions, as long as the timing cells were adjacent to each 

other. The problem can be solved by providing multiple synchronisation trees 

and allowing timing cells to connect to different ones. However, this incurs a 

greater implementation cost for the synchronisation network. 

Synchronisation using Timing Array Routing Structures 

A form of synchronisation structure that has already been discussed is the tim-

ing array routing structures; these structures are designed for synchronising 

the fan-in and fan-out of data bundles rather than synchronising timing cells 

that form a self-timed region. However, the timing array routing structures 

can potentially be adapted to synchronise groups of timing cells. 

Figure 11.9(a) illustrates a timing array routing structure modified to syn-

chronise a group of timing cells. The structure is the same as the fanning in 

of a data bundle, but rather than fan out to destination timing cells, the signal 

is returned directly as the local clock signal to the timing cells. In effect, the 

synchronisation can be thought of as a data bundle fanning in with a fan-out 
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of zero, so is acknowledged immediately. 
The problem in using the timing array routing is that the distribution of 

the local clock is not uniform. In Figure 11.9(a), the local clock signal goes 

through a number of intermediate reconfigurable C-Muller gates in handshak-

ing switchboxes as it is distributed. To overcome this, a dedicated local clock 

distribution line can be used for a group of timing cells, so providing uniform 

clock distribution. This is illustrated in Figure 11.9(b). 

Using the timing array routing is advantageous as it provides uniform clock 

distribution, and can be constructed by adapting routing structures already 

available in the timing array routing. The main disadvantage is that the shape 

of the self-timed region formed is limited by routing pattern of the local clock 

distribution signals. To provide larger self-timed regions requires a hierarchy 

similar to that discussed in the previous section. Furthermore, to provide flex-

ibility in the shape and number of the self-timed regions formed, timing cells 

need to be connected to more than one local clock distribution signal, which 

incurs a higher implementation cost. 

Variable Granularity for the Self-timed XC6200 

The synchronisation network produced by modifying the timing array routing 

fits well into the hierarchical structure of the XC6200. Dedicated local clock 

distribution lines can be provided from the level-16 handshaking switchboxes 

to a row or column of timing cells. The synchronisation network can be imple-

mented by either using the timing array routing already present, or by similar 

structures dedicated to forming self-timed regions. 

The limitation of the synchronisation scheme described for the XC6200 so 

far is that only a maximum of four timing cells within a row or column of a 

level-16 block can be synchronised to form a self-timed region. To extend the 

row or column of blocks over the level-16 block boundaries, a hierarchy of 

synchronisation is required. Hence, level-64 blocks could have a local clock 

distribution lines running along columns and rows which would feed into 

the level-16 clock distribution network. The other limitation with the cur-

rent synchronisation scheme is that it is limited to creating one dimensional 

rows or columns of timing cells. Two dimensional self-timed regions could be 

produced by adding another level to the hierarchy that synchronises rows or 

columns of timing cells together. 



Delays 

In the previous discussion, no mention has been made of scaling delay ele-

ments for larger self-timed regions. Larger self-timed regions can implement 

more complex functions, which have a longer delay than that which can be 

provided locally by the timing cells, even with the additional delays of syn-

chronising the timing cells together included. Additional reconfigurable delay 

elements can be placed in the synchronisation network, to provide additional 

delay for the self-timed region. This leads to a two-level delay model: a central 

delay for the self-timed region and local delays provided by the timing cell. 

The two-level delay model can be used to provide some variability in delay to 

fixed reconfigurable delay architectures. Since some timing cells have a shorter 

local delay than others in the self-timed region, the delay of the self-timed re-

gion will vary depending on which input is last to arrive. 

The discussion so far has considered fixed reconfigurable delay implement-

ations. CSCD delay implementations pose more complex problems. In this 

case, the synchronisation network is acting as a completion detection network 

that detects when evaluation has completed. However, signals internal to the 

self-timed region may cross between the areas of data array monitored by dif-

ferent timing cells. As a result, the completion signal from a timing cell may be 

de-asserted if renewed activity is detected in the area of data array monitored 

by it. Thus, C-Muller gates with their change of state cannot be used for com-

pletion detection, instead AND gates have to be used to detect when all timing 

cells have completed. 
A further problem with this scheme is a false completion signal being gen-

erated by a transition passing from one CSCD monitoring region to another. 

Potentially, the signal indicating inactivity in the original self-timed region 

may reach the top of the completion signal tree faster than the signal indic-

ating activity in another region. To overcome this, the delays in passing the 

completion signal up the tree must be asymmetric. Signals indicating activity 

should be passed up the synchronisation tree quickly, whilst signals indicating 

inactivity, i.e. completion, should be delayed, to ensure that activity signals 

always travel faster up the completion tree then signals of inactivity. 

Timing Cell Group Resources 

The previous section considered the provision of delays specifically for groups 

of timing cells. This raises the question of whether other behaviour of the tim-

ing cell could be provided for groups of timing cells. For example, architec- 
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tures can be envisaged that have routing resources dedicated to linking groups 

of timing cells together. This adds to the implementation cost of the architec-

ture and these resources will be left unused if the groups of timing cells are not 

used. However, some features of the timing cell that are less frequently used 

but have a relatively high implementation cost, such as arbitration, could be 

provided only for groups of timing cells, so that the cost of implementation 

is reduced. If the grouping method allows a group of one timing cell to be 

produced, these resources can be used for individual timing cells. 

11.6 Summary 

This chapter has compared the self-timed XC6200 to its synchronous counter-

part. The extra circuitry required was measured using a variety of different 

metrics, giving overheads in the range of 13% for configuration bits to 30% for 

two dimensional wiring overhead, with the most detailed calculation for tran-

sistor count giving an overhead of 18%. Based on the transistor overhead, this 

made a timing cell equivalent in complexity to about three data cells. 

To evaluate the effectiveness of the timing cell implementation, flow con-

trol structures were built using data cells in the XC6200. The minimal flow 

control stage, one input link and one output link, implemented synchronously 

required three data cells. For the same cost, the timing cell allows a total of 

four links that could be conditionally selected, together with arbitration and a 

dedicated routing structure for the handshaking signals. Implementing flow 

control asynchronously using data cells is more expensive, requiring six data 

cells just for two back-to-back C-Muller gates. 

The delay performance analysis showed that considerable overhead resul-

ted from the enforced pipelining at the level of 4 x 4 blocks, which did not pre-

serve the un-pipelined critical path. However, for larger examples, the fixed 

delay architecture showed improved performance as it can exploit the data de-

pendent delays from selective communication. The CSCD version of the self-

timed XC6200 consistently out-performed the synchronous XC6200, despite 

the pipelining overheads of the self-timed architecture. The simulation res-

ults were conservative in that they were based on the worst case delay figures, 

as typical case figures were unavailable, so an actual CSCD implementation 

would be expected to give further improvements in performance. 

The final section of the chapter considered alterations and extensions to the 

self-timed XC6200 to improve performance. Moving the registers to the edge of 
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the 4 x 4 block is beneficial, since only one delay element is required per timing 

cell. A further alteration for a CSCD architecture would be optionally to allow 

latches as the memory elements, to allow partial results to propagate forward. 

However, both these schemes involve altering the data array structure from 

the original synchronous XC6200 architecture. 

Finally, possible ways to extend STACC architectures, including the self-

timed XC6200, to allow variation in the granularity of self-timed regions were 

considered, to overcome the performance problems that a fixed granularity 

introduced. Several schemes were discussed; the scheme most suited to the 

XC6200 involved using a modified form of the timing array routing structures. 
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Chapter 12 

Conclusions 

12.1 Overview 

This chapter summaries the conclusions of the thesis. In addition, it considers 

possible directions for the future development of STACC and the self-timed 

XC6200. 

12.2 Conclusions 

12.2.1 Self-Timed FPGAs and Dynamic Hardware 

A key contribution of this thesis has been identifying the synergy between dy -

namic hardware and self-timed circuits. Dynamic hardware attempts to ex-

ploit the software like reconfigurability of FPGAs, whilst self-timed circuits 

free the dynamic hardware management system from the need to consider the 

delay properties of circuits. Thus, the routing and layout of self-timed circuits 

can be altered on the fly without having to reason about the effects on delays 

within the system. Furthermore, the flow control properties of self-timed cir-

cuits provide a natural way to regulate the flow of data between FPGA and 

host microprocessor in a dynamic hardware system. 

In addition to the benefits for dynamically reconfigurable systems, self-

timing provides benefits for FPGA based systems in general. Self-timing eases 

the partition of systems across several FPGAs, since the self-timed protocol 

can accommodate the additional off-chip delays. Also, self-timed FPGAs have 

greater freedom in the layout and routing of designs, since they to not have to 

meet a global clock constraint. Finally, self-timed circuits on FPGAs can exploit 

the low power consumption and average case delays of self-timed systems in 

general. 
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12.2.2 STACC: A Model for Self-Timed FPGAs 

Current FPGAs are optimised for the implementation of synchronous circuits. 

Building self-timed circuits using these architectures is difficult; architectures 

can introduce hazards, cannot deal with arbitration, and can fail to meet the 

local delay constraints of the self-timed circuits. These problems detract from 

the benefits of using self-timed circuits for FPGA based systems. 
To overcome these problems, the MONTAGE [57] and PGA-STC [77] ar-

chitectures have been proposed. Both are derived from current synchronous 

FPGAs architectures by altering the logic blocks to suit the implementation of 

self-timed circuits. However, this disrupts the structure of the original syn-

chronous FPGA architecture and hinders the mapping of design tools and 

design experience to the self-timed architectures. 

In contrast, the STACC model for self-timed FPGAs does not tinker with 

the structure of the logic blocks. Instead, STACC replaces the global clock 

signal, with an array of timing cells that provide local timing control. This 

structure reflects the clear split between control and data path in bundled-data 

self-timed systems, and allows the two types of cell to be optimised for their 

particular function. Furthermore, the STACC model is general enough to be 

applied beyond FPGAs to any reconfigurable architecture, such as an array of 

processors with reconfigurable interconnect. 

12.2.3 Self-Timed Reconfigurable Elements 

This thesis has introduced several new self-timed elements for the construction 

of reconfigurable architectures. The Q-Merge and Select pair were shown to be 

suitable for building a wide range of bundled-data control structures. Further-

more, the inherent symmetry of the Q-Merge and Select pair complements the 

symmetry highlighted by Sutherland in his basic C-Muller gate pipelines. 

However, the self-timed element central to the construction of the STACC 

architecture is the reconfigurable C-Muller gate (rC-Muller gate), which allows 

a reconfigurable synchronisation pattern to be defined between its inputs. The 

STACC timing cell was developed from the rC-Muller gate by allowing the 

pattern of synchronisation to be changed on each cycle of a self-timed region. 

The timing array routing was constructed by assembling multiple rC-Muller 

gates into handshaking crossbars. Together, these structures form the basis of 

the STACC timing array, which is configured to mirror the flow of data in the 

data array. 
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12.2.4 The Self-Timed XC6200 

The self-timed XC6200 design has demonstrated the use of the STACC model 

to create a self-timed FPGA architecture with a data array compatible with 

the original synchronous FPGA. The self-timed XC6200 design process high-

lighted the importance of choosing an appropriate self-timed granularity in 

STACC architectures. The basic granularity in the self-timed XC6200 of one 

timing cell per 4 x 4 block of data cells largely determines the implementation 

overhead of the architecture. Also, the choice of a fixed granularity for the self-

timed XC6200, as opposed to a variable granularity, often forces circuits to be 

mapped to a size of self-timed region that does not always suit their natural 

granularity. Furthermore, the choice of a fixed granularity influences the delay 

performance of circuits by requiring unnecessary pipelining. 

The implementation cost for the timing array of the self-timed XC6200 was 

in the range of 13% to 18%, depending on the metric used, which is similar 

to the overhead reported for other bundled-data systems. This overhead com-

pares favourably with the cost of implementing even the simplest of flow con-

trol circuits in the synchronous XC6200. This result demonstrated the benefits 

of using dedicated timing cells to implement the control path in a STACC ar -

chitecture, rather than the general purpose logic blocks as used in previous 

architectures such as MONTAGE and PGA-STC. 
The example circuits developed for run-time parameterisation on the self-

timed XC6200 illustrated the benefits of self-timing for dynamic hardware sys-

tems. The examples showed how circuits of variable size could be constructed 

from self-timed blocks, and the resulting circuit would work without the need 

for delay analysis. These circuits could be split, even between different self-

timed FPGAs, and still work. 

The delay performance of the example circuits, when compared to equival-

ent synchronous circuits, showed that the fixed granularity of the current self-

timed XC6200 architecture resulted in additional delays, due to unnecessary 

pipelining. However, the larger example circuits using the fixed reconfigur -

able delay elements had comparable delays to the synchronous versions, due 

to the exploitation of data dependent delays arising from selective commu-

nication. The self-timed XC6200 with Current Sensing Completion Detection 

(CSCD) delay elements consistently out-performed the synchronous architec-

ture. Furthermore, the CSCD performance figures were conservative as they 

were based on worst case rather than typical case delay figures. 

In conclusion, the design of a self-timed XC6200 architecture has illustrated 
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the application of STACC to a contemporary FPGA architecture, and shown 

the benefits of self-timing for dynamic hardware. The implementation over -

head of the self-timed XC6200 is comparatively modest, and the simulation 

results have shown the potential for superior performance through exploiting 

data dependent delays. The evaluation of the self-timed XC6200 has shown 

that the key limitation of the current architecture is the fixed granularity. Ad-

opting a variable granularity architecture would give improved performance, 

and allow circuits to be mapped to self-timed regions that matched their nat-

ural granularity. 

12.3 Self-Timed FPGA Architectures 

12.3.1 Self-Timed Architectures and Granularity 

A key issue highlighted in this thesis has been the size of the self-timed regions 

permitted within the FPGA architecture, i.e. the self-timed granularity. Many 

of the examples have highlighted that designs have a natural self-timed gran-

ularity, where the basic operations each form a self-timed region. Where the 

architecture does not support the natural granularity of the design, the basic 

operations have to be sub-divided resulting in unnecessary synchronisation 

between parts, and making designs more difficult to implement. 

The various self-timed FPGA architectures proposed vary in the nature of 

the self-timed control provided and the variability in the granularity that is 

supported. MONTAGE and PGA-STC just provide the basic building blocks 

for building self-timed control elements, but force no higher level structure 

to the use of these building blocks which allows a variety of self-timed pro-

tocols to be used. Also, since no higher level self-timed control structures 

are provided, the granularity of self-timed region can be continuously varied. 

However, large self-timed regions, have to be carefully analysed to ensure cor-

rect operation. 

Gao's GALSA architecture provides a fixed self-timing control structure 

which fixed the granularity of the self-timed region to be one-processing ele-

ment. The fixed self-timed control elements and the fixed granularity is very 

limiting in building circuits. The STACC architecture has a reconfigurable tim-

ing array, which allows the mapping from one timing cell to control many data 

cells. The examples for the self-timed XC6200 case-study were limited as the 

mapping to 4 x 4. blocks is fixed. However, the reconfigurable timing array 

architecture allowed data flows to fan-in and fan-out in the routing which had 
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the effect of loosely grouping self-timed regions together. 
Overall the thesis has highlighted how self-timed FPGA with limited self-

timed support such as MONTAGE and PGA-STC can adopt a far wider range 

of granularities. Self-timed architecture with more dedicated self-timed sup-

port are prone to be limit the potential granularities. However, Section 11.5 

discussed how this could be extended to deal with combining timing cells to 

create larger self-timed regions. 

12.3.2 Future Development of self-timed FPGAs 

Of the asynchronous FPGA architectures currently proposed, none have been 

implemented as VLSI devices. The need for actual self-timed FPGA devices 

is linked with the wider adoption of self-timed design, as FPGAs typically are 

used as support devices. Self-timed systems are unlikely to replace synchron-

ous design in the foreseeable future. However, the adoption of asynchronous 

design by industry in certain spheres such as low-power microprocessors for 

portable computing devices is a possibility. Several companies such as Intel, 

Sun and Phillips are currently engaged in asynchronous research. The emer -

gence of self-timed systems in niche sectors would inevitable lead to demand 

for self-timed FPGAs for prototyping and as support devices. 

A key issue in a future where self-timed and synchronous systems co-exist 

in different market sectors will be the need by industry to synthesise designs 
as both synchronous and asynchronous systems. An issue for future self-timed 

FPGA devices will be support for self-timed and synchronous design. 

Of the current self-timed architectures, MONTAGE includes support for 

implementing synchronous systems by having two global clock signals as well 

as logic cells designed for building asynchronous logic. A STACC-based ar-

chitecture with variable granularity could support this approach by allowing 

the granularity to be varied so that the whole chip was a self-timed region and 

thus making it effectively one synchronous region. 

Regardless of the architecture finally adopted, the key issue to be addressed 

to allow systems to be synthesised as either a synchronous or asynchronous 

system will be design tools. Designs will have to be expressed in a way that 

is free from explicitly using a synchronous of asynchronous control paradigm, 

so allowing freedom of implementation in either form. 
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12.4 Future Work 

12.4.1 Dynamic Hardware and Synchronous Flow Control 

One of the main benefits of self-timed dynamic hardware is flow control, which 

regulates the flow of data between circuits, and between the FPGA and host 

system. Section 11.3.1 showed how flow control can be implemented synchron-

ously, for lower implementation cost than attempting to directly implement 

self-timed circuits on current FPGAs. Thus, to gain the benefits of flow control 

for synchronous dynamic hardware systems, a library of synchronous flow 

control elements could be constructed. The library elements would perform 

functions similar to self-timed flow control blocks, such as those introduced by 

Sutherland [111]. 
A benefit of explicitly expressing the flow control for synchronous circuits 

is that it would make circuits portable between self-timed and synchronous 

FPGAs. In a STACC based architecture, the flow control elements would be 

implemented within the timing array, whilst in a synchronous FPGA, flow con-

trol would be implemented using a library of flow control blocks. However, 

this approach only gives the flow control benefits of self-timing; it does not 

give the speed-independence of self-timing, since all parts of the system must 

still meet the global clock constraint. 

12.4.2 Other Self-Timed Reconfigurable Devices 

The STACC architectural model is general enough to be applied beyond FP-

GAs, to other reconfigurable architectures. A good candidate for self-timed 

implementation would be Field Programmable Interconnect Devices (FPIDs), 

which are of increasing use in communication switching applications and in-

terconnect for parallel processors. Essentially, these devices are just large cross-

bar switches, so timing control can be implemented using handshaking cross-

bars. 

12.4.3 Tools 

Run-time Parameterised Circuit Design Tools 

The example circuits for the self-timed XC6200 were limited by the design 

tools available at the time. The Xilinx tools are now more mature and do of-

fer support for creating compile-time parameterised circuits. However, run-

time parameterised circuits require generation of the circuits on the fly. Thus, 
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the output of a run-time parameterised circuit design tool should either be a 

program that assembles the required configuration on demand, or a paramet-

erised configuration file that allows a standard support routine to parameterise 

the circuit rapidly at run-time. 
Another issue for run-time parametrised circuit design tools is the layout 

of parameterised circuits. Run-time parameterised circuits require regular lay-

out and routing to enable rapid assembly at run-time. As the complexity of 

these circuits increase, and especially as a hierarchy of parameterised circuits 

is formed, the fitting of the component circuits together becomes difficult. This 

requires tools that can assist in the regular layout of variable-sized compon-

ents, together with variable-sized channels for regular routing structures to 

connect the component circuits. 

Petri Net Tools 

A C-Muller gate can be modelled by a single Petri net transition. Thus, Petri 

nets provide a useful formalism for modelling and reasoning about timing ar -

ray configurations. Petri nets could be used to identify potential deadlock and 

livelock situation in designs. A significant problem for Petri net tools is the 

modelling of the data array behaviour, in particular, the generation of the se-

lect signals. Thus, a Petri net tool would either have to be supplied with a 

model for the behaviour of the data array, or would have to generate a set of 

constraints to met by data array, so that deadlock and livelock are avoided. 

12.4.4 Architecture Development 

Variable Granularity Architectures 

The evaluation of the self-timed XC6200 has highlighted how fixed granularity 

architectures limit performance and disrupt the natural granularity of designs. 

Several proposals for variable granularity structures have been made but not 

simulated. To complete the investigation of STACC based architectures, these 

designs should be simulated to show the performance benefits of a variable 

granularity implementation, and also the additional implementation costs cal-

culated. 

CSCD Design 

Simulations of the CSCD based architecture have shown the potential for per- 

formance gain over synchronous designs. An implementation using CSCD 

240 



would need a large amount of low level simulations of the CSCD monitoring 

circuitry to ensure that it can detect a single 'on' transistor in the monitored 

region. Also, this thesis has proposed that CSCD has the potential to detect 

the current used by meta-stable states, and thus be used as an arbitration tech-

nique. Again, low level simulation is required to show that the monitoring 

circuitry can detect meta-stable states. 

Formal Synthesis of Timing Cell 

The current implementations for the timing cell were derived informally. There 

is no guarantee that the timing cell design will not deadlock under some condi-

tions. Techniques for the formal synthesis of self-timed circuits are improving, 

and giving more efficient implementations [105]. A formally correct timing 

cell could be derived using these techniques, to provide stronger guarantees 

of the circuit's correctness. Alternatively, the timing cell implementation could 

be modelled using a process algebra and compared using bisimulation to a 

specification of the timing cell's behaviour. 

Fuse based Architecture 

The potential for implementing self-timed fuse based FPGAs has been high-

lighted in Section 8.4.1, but not developed, since the focus of the thesis was 

self-timing for dynamic hardware. Self-timed fuse based FPGAs using the 

distributed C-Muller gate could be developed further. There is also poten-

tial for improved implementations using a single synchronisation wire rather 

than two, by adopting an approach similar to single-track handshaking circuits 

VLSI Implementation 

A final proof of the viability of a STACC based architecture would require an 

actual implementation of a chip. Though the time and resources available for 

this work have precluded the low level design of a VLSI chip, STACC and the 

self-timed XC6200 architecture have matured sufficiently that low level simu-

lation and implementation would be a natural next step in the development of 

the architecture. 
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12.5 Summary 

In conclusion, this work has shown the viability of creating self-timed FPGAs 

based on the STACC model. The self-timed XC6200 has demonstrated that the 

implementation overheads of self-timed architectures are reasonable and that 

the potential exists to out-perform current synchronous FPGAs through the 

exploitation of data dependent delays. The example run-time parameterised 

circuits for the self-timed XC6200 have illustrated the benefits that a self-timed 

FPGA brings to the implementation of dynamic hardware systems. 
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Appendix A 

Finite Fields 

A.1 Introduction 

This appendix describes some results from finite field theory which are useful 

for a detailed understanding of the example circuits in Chapter 10. Section A.2 

details the basics of finite field theory including operations, extension fields, 

the normal basis and the conventional basis. Section A.3 gives an overview of 

applications using finite field operations, in particular Reed-Solomon encod-

ing. For a full review of finite field theory and Reed-Solomon encoding refer 

to Pretzel [97]. 

A.2 Finite Fields 

Afield is a mathematical structure with two defined operations: addition and 

multiplication. Addition is commutative and associative, and has a identity 

element, zero. Each member of a field has an associated negative such that 

their sum is zero. Multiplication in a field is commutative, associative, dis-

tributive across addition and has an identity element, one. Each member of a 

field except zero, has an inverse element, such that their product is one. 

Several infinite sets of numbers, such as the rational, real and complex num-

bers, meet the field axioms described above. Finite sets of numbers can also 

form fields, if the addition and multiplication operations are suitably defined. 

One such construction is the Galois Field. A Galois field GF(p) is formed by 

performing addition and multiplication modulo a prime number p. 

GF(2) is particularly useful for digital applications, since it has only two 

members in the field, corresponding to the binary digits zero and one. Addi-

tion in GF(2) can be implemented using an XOR gate, whilst multiplication 

can be implemented using an AND gate. 
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Extension Galois fields GF(pk)  can be created, where p is a prime number 

and k is a natural number. The operations in extension fields can be defined 

using operations on polynomials modulo an irreducible polynomial of degree 

k, where the coefficients of the polynomial are members of the base field GF(p). 

A.2.1 The Conventional Basis and Normal Basis 

Since, operations in extension fields can be represented by operation on poly-

nomials, members of extension fields can simply written using the coefficients 

of the polynomial. So for GF(24 ), x'+ I is represented as 1001, or encoding as a 

decimal, the element is 9. Thus, each element A of a field GF(2') is represented 

by the coefficients a, in the following equation: 

k-i 
A(x) = 	 (A.1) 

The set of terms x used to the represent the polynomial is known as the basis, 

and the basis used above where ii is in the range from 0... k - 1 is known as the 

conventional basis. 

It is possible to represents elements of GF(2k) using a different basis, as 

long as the basis chosen is such that it each elements of GF(2c)  has a different 

value. A useful basis is to represent elements of GF(2') using terms x' where 

n is taken from the set 120 ,  21, 2k11 This is known as the normal basis. Thus, 

A(x) = :aix2t 	 (A.2) 

represents a polynomial A(x) using the normal basis. A particular advantage 

of the normal basis in GF(2) is that squaring is simply a cyclic shift of the 

coefficients. This arises since, 

k-lk-I 
A 2  = 	 (A.3) 

i=Oj=O 

However, when the sum is expanded, for each term avawx2tx2w  where i = v 

and j = w when v w, there is the term with the same value for i = w and 

J = v. These terms cancel since a + a = 0 over GF(2), thus the only terms left 

are where v = w. Hence, 

k-i 
(A(x) )2 = 	aj2x2' 	 (A.4) 

i=o 
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But a2 2  = a, since a2  = a over GF(2), so 

k-i 
(A(x))' = 	2' 	 (A.5) 

i=O 

Thus shifting the index i, 

(A(x))' = ?1ai_1x2t 	
(A.6) 

Which is a shift of the coefficients in A (x). The shift is cyclic, since x2k = x for 

GF(2') due to Fermat's theorem (see [97]). 

The fact that squaring is a cyclic shift in the normal basis can be used to 

simplify the design of multipliers over GF(2') [118]. The multiplier can be 

built using bit slices, where each bit slice produces one bit of the result. Each 

bit slice is identical except for cyclic shifts of the inputs since: 

A.B = \/A2.B2 =4 /4 = ... 	 (A.7) 

In the following sections, the equations use the conventional basis for con-

venience in expressing equations. In general, the equations can be converted 

to use the normal basis by changing the terms Xn  to x 2 . 

A.2.2 Multiplication 

This section describes the definition of multiplication of two numbers A and 

B in GF(2k)  in terms of operations on polynomials A(x) and B(x) over GF(2) 

modulo a irreducible polynomial P(x). This result is used in the design of the 

multipliers in Sections 10.3.3 and 10.3.4. 

Multiplication of A and B can be expressed as: 

k-i k-i 

A.B = E E a2 .b3 .x' mod P(x) 	 (A.8) 
i=O j=O 

Where a, and b3  are the coefficients of the polynomial A(x) and B(x) respect-

ively. Let D23 = x 	mod P(x), so Equation A.8 can be expressed as: 

k-i k-i k-i 

A.B = E E E a.b3 . DjaIh . 
	 (A.9) 

i=O 3=0 h=0 
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where I h gives the hth coefficient of a polynomial. Rearranging 

k-i k-i k-i 
A.B = a2 .b3 . Djjlh X 

h=O i=O j=O 

k-i k-i k-i 
A.B = x1.>J ai .E 	b3 . Djjlh 	 (A.10) 

h=O i=O j=O 

The above equation shows that each coefficient of x   in the result polynomial 

can be evaluated independently, so a bit-sliced approach can be adopted. Fi- 

nally, let Fh,  be a polynomial such that: 

Fhjjj = Djjlh 

Hence, 

k-i 	k-i 	k-i 
A.B= 	 bj.FhI 

h=O 	i=O 	j=O 

which gives the form of the circuit used in Section 10.3.3 

 

 

A.2.3 Division 

This section presents some results used in Section 10.3.8. Division is a more 

complex operation to implement than multiplication in GF(2'). However, it 

can be defined in terms of multiplication by using Fermat's rule [97] that, for 

a field with n elements = 1. Therefore for GF(2k), x2 = 1. Hence, to 

divide y by x: 

-i 	2k_2 	2' 22 	2' y/x = yx = yx 	= yx x . . . x  

Thus, division can be expressed as a series of k—i products of the dividend and 

the squares of the divisor. This form is particularly suited to implementation 

using the normalised polynomial representation, where squaring is simply im-

plemented by a cyclic shift of the terms in the polynomial. 

A.3 Error Detection and Correction Applications 

A number of error detection and correction codes are based on finite field oper-

ations. For example, Reed-Solomon codes represent strings of bits as symbols 

in GF(2'). Such codes are useful for burst error correction, since the correction 

of a single symbol in GF(2c)  can correct an error burst of up to k bits in the 

bit stream. Reed-Solomon codewords are generally expressed as a multiple of 
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a generator polynomial over GF(2k).  The length of the generator polynomial 

determines how many errors can be corrected.. 

In error correction codes, the locations of errors are unknown. In erasure 

codes, the location of errors (erasures) are known. For example, erasure codes 

are used to deal with lost packets in computer networking and corrupted discs 

in RAID (Redundant Array of Inexpensive Discs). Given the additional in-

formation of the error locations, more erasures can be corrected than errors 

corrected by an equivalent error correction code. Rizzo [102] discusses eras-

ure codes based on finite field operations over GF(2k)  for use in networking 

applications. 

A.3.1 Reed-Solomon Error Correction 

Reed Solomon codes RS(k, t) have two parameters, the base field representa-

tion k, and the number of error corrected t. Reed-Solomon codewords are rep-

resented as polynomials of degree 2' - 1 with coefficients in the field GF(2c). 

RS(k, t) has a minimum distance between code words of 2t + 1, so is capable 

of detecting 2t errors, and correction t errors. 

Since each coefficient corrected by a Reed-Solomon code is a number in 
GF(2k) and can be represented by k bits, correcting a single error in a Reed-

Solomon code can correct a burst error of up to k bits. Combined with other 

techniques such as interleaving words of a message, Reed-Solomon coding 

provides very powerful burst error correction. 

Encoding and Error Detection 

Reed-Solomon codewords can be represented as multiples of a generator poly-

nomial, g(x) of degree 2t. The generator polynomial is defined as 

g(x) = (x - a)(x - a2 ) . . . (x - a2t ) 	 (A.14) 

where a is a primitive element of GF(2k).  The choice of a primitive element 

ensures that each factor x - a is distinct. 

The standard encoding technique is to encode the data to be sent m(x) by 

multiplying it by 22t  and then finding the remainder when divided by g(x). 

This is subtracted from m(x).221  to give a codeword which is a multiple of 

g(x). To detect errors in transmission, the received message can be divided by 

the generator polynomial. If the remainder is zero then a valid codeword has 

been received otherwise there has been an error. 
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Error Processing 

A brief summary of the operations involved in Reed-Solomon error processing 

is given here (see Pretzel [97] for more details). The first stage of error pro-

cessing is to generate the syndromes of RS(k, t). The syndromes, S, are defined 

as: 

Si = d(ai) for i = 1,... ,2t 	 (A.15) 

where ce is a primitive element of GF(2k)  and d(x) is the received message 

polynomial. Since the generator polynomial is the product of the terms (x - ai) 

then, for a valid codeword, all the syndromes will equal zero. 

The next step of error processing involves finding the error locator polyno-

mial, 1(x) in the following equation: 

W(X) = l(x)s(x) + u(x)x 2t 	 (A.16) 

where w(x) is the error evaluator, u(x) is the error co-evaluator, and s(x) is 

the syndrome polynomial whose coefficients are the syndromes S. The error 

locator polynomial 1(x) is found by performing Euclid's algorithm on s(x) and 
x2t. The equation 1(x) = 0 is then solved to find the positions of the errors. 

The error values are then found by evaluating the error evaluator polynomial, 

w(x),for values generated by solving 1(x) = 0. 

All these steps in the error processing require operations to be performed 

on polynomials over GF(2k).  These operations include the basic operations of 

addition, multiplication and division in GF(2c),  and the operations to evaluate 

a polynomial in GF(2k)  at a fixed value for syndrome calculation and non-

fixed value for solving 1(x) = 0, polynomial division by a constant divisor for 

generating the codes and polynomial division with a non-constant divisor for 

Euclid's algorithm. These operations are presented in Chapter 10. 



Appendix B 

Self-timed XC6200 Evaluation Data 

Name 	Bits 
X1,X2,X3 9 
Y2,Y3 4 
RP 1 
Cs 1 
Magic 1 
Total 16 

(a) Data Cell 

Name Bits 
per link per cell 

RDZ 2 8 
DIR 1 4 
to Reg. Delay 3 
from Reg. Delay 2 
RESET 1 
Arbitration 2 8 
Select Routing 2 8 
Total 34 

(b) Timing Cell 

Table B.1: Data and Timing Cell Configuration Bit Usage 
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Name 	 Bits 
per direction per 4x4 block 

Local 	 4 	 16 
Flyover level 4 	16 	 64 
Clock 	 16 
Total 	 96 

1 additional to local routing bits 

Boundary Multiplexors 

Name 	 Bits 
per switchbox per 4x4 block 

Handshaking Local 	 5 	 10 
level 	2 x 4 	 16 

Clock 	 -16 
Total 	 10 

Handshaking Switchbox 

Table B.2: Routing Configuration Bit Usage 
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Signal Name Wires 
Local 	Neighbour 8 

Magic 8 	2 

CLK,CLR 1 	1 

Flyover 	Level 4 8 
Level 16 8 
Level 64 8 

Global 	G1,G2,GCLK,GCLR 2 	1 

Total 	 43 

1 averaged over two dimensions 
2 average density in 4x4 block 

(a) Synchronous XC6200 

Signal Name 	 Wires 
Handshaking local 	 2 

level 4 	 4 
level 16 	 2 

Global 	G1,G2,GCLK,GCLR 	-2 
Total 	 6 

1 averaged over two dimensions 

(b) Self-Timed 

Table B.3: Wires per 4 x 4 Block 
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Part 
	

lementation 
C-Muller Gate: 	Weak feedback implementation, as shown in Figure 

6.2. Includes reset input. 
Multiplexors: 	Tree of transmission gates. 
D-type Registers: based on the circuit of Figure 5.57(a) in Weste and 

Eshraghian [121]. 
SRAM Cell: 	6-Transistor SRAM Cell is used in the XC6200 [123]. 
Mutual Exclusion: See Table B.4(c) for implementation. 
Delay Element: 	See Table B.4(b) for implementation. 

(a) Implementations used for Components 

C 

C 

Delay 

(b) Delay Element 

Ri 

R2 

Gi 

G2 

(c) Mutual Exclusion Element 

Table B.4: Implementations used for Transistor Counts 
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Part Gate Qty Transistors 
per gate total 

Xl, X2, X3 8:1 Mux 3 28 84 
Y2, Y3 4:1 Mux 2 12 24 
Yl, RP, CS, Magic 2:1 Mux 4 4 16 

Inverters 2 2 4 
D-type Register 1 32 32 

Configuration Bits SRAM cell 16 6 96 
Total 256 

(a) Data Cell Transistor Count 

Part Gate Qty Transistors 
per gate total 

Synchronisation 5-input C-Muller 2 15 30 
2:1Mux 8 4 32 
SRAM Cells 12 6 72 
Subtotal 134 

Select D-type 4 32 128 
2:1 Mux 12 4 48 
4:1Mux 4 12 48 
Subtotal 224 

Select Routing 4:1 Mux 4 12 48 
SRAM Cell 8 6 48 
Subtotal 96 

To Reg Delay 	Inverters 	14 	2 	28 
8:1Mux 	1 	28 	28 
Asym. C-Muller 1 	8 	8 

1 	10 	10 
SRAM Cell 3 6 18 
Subtotal 92 

From Reg Delay 	Inverters 6 2 12 
4:1 Mux 1 12 12 
Asym. C-Muller 1 8 8 

1 10 10 
SRAM Cell 2 6 12 
Subtotal 54 

Arbitration 	Mut-Ex 1 12 12 
4-input NAND 2 8 16 
2:1Mux 8 4 32 
SRAM Cell 8 6 48 
Subtotal 108 

RESET 	 SRAM Cell 1 - 	 6 6 
Total 	 714 

(b) Timing Cell Transistor Count 

Table B.5: Data Cell and Timing Cell Transistor Count 
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Part Gate Qty Transistors 
per gate total 

Local 2:1 Mux 16 4 64 
4:1Mux 16 12 192 

S4,W4,E4 10:1Mux 12 36 432 
N4 12:1Mux 4 44 176 
CLK 4:1 Mux 8 12 96 

Configuration SRAM Cell 96 	6 576 
Total 	 1446 

1  additional to local 4:1 Mux 

(a) Data Array 

Part 	 Gate 	 Qty Transistors 
per gate total 

Synchronisation 4-input rC-Muller 8 	28 224 
5-input rC-Muller 4 	34 136 

Configuration 	SRAM Cell 	10 	6 	60 
CLK 	 -96 

Total 	 324 

(b) Timing Array 

Table B.6: Boundary Routing Transistor Counts 

Symbol Description Max Delay 
/ns 

TIL01 XI change to Function Out 2 

TJL023 X2 change to Function Out 3 

TFN Function Out to Neighbour 1 

TNN Route Neighbour In to Neighbour Out 1.5 

TMagic Route X2/X3 to Magic Out 2.5 

TL4 Level-4 Flyover 2 

TL16 Level-16 Flyover 2.5 

TL64 Level-64 flyover 5 

Table B.7: XC6200 Delays 
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Figure B.1: Example Delay Profiles for Fixed Polynomial Division Circuit 
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