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Abstract 

Today, digital images are used routinely in many areas of biomedical research and 
clinical practice. The need for reliable quantitative and qualitative analysis of very large 
numbers of these images, has produced an increasing interest in automated Biomedical 
image processing systems. Traditional image processing methods ( TIA) are built to 
exploit and take advantage of image data properties, as a result they tend to be fragile 
with respect to any changes in those properties. For this reason, TIA have been 
found to be ineffective for the recognition and classification of the inherently irregular 
and variable biological objects. A potentially more robust and reliable alternative 
are the Model -based methods as the underlying idea is to use previously identified 
and explicitly represented properties of the image data in order to establish the best 
possible interpretation. 

This thesis presents the development of a probabilistic formulation of model -based 
vision using generalised flexible template models. It includes the design and imple- 
mentation of a system which extends flexible template models to include grey level 
information in the object representation for image interpretation. This system was 
designed to deal with microscope images where the different stain and illumination 
conditions during the image acquisition process produce a strong correlation between 
density profile and geometric shape. 

This approach is based on statistical knowledge from a training set of examples. The 
variability of the shape -grey level relationships is characterised by applying principal 
component analysis to the shape -grey level vector extracted from the training set. 
The main modes of variation of each object class are encoded within a generic object 
formulation constrained by the training set limits. This formulation adapts to the 
diversity and irregularities of shape and view during the object recognition process. 
The modes of variation are used to generate new object instances for the matching 
process of new image data. A genetic algorithm method is used to find the best possible 
explanation for a candidate of a given model, based on the probability distribution of 
all possible matches. 

This approach is demonstrated by its application to microscope images of brain cells. 
It provides the means to obtain information such as brain cells density and distribu- 
tion. This information could be useful in the understanding of the development and 
properties of some Central Nervous System ( CNS) related diseases, such as in studies 
of the effects of the human immunodeficiency virus (HIV) in the CNS where neuronal 
loss is expected. 

The performance of the SGmodel system, presented here, was compared with manual 
neuron counts from domain experts. The results shown no significant difference between 
SGmodel and manual neuron distribution estimates. The observation of larger differ- 
ences between the counts of the domain experts underlines the automated approach 
importance to perform an objective cell distribution analysis. A practical benefit of 
this model based system is that it is adaptable to new conditions and allows rapid 
prototyping for different applications. 
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Chapter 1 

Introduction 

1.1 Motivation 

Automated image analysis methods are being increasingly applied to deal with quan- 

titative assessment for Biomedical applications in which the need for accurate analysis 

of very large number of complex images is important (Sterio 1984). The motivation for 

this thesis research originated from the need to automate the analysis of microscope 

images from brain tissue to provide the means for obtaining information such as cell 

density and distribution (see figure 1.1). This information is intended to help in the 

understanding of some Central Nervous System (CNS) related diseases, such as in the 

study of the human immunodeficiency virus (HIV) effects in the CNS where neuronal 

loss is expected (chapter 2). Many changes have been reported to occur in the brain 

during infection by HIV but the mechanisms of how HIV mediates neurological dam- 

age, and the effects of HIV in the CNS in general are still not well understood (Sharer 

1992; Elovaara 1995). Neuronal loss is reported in the CNS in people who have died 

with HIV infection (Ketzler et al. 1990; Wiley et al. 1991; Everall and Lantos 1991). 

Qualitative and quantitative studies of these changes at different stages of HIV infec- 

tion require the assessment of large numbers of microscope images from brain tissue. 

For this reason a semi -automatic method for microscope image analysis could represent 

a significant contribution to the understanding of the development and properties of 

this disease and any other neurodegenerative diseases. 

1 



CHAPTER 1. INTRODUCTION 2 

Motivation 

The need for quantitative analysis 

of massive amounts of information 

to help In the understanding of an 

specific Biomedical problem: 

HIV effects on the 

Central Nervous System. 

Objectives 

General 

To provide the means 

for solving Biomedical 

quantitative problems 

related to cell 

recognition, density, 

size and distribution. 

Specific ) 

To design and develop a 

general purpose system for 

analysis of microscope images 

trained by example using 

domain expertise. The system 

should also be adaptable to 

new conditions and allow 

model retrainability for rapid 

prototyping of new object 

classes. 

Approach 

Building a hybrid Model -based 

system that uses a combination of: 

- Extended flexible template models to 

include grey level values, characterising 

the variability and adapting to the 

diversity of shape and view during 

the object recognition process. 

- Probabilistic formulation to find 

the best possible explanation for a 

candidate of a given model, 

combined with a Genetic Algorithm 

method. 

Figure 1.1: Motivation, Objectives and Approach. 

1.2 Approach 

The main advantage of automated image analysis is; the ability to objectively process, 

large amounts of material in a shorter period of time. However, the complexity and 

variability commonly found in biomedical structures makes difficult to automate these 

analyses (Brian and Marchevsky 1994), (Heus and Diegenbach 1992), (Miller et al. 

1979). Model -free techniques, such as traditional image analysis (TIA), are often spe- 

cifically designed to solve these complexities (chapter 3). TIA is based on sequences of 

image operations, carefully designed and tuned for a particular problem. These highly 

specialised systems are built to exploit and take advantage of details of image data, 
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as a result of this they tend to be fragile with respect to any changes in those details, 

and also require considerable intervention by the domain expert (e.g., the pathologist). 

Model -based techniques (MB), on the other hand, are less dependent on the details of 

the image data for their functioning, and thus less sensitive to changes and variation on 

these details. MB use prior knowledge to construct a set of assumptions and expected 

properties or predictions of the image structure thus improving the reliability and ro- 

bustness of the analysis. However, modelling complex image objects (e.g., biomedical 

objects) from different domains requires that their specific properties are included in 

an efficient representation in order to develop a robust and reliable system. 

In image analysis, one of the most common types of model used is geometric models 

which describes elements with inherent geometrical properties such as spatial layout 

and shape, size, connectivity of components, view parameters etc. However geometric 

models are often too rigid to represent some classes of objects with the variability 

of shape that biomedical objects could present. Flexible models (FM) are considered 

more suitable for biomedical image analysis because of their capabilities such as moving 

or deforming to fit biological structures, learning from examples and generalising their 

knowledge so that it can be applied to new and different circumstances. FM are 

based on the statistical knowledge of object features and their main modes of variation 

characterised, for example, by applying a Principal Component Analysis (PCA) to a 

training set of object examples. In this thesis, the approach presented for microscope 

image analysis is based on flexible models. 

The objects of interest in the domain of application in this thesis are irregular, and there 

is a relationship between their density profile and geometric shape given the nature of 

the light transmission images (i.e., microscope images). In order to use all the know- 

ledge about the appearance of the object, it is important that a model has the ability to 

recognise direct links between shape and grey values. In this approach a more complete 

model is proposed by extending the usual flexible model feature space to include grey 

values directly in a shape grey -value model for which the name SGmodel (chapter 4) 

has been coined. This hybrid approach involves processing images at different analysis 

levels, such as low -level (e.g., image formation) to high -level (e.g., image interpreta- 

tion), (Gonzales and Wood 1992; Sonka et al. 1993; Castleman 1996). SGmodel was 
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defined within a probabilistic formulation to find the best possible explanation for an 

object candidate of a given model, combined with a Genetic Algorithm optimisation 

method. One of the underlying features of this formulation is that it was designed to 

solve the normalisation problem produced by including non -spatial data dimensions 

and it allows classification when the feature space is different for each class. 

The algorithms developed in this approach provide a rapid prototyping tool for new 

object classes and were designed to be usable by a domain expert, in this case the 

neuropathologist (chapter 5). An important contribution of this approach is a more 

generic model for the domain application which, in turn, implies that the model can 

be tuned to specific study cases (chapter 6), without the need for specialist image - 

processing and programming expertise, to incorporate new models for each object 

class. This results in a high adaptability to new conditions and allows rapid modelling 

of new object classes. 

Finally the SGmodel system performance was tested in both synthetic and real data. 

The modes of variation, obtained by applying PCA to the training set of an artificially 

generated cell (chapter 5), were used to illustrate how the object variability is charac- 

terised by PCA. In this test, the model parameters were recovered exactly by the PCA 

(chapter 7). The small number of parameters used to define this artificial cell made it 

possible to observe how the first modes of variations captured the feature variability. 

The SGmodel system was trained for neuron and NOneuron models for testing pur- 

poses with real data. The model training and testing was performed in randomly 

sampled images of brain tissue from five case groups involved in the HIV -CNS project 

(chapter 7). At individual cell level there were found cases of misclassification, however 

the comparison between manual and automatic neuron global counts over a testing set 

of images show no significant differences, this suggest that the algorithms developed 

in this thesis, i.e., SGmodel system, provides a consistent and reliable tool for cell 

population estimation in microscope image analysis. 
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1.3 Thesis Organisation 

The thesis organisation described below is summarised in figure 1.2. In Chapter 2 

the domain of application of this thesis is presented namely analysis of microscope 

images of brain cells, and its role within the project "Brain Bank for Research on HIV 

Infection and the Nervous System " , a project from the Neuropathology Laboratory, 

University of Edinburgh supported by the Medical Research Council, UK. This chapter 

also includes a description of HIV effects on the Central Nervous System (CNS) and 

some of the reported quantitative CNS cell studies related to HIV infection. A brief 

overview of some computerised cell image analysis is also described. This chapter 

describes how a quantitative analysis by an assessment of brain cells populations can 

be useful to determine CNS damage at different stages of HIV infection, and why 

extensive comparative research is needed for the understanding of the development 

and properties of this disease. 

Chapter 3 reviews, within a model -based system framework, different flexible model 

approaches applied to problems where images are characterised by the presence of 

irregular objects. Their advantages and disadvantages with respect to this applications 

are discussed. A particular emphasis is put on Point Distribution Models (PDM) as 

this thesis approach (SGmodel) is based on them. 

In Chapter 4 the theoretical bases for the SGmodel approach is presented. The 

SGmodel is presented within a general image analysis framework with the specific 

needs of biomedical image analysis and designed in a meaningful way for the domain 

expert. This chapter describes the extension to PDM in the SGmodel and how new pro- 

posed model acts as an abstraction of the high -level prior knowledge about the objects. 

This chapter also presents the description and elements included in the probabilistic 

formulation for the matching process and to solve normalisation problems produced 

by the inclusion of non -spatial data dimension in the feature vector, by differences in 

dimensionality between class models and by the use of the candidates locator. For the 

candidates locator implemented in this work the name cue finder was coined and used 

in several parts of this thesis. 

Chapter 5 presents the design of the functional and operational characteristics used to 
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implement the SGmodel in a computational system for biomedical image analysis. The 

design is presented in terms of different levels of image analysis. This chapter describes 

the combination of theoretical and practical approaches involved in the implementation 

of the SGmodel system listed as follows: traditional image analysis procedures (i.e., 

thresholding, dilation and erosion used for the cue finder), flexible model procedures 

(PCA based flexible model, i.e., the extended PDM) within a probabilistic formula- 

tion, optimisation procedures (i.e., GAs for the optimised search of the best possible 

match) and a Graphical User Interface (GUI) in which the models are represented in 

a domain expert language which allows rapid prototyping of new object classes and 

tuning without the need for an image -processing and programming expert. The defini- 

tion of an artificial cell is included in this chapter and its artificially generated training 

set and how this could be used to understand the behaviour of the modes of variation 

obtained by PCA. 

Chapter 6 describes the Biomedical material used to obtain the digitised images and 

the set of images used for the analysis. The methodologies used at different stages 

during the image analysis, from pre -processing to classification, are also presented. 

These include the image acquisition process, including microscope settings and shading 

correction. The model training process is presented and illustrated with an example of 

a neuron model. The procedures to obtain and visualise the modes of variation from 

a training set and their use during the matching process are also discussed. 

In Chapter 7 the results obtained from the SGmodel system performance using syn- 

thetic and real data are presented. The possible application of the artificially generated 

modes of variation is described and the graphical representation of their behaviour is in- 

cluded. The global and individual results obtained with the SGmodel probability class 

estimations and the comparison with those obtained by domain experts are discussed. 

Chapter 8 Summarises the material presented in this thesis and presents a discussion 

of the achievements, contribution, and limitations of the work presented, and the 

general conclusions reached. Finally, a number of directions for future research are 

suggested. 
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THESIS ORGANISATION: 

Chapter 2. DOMAIN OF APPLICATION 

HIV effects on Central Nervous 
System (CNS) 

Review on CNS cell studies 
related with HIV 

Quantitative analysis of brain 

cells populations and the 

need for an automated method 

Chapter 1. INTRODUCTION 

Overview 
Motivation 

40 Objectives 
Thesis organisation 
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Chapter 4. SGMODEL APPROACH 

Theoretical basis for 
the SGmodel approach 

Extended 
Point Distribution Model 

Probabilistic formulation 

Review: 

Model -based framework 
Flexible models 

s 
Chapter 5. SGMODEL: SYSTEM DESIGN AND IMPLEMENTATION I 

Image analysis design framework: 

Functional and operational features 
Traditional image analysis 
Flexible model 

Principal component analysis 
Probabilistic formulation 
Optimisation using a Genetic Algorithm 
Graphic user interface 

I 
Chapter 6. METHODS: FROM PRE -PROCESSING TO CLASSIFICATION 

Chapter 7. TESTS AND RESULTS 

SGmodel system performance 
Test and results using 

synthetic and real data 
Comparisons between 

system and domain experts 
estimations. 

l 

Chapter 8. CONCLUSIONS 

Thesis summary, 
discussion, 
conclusions and 
future work. 

Figure 1.2: Thesis organisation summary. 



Chapter 2 

Domain of Application 

2.1 Introduction 

The domain of application of this thesis is concerned with the analysis of microscope 

images of brain cells. These provides the means to obtain information such as brain cell 

density and distribution. This information is intended to help in the understanding of 

some Central Nervous System ( CNS) related diseases, such as in studies of the effects 

of HIV in the CNS, where neuronal loss is expected. 

The application of this research is within the project "Brain Bank for Research on 

HIV Infection and the Nervous System" 1. There is clinical and pathological evidence 

of Central Nervous System ( CNS) damage related to the human immunodeficiency 

virus (HIV) infection known as HIV encephalitis (brain disease) (Sharer 1992). During 

the late stages of HIV infection, a dementia syndrome is frequently observed (Elovaara 

1995). Many changes have been reported to occur in the brain during the infection but 

the mechanisms of how HIV mediates neurological damage are still not well understood. 

Neuronal loss is reported in the CNS of people who have died with HIV infection 

(Ketzler et al. 1990; Wiley et al. 1991; Everall and Lantos 1991). Qualitative and 

quantitative studies of these changes at different stages of HIV infection would help 

in the understanding of the development and properties of the disease and could be 

useful for treatment purposes. In this chapter the application context is presented, 

including a description of some HIV effects in the CNS and some related quantitative 

1 A project from the Neuropathology Laboratory, University of Edinburgh supported by the Medical 
Research Council, UK. 

8 
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cell studies. The significant contribution that a semi -automatic method of quantitative 

cell analysis could make for the study of neurodegenerative diseases is also discussed. 

2.2 HIV effects in the Central Nervous System 

HIV affects the CNS in different ways at different infection stages. In the early stages, 

despite the lack of clear neuropathological changes after weeks of infection, there have 

been observed aseptic meningitis (inflammation of the brain membranes) and acute 

HIV -1 encephalitis (severe brain inflammation) (Elovaara 1995). In the HIV late stages, 

known as Acquired Immune Deficiency Syndrome (AIDS), brain atrophy can be found 

together with an encephalitis characterised by the infiltration of multinucleated giant 

cells (Vinters and Anders 1990). 

It is also in the late stages of the HIV infection, that some people display an enceph- 

alopathy termed HIV associated dementia complex (ADC) or AIDS dementia, charac- 

terised by clinical manifestations such as cognitive changes, lethargy, social withdrawal 

and psychomotor retardation with a marked dementia (Brew et al. 1995). There has 

been intensive research in the possible correlation between HIV and the encephalopathy 

(Sharer 1992; Elovaara 1995). The understanding of HIV neuropathogenesis and the 

neurobiology of the resultant brain dysfunction at cellular and molecular levels would 

be very useful for treatment purposes (Vinters and Anders 1990). 

Some of the changes in the CNS from people who have died with AIDS are due to severe 

opportunistic infections, resulting from clinical immunosuppression, these include: 

Viral infections, such as cytomegalovirus (CMV), herpes simplex (HSV), varicella- 

zoster, progressive multifocal leukoencephalopathy (PML); 

Fungal infections, such as cryptococcus and candida; and 

Parasitic infections, like toxoplasmosis (caused by Toxoplasma gundii). 

Neoplasms (tumours) also occur in the CNS during AIDS and these are more commonly 

high grade lymphoma (tumours of lymphoid tissue). It has been suggested that some of 

the specific HIV effects within the brain could result from the HIV presence in certain 
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cell types (Vinters and Anders 1990). HIV has been found free within the cytoplasm of 

multinucleated giant cells which are an accepted marker for HIV infection (HIV -GC). It 

has also been found that macrophages actively synthesise viral ribonucleic acid (RNA) 

and produce progeny virions within the brain (Everall and Lantos 1991). It is widely 

accepted that the only CNS cell types which are unequivocally capable of infection 

with HIV are macrophages and microglial cells (Price et al. 1988; Koenig et al. 1986; 

Everall and Lantos 1991; Glass et al. 1995; Brew et al. 1995; Dickson and Lee 1996). 

HIV presence has been described also within micro -vascular endothelial cells which 

constitute the morphologic substrate of the blood barrier. In a small number of cases 

there are reports of low levels of infection detected in neuroectodermal cells, including 

neurons and oligodendrocytes (Giulian et al. 1990). 

Neuronal loss has been reported as one of the CNS changes in studies of AIDS neuro- 

pathology; Ketzler et al. (1990) found 18% neuronal loss in the frontal cortex in 

patients who died of AIDS; Wiley et al. (1991) reported 30 -50% loss in cases with 

HIV encephalitis, and Everall et al. (1991) found about 38% loss in cases with minor 

pathology and HIV encephalitis. A wider description of these studies is included in 

section 2.3. 

The following are some of the many questions still to be answered in relation to the 

effects of HIV in the brain. 

What are the mechanisms of HIV neuropathogenicity (Elovaara 1995)? 

Why do some people with typical ADC have no neuropathological evidence of 

HIV encephalitis (Brew et al. 1995)? 

Why do some patients with a heavy viral burden in the CNS have few neuro- 

pathological changes (Sharer 1992)? 

While some of the changes found in the CNS could result from the direct effects of 

HIV on brain cells (Luthert et al. 1995), indirect effects result from other pathogenetic 

mechanisms which are poorly understood, (Wiley et al. 1991). If the infection could 

be detected in neurons or oligodendrocytes (neuroectodermally -derived cells), it could 

explain the changes in the grey and white matter as an HIV direct effect, but there 
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is no convincing evidence of infection in these types of cells. It has been reported 

that HIV -infected macrophages are a primary source of indirect injury of nerve cells, 

as these are damaged by toxic substances released by the macrophages (Koenig et al. 

1986; Giulian et al. 1990). Some of the tissue damage is due to the excess production 

of substances such as tumour necrosis factor alpha (TNFa), which may be toxic in life 

since it has been found to be toxic to oligodendrocytes in vitro (Giulian et al. 1990). 

2.3 Quantitative cell studies 

2.3.1 Computerised cell image analysis 

Research for the cytology automation has a long history that goes back to 1950's 

(Hutchinson and Zahniser 1994). Blood cell counting, cervical cytology and chromo- 

some analysis are between the main applications that require a fast and accurate cell 

counting. The large workload of these applications increased the need for experts 

skilled with the highly specialised knowledge required for the different cell studies. 

Research and funding have been devoted to automate this process and simulate the 

human expert performance with the advantage of a fast and constant accuracy that is 

not affected by factors such as fatigue or the possible variation between different ex- 

perts. However, the complexity of biological objects has proven too difficult to develop 

completely automated systems that meet the high performance standards needed in 

these applications. A more realistic goal that is being set in some approaches is to 

assist the human experts with semi -automatic systems (Bartels 1994; Hutchinson and 

Zahniser 1994). 

Intense research effort and development of computerised cervical cytology automation 

have been reported (Banda -Gamboa et al. 1992; Hutchinson and Zahniser 1994). 

The cervical screening systems analyse specimens to distinguish between normal and 

abnormal cells to assist cancer diagnosis (Husain et al. 1974; Tucker 1979). Some of 

the critical factors for automated quantitative analysis often reported in these works 

and also found in CNS cell analysis are: 

difficulties to standardise the staining, 
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insufficient contrast between objects and background, 

lack of clear boundaries in objects and their components, and 

wide interspecimen variation. 

12 

In cervical cytology automation, some of these problems have been minimised by disag- 

gregation of cells which also ease the image segmentation into its components (Banda - 

Gamboa et al. 1992). In general most of the segmentation methods applied to cell 

image analysis are based on the nature of the particular application and require a priori 

information of the objects of interest (Bartels 1994). In this application, from the seg- 

mented objects, simple measurements such as nuclear size, nuclear -cytoplasmic area, 

cytoplasmic, nuclear optical density, and nuclear DNA content have been reported 

useful for discriminating between normal and abnormal cells (Tucker 1979; Banda - 

Gamboa et al. 1992). Some of the main differences between the cervical tissue and 

CNS tissue which make difficult to apply the cervical cytology automation methods to 

CNS cell analysis are: 

object shape and size variation are wider within the same type of cell, 

in some CNS cells such as neurons, the cell boundary is not always detectable, 

and 

the CNS tissue has more non -cell objects and is generally more complex than the 

cervical smears. 

Research and development in chromosome analysis (karyotyping) automation have also 

been intense (Lloyd et al. 1987). In this application the search for cells suitable for ka- 

ryotyping has some similar problems to those found in cervical cell analysis such as the 

overlapping objects during the cell location. Chromosome analysis involve identifying 

each chromosome as normal or abnormal based on its size, the position of a visible 

morphological feature known as centromere and a precise banding pattern produced 

by the stain (Piper et al. 1989). Some of the critical factors for the automation of 

chromosome analysis are: 
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location of individual chromosome from clusters of overlapped ones, 

chromosome deformation due to slide tissue preparation, and 

variability in chromosome shape depending on the stage of cell division, 

13 

One of the main differences between chromosome analysis and CNS cell analysis is that 

despite of the variation described above, chromosomes from the same class are expected 

to be rather similar while in some of the CNS cells there is high interclass variability. 

Piper et al. (1989) proposed a knowledge -based approach for chromosome analysis 

automation, and presented a problem -tailored system design for this application. 

2.3.2 Cell studies in Neuropathology 

In Neuropathology, cellular populations have been measured using manual and semi- 

automatic cell counting techniques, for example, based on nuclear size and shape to 

classify different kinds of cells. Immunocytochemistry and fluorescence, histological 

techniques which mark specific structures, are also used in cell identification. The 

following are some quantitative cell studies related with the effects of HIV in the CNS. 

Changes in neuronal size and density have been investigated by Ketzler et al. 

(1990) using morphometric analysis. They evaluated the brains of 18 people 

who died with AIDS, regardless of neuropathological diagnosis. They analysed 

20 -µm- thick, paraffin- embedded sections stained with cresyl violet. The results 

were compared with age- matched controls without neuropathological alterations 

reporting an 18% reduction in neuronal density and a perikaryon volume fraction 

reduced by 31 %. As the brains were examined regardless of the neuropathological 

diagnosis, these results could reflect either direct effects of the HIV in the CNS 

or indirect, often multiple, pathologies. 

Neocortical damage was reported by Wiley et al. (1991) in 32 cases. They 

analysed blocks of tissue from the mid -frontal, superior temporal, and inferior 

parietal regions of the cortex. They counted cortical width and cell size on 20- 

,um- thick, paraffin- embedded sections, stained with cresyl violet. Wiley et al. 

(1991) used a statistical comparison of cases with HIV encephalitis and control 
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cases without significant neuropathology. In this work, a 30 -50% neuronal loss 

was found and this was suggested to be an indirect effect of HIV infection of the 

CNS, as they did not find an association of these changes with the presence of 

HIV antigens. 

Eleven brains with HIV encephalitis, with no evidence of opportunistic infections 

or neoplasms were studied by Everall et al. (1991). The blocks of tissue analysed 

were from the frontal lobe and the quantitative cell assessment was random. The 

sections used were of 20 µm thickness stained with cresyl- violet. Neurons were 

identified by the presence of a distinct nucleolus or Nissl substance. Everall et al. 

(1991) performed three dimensional measurement using a stereological technique 

known as `the dissector method' which has been designed to optimise sampling of 

cells that are dissected by two optical planes of identical area separated by some 

distance (Sterio 1984). Everall et al. (1991) compared statistically HIV and 

control cases, obtaining similar results of 35 -38% neuronal loss by using manual 

methods and with computer -assisted image analysis. They found a similar pro- 

portion of neuronal loss in cases with minor pathology and in those with HIV 

encephalitis. Given the lack of evidence of neuronal HIV infection, neuronal loss 

was suggested to be an indirect effect of the virus. 

Despite the fact that HIV has been reported to cause serious nervous system disease 

in people with AIDS (Price et al. 1988), the virus relation with ADC is still unclear. 

In general mental disorders are often ascribed to nerve cell death. As described above, 

there is no clear evidence that HIV infects nerve cells directly but it is thought that 

cell death could be an indirect effect of HIV infection (Elovaara 1995). 

2.4 The need for comparative studies 

In order to contribute to the understanding of HIV infection and its specific expression 

in the CNS, it is necessary to characterise the tissue injury, for example by the quan- 

titative assessment of neuronal loss. This information could be used to determine the 

relationship between the virus distribution and CNS damage. It is also important to 

assess tissue injury from different brain regions to evaluate HIV infection impact (dir- 
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ect or indirect) per region. Figure 2.1 shows the interaction between quantitative and 

qualitative information in a comparative study within the application context namely 

Brain Bank for Research on HIV Infection and the Nervous System. 

Brain Bank for Research on HIV Infection and 

the Nervous System "* 

HIV effects on Central Nervous System (CNS) 

Common CNS changes 

reported from people who 

have died with HIV infection: 

- macrophage & multinucleated 

giant -cell infiltration. 

- pallor of white matter 

- tissue atrophy 

- neuronal loss 

Quantitative and qualitative studies 1 

e.g. 
recognition of different types of cells 

density, size, distribution. 

Clinical information 

MRI scan images 

Different stages of HIV 

" A poiect from the Neuropothtlogy Laboratory, Univeeeity of Edinburgh, supported by MRC, UK. 

Figure 2.1: Application context 

Extensive comparative research is then needed on many aspects. This thesis is con- 

cerned with quantitative assessment of brain cell populations; Counting neurons, which 

is known to be a complex task (Warren 1992). There are morphometry techniques to 

estimate cell numbers indirectly in order to avoid extensive sampling, given the large 

amount of material that has to be analysed from histological sections in studies of this 

magnitude. These estimates can be influenced by the cell class distinct size and shape 

and normally need correcting methods to be included. With the approach proposed 

in this thesis, no correction is needed as it provides direct counts of cell numbers for 

two dimensional sections that could be also used in a combination of other techniques, 

such as dissector (Sterio 1984) in order to estimate spatial relationships. 
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This research is intended to make a significant contribution by providing a means to 

perform a semi -automatic quantitative analysis of cell populations in CNS tissue from 

people who died at different stages of HIV -AIDS. The quantitative analysis method 

presented in this thesis would also be useful to a number of common neurodegenerative 

diseases characterised by cell loss, for example Alzheimer's disease and other dementias, 

motor neuronal diseases, etc. 

A comparative study of distribution and effects of HIV in the CNS (HIV -CNS) is pos- 

sible thanks to the availability of cases in the Medical Research Council, Edinburgh 

AIDS Brain Bank2. This AIDS Brain Bank has a wide range of materials for examin- 

ation. The general morphometry parameters that concern neuropathologists are those 

of cell density, size and distribution of different cell types. The material analysed can 

be linked with clinical information and /or magnetic resonance images (MRI). Accur- 

ate assessment of neuronal loss, at different stages, could assist in the understanding 

of AIDS related dementia. This could also be useful for treatment planning. For ex- 

ample, some of the drugs used for treatment produce secondary effects such as toxic 

myopathy, which has been reported to be produced with long -term use of zidovudine 

(AZT). Therefore, it is important to characterise at which disease stage the treatment 

should be applied. 

As part of the HIV -CNS project, a comparative semi -automatic assessment of astro- 

cytes and microglial cells, from the groups listed below, was performed using brain 

tissue, with no CNS opportunistic infections or lymphomas (Roberts et al. 1997). 

[AE] - AIDS Encephalitis drug users. 

[ANE] - AIDS Non -Encephalitis drug users. 

[PA] - HIV+ Pre -AIDS drug users. 

[DU] - HIV- drug users. 

[C] - Control HIV-, non -drug users. 

2 At Neuropathology Laboratory, University of Edinburgh. 

3 Such as foetal, paediatric and adult brains of different ages and risk groups i.e. drug abusing, 
homosexual and bisexual and at different stages of HIV infection, i.e. pre -AIDS and AIDS. 
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Figure 2.2: A comparative semi -automatic counting of microglial cells. 

The results showed an increase in the averaged counts of microglial cells from both 

HIV+ and HIV- drug users, i.e., DU, PA, ANE and AE, (see figure 2.2). The 

highest increase was found in the AE group. Figure 2.3 shows that the group of Pre - 

AIDS drug users (PA), had a slight increase in the astrocytes averaged counts in white 

matter but that AIDS Encephalitis drug users (AE), is the only group that shows a 

clear increase in both grey and white matter averaged counts4 

A semi -automatic counting of neurons using `the dissector method' has also been per- 

formed on over 20 of the 45 cases analysed in this thesis. The results obtained by this 

alternative approach were compared to the findings from this thesis and are described 

in chapter 7. 

4 A table with the original cell counts is included in appendix C. 
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Figure 2.3: A comparative semi -automatic counting of astrocytes. 

2.5 Summary 

This chapter has presented the domain of application of this thesis, i.e., the analysis 

of microscope images of brain cells. A review of the HIV effects in the CNS has also 

been presented and how this research provides some means for the understanding of 

neurodegenerative diseases. A number of quantitative cell studies were also presented. 

The diseases characterised by cell loss require an extensive comparative assessment of 

brain cell populations, for this reason this research is intended to make a significant 

contribution by providing an effective means to perform a semi -automatic quantitative 

analysis of cell populations. 



Chapter 3 

Image Analysis Systems 

3.1 Introduction 

Image analysis typically involves the following operations: image acquisition, prelim- 

inary processing, segmentation of the image into its components, region labelling, high 

level identification and interpretation. These image analysis operations are normally 

classified into different levels ranging from low -level to high -level (Gonzales and Wood 

1992; Sonka et al. 1993; Castleman 1996) (figure 3.1). This classification of operation 

or methods varies between authors and also depends on their use in specific applica- 

tions. One of the main differences between levels is the data used. Low -level processing 

normally uses the brightness values of the original image, in some cases little know- 

ledge about the content or subject matter of images is used, some examples of low -level 

operations are: image acquisition, image compression, noise filtering, etc. High -level 

processing is related with recognition and interpretation tasks. At this level the analy- 

sis is guided by knowledge of the image content, for example size and shape of objects 

in the image or more complex object properties such as the relation between objects 

(Ballard and Brown 1982). In this chapter an overview of traditional image analysis 

(TIA), knowledge -based, and model -based image analysis is presented. This serves as 

a theoretical framework to support the approach of this thesis, namely the SGmodel. 

Model -free techniques, such as TIA, are based on sequences of image operations, es- 

pecially designed to solve specific problems (e.g., X -ray image enhancement) (Parker 

1994). These highly specialised systems are not very robust to changes in conditions, 

and also require considerable intervention by the domain expert to reset the appro- 

19 
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Figure 3.1: Image analysis levels, after Gonzales (1992). 

priate parameters each time that the conditions change. In some cases the system 

has to be modified by the programming expert. In the bottom -up (data driven) data 

flow, usually found in TIA, the image information is made explicit without a priori 

information, and its representation is based on the data implicit in the original images, 

see figure 3.2 (Sonka et al. 1993). In order to expose constraints needed to accomplish 

the image interpretation task, the explicit representation of the image information is 

required. 

In computer vision, Model -Based Systems (MBS) are goal oriented and prior knowledge 

is used to construct a set of assumptions and expected properties or predictions of 

the image structure. These predictions are verified in a top -down direction (model 

driven), at the different processing levels, from knowledge to the original image data 

(Ballard and Brown 1982; Gonzales and Wood 1992; Sonka et al. 1993). In this 

top -down mechanism the image interpretation is a process of hypothesis generation 

and verification. Thus the model is updated each time that a generated hypothesis is 

successfully tested. Figure 3.2 shows a simple representation of bottom -up and top- 
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Figure 3.2: A simple representation of the image understanding control strategies: 
Bottom -up and Top -down. 

down control strategies for image interpretation. Combinations of both strategies are 

commonly found in many applications, an example presented by Collins et al. (1991) 

is an approach to automated coronary border detection in angiographic images. 

Modelling complex image objects (e.g., chromosomes) from different domains requires 

that their specific properties are included in the representation (Piper et al. 1989). 

This is true especially in the representation of biomedical objects for recognition and 

classification given their high shape and size variability and usually large size of datasets 

(e.g., CNS cells). The information required for the image interpretation includes, 

object representation (e.g., shape information) and domain information (e.g., clinical 

information, age, sex, etc.). 

In image analysis, one of the most common type of models used is the geometric 

models which describe elements with inherent geometrical properties such as spatial 

layout and shape, size, connectivity of components, view parameters etc. However 

geometric models are too rigid to represent some classes of objects with the variability 
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of shape that biomedical objects could present (i.e., an specific model for each shape 

variant need to be defined). Flexible models (FM) are considered more suitable for 

biomedical image analysis because they are capable of deforming to fit image objects, 

learning from examples, and generalising their knowledge so that it can be applied to 

new and different circumstances. 

This chapter presents a review of some flexible model image analysis methods. It 

is not intended to be exhaustive, but is nevertheless representative of the avenues 

investigated in this field. Particular emphasis is put on Point Distribution Models 

(PDM) as the approach presented in this thesis, the SGmodel, is based on them. The 

SGmodel approach is described in chapter 4. 

3.2 Flexible Models: a review 

Flexible models, also known as deformable, adaptative or dynamic models, have been 

successfully used in segmenting, matching and tracking non -rigid objects (Yuille et al. 

1992; Lanitis et al. 1995; Onyango and Marchant 1996; Solloway et al. 1996). The flex- 

ibility is provided by object characterisation from a wide coverage on non -homogeneous 

data sets. This coverage is used to characterise the object variability and is included 

as an internal property of these models. Flexible models combine two basic control 

strategies, namely constraints derived from the image data (bottom -up) and a priori 

object knowledge, such as shape properties (top- down). These models are commonly 

based on energy- minimisation principles, statistical knowledge, or on a combination of 

techniques. 

3.2.1 Snakes 

The snakes or active contours approach proposed by Kass et al. (1987) is one of the 

first flexible models proposed for image processing applications. Snakes are defined as 

energy- minimising splines. The snake is a closed contour defined around a region of 

an image which deforms to minimise its energy. Figure 3.3, illustrates how the snake 

moves towards image features driven by a potential energy or image forces which couple 

the snake to the image data. 
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Figure 3.3: The snake (active contour model) deforms to minimise its energy driven 
by image forces. 

The contour deformation is constrained by combining the internal stretching and bend- 

ing forces (i.e., tension and stiffness factors) driving the spline to approximate the loc- 

ations and shapes of object boundaries based on the assumption that the boundaries of 

the image object are continuous or smooth. This approach is good for detecting high 

contrast features but has the disadvantage of not being able to find weak edges (e..g., in 

X -ray, ultrasound and microscope images, objects not always have well defined bound- 

aries). Moreover, it requires an approximate shape, and a starting position somewhere 

near the desired contour. Snakes are also influenced by a external constraint which is 

defined to avoid the snake to settle in an incorrect local energy minimum. 
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3.2.2 Deformable balloons 

Deformable balloons were developed as a modified snake approach by Cohen (1991). 

Snakes only encode local spatial information, i.e., no global shape, and the potential is 

calculated as the sum of forces around the snake. This could produce several problems: 

the snake may not be attracted to an edge because its initial position is not close enough 

to it; when the snake is not exposed to image forces (e.g., the edge is too small or weak), 

in this case the snake shrinks on itself collapsing to a point. Cohen (1991) tackled 

this problem by extending the energy model with an internal pressure mechanism 

(deformable balloon) which results in the snake expansion. In this mechanism, the 

internal pressure pushes the snake outwards, preventing it from being attracted by 

weak edges, making the snake less sensitive to the initial conditions (figure 3.4). 

Cohen (1991) has applied this method to the detection of crania and heart regions in 

magnetic resonance images. One of the disadvantages of this approach is the assump- 

tion that the object solutions are smooth. Another disadvantage of the balloons method 

is the increase in computation time as it uses a new parametrisation by sampling at 

a one pixel distance from the snake. The increase in time could be very high if the 

initial snake position is far from the solution. The general disadvantages of the snake 

approach also apply in this case, such as balloons are not suitable for detecting weak 

edges where the external forces are not enough to attract the snake. However the use 

of an internal pressure does introduce a global constraint because in the absence of 

image forces an additional inflation force is used. The model needs an initial position 

but no longer needs to be close to the solution to converge. This can be considered 

as a global active model. Cohen (1991) presents a successful application of deformable 

ballons extracting a ventricle from NMR images of the heart. 

3.2.3 Statistical snakes 

A variation of the active contours method was proposed by Porril and Ivinis (1994). 

Statistical snakes are also based on energy minimisation mechanisms for searching 

for edges or regions. The snake grows until its elements find pixels with intensities 

within two or three standard deviations from the mean of the original sample, whereas 
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Figure 3.4: A simple representation of an active balloon model. The contour behaves 
like a balloon pushed by an inflating force. 

the snake shrinks at the points where the image intensity exceeds the statistical limits. 

Statistical snakes expand, contract and deform to fit the object of interest. The process 

is performed as follows: a seed region is defined near the structure of interest, where 

the pixels inside the region model are sampled and their mean and standard deviation 

are calculated; the boundary of the seed is then converted into a statistical snake which 

expands until its elements find pixels which lie outside of the limits predefined by the 

statistics of this seed. If the model is copied to another image and exposed again to 

new forces, the model then deforms to fit the new data (figure 3.5). 

Statistical snakes have been applied to anatomical structures segmentation and 3D 
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Figure 3.5: Diagrammatic representation of an statistical snake applied to two different 
image regions, after Porril and Ivinis (1994). 

reconstruction from magnetic resonance (MR) and CT scan images, Ivinis and Porril 

(1994) present an example applied to tumour segmentation in brain NMR images. 

These active region models work well in some apparently homogeneous tissue, but 

cannot distinguish regions with similar statistical characteristics. 

3.2.4 Bayesian approach 

A Bayesian approach to dynamic contours was proposed by Storvik (1994). He uses 

Bayesian statistical theory to incorporate a priori information which is built into the 

active contour object representation. In this approach the image representation is done 

under the assumption that the image consist in only one simply connected object. Then 

he uses a conditional probability density function to combine the observed image with 

the contour. Figure 3.6 includes the object contour representation and the steps of 
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the Bayesian paradigm to construct a posterior distribution from which the inferences 

about the contour are made. 

/ " -t Iii 

o 
fo 

Calculate prior probability distribution 

Use conditional probability density 
to combine the observed image - 

with the contour 

construct the posterior density 

from it (X) 

and .f(z l-x) by Bayes Theorem 

P (xl .) c'( it (x) .f(=1 -v) 

e For any inference about the contour use 

the posterior distribution p (x I z) 

Figure 3.6: Representation of the a connected object contour and steps for the Bayesian 
paradigm, after Storvik (1994) 

The energy is minimised by maximising the posterior distribution, i.e. by finding the 

maximum a posteriori (MAP) estimate. Then the curve moves dynamically towards 

the global minimum energy configuration by applying the optimisation method of 

simulated annealing. Storvik (1994) applied this approach to ultrasound images of 

the left ventricle and magnetic resonance images (MRI) of the human brain. Some of 

the disadvantages in this approach are the assumption that the image consists of only 

one object and its high computational requirements. 
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3.2.5 Snake generalisation 

The dynamic contour approach proposed by Lai and Chin (1994) is a snake general- 

isation or g- snake. The g -snake shape formulation encodes any arbitrary contour in 

a shape matrix which is invariant to effects of rigid motions such as scaling, rotation, 

stretching and dilation. This shape formulation is defined in equation 3.1, 

AUT =O (3.1) 

A represents a contour vector containing an ordered set of points V = [y1, v2i ..., vim,]. U 

is a vector which represents any point displacement from an arbitrary reference point g, 

i.e. ui = vi - g. The invariant shape matrix is used for the global changes due to rigid 

motions, and combined with the use of Markov random field to exert control over local 

deformations for non -rigid objects. To extract variable contours from noisy images, Lai 

and Chin (1994) used a maximum a posteriori estimation under a Bayesian framework 

(p(U, g)). This is equivalent to the energy minimisation of the g- snake. This approach 

shows good results in classifying variable objects, however the g -snake initialisation is 

critical in images with severe clutter and deformation. 

3.2.6 Template models 

A deformable template approach, using a parameterised template for geometric object 

representation, was reported by Yuille et al. (1989), Yuille (1991), Yuille et al. (1992). 

These deformable templates provide a priori information about the expected object 

features. The parameters are changed in a flexible way and interact dynamically with 

the image to match themselves with the image data. The parameter set is used in 

an energy function which measures how well the template fits the image. The best 

fit corresponds to the minimum of the energy function, and therefore the detection 

process is guided by the energy function minimisation which attracts the template to 

salient image features (e.g., edges). This approach specifies a probabilistic detection 

model in terms of the possible object deformation (imaging model) corresponding to 

the variation of the parameters (prior probabilities). One of the disadvantages of this 

approach is the need for preprocessing to set the initial values of the template paramet- 
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ers. This approach has been applied to face recognition (Yuille et al. 1989; Yuille 1991; 

Yuille et al. 1992) and the number of parameters used in the templates designed is 

relatively small (11 for the eye and 10 for the mouth). This could represent a problem 

in applications where more parameters are needed given that the computational cost 

increases exponentially with the parameter dimensionality. 

3.2.7 PCA based template models 

Bennett and Craw (1991) presented a combination of geometric parameterised tem- 

plates and the statistical knowledge derived from the varied nature of the shape fea- 

tures. In this approach the search is performed only to feasible representations de- 

termined by this statistical knowledge, reducing in this way the large search space. 

This approach, and those reported in Craw et al. (1992) and Costen and Craw (1996), 

have been applied mainly to facial features. Craw et al. (1992) developed a face re- 

cognition system by using a polygonal template outline which is deformed to fit the 

data. The deformation is driven by the statistical knowledge about the shape variation 

and it is optimised by simulated annealing. They measured the overall fit (f) of the 

head outline to the image as the product of the shape (outline) and edge (grey -scale) 

parameters, applying the simulated annealing interactively when each new outline is 

generated. For the face internal features they combined random search techniques 

and simulated annealing to avoid non -global extrema with a fitness function similar 

to Yuille's approach described in section 3.2.6, using information about the edge and 

grey -level information. In a comparative study for automatic face recognition, Costen 

and Craw (1996) obtained eigenfaces (eigenvalues and eigenvectors) by applying PCA 

to normalised face models (34 landmarks manually marked excluding the hair). They 

applied an active shape model where new models were generated from the mean model 

up to two standard deviations. The normalised model obtained was then used to get 

the best possible fit. One of the matching choices that they tried was the Mahalanobis 

distance which was found effective in combination with the eigenface formulation and 

its variance properties. Mahalanobis distance is a way of determining the similarity 

between an unknown sample and a set of values measured from a collection of known 

samples (Duda and Hart 1973). Since the Mahalanobis distance is measured in terms 
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of standard deviations from the mean of the training samples, the reported matching 

values give a statistical measure of how good the matching between samples is (Bishop 

1995). 

3.2.8 Point Distribution Models (PDM) 

This approach is based on the statistics of aligned shape templates and their main 

modes of variation, characterised by applying Principal Component Analysis (PCA) 

to a set of object examples. With this technique, a compact object representation is 

built within the limits imposed by the training set (Cootes et al. 1992; Cootes and 

Taylor 1992; Cootes et al. 1992; Cootes et al. 1995). These compact representations 

include inner -class variability, derived from the statistical analysis of the object class 

descriptors from a set of examples (Lanais et al. 1995). The descriptors used to 

generate PDM are tailored shape point positions (model landmarks) equivalent to all 

the objects of the same class. Figure 3.7 illustrates an example of a training set for an 

object class and how the object descriptors are represented as a feature vector. 

- Training set of shapes, 

XÌ018 X n 
- On each object example particular points on 

their shape or object descriptors are identified, 

io 

representing each object as a vector of 

n point positions of the shape: 

T 
14 x=0( 

0 ,y0 ,x1 
,y1 , z ,y2 , ) 

Figure 3.7: Representing the object examples in the training set as feature vectors. 
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The covariance matrix C of the feature vectors in the training set is calculated by using 

the distances between mean vector and each instance as follows (Bishop 1995): 

N 

C = 
N 

E¡xZ - x) ¡x2 - TOT 

i=1 
(3.2) 

The covariance matrix is then used to obtain the eigenvectors and eigenvalues during 

the calculation of principal components analysis (PCA)1. This technique is considered a 

classical procedure of multivariate statistics to find a lower -dimensional representation 

which accounts for the variance of the features while preserving as much of the relevant 

information as possible (Duda and Hart 1973; Jolliffe 1986; Bishop 1995). PCA con- 

siders p variables (xi, x2i ..., xp) and generates linear combinations to produce indices 

or components (z1, z2, ..., zp), which are uncorrelated and therefore measure different 

dimensions and express the statistical variability in the data. The indices are ordered 

so that the first component z1 corresponds to the largest eigenvalue Ai and describes 

the largest amount of variation. Most of the variability in the data set can be normally 

represented by the first few components especially if the original variables are highly 

correlated. A detailed description of this technique and a full discussion can be found 

in Jolliffe (1986). 

New object examples can be generated from the model using the derived mean feature 

vector and the main modes of variation, in the notation of Cootes et al. (1992): 

x = x + Pb, (3.3) 

where x is the instance feature vector, x represents the mean shape, P = (pi, P2, Pt) 

is a matrix of the t orthonormal unit eigenvectors of the covariance matrix and b is a 

vector of shape parameters which defines the instance (see figure 3.8). By generating 

new instances, the model deforms to find the best fit with the data. The limits for 

these deformations are defined together by the training set of object examples. 

This generic approach has shown better results in speed of convergence and optimality 

of solution than other approaches, but is applied mostly to shapes. In the case where 

This technique is also known as eigenvector, Hotelling or Karhunen -Loève transform (Gonzales and 
Wood 1992). 
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b = (b1,b 2.... b t) T vector of weights for each mode of variation. 
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Effects of varying parameter b 
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Figure 3.8: New object instances can be generated by modifying the set of shape 
parameters b in the above equation. 

grey level information was included, the model was applied in images of simple natural 

objects such as bananas and human eyes (Cootes and Taylor 1994) where they did not 

found a strong link between shape and grey level. PDM have been tested with some 

shapes within biomedical images (Hill et al. 1994; Cootes et al. 1994). A key step in 

these approaches is the location of identifiable points in the object shape to generate 

the PDM. In the case of the nervous system, cells have highly variable boundaries, and 

therefore their shape is difficult to characterise by using a PDM. 

3.3 Summary 

This chapter has reviewed the model -based framework, with particular attention to 

flexible models. Despite the fact that flexible models have been successfully used for 

some non -rigid object recognition applications, they have several disadvantages in some 

biomedical applications. For example, some of the methods described require a start- 
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ing model position near the object of interest in order to find the solution, this would 

result in a highly interactive process. As described in chapter 2, for this thesis ap- 

plication a semi -automatic method is needed given the massive amount of material to 

be analysed. A number of the flexible models, presented in this chapter, work with 

single object images; this characteristic is also incompatible with the need for semi- 

automatic analysis. In several of the approaches described here, a well defined shape 

contour is needed. These are not suitable for some biomedical applications where the 

objects to be recognised often present weak edges in images and have poorly defined 

shape contours. In the following chapter the bases of this thesis approach (SGmodel) 

are presented. This novel generic model representation for recognition and classifica- 

tion integrates different methodologies to tackle most of the problems described here, 

with the capability of handling the inherent variability of irregular objects within a 

probabilistic context. 



Chapter 4 

SGmodel Approach 

4.1 Introduction 

The objects of interest in the domain of application in this thesis are irregular, and 

there is a relationship between their density profile and geometric shape given the 

nature of the object staining. The staining process is related to the total quantity 

of the substance for which the stain is specific and therefore the grey -level profile is 

strongly related to the projected shape when imaged in transmission mode. 

Figure 4.1 shows two examples of microscope images from brain tissue, from the images 

used in this thesis application. The objects in these examples vary in shape and size 

within classes and their boundaries are not always well defined. The background also 

presents high variability in noise and grey values. 

In order to use all the knowledge about the appearance of the object, it is important 

that a model has the ability to recognise direct links between shape and grey values. 

As described in chapter 3, PDM is a generic approach which has been successfully 

used with shapes. In this chapter a more complete model is proposed by extending the 

PDM feature space to include grey values directly in a shape grey -value model namely 

SGmodel. The indirect use of the grey value information has been reported in several 

works such as Cootes et al. (1992), Cootes et al. (1993), Cootes et al. (1994). In these 

works, PDM has been used in combination with grey value information around each 

model landmark to suggest the direction towards a better fit of the model with the 

image object. The statistics of the grey levels around a given point corresponds to a 

34 
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particular pattern on the object shapes in images of different examples, and therefore 

they search for the area where the image best matches the grey -level environment model 

for each point. Cootes and Taylor (1994) have also included grey value information in 

their deformable models but for their applications the correlation between the shape 

and image intensity was weak. The importance of this technique will be apparent when 

the correlation between shape and image value is strong. The main features that make 

SGmodel suitable for microscope image analysis are also discussed in this chapter. 

4.2 Shape -Grey Flexible Models 

In SGmodel, statistical knowledge of shape and grey values of biomedical objects is used 

to produce a generic model representation for detection and classification. The main 

difference between the SGmodel approach and earlier PDM applications is that the 

feature vector contains all the spatial coordinates plus grey -level information. Another 

difference is that, given the variable or poorly defined boundary shape of the objects 

to be classified, the shape knowledge is based in the grey values distribution sampled 

in a radial template designed for these models (see section 5.5.1). The grey -level data 

could be the actual pixel values or the result of some kind of prior image processing, 

for example, averaging, gradient operator or some specialised technique such as profile 

analysis. The model feature vector x (in eq. 3.3) is augmented by the grey -value 

information to a general feature vector denoted f 

fi = f + Pbi. (4.1) 

Where f represents the mean of spatial coordinates and grey values calculated over a 

training set. The matrix of the main modes of variation is built by selecting the most 

significant n eigenvectors: P = (el, e2, e3, ...., ea). The first modes account for most 

of the variation in the original variables, the number n is selected according with the 

number which accounts for the 90% of the total variation. The vector b represents the 

weights for each mode of variation and is calculated as follows: b = PT (f - f). 

SGmodel is intended to deal with microscope imagesl. In this type of images the objects 

1 It could be used with any transmission type images such as X -ray, computed tomography (CT) and 
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(or their components) can be enhanced from the background or from other objects by 

the stain technique used in the slide preparation (Parker 1994). The staining combined 

with the illumination conditions2 during the image acquisition process, produces a 

strong link between density profile and geometric shape. Finding the relationships 

between shape and grey level of the object, and providing the model with the ability 

to recognise them, allows the use of more information about the appearance of the 

object in the image analysis process, and thus deal with the shape variability. 

The model acts as an abstraction of the high -level prior knowledge about the objects, 

designed in a meaningful way for the domain expert. The imaging process is also 

defined within the model so that, in principle, it is possible to generate instances of 

the objects as they would appear in the images by selecting model -parameter values. 

This model can be thought of as an objective function with two main elements; the 

first measures the deviation from the mean shape -grey values; the second evaluates the 

match of the flexible model with the underlying image. A genetic algorithm (GA) is 

used as an optimisation tool to maximise or minimise the overall objective function. 

GA based methods are robust and suitable for the type of search optimisation problem 

found in this thesis (see section 5.6.4). However other optimisation techniques can be 

also used. 

In model -based vision, the matching process seeks the highest probability of the model 

variables (i.e. the best possible explanation) with respect to the image data. This can 

be calculated using Bayes rule (Duda and Hart 1973; Gonzales and Wood 1992; Parker 

1994; Bishop 1995): 

Pr(IIMi, Ci)Pr(M2ri) 
Pr(MiiI,Ci) = Pr(Iri) (4.2) 

Where Mi is a model of the class Ci of an object observed within the image data I. 

For the purposes of matching, the denominator can be ignored since it is independent 

of the instance parameters. 

MR images but in these cases the staining intensity (density) is not related to shapes. 

2 The illumination comes from behind the object being digitised in the optical microscopes, producing 
images known as transmission images. 
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We expect the image data to be a combination of values from two sources: the object 

or foreground and the remainder or background. In the case of transmission light 

microscopy images, we expect the contributions to the measured optical density of 

foreground and background to be additive. In other imaging models a strict partition 

might be appropriate, even though blurring (point spread) and digital approximation, 

the pixels around the edge of an object will always have contributions from both 

foreground and background. Therefore we divide the image into two parts: 

I=IM+IB (4.3) 

where I,4 and IB are the model and background pixel values respectively, and therefore 

Pr(IIiVIi, Ci) = Pr(Itifi IB 
I 
Mi, Ci) 

= Pr(IMI Mi, Ci)Pr(IB Ilnr, Mi, Ci) (4.4) 

Assuming that the foreground and background image values are produced independ- 

ently, then 

Pr(IBII,yI, Mi, Ci) = Pr(IBI MB) 

where MB is the background model. The instance probability is: 

Pr(MiII, Ci) - Pr(IMI Mi, Ci)Pr(I - IMI MB)Pr(MiI Ci) 
Pr(II Ci) 

(4.5) 

(4.6) 

It should be noted that the estimation of what evidence arises from the background 

depends on the model instance, and finding the best fit instance requires a background 

as well as a foreground model. 

If the distribution of the principal modes of variation is assumed to be normal, then 

the model instance probability can be written, in terms of the Mahalanhobis (see 

section 3.2.7) distance D,Y1; 

- 
= c; DZ D2 

t b 
Pr(MiICi) a e- nr , 

j=1 
(4.7) 

where t is the number of principal components used to define the model space and À 

is the eigenvalue of the jth eigenvector for model class Ci. 

The model training (see detailed description in 6.5) is performed by sampling grey -level 

values through object examples in a set of images. The sampling is done by using the 
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defined model template and the feature vector per object includes spatial and grey -level 

information. The inclusion of non -spatial data dimensions brings to the foreground a 

problem which is present in the usual PDM applications but has been ignored so far, 

namely the normalisation of coordinates. This becomes a problem when the original 

space of variation is truncated to the most important principal axes. The truncation 

is performed on the basis of the observed variation which is clearly dependent on the 

relative normalisation of the spatial and grey -level feature values. The truncation in 

this approach takes the number of modes of variation which account for the 90% of the 

total variation. In fact this problem is inherent in any model interpretation of data 

(linear regression analysis) including the PDM applied to purely spatial coordinates 

for which, in general, the measured errors are not isotropic. 

Another normalisation problem arises when models of different classes have different 

parameters and /or different number of dimensions. This means that the probabilities 

calculated by matching each independent class model to the data cannot be compared. 

One possibility is to attempt to establish all the contributing terms in equation 4.6 

but this would prove extremely difficult. An alternative is to treat each matched 

model applied to new instances as a measurement feature and to build a classifier (see 

description next) based on the full set of features, i.e., the model feature vector for 

each class concatenated to form an extended feature vector (classifying model). 

To build this classifier the training sets used for the individual models can be re -used. 

The process is to match each member of a training set A with the models of all classes 

and thereby generate an extended feature vector for each member of each class, this is 

described in detail in chapter 5. These can then be used to derive a classifier. In this 

case PCA was used for each class and to calculate a probability in the Mahalanobis 

distances, but any suitable classifier could be used, for example, K nearest neighbour 

(Duda and Hart 1973), or Neural nets (Bishop 1995). 

4.3 Conclusions 

The SGmodel approach proposed in this thesis, presents features which make it suitable 

for biomedical image analysis. These features can be identified as follows. 
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That the model acts as an abstraction of the high -level prior knowledge of the 

objects, designed in a way that is meaningful to the domain expert. 

That it is based on the statistical knowledge from a training set of examples. The 

main modes of variation of each object class are represented in a generic object 

formulation. During the object recognition process, this formulation adapts to 

the diversity and irregularities of shape and grey -values distribution. 

That the variability of the shape -grey relationships is characterised by applying 

principal component analysis (PCA) to the shape -grey level vector extracted 

from the training set. Given the modes of variation, it is possible to generate 

new examples to be used to test the training set distributions, followed by a test 

matching of new data. 

That during the matching process the obtained model is adjusted to fit the image 

data within the limits of variability from the training set. 

That it includes a mechanism to recover the normalisation given the inclusion of 

non -spatial data, different model parameters and /or different number of dimen- 

sions. 

That the retrainable nature of this model makes it adaptable to new conditions, 

allowing rapid prototyping of new object classes. 

In most of the model -based image analysis applications, the required domain expert 

information is represented and integrated in a technical language. These models are 

usually implicit and unmodifiable by the domain user (Staib and Duncan 1992; Robin- 

son et al. 1994). 

An important contribution of this approach is a more generic model for the domain 

application which, in turn, implies that the model can be tuned to specific study 

cases, without the need for specialist image -processing and programming expertise, to 

incorporate new models for each object class. This contribution will become apparent 

in the implemented model which is described in the next chapter. The algorithms are 

developed not only using the domain knowledge but also in a way that makes the models 

explicitly accessible to the user in the domain language. This characteristic supplies the 
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domain expert with a straightforward tool which eases the understanding of the models 

involved in the system, and provides the possibility to adjust and retrain them or to 

define completely new models. This results in a high adaptability to new conditions 

and allows rapid modelling of new object classes. Finally one of the the underlying 

features presented in this work, is that the probabilistic formulation provides the means 

to solve the normalisation problem produced by including non -spatial data dimensions 

and allows classification when the feature space is different for each class. 
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Figure 4.1: Two examples of the microscope images from brain tissue. There is high 
variability of shapes and sizes within object classes, and also in the background between 
images. 



Chapter 5 

SGmodel: system design and 
implementation 

5.1 Introduction 

This chapter presents the design of the functional and operational characteristics used 

to implement the SGmodel into a computational system for biomedical image analysis. 

The present study covers different aspects of image analysis which, as mentioned in 

chapter 3, are normally classified from low -level (e.g., image formation) to high -level 

(e.g., image interpretation), (Gonzales and Wood 1992; Sonka et al. 1993; Castleman 

1996). The interaction of the SGmodel system at these different levels of image pro- 

cessing within a more general image analysis system is also described in the following 

sections. This chapter also presents an artificially generated cell model (section 5.5.5). 

This model was designed to observe, in a controlled fashion, the behaviour of the 

variation modes obtained by the PCA applied to a training set. The design and imple- 

mentation of the system are presented according to the specific needs of the biomedical 

image analysis and in relation to the Shape -Grey values model described in the previous 

chapter. 

5.2 The general image analysis context 

The SGmodel system is intended to form part of a more general image analysis system 

shown diagrammatically in figure 5.1. In this figure the SGmodel modules, at the 

different levels Low, Intermediate and High of image analysis, and their interaction 

42 
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with the Shape Grey value Model, are represented within the dotted line. The purpose 

of this section is to give an overview of the general context of the SGmodel system. 

The following sections present a more detailed description of the SGmodel design. 

Low -level: vision is related to image formation and transformations such as noise 

reduction and image enhancement (Castleman 1996; Gonzales and Wood 1992). 

The low -level vision modules include image acquisition and storage, these provide 

the input material (digital images) to be analysed by the system. SGmodel does 

not include these as built -in processes, but the digitisation environment is set 

to optimise the input images. The digitisation conditions are described in the 

methodology chapter 6 and are included as a module in the proposed design of 

the general image analysis system shown in figure 5.1. 

Intermediate -level: The digitised images obtained in the low -level are the input 

information to the intermediate -level. This level deals with the extraction, char- 

acterisation and representation of features from the image. These operations are 

important because the recognition and interpretation processes depend on appro- 

priate feature extraction and representation. The feature extraction in SGmodel 

involves the model's definition and training, and the characterisation of the model 

class variability with PCA (section 5.5). The feature representation is described 

in section 5.5.3, and an example can be found in section 6.5. 

High- level: The functions of detection and interpretation are performed in this 

level. The image information must be interpreted in the specific application 

context. The processes are often based on model representations, image based 

knowledge systems, search and optimisation techniques, decision support systems 

and other tools, some of which are used within SGmodel (section 5.6). At this 

level the output information is used in a feedback loop interacting with the mod- 

ule Shape Grey value Model towards a refinement process which ends with a final 

interpretation output. 

The general Model -Based System for Automated Biomedical Image Analysis has also 

two external modules; Pre -processing and Non -image information described in the 

following sections. 
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Model Based System for Automated Analysis of Biomedical Images 
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Figure 5.1: SGmodel in a general image analysis framework. 

5.2.1 Pre -processing biomedical material 

The pre -processing includes the tissue preparation into stained slides to be digitised. 

The microscope images in this study are transmission images where the absorption 

of the light, which has come through the tissue, at each point is a measure of the 

optical density, and in which measurements vary between tissue sections of different 

thickness (Marchevsky and Erler 1994). Consequently the thickness of the section 

plays an important role, as some features of the objects of interest can be enhanced 

or occluded as the tissue thickness varies (Warren 1992). For each application several 

tests should be done to choose the most appropriate size. For example, if the tissue for 

digitisation has very dense objects, then it is possible that a thinner section is going 
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to be needed for a better contrast in the images. Staining also plays an important role 

as it could be specific to enhance different types of cells or structures of interest from 

the background. The tissue thickness and stain used for this work are described in 

chapter 6. 

5.2.2 Non -image information 

During the usage phase, interactions of the SGmodel with the three levels of processing 

are part of a loop of the generic hypotheses- test -refinement process within the feed- 

back mechanism which allows for auto -optimisation. The refinement should combine 

all the information obtained at the different analysis levels together with non -image 

information (case history, patient data, histological processing, etc.) that is available 

at the high -level. 

5.3 A user interface framework 

In designing an automated model -based system for image analysis, targeted to process 

large amounts of material, it is convenient to include a user interface which eases the 

use of the processes available for the application user (Johnson 1989). 

In this work, the system' developed was designed to have a menu -driven Graphical 

User Interface (G UI) for reducing, as much as possible, the effort required to activate 

the general system processes, such as display of the application's images on the screen, 

location and inspection of areas of interest, interactive model parameters settings, 

building training sets, classification performance on a displayed image, presentation of 

graphical results, and the possibility of corrective retraining when errors are detected. 

The following sections describe the design of the system image processes implemented 

in the three modules: Image and data file manipulation, Model actions and Analysis 

actions. The structure of the system design is summarised in figure 5.2. In this figure 

GA stands for Genetic Algorithm, an optimisation tool described in section 5.6.4. 

1 Appendix B includes a detailed description operational system. 
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Figure 5.2: SGmodel structure. 

5.4 Low level: Image and data file manipulation 

The digitisation environment affects the image quality. Many image processing opera- 

tions are procedures used for image correction and there are complete works dedicated 

to the improvement of images quality or correction of defective images (Rushford 1968). 

It is difficult to control all these factors and in many cases the image processing starts 

with already digitised images. In this work the digitisation conditions can be set in or- 

der to obtain an image quality which favours the image processing and analysis. Some 

of the factors which could affect the image quality are: the tissue thickness and stain 

(pre - processing), the microscope illumination, the use of complementary colour filters, 

the camera and the digitiser settings. 

This module (see figure 5.2) was designed to allow the application user to: 

read and display digitised images; 
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read and write the training data generated with the SGmodel system; and 

to go back to an image from the data information in order to visualise the set of 

object examples with which the model was trained and perform any adjustments, 

if needed. 

5.4.1 Read Image 

This process provides the user with the capability of reading a digitised image stored 

in a memory device and to display it in the main window of the system user interface. 

The displayed image is then used as input to the other modules, such as model training, 

matching, and classification. 

5.4.2 Read /Write training data 

An application program should provide a mechanism for storing and transferring data 

files to and from the memory device. SGmodel allows this for the data produced by 

the model training process. The information stored for a model training set should 

include: model name, model information, image filename, number of examples in the 

training set and instance features (see example in section 6.5). This information is 

stored in a text file to allow direct data checking and editing. In section 5.5 (Model 

actions) model information and instance features are described. 

5.4.3 Back to image from data 

The training set information is stored in a data file (section 5.4.2). The procedure Back 

to image from data reads the data file with the training set information and produces 

a list of the images used to train the model. From this list, an image can be displayed 

on the main window of the SGmodel system. The selected image displays the points 

sampled on each object. This feature allows to check how the sampling was performed 

and can be used as an aid to understand the results obtained, and to determine possible 

adjustments in the model settings. This procedure also allows automatic re- sampling 

which could be useful if different tests are needed. The automatic re- sampling could 

also be useful in the case that some filtering is required to enhance some features in 
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the images. 

5.5 Intermediate level: Model actions 

The problem addressed in this work, of different object classes location and identifica- 

tion, is a pattern recognition problem. In pattern recognition, the two main compon- 

ents are feature selection and classification. The former is described in what follows, 

while the latter is presented in section 5.6 as part of the Analysis actions module 

(figure 5.2). 

It is important to make an appropriate selection of characteristics which retain most of 

the relevant object information and which are going to be used to identify the objects. 

The classification process is based on these features which will lead to clear distinc- 

tions between different object classes (Bishop 1995). The knowledge of the application 

experts, prior knowledge, is the knowledge available about the sought solution which 

is often required in the selection of features, and can result in improving the classifier 

performance. The dimensionality of the features should be kept as small as possible 

because the complexity and the amount of data required to train the classifier increases 

as the number of features increases. 

5.5.1 Shape -Grey values template 

Model features were designed to be simple in order to allow quick training and testing 

while trying to retain most of the relevant object information. 

Given the specific characteristics of the objects (cells), the model was defined as a radial 

template. The model features such as the number of radii and the number of points 

per radius to be sampled are determined at the beginning of the training process. The 

selection criterion is based on training the model with different number of features and 

evaluating its performance. The time needed to try different combinations of feature 

size depends on the data set size, this process is only performed once to obtain the 

optimal feature size to train the model. 

The module Model Create and Training was designed for the radial model template 
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definition by specifying the number of radii and the angles at which the grey values 

are going to be sampled for each object class. In both cases, radii and angles can be 

fixed or chosen manually by the domain expert during the training procedure using 

the selection process described before. In the fixed mode, the values given for the 

point positions for each radii represent a relative distance from the central template 

position. For the angles, the first angle is always chosen manually (normally according 

to a constant criterion such as the side with the shortest distance between the centre 

of the nucleolus and the nucleus boundary), and the rest of them in the fixed mode are 

set in a position relative to the first one at angles defined in the model, (figure 5.3). 

The default values are set with the model values defined for radii and angles. This 

model set is going to be used to obtain a collection of sampled objects or training set. 
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Figure 5.3: Example of a radial model template definition. 

5.5.2 Model training 

The model training module was designed to produce a training set by sampling object 

grey -level values in microscope images. The sampling is performed by using the radial 

model template described in previous section. When the Model training procedure 

is activated, an object in the image is selected by clicking on it with the left mouse 

button, and then displayed in a magnified window, see figure 5.4. The sampling with 

the specified radial template is accomplished in a "clicking- mouse" interactive mode. 

The training set created with this process consists in a set of feature vectors with 

the form f (ri, 9i, r2, g2, rn, 9n)T , where ri = (xi, yi) (radii coordinates from where 

the grey values are sampled in the image). The criteria to choose the sampling point 
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positions would depend on the object to be characterised and would be defined by the 

domain expert, an example of training using a neuron model is described in 5.5.2. 

Figure 5.4: Example of training a neuron model with a radial template. 

5.5.3 Calculating modes of variation 

The Variation modes module was designed to characterise the variability of the shape - 

grey relationship by applying Principal Component Analysis (PCA) to the feature 

vector. PCA is, as mentioned in chapter 3, a statistical procedure to find a lower - 

dimensional representation which accounts for the variance of the features (Duda and 

Hart 1973; Jolliffe 1986). In other words if the object being analysed is described by 

a large number of parameters, PCA reduces it into a smaller set of new parameters 

which reflect the variability of the object. PCA involves the computation of the mean 

feature vector and covariance matrix, its eigenvalues and eigenvectors as follows. 

The mean f is calculated using the feature vectors f generated from the number of 

objects, N, in the training set, using 
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1 N f=Ñfi. 
a=1 

The covariance matrix .M is then calculated, 

..A4 N 
2=1 

(f 

(5.1) 

f)(fi - f)T, (5.2) 

and it is a measure of similarity between the ith object values and the mean. 

The result is a symmetric matrix .N( which has in eigenvectors (e) and eigenvalues (A) 

(here m corresponds to the number of features), which satisfy the equation 

.Mei = Aiei. (5.3) 

The eigenvectors corresponding to the largest eigenvalues describe the modes in which 

the original values have their largest variance2. The information obtained from this 

process is integrated into the Shape -Grey Flexible model representation. As described 

in the previous chapter, it is possible to generate model instances by combining the 

mean shape, the eigenvectors matrix, and the derived shape -grey value parameters 

(variation modes). This in turn is used in several processes, such as Model Display, 

Construct Classifying model and Classify. 

5.5.4 Visualising the object class variation 

In order to visualise the variation modes behaviour, a Model Display module was in- 

cluded in the SGmodel design. The compact representation (see eq. 4.1), relates the 

shape -grey parameters with the modes of variation computed over the training set. 

This representation is used to generate new examples from the class of shape -grey 

value within the limits imposed by the training set. The initial information to be 

2 For the PCA calculation, the public domain PCA 2.8 code by A. Stolcke, and obtained from the ftp 
site icsi -ftp.berkeley.edu, was adapted for the SGmodel system. 
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displayed is taken from the training set mean values obtained, such as shape -grey 

parameters from the nucleolus and nucleus and grey values from the cytoplasm. The 

cytoplasm is not displayed because its shape shows high variability in form and size 

as it sometimes continues through long structures (axons and dendrites) which could 

exceed the image range. 

Figure 5.5: Visualising the variation modes over the mean shape -grey values. 

The mean nucleolus and nucleus shape -grey values and the cytoplasm grey values, 

following the edge of the nucleus shape, are displayed on a window where it is possible 

to modify each mode of variation by moving the slide bars which represent each of 

them as it is illustrated in figure 5.5. This shows to see how the mean shape -grey 

values are affected by each mode of variation. 
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5.5.5 Artificial cell model 

This module was designed in order to test the system behaviour. The generation of an 

artificial cell, where the cell parameters are controllable, provides a means to observe 

the behaviour of the modes of variation. This procedure is useful in understanding how 

the object variability is characterised by PCA. The model cell was designed to include 

dependency between some of the spatial features, and is defined with the following 

model parameters (see figure 5.6): 

1. radius of the small circle (nucleolus); 

2. distance between centres of the small circle and the ellipse (nucleus); 

3. horizontal radius of the ellipse; 

4. vertical radius of the ellipse; 

5. grey value of the circle; 

6. grey value of the ellipse; and 

7. grey value of the ellipse boundary. 

These parameters are illustrated in figure 5.6, the numbers without a circle denote, 

radii or distances and the numbers within a circle denote grey values. 

A set of artificial cell examples was then generated by random sampling of the artificial 

model parameters. The sampling is performed as simulating a centre position grey 

value, 3 position features (parameter 3 and 4 are correlated) with their 3 corresponding 

grey values along 18 angles, producing a 109 dimensional feature space. The grey values 

were randomly generated numbers within the limits found in real images, i.e., values 

from 0 to 255 for the ellipse and its boundary and from 100 to 255 for the small circle. 

These parameters were chosen to simulate the shape and grey level variation observed 

in the real cells and in this way to understand the modes of variation behaviour. 
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Figure 5.6: The artificial model cell parameters. 

5.6 High level: Analysis actions 

The last module of this thesis approach includes the high level image processing tasks 

such as object detection and classification (interpretation) see figure 5.2. 

The analysis process to perform these tasks is divided in two main sections. In the first 

section an overview of the steps required to classify an object candidate is described, 

including the generation of classifying models in which the training sets of each model 

are merged together in order to obtain a normalised probabilistic formulation. The 

object candidate is compared with this formulation to determine the class in which it 

belongs. This comparison is not directly made with the object candidate but with a 

candidate classifying vector. The latter is built by concatenating the best possible fit 

between each matching model and the object candidate. 

The second section describes the utilities used during the classification process. That 

includes an object candidates locator or cue finder and determination of closeness 

or goodness of fit (for the matching process) by computing the Mahalanobis Distances 

(MD) between the model and the candidates. This section also includes the interaction 
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with an optimisation module to produce the best possible match, which is based on a 

Genetic Algorithm approach (GA, section 5.6.4). 

5.6.1 Classification 

The general purpose of the analysis process is to detect possible object candidates from 

a new image, and to calculate their class probabilities based on the models defined 

and trained, and also on the statistical knowledge obtained during the object class 

characterisation with PCA. This information, produced at the intermediate level, is 

going to be used by different high level procedures, for this reason two inter mediate 

level procedures are included in the following sequence of steps that summarises the 

analysis procedure during the object classification (the step numbers are indicated 

within circles in the respective figures): 

(1) Intermediate level Training models. To produce training sets, for 2 or 

more models. An example with two models (model A and model B which produce 

TrSet A and TrSet B training sets) is presented in figure 5.7. These models (A 

and B) are also used to illustrate the rest of the classification steps. 

(2) Intermediate level Generating Shape -Grey level models. The training sets 

(TrSet A and TrSet B) are used to calculate the mean feature (matchingMean- 

FeatsA and MeanFeatB) and combined with the PCA calculations it is possible 

to generate the corresponding model matching, see figure 5.7. 

(3A) High level To generate a classifying model for each model for normalisa- 

tion purposes, by considering each matching model for each class as a measuring 

instrument that can be applied to any image or image region. These measuring 

instruments are then applied to each of the training examples in each class. In 

the two model examples, an extended feature vector or classifying model A is 

generated. As illustrated in figure 5.8 a set of extended vectors is generated by 

concatenating the model A feature vectors with the best fit between model B and 

each object example in the training set for model A, PCA is then applied to this 

set and the classifying model [modelA- modelB] is obtained. The result is a set 

of features that are directly comparable and therefore can be used to generate a 
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Figure 5.7: Model action producing information to be used at the High level: Analysis 
actions, i.e., training sets and Shape -Grey value models ( model). 

classifier (classifying model [modelA -modela]). 

(3B) High level In this step a similar procedure as the one described in the 

previous step (3A) is performed, an equivalent extended model or classifying 

model [ modelB- modelA] is obtained, see figure 5.9. 

(4) High level Generating the candidate classifying vector. In order to perform 

this step, the matching models generated at the Intermediate level and the pos- 

sible candidates found by the cue finder, are needed. For the classification of 

object candidates, an extended feature vector (classifying vector) is produced in 

a similar way used to generate the classifying model. The difference is that the 

classifying vector is generated by concatenating the best fit for each class model 

(i.e., matching model) with the candidate to be classified, see figure 5.10. 

(5) High level The classifying vector is then compared with the classifying 

model. For example, using PCA, and calculating the Mahalanobis distances 

between each classifying model and the candidate classifying vector, generating 

each class probability. 
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Figure 5.8: Generating a classifying model, an extended classifying model A is produced 
by concatenating the feature vectors (TrSet A), from the A training set of object 
examples, with the best possible match between the matching model B. 

(6) High level The candidate object is classified by directly comparing the 

resultant probabilities. 

5.6.2 Object locator (cue finder) 

Before the matching process starts, the object candidates within the image are located 

by performing some image processing procedures such as threshold computation, ap- 

plication of combined erosion and dilation operators and normalisation. This process 

was named cue finder as it gives the signals (object candidates) where the matching 

process has to act. Given the noisy nature of the application images, the object locator 
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Figure 5.9: A classifying model should be generated for each model defined. An ex- 
tended classifying model B is produced by concatenating the feature vectors (TrSet 
B) with the best possible match between the matching model A, in a similar way as 
described in 5.8. 

approach combines several processes as follows (figure 5.12): 

Computing a threshold from a histogram (Nakagawa and Rosenfeld 1979). Sev- 

eral thresholding methods were tested by applying them in several images and 

observing if the objects of interest were located as object candidates. The tested 

methods3 are integrated into the SGmodel system, in this way if the image con- 

ditions change, a different method can be chosen by the domain expert. Method 

[1] was found to give the best results and is the default method used by the 

3 The threshold calculation methods described here are those implemented in the Woolz image pro- 
cessing system developed at the MRC Human Genetics Unit, U.K. (Piper and Rutovitz 1985). 
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Figure 5.10: Generating the candidate classifying vector, by concatenating the best fit 
for each class model (i.e., matching model) with the candidate to be classified. 

system: 

[1] In this method the threshold is defined as the x- intercept of a line fitted 

to the upper slope of the histogram main of the peak value. The line is fitted 

from the first point whose value is 90% or less of the peak value to the first point 

whose value is 33% or less of the peak value. Zero points in the histogram are 

ignored. 

[2] The chord joining the histogram peak and the histogram right -hand end 

point is defined. Perpendicular to this chord, the furthest histogram point is the 

threshold. 

[3] The slope of the histogram at each point above the histogram peak value 

is computed. The threshold is the first point at which this slope becomes zero or 

positive. 
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Figure 5.11: The classification is based on the class probability generated by directly 
comparing the classifying vector and the classifying model using the Mahalanobis dis- 
tances. 

[4] The threshold is at the first minimum above the histogram peak. A 

quantisation parameter is defined as 10% of the histogram mean value; a min- 

imum must have maxima on either side which exceeds it by at least the value of 

this parameter. 

[5] The entropy of the histogram is used to determine the threshold (for a 

more detailed description see (Kapur 1985)). 

To apply morphological operations such as erosion and dilation operators (Russ 

1994; Sonka et al. 1993; Gonzales and Wood 1992), erosion removes pixels than 

should not be there, for example when two objects are slightly overlapped, the 

simplest kind of erosion is to remove any pixel touching another pixel that is 
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Figure 5.12: Traditional image processes during used to find the object candidates. In 
the SGmodel system, these are integrated in a module named Cue finder. 

part of the background, similarly the simplest dilation set on pixels from the 

background that are touching the object of interest. Application of a closing 

operation (dilation followed by erosion) in order to fill small and thin gaps by 

connecting nearby objects. Additionally application of an opening operation, 

(erosion followed by dilation) in order to remove small regions by breaking ob- 

jects at thin points. Both operations smooth the boundaries without changing 

significantly their area (Russ 1994). 
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Finally, normalising the result from the above operations produces the region 

outlines of the object candidates. 

In this approach, simple image segmentation techniques are used to obtain information 

such as the size and coordinates of the image objects, but during the matching process 

this information is used on the original non -segmented image in order to use background 

information as well (figure 5.13). 

Figure 5.13: Example of region image with neuron candidates located. 

The cue finding process is simply used to reduce search space. This influences the 

probability calculation which can be estimated as follows (using class A and B as 

examples of model classes): 

Pr (C = AI, cue) = 
Pr(Alcue, MA)Pr(Alcue) 

Pr(Alcue, MA)Pr(Alcue) + Pr(Blcue, MB)Pr(Blcue) 
(5.4) 

The values included in 5.4 are obtained as follows: the cue finder is used with specific 

set of images used to train a model (A, e.g., neuron). From that set the total number 

of class A members is known and the percentage of members found by the cue finder 

of classes A (Pr(Alcue)) and B (Pr(Bicue)) is then calculated. 
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Finally, it is important to emphasise that the final matching process is independent of 

the image features used by the cue finder. 

5.6.3 Matching process 

The matching process searches for the best possible fit between a model instance and 

an image object. The procedure to find this best possible match is as follows: 

The model template is placed at different positions within the object region (see fig- 

ure 5.14 and 5.15). At each position grey -level values are sampled, producing an object 

instance. The goodness of fit (determination of closeness using MD) between this object 

instance and the model is calculated. The position of the model radii and sampling 

points per radii are re- adjusted according to the main modes of variation calculated 

for the model. The grey -level values are sampled for the adjusted template producing 

a new object instance for which the goodness of fit is also calculated. 

The iterative optimisation of goodness of fit was designed to use a Genetic Algorithm 

(GA, section 5.6.4) technique given the large search space for the best possible ex- 

planation. Each time that the model template is adjusted, the vector of the model 

weights and its probability density is recalculated. This process is repeated until the 

best explanation (best fit) for the object candidate is established. 

5.6.4 Optimisation: A Genetic Algorithm guided search 

The matching and classification processes described in this chapter include the search 

for the best possible match. For this search, an optimisation technique is applied. In 

this section a brief overview about optimisation algorithms is given as a framework for 

the Genetic Algorithm (GA) technique used in this work. 

The optimisation process is then the maximisation or minimisation of an objective 

function of goodness of fit. There are several optimisation methods such as calculus 

based methods which use the gradient of the objective function to guide the direction 

for searching the maximum (hill climbing) (Sonka et al. 1993). The main problem of 

these methods is that they could easily end in a local maxima (minima), instead of the 

global one. In other words they are not robust, but they still could be useful in hybrid 
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Figure 5.14: After the object candidates are found in an image, a search for the best 
possible match between the model template and each object candidate is performed 
within each object region. 

strategies. There are some other methods which improve the probability of finding the 

global maxima by using some different strategies: 

By starting the hill -climbing at several points in the search space. If the search 

space is big this technique could become very inefficient. 

By applying searches by dynamic programming. 

By applying random searches, etc. 

The random searches are nowadays among the most used strategies (Kirkpatrick et al. 

1983). One of them, the Simulated Annealing (SA), uses random processes to guide its 

form of search for the minimum of an objective function (cost function). With SA it is 

not guaranteed that the global optimum will be found, but the solution is usually near - 

optimal. GA are another example of a directed search by random choice as a tool to 

guide the search through a coding of parameter space. The use of GA is recommended 

when the space to be search is not unimodal (i.e. more than one hill), not smooth and 

large or if the fitness function is noisy, (Mitchell 1996). The search method based on 

one solution per candidate at a time (as in the case of hill climbing) might result in 
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an irrecoverable error in a noisy application. These characteristics are present in the 

search space of this application. A genetic algorithm method was chosen because of 

its robustness and also because of the public domain code availability4, however other 

optimisation techniques can be also used . 

GA based function optimisers have been proven to be useful over a wide range of diffi- 

cult problems (De Jong 1992). Its mechanism for searching the maximum or minimum 

of an objective function is based on Natural Selection principles. In matching prob- 

lems, it is common to find several feasible solutions that could be locally optimal and 

only one is best represented by the global maximum. GAs search for the optimum 

from many places from the search space, and from a population of solutions gives a 

better chance of finding the global optimum. A GA approach does not guarantee that 

the global maximum will be found, however it has been shown that normally gets very 

close to it, and is thus valuable for these tasks (Goldberg 1989). The search space 

in this recognition problem refers to a k number of images which have n number of 

predicted candidate regions. Each region has a j number of possible matches. 

The search for new and better solutions depends on the values generated by the evalu- 

ation function which describes the goodness of fit (objective function), see figure 5.15. 

At each iteration, known as a generation, each candidate solution (individual) is eval- 

uated and recombined with others on the basis of its overall fitness. 

The following are the parameters to be used by GA in this approach and are coded as 

a finite -length string: 

x and y candidate coordinates; 

x -size and y -size of the candidate region to search; 

theta, the starting angle to place model template; 

wstd, the standard deviation of the model weight values. 

By using simple genetic operators between candidates, the population evolves and the 

4 For the GA calculations the public domain PGAPack 1.0 code by D. Levine, and obtained from the 

ftp site ftp.mcs.anl.gov, was integrated into the SGmodel system, except for the evaluation function 

which was designed and developed specifically for this thesis application. 
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Figure 5.15: GA search, interactive evaluation of goodness of fit to find the best possible 
match. 

best solutions with higher fitness (higher probability) are allowed to survive for the 

next generation of solutions. The solutions with poor fitness are excluded. The basic 

GA operators listed below are illustrated in figure 5.16 (Goldberg 1989; Mitchell 1996): 

Selection, which selects the fittest and removes the rest based on a probabilistic 

treatment. 

Crossover, in which parts of parent solutions are combined to create new ones. 

Mutation, in which part of the individual information is changed from time to 

time to prevent premature loss of possible solutions. 

Evaluation function (cost function) 

GA require a function that performs an evaluation of the predicted candidate and re- 

turns a fitness value. This is a measure, relative to the rest of the solutions population, 
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Figure 5.16: Schematic examples of GA basic operators 

of how well the predicted candidate matches a class model (section 4.2). The matching 

process requires a set of values of the model variables to be specified, which have the 

highest probability with respect to the image data, as already mentioned in chapter 4. 

For this probability we make the same assumption as Haslam et al. (1994), that the 

density function can be modelled as a multivariate Gaussian, and use the Mahalan- 

obis distances (to be minimised). In principle, the minimisation is applied to all the 

model space, but in practice limits must be set to provide the GA with ranges for each 

parameter. To achieve the latter, two standard deviations on either side of the mean 

values were used. The ranges of the position reset by the size of the object cue and 

the orientation is matched over 0 -360 degrees. 

The information used by GA to form the predicted candidates, as described before, are 

the coded parameters x and y candidate coordinates, x -size and y -size of the candidate 

region to search, theta, a starting angle to place the model template, and wstd, the 

standard deviation of the model weight values. With this information the ranges for 

the generation of the predicted candidates is set within the candidate region and the 

weight limits established by the training set (2 standard deviation). Each predicted 

candidate is derived using these ranges and the model representation (eq. 4.1). Then 
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it is evaluated by the joint probability estimation (eq. 4.2) of the model modes of 

variation and the truncated modes of variation. The result is then used as the fitness 

value. Figure 5.17 illustrates this search process. GA use probabilistic transition rules 

from the current population of strings to a new and better population of strings based 

on the idea of supporting good strings with higher fitness and removing poor strings 

with lower fitness, thus allowing the best solutions to survive with a higher probability. 

This is achieved by applying the selection, crossover and mutation operators described 

before. 
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Figure 5.17: GA search within the candidate region, the goodness of fit is determined 
with respect of the minimised MD between model -candidate as described in chapter 4, 

eq. 4.7. 



CHAPTER 5. SGMODEL: SYSTEM DESIGN AND IMPLEMENTATION 69 

5.7 Conclusions 

The implementation of SGmodel in a system gives the means for testing the approach 

proposed in this thesis. The SGmodel performance on synthetic data reached the ob- 

jectives namely system testing and as an aid on the understanding of the PCA use for 

variability characterisation. The SGmodel use with real data provides a tool for solving 

Biomedical quantitative problems related with cell recognition, density, and distribu- 

tion which was one of the motivations for this work. The SGmodel system represents 

in practical terms the main contributions of this thesis mentioned in chapter 4. The 

novel hybrid system implemented combines a wide range of theoretical and practical 

approaches such as traditional image analysis procedures (i.e., threshold, dilation and 

erosion used for the cue finder), flexible model procedures (PCA based flexible model, 

i.e., the extended PDM) within a probabilistic formulation, optimisation procedures 

(i.e., GA for the optimised search of the best possible match) and a GUI in which 

the models are represented in a domain expert language which allows rapid prototyp- 

ing of new object classes and tuning without the need for an image -processing and 

programming expert. 



Chapter 6 

Methods: from pre -processing to 
classification 

6.1 Introduction 

This chapter describes the methodologies used at different stages during the image 

analysis, from pre -processing to classification. These include the image acquisition 

process, including microscope settings and shading correction. The Biomedical mater- 

ial used to obtain the digitised images and the set of images chosen for the analysis are 

described. The model training process is presented and illustrated with an example of 

a neuron model. The procedures to obtain and visualise the modes of variation from 

a training set, and their use during the matching process are also discussed. A brief 

description of how the PCA information is used during the matching and classification 

procedures is presented. 

6.2 Pre -processing 

The material to be digitised, microscope sections of CNS tissue, was processed at the 

Neuropathology Laboratory, University of Edinburgh to have permanent preparations. 

The procedures to produce these permanent preparations of CNS tissue are: fixation, 

embedding, sectioning (microtomy), staining, and mounting, (Sumner 1969). 

Fixation preserves the tissue by chemical means. The tissue is normally fixed by 

immersion in a fixative (i.e., formalin) or a solution of two or more substances. 

70 
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In embedding the tissue is infiltrated and surrounded with a hard substance which 

reduces the tissue distorting when is sectioned. 

In sectioning the tissue is cut into very thin slices, or sections, using a microtome. 

Staining involves colouring the tissue with dyes to show up different cellular 

components as a result of different chemical affinities. 

Mounting involves putting the stained slide of tissue in put on a glass slide and 

a covership is then glued on top. 

Brains were obtained at autopsy from AIDS patients, and standard procedures for 

preserving and staining the tissue were used. These procedures include: brain tissue 

fixation in formalin for 2 -3 weeks. Selected blocks of tissue were embedded into paraffin 

wax, cut at 3, 5 and 7 pm. The tissue was stained with cresyl violet, a basic dye that 

colours acidic tissue constituents such as nucleolus which makes neuronal recognition 

easier. 

6.3 Image acquisition 

The biological material (brain sections) was placed under an optical microscope, with 

a digital camera attached. A Zeiss Axioplan microscope with a Xillix Microimager 

1400 camera, connected to a Sun Sparc 10 workstation, were used in this process 

(figure 6.1). Image acquisition is the process by which the analogue optical images from 

the microscope are converted to a digital image representation. This is performed by 

the camera which is a rectangular array of light sensitive cells (change- coupled device 

CCD). The digital representation is termed a grey -level image (Vernon 1991) which 

has light intensity sampled points (pixels) in a predetermined equally spaced grid. The 

digitisation environment is an important factor in the success of the image processing. 

An adequate image contrast could determine an accurate grey value characterisation 

and the appropriate segmentation during the process of locating object candidates. 

The contrast will be determined by the stain, microscope illumination and the use of 

complementary colour filters. The output obtained in this module are the digitised 
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images to twelve bits of grey scale information (values - 4095) which are mapped to 

eight bits (0 - 255) via a hardware look up table. 

From pre -processing to digitisation 

brain 

_ 
- - CCD camera 

block 

stained section, 

sections 

cep 

digitised image 

1. 

Figure 6.1: Selected blocks from the fixed brains were embedded into paraffin wax, 
sectioned, stained and digitised from a microscope with a CCD camera and digitiser. 

The digitised images were randomly selected on each of the 45 brain tissue slides used, 

25 images per slide were digitised. Figure 6.2 show two examples of brain tissue slides, 

the dots in the tissue represent the locations where the images were digitised from. 

6.3.1 Microscope settings 

The criterion for choosing the microscope magnification (25x), was based on the need 

of processing the greatest number of objects per image while keeping the object fea- 

tures clear enough for recognition and classification. Several filters were tested in the 

illumination source and assessed by checking the overall image contrast. It was found 

that the standard green filter of the Zeiss microscope produced good contrast and was 

optimal for the performance of the candidates object locator used in the matching 
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Figure 6.2: Examples of brain tissue sections from which images were randomly digit- 
ised, the dots represent digitisation points. 

module. The camera used is very light sensitive therefore it was also necessary to use a 

dark neutral density filter in the illumination path. For each image acquisition session, 

the microscope optics should be adjusted to Köhler illuminations to obtain a good 

optical resolution, reduce glare and to reduce the variations of illumination intensity 

on the image field (shading) to ensure consistency, (Brian and Marchevsky 1994). 

6.3.2 Correcting nonuniform illumination - shading 

In many image analysis tasks, the brightness of regions is used as means of identifica- 

tion, counting and measurement. In this approach, we assume that the same type of 

A system of illumination for a light optical microscope that leads to highly uniform illumination of 

the field of view (Bacus and Grace 1987). 
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feature will have similar grey values wherever it appears in the field of view, and then 

these features can be used for identification. For this reason it is important to ensure 

uniform illumination during the image acquisition process. In principle the illumina- 

tion will always vary over the field even with correct microscope set up, furthermore 

the camera light sensitive cells will all have slightly different responses to the same 

light intensity. To correct this variation it is necessary to know how a given range of 

light intensities, maps onto grey values for each CCD in the array. If the calibration 

function is known for each cell then this range can be applied onto standardised grey 

values (e.g. optical density). In this work we assume linear response to intensities, 

the shading correction should be performed each time that the microscope settings are 

adjusted or a slide is changed. Baldock and Poole (1993) describe how this correction 

can be achieved by the following steps: 

adjusting the microscope settings for the current slide; 

focusing the objective and condenser in a clear field of the slide then digitising 

several frames at different slide positions; 

computing a bright -field (IB) image is computed by selecting the brightest value 

of these captured frames; 

finally a dark -field image (ID) is captured by switching off or covering the micro- 

scope light source; 

the shade corrected image is calculated using 

(I - ID) 
255, (6.1) 

(1./3 - ID) 

which is a number proportional to the transmission coefficient of the material. 

Multiplication by 255 renormalises the values to an 8 - bit range. 

Figure 6.8 includes two examples of the final digitised microscope images from brain 

tissue. 
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6.4 Model definition 

In chapter 5 the model radial templates were described. The parameters for each model, 

i.e., the number of radii, the number of points per radius to be sampled, and the angles 

between radii, have to be determined at the beginning of the training process. For this 

process the information taken in account is the specific characteristics of the object and 

the prior knowledge from the expert user. For example an object neuron is recognised 

by the presence of a well defined dark circular object (known as the nucleolus) which 

normally has a centred position within the cell (see figure 6.3). 
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Figure 6.3: Image displayed in SGmodel user interface, the main parts of a neuron 
object are indicated. The centred dark structure is known as the nucleolus situated 
inside of an structure known as nucleus, and the latter is surrounded by the cytoplasm. 

The model neuron was defined as follows: 

a sampling point in the nucleolus centre; 

six radii with an optional initial direction; 

fixed angles (of 60 degrees); and 

6 points per radius to perform the grey level sampling, the criteria for the point 

positions are described in next section 6.5. 

A model NOneuron was also defined with the same features, to model all the other 
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image objects found by the cue finder. These objects lack constant identifiable struc- 

tures therefore the central sampling point was put roughly in the centre of the object 

and the 6 sampling points per radius were set with fixed distances. 

6.5 Model training 

The model training process consists of sampling grey -level values through object ex- 

amples in a set of digital images, using the defined model template. The training set 

obtained with this process is then used to characterise the object class shape and its 

grey -level values distribution, see section 6.6. 

- Sampling shape -grey_values 

point (r ai, g ) 

where r i is a radius from the nucleolus 

centre and g i is the grey value at every 

point marked in each radius. 

ai is the angle between radii. 

al's direction is fixed. 

feature vector f =(x1,y 1,g 
1' 

x2,y2 ,g2' xn ,yn ,gn) 

r6 
a 

Figure 6.4: Sampling grey level values in an object neuron. 

The grey -level sampling is carried out as follows, (see figure 6.4). 

Each image is displayed in the main window of the SGmodel user interface, as 

shown in figure 6.3 (see appendix B for the system description). 

Then, using the domain expert knowledge, the objects of interest are located. 

For each object the points sampled are chosen manually starting with the nucle- 

olus centre point. 
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The initial direction ai of the first radius is chosen following some constant 

criterion for all the objects in the training set, e.g., the direction to the nearest 

edge. 

At each angle (from al to a6) the six points are sampled using the following 

criteria: 

r1 at a fixed distance from the centre point within the nucleolus; 

r2 at the nucleolus edge; 

r3 between the r2 and the nucleus edge; 

r4 at the nucleus edge; 

r5 at the cell body edge; and 

r6 at a constant distance from r5. 

In figure 6.4, the information (ri, ai, gi) related to each point sampled on the object 

neuron, is defined as: 

ri, the ith radius from the nucleolus centre; 

ai, the ith angle between radii (al is fixed); and 

gi, the ith grey value at that position. 

The feature vector has the form f = (r1, gi, r2, g2, rn, gn)T , where ri = (xi, yi) (radii 

coordinates from where the grey values are sampled in the image). An example of the 

information stored for each object in the training set is shown in table 6.5. 
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Training set for model: neuron6 
num_radii: 6 

radii: variable 
num angles: 6 

angles: 60 120 180 240 300 360 
num_grey: 1 

preys: variable 
numData: 442 
filename: neu3m_001.gm 
centreXY: 479533 0.1666 
angle: -1.19599 

dray type: 3 

begin features: 

249 1.95 250.17 4.86 229.56 7.06 
192.61 10.09 190.06 30.98 139.78 46.92 

56 2.03 248.64 4.88 209.17 10.61 

101.56 15.67 150.67 25.74 113.22 41.79 
118.17 1.9 244.33 4.48 194.33 11.61 

81.81 18.04 143 23.64 110.28 39.62 
70 1.95 243.33 5.08 176.95 11.58 

89.94 16.06 141 20.68 96.33 36.74 
75.56 2.03 245.83 5.37 173.08 14.33 

110.56 22.94 13422 33.38 144.22 49.38 
49 1.9 247.78 5.19 199.11 9.14 

167.17 17.08 205.42 37.9 142.97 53.85 
63 

end features 

Figure 6.5: Information stored per each object sampled 

The model has to be trained in a way that captures all the possible variations of an 

object class. Some examples of object neuron sampled for a training set are shown in 

figure 6.6. 

neuronh . 

(61)7,67, 675.8 : 
. ,. . n;urc rl6 

.4718 17 . 6548;) 

neuron6 
-.(779.00, 565.50) 

Figure 6.6: Examples of object neuron with sampled points used for a training set, 
neuron6 stands for a model neuron with 6 radii. 
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6.6 Variability characterisation 

The variability of the shape -grey values is characterised by applying PCA to the feature 

vectors from the training set as described in section 5.5.3. The results from applying 

PCA are stored in a data file, and include the following information: 

number of features; 

number of object examples used; 

total number of variation modes; 

model modes; 

mean of the feature vector; 

eigenvalues and eigenvectors, calculated from the training set mean vector and 

covariance matrix, as explained in 3.2.8 and 5.5.3; 

standard deviation of shape -grey value parameters; and 

number and names of the images used. 

This information is used to generate new model instances and obtain training set 

distributions which are used during the matching process. 

6.7 Matching and classification 

As described in sections 5.6.3 and 5.6.1, the matching procedure between class models 

and class members is used to generate a classifying model. This model is then compared 

with a classifying vector produced by using the same matching procedure as well, but 

in this case between class models and object candidates to be classified. A normalised 

class probability is the result of these processes. The following is the sequence of actions 

involved in classifying new image objects. 

For each class read training set from data files (see section 5.4.2). 
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Create the matching models by applying PCA to each class training sets (see 

section 5.5.3). 

Generate a classifying model by concatenating the best fit of each class model 

with each training member, see sections 5.6.3 and 5.6.1. Then apply PCA to the 

set of extended vectors. 

For each candidate to be classified in a new image, produce a classifying vector, 

as described in section 5.6.1, this process is illustrated on the left hand side of 

figure 6.7. 

The normalised class probability is obtained by comparing each classifying vector 

with the classifying model using the matching procedure (section 5.6.3). 

Figure 6.7 illustrates this process using an example with two model classes (neuron and 

NOneuron). In this figure the models are represented as radial templates, sections 5.5.1 

and 6.5 describe the design of these model templates. 

6.8 Conclusions 

The general methodologies and settings in each step from pre -processing to classifica- 

tion have been presented in this chapter. These settings have been chosen to obtain an 

optimal performance of the SGmodel system for the application domain of this thesis. 

However different tuning actions can be performed if the application domain or the 

conditions change at any level. Tuning can be applied in the following procedures. 

Digitisation setting (e.g., light, filters, etc.) for good contrast and enhancement 

of objects and structures of interest. 

The model definition (e.g., number of radii, etc.). These parameters should be 

tuned to characterise the class shape -grey values distribution. 

Number of examples used to train the model. The system performance can be 

affected by the size of the training sets. If a training set is not big enough(at 

least 500 examples) to capture all the class variability then some objects in new 
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Figure 6.7: The classification process, example with two classes (neuron and 
NOneuron). In the training set, the feature vectors for class one (neuron) are con- 
catenated with the feature vector of the best possible match between the class two 
model (NOneuron) and the image object (the models are represented as radial tem- 
plates). The set of extended feature vectors from the training set is used to establish 
the classifying model which is compared with the extended classifying vector of a new 
object to calculate a normalised class probability. 

images could be misclassified if their shape -grey values are not included within 

the training set distribution (i.e. producing more false -negative results). 

The thresholding method chosen. This can be modified in the Analysis actions 

for an optimum cue finding performance, (see description of the thresholding 

methods available in 5.6.2). 

Several procedures presented here are time demanding, for the digitisation of the images 

once the microscope is set, it takes in average 20 minutes per slide (25 images), the 

model tuning and training would depend on the size of the training set selected, in 

average 120 examples were trained per day for a neuron training set with 1400 examples. 
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Most of these procedures are are only performed once, and thereafter the trained models 

can be applied directly to new sets of images. 
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Figure 6.8: Two examples of the microscope images from brain tissue. 



Chapter 7 

Tests and Results 

7.1 Introduction 

This chapter is focused on the results obtained from the SGmodel system performance 

using synthetic and real data. The synthetic data were produced by an artificially 

generated cell model (section 5.5.5). The results of these observations illustrate how 

SGmodel characterises the shape -grey level variability from the object examples used 

to train the model. The performance of the SGmodel system with real data was tested 

by training models for neuron and NOneuron objects. The training and testing was 

performed in randomly sampled images of brain tissue from the five groups involved in 

the HIV -CNS project described in chapter 2. For the SGmodel system validation, the 

comparison between estimations obtained with the system and those from the domain 

experts' manual counts are presented. For this thesis application, analysis at the level 

of cell distribution estimates is required, and therefore analysis of the results is focused 

at this level, however the SGmodel performance at a case -by -case level is also discussed. 

7.2 Artificial cell model 

The generation of an artificial cell model and its set of examples was described in sec- 

tion 5.5.5. A training set of feature vectors was generated by random selection of each 

model parameter (radii and grey- values) and assumed to have a uniform distribution 

over a fixed range. PCA was applied to this set of artificial cells, each of which has a 

feature space of 109 dimensions. The variability of shape -grey values in the artificial 

84 
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cell is accurately captured by the first 6 modes of variation which correspond to the 

7 parameters defined in the model (parameter 3 and 4 are correlated) which demon- 

strates the power of the technique for this type of application. In figure 7.1 the modes of 

variation behaviour is illustrated in relation to these controlled cell parameters (shown 

between brackets). 
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Figure 7.1: Modes of variation in an artificial cell 

To observe the behaviour of each individual mode of variation, the starting point in 

figure 7.1 is the middle column which represents the mean shape. The values of each 

mode are modified while the rest are kept constant at the mean value. The results 

observed were as follows. 

When the value of mode 0 is modified, variation on the grey value of the ellipse 

boundary is observed, thus the variation captured by mode 0 corresponds to 

parameter (7) defined in the artificial cell model (section 5.5.5). 

Mode 1 is related with the variation in the grey value of the central circle and 

corresponds to the cell model parameter (5). 
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The variation in the grey value of the ellipse is related to mode 2 and corresponds 

to parameter (6). 

Mode 3 corresponds to the combined variation of parameters (3) and (4). These 

parameters define the horizontal and vertical radius of the ellipse and are correl- 

ated. 

The distance between centres of the small circle and the ellipse is defined by the 

model parameter (2) and its variation is captured by mode 4. 

Finally, mode 5 is related with the variation of the radius of the small circle, i.e., 

model parameter (1). 

This example illustrates that the 109 dimensionality can be represented with a rel- 

atively high accuracy by projection onto the first 6 modes of variation (figure 7.1). 

However if only only the first principal components are used the error introduced by 

the dimensionality reduction has to be taken in account. In this case the model para- 

meters are recovered exactly by the PCA which can not be expected for real cells, 

however the artificial cell shows how the underlying simplicity can be recovered. With 

this, the artificial cell model has proven useful in testing the SGmodel performance, 

and in the understanding of how the object variability is characterised by PCA on a 

set of examples. 

7.3 Application domain: Model neuron 

For testing the system with the application domain, neuron counts were estimated on 

images from the groups mentioned in chapter 2: 

[AE] - AIDS Encephalitis drug users; 

[PINE] - AIDS Non -Encephalitis drug users; 

[PA] - HIV+ Pre -AIDS drug users; 

[DU] - HIV- drug users; and 

[C] - Control HIV-, non -drug users. 
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7.3.1 Training models neuron and NOneuron 

87 

The set of images to be analysed should be typical for the application under study 

in the sense that they should encompass the class variability. To analyse these five 

groups 236 randomly digitised images were used to train the model neuron with 1400 

examples of object neuron, and 215 images to train the model NOneuron also with 1400 

examples of NOneuron objects. The criteria to choose the neuron examples was based 

on the prior knowledge from the expert user, i.e., each object neuron is recognised by 

the presence of a well defined dark circular object (known as nucleolus) which normally 

has a centred position within the cell (see figure 6.3 in chapter 6). Then the cue finder 

was used over the set of images where the neuron examples were sampled, and those 

objects found by the cue finder, but not classed as neurons were chosen as NOneuron 

examples. 

PCA was applied to both neuron and NOneuron training sets the eigenvalues obtained 

are shown in graphs 7.2 and 7.3 respectively, in these graphs the 73 values observed 

correspond to the total number of the model features. Most of the object variation 

for both models can be represented with the first 20 modes. For the model neuron, 

the first 20 eigenvalues represent 92.42% of the total variability in the examples of 

the training set. In the case of the model NOneuron, the first 20 eigenvalues represent 

98.33% of the total training set variation. In this work, all the eigenvalues were used for 

classification. The advantage of the dimensionality reduction is only used during the 

matching process in which only the modes that represent 90% of the total variability 

are used to generate the matching model. 

The variability in these training sets was characterised by applying PCA to the feature 

vectors. The information obtained is used to generate new examples by modifying the 

variation modes. The variation for the new examples is then limited by the variation 

found within the training set. The generation of new examples is used during the 

matching and classification processes as described in chapter 5. Figure 7.4 shows several 

examples generated by modifying the first 4 modes of variation. Some of the modes 

represent the variability of more than one feature, for example mode 0 in figure 7.4 is 

related with the position and size of the dark circle nucleolus but also to the grey- values 
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Eigenvalues for model neuron 
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Figure 7.2: The eigenvalues obtained by applying PCA to the 1400 feature vectors on 
the neuron training set. Most of the total class variability is captured with the first 25 
eigenvalues. 

of the nucleolus. 

The search for the best fit needed during the matching and classification processes is 

guided by an iterative optimisation process based on a GA (description in section 5.6.4). 

Figure 7.5 shows an example of the probability landscape produced by the GA in the 

search for the best match. The displayed values are the match Mahalanobis distances 

in the object candidate region, calculated during the search process and plotted in 

terms of the two parameters x and y. If more than one value are at the same position, 

the lower one has been displayed. 
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Eigenvalues for model NOneuron 
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Figure 7.3: The eigenvalues for the model NOneuron were also obtained by applying 
PCA to the 1400 examples in the training set. Most of the total class variability is 

captured with the first 20 eigenvalues 

7.3.2 SGmodel neuron estimates 

A test set of 270 images was used to obtain the estimate of neuron counts for the C, 

DU, PA, ANE and AE groups. The images in this testing set were different from those 

used for training the models. 

To obtain both training and testing sets, 45 brain tissue slides were used from the 

five groups of interest. The neuron estimates were calculated over 6 images per slide, 

the average per slide of these estimates is shown in figure 7.6. To calculate the final 

neuron probability it is necessary to know the values of the Pr(neuronlcue) and the 

probability that a neuron will not be detected by the cue finder (false negative rate). 
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Figure 7.4: New examples of nucleus and nucleolus of the neuron, generated by 
modifying the first 4 modes of variation. 

These were estimated by applying the cue finder to the training set images for the 

neurons with the result that Pr(neuronlcue) = 0.1515 and the false negative rate is 

5.02 %. These values are used in eq. 5.4 to calculate the final probabilities. 

Figure 7.6 includes three tables. The first on the left hand side includes: the name of 

the image, the slide identifier, the group from which it was obtained and the average 

neuron counts per slide. The second table on the right hand side includes the total 

estimates distributed by group and includes the average neuron estimates per image 

per group which is also shown in figure 7.7. The third table, on the bottom of the right 

hand side in figure 7.6, shows the results of a statistical significance test known as the 

T -test. Taking in account that the numbers of images involved per group were different, 

the T -test was applied to evaluate the significance of mean differences between neuron 

distribution estimates from the control group C and the other groups i.e., C-DU, C -PA, 

C -ANE and C -AE. 

The significance value obtained by the T -test is a number between zero and one. The 

common convention is to consider any value smaller than 0.05 as "significant" . This 

convention is arbitrary and the use of extra criteria is also accepted for values near the 
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Figure 7.5: A space landscape example searched by the GA during the matching 
process. 

significance level of 0.050 (i.e., 0.048, 0.049, 0.051, 0.052, etc.) which can be almost 

identical but fall on different side of this decision mark. For this T -test comparison a 

two tailed test was required as the variation in values could happen in both directions 

of the values distribution. 

The results obtained with the T -test suggest that the mean differences between the con- 

trol group and drug users (C -DU) and between control and pre -AIDS (C -PA) are not 

significant but that there is a significant difference between the estimates from control 

and AIDS Non -Encephalitis drug users, and also from control and AIDS Encephalitis 

drug users (i.e., C -ANE and C -AE). 

For the interpretation and possible use of these results, the neuropathologist needs 

to relate the cell estimates obtained with other related factors. For example how 

homogeneous and well preserved was the brain tissue from the different groups, and in 

particular if there has been a significant shrinkage of the tissue which will affect the 

distribution estimates. The SGmodel system performance was compared with manual 
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Image I Slide grplj neu AVG 
neu 01 NA89-329 AE 12 

neu 02 NÁ90 -260 C 8 

neu 04 NÁ91 -102 AE 12 

neu05 NÁ91 -115 AE 9 

neu06 NÁ91 -127 ANE 11 

neu07 NÁ91 -155 C 6 

neu10 NÁ91 -399 C 8 

neu11 NA91-401 C 9 

neu12 N A91-402 C 7 

neu13 N A91-417 C 7 

neu14 N A91-458 ANE 9 

neu15 N A91-472 C 9 

neu16 NA92-58 DU 10 

neu19 N A92-161 PA 11 

neu20 NA92-222 ANE 13 

neu21 NA92-241 DU 14 

neu22 NA92-258 PA 6 

neu 24 NA92-29q C 9 

neu25 NA92-31 9 DU 8 

neu26 NA92-337 PA 6 

neu27 NA92-338 PA 11 

neu29 NA92-353 AE 11 

neu30 NA92-365 C 12 

neu31 NA92-387 DU 5 

neu32 NA92-390 ANE 12 

neu33 NA92-451 PA 13 

neu 35 NÁ93 -07 DU 11 

neu 36 NÁ93 -30 DU 9 

neu 37 NÁ93 -52 ANE 11 

neu 38 NÁ93 -68 PA 9 

neu41 NÁ93 -104 DU 8 

neu 42 NÁ93 -120 ANE 15 

neu 43 NÁ93 -127 DU 9 

neu 47 NÁ95 -10 PA 12 

s1 NA91-353 AE 12 

s10 NÁ93 -02 DU 10 

s12 NA93-89 PA 10 

s13 NA93-94 PA 11 

s16 NA93-135 AE 11 

s17 NA93-358 AE 15 

s18 NÁ94 -284 DU 13 

s19 NÁ95 -66 PA 
s2 NA92-115 ANE 12 

s4 NA92-278 PA 10 

s7 NA92-345 PA 13 

f 
Group C DU ! PA I1 ANE AE 

8 10 11 11 12 

6 14 6 9 12 

8 8 6 13 9 

9 5 11 12 11 

7 11 13 11 12 

7 9 9 15 11 

9 8 12 12 15 

9 9 10 

12 10 11 

13 9 

10 

13 

toUgps 75 I 97 121 83 

avg/ima 8 12 10 12 

82 
12 

T-test 
C-DU C-PA C-ANEJI C-AE 

1 auto 0.191 0.031 0.002 0,002 

Figure 7.6: Neuron average counts in the testing set. 
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estimates performed on a set of images by two domain experts, in the following section 

this comparison is presented. 

7.4 Performance evaluation: comparing manual vs auto- 
matic estimations 

The neuron estimates obtained by the SGmodel system performance on a set of images 

were compared with those by two domain experts who manually assessed the same set 

of images. 
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ñ 

Neuron averages per group, per image 

avg/ima 

Figure 7.7: Average counts per group in the testing set 
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In order to evaluate if there were significant differences between neuron distribution 

estimates a paired T -test (where the individual values are equivalent) was applied. The 

T -test was applied to the estimates from the 45 images assessed manually (Manuali and 

Manual2) and automatically (Predicted). In table 7.8 the counts per image are shown 

and the T -test results comparing Manuali with Predicted (the SGmodel estimates), 

Manual2 with Predicted, and Manuali with Manual2 are presented. 

The T -test results show that there is no significant difference between the three global 

neuron estimates, but there is a bigger difference between Manuali and Manual2 than 

between the SGmodel estimates and either of the manual counts. However in a case - 

by -case comparison, it was observed in some images higher variation between the auto- 
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Image File S//de ID Cues Manual1 Pred/c1ed1 41anua/2 
neu01-15 NA89-329 56 11 13 13 
neu02-15 NA90-260 39 15 9 16 
neu04-15 NA91-102 36 11 8 11 

neu05-15 NA91-115 38 7 9 6 

neu06-15 NA91-127 47 8 12 8 

neu07-15 NA91.155 35 6 8 6 

neu10-15 NA91-399 31 7 7 15 
neu11-15 NA91-401 54 9 13 9 

neu12-15 NA91-402 30 15 7 16 
neu13-15 NA91-417 21 5 5 6 

neu14-15 NA91-458 41 14 9 13 
neu15-15 NA91-472 40 8 9 8 

neu16-15 NA92-58 43 14 10 13 
neu19-15 NA92-161 50 11 12 11 

n0u20-15 NA92.222 41 8 9 7 

neu21-15 NA92-241 76 11 18 11 

neu22-15 NA92-259 28 6 6 3 

neu24-15 NA92-290 46 8 11 8 
neu25-15 NA92-319 32 11 7 13 
neu26-15 NA92-337 34 8 8 6 

neu27-15 NA92-338 46 7 12 6 

neu29-15 NA92-353 62 17 15 19 
neu30-15 NA92-365 46 5 11 4 
neu31-15 NA92-387 25 4 6 4 
neu32-15 NA92-390 29 6 7 9 

neu33-15 NA92-451 59 12 15 9 

neu35.15 NA93-07 57 5 14 6 

neu36-15 NA93-30 26 3 6 3 

neu37-15 NA93-52 67 6 16 4 

neu38-15 NA93-68 39 7 9 7 

neu41-15 NA93-104 42 10 10 9 

neu42-15 NA93-120 66 13 16 6 

neu43-15 NA93-127 29 12 7 10 

neu47-15 NA95-10 58 14 13 14 

51-15 NA91-353 44 8 11 6 

510-15 NA93-02 34 15 8 11 

512-15 NA93-89 40 15 9 13 

s13-15 NA93-94 55 12 12 11 

s16-15 NA93-135 42 16 10 13 

s17-15 NA93-358 68 15 17 11 

518-15 NA94-284 53 12 12 10 

519-15 NA95-66 30 12 7 12 

s2-15 NA92-115 49 11 12 11 

5415 NA92-278 41 14 9 10 
57-15 NA92-345 65 15 16 11 

total counts 1990 459 470 428 
percentage 100% 102.39: 93.25% 

nun1auto man2,aulo'. man1-man2 
T-Test: 0.695517 0.190757 0.053962 
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Figure 7.8: Evaluation results, comparing manual vs automatic estimation of neurons, 
total counts, averages and T -test results. 

matic neuron estimate and any of the manual estimates (e.g. images: 2,5,9,16), see 

appendix D for a case -by -case descriptive statistical analysis. The case -by -case com- 

parison suggests that in order to obtain better accuracy at individual levels, a more 

refined model definition would be necessary. This refinement can be done by either 

defining different or more features in the model' in order to fully capture the object 

variation, or if the object class variability is too big then by defining several subclass 

neuron models. For example, figure 7.9 shows two cases of misclassified objects. The 

false -ve case has a grey level distribution more similar to the background than to the 

e.g., in this case it could be by selecting more radii or grey -level gradient values for the neuron 

model. 
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Figure 7.9: Examples of misclassified objects, on top a false -ve from image s19 -15 and 
at the bottom a false +ve from image neu37 -15. 

distributions found in the training set. In the false +ve case, the grey level distribution 

is similar to some found in neuron examples. 

The importance of this variation at individual level would depend on the application 

requirements. The results obtained by the SGmodel system would give useful informa- 

tion for cell distribution studies, which was the specification for this thesis application, 

therefore the analysis presented here is focused at this level. 

The 45 counts were also compared per case group (i.e., C, DU, PA, ANE and AE) for 

each counting type, see table 7.10. The results of the T -test do not show significant 

difference between manual and automatic estimates, but there is a significant difference 

for the pre -AIDS group (PA) between Manuali and Manual2 assessment. Figure 7.11 

is the graphical representation comparing the results from the three different estimates 

(Manuali, Manual2 and Predicted). 

With the information in table 7.10 it is possible to compare separately the distribution 

per group between Manuali and Predicted estimates. As mentioned before, the differ- 

ences found in the average per image estimates are not significant and the distribution 
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Figure 7.10: Manuali, Manual2 and Predicted counts per case group. 
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of the estimates represented in graph 7.12 and 7.13 are quite similar, the only group 

that has slightly bigger difference is ANE, in fact this is the only group that has a 

different average number of neurons per image. 

On the other hand, by comparing separately Predicted and Manual2 estimates there 

are small differences in all the averages per image numbers, but the difference is also 

bigger for group ANE, see graph 7.14. In this group the Manuali and Manual2 were 

more similar. However the distributions from Predicted and Manual2 are also similar. 
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Comparing manual vs automatic counts 

OMenuel2 i: 

Predicted 

Manual l 

neuron counts 

Figure 7.11: Comparing manual vs automatic counts on each case group. 

7.5 Program timings 
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Table 7.15 provides measurement of average times used by SGmodel at different per- 

formance steps on a Sun Sparc 10 workstation. The averages were calculated at dif- 

ferent times during the day to include possible variations in the machine workload. 

The system developed for this thesis was implemented to allow interactive testing and 

analysis but in the first instance without consideration of computing time. For refer- 

ence purposes the time taken for typical usage are given with the realisation that a 

significant speed -up could be achieved for an installed system. 
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Manuali neuron counts 

average counts per Image 

Figure 7.12: Manuali neuron counts between groups. 

7.6 Conclusions 
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The main modes of variation observed from real data involved in most of the cases both 

shape and grey -value correlation and gave some understanding about the variability 

characterisation by PCA. The possibility of generating new examples using the class 

model and within the training set limits has proven useful for testing not only training 

set distributions but also to obtain a class probability of new image objects. 

In this thesis application, the analysis accuracy was focused at cell distribution es- 

timates level. The results of comparing the neuron distribution estimates per group 

show more similarities between the automated system results and each of the manual 

estimates, except for group ANE. For this group the results between manual -manual 

estimates were more similar than those between either manual and automated estim- 
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Figure 7.13: Comparing the SGmodel automatic neuron estimates between groups. 

ates. This suggests that further analysis of the images from this group is required 

in order to find out the factors involved that make the SGmodel approach produce 

false +ve classifications. The differences between the manual -manual distributions, al- 

though not significant, show that there are variations between domain experts, further 

comparisons with a bigger number of domain experts would be required to reach more 

precise conclusions with respect to the estimated error. For this thesis a larger trial 

was not possible because of insufficient time and the number of available experts with 

suitable experience. 

The manual- manual variations have been observed before and may be due to fatigue, 

etc., but are not the issue of this thesis. The smaller differences between manual and 

automated estimates show that the SGmodel system is a reliable tool for cell distribu- 

tion estimates in microscope images. On the other hand in a case -by -case comparison, 
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Figure 7.14: Manual2 neuron counts between groups. 
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it was observed in some images higher variation between the automatic neuron estimate 

and any of the manual estimates. The importance of this variation at individual level 

would depend on the application requirements. The results obtained by the SGmodel 

system would give useful information for cell distribution studies. However the misclas- 

sified cases observed suggest that better accuracy at individual levels could be obtained 

by either refining the model paramenters (modifying or increasing /decreasing the model 

features) to fully capture the object variability or by defining several subclass models 

where the class variation is too high to be captured in a single model. 
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Training set 45 image 

total num. of 

objects found 

(cue finder) 1990 

average number 

of objects per 

image 44 

Average time for 

training a model 

per object 47 seconds 

PCA over 1400 

examples 22 second 

Building a 

concatenated 

classification 
model (set 1400) 3 hrs and 27 minutes 

Average time for 

classification 

Per object 0.71 minutes 

Average time for 

classification 

per image 
_ 

31.40 minutes 
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Figure 7.15: Performance timing at different processing levels using a Sun Sparc 10 

workstation. 



Chapter 8 

Conclusions 

This chapter presents the summary of the thesis, discusses conclusions and suggestions 

for future work. The main issues investigated in this thesis are reviewed in section 8.1, 

the conclusions drawn in each chapter are also included. Section 8.2 presents the thesis 

outcome with respect to the objectives and the thesis contributions are assessed. The 

limitations of this thesis are discussed in section 8.3, and some ideas for future work 

and research directions are outlined. 

8.1 Thesis Summary 

In chapter 1 a general introduction to the thesis is presented including the motivation 

of the thesis, which originated from the need for an accurate automatic quantitative 

analysis of biomedical images in order to assess the massive amount of information 

from the brain images. This quantitative analysis would help the understanding of 

some Central Nervous System (CNS) related diseases. The context of this motivation 

(i.e., the HIV effects in the CNS) was described in chapter 2 as a review for the domain 

of application of this thesis. This review underlined the importance of (SGmodel) as the 

mechanism for a semi -automatic quantitative analysis of cell populations. The model - 

based framework described in chapter 3 provides the basis for the approach proposed 

in this thesis, and in particular some of the flexible models (FM) features. Despite the 

fact that FM have been successfully used for non -rigid object recognition, they present 

several disadvantages for their use in some biomedical applications. For example, 

some of the methods described require a starting model position near the object of 

102 
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interest, which would result in a highly interactive process. Other FM methods are 

not suitable for recognising weak edges. These problems were taken into account during 

the design of the approach proposed in this thesis namely the SGmodel. Chapter 4 

provided a detailed description of the theoretical basis of the different elements that 

SGmodel integrates into a generic representation with the capability to characterise the 

object variability in the objects found in the domain application. The SGmodel has 

been developed in this thesis as an extended flexible modelling formalism, combined 

with statistical, probability and optimisation tools, to be a Model -based method for 

recognition and classification of biomedical objects. Chapter 5 described the combined 

elements used for the implementation of the novel hybrid SGmodel system such as 

traditional image analysis procedures (i.e., threshold, dilation and erosion used for the 

cue finder), flexible model procedures (PCA based flexible model, i.e., the extended 

PDM) within a probabilistic formulation, optimisation procedures (i.e., GAs for the 

optimised search of the best possible match) and a GUI. The definition of an artificial 

cell for testing the system performance and to observe the modes of variation behaviour 

was also included in this chapter. The methodologies and step by step settings to 

apply the SGmodel from pre -processing to classification were presented in chapter 6. 

Chapter 7 presents the results obtained by the SGmodel performance on synthetic data 

which reached the objectives namely system testing and as an aid on the understanding 

of the PCA use for variability characterisation. The testing with real data involved the 

comparison between system -manual and manual -manual estimates, the results were 

discussed and represented in tables and graphs in this chapter as well. The results 

showed that the SGmodel performance met the specification of this thesis application, 

i.e., to provide useful information at cell distributions level and suggested that in order 

to obtain better accuracy at individual level, model refinement would be required. This 

refinement can be achieved by modifying the model features selected (in number or 

specification of different features). 

8.2 Achievements and contributions 

The SGmodel's novel generic model representation proposed in this thesis for recogni- 

tion and classification, integrates different features which make it suitable for biomed- 
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ical image analysis. These features are that: 

the model acts as an abstraction of the high -level prior knowledge of the objects, 

designed in a meaningful way to the domain expert; 

it is based on the statistical knowledge from a training set of examples. The 

main modes of variation of each object class are represented in a generic object 

formulation. During the object recognition process, this formulation adapts to 

the diversity and irregularities of shape and grey- values distribution; 

the variability of the shape -grey relationships is characterised by applying prin- 

cipal component analysis (PCA) to the shape -grey level vector extracted from 

the training set. Given the modes of variation, it is possible to generate new 

examples to be used to test the training set distributions, followed by a test 

matching of new data; 

during the matching process the obtained model is adjusted to fit the image data 

within the limits of variability from the training set; 

includes a mechanism to recover the normalisation given the inclusion of non - 

spatial data, different model parameters and /or different number of dimensions. 

The use of a cue finder affects the total probability, a normalisation to solve this 

is also included. 

the retrainable feature of this model makes it adaptable to new conditions, al- 

lowing rapid prototyping of new object classes. 

An important contribution of this approach is a more generic model for the do- 

main application which, in turn, implies that the model can be tuned to specific 

study cases, without the need for specialist image -processing and programming 

expertise, to incorporate new models for each object class. For example if the 

application in turn requires better accuracy at individual object estimates, dif- 

ferent combinations of model features can be selected and tested by the domain 

expert, including definition of subclass models if the object variation is too high 

to be capture by a single model. 
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the SGmodel performance successfully met the goal of reproducing the neuron 

distribution estimates of the neuropathologist during the comparison with two 

human experts. No significant differences were found when a T -Test was applied 

to the SGmodel - manual estimates. Further comparisons with a bigger number 

of domain experts would be required to reach more precise conclusions with 

respect to the estimated error. Once optimised, the SGmodel system will be used 

for cell distribution estimates by the Neuropathology Laboratory, University of 

Edinburgh, different types of brain cells would be analysed (e.g., astrocytes, 

microglia and neurons). 

From this list it can be concluded that this approach provides the means for solving 

some of the quantitative problems related with cell distribution estimates with a generic 

system for analysis of microscope images, retrainable and adaptable to new conditions 

and therefore the objectives of this research have been achieved. 

8.3 Future Work 

The broad sweep of topics involved in this thesis leave many problems for the future 

work to address. The priorities for designing, implementing and testing this thesis 

approach were focused in reaching the objectives established at the beginning of this 

research. From the achievements and contributions mentioned in 8.2 it is possible to say 

that these objectives were reached. However many questions still remain unanswered 

in both the in the Biomedical and the Image Processing areas of this research. The 

following summarise the questions that have arisen during this research: 

To explore the modes of variation behaviour by introducing correlation between 

grey -level parameters into the artificial cell, making this simulation more similar 

to the real cells modes of variation. 

To explore the behaviour of the genetic algorithms module with different para- 

meter settings. The GAs parameters currently used in the system are the result 

of informal testing and results reported in the GAs literature (Goldberg 1989). 

However they are not optimal and additional experimentation with other values 
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will yield better performance on any given application. 

With the obtained feature vector to implement an artificial neural network ap- 

proach to compare its performance in object recognition with the current stat- 

istical classifier. The performance of a well- trained neural network classifier is 

usually similar to that of a well- designed statistical classifier (Castleman 1996), 

the less detailed knowledge of the problem required for the development of a 

neural network classifier could result in a more generic system 

To establish the bases needed to include the present system into an image un- 

derstanding framework. The image relevant information could be combined with 

the information of different applications by integrating a knowledge based system 

and a decision support system. 

To explore the use of different feature combinations (e.g. gradients) to achieve 

better classification at individual object levels. 

To compare the system performance with a bigger number of domain experts to 

obtain more precise conclusions with respect to the estimated error. 

8.3.1 Biomedical Side 

To assess sets of brain tissue that could be relevant to other applications, 

To check the system reliability for a wider range of applications by comparing 

the SGmodel performance with domain experts for each different application. 

The results obtained during the system testing are independent from those results 

arising from the neuropathologist interpretation of the estimates obtained. In chapter 2 

it was mentioned that neuronal loss is expected as one of the effects of HIV in CNS. 

The comparison between the case groups assessed does not show this. Counting cells 

in the brain raises several problems related to the material and methodology, so these 

have to be carefully chosen in order to avoid erroneous conclusions. Some of the factors 

which could affect the counting are underlined by (Everall et al. 1991). 

Shrinkage produced during fixation and embedding of tissue block in paraffin -wax 

as part of the histology process, can alter the apparent number of cells. 
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Given that the number of cells varies with age, it is important that the comparison 

with control material is with age- matched individuals. 

Opportunistic infections or neoplasms which have been reported coincidental 

with HIV infection themselves cause change in cell number. Study cases should 

be without these complications. 

The tissue section thickness should be chosen in a way to avoid, as much as 

possible, optical distortions which result in erroneous cell number and size. 

The sampling technique should be designed taking into account the orientation 

of the tissue in order to obtain a representative sample; otherwise results may 

easily be distorted by the complex structure and cellular organisation within the 

brain. 

It is important to perform the cell quantisation in a three dimensional way in 

order to have more realistic results, one technique often used for this is called 

"disector" (Sterio 1984), (Braendgaard and Gundersen 1986). 
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Glossary 

AIDS Acquired Immune Deficiency Syndrome. The late stage of a disease caused by infection 
with the virus called HIV. 

ADC AIDS Dementia Complex, disorder with progressive dementia. 

A priori knowledge (information) Knowledge available before the search for a problem solution 
starts. 

ASABI Automated System for Analysis of Biomedical Images. 

ANOVA One way of variance analysis 

AZT azidothymidine, zidovudine. 

CMV Cytomegalovirus, pathogen agent which produces neurologic abnormalities by demyelina- 
tion. 

CNS Central Nervous System, composed by brain and spinal cord. 

CV Computational Vision 

GFAP Glial fibrillary acidic protein. 

GA's Genetic Algorithms search. 

HIV Human Immunodeficiency Virus. 

HSV Herpes simplex, infectious agent. 

Image Analysis Term used to embodied the idea of automatically extracting useful information 
from and image. 

MGC Multinucleated Giant Cells. 

Nissl substance aggregation of basophilic material in the cytoplasm of nerve cells. 

PCA Principal Component Analysis, statistical analysis to reduce the dimensionality of data. 

PDM Point Distribution Models. 

Varicella zoster infectious agent. 

WOOLZ MRC Image Processing System based on object oriented data structures. 

acute Rapid in onset; severe, life- threatening. 

antigen foreign substance. 

astrocytes supporting cells of the nervous system. 

axon neuron prolongation which carry impulses away from the cell body 

candida fungal pathogen. 

cresyl Stain used in histological techniques. 
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cryptococcus fungal pathogen. 

disector a probe that samples objects in three -dimensional space irrespective of their size or shape. 

encephalitis brain inflammation. 

encephalopathy neurological abnormalities, brain disease. 

glia supporting cells of the nervous system, astrocytes, oligodendrocytes and microglia. 

SGmodel Shape -grey value Model. 

gyral latter separate in the surface of the brain. 

heuristic mothod of solving problems by evaluating past experience. 

immunocytochemistry histological technique based in immunochemical reactions to mark spe- 
cific structures. 

leukoencephalopathy neurological disease caused by the infectious agent papovavirus. 

lymphoma enlarged lymph nodes. 

macrophages large phagocytes, cells that destroy bacteria or cell fragments. 

meningitis inflammation of the membranes enclosing the brain and spinal cord. 

microglia supporting cells of the nervous system. 

morphometric measurements of form and structure. 

myelin white fatty material which ensheath axons. 

neoplasms tumour, a new growth of tissue serving no physiologic function (e.g. lymphoma). 

neuron nerve cell. 

neuroectodermal cells derivated from the wall of the neural tube (i.e. neurons, glial cells and 

ependymal cells). 

neuropathy nervous system disorder. 

neuropathogenesis origin of neurological abnormalities. 

neuropil terminals and dendrites in neurons. 

nuclei spherical structure commonly in a central position of the cell body. 

nucleolus spherical prominent structure within the nucleus. 

oligodendrocytes supporting cells of the nervous system. 

pallor paleness. 

pathogenetic referent of the nature of disease. 

perikarion cell body. 

toxoplasmosis infection caused by the infectious agent Toxoplasma gundii. 

xgobi dynamic graphics program for data analysis for X windows. 
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Appendix A 

Sampling information: slides, 
images and case groups 

Histological material 

The table in the following page show the images used in this thesis which were digitised from 
a set of 45 histological slides, 25 images per slide were obtained. For training purposes 236 
images were used for model the neuron and 215 for the model NOneuron. 
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Figure A.1: Image name, slide code and case group. 
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Appendix B 

S Gmodel system 

System description 

SGmodel is an iterative system that uses a simple graphical user interface GUI, developed 
using C language, X Window System libraries Xlib, and the X Window Manager libraries 
Motif. SGmodel system was implemented and tested in a Sun Sparc Station 10, under Unix 
operating system SunOS5. When the program is executed by typing in the Unix environment 
gmodel, the SGmodel main window is displayed. On the top of this window the main action 
bar show three options; "File ", "Model" and "Analysis ". The selection of an option is made 
by clicking on it with the left button on the mouse. 

If the option "File" is selected, a menu to handle files is scrolled down, and in it several 
actions can be activated, see figure B.1. 

Figure B.1: File actions menu. 

- Read Image: With this option a file selection window is displayed with the images 
available in the images directory specified. The image selected is then displayed in 

the main SGmodel window, see figure B.2. 

- Write training data: Write in file the data obtained during the model training 
action which is going to be described below. 
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Figure B.2: File selection menu to display an image. 

- Read training data: Read training data written in a previous session and put 
them available to be processed by the system. The file selection menu is similar 
to the one displayed for an image selection, but the list of files is from the data 
directory specified. 

- Back to image from data: When this option is selected a list of the image name 
included in the current training data is displayed, then when a name is selected, 
the image is displayed in the main window and the instances sampled in this image 
are labelled with the model name and its image coordinates. 

If the option "Model" from the main actions bar is selected, a menu with the following 
model action is displayed, see figure B.3: 

Figure B.3: Model actions menu. 

- Create: When this action is selected, a window to establish a model set of para- 
meters is displayed. These parameters determine the default points distribution 
form that is going to be used while sampling data from images for a particular 
model. In other words defining for the radial template, the number of radii and 
their angles, and the number of points to be sampled per radius, see figure B.4. 

- Train: If this option is selected a model selection window is displayed. One model 
name should be selected and the default parameters for that model are made avail- 
able for the sampling template. The models are trained by sampling the grey values 
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Figure B.4: Model parameter selection. 

using the the distribution of this template on the objects of interest. First the left 
button of the mouse should be clicked the object of interest selected (see figure 
B.5), a magnification window is then displayed to ease in the selection of the points 
where the grey values are going to be sampled, see figure B.6, then the angle of the 
first radius should be chosen using a fix predefined criterion. The number of points 
defined for the model chosen, are then sampled using the default distances defined 
when the model was created or using criteria according with the objects features. 
For example if a model neuron is chosen, first the criterion to chose the first angle 
could be the direction where the shortest distance between the nucleolus and the 
edge of the nucleus is found, if five points per radius are going to be sampled, then 
the criteria to place the sampling points could be, for. example, the edge of the 
nucleolus, a point between the edge of the nucleolus and the edge of the nucleus, a 
point on the edge of the nucleus and the last two points with fixed distances, this is 
repeated for all the radii on each of the objects sampled. The number of sampled 
object per model should be big enough to be able to capture all the possible vari- 
ation modes for that particular object class, obtaining a representative data set of 
its grey values distribution. The objects sampled are labelled with the model name 
and their image coordinates, this avoids the possibility of multiple sampling and 
allows going back to image to review sampled objects. 

Figure B.5: Selection of a model to be trained. 
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Figure B.6: Sampling grey values in a class object example. 

- Variation modes: The data set obtained from the training model procedure are 
stored, for each object in a relative positions vector and associated grey values. 
Principal component analysis (PCA) is applied to these vectors, obtaining the 
variation modes within the training set. 

- Display: A mean shape obtained from the PCA is display in another window. 
In the bottom part of the window, a set of slide bars, one per mode of variation 
obtained as well during the PCA, is displayed. When one of the bars is moved 
to the minimum of maximum value, it is possible to see how this variation mode 
affects the mean shape and its grey values distribution, see figure B.7. 

Figure B.7: Display of the mean object obtained from the training set. 

Shape model simulation: With this option a set of artificial model cell is gen- 
erated with a restricted model parameters in order to analyse the behaviour of the 
modes of variation, as described in chapter 6. 

Finally if the option "Analysis" is chosen it is performed a comparison of the selected 
model with the object candidates located in the displayed image. The template matching 
is performed using the trained model and its main modes of variation, deforming iterat- 
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.ively the model template including center position, orientation and weight parameters. 
Each time that the model instance is adjusted, the vector of weights and its probabil- 
ity density were recalculated, this process is repeated until the maximum probability is 
reached. A genetic algorithm is used here as iterative optimisation method in order to 
find the best possible solution. 

Figure B.8: Analysis Menu, Threshold modifier, cue Finder, caassification model con- 
struction and classification process. 

The analysis menu actions are described below, the order corresponds to a normal exe- 
cution sequence: 

bf cue Finder: By selecting this option the system locate all the possible object 
candidates in the current image. If there is not image displayed in the main window 
an error message is displayed. This option is activated individually by pressing the 
cue Finder option in the menu in order to check the system performance for the 
current conditions. This action is also performed automatically when the option 
Classify is chosen. 

- Modify Threshold type: This action was designed for calibration. If the cue 
Finder performance is poor for the current conditions, a different thresholding type 
can be selected. 

- Construct classifying model: This option has to be executed before the classi- 
fication process (Classify) is activated. The training data have to be read and the 
modes of variation calculated previously. 

- Classify: An image should be read before choosing this action. When selected the 
model class for the classification process has to be chosen. The candidates in the 
current image are located, the best possible match for each model class is calculated 
and concatenated in a single vector to compare with the classifying model and the 
probability of the object belonging to the model class selected is estimated. 
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Appendix C 

Microglia and astrocytes data 

The table below shows microglia and astrocytes counts performed as part of the comparative 
assessment for the HIV -CNS project' (Roberts et al. 1997). The groups studied, as described 
in chapter 2, were: AIDS Encephalitis drug users (AE), AIDS Non -Encephalitis drug users 
(ANE), HIV+ Pre -AIDS drug users (PA), HIV- drug users (DU) and Control HIV -, non - 
drug users (C). A total of 48 cases were used (between 7 and 12 cases per group, in the table 
sl -s12). Astrocytes and microglia cells were semi -automatically counted of brain tissue with 
no CNS opportunistic infections or lymphomas. The counts were performed in white and grey 
matter. 

Astroc tes White matter sl s2 s3 RENE s6 s7 s8 s9 s10 si 1 s12 
AE 1252 1209 333 222 1360 1326 80 761 548 
ANE 45 503 176 116 387 241 591 

PA 182 346 921 0 781 20 72 45 1071 115 492 240 
DU 15 776 284 0 76 416 896 74 67 30 
C 0 366 414 177 58 276 34 524 139 602 

Astroc es Gre matter sl ME 11E110 NE s6 s7 s8 s9 s10 s11 s12 
AE 533 284 229 118 147 806 14 118 52 

ANE 94 5 4 2 46 8 3 
PA 5 8 13 2 1 5 6 5 4 6 10 11 

DU 1 3 29 9 16 4 29 7 6 3 

8 1 9 1 16 2 2 37 29 31 

MlcroIla White matter sl s2 s3rENIE s6 s7 s8 WE s10 s1 s12 

AE 11 7 15 8 7 7 2 13 7 

2 2 2 4 4 5 4 

5 3 5 5 3 2 6 4 5 41 2 2 _ 

DU 3 3 3 4 2 3 2 _ - 
2 - 1 _ 0 _ _ 1 0 1 

Micro Iia Grey matter sl s2 s3 KEW s6 s7 s8 MO s10 sl i s12 

E 6 4 5 3 4 15 1 

ANE 2 0 1 2 2 3 4 

_ 1 2 3 2 2 3 3 2 2 _ 1 

DU 2 - 1 3 0 2 1 0 2 1 

0 0 0 0 0 1 0 0 0 

C.1: Cell counts for groups AE, ANE, PA, DU and C, see Chapter 2. 

1 At Neuropathology Laboratory, University of Edinburgh. 
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Appendix D 

Case -by -case comparison 

The table below was presented in chapter 7 (figure 7.8). In a case -by -case comparison it was 
observed in some images higher variation between the automatic neuron estimate and any of 
the manual estimates. For example in image 29 (neu37 -15) the automatic neuron estimate 
counted considerably more objects than any of the manual counts. In the other hand the 
automatic estimate in image 42 (s19 -15) was lower than in the manuals counts. 
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21 
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23 
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Image file Slide NI Cues Manual( Predilfed l Manual2 
neu01-15 NA89-329 56 11 13 13 

neu02-15 NA90-260 39 15 9 16 

neu04.15 NA91-102 36 11 B 11 

neu05-15 NA91-115 38 7 9 6 

neu06-15 NA91.127 47 8 12 8 

neu07-15 NA91-155 35 6 8 6 

neu10-15 NA91-399 31 7 7 15 

neu11-15 NA91-401 54 9 13 9 

neu12-15 NA91-402 30 15 7 16 

neu13-15 NA91d17 21 5 5 6 

neu14-15 NA91-458 41 14 9 13 

neu15-15 NA91-672 40 8 9 8 

neu16-15 NA92-58 43 14 10 13 

neu19-15 NA92-161 50 11 12 11 

neu20.15 NA92-222 41 8 

neu21-15 NA92-241 76 11 18 11 

neu22-15 NA92-259 28 6 6 3 

neu24-15 NA92-290 46 8 11 8 

neu25-15 NA92-319 32 11 7 13 

neu26-15 NA92-337 34 B 8 6 

neu27-15 NA92-338 46 7 12 6 

neu29-15 NA92-353 62 17 15 19 

neu30-15 NA92-365 46 5 11 4 

neu31-15 NA92-387 25 4 6 4 

neu32-15 NA92-390 29 6 7 9 

neu33-15 NA92-451 59 12 15 9 

neu35-15 NA93-07 57 5 14 6 

neu36-15 NA93-30 26 3 6 3 

neu37-15 NA93-52 67 6 16 4 

neu38-15 NA93-68 39 7 9 7 

neu41-15 NA93-104 42 10 10 9 

neu42-15 NA93-120 66 13 16 6 

neu43-15 NA93-127 29 12 7 10 

neu47-15 NA95-10 58 14 13 14 

61-15 NA91-353 44 8 11 6 

610-15 NA93-02 34 15 8 11 

s12-15 NA93-89 40 15 9 13 

s13-15 NA93-94 55 12 12 11 

s16-15 NA93-135 42 16 10 13 

617-15 NA93-358 68 15 17 11 

518-15 NA94-284 53 12 12 10 

s19-15 NA95-66 30 12 7 12 

s2-15 NA92-115 49 11 12 11 

s4-15 NA92-278 41 14 9 10 

57-15 NA92-345 65 15 16 11 

total taunts 1990 459 470 425 
percentage 100% 102.39% 93.25% 

man/uto man2auto nun l-man2 
1-7es4 0695517 0.190757 0.053962 

Figure D.1: Evaluation results, comparing manual vs automatic estimates of neurons, 
total counts, averages and T -test results. 
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This higher variation examples are clearer in graph D.2 where automatic and manual estimates 
are plotted. 
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Figure D.2: Case -by -case comparison between Manuali, Predicted and Manual2 es- 
timates. 

As discussed earlier this higher variation would be important if more accuracy is needed in 
individual cases, this depends on the application requirements. Descriptive statistical analysis 
are included in table D.3. However for a good degree of accuracy a bigger sample size of human 
experts would be needed, and collaboration with different related research centres would be 
required. With the given sample the variation between the manual estimates is smaller than 
between automatic and either of the manual counts. 

As a measure of variability, table D.3 presents the following computations: 

in column A the mean value from the Manuali, Predicted (automatic) and Manual2 
estimates per image, 

columns B, C and D are the substracted mean from each estimate and divided by the 
mean to get a "normalised deviation" from the mean, 

the squared deviation from the mean are presented in columns E, F and G, 

at the bottom of this columns n (45 images) is included, and computations such as 

the sum of the squares of the deviations from the mean (Sum d "2), 
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the variance (Sum d ̂ 2 / n -1), i.e., the sum of the above squares divided by one 
less than the number of values in the set of data, 

the standard deviation Q = ,/variance, and 
and the standard deviation of the mean = (s.d.), which is often called the 

standard error (Elston and Johnson 1994). 

A 8 C O E F G 

glean 0(111)iylean O(P)ikan O(412)%Hean d(111)^2 d(Pl^2 11012)^2 
1 

1 12.3333 -0.1081 0.0541 0.0541 0.0117 0.0029 0.0029 
2 13.3333 0.1250 -0.3250 0.2000 0.0156 0.1056 0.0400 
3 10.0000 0.1000 -0.2000 0.1000 0.0100 0.0400 0.0100 
4 7.3333 -0.0455 0.2273 -0.1818 0.0021 0.0517 0.0331 
5 9.3333 -0.1429 0.2857 -0.1429 0.0204 0.0816 0.0204 
6 6.6667 -0.1000 0.2000 -0.1000 0.0100 0.0400 0.0100 
7 9.6667 -0.2759 -0.2759 0.5517 0.0761 0.0761 0.3044 
8 10.3333 -0.1290 0.2581 -0.1290 0.0166 0.0666 0.0166 
9 12.6667 0.1842 -0.4474 0.2632 0.0339 0.2001 0.0693 

10 5.3333 -0.0625 -0.0625 0.1250 0.0039 0.0039 0.0156 
11 12.0000 0.1667 -0.2500 0.0833 0.0278 0.0625 0.0069 
12 8.3333 -0.0400 0.0800 -0.0400 0.0016 0.0064 0.0016 
13 12.3333 0.1351 0.1892 0.0541 0.0183 0.0358 0.0029 
14 11.3333 -0.0294 0.0588 -0.0294 0.0009 0.0035 0.0009 
15 8.0000 0.0000 0.1250 -0.1250 0.0000 0.0156 0.0156 
16 13.3333 -0.1750 0.3500 -0.1750 0.0306 0.1225 0.0306 
17 5.0000 0.2000 0.2000 -0.4000 0.0400 0.0400 0.1600 
18 9.0000 -0.1111 0.2222 -0.1111 0.0123 0.0494 0.0123 
19 10 3333 0.0645 -0.3226 0.2581 0.0042 0.1041 0.0666 
20 7.3333 0.0909 0.0909 -0.1818 0.0083 0.0083 0.0331 
21 8.3333 -0.1600 0.4400 0.2800 0.0256 0.1936 0.0784 
22 17.0000 0.0000 -0.1176 0.1176 0.0000 0.0138 0.0138 
23 6.6667 -0.2500 0.6500 -0.4000 0.0625 0.4225 0.1600 
24 4.6667 0.1429 0.2857 -0.1429 0.0204 0.0816 0.0204 
25 7.3333 -0.1818 -0.0455 0.2273 0.0331 0.0021 0.0517 
26 12.0000 0.0000 0.2500 -0.2500 0.0000 0.0625 0.0625 
27 8 3333 -0.4000 0.6800 -0.2800 0.1600 0.4624 0.0784 
28 4.0000 -0.2500 0.5000 -0.2500 0.0625 0.2500 0.0625 
29 8.6667 -0.3077 0.8462 -0.5385 0.0947 0.7160 0.2899 
30 7.6667 -0.0870 0.1739 -0.0870 0.0076 0.0302 0.0078 
31 9.6667 0.0345 0.0345 0.0890 0.0012 0.0012 0.0048 
32 11.8867 0.1143 0.3714 -0.4857 0.0131 0.1380 0.2359 
33 9.6667 _ __ 0.2414 -0.2759 0.0345 0.0583 0.0761 0.0012 
34 13.6867 0.0244 -0.0488 0.0244 0.0006 0.0024 0.0006 
35 8.3333 -0.0400 0.3200 -0.2800 0.0016 0.1024 0.0784 
36 11.3333 0.3236 -0.2941 -0.0294 0.1047 0.0865 0.0009 
37 12.3333 0.2162 -0.2703 0.0541 0.0467 0.0730 0.0029 
38 11.6867 0.0286 0.0286 -0.0571 0.0008 0.0008 0.0033 
39 13.0000 0.2308 -0.2308 0.0000 0.0533 0.0533 0.0000 
40 14.3333 0.0465 0.1860 -02328 0.0022 0.0346 0.0541 
41 11.3333 0.0588 0.0588 -0.1176 0.0035 0.0035 0.0138 
42 10.3333 0.1613 -0.3226 0.1613 0.0260 0.1041 0.0260 
43 11.3333 -0.0294 0.0588 -0.0294 0.0009 0.0035 0.0009 
44 11.0000 0.2727 -0.1818 -0.0909 0.0744 0.0331 0.0083 
45 14.0000 0.0714 0.1429 .0.2143 0.0051 0.0204 0.0459 

n 45 45 45 
Sum d^2 1.2028 4.0840 2.1550' 

Sum d^2,47-1 0.0273 0.0928 0.0490. 
sqA 0.1653 0.3047 0.22131 

s.d. 0.0246 0.0454 0.0330, 

Figure D.3: Statistics comparing Manuali, Predicted and Manual2 in case -by -case 
image. 
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Back to image 
from data 

mortel_rend.e1 

Appendix E 

SGmodel code listings 

The following figure includes the file names of the system code within the SGmodel structure. 
The code listings from the main modules are also included below, those pointed with a triangle 
on the right hand side of the file name. 

Image 

acquisition 

Low level 

Training set 

data file 

Image and 
data file 
manipulation 

lile_rne,ur.c 

Read Image 

model_rend.c 

gnrodel.c SGmodel Structure GreyModeLe 

Model 
actions 

Write 

Training data l 
Read 

Training data 

nodelread.e 
IW 

SGmodel modules 

Image Processing levels 

nuutel_urenu.c 

Model creation 

Model trainino 

V 

Object class 
variability 

and model 

pcn.c 

Analysis actions 
analysis_menu.c 

Cue finder 

Object candidates 
cnndi.c - 

Display modes 
of variation 

urodel_dispinq.c 

Cost function 

opimodel.c 

II 

l 

Candidate modes of 

variation, probability 

formulation 

Intermediate level High level 

CODE FILLS 

Predicted candidate 

candidate or 
class member 

POA 

Classifying 

model 

Classifying 

vector 

classify 

Figure E.1: System code within the SGmodel structure. 
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E.1 Model menu 

Function model_menu.c 
Last Update : Thu Mar 20 15:41:08 1997 

Synotsis create model, train_model, variationmodes /distlat 

Project Model Based System for Biomedical Image Analysis 
System Title : Cmodel 
Authors : Rocio Aguilar Chongtay and Richard Baldock 

static char Sccsld[] "XZXXMX XIX(XGX) - RACH"; 
*include <stdio.h> 
*include <math.h> 

Binclude <Xm/FileSB.h> 
Binclude <Xm/Form.h> 
*include <Xm/Frame.h> 
*include <Xm/Label.h> 
Binclude <Xm/PushBG.h> 
Binclude <Xm/RosColumn.h> 
*include <Xm/SeparatoG.h> 

*include <Xm/Text.h> 
Binclude <Xm/TextF.h> 
Binclude <Xm/TogglaOG.h> 

*include <HOU_XmUtils.h> 

Binclude <estruct.h> 
*include <soolz extern.h> 
*include <HGU_XInteract.h> 

Binclude <gmodel.h> 
*include <model_menu.h> 
*include "error.h" 
*include "alloc.h" 

/ menu items structures / 
static Menultem model_menu_itemsP[] ( /0 model menu items / 
( "create ", &xmPushButtonaadgetClaas, 0, XmTEAR_OFF_DISABLED, 

NULL, FULL, create_model_cb, BULL ), 
( "train ", txmPushButtonaadgetClass, 0, XmTEAR_OFF_DISABLED, 

BULL, NULL, train modal cb, FULL ), 
{ "variation_modes ", kxoPushButton0edgetClass, 0, XmTEAR_OFF_DISABLED, 

FULL, NULL, variation modes_cb, FULL }, 
( "display ", txmPushButtonßadgetClass, 0, XmTEAR_OFF_EBABLED, 

NULL, FULL, display_model tb, NULL }, 

{ "shape model_simulation ", txmPushButtonGedgetClass, 0, XmTEAR_OFF_DISABLED, 

NULL, NULL, shape_model simulation_cb , BULL), 

NULL, 

Menultem modal menu_items &(model menu_itemaP(0)); 

static Ant def_num_radiiO4; 
static float def_radii() (2.0, 4.0, 8.0, 16.0, 32.0 1; 
static int def_num_anglesm6; 
static float def_angles[] {0.0, 60.0, 120.0, 180.0, 240.0, 300.0 1; 

static int def_num_greys1; 
static int def_greys[] (0 ).; 

int create_default_models () 
{ 

create neuron6_model(); 
create_NOneuronmodel(); 
create_nocell sh_model(); 

} 

int create_neuron6_model() 
{ 

GreyModel model; 
GREYP greyp; 
int i; 
static float radii[] (2.0, 4.0, 8.0, 16.0, 32.0, 48.0); 

static float angles[] (0.0, 60.0, 120.0, 180.0, 240.0, 300.01; 

static int grays (0 }; 

/0 check existing / 
for(i0, modelIULL; i < globals.num_models; i++){ 

if( strcmp( "neuron6 ", globals.models(i]- >neme) 0 ) 

return; 
} 

greyp.inp def_greys; 
model GreyModel_make(GMODEL_RADIAL, CMODEL_MODE_GIGMODEL MODE_R, 

"neuron6 ", radii, 6, angles, 6, IBT_GREY, greyp, 1); 

if( i > globals.maz_nus_models )( 
globals.sax num_models + 16; 
globale.models (GreyModel 00) 

realloc(globals. models, sizeof(GreyModel 0) 

globals.maznus_models); 
1 

globals.models(i) model; 

if( globals.num models <5 i ) globals.num models i +1; 

return; 
} 

int create_NOneuron model() 
{ 

GreyModel *model; 
GREYP greyp; 
int i; 

static float radii() (2.0, 4.0, 6.0, 8.0, 14.0, 20.0 1; 

static float angles[] (0.0, 60.0, 120.0, 180.0, 240.0, 300.0 1; 

static int greys() (0}; 

/ check existing / 
for(i0, modeliULL; i < globals.num modals; i + +){ 

if( strcmp( "NOneuron ", globals.models[i]- >name) 0 ) 

return; 
} 

greyp.inp def_greys; 
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model = GreyModel meke(GMODEL_RADIAL, GMODEL_NODEGIGMODEL_MODE_R, 
"JOneuron ", radii, 8, angles, 6, IIT GREY, greyp, 1); 
if( i >= globale.max_num_models ){ 

globale.max num models +. 16; 
globels.models = (GreyModel eel 

realloc(globals.modeln, sizeof(Greylodel e) e 
globels.max_num_modeln); 
} 

globals.models[i] = model; 
if( globale.num models <= i ) 

return; 
globals.num_models = i +1; 

} 

jot create_nocell_ah model() 
{ 

GreyModel emodel; 
GREYP greyp; 
jot i; 
static float radii[] _ {4,0, 
static float angles[] _ {0.0, 

8.0, 16.0 }; 
20.0, 40.0, 60.0, 80.0, 100.0, 

120.0, 140.0, 160.0, 180.0, 200.0, 
220.0, 240.0, 260.0, 280.0, 300.0, 

static int greys[] _ {0}; 
320.0, 340.0 }; 

/ check existing / 
for(i =0, model =IULL; i < globals.nummodels; i + +){ 

if( etrcmp( "nocell_sh ", globals.models[i]- >neme) _= 0 ) 
return; 
} 

greyp.inp = def_greys; 
model = GreyModel meke(GMODEL_RADIAL, GNODEL_MODE_GIGMODEL_NODE_R, 

"nocell áh ", radii, 3, angles, 18, IIT_GREY, greyp, 1); 
if( i >= globale. max_nommodels ){ 

globale.max_nom_modele += 16; 
globale.models = (GreyModel e) 

realloc(globals.models, sizeof(GreyModel e) e 
globale.maz nummodele); 
} 

globals.models[i] = model; 
if( globale.nom_modale ( = i ) globale, nun _models = i +1; 

return; 
} 

static void set_radii( text, model, cbs ) 
Widget text; 
GreyModel model; 
Xm*nyCallbackStruct cbe; 
{ 

String str =IULL, atri; 
jot i, secanf ret; 
float test_radiue; 
if( !XtIsSubclass(text, xnTextWidgetClass) tt 

! XtlsSubclaes(text, xnTeztFieldYidgetClass) ) 
return; 

XtVnGetValuea(tezt, Xmlvelue, tstr, IULL); 
if( Str == IOLL ) 

return; 
stri = (String) malloc(sizeof(char) (strlen(str) + 2)); 
strcpy( etti, Str ); 
if( model- >radii == IULL ){ 

model- >num_radii = 10; 
model ->radii = (float e) malloc(eizeof(float) model- >num_radii); 

} 

i =0; 
chile( (sscanf_ret = secanf(otri, '%f X[ ", \n] ", ttest_radius, atri)) > 0 ){ 

if( i >= model ->num radii ){ 
model- >num_radii += 10; 
model ->radii = (float ) realloc(model -> radii, 
siz aof(float)emodel- >nom_radii); 

} 

model- >radii(i] = test_radius; 
i+ +; 
if( sscant_ret == 1 ) 

break; 

model->num_radii = i; 
tree( atri ); 

} 

static void set angles( text, model, cbs ) 

Widget text; 
GreyModel model; 
XminyCallbackStruct cbs; 
{ 

String str =IULL, stri; 
int i, sacanf_ret; float test_angle; 
if( !XtIsSubclass(text, xmTextYidgetClass) 81 

!ItlsSubclass(text, xmiextFieldWidgetClasa) ) 

return; 
XtVaGetValues(tat, Imlvalue, tatr, LULL); 
if( Str == IULL ) 

return; 
stri = (String) malloc(sizeof(char) (strlen(str) + 2)); 
strcpy( otri, str ); 
if( model- )anglee == NULL ){ 

model ->num_anglee = 10; 
model -> angles = (float e) malloc(eizeof(float) a model- >num_angles); 

} 

i =0; 
while( (sscant_ret = secant (strl, "%f X[ -, \n] ttest_angle, stri)) > 0 ){ 
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if( i > model- >num_angles ){ 
model- >num_anglea + 10; 
model->anglea (float ) realloc(model- >anglea, 

sizeof (flost)model- >num_angles); 
} 

model- >anglee[i] - teat_angle; 
i + +; 

if( secanf_ret 1 ) 

break; 

model ->num_ angles i; 

free( atri ); 

) 

static void set_greys( text, model, cbs ) 

Widget text; 
GreyModel +model; 
XmAnyCallbackStruct cbs; 
{ 

String str =LULL, strl; 
int i, secant_ret, test_grey; 

if( ! XtlsSubclass(text, xmTextWidgetClass) tt 
!XtIeSubclaae(text, xmTextFieldWidgetClass) ) 

return; 

XtVaGetValues(text, Xmlvalue, tstr, FULL); 
if( str = IULL ) 

return; 

atri (String) malloc(sizeof(char) (etrlen(str) + 2)); 
strcpy( atri, str ); 

if( model- >greys.inp FULL ){ 
model- >num_greys - 10; 
model->greya.inp - (int ) malloc(sizeof(int) model- >num_greys); 

} 

i 0; 
chile( (eecanf_ret - secant(strl, "Xd %[ ", \n] ", tteat_grey, atrl)) > 0 ){ 

it( i > model- >num_greye ){ 
model- >num_greys +. 10; 

model ->greys.inp (int ) realloc(model- >greys.inp, 
sizeof(int)model- >num_greye); 

} 

model- >greys.inp[i] = test_grey; 
i + +; 

if( sacanf_ret 1 ) 

break; 
} 

model- >num_greya i; 

free( atri ); 

} 

static void set_radial_mode_cb( e, model, cbs ) 

Widget e; 
GreyModel model; 
XmToggleButtonCallbackStruct cbs; 
{ 

if( cbs->aet ) 

model ->mode I= GMODEL_MODE_t; 
else 

model -)mode t " GMODEL_MODE_B; 
} 

static void set_angles_mode_cb( a, model, cbs ) 

Widget w; 
GreyModel *modal; 
XmToggleiuttonCallbackStruct cbs; 
{ 

if( cbe -)set ) 

model ->mode I. GMODEL_MODE_A; 
else 

model ->mode 5e "GMODEL MODE_A; 
] 

static void set_greys mode_cb( e, model, cbs ) 

Widget e; 
GreyModel *model; 
XmToggleButtonCallbackStruct cbs; 
{ 

if( cbe -)set ) 

model ->mode I= GMODEL_MODE_0; 
else 

model ->mode 5e " GMODEL_MODE_G; 
} 

static void set_senaitiva cb( w, widget, cbs ) 

Widget w; 
Widget widget; 
XmToggleButtonCallbackStruct cbe; 
( 

if( cbs ->set ) 

XtSetSensitive(widget, False); 
else 

XtSetSensitive(vidget, True); 
} 

static Widget create_model_dialog( topl, model ) 

Widget topi; 
GreyModel 'model; 
{ 

Widget dialog, control, widget, widg, frame, checkbar; 
char str[256]; 
int i; 

dialog = HGU_XmCreateStdDialog(topl, "create_model_dialog", 
xmFormWidgetClass, NLL, 0); 

control = XtlameToWidget( dialog, "...control" ); 

frame XtVaCreateManagedWidget ( " freme", xmFrameWidgetClase, control, 

XmlahadowType, XmSHADOW_ETCHED_II, 

FULL); 

checkbar - XtVaCreateManagedWidget ( "checkbar ", xmFormWidgetClass, trame, 
XmltractionBase, 3, 
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XmlborderWidth, 0, 

LULL); 

str[0] = ' \0'; 
for(i =0; i < model- >num_radii; i + +) 

aprintf( str, "%s%.12 ", str, model- >radii(i] ); 

widget = HGU_XmCreateTestLine( "radii ", control, str, 
set_radii, (XtPointer) model ); 

(void) XtVaSetValues(vidget, 
XmltopAttachment, XmATTACH_FORM, 
XmlleftAttachment, ImATTACH FORM 
XmlrightAttachment, XmATTACR_FORI(, 

NULL); 
vidg - widget; 
if( model- >mode *GMODEL_MODE_R ){ 

XtSetSensitive( widg, False ); 

} 

widget XtVaCreateManagedVidget ("radial_mode ", rmtoggleButtonGadgetClass, 
checkbar, 
XmltopAttachment, XmATTACH_FORM, 

Xm11eftAttachment, timAT ACH_POSITION, 
XmlrightAttachment ,XmATTACHFOSITIOI, 
XmlleftPosition, 0, 

{, 

IULL); 
XtAddCallback(vidget, XmlvalueChangedCallback, set_radial mode cb, 

(XtPointer) model ); 

XtAddCallback(vidget, XmlvalueChangedCallback, set_sensitive_cb, 
(XtPointer) widg ); 

if( model- >modekGMODEL_MODE_R ){ 
XmToggleButtonSetState( widget, True, False ); 

} 

str(0] ' \0'; 
for(i.0; i < model- >num_angles; i++) 

aprintf( str, "Xs%.1f ", str, model- >angles(i] ); 

widget - HGU_XmCreatetestLine( "angles ", control, str, 
set_angles, (XtPointer) model ); 

(void) XtVsSetValues(vidget, 
XmltopAttachment, ImATTACH_WIDOET, 
ImltopVidget, vidg, 
XmlleftAttachment, XmATTACH FORM 
XmlrightAttachment, XmATTACH FORD, 
NULL); 

vidg widget; 
if( modal- >modetOMODEL_MODE_A ){ 

XtSetSensitive( widg, False ); 

} 

widget ItVaCreateManagedwidget ("angleamode ", xmToggleButtonCadgetClass, 
checkbar, 
XmltopAttachment, XmATTACH_FORM, 
XmlbottomAttachmentJ XmATTACH FORM 
XmlleftAttachment , XmATTACH_POSITÍOI, 
XmlrightAttachment ,XmATTACH_POSITIOI, 
ImlleftPosition, 1 

IslrightPosition, 2, 
FULL); 
XtAddCallback(vidget, XmIvalueChangedCallback, set_anglea mode_cb, 

(XtPointer) model ); 

ItAddCallbnck(widget, XmlvalueChangedCallback, set_sensitive_cb, 
(XtPointer) vidg ); 

if( model- >modekGMODEL_MODE_A ){ 
XmToggleButtonSetState( widget, True, False ); 

} 

atr[0] - ' \0'; 
for(i =0; i < model- >num_greys; i + +) 

aprintf( str, " %sad ", str, model- >greys.inp(i) ); 
widget s HOU_XmCreateTeztLine( "greys ", control, str, 

set_greys, (XtPointer) model ); 
(void) XtVaSetValues(vidget, 

XmltopAttachment, XmATTACH _WIDGET, 
XmltopVidget, vidg, 
XmlleftAttachment, XmATTACH FORM 
XmlrightAttachment, ImATTACR_FORM, 
IULL) 

widg - widget; 

if( model- >modetGMODEL_MODE_0 ){ 
XtSetSensitive( vidg, False ); 

} 

widget XtVaCreateManagedwidget( "greys mode ", zmToggleButtonOadgetClass, 
checkbar, 
XmltopAttachment, XmATTACH_FORM, 
XmlbottomAttachment ImATTACH FORM 
ImlleftAttachment, XaATTACH_POSICÎOF, 
XmlrightAttachment ,XmATTACHFOSITION, 
XmIleftPosition, 2 
XmlrightPosition, S, 
NULL); 
XtAddCallback(vidget, XmlvalueChangedCallback, set_greys mode_cb, 

(XtPointer) model ); 

XtAddCallback(vidget, XmlvalueChangedCallback, set_sensitive_cb, 

(XtPointer) vidg ); 

i2( model- >modetOMODEL_MODE_G ){ 
XmToggleButtonSetState( widget, True, False ); 

(void) 

} 

ImltopAttachment. XmAATTACH VIÓGET, 

Xmltopwidget, vidg, 
XmIleftAttachment, XmATTACH FORM 
XmlrightAttachment, XmATTACR FORA, 
NULL); 

XtManageChild( dialog ); 
return( dialog ); 

} 

/e action and callback procedures / 
void create_model cb(v, client_data, cbe) 
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Widget v; 
XtPointer client_data; 
XmAnyCallbackStruct cbs; 
{ 

Widget dialog; 
String name, title; 
GreyModel *model; 
GREYP greyp; 
int i; 

I. get the modal name of 
if( (name RGV XmUserGotstr(globals.topl, 

"Type in the model name: ", "0k ", "Cancel ", 
IULL)) .. NULL ) 

return; 
for(i'0; i < strlen(neme); i + +) 

name(i] (name[i] " ' ') ? name(i]; 

fo check existing / 
for(i0, model'IULL; i < globals.num_models; i + +){ 

if( strcmp(name, globale.models[i]- >name) " 0 ) 

model globale.models[i]; 
} 

ifs model == lULL ){ 
greyp.inp ' def_greys; 
model ' GreyNodel_make(GMODEL_RADIAL, GMODEL_MODE_GIGNODEL MODE_R, 

name, 
def_redii, def num_radii, 
def_angles, da_num_angles, 
IIT GREY, greyp, def num_greys); 

} 

if( i > globala.maz num_modela )( 
globels.max_num models 16; 

globale.modela (GreyModel ) 
realloc(globals.models, sizeof(GreyModel ) 
global. max num models); 
} 

globale.modela(i] model; 
if( globala.num model. <. i ) globala.num_models i +1; 

/ get structural parameters of 

dialog ' create model_dialog( globals.topl, model ); 

title (String) malloc(sizeof(cher) (strlen(name) + 32)); 
aprintf( title, "Xa modal parameters ", name ); 

XtVaSetValuea( dialog, Xmltitle, title, LULL ); 

(void) HGU_XmDialogConfirm(dialog, LULL, LULL, 
XmDIALOC FULL_APPLICATIOI MODAL ); 

XtDeatroyWidget( dialog ); 

free( title ); 

XFree( name ); 

return; 
} 

float vtz diat(type, v1, v2) 
int typa; 
atruct ivertex v1; 
atruct ivertex 0v2; 
{ 

float dist; 
double dx, dy; 
atruct fvertex fv1, efv2; 

switch( type )( 
default: 
case 1: 

dx vi ->vtl - v2 ->vtX; 
dy v1- >vtY - v2 ->vtY; 
break; 

case 2: 
Iv1 (atruct (vertex ) v1; 

fv2 ' (atruct fvertex ) v2; 
dx fv1 ->vtX - fv2 ->vtX; 
dy 1v1 ->vtY - fv2 ->vtY; 
break; 

dist egrt( dxdx + dydy ); 

return( dist ); 

} 

int displey_inetancamarker( dpy, vin, gc, gminst, intens, pf ) 

Display dpy; 
Window vin; 
GC gc; 
Graylodellnatance gminat; 
int intens; 
atruct pframe opf; 
{ 

struct ivertex ivtx; 
char str[32]; 

ivtz.vtl gminat->centre.vtl; 
ivtx.vtY gminst->centre.vtY; 
aprintf(str, "(X.21, X.2f)", gminst->centre.vtl, gminat->centre.vtY ); 

(void) intensGC( dpy, gc, intens ); 

picvtx_X( dpy, vin, gc, tivtx, pf ); 

picstr_X( dpy, vin, gc, gminat->model->name, tivtx, pf ); 

pf->dy - 96; 
picstr_I( dpy, vin, gc, etr, kivtx, pf ); 

pf->dy + 96; 
(void) intena GC( dpy, gc, 1 ); 

} 

f action procedure to create a model instance of 
static void gat model_instance( v, event, parama, num_parame ) 

Widget v; 
XEvent avant; 
String *parents; 
Cardinal num_parame; 
{ 

Display odpy XtDiaplay( v ); 

Window sin ' XtWindov(e ); 
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GreyModel *model; 
int 1; 
struct object start_obj, obj; 
struct polygondomain polydmn; 
struct fvertex vtx, start_vtz, nev vtx, fvtx; 
struct ivertex ivtx; 
OreyModelInstance ..gminst; 
int a, r, g, k; 

float ...feats; 
GREY? greyp; 
TrainingSet tr_set; 
Window mag_vin; 
struct pframe mag_pf; 

fprintf (stderr, "getmodel_instance: create Xs instance \n ",params[0]); / get the model structure of 
for(i -0, model=IULL; i < globals.num_models; i + +){ 

if( strcmp(params[0), globals.models(i)- >name) 0 ) 

model globals.models[i]; 
} 

if( model NULL ){ 
tprintf(stderr, "get model_instance: Xs - no such model \n "); 
return; 

} 

fo get the training set of 
for(i=0, tr_set1ULL; i < globals.num_tr_sets; i + +){ 

if( atrcmp(model- >name, globnls.tr_sets[i].model_name) _= 0 ) 

tr_set - k(globals.tr_sete(i)); 
} 

/. get the centre vertex and check for existing instance of 
vtx.vtX - event- >xbutton.y; 
vtx.vtY - event ->xbutton.y; 
start_vtx vtx_X_to_v( dpy, vin, kvtx, globals.pf ); 
gminst NULL; 

if( tr_set != IULL ){ 
for(i=0; i < tr_set- >num_data; i + +){ 

if( strcmp (tr_set- >data[i]- >fileneme, globals.file) ) 

continue; 
if( vtx_dist(2, start_vtx, tr_set- >data[i] -> centre) < 10.0 ){ 

int j; 

into.vtl tr_set->data[i]->centre.vtX; 
ivtx.vtY tr_set->data(i)->centro.vtY; 
gminst = tr_set->dnta[i]; 
display_instance_marker(dpy, vin, globals.gc_ovly, 
gminst, 0, globnls.pf ); 

float2free( gminst->feats ); 

for(ji +1; j < tr_set->num_data; j + +) 

tr_set->data[j-1] tr_set->data[j]; 
tr_set- >num_data --; 
break; 

} 

} 

} 

/o get a magnified window of 
mag_vin HGU_XCreateMagWin(dpy, vin, event- >xbutton.y, 

event- >xbutton.y, 128, 128, 8, 0); 

mag_pf (globals.pf); 
mag_pf.scale o- 8; 

mag_pf.dx 128.8.6/2; 
mag_pf.dy 128.8.6/2; 
mag_pf.ox - start_vtx->vtX; 
mag_pf.oy start_vtx->vtY; 

/o get actual centre and direction of 

polydmn makepolydmn(2, NULL, 0, 2, 1); 

polydmn- >nvertices 1; 

((struct fvertex 0) polydmn- >vtx)[0] . start_vtx; 
start_obj makemain(10, polydmn, NULL, NULL, NULL); 
obj interact_poly, X(dpy, mag_vin, 0, 0, kmag_pf, start_obj); 
freeobj( start_obj ); 

free( start_vtx ); 

if( obj == NULL ){ 

(void) HGU_IDestroyYindov( dpy, mag_vin ); 

return; 
} 

if( ((struct polygondomain ) obj- >idom)- >nvertices < 2 ){ 

(void) HGU_XDestroyWindov( dpy, mag_vin ); 

freeobj( obj ); 

return; 
} 

polydmn (struct polygondomain ) obj- >idom; 
fo create an instance record of 
if( gminst -= NULL ) 

gminst (GreyModellnetance ) malloc (sizeof(GreyModellnstance)); 
gminst ->type model- >type; 
gminst->linkcount 0; 

if( globals.file ! NULL ){ 
gminst->filename (char ) malloc(sizeof(char) 

(strlen(globals.file) + 2) ); 

strcpy(gminet ->f ilename, globals.file); 
} else { 

gminst->filename NULL; 

} 
gminst->model = model; 
model- >linkcount + +; 
fvtx (struct fvertex ) polydmn ->vtx; 
gminst- >centre - fvtx; 
gminst->angle (float) atan2((double) (fvtz[1].vtY - fvtz[0].vtY), 

(double) (fvtx[1].vtX - fvtx[0].vtt)); 
if( globals.obj != NULL ){ 

gminst->grey_type (globals.obj- >vdom- >type) % 10; 

greyp.inp greyval(globals.obj, (int) fvtx[0].vtY, (int) fvtx[0].vtI); 

switch( gminst->grey_type ){ 
default: 
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case IlT_GREY: 
gminst- >centre_grey.inv greyp.inp; break; 

case SHORT GREY: 
gminst- >centre_grey.ahv greyp.ehp; break; 

case UBYTE_GREY: 
gminst- >centre_grey.ubv greyp.ubp; break; 

case FLOAT_GREY: 
gminet- >centre_grey.f1v greyp.flp; break; 

} 

if(model- >num_greya ! 0) 
float2alloc( t(gminst -> feats), 

model ->num_ angles model ->num_radiimodel->num_greys, 3 ); 
else 

float2alloc( t(gminst- )feats), 
model ->num_anglesmodel- >num_radii, 3 ); 

feats gminst -> feats; 

/ display each radial line if required, 
put up a text message showing feature index and other info 0/ 

ivtx.vtX gminst- >centre.vtX; 
ivtx.vtY gminst- >centre.vtY; 
picvtx_X( dpy, mag_vin, globals.gc_ovly, tivtx, kmag_pf ); 

display_instance_marker(dpy, vin, globals.gc_ovly, 
gminst, 1, globals.pf ); 

for(a0, k0; a < model- >num_angles; a + +){ 
/0 display the radial line o/ 
float radius; 
double theta; 
if( !(model- >modetGMODEL_MODE_A) ){ 

theta gminst- >angle + model->angles[a]0M_PI /180; 
} 

fvtx[1].vtX fvtx[0].vtX + (50.0 cos(theta)); 
fvtx 1].vtY fvtx[0].vtY + (50.0 sin(theta)); 
poly n- >nvertices 2; 

picframe_X(dpy, mag_vin, globals.gc_ovly, obj, kmag_pf); 

for(r0, radius0.0; r < model- >num_radii; r + +){ 
/ display radial positions 0/ 
radius + model- >radii[r] - (r ?model- >radii[r- 1]:0.0); 

if( model- >modetGMODEL_MODE_R ) 

if( strcmp( "IOneuron ", model- >name) 0 ){ 

vtx.vtX gminst- >centre.vtl + radiuscos(theta); 
vtx.vtY gminst- >centre.vtY + radiussin(theta); 

} 

else{ 
vtx.vtX gminst- >centre.vtI + radiuscos(theta); 
vtx.vtY gminst- >centre.vtY + radiussin(theta); 
start_vtx interact_fvtx_X(dpy, mag_vin, 0, 0, kmag_pf, tvtx); 
if( start_vtx IULL ){ 

/0 should free space 0/ 

(void) HOU_XDestroywindov( dpy, mag_vin ); 

return; 
] 

radius vtz dist(2, t(gminat- >centre), start_vtx); 
vtx.vtX start vtx ->vtX; 
vtx.vtY start_vtx->vtY; 

] 

free( start_vtx ); 

} 

ivtx.vtX gminst- >centre.vtX + radius cos( theta ); 

ivtx.vtY gminst- >centre.vtY + radius sin( theta ); 

picvtx_I( dpy, mag_vin, globals.gc_ovly, tivtx, kmag_pf ); 

for(g0; g < model- >num_greys; g+ +, k + +){ 

/ get vertex and grey value 0/ 

feats(k)(0] theta - gminst- >angle; 
feats[k][1] radius; 
if( globals.obj ){ 

int g4[4]; 
float dx; 

ivtx.vtl vtx.vtx; 
ivtx.vtY vtx.vtY; 
grey4val(globals.obj, ivtx.vtY, ivtx.vtX, í(g4[0])); 
dx vtx.vtX - ivtx.vtX; 
dy vtx.vtY - ivtx.vtY; 
feats[k][2] ((1 -dy) ((l- dx)g4[0] + dx0g4[1]) + 

dy ((l- dx)0g4(2) + dx0g4[3])); 

else { 

feats[k][2] 0.0; 

float dy; 

} 

} 

(void) HOU_IDestroyVindov(dpy, mag_vin); 

/0 add to training set / 
if( tr_aet NULL ){ 

if( i > globals.max_num_tr_sets ){ 
globals.max_num_tr_sets + 16; 
globals.tr_sets (TrainingSet ) 

realloc(globals.tr_sete, sizeof(TrainingSet) 

globals.max_num_tr_sets ); 

} 

tr_sat t<globale.tr_sets[i]); 
globals.num_tr_sets i+1; 

tr_set->type model->type; 
tr_set->linkcount 0; 
tr_set->model_name model->neme; 
tr_set->num_data 0; 
tr_set->max_num_data 84; 

tr_set->data (OreyModellnstance ) 
malloc(sizeof(OreyHodellnstance ) tr_set->maz_num_data ); 

} 

if( tr_set->num_data > tr_set->max_num_data ){ 
tr_set->mex_num_data + 84; 
tr_set->data (OreyModellnetance ) 
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realloc(tr_aet->data, sizeof(GreyModelInstance ) 
tr_aet->maz_num_data ); 
} 

tr_set->data[tr_sat->num_data] gminst; 
tr_set->num_data++; 

} 

static XtActionsftec gat model actions[] { 

{ "get_model_instance ", get model_instance }, 
}; 

static void inatall_get model_tranelations( widget, model ) 

Widget widget; 
GreyModel °model; 
{ 

XtTranslations translations; 
static int action_proc_addeá0; 
String translations_table; 

/ install the get_model_instance action procedure / 
if( !action_proc_added ){ 

ItAppAddActions(globals. app con, get_model_actions, 
Xtlumber(get modelactione)); 
action_proc_added 1; 

} 

/ install the translation table on the vork_area / 
translations_table (String) malloc((strlen(model- >name) + 100) 

eizeof(char) ); 

sprintf(translations_table, "<BtniDown >,<Btn1Up>: getmodel_inetance(%o) ", 
model- >name); 
translations ItParseTranolationTable( translations_table ); 
XtOverrideTranslatione( globals.canvas, translations ); 
free( translations_table ); 

void model_create_instance_cb(v, model, cbs) 
Widget w; 
GreyModel *model; 
ImToggleButtonCallbackStruct ocbs; 
{ 

if( cbs-)sat ! True ) 

return; 

inetall_getmodeltranslations( globals.canvas, model ); 

} 
static Widget create_model_selection_panel( topl, models, num_models ) 

Widget topl; 
GreyModel "models; 
int num_models; 
{ 

Widget dialog, control, midget; 
Menultem *items; 
int i; 

dialog HGU_ImCreateStdDialog(topl, "create model_eelection dialog ", 
rmFormWidgetClass, NULL, 0); 

XtvaSetValues(dialog, Xmltitle, "Select model for training ", NULL); 

control s ItlameToWidget( dialog, "...control" ); 

items (Menultem s) malloc(sizeof(Menultem) (num models +l) ); 

for(i0; i < num_models; i + +){ 
items(i).same models[i]- >name; 
items[i].mnemonic 0; 

items[i]. accelerator NULL; 
items[i].accel_tezt NULL; 
items[i]. callback model_create_instance_cb; 
items[i]. callback data (XtPointer) models[i]; 

} 

items [i] .name s NULL; 

MGU_XmCreatePB_Badio( "select model ", control, items, -1 ); 

widget XtlameToWidget(dialog, "0k "); 
ItAddCallback( widget, XmlactivateCallback, UninstallTranslationsCallback, 

(XtPointer) globals.canvas); 

widget ItlameToWidget(dialog, "..Cancel"); 
XtAddCallback( widget, XmlactivateCallback, UninstallTranslationsCallback, 

(XtPointer) globals.canvas); 

XtManageChild( dialog ); 

return( dialog ); 

} 

void train_model_cb(v, client_data, cbs) 
Widget v; 
XtPointer client_data; 
XmAnyCallbackStruct chs; 

{ Widget dialog, widget; 

/ set up selection panel / 
dialog create model _selection_panel(globals.topl, globals.models, 

globale.num models ); 

widget XtlameTovidget(dialog, "Ok "); 
XtAddCallback(vidget, XmlactivateCallback, 

SetSensitivsCallback, XtParent(v) ); 
XtAddCallback(vidget, XmlactivateCallback, DestroyWidgetCallback, 

XtParent(dialog) ); 

widget XtlameToWidget(dislog, "...Cancel"); 

ItAddCallback(vidget, XmlactivateCallback, 
SetSensitiveCallback, XtParent(v) ); 

XtAddCallback(vidget, XmlactivateCallback, DestroyWidgetCallback, 

XtParent(dialog) ); 

XtSetSensitive(XtParent(v ), False ); 

XtManageChild( XtParent(dialog) ); 

return; 
} 

void shape model_simulation_cb(v, client_data, cbs) 
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Widget v; 
XtPointer client_data; 
XmAnyCallbackStruct .cbs; 
{ 

char str[128]; 
String filename, model_name; 
static String oldfile IULL; 
FILE fp; 
int i, j,k,o, count; 
int num_data, num_angles18, num_rad =3, num_feats, greyt=3; 
float p,q; 

float col, col, cX, cY; / offset coordinates of 
/ nucleous radius (R), nucleolous radius (r) and of 

/ distance between offset and nucleolous centre point (d) of 
float Rs, Ry, Rmin, Amax, Rnoise, r, rmin, max, d; 
float x, y, Xmas, min; 
float angle0, ...angles; 

float gr1 =100, gr2.0, gr3 =0, no_pos; 
float *feats, temp, tanthe, a, b, c, kons =100; 
double theta; 
f get the filename of 
model_name - "nocell_sh "; 
sprintf(atr, "Input filename for \ "Xs \ " \n training data ", model_name); 
if( oldfile = NULL ){ 

oldfile = (String) malloc( sizeof(char).18 ); 
(void) sprintf( oldfile, "Xs.tr ", model_name ); 

} 

filename HGU_RmUeerGetatr( globals. topi, str, "0k ", "Cancel ", oldfile ); 
if( filename IULL ) 

return; 
free( oldfile ); 
oldfile filename; 

/ write the data u/ 
if( (fp fopen(filenme, "w ")) . IULL ){ 

sprintf(str, "Can't open Sils: \n Xs ", filename); 
HGU_XmUaerinfo(globals. topa, str, XmDIALOG _FULL_APPLICATIOI_MODAL); 
return; 

} 

ISErr (angles new_array_of(num_angles, FLOAT)){ 
fprintf(stderr, "not enough core for angles array \n "); 
exit(1); 

} 

f. write_ahape_set of 
fprintf(fp, "Training set for model: Xs \n ", model_name); 
fprintf(fp, "num_radii: Xd \nradii: ", num_rad); 
fprintf(fp, " variable "); 
fprintf(fp, " \n" ); 

fprintf(fp, "nm_angles: Xd \nangles: ", num_englea); 
num_feats = 2.nm_radnum_angles +l; 
for (i0; i< nm_angles; i + +){ 

angles[i]. angle; 
fprintf(fp, " Xf ", angles[i] ); 

angle +360 /num_angles; 
} 

fprintf(fp, " \n "); 

fprintf(fp, "nm_greys: 1 \n" ); 

fprintf(fp, "greys: variable \n" ); 
coX = 500.0; 
coY 500.0; 
Rmin 5.0; Rams 20.0; 
min 1.0; relax Amin; 
d =0.0; 
num_data 2(Rmax- Rmin).2(maz -min); 

/ last Rmin is the range of distances 

between the offset and the nucleous centre point of 

fprintf(fp, "numData: Xd \n ", num_data ); 

for(pRmin; p<Rmax; p + =0.5){ 

for(qmin; q<maz; q +.0.5){ 
fprintf(fp, "filename: simulated_ahapee \n "); 

req; Ryp; Rz1.5Ry; 
f adding some random noise to Rx and Ry of 

Rnoise - rand() /100000000; 
if(Rnoise<0) Rnoise= 0.0; 
if(Rnoise >(Ry0.40)) Rnoise.Ry0.40; 
Ry +Rnoise; 

fprintf(stderr, "noise Ry Xf, Ry Xf \n ", Rnoise, Ry); 

Rnoise rand() /100000000; 
if(Rnoise<0) Rnoise. 0.0; 
if(Rnoiae>(Rx0.40)) RnoiseRx0.40; 
Rx +Rnoise; 

fprintf(stderr, "noise Rx - Xf, Rs Xf \n ", Rnoise, Ru); 

/o end random to Rx and Ry of 
cl col; 
cY coY; 
fprintf(fp, "centreXY: Xf Xf \n ", cl, cl); 

fprintf(fp, "angle: 0.0 \n "); 

fprintf(fp, "grey type: Xd \n ", greyt); 

fprintf(fp, "begin features: \n" ); 

gr3 rand() /10000000; /o non -negative random value / 
if(gr3>256) gr3. 268.0; 

if(gr3<0) gr3 0.0; 

grl rand() /10000000; 

if(grl > 256) grl 256.0; 

if(grl < 100) grl 100.0; 

gr2 randO /10000000; 
if(gr2 > 100) gr2 100.0; 

no_pos 0; 

fprintf(fp, " X6.3f ",gr1); f nucleolous centre point of 
for(j=0; j < nm_angles; j + +){ 

theta M PI.angles[j] /180; / convrt deg -> rad of 

tenth* tan(theta); 
temp(Rx.Rx)tanthetanthe; 

aRyRy +tamp; 
b0- 2.dtemp; 
c =temp.d.d- (RxRzRyRy); 
tempbb- (4.ac); 
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if((angles[j] >90)tt(angles[j] < 270)){ 
xmin(-b-sgrt(temp))/(2a); 
xxmin; 

} 

} 

} 

else{ 
xmax(- b +agrt(temp)) /(2a); 
xxmax; 

y tanthe(x-d); 
tempyy+((x-d)(x-d)); 
tempsqrt(temp); 

fprintf(fp, " X6.3f", r); 
fprintf(fp, " X6.3f", gri); 
fprintf(fp, " %6.3f", temp); 
fprintf(fp, " X6.3f", gr2); 
fprintf(fp, " X6.3f", temp); 
fprintf(fp, " %6.3f", gr3); 

} 

if(Ru -d > r) d + 0.5; 
else d 0; 

fprintf(fp, " \n "); 

fprintf(fp, "end features \n "); 
} 

} 

fclose( íp ); 

E.2 PCA 

Function : pca.c 

Last Update : Thu Mar 20 15:41:08 1997 

Synopsis : Performs Principal Components Analicis (PCA) 
Based on the public Stolcke's PCA program 

Model instances generator (MIG model display funct), 
new instances of the Grey_level model are generated 

using the main modes of variation obtained with PCA o 

Project : Model Based System for Biomedical Image Analysis 

System Title : Gmodel 

Authors Rocio Aguilar Chongtay and Richard Baldock 

static char Scceld[] "XZXXM% XIX(XGX) - RACH "; 

*include <stdio.h> 

*include <math.h> 

*include <string.h> 

*include <gmodel.h> 

*include <alloc.h> 

*include <error.h> 

*include <pca.h> 

computational subroutines for PCA 

static int 

covarianca(vecs, m, con, n, meanv, etdev) 

FLOAT vece, coy, meanv, atdev; 
int m, n; 

{ 

FLOAT *ever; 

int i, j, k; 

IfErr (sear new_arrey_of(n, FLOAT)) 

Erreturn( "not enough core "); 

/ compute means / 

for (i 0; i < n; i + +) { 

FLOAT sum - 0.0; 

int 1 0; 

for (k 0; k < m; k + +) { 

*ifndef BO_DOITCARES 

if ( ! IS_DC(vecs[k][i]) ) 

*endif 

sum + vecs[k][i]; 
1 + 1; 

} 

} 

meanv[i] sum / (1 ! 0 '. 1 1); 

*ifndaf *0_DOITCARES 
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/0 replace all D /C's ay the mean on that dimension / 
for (k 0; k < a; k++) 

if ( IS_DC(vecs[k][i]) ) 

voce(k][i] meanv[i]; 
fendif 

} 

/0 calculating std 0/ 

for (i 0; i < n; i++) { 

FLOAT sumdev 0.0; 

for (k 0; k < m; k++) { 

sumdev (vecs[k][i]-mesnv[i]); 
svar[i] + sumdesumdev; 

} 

avar(i] I. (m-1); 

stdev(i) sgrt(svar[i]);íflush(stdout); 
} 

/ compute covariance 0/ 
for (i 0; i < n; i + +) 

for (j 0; j < i; j + +) 

cov[i](j] 0.0; 

for (k 0; k < m; k + +) 

for (i 0; i < n; i + +) 

for (j 0; j o- i; j + +) 

cov[i](i) + (vecs[k][i] - meanv[i]) 
(vecs[k](j) - msanv(j]); 

for (i 0; i < n; i++) { 

Sor (j 0; j < i; j++) 

covCil[j] / : 
cov[j'][i] cov[i](j]; 

} 

cov(i)(i] / m; 
} 

free(ovar); 

return RT_OI; 
} 

static int 
jacobi(a, a, d, v, nrot) 

FLOAT CCa, 40; 
double Cv; 
int a, Corot; 

{ 

int j, iq, ip, i; 

FLOAT b, z; 

IfErr (b nev_array_of(n, FLOAT)) 
Erreturn( "not enough core "); 

IfErr (z nev_array_of(n, FLOAT)) 
Erreturn( "not enough core "); 

for (ip 0; ip < n; ip++) { 

for (iq 0; iq < n; iq++) 

v(ip](iq] 0.0; 

v(ip][ip] 1.0; 

} 

for (ip 0; ip < n; ip++) { 

b[ip] d(ip] n[ip)[ip]; 

z[ip] 0.0; 
} 

nrot 0; 

for (i 1; i < S0; i++) { 

FLOAT trash; 

FLOAT sm 0.0; 

for (ip 0; ip<n -1; ip») { 

for (iq ip 1; iq < a; iq++) 

St +- fabs(a(ip](iq)): 
} 

if (ma >a 0.0) { 

r «(z); 
r «(b); 
retare RT_OI; 

} 

if (i < 4) 

trash 0.2 sa / (z z); 

else 

trash 0.0; 

for (ip O; ip < n 1; ire.) { 
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for (iq . ip + 1; iq < n; iq + +) { 

FLOAT g 100.0 fabs(a[ip][iq]); 

if (i > 4 At 

fabe(d(ip]) + g .. fabs(d[ip]) kt 
fabe(d[iq]) + g .. febs(d(ig])) 
a[ip](iq] 0.0; 

else if (fabs(a(ip](iq]) > trash) { 

FLOAT tau, t, s, c; 

FLOAT h d(iq] - d[ip]; 

if (fabs(h) + g .. fabe(h)) 
t (a[ip][iq]) / h; 

else { 

FLOAT theta 0.5 h / (a(ip][iq]); 
t . 1.0 / (fabs(theta) + egrt(1.0 + theta theta)); 
if (theta < 0.0) 

t . -t; 

} 

c 1.0 / sqrt(1 + t t); 
s t c; 

tau s / (1.0 + c); 

h t a[ip] [ig] ; 

z(ip] - h; 
z[iq] +. h; 

d(ip] - h; 
d(iq] +. h; 

a[ip](iq] 0.0; 

idei ina rotate(a,i,j,k,l) \ 

g a[i](j]; \ 

h a[k] (1] ; \ 

a(i](j] g - s (h + goteo); \ 
a(k)[1] h + s(g - htau); 

for (j 0; j < ip; j++) { 

rotate(a, j, ip, j, iq) 
} 

for (j ' ip + 1; j < iq; j++) { 

rotate(a, ip, j, j, iq) 
} 

for (j iq + 1; j < n; j++) { 

rotate(a, ip, j, iq, j) 
} 

for (j 0; j < n; j++) { 

rotate(v, j, ip, j, iq) 

} 

nrot + 1; 
} 

} 

} 

for (ip 0; ip < n; ip + +) { 

blip] + z[ip]; 
d(ip] b[ip]; 
z[ip] 0.0; 

) 

Erreturn( "too many Jacobi iterations "); 

static void 
eigert(d, v, n) 

FLOAT d(]; 

double v; 
int n; 

{ 

int k, j, i; 

for (i 0; i < n - 1; i++) { 

FLOAT p d(k i]; 

for (j i + 1; j < n; j++) 

it (d(j] > p) 
pd[k j]; 
if (k ! i) { 

d[k] d[i]; 
d(i) p; 

for (j 0; j < n; j++) { 

p v[jl(i]; 

v(j][i] v(j][k]; 

v[j](k] . p; 
) 

} 
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static int 

gauaejt(a, n, b, m) 

FLOAT a, b; 
int n, m; 

{ 

int .indic, indxr, ipiv; 
int i, j, k, 1; 

IfErr ( indxc nev array of(n, int)) 
Erreturn( "not enough core "); 

IfErr (indor nevarray_of(n, int)) 
Erreturn( "not enough core "); 

IfErr (ipiv nev_array_of(n, int)) 
Erreturn( "not enough core "); 

for (j 0; j < n; j + +) 

ipiv[j] 0; 

for (i 0; i < n; i + +) ( 

int icol, iron, 11; 

FLOAT pivinv; 
FLOAT big 0.0; 

for (j 0; j < n; j + +) 

if (ipiv[j] ! 1) 
for (k0; k<n; k + +) { 

if (ipiv[k] 0) { 

if (febs(a[j][k]) > big) ( 

big tabe(a[j][k]); 
iron j; 

icol k; 

} 

} 

else if (ipiv[k] > 1) 

Erreturn( "singular matrix "); 
} 

ipiv[icol] + 1; 

*define svap(a,b) { \ 

FLOAT temp (a); \ 

(a) (b); \ 

(b) temp; \ 

} 

if (iron ! icol) { 

for (1 0; 1 < n; 1++) 

svap(a[irov][1], a[icol][1]); 
for (1 0; 1 < m; 1 + +) 

svap(b[1][irov], b[1][icol]); 
} 

indxr[i] iron; 

indxc[i] icol; 

if (a[icol][icol] 0.0) 

Erreturn( "singular matrix "); 

pivinv 1.0 / a[icol][icol]; 

a[icol][icol] 1.0; 

for (1 0; 1 < n; 1 + +) 

a[icol][1] pivinv; 

for (1 0; 1 < m; 1 + +) 

b[1]licol) on pivinv; 

for (11 0; 11 < n; 11++) 

if (11 !. icol) { 

FLOAT dum a[11][icol]; 
a[11][icol] 0.0; 

for (1 0; 1 < n; 1 + +) 

a[11][1] - a[icol][1] dum; 

for (1 0; 1 < m; 1 ++) 

b[1][11] - b[1][icol] dum; 
} 

} 

for (1 n - 1; 1 >. 0; 1 --) { 

if (indir[1] ! indxc[1]) 
for (k 0; k < n; A + +) 

snap(a[k][indxr[1]], a[k][indxc[1]]); 
} 

free(ipiv); 

free(indxr); 
free(indxc); 
return MT_OK; 

} 

/0 this vas declared as static int before o/ 

float calculate_veights(eigvecs, n, ovecs, m, meanv) 
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{ 

double eeigvecs; 
FLOAT eovecs, meanv; 
int n, m; 

int i, k, j; 

FLOAT sorest, evect, enewvec, sumpb, sw; 

IfErr (rest = nev_2d array of(m, n, FLOAT)) /allocating memory for rest / 
Erreturn( "not enough core "); 

IfErr (event = nev_2d_array_of(n, n, FLOAT)) /allocating memory for event 0/ 
Erreturn( "not enough core "); 

IfErr (nevvec = nev_array_of(n, FLOAT)){ 
fprintf(etderr, not enough core for nevvec \n "); 
cuit(1); 

} 

IfErr (w = new 2d_array_of(m, n, FLOAT)) 
Erreturn( "not enough core "); 

/o calculating diferences between training set and mean / 
for (k = 0; k < m; k + +) 

for (i = 0; i < n; i + +){ 

rest[k][i] = ovecs[k][i]- meanv[i]; 
} 

/o transposition of eigenvector mat 0/ 

for (k = 0; k < n; k + +){ 

for (i = 0; i < n; i + +){ 

evect[i][k] = eigvecs[k][i]; 
} 

} 

I. weights calculation 0/ 

/remove comente here if you want to print the original weights / 
for (k = 0; k < m; k + +){ 

for (i = 0; i < n; i + +)( 

w[k]ii] = 0; 

for (j = 0; j < n; j + +)( 

v[k][i] +. evect[i][j] e rest[k][j]; 

} 

} 

} 

} 

free(rest); 

free(evect); 

return(w); 

/ matrix I/O 

static int 

vrite_matrir(fp, mat, n) 

FILE ofp; 

FLOAT ...mat; 

int n; 

{ 

int i, j; 

/ print column vectors line -by -line / 
for (j = 0; j < n; j+ +) ( 

for (i = 0; 1 < n; i + +) { 

fprintf(fp, FLOAT FORMAT, (double)mat[i][j]); 

fprintf(fp, " "); 

} 
fprintf(fp, " \n "); 

} 

return NY_OH; 
} 

static int 

read matrir(fp, mat, n) 

PILE ofp; 

FLOAT **mat; 

int n; 

{ 

int i, j; 

/ read column vectors line -by -line / 
for (j = 0; j < n; j + +) ( 

for (i = 0; i < n; i + +) { 

double f; 

if (fecanf(fp, "Elf ", kf) != 1) 

return MY_ERA; 

mat[i][j] = f; 
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} 

} 

return MY_OK; 
} 

static float veights_std(veights, num_feats, num_patterns) 
float weights; 
int num_feats; 

int num_patterns; 
{ 

int i, j, k,numinst 0; 

float ew_svarNULL; 
char str[128]; 

float said; 

IfErr(v_svar nev_array of(num_feats, FLOAT)){ 
fprintf(stderr, "1s: not enough core for variance of weights PCA \n "); 
exit(1); 

} 

/+ calculating v_std e/ 

for(i0; i<num_feats; i + +){ 

FLOAT sumdev 0.0; 

for(k0; k <num_patterns; k + +){ lomean value excluded as it's 0 / 
sumdev (weights[k][i]); 

w_svar[i] + sumdev sumdev; 
} 

v_avar[i] / (num_patterns -1); 
wstd(i) sgrt(v_svar[i]); 

} 

free(v_ava.r); 

return(vstd); 
} 

FT_Model pca(pattern, 1pat, npat, modname) 
FLOAT ...pattern; / array of pattern vectors / 
int 1pat, npat; 

char modname[70]; 
{ 

FLOAT covar; P. covariance matrix / 
FLOAT sews/; / eigenvalues thereof f 
double evec; / eigenvectors thereof f 
int nrot, i, k, j; / no of jacobi rots / 
FLOAT stdpattern; 
FLOAT stdcomps; 
FLOAT mean, adev, eveights wstd; 
FT_Model ft_model; 
FILE outfile; 
char fnameout[150]; 

ISErr (covar nev_2d a.rray_of(lpat, /pat, FLOAT)) 
fprintf(stderr, "not enough core for covar matrix \n "); 
exit(1); 

} 

IfErr (mean nev_array_of(lpat, FLOAT)){ 

fprintf(stderr, "not enough core for mean \n "); 

exit(1); 
} 

IfErr (weal nev_array of(lpat, FLOAT)){ 
fprintf(stderr, "not enough core \n "); 

exit(1); 
} 

IfErr (asst nev_2d_srray_of(lpat, /pat, double)) 

fprintf(stderr, "not enough core for eigenbasis \n "); 

exit(1); 
} 

IfErr (adev nev_array_of(lpat, FLOAT)){ 

fprintf(stderr, "not enough core for adev \n "); 

exit(1); 
} 

ISErr (stdcomps new 2d mrray sf(npet, /pat, FLOAT)) { 

fprintf(stderr, "not enough core for stdcomps \n "); 

exit(1); 
} 

ISErr (stdpattern new_2d_array of(npat, 1pat, FLOAT)) 

fprintf(stderr, "not enough core for stdpattern \n "); 

exit(i); 
} 

ISErr (weights nev_2d_array of(npat, 1pat, FLOAT)) 

Erreturn( "not enough core "); 

IfErr (eatd nev_array_of(lpat, FLOAT)){ 

fprintf(stderr, "not enough core for sdev \n "); 
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exit(1); 
} 

/ compute covariance matrix / 
fprintf(stderr, "computing covariance ... \n "); 

IPErr (covariance(pattern, npat, covar, 1pat, mean, sdev)) { 

fprintf(stderr, "Xs: covariance tailed \n ", ERE_MSG); 
exit(1); 

} 

/ compute eigenvectors and -values / 

fprintf(stderr, "computing eigenbasis ...\n"); 
IYErr (jacobi(covar, lpat, eval, evec, knrot)) { 

iprintf(stderr, "Xs: jacobi failed\n", ERR_MSO); 
exit(1); 

} 

/ order eigenvectors o/ 
iprintf(stderr, "sorting eigenbasis ...\n"); 

eigsrt(eval, even, lpat); 

fprintf(stderr, "calculating weights ... \n "); 
IPErr ( weights =calculate_veights(evec, 1pat, pattern, npat, mean)) { 

fprintf(stderr, "Xs: inst failed \n ", ERR_MSG); 
exit(1); 

} 

ft_model = (FT_Model o) malloc(aizeof(FT_Model)); 

it model ->type = FT_MODEL; 

ft model- >linkcount = 0; 

tt model- >num_feats = 1pat; 

ft model- >num_training_set = npat; 

ft_model->feats_mean = mean; 

ft model- >feata covariance = cover; 

ft_model- >num_modes = (npat < 1pat) ? npat : 1pat; 

ft model- >eigen vec = evec; 

ft_model->eigen values = oval; 

it model -> weights = weights; 

vstd = veights_std(veighta, lpat, npat); 

/ writing PCA information to a file / 

ntrcpy(fnameout, "Dat / "); 

strcat(inameout, modname); 

strcat(fnameout, "PCA.dat "); 

if( (outfile = fopen(fnameout, "w ")) _= FULL ){ 

fprintf(stderr, "readfile: can't open file %s \n \007 ", modname); 

exit(1); 
} 

fprintf(outfile, "PCA information for model: %s \n ", modname); 

fprintf(outfile, "number of features: Xd \n ", 1pat); 

fprintf(outfile, "number of examples used: %d \n ", npat); 

fprintf(outfile, "total modes: Xd \n ", 1pat); 

fprintf(outfile, "features mean: \n "); 

for (i = 0; i< 1pat; i + +) 

fprintf(outfile, "Xf ", mean[i]); 

fprintf(outfile, " \n \neigen values: \n "); 

for (i = 0; i< 1pat; i + +) 

fprintf(outfile, "Xf ", eval(i)); 

fprintf(outfile, " \n \nweights STD: \n "); 

for (i 0; i< 1pat; i + +) 

fprintf(outfile, "if ", wstd(i]); 

fprintf(outfile, " \n \neigen_vectors: \n "); 

for (k = 0; k < 1pat; k + +){ 

for (i = 0; i< 1pat; i + +){ 

fprintf(outfile, "%f ", evec[k](i)); 
} 

fprintf(outfile, " \n "); 
} 

fprintf(outfile, " \n "); 

fclose(outfile); 
bend of writing file/ 

tree(covar); 

free(mean); 
free(eval); 

free(evec); 

free(sdev); 

f ree( s tdpat te rn); 

free(stdcomps); 
Sree(weights); 

free(ostd); 

return( ft_model ); 
} 
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E.3 Analysis menu 

Function : analysiemenu.c 
« Last Update : Thu Mar 20 15:41:08 1997 

e Synopsis : matching and classification functions 

Project : Model Based System for Biomedical Image Analysis 
System Title : Gmodel 
Authors Rocio Aguilar Chongtay 

static char Sccsld[] "7Z=XM% XIX(LGX) - RACH "; 
*include < analysis menu.h> 

/ the following are for calculating processing times 
*include <sys /times.h> 

*include <limits.h> 

*include <time.h> 

*include <siec.h> 

*include <Xm /PushB.h> 

*include <X11 /Shell.h> 

int totparam; 

int numodel; 

int max_patterns 2500; 

int countcand; 

int initnum; 

/ 

/0 menu items structures / 
static Menultem analysis menu_itemeP { 

( "Construct classifying model ", txmPushButtonCadgetClass, 0, XmTEAR_OFF_DISABLED, 

FULL, FULL, eearch_all_cb, LULL ), 
( "Classify ", txmPushButtonGadgetClass, 0, RmTEAA_OFF_DISABLED, 

FULL, FULL, classify_cb, NULL }, 

{ "Modify Threshold type ", kxmPushButtonGadgetClass, 0, XmTEAR_0FF_DISABLED, 

LULL, FULL, create_thetype buttons, FULL }, 

( "cue Finder ", ksmPushButtonGadgetClass, 0, XmTEAR_OFF_DISABLED, 

FULL, FULL, cue_f inder, IULL ), 

FULL, 
}; 

Menultem analysis menu_items [(analysis menu_itemsP[0]); 

/ action and callback procedures / 

void nec_instance(newinst, model, weights, nuModes, 1pat, evec, meanvec) 

float newinst; 
GreyModel *model; 

float *weights; 

int nuModes; 

int 1pat; 

float evec; 
float meanvec; 
{ 

float sumpb; 

int i, j; 

for (i 0; i < lpat; i++){ 

eumpb 0; 

for (j 0; j < nuModes; j++){ 

eumpb + evec(i)(j] weights[j]; 

} 

neeinst[i]meanvec[i] +eumpb; 

} 

return; 

] 

void read_off_lins_greyV(cfeats, obj, cots, model, i_angle, mfeats, num_feats) 

float cleats; 
struct object obj; 
struct fvertex cvtx; 

GreyModel *model; 

float i_angle; 

float emfeats; 

int num_feats; 

{ 

struct object currentObj; 

struct ivertez ivtx, note; 

char tr(32]; 
struct fvertex fvtx, vtx; 

struct polygondomain epolydmn; 

double theta; 

int a, i, k, g, r1, c_inst; 

int rad_count1, g4[4]; 

float radius, dx, dy; 

currentObj obj; /e reading the object 0/ 

currentObj->linkcount++; 

if(currentObj->linkcount « 1){ 
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currentObj->linkcount++; 

} 

ivtx.vtX cvtx.vtX; 
ivtz.vtY cvtx.vtY; 
Intake the centre grey value / 
for(g0; g < model->num_greys; g++){ 
grey4val(currentObj, ivtx.vtY, ivtx.vtX t(g4[0])); 
dx cvtx.vtX - ivtx.vtX; 
dy cvtx.vtY - ivtx.vtY; 
cfeats[0] ((1-dy) ((1-dz)g4[0] + dxg4[1]) 

+ dy ((1-dx)g4[2] + dxg4[3])); 
} 

rad_count1; 
for(a0, k0; a < model- >num_angles; a + +){ 

float radius; 
int j; 

theta i_angle + model- >angles[a]M_PI /180; 

for(j0; j < model- >num_radii; j + +){ 
for(g0; g < model ->num_greys; g+ +, k + +){ 

cfeats(rad_count] mfeats[rad_count]; 
vtx.vtX cvtx.vtX + (mfeats[rad_count]) cos( theta ); 
vtx.vtY cvtx.vtY + (mfeats[rad_count]) sin( theta ); 
ivtx.vtX vtx.vtX; 
ivtx.vtY vtx.vtY; 

grey4val(currentObj, ivtx.vtY, ivtx.vtX, t(g4[0])); 
dx vtr.vtX - ivtx.vtI; 
dy vtx.vtY - ivtx.vtY; 
cfaats[rad_count+1] ((1-dy) ((1-dx)g4[03 + dxg4[1]) + 

dy ((1-dx)g4[2] + dxg4[3])); 
} 

rad_count+2; 
} 

} 

freeobj(currentObj); 
return; 

} 

float prob_ges(pred_candidate, numparem) 
float prod candidate; 
int numparam; 
{ 

struct fvertex vtx; 

OreyModel umodel; 

TrainingSet tr_set; 
int i, rest modes0; 
float probModRest; 
float inst Seats KULL; 
float prob_vIULL, rest_2, prob_rest_vIULL, inst FULL; 
float candidategULL; 
float rest_avg0, angle; 
int n, seize, ysize; 
float tot_prob_modes, tot_prob_restIULL; 
float probMod0, restProb0; / probModRest0; 0/ 
float prob modesIULL, prob_restmIULL; 
float dist_obs_mean0, tot_b_modes0; 
char str(128]; 

probflodftest 0.0; 

model selectedModel; 

selectednum_feats (2 model-> num_radiimodel- >num_angles +1); 
electedtotal modas selectednum_feats; 

IfErr (candidate nev_array_of(selectednum_feats, FLOAT)) { 

fprintf(stderr, "not enough core for candidate \n"); 
exit(1); 

} 

IfErr(prob_v nev_array_of(selectednum_feats, FLOAT)){ 
fprintf(stderr, "Xs: not enough core for variance of veights \n ", 
model ->nme) ; 

exit(1); 
} 

Iftrr(prob_rest v nev_array_of(selectednum_feats, FLOAT)){ 

fprintf(stderr, "Xs: not enough core for variance of veights \n ", 

mode l -> nme) ; 
exit(1); 

} 

IfErr (inet W nev_array_of(selectednum_feats, FLOAT)) { 

fprintf(stderr, "not enough core for inni W \n "); 

exit(1); 

} 

IfErr (inst_feats nev_array_of(selectednum_feats, FLOAT)) { 

fprintf(stderr, "not enough core for inst_feate \n "); 

exit(1); 
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} 

IfErr (prob_modes = nev_array_of(sizexy, FLOAT)) { 

fprintf(stderr, not enough core for tot_prob_modes \n "); 
exit(1); 

} 

IfErr (tot_probmodes nev_array_of(sizexy, FLOAT)) { 
fprintf(atderr, not enough core for tot_prob_modes \n "); 
exit(1); 

} 

IfErr (tot_prob_rest nev_array_of(sizexy, FLOAT)) { 

1printf(stderr, not enough core for tot_prob_rest \n "); 
exit(1); 

} 

for(i3; i<numpnram; i++){ 
inst Y[i] = pred_candidate[i]; 

} 

nev_inetance(candidate, selectedModel, inst Y, selectedtotal modes, selectednum_feats, selectedeigen_vec, selectedfeats mean); 

vtx.vtApred_candidate(0]; 
vtx.vtY=pred_candidate[1]; 

angle =pred_candidate(2); 

read_off_line_greyv(instfeats, globals.obj, vtx, selectedModel, angle, candidate, selectednum_feats); 

/ Calculating Mahalanobis distance with the weights from GA's/ 
probMod 0; 
for (i = 0; i < selectednuModes; 1 + +){ 

float lambda0, v_i 2.0; 

lambda = selectedeigen values[i]; 
v_i_2 inst W[i]inst W(i); 
prob_v[i]v_i 2 /(lambda); 

probMod +prob_v[i]; 
} 

I. The unexplained data / 
restmodes = selectedtotal modas - selectednuModes; 
rest_avg 0; 

/ calculating the average of the rest eigenvalues / 
for (i s selectednuModes; i < selectedtotal modes; i + +){ 

rest_avg + selectedeigen_values(i); 
] 

rest_avg / rest_modes; 

for (i 0 ; i < selectednum_feats ; i + +){ 

dist_oba mean +.(inst_feats(i] - selectedfeatá mean[i]) 
(inst_feats[i] - selectedfeats_mean[i]); 

} 

for (i O ; i < selectednuModes ; i++){ 

tot_b_modes+.inst v[i]inst_Y[i]; 
} 

rest_2 diet_obs mann -tot b modes; 
if(rest_2<0) rest_20; 

for (i selectednuModes; i < selectedtotal modes; i + +){ 

prob _rest_v[i]rest_2 /(2rest_avg); 
restProb +=prob_res[ v[i]; 

} 

probflodßest = probMod +restProb; 

if(totparam!=numpazam) 
totparam numparam; 

f ree( candidat e); 

f ree(prob_.); 

frse(prob_rest v); 

free(inst_Y); 

free( inst_feats); 

free( prob_modes); 

f ree( tot_prob_mod es); 

f ree( to t_prob_res t); 

return(probModßest); 
} 

void gat model2_feats(instfeats, models_parametera, totmodee, model, total_feats) 

float inst_feats; 
float models_parameters; 
int totmodes; 

OreyModel *model; 

int total_feats; 
{ 

Widget V; 
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struct fvertex vtx; 
TrainingSet tr_set; 
int i, j, k, count, rest modes =0, model modes =0; 
int feats_sofar =0; 
float *new _v = IULL; 
float join_feats = IULL; 
float rest avg =0, veight=0; 
float prob_v, rest_2, prob_rest_v, inst_Y= IULL; 
float angle, inst_data =IULL, *feats2models= IULL; 
int feats, n; 

float *tot_prob modes, tot_prob_rest; 
float probMod =0, restProb=0, probModtest =0; 
float prob_modes =IULL, *prob_rest, dist_obs_mean =0, Lot bmodes =0; 
char str(128); 

ISErr (inst_data = nev_array_of( selectednum_feats, FLOAT)) { 

fprintf(stderr, not enough core for candidata \n "); 
exit(1); 

} 

ISErr (inat W = nev array_of((selectednum_feats +4), FLOAT)) { 

fprintf(stderr, "lot enough core for inst Y \n "); 

exit(1); 
} 

printf(" \n "); 
count =0; 

for(i =3; i<totmodes +3; i + +){ /*number of modes plus x, y and theta 0/ 
sleight = models_parametere(i]; 

inst_W[count] = weight; 

count + +; 

} 

nev_instance(inst_data, model, inet Y, selectednuModes, 
selectednum_feats, selectedeigen_vec, selectedfeatsmean); 

vtx.vtx=models_parameters[0]; 
vtx.vtY=models_parameters[1]; 
angle=teodels_paremeters[2]; 

read_off_line_greyV(inet_feats, globals.obj, vtx, model, angle, 

inst_data, selectednum_feats); 

free(inst_data); 

free(inat V); 

return; 
} 

static void veights_etd(vetd, model, num_feats, num_patterns) 

float vatd; 
OreyModel model; 
int num_feats; 

int num_patterns; 
{ 

int i, j, k,numinst = 0; 

float v_avar =IULL; 
char str(128]; 

IfErr(v_evar = nev_array_of(num_feats, FLOAT)){ 

fprintf(stderr, "Xs: not enough core for variance of sleights \n ", 

model- >name); 
exit(1); 

} 

/ calculating v_std of 
for(i =0; i<num_feats; i + +){ 

FLOAT sundae = 0.0; 

for(k =0; k <num_patterns; k+ +){ /mean value excluded as it's = 0 el 

sumdev = (model ->ftmodel- >weights[k](il); 
v_svar[i] += aumdevsumdev; 

} 

v_svar[i] /_ (num_patterns-1); 
vstd[i] = sgrt(v_svar[i]); 

free(v svar); 

return; 
} 

void read_PCAmodel(model_name, num_feats, num_pat, total_mod, 

modelModes, feats mean, eigen values, vStd, eigen vec) 

String model_name; 

int *num_feats; 

int num_pat; 
int ototal_mod; 

int modelModes; 
float feats mean; 
float sStd; 
float eigen_vec; 
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float eigen_valuee; 
{ 

int featsnumb = 0, patnumb = 0; 
int modesnumb 0, modmodesnumb = 0; 
int namesnumb = 0; 
int i,k,n; 

FILE pcafile; 
char pcaname[150]; 
char str(32]; 

/0 reading PCA info for the chosen models/ 
strcpy(pcaneme, "Dat / "); 
strcat(pcaname, model_name); 
strcat(pcaname, "PCA.dat "); 
if( (pcafile = fopen(pcaname, "r ")) _= FULL ){ 
fprintf(stderr, "readfile: can't open file %s \n \007 ", pcaname); 
enit(1); 

}else{ 

fscanf(pcafile, " %s %s Xs %ss %s "); 
fscanf(pcafile, "%se %on %std ", kfeatsnumb); 
fscanf(pcafile, "%es %s tee tostd ", kpatnumb); 
fscanf(pcafile, "%os %s%d \n ", tmodesnumb); 
fscanf(pcafile, "%os Xo%d \n ", kmodmodesnumb); 
fscanf(pcafile, "%e Xs "); 

num_feats = featsnumb; 
num_pat = patnumb; 
total mod = modesnumb; 
modelModea = modmodesnumb; 
for (i = 0; i < featsnumb; i + +) 

fscanf(pcafile, "%f ", kfeatsmean[i]); 
fscanf(pcafile, "%as "); 
for (i = 0; i < featsnumb ; i + +) 

fscanf(pcafile, " %f ", teigen values[i]); 

fscanf(pcafile, "%s %es"); 
for (i = 0; i < featenumb ; i++) 

fscanf(pcafile, "%f ", kvStd[i]); 

fscanf(pcafile, "%es "); 
for (k = 0; k < featsnumb; k + +) 

for (i = 0; i< featsnumb; i + +) 

fscanf(pcafile, "Xf ", teigen vec[k][i]); 

fclose(pcafile); 
} 

return; 
} 

void readInfoModel(modsl_name, num_feats, num_pat, modelModea, vStd) 
String model_name; 
int num_feats; 
int num_pat; 
int modelModea; 
float vStd; 
{ 

int featsnumb = 0, patnumb = 0; 

int modmodesnumb = 0; 

int i,k,n; 

FILE pcafile; 
char pcanams[1S0]; 
char str(32]; 

/ reading PCA info for the chosen model/ 
strcpy(pcaname, "Dat / "); 

strcat(pcaname, model_name); 

strcat(pcaname, "PCA.dat "); 

if( (pcafile = fopen(pcaname, "r ")) _= FULL ){ 

fprintf(stderr, "readfile: can't open file %s \n \007 ", pcaname); 

erit(1); 
}else{ 

fscanf(pcafile, " %s %ss %ss %os %es "); 
fscanf(pcafile, "%s %s %os%d ", kfeatsnumb); 
fscanf(pcafile, " %es %es %se testd ", kpatnumb); 

fscanf(pcafile, "%es %stsd "); 
fscanf(pcafile, "%n %s%d \n ", kmodmodesnumb); 
fscanf(pcafile, "%us %se "); 

num_feats = featsnumb; 
num_pat = patnumb; 
modelModea = modmodsenumb; 

for (i = 0; i < featsnumb; i++) 

fscanf(pcafile, "%f "); 
fecant(pcafile, "%s"); 
for (i = 0; i < featsnumb ; i++) 

fscanf(pcafils, "%f "); 

fscanf(pcafile, "%se %s "); 
for (i = 0; i < featsnumb ; i + +) 
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fecanf(pcafile, "Xf ", tvStd[i]); 

fscanf(pcafile, "Xs "); 
for (k 0; k < featsnumb; k + +) 

for (i 0; i< featsnumb; i + +) 

fscanf(pcafile, "Xf "); 

fclose(pcafile); 
} 

return; 
} 

void readmatchModel(modell_name, model2_name, joined_numfeats, 
joined_numpat, joinedfeats, meanjoined) 
String modell_name; 
String model2_name; 
int .joined numfeats; 
int joined_numpat; 
float joinedfeats; 
float .meanjoined; 

{ 

int featsnumb 0, patnumb 0; 

int i,k,n; 

FILE filematch; 
char filename[150]; 
char atr[32]; 

strcpy(filename, " /net/ jura /export /oban /rocio /Models / "); 
strcat(filename, modell_name); 

strcat(filename, " -"); 

strcat(filename, model2_name); 

strcat(filename, ".dat "); 
if( (filematch fopen(filename, "r ")) - NULL ){ 
fprintf(stderr, "rsadfile: can't open file Xs \nmatching should be \nrun Sirat \n \007 ", filename); 
exit(1); 

}else{ 

fscanf(filematch, "XsXd", &featenumb); 
fscanf(filematch, "XsXaXd", tpatnumb); 

joined_numfeats featsnumb; 
joined_numpat e patnumb; 

for (k 0; k < patnumb; k + +) 

for (i 0; i< featsnumb; iv +) 
fscanf(filematch, "Xf ", tjoinedfeats[k][i]); 

fclose(f ilematch); 
} 

return; 
} 

void cue_f inder(v, client_data, cbs) 
Widget v; 

ItPointer client_data; 

XmAnyCallbackStruct .cbs; 
{ 

int numObjs 0; 

float startAngle 0; 

static int ..cand_coord; 
char str(32); 
FILE efp; 

if( globals.obj NULL ){ 

sprintf(str, "An image should be read first: \n "); 

HCU_XmUserinfo( globals.topl, str, XmDIALOO_FULL_APPLICATIOt MODAL ); 
return; 

} 

else{ 

if((fp fopen(globals.file, "r ")) NULL ){ 

sprintf(str, "FSBMeadObject: Image file not found \n ", globals.file); 
HCU_XmUserinfo( globals.topl, str, XmDIALOC_FULL_APPLICATION_MODAL ); 
return; 

} 

IfErr(cand_coord e nev_2d_array_of(100, 4, int)){ 

fprintf(stderr, "Xs: not enough core for candidates \n "); 

exit(1); 
} 

lookfor_candidates(globals.obj, S, inumObjs, cand_coord, tstartAngle); 

free(globala.obj); 

globals.obj readobj( fp ); 

free(cand_coord); 
fclose( fp ); 

} 

return; 
} 
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void clasaifying_candidate_cb(v, model, cbs) 
Widget a; 

GreyModel model; 
ImToggleButtonCallbockStruct cbs; 
{ 

static int action_proc_added0; 
Widget candialog; 
float nev a = IULL; 
int all_numfeats 0, all_numpat 0; 
int numpat 0, count; 
int numcand 0; 

int all_totalmodes, all_nuModes; 
float joined Seats NLL; 
float mean_joinedfeats IULL; 
float joined_instance = IULL; 

GreyModel model2, currentXodel, currentModel2; 

static int cand_coord; 
etruct fvertez ivtz; 

double MahDiat =0; 
float prob o = IULL; 
float modelprob; 
float total_prob 0, normalised_prob = 0; 
float prob_cue_model 0, total_estimate 0; 
int b,i,k,n,m, j =0, zsize, ysize; 
int count models =0, numObjs= 0; 

int totmodes, nuModels = 2; 

int current 0, other 0; 
float beat IULL; 
float featevec = IULL; 

char str[32], classifyname(70]; 

int num_feats 0, nuModes 0, soap 0; 
int num_patterns = 0, countl a 0; 
float aStd IULL; 

float joined vStd IULL; 
float joined_eigen_vec NULL; 
float transp_eigenvec NULL; 
float joined_aigen_values NULL; 
FILE fp; 

if( cbs ->set != True ) 

return; 

if( globals.obj = IULL ){ 
aprintf(atr, "An image should be read first: \n "); 
HGU_ImUserinfo( globals.topl, str, ImDIALOG_FULL_APPLICATIOI_MODAL ); 
return; 

} 

else{ 

for(i 0; i < nuModels; i++){ 
if(strcmp(modal->name, globals.models[j]->nama) != 0){ 

soap = 1; 

} 

} 

selectedlodel model; 
maznum_objs 100; 

num_feats (2modal-> num_radiimodel- >num_angles +1); 
selectednum_feats = num_feats; 
all_numfeats num_feats2; 

If Err(selectedfeatsmean nee_array_of(selectednum_feats, FLOAT)){ 
fprintf(stderr, "%s: not enough core to read PCA info \n "); 
ezit(1); 

} 

IfErr(selectedeigen values nea_array_of(eelectednum_feats, FLOAT)){ 
fprintf(stderr, "Xs: not enough core to read PCA info\n"); 
ezit(1); 

} 

IfErr(selectedeigenvec nev_2d array_of(salectednum_feats, 
selectednum_fsate, FLOAT))( 

fprintf(stderr, "Xs: not enough core to read PCA info \n "); 
ezit(1); 

} 

IfErr(cand_coord = nee_2d_array_of(maznum_objs, 4, int))( 

fprintf(stderr, "Xa: not enough core for candidates \n "); 

ezit(1); 
} 

IfErr(nev_a nevnrray_of(all numfeats, FLOAT)){ 

fprintf(stderr, "Xs: not enough core for nev weights \n "); 
ezit(1); 

} 

IfErr(prob_o nev_array_of(all numfeata, FLOAT)){ 
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fprintf(stderr, "Xa: not enough core for variance of weights \n "); 
exit(1); 

} 

ISErr(featsvec = nev_2d_array_of(nuModels, num_feats, FLOAT)){ 
fprintf(stderr, "%a: not enough core for feature vector \n "); 
exit(1); 

} 

IfErr(best = nev_array_of(num_feats +3, FLOAT)){ 
fprintf(stderr, "Xs: not enough core for Models compared \n "); 
exit(1); 

} 

ISErr(joined_feats = nev_2d_array_of(max_patterns, 
all_numfoats, FLOAT))( 

fprintf(stderr, "%s: not enough core for all objects features \n "); 
exit(1); 

} 

ISErr(joined_inatance = 
fprintf(atderr, "Xs: 

exit(1); 
} 

I1Err(mean_joinedfeats 

fprintf(stderr, "Xs: 
exit(1); 

} 

new_array_of(all_numfeats, FLOAT))( 
not enough core to read PCA info \n "); 

= new array_of(all numfeata, FLOAT))( 
not enough core to read PCA info \n "); 

IfErr(joined eStd = new array_of(all numfeats, FLOAT)){ 
fprintf(stderr, "Xs: not enough core to read PCA info \n "); 
exit(1); 

} 

IfErr(joined_eigen_valuee = nev_array_of(all_numfeats, FLOAT)){ 
fprintf(stderr, "Xa: not enough core to read PCA info \n "); 
exit(1); 

} 

IfErr(joined_eigen_vec = nev_2d array_of(ell_numfeats, all_numfoats, FLOAT)){ 
fprintf(stderr, "%s: not enough core to read PCA info \n "); 
exit(1); 

} 

IfErr(transp_eigenvec = nev_2d_array_of(all_numfeats, all numfeats, FLOAT)){ 
fprintf(stderr, "Xs: not enough core to read PCA info \n "); 
exit(1); 

} 

IfErr(selectedw5td = new array_of(selectednum_feats, FLOAT)){ 
fprintf(stderr, "Xs: not enough core to read PCA info \n "); 

exit(1); 
} 

IfErr(modelprob = nev_2d_array_of(nufodels, maxnum_objs, FLOAT)){ 
fprintf(stderr, "Xa: not enough core for all objects features \n "); 
exit(1); 

} 

for(m = 0; m < nuModels; m++){ 

if(strcmp(eelectedModel->name, globals.models[m]->name) != 0){ 

model2 = globala.models Cm] ; 

currentModel2 = model2; 

prob_cu model = 0.1595; 
}else( 

prob_cua model = 1 - 0.1595; 

} 

/= processing for each model =/ 

form = 0; m < nuModels; m + +){ 

readmatchModel (selectedModel->name, currentMode12->name, 

tall numfeats, tall_numpat, joined feats); 

strcpy(classifyname, eelectedModel->neme); 

strcat(classifyname, "Classif"); 

read_PCAmodel(claaeifyname, tall_numfeats, tail_numpat, 

tall_totalmodee, tall_nuModes, mean_joinedfeats, 

joined_eigen_values, joined_w5td, joined_eigen_vec); 

/=reading image as it is modified with the cuefindere/ 

freeobj(globala.obj); 

if((fp = fopen(globala.file, "r ")) _= LULL ){ 

sprintf(str, "FSB_ReadObject: Image file not Pound \n ", globals.file); 

HCU_XmUaerinfo( globals.topl, str, XmDIALOO_FULL_APPLICATIOt MODAL ); 

return; 
} 

if( (globale.obj = readobj( fp )) _ NULL ){ 
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fprintf(stderr, "Failing while reading \nlmage file Xs \n "); 
HGU_XmUserinfo( globals. topi, str, XmDIALOG FULL_APPLICATIO1 MODAL ); 
freeobj(globale.obj); 

exit(1); 
} 

fclose( fp ); 

XClearYindow(globals.dpy, globals.win ); 

picframe_I(globals.dpy, globals.win, globals.gc_greys, 
globals.obj, globals.pf); 

/e end of reading image e/ 

numObjs 0; 

lookfor_candidates(globals.obj, S, CnumObjs, cand çoord, tstartAngle); 

initnum 0; 

numcand numObjs; 

for(ninitnum; n < numcand; n++){ 

seize cand_coord[n][2]-cand_coord[n][0]; 

ysize cand_coord[n][3]-cand_coord[n][1]; 
sizexy xsizeeysize; 

ivtx.vtl cand_coord[n][0]; 

ivtx.vtY cand_coord[n][1]; 

for(j 0; j < nuModels; j++){ 

if(strcmp(selectedModel->name, globals.models[j]->neme) ! 0){ 
currentModel model2; 

}else( 
currentModel model; 

} 

read PCAmodel(currentModel->name, tselectednum_feats, 

tselectednum_patterns, tselectedtotal_modes, 

tselectednuNodee, selectedfeats mean, 
selectedeigen_values, selectedvStd, selectedeigen_vec); 

best opgmodel(ivtx.vtl, ivtx.vtY, xsize, ysize, 

selectedvStd, selectednuModes, atartAngle, currentModel->name); 

gat mode12_feate(featsVec[j], best, selectednuModes, 
currentModel, selectednum_feats); 

} 

if(swap 0){ 

count0; 
for(j.0; j < nuModels; j++)( 

for(i0; i< selectednum_feats; i++){ 

joined_instance[count] featsVec[j][i]; 

count++; 
} 

} 

}else{ 

count0; 
k 1; / this swaps the order / 

for(j=0; j < nuModels; j + +){ 

for(i0; i< selectednum_feats; i + +){ 

joined_instance[count] featsVec[k][i]; 

count + +; 

} 

k 0; 

} 
} 

for (k 0; k < all_numfeats; k++){ 

for (i 0; i < all_numfeats; i++){ 

transp_eigenvec[i][k] joined_eigen vec[k][i]; 

} 

} 

for (i 0; i < all_numfeats; i + +){ 

new_v[i] 0; 

for (j 0; j < all_numfeats; j + +){ 

nev_v[i] +. transp_eigenvec[i][j] ( joined_ instance [j] -mean_joinedfeats[j]); 

} 

} 

MahDist 0; 
modelprob[m][n] 0; 

for (i 0; i < all_nuModes; i + +){ 

float lambda0, v_i_2.0; 
lambda joined_eigen values[i]; 

v_i_2 nev_v[i]nev_v[i]; 

if(lambda <. 0.0){ 

continue; 

] 

prob_w[i]v_i_2 /lambda; 
MahDist +.prob_v[i]; 

} 

modelprob[m][n] exp(-MahDist); 
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} 

eelectedModel model2; 
currentModel2 model; 

} /end for each model/ 

currentModel model; 
other 1; 

printf( " \n!odel Xs: \nInetance \tlormalised Prob \n ", model ->neme); 
for(m 0; m < nuModels; m + +){ this is to calculate for two models 
total_prob 0; 

normalised_prob 0; 

for(n initnum; n < numObjs; n + +){ 

total_prob modelprob[m][n] /( modelprob [m][n] +modelprob[other][n]); 

normaliaed_prob (total_prob prob_cuemodel)/ 
((total_prob prob_cue_model)+ 

((1 - total_prob) (1 - prob çuemodel))); 

printf("Xd\tXf\n", n+1, normalised_prob); 

total_estimate +. normalised_prob; 

) 

printf( "Image file: \tEstimated Xs: \n \n ", model -)name); 
printf( "Xs \t \t ", globals.file); 

printf( "X3.01 \n ", total_estimate); 
total_estimate 0; 

other 0; 

prob_cua modal 1 - prob_cue_model; 

currentModel model2; 

} 

free(modelprob); 

} 

free(tranap eigenvec); 

free(cand_coord); 

free(prob_v); 
f ree(nev_v); 

free(selectedvStd); 

free(featsVec); 
free( joined_feats); 

free(mean_joinedf eats); 

free(joined_inetance); 

free(selectedfeatamean); / these last three are globals for GA's 0/ 

free(selectedeigen_vec); 

free(selectedeigen_values); 
free(joinedvStd); 
free(joined_eigen_vec); 

free(joined eigen values); 
return; 

} 

void eelect_all_candidatee_cb(v, model, cbs) 

Widget v; 

GreyModel *model; 

XmToggleButtonCallbackStruct oche; 
{ 

static int action_proc_added0; 

char oimage_files; 

int i, j, k,b,g,h; 

int seize, ysize, index0, nuModes; 

int count, image_instancee; 

int imagescount, nuModels 2; 

int all_numfeats, count models0; 

struct object 000bj; 

struct fvertex initvtx, vtr; 

float mean_featsfULL, vstdIULL,angle; 

char modname[20], str[128]; 

double init_angle; 

float gminst feats NULL, gminst2_feats FULL; 
float 0model2 feataJULL; 

float bestoneslULL, .nev_vIULL; 

float joined feats FULL; 
float mean_joinedfeats NULL; 

TrainingSet otr_set; 
FT_Model ft_classifmodel NULL; 

GreyModellnstance ogminat; 

GreyModel omodel2; 

FILE outfile, fp; 

char fnameout[150], doublename[1501; 

char image_neme[150], classifyname[70]; 

int num_feats 0, numFeats =0; 
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int 

int 

float 

float 

float 

float 

int 

int 

int 

if( cbs ->set ! True ) 

return; 

num_patterns 0; 

total_modes 0; 

=teats _mean IULL; 
v Std IULL; 

e seigen_vec; 

eeigen_values FULL; 

freed 0, globalcount0; 
subset_inst 0, safer 0; 

globalsofar 0, first 0; 

if(globale.num_tr_setsIULL){ 
fprintf(stderr, "Training data should be read tirsi \n "); 
HCU_XmUaerinfo( globals.topl, str, XmDIALOG_FULL_APPLICATIDHMODAL ); 
return; 

] 

else{ 

for(i0, tr setHULL; i < globals.num_tr_sets; i + +){ 
tr_set tglobals.tr_sete[i); 

] 

} 

if( tr_set NULL ){ 

sprintf(str, "lo training set for model: \n Xs ", model ->name); 
HCU_XmUserinfo( globals.topl, str, XmDIALOG_FULL_APPLICATIOI_MODAL ); 
return; 

} 

else{ 

for(j 0; j < nuModels; j + +){ 

if(strcmp(model->name, globals.models[j]- >name) ! 0){ 
modelt globale.models[j]; 

}else( 

first j; 

} 

} 

if( modelt NULL ){ 

fprintf(stderr, "At least TWO models should exist "); 
HGU_XmUserinfo( globals.topl, str, XmDIALOG_FULL_APPLICATIOIMODAL ); 
return; 

} 

if(tr_set- >num_data > 100){ 

subset_inst 100; 

} 

num Seats 2 modal- >num_radiiemodel- >num_angles +l; 
selectednum_feata 2 model2-> num_radiimodel2- >num_angles +l; 

ISErr(selectedfeatsmean nev_array_ot(selectednum_feats, FLOAT)){ 
fprintf(stderr, "Xs: not enough core to read PCA info \n "); 
exit(1); 

} 

IfErr(selectedeigen values nev_array_of(eelectednum_teats, FLOAT)){ 

fprintf(stderr, "Xs: not enough core to read PCA info\n"); 

exit(1); 
} 

ISErr(selectedvStd nev_array_of(selectednum_feats, FLOAT)){ 

fprintf(stderr, "Xe: not enough core to read PCA info \n "); 

exit(1); 
} 

ISErr(selectedeigen vec nev_2d array_ of (selectednum_feats,selectednum Seats, FLOAT)){ 

fprintf(stderr, "Xs: not enough core to read PCA info\n"); 

exit(1); 
} 

selectadnum_feats 0; 

selectednuModee 0; 

selectednum_patterns 0; 

selectedtotalmodes 0; 

selectedfeats_mean FULL; 

sselectedvStd FULL; 

selectedeigen_vec FULL; 

eeelectedeigen_values NULL; 

strcpy(fnameout, "/ net /jura /export /oban /rocio /Models / "); 

strcpy(doublename, modal- >name); 

strcat(doublename, " -"); 

strcat(doublename, model2->name); 

strcat(fnameout, doublename); 

strcat(fnemeout, ".dat "); 

if( (outfile fopen(fnameout, "v ")) NULL )( 

fprintf(stderr, "readfile: can't open file 

Xs \nvariation modes over \n model training sets \n 

should be calculated \n \007 ", fnameout); 

exit(1); 
} 
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read_PCAmodel(model2- >name, tselectednum_feats, 
taelectednum_patterns, tselectedtotal modes, 
tselectednuModes, selectedfeats mean, selectedeigen values, 
selectedvStd, selectedeigen vec); 

all numfoats = num_feats +selectednum_feats; 
num_patterns = eelectednum_patterns; 
fprintf(outfile, "lumFeats: \t \tXd \n ", all_numfsats); 
fprintf(outfile, "Total instances: \tXd \n ", tr_set- >num_data); 
f close( outf ile); 

totparam = 0; 

numvar = selectednum_feats; 
image_instances = 0; 

numinst = 0; 
imagescount=0; 

printf( "Creating model Xs- Xs \n ", model- >name, model2- >name); 

for(k =0; k<tr_set- >num_data; )+ +)( 
if(freed == 0){ 

if( (outfile = fopen(fnameout, "a ")) _= NULL ){ 
fprintf(stderr, "readfile: can't open file Xs \n \007 ", fnameout); 
exit(1); 

} 

ISErr(bestones = nev_array of(all numfeats, FLOAT)){ 
fprintf(stderr, "Xs: not enough core for Models compared \n "); 
exit(1); 

} 

IfErr (model2_feats nev array_of(selectednum_feats, FLOAT)) { 
fprintf(stderr, "lot enough core for model2_feats \n "); 
exit(1); 

} 

IfErr(joined_feats = nev_2d array_of(tr_set- > num_data+1, all_numfeats, FLOAT)){ 
fprintf(stderr, "Xa: not enough core for all objects features \n "); 
exit(1); 

} 

IfErr(mean_joinedfeats = nev array of(all_numfeats, FLOAT)){ 
fprintf(stderr, "Xs: not enough core to read PCA info \n "); 
exit(1); 

} 

freed = 1; 

} 

if(etrcmp(image name, tr_ set- >data[globalcount]->filename) != 0){ 
atrcpy(image_name, tr_ set- >data[globalcount]- >filename); 
if(globalcount != 0) 

printf( "Instances in image Xd: \tXd \n \n ", imagescount, image_instances); 
imagescount + +; 

printf( "Processing image Xd Xs \n \n ", imagescount, image name); 
if((fp = fopen(image name, "r ")) _= NULL ){ 

sprintf(str, "FSB_ReadObject: Image file not Sound \n ",image_name); 
BCU_XmUserinfo( globals.topl, str, XmDIALOC_FULL_APPLICATIOt MODAL ); 
return; 

} 

image_instances = 0; 

if( globals.obj != NULL ){ 

freeobj(globals.obj); 
} 

if( (globals.obj = readobj( fp )) _= NULL ){ 

fprintf(stderr, "Failing vhile rending \nlmage file Xs \n ",image name); 
BCU_XmUserinfo( globale. topl, str, XmDIALOO_FULL_APPLICATIOI_MODAL ); 
freeobj(globals.obj); 
exit(1); 

} 

fclose( fp ); 

} 

gminst = tr set->data[globalcount]; 
gminst feats = OreyModel_inst_to_feats(gminst); 
numinst++; 

image_instances++; 

printf("Image Xd\t Current instance:\tXd/Xd\n", imagescount, 

(globalcount+l),tr_aet->num_data); 
xsize = 5; 

ysize = 5; 

sizexy = xsize ysize; 

initvtx.vtX = gminst->centre.vtX; 
initvtx.vtY = gminet->centre.vtY; 
atartAngle = gminst->angle; 

selectedModel = model2; 

bastones = opgmodel(initvtx.vtX, initvtx.vtY, :size, ysize, 

selectedvStd, selectednuModee, etartAngle, model2->name); 
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get model2_feats( model2_feats, bastones, selectednuModes, model2, all_numfeats); 

/*for the same order within the double vector */ 
if(first == 0){ 
for(i=0; i< num_feats; i + +){ 

joined feats[globalcount][i] = gminst_feata[i]; 
} 

count =0; 

for(i= num_feats; i< all_numfeats; i + +){ 
joined_feats[globalcount][i] = model2_feats[count]; 
count + +; 

} 

}else{ 

for(i =0; i< num_feats; i + +){ 
joined_feats[globalcount][i] = model2_feate[i]; 

} 

count =0; 

for(i= num_feats; i< all_numfeats; i + +){ 
joined_feate[globalcount][i) = gminst_feats[count]; 
count + +; 

} 

}/* end of the same order */ 

globalcount++; 

sofar++; 
if((sofar == subset_inat) II (k = tr_set->num_data)){ 

printf("vriting %d vectors to a file\n", sofar); 
for(b = globalsofar; b < globalcount; b++){ 

for(i 0; i < all_numfeats; i++) 

fprintf(outfile, "X4.8f\t", joined_feats[b][i]); 
fprintf(outfile, "\n"); 

} 

strcpy(classifyname, model- >name); 
strcat(classifyname, "Classif "); 
fclose(outfile); 

ft_claseifmodel (FT_Model ) malloc(sizeof(FT_Model)); 
ft classifmodel = pca(joined_feats, all_numfeats, globalcount, clasaifyname); 
f ree( bee tones); 

free(model2_feats); 

free(joined feats); 
free(ft_claaeifmodel); 
sofar - 0; 

freed = 0; 

globalsofar +=subset_inst; 
} 

] 

free(selectedfeata mean); 
free(selectedvStd); 

free(selectedeigen_vec); 

free(selectedeigen valuee); 
} 

printf( " \nMatching model has been generated (Xd) \n ", globalcount); 
return; 

} 

static Widget classifymodel selection(topl, models, num_models ) 

Widget topi; 

GreyModel **models; 

int num_models; 
{ 

Widget dialog, control, widget; 

Menultem *items; 

int i; 

dialog - HGU_XmCreateStdDialog(topl, "Classifying_dialog ", 
XmFormWidgetClass, NULL, 0); 

XtVaSetValues(dialog, Xmltitle, "Select classifying model ", NULL); 

control XtlameToWidget( dialog, "*control" ); 

items = (Menultem *) malloc(sizeof(Menultem) (num_models +l) ); 

for(i0; i < num_models; i + +){ 

items[i].name modele[i]- >name; 

iteme[i].mnemonic = 0; 

items[i].accelerator = 1ULL; 

iteme(i].accel_tezt - 1ULL; 

items[i]. callback - classifying_candidate_cb; 

items[i) callback data = (XtPointer) models[i]; 

} 

items[i].name = NULL; 

HOU _XmCreatePB_Rov( "selectmodel ", control, items ); 

XtManageChild( dialog ); 

return( dialog ); 

} 
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static Widget candidates model_selection_panel( topi, models, num_models ) 

Widget topi; 

OreyModel ...models; 

int num_models; 
{ 

Widget dialog, control, widget; 
Menultem .items; 
int i; 

dialog HCU_XmCreateStdDialog(topl, "matching_dialog ", 
rmFormWidgetClass, NULL, 0); 

XtvaSetvalues(dialog, Xmltitle, "Select matching model ", 1ULL); 

control XtlameTowidget( dialog, ".control" ); 

items (Menultem ) malloc(sizeof(MenuItem) (num_models +1) ); 

for(i0; i < num_models; 
items[i].neme models (i]- >name; 
items(i].mnemonic 0; 

itema[i].accelerator IULL; 

items[i].accel_teot NULL; 

items[i]. callback select_all_candidatea_cb; 
items[i]. callback_data (XtPointer) models[i]; 

} 

items[i].name IULL; 

HCU_XmCreatePB_Rov( "select model ", control, items ); 

XtManageChild( dialog ); 

return( dialog ); 

} 

static void selecThreshnumCb(v, user_data, call_data) 
Widget v; 

XtPointer user_data; 
XtPointer call_data; 
{ 

int i; 

int counthr (int) user_data; 

fprintf(atderr, "Threshold type selected compthXd \n ", counthr); 

countype counthr; 
return; 

} 

void create_thstype_buttona(v) 

Widget v; 

{ 

Widget list v, dialog, control, button; 

int i, numtypes 5; 

char thstypes(16]; 

dialog HCU_ XmCreateStdDialog(globals.topl, "Select Threshold Type First ", 

rmFormWidgetClass, NULL, 0); 

control XtlameToWidget( dialog, "...control" ); 

liste XLVaCreateMenagedWidget ( "Compthr ", rmtooColumnWidgetClass, 
control, 

XmlleftAttachment, XmATTACH_FORM, 

XmlrightAttachment, XmATTACH_FORM, 

XmlbottomAttachment, ImATTACH FORM, 

XmltopAttachment, XmATTACH_FORM, 

Xmlpacking, ImPACX ÇOLUMI, 
Xmlorientation, XmVERTICAL, 

IminumColumns, 5, 

NULL); 

countype1; 
for (i 0; i < numtypes; i++) { 

aprintf(thstypes,"Xd",countype); 
button ItCreateManagedWidget (thstypea, rmPushButtonCadgetClass, 

list_v, (ArgList) NULL, 0); 

XtAddCallback(button, XmlactivateCallback, selecThreshnumCb, (XtPointer ) countype); 

countype++; 
} 

v Itleme7oWidget(dialog, "0k"); 
XtAddCallback(v, XmlactivateCallback, 

SetSensitiveCallback, XtParent(v) ); 

XtAddCallback(dialog, XmlokCallback, 

(void () U) ItUnmanageChild, IULL); 

v XtlameToWidget(dialog, ".Cancel"); 

ItAddCallback(v, XmlactivateCallback, 

SetSensitiveCallback, XtParent(v) ); 

XtAddCallback(v, XmlactivateCallback, DestroyWidgetCallback, 

XtParent(dialog) ); 
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XtManageChild(liat_v); 

XtfanageChild(dialog); 
return; 

} 

void classify_cb(v, client_data, cbs) 
Widget v; 

XtPointer client_data; 
XmAnyCallbackStruct chs; 
{ 

Widget dialog, widget; 

if(countype<e01Icountype>5) { 

countypeel; 
} 

widget - v; 

dialog e classifymodel _selection(globals. topi, globals.models, 
globals.num models ); 

widget e XtlameToWidget(dialog, "Ok"); 
XtAddCallback(vidget, XmlactivateCallback, 

SetSensitiveCallback, XtParent(w) ); 

XtAddCallback(vidget, XmlactivateCallback, DestroyWidgetCallback, 
XtParent(dialog) ); 

widget e ZtlameToWidget(dialog, "=Cancel"); 
XtAddCallback(vidget, XmlactivateCallback, 

SetSensitiveCallback, XtParent(v) ); 

ItAddCallback(vidget, XmlactivateCallback, DestroyWidgetCallback, 
XtParent(dialog) ); 

XtSetSensitive(XtParent(v ), False ); 

XtManageChild( XtParent(dialog) ); 

XtManegeChild( dialog ); 

return; 
} 

void search_all cb(w, client_data, cbs) 
Widget v; 

XtPointer client_data; 
XmAnyCallbackStruct sobs; 
{ 

Widget dialog, widget; 

MenuItem *items; 

char str(128); 
int i; 

TrainingSet tr_set; 
struct object obj; 

if(globals.num_tr eats == ULL){ 
eprintf(str, "Training data should be read first \n "); 

HGU_XmUserinfo( globale.topl, str, XsDIALOC_FULL_APPLICATIDIMODAL ); 
return; 

} 

else{ 

widget a v; 

if(countype<e01 lcountype)5) { 

countypeel; 

} 

dialog e candidates model_selection_panel(globals. topi, globale models, 

globals.num_models ); 

widget e XtlameToWidget(dialog, "e0k"); 
ItAddCallback(widget, XmlactivateCallback, 

SetSeneitiveCallback, XtParant(v) ); 

XtAddCallback(vidget, XmlactivateCallback, DestroyWidgetCallback, 

XtParent(dialog) ); 

widget e XtlameToWidget(dialog, "=Cancel"); 

XtAddCallback(vidget, XmlactivateCallback, 

SetSensitiveCallback, XtParent(v) ); 

XtAddCallback(vidget, XmlactivateCallback, DestroyWidgetCallback, 

XtParent(dialog) ); 

XtSetSensitive(ItParent(v ), False ); 

XtManngeChild( XtParent(dialog) ); 

} 

return; 
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E.4 Candidates 
Function : candi.c 
Last Update : Thu Mar 20 15:41:08 1997 

Synotsis : read wool. imale, seiment into object candidates 

Project Model Based System for Biomedical Image Analysis 
System Title : Cmodel 
Authors : Rocio Aguilar Chongtay 

static char Sccsld[] "%2%%M% %IX(XG%) - BACH "; 
sinclude<candi.h> 
sinclude<sstruct. h> 
sinclude<misc.h> 

extern double principal(); 
int countype; 

float lookfor_candidates(v, obj, mask, numobjs, candiCoord, init_angle) 
Widget w; 
struct object obj; 
int mask; 
int enumobjs; 
int candiCoord; 
double init tingle; 

{ 

struct object thobj, histobj, dilobj, dilerobj, 
smoothobj, erobj, erdilobj, discobjl, discobj2; 

struct object objlist[MAIOBJS]; 
char etr[32],. c_num[15]; 
atruct inertes ietx lsvtx; 
int thval, nobjs, i, j, brdsz, maxipeak; 
int size 1, hsize, median(), peakintens(), convolve(); 
register GBEYP g; 
Wlzlespace iesp; 
WlzOespace gasp; 
register int k, current, maxigrey; 
double dmaxigrey; 
int cx, cy, q0; 

if (mask 0) 
size mask; 

hsize size / 2; /0 std size of the nbhd (1 -15) 5/ 
if ( heize < 0) 

heize 1 ; / size should be bigger than zero / 
if (hsize > 7) 

heize 7 ; 

le object e/ 
if( globals.obj IULL ){ 
fprintf(stderr, "An image should be read first: \n "); 

HGU_XmUserinfo( globals.topl, str, XmDIALOG_FULL_APPLICATIOJMODAL ); 
return; 

} 

else{ 

obj globals.obj; / reading the object e/ 
/ Segmentation / 
ASSIGI(histobj, hieto(obj)); 

switch( countype ){ 

default: 
case 1: 

thval compthrl(histobj); 
break; 

case 2: 
thval compthr2(histobj); 

break; 
case 3: 

thval compthr3(histobj); 
break; 

case 4: 
thval compthr4(histobj); 

break; 
case 5: 

thval compthr5(histobj); 

/ obtaining object's histogram 5/ 

break; 
} 

ASSIGI(thobj, threshold(obj, thval)); /5 applying the threshold 5/ 

label(thobj, Anobjs, objlist, MAXOBJS, 25); l the ASSIGI to objlist is 

made here f 
numobjs nobjs; 

if (nobjs > 0 ){ 

/ Dilation and Erosion i.e. Closing/ 
q ' 0; 

for (i 0; i < nobjs; i++){ 

/ executing dilation / 
ASSIOI(dilobj, structdilate(objlist[i], makesgr(9))); 

ASSIGI(dilobj- >vdom, obj ->vdom); /5 attaching the value domain 

from the original obj to 

the dilated object of 
/ executing erosion over 

dilated object / 
ASSIGI(dilerobj, structerose(dilobj, makesqr(9))); 

ASSIGI(dilerobj- >vdom, obj->vdom); le attaching the value domain 

from the original object to 

the eroded object 0/ 

/ gritting the dilated 
and eroded object of 

/ smoothing object using opening i.e. 
erosion and dilation / 

ASSIGI(erobj, erosion(dilerobj)); 
ASSIGI(erobj- >vdom, obj->vdom); 

ASSI01(erdilobj, dilation(erobj)); 
ASSIGI(erdilobj- >vdom, obj->vdom); 

/0 normalisation / 
ASSIGI(smoothobj, normaliee(erdilobj)); 

pixconvert(amoothobj, IlT_GBEY); 
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/ applying the 3 3 median filter / 
brdez hsize 0 7 1 : hsize; 
if (amoothobj ->type 1) 

amoothobj segpar( amoothobj ,1,0,0,brdez,edgegv(amoothobj), heize,median); 
else error ( "median - -- not type 1 "); 

/0 obtaining the maximum peak for each obj */ 
maxipeak peakintens(smoothobj); 
/ printf( "object %d maximum peak \tXd \n ", i,maxipeak); / / multiplying each operator by the maximum peak / 
for (j 0; j < 121; j + +) 

op3[j] (d3[j]*maxipeak); 

for (j 0; j < 81; j + +) 

op5[j] (d5[j]maxipeak); 

ASSICI(diecobjl, applyconvolution_nev (amoothobj, Aconvl)); 

ASSIGI(discobj2, applyconvolutionnew (amoothobj, Aconv2)); 
/0 display the candidates / 
/ storing in a vector the candidate obj coordinates / 
candiCoord[q][0]smoothobj->idom->koll; 
candiCoord[q][1]smoothobj- >idom- >linel; 
candiCoord[q][2]smoothobj- >idom- >lastkl; 
candiCoord[q][31- amoothobj- >idom- >lastln; 
/ calculating the initial angle, 

by calculating first the centre of mass and then 
the principal axis / 

centreofmass(emoothobj, 1, Acx, kcy); 

init angle M_PI /180(principal(smoothobj, cx, cy, O)); 

if(( amoothobj ->idom- >koll<(obj- >idom- >koll+ 80))11 
(smoothobj -> idom- >linel<(obj- >idom- >line1 +20))II 
(amoothobj -> idom- >lastkl >(obj- >idom- >lastkl- 50))II 
( amoothobj -> idom- >lastln >(obj- >idom- >lastln -20))) 

{ 

q--; 
numobjs--; 

} 

maxigrey 0; 

dmaxigrey 0; 

while (nextgreyinterval(kiosp) 0) { 

g gwap.u_grintptr; 
switch (gwap.pixeltype) ( 

case IIT_OREY: 
for (b- iwsp.lftpos; k <ieep.rgtpos; k + +) 

if (g.inp > maxigrey) 
maxigrey g.inp; 

break; 
case SHÓIT GREY: 
for (kiwap.lftpos; k<iwep.rgtpos; k + +) 

if(g.ahp > maxigrey) 
maxigrey g.shp; 

break; 
case UBYTE_OREY: 
for (kiwsp.lftpos; k<ivep.rgtpos; k + +) 

if(g.ubp > maxigrey) 
mazigrey g.ubp; 

break; 
case FLOAT_GREY: 

for (kiesp.lftpos; k <iwsp.rgtpos; k + +) 

if(g.flp> dmaxigrey) 
dmaxigrey g.flp; 

break; 
case OOIYBLE_OREY: 
for (kiwsp.lftpos; k <ieep.rgtpos; k + +) 

if(g.dbp> dmaxigrey) 
dmaxigrey *g.dbp; 

break; 
} 

} 

else{ 

initgrey acan(emoothobj,kiwsp,kgssp); 

} 

freeobj(dilobj); 
freeobj(dilerobj); 
f reeobj(erobj); 
freeobj(erdilobj); 
freeobj(smoothobj); 
freeobj(discobji); 
freeobj(discobj2); 
q + +; / incrementing candidate counter / 

} /else of discarding edges candidates / 
} 

else{ 
fprintf(stderr, "Io candidates found for modal: \n "); 

HOU_XmUeerinfo( globale.topl, str, AmDIALOG_FULL_APPLICATIOI_MODAL ); 
return; 

} 

f re sob j( thobj); 
freeobj(hietobj); 

E.5 Opgmodel, interacting with GA's 

Function opgmodel.c, interacts with Levino's POAPack 
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 Last Update Thu Mar 20 15:41:08 1997 

Synopsis : Optimise model info to find beat possible match 

Project : Modal Based System for Biomedical Image Analysis 
System Title Gmodel 
Authors Rocio Aguilar Chongtay 

static char SccsId[] _ "XZXXMX XIX(XGX) - RACH "; 
*include <pgapack.h> 
*include <opgmodel.h> 
*include <gmodel.h> 

double gmodeval(ctx, p, 
PCAContezt *ctx; 
int p; 

int pop; 
{ 

PoP) 

int i, len; 
float =term, prob; 

len = PGAGetStringLength(ctx); 

term = (float e) malloc(sizeof(float) len); 
/allocating memory for mazmodes / 

for (i = 0; i < len; i + +) { 

term[i] = PGAGetRealAllele(ctx, p, pop, i); 

/.candidate is produced here 

prob = prob_gas(term, len); 
return (prob); 

PGA's user main program 

float opgmodel(xo, yo, xsize, ysize, v_std, numgens, init angle,modname) 
float so; 
float yo; 

int xsize; 
int ysize; 
float *v_std; 
int numgens; 
double init_angle; 
char modname[20]; 
{ 

PGAConteot ctz; /0 the context variable / 
double 1 =LULL, u =LULL; 
int i, best_p, len; 
double best e; 
float *thebest; 

numgens + =3; /ading so,yx, angle/ 
1 = (double ) malloc(sizeof(double) numgens); /allocating memory for 1 and u / 
u = (double e) malloc(sizeof(double)e numgens); 

/ lumber of Iterations to run Ga's / 
maxiter =100; 
numitera = 0; 

1[0] = so; 

1[1] 

1[2] = 0; 

u[0] = zo +xsize; / z range / 
n[3] = yo +ysize; /e y range / 
0[2] = 360; /e angle range / 

/initialising the weight paras* with 2 std values 5/ 

/ printí( "Xf,Xf \tSf,11 \t /1,%1 \n ", 1[0],u[0],1[1],u(1],1[2],u[2]); / 
for (i =3; i<numgens; i + +) { 

1[i] _ - 2ev_std[i -3]; 
u[i] = 20v_std[i-3]; 

} 

ctx = PGACreate(Anargc, nargv, PGA_DATATTPE_IEAL, 

numgens, PGA_MIIIMIZE); 

PGASetRandomSeed(ctx, 1); 

POASet&eallnitlange(ctz, 1, u); 

POASetMaxGAlterValue(ctx, maxiter); 

POASetSelectType(ctx, PGA SELECT_PTOURIAMEJT); 

PGASetMutationAndCrossoverFlag (ctz, PGA _TRUE); 

PGASetlumReplaceValue(ctz, 15); 

PGASetPrintFrequencyValue (ctz,100); 

POASetUp(ctz); 
PGARun(ctx, gmodeval); 

/5 producing the output for the best string to be returned / 
best_p = PGAGetBestlndez(ctz, PGA_OLDPOP); 

len PGAGetStringLength(ctx); 
thebest = (float e) malloc(sizeof(float) len); 

for (i = 0; i < len; i++) { 

thebest[i] = PGAGetRealAllele(ctx, best_p, PGA OLDPOP,i); 

} 

POADestroy(ctz); 
íree(1); 
lree(u); 
return(thebest); 

} 
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