
Self-Timed Field Programmable Gate Array
Architectures

Robert Payne

Doctor of Philosophy
University of Edinburgh

1997

0

Abstract
Dynamic hardware systems exploit the in-system reconfigurability of Field

Programmable Gate Arrays (FPGAs), but are currently limited by the delay

properties of synchronous FPGA architectures. Synchronous circuits are dif -

ficult to manipulate dynamically, since this alters their internal delays. The

speed-independent properties of self-timed circuits overcome this problem,

thus allowing the full benefits of dynamic reconfiguration to be exploited. The

general properties of self-timed systems, such as modularity, low power and

data dependent delays also provide benefits to less dynamic FPGA systems as

well.
This thesis introduces a model for self-timed FPGA architectures called

STACC (Self-Timed Array of Configurable Cells). STACC architectures replace

the global clock of an FPGA with an array of timing cells that provide local

self-timed control to a region of logic blocks. STACC differs from previous

self-timed FPGA architectures in that it does not disrupt the structure of the

logic blocks.
The STACC model is used to produced a self-timed version of the Xilinx

XC6200 FPGA. Example circuits for the self-timed XC6200 demonstrate the be-

nefits of self-timing for implementing dynamic hardware systems. Evaluation

of the architecture shows that the implementation overhead of the timing array

is reasonable, and that the self-timed XC6200 has the potential to out-perform

the synchronous XC6200 through use of data dependent delays.

Acknowledgements
I would like to thank Gordon Brebner for his advice, relaxed style of super-

vision and his patient hyphen-eradication in the drafts. Also, lain Lindsay for

feedback on the electronic engineering aspects of the work. Vinod Rebello and

Robert Mullins provided various tips and advice concerning asynchronous cir-

cuit design. Thanks to Anne for proof-reading.

Finally, thanks to the various players of badminton and fingers of frisbees,

residers in Liberton and brewers of coffee, bakers of cakes and office-mates

who kept me as a reasonably well balanced and adjusted person during the

course of writing this thesis.

-7

Declaration

I declare that this thesis was composed by me and that the work contained

therein is my own, except where stated otherwise in the text. Parts of the work

have previously been presented in the following:

R.E.Payne. Self-Timed FPGA Systems. In Proceedings of the 5th
International Workshop on Field Programmable Logic and Applica-
tions, LNCS 975, September 1995.

R.E.Payne. Asynchronous FPGA Architectures. In lEE Proceed-
ings on Computers and Digital Techniques, Special Issue on Asyn-
chronous Processors, September 1996.

R.E.Payne. Self-Timed Reconfigurable Elements. In Proceedings
of the First U.K. Asynchronous Forum, December 1996.

R.E.Payne. Run-time Parameterised Circuits for the Xilinx
XC6200. To be published in Proceedings of the 7th International
Workshop on Field Programmable Logic and Applications, Septem-
ber 1997.

Table of Contents

Chapter 1 Introduction 	 4

1.1 Reconfigurability and Self-Timing4

	

1.2 	Thesis Structure5

	

1.3 	Contributions8

Chapter 2 	Field Programmable Gate Arrays 9

2.1 Background 9

2.2 Elements of an FPGA Architecture 10

2.3 Function Blocks 11

2.4 Reconfigurable Interconnect 15

2.5 Configuration Memory 19

2.6 Repetition, Hierarchy and Symmetry 21

2.7 Dynamic Hardware Systems 22

2.8 Summary 27

Chapter 3 Self-Timed Systems 	 28

3.1 Background28

3.2 Synchrony, Asynchrony and Self-Timing28

3.3 A Comparison of Self-Timed and Synchronous Systems30

3.4 Self-Timed Communication Protocols34

3.5 Self-Timed Circuit Implementation38

	

3.6 	Current Research44

	

3.7 	Summary46

Chapter 4 Self-Timed FPGAs 	 47

4.1 Introduction47

4.2 Motivation for Self-Timed FPGA Systems47

4.3 Self-Timed Dynamic Hardware Systems49

4.4 Self-Timed Systems on Current FPGAs52

4.5 Current Asynchronous FPGA Architectures54

1

4.6 Summary . 64

Chapter 5 STACC 65

5.1 Introduction 65

5.2 STACC Design Decisions 65

5.3 The STACC Model 68

5.4 Example Timing Array Configurations 72

5.5 Summary 77

Chapter 6 Reconfigurable Elements 	 78

	

6.1 	Introduction78

6.2 Reconfigurable C-Muller Gates78

6.3 Branch and Merge Elements83

	

6.4 	Delay Elements88

	

6.5 	Summary93

Chapter 7 	Timing Cells 94

7.1 Introduction 94

7.2 Timing Cell Design Decisions 95

7.3 Two-Phase Timing Cells 98

7.4 Four-Phase Timing Cells 106

7.5 Selective Communication Timing Cell 112

7.6 Arbitrating Timing Cell 115

7.7 Summary 118

Chapter 8 Timing Array Routing 	 119

8.1 Introduction119

8.2 Transparent Routing Structures120

8.3 Routing Handshaking Signals123

8.4 Distributed C-Muller Gate Routing131

8.5 Summary138

Chapter 9 Self-Timing the Xilinx XC6200 	 140

	

9.1 	Introduction140

	

9.2 	XC6200 Architecture141

9.3 STACC Architecture Design Process149

9.4 Self-Timing the XC6200153

	

9.5 	Summary160

Chapter 10 Circuit Design for the Self-Timed XC6200 	 162

10.1 Introduction162

10.2 Design Tools and Simulation162

10.3 Example Circuits165

10.4 Design Techniques and Experience192

10.5 Summary200

Chapter 11 Self-Timed XC6200 Evaluation 202

11.1 Introduction 202

11.2 Implementation Overhead 202

11.3 Flow Control without the Timing Array 206

11.4 Delay Performance 210

11.5 Extensions to the Architecture 223

11.6 Summary 232

Chapter 12 Conclusions 234

12.1 	Overview 234

12.2 	Conclusions 234

12.3 Self-Timed FPGA Architectures 237

12.4 	Future Work 239

12.5 	Summary 242

Appendix A Finite Fields
	 243

A.1 Introduction 	 243

A.2 Finite Fields 	 243

A.3 Error Detection and Correction Applications
	

246

Appendix B Self-timed XC6200 Evaluation Data
	 249

Bibliography
	 256

Chapter 1

Introduction

1.1 Reconfigurability and Self-Timing

Field Programmable Gate Arrays (FPGAs) are a form of programmable logic;

they are devices designed to implement a wide range of different logic circuits.

The key property of programmable logics that differentiates them from cus-

tom hardware is their reconfigurability. Such devices cannot compete with a

custom hardware implementation in terms of density or speed, but their recon-

figurability allows hardware designs to be created and changed rapidly, thus

reducing time-to-market and costs over custom hardware.

Traditionally, programmable logics have been configured in special pro-

grammers that are external to the host system. However, many current FPGAs

have SRAM configuration memories, which can be programmed in-system.

Thus, a configuration can be loaded into the FPGA and run, just like a soft-

ware program, but with performance closer to that of dedicated hardware.

Dynamic hardware systems attempt to exploit the software-like reconfigurab-

ility of SRAM FPGAs. For example, such systems can be used to implement

circuits larger than the size of the FPGA, by swapping parts of the circuitry to

and from the FPGA; or circuits can be customised for a particular problem on

the fly.

However, the exploitation of reconfigurability in dynamic hardware sys-

tems is limited by the delay properties of the FPGA architecture. Changing

the environment or shape of a circuit alters the delay properties of the circuit,

which means it can fail to meet the global clock in synchronous systems. The

starting point for this thesis is the proposal to utilise the speed-independence

of self-timed circuits to allow the rapid manipulation of circuits in dynamic

hardware systems. Such an approach promises to allow the full dynamic re-

configurability of FPGAs to be exploited.

4

Current synchronous-oriented FPGA architectures pose problems for the

implementation of self-timed circuits. The assumptions made in self-timed

communication protocols are often not maintained by synchronous FPGA ar-

chitectures. The approach taken in this thesis is to develop self-timed FPGA

architectures to overcome the problems with current FPGAs.

The thesis introduces a new model for self-timed FPGA architectures called

STACC (Self-Timed Array of Configurable Cells). In STACC, the global clock

of a synchronous FPGA architecture is replaced with an array of timing cells.

These timing cells provide local timing control to regions of logic blocks, which

are left unaltered from the original synchronous FPGA architecture. The clear

split between timing cells and data cells (logic blocks) in STACC reflects the

split in self-timed bundled-data protocols between control path and data path.

To demonstrate the viability of STACC, the STACC model is applied to the

Xilinx XC6200 FPGA architecture. The Xilinx XC6200 was chosen since it is a

recent architecture (first silicon in 1995), and that it includes features for the

use of dynamic hardware. The self-timed XC6200 architecture is used to con-

struct circuits parameterised at run-time, which demonstrate the benefits of

self-timing for dynamic hardware systems.

1.2 Thesis Structure

The thesis consists of four main parts. The introductory chapters present back-

ground material on FPGAs and self-timed systems, and outline the potential

benefits of self-timed FPGA systems. The second part of the thesis introduces

the STACC model for self-timed FPGA architectures, and develops the circuit

elements required for the construction of STACC architectures. The third part

of the thesis concerns the application of the STACC model to the Xilinx XC6200

FPGA architecture. Finally, the thesis concludes with a summary of the main

results and a discussion of possible future work.

Figure 1.1 summaries the structure of the thesis and shows the relationship

between the chapters. Below, a chapter by chapter summary for each part of

the thesis is given.

1.2.1 Introduction

Chapter 2 covers background material on FPGAs. A key part of this chapter is

the discussion of dynamic hardware systems, virtual hardware, and run-time

5

Introduction

FPGAs/ 	Self-Timed
Virtual Hardware 	Systems

Self-Timed FPGA
Systems *

STACC *
Reconfigurable

Self-Timed Elements

Timing Cell 	Timing Array
Design 	Routing

Self-Timed XC6200 *
Architecture Design *

Example Circuits

Evaluation *
Conclusions

Figure 1.1: Thesis Structure

parameterised circuits. Chapter 3 introduces self-timed systems and includes

a detailed discussion of bundled-data systems.

Chapter 4 is central to the rest of the thesis. It considers the potential bene-

fits and drawbacks of self-timing for FPGA systems in general, and dynamic

hardware in particular. The chapter also reviews the current research on self-

timed circuits using synchronous FPGAs and proposed self-timed FPGA ar -

chitectures.

1.2.2 STACC

Chapter 5 introduces a model for self-timed FPGA architectures: STACC (Self-

Timed Array of Configurable Cells). The STACC model involves replacing the

global clock in a synchronous FPGA with an array of timing cells that provide

local clock signals.
The next three chapters focus on the implementation of the timing array in

STACC architectures. Chapter 6 introduces several new self-timed elements,

suchas the Q-Merge/Select pair and the reconfigurable C-Muller gate, which

are used as building blocks for the timing array. Chapter 7 describes in detail

the design of timing cells for STACC. The timing cell is developed from a basic

reconfigurable C-Muller gate into a timing cell capable of selective communic-

ation and arbitration. Chapter 8 concerns routing structures for handshaking

signals in the STACC timing array. These structures are based on another de-

velopment of the reconfigurable C-Muller gate: the handshaking crossbar.

1.2.3 A Self-Timed XC6200

Chapters 9 to 11 concern the application of the STACC model to a contempor-

ary FPGA architecture: the Xilinx XC6200. Chapter 9 introduces the current

XC6200 architecture, concentrating on the features useful for dynamic hard-

ware, and then presents the design of a self-timed XC6200 using the STACC

model. Chapter 10 contains a case study of the use of the self-timed XC6200

for implementing dynamic hardware systems. The example circuits are run-

time parameterised circuits for finite field operations with application to Reed-

Solomon error correction. Finally, Chapter 11 compares the self-timed XC6200

relative to the synchronous XC6200, considering its delay performance and the

implementation overhead of the timing array.

'A

1.2.4 Conclusions

Chapter 12 summarises the main results of the work. The chapter ends with a

discussion of possible directions for future research.

1.3 Contributions

This thesis makes original contributions in a number of areas. The main contri-

butions are listed below. These points are expanded upon in Chapter 12, which

summarises the conclusions of the thesis.

Self-timed Dynamic Hardware: A key contribution of the thesis is the iden-

tification of the benefits of self-timed circuits for implementing dynamic

hardware systems. Previous work on self-timed circuits for FPGAs have

concentrated only on the prototyping of self-timed systems.

STACC: is a new model for creating self-timed reconfigurable architectures.

Unlike previous self-timed FPGA architectures (MONTAGE, PGA-STC),

STACC-based architectures do not alter the structure of the logic blocks

for self-timing.

Self-timed Reconfigurable Elements: The thesis introduces a number of new

self-timed elements, potentially of wider use in self-timed design: the Q-

Merge/Select Pair, the reconfigurable C-Muller gate, the STACC timing

cell and handshaking crossbars.

Self-timed XC6200: Using the STACC model, this thesis presents the design,

simulation and evaluation of a new self-timed FPGA architecture based

on the Xilinx XC6200.

Run-Time Parameterised Circuits: The circuits developed for run-time para-

meterisation on the self-timed XC6200 are of note, due to the hierarchy of

parameterisation, and the benefits arising from self-timing. Some of the

design techniques developed, such as the abstract block size, are applic-

able to XC6200 designs in general.

Current Sensing Completion Detection (CSCD): The thesis provides insight

into the potential benefits of the CSCD delay scheme and proposes the

use of CSCD for meta-stability resolution.

E1

Chapter 2

Field Programmable Gate Arrays

2.1 Background

FPGAs are the successors to earlier forms of programmable logic such as PLAs

and PALs. The initial need for programmable logics has been to integrate a

number of SSI (Small Scale Integration) or MSI (Medium Scale Integration)

parts on a single chip, without the expense or time of building a custom part.

A key difference of FPGAs from these previous forms of programmable logic

is the size of circuit that can be implemented on one device. Whilst earlier

programmable logic devices could replace a small number of SSI or MSI parts,

FPGAs can implement VLSI parts (over 10,000 gate equivalents) within a single

programmable device. The implementation of larger circuits within FPGAs

has necessitated a change in architecture. Earlier programmable logic devices,

such as PLAs (see Figure 2.1), implemented circuits as a two-level logic func-

tion, i.e., a boolean sum of products. Such devices had two planes of logic: an

AND plane that produced the product terms from the inputs and an OR-plane

that summed the products to produce the outputs.

However, the use of two-level logic functions becomes cumbersome for lar-

ger circuits, since the size of each plane increases more rapidly than the com-

plexity of the circuit. A solution is to factorise the two-level logic functions and

implement the circuits using multi-level logic functions. To implement multi-

level logic functions, FPGA architects have drawn on the design of Mask Pro-

grammable Gate Arrays (MPGAs). MPGAs are a semi-custom implementation

style for ASICs (Application Specific Integrated Circuits). MPGAs save cost on

expensive custom masks, by having a fixed set of masks defining a collection

of basic building block gates (such as NAND gates), and then use a few cus-

tom masks to define the routing between them. The key difference between

MPGAs and FPGAs is the method of configuration. In MPGAs, the config-

Outputs

1

Inputs

Figure 2.1: PLA Architecture

uration is defined by the routing masks whilst, in FPGAs, it is defined by a

configuration memory. MPGAs and FPGAs are sufficiently related that FPGA

designs can be migrated directly to MPGAs with similar architectures. For ex-

ample, CLA is an MPGA version of the Algotronix CAL architecture [65], and

the Xilinx HARDWIRE architecture is an MPGA version of the XC4000 FPGA

[124].

2.2 Elements of an FPGA Architecture

Figure 2.2 shows an idealised FPGA architecture. The architecture consists

of an array of function blocks. Each function block can be configured to im-

plement a variety of basic gates and a basic memory element, such as a D-

type flip-flop. The function blocks are wired together to form a circuit us-

ing reconfigurable interconnect. Switchboxes connect a function block's in-

puts and outputs to the interconnect. Typically, architectures provide separate

interconnect for routing local and non-local signals. At the edge of the ar-

ray, special input/output switchboxes are provided to connect to external sig-

nals. The circuit implemented by the FPGA is determined by values stored in

the FPGA's configuration memory. The configuration memory determines the

functions implemented by the function blocks and the routing implemented

10

Function
Blocks

Switchboxes and
Local Interconnect

Non-Local
Interconnect

Configuration
Memory

Figure 2.2: Elements of an FPGA Architecture

by the switchboxes.

Currently, a large number of FPGA architectures are available commer-

cially, with little agreement on a common design. The following sections exam-

ine the decisions made in current FPGA architectures. They discuss the design

of the function blocks (Section 2.3), reconfigurable interconnect (Section 2.4)

and configuration memory (Section 2.5). Some desirable properties of how

these elements are assembled to create an FPGA architecture are discussed in

Section 2.6. The use of FPGAs in dynamic hardware applications is discussed

in Section 2.7.

2.3 Function Blocks

Current architectures use a wide variety of function blocks. A basic require-

ment of the function blocks is that any logic function can be constructed given

a sufficient supply of them. Two-input NAND or NOR gates are sufficient for

this purpose, however most FPGA architectures choose to use function blocks

that can implement any boolean function of between 2-5 boolean variables.

Current FPGA architectures use five basic styles of function block: prim-

itive gates, LUTs (Look-Up Tables), multiplexors, PALs (Programmable Array

Logic) and CAMs (Content Addressable Memories). These styles are described

below. In addition, most architectures embellish the basic choice of function

11

block with additional features to improve the implementation of certain func-

tions, such as dedicated carry logic for adders and counters.

Primitive Gate Function Blocks

The simplest function block possible for an FPGA is to supply a primitive gate

such as two-input NAND or NOR gate. All other logic functions can be built

given a sufficient supply of these gates. This approach has been adopted suc-

cessfully in 'sea of gates' MPGAs. The advantage of using primitive gates is

that the function block is easy to design and small, so can be replicated in large

numbers. The main drawback of using such basic elements for FPGAs is that

it requires a large amount of slow reconfigurable interconnect. Most FPGA

architectures use more complex cells, with mostly fixed internal, routing for

speed. At the time of writing, the only FPGA architecture to use a primitive

gate function block has been the GEC-Plessey ERA architecture [33, 45].

Look-Up Table Function Blocks

Figure 2.3 shows the design of a Look-Up Table (LUT) function block. The

multiplexor is used to select an output value from a configuration memory. Es-

sentially, each function block acts as a small ROM (Read Only Memory), whose

output is selected by the input signals. To provide one boolean function of N

input variables requires 2" configuration bits. Architectures such as the Xilinx

XC4000 [124] and AT&T ORCA [9] allow the LUT to be split into sub-LUTs to

provide more functions, but of fewer variables. For example, the Xilinx XC4000

[124] architecture allows a function block to provide two boolean functions of

four variables each or one boolean function of five variables.

Inputs

000

C 	I
.2 	I

CZ

E 	 Output I
WI

0 	I

Figure 23: Look-Up Table Function Block

12

Multiplexor Based Function Blocks

Figure 2.4 shows the function block of a multiplexor based FPGA. A multi-

plexor with N select inputs is capable of implementing all boolean functions of

N + 1 input variables. In contrast to a LUT based function block, a multiplexor

based function block is not directly configured by a configuration memory. In-

stead, the function is determined by configuring routing to the select and data

inputs of the multiplexor. Configuring this routing becomes costly for large

multiplexors, so typically FPGA architectures, such as the Algotronix CAL1024

[3] and Actel Act1000 [2] use small multiplexors with only one or two select in-

puts.

Many FPGA architectures add additional logic to the multiplexor. The

Act1000 FPGA [21 includes a two input NOR gate on one of the select inputs of

the multiplexor. The Cypress pASIC380 [24] includes a number of wide input

AND gates that can be tapped separately as outputs. Architectures like the At-

mel AT6000 [10] add so much additional logic to the multiplexor that they can

be regarded as being a separate type of 'complex gate' function block.

U)
04-

- 5

C/)

CZ Output

Figure 2.4: Multiplexor Function Block

PAL Based Function Blocks

PAL based architectures can be considered as an evolutionary step from older

two-level programmable logics to current FPGA architectures. FPGAs like the

Altera MAX series [4], can be considered as 'Mega-PALs' where a small num-

ber of traditional PALs are placed on the same chip with limited reconfigurable

interconnect to join them.

Figure 2.5 shows a PAL (Programmable Array Logic) based function block.

Each output is implemented as a boolean sum of products. Product terms are

generated by wide input AND gates and then summed together using a fixed

OR gate; in Figure 2.5, De Morgan's rule allows NAND gates to be used in

13

place of AND and OR gates. The functions implementable by a PAL based

function block are limited by the number of available product terms. Cer -

tain functions, in particular XOR like functions, use a large number of product

terms, so map poorly to PAL based function blocks. However, most logic func-

tions need considerably less product terms than the worst case. Furthermore,

PAL based designs lead to very dense implementation when used with fuse

based configuration memories (see Section 2.5).

Output

Inputs

Figure 2.5: PAL Function Block

Content Addressable Memory Function Block

Figure 2.6 shows a novel Content Addressable Memory (CAM) function block

that has been designed by Oxford Parallel [110]. The CAM based function

block can act in two modes. In the first mode, the cell can act as a Random

Access Memory (RAM). A word of the RAM is selected with the word select

lines. Data can be read or written using the data out and data in signals in

conjunction with a read/write signal. When reading in this mode, the CAM

cell acts in a similar way to a LUT based function block. In the second mode,

the cell compares the contents of the data input with the RAM contents. If the

data matches, then the appropriate match line goes high. In this mode, the

CAM cell acts in a similar way to the product terms in a PAL based function

unit, which only go high when they match a particular data input pattern.

The advantage of the CAM based design over the other function blocks is the

variety of structures it can implement. As well as being able to implement

LUT and PAL structures, it can easily implement dense RAM and CAMs in the

FPGA.

lei

Data Out

WordLines MatchLines

Read/Write 	Data In

Figure 2.6: CAM based Function Block

2.3.1 Memory Elements

Most FPGA architectures provide a dedicated memory element as part of the

function block. Exceptions are the Actel Act1000 [2], and GEC-Plessey ERA

[33, 45] architectures, which require the memory elements to be implemented

from the basic function block. Typically, architectures have D-type registers or

latches as the basic memory elements. In architectures with more than one out-

put from the function block, usually only some of the outputs are connected to

memory elements. In all architectures, the configuration can choose to bypass

the memory element if the output of the logic block is not registered.

Most FPGAs are poor at implementing dense memory structures such as

RAM. The Xilinx XC4000 [124] architecture overcomes this by allowing the

configuration memory of the LUT to be used alternatively as a block of SRAM.

The Oxford Parallel FPGA [110] also allows dense memory structures to be

implemented using its CAM based function blocks.

2.4 Reconfigurable Interconnect

Current FPGAs use a wide range of interconnect architectures. The architec-

tures can be classified according to the type of basic interconnection resource

provided and how the basic interconnect elements are joined together to form

the routing network. Most architectures also provide special routing resources

15

for signals, such as reset and clock signals.

2.4.1 Interconnect Elements

FPGAs use a number of basic elements to interconnect their routing resources.

These are described below.

Bidirectional Interconnect

In FPGAs using fuse based configuration (see Section 2.5), two wire segments

can be joined simply by blowing a fuse. The connections are bidirectional, since

signals can flow in either direction through the fuse. Crossbar switches can be

constructed from a grid of overlap wires with fuses at the intersections. In FP-

GAs using SRAM configuration memories, bidirectional connections require

pass transistors controlled by configuration bits. These interconnect elements

require more silicon area than in fuse based architectures. Also, pass transist-

ors have a higher electrical resistance than fuses, so bidirectional buffering is

required. The direction of buffering must be determined by additional config-

uration bits, as in the Xilinx XC3000 and XC4000 architectures [124].

Unidirectional Interconnect

To avoid implementing bidirectional buffers, many FPGAs with SRAM con-

figuration memories, such as the Algotronix CAL [3], constrain wires to hav-

ing one fixed driver. This constrains the direction of signal flow along wires

within the architecture to be unidirectional. Unidirectional signalling leads to

less flexibility in the use of the routing resources, but single direction drivers

avoid the possibility of driver conflicts where multiple drivers drive signals to

opposing values.

Open Collector and Tristate Interconnect

Architectures, such as the XC4000 [124] and Oxford Parallel [110], include in-

terconnect with open collector drivers. The advantage of open collector drivers

is that wide input OR and AND gates can be constructed using wired logic.

Indeed, older two-level programmable logics used wired logic to implement

the bulk of their circuitry. The Xilinx XC3000 and XC4000 [124] architectures

include tristate drivers, to allow bus-like structures to be built on the FPGA.

When using tristate drivers, the designer has the responsibility of avoiding

16

driver conflicts, arising from more than one tristate driver driving the signal at

any one time.

2.4.2 Routing Networks

Current FPGA. architectures provide two basic styles of interconnection net-

work based on separate routing channels or integrated routing and function

blocks. The choice of interconnect network is strongly influenced by whether

signals are unidirectional or bidirectional. Unidirectional architectures favour

the point to point links used in integrated architectures, whilst bidirectional

architectures favour the use of separate routing channels.

Separate Routing Channels

FPGAs that use a channel based interconnect network (such as Actel [2], Altera

[4] and Xilinx [124]), emulate the style of routing in many MFGAs. In chan-

nel based routing topologies, routing channels run horizontally and vertically

through the architecture. At the intersection of the channels, switchboxes al-

low signals to move from horizontal to vertical channels. Other switchboxes

allow the function blocks to connect to the routing channels. Channel based

routers usually supply a variety of different lengths of wire segments in the

routing channel for local and non-local routing. Typically, many short seg-

ments are provided for local interconnect, with fewer medium length and full

length wire segments for non-local routing.

Integrated Routing and Logic

Architectures such as the Algotronix CAL [3] have integrated routing and logic

blocks. There is no clear differentiation between function block and routing as

there is with channel based routing. Typically, routing in these architectures is

based on a nearest neighbour mesh. A problem with nearest neighbour meshes

is the lack of non-local routing. Earlier architectures, such as the CAL1024 [3],

chose not to supply any at all. Later architectures such as the Xilinx XC6200

[123] architecture include a hierarchy of non-local routing structures.

Hybrid Routing Schemes

The TRIPTYCH [55] and Atmel AT6000 [10] architectures combine aspects of

both channel and integrated routing schemes. In TRIPTYCH, most connec-

tions use local point-to-point links along a nearest diagonal neighbour mesh.

17

Additionally, function blocks are connected to vertical routing channels for

non-local signals. In the AT6000 architecture, vertical and horizontal buses

are provided in addition to the nearest neighbour mesh.

2.4.3 Clock Routing

Currently, all commercial FPGA architectures are geared towards the design

of synchronous systems. Most architectures have dedicated clock routing to

allow the distribution of a global clock signal with minimum skew across the

FPGA. Typically, a choice of several global clock signals is given to allow two

and four phase synchronous clocking schemes to be implemented. Most archi-

tectures also allow clocks to be driven from the local routing, but this option

is rarely used, as it lacks the low skew characteristics of the dedicated clock

routing. Furthermore, a number of different clocks operating asynchronously

to each other creates interfacing problems.

The alternative to implementing synchronous circuits on FPGAs is to use

self-timed or asynchronous circuits, which do not require a global clock signal.

Implementing self-timed circuits on current FPGAs is discussed in Chapter 4,

and the design of dedicated FPGA architectures for implementing self-timed

circuits is the subject of the rest of the thesis.

2.4.4 Input/Output Interface

At the edge of an FPGA, special blocks are needed to allow the input and out-

put of signals to and from the FPGA. Most commercial FPGA architectures

try to limit the number of input and output pins to save on packaging costs.

Several schemes are used to minimise the number of pins.

The simplest is only to provide some of the inputs/outputs from the ar-

rhy as pins. Another alternative is to share input/output pins with the con-

figuration interface, since in most FPGA architectures, once the FPGA is pro-

grammed these pins are not used. However, this requires additional circuitry

to implement the switching from configuration mode to input/output mode.

An approach adopted in the Algotronix CAL1024 [3] architecture is to use tern-

ary signalling. Ternary signalling uses special circuitry to share an input and

an output on the same pin. The illegal state when the output is being driven to

a different value from the input is detected by special circuitry, and the value

being received can be reconstructed from knowledge of the signal being driven

on the line. FPGAs using addressable SRAM as configuration memory, such as

IN

CAL [3], provide another option for input/output. Data can be read and writ-

ten into the array using the SRAM interface. Potentially, using this interface

could alleviate the need for other input/output pins altogether, but currently

no FPGAs have adopted this approach.

A conflicting objective to minimising the number of pins is to allow the

array to be naturally extended, which requires all input and outputs to be

provided as pins. This is extremely costly; of all the FPGAs discussed, only

CAL [3] manages this, and this is through its use of ternary signalling. Even

providing all the necessary extensions, an array of FPGAs cannot be treated as

a uniform array due to the magnitude of off-chip delays.

One method of providing a large array of FPGA chips, which is as close as

possible to one uniform array of function blocks is WSI (Wafer Scale Integra-

tion). An example of this approach is the Teramac [108] system built by HP

Laboratories, which integrates several FPGAs on one MCM (Multi-Chip Mod-

ule). Also Isshiki et al [64] have built a MCM with 12 Xilinx XC3042 chips and

an Aptix FPID (Field Programmable Interconnect Device) as additional inter-

connect.

2.5 Configuration Memory

Current FPGAs use two basic types of configuration memories: fuse based and

SRAM based. The key difference between these two types of configuration

memory is that SRAM based designs have the the potential to be reconfigured

in-system, whilst fuse based designs need to be programmed externally to the

system in a special programmer. However, fuses can be implemented more

compactly, which leads to a different style of architecture from SRAM based

ones, where the configuration memory is relatively expensive to implement.

These two types of configuration memory are discussed below.

2.5.1 Fuse based Configuration Memory

Fuse based FPGAs use the same configuration method as the older two-level

forms of programmable logic, such as PALs. In fuse based FPGAs, the con-

figuration is determined by the pattern of blown and unblown fuses. The

principal advantage of fuse based configuration over SRAM, is that fuses are

efficient to implement on silicon. At the silicon level, a fuse can be created

at the crossing point of two wires. Special processing steps are used to make

a thin layer of semi-conductor between the two wires that can be made non-

pvJ

conducting (blown) by the application of high voltages. Many manufacturers

[24, 4] use anti-fuses instead. An anti-fuse is the opposite of a fuse: it is non-

conducting until a high voltage is applied to it. Other types of fuses allow the

configuration to be erased electrically or using ultra-violet light. Compact ar-

rays of fuses can be created using a grid of wires as in PLA-type architectures.

The configuration of fuse based FPGAs requires a special programmer to

generate the high voltages required to blow the fuses. The configuration in-

terface of fuse based FPGA allows the programmer to apply these voltages to

each fuse individually in the architecture by having each fuse at the crossing

point of a row and column to which the appropriate voltage can be applied.

2.5.2 Static RAM Configuration Memory

A major development of some FPGA architectures from older programmable

logics is the use of SRAM for the configuration memory. The benefit of SRAM

is that the configuration of the FPGA can be altered in-system, rather than

needing the device to be removed from the system to a special programmer.

A drawback of using SRAM is that it requires more silicon area since a SRAM

cell implementation requires several transistors and associated wiring, whilst

a fuse can be created simply at the crossing point of two wires. Another draw-

back is that the configuration is volatile, so needs to be reloaded every time the

system is powered up.
Two methods are used for configuring SRAM FPGAs. One option is to con-

figure the SRAM serially, as in the Xilinx XC4000 architecture [124] by provid-

ing all the configuration data to configure the FPGA in sequence. In serial

access SRAM FPGAs, the configuration memory of the FPGA is implemented

as a very long shift register. The use of the term SRAM (Static Random Ac-

cess Memory) by such FPGA manufacturers in this case is a misnomer, since

clearly the access is not random. The advantage of a serial interface is that

there is no need to supply address signals to the FPGA, to indicate which part

of the SRAM is to be programmed. This leads to a saving in silicon area and

pins required for the configuration interface.

The alternative to serial access is a normal addressable SRAM interface as

used in the Algotronix [3] and Atmel [10] FPGA architectures. The advantage

of a true random access interface is that parts of the chip can be selectively re-

configured. In addition, the interface can be used to read back results from the

array. The Xilinx XC6200 architecture [23] extends the basic SRAM access by al-

lowing the use of 'wild cards' in the address given to the SRAM, so that arrays

20

of repeated circuit elements in the array can be configured in one operation.

2.6 Repetition, Hierarchy and Symmetry

The previous sections have concentrated on the basic elements and structures

used in FPGA architectures. This section focusses on some desirable higher

level properties of an FPGA architecture, which arise from the way elements

are put together. These features are particularly important to FPGA design

tools which are used to generate the configuration of the FPGA.

A fundamental requirement of an FPGA architecture is that the basic cell

of the architecture can be replicated to form a regular array. A result of this

repetition is that a design placed at one point in the array can generally be

transposed to another position without change. All current FPGAs are based

on a rectangular repeat pattern, but other shapes that give a regular covering

of the silicon could be used, such as hexagons or equilateral triangles. Some

FPGAs build the architecture as a hierarchy of elements, rather than using a

simple repeating structure. The top level of the hierarchy is repeated across

the silicon. For instance the Altera Flex 8000 [4] architecture consists of Logic

Element Blocks grouped together into Logic Array Blocks.

Another desirable property of an FPGA architecture is symmetry, which al-

lows designs to be rotated and flipped. This property is desirable for placement

and routing software, since it allows more options for placement and routing

of designs. Many architectures display reflective symmetry in one direction

(such as the Cypress [24]) and some in two directions (such as TRIPTYCH [55]).

Some also have rotational symmetry, for example, the Oxford Parallel [110] ar-

chitecture has rotational symmetry of order two, whilst the AT6000 [10] has

rotational symmetry of order four. Another useful property, related to sym-

metry, is for the architecture to provide function blocks with interchangeable

inputs. For example, LUT based function blocks allow any permutation of in-

puts to be used. This flexibility allows routing software more options in how

to route signals to a function block.

Many architectures add irregular features to their function blocks to im-

prove the implementation of certain functions. For example Xilinx [124] and

Altera [4] provide special carry generators to improve implementation of coun-

ters and adders. With the emergence of the PREP [1] benchmarks as an indus-

trial standard, such features may increase with manufacturers striving to im-

prove their benchmark performance. However, less regular features are more

21

difficult for synthesis tools to use. For example the XC4000 [124] carry logic can

only be used by a special XBLOX generator program rather than the standard

placement and routing software. This is a similar observation to that made by

RISC processor designers: complex features are difficult for compilers to use

effectively.

2.7 Dynamic Hardware Systems

A key difference of many FPGA architectures over older forms of program-

mable logic is the use of SRAM for the configuration memory. Rather than

needing a special programmer to be reconfigured, such devices can be recon-

figured in-system. The reconfigurability of SRAM FPGAs is more akin to soft-

ware than hardware: a configuration file can be loaded into the FPGA's con-

figuration memory and then rim in a similar way to software. In other words,

SRAM FPGAs can act as 'soft-hardware'. Systems that exploit the reconfigur -

ability of SRAM FPGAs are often referred to as dynamic hardware systems.

Current dynamic hardware systems can be classified into two groups de-

pendent on the system architecture. The first class of dynamic hardware sys-

tem consists of an FPGA and microprocessor with the FPGA being used as a

co-processor. The second class of dynamic hardware system consists of a large

array of FPGAs connected by a routing network, similar in structure to current

parallel computers.

2.7.1 Co-processor Dynamic Hardware Systems

Co-processor dynamic hardware systems consist of a closely coupled system

of FPGA and microprocessor. Computation is shared between the micropro-

cessor and the FPGA. In such systems, the FPGA is configured with a set of

instructions adapted to the application problem. Good candidates for migra-

tion from software to the FPGA are inner loops of program code. Work at

UMIST [85] is examining the automatic and user guided migration of target

code from software to hardware.

For co-processor systems to show significant performance gains, the per-

formance gain of the FPGA must outweigh the additional communication cost

of going to the co-processor. Hence, it is preferable in co-processor dynamic

hardware systems to place the microprocessor and FPGA on the same local

bus, as in the HARP board [93] and EVC [21]. Both Page [94] and DeHon [28]

argue that the natural progression is for FPGA co-processors to be integrated

22

on the same piece of silicon, very much as floating point units have migrated

from being co-processors to being an integrated part of microprocessors.

2.7.2 Large Array Dynamic Hardware Systems

Large array dynamic hardware systems resemble parallel systems in many

ways, and in particular massively parallel systems, such as the Connection

Machine [58] or DAP [59] . Both consist of a large array of processing ele-

ments joined by a routing network, and are loosely coupled to a host com-

puter that deals with input/output and reconfiguration. The main difference

between massively parallel computers and large array dynamic hardware sys-

tems is that the dynamic hardware systems do not have a global instruction

issue. Instead, in dynamic hardware systems, the program is hardwired by the

configuration. Another difference is that large array dynamic hardware sys-

tems have a more flexible interconnect architecture, but again it is fixed by the

configuration.

Both massively parallel computers and large array dynamic hardware sys-

tems have been targeted at similar application domains. Large array dynamic

hardware systems have demonstrated superior performance on several prob-

lems compared to far more expensive parallel systems. The Splash and Splash2

systems [6] have shown considerable speed-up on the searching of genetic

databases [98] and the travelling salesman problem [49]. The PAM architec-

ture [12] has recorded the fastest implementation of the RSA cryptography

algorithm [79]. The SPACE machine [89] has been used for road traffic simu-

lations. Cellular automata applications have been implemented by a number

of researchers [90, 65, 63]. However, the lack of dedicated floating point units

in large array dynamic hardware systems make them a poor match for many

high performance computing applications.

2.7.3 Models of Dynamic Hardware Systems

In the previous section, current dynamic hardware systems were classified

broadly into two groups based on the system architecture. Some machines

do not fit well into either group. For example, systems such as ArMen [99]

and CM2X [101] combine aspects of the co-processor and parallel system ap-

proaches. Both these machines are parallel computers where the processors

have FPGA co-processors attached.

Boloski et al [13] and Guccione [53] have suggested alternative methods of

23

classifying dynamic hardware systems, to the one adopted here. Both authors

introduce a broad definition of reconfigurability. For example, an ALU in a nor-

mal processor can be regarded as a reconfigurable unit, with a small number

of reconfiguration bits that define which arithmetic function that it performs.

Boloski et al [13] use this idea to compare SIMD (Single Instruction Mul-

tiple Data) parallel computers and FPGAs. They consider FPGAs as a class

of ELIW (Extremely Long Instruction Word) architecture. Since the instruc-

tion is so long, systems either load the instruction infrequently, as in FPGAs,

or shorten the instruction by sending the same instructions to all parts of the

array, as in SIMD parallel computers. Boloski et al argue for a hybrid architec-

ture, which consists of a local configuration as in a FPGA, along with a global

instruction issue as in a SIMD array.

Guccione [53] uses the concept of reconfigurable units to propose a clas-

sification scheme similar in spirit to Flynn's classification of parallel systems.

He chooses to classify dynamic hardware systems by whether they have large

or small reconfigurable units, and whether they include on-board memory.

However, the difference between what constitutes a large or small reconfig-

urable unit is unclear, and does not lead to a clear classification scheme.

2.7.4 Virtual Hardware

Dynamic hardware systems introduce a new resource into computing archi-

tectures, namely reconfigurable hardware. Like other resources within a com-

puter, reconfigurable hardware is limited and often the need for more reconfig-

urable hardware than is available will arise. Virtual hardware systems attempt

to give the illusion of more reconfigurable hardware than is actually avail-

able. Conceptually, virtual hardware is analogous to virtual memory. Virtual

memory emulates a much larger memory space by swapping pages of memory

between a much smaller physical memory space and a backing store. In vir-

tual hardware, a much larger area of reconfigurable hardware is emulated by

swapping configuration data between reconfigurable hardware and a backing

store.

The term 'virtual hardware' is used by many authors to refer to any system

composed of reconfigurable FPGAs. In this thesis, virtual hardware is used to

refer to the class of system which involves swapping parts of a circuits to and

from the FPGA during the operation of the circuit. The term dynamic hard-

ware system is used to refer to the more general class of system that utilises

the reconfigurability of SRAM based FPGAs.

24

A key consideration in the design of virtual hardware systems is the time

taken to reconfigure the array. If the reconfiguration takes longer than the time

to perform the operations in software then there is no performance gain. Sev-

eral researchers, such as Ling [72] and DeHon [28], have suggested minimising

configuration times by having FPGA architectures with more than one con-

figuration memory so that one configuration can be changed whilst another

configuration is in use. The benefits of such an approach are debatable, since

configuration memory represents a large proportion of the silicon real estate of

an FPGA architecture. It may be as effective to provide more reconfigurable lo-

gic, rather than provide extra configuration memories with additional circuitry

to switch between different configuration memories.

2.7.5 Current Virtual Hardware Systems

Most implementations of virtual hardware to date have been limited to a fixed

pattern of swapping circuits to and from known locations on the reconfigur -

able hardware. The advantage of such systems is that, as the pattern of swap-

ping is fixed and the location of the circuits known, then each configuration

of the reconfigurable hardware can be simulated to check for correct opera-

tion. However, this approach requires algorithms that have clear boundaries

between different stages.

Several such applications have been in the domain of neural networks. The

RRANN system [32, 31] divided the circuit between the different phases of the

neural network, so different circuits were loaded for the back propagation and

forward propagation stages of the algorithm. Lysaght et al [76, 75] adopt a

different approach to implementing neural networks by swapping in different

circuits for each layer of the neural network.

More general virtual hardware systems have been built where the pattern

of swapping and location of circuits within the virtual hardware is less limited.

French et al [34] proposed a co-processor dynamic hardware system where the

FPGA is used as instruction cache: instructions not already in the FPGA are

loaded in when required. Writhlin and Hutchings [122] have implemented

such a scheme called DISC (Dynamic Instruction Set Computer). Instructions

may be dynamically loaded at any position in a one-dimensional space on the

FPGA. An interesting feature of this system is that the microprocessor has been

removed from the system and instead a small processor is configured on the

FPGA itself. A dynamic paging system has been developed by Brebner and

Gray [18] for a fax decoding circuit. In this system, pages of the fax decoding

25

circuit are loaded on demand when the circuit indicates a page fault. Work by

Brebner [16,17] has also examined virtual hardware operating systems.

Simulation work by Ling [72] has investigated the idea of performing the

whole of a computation using virtual hardware. This complicates the archi-

tecture as circuits can communicate between pages of the virtual hardware. A

mechanism must be provided for transferring results between two hardware

pages, when potentially one of the hardware pages is not loaded into the re-

configurable hardware.

2.7.6 Run-Time Parameterised Circuits

Parameterisation of circuits is now a common part of many FPGA design tools.

For instance, many graphical design tools allow the definition of a bit sliced

component of arbitrary width, such as a N-bit wide adder. More comprehens-

ive parameterisation can often be achieved through use of a Hardware Design

Language, for example, VHDL [62] or Ruby [74].

However, the parameterisation of these designs is fixed at compile time.

Often, it would be useful for an application to specify the parameterisation of

a hardware accelerator at run time rather than compile time. For example, a

constant multiplier circuit is quicker and more compact than a general multi-

plier circuit. If a large number of data values are to be multiplied by a constant

value, then it is beneficial to configure an instance of a parameterised circuit at

run time, rather than using a general purpose multiplier circuit.

Similar concepts are being explored in the context of partial evaluation in

functional programming languages by Singh et al [107]. An important prop-

erty of run-time parameterised circuits is that they have the potential to out-

perform a dedicated hardware implementation. This arises since the dedicated

hardware is optimised for solving a class of problems, whilst a run-time para-

meterised circuit is optimised to solve a particular instance of a problem.

Run-time parameterised circuits share many of the same problems with vir -

tual hardware systems. The central issue is that the generation of the configur -

ation must be done quickly, otherwise the speed-up of using virtual hardware

is lost in the time taken to generate the configuration and then reconfigure the

FPGA. The central challenge to designers of these systems is ensuring that the

configuration works as expected without having time to use complex place and

route algorithms and delay analysis algorithms that are used in design tools.

26

2.8 Summary

This chapter has discussed the basic elements of an FPGA architecture, and

described the wide variety of architectures currently available. The latter part

of the chapter described how the in-system reconfigurability of FPGAs with

SRAM configuration memories is being used in dynamic hardware systems.

Virtual hardware systems and run-time parameterised circuits were identified

as classes of dynamic hardware system which present particularly challenging

problems to researchers, since the FPGA configuration is often determined on

the fly.

27

Chapter 3

Self-Timed Systems

3.1 Background

Today, most digital systems are built synchronously. The synchronous ap-

proach has not always been dominant. Machines such as ORDVAC (1951) and

MU5 (1969) were built asynchronously [35]. The synchronous design style has

come to dominate for a variety of reasons, principally to do with ease of design

and ease of testing. In the meantime, asynchronous design has been relegated

to a niche academic discipline. However, the problems of clock distribution

and power dissipation as clock frequencies increase are bringing the future

dominance of synchronous systems into doubt. These problems coupled with

improved asynchronous design styles, have led to a resurgence of interest in

asynchronous design from academia over the last few years. Industry is now

taking an interest in asynchronous design with Phillips [116], Intel [120] and

Sun [109] funding research.

3.2 Synchrony, Asynchrony and Self-Timing

The terms synchronous and asynchronous are used in a variety of different

ways and different contexts in both hardware and software communities. In

this section, the definitions used in this thesis are introduced. At the systems

level, a synchronous system is one where all the communication actions are syn-

chronised, typically by a global clock signal. In contrast, each communication

Within an asynchronous system is independent of any other; there is no global

synchronisation of the whole system. However, within an asynchronous sys-

tem, individual communications may be synchronised locally depending on

the form of communication protocol used.

Figure 3.1(a) illustrates the communication protocol used in synchronous

Acknowledge

Data
Sender 	 Receiver

(a) Globally Clocked Protocol

Data &
Sender 	Request 	Receive

(b) Handshaking Protocol

Data &
Request

Sender
	

Receiver

(c) Unsynchronised Communication

Figure 3.1: Communication Protocols

systems. Data is transfered from sender to receiver on the tick of a global clock

signal. Every communication in the system is synchronised by the global clock.

Figure 3.1(b) shows another form of synchronised communication: a hand-

shaking protocol. The sender transmits data to the receiver together with an

implicit or explicit request signal. Having received the request signal and

the data, the receiver indicates receipt using the acknowledge signal. This re-

quest/acknowledge handshake synchronises the communication; the sender can-

not send more data until it has received an acknowledge from the receiver.

Though the communication is synchronised, a system built using handshak-

ing protocols is asynchronous, since each communication is independent.

An unsynchronised communication protocol is shown in Figure 3.1(c). The

only difference from the handshaking protocol is the lack of acknowledge sig-

nal, but as a result the communication is not synchronised: the sender sends

data when it wants, without waiting for the receiver.

These communication protocols make a variety of different assumptions

about the delays in the communication channel between sender and receiver.

The globally clocked communication protocol assumes the data from the send-

er will be valid at the receiver before the next clock tick. This requirement

29

places a rigid limit on the delay of all modules in the system; every module's

delay must always be less than the clock period. For the asynchronous com-

munication protocol of Figure 31(c), the assumption is that the receiver must

always be able to process communications as fast as the sender can produce

them, since there is no way for the receiver to regulate the incoming data flow.

Thus, in the globally clocked protocol, the speed of the module is determined

by the clock, and in the unsynchronised protocol, the speed of a module is

determined by the rate of communications from the sender.

In contrast to the other two protocols, the handshaking protocol of Figure

3.1(b) is speed-independent: the protocol places constraints on the ordering of

signals, but not on the time taken to produce or consume the communications

by a module. Systems composed using handshaking protocols are known as

self-timed; each part of the system proceeds at its own pace, rather than having

its pace determined externally by a clock signal or by the arrival of data. Most

modern asynchronous systems are self-timed and the terms are often used syn-

onymously in the literature.

Though self-timed protocols make no assumptions about the time taken to

produce or consume communications, different protocols do make different

assumptions concerning the delays within the communication channel. Delay-

sensitive protocols make an assumption of similar wiring delays, so that an

ordering in time of signals at the sender will arrive in the same order at the

receiver. Seitz [104] refers to a region within a system where this assumption

can be made as an equi-potential region. No such assumption is made by delay-

insensitive protocols: such protocols assume that any signal can be arbitrarily

delayed, so an ordering in time of signals at the sender may arrive in a different

order at the receiver.

3.3 A Comparison of Self-Timed and Synchronous
Systems

The differences in the communication protocols described above lead to a wide

range of differences in the systems composed using them. Below the benefits

and drawbacks of self-timed systems relative to synchronous systems are con-

sidered. In the comparison, systems that use unsynchronised communication

(i.e. asynchronous but not self-timed) are excluded. Such systems have prop-

erties of both self-timed and synchronous systems, but do not possess some of

the key advantages of self-timed systems such as robustness and modularity.

30

Asynchronous communication comes into its own when communicating over

• distance, so that waiting for the acknowledge signal to return, or distributing

• clock incurs a significant performance penalty. Asynchronous communica-

tion protocols are considered in [113].

3.3.1 Advantages of Self-Timed Systems

Modularity

Self-timed modules may easily be composed into a working system. For delay-

insensitive modules, the modules can simply be joined together and the com-

position will work. For delay-sensitive modules, the modules must be connec-

ted using similar wiring, so that signals are not re-ordered. The modularity

of self-timed systems allows incremental change; a module can be replaced by

one with similar functionality, but different performance and the composition

will still work. In contrast, synchronous systems are less modular, since the

designer is always concerned with whether each module and the wiring will

meet the global clock constraint.

Robustness

Synchronous systems are generally dependent on an external clock source for

timing. Localised effects, such as temperature and operating voltage, that af -

fect the delays within the system do not affect the external clock source. Hence,

a synchronous system may fail at higher temperatures, or at low voltages when

the internal delays exceed the clock period.

Self-timed systems are more robust since they rely on internal sources of

timing for their operation, so all the delays in the system are scaled by the

environmental effects. As a result, self-timed systems have the potential for

increased performance over synchronous systems where the worst case envir-

onmental conditions have to be assumed.

Delay-insensitive self-timed systems are particularly robust with respect

to environmental effects, since there are no assumptions made about signal

delays except for isochronic forks (see Section 3.4.3). Such systems are robust

to large changes in temperature and voltage [83]. Also, delay-insensitive cir-

cuits can easily be migrated to different implementation technologies (such as

Gallium Arsenide [1121).

No Global Clock

In synchronous systems, much effort has to be spent in ensuring that the global

clock signal goes reliably to all parts of the circuit. Avoiding clock skew be-

comes very costly in terms of power, and clock routing area as a synchronous

system becomes larger and the clock frequency becomes higher. It is reported

that the DEC 21064 Alpha [30] uses six levels of clock buffering in distributing

the clock signal, and has 'a 30W power requirement. In self-timed circuits, the

timing information only has to be consistent locally rather than globally, which

is much simpler to ensure.

Average Case Performance

Self-timed modules generate their own timing signals, so can pass on results

at their own speed, instead of having to wait for the next global clock change.

This allows self-timed circuits to utilise the average case performance of the

circuit rather than being limited by the worse case performance as synchronous

systems are.
This fact also allows the use of area efficient implementations, which are

impractical in synchronous systems because the worse case delay is so much

larger than the average case delay. For example, with an N-bit adder, a circuit

where the carry ripples up the circuit can be used, as the worst case will only

occur on average once in 2s additions (see [44] for a more detailed analysis of

self-timed adders).

Low Power

In CMOS circuits, the static power consumption is almost zero. However,

the constant changing of a global clock signal in a synchronous system causes

transitions to be continually passing through the system, resulting in dynamic

power consumption even when no valid data is passing through. In self-timed

systems, transitions are only produced when data is passing through the sys-

tem; there is no dynamic power consumption when the system is idle.

Meta-stability

All synchronous systems have the potential for failure when interfacing with

their external environment. The problem arises when sampling an external

signal that is not synchronised to the global clock. The signal may be changing

when sampled, which can lead to the sampling flip-flop entering a meta-stable

32

state: a state where it is unable to decide whether the sample was a logic one

or zero. This meta-stable state will eventually resolve to logic one or logic zero,

but takes an arbitrary amount of time to do so.

Circuits can be built that detect the end of a meta-stable state, but the signal

that indicates the end of meta-stable state is itself not synchronised to the clock,

so the problem repeats itself. However, in a self-timed system, there is no

clock to synchronise to, so the self-timed system can wait for the resolution of

the meta-stable state before continuing. Seitz [104] discusses meta-stability in

more detail.

Flow Control

Many systems need to regulate the flow of data between different parts of the

system, for example, to prevent a buffer over filling or to share a resource

between different processes. Within synchronous systems, flow control has

to be implemented using additional circuitry which mimics the handshaking

protocols of self-timed systems. In self-timed systems, flow control comes for

free as part of the communication protocol.

3.3.2 Disadvantages of Self-Timed Systems

Extra Circuitry

Self-timed circuitry is generally larger than equivalent synchronous circuitry

as they must generate their own timing signals. The degree of overhead de-

pends on the communication protocol used. Bundled-data protocols (see Sec-

tion 3.4.2) only require two extra signals, a request and an acknowledge, so

are efficient to implement if the data bundle is relatively large. Simple delay-

insensitive protocols (see Section 3.4.3) use two wires to transmit one data bit

so have greater area overheads.

Testing

Testing self-timed systems for defects is harder than in the synchronous case.

In a synchronous system there is a clear transition from one global state to

another on the tick of the global clock. The clock can be used to single step

the system so that there is time to ascertain the current system state. Addi-

tionally, if a manufacturing defect results in increased internal delays within

a synchronous system, then the system can simply be run at a slower clock

-11

33

speed. In a delay-sensitive self-timed system, the part may be useless, unless

some method for altering the internal timing delays is provided.

Difficult to Design

Asynchronous circuits have a reputation for being difficult to design. Partly

this is because they lack the clean change of global state that occurs in syn-

chronous circuits, and partly it is due to the possibility of race and hazard con-

ditions. This is one of the most frequently quoted reasons why most circuits

are built in a synchronous fashion.

The actual difficulty of asynchronous design depends on the style chosen.

Many early asynchronous design styles [114,71] used unsynchronised commu-

nication protocols rather than self-timed protocols. Such circuits were depend-

ent on the fact that the feedback loop to establish the new state of the circuit

was faster than the time taken for a new input to arrive (known as fundamental
and input/output mode circuits). Such design styles needed careful design to

avoid races and hazards.

Most modern asynchronous circuits use self-timed protocols. Bundled-data

systems (see Section 3.4.2) are similar to synchronous systems in that the same

data path is used. Once the different timing style has been understood, they are

no more difficult to design then synchronous systems. Delay-insensitive proto-

cols are more difficult to design because the designer must still be conscious of

possible races and hazards. However, synthesis tools (such as [82, 119]) have

been developed that automate this translation process, eliminating race and

hazard conditions from designs. On a larger scale, self-timed circuits become

easier to design due to other properties such as modularity and robustness.

3.4 Self-Timed Communication Protocols

So far, only the general nature of self-timed communication protocols has been

discussed. This section examines in detail the wide range of self-timed com-

munication protocols that are used. The protocols can be classified at sev-

eral levels. At the lowest level, protocols have to attach significance to the

transitions of individual signals within the protocol. Once the significance of

individual transitions is determined, the protocols need to encode the data

and request signals. The encoding of the data and request signals determine

whether the protocol is delay-sensitive or delay-insensitive. Finally, the proto-

cols need to determine the conventions for the ordering of the handshaking sig-

34

nals. These issues are discussed below. Hauck [54] gives further background

on self-timed communication protocols.

3.4.1 Signalling Conventions

In self-timed protocols, transitions on wires are often more important than the

actual level. Most self-timed communication protocols come in several variet-

ies that differ in which transitions are significant within the protocol. Proto-

cols where all transitions on wires are significant are termed two-phase, trans-

ition, event or non-return-to-zero (NRZ) protocols. The term two-phase proto-

cols refers to the two transitions used in the request/ acknowledge handshake.

Protocols where transitions in one direction only (logic zero to one or logic one

to zero) are significant are termed return-to-zero (RZ) or four-phase protocols.

Four-phase signalling requires an additional redundant return-to-zero or re-
covery transition before the next significant transition, thus four transitions are

involved in the request/ acknowledge handshake. In four-phase signalling,

the choice of which transition is significant can be different for different wires

within a system.

Both two-phase and four-phase signalling have advantages. Two-phase

signalling involves fewer transitions on a wire so can be faster and use less

power than four-phase signalling, which requires two redundant transitions.

However, the redundant transitions in four-phase protocols can be overlapped

with the computation phase within a module. Hence, two-phase signalling is

only significantly faster when communication time for the handshake is longer

than computation within the module. An advantage of four-phase signalling

is that the circuitry is often much simpler as the signals are in the same state at

the end of the handshake, which can lead to performance advantages merely

because of smaller circuit size [95]. Another option is to use the redundant

transitions in a four-phase protocol to indicate another sequential event, for

example, acknowledge and release signals in four-phase arbiters can be com-

bined.

An alternative to two-phase and four-phase signalling is single-track hand-

shaking [115]. Single-track handshake circuits use the same wire for request

and acknowledge signals. The sender pulls the wire high to indicate a request

and the receiver pulls it back low to indicate an acknowledge. A benefit of

this approach is that it only uses a single wire with two phases and returns the

signal to its initial state. However, complex driving and detection circuits are

required for the single-track approach.

35

3.4.2 Bundled-Data Protocols

In bundled-data protocols (Figure 3.2), a data bundle is passed to the receiver

together with a separate request signal. A transition on the request signal sig-

nifies valid data on the data bundle. Hence the request must only be asserted

after the data is valid; this is known as the bundling constraint. Bundled-data

protocols are delay-sensitive, since even though the request wire is asserted

after the data at the sender, arbitrary delays in wires could result in this order-

ing not holding at the receiver.

Sender DataN Receiver

DataO

Figure 3.2: Bundled-Data Protocol

Request

Acknowledge

Data

Two-Phase Bundled-Data Protocol

Request

Acknowledge

Data

Four-Phase Bundled-Data Protocol

Figure 33: Bundled-Data Protocol Timing

Figure 3.3 illustrates the timing of two-phase and four-phase bundled-data

protocols. In both protocols, a transition on the request signal signifies that the

data is valid. When the receiver has captured the data, it asserts the acknow-

ledge signal to signify to the sender that it can change the values on its data

lines. In the two-phase protocol of Figure 33(a), this completes the handshake,

36

and the protocol is repeated for transitions on the handshaking signals in op-

posite directions. In contrast, the four-phase bundled-data protocol (Figure

3.3(b)) has an additional recovery phase during which the request followed by

the acknowledge signals are reset to their original states.

3.4.3 Delay-insensitive Protocols

Delay-insensitive protocols make the assumption that arbitrary delays can be

introduced on any signal. Hence an ordering in time of signals at the sender is

not necessarily preserved at the receiver.

Martin [81] shows that only a very restricted class of circuit can be made

delay-insensitive at the transistor level. He argues that the best compromise to

delay-insensitivity that can be made is the use of isochronic forks. An isochronic

fork places a one-sided bound on certain delay paths of transitions from a fork-

ing (fanning out) signal. By using isochronic forks at the transistor level, gates

with delay-insensitive interfaces can be built, so at higher levels of abstraction,

delay-insensitive systems can be built.

Due to the arbitrary signal delay, a single request signal that indicates the

validity of the data cannot be used, since the request signal may be re-ordered,

so it arrives before the data signals. Instead, delay-insensitive protocols com-

bine the data and request signals into a codeword. The codewords are ar-

ranged such that any subset of the transitions composing a codeword are not

codewords themselves. Hence, when a receiver receives a codeword, it knows

that it has received all the transitions from the sender, and can safely return

an acknowledge signal. Verhoeff [117] discusses the mathematics of delay-

insensitive codes in more detail.

Acknowledge 	I 	I 	I 	I Acknowledge

Sender 	Datal • Receiver 	Sender 	 Data • Receiver

DataO 	 Parity

(a) Dual Rail Code 	 (b) Data/Parity Code

Figure 3.4: Delay-Insensitive Communication of One Bit

The simplest delay-insensitive protocols transmit one bit of data, and hence

require two codewords. The most common one-bit code is the dual-rail code

37

(Figure 3.4(a)). In the dual rail-code a transition on one wire indicates the value

one and a transition on the other indicates the value zero. An alternative is to

use a data/parity code (Figure 3.4(b)). The data/parity code uses a data signal

that signals a change in the data value, and a parity wire that signals when

there is no change in the data value. An advantage of this code as a two-phase

encoding scheme (as used by McAuley [84]) is that the data value is always

available on the data line. Such codes where the data is available without the

need for encoding/ decoding, are known as systematic codes.

A variety of codes exist to transmit more than one bit of data. The simplest

technique is simply to encode each bit using the one-bit protocols discussed

previously. However, this requires two wires for each data bit, which is costly.

Delay-insensitive codes that use less than two wires per bit require more com-

plex encoding/decoding. An example are k-out-of-n protocols. Each codeword

involves k transitions from n wires, thus k-out-of-n protocols allow n choose k
values to be communicated.

Sperner codes, a class of k-out-of-n code, are the optimal delay-insensitive

code, in the sense that they maximise the number of codewords for a given

number of wires, but are difficult to encode/decode. Knuth codes are a subset

of Sperner codes which are easier to encode/decode. A disadvantage of both

Sperner and Knuth codes are that they are non-systematic. An alternative sys-

tematic encoding that uses less than two wires per bit are Berger codes. In a

Berger code the data is transmitted along with a binary number (known as the

parity) indicating the number of zeros in the data.

3.4.4 Handshaking Conventions

Several options exist within handshaking protocols, concerning whether the

sender or receiver initiates the handshake. Protocols initiated by the sender

are known as push handshaking protocols (the sender 'pushes' the data to the

receiver). Receiver initiated handshaking protocols are known as pull protocols

(the receiver 'pulls' the data from the sender). Another option within the hand-

shaking protocol is to implement a two-way data transfer. Data is transfered on

both the request and acknowledge phases of the handshake.

3.5 Self-Timed Circuit Implementation

The preceding discussion focussed on the protocols themselves rather than

on their implementation. This section examines some basic circuit elements

used in the implementation of self-timed circuits, which will be used in later

chapters.

In particular, the C-Muller gate is described, which forms the basic syn-

chronisation element in a large number of self-timed implementation styles.

Building on the C-Muller gate, self-timed pipelines are discussed using the ex-

ample of Sutherland's Micropipelines [111]. Also, Sutherland's choice of con-

trol blocks is examined, since these are typical of the control blocks used in a

variety of self-timed circuit design styles.

3.5.1 The C-Muller Gate

The C-Muller gate or Rendezvous element (see Figure 3.5) forms the basic syn-

chronisation element in many self-timed circuits. In event-based (two-phase)

signalling, the C-Muller gate can be thought of as acting as an AND gate for

events: the C-Muller gate will not generate an output event until events have

occured on all of its inputs.

Figure 3.5: Two-Input C-Muller Gate

The statement that the C-Muller gate acts as an AND gate for events re-

quires two caveats. Firstly it is costly to implement a true event-based AND

gate where the direction of transition is completely irrelevant. It is much easier

to implement a gate if the initial level of the input and output signals is known.

Typically, it is assumed that initially the C-Muller gate's output is logic zero

and that all inputs are logic one. Given these initial conditions, the behaviour

of the C-Muller gate can be described easily as a two state finite state machine

(Table 3.1).

Inputs Output
all logic 0 logic 0
dissimilar no change
all logic 1 logic 1

Table 3.1: C-Muller Gate Next State Table

The second aspect of the C-Muller gate's behaviour that differs from the

AND gate for events model concerns the effect of multiple events on an input

39

whilst there is no output event. Ideally, an AND gate for events would allow

multiple events to queue up, but it is impossible for a C-Muller gate imple-

mentation to store an unbounded number of events. Hence, the C-Muller im-

plementation restricts the inputs such that only one event may occur on each

input before an output event occurs. If a second event does occur then they

cancel each other out.

Figure 3.6: Asymmetric C-Muller Gate

In four-phase signalling protocols, transitions in only one direction are sig-

nificant. This leads to circuits where synchronisation is only required on trans-

itions to one particular logic value of a signal. Asymmetric C-Muller gates allow

synchronisation on transitions in one direction only. Figure 3.6 shows a three-

input asymmetric C-Muller gate. The inputs marked with + and - signs, only

synchronise on transitions to logic '1' and logic '0' respectively. The unmarked

input acts as a normal C-Muller gate input and synchronises on transitions to

both levels.

3.5.2 Micropipelines

Micropipelines are a style of two-phase bundled-data pipeline introduced by

Sutherland [111]. Figure 3.7 illustrates a generic bundled-data pipeline. The

data path is similar to a synchronous pipeline, except that the latches are con-

nected to a local timing control block, rather than being connected to a global

clock. The timing control block deals with generating the request and acknow-

ledge signals for the self-timed protocol and provides the necessary capture

and pass signals for the latches. A Micropipeline is a specific example of a

self-timed pipeline that uses a two-phase bundled-data protocol.

Figure 3.8 shows the basic timing block for Micropipelines, and a complete

Micropipeline is shown in Figure 3.9. The behaviour required of the timing

control block is that it will not capture data until there is a request event from

the previous stage and an acknowledge event from the next stage. Synchron-

isation on these two events is done by the two-input C-Muller gate which

forms the basis of the timing block. The pass signal is generated directly from

40

Am 	 I 	 -I a 	 p.I o 	 Rout
E E
ci 	 I ci

	

El 	 l . I 	 I . I
Am 	 I i 	 i I.' 	 Aout

	

IC PI 	(Th 	C P1 	(Th 	Ic PI 	(Th

	

Lc' 	I 	I 	N 	I 	I 	I 	NLI 	I 	I 	N
Data In 	 Data Out

-J 	 7 	 .J 	 ..J

Figure 3.7: A Self-timed Pipeline

the output acknowledge, since once the next stage has latched the data, the

current stage's latches can go to the pass state.

Rin 	I 	 Aout

C)

	

Ain 	 c------- Rout

Capture Pass

Figure 3.8: Micropipeline Timing Block

Two additional elements are added to the basic C-Muller gate. First, the

output acknowledge signal, Aout, is inverted. The effect of this is that when

the first request event is received, there is no need to wait for an acknowledge,

since Aout is already at the required level. This is the required behaviour, since

when the first request is received, there is no data further along the pipeline

that needs to be acknowledged.
The second addition is a delay element, represented by the oval on the out-

put request wire. This delay is required so that the output request Rout is

asserted after the data is valid, so that the bundling constraint of the bundled-

data protocol is met. In Micropipelines [111], Sutherland uses the routing delay

on distributing the capture and pass signals to delay stages, with the addition

of delay elements, if required, to meet the bundling constraint.

Typically, data and the associated request acknowledge events are regarded

as moving forward in the Micropipeline. However, when the pipeline is nearly

full, it is useful to consider, events propagating back from the output, as a

bubble or empty register stage passes back in the pipeline, and all the data

stored passes forward by one stage. Greenstreet et al [52] argue that the num-

41

Rin

Am

Data In

Aout

Rout

Data Out

Figure 3.9: A Micropipeline

ber of bubbles is critical to the behaviour of self-timed pipelines when they are

nearly full.

An observation that Sutherland is keen to point out is the symmetry in Mi-

cropipelines. First, there is a clear symmetry between the request and acknow-

ledge signals which are identical apart from the inversion of the acknowledge.

Second, there is the symmetry of viewing the pipeline as data propagating

forward through the pipeline or as bubbles propagating backwards. Suther-

land is also keen to point out the analogous behaviour of such pipelines with

other phenomena such as wave propagation, and to compare bubbles with

hole propagation in semiconductors.

3.5.3 Micropipeline Control Blocks

Sutherland uses a variety of control blocks for Micropipelines, which provide

similar functions to control blocks proposed for other self-timed design meth-

odologies. The functions provided by these blocks allow the branching and

merging of control flow in self-timed circuits. The Micropipeline control blocks

are illustrated in Figure 3.10 and are described below.

Merge Gate

Figure 3.10(a) illustrates the Merge gate. As the name suggests, its behaviour

is to merge event flows together. Events on either Rini or R±n2 cause an

output event on Rout. In two-phase protocols, the Merge gate is generally

implemented using an XOR gate. However, this can causes problems, when

the events Rini and R1n2 are not mutually exclusive, since when both input

events occur, the output will return to its original level. If mutual exclusion

cannot be guaranteed then the Merge gate's behaviour has to be extended to

arbitrate between its inputs.

EIN

Rini 	on

Rout

Rin2

Rtrue
Rin 	10

Rfalse

D

lI
Rin—so >

(a) Merge Gate 	 (b) Select Gate 	 (c) Toggle Gate

Rin 1 	No 	 Al 	 G1 Am 1 	 Dl
P. Call Rout

1A0ut
Arbiter

Rin2 	
R2 	 G2

Ain2 	 D2

(d) Call Module
	

(e) Arbiter Module

Figure 3.10: Micropipeline Control Blocks

Select Gate

The Select gate causes a branch in the control flow. The input event Rin is

directed to one of two outputs depending on the value of the select input, D.

The value of D must be established before Rin occurs for correct operation of

the Select gate.

Toggle Gate

The Toggle gate, is similar to the select gate in that it causes a branching in

the event flow, but it lacks a select signal. Instead input events are passed

alternately to the outputs. The dotted output on a Toggle gate indicates that

this is the output to which the first input event is directed.

Call Module

The Call module performs an analogous function to a software procedure call:

it allows a common section of data path to be accessed from several different

points. Unlike the previous control blocks, the Call module operates on pairs

of request/ acknowledge handshaking signals. Incoming requests are directed

to the output request Rout. When the output acknowledge Aout is received,

this is directed back to the appropriate input acknowledge. If the input request

43

events are not mutually exclusive then some form of arbitration is required

within the Call module.

Arbiter

Figure 3.10(e) shows Sutherland's Arbiter module. The Arbiter module arbit-

rates between two possibly concurrent requests Ri and R2 and will only pass

one through at a time to the grant outputs Gi and G2. The Dl and D2 signals

are used to release the resource. Either the grant signals or the release signals

can be used to generate acknowledge signals for the input request, depending

on the behaviour required of the Arbiter.

3.6 Current Research

Much of the research into asynchronous systems has concentrated on the syn-

thesis of delay-insensitive circuits. Such circuits are suited to automated syn-

thesis, since only the ordering of events is important and not their actual tim-

ing. Hence, reasoning about actual delays is not required, so a good mapping

of the problems can be made to abstract formalisms, such as process algebras.

Martin [80] developed a synthesis method based on CSP, whilst Weber et al

[119] synthesised circuits using CCS. Others researchers have used specialised

representational forms such as trace theory [29]. Petri Net based State Trans-

ition Graph (STG) representations [70] are another common representational

form for the synthesis of asynchronous circuits. However most current tools

such as Assassin [125] involve creating a reachability graph of the Petri Net

that suffers from the state explosion problem. Semenov et al [105] are looking

at compact representations using partial orders to solve this problem.

The most mature of the synthesis tools that have been developed is the

TANGRAM compiler [67] developed at Phillips Research. TANGRAM has

been used in the synthesis of a Digital Compact Cassette (DCC) decoder sys-

tem. An interesting feature of the TANGRAM tool is that it is flexible enough

to produce both delay-insensitive dual-rail encoded circuits and bundled-data

circuits. The bundled-data version [116] of the DCC chip out performs the

dual-rail version in area by 40% and in speed by a factor of three. In compar-

ison to a synchronous design, the bundled-data design had an area overhead of

less than 20% and used five times less power. When a novel voltage switching

scheme was introduced, the power saving increased to a factor of twenty.

The most complex systems that self-timed design has been applied to are

44

microprocessors. Martin, using CSP synthesis methods implemented a small

processor [82] that displayed increased resilience to temperature and voltage

effects [83]. The AMULET project at the University of Manchester have been

involved in the implementation of self-timed versions of the ARM micropro-

cessor. The AMULET1 chip [39] is a functionally equivalent version of the

ARM microprocessor built using Micropipelines. Though AMULET1 demon-

strated the viability of producing large scale self-timed parts, AMULET1 used

more silicon and power for less performance than the comparable ARM6 pro-

cessor. The successor AMULET2e [36, 38] includes additional features such as

on-board RAM for embedded systems applications. The main difference in the

underlying implementation is a switch from two-phase to four-phase bundled-

data protocol. AMILJLET2e gives performance at 33V which is better than the

ARM7 chip, but behind that of the ARM8. However, the power/performance

ratio is comparable with that of the ARM8 chip.

Other researchers have examined alternative processor architectures spe-

cifically designed for asynchronous control. The Counterfiow processor archi-

tecture [109] has two pipelines, one for results and one for instructions and

operands, which flow in opposite directions. Instructions and results interact

as they move along the pipelines. The MAP architecture [8, 1001 introduces

a model for decentralising control in a microprocessor to the functional units

called 'Micronets'. Current work [7] is looking at the design of a super-scalar

asynchronous processor using Micronets.

Other researchers have examined systems that combine elements of both

asynchronous and synchronous design styles in what are often termed Globally

Asynchronous Locally Synchronous (GALS) systems. The aim of these approaches

is to allow the incorporation of synchronous designs into larger asynchronous

systems with minimal modification, so that synchronous design experience

and tools can be used within asynchronous systems. Arguably, bundled-data

systems in general can be classed as a GALS approach, since the only modifica-

tion to a synchronous data path that is required is to source the register control

signals from a local timing control block rather than from a global clock, and

possibly change the style of memory elements (as in Micropipelines [111]). Go-

palakrishnan and Josephson [48] give a good overview of various GALS meth-

odologies, and their terminology is adopted here. Most approaches can be

classified as using either a stoppable clock, that is restarted by the arrival of data,

for example Asynchronous Wrappers [14,15] and Chapiro's original work on

GALS [22]. Others approaches use a stretchable clock (eg. Q-Flops [103], Go-

45

palakrishnan and Josephson's work [48] and STRiP [27]), which delay the next

clock cycle until meta-stability has been resolved and/or a data-path comple-

tion signal is received.

3.7 Summary

The key benefit of self-timed protocols is their speed-independence, which al-

lows different parts of a system to run at their own rate, rather than being

forced to operate at a rate determined by a global clock. This leads to increased

modularity and robustness, in comparison to synchronous systems, and allows

data dependent delays to be exploited. The latter part of the chapter discussed

various self-timed protocols, and in particular the bundled-data protocols that

are used in the self-timed FPGA architectures developed in this thesis.

46

Chapter 4

Self-Timed FPGAs

4.1 Introduction

The key idea of this thesis is that the speed-independence of self-timed proto-

cols make them ideally suited to the reconfigurabiity of FPGAs. In particu-

lar, current dynamic hardware systems are limited by synchronous protocols,

since changes to the structure or environment of a circuit, change its delay char-

acteristics and hence may increase the circuit's delay beyond that of the global

clock period. This chapter takes this initial idea and refines it by addressing

two questions: what benefits can be expected from self-timed FPGA systems

and what is the best way to obtain these benefits?

The first question is addressed in Section 4.2, which considers the bene-

fits of self-timed FPGA systems in general, and Section 4.3 which considers the

specific benefits of self-timed dynamic hardware systems. The second question

of how to obtain these benefits is considered in the latter half of the chapter.

Section 4.4 discusses implementation of self-timed circuits on current FPGA ar-

chitectures. The problems encountered with implementing self-timed circuits

on current FPGAs has led to the proposal of dedicated asynchronous FPGA

architectures; these are discussed in Section 4.5. The solution proposed in this

thesis, STACC, is described in the following chapter.

4.2 Motivation for Self-Timed FPGA Systems

In the previous chapter, the benefits and drawbacks of self-timed systems rel-

ative to synchronous systems in general were discussed. This section examines

how these properties can be gainfully utilised or avoided in the specific con-

text of FPGAs. Many of the potential benefits are specific to dynamic hardware

systems, and are left for discussion in the following section on the motivation

47

for self-timed dynamic hardware systems.

Several assumptions are made below when discussing the advantages of

self-timed circuits on FPGAs. First, it is assumed that the mapping algorithms

(i.e. partitioning, placement and routing) are working with self-timed ele-

ments. If the underlying function blocks of the FPGA architecture are not self-

timed elements then self-timed elements need to be produced from the func-

tion blocks by performing some local placement and routing. Additionally, for

bundled-data systems, it is assumed that the routing of the FPGA architecture

is such that the bundling constraint will be maintained. The validity of these

assumptions is considered later in Section 4.5

4.2.1 Benefits of Self-Timed Circuits on FPGAs

Partitioning and Extensibility

Compared to other ASIC implementation styles, FPGAs can implement less

logic per device, so the partitioning of designs is more common. Problems

arise in partitioned systems from the difference between off-chip and on-chip

delays; in synchronous designs, the off-chip delays can drastically reduce the

clock speed of a design. Partitioning algorithms can help with the problem, but

often re-design of the system is needed to explicitly cope with the partitioning.

In contrast, self-timed protocols allow designs to extend naturally across

several chips. An array of FPGAs can be treated as a uniform array of cells,

since the self-timed protocols accommodate the additional off-chip delays. A

further advantage of self-timed FPGAs is that the performance degradation

from off-chip links will only affect the systems performance when the off-chip

links are in use. In a synchronous systems, unless the system is re-designed to

wait multiple clock periods for the off-chip links, the performance penalty of a

longer clock period is incurred whether or not the off-chip link is used during

a particular clock cycle.

Saturated Routing

In FPGA designs with high logic utilisation, the interconnect can become sat-

urated, causing many signals to be placed on long snaking paths through the

FPGA. This can severely limit the clock rate of synchronous designs. In self-

timed designs, these paths can be allocated to infrequently used signals, which

will only limit performance when the signal path is used.

Faster Mapping and Design Turn Around

In synchronous systems, detailed timing analysis of all signal paths is needed

to ensure that the result of routing, placement and partitioning of a design

meets the global clock constraint. Because of the speed-independence of self-

timed designs, any route, place and partition of self-timed modules that imple-

ments the required connectivity will produce a correctly functioning system.

Detailed timing analysis is only required to improve the performance of the

mapping rather than to ensure a working system. Thus, initial mappings may

be done quickly, enabling faster design turn-around. Detailed timing analysis

for improved performance can be reserved for the mapping of the final design.

Migration to Different FPGA Architectures

Currently, there are a large number of commercial FPGA architectures pro-

duced with a wide range of speed grades and array sizes. The robustness of

self-timed designs to delays eases the process of migrating designs between

different FPGA architectures.

4.2.2 Disadvantages of Self-Timed Circuits on FPGAs

Area Overhead

This drawback has already been mentioned when discussing the disadvant-

ages of self-timed circuits in general. However, the problem with FPGAs is

more acute, since FPGAs use of the order of ten times the area of a dedicated

silicon circuit to implement the same system. Thus, the extra area required for

a self-timed circuit is consuming a scarce resource.

Interfacing with Synchronous Systems

FPGAs are commonly used for implementing sub-systems within larger sys-

tems. If the rest of the system is synchronous, it makes little sense to use an

asynchronous FPGA.

4.3 Self-Timed Dynamic Hardware Systems

The previous section outlined the potential benefits of self-timed FPGAs with

regard to static designs. However, the speed-independence of self-timed cir-

cuits makes them ideal for use in dynamic hardware systems. The ability to

49

alter the shape or layout of a circuit, and hence the delay without it causing the

circuit to fail seems to be the key to exploiting dynamic hardware.

Figure 4.1: Idealised Model of Virtual Hardware

The benefits are illustrated by the idealised model of a virtual hardware

system shown in Figure 4.1. The system is composed of a 3 x 3 array of FPGA

chips, each containing a 4 x 4 array of hardware pages. A number of different

circuits are swapped in; these are represented by the different coloured blocks

in the figure. The management of the virtual hardware for such a system is

essentially a two-dimensional version of the problem in a segment based vir-

tual memory. The virtual hardware manager must allocate a contiguous two-

dimensional area of reconfigurable hardware which is of the correct shape for

the circuit that is to be swapped in (the problem is in many ways similar to that

encountered in the computer game Tetris).

An attempt to build such a system using synchronous technology is go-

ing to run into several problems. One problem is determining the clocking

period for the reconfigurable hardware. This is determined by the slowest cir-

cuit swapped in, but changes every time a new circuit is swapped in. Also, the

virtual hardware manager must ensure that no circuit is split across several

FPGAs, otherwise the off-chip delays will cause the circuit to fail to meet the

global clock constraint. Other problems occur with the interfacing of software

to hardware. The speeds at which hardware and software are running are dif-

ferent, so some kind of flow control is required between the two. Indeed, flow

50

control is also needed between hardware communicating with hardware, since

it is possible that one circuit has not yet been swapped into the virtual hard-

ware.

The problems with synchronous dynamic hardware systems are expanded

on below, and it is shown how self-timed circuits overcome these problems.

Modules Operate Independently

In a synchronous dynamic hardware system, all the circuits would be forced

to run at the speed of the slowest circuit loaded. The alternative would be to

have multiple clocks, but this would require additional routing and circuitry,

and would cause interfacing problems between circuits with clocks running at

different rates.

In practice, the reconfigurable hardware would probably be clocked at a

fixed rate and circuits would have to be designed with this in mind. To accom-

modate most reasonable designs, the clock would have to be set to go fairly

slowly, leading to poor performance. In contrast, the circuits within a self-

timed dynamic hardware system are independent of each other, so the speed

at which one circuit runs does not limit the speed at which the others run.

Large Arrays

Dynamic hardware systems will often require a large amount of reconfigur-

able hardware resource, which requires circuits to be split over several FPGAs.

Synchronous designs cannot easily be partitioned over several chips unless ori-

ginally designed as such, since the off-chip delays require a recalculation of the

delays within the circuit. In contrast, self-timed circuits are naturally extens-

ible to large multiple chip arrays since the self-timed protocols accommodate

the extra off-chip delays. Different self-timed modules of a circuits can easily

be split over several different chips.

Natural Interface to Software

FPGA and host microprocessor in a dynamic hardware system compute at dif -

ferent rates, so some form of flow control is required to regulate the flow of

data between software and reconfigurable hardware. In self-timed designs,

the flow control comes as part of the protocol. Synchronous dynamic hard-

ware would require the use of additional circuitry to regulate the flow of data

between host and FPGA.

51

Flexible Mapping

The ability to map circuits quickly and flexibly is essential for virtual hardware

so that efficient use of the reconfigurable hardware resource can be made. Syn-

chronous designs can not be mapped quickly, since this alters the layout of the

circuit, so the clock speed would have to be recalculated. Alternatively, the

clock speed could be set low enough so that correct operation was guaranteed

for all possible mappings, but this leads to poor performance.

Self-timed FPGAs allow circuits to be separated to make efficient use of the

reconfigurable hardware resource. For example, there may be sufficient free

reconfigurable hardware in a synchronous virtual hardware system to swap

a circuit in, but if this space is different from the shape of the circuit to be

swapped in then this forces a circuit to be swapped out. In a self-timed virtual

hardware system, the circuit's shape could be altered so it fits into the available

space.

Circuits can Block

In virtual hardware, if two circuits are communicating directly in the hardware

then potentially a communication between the circuits would have to block

whilst waiting for one of the circuits to be swapped in. In general, synchronous

circuits could not be used as they could only be blocked by stopping the clock,

and hence, all the circuits in the reconfigurable hardware. However, all self-

timed circuits would block naturally, since they could only continue when the

other circuit had been swapped in and had generated an acknowledge signal.

4.4 Self-Timed Systems on Current FPGAs

Most of the current research on self-timed circuits using FPGAs has concen-

trated on using commercially available synchronous FPGAs. The main focus

of these researchers has been on whether asynchronous circuits can be proto-

typed using current FPGA architectures.

Several researchers have built Micropipeline [111] circuits. Oldfield and

Kappler [92] implemented Micropipeline FIFO circuits using the Algotronix

CAL1024 [3]. Both Maheswaran and Akella [78], and Gamble et al [41] have

implemented Micropipeline circuits using Xilinx [124] FPGAs. Brunvand [20],

also built a library of Micropipeline elements, but this time using the Actel

FPGA [2]. Subsequently he used the library to implement a small self-timed
processor [191.

52

To date, the only dynamic hardware system that has used self-timed circuits

is Shaw and Mime's SPACE (Scalable Parallel Architecture for Concurrency

Experiments) machine [106]. SPACE was used to implement delay-insensitive

asynchronous circuits for road traffic simulation [88]. However, the focus of

Shaw and Milne's research was on the formal synthesis of delay-insensitive

circuits rather than the potential for self-timed dynamic hardware systems.

The above works have illustrated the feasibility of using current FPGA ar-

chitectures to build self-timed circuits, and that large self-timed circuits such

as processors can be built using them. Furthermore, the use of current FPGAs

for implementing asynchronous systems is advantageous, since the chips are

readily available standard parts, and can implement synchronous systems as

well. However, the above works have shown that self-timed circuits on current

FPGAs required careful design to overcome the deficiencies of current archi-

tectures for implementing self-timed circuits. These problems are discussed

below.

Hazards

Within synchronous systems, signals are only sampled when the global clock

ticks. A signal may go through several different logic values before reaching
its final value (a hazard condition), as long as it reaches its final value before the

next clock tick. However, in delay-insensitive circuits, and the control path of

bundled-data circuits, signals are being continuously monitored, and so must

be free from hazards.

Current synchronous FPGAs are not designed to produce hazard free sig-

nals. Furthermore, hazards may be introduced by the circuit decomposition

performed by technology mappers for synchronous FPGA architectures. Care-

ful design is required to avoid introducing hazards in synchronous designs;

Maheswaran and Akella [78] discuss methods to avoid hazards in the Xilinx

XC4000 FPGA.

Ordering and Delaying Signals

Self-timed circuits rely on the ordering of signals for their correct operation.

In delay-insensitive circuits, this manifests itself as a need for isochronic forks,

whilst in bundled-data systems, it requires that the bundling constraint is met.

Current FPGA routing architectures can easily re-order signals and make such

ordering constraints difficult to meet. In addition, for bundled-data systems,

the delay of the request signal relative to the data-bundle should be as small

53

as possible for performance reasons. Again, this can be difficult to achieve in

current FPGA architectures.

Arbitration

Arbitration is a common function within asynchronous circuits. Current FPGA

architectures provide no support for building the special circuitry needed in ar-

biters for providing clean output signals from the meta-stable states that such

circuits can enter. Arbiters can be built in synchronous FPGAs, but require

careful design and have a finite chance of failure. Brurivand [20] gives a com-

prehensive account of building an arbiter using Actel FPGAs including a mean

time between failure analysis for his design.

4.5 Current Asynchronous FPGA Architectures

At the start of this chapter, the benefits of self-timed circuits on FPGAs were

discussed. However, these benefits were based on the assumption that self-

timed elements can be created on the FPGA architecture. Furthermore, for

bundled-data systems it was also assumed that the routing architecture would

preserve the bundling constraint. The previous section has discussed the prob-

lems encountered with current synchronous architectures in fulfilling these

conditions. Hazards, signal re-ordering and the lack of arbitration elements

make design of self-timed elements and their routing on current architectures

problematic.

Thus, the potential benefits of self-timed circuits on FPGAs are difficult to

obtain, due to the constraints placed on self-timed designs using current archi-

tectures. In particular, the benefits for self-timed dynamic hardware systems

are hard to realise, since the swapping algorithms will need to solve these prob-

lems on the fly rather than during the circuit design. To overcome the problems

with current synchronous-oriented FPGAs, asynchronous FPGA architectures

have been proposed. Asynchronous FPGA architectures shift the burden of

solving these problems from the circuit designer to the architecture designer.

The aim of dedicated asynchronous architectures is to provide a clean archi-

tecture for circuit designers and tools to work on, so that the advantages of

self-timed design can be exploited to the full.

Currently, two self-timed FPGA architectures have been proposed: MONT-

AGE [57] and PGA-STC [77]. These two architectures are described below, with

particular focus on how the architectures overcome the problems of hazards,

54

signal re-ordering and arbitration encountered in current FPGA architectures.

GALSA [42], an architecture designed for massively parallel processing (MPP)

is also discussed, as such architectures are closely related to FPGA architec-

tures. The discussion of GALSA focuses on how it converts a synchronous

processing element to use asynchronous communication.

4.5.1 MONTAGE

MONTAGE [57], designed at the University of Washington, was the first asyn-

chronous FPGA, though it includes two global clock signals for implementing

synchronous circuits as well. It is closely based on the TRIPTYCH [56] architec-

ture. MONTAGE extends TRIPTYCH by adding special arbitration cells, and

modifying the function block to allow the creation of state retaining elements.

The design of MONTAGE with respect to its function block design, arbitration,

and signal delaying is discussed below.

Function Block Design

The MONTAGE function block (Figure 4.2), in common with many synchron-

ous FPGAs, uses a LUT (Look Up Table) based function block. The inputs A,

B and C are used to select a value from the LUT's configuration memory. A

LUT-based implementation was chosen as it is free from hazards on single in-

put changes. Though free from hazards on single input changes, a LUT based

function block may still create output hazards on multiple input changes. For

the example configuration, the transition of ABC from 010 to 100 can cause a

momentary 1 to occur on the output of the LUT. MONTAGE leaves the prob-

lem of multiple input changes as a problem for mapping tools to avoid.

A feature of delay-insensitive circuits is their use of feedback to create state

holding elements. Problems may occur if the next state has not been estab-

lished before the next input change. Hence, MONTAGE includes a feedback

path within the function block, to allow new states to be established quickly;

any of the inputs to the LUT may be replaced with a feedback signal from the

output. In the example configuration of Figure 4.2, the C input is used as an

output feedback, whilst A and B are used as the inputs of the C-Muller gate.

MONTAGE uses the smallest LUT that is feasible for an asynchronous archi-

tecture since, for a basic two input state retaining function, two inputs and one

internal feedback are required.

A surprising feature of the MONTAGE function block is the inclusion of

a D-latch. The D-latch is included since MONTAGE was designed as a hy-

55

Inputs

A 	 B 	 C

0
0
1

o
E

Oi
.2 	0'
Cz 	0i

0)

. 	0'
o 	I
0

Output

Figure 4.2: The MONTAGE Function Block (Configured as a C-Muller Gate)

brid FPGA suitable for asynchronous and synchronous circuits. The D-latch is

used when building synchronous circuits and is normally bypassed in asyn-

chronous designs. However, the MONTAGE designers utilise the D-latch in

asynchronous mode to allow initialisation of state retaining functions. Since

the state of any output feedback path can be indeterminate at initialisation, the

output is taken from the D-latch. The D-latch can be preset or cleared to the

correct value for the initial circuit feedback. Once the initial state is established,

the D-latch is bypassed in asynchronous operation.

Ordering Signals and Delay Elements

MONTAGE does not have dedicated delay elements, instead it relies upon a

tight regular routing structure. Figure 4.3(a) shows how isochronic forks are

created by placing each branch of a fork on similar routing paths. Also, since

MONTAGE has integrated routing and function blocks, asymmetric forks can

be generated by routing the signal for the longer fork from the destination cell

of the short fork. This is illustrated in Figure 43(b).

Bundled-data systems have a two-sided delay bound. The request signal

has to be asserted after the data is valid, but for performance it should match

the delay of the data as closely as possible. MONTAGE does not have special

delay elements, so for bundled-data systems, it has to use routing and function

601

(a) Isochronic 	 (b) Asymmetric

Figure 4.3: Isochronic and Asymmetric Forks in MONTAGE

blocks to build a chain of buffer elements with the appropriate delay.

Arbitration

Arbitration in MONTAGE is provided by special arbitration function blocks

that are distributed through out the architecture to replace standard function

blocks. The ratio of standard to arbitration function blocks is 15:1. The MONT-

AGE arbitration block is shown in Figure 4.4; the block is centred around a

mutual exclusion element. The mutual exclusion element ensures that only one

of the request signals Ri or R2 is granted by Gi or G2 at any one time.

Ri

ENABLE

R2

Gi

G2

Figure 4.4: MONTAGE Arbitration Function Block

The MONTAGE arbitration block has been designed to implement a range

57

of common four-phase arbitration blocks. By setting the ENABLE signal to logic

one, and connecting the feedback multiplexors to logic zero, the block can be

used simply as a mutual exclusion element. Connecting a signal to the ENABLE

input allows the block to be used as an enabled-arbiter: arbitration will not begin

until the ENABLE signal goes high. A synchroniser circuit, that samples an input

signal when triggered by a clock signal, can be built by connecting Ri to the

signal to be sampled, R2 to its inverse, and ENABLE to the sampling clock.

The feedback paths via the OR gates allow the grant signals, Gi and G2, to

remain valid after some of the outputs are de-asserted. For example, choosing

to feed the grant signals back through the OR gates connected to the request

lines, means the result of arbitration will remain valid until the ENABLE sig-

nal is de-asserted. Two-phase arbitration elements can be produced by using

additional logic from standard function blocks.

4.5.2 PGA-STC

Concurrent with the work in this thesis, the PGA-STC architecture has been

proposed by Maheswaran [77]. It is targeted at the implementation of two-

phase bundled-data systems such as Micropipelines [111]. The architecture

is loosely based on that of the Xilinx XC4000 series [124], with modifications

to the function block, and the addition of arbitration cells and programmable

delay elements.

Function Block Design

Figure 4.5 shows the PGA-STC function block. It has a similar structure to the

MONTAGE function block, using a LUT with an output feedback. Also, logic

is provided for initialising state-holding elements. Rather than a D-latch, PGA-

STC uses a multiplexor that chooses between the LUT output and constant zero

and one inputs.

The principal difference from the MONTAGE function block is the inclu-

sion of the Programmable Delay Element (PDE). The PDE is included since

PGA-STC is targeted at implementing bundled-data systems, where request

signals have to be delayed to match the delay in the data path. The PDE is

considered in more detail, below.

U)
4-

a-
C

Output

Programmable Delay Element

Request 	 Acknowledge

Figure 4.5: The PGA-STC Function-Block

Ordering Signals and Delay Elements

Providing accurate delays for bundled-data without a timing signal such as a

clock is a difficult task. Without a clock, gate delays have to be utilised for

timing. PGA-STC uses a programmable delay element that produces a delay

by taking taps off a chain of inverters. However, in the PGA-STC architecture,

the designers were concerned that the delay should match the delay of the

function block as closely as possible. This is a natural concern in the PGA-STC

architecture, since the delays are matched to each function block and a delay

chain that is too coarse will introduce quite a large error for the delay over a

series of function blocks. Hence, the PGA-STC design includes a fine delay

generator as well as using an inverter chain as a coarse delay generator.

To produce a delay finer than one gate delay, the PGA-STC design utilises

a novel structure called a coupled ring oscillator. The basic oscillator structure

is shown in Figure 4.6. It uses a set of inverter ring oscillators (the horizontal

connections). The inverter ring oscillators are coupled to the oscillators below

using special two-input inverter elements (the vertical connections). The con-

struction of the two-input inverter elements consists of two inverters driving

the same output. Typically, having two elements drive the same output can

cause problems with driver conflict, but the inputs to them are coupled by the

oscillator structure.

The coupling of the inverter rings causes the oscillation of an inverter ring

to be a delayed copy of the oscillation in the ring above. By coupling the bot-

tom oscillator, to the top oscillator (effectively forming a ring of ring oscillat-

ors), the phase shift around the whole loop is forced to be two inverter delays.

59

*0- 	1

Figure 4.6: PGA-STC Coupled Ring Oscillator

3111

So the phase difference between neighbouring oscillators is two inverter delays

divided by the number of inverter ring oscillators. With addition of special

control logic, delays of a fraction of a buffer delay can be generated.

There are two major problems with the coupled ring oscillator in PGA-STC.

First, the oscillator is a big power drain, annulling the low power advantages

of an asynchronous design. Second, the coupled ring oscillator takes up a

large amount of silicon area that could be used for extra function blocks. To

overcome these problems, a possible adaptation of the PGA-STC architecture

would be to only have programmable delay elements in some of the function

blocks, or to only use the coarse delay chain.

Arbitration

ID 	01 	Gi

Ri I D-Latch Ri 	
Gi 	EN ___I 	

I

Al

Mut-Ex
A2

I;f 	 II
R2

0-Latch
D 0 	G2

Figure 4.7: PGA-STC Arbitration Function

In common with MONTAGE, PGA-STC replaces some of the standard func-

tion blocks in the architecture with arbitration blocks based on the mutual ex-

clusion circuit. Since the mutual exclusion element is a four-phase element,

and PGA-STC is targeted at two-phase circuits, extra logic is added that allows

the mutual exclusion element to be configured as a two-phase arbiter as well.

The PGA-STC arbitration cell is shown in Figure 4.7. The grant signals from

the Mutual Exclusion element are used to enable the D-latches, so that the re-

quest signals can only pass once they have been granted. The acknowledge

signals, Al and A2, are used to acknowledge when the resource has been used,

so that the grant signal can be disabled.

4.5.3 GALSA

GALSA (Globally Asynchronous Locally Synchronous Array) is an architec-

ture developed at the University of Edinburgh by Gao. The architecture was

RIJ

developed for massively parallel computing architectures. Massively paral-

lel computers that use single-bit processing elements, such as the Connection

Machine [58] and DAP [59], have many architectural similarities to FPGAs, so

GALSA can be considered as a form of asynchronous FPGA architecture.

Gao's GALS approach is similar to other GALS approaches such as Asyn-

chronous Wrappers [14, 15] in that it surrounds traditional synchronous logic

with additional circuitry for asynchronous data transfer (See Section 3.6 for dis-

cussion of other GALS approaches). However Gao's work differs from others

GALS methodologies in that it neither uses a stoppable clock that is restarted

by the arrival of data, or a stretchable clock that waits for meta-stability res-

olution and/or a data-completion signal. In both stoppable and stretchable

clock approaches, the clock is generated locally. However in Gao's scheme the

local clock is generated from a global clock signal which cannot be stopped or

stretched. Each local clock is a gated version of the global clock. In GALSA,

when no data has arrived for processing via the data transfer interface, the,

local clock is disenabled.

When gating the clock, meta-stability can arise between the global clock

and the clock enable signal. Gao carefully designs a synchroniser to minimise

the chances of meta-stability, but meta-stability still has a finite chance of oc-

curing since the global clock is not stopped or stretched in any way to account

for time required for meta-stability resolution.

Figure 4.8 illustrates the basic structure of a GALSA module (adapted from

Figures 5.17 and 5.9 in [42]; the original signal names are marked in italics).

The core of the module is a synchronous processing element. The architecture

simulated in [42] is similar to other massively parallel processing elements,

consisting of a single bit adder and various single bit registers. The synchron-

ous processing element is surrounded by circuitry which implements the asyn-

chronous data transfer using a two-phase bundled-data protocol.

The data transfer interface (DTI) consists of an asynchronous control block

and the 3-state register element. The asynchronous control block generates the

two-phase handshaking signals for the input and output of data, whilst the

3-state register stores the input data. The 3-state register is so called as each

bit in the register has three states: logic zero, logic one and an empty state.

The register clear signal is used to reset the register to the empty state, and

the write enable signal is used to allow the input data to write to the contents

of the register. When valid data has been written to the register, the register

completion output signal is set.

62

Clock
Management

Unit

ReqOut

Ackin

Global Clock
(GCLK)

- Delay in Clock Cycles
(ECR)

Gated Clock
(LCLK)

Synchronous
Processing
	

- 	Data Out

Element
	

(D)

Reqin _H Asynchronous
AckOut L 	Control 	

] 	 I

I 	 Logic dompietioi
Write 	Register

I Enable 	Clear 	 (DV F)

(WEN) 	(R) 	 Register AompletioJ

(DVR)

I 	- 	 I
CD5
co 	co

Data In 	I w
(D,)

I(DR)

—------ 1

Data Transfer Interface

Figure 4.8: GALSA Module Structure

In operation, input data arrival is indicated by a transition on Reqln. If the

previous output data has been received (indicated by a transition on Ackln),

the asynchronous control block write enables the 3-state register. Once valid

data has been established in the register it is indicated by the setting of the

register completion signal which feeds to the clock management unit.

The clock management unit provides a gated clock from a global clock

source (GcLK). The local gated clock is enabled when valid data has been re-

ceived on the data inputs, as indicated by the register completion signal. Since

the register completion signal is asynchronous to the global clock, a synchron-

iser is required to overcome the meta-stability that can arise. Since, the global

clock cannot be stopped of stretched in anyway, there is no way to wait for the

potential meta-stable state to resolve itself, thus there is always a small chance

of meta-stability occuring. A central aspect of Gao's design is minimising the

chance of this occuring.

In addition to generating the local clock, the clock management unit gen-

erates the logic completion signal to indicate that the processing element has

completed processing. The number of clock cycles that this takes is determined

by an input to the clock management unit from a field in the ECR (Execution

63

Code Register) in the processing element. The ECR contains the instruction

that the processing element is executing together with the number of clock

cycles that it takes to produce a result. The logic completion signal is passed

back to the asynchronous control block, which initiates the output handshake

and resets the 3-state register to the empty state.

A feature of Gao's interface described in [42], and elaborated in [43] is that it

contains no reconfigurable elements, except for the programmable delay in the

ECR. All configuration is via the routing network. Since the elements are not

reconfigurable, the approach for the processing element can be considered as

a different style of 'asynchronous wrapper' that is placed around a synchron-

ous core. The principal difference from the Asynchronous Wrappers work at

Imperial [15, 14] is that the global clock is gated rather than generated locally.

4.6 Summary

This chapter has set the agenda for the rest of the thesis. The motivating factors

for self-timed circuits on FPGAs have been discussed, in particular, the bene-

fits for self-timed dynamic hardware systems. The idea central to the thesis

is that the speed-independence of self-timed circuits supports dynamic recon-

figuration, since the shape of the circuit and its operating environment can be

changed and the self-timed circuit will adapt, unlike in synchronous systems

where the clocking period may have to be changed.

Furthermore, it was argued that current FPGA architectures design for syn-

chronous circuits do not allow the full advantages of self-timed circuits to be

exploited, due to problems with hazards, signal re-ordering and arbitration.

Asynchronous FPGA architectures attempt to overcome these problems; the

two currently proposed architectures, MONTAGE and PGA-STC were dis-

cussed. The GALSA architecture for massively parallel processing was also

discussed. The GALSA architecture illustrates an alternative approach to con-

verting a synchronous architecture for asynchronous operation.

mo

Chapter 5

STACC

5.1 Introduction

This chapter introduces a new model for self-timed FPGA architectures called

STACC (Self-Timed Array of Configurable Cells). An objective of the model

is that it is suited towards the implementation of self-timed dynamic hard-

ware systems. This is an important difference from MONTAGE and PGA-STC,

which are primarily intended for prototyping applications.

Before presenting the model, a number of the design decisions for STACC

are discussed in Section 5.2. In this section, it is argued that dynamic hard-

ware applications, in contrast to prototyping applications, favour an architec-

ture dedicated towards a particular protocol. Subsequently, the reasons for

choosing a bundled-data protocol in STACC are considered. Finally, before

introducing the STACC model, the various ways in which synchronous archi-

tectures can be adapted to self-timed operation are considered.

The STACC model is introduced in Section 5.3. STACC involves replacing

the global clock of a synchronous FPGA with an array of timing cells that

provide local timing control. To illustrate the use of the timing array, example

configurations using a simple STACC architecture are provided in Section 5.4.

This chapter does not discuss the implementation of the timing array. This is

the subject of the following three chapters.

5.2 STACC Design Decisions

5.2.1 Architectures and Protocols

Given the wide range of self-timed protocols, a major decision in the design

of a self-timed FPGA architecture is whether to support the implementation

65

of a wide variety of protocols, or whether to specialise the architecture for a

particular self-timed protocol.
Of the architectures discussed in the previous chapter, MONTAGE is the

least specialised. It is designed for the implementation of both delay-insens-

itive and bundled-data circuits, and also includes two global clocks for the

implementation of synchronous circuits as well. However, the lack of dedic-

ated delay elements makes MONTAGE more suited towards delay-insensitive

circuits. PGA-STC is a more specialised architecture; it is designed for im-

plementing two-phase bundled-data systems. Both the choice of program-

mable delay element and arbiter block are designed for two-phase operation.

Though the elements are chosen for two-phase operation, the routing archi-

tecture does not force the elements to be used in this way, so four-phase and

delay-insensitive circuits can be constructed in the PGA-STC architecture.

The decision whether to have a general purpose or specialised architecture

is largely motivated by the intended application for the FPGA. Prototyping

applications suit an architecture that can implement a large variety of proto-

cols, so that only one type of FPGA is required to implement all the different

self-timed protocols. Specialisation to a particular protocol limits the style of

circuits that can be implemented, but it does not limit the functionality that

can be implemented, since equivalent circuits can be implemented using dif -

ferent protocols. Also, it allows the architecture to be optimised for a particular

protocol; very much as today's commercial FPGAs are optimised for the im-

plementation of synchronous circuits.

In particular, specialisation to a specific protocol is unimportant, when the

application for the self-timed FPGA is dynamic hardware rather than proto-

typing. As long as the architecture facilitates the construction of self-timed

circuits that can easily be manipulated by the dynamic hardware management

software, then the actual protocol used is not critical. Since, the focus of this

thesis is on the benefits of self-timing for dynamic hardware, a specialised ar-

chitecture is considered.

5.2.2 Protocol Choice

Having decided to examine a self-timed architecture dedicated to the imple-

mentation of a specific protocol, this section considers the choice between spe-

cialising the architecture for delay-insensitive circuits or bundled-data circuits.

Delay-insensitive protocols have favourable properties for dynamic hard-

ware systems; once self-timed elements have been built that contain isochronic

forks, the circuits are resilient to arbitrary delays that may be introduced by

the routing. However, delay-insensitive circuits commonly use dual-rail en-

coding, which requires two wires to encode one bit of data. This overhead

is highlighted by McAuley [84], who designed circuits using just one type of

cell: a delay-insensitive two-input multiplexor. He reports an area overhead of

between two to six times depending on the design.

The area overhead of bundled-data protocols is determined by the width

of the data bundle. For the worst case of a data bundle of one signal, the

overhead is the same as for dual-rail encoding. Kean considered a self-timed

cell for the CAL architecture (Section 2.4.1 in [65]), but rejected it because initial

designs used three times the area of a synchronous design. This large overhead

results from trying to self-time single bits in the architecture. By increasing the

number of bits in the data bundle, the area overhead reduces rapidly, since the

overhead is inversely proportional to the number of bits in the data bundle.

However, the architecture cannot force the data bundle to be too large, since

many signals will be left unused in large bundles.

An additional benefit of bundled-data protocols is their similarity to syn-

chronous designs, since the data path of a bundled-data circuit is the same

as that for an equivalent synchronous circuit. This allows designers to move

readily from synchronous design to bundled-data design. Also, design tools

for synchronous circuits can often be applied to the design of bundled-data

circuits.

Due to the overheads of delay-insensitive designs, the decision was made

in this work to concentrate on an architecture dedicated towards the imple-

mentation of bundled-data systems.

5.2.3 Self-Timing Synchronous Architectures

Both MONTAGE and PGA-STC are derived from synchronous FPGA archi-

tectures; MONTAGE from TRIPTYCH, and PGA-STC from the Xilinx XC4000.

Self-timing a synchronous FPGA architecture is advantageous, since it allows

many of the tools and much of the design experience of the synchronous archi-

tecture to be carried over to the self-timed architecture.

Although, both MONTAGE and PGA-STC derive their architectures from

synchronous forebears, their designers do not explicitly consider the methodo-

logy in which the architectures have been made asynchronous. However, both

architectures perform similar transformations on the synchronous architecture.

Both change the design of the function block to aid the implementation of asyn-

67

chronous circuits, and both also completely replace some function blocks with

special arbitration blocks. The clock signal is either removed (PGA-STC) or

not used (MONTAGE). The drawback to tinkering with the function blocks is

that it makes the translation of designs and experience from the synchronous

architecture more difficult.

5.3 The STACC Model

For bundled-data systems, an alternative approach from the one adopted by

MONTAGE and PGA-STC is possible for deriving a self-timed architecture

from a synchronous one. Bundled-data systems differ from their synchronous

counterparts in how the register control signals are generated; synchronous

systems use a global clock, whilst bundled-data systems use special circuitry to

produce local register control signals. This suggests that, rather than scrapping

the clock, a bundled-data FPGA architecture could replace it, with an array of
timing cells that generate local register control signals. This model forms the

basis of the self-timed FPGAs developed in this thesis, and is termed STACC
(Self-Timed Array of Configurable Cells).

The STACC model has several benefits. First, it does not alter the func-

tion blocks of the synchronous architecture as MONTAGE and PGA-STC do,

so tools and experience from a synchronous FPGA architecture can be trans-

ferred to a self-timed version of the architecture. Second, all the self-timed

control logic is contained within the timing array, hence the timing cells can

be optimised for this task, rather than requiring cells capable of implementing

both timing control and logic blocks. A final benefit is that the STACC ap-

proach to transforming a synchronous architecture has wide applicability. In

fact, the original architecture need not be a FPGA, but could be any array of

processing devices that are synchronised by a global clock.

Figure 5.1 illustrates the basic concept of the STACC approach. The logic

blocks and routing of the synchronous architecture are retained and form the

data array. Instead of a clock, timing control is implemented by cells in the

timing array. Each timing cell provides register control (in other words, a local

clock signal) to a region of cells in the data array. The shaded region in Figure

5.1 illustrates a group of data cells that are provided with a local clock from

one of the cells in the timing array. The timing cell and the group of data cells

that it controls form a self-timed region.

Within the timing array, routing is provided to connect the timing cells to-

ay

Figure 5.1: Basic Structure of the STACC Architecture

gether. In the example of Figure 5.1, a nearest neighbour mesh is used. Each

timing cell is connected to its neighbours by two wires, one in each direction.

These handshaking links are used to perform request/ acknowledge handshakes

with other timing cells. The timing array configuration determines whether

timing cells joined by a handshaking link communicate, and the direction of

the data flow between them. Thus, the configuration of the timing array re-

flects the pattern of data flow in the data array.

More complex patterns of data flow can be implemented by allowing the

timing cells to sample values from the data array. These select signals allow

conditional communication in the timing array, so that results from the data

array can influence the flow of control. The arbitration function required by

self-timed circuits is also integrated in the the timing cell. This allows the tim-

ing cell to decide which of several competing communications to service. In

many cases, it is useful to provide the result of the arbitration to the data array,

so that the data path can process data accordingly. To do this, probe signals are

fed from the timing array to the data array.

A complete self-timed region is illustrated in Figure 5.2. The lower half of

the figure illustrates the logic implemented by the data cells in the data array.

The data array implements a Finite State Machine (FSM). The inputs to the

FSM are data bundles from other self-timed regions, and probe signals from

the timing cell. The outputs of the FSM are data bundles to other self-timed re-

gions and select signals that control the pattern of communication in the timing

array. The next state output of the FSM is fed back as an input to the logic via

the register. Variations on this basic model of a self-timed region are possible

depending on the relative position of the registers to the logic block.

The timing cell provides timing control for the FSM implemented by the

data cells. The timing cell will clock the registers when all the input request sig-

nals and output acknowledges have been received on the handshaking links.

After clocking the register, the timing cell acknowledges receipt of the input

data bundles. The timing cell then waits a period of time dependent on the

delay in the logic block. When the logic block has completed evaluating, the

timing cell generates requests for the output data bundles. At this point the

cycle of timing cell and FSM operation has completed, so the self-timed region

can proceed to processing the next set of inputs.

The handshaking links from the timing cell in Figure 5.2 connect to the

timing array routing. In the example of Figure 5.1, no timing array routing

structures are present, the timing cells are simply connected directly to each

70

Timing Array
Routing

Handshaking 	• •
Links

Timing Cell

	

Register Control 	Probe 	 Select

	

(Local Clock) 	Signals 	 Signals

	

Data 	
—c ... 	 Data

	

In 	 . 	-- 	 Out

r 	 __
Logic

Next State

Figure 5.2: Self-Timed Region

71

other in a nearest neighbour mesh. However, in general, the timing cells would

connect to handshaking switchboxes, which route the handshaking signals in the

timing array to match the routing of the data bundles in the data array. The

handshaking switchboxes allow one-to-one connection of handshaking links,

but may also allow many-to-one or many-to-many connections of handshaking

links, to match the fan-in and fan-out of data bundles in the data array routing.

The STACC model could loosely be classed as a GALS model, as it aims to

preserve the synchronous data path structure but utilises asynchronous com-

munication. However it differs from other models, such as GALSA [43, 42]

and Asynchronous Wrappers [14, 15], in the more general way it provides in-

teraction between the data path and control path.

In GALSA, no provision is provided for interaction between the data path

and control path; there is no way for the data path to influence the pattern of

control flow. The Asynchronous Wrappers approach does include provision

to allow the data path to influence the pattern of control flow using the Port

Select Block (see Figure 1 in [15]). However, Asynchronous Wrappers currently

have no provision for arbitrating between competing requests. The STACC

model (first described in [961) provides both mechanisms. The data path can

influence the pattern of control flow via the select signals. Additionally, the

STACC model allows competing requests to be arbitrated between and then

for the result to be passed from the timing cell to the data cells via the probe

signals.

Another key difference of STACC from Wrappers and GALSA is that the

behaviour of the timing cell is configurable. Even though GALSA is a config-

urable array architecture, the data transfer interface in GALSA is fixed. All

the reconfigurability arises from configuring the routing between processing

elements and not in the GALSA wrapper itself. Another difference of STACC

from GALSA is that in GALSA there is a one-to-one relationship between pro-

cessing elements and timing control blocks. The STACC model uses one timing

control block to control many processing elements.

5.4 Example Timing Array Configurations

This section illustrates how the timing cells can be used to control a wide range

of data flow patterns in the data array. The issue of how the timing cell is de-

signed to implement all these possible configurations is left for later chapters.

The configuration of the timing array determines how the timing cells corn-

72

Fifo) 	 I Sink

Ack 	 Ack

cell name link DC DIR
1 	Source 	East 0 1
2 	Fifo 	West 0 0

East 0 1
3 	Sink 	West 0 0

All other links: DC=1; DIR=X;

Figure 53: Pipeline and Configuration Data

municate using the handshaking links. The timing array configuration has to

match the pattern of data flow configured in the data array. Two key aspects of

the data flow along a handshaking link have to be determined. First, whether

the two timing cells do communicate with each other. This can implemented

by a single configuration bit DC (Don't Care), which determines whether a tim-

ing cell communicates on a handshaking link or not. The second aspect of a

link that has to be determined, is the direction of the data flow that it con-

trols. This can be implemented with a second configuration bit D I R (Direction)

which determines the direction of communication along a handshaking link.

In other words, D I R determines which signal in a handshaking link is a request

and which is an acknowledge.

These two configuration bits are sufficient to implement a large number of

fan-in and fan-out data flows. Figure 5.3 shows how the timing cells can be

configured to build a pipeline, using a simple nearest neighbour mesh of tim-

ing cells (as illustrated in Figure 5.1). The elements in the figure are designed to

resemble the timing control circuitry for a two-phase bundled-data pipeline, as

used in Micropipelines. The core of the timing cell is a C-Muller gate, represen-

ted by a circle in these diagrams. Instead of being marked with a 'C', the gate

is marked with a name that describes the data path operation performed by

the data cells in the self-timed region. Request signals from the C-Muller gate

are marked with oval shapes representing delay elements. Acknowledge sig -

73

nals, which are inverted with respect to the request signals in Micropipelines,

are marked by the bubbled inputs to the C-Muller gates. The direction of data

flow is emphasised by the inclusion of the large arrows in the figure.

A feature of Figure 5.3 is a lack of connections to the environment external

to the FPGA. Though such connections can easily be made, structures can be

tested simply by configuring cells to model the environment. Timing cells that

are configured with only output data flows are termed source cells, and cells

configured with only input data flows are termed sink cells.

C

Figure 5.4: Forking and Joining Pipeline

The timing cell configuration bits described so far are flexible enough to

implement a large range of forking and joining pipelines, including structures

such as the 2D-Micropipelines described by Gopalakrishnan [46]. A simple

example of forking and joining pipelines is illustrated in Figure 5.4. In this

example, the source cell in the bottom left-hand corner sends data into two

different pipelines which process the data concurrently. The sink cell in the

top right-hand corner receives data from both pipelines. The choice of an ex-

ample with a symmetrical fan-out and fan-in of data was made to illustrate the

74

symmetry in how the timing cell deals with the fan-in and fan-out of hand-

shaking links. A similar structure is used in the other examples in this section

to show the symmetry between structures configured using fan-in and fan-out

handshaking links.

Req

— 	 _____

Ack

C)
) 	 - 	I'- a <

a)
a)

Cl)

Select Req

Pipe

Ack

Figure 5.5: Selective Communication Example

The examples so far have only allowed a fixed pattern of data flow. To al-

low the branching and merging of data flows involves using the select signals

from the data array to change the flow of control in the timing array. Figure

5.5 shows an example of selective communication. Selective links are indicated

by the drawing of select boxes on the links. The input to the select box can be

inverted; this is indicated by placing a bubble on the select input. When the

handshaking link is selected, the handshaking link is connected normally to

the neighbouring timing cell. When the link is not selected, the output hand-

shaking signal is fed directly back to the timing cell, so the C-Muller gate ac-

knowledges its own request. This select box performs a similar role to the

Select gates in Micropipelines. For selective communication, the DC configura-

tion bit can be replaced by RDZ (Rendezvous) configuration bits which determ-

75

me whether the link is never used by a timing cell, always used, or selectively

used.
The example illustrated in Figure 5.5 is similar to the forking and joining

pipelines of Figure 5.4, but instead of sending data down both pipelines, the

ToggleOut cell sends data down different pipelines on alternate cycles, since

the select signal of one link is inverted with respect to the other. The Toggle In

cell performs the opposite process to the ToggleOut cell; it accepts data from

each pipeline on alternate cycles. This example illustrates how work could be

shared between two pipelines that perform the same function, so potentially

doubling throughput.

Req

Pipe 	 1:36rbln
Ack 	

10918S

cr1 	I 	 cr1 	,.
WI 	lo 	 WI 	Q

Select Req

rbOut) 	I I 	 (Pipe

Ack

Figure 5.6: Non-Deterministic Communication Example

The branching and merging in the previous example was deterministic.

Figure 5.6 illustrates a refinement of the work sharing pipelines of the previous

example, where the timing cells arbitrate between competing communications.

Instead of sending work down alternate pipelines as previously, the ArbOut

cell probes the acknowledge signals of both output links to see which are ready

to process data. The probing behaviour is shown by the plus or minus signs in

ON

circles, which indicates whether the acknowledge signal causes the arbitration

function to resolve to '0' (minus) or '1' (plus). The result of the arbitration is

used as an input to the select boxes. The result of arbitration is also passed to

the data array via the probe signals, so it can act accordingly. The Arbln cell

implements the opposite function to the ArbOut cell. It probes the request sig-

nals of it incoming links and accepts data from whichever one has data ready.

This is similar to the use of an arbitrated Merge gate in Micropipelines.

This example shows how work can be dynamically distributed between

processes using the probing behaviour. In contrast to the deterministic beha-

viour of the last example, this arrangement can re-order data, depending on

the delays encountered in each pipeline.

5.5 Summary

This chapter introduced the STACC model for self-timed FPGA architectures,

which will be developed in the rest of the thesis. STACC differs from previ-

ous asynchronous FPGA architectures in two important respects. First, it is

designed with dynamic hardware systems in mind, rather than exclusively for

prototyping. Second, rather than scrapping the global clock, it replaces it with

an array of timing cells. The generality of this approach allows it to be applied

to a variety of synchronous FPGA architectures, and also to architectures other

than FPGAs.

The basic unit in a STACC architecture is a self-timed region composed of

a timing cell and the data cells that it provides timing control for. The timing

cells and data cells interact via the select signals which allow the data array to

influence the flow of control, and the probe signals which pass the results of ar-

bitration to the data cells. A number of examples in the chapter illustrated how

the timing array could be configured for a wide range of data flow patterns.

The actual implementation of the timing array has not been discussed. This

is the subject of the following three chapters. The next chapter looks at the

design of basic reconfigurable circuit elements. These reconfigurable elements

are used in Chapters 7 and 8, which discuss the design of the timing cells and

timing array routing respectively.

77

Chapter 6

Reconfigurable Elements

6.1 Introduction

Bundled-data control circuits, such as those used in Micropipelines, consist of

three basic elements: a synchronisation element (normally the C-Muller gate),

elements for the branching and merging of control, and delay elements to en-

sure that the bundling constraint is met. This chapter considers the imple-

mentation of these three types of element reconfigurably for use in a self-timed

FPGA architecture. Though the chapter focusses on the design of elements for

self-timed FPGA architectures, many of the elements introduced seem useful

enough to find other applications in asynchronous circuit design. No attempt

is made in this chapter to integrate these elements to construct a timing array

for STACC. This is left to the following two chapters, which discuss the design

of the timing cells (Chapter 7) and the timing array routing (Chapter 8).

6.2 Reconfigurable C-Muller Gates

The C-Muller gate forms the basic synchronisation structure in most self-timed

circuits. This section introduces the reconfigurable C-Muller gate, which allows

a reconfigurable synchronisation pattern to be defined between a set of inputs.

In effect, an N input reconfigurable C-Muller gate allows all C-Muller gates of

N inputs or less to be implemented between an arbitrary subset of its inputs.

6.2.1 Gate Level Implementation

Figure 6.1 shows a gate level implementation of a reconfigurable C-Muller

gate. One reconfigurable input is shown, configured by the configuration bit

DC (Don't Care). When DC is false, the multiplexor passes the input normally,

Figure 6.1: Reconfigurable C-Muller Gate: Gate Level Implementation

so the input is involved in the gate's synchronisation. However, when DC is

true, the multiplexor passes the inverted output of the C-Muller gate back to

itself. Since the inverted output of a C-Muller gate is always the next value that

the C-Muller gate is waiting to synchronise on, the input becomes a don't care

input. Hence, the nc configuration bit determines whether or not the input is

involved in the gate's synchronisation.

The definition of the reconfigurable C-Muller gate leaves undefined its be-

haviour when no inputs are synchronised by it (i.e. when all the inputs are

configured as don't cares). In this case, the behaviour of the gate is implement-

ation dependent. For the gate level implementation in Figure 6.1, the gate's

output oscillates.

The reconfigurable C-Muller gate requires far fewer configuration bits than

using a general purpose function block. For example, a LUT based implement-

ation of an N input C-Muller gate requires an N + 1 input LUT using 2N+1

configuration bits. The reconfigurable C-Muller gate only requires N configur-

ation bits, i.e. one per input.

An alternative way of implementing the behaviour of the reconfigurable C-

Muller gate could be achieved by routing. A C-Muller gate synchronising on

less than N inputs could be created from an N-input C-Muller gate by routing

duplicates of the input signals to make up the N inputs. However, this ap-

proach is less satisfactory as it places additional load on the input signals, and

hence increases the transition times on the duplicated inputs. Another draw-

back to duplicating inputs is that it requires more configuration bits, since the

same synchronisation pattern can be configured in several different ways.

79

6.2.2 Transistor Level Implementation

Figure 6.2 illustrates a transistor level implementation of a reconfigurable C-

Muller gate. The circuit is based on a standard implementation of a C-Muller

gate that uses a weak feedback inverter to maintain the gate's state [25]. Two

multiplexors have been added which are controlled by the DC configuration

bit. When DC is false the input is passed normally to the N-tree and the P-tree

of the transistor structure. When DC is true, the inputs to the N-tree and P-tree

transistor chains are connected to power and ground respectively, so that the

transistors in both trees are always turned on. Hence the input has no effect on

the gate's switching and becomes a don't care input.

Figure 6.2: Reconfigurable C-Muller Gate: Transistor Level Implementation

The transistor level design is preferable to the gate level design as it does

not have a feedback path from the C-Muller gate's output to its inputs. In the

gate level design, this results in each input to the C-Muller gate going through

a transition on each cycle, whether the input is involved in the synchronisation

or not. In the transistor level design, these inputs are held at constant values

so there are fewer transitions, and hence less power dissipation.

A problem with the transistor level implementation occurs when all the

inputs are configured as don't care, which results in power being shorted to

ground. To prevent this, one input should either be unreconfigurable or use

the feedback implementation of the gate level design.

6.2.3 Reconfigurable Asymmetric C-Muller Gates

Figure 6.3 illustrates how the transistor level implementation of the reconfig-

urable C-Muller gate can be generalised to a reconfigurable asymmetric C-Muller

gate. The DC configuration bit is separated into two configuration bits DCO and

Dcl that allow synchronisation on the input being logic zero and logic one re-

spectively. Hence, each input can be configured to synchronise on only a logic

one input, on only a logic zero input, on both, or on none (the don't care case).

J-1 __1
DCO
DC1

Ti 	 I
I

Figure 63: Reconfigurable Asymmetric C-Muller Gate

6.2.4 Distributed Reconfigurable C-Muller Gates

The process technology used for implementing transistor circuits limits the

number of transistors that can be placed in series, usually to around four [121].

This in turn limits the fan-in of the basic C-Muller gate implementation. Wider

fan-in C-Muller gates can be made by creating a tree of C-Muller gates, as in

Figure 6.4. The root C-Muller gate synchronises on the outputs of the leaf C-

Muller gates, which synchronise on the input signals.

Figure 6.5 illustrates another circuit for implementing wide input C-Muller

gates. Figure 6.5(a) shows an implementation of a C-Muller gate using a SR

flip-flop and two AND gates. The AND gates are used to detect when all the

inputs are one, and when all the inputs are zero. These conditions are used to

set and reset the flip-flop respectively. Wired logic can be used to implement

the wide fan-in AND gates to create a wide fan-in C-Muller gate [103]. In wired

31

Figure 6.4: Wide Fan-In C-Muller Gate

Inputs

Output

(a) C-Muller Gate implemented using SR Flip-flop

Inputs

Output

(b) Reconfigurable Distributed C-Muller Gate

Figure 6.5: Distributed Reconfigurable C-Muller Gate Implementation

logic, open-collector (or open-drain) drivers are used to drive the inputs; the

AND state is detected when all the open collector drivers stop driving the wire,

which is then pulled high by a weak pull-up resistor.

Figure 6.5(b) illustrates a reconfigurable C-Muller gate implemented using

wired logic. The two AND gates of Figure 6.5(a) are replaced by two synchron-

isation wires, which detect synchronisation to logic one and logic zero. In ef-

fect, the logic for the C-Muller gate is distributed over the two synchronisation

wires, hence this implementation is termed a distributed C-Muller gate.
In contrast to previous reconfigurable C-Muller gate implementations, Fig-

ure 6.5(b) does not use an SRAM configuration memory. Instead, the DC con-

figuration bits are replaced by fuses, marked by the crosses in the figure. When

the fuses are intact, the inputs are involved in the synchronisation. When the

fuses are blown, the outputs cannot drive either synchronisation wire so the

input becomes a don't care input. Asymmetric gates can be made by only

blowing one of the fuses, so only the appropriate synchronisation line is used.

For SRAM based configuration memories, the distributed C-Muller gate can

be implemented by using the configuration bits to act as enable signals for the

open-collector drivers.

A fuse based implementation was illustrated, since it suits a wired logic im-

plementation. The low resistance of fuses and their bidirectional transmission

of signals, allows wire segments to be connected to form long low resistance

wires. SRAM based configuration memories have to use pass transistors which

have a higher resistance.

The advantage of the distributed design is that it allows wide fan-in C-

Muller gates to be implemented using only two wires. Effectively, the logic

is implemented in the routing. Furthermore, the distributed design can save

routing resources, as instead of routing all the inputs to a single centralised

gate, only the two synchronisation wires are routed to the inputs and the out-

put SR flip-flop. However, a drawback to the distributed design is that wired

logic has a slow transition time. Also, wired logic designs have static power

dissipation, when the open collector drivers are switched on. Finally, careful

design is required to avoid problems with transmission line effects.

6.3 Branch and Merge Elements

Current self-timed methodologies use a diverse range of control blocks [54].

Creating a reconfigurable control block capable of implementing all these van-

Rtrue 	Atrue

Atrue 	Rtrue

Rfalse 	Afalse

Afalse 	Rfa!se

Rin

Am

Aout

Rout

ants is a difficult task. However, fundamentally these control blocks are only

providing two functions: the branching and merging of control.

This section develops a reconfigurable control block for branching and mer-

ging. The approach taken is to restructure the control blocks introduced by

Sutherland for Micropipelines (see Figure 3.10). Though Micropipelines use a

two-phase protocol, Sutherland's control blocks can be implemented using a

four-phase protocol as well. Hence, the development here can be applied to

produce both two-phase and four-phase reconfigurable elements.

D

T 	
em Rtrue

Atrue

Ain
RfaIse
Afalse

(a) Branch Module

E!J

Q

Atrue
Rtrue

Aout Q-Call 	m- Rout
Afalse
Rfalse

(b) Q-Call Module

(c) Branch Circuit
	

(d) Q-Call Circuit

Figure 6.6: Branch and Q-Call Modules

Examining the control modules used by Sutherland [111], there is a lack of

regularity and symmetry, which Sutherland is keen to point out in the rest of

his Micropipeline paper. In particular, there is a difference between the Merge,

Select and Toggle gates, which operate on individual handshaking signals, and

the Call and Arbiter modules which operate on handshaking channels (i.e. re-

quest/acknowledge handshaking pairs).

This suggests that one way to standardise the control modules is to make all

the modules operate on handshaking channels. To standardise these modules,

the original Select, Merge or Toggle gate can be used to generate the request

signal path and then additional behaviour is defined for the generation of the

acknowledge signals.

Figure 6.6(a) illustrates the extension to the Select gate to operate on hand-

shaking channels; this is termed a Branch module. Like the Select gate, the

Branch module accepts an incoming request and directs it to one of its two

output channels depending on the value of the Select input D. When the se-

lected output channel generates an acknowledge, this is directed back to the

input channel. The implementation of the Branch module is illustrated in Fig-

ure 6.6(c). As would be expected, a Select gate is used to generate the output

requst signals. The input acknowledge signal is generated by using a Merge

gate.
Extending the Merge gate to operate on handshaking channels results in a

module where incoming requests are merged into one channel and the output

acknowledge is directed back to the calling channel. This behaviour is already

defined by Sutherland as the Call module. The Call module is shown in Figure

6.6(b), and Figure 6.6(d) shows its implementation. The output request path

is generated by a Merge gate. For the acknowledge path, a gate is required

that steers the output acknowledge back to the calling input channel. This can

be implemented using a Select gate if there is a signal which indicates which

input channel called the module.

Rtrue
Rout

Rfalse

0

(a) Q-Merge

Rtrue

Rfalse
Rout

—..L;;iii:
D

(b) Select

Figure 6.7: Q-Merge and Select Gates

One way to generate this signal is to extend the behaviour of the Merge

gate, so it generates an additional output Q, that indicates on which of its inputs

the last event occured. The name Q-Merge is introduced for such an element.

The Q-Merge gate is illustrated in Figure 6.7(a). The Call module of Figure

6.6(b) has also been extended to provide Q as an output from the module, and

is termed a Q-Call module. Supplying Q as an output is useful as it allows the

data path to know which calling channel is being serviced.

A reflective symmetry exists between the Select and Q-Merge gates, as can

be seen in Figure 6.7. In fact, the two gates are inverses of each other. The Select

gate can be considered as a converter from the bundled-data signals Rin and

ID to the dual rail encoded signals Rtrue and Rfalse. The Q-Merge element

performs the inverse operation; it converts from the dual-rail encoded signals

to the bundled data signals. The Branch and Q-Call modules are also inverses

of each other. This is reflected in the symmetrical structure of the two modules,

as shown in Figure 6.6.

Useful behaviour also arises when the direction of the data flow through

the Q-Call and Branch modules is reversed, i.e. pull handshaking channels are

used instead of push handshake channels. In the case of the Q-Call module, the

module now arbitrates between competing requests for data, which is pulled

from the output channel. This behaviour can be used to farm data between

pipelines. When used in reverse, the Branch module allows an input channel

to choose which of two output channels it wants to pull its data from.

The fact that both Q-Call and Branch modules can be constructed using

one Select and one Q-Merge gate suggests that this pair of gates would be a

good candidate for a reconfigurable control block. It can be seen in Figure 6.6,

that to configure from a Branch module to aQ-Call module requires only one

configuration bit that determines whether the Q and D signals are connected or

not.

The Select and Q-Merge gates can be used to build the other modules used

by Sutherland. Figure 6.8 shows how a Select and Q-Merge pair can be used

to construct an Arbiter module. Since events on the two inputs can occur sim-

ultaneously, the Q-Merge gate has to be capable of arbitrating between events

on the two inputs. One difficulty in the circuit occurs when the arbitrating

Q-Merge element determines the beginning of the next arbitration phase. A

four-phase Q-Merge element can use the recovery phase on the serviced input

request line to determine this. However, this is not an option in the two-phase

protocol, so an additional signal needs to be supplied from the acknowledge

signals to the Q-Merge element to specify when to accept the next input re-

quest.

The other module used by Sutherland is the Toggle gate. Figure 6.9 shows

a Toggled-Branch module; an extension of the Toggle gate to operate on hand-

shaking channels. The Q output of the Q-Merge gate is used to remember

which output channel was selected, so that the other channel is selected on

the next input request.

Rini Routi
Aini Aoutl

Rin2

Arbiter
ip Rout2

Ain2 Aout2

Arbiter Module

Rinl 	P. T 	 T 	Routi
__ 	 __

Rin2 	F +
	

F 	. Rout2

Am 1
	

Aoutl

Ain2 . 	 Aout2

Arbiter Circuit

Figure 6.8: Arbiter Module

Routi
Aoutl

Ain IIIIIIIfe 	
Aout2
Rout2

(a) Toggled-Branch Module

Rin

Am

Routi

Aoutl

Rout2

Aout2

(b) Toggled-Branch Circuit

Figure 6.9: Toggled-Branch

Ain as
Rout
Aout

Rin 	 Toggle
Ain
:;iiiiifEii:' 	

RiflII_____•H Aout

	

(a) Divide-by-Two 	 (b) Times-by-Two

Figure 6.10: Times-by-Two and Divide-by-Two Modules

Figure 6.10 shows how the Toggled-Branch module can be used to cre-

ate Times-by-Two and Divide-by-Two modules. These are useful modules

since they convert between two-phase signalling and four-phase signalling.

The Divide-by-Two module operates by directing alternate transitions down

a channel, which connects directly back to the Toggle module. As a result,

only alternate transitions on Rin causes a transition on Rout. However the

module is not the best converter from four-phase to two-phase since it has to

wait for the two-phase acknowledge before the four-phase cycle can continue;

whilst it is possible to overlap parts of the two-phase and four-phase cycles.

Gopalakrishnan [47] considers circuits that do overlap parts of the two cycles.

The Times-by-Two module is constructed in the same way as the Divide-by-

Two module but is simply used in the reverse direction to convert from two-

phase to four-phase.

6.4 Delay Elements

Delay elements are required in bundled-data circuits to ensure that the request

signal is asserted after its associated data is valid. Also, for performance, the

delay of the request relative to the data should be as small as possible. Delay

elements can be classified according to how closely they match the request

delay to the data delay. Fixed delay elements simply ensure that the bundling

constraint is met, whilst variable delay elements match the delay to the current

computation.

Fixed delay elements must be set at the worst case delay through the logic

to ensure correct operation. For a simple pipeline, this restricts performance to

that of the slowest stage in the pipeline; the same as for a synchronous pipeline.

However, for more complex data flows, the difference in delays down differ-

ent branches in the data flow can be utilised, which gives benefits over the

synchronous case.
Variable delay elements allow the average case performance to be utilised

by matching the request delay to each individual computation. Such elements

work by generating a completion signal by some means from the data path.

The generation of completion signals requires more complex circuitry than

generating a fixed delay, and often requires substantial alteration to the struc-

ture of the data path.

6.4.1 Delay Generation

Below, various delay generation strategies for reconfigurable architectures are

considered. Essentially these options for the delay element represent a trade-

off between performance and complexity of the delay element.

Uniform Fixed Delay

The simplest delay strategy is to have an unreconfigurable fixed delay for all

self-timed regions in a self-timed FPGA architecture. The worst case delay of

any self-timed region would be calculated during the architecture design and

then implemented in the delay element.
The easiest way to create such a fixed delay is to use an inverter, or a chain

of inverters for a longer delay. The delay characteristics of an inverter can

be modified by varying the dimensions of the transistors in the inverter, and

varying the capacitive load it has to drive. Even though we have termed it
as a fixed delay, the delay that an inverter gives is not constant since it can

vary because of variations in temperature and voltage level. However, these

variations also effect the logic delay accordingly.
Fixing the delay for all self-timed regions gives an extremely poor perform-

ance, as no attempt is made to utilise variable delay within individual data

paths. The performance of a circuit is limited by the worst case delay of the

architecture rather than the circuit.

Reconfigurable Fixed Delay

An alternative to a uniform delay for all self-timed regions in the architecture

is to allow configuration data to set the delay of the delay element. One way to

implement this is to allow configuration data to select between various taps off

an inverter chain. If delays finer than one gate delay are required, then config-

uration data could choose between inverters with different delay characterist-

ics. An alternative method of generating delays finer than one gate delay is the

ring-coupled oscillator used by the PGA-STC architecture (see Section 4.5.2).

However, it is questionable whether the additional circuitry required for the

ring-coupled oscillator is worth the increased accuracy in the delay.

Fixed Delays determined by Layout

In Sutherland's Micropipelines [111], the delay between the stages is partly

determined by layout. The request and acknowledge signals are routed to the

latches for use as capture or pass signals before reaching their destination. This

ensures that the latches have received the control signals before the C-Muller

gates can change. It is not a complete delay strategy, since additional delay

elements are required to account for the logic delay in the data path.

A problem arises when this method is applied to a self-timed FPGA archi-

tecture, since registers in a FPGA are typically spread across a two-dimensional

area rather than arranged in a column as in Micropipelines. To route the re-

quest through the registers in a two-dimensional space requires a long snaking

signal that generates a delay far greater than is required. Alternatively, the

request signal could fan out to route more quickly to the registers, but this re-

quires C-Muller gates to synchronise the various fan-out request signals once

they have reached the registers.

Completion Signal generated by Data Path

This method of generating a variable delay places the onus on the data path to

indicate when it has completed evaluating. The timing cell delays its outgoing

request until a completion signal is received from the data path. The problem

with this method is that it involves a major re-design of the data path to gen-

erate a completion signal. Furthermore, the completion signal must be made

glitch free using data cells that are not designed to produce glitch free signals.

DCVSL (Differential Cascade Voltage Switch Logic)

DCVSL (Differential Cascade Voltage Switch Logic) [86, 871 is a dynamic logic

family that generates its own completion signal using four-phase control. Lu

[73] introduces a two-phase version for Micropipeline style implementations.

Figure 6.11 illustrates a DCVSL gate. Two NMOS transistor trees generate dual

rail outputs for the function and its inverse. When the request signal is logic

zero, the two output nodes are pre-charged to Vcc. When the request changes

NE

Fast Track
Digital Library

Online Bookstore
Computer Magazine

Magazines
Transactions

Highlights
Careers

Home
Search
Index

E-Accounts
Copyright
Contacts

Membership Information

The IEEE Computer Society is the world's leading
organization of computer professionals. The society
promotes an active exchange of information, ideas, and
technological innovation among its members.
Professionals may join the IEEE Computer Society
alone or in conjunction with the IEEE.

• Benefits of Computer Society Membership
• Qualifications for Membership
• Computer Society Membership FAQs
• Membership application forms
• Student membership
• IEEE Membership
• Senior Membership
• Fellow Membership
• Change of Address form at IEEE
• I want to subscribe to an IEEE Computer Society

Publication

Benefits of Membership:

• A complimentary personal subscription to
Computer magazine, the flagship publication of
the IEEE Computer Society.

• Opportunities to participate in Standards Working
Groups and Technical Committees.

• Advance information on conferences, symposia,
and workshops.

• Opportunities to enhance individual professional
development through local and student chapter
meetings and activities.

• Easy access to books and proceedings, produced
by the Computer Society Press.

• Subscriptions to special-interest periodicals.
• Opportunities to develop leadership and

management skills by holding elective office in
the society or by serving as a volunteer on one of
the society's many boards and committees.

Members may join the Computer Society by itself, or in
conjunction with joining the IEEE. IEEE membership

benefits include subscriptions to IEEE Spectrum and
The Institute, as well as access to IEEE technical and
educational activities and personal, financial, and
insurance programs.

You can join the Computer Society by meeting any
one of the following criteria:

• Serious interest in any aspect of the computer
field (requires endorsement)

• Endorsement by an IEEE member or a
managerial person who knows you professionally

• Member of an affiliate society.
• Member of IEEE or another IEEE society.

Application Forms:

Note: All forms are optimized for Adobe Acrobat 3.0

• I want to join both the IEEE and the Computer
Society

• I am already a member of the IEEE and want to
join the Computer Society.

• I am a member of an affiliate society and want to
join the Computer Society.

• I am a student and want to join the Computer
Society.

• All others, please use this application form.

Send completed membership application forms by fax
or paper mail to:
IEEE Computer Society
Attn: Membership
10662 Los Vaqueros Circle
P.O. Box 3014
Los Alamitos, CA 90720-1314
phone: 1-714-821-8380
fax: 1-714-821-4641
e-mail: membership@computer.org

NOTE: This form requires a signature and must
therefore be sent via fax or paper mail.

Student Membership

Student Membership Form

Computer Society student members learn practical
skills that compliment their formal education and help
improve their professional prospects.

Student membership in the Computer Society also
requires an IEEE student membership. To qualify for
student level membership you must:

• Carry at least 50% of a normal full-time academic
program

• Be a registered undergraduate or graduate student
• Be in a course of study in an IEEE designated

field

Upon graduation with at least a baccalaureate degree or
its equivalent from a Recognized Education Program,
an IEEE student member shall be transferred to
Member level. Other student members shall transfer as
Associate Members.

Qualifications for IEEE Membership (one of the
following)

• Electrical engineer or computer scientist
graduated from a recognized educational degree
program

• A related degree plus three years applicable
professional experience

• Six year applicable professional experience
• Interest in the technical fields of the IEEE

(Associate Member level, no voting rights)

IEEE and CS Membership form

IEEE Senior Membership

The grade of Senior Member is the highest for which
application may be made, and requires experience
reflecting professional maturity. For admission or to
transfer to Senior Member status, a candidate should be
an engineer, scientist, educator, or technical executive
in specific fields designated by the IEEE.

Candidates for Senior Member should have active
professional practice for at least ten years and should be
able to show significant performance over at least five
of those years. This performance should include one or
more of the following:

Substantial engineering responsibility or
achievement.
Publication of engineering or scientific papers,
books or inventions.
Technical direction or management of important
scientific or engineering work with evidence of
accomplishment.
Recognized contributions to the welfare of the
scientific or engineering profession.
Development or furtherance of important
scientific or engineering courses or a Recognized
Education program.
Contributions equivalent to those of 1 and 5
above in areas such as technical editing, patent
prosecution, or patent law, provided these
contributions serve to advance progress
substantially in IEEE designated fields.

For more information on Senior membership, contact
IEEE Member Services at 1-800-678-IEEE.

IEEE Fellow Membership

The grade of Fellow recognizes unusual distinction in
the profession and is conferred only by invitation by the
Board of Directors. Fellow grade recognizes people of
outstanding and extraordinary qualifications and
experience in IEEE designated fields and who have
made important individual contributions to one or more
of these fields. Normally, candidates for Fellow must
hold Senior Member grade at the time of nomination
and should be a member (of any grade) for a period of
five years or more.

.

This site and all contents (unless otherwise noted) are Copyright © 1997,
Institute of Electrical and Electronics Engineers, Inc. All rights reserved.

to logic one, the NMOS trees are connected to Gnd and evaluate. When either

output becomes logic zero, the gate has completed evaluation. The NAND gate

is used to generate a completion signal when this occurs. DCVSL provides

a variable delay since it completes as soon as either dual-rail output finishes

evaluating.

Request

Inputs

Completion

Out

-Out

Figure 6.11: Differential Cascade Voltage Switch Logic

Although DCVSL requires altering the design of the function blocks, the

same reconfigurable function can be implemented by a DCVSL function block

as by a standard function block, so designs can be transferred from a synchron-

ous FPGA to a self-timed FPGA using DCVSL. A disadvantage of DCVSL is

that it requires twice the area for logic implementation since both the function

and its inverse have to be evaluated. Also, the generation of a request for a

data bundle needs wide fan-in C-Muller gates to collect the completion signals

from each DCVSL gate.

CSCD (Current Sensing Completion Detection)

Figure 6.12 shows the concept behind CSCD [26]. CSCD utilises the fact that

CMOS circuits draw close to zero current from the supply rails when the logic

function has completed. By placing current sensing circuits between the sup-

ply rails and the logic function, a completion signal can be generated when the

current drawn from the supply rails drops towards zero.

CSCD gives the optimum delay plus a delay for generating the completion

signal for all possible combinations of inputs to the logic block. It can exploit

91

C

Am
Rout
Aout

0

CU
0

Figure 6.12: Current Sensing Completion Detection

similarity in the input data; for example, if the same values are presented to

the logic block in succession then it will complete straight away. The delay

incurred by generating the completion signal ensures that the bundling con-

straint is met. This extra delay only affects performance if the request signal

reaches the next stage after its associated data has finished evaluating.

A disadvantage of CSCD is that analogue circuitry is required to imple-

ment the current sensors. Dean et al [26] favour bipolar transistors for the

implementation of the current sensors, which requires a BiCMOS process tech-

nology. In addition, separate supply rails are preferable for the analogue and

digital circuits. Also, the current sensors have a static power dissipation that

negates some of the low power advantage of using asynchronous circuitry.

Another problem is the resolution of the current sensors; the sensor must

be able to detect the current drawn by one changing signal. This becomes

increasingly difficult as the circuit becomes larger. A solution proposed by

Grass and Jones [50] is to use multiple localised current sensing circuits and

produce the final result as the AND of the local completion signals. Careful

design is required to ensure that transitions going from one localised area to

another do not cause a false completion signal to be generated.

Recently Grass et al [51] proposed a related method of completion detec-

tion called Activity Monitoring Completion Detection (AMCD). AMCD uses a

special activity monitor circuit attached to the outputs of gates in the circuit.

However, attaching a activity monitor to every output in a self-timed archi-

tecture would require a substantial amount of silicon area devoted to activity

monitors.

Despite the technical difficulties posed by CSCD and AMCD, they are an at-

tractive technique as they generate a data dependent delay, without requiring

alteration to the other parts of the data array design.

6.4.2 Choice of Delay Element

A number of delay strategies have been presented above. Of the fixed delay

strategies considered, using a reconfigurable fixed delay formed by taking

taps off an inverter chain gives the best delay matching. Though the delay

of each stage is fixed, average case performance can arise by data taking differ-

ent branches through the data path. Despite the implementation difficulties,

CSCD is the most promising of the variable delay approaches, since it involves

the least disruption to the data array, whilst generating an optimal data de-

pendent delay. These two delay strategies are compared in Chapter 11, which

investigates a self-timed version of the Xilinx XC6200 architecture using a re-

configurable fixed delay and CSCD.

6.5 Summary

This chapter has introduced reconfigurable elements for synchronisation, the

branching and merging of control, and delay in bundled-data circuits. For

synchronisation, the reconfigurable C-Muller gate was introduced. The recon-

figurable C-Muller gate, and the circuits derived from it, allow a wide range

of synchronisation patterns to be defined reconfigurably. For control, the Q-

Merge and Select gate pair was developed, and it was shown how a wide

range of self-timed control blocks could be implemented with them. Finally,

delay generation strategies were reviewed in the context of self-timed FPGA

architectures. The reconfigurable elements described in this chapter form the

basis for the development of an integrated timing cell which is described in the

next chapter, and the timing array routing structures developed in Chapter 8.

93

Chapter 7

Timing Cells

7.1 Introduction

The STACC model, introduced in Chapter 5, takes a synchronous FPGA archi-

tecture and replaces the global clock with an array of timing cells. Each timing

cell provides self-timed control to a localised region of the data array. This

chapter draws upon the reconfigurable elements introduced in the previous

chapter, to develop a reconfigurable timing cell for the STACC architecture.

This timing cell integrates all the basic bundled-data control functions of syn-

chronisation, branching and merging, arbitration and delay in one reconfigur-

able unit.

The timing cell in this chapter is developed, as far as possible independ-

ently of the data array's structure. This is possible due to the clean split in the

STACC model between the control path, which is implemented by the timing

array, and the data path, which is implemented by the data array. However,

the design of the timing array does depend on the type and positioning of the

memory elements in the data array. Another important effect on the design of

the timing array is the choice of protocol used on the handshaking links. These

design decisions are discussed in Section 7.2

The timing cells developed in this chapter use a four-phase protocol with

registers situated on the inputs to the function block. However, initially a two-

phase timing cell without selective communication is introduced, as the design

is simpler to describe. Various other design options are explored using the two-

phase design. Subsequently, a series of four-phase timing cells are developed

with increasing complexity to deal with selective communication and arbitra-

tion in the timing cell.

7.2 Timing Cell Design Decisions

The design of the STACC timing cell is affected by a number of different de-

cisions, concerning the type and positioning of the memory elements in the

data array, and the protocol chosen on the handshaking links. These decisions

are discussed below.

7.2.1 Type of Memory Element

The choice of memory element determines the interface used by the timing cell

to control the memory elements. Current FPGAs provide two basic types of

memory element which have different control interfaces: latches and registers.

Latches require two control events: a capture event that causes input data to

be stored, and a pass event that causes data to be passed data directly to the

latch's output. In contrast, registers only require one control event: the capture

event which causes them to store the data on their inputs.

Different latch and register implementations are required for two-phase

and four-phase protocols. Four-phase memory elements are commonly en-

countered in hardware design: the four-phase latch is the D-latch and the four-

phase register is a D-type register. Both four-phase memory elements only re-

quire one control signal; in the case of the D-latch, the pass and capture events

are combined into a single signal. This is possible since the control events al-

ternate; transitions in one direction indicate capture events and transitions in

the other direction indicate pass events.

Two-phase memory elements are less commonly encountered in hardware

design. Two-phase latches, called event latches, were used by Sutherland[1111

in micropipelines. Two-phase registers have been used by Yun et al [126], and

were termed double-edge D-types. A problem with two-phase memory elements

is that the circuitry is more complex than that for their four-phase equivalents.

The event latch and double-edge D-type circuits, essentially involve the con-

struction of two four-phase latches or registers that are used on alternate hand-

shake cycles. For this reason, Sutherland suggests using four-phase latches

and a two-phase to four-phase conversion circuit for wider data bundles in

Micropipelines.

The choice between using latches and registers is a trade-off between com-

plexity of the memory element and complexity of the control logic. Latch cir-

cuits are simpler to implement, and thus generally faster than registers, but re-

quire more complex control circuitry as two control events must be generated.

95

Registers are more complex circuits to build, normally requiring a master and a

slave latch, but require simpler control, as only a capture signal is required. An

additional benefit of register elements is that unlike latches they do not have

a pass state. This means that they can easily be used to build state-retaining

blocks such as Finite State Machines (FSMs).

In this chapter, the timing cells are designed to use registers, since most cur-

rent FPGA architectures include registers in their function blocks. Latch based

designs can be developed from these register based timing cells using addi-

tional logic to generate the pass events. The alterations required to produce

latch based timing cells from register based designs are outlined in the text,

though the circuits are not given.

7.2.2 Position of Memory Elements

Another way in which the memory elements influence the design of the timing

array is by their position within the function block. In most current FPGAs,

the memory elements are placed on the output of the logic function imple-

mented by the function block. This influences the design of the timing cell, as

it requires that the delay element matched to the logic function comes before

the synchronisation element that generates the control signals for the memory

element. Similarly, placing the memory elements on the inputs to the logic

-function, requires that the delay element be placed after the synchronisation

element.

When providing timing control for a region of data cells, the memory ele-

ments may occur between two logic functions. In this case, delay elements

must be provided for the logic delay to the memory elements' inputs and for

the logic delay from the memory elements' outputs. This requires delay ele-

ments placed before and after the synchronisation element for memory con-

trol.

In this chapter, timing cell designs are described for function blocks with

memory elements on the input and outputs to the logic function. However,

designs for function blocks with memory elements on the inputs are preferred,

since this leads to simpler timing cell circuits, which are easier to describe.

7.2.3 Choice of Handshaking Link Protocol

An important design decision for the timing cell is the protocol to use on the

handshaking links. The main decision is between using a two-phase or a four-

phase protocol. Two-phase protocols are conceptually simpler, since every

event on a signal is significant, whilst four-phase protocols requires an idle

return-to-zero or recovery phase. Though conceptually simpler, the circuitry

for two-phase control circuits is often more complex. For example, Figure 7.1

illustrates two-phase and four-phase Select gates. The two-phase gate is more

complex, requiring two XOR gates and two D-latches, compared to two AND

gates for the four-phase version. Two-phase designs also require more com-

plex memory elements, such as Sutherland's event latches or double-edge flip-

flops.

Mirl

Rfalse

Rtrue

Rin

Rfalse

Rtrue

(a) Two-Phase
	 (b) Four-Phase

Figure 7.1: Comparison of Select Gate Implementations

Four-phase circuits are potentially slower than two-phase circuits, due to

the extra recovery phase. However, the performance disadvantages of four-

phase signalling can be hidden by performing the recovery phase concurrently

with the computation. As a result, two-phase signalling only gives a significant

performance advantage when communication times rather than computation

times are critical.
Due to the simpler circuits for four-phase memory elements and control

blocks, the four-phase protocol is preferred here for implementing the timing

cell. A similar decision was made by Furber [36], for the second generation of

the AM1JLET processor, and by Rebello [100] for the MAP processor. However,

initially two-phase timing cells are developed, since the circuits are simpler to

explain than the four-phase ones.

Another aspect of the handshaking link protocol that has to be chosen is

whether to use a push, pull or two-way data passing protocol. Push proto-

cols, where the sender of data initiates the handshake protocol are the most

commonly used style of handshake protocol, so are developed in this chapter.

Design of timing cells to implement pull and two-way data passing protocols

are discussed in Section 7.3.3.

7.3 Two-Phase Timing Cells

7.3.1 Input Registered Two-Phase Timing Cell

This section develops a simple input registered two-phase timing cell. The

timing cell allows data to fan-in and fan-out on handshaking links from the

timing cell, but does not support selective communication.

Figure 7.2(a) illustrates the family of timing blocks that the timing cell im-

plements. The timing block can be used to control a self-timed region with N

data bundles fanning in and M data bundles fanning out. N and M can be

zero, so that a timing block with no input or output handshaking channels can

be defined. The interface to the timing blocks consist of N fan-in handshak-

ing links and M fan-out handshaking links. The other signal in the interface is

the capture signal, which control the registers in the data array. A pass signal

is also shown, to illustrate how the timing block could be adapted to control

latches.

Figure 7.2(b) illustrates a family of circuits that implements the timing block

logic. The various stages in the timing block match the flow of data in the data

array. The stages correspond to the fan-in of the input data bundles, the cap-

ture of the inputs in the registers, the computation by the logic function and

the fan-out of the output data bundles. For each stage, the circuitry maintains

the bundling constraint between the data and the handshaking signals. The

basis of the circuit is the memory control C-Muller gate CM. This is the same

control block which is used in Micropipelines (see Figure 3.9). The CR and CA

C-Muller gates are used to synchronise the fan-in of the request and acknow-

ledge signals.

The circuit of Figure 7.2(b) can be simplified by combining the synchron-

isation in the fan-in C-Muller gate CR and memory control C-Muller gate CM

into one C-Muller gate. For timing cells controlling registers, the pass signal is

not required, so the circuit can be simplified further by combining the fan-out

C-Muller CA gate with the others to form one C-Muller gate CMRA. This gives

the simplified circuit of Figure 7.2(c).

Rinl 	 Routi
Ainl 	 Aoutl

Timing

RinN 	• Block 	: 	
RoutM

AinN 	 AoutM

V
Capture Pass

(a) Interface

Fan-In 	Memory 	Logic Fan-Out
Control

Rin 1

RinN

Am 1

A1nN

Aoutl

AoutM

Routi

RoutM

(b) Circuit

NO 1

RinN

Am 1

AinN

Aoutl

AoutM

Routi

RoutM

(c) Simplified Circuit

Figure 7.2: Family of Two-Phase Input Registered Timing Blocks

Data Array Interface

Capture

Other
Handshaking

Outputs

I 	 I 	I

	

 [T I 	I I 	

DC
I 	 DIR

	

I 	i 	 I 	 I 	I 	 F
I

 Mem

o 	Delay Element Choose Requestl Choose
Control 	 Acknowledge Rendezvous

Other
Handshaking

Inputs

Figure 73: Input Registered Two-Phase Timing Cell

The family of timing blocks illustrated in Figure 7.2 represent the possible

behaviours of a simple timing cell. The configuration bits required to define the

behaviour of a timing cell were discussed in Section 5.4. Two configuration bits

per handshaking link were used. The DC (Don't Care) bit determined whether

the link was used or not. The D I R (Direction) configuration bit determined the

direction of data flow synchronised by the link.

Figure 7.3 illustrates circuitry to implement a timing cell that can imple-

ment the timing blocks illustrated in Figure 7.2. The figure shows the circuitry

required for one handshaking link. The circuitry controlled by the configura-

tion bits is replicated for every other handshaking link into the timing cell. The

C-Muller gate and delay element in the timing cell circuit corresponds to the

CMRA C-Muller gate and delay element in Figure 7.2(c).

The circuit can be thought of as a development of the gate level reconfigur-

able C-Muller gate. The DC configuration bit is common to both circuits, and is

used in a similar way to create a don't care connection. When DC is false, the

inputs and outputs to the neighbouring timing cell pass normally along the

handshaking link. When DC is true, the timing C-Muller gate's output is fed

back to itself to create a don't care connection.

100

The DIR configuration bit, determines whether the handshaking link is an

input or output link. Since acknowledge signals in the timing block of Figure

7.2(c) are inverted, the D I R bit chooses between the inverted and non-inverted

form of the output handshaking signal. Additionally in the timing block, re-

quest signals must be delayed to match the logic delay in the data array, so

the non-inverted handshaking signal is taken from the output of the delay ele-

ment.

7.3.2 Output Registered Two-Phase Timing-Cell

Figure 7.4(a) shows a timing block designed for a data array with the register

elements situated on the outputs of the logic block. Unlike the timing block for

memory elements on the inputs, the fan-in C-Muller gate CR and memory ele-

ment control C-Muller gate CM cannot be combined, due to the delay element

in between them. However, for register based memory elements, no pass sig-

nal is required, so the fan-out C-Muller gate CA and memory control C-Muller
gate CM can be combined, resulting in the family of timing block circuits illus-

trated in Figure 7.4(b).

Since the timing block cannot be simplified as much as for the input re-

gistered design, a more complex reconfigurable timing cell results, as shown

in Figure 7.5. As in Figure 7.3, the circuitry for one handshaking link is shown.

The circuit has a similar structure to the input registered design. Both designs

use the same circuitry controlled by DC for feeding back the outgoing hand-

shaking signal to create a don't care link. The designs differ in the circuitry

controlled by the D I R configuration bit. In the input registered design, the D I R

bit only has to control the inversion of the handshaking signal. In the output

registered design, it also has to control which C-Muller gate the handshaking

signal synchronises with. To implement this, two reconfigurable C-Muller gate

structures are used, controlled by the DIR configuration bit. These determine

whether the handshaking signal is an input to the CR or CMA C-Muller gates.

To account for the inversion of the acknowledge signals, the inputs to the fan-

out C-Muller gate CMA are inverted.

7.3.3 Pull Channels and Two-way Data Passing

The timing cells described so far use a push bundled-data protocol. In the push

protocol, the request signal is bundled with a data transfer. The pull and two-

way data passing protocols differ in which handshaking signals are bundled

101

Fan-In 	Logic 	Memoiy Fan-Out
(,ntrnI

NO 1

RinN

Am 1

AinN

(a) Circuit

NO 1

RinN

Am 1

AinN

(b) Simplified Circuit

Aoutl

AoutM

Routi

RoutM

Aoutl

AoutM

Routi

RoutM

Figure 7.4: Timing Blocks for Memory Elements on Outputs

IEI

Capture

Figure 7.5: Output Registered Two-Phase Timing Cell

with a data transfer. In the pull protocol, the acknowledge signal is bundled

with a data transfer, whilst in the two-way data passing protocol, both request

and acknowledge are bundled with data transfers.

In all these protocols, if the handshaking signal is associated with a data

transfer, then the handshaking signal must be delayed, so that the bundling

constraint is met. If the handshaking signal is not associated with a data trans-

fer then it is purely for synchronisation, so there is no need to delay it. Hence,

to implement the pull protocol the acknowledge signal rather than the request

signal should come from the delay element. For the two-way data passing

protocol, both request and acknowledge signals should be sourced from the

the delay element.

To allow a timing cell to implement all these protocols, a configuration bit

can be added that controls which handshaking signals are delayed. Figure 7.6

shows the new delay control unit for the timing cell of Figure 7.3. An addi-

tional configuration bit IDLY has been added that determines whether an out-

going handshaking signal is delayed. As each output handshaking signal has

its own iDLY configuration bit, push, pull, two-way data passing and pure syn-

chronisation channels (neither request nor acknowledge are delayed) can be

103

I-

Delay Element

Figure 7.6: DLY Configuration Bit

mixed freely. However, it is questionable if the additional circuitry and con-

figuration bits are worthwhile, since many circuits will typically only use one

style of communication protocol.

Another design decision in the timing cell related to the use of the delay

element is whether a reconfigurable delay element is provided individually

for each link, or provided for the timing cell as a whole. Delay matching for

each link provides some performance benefits in terms of improved latency,

however throughput will not be markedly improved, since this is limited by

the worst case delay of the timing cell. In general, the additional circuitry

required for a reconfigurable delay element per link, rather than per cell, is not

worth the small performance benefits.

7.3.4 Reconfiguration and Initialisation

One aspect of the timing array that has not been considered so far is initial-

isation. Initialisation is required after reconfiguration, so the method of re-

configuration is an important influence on the method of initialisation. For

example, timing arrays that use global reconfiguration, would be initialised

using a global reset signal. After reconfiguration, the global reset signal would

feed into all the timing cells, and reset the C-Muller gate to its initial value.

Partial reconfiguration, as provided by addressable SRAM FPGAs, requires

a more sophisticated initialisation strategy, since global initialisation is not suit-

able when only part of the array is being changed. A simple strategy for ini-

tialising the timing cell would be to reset it when its configuration is changed.

IDL

However, the timing cell is only part of a larger circuit, so a reconfigured tim-

ing cell could communicate with other timing cells in the circuit which have

not been configured. Hence, some means of initialising a portion of the timing

array is required.

A solution is to provide an extra configuration bit in each timing cell that

determines whether the timing cell is being reconfigured. This bit is named the

RESET bit. When the RESET bit is set, the timing cell is reset and held in the

reset state. When the RESET configuration bit is cleared, the timing cell will be

activated. Thus, to reconfigure a region of the timing array, first the RESET bits

in all the timing cells to be reconfigured would be set. This can be done in a

small number of write actions if a wild card addressing scheme is being used.

Next, each self-timed region in the array is reconfigured. After reconfiguration

of a self-timed region, the RESET bit is cleared. Since all the unconfigured tim-

ing cells are locked in the reset state until reconfigured, a reconfigured timing

cell will only be able to communicate with other reconfigured timing cells. A

benefit of this approach is that the timing cells in the circuit become active as

soon as reconfigured. By configuring from the inputs of a circuit to the outputs,

the circuit will begin processing whilst the rest of it is being configured.

The RESET bit is also useful for deactivating unused timing cells in the

array. Unused timing cells within the timing array would generally be con-

figured with all the links as don't care connections. However, this causes the

C-Muller gate in the timing cell to oscillate, in a similar fashion to the gate

level reconfigurable C-Muller gate, as discussed in Section 6.2.1. When Se-

lective communication is introduced, this behaviour is useful as it allows the

timing cell to go through several internal states before communicating, but in

an unused timing cell, this behaviour is undesirable, since it consumes power.

The RESET bit can be used to overcome this problem by setting the RESET bit

in all unused timing cells, which prevents them from oscillating.

Another issue relating to initialisation, is which state the timing cells should

be initialised to. So far, it has been assumed that the timing cells are initialised

waiting for events on their input handshaking links. In some situations, it can

be useful to initialise the timing cells so they immediately generate events on

the output handshaking links. For example, feedback loops in designs, re-

quire one of the timing cells to be activated to initialise the loop. This can be

provided by allowing the initial state of the timing cell to be determined at ini-

tialisation. An alternative, is to use the selective communication mechanisms

described later in this chapter, so the feedback value is not required for the first

105

data item which enters the feedback loop.

7.4 Four-Phase Timing Cells

The two-phase protocols used so far are easier to describe than the equival-

ent four-phase protocols, since every transition is significant. However, four-

phase protocols are preferable in general, since they require simpler memory

elements and simpler branching and merging control blocks. The key issue in

four-phase design is how to hide the redundant recovery-phase by performing

it concurrently with the computation in the timing cells. Two-phase protocols

become preferable when the recovery phase cannot be hidden, for example,

when communication times dominate over computation times. Various ways

to hide the recovery phase in four-phase protocols are considered below.

7.4.1 Implementation of Four-Phase Control

Figure 7.7(a) illustrates the simplest form of four-phase control that uses the

same circuit as the two-phase protocols. Since only alternate events are signi-

ficant, only alternate stages in the pipeline are active, so throughput is halved.

This is a severe penalty over the two-phase design. Some improvement can be

made by using asymmetric delay elements, that only delay signals on the rising

or falling edge. These elements can be used to allow the recovery transitions

to pass without delay. Though this gives some improvement in performance,

alternate stages are still inactive.

By using additional circuitry, it is possible to allow the recovery to occur

concurrently with the computation in the four-phase protocol. One method,

used by Arvind and Rebello [8, 100], for allowing the recovery phase to occur

concurrently is to use a second C-Muller gate, as in Figure 7.7(b). The second

C-Muller gate CD acts as a place-holder for return-to-zero events, so that all

the CM C-Muller gates in a pipeline can be in the active (logic one) state simul-

taneously.

The circuit of Figure 7.7(b) is only suitable for controlling registers. To

control four-phase latches a combined capture/pass signal is required, which

keeps the latches in the capture state until the four-phase handshake is com-

pleted. Hence, the capture/pass signal must remain in the capture state until

both C-Muller gates have returned to zero. This requires a two-input OR-gate

that takes the OR of the outputs of CM and CD to produce the capture/pass

signal.

106

Rin

Am

Aout

Rout

(a) Simple Control

Rin

Am

Rout

Aout

Capture

(b) Symmetric C-Muller Implementation

Am

Aout

Rout

Capture

(c) Asymmetric C-Muller Implementation

Rin

Am

Aout

Rout

Capture

(d) Fully Decoupled

Figure 7.7: Four Phase Implementations

107

Figure 7.7(c) shows a four-phase memory control circuit, used by the AMU-

LET Group [25, 371, which utilises asymmetric C-Muller gates. Unlike the sym-

metric C-Muller gate circuit, the asymmetric C-Muller gate circuit can be used

to control latches without modification. This asymmetric C-Muller gate circuit

can be considered as a development of the single symmetric C-Muller gate of

Figure 7.7(a). In Figure 7.7(c), the symmetric C-Muller gate has been split into

two asymmetric C-Muller gates; the Aout synchronisation being split into two

separate synchronisations on rising and falling events. Since the two asym-

metric C-Muller gates synchronise on the same events as the single symmetric

gate, both circuits provide the same behaviour for the Rout signal.

The decoupling behaviour of the circuit is provided by taking the input

acknowledge Ain from the output of the CM C-Muller gate rather than from

CR. For CM to change from logic one to logic zero, it must wait for Aout to
reach logic one. This value of Aout indicates that the next stage has stored the

output of this stage. However, CM does not synchronise with Aout equal to
logic zero, which is the recovery transition on Aout. Thus, events on the input

channel are decoupled from the recovery transitions on the output channel.

Though the input channel is decoupled from the recovery transitions on

the output channel, the circuit must ensure that the recovery transition has

occurred on Aout before CM synchronises on Aout equal to logic one again.
For this reason, the feedback connection is included from CR to CM. Without
this connection, if Aout remained at logic one, then a number of Rin and Am

events could occur on the input handshaking channel without any event be-

ing generated on the output channel. The feedback connection overcomes this

problem by ensuring that every transition on CM must generate a transition on

CD before CM can change again.

The circuit of Figure 7.7(c) is known as a semi-decoupled handshaking circuit,
since it decouples the input handshaking channel from synchronising with the

recovery phase on the output channel, but does not decouple the output hand-

shaking channel from synchronising on the recovery transitions on the input

channel. A fully-decoupled control circuit can be produced by replicating the

decoupling circuitry for the other handshaking channel as shown in Figure

7.7(d).

Both the decoupling symmetric and asymmetric decoupling methods de-

scribed above, allow the recovery phases to occur on each channel independ-

ently. The asymmetric C-Muller gate circuit uses more gates, but is preferable

when using latches, since no extra logic is required to generate a capture/pass

signal. The symmetric C-Muller decoupling circuit requires an additional OR

gate to control latches. In the rest of the chapter, the symmetric C-Muller gate

implementation is used, since it leads to clearer circuits and is more suited to

register based memory elements which are used in most FPGA architectures.

7.4.2 Position of Decoupling

In the symmetric C-Muller gate circuit of Figure 7.7(b), the decoupling C-

Muller gate CD can be separated from the memory control C-Muller gate CM

by inserting other stages, such as the delay stage or the fan-in and fan-out

stages, between CM and CD. Figure 7.8 shows two positions for the decoup-

ling C-Muller gate in an output registered timing block. Figure 7.8(a) has the

decoupling after the fan-in of the links, so all the input links are decoupled as

a group, whilst Figure 7.8(b) has each link decoupled individually, before the

fan-in of the inputs.

Decoupling the links as a group is advantageous as it uses only one de-

coupling C-Muller gate per timing block, whilst decoupling on the links re-

quires one C-Muller gate per link. However, decoupling on the links has the

potential for superior performance as the decoupling on each link is independ-

ent. With the central decoupling, all the links are decoupled as a group, so the

delay of the slowest link determines the delay of the recovery phase on all the

links.

An additional benefit of decoupling per link, is that it allows the decoupling

C-Muller gate to be placed in the centre of the link, halfway between the two

communicating timing blocks. This leads to a performance advantage, since

the request and acknowledges only have to travel halfway along the link rather

than travel the whole length of the link. However, a problem with having

decoupling on each link is that links cannot be easily chained together, since

multiple decoupling C-Muller gates between memory control C-Muller gates

cause the four-phase protocol to fail.

For the asymmetric C-Muller decoupling of Figures 7.7(c) and 7.7(d), the

decoupling gates cannot be separated, due to the feedback paths from the CR

and CA C -Muller gates to CM. As a result, the position of the decoupling cannot

be moved, without the additional cost of routing the feedback wires. However,

the decoupling can still be provided as a group or on individual links, depend-

ing on how the fan-in/fan-out stages are combined with the timing block.

109

Fan-In Decoupling Logic
	

Register Fan-Out
(ntrnI

Rini

RinN

Aini

A1nN

Routi

RoutM

Aoutl

AoutM

Capture

Decoupling

R

Ai

(a) Decoupling Links as a Group

Fan-In 	Logic 	Register Fan-Out
Control

Capture

(b) Decoupling Links Individually

A

IT

Routi

RoutM

Aoutl

AoutM

Figure 7.8: Position of Decoupling

110

7.4.3 Input Registered Four-Phase Timing Cell

This section describes a four-phase timing cell, which will be developed later

in the chapter to include selective communication and arbitration. The timing

cell is illustrated in Figure 7.9. It is designed to control input registered designs,

and provides decoupling on each link using symmetric C-Muller gates.

Data Array Interface

Latch
Registers

DIR

Timing Delay Element Choose Request'
C-Mu her 	 Acknowledge

Other
Handshaking

Outputs

1 	 - - - -

L
Handshaking

Inputs

tlVDC

Choose
Rendezvous

- -L - -

Return-to-Zero
C-Muller Gate

Figure 7.9: Input Registered Four-Phase Timing Cell

This choice of timing cell was chosen, since it produces simpler circuitry

for explanation. As discussed previously, input registered designs allow more

simplifications to be applied to the basic timing block, giving simpler timing

cell circuitry. Also, using symmetric C-Muller gates for decoupling on each

link was chosen as it allows the decoupling to be clearly separated from the

rest of the timing cell.

The timing cell is similar to the two-phase input registered timing cell of

Figure 7.3, however there are a number of difference in the four-phase design.

Two additional multiplexors have been added: the first additional multiplexor

is controlled by the DIR configuration bit and is used to control the inversion

of the output of the decoupling C-Muller gate. The second new multiplexor

111

is controlled by the DC configuration bit and is used to prevent transitions on

the output handshaking signal when the link is configured as a Don't Care

connection. This modification is not necessary when selective communication

is not used, as the other side of the link will also be in a Don't Care state,

so will ignore any transitions that occur on the handshaking signal output.

However, when selective communication is introduced, this multiplexor is ne-

cessary, since the other timing cell on the link may be waiting for communica-

tion on the handshaking link.

Another difference in this timing cell is the feedback of the delay element

directly to the C-Muller gate. The feedback connection ensures correct op-

eration when the timing cell is disconnected from other timing cells. Again,

this behaviour is useful when selective communication is introduced, since it

allows the timing cell to loop through several internal states before communic-

ating with any other timing cells.

7.5 Selective Communication Timing Cell

So far, a timing cell capable of implementing self-timed pipelines with fan-in

and fan-out has been described. However, selective communication has not

been supported. There has been no means for data values within the data

array to influence the control flow in the timing array. This section introduces

a timing cell capable of deterministic branching and merging in the control

flow.

Select 	 Select

_ 	Handshaking 	_______
Link

F 	 - F

Rin 	 Aout
Ain 14 	 10 Rout

Figure 7.10: Link Between Two Timing Cells using Branch Modules

The behaviour of a handshaking link using selective communication is il-

lustrated in Figure 7.10. The figure shows one link between two timing cells

constructed using Branch modules. The request signals flow from left to right

in the figure, whilst acknowledge signals flow from right to left. The Branch

module on the left determines when to initiate a communication on the link.

When the link is not selected, the request events on Rin are passed directly

112

back to Am. When the link is selected, the request event passes to the Branch

module at the other end of the handshaking link, and the sender waits for an

acknowledge event from the receiver. The Branch module at the receiver oper -

ates in a similar fashion. When not selected, events cycle around the Aout and

Rout loop. When the link is selected, the receiver waits for a request event on

the handshaking link before generating an acknowledgement.

Data Array Interface

Capture 	Select
	

RDZ

	

'0' 	0

	

'1' 	1

L1 D-Type

T F\

Other
Handshaking

Outputs

--t_ -------,- 	-
I 	i 	 I 	 I

F 	I 	T

F

T , I

Timing Delay Element Choose Request/ Choose

	

C-Muller 	 Acknowledge Rendezvous
Other

Handshaking
Inputs

Figure 7.11: Timing Cell with Branching

Return-to-Zero
C-Muller Gate

Selective communication cannot be implemented in the timing cells de-

scribed so far, however communication patterns can be altered by changing

the configuration data. This suggests that a way to implement selective com-

munication would be to pass control of the communication pattern from the

configuration data to select signals generated by the data array. The idea is

illustrated in Figure 7.11, which shows an adapted version of the timing cell in

Figure 7.9, where the ic configuration bit has been replaced by a signal that

113

can be driven from the data array.

This signal determines whether communication takes place on the hand-

shaking link during the current cycle of the timing cell. The signal is generated

by a new multiplexor controlled by the RDZ (Rendezvous) configuration bits.

The RDZ configuration bits allow the choice of an inverted or non-inverted se-

lect signal from the data array. The choice of inversion allows the initial value

of the select signal to be defined (assuming that the D-type is reset to a pre-

defined value). The RDZ configuration bits can also choose the constants logic

zero and logic one, so that the common functions of 'never communicate' and

'always communicate' can be implemented without using resources in the data

array.

In addition to the RDZ multiplexor, extra circuitry is included to capture the

select signal. An edge-triggered D-type flip-flop is supplied for capturing the

select signal. The triggering of the D-type is different depending on whether

the link is an input or output link, hence an additional multiplexor controlled

by the D I R bit is included to choose the triggering signal. For output links, the

select signal is captured before communication with the neighbouring cell. For

input links, the select signal is not captured until the completion of the current

communication, to prevent problems with the select value changing during a

communication on the link.

An extra fixed delay element is included after the reconfigurable delay

in the delay stage. This delay is included to ensure that the select signal is

sampled, and its value is established through the RDZ multiplexors before the

out going handshaking signal reaches the 'Choose Rendezvous' multiplexors.

This fixed delay element sets a minimum delay for the timing cell; the timing

cell cannot go faster than the minimum delay set by the time to sample the

select values.

It can be seen from Figure 7.11 that much of the circuitry for selective com-

munication is for sampling the select signal. The amount of circuitry can be

decreased by reducing the number of select signals from one per link, though

this reduces the possible behaviours that can be implemented by one timing

cell. For example, only one select signal could be provided per timing cell. The

select signal's inverse can be generated using the RDZ configuration bits. This

allows basic 'if-else' style communication structures to be built. However, this

is limiting in that more sophisticated branching structures such as multiple

way branches, cannot be configured in a single timing cell.

114

7.6 Arbitrating Timing Cell

The timing cell developed so far allows selective communication, so the timing

cell and associated region of the data array can make deterministic decisions

based on their own internal states. However, the timing cell cannot choose

which links to select on the basis of which neighbouring timing cells are wait-

ing to communicate. This requires some method to sample the state of incom-

ing handshaking links. Since, the signals on these links are not synchronised

to the timing cell, some form of arbitration or synchroniser element is required

to allow the state of the links to be sampled.

Data Array Interface

Capture Probe Select
	 RDZ

'I:!

	

.1_ 	I
Other 	I

Handshaking 	
0-Fl H 	req

Outputs 	I 	op

ack 4 LJLiJ
-) ~ .0, jr

Return-to-Zero
C-Muller Gate

C

Timing
C- Muller

Other
Handshaking

Inputs

Acks

P1IR 	i 	__

Delay Element Choose Request' Choose
Acknowledge Rendezvous

Figure 7.12: Q-Flop Arbitration Scheme

Below, two arbitration schemes are considered. Both use special arbiter

elements in the timing array to resolve potential meta-stable states. The ap-

proaches differ in where the functions to be arbitrated between are gener-

ated. The first scheme evaluates the arbitration functions in the data array,

115

the second evaluates them in the timing array.

7.6.1 Data Array Arbitration Function

One way to perform arbitration is to probe the state of the links to neighbour-

ing timing cells, and provide these as inputs to the data array. The data ar-

ray can make a decision based on these probe values and then use selective

communication to choose which channels to communicate on. This arbitration

scheme is flexible, since it does not fix the choice of arbitration function. Any

arbitration function can be implemented, if sufficient data cells are used.

Figure 7.12 shows the development of Figure 7.11 that allows the state of

the handshaking inputs from neighbouring timing cells to be probed. Since the

probe signals are asynchronous to the cell, some form of synchroniser element

must be used to sample the inputs. In this case, a Q-flop [103] is used. The

Q-flop samples its data input after a transition on its request signal. After

any meta-stable state has been resolved, the Q-flop generates an acknowledge.

This is fed to the delay element. The delay phase will not begin until all the

acknowledge signals from the Q-flops have been received.

There are several drawbacks to the Q-flop scheme. First, arbitrating ele-

ments such as the Q-flop are relatively complex circuit elements to implement,

and the Q-flop scheme requires one Q-flop per link which adds substantially

to the size of the timing cell. Furthermore, the Q-flop scheme requires the use

of data cells in the data array to generate the arbitration function. However,

as a result of using the data array to implement the arbitration function, no

additional configuration bits are required in the timing array to implement the
Q-flop scheme.

A further drawback to the Q-flop scheme is that the arbitration function is

evaluated concurrently with the data path function implemented in the self-

timed region. This means the result of the arbitration can only be used to select

links at the end of the timing cell's cycle. Hence, input links cannot be selected

in the same cycle as the arbitration function is evaluated, since the input links

are selected at the start of the timing cell cycle rather than at the end. This leads

to long latencies for arbitration on input links. For example, to implement an

arbitrated Merge gate, two cycles of the timing cell would be required. In the

first cycle the input links are probed and the arbitration function is evaluated,

in the second cycle, the result of the arbitration is used to select the appropriate
input link.

An alternative approach is to use Q-flops in place of the D-types to sample

116

the select signals. In this scheme, the probe signals from the links would be

passed unsynchronised into the data array. The arbitration function is evalu-

ated in the data array, and then passed as a select signal to the timing array.

The select signal is synchronised using the Q-flop. This scheme has the ad-

vantage that the output of the arbitration function is synchronised rather than

its inputs, so the two cycle arbitrate /select loop can be avoided. However, this

scheme means that the probe signals from the handshaking links cannot be

used in the data array as inputs to the data path function, since they are not

synchronised to the self-timed region. Hence, the synchronised select signals

from the Q-flops also have to be fed back as probe signals to the data array, to

allow the data path to respond to the result of the arbitration.

7.6.2 Timing Array Arbitration Function

The previous arbitration schemes are very flexible as they leave the choice of

arbitration function to the circuit designer, but incur a high cost in terms of the

number of arbitration elements required and the number of data cells required

to implement the arbitration function. An alternative approach is to use a ded-

icated arbitration function implemented in the timing array, which saves on

data cells and interfacing logic between the timing and data arrays.

Request Acknowledge

Probe

Handshaking Signals

Figure 7.13: Dedicated Arbitration Block

A simple dedicated arbitration block that covers many common arbitration

functions such as Merge gates is shown in Figure 7.13. The programmable-

AND (pAND) gates form product terms from a subset of the handshaking sig-

nals. This subset is determined by configuration data. One pAND gate causes

the output probe value to be high (the plus input), the other causes the probe

117

output to be low (the minus input). More sophisticated arbitration functions

can be used that include inputs from the data array as well as the handshaking

links.

Another advantage of using a dedicated arbitration block over the Q-flop

scheme is that the arbitration function is evaluated within the timing cell, so

the result can be used directly to select the input link to the timing cell without

using the data array and the problem of the two cycle arbitrate /select loop for

input arbitration can be avoided. Furthermore, the pAND arbiter waits until

either one of the AND gates goes high before sending an acknowledge to the

timing cell. In the Q-flop arbitration scheme there is no such waiting state. For

example, if the Q-flop scheme is used to implement an arbitrated Merge gate,

then if neither input is active, the timing cell busy waits, continually sampling

the input links until one becomes active.

7.7 Summary

This chapter has developed a reconfigurable timing cell for use in the STACC

architecture. The final timing cell integrates the basic functions of self-timed

control: synchronisation, selective communication, arbitration and delay. The

chapter also illustrated how basic decisions concerning the memory elements

and protocols affected the design of the timing cell.

Chapter 8

Timing Array Routing

8.1 Introduction

The previous chapter developed the STACC timing cell independently of the

routing network used to interconnect the timing cells. In this chapter, struc-

tures are developed to allow handshaking signals to be routed in the tim-

ing array. Much of the discussion is applicable beyond FPGAs to any style

of self-timed routing network, for example, the passing of data between self-

timed processors. In particular, the chapter has relevance to the design of self-

timed versions of FPIDs (Field Programmable Interconnect Devices), such as

the Aptix [5] and I-Cube [61, 60] devices.

A benefit of self-timed routing is that the routing can be changed between

modules and the circuit will still operate. As long as the bundling constraint is

maintained the routing is transparent to the sender and receiver, so buffering

and multiplexing can be included transparently. Section 8.2 discusses how

these structures could be used in self-timed FPGA routing and I/O interfaces.

The routing of handshaking signal pairs in the STACC timing array requires

the design of handshaking switchboxes that can match the routing of switch-

boxes in the data array. Section 8.3 develops handshaking switchboxes from

the reconfigurable C-Muller gate, which can synchronise the fan-in and fan-

out of data bundles in the timing array routing.

A different style of timing array routing can be developed using the distrib-

uted reconfigurable C-Muller gate; this is discussed in Section 8.4. The benefits

of the distributed routing structures are best utilised with a different style of

timing cell to that developed in the previous chapter. An outline development

of such a distributed timing cell is given, which provides an interesting com-

parison with the centralised C-Muller gate timing cell developed previously.

1IVJ

8.2 Transparent Routing Structures

An important benefit of the self-timed approach is that it allows designs to

operate independently of the routing delay between the various parts of the

system. This allows routing structures that alter the delay on a route to be

inserted 'transparently' into a self-timed FPGA architecture. The designer need

not be aware of their presence, yet the design will still work. This cannot be

done with synchronous systems, since changing the routing delay could cause

the system to fail to meet the global clock constraint.

Below, three routing structures that can be inserted transparently into the

routing are considered: buffering, route multiplexing and alternative routing

schemes. These structure are of particular use over longer routes and for shar-

ing input/output resources.

8.2.1 Buffering

Any number of buffering stages can be inserted transparently into the routing

of a self-timed system. Including a buffer in a route increases the latency of the

route, due to the additional delay for capturing the data in the buffer's memory

elements, but throughput is increased, since the route can contain more than

one value at a time.

Buffering is particularly useful over long routes, since the handshaking sig-

nal routing delay may be the critical source of delay, especially in four-phase

protocols, where there are additional recovery transitions. In pipelines, it is the

longest cycle time of all the stages in the pipeline that determines the speed of

the pipeline. By splitting the route using a buffer, the latency of the route is

marginally increased. However, if the route was on the critical path, the cycle

times of the handshaking protocols to and from the buffer are less than the

cycle time of the unbuffered route, so the performance of the pipeline is im-

proved.

Buffering has also been shown to be important in self-timed systems with

variable length delay schemes [66]. In such systems, when the worst case delay

is encountered in a stage, it results in idle stages before and after the stage.

With buffering between stages, stages in the pipeline can stay active by using

data that is stored in the buffers.

In general, a buffer cannot be included transparently in a synchronous sys-

tem, since it would delay the arrival of the data by a clock cycle. However,

synchronous systems with flow control can include buffering, though the cost

120

of inserting a buffer is greater, since the additional latency is one clock cycle,

whilst the additional latency in the self-timed protocol is simply the time taken

to capture the data.

8.2.2 Route Multiplexing

In the field of Communications, routes are commonly shared between a num-

ber of sources and destinations by using some form of multiplexing. The flow

control properties of self-timed systems also allow such schemes to be incor-

porated transparently into self-timed routing for FPGAs.

7

Figure 8.1: Route Multiplexing using Q-Call and Branch Modules

Figure 8.1 illustrates a multiplexing scheme using the Q-Call and Branch

modules introduced in Chapter 6. The Q-Call module arbitrates between re-

quests to use the route. The result of the arbitration Q is used to select the

output data for the route via a bus multiplexor. The Q signal is also routed

with the data bundle to indicate which route is using the shared channel. At

the other end of the channel, the data is routed to its two destinations. The

handshaking signals are separated by the Branch module that is controlled by

the Q signal.

Route multiplexing has particular use in FPGAs, for multiplexing data on

input/output pins. Most current FPGA architectures have far more signals

on the edge of the array then can be routed via the I/O pins. This coupled

with the additional off-chip delays prevents arrays being extended uniformly

across multiple devices. Self-timed routing accommodates for the additional,

off-chip delays, and with the addition of route multiplexing, this allows self -

timed FPGAs to be extended uniformly to multi-device arrays.

121

Pin sharing via multiplexing can be used in synchronous FPGAs. For ex-

ample, the Virtual Wires System [11] used multiplexing to overcome the pin

limitations in a multi-FPGA logic emulation system. However, these schemes

need some form of flow control to be explicitly introduced into the design, and

thus cannot be included transparently as in the self-timed case.

8.2.3 Alternative Routes

Typically, in FPGAs, each data bus is provided with a dedicated signal path,

from sender to receiver. Thus, there is no need to provide alternative routes

in the architecture to overcome bottlenecks. However, if route multiplexing

is introduced, or if the timing array routing architecture is used in other self-

timed routing applications, it may be be useful to provide alternative routes

between sender and receiver, to overcome bottlenecks.

CO

P1
/Z

Figure 8.2: Alternative Routes

Figure 8.2 illustrates an alternative route scheme. It is similar to the work

sharing pipeline examples from Section 5.4, but instead of sharing the pro-

cessing load between two pipelines, communications are shared between two

routing channels. For the routing channels to be used concurrently, the routes

must contain some buffering, otherwise, the communication on one channel

has to be completed before communication on the next channel can begin.

Either Toggled-Branch modules or Q-Call modules can be used as the con-

trol blocks. When Toggled-Branch modules are used, the left hand control

block distributes the data alternately to each channel. The right-hand control

block, a Toggled-Branch module connected in reverse, is used to alternately

122

take data from each channel. Thus the potential bandwidth of the channel is

doubled, by distributing the data between two channels.

When Q-Call modules are used as control blocks, a slightly different beha-

viour emerges. The control block on the left, a Q-Call module connected in

reverse, sends data down whichever channel is free. The right-hand Q-Call

block takes data from whichever channel has data available. The advantage of

the Q-Call scheme is that it dynamically chooses which channel to use, and so

can avoid blockages in the routing. However, it can re-order data, so either the

order of data has to be unimportant, or the data has to be routed with a tag to

identify its order.

8.3 Routing Handshaking Signals

The purpose of the STACC timing array routing is to route handshaking sig-

nal pairs, in a way which matches the routing of their associated data bundles

in the data array. Routing of handshaking signal pairs rather than individual

handshaking signals is advantageous, since the request and acknowledge sig-

nals in a handshaking pair are routed in opposite directions, and so the same

configuration data can be used to configure the routing of both signals. Also,

the routing of handshaking signal pairs, rather than individual handshaking

signals provides a clean interface between the routing architecture and the tim-

ing cells.

In routing handshaking signal pairs, it is important that the bundling con-

straint is maintained by the routing. For this to be achieved, the routing struc-

ture in the timing array should match as far as possible that in the data array.

As a result, the interconnection network used in the data array has a strong

influence on that used in the timing array. Depending on the routing structure

of the data array, it may be necessary to include delay elements in the tim-

ing array routing to ensure that the bundling constraint is maintained. Delay

matching is considered in Section 8.3.2.

The timing array routing limits the number of data bundles that may be

routed through the data array. It is easy to construct routing patterns in the

data array that would require an enormous number of handshaking pairs to be

routed in the timing array. For example, designs with data bundles of single

bits fanning out to many different destinations would require a massive quant-

ity of handshaking pairs routed in the timing array. The overhead of provid-

ing timing array routing resources that could route such designs is massive,

123

since two handshaking signals are being routed for each bit in the data array.

Thus, unless a disproportionate amount of circuitry is given over to the tim-

ing array routing, there will always be data array routing patterns that could

be implemented in a synchronous version of the architecture that cannot be

implemented similarly in the self-timed architecture.

Although it is impractical to provide sufficient timing array routing re-

sources that can cover every conceivable pattern of data flow in the data array,

the timing array routing should be capable of implementing common patterns

of data flow for a reasonable number of data bundles. Generally, the pattern of

data flow is more structured than the scenario envisaged above of individual

bits being routed to multiple different destinations. Even if timing cells only

produce a data bundle of a single bit, these can generally be grouped together

with other timing cells producing single bits to form a bundle of signals that

are routed to a destination. Similarly, the destination for a bundle may not be

a single self-timed region, but may be a group of self-timed regions, with each

timing cell only requiring certain signals from the bundle. This suggests that

the routing architecture should allow the fan-in and fan-out of data bundles

within the architecture.

	

Switchbox 	4Echbo sw:chb';

Log 	 [Logic 	 Logic

(a) Data Array Routing

: 	Handshaking 	: 	Handshaking 	 Handshaking 	:

	

Switchbox 	• 	Switchbox 	• 	Switchbox

T-Cell 	I 	T-Cell 	 T-Cell 1

(b) Timing Array Routing

Figure 83: Abstract Routing Architecture

124

Since the routing of handshaking pairs has to match the routing of their as-

sociated data bundles, the topology of the data array routing determines the

topology of the timing array routing. Rather than discuss the merits of various

routing topologies, this section concentrates on the two basic routing opera-

tions of fan-in and fan-out of data bundles. To illustrate the discussion, the

simple one-dimensional data array and timing array routing architectures of

Figure 8.3 are used. The data array consists of logic blocks that are connec-

ted by a number of input and output signals to one routing switchbox. These

routing switchboxes are connected to from a one-dimensional array. A sim-

ilar timing array routing structure is used consisting of timing cells connected

by a number of handshaking links to a one-dimensional array of handshaking

switchboxes.

Figure 8.4 illustrates the fan-out and fan-in of data using the routing archi-

tecture introduced in Figure 8.3. In Figure 8.4(a), data signals fan out from one

logic block to three destination blocks. Figure 8.4(b) illustrates the reverse data

flow pattern; data fans in from three source logic blocks to a single destination.

Both fan-in and fan-out of data flow can be synchronised using three tim-

ing cell to timing cell links as illustrated in Figure 8.4(c). The routing of the

handshaking signals consists of two separate signal paths, one for the request

signals and one for the acknowledge signals. One path consists of the hand-

shaking signals fanning out from the timing cell on the left to the three timing

cells on the right; the other path consists of three timing cells on the right fan-

ning in to the timing cell on the left. The routing paths are inverses of each

other; this allow the same routing to be used for both the fan-in and fan-out

data flows by just swapping which signals are requests and which are acknow-

ledges. This is configured using the DIR configuration bits in the timing cells

rather than by the timing array routing configuration.

In Figure 8.4(c), the synchronisation of the fan-in handshaking signal oc-

curs in the timing cells; each fanning in handshaking signal is routed to the

destination timing cell on the left, which synchronises the three handshaking

signals as a group. Likewise, the fan out of the handshaking signals also occurs

in the timing cell; the three fanning out handshaking signals are routed separ-

ately after leaving the timing cell. This pattern of routing fan-out handshaking

signals is wasteful, as the same signal is routed separately to three destinations.

Rather than routing the same signal three times through the timing array,

it could be routed once, fanning out when required in the routing. However,

this would break the symmetry in routing of the handshaking pairs. This sym-

125

- I
I 	 I

I 	 I

17

Logkj 	 Logic

(a) Fan-Out Data Flow

Logic 	 Logic

(b) Fan-In Data Flow

Logic

Logic

I
L Logic

(c) Synchronisation in Timing Cell

I 	 I 	 I
I 	 I 	 I

LILJ 	LL: 	LjL
	

LiLL
T-Cell 	 T-Cell 	 T-Cell

	
I T-Cell I

(d) Synchronisation in Routing

Figure 8.4: Fan-Out/Fan-in Routing

126

metry is important as it allows the same configuration data to be used to con-

figure the flow of handshaking signals in both directions, since the signal paths

are the reverse of each other. Also, the routing of handshaking pairs rather

than handshaking signals provides a clean interface to the timing cells and

other routing structures, such as those discussed in Section 8.2.

To allow handshaking signals to fan out in the routing, and to continue to

route handshaking pairs requires synchronisation to be included in the tim-

ing array routing to synchronise the fan-in of handshaking signals. This is

illustrated in Figure 8.4(d). The implementation of the timing array routing is

more complex, since it requires that the routing be capable of implementing

C-Muller gates rather than simply routing signals. However, allowing syn-

chronisation saves on routing resources. Only one handshaking pair is routed

through the timing array, fanning out and synchronising when required. Also,

only one timing cell link is required into the timing array on the left, rather

than the three used when synchronisation could only occur in the timing cell.

The above example has illustrated the complexity of routing handshaking

pairs if synchronisation of handshaking signals is not implemented in the rout-

ing. For a data bundle, if synchronisation is not implemented in the routing,

every source timing cell of the bundle must route a handshaking pair to every

destination timing cell of the bundle. Hence, for N timing cells communicating
to M other timing cells using a common data bundle, NM timing cell to tim-
ing cell links are required. In comparison, if synchronisation is included in the

routing then only one path through the timing array routing is required, which

synchronises all the timing cells that connect to the data bundle. Structures for

synchronising handshaking signals in the routing are described below.

8.3.1 Handshaking Crossbars

For routing data, the most general routing switchbox is the crossbar switch,

since it allows any input signal to be routed to any output signal. Other data

routing switchboxes can be considered as a subset of the routing in the cross-

bar switch. Hence, a handshaking switchbox which can synchronise flows for

a crossbar switch in the data array is the most general type of handshaking

switchbox. Such a handshaking switchbox is termed a handshaking crossbar. Be-
low, handshaking crossbars are developed using the reconfigurable C-Muller
gate.

It is useful to consider in a crossbar switch how bundles of data signals

are routed, rather than individual signals. For bundles of data signals being

127

1 	CJ C)
C C C

I==

Houti

Hout2

Figure 8.5: 3:2 Reconfigurable C-Muller Crossbar

routed to and from a crossbar switch in the data array, any output data bundle

can take input signals from any subset of the input data bundles. Similarly,

a signal from any input data bundle may route to any subset of the output

data bundles. To synchronise such a data flow in a handshaking switchbox,

each output handshaking signal must be able to synchronise on any subset

of the input handshaking signals. This behaviour can be implemented by a

reconfigurable C-Muller gate with connections to all the input handshaking

signals. For multiple outputs, the reconfigurable C-Muller gate is duplicated.

This structure is called a reconfigurable C-Muller crossbar (rC-crossbar). Figure

8.5 illustrates a 3:2 rC-crossbar; the two output handshaking signals can syn-

chronise on any subset of three input handshaking signals.

The rC-crossbar only synchronises individual handshaking signals, not the

handshaking signal pairs which are routed in the timing array. Two ways exist

to create a structure that works on handshaking pairs. The first way is to use a

rC-crossbar with the same number of input handshaking signals as outputs. As

• result, each input handshaking signal can be paired with an output to create

• handshaking signal pair. Such a structure is termed a common input/output

handshaking crossbar. Figure 8.6 illustrates a 3:3 rC-crossbar used to create a

common input/output handshaking crossbar.

The common input/output handshaking crossbar is termed as a crossbar

since it allows any handshaking signal pair to synchronise with any other

handshaking signal pair. It is termed as common input/output as it does not

assign a direction of data flow to the handshaking pairs that it synchronises.

Thus, it can be used to synchronise data flow across crossbar switches which

have bidirectional data flows, i.e. every input/output connected to every other

input/output.

Hini
Houti

Hin2
Hout2

Hin3
Hout3

Figure 8.6: Common Input/Output Handshaking Crossbar

The second way of taking the rC-crossbar and creating a structure that op-

erates on handshaking pairs is to take two rC-crossbars and use them to route

handshaking signals in either direction. Figure 8.7 shows a 3:2 rC-crossbar

coupled with a 2:3 rC-crossbar; it can synchronise any of the handshaking pairs

on the left with any subset of the handshaking pairs on the the right. This struc-

ture is called a disjoint handshaking crossbar. It is termed disjoint as data flows

can only be synchronised that flow from left to right or right to left. There is no

way to synchronise data that exits on the same side that it enters. The disjoint

handshaking crossbar can be used to synchronise data flows across crossbar

switches with fixed input and output connections.

The disjoint handshaking crossbar can be considered as a subset of the pos-

sible synchronisations of a common input/output handshaking crossbar with

the same total number of handshaking pairs. For instance, the 3:2 disjoint

handshaking crossbar is a subset of the common input/output handshaking

crossbar with five handshaking pairs.

The number of configuration bits needed for the reconfigurable C-Muller

gates in a handshaking crossbar can be halved by sharing configuration bits.

Configuration bits can be shared, since both the forward and reverse paths of

the handshaking signals are Synchronised in the handshaking crossbar. Thus,

if the output of handshaking pair X is configured to synchronise on the input

129

H1nA1

H1nA2

HinA3

HoutAl

HoutA2

HoutA3

HoutBi

HoutB2

HinBi

HInB2

Figure 8.7: 3:2 Disjoint Input/Output Handshaking Crossbar

of handshaking pair Y, then the output of handshaking pair Y must synchron-
ise on the input of handshaking pair X. This allows the same configuration bit

to be used to configure both synchronisations.

8.3.2 Delay Matching

A critical property of the timing array routing is that it has to maintain the

bundling constraint for handshaking signals that are associated with a data

transfer. So far, this has been achieved by using the same topology of routing

network to connect the switchboxes in the timing array and data array. The

main difference between the two structures is that in the data array switchbox

a multiplexor is typically used to implement the routing, whilst in the timing

array a reconfigurable C-Muller gate is used to implement the routing.

To ensure the bundling constraint is met, it has been assumed that the re-

configurable C-Muller gate has a longer delay then the multiplexor. In some

cases, this may not be so, for example, heavily loaded data signals may take

longer to change than the time for the reconfigurable C-Muller gate to change.

If this can occur, then additional delay elements need to be included with the

C-Muller gates to ensure the bundling constraint is met. Generally, fixed delay

elements would be added, as the cost of providing variable delay elements

would be prohibitive.

A problem with placing additional delay on the C-Muller gate is that it adds

additional delay to handshaking signals that are not bundled with a data trans-

130

fer, as well as those which are. The handshaking crossbar can be adapted in

several ways so that handshaking signals not bundled with data transfers are

not delayed. One way is to add configuration bits, one per C-Muller gate, that

determine whether the additional delay is required to ensure the bundling con-

straint is met. The disadvantage of this is that it requires extra circuitry, which

also increases the delay. Another way to ensure that handshaking signals not

bundled with a data transfer are not delayed would be to fix which handshak-

ing signals in the routing are associated with a data transfer and which are

not. This approach saves on configuration bits, but reduces the flexibility of

the timing array routing, since it forces the handshaking pair to transfer data
in a specified direction.

An alternative to trying to maintain the bundling constraint is to use a

delay-insensitive protocol in the routing. As discussed in Chapter 3, delay-

insensitive codes can be expensive to implement. Dual-rail encoding requires

two wires per data bit, whilst delay-insensitive codes that require less wires,

such as Sperner or Berger codes, require more complex decoding /encoding

circuitry. In general, it is not worthwhile to implement these schemes intern-

ally to the FPGA, since the FPGA designer has a large degree of control over

the internal chip delays. However, delay-insensitive protocols are useful for

off-chip connections, since the FPGA designer has no control over the off-chip

routing delays. Due to the packaging cost of input/output pins, the use of

delay-insensitive codes that minimise the number of signal wires would be

preferable for such routing. The circuitry required for encoding and decoding

can be shared, along with I/O pins, by using the route multiplexing scheme
described in Section 8.2.2.

8.4 Distributed C-Muller Gate Routing

In the handshaking crossbar structures developed so far, the implementation

of the C-Muller gate has not been specified; either centralised or distributed re-

configurable C-Muller gates could be used. Unless large fan-in C-Muller gates

are required, a centralised gate would be favoured, since all the handshaking

signals are already routed to a central switchbox. However, the distributed

C-Muller gate has the potential for a different style of timing array routing,

where the synchronisation is distributed across the wires, and wires are joined

using standard routing switchboxes rather than the handshaking crossbars de-
veloped earlier.

131

Rin

Am

Aout

Rout

Figure 8.8: Pipeline using Distributed C-Muller Gates

Figure 8.8 illustrates the control circuitry for a two-phase pipeline imple-

mented using distributed C-Muller gates. For reasons of clarity, the weak pull-

up resistors and delay elements have been omitted from the figure. The out-

puts of the distributed C-Muller gates drive two synchronisation wire pairs.

The right-hand set of open-collector drivers are request inputs to the next dis-

tributed C-Muller gate, whilst the left-hand set of open-collector drivers are

acknowledge inputs to the previous distributed C-Muller gate. Since the ac-

knowledge inputs to the C-Muller gate are inverted, the acknowledge drivers

are inverted with respected to the request drivers. Data can be routed in the

opposite direction through the pipeline using the same control structure, by

swapping the request and acknowledge signals.

Labelling of the off-figure connections is more difficult with the distrib-

uted implementation, since rather than labelling individual wires, pairs of syn-

chronisation wires must be labelled. Also, since the synchronisation wires are

bidirectional, it is not possible to identify inputs and outputs to the circuit.

However, Figure 8.8 is labelled in a similar way to the previous pipeline cir-

cuits. This labelling, rather than being based on the direction of signal flow,

is based on the direction of event flow in the figure. Events are considered to

travel from the open-collector drivers to the SR flip-flops. Once the direction

of event flow is identified, then the off-figure connections can be labelled, in a

similar way to previous pipeline control circuits.

In comparison to the implementation of Micropipelines using centralised

C-Muller gates, the distributed C-Muller gate pipeline is more complex, since

instead of one signal being routed for each handshaking signal, two wired logic

signals are required. However, to create larger fan-in gates, no further signals

are required, merely the extension of the synchronisation wire pair. This is

illustrated in Figure 8.9, which shows a fan-out of two from the stage on the left

to the two stages on the right. The fan-in of the acknowledge signals from the

132

Rin

Am

Routi

Rout2

Aout2

Aoutl

Figure 8.9: Two Way Fan-Out

two stages on the right can be implemented by connecting all the timing block

acknowledge drivers to the same pair of synchronisation wires. In contrast to

the centralised C-Muller gate, no additional signals are required.

However, the reverse process of fan-out of the request signals becomes

more complex. In the centralised C-Muller gate architecture, the fan-out of

these signals can be done by simply routing the same signal to all the destin-

ations. In the distributed architecture, each synchronisation wire pair must be

isolated; i.e. driven by separate drivers. In Figure 8.9, the left-hand stage has

two separate sets of request drivers, to ensure that the fan-out request signals

are isolated. If the synchronisation wire pairs are not isolated, then all the fan-

out stages are synchronised together, as a group. Hence, although there is a

gain in the ease of creating large fan-in C-Muller gates, the complexity of the

fan-out routing is increased, which generally negates any advantage from the

ease of creating large fan-in gates.

One exception to this is when the desired behaviour is to synchronise a

group of timing blocks. Figure 8.10 illustrates a timing block on the left com-

municating to a group of two timing blocks on the right. The group of two

timing blocks are duplicates; both are connected to the same input synchron-

isation wires and drive the same output synchronisation wires. This duplic-

ation seems wasteful, but the alternative scheme would be to use one timing

block and distribute the memory control signals over the region covered by

two timing blocks. This requires extra routing; the cost is not insignificant con-

sidering that the minimal circuitry for the timing block is only a SR flip-flop

plus open collector drivers.

133

Rin

Am

Rout

Aout

Figure 8.10: Grouping of Two Timing Blocks

Furthermore, synchronising groups of timing blocks is advantageous for

its delay properties. The group of timing blocks is constrained to wait for the

slowest timing block in the group before proceeding. This allows locally de-

termined delay schemes to be used for the timing block group. The alternative

scheme, of grouping data cells by using one timing block to control a larger

region of the data array, requires a more sophisticated delay scheme, so that

the single timing block could account for the wider range of delays. Thus, the

ease of grouping timing blocks in the distributed architecture allows simpler

local based delay schemes to be used.

8.4.1 Distributed Timing Cell

The routing structures based on the distributed C-Muller gate differ greatly

from those developed for the centralised C-Muller gate. These differences, es-

pecially the minimal amount of circuitry required for a timing block, suggest

that a different style of timing cell could be developed which is suited towards

a distributed C-Muller gate routing architecture. As discussed in chapter 6, the

distributed C-Muller gate suits fuse based configuration, since the wired logic

requires low resistance bidirectional lines. Fuse based configuration precludes

dynamic reconfiguration which is the focus of this thesis. However, the work

is included as it illustrates both the wide applicability of the STACC architec-

tural model, and also how a different configuration technology influences the

design of the timing array.

The minimum circuitry required for the distributed timing cell is a SR flip-

flop plus open-collector drivers. This circuitry is small enough that for many

choices of data cell design, the overhead of providing one timing cell per data

134

Data 	Timing

Routing 	Routing
.....

	

Logic 	> 	'
• 	Function 	I

Function

r::: s Q

Timing Co

Oc

Oc

o 	I ___________
oc

•

• S S S S - - - - -

Figure 8.11: Distributed Timing Cell and Data Cell

Unit

II

135

cell would not be unreasonable. Furthermore, the previous section has illus-

trated that the main advantage of the distributed architecture is its ability to

group timing blocks together. This suggests that a reconfigurable distributed

timing cell could be provided at a fine level of granularity and then grouped

together to from larger timing cell groups.

Figure 8.11 illustrates a distributed timing cell providing memory control

to one data cell. The timing cell is similar to that used in the previous pipeline

example with the addition of the delay element to the cell. The figure is laid

out to highlight similarities with fuse based architectures such as the Cypress

pASIC380 [24] series of FPGAs. The architecture maintains the clear separation

between timing cell and data cell that was a design aim of the STACC architec-

tural model. This differentiation is also maintained by using separate routing

for the data signals and timing control synchronisation wires.

The only additional element to the distributed C-Muller gate in the timing

cell is the delay element. Since the timing cell is going to be provided at a fine

level of granularity, a simple delay element, such as a fixed unreconfigurable

delay element, is preferable. More complex delay elements will significantly

increase the size of the basic timing cell. Even though no variation is intro-

duced by the individual fixed delay elements, variation in the delays of groups

of cells occur, as larger groups will take longer to distribute the synchronisation
wire values to all cells.

In contrast to the centralised timing cell design, the two-phase protocol is

preferable in the distributed design. In the centralised timing cell, the four-

phase protocol was preferred, since it made the basic branching structure sim-

pler and allowed simpler memory elements to be used. This was at the expense

of more complex synchronisation circuitry to deal with the recovery phase of

the handshaking protocol. However, in the distributed design, a fine granu-

larity of timing cell is being used, so making the timing cell more complicated

incurs a greater area overhead. Also, communication time is an issue in the

distributed architecture; the rise times on the synchronisation wires are slow,

since the wires are only driven high by weak pull-up resistors. Thus, the ad-

ditional recovery phase in a four-phase protocol may cause communication

times to dominate over computation time. Hence, two-phase signalling is the

preferred protocol for a distributed implementation.

136

8.4.2 Distributed Control Blocks

In the centralised timing cell, developed previously, branching and merging

were done on a per link basis. Each link could be individually selected on each

cycle of the timing cell. This is hard to achieve in the distributed timing cell,

since individuals links are not routed, only the synchronisation wires. Also,

the previous section has argued for providing a fine level of granularity of

timing cell to data cells. Adding the complexity of branching and merging

could significantly increase the size of the timing cell. To maintain a small size

of timing cell, it is better to provide branching and merging as separate cells,

though this does not integrate the two functions, which was an advantage of

the centralised design.

Data 	Timing
Routing 	Routing
.....

Oc q_
Oc

T

D F
Sele

oc

11111

.....

Figure 8.12: Distributed Control Structures

The Select and Q-Merge pair introduced in chapter 6 are good candidates

for such branching elements, since they provide a wide range of control func-

tion with a minimum of circuitry. More complex branching and merging struc-

tures can be made by connecting several of the Select and Q-Merge gates to the

rge

137

same input or output synchronisation wire pairs.

Figure 8.12 illustrates the use of the Select and Q-Merge gates to allow

branching and merging in the distributed architecture. These gates operate

directly on synchronisation wires; this allows fan-in or fan-out synchronisa-

tion of the signals going into and out of the control blocks. Q-Merge and Select

gates that operate on synchronisation wire pairs, rather than single wires can

be implemented by placing SR flip-flops on the input synchronisation wires, to

convert to a single wire, and then using the standard implementations of the

Q-Merge and Select gates. The output of the gates and their inverses are used

to drive open collector drivers for the output synchronisation wires.

8.4.3 Comparison with Centralised Timing Cells

This section has developed a distributed timing cell for STACC, which is very

different from the centralised one. Many of the design decisions made for the

centralised timing cell are made differently in the distributed architecture to

exploit the different routing architecture.

Compared to the centralised timing cell, the simplicity of the basic distrib-

uted timing cell favours a fine granularity architecture where a timing cell can

be provided per data cell. This large number of fine grain cells are grouped

together using the distributed routing architecture. The simplicity of the basic

timing cell also leads to the decision to separate branching and merging ele-

ments from the timing cell. This differs from the centralised timing cell where

an integrated approach is favoured. Finally, the slow transitions of the wired

logic signals favours a two-phase implementation rather than the four-phase

one that was adopted for the centralised timing cell.

8.5 Summary

This chapter has illustrated the benefits of self-timed routing. Routing struc-

tures can be placed transparently in the routing, whilst maintaining the opera-

tion of the system. These structures have important use, in improving through-

put of routes, and in sharing I/O resources in self-timed FPGAs. The chapter

also developed structures for routing handshaking signal pairs in the STACC

timing array based on the reconfigurable C-Muller gate. Handshaking switch-

boxes based on the handshaking crossbar allowed the fan-in and fan-out of

data bundles to be synchronised in the timing array.

138

The final part of the chapter considered routing structures based on the dis-

tributed C-Muller gate. The distributed synchronisation structures were flex-

ible enough to enable all the synchronisation to be performed in the timing

array routing, rather than in the timing cell. This led to a very basic, stripped

down form of timing cell, which could be provided in large numbers and syn-

chronised as a group using the distributed routing architecture. The distrib-

uted timing cell is not developed further, since it suits fuse based configuration,

and hence is not suitable for the dynamic hardware applications on which this

thesis is concentrating.

139

Chapter 9

Self-Timing the Xilinx XC6200

9.1 Introduction

This chapter is the first of three concerned with applying the STACC model

to create a new self-timed version of the Xilinx XC6200 architecture. In this

chapter, the synchronous XC6200 architecture is introduced and a self-timed

version created using the STACC model. The following chapters demonstrate

the use of the self-timed XC6200 for dynamic hardware and evaluate the archi-

tecture with respect to the original synchronous XC6200. Chapter 10 presents

a case study concerning the design of run-time parameterised circuits for finite

field operations using the self-timed XC6200 architecture. Chapter 11 compares

the synchronous and self-timed XC6200 architectures, and proposes improve-

ments to the self-timed architecture.

For the study, it was decided to design a STACC architecture using a cur-

rent synchronous FPGA architecture for the data array. Using a current archi-

tecture for the data array, allowed design experience and design tools to be

transfered to the new self-timed version of the architecture. Also, choosing a

current architecture allowed comparison to be made between the synchronous

and self-timed versions of architectures with the same data array.

The XC6200 in particular was chosen for several reasons. It is a contem-

porary FPGA architecture (first silicon 1995), and includes features that make

it suitable for dynamic hardware systems, an area where self-timing would be

expected to provide most benefits. Another factor in choosing the XC6200 was

that it's predecessor, the Algotronix CAL was also developed at Edinburgh.

140

9.2 XC6200 Architecture

9.2.1 Background

The Xilinx XC6200 FPGA [123] is the successor to the Algotronix CAL1024

FPGA [65, 3]. The CAL1024 is a fine grain random access SRAM FPGA com-

posed of a nearest neighbour array of integrated routing and logic cells. The

XC6200 architecture extends this structure by including non-local routing sig -

nals called flyovers (or fast lanes in later versions of the data sheet), based on a

hierarchy of 4 x 4 blocks of cells.

The other main difference of the XC6200 from CAL is that the XC6200 has

been designed specifically for use in dynamic hardware systems, especially

the 'co-processor' type (see Section 2.7.1) with a close coupling between FPGA

and microprocessor. To support this, the XC6200 has a sophisticated control in-

terface, to minimise the read/write cycles required for configuration and data

transfer between FPGA and microprocessor.

9.2.2 Function Block

Figure 9.1 illustrates the multiplexor based function block used in the XC6200.

The inputs to the function block are chosen by three 8: 1 multiplexors: xl, x2

and X3. The inputs to these multiplexors are sourced from the four local inputs

to the cell (N, E, S and w) and the four flyover signals (N4, E4, S4 and w4) that

cross the cell.

The cell's logic function is built around a 2 : 1 multiplexor, which generates

the combinatorial output function C. The select input to the multiplexor comes

from the xl multiplexor. The data inputs to the C multiplexor come from the

Y2 and Y3 multiplexors; these multiplexors can choose between the inverted

and non-inverted forms of the inputs from the x2 and X3 multiplexors. Thus,

the logic function can be used to create a 2 : 1 multiplexor with optional in-

put inversions. Such a reconfigurable gate is capable of creating any boolean

function of two inputs. The Y2 and Y3 multiplexors also allow the output of

the memory element to be fed back and used as an input to the logic function

without using external routing resources.

The memory element used in the function block is a single bit D-type re-

gister, which can be read and written via the configuration interface. The

memory element takes its input from the output of the RP (Register Protect)

multiplexor. When RP is clear, the register takes its input from the output of

combinatorial logic function C. However, when RP is set, the output of the re-

141

F

Figure 9.1: XC6200 Function Block

gister is fed back to its input; this protects the register from being updated. The

protected register state is useful, as it allows a constant zero or one input to be

fed into the function block without using external routing resources. The out-

put of the register feeds into the Cs (Combinatorial/Sequential) multiplexor.

The CS multiplexor determines whether the function block output F is sourced

from the register or from the output of the combinatorial logic C.

In addition to the function block output F. the function block also provides

an output called Magic. The Magic signal is a special routing resource that

routes to the edge of a 4 x 4 cell block. The Magic signal is driven from either

the X2 or X3 multiplexors; this reduces the number of configuration bits re-

quired in the function block, since the x2 or X3 multiplexors are used to make

the decision of which input to route. However, this means that the Magic out-

put can only be used if the configuration of the logic function uses the required

signals on X2 or X3.

9.2.3 Interconnect

Figure 9.2 illustrates the basic routing/logic cell used in the XC6200; these cells

are arranged in a nearest neighbour grid to form the basic routing structure for

the XC6200. The routing function implemented by each cell is a variation on

a crossbar switch. Each of the local outputs (N, E, s, w) may be sourced from

any local input, except from the direction that the output goes to. Instead, this

142

E4

Magic

Wout

Eout

Magic

W4

input to the multiplexor is replaced by the output of the function block F.

Nout 	 Magic CLR S 	S4

N4 	N CLK Magic 	 Sout

Figure 9.2: XC6200 Cell Routing

The flyover wires (N4, E4, S4, w4) that cross the cell are sourced directly

into the function block. For these signals to be sourced onto the local routing,

rather than being used as an input to the function block, the function block has

to be configured as a buffer. The CLK and CLR inputs connect directly into the
function block; CLK signals cross the cell in a North-bound direction, CLR cross
the cell in a South-bound direction.

On top of the nearest neighbour grid, the XC6200 implements a hierarchical

routing structure. Cells are grouped into 4 x 4 blocks as illustrated in Figure

9.3. In turn, the 4 x 4 blocks are grouped into 16 x 16 blocks and 64 x 64 blocks.

Each level of the hierarchy has its own routing resources known as flyovers.
Signals can only be routed on to flyovers via boundary multiplexors on the

edge of the blocks so, for example, level-16 flyovers can only be driven from

boundary multiplexors at the edge of a 16 x 16 block. Signals can be routed

from any level of flyover onto the local and level-4 flyovers by multiplexors on
the 4 x 4 boundaries.

The 4 x 4 blocks in the architecture differ from the higher levels of the hier -

archy in two ways. First, the level-4 flyovers can be used directly as inputs

143

[:J 1HiI7i

TI

Cell

DIM Boundary
Multiplexor

Figure 9.3: 4 x 4 Block

H LH LH
rL

MNets

H 	r
	- MA Nets

Lfl I I
Figure 9.4: XC6200 Magic Routing

to the cells. Other flyover signals have to route via the local routing or the

level-4 flyovers to reach the cells. The second difference of the 4 x 4 blocks

from the higher levels is that they have additional routing resources provided

by the Magic signals. Magic signals pass from .each cell to the edge of the

4 x 4 blocks. Figure 9.4 shows the routing of the Magic signals to one edge of

a 4 x 4 block. Two Magic signals route to each boundary multiplexor, known

as the M and MA signals. The signals are designed to allow efficient corner

turning in designs. The routing exhibits rotational symmetry, so the pattern

of Magic routing is duplicated for every other direction. Though, the Magic

signals exhibit rotational symmetry, the signals do not exhibit reflective sym-

metry, which prevents designs using the Magic signals from being 'flipped' by

design software.

4x4
	

1 6x1 6
boundary
	

boundary

4x4 cell

16x16 cell

Ii 	 ii

Magic Routing

Figure 9.5: Cross-section of XC6200 Routing

The overall routing structure of the XC6200 series is illustrated in Figure

9.5, which shows a cross-section of the routing. Figure 9.5 is valid in both

the North-South and East-West directions, since the basic routing architecture

exhibits rotational symmetry.

The CLK and CLR routing are not included in Figure 9.5, since they do not

exhibit rotational symmetry. The CLK signals are driven from 4 x 4 block

boundary multiplexors and cross the chip in a northerly direction. The CLR

signals are driven from 16 x 16 boundary multiplexors and cross the chip in

a southerly direction. To ease the distribution of clock and clear signals, four

global signals Gi, G2, GCLK and GCLR are supplied, and can be used as inputs

to the boundary multiplexors that drive the CLR, CLK and N4 signals.

IE

9.2.4 Configuration Memory and Interface

The configuration memory in the XC6200 uses an SRAM with a random access

interface. In addition, the XC6200 also supports a number of serial configura-

tion modes. The XC6200 is designed to be closely coupled to a microprocessor

for dynamic hardware applications, so includes two features to facilitate rapid

reconfiguration by a microprocessor: the mask register and the wild card address
register.

The mask register allows individual bits in a word of configuration memory

to be addressed. Effectively, the mask register gives read/write access per-

mission to certain bits of a word. On writing to the XC6200, masked bits are

left unchanged, whilst on reading from the XC6200, masked bits become zero.

Without the mask register, to change certain bits in the configuration memory

would require a read operation from the SRAM, followed by a series of bitwise

logical operations by the microprocessor, followed by a write operation. With

the mask register, only one write operation is required, plus the initial set up

of the mask register.

To allow a microprocessor to reconfigure large regular designs quickly, the

XC6200 includes a wild card address register. The wild card register allows

the same value to be written to a group of addresses in one write operation.

All configuration memory locations with addresses that match the write ad-

dress but ignoring those bits set in the wild card register, are written to in one

operation. The wild card addressing logic is bypassed on read operations.

Together, the two registers provide a powerful reconfiguration interface.

Configuration bits relating to certain functions can be set over a large region

of the array in one operation. Regular designs can be configured in very few

operations via this interface. Semi-regular designs can be configured by a two-

phase configuration scheme of configuring the regular design, and then con-

figuring the exceptional cases. In effect, the XC6200 allows the compression of

regular and semi-regular design configurations. This compression is import-

ant for dynamic hardware designs as it allows fast reconfiguration. However,

it does not compress irregular designs; compression of irregular configurations

would require a more general compression scheme.

9.2.5 Input/Output Interface

The XC6200 provides two I/O interfaces: I/O blocks (lOBs) that link the edge

of the array to device pins, and register based I/O that utilises the configura-

146

tion interface to access the memory elements of individual cells.

The XC6200 JOBs provides output to and from the device pins, for signals

at the edge of the array. Input data from the JOB pins are routed via modi-

fied boundary multiplexors onto the XC6200 routing. The output drivers of

the JOBs consists of a data input and an enable input; the data input is driven

from the local boundary multiplexor, whilst the enable signal is driven from

the level-4 boundary multiplexor. Many of the JOB pins are shared with device

control pins. This minimises the pin count of the device, though does mean

that not all JOBs may be used in all designs. The control signals interface

through the same data/enable arrangement as the data signals. Pins that are

not shared with device control pins, may instead be shared with a 'padless'

JOB, which interfaces via the unused control signal interface.

A novel feature of the XC6200 is that it allows the FPGA to directly connect

to its own control signals via the JOBs. This could be useful, for example, to

allow the XC6200 to perform some control functions for itself. For example,

it could be configured to control some of the bus control signals, or to per-

form its own address decoding. An intriguing possibility of this scheme, is

self-reconfiguration of the FPGA. For example in a neural net application, the

FPGA could change the connections of the neurons depending on an evalu-

ation function. However, self-modifying hardware is likely to be as difficult to

implement, use and control as self-modifying code in software.

The other input/output interface to the XC6200 is the register I/O interface,

which allows the values of the registers within each cell to be read and writ-

ten via the configuration interface. A similar mechanism was provided in the

CAL1024, but access was only allowed to one cell at a time, since the value was

stored with the configuration data for the cell. This limited reading and writ-

ing of values to one bit at a time. To overcome this, the XC6200 has separately

addressed memories for configuration data and register values.

The register I/O interface is addressed by column; each column of cells in

the XC6200 can be selected, and read or written in one read/write cycle. Since

the height of the array (64 bits for the XC6020) is larger than the configura-

tion bus width, the XC6200 includes a map register, to map the bus values to

memory elements in the selected column. The map register signifies which of

the cells in the selected column is to be read or written. For read operations, the

mapping circuitry takes the register output of the column in the array, and re-

moves unselected bits from the result, and shifts the other bits down. For write

operations, the reverse process occurs. The map register is advantageous as it

147

saves the microprocessor from performing a whole series of shift and logical

operations to format the data that is transferred between it and the FPGA.

The signals that select the column of registers to be accessed in the XC6200

are named RegWord. The Regword signals may be routed into designs from

the drivers for the level-16 and level-64 flyovers in the North and South JOBs.

By routing the RegWord signal to designs, it is possible for designs to detect

with the addition of special circuitry when data has been written to or read

from a register. This can be used to implement a restricted form of flow control

between microprocessor and FPGA. This is discussed below.

Implementing Flow Control in the Synchronous XC6200

An important property of self-timed systems is their flow control behaviour.

The routing of the Regword signals to circuits in the XC6200 allows a simple

form of synchronous flow control to be implemented in the I/O interface.

Circuits can detect when data has been read or written from them using the

RegWord signals. These signals effectively form a request or acknowledge sig-

nal from the microprocessor.

An assumption in this form of flow control is that the FPGA is ready to

accept the data or that the data is ready to be read. In simple designs, it can

generally be assumed that the FPGA processes data faster than the micropro-

cessor, so that it will always be ready to accept data, and that the FPGA will

always produce a result before the microprocessor comes to read it. However,

this may not hold when more sophisticated functions are implemented in the

FPGA.

For true flow control, where both FPGA and microprocessor can go at their

own speed, the microprocessor must check that the FPGA has requested or

acknowledged a data transfer. For writing to registers, in the XC6200 this re-

quires an extra read cycle to read back a validity bit to indicate that the FPGA

is ready to accept data. For reading from registers, only one cycle would be

required if the data validity bit is combined with the data, though extra in-

structions in the microprocessor would be required to extract this status bit.

Both these schemes essentially require busy waiting by the microprocessor un-

til the request or acknowledge signal becomes valid from the FPGA.

An alternative to busy waiting would be to use interrupts. The request

or acknowledge signal from the FPGA could be routed to the microprocessor

interrupt lines via the JOBs. Given the overheads of interrupt processing in

microprocessors, this will only be a good idea when the FPGA takes a long

time to produce a result. In virtual hardware systems, interrupts could also be

used to indicate virtual hardware faults.

9.3 STACC Architecture Design Process

Before applying the STACC model to create a self-timed version of the XC6200,

this section discusses in general terms the overall design process of creating a

self-timed FPGA architecture using the STACC model.

9.3.1 Granularity

The key decision in the design process is choosing the granularity of the self-

timed architecture. In this context, the grain size being referred to is the size of

the self-timed region, i.e. timing cell and the data cells controlled by it, rather

than the granularity of individual data cells which is normally referred to in

terms such as 'fine grain FPGA architecture'.

The limiting factor in this choice is the overhead involved in implementing

and using the timing array for a particular choice of granularity. The overhead

has two components, the fixed overhead of implementing the timing array

and a configuration dependent overhead, that arises from fitting circuits to the

granularity imposed by the architecture.

Architectural Overhead: The architectural overhead arises from the extra cir-

cuitry required to implement the timing array, which is not required in a

synchronous FPGA architecture. Using a larger size of self-timed region,

reduces the overhead since fewer timing cells are required. However, lar-

ger self-timed regions require timing cells with more handshaking links

and more complex arbitration functions to match the complexities of the

data flow in a larger region of the data array. Smaller self-timed regions

will generally have simpler patterns of data flow, so can use timing cells

with less handshaking links and simpler arbitration functions.

Configuration Dependent Overhead: The second component of the overhead

arises from data cells that cannot be used in the data array due to lack of

timing cells. Unlike the architectural overhead, this overhead is config-

uration dependent, since some circuits will fit to the imposed granular-

ity better than others. Smaller self-timed regions have less potential for

wasting cells, whilst larger self-timed regions have the potential for wast-

ing large numbers of data cells through only a small number of cells in

149

a self-timed region being used. Since the overhead is configuration de-

pendent, designers will tend to modify the design of circuits to fit the

granularity imposed by the architecture.

The above discussion has emphasised two conflicting trends in the choice

of self-timed granularity. Large self-timed regions minimise the architectural

overhead, but increase the potential waste of data cells through insufficient

timing cells being available. The granularity chosen for a STACC based archi-

tecture needs to strike a balance between these two trends.

9.3.2 Variable Granularity

Architectures with a fixed granularity force circuits to be fitted to the granular-

ity imposed on them by the architecture, even if this is at odds with the natural

granularity of the circuit. Variable granularity architectures allow the size of

self-timed region to be adapted to match the natural granularity of the circuit.

Even with the architectures discussed so far, some variability in the size of

self-timed regions can be provided. The fixed pattern of local clock routing

only bounds the locations of the memory elements within the self-timed re-

gion. Other data cells implementing a purely combinatorial function can be

located outside this area. However, the larger the self-timed grain becomes,

the more difficult it becomes to route signals to and from the registers located

in the area covered by the local clock. Thus, this method is only suited to small

variations in granularity.

Greater variability in granularity requires specific support by the architec-

ture. Two ways of achieving flexible granularity are possible: a more flexible

distribution of local clock signals from timing cells, or the grouping of timing

cells together. These two methods are discussed below:

Flexible Local Clock Distribution: Variability in the size of self-timed region

can be achieved by allowing data cells to source local clock signals from

a number of different timing cells, rather than just one. Several problems

exist with this approach. Timing cells can distribute their local clock sig-

nal over a wide area, so the required size of the local clock drivers and

local clock skew become problems. Flexible local clock distribution also

requires more configuration bits to determine the pattern of local clock

routing. However, potentially the most severe problem is that the com-

plexity of the timing cell may not match the complexity of the data flow

that it controls, especially if one timing cell is used to synchronise a large

150

region of the data array. Thus, this technique is more suited to allowing

small variations in granularity.

Grouping Timing Cells: The other approach to providing variable granular-

ity is for a group of timing cells to synchronise before generating their

local clock signals. Potentially, grouped timing cells can provide the fa-

cilities of one large timing cell, for example, two timing cells with four

links could be grouped to provide one with potentially eight links. This

is advantageous, since the complexity of the timing cell scales with the

complexity of the associated data array.

Of the two methods described above, flexibility in the local clock routing is

easier to implement, since the forms of clock distribution used in synchronous

FPGA architectures can be adapted for it. However, this approach does not

scale the complexity of the timing cell with the complexity of the associated

data array region. Hence, the second approach of grouping timing cells is bet-

ter, however this requires new self-timed structures to implement the group-

ing. Possible structures for grouping timing cells in the self-timed XC6200 are

discussed in Chapter 11.

9.3.3 Other Design Decisions

The choice of granularity is the most important design decision in the creation

of a self-timed FPGA architecture using the STACC model. Once the choice of

granularity has been made, the other design decisions in the architecture can

be made. Essentially, most of these decisions involve defining the interfaces of

the timing cell to other parts of the architecture: the timing cell to timing cell

interface (timing array routing); timing cell to data array interface (the probe

and select routing); timing cell to environment interface (timing cell I/O inter-

face) and the timing cell to microprocessor interface (configuration interface).

Finally some design decisions need to made concerning the behaviour and im-

plementation of the timing cell, in particular, the choice of delay element.

These decisions are discussed below:

Timing Array Routing: Chapter 8 discussed timing array routing structures.

The most important aspect of the timing array routing is that it should be

able to match the routing patterns and delays of data bundles in the data
array.

151

Select Routing: The routing of select signals can be made with minimal dis-

ruption to the data array by including additional outputs for the select

signals from routing switchboxes that are already present in the data ar-

ray. Signals are routed to the select output via the standard data array

routing resources. To minimise the use of routing resources to them,

switchboxes with select outputs should be well connected to the other

parts of the self-timed region.

Arbitration and Probe Routing: An aspect of the timing cell behaviour that

has to be defined is the type of arbitration block it uses. Arbitration

schemes were discussed in Section 7.6. The choice of arbitration function

determines how many probe signals have to be routed to the data array.

The routing of probe signals to the data array can be done by providing

additional inputs to routing switchboxes already present in the data ar-

ray. It is preferable that undefined routing configuration values in the

routing switchbox are used, otherwise additional configuration bits are

required and the format of the configuration memory would be disrup-

ted. Once the probe values have entered the data array, they are routed

using the data array routing resources to their destination.

Timing Array I/O Interface: I/O interfaces for the timing array signals were

considered in the previous chapter. The discussion showed how self-

timing can allow self-timed FPGAs to be extended transparently to multi-
chip arrays.

Configuration Interface: For fuse based configuration memories, no change

is required to the configuration interface in a self-timed FPGA. For serial

SRAM configuration interfaces, self-timed FIFOs are used instead of shift

registers for the configuration memory elements. Finally, random ac-

cess SRAM based interfaces require an acknowledge signal to be gen-

erated when the read or write from the SRAM has been completed. This

needs the additional of a bundled delay element matched to the SRAM
read/write delay..

Another issue in the design of the configuration interface is the mapping

of configuration bits into the configuration memory space. Placing the

data array and timing array configurations in separate memory spaces

ensures a regular layout of both memory spaces. This regular layout is

useful when wild card addressing schemes are used.

152

Delay Methodology: The choice between a fixed delay and variable delay

methodology has important implementations for the performance of the

self-timed architecture, and the complexity of its implementation. Delay

elements were discussed in Section 6.4.

Timing Cell Implementation: A number of implementation decisions are left

which determine the internal behaviour of the timing cell. These imple-

mentation decisions, such as the choice of protocol and decoupling, can

have important implications for the performance of the timing cell. These

issues were discussed in Chapter 7.

9.4 Self-Timing the XC6200

The previous section has outlined the design decisions required in creating

a self-timed architecture using the STACC model. This section describes the

decisions taken in self-timing the Xilinx XC6200.

9.4.1 Granularity

The hierarchical structure of the XC6200 provides a series of natural sizes for

the self-timed region. The smallest of these is the basic cell in the architecture.

Providing self-timed control for individual cells results in a massive overhead

for implementing the timing array. The maximum size of a data bundle is one

bit, so the overhead of providing separate request and acknowledge signals is

enormous. Additionally, the timing cell is liable to be far slower than the data

cell so leading to poor performance. However, providing self-timed control

for single data cells has the benefit that data cells cannot be wasted through

insufficient timing cells being available.

The next block size up is the 4 x 4 block. In one direction, this gives a

potential data bundle width of eight bits, if all the local and level-4 flyover

connections are used. The overhead of providing handshaking signals for this

size of data bundle is far more reasonable than for individual cells. Another

benefit of using the 4 x 4 block is that it encloses other asymmetric aspects of

the XC6200 architecture, such as the Magic routing, and the special status of

level-4 flyovers, which unlike other flyovers can be directly used as inputs into
the cells.

The larger groupings of 16 x 16 and 64 x 64 cells give very large data bundles.

For these sizes of block the overhead of providing the handshaking signals is

153

minimal, but the potential waste of data cells when only a small part of the

self-timed region is used is massive. Thus, the 4 x 4 block provides the most

suitable granularity for self-timing the architecture. The choice of the 4 x 4

block as a unit of minimum granularity was also made by Brebner and Kwok

[16, 69] in their work on virtual hardware operating systems for the XC6200.

In the XC6200 data sheet [123], the repeating unit of the 4 x 4 cell block

is defined to include the boundary multiplexors that drive the outputs from

the 4 x 4 block of cells. Instead, here the 4 x 4 block is defined as including

boundary multiplexors that drive the inputs to the 4 x 4 block of cells. The

reason for this choice is that it allows routing between cells in a 4 x 4 block that

uses the level-4 flyover signals to be included logically in one 4 x 4 block. This

is a common routing structure in the XC6200. For example, to route between

cells in the same row or column but on opposite sides of a 4 x 4 block, the signal
delay is smaller if the signal is routed via the level-4 flyover rather than via the
local routing.

9.4.2 Variable Granularity

Section 9.3.2 presented two schemes for implementing variable granularity.

The first, based on a local clock distribution network, could be implemented to

a limited extent using structures already present in the synchronous XC6200.

The XC6200 provides local clock routing for each column through clock drivers

situated in the Northbound boundary multiplexors of each 4 x 4 block. In the

self-timed XC6200, these clock multiplexors could source their inputs from a

number of local clock signals generated by nearby timing cells. However, the

problem with local clock distribution schemes is that the complexity of a tim-

ing cell does not scale with the size of its associated data array.

The second scheme discussed for implementing variable granularity in-

volves grouping timing cells together. This is advantageous, since it can scale

the complexity of the timing control with the size of data array controlled.

However, structures for grouping timing cells have an additional implement-

ation cost for the timing array.

For this work it was decided to use a fixed size of self-timed region consist-
ing of a timing cell and a 4 x 4 block of data cells. This decision to use a fixed

granularity was made, partly for reasons of simplicity in the design of the ar-

chitecture, and partly as it allows the problems with using a fixed granularity

to be assessed. Potential extensions to the self-timed XC6200 architecture to

allow the grouping of timing cells are considered in Chapter 11.

154

Data Array

9.4.3 Timing Array Routing

As discussed in Chapter 8, it is important that the timing array routing delays

should match the delay of data bundles in the data array. The simplest way to

achieve this is by using similar structures for the timing array routing and data

array routing. This approach is adopted in Figure 9.6, which shows a cross-

section of the routing structure used in the self-timed XC6200. The timing array

routing is split into different levels, just as the data array routing has different

levels of flyovers. The similarities in the timing array and data array routing

can be seen by comparing the interconnect of the handshaking switchboxes in

the timing array, and the interconnect of the boundary multiplexors in the data
array.

Level 	Timing Level Timing 	Level16
Handshaking Handshaking Handshaking Cell SwitchBox

I
SwitchBox

I

Cell
SwitchBox

I 	 I
I

V 	 V
I
V

I 	 I
V 	 V

Level16 Routing

Leve14 Routing
(Two Routes)

Local Routing

Local IOCK 	 Local UIOCI(

Figure 9.6: Cross-section of Timing Array Routing

An important decision in the design of the timing array routing is how

many handshaking pairs to provide at each level in the routing. As discussed

in Chapter 8, each handshaking pair can be used to synchronise the flow of

one data bundle, and due to the symmetrical nature of the handshaking pro-

tocol, each handshaking pair can be used to synchronise data flowing in either

direction. The more handshaking pairs provided in the timing array routing,

the more data bundles can be synchronised in the data array, flowing in either

direction. However, more timing array routing results in a larger overhead for

implementing the self-timed architecture relative to the synchronous XC6200

155

architecture.

The choice made in Figure 9.6 represents a trade-off between flexibility in

the timing array routing against theoverhead of implementing the timing ar-

ray. At the local level, the number of handshaking routes is naturally determ-

ined by the nearest neighbour arrangement of the timing cells. Thus, one hand-

shaking pair route is provided from each side of a timing cell. At higher levels

in the architecture the number of routes is not constrained by the nearest neigh-

bour interconnect of the timing cells. More routing resources are required at

the lower levels in the timing array routing, since the higher level timing array

routes must connect to the timing cells, via the lower level timing array rout-

ing. This is reflected in Figure 9.6, where two handshaking pairs are provided

at level-4 in the timing array routing against one handshaking pair for level-

16. The choice of two handshaking routes at level-4 against one at level-16 was

made on the basis of the needs of initial example circuits, set against the desire

to minimise implementation costs.

No level-64 timing array routing is provided in Figure 9.6, since in the cur-

rent XC6216 chip, the array consists of only one 64 x 64 block of cells. Thus, the

level-64 flyover signals must be routed to cells within this one 64 x 64 block.

These data bundles must be synchronised using lower levels in the timing ar-
ray routing.

Although the timing array routing structure matches the structure in the

data array routing, it does not follow that data using a certain level of flyover

in the data array will use the same level of routing in the timing array. For

example, consider a data bundle routed on a level-16 flyover that fans out to a
number of 4 x 4 blocks within the 16 >< 16 block it crosses. Handshaking pairs

must be routed to the timing cells associated with the destination 4 x 4 blocks.

Routing these handshaking pairs requires the use of local and level-4 timing

array routing. The level-16 timing array routing is only used if the data bundle

crosses into the neighbouring 16 x 16 block.

This example illustrates that more timing array routing resources are re-

quired at lower levels in the routing hierarchy, since the higher level timing

array routing resources must connect to the timing cells via the lower level

timing array routing resources.

The handshaking switchboxes only implement a subset of the routes in

a full handshaking crossbar, which mirror the connections available in the

boundary multiplexors. For example, the flyover routing in the data array

does not allow signals routed on one flyover to be routed back in the opposite

156

direction at the same level, so in the handshaking switchboxes, handshaking

pairs cannot be connected to other handshaking pairs at the same level.

So far, the routing structures have been very one-dimensional, albeit du-

plicated in two dimensions. This reflects the structuring of the XC6200 fly -

over routing, which is one-dimensional in nature. However, the XC6200 does

provide Magic signals for routing corners. These flows can be implemented

by handshaking pairs routed through a timing cell and associated 4 x 4 block.

However, this prevents the timing cell from being used for anything else but

routing. The problem could be solved by having corner turning handshaking

pairs in the timing array routing. Magic routing was found to be rarely used in

the designs, so the final self-timed XC6200 architecture used in the later chapter

omits these corner routes.

9.4.4 Input/Output Interface

The XC6200 provides two I/O interfaces: lOBs at the edge of the array and

register based I/O via the configuration interface. The JOB interface for the

self-timed XC6200 can be simply extended by providing extra pins and JOBs

for the handshaking signals. For simplicity, this is the approach adopted for

the self-timed XC6200 architecture discussed in later chapters.

However, as discussed in Chapter 8, self-timing gives the opportunity to

share routes transparently, which allows devices to be extended naturally to

multi-device arrays without excessive numbers of pins. However, this ap-

proach is not compatible with the synchronous XC6200, and also makes it dif-

ficult to create dedicated input/output paths. A possible solution would be to

implement both multiplexing and dedicated input/output schemes and have

a flag in the configuration memory to choose which scheme was used.

The second I/O interface in the XC6200 is based on direct access to the

registers. The same mechanism can be implemented in the self-timed XC6200.

Since the cells in the self-timed XC6200 are not synchronised to a global clock,

a register's state could be changing when sampled, leading to a meta-stable

state. Hence, meta-stable resolving elements, such as Q-flops [103], have to be

used in the output path of the register values.

As discussed previously, the synchronous XC6200 supports a partial form

of flow control by routing the RegWord signals into the array. This signal acts

as a request or acknowledge to the circuit in the array indicating that it has

been read or written. However, it does not provide a mechanism for a circuit

on the FPGA to indicate to the microprocessor that it has data ready, or is ready

157

to accept data. Full flow control can be provided in the self-timed XC6200 by

routing the RegWord signals on to the timing array routing instead of the data
array routing. The RegWord signal acts as a request or acknowledge signal to

the circuit on the FPGA. Handshaking pairs are routed in the timing array, so
the RegWord signal will be paired with a handshaking signal, which is routed

back from the circuit to the edge of the array. The signal paired to RegWord

indicates to the microprocessor whether the circuit is ready to be read or writ-

ten. Thus, routing RegWord using the timing array allows full flow control

between FPGA and microprocessor to be implemented.

Simple request/ acknowledge handshaking does not suit microprocessor

interfaces, since if the circuit on the FPGA being accessed is not ready to be

read or written, this locks the microprocessor bus waiting for the request or ac-

knowledge signal to return. More sophisticated microprocessor interfaces can

be used to overcome this. For example, if the circuit is not ready for the com-

munication, then the condition could be returned to the microprocessor, in-

stead of locking the bus. Alternatively, rather than wait for the microprocessor

to access the circuit, the circuit could signal its readiness to the microprocessor

using an interrupt signal. The microprocessor could determine which circuit

on the FPGA had caused the interrupt by reading an additional control register

containing the values of the handshaking signals paired to each RegWord in-
put.

9.4.5 Configuration Interface

The timing array configuration memory is placed in a separate memory space

for the self-timed XC6200. This allows the configuration bit layout of the syn-

chronous XC6200 to be maintained. Also, separate memory spaces allow the

wild card addressing to be used effectively to configure regular structures in

the timing array or data array. To provide self-timed read and write to the

SRAM, an additional output is required from the configuration interface to in-

dicate that the read/write to the SRAM has been completed.

9.4.6 Select Routing

Figure 9.7(a) illustrates one of the multiplexors which choose the select input

to the timing cell. The select inputs for the other three timing cell links are gen-

erated using the same routing pattern, but their orientation is rotated around

the 4 x 4 block. An exhaustive study of which inputs to the select multiplexor

158

HEI
HH fl 11.1.

Select

H 	n fl HHHH
nHnn
nnHn

1 Elj L11 L

Probe

to use was not performed, but a number of criteria were used in choosing the

input. First, the input pattern should be symmetrical to allow designs to be

flipped and rotated without problems. Second, the select multiplexor should

be well connected to other parts of the self-timed region, using both flyovers

and local routing, but the signals should naturally pass close to the select mul-

tiplexor. Finally, only four inputs to the select multiplexor were chosen as this

only requires two configuration bits to be used.

(a) Select Routing
	

(b) Probe Routing

Figure 9.7: Select and Probe Routing

9.4.7 Arbitration and Probe Routing

Arbitration blocks were discussed in Section 7.6. The arbitration block used

in the self-timed XC6200 timing cell uses programmable AND gates, as this

is less costly to implement than the Q-flop scheme. The pAND scheme only

generates one probe signal per timing cell.

Figure 9.7(b) illustrates the probe routing pattern for one side of the 4 x 4

block; the pattern is repeated for the other sides of the 4 x 4 block. As with

the select routing, an exhaustive study of the possible probe routing patterns

was not performed. However, similar criteria were applied to its design; the

pattern is symmetrical to allow designs to be flipped and rotated and allows

the probe signal to be routed using a small number of multiplexors to all parts

of the self-timed region. Finally, the number of configuration bits is minimised

by using unused configuration values in the boundary multiplexors.

159

9.4.8 Delay Methodology

In the self-timed XC6200, since the memory elements of the 4 x 4 block are

not situated on the boundaries of the self-timed region, two delay elements are

required in the timing cell, one for the delay from the 4 x 4 block's inputs to

the registers and one from the registers to the 4 x 4 block's outputs. Having

two delay elements results in an increased implementation cost compared to a

logic block where registers are either situated on inputs or outputs to the block.

In the simulations of run-time parameterised circuits discussed in the next

chapter, two delay methodologies are used and compared for the self-timed

XC6200: a fixed reconfigurable delay using taps off an inverter chain and

a variable delay using Current Sensing Completion Detection (CSCD). The

choice between fixed and variable delay elements has an important effect on

the performance of the architecture. This is discussed in Chapter 11.

For the CSCD implementation, two delay elements are not required, since

the completion detection of both stages can be provided using the same current

monitoring circuitry. However, a problem occurs if the next set of input data

enters the 4 x 4 block before the output data has left the block. The CSCD cir-

cuitry cannot tell the difference between output signals leaving the block or in-

put signals entering the block. Thus, the output CSCD completion is extended

until the new input data has finished evaluating. To overcome this problem, a

fixed reconfigurable delay could be used for the output delay element.

9.4.9 Timing Cell Implementation

The various options for implementing the timing cell were discussed at length

in Chapter 7. For the reasons discussed there, the implementation of the timing

cell used in the self-timed XC6200 uses a four-phase protocol. The decoupling

in the four-phase protocol is performed as a group for the handshaking links

to minimise implementation cost (see Section 7.4.2).

9.5 Summary

This chapter has developed a self-timed version of the Xilinx XC6200 archi-

tecture based on the STACC architectural model. The chapter has also dis-

cussed in general terms, the decisions required in creating a self-timed FPGA

architecture using STACC. Amongst these decisions, the most important is the

choice of granularity of the self-timed region, which effects all the other design

160

decisions made about the architecture. The consequences of these design de-

cisions are the subject of the next two chapters, which describe the use of the

self-timed XC6200 for dynamic hardware applications (Chapter 10), and eval-

uate it with respect to the synchronous XC6200 (Chapter 11).

161

Chapter 10

Circuit Design for the Self-Timed
XC6200

10.1 Introduction

This chapter describes the design of run-time parameterised circuits for finite

field operations on the self-timed XC6200. The examples are used to highlight

the way that designs exploit the features of the self-timed XC6200 and over-

come its limitations. Several of the design techniques used are specific to the

XC6200 data array, so are equally applicable to the self-timed and synchron-

ous versions of the XC6200. As well as illustrating the design of circuits for the

self-timed XC6200, the examples provide insight into the design of run-time

parameterised circuits in general.

The chapter is organised as follows. The design and simulation tools used

for the example circuits are described in Section 10.2. The majority of the

chapter is given over to Section 10.3 which contains detailed descriptions of

the example circuits for finite field operations. Finite field arithmetic and its

application are described in Appendix A. The design experience gained from

implementing these circuits is summarised in Section 10.4.

10.2 Design Tools and Simulation

Current design tools support parameterisation, but these parameters are fixed

at compile time. Once the parameters are fixed at compile-time, the circuit

is passed through the standard place and route tools. Such tools do not sup-

port the run-time parameterised circuits, which were discussed in Section 2.7.6.

The output of a tool for run-time parameterised circuits would not be an FPGA

configuration, but would be a program that could generate the configuration at

162

run time. To allow the circuits to be generated quickly at run time, traditional

place and route tools cannot be used, as they take too long. Instead, run-time

parameterised circuits require regular placement and routing to allow fast as-

sembly of the FPGA configuration.

Given the requirements for run-time parameterisation, the circuits in this

study did not use the standard Xilinx place and route tools. Instead, the config-

urations were generated by programs written in VHDL [62, 911. Since the sim-

ulation models of the self-timed and synchronous XC6200 were also written

in VHDL, this simplified the interfacing from design to simulator. For visual

debugging of circuits, a VFIDL library was designed to output configurations

in the Xilinx XC6200 . cfg format. This allowed circuits to be viewed and the

diagrams in the text to be generated. Fixed parts of the circuit were also de-

signed manually without using the Xilinx place and route tools, since at the

start of the study, these tools were still in the initial stages of development.

The drawback to designing circuits without place and route tools is the

amount of effort involved; comparable in software terms to writing purely in

assembly language. At this point in time, now that the Xiliiix tools have ma-

tured, a promising approach would be to design the fixed parts of the run-time

parameterised circuits using the synthesis tools. These parts could then be as-

sembled on the fly, together with parameterised parts generated by software,

to produce the final run-time parameterised circuit.

An issue in constructing run-time parameterised circuits for STACC archi-

tectures is the basic block used to build them. To gain the benefits of the self-

timed implementation, the circuits must be defined in terms of the basic self-

timed building blocks used in the architecture. For the self-timed XC6200, this

is the 4 x 4 cell block. However, the definition of parameterised circuits is often

easier at the level of individual cells in the XC6200 architecture, rather than at

the level of 4 x 4 blocks. To allow the design of parameterised circuits at the

cell level, the concept of an abstract N x M block of cells is introduced. The

abstract cell blocks are then mapped on to the 4 x 4 blocks of the architecture.

Figure 10.1(a) illustrates an abstract 3 x 5 block. The abstract block has a

similar structure to the 4 x 4 block. It consists of an array of cells surrounded by

boundary multiplexors; the boundary multiplexors determine the routing for

the flyover signals that cross the block. Figure 10.1(b) illustrates the conversion

of the abstract block to the 4 x 4 blocks used in the architecture. The conversion

works by mapping cells in the abstract block directly on to an array of 4 x

4 blocks large enough to accommodate the abstract block. Unused cells and

163

-

(a) Abstract 3 x 5 Block 	 (b) 4 x 4 Blocks

Figure 10.1: Converting from an abstract N x M block to 4 x 4 blocks

.4

boundary multiplexors (unshaded in the figure) are configured so that signals

pass through them unaffected and continue in the same direction.

The fixed granularity of the self-timed XC6200 architecture at the level of

4 x 4 blocks also presents other problems. Each 4 x 4 block forms a self-timed re-

gion, so must capture in registers the values of its outputs. This requires some

cells that are not configured as registers in the abstract block to be configured

as registers in the 4 x 4 blocks. The pattern of data flow between 4 x 4 blocks

must also be reflected in the configuration of the timing array. Furthermore, in

variants of the self-timed architecture that use a configurable fixed delay (i.e.

not CSCD), the delay of each 4 x 4 block must be established. This may require

delay analysis, though often some simple rule can be constructed for the delay

of each 4 x 4 block from the structure of the parameterised circuit.

The problems with defining parameterised circuits at the level of individual

cells, when the self-timed blocks of the architecture are defined in terms of 4 x 4

blocks, are discussed later in the chapter using specific design examples.

10.3 Example Circuits

This section details the implementation of circuits for finite field operations on

the self-timed XC6200. The initial examples illustrate circuits with simple pat-

terns of data flow and limited parameterisation. The later examples illustrate

more complex patterns of data flow and a wider degree of parameterisation.

The application area of finite field operations is described in Section 10.3.1.

Section 10.3.2 describes the standard format used to describe the examples.

Sections 10.3.3 to 10.3.9 describe the example circuits.

10.3.1 Finite Field Operations

The example circuits implement run-time parameterised circuits for finite field

operations. Finite field operations have application to error detection and cor-

rection, such as Reed-Solomon codes [97] and erasure codes [102]. Finite field

operations were chosen for the study, since they have a number of parameters

which can be varied. Varying these parameters alters the error detection and

correction power of codes based on them. Klindworth [68] has proposed using

such circuits to build a communication system where the power of the error

correction code is dynamically altered to match the current noise conditions

on the transmission medium.

165

For self-timed implementation, finite field operations do not have any par -

ticular features that suit self-timed operation. However, the error correction

applications based on them are well matched to a self-timed implementation,

because of the large difference in work load between checking codewords and

correcting them. Normally an error processor is only checking that the received

message is a valid codeword, but an invalid codeword requires a complex er-

ror correction process. This difference in workload has been exploited by Kes-

sels et al [67] in a self-timed Reed-Solomon error corrector to achieve superior

power efficiency over a synchronous implementation.

The basics of finite field theory and the error correction applications based

on them are reviewed in Appendix A. For more details on finite fields refer to

Pretzel [97]. Details of how the data array implements the finite field opera-

tions is not required for the example circuits; only an appreciation of how the

dataflow in the data array is reflected in the configuration of the timing array.

More detailed description of the data array configuration is given for circuits

with interesting parameterisation.

10.3.2 Example Format

The examples are described using a standard format, so that the reader may

easily find relevant information on earlier examples that are used as compon-

ents in later examples. In this section the format is introduced using a FIFO

as a simple example. Each of the sections of the standard format are described

below.

Description: Each example begins with a high level description of the circuit

and its parameterisation. The FIFO is a simple circuit with only one parameter

which specifies the number of stages in the FIFO.

In 	ON

	
Out

Figure 10.2: FIFO: Data Flow

Data Flow: An overview of the circuit operation is given using a diagram to

illustrate the data flow in the circuit. Figure 10.2 illustrates the data flow for

a three-stage FIFO. The symbols used in the data flow diagrams are shown in

166

Single Bit Signal (usually control flow)

Bundled Signal (usually data flow)

Operation (Addition)

Register

De-Multiplexor

Figure Figure 10.3: Data Flow Diagram Symbols

Figure 10.3. No processing is performed in the FIFO, so the only components

in the data flow diagram of Figure 10.2 are registers and the flows connecting

them. The placement of components in the data flow diagrams have been ar-

ranged so that they correspond with the layout used in the timing and data

array configurations.

Timing Array Configuration: Figure 10.4(a) illustrates the configuration of

the timing array for the FIFO. The timing array configuration is shown together

with the data array configuration to illustrate how the pattern of timing array

routing matches the pattern of routing in the data array. The timing array

configuration is illustrated using the output of a tool developed specifically to

allow the visualisation of the timing array simulations. The full tool allows

simulation values to be animated on the diagram.

Figure 10.4(a) illustrates the configuration of the timing array for the FIFO.

The representation used is the same as for the simple timing array examples

given in Section 5.4. Circular elements marked with the name of the self-timed

region represent the C-Muller gate controlling the registers in the self-timed re-

gion. These elements are connected by handshaking links. Request signals are

marked by oval delay elements. Acknowledge signals are marked by bubbled

inputs into the timing cell. Additional to the output of the visualisation tool,

other symbols have been superimposed on the output of the visualisation tool

to highlight the structure of the configuration. These additional symbols are
shown in Figure 10.5.

167

Reqin 	 Req 	 Req ReqOut 	@--a

Ackin 	 'AckOut 	0

(a) Timing Array

C
0

(b) Data Array

Figure 10.4: Three Stage FIFO

In Figure 10.4(a), each Fifo timing cell uses two handshaking links, the

left link for the input data, and the right link for the output data. The C-

Muller gates on the handshaking links represent the routing implemented by

the handshaking switchboxes. In the current example of a FIFO, there is no

fan-in or fan-out of data, so each C-Muller gate has only one input. In gen-

eral, several handshaking signals may be inputs to these C-Muller gates, to

synchronise the fan-in and fan-out of data bundles.

Data Array Configuration: Following the description of the timing array, the

data array configuration is described. The Xilinx Development Tools [123] are

used to produce these figures. Each cell is shown by a box, which is marked

with the function it performs (e.g. BUF for buffer, MUX for multiplexor, etc.).

Cells that use their D-type register are additionally marked with the letters

REG. Local wiring is marked by solid lines joining cells. Level-4 flyovers and

level-16 flyovers are marked by dotted connecting wires. Figure 10.4(b) illus-

trates the data array configuration for the FIFO. Input inversion is not dis-

played by the Xilinx tools, so the BUF cells in the FIFO could also be imple-

menting an inverting buffer.

ReqMuItA

•1-'

0

Multiplier

Handshaking Signal Name

Input Data Flow

Output Data Flow

Subsystem of Design

Figure 10.5: Timing Array Symbols

- - - - 4x4 Boundary

EnabledOut 	 Self-Timed Region Name

Multiplier
Subsystem of Design

Local Routing across 4x4 Boundary

Level-4or Level- l6routing
across 4x4 Boundary

Poly In 	Input Data Bundle

F- 7

	

I 	(to level-4 or 16 flyovers)
\i77

Out

	

I

A 	 Output Data Bundle

	

T 	(from local routing)
I 	I

Figure 10.6: Data Array Symbols

169

The data array configuration is shown to illustrate how the timing array

configuration matches the pattern of data flow in the data array. The output of

the Xilinx tools does not clearly mark the direction of signal flow, so supple-

mentary symbols have been superimposed to show the pattern of signal flow

between 4 x 4 blocks. These symbols are shown in Figure 10.6.

Discussion: Finally, each example is completed with a discussion section

which highlights the interesting aspects of the circuit's design and implement-

ation. Analysis of the delay behaviour of the circuits is left to Chapter 11 which

evaluates the performance of the self-timed XC6200 relative to the synchron-

ous XC6200.

10.3.3 GF(24) Multiplier

Description: The circuit multiplies two numbers over GF(24). The example
illustrates the use of the timing array routing to synchronise the fan-in and

fan-out of data bundles in the data array.

Data Flow: As described in Appendix A, operations over GF(2k) can be
defined in terms of operations over polynomials with terms in GF(2) modulo
an irreducible polynomial. Each bit of the result polynomial can be evaluated

separately, so a bit-sliced implementation can be used. Figure 10.7 illustrates

the data flow for a bit-sliced multiplier. Each bit slice takes both input values

Ain and BIn and generates one bit of the result, which fans in to form the

result data bundle Out.

Am
Bin

Multiplier 	Multiplier 	 Multiplier
Bit Slice 	Bit Slice 	. . . 	 Bit Slice

N-i 	 N-2 	 0

Out 	 --

Figure 10.7: Data Flow for Multiplier over GF(2')

Timing Array Configuration: Figure 10.8(a) illustrates how the timing array

routing is used to synchronise the fan-in and fan-out of data bundles in the

data array. The input data Ain and Bin fans out to each bit slice. Ain and

170

AckOut
ReqABin

Am n
Bin
Outi

ReqOut
AckABin

(a) Timing Array

MuitBit 	 MuitBit 	 MuitBit 	 MuitBit

Am

Out

(b) Data Array

Figure 10.8: Multiplier over GF(24)

Bin are bundled with the ReqABin and AckABin handshaking pair which

are routed on the level-4 handshaking routing. The handshaking pair is routed

to the right-hand link of each Mu 1 tB it timing cell. The ReqAB in signals fans

out from the level-4 handshaking routing to each timing cell. The AckABin

follows the reverse path, with the acknowledge signals being combined using

a chain of C-Muller gates so that the multiplier only acknowledges receipt of

the data when all the stages have completed.

One bit of the output data Out is produced by each bit slice. The data is

associated with the ReqOut and AckOut handshaking pair which comes from

the left-hand link of each Mul tBi it timing cell. The local ReqOut signals fan-

in onto the level-4 handshaking routing, being synchronised by a chain of C-

Muller gates, so that the output ReqOut is only produced when bits have been

produced by all the bit slices. The AckOut signal fans out to all the bit slices to

indicate that the Out been received.

Data Array Configuration: The correspondence of the data array routing and

the timing array routing can be seen by the pattern of the dataflow in Figure

10.8(b). The input data Ain and Bin are routed to each bit slice using the E4

and El 6 flyovers respectively. The data generated by each bit slice Out fans in

on the W4 flyovers. It can be seen from the data flow across the 4 x 4 blocks that

the data bundle starts as a single bit on the rightmost 4 x 4 block. Each bit-slice

adds its output to the bus, until the full 4-bit wide output is reached on the left.

For those interested in the internal operation of each self-timed region, a

description is provided below. It can be skipped by those only interested in

how the timing array routing matches the pattern of data array routing.

Multiplication can be expressed using the following equation derived in

Section A.2.2:

A.B
=

xh. 	aj.> 	b3 . Fh1I 	 (10.1)

Each coefficient of xh in the final sum can be evaluated separately, so a

bit-sliced circuit implementation can be adopted. The evaluation within each

bit-slice involves a bitwise AND of the terms b3 with the jth coefficients of

Fh. The result of the bitwise AND are them summed (using XOR gates) to

produce intermediate partial sums which are then ANDed with the terms a.

Finally, these are then summed to produce the output coefficient.

Figure 10.9 shows the internal dataflow for the calculation for each bit of

the result. The two operators shown are the dot operator (bitwise AND) of

172

A 	 B

Fh,O

Fh, 1

Fh,k 1

Out h

Figure 10.9: Internal Structure of Multiplier Bit Slice

the coefficients of two polynomials and the summing operator which sums

the coefficients of a polynomial to produce a single bit output. Single GF(2)

coefficients are represented by thin lines, whilst polynomials over GF(2) are

shown by thick lines. In the actual circuit, the bitwise AND of B and Fh, is not

required since Fh, is a constant. Hence, the first summing operator is a partial

sum of terms b3 for which Fhi = 1

The structure of this evaluation can be seen in the structure of each bit slice

in Figure 10.8(b). The right two columns of each MultEit 4 x 4 block are sets

of XOR gates that generate the partial sums of the b3 coefficients. These partial

sums are ANDed with the ai terms in the second column from the left and

summed using XOR gates in the leftmost column.

The multiplier uses the normal basis for the representation of the polyno-

mials. A important property of the representation is that the same function can

be used to produce each bit of the result, by just cyclically shifting the inputs

(see Section A.2.1). However, cyclically shifting the inputs in the flyover rout-

ing is difficult. Instead, the routing in the circuitry for each bit slice has been

modified to do the shifting. An alternative approach to this problem would

be to 'cyclically shift the circuit'. Such an approach is possible in the XC6200,

since by using the feedback flyover connections, a toroidal routing structure

can be created within a 4 x 4 block. This would allows the interconnect pattern

of the cells to be maintained whilst cyclically shifting the location of the cells.

173

Discussion: This example has illustrated the use of the timing array routing

to synchronise the fan-in and fan-out of data bundles. It has shown how the

timing array routing structures can be routed in a similar fashion to the routing

for the data bundles in the data array.

10.3.4 Constant GF(2k) Multiplier

Description: The circuit multiplies a number in GF(2') by a constant over
GF(2c). The example illustrates the technique of mapping a circuit defined for

a N x M block of cells onto the 4 x 4 blocks of the XC6200. The example also

illustrates the benefits of run-time parameterisation over the general GF(2k)

multiplier discussed in Section 10.3.3.

Data Flow: The constant multiplier is much smaller than the general multi-

plier described in Section 10.3.3. Figure 10.10 shows the simple data flow of the

circuit; the input enters the circuit and is scaled by a constant C. The internal

data flow and parameterisation of the circuit is described when the data array

configuration is discussed.

In

Figure 10.10: Constant Multiplier Data Flow

Timing Array Configuration: For small fields GF(2') with k < 4, only one

timing cell is required. Figure 10.11(a) shows the configuration of one such tim-

ing cell. The timing array configuration is a simple pipeline stage, consisting

of one input link from the bottom and one output link to the right.

However, when the parameterised circuit is too large for a 4 x 4 block, the

circuit has to be divided into separate 4 x 4 blocks, which are different self-

timed regions. The timing array needs to be configured to reflect the flow of

data between the individual self-timed regions of the multiplier This is illus-

trated in Figure 10.12(a) for GF(25). This shows how the input data is treated

as being composed of two data bundles. The bundles ml (4 bits) and 1n2 (1

bit) are distributed to the 4 x 4 blocks using the level-4 handshaking signals.

174

The partial results from each block then flow from left to right in the data array,

to become two separate output data bundles Outi and Out2.

ReqOut

Scalar

AckOut

4
In

(a) Timing Array

Scalar

BUF 	 OR XORREu

U1
I

~~XOR

In
(b) Data Array

Figure 10.11: Constant Multiplier over GF(24)

Data Array Configuration: Figure 10.11(b) illustrates the data array config-

uration of a constant multiplier over GF(24). The inputs to each circuit enter
on the N4 flyovers at the bottom of the block and the outputs exit on the local
E signals on the right of the block. The internal data flow consists of partial

sums being calculated by chains of XOR gates, with results flowing from left

to right. The details of the finite field arithmetic are described below.

The circuit can be extended to deal with base fields GF(2') with k > 4 by
using the concept of an abstract N x M block that was introduced in Section

175

CsJ

0

T-

0

t 	- 	4
ml 	1n2

(a) Timing Array

LargeMult 	 i LargeMult

c'J

- 0

I1-
4-I

i1

ml 	1n2

(b) Data Array

Figure 10.12: Constant Multiplier over GF(25)

176

10.1. Figure 10.12(b) illustrates a constant multiplier for GF(25). The choice of
GF(25) was made to show an example of a poor mapping to 4 x 4 blocks. In

this case, most of the cells, in all but the bottom left 4 x 4 block, are unused.

As discussed in Section 10.1, the fixed granularity of the self-timed XC6200,

forces designs to be pipelined internally for each 4 x 4 block. The extra registers

that are required can be seen on the figure by examining the cells that generate

the outputs of the left-hand 4 x 4 blocks, which have REG elements added.

For those interested in the internal finite field arithmetic of the multiplier

the details are given here. Equation A.12 can be re-expressed as:

k-i 	k-i

A.B = 	 a. ChI 	 (10.2)
h=O 	i=O

Where

ChI =b. FhjI 	 (10.3)

Ch is constant as B and Fh, are constant. Thus each coefficient x can be cal-
culated by a bitwise AND of Ch with A, and then summing the resultant bits.

Figure 10.13 illustrates the internal data flow. It consists of several bitwise

AND operators followed by summing operators, which evaluate each output
bit OUth. Since Ch is constant, the bitwise AND and the summing operators can
be reduced to a partial sum of terms ai for which Ch = 1. This is the structure
used in the data array configuration of Figures 10.11(b) and 10.12(b).

Co

Cl

I 	• 	 S
I 	S 	 S

Ck1 	 I!

OUtk4 I I 	-i 	Out

A

Figure 10.13: Constant Multiplier Internal Data Flow

Discussion: This example has illustrated the advantages of parameterised

circuits. The circuits for multiplying by a constant are far more compact than a

177

general multiplier circuit. A general multiplier requires k bit slices for a mul-

tiplier over GF(2k), where each bit slice is approximately the same size as one

constant multiplier. This gives a saving of approximately k times by using a

parameterised circuit.

The example has highlighted the problems with mapping a circuit which is

defined in terms of an array of cells onto the fixed granularity of 4 x 4 blocks of

cells. In the data array, the technique of mapping from an abstract N x M block

was used. The GF(25) multiplier illustrated the potential waste of cells when

circuits are a poor match to the imposed granularity. Also, the timing array

configuration has to reflect the internal pattern of data flow. This could be

harder to implement if the pattern of data flow internally was more complex.

In many cases it would be preferable if the timing cells could be grouped to

form one large self-timed region.

10.3.5 Division by a Fixed Polynomial

Description: The circuit divides an input polynomial with terms in GF(2k)

by a fixed polynomial with terms in GF(2'). Division by a fixed polynomial

can be used for the generation of Reed-Solomon error correction codes (See

Section A.3.1). The example illustrates the construction of a run-time paramet-

erised circuits with a large number of parameters. The circuit is parameterised

with respect to the length of divisor and dividend polynomials, and the terms

A 2 of fixed divisor polynomial A ,, Xn + A_ 1 x' + . . .A ix + A 0 .

Data Flow: Figure 10.14 illustrates the data flow for the fixed polynomial di-

vision circuit. It is similar to the linear feedback shift registers used for division

by a fixed polynomial over GF(2) in the generation of CRCs (Cyclic Redund-

ancy Codes). The terms of the dividend are shifted down the shift register on

the right. On each shift, a multiple of the divisor is subtracted from the value

in the shift register. Adders are shown in Figure 10.14, since addition and sub-

traction are identical over GF(2k). In CRC circuits, generating the multiples

is simple, since the only multiples possible in GF(2) are zero and one. For
GF(2k), constant multiplier circuits must be used for each term in the divisor

polynomial. The constant multiplier circuits developed in Section 10.3.4 can

be used for this purpose. When the whole dividend has been shifted in, the

End flag is set, which zeros the feedback path and allows the remainder to be

shifted out.

178

In

I 	 I

I 	 I

I 	 I

Ei
Out

Figure 10.14: Data Flow for Fixed Polynomial Division

179

Polyin

I 1, 	r

I

i
'I

PolyOut

0

g

Sc
0

Sca

Cor

COL

Polyin

*

*
PolyOut

(a) Timing Array
	

(b) Data Array

Figure 10.15: Fixed Division by a Polynomial of Length Two

UKE

Timing Array Configuration: Figure 10.15(a) illustrates the timing array con-

figuration for a small divisor polynomial of length two with terms in GF(24).

The layout is similar to the layout of the data flow shown in Figure 10.14. The

Adder blocks integrate the addition and shifting stages shown in the data flow.

The Scale blocks perform the constant multiplication, using the circuits dis-

cussed in the Section 10.3.4. The Tj unc block routes the output and feedback

values. The Corner block zeros the feedback when the remainder is shifted

out. The Counter block generates the End condition, which determines when

to zero the feedback. The F if o block routes the output value to the edge of

the circuit.
The feedback value in the data flow diagram fans out to all the Scale

blocks. This is implemented in the timing array using the level-4 handshak-

ing routing; the ReqFeedback signal fans out from the Corner block to all

the Scale blocks. The AckFeedback fans in the acknowledges from all the

Scale blocks back to the Corner block. This fan-in synchronisation is done

using a chain of two-input C-Muller gates; one input of each C-Muller gate

comes from the local Scale block, and the other enters on the level-4 hand-

shaking routing from above.
The fixed polynomial division circuit is the first example of a looping struc-

ture in a timing array configuration, rather than a straight pipeline. As dis-

cussed in Section 7.3.4, loops in the timing array need to be initialised. In this

case, the loop is initialised by resetting the Adder blocks to an active state, so

on initialisation, the shift register is effectively already filled with zero values.

Data Array Configuration: The data array configuration reflects the break

down into self-timed regions discussed for the timing array. The Counter

block is parameterised to count up to a value N before returning to zero. This

allows the length of the input polynomial to be set. The length of the fixed

divisor polynomial sets the overall size of the circuit. Finally, the individual

terms A i of the fixed divisor polynomial determines the constant values used

in the Scale blocks.

Discussion: The example has illustrated run-time parameterisation of a cir-

cuit with a complex degree of parameterisation. The main parameter is the

choice of the fixed polynomial divisor. The coefficients of the fixed polyno-

mial are altered by changing the constant scalar multiplier (Scale) blocks.

As these are themselves parameterised circuits, the circuit illustrates a hier-

181

archy of parameterised circuits. The length of the fixed polynomial divisor

affects the number of stages in the shift register. In the case of Figure 10.15,

the polynomial has a length of two. Longer generator polynomials are used

in Reed-Solomon codes to increase the error detection and correction ability of

the code.
The change in size of the circuit for different fixed polynomial divisors is

a good example of the advantages of self-timed parameterised circuits. Due

to the self-timed behaviour, no delay calculations are required by the config-

uration software to account for the different lengths of the feedback path. The

feedback path could include off-chip routing and the circuit would still operate

correctly. This would not be the case for a synchronous version of this para-

meterised circuit, since the delay along the feedback loop would have to be

recalculated.

10.3.6 Polynomial Evaluation at a Fixed Value

Description: The circuit evaluates an input polynomial A(x) with terms in
GF(2k) for x = C. The circuit can be used to evaluate the syndromes for Reed-

Solomon error correction (see Section A.3.1). The example illustrates the use

of selective links, and the problems encountered when a self-timed region re-

quires more links than are available in the timing cell.

Data Flow: Polynomials can be evaluated as a series of additions and multi-

plications using the Homer form:

A(x) = a0 + x(a i + x(a 2 + x(. . . (a + 0) . . .))) 	(10.4)

Figure 10.16 shows the data flow for evaluating an input polynomial using

the Homer form. At the start of the evaluation the Start flag is set, so that the

first coefficient of PolyIn is stored in the accumulator register. The Homer

form evaluation continues by multiplying the value stored in the accumulator

register by C and then adding the next term from the polynomial, and storing

the result back in the accumulator. The end of the evaluation is signified by the

End flag which signals that the value of Out from the accumulator is the result

of the evaluation.

Timing Array Configuration: Figure 10.17(a) shows the configuration of the

timing array. The evaluation loop is composed from the Multiplier and

Feedback blocks. In the example, two copies of the evaluation circuit are

182

0

Start 	 End

Figure 10.16: Data Flow for Polynomial Evaluation at a Fixed Value

shown for evaluating a polynomial at two different values. This is useful as it

allows the syndromes of a Reed-Solomon code to be evaluated in parallel.

The multiplier block performs the multiplication by the constant C. It

is similar to the constant multiplier blocks introduced in Section 10.3.4, except

that the input enters on the West link rather than the South link. This illustrates

a problem with the layout of blocks used within several different circuits: the

layout of a block for one circuit may not be suited for its use in another.

The Feedback blocks integrate the adder, accumulator and multiplexor

from the data flow shown in Figure 10.16. The Feedback block is the most

complex example of timing cell use so far. The block takes three inputs, the

input polynomial coefficients PolyIn (using ReqPolyln and AckPolyln on

the North link), the Start signals from the Counter block on the South link

(using ReqStartln and AckStartln), and the input from the Multiplier

block on its West Link (using ReqResult and AckResult). The block also

generates one output, the value of the accumulator on its east link, which fans

out using the timing cell routing to the Mu 1 tip lie r block and to the outputs

using the ReqAcc and AckAcc handshaking signals.

A problem encountered in the circuit is that the final result should be im-

plemented as a selective link, as it is only required when the last coefficient of

the polynomial is read in, as signified by the End flag. However, the output

to the constant multiplier is required on every cycle. To implement one out-

put link selectively, and the other non-selectively, requires two separate links.

However, insufficient links from the timing cell are available. To overcome

this, the EnabledOut blocks are used. The unselective output link from the

feedbackblock fans out to the Multiplier and the EnabledOut timing cells.

183

c%s1

0

0

1

0

csJ

0

(a) Timing Array
	 (b) Data Array

Figure 10.17: Polynomial Evaluation at a Fixed Value

The EnabledOut timing cell is then used to generate the selective output link

that is required. The Counter blocks generate the Start and End signals for

the circuits. Each counter counts down from the length of the input polyno-

mial, and generates the flag when reaching zero. Using two separate Counter

blocks that count down from the same value could be considered a wasteful

use of data array resources. However, implementing the counters separately

allows the counters to proceed at different speeds, so Feedback blocks are not

dependent on the EnabledOut blocks.

Data Array Configuration: The data array configuration reflects the break-

down into self-timed regions described for the timing array. Level-4 flyovers

are used to route the input polynomial and the Start flag to the Feedback

blocks. The EnabledOut blocks are implemented as FIFOs, but their output is

only selected when the End flag is set. The select inputs for the EnabledOut

blocks are driven directly from the level-4 flyover which carries the End flag.

Discussion: The example is a further illustration of creating a parameterised

circuit from component blocks which themselves are parameterised. Changing

the number of errors that a Reed-Solomon code can correct alters the number of

syndromes required. The circuit can cope with this by adding more polynomial

evaluation circuits to evaluate the extra syndromes. The circuit can also be

parameterised to deal with longer polynomials by changing the value counted

down from by the Counter blocks.

The example has also illustrated the limitations in terms of the number of

links available to a single timing cell. If some form of variable granularity was

available, then for example, the Feedback and Multiplier blocks could be

combined to form one self-timed region, with more handshaking links. Thus,

the EnabledOut blocks would not be required.

10.3.7 General Polynomial Evaluation

Description: The circuit described in Section 10.3.6 evaluated a polynomial

over GF(2") at a fixed value. This circuit evaluates a circuit at an arbitrary

value, which is required during Reed-Solomon error correcting (see Section

A.3.i).

Data Flow: Figure 10.18 illustrates the data flow for the circuit. The circuit

again uses the Homer form (Equation 10.4) to evaluate the polynomial. The

185

.1

0

part of the dataflow which reads in the polynomial PolyIn and includes the

adder, accumulator, and reset multiplexor is the the same as the data flow for

the fixed value evaluation shown in Figure 10.16. The key difference from

the fixed value evaluation circuit is the additional circuitry which reads in the

value to be evaluated at, Xin. In the data flow of Figure 10.18, the value of XIn

is read in to the evaluation value register when Start is set, and then fixed for

the rest of the evaluation. The constant multiplier of the fixed evaluation circuit

is replaced in this data flow with a general multiplier that takes one input from

the accumulator and from the other from the evaluation value register.

End 	 Start

Figure 10.18: Data Flow for General Polynomial Evaluation

Timing/Data Array Configuration: The timing array and data array config-

uration of Figure 10.19 reflects the layout in Figure 10.18. The MuitBit blocks

on the left are an instance of the GF(24) multiplier circuit from Section 10.3.3.

The multiplier needs to be aligned on a 16 x 16 block as it uses level-16 flyovers.

The Feedback and EnabledOut blocks were used in the fixed evaluation cir-

cuit, though their orientation is different in this example. The F if o block is

used to route to the edge of the 16 x 16 block.

The main new block in the example is the HornCtrl block, which is used

to read in the value of XIn and output its value to the multiplier block on each

cycle of the evaluation. Another Counter block is included which supplies

the Start control signal to the HornCtrl block. Again, duplication of the

counter is wasteful on data array cells, but allows the individual parts of the

circuit to proceed independently of each other.

Polyin 	XIn

(a) Timing Array

00
1-4

4-

0

(b) Data Array

Figure 10.19: General Polynomial Evaluation

Discussion: This example again illustrates the differences in parameterised

circuits and general purpose circuits. The general evaluation circuit requires

more complex control and a more complex multiplier circuit than the fixed

value evaluation of Section 10.3.6.

10.3.8 GF(2'') Division

Description: The circuit divides two numbers in GF(2k).

Data Flow: Division can be expressed as the product of the dividend and a

series of squares of the divisor, as discussed in Section A.2.3. Thus to divide y

by x:

2 1 22 	2k-1
y/x = yx x .. . x 	 (10.5)

a total of k —1 multiplications are required. Squaring is simplified by using the

normalised polynomial representation, since squaring is simply implemented

by a cyclic shift of the coefficients in the polynomial.

Dividend 	 Divider 	 Result

Start 	 End

Figure 10.20: Data Flow for GF(2k) Division

Figure 10.20 illustrates the data flow for the division circuit. Initially, the

Start flag is set and the dividend is read into an accumulator and the divisor

is squared and stored in the squaring register. On each cycle of the evaluation,

the contents of the accumulator and squaring register are multiplied, and the

result placed in the accumulator, whilst the contents of the squaring register

are squared. The End flag indicates the end of the evaluation, and signals the

validity of the output.

'-'SI.'

Dividend 	Divisor 	 Result
I 	 I 	 A

(a) Timing Array

flivithnd 	Divisor 	 Result

(b) Data Array

Figure 10.21: GF(2') Division

Timing and Data Array Configuration: Figure 10.21 illustrates the config-

uration of the division circuit for the timing array and data array. The right

hand four blocks are an instance of the GF(2k) multiplier circuit from Section

10.3.3. The invE block reads in the dividend and acts as accumulator for the

calculation. The Corner block routes the divisor to the invA block which

implements the squaring register. The normalised polynomial representation

is used so squaring can be achieved by a cyclic shift (see Appendix A). The

invC block acts in a similar way to the EnabledOut blocks used in previous

examples; it reads out the result at the end of the calculation.

A difference of the invA, ±nvB and invC control blocks from previous con-

trol blocks is that they do not require separate Counter blocks to generate the

End signals. This is because only a small counter that counts to k - 1 is re-

quired. This is implemented internally to the blocks using a single 'one' bit

circulating in a shift register.

Discussion: The example is similar in layout to the general polynomial eval-

uation circuit discussed in Section 10.3.7. Both circuits use the GF(2k) multi-

plier circuit of Section 10.3.3 in their data paths. The main difference is in the

generation of the End signals in the respective circuits. In the general poly-

nomial evaluation circuit, the counter has to be implemented in a separate

Counter block, whilst in the division circuit, the counters are small enough

to fit within the self-timed regions that they control. Thus, the two examples

illustrate how the breakdown into self-timed regions depends on the complex-

ity of the different parts of the circuits.

10.3.9 Polynomial Remainder

Description: The circuit generates the remainder after dividing two polyno-

mials A(x) and B(x) of the same length. The circuit is important as it forms the

central loop in the Euclid's algorithm calculation that forms the basis of Reed-

Solomon error processing [97]. The example illustrates some of the problems

of constructing large circuits from parameterised building blocks.

Data Flow: The circuit generates R(x) in the following equation:

A(x) = q.B(x) + R(x) 	 (10.6)

In the equation, q is the quotient, A(x) is the dividend, B(x) is the divisor

and R(x) is the remainder. The condition that A(x) and B(x) are polynomials

190

0
Cl)
>

C
U)

-o
>

of the same length ensures that q is not a polynomial but a scalar in GF(21).

Calculation of the remainder involves dividing the first two (highest order)

terms of the divisor and dividend polynomial to give q. Having calculated

the quotient, q.B(x) is subtracted from A(x) to give the remainder R(x). The

generation of q.B(x) could be done in one cycle given one GF(2c) multiplier

for each term in B(x); however this number of multipliers would be expensive

to implement. Instead the multiplication is performed for each term of the

polynomial in different cycles using only one multiplier.

Start 	Remainder

Figure 10.22: Data Flow for Polynomial Remainder over GF(2k)

Figure 10.22 illustrates the data flow for the polynomial remainder circuit.

The divisor and dividend polynomials enter on the left. The first term in each

polynomial is sent to the division operator by the de-multiplexors. The result

of the division is then read via a multiplexor into a register that supplies one

of the inputs to the multiplier. The rest of the divisor polynomial B(x) is fed

to the multiplier, which multiplies it by q. This is then subtracted from the

dividend polynomial A(x) by the adder (addition and subtraction are identical

over GF(2')), which generates the remainder R(x).

Timing Array and Data Array Configuration: Figures 10.23 and 10.24 illus-

trate the timing array and data array configurations of the polynomial re-

mainder circuit. It contains several circuits developed previously: the GF(2')

multiplier block was described in Section 10.3.3 and the GF(2v) division block

was described in Section 10.3.8. The other principal data-path operator is the

191

Adder block.

The rest of the circuit is principally routing. The TJS elect (T-Junction Se-

lect) blocks implement the de-multiplexors that are used to route the first terms

of the divisor and dividend polynomials to the divisor block rather than to the

multiply/add data-path. The result of the division is fed into the HornCtrl

block, which was used in the polynomial evaluation circuit of Section 10.3.7.

As before, the HornCtrl block reads in a new value when the Start flag is

set and retains this value for the rest of the calculation. The Counter blocks

are used to generate the Start control signals that mark the start of a new

polynomials. The F i f o and Corner blocks are used for routing.

Discussion: The circuit illustrates problems in the layout of parameterised

circuits. The various parameterised circuits previously defined do not fit to-

gether well. This leads to a large number of blocks being unused in the rect-

angle which naturally bounds the circuit. Also, many of the blocks are being

used purely for routing, such as the Fl fo and Corner blocks. When para-

meterising circuits at run time, ease of layout is likely to be more important

than optimal use of resources, so this wasteful style of layout is likely to be a

common occurrence.

10.4 Design Techniques and Experience

The previous section detailed the implementation of run-time parameterised

circuits for finite field operations. The example circuits illustrated a number

of techniques for the design of circuits using the self-timed XC6200, as well

as techniques for run-time parameterisation. These design techniques and the

experience of the design process for the self-timed XC6200 are summarised

below. Section 10.4.1 looks at the difference between the self-timed and syn-

chronous design processes. Section 10.4.2 looks at the effect of granularity of

the self-timed XC6200 architecture on designs. Sections 10.4.3, 10.4.4 and 10.4.5

discusses issues relating to the layout, utilisation and routing of the run-time

parameterised designs.

10.4.1 Self-Timed Design Process

It is interesting to compare the difference between self-timed design and syn-

chronous design processes. As shown in the examples, the design process for

the self-timed system is similar to that for a synchronous circuit. The high level

192

0

.-ø

a

CD
-0-10,

Remainder

Figure 10.23: Polynomial Remainder Timing Array

Remainder

I 	II 	I

0
Cl)

>

ci)

Figure 10.24: Polynomial Remainder Data Array

description of the circuit was expressed using a data flow diagram that gave

a high-level view of the components required in the data path, and how these

were interconnected. The data path elements were then refined into the basic

gates to be implemented by the data cells in the data array.

The similarities of the data path between the synchronous and self-timed

systems arise from using the bundled-data protocol. One of the principles be-

hind the STACC architecture was to exploit this similarity to allow the transfer

of design tools and experience from the synchronous architecture. This trans-

fer was demonstrated in the examples by the use of the Xilinx tools to generate

the pictures of the data array configuration.

Furthermore, despite the circuits being aesigned for the self-timed XC6200,

the same data array configuration can be used directly in many cases to im-

plement an equivalent synchronous design. In many other designs, the only

alteration required is the removal of register elements. These elements are re-

quired in the self-timed XC6200, so each self-timed region can retain state. In

synchronous designs, these registers delay the data by a clock cycle, which can

change the values calculated by a circuit when there are loops in the data flow.

The key difference between the synchronous and self-timed design pro-

cesses is the definition of the control path, which controls the flow of data

between the data path elements. In synchronous circuits, additional circuitry

has to be implemented in the data array to control the flow of data. In self-

timed designs, the timing array configuration defines the pattern of data flow

between data path elements, and imposes a style for implementing the control

of the data flow between them.
This contrasts with synchronous designs where the methodology for con-

trolling the flow of data between data path elements is left to the designer.

For simple pipelines, no control is required: results are forwarded down the

pipeline on each clock cycle. However, most designs involve more complex

patterns of data flow that require explicit control. Synchronous circuits de-

signers can use a distributed control methodology similar to the self-timed

handshaking protocol to control the flow of data. Often, the control of a syn-

chronous system is centralised, so that all the logic used to control the data

path is grouped into one control block. Sometimes, a mixture of centralised

and distributed control is used.

Synchronous versions of many of the example circuits would need addi-

tional circuitry to control the flow of data. For instance, the polynomial re-

mainder circuit of Section 10.3.8 makes explicit use of flow control in the im-

195

plementation of the circuit. The flow control involves sending the first term of

each polynomial to the division circuit, whilst sending the rest of the polyno-

mial terms to the multiply /subtract section of the data path. In the self-timed

circuit, the calculation in the division block and the multiply/ subtract blocks

is triggered by the arrival of data. A synchronous version of the remainder

circuit would require control circuitry to coordinate the flow of data between

the division circuit and the multiply /subtract data path.

Apart from the difference in control implementation, the examples have

illustrated the benefits of self-timed circuits for constructing run-time para-

meterised circuits. Many of the examples were composed from a number of

blocks which themselves were parameterised, and had a wide range of differ-

ent delays. When these blocks were assembled together to create a run-time

parameterised circuit, the composition worked correctly, due to the modular-

ity of the self-timed protocol. This is not possible with a synchronous run-time

parameterised circuit, since delay analysis would be required to determine the

speed at which the circuit could be clocked. Furthermore, parts of the self-

timed run-time parameterised circuit could be separated, and even split across

different FPGA chips, and the circuit would still operate, due to the speed-

independence of the self-timed protocols.

10.4.2 Granularity

The fixed granularity of the self-timed XC6200 using 4 x 4 cell blocks as self-

timed regions imposes structuring constraints on the data array and the timing

array. It is often easier to define parameterised circuits at the level of individual

cells rather than 4 x 4 blocks. For this reason, the technique of mapping from

an abstract N x M block to the 4 x 4 blocks in the architecture was introduced.

Breaking down self-timed regions larger than a 4 x 4 block into self-timed

regions of 4 x 4 blocks poses difficulties. Since each self-timed region must

retain state, the granularity of the architecture forces designs to be pipelined at

the level of 4 x 4 blocks. Though pipelining in self-timed designs can be done

transparently, this has implications for performance of designs. This matter is

discussed in the Chapter 11.

The breakdown into 4 x 4 blocks also requires the definition of the control

flow between the component self-timed regions. In some cases, with linear

flow of data from input to output, such as the constant multiplier of Section

10.3.4, this is simple. However, designs with less regular flow of data, such

as large state machines, may be more difficult to partition between self-timed

196

regions.
Another aspect of the granularity of timing array was illustrated with the

Feedback block in the polynomial evaluation circuit of Section 10.3.6. In this

circuit, insufficient timing cell links were available to implement a selective

output link, so instead an extra timing cell had to be used to implement the

selective output link. This resulted in a large number of wasted cells in the

data array.
Many of the problems with the granularity can be solved by allowing more

flexibility in the granularity of the self-timed regions. Possible extensions to

the architecture to implement this are discussed in Section 11.5.

10.4.3 Layout

When parameterised circuits are composed into hierarchies, problems with

joining the circuits together are encountered. For compile-time parameterised
circuits, the problems of joining the parameterised parts together can be left

for routing and placement algorithms to solve. However, run-time paramet-

erised circuits require that the configuration can be constructed quickly, which

requires a simple and regular pattern of routing and layout.

In the process of design, many of the smaller parameterised blocks had

to be adapted to fit into larger designs. For example, the constant multiplier

circuit of Section 10.3.4 was originally designed, with input and output data

bundles at right angles, but a different version had to be designed for use in

the syndrome evaluation circuit of Section 10.3.6 with inputs and outputs on

the same side of the block. To give some flexibility in the use of blocks, the

symmetry of the underlying XC6200 architecture was used extensively to allow

designs to be flipped and rotated. To exploit this, asymmetrical features, such

as the Magic routing were avoided in designs.

Despite using these techniques, fitting parameterised designs together still

proved to be difficult. The general polynomial division circuit illustrates the

problems; many of the blocks in the bounding box of the design are unused

or simply used for routing. The design of such complex run-time paramet-

erised circuits could benefit from the development of tools that allowed the

circuit layout to be defined in terms of variable sized blocks. This would allow

a more thorough exploration and design of 'virtual layouts' where the dimen-

sions are not fixed until the run-time parameterised circuit is instantiated by

configuration software.

197

10.4.4 Utilisation

Another noticeable aspect of many of the circuits is the poor utilisation of logic

cells. For example, the polynomial remainder circuit of Figure 10.24 has a cell

utilisation below 50%. It is possible to place and route the circuits using the

)(ilinx Tools, to give a superior place and route. The automatic place and route

of the polynomial remainder circuit is shown in Figure 10.25. The utilisation

of this circuit is superior, but is at the cost of losing the regular structure of

the circuit. Circuits with such an irregular structure are difficult to construct

rapidly at ran-time. Thus, a penalty of the regular layout required for run-time

parameterisation is that poor utilisation may often result.

Another aspect of the circuits leading to poor utilisation is that many cells

are purely used for routing, and not for logic. This partially results from the

regular layouts for different subcomponents not abutting well. Another cause

is that the limited routing resources in the XC6200, forcing designs to be laid

out in a more spacious fashion to ensure that they can be routed in a regular

fashion.

A final cause of the poor utilisation is the fixed self-timed granularity of

4 x 4 blocks. Thus, cells are wasted as they do not fit within the 4 x 4 block.

The constant multiplier of Figure 10.12(b) illustrated how this can lead to poor

utilisation. A solution to this problem would be to allow greater flexibility in
the granularity of the self-timed regions. This is discussed in Section 11.5.

An expected secondary effect of the poor utilisation and spacious layout of

the run-time parameterised designs would be a degradation in performance

due to longer routing paths being required. However, examining the auto-

matic place and route in Figure 10.25, it can be seen that a lot of complex rout-

ing paths are found with signals taking long routes, sometimes with looping

structures so that they can access the required routing resources. Thus, a cost

of the more compact placement is that routing resource is more scarce, so more

complex routing is required in many cases. This highlights the importance of

balancing logic and routing resource in the design of FPGA architectures in

general.

10.4.5 Routing

The design of run-time parameterised circuits with a regular routing structure

illustrated a number of problems in the use of routing in the XC6200 data array.

In particular, the use of the level-4 flyovers proved problematic. In general,

Figure 10.25: Polynomial Remainder laid out with no constraints

199

the level-4 flyovers were used for connecting the self-timed regions together.

However, it is often useful to use the level-4 flyovers for routing within a 4 x 4

block. For example, the connection of two cells in the same row or column of a

4 x 4 block, but on different sides of the block, is quicker by using the flyover

routing than by using the local routing.

This use of level-4 flyovers for routing internal to the self-timed region con-

flicts with its use for routing between self-timed regions. For instance, a single

level-4 route used for routing internally to a self-timed region can prevent the

regular routing of a bundle of data across the self-timed region. To avoid these

conflicts the parameterised blocks were designed as far as possible to use the

local routing.

Another conflict in the use of routing resources occurs with data buses turn-

ing corners. The XC6200 architecture provides the Magic signals to implement

such corner turning. However, these signals can only be used if the X2 or X3

multiplexors in the cell at the corner can be suitably configured. To avoid such

conflicts, buses that turned corners used blocks exclusively for routing, such as

the Corner blocks that are used in the polynomial remainder circuit of Section

10.3.9.

The other aspect of the XC6200 routing architecture that caused problems

in designs was the difficulty of routing from row to row or from column to

column. The XC6200 routing architecture is good at routing signals within

a single column or row, but changing rows or columns causes problems, es-

pecially when trying to construct regular designs suitable for parameterised

circuits. For example, the general multiplier circuit of Section 10.3.3 was im-

plemented as a number of bit slices, but with different cyclic shifts of the in-

puts. However, this cyclic rotation was difficult to implement in the flyover

routing. Instead, the layout of the bit slices was modified to perform the cyclic

shift internally.

10.5 Summary

This chapter has illustrated the construction of run-time parameterised circuits

for the self-timed XC6200. The implementation of finite field operations is

similar to the work by Klindworth [68]. However, the designs have been de-

veloped so that they can be constructed by a program on the fly, rather than

synthesised by place and route tools as done by Klindworth. Configuration on

the fly is made possible by the use of self-timed circuits; this allows the size

200

of circuits to be altered, without having to perform delay analysis on the cir-

cuit. This allows the dynamic alteration of the power of an error correction

code proposed by Klindworth to become possible over a wide range of codes,

rather than being limited to the swapping in of pre-synthesised circuits for a

small number of the different values of the parameters.
The chapter has also discussed a variety of design techniques for the self-

timed XC6200. The designs have illustrated the way the timing array routing

structure mirrors the routing patterns in the data array, and how the choice of

a fixed granularity imposes constraints on the way designs are implemented.
Also, the problems in construction of parameterised circuits have been shown:

how the need for regular routing and layout structures causes problems in

creating efficient designs. This chapter has not considered the performance

aspects of the designs. This is discussed in the next chapter, which compares

the self-timed XC6200 to the synchronous version.

201

Chapter 11

Self-Timed XC6200 Evaluation

11.1 Introduction

This chapter evaluates the self-timed XC6200 architecture relative to the syn-

chronous XC6200. Detailed evaluation data is included in Appendix B. The

self-timed XC6200 is evaluated in terms of delay performance and the im-

plementation overhead of the timing array. The simulation of the self-timed

XC6200 was not detailed enough to evaluate the power use of the architecture.

The timing array implementation overhead is considered in two ways. Sec-

tion 11.2 evaluates how much additional circuitry is required to implement the

timing array. Section 11.3 turns this question around, and considers how many

data cells would be required to implement the timing cell behaviour using

the synchronous XC6200. Section 11.4 examines the delay performance of the

self-timed XC6200 architecture. Two delay methodologies are compared: re-

configurable fixed delays and Current Sensing Completion Detection (CSCD).

Finally, in Section 11.5 the results of the evaluation are used to suggest im-

provements to the timing array and data array. In particular, the ability to

group timing cells together to form larger self-timed regions is considered.

11.2 Implementation Overhead

This section examines the costs of implementing the timing array in the self-

timed XC6200. The comparison does not try to assess whether the additional

circuitry is justified by the additional functionality provided by the timing ar-

ray. These benefits are considered in Section 11.3 which discusses the costs of

implementing flow control in the synchronous XC6200 architecture.

There are several ways of evaluating the implementation costs of the archi-

tecture. A direct method of evaluation would be to compare the silicon area

202

used by VLSI layouts of the synchronous and self-timed XC6200. However,

creating a VLSI layout is a time consuming task, and gives a comparison that

is highly dependent on the choice of process technology, and whether the cir-

cuits are designed for speed or compactness. Instead, three different metrics

were used to evaluate the implementation cost: configuration bit count, wiring

density and transistor count. Using all three metrics gives a range of assess-

ments of the overhead of the architecture, largely free of concerns over the

process technology used.

The comparison in this section is based on the fixed delay variant of the

self-timed XC6200. A comparison based on the CSCD variant would give bet-

ter figures for the self-timed architecture, since it uses fewer configuration bits

and fewer transistors. However, the current sensing technology is best imple-

mented using bipolar transistors, thus requiring a BiCMOS process technology

[26]; this additional implementation cost is not easily evaluated by the metrics

used.

11.2.1 Configuration Bit Count

The configuration bit count gives a measure of the extra information required

to configure the timing array. Furthermore, the configuration memory forms a

significant part of the circuitry to be implemented in the timing cell. The num-

ber of configuration bits can be used to give a rough guide to implementation

cost of the circuitry, by assuming that the complexity of the circuitry is in pro-

portion to the number of configuration bits. Though this assumption holds in

general, there is a trade-off in the design of an FPGA between minimising the

number of configuration bits and minimising the circuitry required to decode

from the configuration bits to the control signals required by the FPGA.

Part Data Timing Overhead
4 x 4 Block of Cells 256 34 13%
Boundary Routing 96 10 10%
Total 352 44 13%

Table 11.1: Configuration Bit Usage for 4 x 4 Block

A detailed breakdown of the configuration bits used in the timing array

and data array in the XC6200 for a self-timed region is shown in Tables B.1 and

B.2. The data is summarised in Table 11.1. Considering the configuration bits

used for the timing cell (detailed breakdown in Table B.1(b)), most of the bits

are used for functions that are configured for each link in the timing cell. The

203

number of configuration bits for these functions could be reduced by either

using a timing cell with less links, or centralising some functionality of the

timing cell, for example, using one select input per timing cell rather than one

per link. The disadvantage of this approach is that it reduces the potential

behaviour of the timing cell.

Examining the figures for the boundary routing in Table 11.1, the timing ar-

ray routing only uses an additional 10 configuration bits. However, this figure

includes a deduction for the clock routing multiplexors, which are not required

in the self-timed XC6200 architecture. Without this deduction, 26 configuration

bits are required for the timing array routing relative to 96 for the data array.

This gives an overhead of 27% for the timing array routing. This figure gives

a fairer estimate of the complexity of the timing array routing relative to the

data array routing.
Overall, the configuration bit overhead of the timing cell and timing array

routing for a 4 x 4 block is 13%. The contribution from the timing array routing

and the timing cells are similar in percentage overhead, but as the timing cell

contributes a larger number of configuration bits to the total, the timing cell

would be the best place to look for savings in the number of configuration bits.

11.2.2 Wiring Density

Wiring density gives an indication of the complexity of the routing, which is

a significant implementation cost in VLSI systems. In the calculations, only

signals connecting cells within the XC6200 are considered, rather than the im-

plementation dependent routing internal to the cells. Also, the wiring required

to implement the configuration SRAM is not included in the comparison, since

it is again implementation dependent, but the costs could be expected to be in

proportion to the number of configuration bits.

Part 	Number of Wires
per 4 x 4 block

Data Array 	 43
Timing Array 	 6
Overhead 	 14%

Table 11.2: Wiring Density in one dimension

Table B.3 has the breakdown of wires used in one dimension for the XC6200.

The data is summarised in Table 11.2. Routing, such as the CLK and CLR sig-

nals, which only occur in one dimension, are averaged over the two dimen-

204

sions in the data. The global signals GCLK, Gi, G2, GCLR used for global clock-

ing and reset in the synchronous XC6200 are not required in the self-timed

XC6200. Global clock signals are not required, since timing is implemented

locally, and global reset is not required, since reset is implemented in the self-

timed XC6200 using the RESET configuration bit in the timing cell (See Section

7.3.4).

Comparing the wires required for the synchronous and self-timed versions,

only 6 extra wires are required for the self-timed 4 x 4 block per dimension,

giving an overhead of 14%. This measures the complexity of the circuit in terms

of the additional inputs and outputs that need to be produced. However, if the

routing area is the limiting factor in the silicon area used by an implementation

then the one dimensional figure has to be squared, giving an overhead of 30%.

11.2.3 Transistor Count

The final metric used is transistor count; this metric should be used with cau-

tion, since the number of transistors is subject to variations depending on the

implementation chosen for the circuitry. Also, transistors are not of constant

size, since they require scaling according to the load that they drive.

Part 	 Transistors
Synchronisation 134
Select 224
Select Routing 96
To Register Delay 92
From Register Delay 54
Arbitration 108
RESET 6
Total 714

Table 11.3: Timing Cell Components Transistor Count

Part Data Timing Overhead
4 x 4 block 4096 714 17%
Boundary Routing 1536 324 21%
Total 5632 1038 18%

Table 11.4: Transistor Count Summary

Table B.5(b) gives the breakdown of transistor usage in the timing cell; it is

summarised in Table 11.3. The biggest component of the transistor count is the

Select circuitry, largely due to the D-type registers required to sample the select

state. The number of D-types could be reduced by using fewer select inputs.

205

Tables B.5 and B.6 detail the number of transistors used in the self-timed

XC6200. The implementation used for the components is given in Table B.4.

The data is summarised in Table 11.4. Overall the overhead for a 4 x 4 block

of data cells, including routing is 18%. On these figures, the timing cell uses

circuitry of equivalent complexity to three data cells.

11.2.4 Summary of Implementation Overheads

Table 11.5 summarises the overhead figures for the three different metrics used.

The metrics cover a relatively small range from 13% to 18%. Thus, the timing

array overhead is equivalent to between 2.5 and 3 data cells per 4 x 4 block.

Metric 	 Value
Configuration Bits 	13%
Wiring Density 	14%
Transistor Count 	18%

Table 11.5: Summary of Implementation Overheads

In the table, the one dimensional wiring density is used. This gives a meas-

ure of the extra inputs and outputs required in the circuitry and thus is a meas-

ure of the circuit complexity. However, if the limiting factor in a design is fitting

the wiring on to the chip, then the one-dimensional figure needs to be squared

to give the additional chip area required. This gives a far higher overhead of

30%. The main cost if routing area is the limiting factor would probably be the

need for extra routing layers in a VLSI implementation.

Overall, the figures suggest that the implementation overhead is less than

20%. Such an overhead is comparable with the overhead reported for other

bundled-data systems [67, 39]. It is more difficult to extrapolate results from

the self-timed XC6200 to STACC architectures in general. Other STACC ar-

chitectures will have a different ratio of timing cells to data cells, which has a

critical effect on the implementation overhead.

11.3 Flow Control without the Timing Array

One of the principal benefits of using a self-timed protocol is that flow control

comes as part of the handshaking protocol. Hence, a useful way to evaluate

the effectiveness of the timing cell is to consider how flow control can be im-

plemented in the XC6200 without the timing array

206

Flow control can be implemented in the XC6200 in two ways: synchron-

ously and asynchronously. Synchronous flow control uses a modified style of

handshaking protocol within the constraints of the clocked protocol. Asyn-

chronous flow control tries to directly implement the self-timed control struc-

tures that have been implemented in the timing array using cells in the data

array. These two approaches are discussed below.

11.3.1 Synchronous Flow Control

Figure 11.1 shows the implementation of flow control for a FIFO using the

synchronous XC6200. The request/ acknowledge handshake of the self-timed

protocol is not directly implemented, since this would require two clock cycles

for a two-phase handshake and four clock cycles for a four-phase handshake.

Instead, the synchronous flow control uses the valid and Ready signals. The

Valid signals are similar to request signals as they indicate that the data from

a stage is valid, whilst the Ready signals are similar to acknowledge signals

as they indicate that the stage is ready to accept data. In contrast to the local

change of state that occurs in a self-timed pipeline, the next state of the whole

synchronous pipeline is calculated on each clock cycle.

Data Path
r MUX/REG 1

B -

0
C13 -

I MUX%REG

I
I 	 i

MUX/REG

Vali din OR 	- ValidOut

Readyin ReadyOut

Control Path

Figure 11.1: Synchronous Flow Control

The implementation shown in Figure 11.1, uses two cells for flow control:

one cell generates the Va 1 i dOu t output which indicates whether the stage

is full or empty; the other cell generates the Readyln output. In a pipeline,

the Readyln signals are generated by a chain of OR gates, one per stage,

which takes the inverted Va 1± dOu t signals as inputs. Thus, if a stage is empty

207

(ValidOut for the stage is low), the Readyln outputs in the current stage

and the stages before it go high, indicating that data can be shifted along the

pipeline up to this point. The Val idOut output that indicates whether a stage

is full is generated from the Readyln and validln signals. A stage will re-

main full (i.e. validOut high), if all the following stages including the stage

in question are full (indicated by Readyln being low), or will become full if

the Val idln input from the previous stage is high.

The Readyln output is also used as an enable signal for the registers con-

trolled by the flow control circuit. Using Readyln as the enable signal means

that spurious data can be captured into the registers when Validln is not set,

but this data is ignored as ValidOut is only set when validln is high. The

capturing of spurious data does not overwrite useful data, since the Readyln

signal indicates that the stage is ready to accept data. The implementation of

registers with an enable signal in the XC6200 requires one cell per register ele-

ment. Enabled registers are configured using multiplexors. When enabled, the

register input comes from the circuit's inputs, when disabled, the output of the

register is fed back to itself to retain the same state.

An alternative implementation of synchronous flow control, which does

not require enabled registers would be to use a gated clock. This design would

generate a local clock, by ANDing the Readyln signal with GCLK, and then

distributing the result using the CLK routing to the cells. However, this in-

troduces extra delays in the clocking, and also has problems with clock skew

between CLK signals in different columns.

Considering the cell usage in Figure 11.1, to implement the flow control

for a simple pipeline requires two cells for control plus one cell per register

element to build an enabled register. This gives a minimum cell usage of three

cells for a one bit wide FIFO. In comparison, the timing cell is equivalent to

just under three data cells based on the transistor count metric. Implementing

wider data paths in the synchronous flow control circuit requires more cells

to be used to build enabled registers, whilst no penalty is incurred using the

timing cell.
The FIFO represents the simplest flow control that could be required by a

pipeline stage. In the self-timed XC6200, the timing cell can control more com-

plex flows including the fan-in and fan-out of links and selective communica-

tion. Extending the synchronous flow control to deal with fan-in and fan-out

signals requires extra data cells to AND the input validln or ReadyOut sig-

nals together. Extending the flow control to provide selective communication

I:

would require additional data cells to be configured as AND gates to act as

enables for the validOut and Readyln signals.

From this discussion it can be seen that implementing the functionality of

a full timing cell in a synchronous XC6200, with many links, selective commu-

nication, arbitration plus a dedicated routing structure for handshaking signals

requires a large number of data cells. The timing cell implements this for a cost

of three data cell equivalents based on the transistor count metric.

11.3.2 Asynchronous Flow Control

The alternative to synchronous flow control described above, is to directly im-

plement self-timed flow control in the data array. The basic element required

for flow control in self-timed systems is the C-Muller gate. Figure 11.2 shows

an implementation using the XC6200 logic cells of a two input C-Muller gate

with inputs A and B, and output C. The circuit implements the C-Muller as the

logic function C = A(B + C) + A(BC). The OR cell implements the B + C term,

the AND cell implements the BC term, and these are combined to produce C
using the MUX with A as the select input. This C-Muller gate design uses one

less cell than the design in the CAL1024 architecture by Oldfield and Kappler

[92].

Figure 11.2: C-Muller Gate using XC6200 Logic Cells

A single C-Muller gate can control a two-phase pipeline, but two-phase

memory elements are required. The two-phase memory element used by Old-

field and Kappler's designs [92] for the CAL1204 showed that the implementa-

tion of two-phase memory elements in a fine grained architecture is costly. An

alternative would be to use four-phase handshaking and standard four-phase

registers, but this option requires additional C-Muller gates for decoupling (see

Section 7.4.1). To implement four-phase flow control using one C-Muller gate

for controlling the registers and one C-Muller gate for decoupling would re-

209

quire six data cells. This is far greater than the overhead of implementing the

timing cell (three data cell equivalents based on transistor count), even before

considering more complex patterns of data flow that the timing cell can imple-

ment.

11.4 Delay Performance

This section compares the delay performance of the self-timed and synchron-

ous versions of the XC6200. Two different delay strategies are compared for the

self-timed XC6200, based on a fixed reconfigurable delay element and CSCD

based delay element.

The discussion of delay performance is broken into three parts: in the first

part, the method of calculating the delays is considered. The second part il-

lustrates the different delays of the architectures using a number of example

circuits. Finally, the delay performance of the circuits discussed in the previ-

ous chapter are tabulated and discussed.

11.4.1 Delay Calculation

The delays for the data array were calculated using the worst case delay val-

ues from the XC6200 data sheet [123]; these values are reproduced in Table

B.7. The delay analysis was performed using specially written routines in the

VHDL simulator. These routines give higher delay values than Xilinx's own

tools, by about 20%. This difference occurs since the Xilinx tools take into

account asymmetries in the delays for each direction of signal flow in the ar-

chitecture, which are not published in the data sheet. The difference between

the delays calculated within the simulator and by the Xilinx tools is illustrated

in Figure B.1 which shows a profile of delays measured between logic blocks

for a sample circuit by the simulator and the Xilinx tools.

The delay calculation routines were used to set the clock period in the sim-

ulation of the synchronous architecture, and to set the value of the delay ele-

ments in the self-timed version. In the simulations, it was assumed that both

the global clock and the delay elements could take a continuous range of val-

ues. In practice, the reconfigurable delay element is restricted to a discrete

number of delays by its implementation, and the clock is generally restricted

to be a multiple of a master clock period generated by an off-the-shelf oscil-

lator module. Thus, when implemented, both system clock period and delay

element values would have to be be rounded up to the nearest discrete delay

210

period.

The CSCD based architecture did not need delay analysis of the self-timed

regions, since CSCD generates completion signals by monitoring the data ar-

ray. In the simulator, the CSCD monitoring circuitry was attached to the power

rails for the local routing multiplexors. The CSCD simulations had to use

a value for the time taken by the CSCD circuit to determine that the circuit

has completed; the value used in simulations was 5ns. The figure of 5ns was

chosen as it is slightly longer than the longest possible un-monitored path that

exists in a 4 x 4 block.

The simulation results for the CSCD architecture are based on the worst

case delays given in Table B.7. The worst case values were used as no typical

case data is given in the XC6200 data sheet. Thus, the CSCD values are con-

servative; actual CSCD implementations will have lower delays depending on

how much better the actual operational delays are than the worst case.

In the timing array, the delay of the handshaking switchboxes was set to

match the worst case delay of the level-16 boundary multiplexors (2.5ns). Sig-

nals routed via level-64 flyovers have longer delays (5ns) but are only routed

from level-64 boundaries. Thus, level-64 signals can be accommodated by in-

cluding additional delay into the the output of reconfigurable C-Muller gates

on level-64 boundaries.

11.4.2 Synchronous and Self-Timed Circuit Implementations

In the following sections, self-timed and synchronous implementations of cir-

cuits are compared. To keep the comparison as fair as possible, the data array

implementation has been altered as little as possible. However, the flow control

that is part of the self-timed protocol does force some changes in synchronous

versions of circuits, since some of the circuits rely on the flow control for cor-

rect operation. Synchronous implementations with the same behaviour would

have to include flow control structures as outlined in Section 11.3.1.

Inclusion of flow control in synchronous designs can seriously disrupt the

circuit structure; extra cells are required for the flow control logic and the en-

abled registers, and extra routing for the register enable signals. Rather than

disrupt the data array, the synchronous circuits do not directly include the flow

control. In most of the circuits, the flow control can be implemented separately,

since the output is generated a fixed number of clock cycles after an input ar-

rives. Instead, a counter can be used to generate a completion signal. However,

for comparison purposes, the delay performance of synchronous flow control

211

is discussed in Section 11.4.3.

The other difference of the synchronous circuits from the self-timed circuits

is the nature of the pipelining. The fixed granularity of the current elf-timed

architecture forces pipelining (i.e. registers) to be included in each 4 x 4 block.

In synchronous designs, there is more freedom on how designs are pipelined.

However, in the case of loops in the design, the pipelining in the self-timed

design must be removed for the synchronous design, otherwise the results be-

ing fed back will be delayed, changing the circuit's behaviour.

11.4.3 Case Studies

This section examines in detail the delays in four different circuits to illustrate

the sources of delay in the different XC6200 architectures. The first example

compares the delays for FIFOs; this compares the delays of the protocols, since

no computation is done in the data array. The second case study examines the

GF(2") multiplier circuit to examine the delays in the timing array. The third

case study looks at the delays in the fixed polynomial generator circuit; this

example illustrates the delays arising from the pipelining imposed by the self-

timed architecture. The final example looks at the data dependent delays for

CSCD in a counter circuit.

FIFOs: Protocol Delays

FIFOs are pipelines without processing elements; as such they are a good com-

parison of the delays inherent in the synchronous and self-timed protocols,

rather than the delays in the data array. The delays for various implement-

ations of the FIFO are shown in Table 11.6. Two versions of the circuit are

compared for the synchronous XC6200; one version includes no flow control

circuitry and so effectively implements a shift register; the other includes the

flow control circuitry described in Section 11.3.1.

Implementation 	 Delay /ns
Synchronous Shift Register 13.5
Synchronous Flow Control 7.5 + 11.5 Nstages

Self-timed Fixed 14.4
Self-timed CSCD 17.8

Table 11.6: FIFO delays

The synchronous shift-register implementation has a similar delay to the

self-timed fixed delay version; both are close to the data path delay of 11.5 ns.

212

In the case of the synchronous shift register, there is the overhead of clock dis-

tribution (2 ns), whilst in the self-timed fixed delay version there is the over-

head of returning the acknowledge signal to the previous stage (2.5ns), plus

some small delays in the timing cell logic (0.4ns), which have not been ac-

counted for in the delay element value. The main overhead in the self-timed

architecture of returning the acknowledge signal could potentially be hidden

by anticipating the completion of the logic block (a similar idea is used in [40]).
The synchronous implementation with flow control has a far larger delay

than the shift-register implementation. The delay is proportional to the num-

ber of stages, Nstages , in the FIFO. This relationship with the number of stages

arises from calculating the signals in the Ready chain; the longer the Ready

chain, the longer the delay. Though in comparison with other FIFO imple-

mentations the delay is large, in general the flow control will only reduce

the clock period of a pipeline when the processing between registers takes a

shorter time than for the calculation of the flow control. For shorter pipelines,

the processing will generally take longer, but for longer pipelines, the flow

control may form the worst case path in the design. In this case, the Ready

chain has to be broken by the introduction of registers into it. This lowers the

performance of the pipeline, since a Ready signal propagating back from the

end of the pipeline will take several clock cycles to reach the beginning of the

pipeline.
The final value given in the table is the delay for a self-timed CSCD im-

plementation. The period of 17.8ns is worse than the self-timed fixed delay

implementation. The poor performance of the CSCD implementation occurs

because there are few data dependent delays to be exploited in the FIFO. All

the path lengths of signals in the FIFO are the same length, so the only data

dependent delay to be exploited is when the same values are sent down the

FIFO in succession. This did not occur in the test conditions used. With no

data dependent delays to exploit, the same delays as for the self-timed fixed

delay architecture are encountered by the CSCD architecture, plus an addi-

tional delay for generating the completion signal from the CSCD logic. Thus,

this example represents the worst case example for CSCD; in later examples,

data dependent delays can be exploited.

GF(2') Multiplier Example: Timing Array Routing Delays

This section considers the delays in the timing array routing by examining the
GF(2k) multiplier circuit described in Section 10.3.3. The circuit is composed

213

of a number of 4 x 4 blocks that each generate one bit of the result. The inputs

and outputs fan in and fan out using the level-4 and level-16 flyover routing.

The timing array routing mirrors the data array routing with fanning in and

fanning out routing to each timing cell using the level-4 handshaking routing.

Implementation 	Average
Delay Ins

Synchronous 	50.5
Self-timed 	Fixed 60.2
Self-timed 	CSCD 42.9

Table 11.7: GF(2k) Multiplier delays

Table 11.7 summarises the delays for the different architectures. The syn-

chronous implementation has a delay of 50.5ns. The critical path is composed

of the delay from the 4 x 4 block furthest from inputs (42.5ns) plus the routing

delay of the inputs on the level-4 flyovers through three boundary multiplex-

ors (3 x 2.Ons), and clock distribution overheads (2.Ons).

For the self-timed fixed delay architecture, the average cycle time is 60.2ns.

Again, the major component of the delay is the logic delay of the block fur-

thest from the inputs (42.5ns). Additional to this, there is the delay of the re-

quest signal which passes through three reconfigurable C-Muller gates in the

timing array routing (the delay of the reconfigurable C-Muller gate in the local

routing is included in the fixed delay of the timing cell). The routing delay of

the request signal in the timing array routing (3 x 2.5ns) is a close match for

the delay of the input data routing through three boundary multiplexors (3 x

2.Ons), giving an overall request routing overhead of 1.5ns. A far larger over-

head is the overhead of routing the acknowledge signal; this passes through

four reconfigurable C-Muller gates giving a delay of iOns. Thus, the example

illustrates that the delay in the timing array routing can significantly delay the

acknowledge signal, so leading to a large overhead relative to the synchronous

architecture.

Despite the overhead in the acknowledge signal routing, the self-timed

CSCD architecture has a shorter delay period than the synchronous architec-

ture, showing that there are plenty of data dependent delays to be exploited in

the circuit. Furthermore, the CSCD architecture overcomes the request signal

routing overhead (1.5ns), since the late arrival of the request signal does not

delay the data evaluation. The late arrival of the request signal will only delay

the block if the request arrives after the block has finished evaluating. This

property of CSCD can be used to give a greater margin between request and

214

data to ensure the bundling constraint is met.

Fixed Polynomial Division: Pipelining Overheads

This section examines the delays in the fixed polynomial division circuit de-

scribed in the previous chapter (Section 10.3.5). The circuit is an interesting

example as it includes a feedback loop, rather than being a simple pipeline.

The self-timed and synchronous versions of the circuit differ in the pipelin-

ing (i.e. register usage) in the designs. In the self-timed designs, the architec-

ture requires that each 4 x 4 block can retain state. In contrast, in the synchron-

ous design, all the registers have to be removed, except in the Adder blocks,

otherwise the feedback value would take more than one clock cycle to be fed

back around the loop.

Implementation 	 Delay Ins
Synchronous 	 57.5 ns
Self-timed 	Fixed Delay 73.3
Self-timed 	CSCD 	54.4

Implementation Delays

Block To Reg From Reg Total
Delay Ins Delay Ins Delay Ins

Corner 16 5.5 21.5
Scale 17.5 4 21.5
Adder 14.5 1 15.5
Tjunc 10.5 1 11.5
Total 70.0

Fixed Delay Breakdown

Table 11.8: Fixed Polynomial Division Delays

Table 11.8(a) summarises the delays for the fixed polynomial division cir-

cuit for a polynomial of length two. In the self-timed fixed delay architecture,

the rate determining path is the feedback path through the bottom-most Adder

block back to itself. This loop in the fixed delay self-timed architecture has a

cycle time of 73.3ns. However, in the synchronous version the delay of the un-

pipelined loop is only 53.5ns. Thus the unnecessary pipelining of the loop in

the self-timed version has increased the delay by almost 20ns.

Table 11.8(b) shows the delay values used by the two delay elements in each

4 x 4 block that is part of the loop. The loop, which in the un-pipelined syn-

215

chronous version is one continuous path, is broken into eight separate parts in

the self-timed version. Each delay element represents the delay of the critical

path through a small part of the loop. The only case when the worst case delay

in the pipelined loop would equal the worst case delay in the un-pipelined

loop would be when the critical path through the un-pipelined loop was com-

posed from the critical paths of all the stages in the pipelined loop. This is very

unlikely, especially when the loop is split into eight parts.

Thus, pipelining increases the delay around the loop, since the critical path

through the pipelined stages of the loop does not correspond to the critical path

through the un-pipelined loop. The problem can be overcome by moving the

positions of registers in designs, so that new critical paths are not introduced.

This is difficult to achieve in the the current self-timed architecture as there is

not complete freedom on the positioning of registers, since registers must be

placed in every 4 x 4 block. However, by moving the registers within the 4 x 4

block, the delay performance of the block can be improved.

For example, Figure 11.3 illustrates the alteration of the Tj unc and Adder

blocks to prevent the introduction of new critical paths. Without the registers,

all the paths through the Tj unc block are critical as they are of equal length.

However, the natural positioning of the registers in the original implement-

ation of the Tj unc block changes the critical path (Figure 11.3(a)); the input

critical path goes to the bottom left cell, whilst the output critical path comes

from the top right cell. The delay performance is improved in the new version

of the Tj unc block (Figure 11.3(b)) that has all the registers close to the out-

puts. This block does not disrupt the critical path through the block, so saving

4.5 ns relative to the old block (See Figure 11.3(e)).

Figure 113(c) illustrates the old version of the Adder block. In the un-

pipelined Adder block, all the signal paths are critical, since they are of the

same length, but in the pipelined version the critical path is changed. Again,

this can be avoided by moving the registers to the edge of the block, as in

Figure 11.3(d). However, to use the registers at the edge of the block, additional

buffer (BuF) cells are introduced. These increase the length of the critical path,

so that it is only 0.5ns faster than the original version of the Adder block (See

Figure 11.3(e)).
Returning to the comparison of delay performance shown in Table 11.8(a),

the synchronous implementation has a different critical path to the self-timed

version. The critical path in the synchronous version is not the delay around

the bottom-most feedback loop as in the self-timed version, but is the delay of

216

1171

Out

=
0

In

Out

=
0

(a) Old Tjunc

ir

Out

(c) Old Adder

(b) New Tjunc

In

Out

(d) New Adder

Block 	To Reg 	From Reg Total
Delay Ins Delay Ins Delay Ins

Old Tj unc 	10.5 	5.5 	16.0
New Tj unc 10.5 	1 	11.5
Saving 	 4.5

Old Adder 10.5 	5.5 	16.0
New Adder 14.5 	1 	15.5
Saving 	 0.5

(e) Delay Table

Figure 11.3: Moving Register Locations

217

from the bottom-most Adder block, around the feedback loop to the topmost

Adder block. This gives a cycle period for the synchronous architecture of

57.5ns. Despite the pipelining overheads of the self-timed architecture, the

CSCD implementation manages to out-perform the synchronous version of the

circuit, illustrating the large number of data dependent delays in the circuit.

Counter Example: CSCD Delays

Figure 11.4(a) illustrates an example of a parameterised circuit that counts

down from a set value to zero. The example is used to illustrate the exploita-

tion of data dependent delays in the CSCD architecture implementation.

The functions of groups of cells in the circuit are marked on Figure 11.4(a).

The state memory of the counter is implemented using the top row of cells

which are configured as Toggle registers. The row of cells below are concerned

with resetting the Toggle registers to a pre-defined value; these cells are para-

meterised according to the desired reset value. In the example, the counter is

reset to the value 14 (this is, not apparent as the Xiinx tools do not show the

inversions in the circuit). The next row of cells generate the next state for the

counter by determining which registers to toggle. Finally, the bottom row of

cells detects the reset state, which is when all the toggle registers are zero. The

reset signal is also available as an output from the circuit.

Table 11.4(b) lists the delays for each architecture. The delays for the syn-

chronous and the self-timed fixed delay architectures are similar. This is to be

expected, since there is no alteration in the circuit between the synchronous

and self-timed architectures in this case. The cycle time for both architectures

is determined by worst case delay through the circuit which occurs when the

counter is reset from 0 to 14. The worst case delay runs from the output of the

most significant Toggle register along the chain of AND gates used to detect

the reset state, and then back along the line of multiplexor (Mux) cells used to

reset the Toggle registers.

The CSCD architecture is far quicker, giving an average delay that is half

the time of the other architectures. Figure 11.4(c) shows the distribution of

delays. Seven of the 15 possible state changes only result in the lowest bit

being changed, so the minimum delay of 16.5ns is encountered. As more bits

are changed, the delays increase up to the worst case for the reset from 0 to 14,

where the maximum delay of 25.5ns is encountered

Unexpectedly, the worst case delay for the CSCD circuit is not the same as

the cycle time for the other architectures. This apparently anomalous beha-

7

6

5

rr

>.
C)

a)

LL

2

1

0
15 17.5 	20 	22.5 	25

Delay \ns

1— 	 — I-
XOR 'REG XORVREG XORVREG

- --4- -4-
MUx 	iUxI 	riu5cI -

AM AM

OL 	i_

(' ri mt 	nrtirn 	fl \ 	\ F1 \ I

- - 	 -

BUF 	AND 	AND

I
—,—

— o - -D
 (

Reset Detect
Reset Out

XOR REG

Toggle Registers

- Choose Count
or Reset

(a) Circuit

Architecture 	 Delay Ins
Synchronous 	 42.0
Self-Timed 	Fixed Delay 43.7
Self-Timed 	CSCD 	19.5 1

1 average cycle time

(b) Delay Table

(c) CSCD Delay Distribution

Figure 11.4: Counter Example

219

viour can be explained by examining the circuit in more detail. The critical

path of the circuit in Figure 11.4(a) runs through a chain of AND gates that de-

tect the reset state. The delay along the critical path through the logic is 42ns,

but the CSCD architecture takes advantage of the actual sequence of states that

the circuit goes through. When the actual reset state is reached, all except the

least significant Toggle register are already zero, so the worst case delay only

runs through the last AND gate in the reset detect chain.

Thus, the CSCD analysis shows that the counter can actually be run at a

clocking period of 25.5ns for the fixed delay and synchronous architectures.

However, there is no way for tools that simply calculate the critical path delay

through the combinatorial logic of the circuit to calculate this value. Tools that

analyse the worst case delay time for each possible state change are not in

general use, due to the combinatorial explosion problem for large state spaces.

Despite the special circumstances of the counter, the average cycle time for

the CSCD architecture is 7 ns (25%) better than the cycle time that the self-timed

fixed delay and synchronous architectures could be run at.

11.4.4 Delay Performance Summary

This section has examined the sources of delay in the self-timed XC6200 archi-

tecture. The delays for the circuits discussed in this chapter and the previous

chapter are summarised in Table 11.9. The calculation of the figures in each

column of the table are summarised in Table 11.10.
The examples discussed above have highlighted several sources of the over -

head for the self-timed XC6200. The FIFO example showed that the basic

delays of the self-timed and synchronous protocols were comparable. In the

synchronous protocol, the main overhead is clock distribution whilst in the

self-timed protocol the main overhead is returning the acknowledge signal.

The acknowledge overhead can be significant when it is routed through the

timing array routing, as illustrated by the GF(2k) multiplier. The distribution

of the request signal is a smaller overhead, since it matches the routing delay

of the data signals.

The fixed polynomial division example illustrated the delay overheads en-

countered through the enforced pipelining of the self-timed architecture at the

level of 4 x 4 blocks. The overhead arises from the pipelined circuit having

different critical paths from the critical path in the un-pipelined circuit. These

delays are particularly significant in loops, which form the rate determining

step in many of the circuits listed in Table 11.9. In these cases, it would be

220

I'J

\'
ab \'

0

 1
, 	 4: 	

.

o, 	 41 & /• 4

Circuit 	 ?

FIFO 13.5 13.5 1 13.5 14.4 6.7% 17.8 31.9% 23.6%
3 Stage Synchronous FIFO N.A. 42.0 1 42.0 N.A. N.A. N.A. N.A. N.A.

Count Down to 14 42.0 N.A. 1 42.0 40.2 -4.4% 19.5 -53.6% -51.5%

GF(2') Multiplier 50.5 50.5 1 50.5 60.2 19.2% 45.9 -9.1% -23.8%

Fixed Polynomial Division 42.0 57.5 1 57.5 73.3 27.5% 54.4 -5.5% -25.8%
Fixed Polynomial Evaluation 27.5 40.5 4 162.0 213.6 31.9% 137.0 -15.4% -35.9%
General Polynomial Evaluation 53.0 78.5 4 314.0 387.6 23.4% 267.8 -14.5% -30.9%
GF(2k) Division 59.0 82.5 4 330.0 323.7 -1.9% 272.1 -18.5% -15.9%

Polynomial Division 59.0 98.5 1 98.5 1 	94.7 -3.9% 85.1 -13.6% -10.1%

Average 13.1% -12.5% -21.3%

Table 11.9: Performance Figures

Clock Period (self-timed pipelining): Clock period with pipelining at level of
4 x 4 blocks as used in self-timed circuit. Potential speed of synchronous circuit
with flow control at this level of pipeliriing.
Clock Period (sync. pipelining): Clock period with pipelimng removed to en-
sure correct operation in synchronous circuit without flow control; e.g. pipelimng
removed from around loops in circuit.
Cycles per Result: Number of clock cycles for synchronous circuit to produce
result
Synchronous Result Period: Time between results being produced. Product of
Clock Period (synchronous) and Cycles per result.
Self-Timed (Fixed Delay) : Sync Result Period: Average time between results
output for self-timed XC6200 using fixed reconfigurable delay. Fixed delay archi-
tecture cannot exploit data-dependent delays within self-timed region.
Self-Timed (Fixed Delay) : Sync Difference: Percentage difference from syn-
chronous result period.
Self-Timed (CSCD) Result Period: Average time between results output for self-
timed XC6200 using CSCD delay. CSCD architecture can exploit data-dependent
delays within self-timed region.
Self-Timed (CSCD): Sync Difference: Percentage difference from synchronous
result period.
CSCD: Fixed Delay Difference: Percentage difference of CSCD average result
period from fixed delay result period. Indicates amount of data-dependent delays
to be exploited within self-timed regions.

Table 11.10: Description of Performance Results Figures

222

preferable if the pipeliriing was not required; in other words that the loop was

one self-timed region rather than several. This requires a self-timed architec-

ture with variable granularity, which is discussed in the next section.

Despite the performance overheads of the self-timed XC6200 architecture,

some of the larger examples listed in Table 11.9, such as the GF(2k) divider

and polynomial remainder circuits, have better average delay times for the

fixed delay self-timed implementation than the synchronous implementation.

This arises because these examples include selective communication, so are not

simple pipelines. Whilst the synchronous implementation is always limited to

the worst case delay in the entire circuit, the self-timed circuit is exploiting the

average case delays arising from the worst case delay parts of the circuit only

being used selectively.

Examining the figures in Table 11.9 for the CSCD architecture, it can be seen

that, except for the FIFO, the CSCD architecture out-performs the synchronous

and self-timed architectures. These figures are conservative, because the CSCD

delays are based on worst case delay data, rather than typical case delay data

which is unavailable for the XC6200.

As well as exploiting data dependent delays, the CSCD implementation is

beneficial as it masks the overhead of routing the request signals; a timing cell

will only be delayed if the request signal arrives after the next pipeline stage

has completed evaluation. Thus, the margin between the request and data

signals can be increased to ensure the bundling constraint is met.

The final column in Table 11.9 highlights the difference between the self-

timed architecture with fixed delay scheme and CSCD scheme. The fixed delay

scheme represents the worst delay that the self-timed system could achieve,

since their is no way to utilise data dependent delays within the self-timed

regions; only data-dependent delays between self-timed regions can be ex-

ploited. In contrast, the CSCD architecture can exploit all data-dependent

delays within the self-timed regions. Thus, the difference between these two

figures give the range of performance that other self-timed delay methods (see

Section 6.4) could expect to achieve.

11.5 Extensions to the Architecture

Following on from the delay performance analysis above, this section con-

siders possible alterations and extensions to the self-timed XC6200 architec-

ture to improve performance. First, alterations to the data array to improve

223

performance for both the fixed reconfigurable delay and CSCD architectures

are considered. These alterations were not included in the simulated architec-

ture, since they conflicted with the aim of producing a self-timed XC6200 with

the same data array as the synchronous XC6200.

The majority of this section is devoted to considering extensions to the tim-

ing array to allow variability in the size of self-timed regions. Many of the

performance problems of the current architecture arise from pipelining being

enforced at the level of 4 x 4 blocks.

11.5.1 Data Array Alterations for Fixed Reconfigurable Delays

A major source of performance overhead in the current self-timed XC6200 ar-

chitecture is the requirement for each 4 x 4 block to be a pipelined stage. Thus,

the critical path through the logic is split into smaller stages with their own

critical paths, which make the overall critical path longer. This problem is

compounded by the fact that registers occur internally to the 4 x 4 block in the

XC6200. This means that two delay elements are required per 4 x 4 block; one

for the delay from the edge of the 4 x 4 block to the register and one for delay

from the output of the registers to the edge of the 4 x 4 block. Thus, the delay

internal to a 4 x 4 block is split into two parts which may not correspond with

the critical path of the block as a whole.

In Section 11.4.3, it was shown how the performance of 4 x 4 blocks could be

improved by moving registers to the edge of the block, to balance the delays.

Thus, the architecture could be improved by modifying the data array so that

registers were located on the edge of 4 x 4 blocks rather than in the data cells.

As a result only one delay element would be required per timing cell for the

delay from the inputs of the 4 x 4 block to the outputs of the 4 x 4 block.

11.5.2 Data Array Alterations for CSCD

The simulations have demonstrated the performance benefits of exploiting

data dependent delays using CSCD. However, the data dependent delays are

limited by the use of registers for the memory elements in the architecture.

Registers block any results from propagating further until they are clocked.

In contrast, latches are transparent; results will propagate through them and

be stored when the whole stage has completed. Hence, using latches as the

memory elements in a CSCD based architecture would be advantageous, since

partial results can propagate forward, and lead to early completion by CSCD

224

detection mechanisms. Furthermore, using latches overcomes the extra delay

encountered with pipelining in the current self-timed architecture as the flow

of signals along the critical path is not blocked by registers.

Register memory elements are still required for storing the state in finite

state machines. This can be implemented by adding a configuration bit to the

memory element that determines whether it is configured as a latch or a re-

gister. As with the fixed delay architecture, placing registers on the edge of

4 x 4 blocks is advantageous, as it simplifies the timing cell logic because only

one, rather than two, delay phases are required.

11.5.3 Variable Granularity

The performance analysis has shown that many of the overheads in the archi-

tecture arise from the fixed granularity imposed by the self-timed architecture,

which results in unnecessary pipelining. This also leads to unnecessary com-

plexity in the design of circuits, since designs have to be broken down into 4 x 4

blocks, regardless of their natural granularity. To overcome these problems, a

mechanism to allow variability in the size of self-timed regions is required.

Two main criteria have to be met by such a scheme:

Uniform Local Clock Distribution: The local clock should be distributed uni-

formly across the self-timed region, otherwise local clock skew can occur.

This becomes increasingly problematic for larger self-timed regions.

Scalable Behaviour: Larger self-timed regions will often require more com-

plex timing cell behaviour than smaller self-timed regions. Furthermore,

larger self-timed regions will generally have longer delays, so the range

of delays of the self-timed region should scale as well.

Section 9.3.2 discussed two methods of implementing variable granularity.

The first method was based on a flexible local clock distribution. The local

clock from a timing cell could be distributed over a range of different areas to

allow flexibility in the granularity. However, this method does not give scal-

able behaviour, since only one timing cell is ever used to control a self-timed

region. The second method discussed in Section 9.3.2 was to group timing cells

to provide scalable behaviour. Potential mechanisms for grouping timing cells

and extensions to the self-timed XC6200 architecture are discussed here.

The basic mechanism for grouping timing cells is shown in Figure 11.5. The

behaviour of the timing cells is modified so that, before generating their local

225

Synchronisation Network

T-Cell 	T-Cell 	T-Cell 	T-Cell

Figure 11.5: Grouping Model

clock signals, the timing cells are synchronised together, to produce a common

local clock signal. In Figure 11.5, three timing cells are shown synchronising

together to form a self-timed region with a common local clock (the solid line

indicates synchronisation signals, the dotted lines represents the local clock

signal). The timing cell on the right in the figure does not synchronise with

any other timing cells; this is indicated by the synchronisation signal being fed

directly back as the local clock signal.

The synchronisation network requires the implementation of a C-Muller

gate with a potentially large fan-in. Constructing such C-Muller gates in a

way that allows timing cells to be grouped flexibly into self-timed regions is

difficult. Several schemes are discussed below.

Distributed C-Muller Gate Grouping

The distributed C-Muller gate seems a natural candidate for implementing the

synchronisation network. Figure 11.6 illustrates a scheme that uses the distrib-

uted C-Muller's gate structure to synchronise a 3 x 2 group of timing cells. All

the timing cells are connected to two synchronisation wires, which are used to

construct the distributed C-Muller gate. The synchronisation wires are connec-

ted together using fuses. These fuses can be blown to isolate sections of syn-

chronisation wires. Timing cells on connected pairs of synchronisation wires

form a self-timed group.
The advantage of this scheme is the flexibility in forming self-timed regions.

Any timing cells that can be connected by a pair of synchronisation wires can

form a self-timed region. The problems with the scheme are similar to prob-

lems mentioned with other distributed C-Muller gate circuits. The wired-OR

circuits require low resistance connections found in fuse based designs rather

than SRAM FPGAs, and the wired-OR rise time is slow. Finally, the problems

in where to place pull-up resistors and voltage gradient between these and the

226

T-Cell LU I T-Cell LU I T-Cell
.. Intact Fuse

00 Blown Fuse

T-Cell ti_I I T-Cell Li-I I T-Cell

Figure 11.6: Wired-OR grouping

open-collector pull-down transistors, limit the size of self-timed region that can

be formed using a distributed C-Muller gate implementation.

C-Muller Gate Tree using Local Handshaking Links

When timing cells are being used to form a self-timed region, the nearest neigh-

bour links internal to the self-timed region are not used. Figure 11.7 illustrates

a scheme that uses these links to create a synchronisation network.

© 	C-Muller Gate

Synchronisation Wire

Local Clock Distribution

Figure 11.7: Grouping using Nearest Neighbour Links

In the scheme, each timing cell has an additional reconfigurable C-Muller

gate associated with it. The synchronisation network is formed from a tree of

these C-Muller gates. Each reconfigurable C-Muller gate takes the synchron-

isation input from the local timing cell as an input, plus optionally synchron-

isation inputs from other timing cells which are distributed on the nearest-

neighbour links. If the reconfigurable C-Muller gate is the root of the syn-

chronisation tree then the output of the C-Muller gate is the local clock signal

for the self-timed region. The clock is distributed to all the timing cells using

the nearest neighbour links, following the reverse path to the fan-in of the syn-

chronisation signals. If the reconfigurable C-Muller gate is not the root of the

C-Muller gate tree then the output is passed along a nearest-neighbour link to

227

T-CeII 	T-CeII 	T-CeII 	T-Cell

Figure 11.8: Hierarchical Grouping

the next C-Muller gate up the synchronisation tree. The return signal on this

link is the local clock signal, which is distributed to the timing cell and back

down the synchronisation tree

This scheme has a relatively low cost to implement, since it only requires

an extra reconfigurable C-Muller gate per cell. and uses the nearest neighbour

links. Also, it can implement any possible shape that can be formed using

nearest neighbour connections. The disadvantage is that the distribution pat-

tern for the local clock signal is unbalanced. In the example of Figure 11.7, the

local clock can go through zero, one or two distribution nodes before reaching

the timing cell and its associated data cells. Hence, the distribution of the local

clocks is not uniform, potentially leading to local clock skew.

Hierarchy of Timing Cells

The problem with the previous scheme is that it forms an unbalanced tree for

distributing the local clock distribution. One solution to ensure uniform clock

distribution would be to always to ensure that a balanced clock distribution

tree was formed. This can be achieved by using a hierarchy of reconfigur-

able C-Muller gates to form the synchronisation network. Figure 11.8 shows a

simple hierarchy based on groups of two timing cells. Three timing cells are

grouped through a tree of C-Muller gates. Each reconfigurable C-Muller gate

in the tree can pass its output to a higher level in the tree. If the reconfigurable

C-Muller gate is the root node in the tree, then its output is routed back down

the tree as the local clock signal for the self-timed region.

A problem with this hierarchical grouping is that there is less flexibility

in the grouping of timing cells to form self-timed regions. For example, the

rightmost C-Muller gate in Figure 11.8 cannot form a self-timed region with

cells to its right, since the C-Muller gate above it in the hierarchy is already

228

I T-CeI 	 T-Cell 	 T ell

(a) Timing Array Routing

T-Cell I 	I T-Cell I 	I T-Cell

(b) Dedicated Local Clock Distribution Line

Figure 11.9: Grouping using Timing Array Routing

being used to form another group. The previous schemes have been more

flexible in that any self-timed region could be formed regardless of the shape

of other self-timed regions, as long as the timing cells were adjacent to each

other. The problem can be solved by providing multiple synchronisation trees

and allowing timing cells to connect to different ones. However, this incurs a

greater implementation cost for the synchronisation network.

Synchronisation using Timing Array Routing Structures

A form of synchronisation structure that has already been discussed is the tim-

ing array routing structures; these structures are designed for synchronising

the fan-in and fan-out of data bundles rather than synchronising timing cells

that form a self-timed region. However, the timing array routing structures

can potentially be adapted to synchronise groups of timing cells.

Figure 11.9(a) illustrates a timing array routing structure modified to syn-

chronise a group of timing cells. The structure is the same as the fanning in

of a data bundle, but rather than fan out to destination timing cells, the signal

is returned directly as the local clock signal to the timing cells. In effect, the

synchronisation can be thought of as a data bundle fanning in with a fan-out

229

of zero, so is acknowledged immediately.
The problem in using the timing array routing is that the distribution of

the local clock is not uniform. In Figure 11.9(a), the local clock signal goes

through a number of intermediate reconfigurable C-Muller gates in handshak-

ing switchboxes as it is distributed. To overcome this, a dedicated local clock

distribution line can be used for a group of timing cells, so providing uniform

clock distribution. This is illustrated in Figure 11.9(b).

Using the timing array routing is advantageous as it provides uniform clock

distribution, and can be constructed by adapting routing structures already

available in the timing array routing. The main disadvantage is that the shape

of the self-timed region formed is limited by routing pattern of the local clock

distribution signals. To provide larger self-timed regions requires a hierarchy

similar to that discussed in the previous section. Furthermore, to provide flex-

ibility in the shape and number of the self-timed regions formed, timing cells

need to be connected to more than one local clock distribution signal, which

incurs a higher implementation cost.

Variable Granularity for the Self-timed XC6200

The synchronisation network produced by modifying the timing array routing

fits well into the hierarchical structure of the XC6200. Dedicated local clock

distribution lines can be provided from the level-16 handshaking switchboxes

to a row or column of timing cells. The synchronisation network can be imple-

mented by either using the timing array routing already present, or by similar

structures dedicated to forming self-timed regions.

The limitation of the synchronisation scheme described for the XC6200 so

far is that only a maximum of four timing cells within a row or column of a

level-16 block can be synchronised to form a self-timed region. To extend the

row or column of blocks over the level-16 block boundaries, a hierarchy of

synchronisation is required. Hence, level-64 blocks could have a local clock

distribution lines running along columns and rows which would feed into

the level-16 clock distribution network. The other limitation with the cur-

rent synchronisation scheme is that it is limited to creating one dimensional

rows or columns of timing cells. Two dimensional self-timed regions could be

produced by adding another level to the hierarchy that synchronises rows or

columns of timing cells together.

Delays

In the previous discussion, no mention has been made of scaling delay ele-

ments for larger self-timed regions. Larger self-timed regions can implement

more complex functions, which have a longer delay than that which can be

provided locally by the timing cells, even with the additional delays of syn-

chronising the timing cells together included. Additional reconfigurable delay

elements can be placed in the synchronisation network, to provide additional

delay for the self-timed region. This leads to a two-level delay model: a central

delay for the self-timed region and local delays provided by the timing cell.

The two-level delay model can be used to provide some variability in delay to

fixed reconfigurable delay architectures. Since some timing cells have a shorter

local delay than others in the self-timed region, the delay of the self-timed re-

gion will vary depending on which input is last to arrive.

The discussion so far has considered fixed reconfigurable delay implement-

ations. CSCD delay implementations pose more complex problems. In this

case, the synchronisation network is acting as a completion detection network

that detects when evaluation has completed. However, signals internal to the

self-timed region may cross between the areas of data array monitored by dif-

ferent timing cells. As a result, the completion signal from a timing cell may be

de-asserted if renewed activity is detected in the area of data array monitored

by it. Thus, C-Muller gates with their change of state cannot be used for com-

pletion detection, instead AND gates have to be used to detect when all timing

cells have completed.
A further problem with this scheme is a false completion signal being gen-

erated by a transition passing from one CSCD monitoring region to another.

Potentially, the signal indicating inactivity in the original self-timed region

may reach the top of the completion signal tree faster than the signal indic-

ating activity in another region. To overcome this, the delays in passing the

completion signal up the tree must be asymmetric. Signals indicating activity

should be passed up the synchronisation tree quickly, whilst signals indicating

inactivity, i.e. completion, should be delayed, to ensure that activity signals

always travel faster up the completion tree then signals of inactivity.

Timing Cell Group Resources

The previous section considered the provision of delays specifically for groups

of timing cells. This raises the question of whether other behaviour of the tim-

ing cell could be provided for groups of timing cells. For example, architec-

231

tures can be envisaged that have routing resources dedicated to linking groups

of timing cells together. This adds to the implementation cost of the architec-

ture and these resources will be left unused if the groups of timing cells are not

used. However, some features of the timing cell that are less frequently used

but have a relatively high implementation cost, such as arbitration, could be

provided only for groups of timing cells, so that the cost of implementation

is reduced. If the grouping method allows a group of one timing cell to be

produced, these resources can be used for individual timing cells.

11.6 Summary

This chapter has compared the self-timed XC6200 to its synchronous counter-

part. The extra circuitry required was measured using a variety of different

metrics, giving overheads in the range of 13% for configuration bits to 30% for

two dimensional wiring overhead, with the most detailed calculation for tran-

sistor count giving an overhead of 18%. Based on the transistor overhead, this

made a timing cell equivalent in complexity to about three data cells.

To evaluate the effectiveness of the timing cell implementation, flow con-

trol structures were built using data cells in the XC6200. The minimal flow

control stage, one input link and one output link, implemented synchronously

required three data cells. For the same cost, the timing cell allows a total of

four links that could be conditionally selected, together with arbitration and a

dedicated routing structure for the handshaking signals. Implementing flow

control asynchronously using data cells is more expensive, requiring six data

cells just for two back-to-back C-Muller gates.

The delay performance analysis showed that considerable overhead resul-

ted from the enforced pipelining at the level of 4 x 4 blocks, which did not pre-

serve the un-pipelined critical path. However, for larger examples, the fixed

delay architecture showed improved performance as it can exploit the data de-

pendent delays from selective communication. The CSCD version of the self-

timed XC6200 consistently out-performed the synchronous XC6200, despite

the pipelining overheads of the self-timed architecture. The simulation res-

ults were conservative in that they were based on the worst case delay figures,

as typical case figures were unavailable, so an actual CSCD implementation

would be expected to give further improvements in performance.

The final section of the chapter considered alterations and extensions to the

self-timed XC6200 to improve performance. Moving the registers to the edge of

232

the 4 x 4 block is beneficial, since only one delay element is required per timing

cell. A further alteration for a CSCD architecture would be optionally to allow

latches as the memory elements, to allow partial results to propagate forward.

However, both these schemes involve altering the data array structure from

the original synchronous XC6200 architecture.

Finally, possible ways to extend STACC architectures, including the self-

timed XC6200, to allow variation in the granularity of self-timed regions were

considered, to overcome the performance problems that a fixed granularity

introduced. Several schemes were discussed; the scheme most suited to the

XC6200 involved using a modified form of the timing array routing structures.

233

Chapter 12

Conclusions

12.1 Overview

This chapter summaries the conclusions of the thesis. In addition, it considers

possible directions for the future development of STACC and the self-timed

XC6200.

12.2 Conclusions

12.2.1 Self-Timed FPGAs and Dynamic Hardware

A key contribution of this thesis has been identifying the synergy between dy -

namic hardware and self-timed circuits. Dynamic hardware attempts to ex-

ploit the software like reconfigurability of FPGAs, whilst self-timed circuits

free the dynamic hardware management system from the need to consider the

delay properties of circuits. Thus, the routing and layout of self-timed circuits

can be altered on the fly without having to reason about the effects on delays

within the system. Furthermore, the flow control properties of self-timed cir-

cuits provide a natural way to regulate the flow of data between FPGA and

host microprocessor in a dynamic hardware system.

In addition to the benefits for dynamically reconfigurable systems, self-

timing provides benefits for FPGA based systems in general. Self-timing eases

the partition of systems across several FPGAs, since the self-timed protocol

can accommodate the additional off-chip delays. Also, self-timed FPGAs have

greater freedom in the layout and routing of designs, since they to not have to

meet a global clock constraint. Finally, self-timed circuits on FPGAs can exploit

the low power consumption and average case delays of self-timed systems in

general.

234

12.2.2 STACC: A Model for Self-Timed FPGAs

Current FPGAs are optimised for the implementation of synchronous circuits.

Building self-timed circuits using these architectures is difficult; architectures

can introduce hazards, cannot deal with arbitration, and can fail to meet the

local delay constraints of the self-timed circuits. These problems detract from

the benefits of using self-timed circuits for FPGA based systems.
To overcome these problems, the MONTAGE [57] and PGA-STC [77] ar-

chitectures have been proposed. Both are derived from current synchronous

FPGAs architectures by altering the logic blocks to suit the implementation of

self-timed circuits. However, this disrupts the structure of the original syn-

chronous FPGA architecture and hinders the mapping of design tools and

design experience to the self-timed architectures.

In contrast, the STACC model for self-timed FPGAs does not tinker with

the structure of the logic blocks. Instead, STACC replaces the global clock

signal, with an array of timing cells that provide local timing control. This

structure reflects the clear split between control and data path in bundled-data

self-timed systems, and allows the two types of cell to be optimised for their

particular function. Furthermore, the STACC model is general enough to be

applied beyond FPGAs to any reconfigurable architecture, such as an array of

processors with reconfigurable interconnect.

12.2.3 Self-Timed Reconfigurable Elements

This thesis has introduced several new self-timed elements for the construction

of reconfigurable architectures. The Q-Merge and Select pair were shown to be

suitable for building a wide range of bundled-data control structures. Further-

more, the inherent symmetry of the Q-Merge and Select pair complements the

symmetry highlighted by Sutherland in his basic C-Muller gate pipelines.

However, the self-timed element central to the construction of the STACC

architecture is the reconfigurable C-Muller gate (rC-Muller gate), which allows

a reconfigurable synchronisation pattern to be defined between its inputs. The

STACC timing cell was developed from the rC-Muller gate by allowing the

pattern of synchronisation to be changed on each cycle of a self-timed region.

The timing array routing was constructed by assembling multiple rC-Muller

gates into handshaking crossbars. Together, these structures form the basis of

the STACC timing array, which is configured to mirror the flow of data in the

data array.

235

12.2.4 The Self-Timed XC6200

The self-timed XC6200 design has demonstrated the use of the STACC model

to create a self-timed FPGA architecture with a data array compatible with

the original synchronous FPGA. The self-timed XC6200 design process high-

lighted the importance of choosing an appropriate self-timed granularity in

STACC architectures. The basic granularity in the self-timed XC6200 of one

timing cell per 4 x 4 block of data cells largely determines the implementation

overhead of the architecture. Also, the choice of a fixed granularity for the self-

timed XC6200, as opposed to a variable granularity, often forces circuits to be

mapped to a size of self-timed region that does not always suit their natural

granularity. Furthermore, the choice of a fixed granularity influences the delay

performance of circuits by requiring unnecessary pipelining.

The implementation cost for the timing array of the self-timed XC6200 was

in the range of 13% to 18%, depending on the metric used, which is similar

to the overhead reported for other bundled-data systems. This overhead com-

pares favourably with the cost of implementing even the simplest of flow con-

trol circuits in the synchronous XC6200. This result demonstrated the benefits

of using dedicated timing cells to implement the control path in a STACC ar -

chitecture, rather than the general purpose logic blocks as used in previous

architectures such as MONTAGE and PGA-STC.
The example circuits developed for run-time parameterisation on the self-

timed XC6200 illustrated the benefits of self-timing for dynamic hardware sys-

tems. The examples showed how circuits of variable size could be constructed

from self-timed blocks, and the resulting circuit would work without the need

for delay analysis. These circuits could be split, even between different self-

timed FPGAs, and still work.

The delay performance of the example circuits, when compared to equival-

ent synchronous circuits, showed that the fixed granularity of the current self-

timed XC6200 architecture resulted in additional delays, due to unnecessary

pipelining. However, the larger example circuits using the fixed reconfigur -

able delay elements had comparable delays to the synchronous versions, due

to the exploitation of data dependent delays arising from selective commu-

nication. The self-timed XC6200 with Current Sensing Completion Detection

(CSCD) delay elements consistently out-performed the synchronous architec-

ture. Furthermore, the CSCD performance figures were conservative as they

were based on worst case rather than typical case delay figures.

In conclusion, the design of a self-timed XC6200 architecture has illustrated

236

the application of STACC to a contemporary FPGA architecture, and shown

the benefits of self-timing for dynamic hardware. The implementation over -

head of the self-timed XC6200 is comparatively modest, and the simulation

results have shown the potential for superior performance through exploiting

data dependent delays. The evaluation of the self-timed XC6200 has shown

that the key limitation of the current architecture is the fixed granularity. Ad-

opting a variable granularity architecture would give improved performance,

and allow circuits to be mapped to self-timed regions that matched their nat-

ural granularity.

12.3 Self-Timed FPGA Architectures

12.3.1 Self-Timed Architectures and Granularity

A key issue highlighted in this thesis has been the size of the self-timed regions

permitted within the FPGA architecture, i.e. the self-timed granularity. Many

of the examples have highlighted that designs have a natural self-timed gran-

ularity, where the basic operations each form a self-timed region. Where the

architecture does not support the natural granularity of the design, the basic

operations have to be sub-divided resulting in unnecessary synchronisation

between parts, and making designs more difficult to implement.

The various self-timed FPGA architectures proposed vary in the nature of

the self-timed control provided and the variability in the granularity that is

supported. MONTAGE and PGA-STC just provide the basic building blocks

for building self-timed control elements, but force no higher level structure

to the use of these building blocks which allows a variety of self-timed pro-

tocols to be used. Also, since no higher level self-timed control structures

are provided, the granularity of self-timed region can be continuously varied.

However, large self-timed regions, have to be carefully analysed to ensure cor-

rect operation.

Gao's GALSA architecture provides a fixed self-timing control structure

which fixed the granularity of the self-timed region to be one-processing ele-

ment. The fixed self-timed control elements and the fixed granularity is very

limiting in building circuits. The STACC architecture has a reconfigurable tim-

ing array, which allows the mapping from one timing cell to control many data

cells. The examples for the self-timed XC6200 case-study were limited as the

mapping to 4 x 4. blocks is fixed. However, the reconfigurable timing array

architecture allowed data flows to fan-in and fan-out in the routing which had

237

the effect of loosely grouping self-timed regions together.
Overall the thesis has highlighted how self-timed FPGA with limited self-

timed support such as MONTAGE and PGA-STC can adopt a far wider range

of granularities. Self-timed architecture with more dedicated self-timed sup-

port are prone to be limit the potential granularities. However, Section 11.5

discussed how this could be extended to deal with combining timing cells to

create larger self-timed regions.

12.3.2 Future Development of self-timed FPGAs

Of the asynchronous FPGA architectures currently proposed, none have been

implemented as VLSI devices. The need for actual self-timed FPGA devices

is linked with the wider adoption of self-timed design, as FPGAs typically are

used as support devices. Self-timed systems are unlikely to replace synchron-

ous design in the foreseeable future. However, the adoption of asynchronous

design by industry in certain spheres such as low-power microprocessors for

portable computing devices is a possibility. Several companies such as Intel,

Sun and Phillips are currently engaged in asynchronous research. The emer -

gence of self-timed systems in niche sectors would inevitable lead to demand

for self-timed FPGAs for prototyping and as support devices.

A key issue in a future where self-timed and synchronous systems co-exist

in different market sectors will be the need by industry to synthesise designs
as both synchronous and asynchronous systems. An issue for future self-timed

FPGA devices will be support for self-timed and synchronous design.

Of the current self-timed architectures, MONTAGE includes support for

implementing synchronous systems by having two global clock signals as well

as logic cells designed for building asynchronous logic. A STACC-based ar-

chitecture with variable granularity could support this approach by allowing

the granularity to be varied so that the whole chip was a self-timed region and

thus making it effectively one synchronous region.

Regardless of the architecture finally adopted, the key issue to be addressed

to allow systems to be synthesised as either a synchronous or asynchronous

system will be design tools. Designs will have to be expressed in a way that

is free from explicitly using a synchronous of asynchronous control paradigm,

so allowing freedom of implementation in either form.

238

12.4 Future Work

12.4.1 Dynamic Hardware and Synchronous Flow Control

One of the main benefits of self-timed dynamic hardware is flow control, which

regulates the flow of data between circuits, and between the FPGA and host

system. Section 11.3.1 showed how flow control can be implemented synchron-

ously, for lower implementation cost than attempting to directly implement

self-timed circuits on current FPGAs. Thus, to gain the benefits of flow control

for synchronous dynamic hardware systems, a library of synchronous flow

control elements could be constructed. The library elements would perform

functions similar to self-timed flow control blocks, such as those introduced by

Sutherland [111].
A benefit of explicitly expressing the flow control for synchronous circuits

is that it would make circuits portable between self-timed and synchronous

FPGAs. In a STACC based architecture, the flow control elements would be

implemented within the timing array, whilst in a synchronous FPGA, flow con-

trol would be implemented using a library of flow control blocks. However,

this approach only gives the flow control benefits of self-timing; it does not

give the speed-independence of self-timing, since all parts of the system must

still meet the global clock constraint.

12.4.2 Other Self-Timed Reconfigurable Devices

The STACC architectural model is general enough to be applied beyond FP-

GAs, to other reconfigurable architectures. A good candidate for self-timed

implementation would be Field Programmable Interconnect Devices (FPIDs),

which are of increasing use in communication switching applications and in-

terconnect for parallel processors. Essentially, these devices are just large cross-

bar switches, so timing control can be implemented using handshaking cross-

bars.

12.4.3 Tools

Run-time Parameterised Circuit Design Tools

The example circuits for the self-timed XC6200 were limited by the design

tools available at the time. The Xilinx tools are now more mature and do of-

fer support for creating compile-time parameterised circuits. However, run-

time parameterised circuits require generation of the circuits on the fly. Thus,

239

the output of a run-time parameterised circuit design tool should either be a

program that assembles the required configuration on demand, or a paramet-

erised configuration file that allows a standard support routine to parameterise

the circuit rapidly at run-time.
Another issue for run-time parametrised circuit design tools is the layout

of parameterised circuits. Run-time parameterised circuits require regular lay-

out and routing to enable rapid assembly at run-time. As the complexity of

these circuits increase, and especially as a hierarchy of parameterised circuits

is formed, the fitting of the component circuits together becomes difficult. This

requires tools that can assist in the regular layout of variable-sized compon-

ents, together with variable-sized channels for regular routing structures to

connect the component circuits.

Petri Net Tools

A C-Muller gate can be modelled by a single Petri net transition. Thus, Petri

nets provide a useful formalism for modelling and reasoning about timing ar -

ray configurations. Petri nets could be used to identify potential deadlock and

livelock situation in designs. A significant problem for Petri net tools is the

modelling of the data array behaviour, in particular, the generation of the se-

lect signals. Thus, a Petri net tool would either have to be supplied with a

model for the behaviour of the data array, or would have to generate a set of

constraints to met by data array, so that deadlock and livelock are avoided.

12.4.4 Architecture Development

Variable Granularity Architectures

The evaluation of the self-timed XC6200 has highlighted how fixed granularity

architectures limit performance and disrupt the natural granularity of designs.

Several proposals for variable granularity structures have been made but not

simulated. To complete the investigation of STACC based architectures, these

designs should be simulated to show the performance benefits of a variable

granularity implementation, and also the additional implementation costs cal-

culated.

CSCD Design

Simulations of the CSCD based architecture have shown the potential for per-

formance gain over synchronous designs. An implementation using CSCD

240

would need a large amount of low level simulations of the CSCD monitoring

circuitry to ensure that it can detect a single 'on' transistor in the monitored

region. Also, this thesis has proposed that CSCD has the potential to detect

the current used by meta-stable states, and thus be used as an arbitration tech-

nique. Again, low level simulation is required to show that the monitoring

circuitry can detect meta-stable states.

Formal Synthesis of Timing Cell

The current implementations for the timing cell were derived informally. There

is no guarantee that the timing cell design will not deadlock under some condi-

tions. Techniques for the formal synthesis of self-timed circuits are improving,

and giving more efficient implementations [105]. A formally correct timing

cell could be derived using these techniques, to provide stronger guarantees

of the circuit's correctness. Alternatively, the timing cell implementation could

be modelled using a process algebra and compared using bisimulation to a

specification of the timing cell's behaviour.

Fuse based Architecture

The potential for implementing self-timed fuse based FPGAs has been high-

lighted in Section 8.4.1, but not developed, since the focus of the thesis was

self-timing for dynamic hardware. Self-timed fuse based FPGAs using the

distributed C-Muller gate could be developed further. There is also poten-

tial for improved implementations using a single synchronisation wire rather

than two, by adopting an approach similar to single-track handshaking circuits

VLSI Implementation

A final proof of the viability of a STACC based architecture would require an

actual implementation of a chip. Though the time and resources available for

this work have precluded the low level design of a VLSI chip, STACC and the

self-timed XC6200 architecture have matured sufficiently that low level simu-

lation and implementation would be a natural next step in the development of

the architecture.

241

12.5 Summary

In conclusion, this work has shown the viability of creating self-timed FPGAs

based on the STACC model. The self-timed XC6200 has demonstrated that the

implementation overheads of self-timed architectures are reasonable and that

the potential exists to out-perform current synchronous FPGAs through the

exploitation of data dependent delays. The example run-time parameterised

circuits for the self-timed XC6200 have illustrated the benefits that a self-timed

FPGA brings to the implementation of dynamic hardware systems.

242

Appendix A

Finite Fields

A.1 Introduction

This appendix describes some results from finite field theory which are useful

for a detailed understanding of the example circuits in Chapter 10. Section A.2

details the basics of finite field theory including operations, extension fields,

the normal basis and the conventional basis. Section A.3 gives an overview of

applications using finite field operations, in particular Reed-Solomon encod-

ing. For a full review of finite field theory and Reed-Solomon encoding refer

to Pretzel [97].

A.2 Finite Fields

Afield is a mathematical structure with two defined operations: addition and

multiplication. Addition is commutative and associative, and has a identity

element, zero. Each member of a field has an associated negative such that

their sum is zero. Multiplication in a field is commutative, associative, dis-

tributive across addition and has an identity element, one. Each member of a

field except zero, has an inverse element, such that their product is one.

Several infinite sets of numbers, such as the rational, real and complex num-

bers, meet the field axioms described above. Finite sets of numbers can also

form fields, if the addition and multiplication operations are suitably defined.

One such construction is the Galois Field. A Galois field GF(p) is formed by

performing addition and multiplication modulo a prime number p.

GF(2) is particularly useful for digital applications, since it has only two

members in the field, corresponding to the binary digits zero and one. Addi-

tion in GF(2) can be implemented using an XOR gate, whilst multiplication

can be implemented using an AND gate.

243

Extension Galois fields GF(pk) can be created, where p is a prime number

and k is a natural number. The operations in extension fields can be defined

using operations on polynomials modulo an irreducible polynomial of degree

k, where the coefficients of the polynomial are members of the base field GF(p).

A.2.1 The Conventional Basis and Normal Basis

Since, operations in extension fields can be represented by operation on poly-

nomials, members of extension fields can simply written using the coefficients

of the polynomial. So for GF(24), x'+ I is represented as 1001, or encoding as a

decimal, the element is 9. Thus, each element A of a field GF(2') is represented

by the coefficients a, in the following equation:

k-i
A(x) = 	 (A.1)

The set of terms x used to the represent the polynomial is known as the basis,

and the basis used above where ii is in the range from 0... k - 1 is known as the

conventional basis.

It is possible to represents elements of GF(2k) using a different basis, as

long as the basis chosen is such that it each elements of GF(2c) has a different

value. A useful basis is to represent elements of GF(2') using terms x' where

n is taken from the set 120 , 21, 2k11 This is known as the normal basis. Thus,

A(x) = :aix2t 	 (A.2)

represents a polynomial A(x) using the normal basis. A particular advantage

of the normal basis in GF(2) is that squaring is simply a cyclic shift of the

coefficients. This arises since,

k-lk-I
A 2 = 	 (A.3)

i=Oj=O

However, when the sum is expanded, for each term avawx2tx2w where i = v

and j = w when v w, there is the term with the same value for i = w and

J = v. These terms cancel since a + a = 0 over GF(2), thus the only terms left

are where v = w. Hence,

k-i
(A(x))2 = 	aj2x2' 	 (A.4)

i=o
244

But a2 2 = a, since a2 = a over GF(2), so

k-i
(A(x))' = 	2' 	 (A.5)

i=O

Thus shifting the index i,

(A(x))' = ?1ai_1x2t 	
(A.6)

Which is a shift of the coefficients in A (x). The shift is cyclic, since x2k = x for

GF(2') due to Fermat's theorem (see [97]).

The fact that squaring is a cyclic shift in the normal basis can be used to

simplify the design of multipliers over GF(2') [118]. The multiplier can be

built using bit slices, where each bit slice produces one bit of the result. Each

bit slice is identical except for cyclic shifts of the inputs since:

A.B = \/A2.B2 =4 /4 = ... 	 (A.7)

In the following sections, the equations use the conventional basis for con-

venience in expressing equations. In general, the equations can be converted

to use the normal basis by changing the terms Xn to x 2 .

A.2.2 Multiplication

This section describes the definition of multiplication of two numbers A and

B in GF(2k) in terms of operations on polynomials A(x) and B(x) over GF(2)

modulo a irreducible polynomial P(x). This result is used in the design of the

multipliers in Sections 10.3.3 and 10.3.4.

Multiplication of A and B can be expressed as:

k-i k-i

A.B = E E a2 .b3 .x' mod P(x) 	 (A.8)
i=O j=O

Where a, and b3 are the coefficients of the polynomial A(x) and B(x) respect-

ively. Let D23 = x 	mod P(x), so Equation A.8 can be expressed as:

k-i k-i k-i

A.B = E E E a.b3 . DjaIh .
	 (A.9)

i=O 3=0 h=0

245

where I h gives the hth coefficient of a polynomial. Rearranging

k-i k-i k-i
A.B = a2 .b3 . Djjlh X

h=O i=O j=O

k-i k-i k-i
A.B = x1.>J ai .E 	b3 . Djjlh 	 (A.10)

h=O i=O j=O

The above equation shows that each coefficient of x in the result polynomial

can be evaluated independently, so a bit-sliced approach can be adopted. Fi-

nally, let Fh, be a polynomial such that:

Fhjjj = Djjlh

Hence,

k-i 	k-i 	k-i
A.B= 	 bj.FhI

h=O 	i=O 	j=O

which gives the form of the circuit used in Section 10.3.3

A.2.3 Division

This section presents some results used in Section 10.3.8. Division is a more

complex operation to implement than multiplication in GF(2'). However, it

can be defined in terms of multiplication by using Fermat's rule [97] that, for

a field with n elements = 1. Therefore for GF(2k), x2 = 1. Hence, to

divide y by x:

-i 	2k_2 	2' 22 	2' y/x = yx = yx 	= yx x . . . x

Thus, division can be expressed as a series of k—i products of the dividend and

the squares of the divisor. This form is particularly suited to implementation

using the normalised polynomial representation, where squaring is simply im-

plemented by a cyclic shift of the terms in the polynomial.

A.3 Error Detection and Correction Applications

A number of error detection and correction codes are based on finite field oper-

ations. For example, Reed-Solomon codes represent strings of bits as symbols

in GF(2'). Such codes are useful for burst error correction, since the correction

of a single symbol in GF(2c) can correct an error burst of up to k bits in the

bit stream. Reed-Solomon codewords are generally expressed as a multiple of

246

a generator polynomial over GF(2k). The length of the generator polynomial

determines how many errors can be corrected..

In error correction codes, the locations of errors are unknown. In erasure

codes, the location of errors (erasures) are known. For example, erasure codes

are used to deal with lost packets in computer networking and corrupted discs

in RAID (Redundant Array of Inexpensive Discs). Given the additional in-

formation of the error locations, more erasures can be corrected than errors

corrected by an equivalent error correction code. Rizzo [102] discusses eras-

ure codes based on finite field operations over GF(2k) for use in networking

applications.

A.3.1 Reed-Solomon Error Correction

Reed Solomon codes RS(k, t) have two parameters, the base field representa-

tion k, and the number of error corrected t. Reed-Solomon codewords are rep-

resented as polynomials of degree 2' - 1 with coefficients in the field GF(2c).

RS(k, t) has a minimum distance between code words of 2t + 1, so is capable

of detecting 2t errors, and correction t errors.

Since each coefficient corrected by a Reed-Solomon code is a number in
GF(2k) and can be represented by k bits, correcting a single error in a Reed-

Solomon code can correct a burst error of up to k bits. Combined with other

techniques such as interleaving words of a message, Reed-Solomon coding

provides very powerful burst error correction.

Encoding and Error Detection

Reed-Solomon codewords can be represented as multiples of a generator poly-

nomial, g(x) of degree 2t. The generator polynomial is defined as

g(x) = (x - a)(x - a2) . . . (x - a2t) 	 (A.14)

where a is a primitive element of GF(2k). The choice of a primitive element

ensures that each factor x - a is distinct.

The standard encoding technique is to encode the data to be sent m(x) by

multiplying it by 22t and then finding the remainder when divided by g(x).

This is subtracted from m(x).221 to give a codeword which is a multiple of

g(x). To detect errors in transmission, the received message can be divided by

the generator polynomial. If the remainder is zero then a valid codeword has

been received otherwise there has been an error.

247

Error Processing

A brief summary of the operations involved in Reed-Solomon error processing

is given here (see Pretzel [97] for more details). The first stage of error pro-

cessing is to generate the syndromes of RS(k, t). The syndromes, S, are defined

as:

Si = d(ai) for i = 1,... ,2t 	 (A.15)

where ce is a primitive element of GF(2k) and d(x) is the received message

polynomial. Since the generator polynomial is the product of the terms (x - ai)

then, for a valid codeword, all the syndromes will equal zero.

The next step of error processing involves finding the error locator polyno-

mial, 1(x) in the following equation:

W(X) = l(x)s(x) + u(x)x 2t 	 (A.16)

where w(x) is the error evaluator, u(x) is the error co-evaluator, and s(x) is

the syndrome polynomial whose coefficients are the syndromes S. The error

locator polynomial 1(x) is found by performing Euclid's algorithm on s(x) and
x2t. The equation 1(x) = 0 is then solved to find the positions of the errors.

The error values are then found by evaluating the error evaluator polynomial,

w(x),for values generated by solving 1(x) = 0.

All these steps in the error processing require operations to be performed

on polynomials over GF(2k). These operations include the basic operations of

addition, multiplication and division in GF(2c), and the operations to evaluate

a polynomial in GF(2k) at a fixed value for syndrome calculation and non-

fixed value for solving 1(x) = 0, polynomial division by a constant divisor for

generating the codes and polynomial division with a non-constant divisor for

Euclid's algorithm. These operations are presented in Chapter 10.

Appendix B

Self-timed XC6200 Evaluation Data

Name 	Bits
X1,X2,X3 9
Y2,Y3 4
RP 1
Cs 1
Magic 1
Total 16

(a) Data Cell

Name Bits
per link per cell

RDZ 2 8
DIR 1 4
to Reg. Delay 3
from Reg. Delay 2
RESET 1
Arbitration 2 8
Select Routing 2 8
Total 34

(b) Timing Cell

Table B.1: Data and Timing Cell Configuration Bit Usage

249

Name 	 Bits
per direction per 4x4 block

Local 	 4 	 16
Flyover level 4 	16 	 64
Clock 	 16
Total 	 96

1 additional to local routing bits

Boundary Multiplexors

Name 	 Bits
per switchbox per 4x4 block

Handshaking Local 	 5 	 10
level 	2 x 4 	 16

Clock 	 -16
Total 	 10

Handshaking Switchbox

Table B.2: Routing Configuration Bit Usage

250

Signal Name Wires
Local 	Neighbour 8

Magic 8 	2

CLK,CLR 1 	1

Flyover 	Level 4 8
Level 16 8
Level 64 8

Global 	G1,G2,GCLK,GCLR 2 	1

Total 	 43

1 averaged over two dimensions
2 average density in 4x4 block

(a) Synchronous XC6200

Signal Name 	 Wires
Handshaking local 	 2

level 4 	 4
level 16 	 2

Global 	G1,G2,GCLK,GCLR 	-2
Total 	 6

1 averaged over two dimensions

(b) Self-Timed

Table B.3: Wires per 4 x 4 Block

251

Part
	

lementation
C-Muller Gate: 	Weak feedback implementation, as shown in Figure

6.2. Includes reset input.
Multiplexors: 	Tree of transmission gates.
D-type Registers: based on the circuit of Figure 5.57(a) in Weste and

Eshraghian [121].
SRAM Cell: 	6-Transistor SRAM Cell is used in the XC6200 [123].
Mutual Exclusion: See Table B.4(c) for implementation.
Delay Element: 	See Table B.4(b) for implementation.

(a) Implementations used for Components

C

C

Delay

(b) Delay Element

Ri

R2

Gi

G2

(c) Mutual Exclusion Element

Table B.4: Implementations used for Transistor Counts

252

Part Gate Qty Transistors
per gate total

Xl, X2, X3 8:1 Mux 3 28 84
Y2, Y3 4:1 Mux 2 12 24
Yl, RP, CS, Magic 2:1 Mux 4 4 16

Inverters 2 2 4
D-type Register 1 32 32

Configuration Bits SRAM cell 16 6 96
Total 256

(a) Data Cell Transistor Count

Part Gate Qty Transistors
per gate total

Synchronisation 5-input C-Muller 2 15 30
2:1Mux 8 4 32
SRAM Cells 12 6 72
Subtotal 134

Select D-type 4 32 128
2:1 Mux 12 4 48
4:1Mux 4 12 48
Subtotal 224

Select Routing 4:1 Mux 4 12 48
SRAM Cell 8 6 48
Subtotal 96

To Reg Delay 	Inverters 	14 	2 	28
8:1Mux 	1 	28 	28
Asym. C-Muller 1 	8 	8

1 	10 	10
SRAM Cell 3 6 18
Subtotal 92

From Reg Delay 	Inverters 6 2 12
4:1 Mux 1 12 12
Asym. C-Muller 1 8 8

1 10 10
SRAM Cell 2 6 12
Subtotal 54

Arbitration 	Mut-Ex 1 12 12
4-input NAND 2 8 16
2:1Mux 8 4 32
SRAM Cell 8 6 48
Subtotal 108

RESET 	 SRAM Cell 1 - 	 6 6
Total 	 714

(b) Timing Cell Transistor Count

Table B.5: Data Cell and Timing Cell Transistor Count

253

Part Gate Qty Transistors
per gate total

Local 2:1 Mux 16 4 64
4:1Mux 16 12 192

S4,W4,E4 10:1Mux 12 36 432
N4 12:1Mux 4 44 176
CLK 4:1 Mux 8 12 96

Configuration SRAM Cell 96 	6 576
Total 	 1446

1 additional to local 4:1 Mux

(a) Data Array

Part 	 Gate 	 Qty Transistors
per gate total

Synchronisation 4-input rC-Muller 8 	28 224
5-input rC-Muller 4 	34 136

Configuration 	SRAM Cell 	10 	6 	60
CLK 	 -96

Total 	 324

(b) Timing Array

Table B.6: Boundary Routing Transistor Counts

Symbol Description Max Delay
/ns

TIL01 XI change to Function Out 2

TJL023 X2 change to Function Out 3

TFN Function Out to Neighbour 1

TNN Route Neighbour In to Neighbour Out 1.5

TMagic Route X2/X3 to Magic Out 2.5

TL4 Level-4 Flyover 2

TL16 Level-16 Flyover 2.5

TL64 Level-64 flyover 5

Table B.7: XC6200 Delays

254

25

20

>
C) 15

CY

a)

CD

10

5

0
0 	 5 	10 	15

delay / NS

(a) Xilinx Tools

25

20

>'
C) 15 a)

a)
10

5

0
0 	 5 	10 	15

delay/NS

(b) VHDL Simulator

Figure B.1: Example Delay Profiles for Fixed Polynomial Division Circuit

255

Bibliography

Product Focus: Field Programmable Logic, Benchmarking FPGAs. Elec-

tronic Engineering Times, 65(799):53-77, July 1993.

Actel Corp., Sunnyvale, California. ACT Family FPGA Data Book, 1991.

Algotronix Ltd., The King's Buildings, TTC , Edinburgh EH9 3JL.

CAL1024 Datasheet, 1991.

Altera Corp., San Jose, California. Data Book, 1995.

Aptix Inc., San Jose, California. MP3 Data Sheet, 1996.

J. M. Arnold. The Splash 2 Software Enviroment. In FCCM93: Proceedings

of IEEE Workshop on FPGAs for Custom Computing Machines, 1993.

D. K. Arvind and R. D. Mullins. Instruction Compounding in MAP Ar-

chitectures. In Proceedings of the First U.K. Asynchronous Forum, pages

26-33,1996.

D. K. Arvind, R. D. Mullins, and V. E. F. Rebello. Micronets: A Model

for Decentralising Control in Asynchronous Processor Architectures. In

M. B. Josephs, editor, The 2nd Working Conference on Asynchronous Design

Methodologies, pages 190-199, London, UK, May 1995. IEEE Computer

Society Press.

AT & T. AT & T Optimised Reconfigurable Cell Array (ORCA), 1995.

Atmel. AT6000 Field-Programmable Gate Array Data Sheet, 1996.

J. Babb, R. Tessier, and A. Agarwal. Virtual Wires: Overcoming Pin Lim-

itations in FPGA-based Logic Emulators. In FCCM93: Proceedings of IEEE

Workshop on FPGAS for Custom Computing Machines, 1993.

P. Bertin, D. Roncin, and J. Vuillemin. Introduction to Programmable

Active Memories. Technical report, DEC Paris Research Laboratory, June

1989.

256

M. Boloski, A. DeHon, and T. F. Knight. Unifying FPGAs and SIMD

Arrays. In FPGA94: 2nd International ACM/SIGDA Workshop on FPGAs,

1994.

D. S. Bormann and P. Y. K. Chemg. Designing Globally Asynchronous

Locally Synchronous Circuits Using VHDL. In 1st U.K. Asynchronous

Forum, pages 38-41, December 1996.

D. S. Bormann and P. Y. K. Cheung. Asynchronous Wrapper for Hetro-

geneous Systems. In submitted to ICCD'97, 1997.

G. Brebner. A Virtual Hardware Operating System for the Xilinx XC6200.

In 6th International Workshop on Field Programmable Logic and Applications,

volume 1142 of Lecture Notes in Computer Science, pages 327-336,1996.

G. Brebner. The Swappable Logic Unit: a Paradigm for Virtual Hard-

ware. In FCCM97: Proceedings of IEEE Workshop on FPGAs for Custom

Computing Machines, 1997.

G. Brebner and J. Gray. Use of Reconfigurability in Variable Length Code

Detection at Video Rates. In 5th International Workshop on Field Program-

mable Logic and Applications, volume 975 of Lecture Notes in Computer Sci-

ence, pages 429-438,1995.

E. Brunvand. Using FPGAs to Prototype a Self-Timed Computer. In

Workshop on Field Programmable Logic and Applications, pages 192-198,

1992.

E. Brunvand. Using FPGAs to Implement Self-Timed Systems. Journal of

VLSI Signal Processing, 6(2):173-190, August 1993.

S. Casselman, M. Thronburg, and J. Schewel. Creation of Hardware Ob-

jects in a Reconfgiurbale Computer. In 5th International Workshop on Field

Programmable Logic and Applications, volume 975 of Lecture Notes in Com-

puter Science, 1995.

Daniel M. Chapiro. Globally-Asynchronous Locally-Synchronous Systems.

PhD thesis, Stanford University, October 1984.

S. Churcher, T. Kean, and B. Wilkie. The XC6200 FastMap Processor In-

terface. In 5th International Workshop on Field Programmable Logic and Ap-

plications, volume 975 of Lecture Notes in Computer Science, pages 36-43,

1995.

257

Cypress Semiconductor Corp., San Jose, California. Programmable Logic

Data Book, 1994/95.

P. Day and J. V. Woods. Investigation into Micropipeline Latch Design

Styles. IEEE Transactions on VLSI Systems, 3(2):264-272, June 1995.

M. E. Dean, D. L. Dill, and M. Horowitz. Self-Timed Logic Using

Current-Sensing Completion Detection (CSCD). In Proc. International

Conf. Computer Design (ICCD), pages 187-191. IEEE Computer Society

Press, October 1991.

Mark E. Dean. STRiP: A Self-Timed RISC Processor Architecture. PhD

thesis, Stanford University, 1992.

A. DeHon. DPGA-Coupled Microprocessors: Commodity ICs for the

Early 21st Century. In FCCM94: Proceedings of IEEE Workshop on FPGAs

for Custom Computing Machines, 1994.

D. L. Dill. Trace Theory for Automatic Hierarchical Verification of Speed-

Independent Circuits. In J. Allen and F. T. Leighton, editors, Advanced

Research in VLSI: Proceedings of the Fifth MIT Conference, pages 51-65. MIT

Press, 1988.

D. W. Dobberpuhl et al. A 200MHz 64-bit Dual Issue CMOS Processor.

IEEE Journal of Solid-State Circuits, 11(27):1555-1567,1992.

J. C. Eldredge and B. L. Hutchings. RRANN: A Hardware Implementa-

tion of the Backpropagation Algorithm using Reconfigurable FPGAs. In

IEEE International Conference on Neural Networks, 1994.

J. C. Eldredge and B. L. Hutchings. RRANN: The Run-Time Reconfig-

uration Artificial Neural Network. In IEEE Custom Integrated Circuits

Conference, pages 77-80, 1994.

B. Felton and N. Hastie. Configuration Data Verification and the Integ-

rity Checking of SRAM based FPGAs. In FPGAs: International Work-

shop on Field Programmable Logic and Applications, chapter 2.6. Abingdon

EE&CS Books, 1991.

P. C. French and R. Taylor. A Self-Reconfiguring Processor. In FCCM93:

Proceedings of IEEE Workshop on FPGAs for Custom Computing Machines,

1993.

Na

S. B. Furber. Breaking Step: The Return of Asynchronous Logic. lEE

Review, 39(4):159-162, July 1993.

S. B. Furber. Lessons from AMULET1: Towards AMIJLET2. In I. E. Suth-

erland and S. B. Furber, editors, Sun Annual Lecture in Computer Science

at the University of Manchester, September 1994.

S. B. Furber and P. Day. Four-Phase Micropipeline Latch Control Circuits.

IEEE Transactions on VLSI Systems, 4(2):247-253, June 1996.

S. B. Furber, P. Day, J. D. Garside, N. C. Paver, and S. Temple. AMTJ-

LET2e. In C. Muller-Schloer, F. Geerinckx, B. Stanford-Smith, and R. van

Riet, editors, Embedded Microprocessor Systems, September 1996. Proceed-

ings of EMSYS'96 - OMI Sixth Annual Conference.

S. B. Furber, P. Day, J. D. Garside, N. C. Paver, and J. V. Woods. A Mi-

cropipelined ARM. In T. Yanagawa and P. A. Ivey, editors, Proceedings of

VLSI 93, pages 5.4.1-5.4.10, September 1993.

S. B. Furber and J. Liu. Dynamic Logic in Four-Phase Micropipelines. In

Proc. International Symposium on Advanced Research in Asynchronous Cir -

cuits and Systems. IEEE Computer Society Press, March 1996.

M. Gamble, B. Rahardjo, and R. D. McLeod. Reconfigurable FPGA Mi-

cropipelines. Technical report, U. of Manitoba, 1994.

B. Gao. A Globally Asynchronous Locally Synchronous Configurable Array

Architecture for Algorithm Embeddings. PhD thesis, University of Edin-

burgh, December 1996.

B. Gao and D. J. Rees. Communicating synchronous logic modules. In

Proccedings of the 21st EuroMicro Conference, pages 708-714, September

1995.

J. D. Garside. A CMOS VLSI Implementation of an Asynchronous ALU.

In Proceedings of the IFIP Working Conference on Asynchronous Design Meth-

odologies, 1993.

GEC Plessey Semiconductors. ERA 60100 Reconfigurable Array Data Sheet,

1991.

G. Gopalakrishnan. Some Unusual Micropipeline Circuits. Technical Re-

port UUCS-93-015, Dept. of Computer Science, Univ. of Utah, July 1993.

259

G. Gopalakrishnan and P. Jam. Some Recent Asynchronous System

Design Methodologies. Technical report, U.of.Utah, 1990.

G. Gopalakrishnan and L. Josephson. Towards Amalgamating the Syn-

chronous and Asynchronous Styles. In Tau'93: International Workshop on

Timing Issues in the Specification and Synthesis of Digital Systems, 1993.

P. Graham and B. Nelson. A Hardware Genetic Algorithm for the Trav-

eling Salesman Problem on Splash 2. In 5th International Workshop on

Field Programmable Logic and Applications, volume 975 of Lecture Notes in

Computer Science, pages 352-361, 1995.

E. Grass and S. Jones. Asynchronous Circuits Based On Multiple Local-

ised Current-Sensing Completion Detection. In Second Working Confer-

ence on Asynchronous Design Methodologies, pages 170-177, May 1995.

E. Grass, R. C. S. Morling, and I. Kale. Activity Monitoring Completion

Detection (AMCD): A New Single Rail Approach to Achieve Self-Timing.

In Proc. International Symposium on Advanced Research in Asynchronous Cir-

cuits and Systems. IEEE Computer Society Press, March 1996.

M. R. Greenstreet and K. Steiglitz. Bubbles can Make Self-Timed

Pipelines Fast. Journal of VLSI Signal Processing, 2(3):139-148, Novem-

ber 1990.

S. Guccione and M. J. Gonzalez. Classification and Performance of Re-

configurable Architectures. In 5th International Workshop on Field Pro-

grammable Logic and Applications, volume 975 of Lecture Notes in Computer

Science, pages 439-448, 1995.

S. Hauck. Asynchronous Design Methodologies: An Overview. Tech-

nical Report TR 93-05-07, Department of Computer Science and Engin-

eering, University of Washington, Seattle, 1993.

S. Hauck, G. Borriello, S. Burns, and C. Ebeling. MONTAGE: An FPGA

for Synchronous and Asynchronous Circuits. In Workshop on Field Pro-

grammable Logic and Applications, 1992.

S. Hauck, G. Borriello, C. Ebeling, D. Song, and E. A. Walkup. TRIP-

TYCH: A New FPGA Architecture. In FPGAs: International Workshop on

Field Programmable Logic and Applications, pages 75-90. Abingdon EE&CS

Books, 1991.

260

S. Hauck, S. Burns, G. Borriello, and C. Ebeling. A FPGA for Imple-

menting Asynchronous Circuits. IEEE Design and Test of Computers, 11
(3):60-69,1994.

W. D. Hillis. The Connection Machine. tvllT Press, 1985.

R. W. Hockney and C. R. Jesshope. Parallel Computers - Architecture, Pro-

gramming and Algorithms. Adam Huger Ltd., 1984.

I-Cube Inc., Santa Clara, California. IQ Family Data Sheet, March 1996.

I-Cube Inc., Santa Clara, California. PSX Family Data Sheet, February

1996.

IEEE. IEEE Standard VHDL Language Reference Manual, 1988.

C. Iseli and E. Sanchez. Spyder: A Reconfigurable VLIW Processor using

FPGAs. In FCCM93: Proceedings of IEEE Workshop on FPGAs for Custom
Computing Machines, 1993.

T. Isshiki and W. M. Dai. High-Performance Datapath Implementation

on Field-Programmable Multi-Chip Module (FPMCM). In 4th Interna-
tional Workshop on Field Programmable Logic and Applications, pages 373-

384, 1994.

T. A. Kean. Configurable Logic: A Dynamically Programmable Cellular Archi-

tecture and its VLSI Implementation. PhD thesis, University of Edinburgh,

1989.

D. Kearney and N. W. Bergmann. Performance Evaluation of Asyn-

chronous Logic Pipelines with Data Dependant Processing Delays. In

Asynchronous Design Methodologies, pages 4-13. IEEE Computer Society

Press, May 1995.

J. Kessels. VLSI Programming of a Low-Power Asynchronous Reed-

Solomon Decoder for the DCC Player. In Asynchronous Design Methodo-

logies, pages 44-52. Philips Research Laboratories, 1995.

A. Klindworth. FPLD-Implementation of Computations over Finite

Fields GF(2m) with Applications to Error Control Coding. In W. Moore

and W. Luk, editors, Field-Programmable Logic and Applications, volume

975 of Lecture Notes in Computer Science, pages 261-271. Springer-Verlag,

1995.

261

D. K. Y. Kwok. An Investigation of Virtual Hardware using FPGA Tech-

nology. Technical report, University of Edinburgh, May 1996.

L. Lavagno, C. Moon, R. Brayton, and A. Sangiovanni-Vincentelli. Solv-

ing the State Assignment Problem for Signal Transition Graphs. In Proc.

ACM/IEEE Design Automation Conference, pages 568-572. IEEE Computer

Society Press, June 1992.

D. Lewin. Logical Design of Switching Circuits. Thomas Nelson and Sons

Ltd., 2 edition, 1974.

X. Ling and H. Amano. WASMII: A Data Driven Computer on a Vir-

tual Hardware. In FCCM93: Proceedings of IEEE Workshop on FPGAs for

Custom Computing Machines, 1993.

S-L Lu. Implementation of Micropipelines in Enable/Disable CMOS Dif-

ferential Logic. IEEE Transactions on VLSI Systems, 3(2):338-341, June

1995.

W. Luk, S. Guo, N.Shirazi, and N.Zhuang. A Framework for Develop-

ing Parameterised FPGA Libraries. In 6th International Workshop on Field

Programmable Logic and Applications, volume 1142 of Lecture Notes in Com-

puter Science, pages 24-33, 1996.

P. Lysaght, H. Dick, G. McGregor, D. McConnell, and J. Stockwood. Pro-

totyping Enviroment for Dynamically Reconfgiurable Logic. In 5th In-

ternational Workshop on Field Programmable Logic and Applications, pages

409-418,1995.

P. Lysaght, J. Stockwood, J. Law, and D. Girma. Artificial Neural Net-

work Implementation on a Fine-Grained FPGA. In 4th International Work-

shop on Field Programmable Logic and Applications, 1994.

K. Maheswaran. Implementing Self-Timed Circuits in Field Program-

mable Gate Arrays. Master's thesis, U.C.Davis, 1995.

K. Maheswaran and V. Akella. Hazard-free Implementation of the

Self-Timed Cell set for the Xilinx 4000 Series FPGA. Technical report,

U.C.Davis, 1994.

S. Mark and V. Jean. Fast Implementations of RSA Cryptography. In 11th

IEEE Symposium on Computer Arithmetic, 1993.

262

A. J. Martin. Formal Program Transformations for VLSI Circuit Syn-

thesis. In E. W. Dijkstra, editor, Formal Development of Programs and Proofs,

UT Year of Programming Series, pages 59-80. Addison-Wesley, 1989.

A. J. Martin. The Limitations to Delay-Insensitivity in Asynchronous

Circuits. In W. J. Dally, editor, Sixth MIT Conference on Advanced Research

in VLSI, pages 263-278. MIT Press, 1990.

A. J. Martin, S. M. Burns, T. K. Lee, D. Borkovic, and P. J. Hazewindus.

The Design of an Asynchronous Microprocessor. In C. L. Seitz, editor,

Advanced Research in VLSI: Proceedings of the Decennial Caltech Conference

on VLSI, pages 351-373. MIT Press, 1989.

A. J. Martin, S. M. Burns, T. K. Lee, D. Borkovic, and P. J. Hazewindus.

The First Asynchronous Microprocessor: The Test Results. Computer Ar-

chitecture News, 17(4):95-110, June 1989.

A. J. McAuley. Four State Asynchronous Architectures. IEEE Transactions

on Computers, 41(2):129-142, February 1992.

M.Edwards and J. Forrest. Hardware/ Software Co-Design Project. Tech-

nical report, UIVIIST, 1995.

T. H.-Y. Meng, R. W. Brodersen, and D. G. Messerschmitt. Automatic

Synthesis of Asynchronous Circuits from High-Level Specifications.

IEEE Transactions on Computer-Aided Design, 8(11):1185-1205, November

1989.

Meng, T. H.-Y. and Brodersen, R. W. and Messerschmitt, D. G. A Clock-

Free Chip Set for High-Sampling Rate Adaptive Filters. Journal of VLSI

Signal Processing, 1(4):345-365,1990.

G. Mine, P. Cockshott, G. McCaskill, and P. Barrie. Realising Massively

Concurrent Systems on the SPACE Machine. Technical Report HDV-29-

93, U. of Strathclyde, 1993.

G. I. Mime. Realising massively Concurrent Systems on the SPACE Ma-

chine. In FCCM93: Proceedings of IEEE Workshop on FPGAs for Custom

Computing Machines, 1993.

S. Monaghan. A Gate-Level Reconfigurable Monte Carlo Processor.

Journal of VLSI Signal Processing, 6(2):139-154, August 1993.

263

Z. Navabi. VHDL Analysis and Modelling of Digital Systems. McGraw-Hill,

1993.

J. Oldfield and C. Kappler. Implementing Self-timed Systems: Compar-

ision of Configurable Logic Arrays with Full Custom Circuits. In FP-

GAs: International Workshop on Field Programmable Logic and Applications,

chapter 6.3. Abingdon EE&CS Books, 1991.

I. Page. The HARP Reconfgiurable Computing System. Technical report,

Oxford University Hardware Compilation Group, October 1994.

I. Page. Reconfigurable Processor Architectures. submitted for special issue

of Microprocessors and Microsystems on hardware software co-design, 1996.

N. C. Paver. The Design and Implementation of an Asynchronous Micro-

processor. PhD thesis, Department of Computer Science, University of

Manchester, June 1994.

R. E. Payne. Self-Timed FPGA Systems. In W. Moore and W. Luk, editors,

Field-Programmable Logic and Applications, volume 975 of Lecture Notes in

Computer Science, pages 21-35. Springer-Verlag, 1995.

0. Pretzel. Error-Correcting Codes and Finite Fields. Oxford Applied Math-

ematics and Computing Science Series. Oxford University Press, 1992.

D. Pryor, M. Thistle, and N. Shirazi. Text Searching on Splash 2. In

FCCM93: Proceedings of IEEE Workshop on FPGAs for Custom Computing

Machines, 1993.

F. Raimbult et al. Fine Grain Parallelism on a MIMD machine using FP -

GAs. In FCCM93: Proceedings of IEEE Workshop on FPGAs for Custom

Computing Machines, 1993.

V. E. F. Rebello. On the Distribution of Control in Asynchronous Processor

Architectures. PhD thesis, Department of Computer Science, University

of Edinburgh, UK., 1996.

C. F. Reese. The CM-2X a Hybrid CM-2/Xilinx Prototype. In FCCM93:

Proceedings of IEEE Workshop on FPGAs for Custom Computing Machines,

1993.

L. Rizzo. Effective Erasure Codes for Reliable Computer Communication

Protocols. Computer Communication Review, April 1997.

264

F. U. Rosenberger, C. E. Molnar, T. J. Chaney, and T. Fang. Q-Modules:

Internally Clocked Delay-Insensitive Modules. IEEE Transactions on Com-

puters, C-37(9) :1005-1018, September 1988.

C. L. Seitz. System Timing, chapter 7. Addison-Wesley, Mead and Con-

way Introduction to VLSI Systems edition, 1980.

A. Semenov and A. Yakovlev. Partial Order Approach to Design, Verific-

ation and Synthesis of Asynchronous Circuits. In D. K. Arvind and S. B.

Furber, editors, 1st U.K. Asynchronous Forum, pages 47-50, 1996.

P. Shaw and G. Mime. A Highly Parallel FPGA-Based Machine and

its Formal Verification. Technical Report HDV-28-93, U. of Strathclyde,

1993.

S. Singh, J. Hogg, and D. McAuley. Expressing Dynamic Reconfigura-

tion by Partial Evaluation. In FCCM96: Proceedings of IEEE Workshop on

FPGAs for Custom Computing Machines, 1996.

G. Snider, P. Kuekes, W. B. Culbertson, R. J. Carter, A. S. Berger, and

R. Amerson. The Teramac Configurable Compute Engine. In 5th Interna-

tional Workshop on Field Programmable Logic and Applications, pages 44-53,

1995.

R. F. Sproull, I. E. Sutherland, and C. E. Molnar. Counterfiow Pipeline

Architecture. Technical report, Sun Microsystems Laboratories, April

1994.

A. Stansfield and I. Page. The Design of a New FPGA Architecture. In

5th International Workshop on Field Programmable Logic and Applications,

volume 975 of Lecture Notes in Computer Science, pages 1-14, 1995.

I. E. Sutherland. Micropipelines. Communications of the ACM, 32(6):720-

38, 1989.

J. A. Tierno, A. J. Martin, D. Borkovic, and T. K. Lee. An Asynchronous

Microprocessor in Gallium Arsenide. Technical report, California Insti-

tute of Technology, 1993.

R Per Torstein. A System for Asynchronous High-speed Chip to Chip

Communication. In Second International Symposium on Advanced Research

in Asynchronous Circuits and Systems, pages 2-10, 1996.

265

S. H. Unger. Asynchronous Sequential Switching Circuits. John Wiley and

Sons, Inc., 1969.

K. van Berkel and A Bink. Single-Track Handshake Signalling with Ap-

plication to Micropipelines and Handshake Circuits. In Second Interna-

tional Symposium on Advanced Research in Asynchronous Circuits and Sys-

tems, pages 122-133, 1996.

K. van Berkel, R. Burgess, J. Kessels, A. Peeters, M. Roncken, F. Schalij,

and R. van de Wiel. A Single-Rail Re-implementation of a DCC Error

Detector Using a Generic Standard-Cell Library. In Asynchronous Design

Methodologies, pages 72-79. IEEE Computer Society Press, May 1995.

T. Verhoeff. Delay-Insensitive Codes—An Overview. Distributed Com-

puting, 3(l):1-8,1988.

C. C. Wang, T. K. Truong, H. M. Shao, L. J. Deutsch, J. K. Omura, and I. S.

Reed. VLSI Architectures for Computing Multiplications and Inverses in

GF(2m). IEEE Transactions on Computers, C-34(8):709-717, August 1985.

S. Weber, B. Bloom, and G. Brown. Compiling Joy to Silicon. In T. Knight

and J. Savage, editors, Proceedings of Brown/MIT Conference on Advanced

Research in VLSI and Parallel Systems, pages 79-98. MIT Press, March 1992.

U. Weiser. Future Directions in Microprocessor Design. In Second In-

ternational Symposium on Advanced Research in Asynchronous Circuits and

Systems, 1996.

N. H. E. Weste and K. Eshraghian. Principles of CMOS VLSI Desgin - a

Systems Perspective. Addison-Wesley, 2 edition, 1993.

M. J. Writhlin and B. L. Hutchings. A Dynamic Instruction Set Computer.

In FCCM95: Proceedings of IEEE Workshop on FPGAs for Custom Computing

Machines, 1995.

Xilinx. XC6200 Datasheet, 1996.

Xiinx Inc., San Jose, California. The Programmable Logic Data Book, 1994.

C. Ykman-Couvreur and B. Lin. Optimised State Assignment for Asyn-

chronous Circuit Synthesis. In Asynchronous Design Methodologies, pages

118-127. IEEE Computer Society Press, May 1995.

[126] K. Y. Yun, P. A. Beerel, and J. Arceo. High-Performance Asynchronous

Pipeline Circuits. In Proc. International Symposium on Advanced Research in

Asynchronous Circuits and Systems. IEEE Computer Society Press, March

1996.

267

