

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following

terms and conditions of use:

This work is protected by copyright and other intellectual property rights, which are

retained by the thesis author, unless otherwise stated.

A copy can be downloaded for personal non-commercial research or study, without

prior permission or charge.

This thesis cannot be reproduced or quoted extensively from without first obtaining

permission in writing from the author.

The content must not be changed in any way or sold commercially in any format or

medium without the formal permission of the author.

When referring to this work, full bibliographic details including the author, title,

awarding institution and date of the thesis must be given.

Scaling real-time Event Detection to Massive

Streams

Dominik Wurzer

Doctor of Philosophy

Institute for Language, Cognition and Computation

School of Informatics

University of Edinburgh

2017

Abstract

In today’s world the internet and social media are omnipresent and information is ac-

cessible to everyone. This shifted the advantage from those who have access to infor-

mation to those who do so first. Identifying new events as they emerge is of substan-

tial value to financial institutions who consider realtime information in their decision

making processes, as well as for journalists that report about breaking news and gov-

ernmental agencies that collect information and respond to emergencies. First Story

Detection is the task of identifying those documents in a stream of documents that talk

about new events first. This seemingly simple task is non-trivial as the computational

effort increases with every processed document.

Standard approaches to solve First Story Detection determine a document’s novelty

by comparing it to previously seen documents. This results in the highest reported ac-

curacy but even the currently fastest system only scales to 10% of the Twitter stream.

In this thesis, we propose a new algorithm family, called memory-based methods, able

to scale to the full Twitter stream on a single core. Our memory-based method com-

putes a document’s novelty up to two orders of magnitude faster than state-of-the-art

systems without sacrificing accuracy.

This thesis additional provides original work on the impact of processing unbounded

data streams on detection accuracy. Our experiments reveal for the first time that the

novelty scores of state-of-the-art comparison based and memory-based methods decay

over time. We show how to counteract the discovered novelty decay and increase de-

tection accuracy. Additionally, we show that memory-based methods are applicable

beyond First Story Detection by building the first real time rumour detection system

on social media streams.

iii

Declaration

I declare that this thesis was composed by myself, that the work contained herein is

my own except where explicitly stated otherwise in the text, and that this work has not

been submitted for any other degree or professional qualification except as specified.

(Dominik Wurzer)

iv

Acknowledgements
First and most of all, I want to thank my supervisor Victor Lavrenko for his

outstanding support, help, patience, motivation and guidance. I will miss the meetings

and discussions, which enabled me to learn from the greatest teacher I have come

across.

I also want to thank Henry Thompson and Miles Osborne for their support and

discussions.

v

Table of Contents

1 Introduction 1

2 Background 9
2.1 Topic Detection and Tracking . 9

2.1.1 TDT Sub-Tasks . 12

2.2 Streaming Environments . 13

2.2.1 Implication of Unbounded Data Sources 14

2.2.2 Dealing with Unbounded Data Sources 15

2.2.3 Data Streams in First Story Detection 16

2.3 Approaches to First Story Detection 18

2.3.1 Principle of Comparison-based Novelty Detection 18

2.3.2 Comparison based FSD Systems 20

2.3.3 Classification based FSD . 26

2.3.4 Trend based Event Detection 27

2.3.5 Summary of existing approaches to FSD 28

2.4 Evaluating First Story Detection . 31

2.5 Conclusion . 35

3 Data Set and Baselines 37
3.1 Motivation . 37

3.2 Cross Data Set . 37

3.3 Baselines . 40

3.4 Hardware and Parameter Setting . 46

3.5 Conclusion . 46

4 Memory-based Novelty Detection 47
4.1 Motivation . 47

4.2 Intuition on memory-based Novelty Detection 49

vii

4.3 Kterm Hashing . 50

4.3.1 Constructing a Novelty Computation Method 51

4.3.2 Kterm Cardinality . 56

4.3.3 Implementing Kterm hashing for novelty detection 58

4.3.4 Memory Representation . 59

4.4 Algorithm Complexity . 61

4.5 Conclusion . 62

5 Improving FSD through memory-based Novelty Detection 63

5.1 Motivation . 63

5.2 Impact of Preprocessing on FSD Performance using Kterm Hashing . 63

5.3 Impact of Cardinality on Kterm Hashing for FSD 70

5.3.1 Impact of Kterm Cardinality on Effectiveness 70

5.3.2 Impact of Kterm Cardinality on Efficiency 73

5.4 Constant Time and Space . 73

5.5 Difference to comparison based FSD 79

5.6 Conclusion . 85

6 The Effect of Recency on FSD Detection Accuracy 87

6.1 Motivation . 87

6.2 Recency in CMU and LSH-FSD . 88

6.3 UMass and the Temporal Bias . 88

6.3.1 Recency for through Cumulative Term Statistics 89

6.4 Biasing Kterm Hashing Towards Recency 92

6.5 Conclusion . 94

7 FSD Performance over time 95

7.1 Motivation . 95

7.2 Novelty Decay in Comparison based and memory-based FSD Systems 96

7.3 Causes for Novelty Score Decay over Time 100

7.4 Bootstrapping FSD Systems to Boost Detection Accuracy 104

7.5 Additional Methods for Counteracting Novelty Score Decay over Time 106

7.5.1 Modelling Novelty Score Decay 106

7.5.2 Counteracting Novelty Decay 110

7.5.3 Impact of Adapting Novelty Scores on FSD Effectiveness . . 112

7.5.4 Impact of Adapting Novelty Scores on FSD Efficiency 115

viii

7.6 Conclusion . 116

8 Further Applications of Novelty Detection 117
8.1 Motivation . 117

8.2 Rumour Detection . 118

8.3 Approaches to Rumour Detection 119

8.4 Improving Rumour Detection through Novelty Detection 121

8.4.1 Approach Overview . 121

8.4.2 Novelty based Features . 122

8.4.3 Applying Kterm Hashing to Mandarin 124

8.4.4 Pseudo Feedback . 127

8.4.5 Context Based Features . 128

8.5 Experiments . 130

8.5.1 Evaluation Metrics . 130

8.5.2 Data Set . 131

8.5.3 Rumour Detection Effectiveness 132

8.5.4 Feature Analysis . 135

8.5.5 Impact of Term Segmentation on Detection Accuracy 137

8.5.6 Detecting Unpopular Rumours 137

8.5.7 Efficiency and Scalability 138

8.6 Conclusion . 139

9 Conclusion 141

Bibliography 143

ix

Chapter 1

Introduction

Historically, most information was reserved for an elite group who had exclusive ac-

cess. The advantage was with those who were granted access to the information. With

the emergence of news organizations, these barriers were opened by allowing every-

one to access information about events happening around the world. Until the end of

the last century, information was reported and spread by news agencies. Their pro-

fessional journalists carefully researched and curated news stories which resulted in a

low volume of high-quality information. Although free media made information more

accessible, they still controlled it by deciding what information was of interest to the

public.

The internet and the free accessibility of data from social media services act as an

equalizer that provides access to information to everyone. In particular the emergence

of social media decentralized news, as it provides everyone the means to report and

share information at ease.

Information shared on social media channels differ from official news-wire stories.

Their messages are shared publicly although they are often targeted at a specific and

often small audience to which they are relevant. Consequently, the vast majority of sto-

ries on social media services like Twitter can be regarded as irrelevant to the general

public as they consist of trivial or private chatter. Although noisy, the realtime nature

of these fast-moving data streams allows gathering an insight on what is going on at the

moment, which makes them a valuable information source. This information is freely

accessible to everyone. The benefit no longer resides with those who have access to it

but with those who do so first. The identification of novel information in realtime is

1

2 Chapter 1. Introduction

challenged by the sheer volume and unorganized nature of the available data.

This becomes particularly apparent in economics. The efficient market hypothesis

by Nobel Prize winner Fama (1969) states that it is impossible to consistently beat the

markets on average profit return if all information is equally distributed. In a mar-

ket where information is uniformly available to all participants, trading options cannot

be recognised as over- or undervalued. Consequently, continued profitability above

the market average is not possible as the success only depends on external unknowns

and coincidences. According to the efficient market hypothesis, continued economic

success can only result from having an information advantage over competitors. This

explains the interest in information gathering and processing from financial institu-

tions. The earlier and faster information is acquired the greater advantage it provides

over competitors. Consequently, the value of information is determined by the delay

before it can be acquired.

Detection and analysis of information in social media streams are also in the inter-

est of governments. The gathering of realtime information allows for better and faster

management of governmental responses to events like earthquakes, terror attacks and

incidences or mass panics surrounding big events like the Olympics or festivals (Ho-

senball, 2011). Fast detection of new information improves modelling rapidly evolving

situations. By analysing public data streams in real-time, governmental agencies are

able to reduce response latencies and allocate resources more efficiently. As in eco-

nomics, the value of information depends on the delay before it can be detected. The

earlier new information is detected, the lower the response times and the bigger their

impacts are.

Detecting new information about evolving events in realtime is a valuable but also

very challenging task. Social media services produce several thousand messages every

second. This clearly surpasses human capacities, so automatic processing and ex-

traction of information about events from such fast-moving and noisy streams would

clearly provide an advantage. The Topic Detection and Tracking (TDT) program1,

which started in 1998, aimed to create automated systems that assist human analysts in

monitoring news streams around the world. Among several subtasks, TDT introduced

1TDT by NIST - 1998-2004. http://www.itl.nist.gov/iad/mig/tests/tdt/resources.html (Last Update:
2008)

3

the task of automatically detecting new events in data streams. TDT vaguely defines

events as something that happens at a specific time and place. New Event Detection,

also called First Story Detection (FSD) describes the task of monitoring a stream of

documents with the intent of identifying those that speak of unseen events, with respect

to all previously seen documents, first. While FSD technology was originally designed

to operate on small scaled news streams, state-of-the-art systems process millions of

documents. Unfortunately, even the fastest FSD systems fall short, compared to the

volume of today’s social media streams. This is problematic because for many ap-

plications the value of information gathered by an FSD system depends on the delay

before it can be detected. To reach its full potential, an FSD system has to be able to

scale to the full size of the stream it operates on.

Figure 1.1: Example of a tweet stream containing 4 documents (tweet 1 - tweet 4).

Tweet 1 and Tweet 3 are considered “first stories”, since they report about an event

first. Tweet 2 and tweet 4 are “follow-up” stories.

The challenge we tackle in this thesis is detecting novel events in streams of text as

fast as possible - preferably instantly - after their publication. This task is called “New

Event Detection” or “First Story Detection” (FSD). Figure 1.1 shows an example of a

tweet stream containing 4 units (tweets). In a streaming setting, units arrive one at a

time in a defined order, often chronological. In this thesis, we refer to all stream units,

like tweets and news articles, as documents. FSD systems are required to processes

documents and determine whether they speak about previously unseen events. Docu-

ments like tweet 1 and tweet 3, reveal a high degree of novelty with respect to the past.

Consequently, these documents are likely to talk about new events. We refer to them

as “first stories” because they talk about new events first. Documents that share topi-

4 Chapter 1. Introduction

cality with previously arrived documents, like tweet 2 and tweet 4, are considered as

“follow-ups”. FSD requires distinguishing “first stories“ from “follow-ups”. The main

challenges of FSD arise from the ever growing number of tweets processed, which

determine the degree of novelty of future documents and the high frequency in which

they arrive.

FSD systems are applied to high-volume streams, which move too quickly to be pro-

cessed manually. Modern data sources like Twitter produce thousands of documents

every second. Such high-volume streams require operation with high efficiency. For

FSD systems, the term efficiency addresses two concepts: 1) throughput, the number

of documents processed per time unit, and 2) latency, also called lag, the time that

passes until a decision is made. Both, high throughput and low latency, are necessary

to successfully operate an FSD system on a high-volume stream.

The only published algorithms that can detect novelty without any lag are compari-

son based methods. This family of algorithms computes document novelty based on

vector proximity with previously encountered document representations. The degree

of novelty is defined by 1 minus the similarity to the closest previous document repre-

sentation. In addition to comparison based methods, novelty can also be detected by

counting based approaches. These describe another family of algorithms, which is also

referred to as trend-based novelty detection. Trend based algorithms observe term and

phrase counts over time and focus on detecting “burstiness” behaviour in them, which

is assumed to signal new topics. New topics are likely discussed using new terms or a

new combination of terms. Consequently, changes in the frequency terms and phrase

usage are interpreted as signals for new events. While effective for the identification

of trending topics in social streams, this algorithm family is unfortunately unsuitable

for First Story Detection for two reasons:

1) Delayed Detection:

Trend based novelty detection is limited to retrospective detection. Repeated signals

are necessary to alter term statistics sufficiently enough to detect an event. FSD how-

ever, requires instant detection and does not allow any lag.

2) Limited to large events:

Trend based novelty detection can only detect events large enough to alter the term

5

statistics. This means that trend based novelty detection are unable to detect small

events that only span of a few messages.

We conclude that trend based methods are unsuitable for our task because novelty

detection is delayed and limited to large-scale events.

Figure 1.2: Principle of comparison based novelty computation: New documents are

compared to all previously arrived documents to identify the most similar one. Each

processed document increases the computational effort of future documents.

State-of-the-art FSD systems apply comparison based novelty detection because it re-

sults in the highest accuracy and is the only published algorithm family that introduces

no lag. The downside of comparison based novelty detection is that the space and time

complexities depend on the number of documents processed in the past. Figure 1.2

illustrates that comparison based methods require n− 1 distance computations (com-

parisons), to determine the novelty of the nth document arriving from the stream. The

number of terms two documents share in common determines the number of scalar

multiplications necessary to compute their distance. The computational cost is man-

ageable when the number of documents remains low. On data streams however, the

number of previously seen documents increases without bound.

This is challenging because new documents are compared to a continuously growing

number of documents. Consequently, comparison based novelty detection becomes

progressively slower until it gets prohibitively expensive. In addition to a steadily

increasing processing time, comparison based methods also suffer from a steadily in-

6 Chapter 1. Introduction

creasing storage cost, as each new document needs to be remembered for future com-

parisons.

High-volume streams in combination with ever increasing document counts demand

efficient operation in constant time and space on a per document basis. Efficiency in-

creases when the computational effort on a per document basis is reduced. To scale to

fast-moving data streams, modern comparison based FSD approaches limit the num-

ber of comparisons made by narrowing the search space. This sacrifices guarantees on

errorless operation to reach an adequate level of efficiency. This leads to gains in ef-

ficiency at the cost of effectiveness. Although state-of-the-art FSD systems only grow

marginally in space over time, they eventually run out of space and turn infeasible. Ad-

ditionally to the established streaming requirements, including operation in constant

time and space, we introduce another requirement: operation with constant accuracy

over time. Constant accuracy over time is an overlooked constraint on streaming algo-

rithms, but we argue that this requirement is as important as operation in constant time

and space. If performance degrades over time, an FSD system would at some point

become impractical when applied to an unbounded data stream. To operate in a true

streaming environment, a system must perform highly efficiently while guaranteeing

constant accuracy in constant time and space.

Based on the above discussion we define key elements on how this thesis contributes to

the improvement of FSD. Addressing the downsides of comparison based novelty de-

tection, we introduce a new algorithm family for novelty computation, called memory-

based methods. In contrast to comparison based methods, memory-based novelty com-

putation does not compute novelty based on document-level comparisons. Instead, a

combined memory - covering all previously encountered information - is constructed

and used to detect unseen information based on term-level comparisons. We show

that memory-based methods overcome the disadvantages of comparison based meth-

ods while maintaining their high effectiveness and operation with zero lag.

Furthermore, we study the impact of unbounded data streams on FSD accuracy over

time. Our experiments show that accuracy decreases for comparison and memory-

based algorithms and provides counter measures. Additionally, we show that memory-

based methods are applicable beyond novelty detection for FSD. We the first real-time

rumour detection system by computing features based on information entailment using

7

memory-based novelty detection.

Central Hypothesis

memory-based algorithms detect new events orders of magnitude faster than

comparison based approaches while achieving the same level of accuracy.

Novelty Computation
State-of-the-art novelty computation relies on computing similarities with previously

seen documents. This imposes a limit on how far FSD can be scaled up without losing

effectiveness. In this thesis, we introduce memory-based novelty detection, the first ef-

fective non-comparative algorithm family for novelty detection with zero lag. Instead

of pairing documents and computing similarities between them, we construct a single

representation of the past, covering information from all previously encountered doc-

uments. Novelty is computed by measuring a document’s overlap with the past. Our

experiments show that non-comparative memory-based novelty computation reaches

state-of-the-art FSD effectiveness that is statistically indistinguishable from compari-

son based methods.

Efficiency
The efficiency of FSD systems addresses two properties: lag and throughput. FSD sys-

tems should be efficient enough to scale to real life high-volume data streams without

sacrificing effectiveness. This requires throughput greater than the stream volume in

conjunction with zero lag. We show that memory-based novelty computation is su-

perior to comparative approaches in terms of throughput while both methods achieve

zero lag. Shifting from document level comparison to comparison with a single repre-

sentation of the past exceeds the throughput of state-of-the-art FSD approaches by 1-2

orders of magnitude. We show how memory-based FSD can process the equivalent of

the full Twitter stream using only a single core.

8 Chapter 1. Introduction

True streaming environment
Streams are by definition infinite data sources. In order to operate in a streaming en-

vironment, an FSD system is required to operate in O(1) (constant) in terms of time

and space with respect to the number of documents processed. We reveal that even the

most effective FSD approaches cannot operate in constant time and space. In contrast,

we show that memory-based FSD operates in absolutely constant time and space, al-

lowing it to operate in a real streaming environment.

In addition to restricting time and space, we require FSD systems to keep the de-

tection accuracy constant over time. We provide the first study of FSD accuracy over

time and reveal that the performance of comparative and non-comparative FSD ap-

proaches degrades over time. We argue that constraining accuracy is as important as

time and space to retain an algorithm’s usability when operating on unbounded data

sources. Our experiments reveal that the performance decay can be modelled using a

simple mathematical decay function. Counteracting novelty decay over time results in

significantly increased detection performance. Additionally, we show that traditional

speed-up techniques for FSD unwittingly prevent novelty decay over time.

The main contributions of this thesis are:

• We show that a document’s degree of novelty can be computed effectively and

efficiently without computing similarities to other documents

• We present a method that solves FSD in constant time/space

• We present a method that solves FSD much faster than in the past (10-200x)

• We show that considering recency improves comparative and non-comparative

FSD effectiveness

• We show that the novelty scores of comparative and non-comparative FSD sys-

tem decay over time and provide a method to counteract novelty decay

• We show that novelty detection can be used to significantly improve rumour

detection accuracy

Chapter 2

Background

The following chapter reviews the research fields in computer science necessary for

understanding the rest of the thesis. Initially, we introduce the Topic Detection and

Tracking initiative, which invented the core task of this thesis, First Story Detection.

Because First Story Detection is a streaming task, we review the implication of un-

bounded data sources and explore approaches to dealing with every growing numbers

of documents. The main constituent of this chapter explores and compares existing

approaches to solve the First Story Detection task. Eventually, this chapter reviews

the evaluation paradigms used in the literature to evaluate First Story Detection perfor-

mance.

2.1 Topic Detection and Tracking

Topic Detection and Tracking (TDT) is a research body and evaluation paradigm for

the organization of news streams. The growing volume of information published by

broadcasters worldwide exceeds human capabilities in detecting and organizing rele-

vant information within the stream. The TDT program aimed to assist human agents,

monitoring broadcasting streams, by automatically organizing event based informa-

tion. The U.S. government funded the TDT program, which started with as a pilot

study in 1997 and ran for 5 years. During the following years, 4 competitive sys-

tem evaluations took place, which focused on improving detection accuracy (Fiscus

& Doddington, 2002). The goal of these competitions was to intensify research and

build technology aimed at automatically detecting and monitoring topics in broadcast

streams. The data streams, provided by the Linguistic Data Consortium1, covered

1https://catalog.ldc.upenn.edu/LDC98T25

9

10 Chapter 2. Background

news-wire articles as well as speech-to-text transcripts of television and audio pod-

casts in Chinese and English.

In news streams, topics suddenly emerge, become popular and eventually fade away.

Relevance is therefore bound by a temporal component. Information currently relevant

to a human analyst might be irrelevant at a later point in time. In contrast to traditional

Information Retrieval tasks, TDT does not rely on the concept of relevance but in-

troduced a topic-based organization instead. Initially, topics were vaguely defined by

a notion of “aboutness” and “something that happens at a particular time and place”

(Allan, 2002). This definition was expanded during the second year of TDT to: “a

seminal event or activity, along with all directly related events and activities” (Fiscus

& Doddington, 2002). The final definition of a topic starts with its first occurrence

in a document and covers all subsequent stories that share the same aboutness. TDT

relied on human judgement to decide whether documents share the topicality of target

topics. This imprecise definition of what topics are led to studies exploring varying

granularities of topics (Allan, 2002) and the hierarchical representations of different

levels of topic granularity (Zeng et al., 2009;Kwak et al., 2010).

In this thesis, we use public data sets that follow the original TDT definition of what

topics are. These data sets were created by human annotators who defined a set of tar-

get topics and decided about the topicality of documents belonging to them using their

intuitive human judgement. Documents associated with target topics are not further

organized into sub-events or ordered by hierarchical representations. For the remain-

der of this thesis, we rely on the judgement of the annotators who crafted the data sets

and are not further concerned with topic granularity or alternative topic definitions. As

in TDT, we assume that each data set has a defined set of target topics. Every target

topic comes with a precisely defined starting point, marked by a trigger event. The

trigger event is determined by a “first story” - the document that speaks about the topic

first. All subsequent documents, reporting about further development of the topic, are

dubbed “follow-ups”. These documents were identified by human annotators, who

considered them to share the same topicality as their corresponding target topic.

Figure 2.1 shows an example topic called “presidential campaign of Tony Stark”.

The first document in the stream stating that Tony Stark declares running for the pres-

idency is the trigger event, also called the “first story”. All subsequent documents

2.1. Topic Detection and Tracking 11

Figure 2.1: Example of a “first story”, marking the trigger event of a topic and its corre-

sponding “follow-ups” - subsequent documents that share the same topicality.

talking about other’s reactions, the announcement of the running mate, fund-raising

and campaigning, are part of the same topic and thus considered as “follow-ups”. Af-

ter the election, the topic would fade and eventually vanish.

TDT Data Sets
The TDT program focused on organizing news stories. Broadcasters continuously

publish news stories, which naturally form a stream of information. Formally, streams

are unbounded data sources. This means that documents continuously arrive one-at-a-

time in chronological order defined by their publication time stamp. In the course of

the TDT program, the Linguistic Data Consortium2 contributed 3 independent stream-

ing data sets. They consist of a collection of news-wire articles, radio and television

material from 1994 – 1998 in the form of text and speech in English and Mandarin.

All documents are organized chronologically by their publication time stamp to form

a data stream. Audio data was automatically transcribed and Mandarin automatically

translated into English. The three resulting corpora vary in size and range from 26,000

to 74,000 documents. The number of documents appears to be low by today’s stan-

dards but was considered to be reasonable in the early 2000s. Note that the TDT

program exclusively focused on detection accuracy, neglecting efficiency and scale.

Modern data sources require a combination of accuracy and scalability to keep FSD

2https://catalog.ldc.upenn.edu/LDC98T25

12 Chapter 2. Background

feasible. In this, thesis we base our evaluation on novel and large-scale social media

data streams that reflect true streaming environments.

2.1.1 TDT Sub-Tasks

The broader problem of event based news organisation was split up, forming 5 different

sub-tasks, each of which covers an intrinsic part of a news organisation and monitoring

system:

1. Story Segmentation
Broadcast shows on TV usually cover a number of different stories within a

single show. TDT systems process these shows in the form of automatically

transcribed text streams. While differentiating between different stories does not

impose a challenge to humans, it is not clear for a machine where in an automat-

ically transcribed stream of text one story starts and the other one ends. The goal

of Story Segmentation is to detect the boundaries, segmenting different news

topics within a continuous stream of text (Allan, 2002). Story Segmentation

was considered as a pre-processing step for subsequent TDT tasks (Fiscus et al.,

2002).

2. Cluster Detection
Cluster Detection describes the task of grouping documents by their topicality.

Each resulting cluster corresponds to a topic within the stream. Cluster Detection

is unsupervised as neither the topics themselves, nor the number of topics are

known in advance. The streaming nature of TDT requires online clustering. New

topics trigger the creation of new clusters and follow-up stories are assigned to

their corresponding clusters.

3. First Story Detection
First Story Detection (FSD) identifies new events in a stream of documents.

More formally, FSD describes the task of identifying those documents that speak

about previously unknown events first. Allan (2002) referred to FSD as a spe-

cial case of Cluster Detection that focuses on the problem of when to spawn a

new cluster. First stories are detected by computing a document’s novelty with

respect to the past. Since novelty refers to the past, the degree of novelty of

a particular document depends on the point in the stream where the FSD sys-

tem was turned on. FSD is considered to be the hardest of the 5 TDT tasks

2.2. Streaming Environments 13

(Petrovic, 2013). In TDT, First Story Detection instantly detects new events on

data streams, which provides direct applications for news, financial and security

institutions (Allan, 2002).

4. Topic Tracking
Topic Tracking systems are presented with a predefined target topic and a stream

of documents. The target topic is defined by a small set of 1 to 4 documents

that share the same topicality. Topic Tracking describes the supervised task of

identifying all those documents in the stream that share the same topicality as

the target topic. Since topics are independent of each other, a document can

be relevant to more than one target topic. Topic Tracking, although similar to

information filtering, sets itself apart by the absence of feedback about previous

decisions (Allan, 2002). Interestingly, Topic Tracking is related to First Story

Detection, because Topic Tracking technology can be used to solve FSD and

comparison based FSD can solve Topic Tracking (Allan et al., 2000a). In TDT,

Topic Tracking allows following and monitoring the development of previously

detected events.

5. Story Link Detection In Story Link Detection, a system is provided with two

different stories and asked whether they share the same topicality. Story Link

Detection was considered as a separate sub-task because it represents a core

technology of TDT – the measurement of document similarity. A system’s per-

formance in Story Link Detection directly carries over to comparison based FSD

and Topic Tracking.

The 5 sub-tasks assemble a complete TDT system that identifies new topics and follows

them as they evolve.

2.2 Streaming Environments

Data streams, although omnipresent in modern life, are often not recognized by those

who engage with them on a daily basis. The general public considers “streaming” as

on-the-fly data processing, like streaming videos from servers to laptops or TVs.

The meaning of “streaming” in computer science and IR in particular, differs from the

general perception of the term. In computer science, streams are considered to be un-

bounded data sources, where new items arrive on a continual basis one-at-a-time in a

14 Chapter 2. Background

particular order. Real world examples of such data streams are passenger IDs traveling

through a public transport system, photos and videos uploaded to the internet, trade

orders arriving at stock exchanges, posts on social media services and news articles

published by broadcasters.

In the thesis we refer to data streams as unbounded data sources where documents

arrive in chronological order - defined by their publication time stamp, one at a time.

This matches the definition of streaming environments by Muthukrishnan (2005). Data

streams differ from batch data sources as they have neither a beginning nor an end.

Documents are organised in time and can only be accessed sequentially in the order

they arrive.

The public availability and ease of accessibility of data streams from social media

services have recently sparked broad interest in various research fields. Twitter’s docu-

ment stream for example, was used for natural disaster detection (Sakaki et al., 2010),

rumour detection (Qazvinian et al., 2011), disease outbreaks prediction and tracking

(Achrekar et al., 2011), monitoring the aftermath of terror attacks (Agrawal et al.,

2010), mining the opinions on products (Jiang et al., 2011), stock market prediction

(Bollen et al., 2011) flu outbreak predictions (Ritterman et al., 2009), election outcome

predictions (Sang et al., 2012) and building trading strategies (Sul et al., 2014), to name

a few.

2.2.1 Implication of Unbounded Data Sources

Unbounded data sources differ from finite batch data because documents arrive on a

continual basis. Storing an ever growing amount of data would become prohibitively

expensive, which requires algorithms to perform computations on-the-fly (online). In

this thesis, we assume operation on high-volume data streams. This means that we

expect to receive several thousand documents every second. When documents arrive

at such a high rate, algorithms are required to process them instantly. High-volume

streams only allow for a single pass over the data, as there is no time to revisit a doc-

ument at a later point in time. The algorithmic complexity of streaming algorithms

determines the amount of resources (time/space) necessary to process a particular item

in the stream. Muthukrishnan (2005) formulated desiderata for streaming algorithms

that require operation in O(1) with respect to processing time and memory footprint

2.2. Streaming Environments 15

on a per-document-basis. This requires constant processing time and space for each

document, independently from its position in the stream. Note that this resembles

the strongest possible condition for algorithm complexity. Operation in constant time

and space allow algorithms to remain feasible as they see more and more data. By

contrast, algorithm with time and space complexities dependent on the number of doc-

uments processed become prohibitively expensive. (Qin et al., 2017).

In this thesis, we expand the desiderata for streaming requirements by Muthukrishnan.

In addition to operation in constant time and space, we also require an algorithm’s ac-

curacy to remain constant over time. The impact of changing effectiveness over time

is an overlooked topic in streaming applications and research, which we find to be as

significant as the operation in constant time and space. If a system’s accuracy were to

degrade as it processes more and more data, it would eventually turn impractical.

Based on the discussion above, we require an FSD system to operate in a true stream-

ing environment. This requires performing all operations in constant time and space

while also maintaining a constant detection accuracy over time.

2.2.2 Dealing with Unbounded Data Sources

The recent emergence of public social media streams has sparked a growing research

interest in processing them. Various approaches have been proposed to scale algo-

rithms to unbounded data sources. Unfortunately, many researchers confuse data

streams with collections containing large amounts of documents. They consequently

focus on improving efficiency, while neglecting operation in constant time and space.

We only consider solutions that are applicable in a true streaming environment.

All approaches to deal with data streams share a common principle. In a nutshell,

constant operation is achieved by limiting the amount of data presented to an algo-

rithm (Qin et al., 2017). We conclude that constant operation can be reached when

an algorithm is exposed to a constant amount of data. The remainder of the section

summarizes different approaches to keep an algorithm’s data exposure constant.

The simplest solution on scaling algorithms relies on sliding windows (Datar et al.,

2002). With each arrival of a new document, an old document falls out of scope. The

16 Chapter 2. Background

number of documents stored equates to the length of the window, which moves through

the stream. The fixed size of the window guarantees a constant data exposure to the

algorithms.

While time-sensitive windows are widely applied due to their simplicity, other dele-

tion strategies can provide application dependent advantages (Lee et al., 2014). They

conclude that sliding windows are effective whenever the application dependent focus

can be captured by the deletion criteria. Examples include: the deletion by recency,

whenever newer items are believed to carry more information than old ones (Li et al.,

2008); or deletion by frequency, when the most frequently observed items are deemed

more important than less frequently observed items (Berinde et al., 2009).

Sampling strategies provide an effective alternative to window based strategies (Braver-

man et al., 2012). Sampling techniques select which items of the past are to be used

for future computations. Ideally, a sample captures all relevant characteristics of seen

data, thus providing a compressed model of the past (Shrimpton et al., 2015). Various

sampling techniques for data streams have been proposed, providing uniformly random

(Vitter, 1985) as well as biased (Aggarwal et al., 2006; Osborne et al., 2014) models of

the past. Sampling differs from sliding windows as it provides certain guarantees on

the data selected and not every new item is ensured to be added to the sample. Con-

stant data exposure guarantees operation in constant time and space. Unfortunately,

selective data removal inevitably comes at the cost of information loss. Therefore, all

discussed methods ensure high efficiency and scalability at the expense of effective-

ness.

2.2.3 Data Streams in First Story Detection

When TDT introduced the First Story Detection task, it was advocated as a stream-

ing task (Allan, 2002). TDT, however, chose not to impose the strong conditions on

algorithm complexity necessary for true streaming applications. Instead, TDT only

enforced online processing while focusing on effectiveness and neglecting efficiency

and scale. The resulting algorithms (Allan et al., 2000) are state-of-the-art in terms of

detection accuracy but at the same time inapplicable in a true streaming scenario. The

emergence of massive social media streams highlighted the scaling issues of systems

designed for the TDT competitions.

2.2. Streaming Environments 17

Social media and news-wire streams
Social media differs from traditional news-wire streams, which imposes additional

challenges on FSD systems. The most obvious difference is the massive volume of

social media streams, which exceeds those of broadcasters by several orders of magni-

tude (Petrovic et al., 2013; Osborne et al., 2014). Microblogging services like Twitter3

or Sina Weibo4 produce several thousand messages every second, requiring highly

scalable algorithms.

Apart from scale, social media streams are not primarily used for the distribution of

“news worthy” information. On a broadcast stream, all documents represent informa-

tion carefully curated and deemed to be relevant to the general public by professional

editors. Content in social media streams, on the contrary, is produced by ordinary users

and mainly consist of information relevant to a specific often small group of individ-

uals. This covers chatter and trivial conversation about non-newsworthy topics. We

refer to this chatter as noise that needs to be separated from the signal (news worthy

information), because it would distract a human analyst from identifying significant

events.

Social media streams also differ in the usage of language. Social media represents

an informal communication channel for ordinary users. Messages reveal a highly cre-

ative use of language and lexical variations. Users tend to create new and compound

terms (hashtags) and change or bend the meaning of existing terms. This aspect of so-

cial media streams is of great interest for the study of the evolution of human language

but also introduces vocabulary mismatches, which challenge Information Retrieval ap-

proaches (Petrovic, 2013).

3Average Twitter volume 5,787 tweets/second https://about.twitter.com/company (last updated:
March 31, 2016)

4Average Sina Weibo volume 1,200 weibos/second http://open.weibo.com/ (last updated: July 31,
2016)

18 Chapter 2. Background

2.3 Approaches to First Story Detection

Over the years various approaches including probabilistic, IR and classification-based

approaches have been proposed to tackle First Story Detection with varying success.

The most successful systems today rely on information retrieval techniques, which

is why we discuss them in more detail. The core component of an FSD system is

its novelty computation procedure. We distinguish between comparative and non-

comparative novelty computation.

2.3.1 Principle of Comparison-based Novelty Detection

FSD detects a new event by identifying its first story - the document that mentions it

first. The core hypothesis of comparison based novelty detection assumes that first sto-

ries are different from all previous documents because they contain unseen information

– the new event. Detecting a new event is then subject to measuring how different a

document is from those seen in the past. For comparison based novelty detection, a

document’s (dt) degree of novelty is determined by the distance to the closest previous

documents (d1...dt).

Novelty(dt) = 1− max
d∈d1...dt

similarityt(dt ,d) (2.1)

Identifying the closest document is also referred to as nearest neighbour search. Com-

parison based systems set themselves apart in the way they solve the nearest neighbour

search problem.

The most successful FSD systems, including the UMass system (Allan et al., 2000)

and CMU system (Yang et al., 1998) apply the vector space model (VSM) by Salton

et al. (1975). The VSM describes a multidimensional space, whose axes correspond

to unique terms in the vocabulary. Let us denote by td,n term t in document dn from all

documents D. The dimensionality of the vector space equates to Dim = |{t : t ∈ d,d ∈
D}|

In the VSM, all documents are represented by vectors in the term space. This allows

approximating document similarity through vector proximity. Document vectors are

usually weighted by the t f .id f scheme, a combination of term frequency and inverse

2.3. Approaches to First Story Detection 19

document frequency (Salton et al., 1975).

weight(t,d) = t f (t,d)∗ id f (t) (2.2)

The term frequency t f (t,d) represents the number of times term t occurs in docu-

ment d. High term frequencies indicate higher representativeness of the term t for the

document d. The inverse document frequency id f (t) is an indication of the overall

importance of term t. Terms that appear in many documents are less representative for

an individual document (Salton et al., 1975). The inverse document frequency (id f)

of term t is defined by the ratio of all documents to the number of documents term t

appears in.

id f (t) = log(
|D|

|{d : t ∈ d,d ∈ D}|
) (2.3)

Since FSD systems operate on data streams, the idf component can either be computed

incrementally or on a separate corpus (Yang et al., 1998).

The combination of the local (document-based) and the inverse of the global (collection-

based) document frequency indicate a term’s degree of representativeness for a docu-

ment.

The pilot study of TDT by Allan et al. (1998) explored various ways of measuring

document distances and their impact on FSD performance and found tf.idf weighted

cosine similarity to be superior. Cosine similarity measures the similarity of two doc-

uments (d1,d2) by the angle between their corresponding vectors.

cosine similarity(d1,d2) =
∑t∈d1

⋂
t∈d2

t f .id f (t,d1)∗ t f .id f (t,d2)√
∑t∈d1 t f .id f (t,d1)2 ∗

√
∑t∈d2 t f .id f (t,d2)2

(2.4)

The cosine similarity can be interpreted as a judgement of vector alignment. Resulting

from the projection of two unit vectors, the cosine similarity is naturally bound be-

tween 0 (orthogonal direction) and 1 (same direction), independently from the number

of dimensions.

20 Chapter 2. Background

2.3.2 Comparison based FSD Systems

The performance of comparison based FSD systems depends on the quality of their

document similarity measurement. We review 3 comparison based FSD systems, the

Dragon system (Yamron et al., 1998), the UMass system (Allan et al., 2000) and the

CMU system (Yang et al., 1998), which are known for their high FSD performance

during the TDT competitions (Petrovic, 2012). All 3 systems rely on the cosine simi-

larity (Equation 2.4) for their novelty computations, which was found to result in the

highest accuracy during the initial TDT workshop (Allan, 2002). The three systems

set themselves apart in the way they organized previously received documents.

UMass
The principle of the UMass FSD systems (Allan et al., 2000) is considered to be the

standard approach to FSD (Petrovic et al., 2010; Wurzer et al., 2015). For each doc-

ument arriving from the stream, UMass computes its tf.idf weighted cosine similarity

with all previously arrived documents. The novelty score of a document equates to

1 minus the maximum similarity with a previous document, as seen in Equation 2.1.

The exhaustive comparison with all previous documents is computationally expensive

but results in state-of-the-art FSD accuracy. The worst case time and space complex-

ity of UMass depends on the number of documents (n) processed , resulting in O(n).

This means that the time and space complexity increases linearly with the number of

documents processed. To speed up computation, UMass applies an inverted index and

limits document vectors to the t highest weighted features. This reduces the average

time complexity from A(n ∗ dl) to A(n ∗ dl/v) operations. Here, dl refers to the aver-

age document length, n is the number of documents processed in the past and v is the

number of unique terms found in the n documents.

Unfortunately, UMass does not scale to data streams because its time complexity de-

pends on the number of documents encountered in the past. Consequently, the runtime

per document and overall storage cost grow without bound. We were provided with the

source code of UMass and use it as a high effectiveness baseline due to its state-of-the-

art FSD accuracy. An in-depths analysis of the UMass FSD system appears Chapter 3.

2.3. Approaches to First Story Detection 21

Dragon

Algorithm 1 : Dragon FSD System
for all document d ∈ Stream do

for all term t ∈ d do
for all centroid c : t ∈ c do

update cosine similarity(d,c)

end
end
simmax← maxc′{cosine similarity(d,c)}
noveltyScore(d)← (1− simmax)

if simmax < α then
for all term t ∈ d do

update(c’,t)

end
discard(d)

else
cnew← d

discard existing cluster

end
end

Unlike UMass, the Dragon system (Yamron et al., 1998) does not represent the past

by individual documents. Instead, documents arriving from the stream are grouped

by their topicality using single pass agglomerative clustering. Algorithm 1 shows the

detailed pseudo-code of the Dragon system according to their publication (Yamron et

al., 1998) and Figure 2.2 illustrates a simplified 2-dimensional view of Dragon’s vector

space model. Each cluster is represented by a centroid vector (C1 and C2), formed by

averaging all document vectors (D1−D6) associated with it. New documents (D7) ar-

riving from the stream are compared to all centroids using cosine similarity (Equation

2.4). If the distance to the closest centroid vector falls below the integration threshold

(α), documents get assigned to it and contribute their statistics to the centroid’s vec-

tor. The document’s information is then captured by its corresponding centroid vector

and the Dragon system discards it. The resulting centroid vectors resemble the average

of their constituents and the clusters form hyper spherical shapes, as seen in Figure 2.2.

22 Chapter 2. Background

Figure 2.2: Simplified 2-dimensional vector space illustration of Dragon’s cluster based

approach; showing clusters (C1,C2) and documents (D1−D7) and integration thresh-

old α.

Documents that are not similar enough to any existing cluster, like D7, are considered

to talk about a new event and subsequently spawn a new cluster, using the document

vector as the centroid vector. Yamron et al. (1998) state that at any point there exist ex-

actly k clusters. From their publication it remains unclear how the number of clusters

is kept constant as the emergence of new clusters would necessarily trigger the removal

of an existing one. Deletion of the oldest or the recent least frequently updated cluster

appear to be the most likely deletion approaches.

Representing the past by clusters compresses the information of previous documents to

a small set of vectors. Limiting the number of clusters to k results in a space and time

complexity of O(1) with respect to the number of documents processed and requires

on average A(k ∗ t) operations per document. Here, t denotes the document length and

k the number of clusters. Resulting from constant document length t and number of

clusters k, the Dragon system meets the scaling requirements for operating in a stream-

ing environment by Muthukrishnan (2005).

Unfortunately, the scalability of the Dragon system comes at a significant cost in accu-

racy. Yang et al. (1998) compared the Dragon system with UMass and found it to be

significantly inferior in terms of detection accuracy. They hypothesised that in order

to be effective, an FSD system is required to assess if new documents are sufficiently

different from each individual past story instead of their averages. Note that this rep-

2.3. Approaches to First Story Detection 23

resents a substantially stronger condition for novelty than that of the Dragon system,

which considers new events to be novel with respect to the average of the past. Al-

though scalable, we don’t consider the Dragon system as a baseline due to its inferior

detection accuracy. Note our requirement in Chapter 1, that FSD systems need to be

efficient - scale to modern size data streams while operating with zero lag - without

sacrificing accuracy.

CMU

Algorithm 2 : CMU FSD System
1: for all document d ∈ Stream do
2: initialize FIFO

3: for all term t ∈ d do
4: for all document d′ ∈ {d′ : t ∈ d′,d′ ∈ FIFO} do
5: update cosine similarity(d,d′)

6: end
7: end
8: simmax← maxd′{cosine similarity(d,d′)}
9: noveltyScore(d)← (1− simmax)

10: if |FIFO|> k then
11: FIFO→ oldest d′

12: FIFO← d

13: end
14: end

The CMU system (Yang et al., 1998) overcomes the scaling limitations of the UMass

system while performing more accurately than the Dragon system. Algorithm 2 shows

the pseudo code for the CMU FSD system. Instead of limiting the entire past to a con-

stant number of averaged centroids, Yang et al. (1998) hypothesized that the majority

of previously encountered documents are irrelevant for current novelty computations.

Qualitative analysis of events in the official TDT data streams revealed that topics

vanish on average after 2.5 months from the stream. Consequently, the CMU system

applies a sliding window and limits previously encountered documents to the most

recent 2,500 documents, which represents 2.5 months on the TDT news streams. Re-

sulting from the average number of A(k ∗ t) operation, the time and space complexity

of CMU is bound by O(1) with respect to the number of documents processed. Here,

24 Chapter 2. Background

k denotes the window length and t the average document length. Constant operation

with respect to time and space allows the CMU system to scale to data streams. Com-

parison with other systems showed that the CMU system is superior to the clustering

approach of the Dragon system, but lacks the accuracy of exhaustive comparison of

the UMass system. This is expected as discarding old documents inevitably results in

information loss.

Luo et al. (2007) improved the efficiency of the CMU approach by only keeping doc-

uments considered to be first stories and limiting comparisons to documents matching

highly weighted features. These heuristics achieve impressive speed-ups at significant

detection accuracy costs.

The CMU and Luo’s FSD system apply a sliding window, spanning 2.5 months and

1 month respectively. Note that these systems were designed to process broadcast

streams, which at that time produced 2,500 documents in 2.5 months (Yang et al.,

1998). On modern data streams like Twitter, 2,500 documents only equate to the past

0.5 seconds. A window spanning 2.5 months would cover 1.296 ∗ 1010 tweets. To

retain feasibility, a window based approach can only capture time periods spanning a

couple of seconds when applied to high-volume streams.

In this thesis, we do not use a sliding window based approach as a baseline for the

following two reasons:

1) the CMU revealed lower accuracy compared with UMass (Yang et al., 1998);

2) the sliding window allows FSD systems to operate in constant time and space.

2.3.2.1 Scaling Comparison based FSD

Petrovic et al. (2010) introduced the first scalable FSD approach that reaches accu-

racy indistinguishable from exhaustive comparison based systems like UMass. They

achieve high efficiency without sacrificing accuracy by limiting the search space using

Locality Sensitive Hashing (LSH). We denote their algorithm as LSH-FSD. LSH is

a randomized algorithm that efficiently approximates nearest neighbours with bound

error rates. Figure 2.3 illustrates a simplified 2-dimensional model of the vector space

using LSH. In a nutshell, LSH randomly segments the vector space using hyperplanes

(h1−h3), forming hyper-polygonal shaped buckets, like B1 (colourized). Documents

2.3. Approaches to First Story Detection 25

Figure 2.3: The 2-dimensional vector space model illustrates the principle of LSH 3

hyper planes (h1−h3).

are more likely to be similar to documents in the same hash bucket than to documents

from other hash buckets. In Figure 2.3, document D8 (in red) is hashed into bucket

B1, which already contains documents D1 and D5. Instead of comparing to all previ-

ous documents, LSH-FSD only compares new documents to those previous documents

that fall into the same hash bucket. This allows limiting the search field to only those

previous documents that are likely to be similar to new documents arriving from the

stream.

LSH by itself does not guarantee constant performance as each new document is stored

in its corresponding bucket for future comparisons. LSH-FSD places an upper limit on

the number of documents per bucket and removes the oldest document whenever a pre-

defined limit is reached. This is interesting, as deletion occurs whenever a particular

region in the vector space becomes too densely populated. The local deletion strat-

egy was found to be superior to temporal based deletion for FSD on Twitter (Petrovic,

2013). Consequently, the time and space complexities are constant (O(1)) with respect

to the number of documents processed. The combination of search space reduction

through LSH with local deletion drastically increases detection throughput of FSD

systems without sacrificing effectiveness. LSH-FSD resembles a state-of-the-art FSD

system in terms of efficiency (throughput and lag), effectiveness and scale. Unfortu-

nately, the throughput of the fastest available FSD system still lacks the volume of the

full Twitter stream. McCreadie et al. (2013) showed that LSH-FSD requires a cluster

of 70 cores to reach a throughput equivalent to those of the average Twitter stream.

26 Chapter 2. Background

In this thesis, we use LSH-FSD as our main baseline because it provides the highest

possible efficiency in terms of throughput and lag and reaches performance statisti-

cally indistinguishable from exhaustive comparison. We provide and in-depth analysis

of the UMass system, whose source code has been made available to us, in Chapter 3

The following two sections briefly summarize non-comparison based approaches to

First Story Detection. Although some approaches show promising results, they fail to

fulfil our requirements for a true streaming approach to FSD.

2.3.3 Classification based FSD

The highest ever reported accuracy on official TDT data sets was achieved by classi-

fication based FSD systems that combine different versions of comparison based FSD

systems. The system by Kumaran & Allan (2005) for example, uses a Support Vector

Machine based classifier to combines 3 different novelty scores: based on the entire

document, named entities and topic terms. Other approaches, like Braun & Kaneshiro

(2004) combine several classifiers in a majority voting scheme. Although superior in

detection accuracy, classification based FSD systems require labelled training data to

learn optimal parameter settings. The annotation process for FSD data sets is labour

intensive and therefore expensive. The limited availability of labelled training data

limits the applicability of classification based FSD systems.

A conceptually different application of classifiers in FSD is the removal of noise in

data streams. Becker et al. (2011) extend the approach of Yang et al. (1998) with a

classification step that separates detected events from noise by judging whether they

are news worthy.

The most renowned classification based FSD systems is the earthquake detection sys-

tem by Sakaki et al. (2010). Their system was among the first to successfully scale

an event detection system to a social media stream. Contrary to previously discussed

FSD systems, classification based FSD systems target specific types of events. Sakaki’s

system for example, focused on detecting earthquakes and typhoons on Twitter with as

little lag as possible.

2.3. Approaches to First Story Detection 27

An initial keyword filter reduces the stream volume to documents containing terms

relevant to a target event. Those documents are subsequently classified to be about

an actual event using an SVM. If a sufficient number of documents is considered to

be about an event within a certain time period, the system concludes that the event is

happening. Sakaki’s FSD system showed impressive results, reporting earthquakes 6

times faster than official broadcasters. Classification based FSD systems are highly

accurate, scalable and detect events with little lag. Unfortunately, classification based

systems come with the major drawback of requiring labelled training data, which is

expensive to acquire. Additionally, approaches like those by Sakaki lack generality

because each type of event requires a separate set of labelled training data and dedi-

cated training. This limits their application to targeted high precision event detection

scenarios, where the event types are predefined and training data is available. Since we

require a general approach to new event detection, we cannot consider classification

based systems.

2.3.4 Trend based Event Detection

On news-wire streams, new topics emerge, grow popular and eventually fade away

(Yang et al., 1998). The same applies to social media, where the lifespan of topics

tends to be shorter than on news streams (Osborne, 2014). Consequently, documents

sharing the same topicality tend to occur in bursts within small temporal proximity

(Kontostathis et al., 2003). Trend based FSD, like Cataldi et al. (2010) and Li et

al. (2012), monitor the frequencies of terms and phrases with the intent to detect un-

expected “burstiness” patterns, which are considered as an indication of new events.

Weng et al. (2011) apply wavelet analysis on the frequency-based raw signals of terms

occurring in a data stream. They show that this provides a precise measurement of

when and how the frequency of individual signals (terms) changes over time (Kaiser,

1994). Weng et al. (2013) detect events by grouping sets of words that describe them

with similar burst patterns.

The high-volume of social media streams challenges trend based FSD systems. Cordeiro

(2012) tries to reduce the stream volume by observing the usage of hashtags and de-

tecting frequency spikes in them. Trend based FSD systems result in high detection

accuracy but they all share a major drawback. New events are recognized by sudden

changes in vocabulary usage. Consequently, new events can only be detected once a

28 Chapter 2. Background

sufficiently large number of event related mentions have occurred. This only enables

detecting events retrospectively which does not fulfil our requirements on FSD. Re-

member that the value of information depends on the lag before it can be detected. On

trend based systems this lag might exceed several hours, which makes them inapplica-

ble for FSD.

2.3.5 Summary of existing approaches to FSD

All discussed approaches to FSD are summarized in Table 2.1. The table compares

them with our work based on the requirements of an FSD system, as discussed in

chapter 1.

Generality: describes systems able to detect all kinds of events. Systems that only

detect a certain kind of events, like crime or natural disaster related events, are not

considered to be general.

Accuracy: we consider an FSD system as sufficiently accurate if it reaches state-of-

the-art accuracy determined by exhaustive comparison based FSD.

Throughput: we consider an FSD system as sufficiently efficient if it is able to op-

erate on the equivalent of the average Twitter stream (5,787 documents/second)5.

Constant time/space: we only consider systems constant in time and space if they

remain truly unchanged as the number of documents increases.

Instant: systems are considered instant when they judge a document without delay

as soon as it is made available.

Unsupervised: a system is unsupervised if it does not require any information, data

before and while judging documents.

5https://about.twitter.com/company (last updated: March 31, 2016)

Algorithm Generality Accuracy Throughput const time const space Instant Unsupervised

Petrovic et al. all kinds state of the < 10% twitter stream O(1) slight growth YES YES

(2010) (LSH-FSD) of events art accuracy (state-of-the-art) (YES) (NO)

Allan et al. all kinds state of the initially high, becomes O(#docs) O(n) YES YES

(2000) (UMASS) of events art accuracy progressively slower (NO) (NO)

Yang et al. all kinds below state of high - dependent on O(1) O(1) YES YES

(1998) (CMU) of events the art window size (YES) (YES)

Yamron et al. all kinds below state of high - dependent on O(1) O(1) YES YES

(1998) (Dragon) of events the art number of clusters (YES) (YES)

Sakaki et al. targeted state of full O(1) O(1) YES requires

(2010) events (NO) the art twitter stream (YES) (YES) training data

Cordeiro high-volume with no quantitative full O(1) growth in 5 minute YES

(2012) hashtags evaluation twitter stream (YES) hashtags(NO) lag

Weng et al. high-volume high low - dependent O(#terms) O(#terms) 24 hours YES

(2011) events precision #terms (NO) (NO) lag

Cataldi et al. high-volume no quantitative unclear O(#terms) O(#terms) YES YES

(2010) events evaluation (NO) (NO)

Li et al. high-volume state of high - dependent on O(1) O(#clusters) 2 hours YES

(2012) events the art number of clusters (YES) (NO) lag

This work all kinds state of full O(1) O(1) YES YES

of events the art twitter stream (YES) (YES)

30
C

hapter2.
B

ackground

Table 2.1: Comparison of FSD approaches based on the requirements of a fully applicable FSD system

2.4. Evaluating First Story Detection 31

System Response Target Non-Target

YES Correct (TP) False Alarm (FP)

NO Miss (FN) Correct (TN)

Table 2.2: FSD evaluation contingency table

2.4 Evaluating First Story Detection

The National Institute of Standards and Technology (NIST) has administered the eval-

uations of the TDT tasks since 1998. All TDT subtasks are evaluated as detection

tasks (Fiscus & Doddington, 2002). For FSD, a system is presented with a stream of

documents and the task is to decide for each document whether it is about a new event

with respect to all preceding documents. Since FSD is a detection task, first stories

are denoted as targets, which are to be detected and follow-ups are denoted as non-

targets. Targets can be correctly detected (denoted true positives TP in other IR tasks),

or missed (false negatives FN). Falsely detected non-targets are denoted as false alarms

(false positive FP), as summarized in the contingency table 2.2.

The detection decision (YES/NO) depends on the novelty score that FSD systems as-

sign to each document. A document’s novelty score, usually between 0 and 1, reflects

a system’s decision about being a target. For example, novelty scores of 1 indicate

a high believe that a document talks about a new event (target), whereas low novelty

scores are assigned to follow-ups (non-targets). The final decision on whether a docu-

ment is considered to be a target depends on the threshold setting and its novelty score.

To maximise performance, the detection threshold is tuned on a separate training set.

When a document’s novelty score exceeds the detection threshold, it is declared to be

about a new event. Documents with novelty scores below the detection threshold are

considered to be follow-up stories, talking about a previously detected event.

TDT provides two techniques, a single value metric and a trade-off curve, to repre-

sent a system’s detection accuracy.

32 Chapter 2. Background

Detection Cost Function
FSD systems aid human analysts in detecting new events in a stream of millions of

documents. The task of an FSD system is to reduce the entire stream to only those

considered to talk about new events. The Detection Cost Function (CDet) captures the

cost of the human analyst when monitoring the outcome of an FSD system (Fiscus &

Doddington, 2002).

This single number metric represents detection performance at a particular operation

point, defined by the system’s settings. Note that the detection cost function CDet is an

error metric. This means that lower CDet values indicate higher accuracy. The cost of

using an FSD system is based on the miss probability (Pmiss), which leads to informa-

tion loss, and false alarm probability (Pf a), which unnecessarily increases the human

effort. The two probabilities are computed based on the YES/NO decisions assigned

to each document, as seen in equation 2.5 and 2.6.

Pmiss =
#missed targets

#targets
(2.5)

Pf a =
#false alarms
#non targets

(2.6)

Depending on the application, the costs for missing a new event as well as falsely

reporting new events, vary. The Detection Cost Function captures the application de-

pendent costs in their corresponding parameters C f a and Cmiss. The final formula for

the cost function linearly combines miss and false alarm probabilities with their corre-

sponding cost weights, as seen in equation 2.7.

CDET = (Cmiss ∗Pmiss ∗Ptarget +C f a ∗Pf a ∗ (1−Ptarget)) (2.7)

Data streams are often noisy, resulting in an imbalance between targets and non-targets.

This imbalance is considered by the probability of targets (Ptarget) and non-targets

(1− Ptarget). In this thesis, we use the standard TDT settings for the cost function

parameters, seen in table 2.3.

To emphasise differences when comparing two high performing FSD systems, TDT

normalizes the Detection Cost Function by the performance of a random system. TDT

defines random system by either considering all documents as targets (YES) or non-

targets (NO), which results from the minimum CDET . In our opinion, this does not

2.4. Evaluating First Story Detection 33

Parameter Value

Cmiss 10

C f a 1

Ptarget 0.1

Table 2.3: Standard TDT evaluation parameters

resemble a truly random system but rather a deterministic system.

(CDET)norm =CDet/min(Cmiss ∗Ptarget ,C f a ∗ (1−Ptarget)) (2.8)

A perfect FSD system would result in min((CDet)Norm) = 0 and scores equal to 1 in-

dicate random performance. We compute CDET using macro-averaging (Allan et al.,

2000), as is usual in TDT, because of its insensitivity to varying topic sizes.

Detection Error Trade-off Plot
The Detection Error Trade-off (DET) curve visualizes the trade-off between misses

and false alarms. Figure 2.4 shows an example DET plot comparing the accuracy of

three systems with random performance. Contrary to the detection cost, DET plots

show performance for the full range of thresholds, providing a more comprehensive

picture of a system’s detection performance. For example, the plot shows that all three

system operate with higher accuracy than random performance. Additionally, the plot

shows that system 1 and system 2 result in higher accuracy than system 3 for all pos-

sible set-ups. Note that the axes describe miss and false alarm probabilities on normal

instead of linear or logarithmic scale. This is unusual but it allows expanding the “high

performance” areas of the curve – regions of high precision or high recall. Those two

areas are marked by the red circles in Figure 2.4. This allows further conclusion to

be drawn from DET plots. For example, system 3 performs better than system 1 and

system 2 in high precision and high recall settings. DET plots can additionally show

34 Chapter 2. Background

Figure 2.4: Example DET plot comparing the effectiveness of three systems for the full

range of parameter settings.

significance corridors, visualizing area of confidence, where a system’s performance

is indistinguishable from others.

DET plots are constructed by sorting documents for each topic according to their nov-

elty scores and sweeping a threshold through them. At each point in the score space,

miss and false alarm probabilities (Equation 2.5 and 2.6) are computed for each topic

and averaged (macro-averaging), resulting in the points on the DET plot.

In this thesis, we follow the TDT evaluation paradigm and use the official TDT evalua-

tion scripts (Allan, 2002) using standard parameter settings to compute the normalized

minimum detection cost Cmin and Detection Error Trade-off (DET) plots.

2.5. Conclusion 35

2.5 Conclusion

In this chapter, we presented the background literature that this work builds upon. We

introduced TDT - the initiative that invented First Story Detection and the concept of

data streams - the data source for First Story Detection. We also explored the impli-

cations and countermeasures of unbounded data streams and hinted at our baselines,

which are discussed in detail in the next chapter. The chapter also reviewed the evalu-

ation paradigms used to evaluate the performance of FSD systems.

The main section of this chapter was devoted to previous research and approaches

to solve the First Story Detection task. We explored the currently most successful ap-

proaches, which are based on document level comparisons and identified their weak-

nesses. Comparison based systems are highly accurate but their processing time and

storage cost continuously grows with the number of documents processed. The algo-

rithmic complexity of streaming algorithms describes the resource (time/space) cost

with respect to a particular item in the stream. Consequently, the time and space com-

plexity of comparison based systems for the nth document in the stream is (O(n)). The

most successful approaches overcome these scaling issues using sophisticated docu-

ment pruning techniques, but their throughput remains too low to process modern size

data streams even when deployed on a modern processor.

Chapter 3

Data Set and Baselines

3.1 Motivation

The following chapter outlines the data set upon which our experiments are based on.

Additionally, we introduce the two main baselines in great detail.

3.2 Cross Data Set

In this thesis, we make use of the Cross data set, which originated from the Cross

project1, a joint venture between the University of Edinburgh and the University of

Glasgow. The project, funded by EPSRC, deals with new event detection on streams

such as Twitter, Wikipedia and news-wires. They focused in particular on cross-stream

and distributed event detection, for which they also provide a news and a Twitter data

set. All Cross data sets resemble document streams, where each document is identified

by a unique ID and time-stamp. In this thesis, we make use of Cross’s Twitter data set,

dubbed Cross-Twitter, for all our experiments on First Story Detection. Cross-Twitter

comes in two versions, one covering 52 million, the other 115,000 English tweets from

the publicly available 1% sample of the Twitter stream spanning from June 30th, 2011

to September 15th, 2011. Both versions share the same 27 topics and 3,034 annotated

documents but differ in the number of unlabelled tweets. The 27 topics range from low

volume events (containing only 2 tweets) to high-volume events (> 1.000 tweets) and

cover a broad range of events including deaths of celebrities, financial news, natural

disasters and scientific discoveries. Most of the events can be found on Wikipedia’s

1Cross Project: http://demeter.inf.ed.ac.uk/cross/

37

38 Chapter 3. Data Set and Baselines

list of the most important events of 20112.

The labelling procedure of Cross-Twitter followed the search guided annotation pro-

cess, previously applied by TDT, with the difference that the search was limited to 24

hours. This reduces manual labour at the cost of missing a high number of follow-up

stories. Missing a substantial number of follow-up stories has implications on FSD

performance. We simulate the impact of missing follow-ups by running an identical

FSD system (Petrovic et al., 2010) on two data sets, whereas we removed 50% of all

follow-up documents in one of them. The resulting FSD performance is illustrated

by DET plot in Figure 3.1. The graph reveals higher accuracy when processing fewer

follow-ups throughout all threshold settings. This is not unexpected, as a reduced

number of follow-ups also reduces the likelihood of mistaking them for first stories

(probability of false alarm).

Figure 3.1: DET plot illustrating increased detection performance when removing 50%

of the follow-up documents.

Internationally relevant topics like those chosen by Cross, are likely to be discussed

by Twitter users within 24 hours after their emergence and afterwards as well. This
2Wikipedia 2011 events: https://en.wikipedia.org/wiki/2011

3.2. Cross Data Set 39

ensures that a reasonable number of follow-ups for all topics in the cross data sets.

Limiting the search to 24 hours does not perturb the evaluation process provided that

systems are evaluated on the same number of follow-ups.

Figure 3.2: Comparing the observed document position in Cross-Twitter 115k with their

true position, determined by their publication time stamp.

Cross-Twitter 115k
The 115.000 tweet stream is a sub-sample of the full 52 million tweet data set that

includes the same topics and all judged documents. We use the 115k tweets of Cross-

Twitter to conduct effectiveness experiments as this allows us to also compare our

approach with highly effective but inefficient algorithms.

While exploring the data set, we found a divergence between the observed document

position and the order of their publication time stamps, as seen in figure 3.2. The illus-

tration shows that the intra-topic order correctly reflects the time stamp order but the

order of the topics themselves has been re-arranged. We could not find information

on why the order was changed but hypothesise that topics were re-arranged to be dis-

tributed evenly in time.

In a streaming data set documents need to be ordered by their publication time stamp,

which reflects the true order in which they occurred. This is particularly important for

FSD, where a document’s novelty score is based on the documents preceding it. Tam-

40 Chapter 3. Data Set and Baselines

pering with the order of documents alters their novelty scores. This can potentially

influence detection performance. We apply the LSH-FSD system by Petrovic et al.

(2010) to the original version of Cross-Twitter 115k and to the time stamp corrected

version. The FSD system achieves a 3% lower detection accuracy on the time stamp

corrected version. This shows that re-ordering the data set impacts detection accuracy.

We cannot detect an obvious pattern that would explain the rearrangement of document

positions. Consequently, we cannot conclude why the original order results in lower

detection accuracy than the time stamp corrected version.

We discovered that the document order in Cross-Twitter 115k has been rearranged and

showed that the incorrect order positively impacts detection performance. Nonethe-

less, we chose to report our experiments on the original order without correcting any

document positions. Our decision is based on two factors: 1) it ensures coherence and

comparability with published FSD performance results; 2) we only use Cross-Twitter

115k to compare the performance of FSD systems with each other and do not make

general statements on their accuracy.

Cross-Twitter 52 mio
We use the full version of Cross-Twitter, containing 52 million tweets, to conduct

scaling experiments and investigate the behaviour of algorithms when applied to large

amounts of documents. Note that Cross-Twitter is several orders of magnitude larger

than the original TDT streaming data sets.

3.3 Baselines

The following section describes the two main baselines used in our performance eval-

uations of FSD systems. In particular, we make use of the UMass system by Allan et

al. (2002) and LSH-FSD by Petrovic et al. (2010).

UMass
UMass (Allan et al., 2002) is a state-of-the-art FSD system, known for its high detec-

tion accuracy in the proceedings of the TDT competitions (Petrovic, 2012). Because

of its high accuracy, UMass system is commonly used as an FSD baseline (Petrovic,

2012; Wurzer et al.; 2015 Moran et al. 2016). Algorithm 3 outlines the exact pseudo

code of the UMass FSD system, whose source code has been made available to us.

3.3. Baselines 41

UMass relies on comparison based novelty computations. This means that a docu-

ment’s novelty is based on 1 minus the maximum similarity to all previously encoun-

tered documents. UMass exhaustively determines maximum similarity by comparing

a document arriving from the stream with all previously arrived documents using co-

sine similarity. To speed up processing time, an inverted index is used, which allows

comparing new documents to only those documents that share at least one term in com-

mon, as seen at Line 3 in Algorithm 3. The number of terms that both documents share

in common determines the number of scalar multiplications. Once the most similar

previous document is identified, UMass emits the inverse of its cosine similarity as the

novelty score.

Algorithm 3 : UMass FSD System
1: for all document d ∈ Stream do
2: for all term t ∈ d do
3: for all document d′ : t ∈ d′ do
4: update cosine similarity(d,d′)

5: end
6: end
7: simmax← maxd′{cosine similarity(d,d′)}
8: noveltyScore(d)← (1− simmax)

9: end

The UMass system does not scale because new documents are compared with all pre-

viously encountered documents to determine the closest one. Consequently, the time

and space complexity grows linearly (O(n)) with respect to the number of documents

processed. We observe the impact of continuously growing numbers of documents

on UMass’s throughput in Chapter 7. The inverted index reduces the average time

complexity per document from A(n ∗ dl) (exhaustive comparison to all previous doc-

uments) to A(n ∗ dl/v) (comparison with only those documents that share common

terms) operations. Whereas dl refers to the average document length, n to the number

of documents processed in the past and v to the number of unique terms found in the

n previous documents. While studying the source code of UMass, we discovered that

recent document are prioritized over older documents when computing novelty. This is

not mentioned in any of UMass publications. Our experiments in Chapter 6 reveal that

42 Chapter 3. Data Set and Baselines

UMass inflates the similarity scores of recent documents, which results in increased

detection accuracy. By default the UMass system operates on hard drive. To make

our experiments comparable to other systems, we always adjust the default setting to

operate in memory instead.

Although inefficient, comparing new documents exhaustively to all previously arrived

documents, results in state-of-the-art detection accuracy. In this thesis, we make use

of the UMass FSD system as a high accuracy baseline in our effectiveness experiments.

LSH-FSD
LSH-FSD by Petrovic et al. (2010) is currently the fastest FSD system that achieves

accuracy comparable to exhaustive document comparisons (UMass). On a single core

LSH-FSD is able to process around 500 tweets per second, which resembles 10% of

the full Twitter stream. As UMass, LSH-FSD relies on comparison based novelty com-

putation, where novelty scores are determined by 1 minus the similarity to the closest

previously encountered document. Algorithm 4 shows the exact pseudo-code of LSH-

FSD, whose source code has been made available to us.

Figure 3.3: Comparing the observed document position in Cross-Twitter 115k with their

true position, determined by their publication time stamp.

LSH-FSD achieves state-of-the-art efficiency in terms of throughput because it applies

Locality Sensitive Hashing (LSH) to limit the search field when identifying the most

similar previously encountered document. LSH is a randomized algorithm for approx-

imated nearest neighbour search (Charikar, 2002). In FSD the nearest neighbour is the

3.3. Baselines 43

Algorithm 4 : LSH-FSD System
1: for all hashtables Tm ∈ T :{T1...TL} do
2: Tm← populate hyperplanes {H1...Hk}
3: end
4: for all document dn ∈ Stream do
5: candidates← 0

6: for all hashtables Tm ∈ T do
7: Bucket BT,m← hash(dn,Tm)

8: candidates← candidates
⋃

BT,m

9: end
10: for all term t ∈ dn do
11: for all d′ ∈ {d′|t ∈ d′,d′ ∈ candidates} do
12: update cosine similarity(dn,d′)

13: end
14: end
15: simmax← maxd′{cosine similarity(dn,d′)}
16: if simmax < α then
17: for all term t ∈ dn do
18: for all d′ ∈ {dn−k ... dn−1} do
19: update cosine similarity(dn,d′)

20: end
21: end
22: simVarmax← maxd′{cosine similarity(dn,d′)}
23: end
24: if simVarmax > simmax then
25: noveltyScore(dn)← (1− simVarmax)

26: else
27: noveltyScore(dn)← (1− simmax)

28: end
29: end

44 Chapter 3. Data Set and Baselines

most similar previously processed document, which determines the degree of novelty

for a newly arriving document. Instead of comparing new documents to all previous

ones, LSH generates candidate sets of documents that are likely being nearest neigh-

bours (Indyk et al., 1998). More precisely, LSH randomly intersects the vector space

using hyper planes. Initially, a fixed set of planes is populated by sampling from a zero

centred Gaussian distribution. Figure 3.3 illustrates a simplified 2-dimensional view of

a vector space with LSH using 3 hyper planes (h1−h3) and 8 documents (D1−D8).

The resulting planes (h1− h3) randomly intersect the vector space, forming hyper-

polygonal shaped buckets, like bucket B1 - covering the colourized area. Documents

are projecting onto all random hyperplane, which places them into their corresponding

buckets. This process is referred to as hashing because it assigns every document the

unique ID (hash code) of its bucket. The error bounds of LSH guarantee that doc-

uments that fall into the same bucket are more likely to be similar than documents

in other buckets. Since LSH positions its hyperplanes randomly, it cannot guarantee

to detect the true nearest neighbour. In Figure 3.3 document D8 is a new document

arriving from the stream. LSH places document D8 in bucket B1 which identifies doc-

uments D1 and D4 as nearest neighbour candidates. Figure 3.3 reveals that the true

nearest neighbour for document D8 is D2, which is missed. To increase the chance

of capturing the true nearest neighbour LSH-FSD produces multiple hashtables, each

with different positioned hyper planes. Figure 3.3 illustrates 2 hashtables. Note that

the position of documents (D1−D8) remain the same but the positions of the hyper

planes (h1− h3) in hashtable 1 and (h4− h6) in hashtable 2 change. Documents are

hashed using all hashtables, placing them into multiple buckets (one per hashtable).

In hashtable 2 document D8 falls into bucket B2, which identifies document D2 as a

nearest neighbour candidate. The final candidate set consists of the union of all target

buckets (B1,B2) and identifies documents D1, D2 and D4 as nearest neighbour can-

didates for document D8. We set-up LSH-FSD to use 70 hash tables and 13 bit hash

codes because these settings where found to be optimal by Petrovic when applied to

the Cross-Twitter data set.

LSH-FSD applies a version of LSH that guarantees error bounds based on the co-

sine similarity. LSH is used to determined a new document’s degree of novelty with

respect to the past. Each document dn arriving from the stream is projected (hashed)

onto the hyperplanes in all hashtables, placing it into a certain bucket. These buckets

already contain previous documents, which are likely to be similar to dn and form the

3.3. Baselines 45

candidate set (Algorithm 4, Lines 4 - 8). LSH-FSD exhaustively compares all docu-

ments in the candidate set (union of all target buckets) to the new document to identify

the most similar one - the true nearest neighbour (Algorithm 4, Lines 9 - 13). Although

LSH-FSD uses multiple hashtables, LSH by itself often fails to identify the true nearest

neighbour. To compensate for the poor performance of LSH, LSH-FSD additionally

checks the most recently encountered k documents, whenever LSH does not yield a

sufficiently similar document (Algorithm 4, Lines 15 - 22). If exhaustive comparison

with the k most recent document reveals a document more similar to the new document

than the nearest neighbour according to LSH, LSH-FSD discards the LSH candidate

and computes novelty based on the closest found document (Algorithm 4, Lines 23 -

27).

LSH by itself only reduces the search space but does not guarantee constant perfor-

mance as each new document needs to be stored in all its corresponding buckets in

all hashtables for future comparisons. To guarantee scalability, LSH-FSD places an

upper limit on the number of documents per bucket and removes the oldest document

whenever a predefined limit is reached. This allows triggering a deletion procedure,

whenever a particular region in the vector space becomes too densely populated. This

deletion strategy is also referred to as “local deletion” and found to be superior to tem-

poral deletion for FSD on Twitter (Petrovic, 2013). According to Petrovic, limiting

the number of documents in all hashtables results in constant (O(1)) time and space

complexity with respect to the number of documents processed. We however show in

Chapter 5 that LSH-FSD grows slightly but continuously in space. The average num-

ber of operations per document is A((|Bavg|+ k)∗ t), where |Bavg| denotes the average

number of documents per bucket, k denotes the number of additionally checked docu-

ments and t denotes the aver document length.

The combination of search space reduction through LSH with local deletion drastically

increases the detection throughput of FSD systems without sacrificing effectiveness.

LSH-FSD achieves state-of-the-art FSD performance in effectiveness and efficiency

(throughput and lag). In this thesis, we use LSH-FSD as our main baseline and com-

pare our approach to it for high effectiveness and efficiency and scaling experiments.

46 Chapter 3. Data Set and Baselines

3.4 Hardware and Parameter Setting

Unless stated differently, all our experimental results are reported on an idle machine

using a single Intel-Xeon CPU core with 2.27GHz. All reported runtimes are averaged

over 5 runs to additionally reduce possible perturbation from the OS.

We always report the accuracy of LSH-FSD with optimal parameter setting. LSH-

FSD performs best on Cross-Twitter when using 70 hash-tables and 13 bit bash codes.

Note these was also the default parameter setting reported by Petrovic (2012). UMass

does not offer any parameters for tuning detection accuracy.

3.5 Conclusion

This chapter outlined the data set, Cross-Twitter, which we use for our FSD experi-

ments. Cross-Twitter provides a small (115k) and large (52 mio) version. Both ver-

sions share the same topics and only set themselves apart by the number of unlabelled

data. We make use of Cross-Twitter-115k for effectiveness experiments, which allows

algorithms to finish within an hour. Cross-Twitter-52mio results in processing times >

1 day and is only used for scaling experiments. The accuracy between both data sets

is comparable.

Furthermore, this chapter introduced the two strong main baselines and outlined their

pseudo-code in detail. UMass, which is known for its high effectiveness, is our bench-

mark for detection accuracy. LSH-FSD, the currently fastest FSD system, scales to

millions of documents while maintaining state-of-the-art effectiveness and efficiency,

is our benchmark for detection efficiency.

Chapter 4

Memory-based Novelty Detection

4.1 Motivation

The only published method family that accurately detects novelty without lag, is com-

parison based. These methods provide state-of-the-art FSD effectiveness and effi-

ciency, making them the default method for novelty computation. Unfortunately, the

throughput of all published FSD systems falls short of the volume of modern data

streams. The main challenge that must be tackled is to provide high scalability and

throughput without sacrificing accuracy or increasing lag.

Efficiency
By March 2016, Twitter publishes on average 5,787 tweets every second1. Even the

currently fastest published FSD system, LSH-FSD by Petrovic et al. (2010), can only

cope with less than 10% of the average Twitter volume when running on a single core.

This is problematic, as outlined in Chapter 1, because the value of detected information

depends on the lag it can be detected with. McCreadie et al. (2013) scaled LSH-FSD

to reach a level of throughput comparable to that of the average Twitter volume. In

particular, they scaled LSH-FSD by parallelization using a Storm2 cluster of 72 cores

(unknown CPU model). The high number of cores is necessary to distribute the work-

flows of LSH-FSD over a cluster.

1https://about.twitter.com/company (last updated: March 31, 2016)
2Apache Storm http://storm.apache.org/ (last updated August 31, 2016)

47

48 Chapter 4. Memory-based Novelty Detection

In order to apply FSD systems on modern sized data streams, novelty detection must

be able to process thousands of documents per second without sacrificing accuracy or

introducing lag.

Scalability
FSD is by definition a streaming task. Unbounded data streams demand constant op-

eration in terms of time and space with respect to the number of documents processed.

This requires FSD systems to compute novelty with respect to an ever growing set of

documents at a constant cost per-document. State-of-the-art novelty detection methods

fail to provide true scalability because they either come at a significant cost in accuracy

or can’t guarantee constant performance.

In this chapter, we introduce a new algorithm family for novelty computation called

memory-based methods. Note that in this thesis, memory-based methods do not ad-

dress the temporal storage unit in a PC, but the faculty by which the mind stores and

remembers information. memory-based methods are non-comparison based - they do

not compare a document with previously seen documents individually to compute nov-

elty. Instead, a single representation of the past - the memory - is constructed, capturing

the information of all encountered documents. This allows determining a document’s

novelty with respect to a single representation instead of individual documents. Re-

ducing the past to a single representation enables memory-based algorithms, to vastly

outperform comparison based novelty computation in terms of efficiency without sac-

rificing effectiveness.

Instead of scaling existing non-constant algorithms (O(n)) to unbounded data streams,

this thesis introduces an entirely new and highly efficient algorithm family, specifically

targeted at streaming environments that achieves constant operation of (O(1)) in terms

of time and space, by design.

4.2. Intuition on memory-based Novelty Detection 49

4.2 Intuition on memory-based Novelty Detection

memory-based novelty detection mimics the procedure of novelty detection as it is car-

ried out by humans. Imagine a person is presented the task of novelty detection. He

reads tweets one at a time and determines, whether they speak about previously unseen

events. When this person is confronted with a new document, like the tweet in Figure

4.1, he will spot and extract “concepts”.

Figure 4.1: Illustration of the human novelty detection process: Whenever a new docu-

ment is presented, concepts are spotted.

In the case of the example tweet, the concepts appear in the form of a familiar name,

which refers to a celebrity and the term “running-mate”, which relates to the concept

of an ongoing election, during which running-mates are announced. Once the person

spots a concept, he relates it to those in his memory to determine whether the presented

information is familiar. This process is illustrated by Figure 4.2. Whenever a concept

is unfamiliar i.e. it does not appear in his memory, the person will recognize it as new

information. Previously unfamiliar concepts are subsequently remembered when they

can’t be related to any of the familiar concepts of the memory.

Figure 4.2: Illustration of the human novelty detection process: The Spotted concepts

are related to those in the memory.

50 Chapter 4. Memory-based Novelty Detection

The human novelty detection process incorporates three major steps:

1) spotting the concepts

2) relating the spotted concepts to those in the memory

3) remembering previously unfamiliar concepts in the memory

Our new algorithm family called “memory-based Novelty Detection” mimics these

three steps of the human novelty detection process.

In this chapter, we develop kterm hashing, the first member of the memory-based nov-

elty detection family. Kterm hashing describes a distinct methodology on how to solve

the three steps of memory-based novelty detection. Depending on the application,

there are various approaches viable for each step. For the remainder of this chapter we

focus on novelty detection through kterm hashing for the purpose of First Story De-

tection. Note that the principle of memory-based novelty detection and kterm hashing

are applicable beyond FSD, as shown in Chapter 8, where we apply kterm hashing to

evaluate sentence entailment.

The main challenge of applying memory-based novelty detection to FSD arises from

the strong constraints of the streaming environment that come with the research task.

These include single pass processing in constant space and time while delivering a

throughput comparable to those of the full Twitter stream. Consequently, FSD re-

quires memory-based novelty detection to perform each the three steps 5,000 times

per second.

4.3 Kterm Hashing

We set out to construct a new algorithm family to compute novelty, called memory-

based novelty detection. The remainder of this chapter is dedicated to construct kterm

hashing, the first member of the memory-based novelty detection algorithm family.

Kterm hashing overcomes the shortcomings of comparison based methods while re-

taining accuracy and zero lag. Consequently, kerm hashing requires the same amount

of time and space to compute the novelty of the 1,000,000th document as the 1th doc-

ument. This provides superior algorithm complexity over state-of-the-art comparison-

based novelty detection algorithms, which require n - 1 comparisons.

4.3. Kterm Hashing 51

4.3.1 Constructing a Novelty Computation Method

We define the content cn to be the set of all concepts T that can be found in the docu-

ment dn : cn = { T : T ∈ dn}. We consider the content cn to be the representation

of all information in document dn.

Kterm hashing, represents all past information in its memory. More formally, the

memory M consists of the contents (c1...cn−1) of all documents (d1...dn−1) encoun-

tered before document dn and is denoted by Mn−1.

For each document dn arriving from the stream, we construct its content cn based

on the concepts in dn and compute its novelty with respect to the memory of the past

(Mn−1). After the degree of novelty is computed, we update the memory M to include

the content cn using Equation 4.1.

Mn←Mn−1∪ cn (4.1)

Hypothesis 1: The number of unseen terms in a document is a better indication of its

novelty than random decision making

Hypothesis 1 assumes that each term represents a concept and the more new con-

cepts/terms a document contains with respect to all previously seen documents, the

more novel it is. This represents the key idea of kterm hashing, which computes the

novelty of document dn based on the novelty of its content cn with respect to memory

Mn−1, which holds previous information.

We test Hypothesis 1 by building an FSD system and applying it to Cross-Twitter

115k. We estimate the novelty of each document dn in the data stream based on Equa-

tion 4.2. This equation calculates the novelty of document dn and its content cn based

on the number of unseen concepts/terms T with respect to the memory Mn−1.

Novelty(cn) = ∑
T∈cn

{
1 : T 6∈Mn−1

0 : T∈Mn−1

}
(4.2)

This leaves us with a novelty score for each document. To determine the minimum

detection cost, we sweep the detection threshold, calculating false alarm and miss

52 Chapter 4. Memory-based Novelty Detection

probabilities at each step. The optimal threshold is found when the detection cost

is minimized. All documents, whose novelty score exceeds the detection threshold are

considered to speak about a new event. All other documents are considered as follow-

ups.

The normalised minimum detection cost of an FSD system based on Hypothesis 1

results in Cmin = 0.9752 . To set this in perspective, we compare it to a system with

random performance. Based on a biased coin the random system either considers all

documents to speak about new events or to be follow-ups. Random performance re-

sults in Cmin = 1. As explained in Chapter 2, Cmin is a cost metric, which means

that lower values indicate better performance. Our experiment confirms Hypothesis 1,

since determining a document’s novelty based on the number of unseen concepts/terms

outperforms random decision making. Note that due to the low number of topics in the

Cross-Twitter 115k data set small differences of 3% are not significant.

Observation 1: The longer a message is the more likely it is to contain new terms

Figure 4.3: Illustration of the correlation between document length and novelty i.e. the

number of unseen terms with respect to the past.

When computing novelty using Equation 4.2, we observed a correlation between a

document’s length and novelty, as seen in Figure 4.3. Documents on social media vary

4.3. Kterm Hashing 53

in length and range from a single term to dozens of terms.

Refined Hypothesis 1: The number of unseen terms in a document in proportion to its

length, is a better indication of its novelty than random decision making

To test refined Hypothesis 1 and avoid longer documents from overpowering shorter

ones, we normalize a content’s novelty score by its size. In particular, we compute the

fraction between the novelty of the content cn and its size |cn|, as seen in Equation 4.3.

Novelty(dn) =
Novelty(cn)

|cn|
(4.3)

We test the refined Hypothesis 1 by computing the novelty score of Cross-Twitter

115k. The document novelty now corresponds to the size-normalized content novelty,

as seen in equation 4.3. The size of content cn is denoted by |cn| and is the number of

unique terms found in document dn. The minimum detection cost improves by 1.2%

to Cmin = 0.9633, which confirms the refined Hypothesis 1.

Hypothesis 2: Unseen combinations of terms provide a better indication of a doc-

ument’s novelty than unseen terms in isolation.

Note that up to this point we modelled concepts by single terms, which implies a

full independence assumption. Hypothesis 2 represents a powerful core idea of kterm

hashing by stating that even if individual words appeared in a document before, en-

countering them in a new combination, also indicates novelty. For example, encoun-

tering the terms “fire” and “Louvre” individual is not unlikely, as both are concepts

that humans might talk about. However, encountering them together in a single mes-

sage might indicate an outbreak of a new event. Instead of computing novelty based on

the presence of unseen terms, we assume a sequential dependence assumption (Met-

zler & Croft, 2005) and form n-grams up to length 3 to test Hypothesis 2. N-grams

are created by combining adjacent terms (sequential dependence), as seen in Table 4.1.

We compute the novelty of all documents in Cross-Twitter based on Equation 4.3.

However, this time we define the content cn by n-grams up to length 3 instead of indi-

vidual terms. We confirm Hypothesis 2 since measuring a document’s novelty based

on combinations of terms, decreases the normalised minimum detection cost by 5.7%

54 Chapter 4. Memory-based Novelty Detection

document some are more equal than others

1-gram some, are, more, equal, than, others

2-gram some-are, are-more, more-equal, equal-than, than-others

3-gram some-are-more, are-more-equal, more-equal-than, equal-than-others

Table 4.1: Example sentence with corresponding n-grams of length 1 to 3

(Cmin = 0.9081) in comparison to the refined Hypothesis 1. Note that this result con-

firms the findings of Metzler & Croft (2005) and Hasan et al.,2008. Metzler & Croft

(2005) found sequential term dependence superior to full term independence for IR re-

trieval tasks and Hasan et al. (2008) improved translation quality of statistical machine

translation by modelling term “triplets”.

Hypothesis 3: A full term dependence assumption provides a better model for nov-

elty detection than a sequential term dependence assumption.

So far, we modelled concepts by n-grams that assume sequential term dependencies.

This preserves the order in which the terms appeared in the original document. Metzler

& Croft (2005) found a full term dependence assumption beneficial for retrieval tasks

on less homogeneous collections and short queries. These circumstances are closely

related to the once we find when computing novelty detection on stream. We therefore

hypothesize that a full term dependence assumption also positively influences the ac-

curacy of kterm hashing when detecting novelty.

To test Hypothesis 3, we shift away from n-grams and break the sequential depen-

dence assumption. We coin the word “kterm”, which we define to be a compounded

term resulting from forming all possible combinations of all terms found in a docu-

ment. More formally, we denote a kterm T = {t1, t2, ...} to be a non-empty set of up

to k distinct terms t. We distinguish between different lengths of kterms, which we

denote by |T |. Table 4.2 shows an example document and its corresponding kterms up

to k = 3.

Kterms distinguish themselves from n-grams by ignoring the order in which terms

appear in a document, as seen in Table 4.2. Instead of grouping adjacent terms, kterms

form sets of all possible combinations.

4.3. Kterm Hashing 55

document some are more equal than others

1-terms {are};{equal};{more};{others};{some};{than};
2-terms {are,equal};{are,more};{are,others};{are,some};{are, than};

{equal,more};{equal,others};{equal,some};{equal, than};
{more,others};{more,some};{more, than};{others,some};
{others, than};{some, than};

3-terms {are,equal,more};{are,equal,others};{are,equal,some};
{are,equal, than};{are,more,others};{are,more,some};
{are,more, than};{are,others,some};{are,others, than};
{are,some, than};{equal,more,others};{equal,more,some};
{equal,more, than};{equal,others,some};{equal,others, than};
{equal,some, than};{more,others,some};{more,others, than};
{more,some, than};{others,some, than};

Table 4.2: Example sentence with corresponding kterms of length 1 to 3

We still compute a document’s novelty by the size-normalized content novelty seen

in Equation 4.3. Instead of single terms or n-grams we now form kterms.

The size of content cn, denoted by |cn|, depends on the number of kterms that can

be formed from the terms in document dn. To compute the number of kterms, we dis-

tinguish them by their size, denoted by |T | - the number of compounded terms. For

a particular document length |dn| and kterm size |T |, the number of possible kterms

equals to
(
|dn|
|T |

)
. To calculate the size of the entire content cn we sum up the number

of possible kterms per size, as seen in Equation 4.4.

|cn|=
k

∑
|T |=1

(
|dn|
|T |

)
(4.4)

The final Equation 4.5 for computing the novelty of document dn according to Hypoth-

esis 3 is formed by combining Equation 4.3, 4.2 and 4.4.

Novelty(dn) = ∑
T∈cn

(
|dn|
|T |

)−1
{

1 : T 6∈Mn−1

0 : T∈Mn−1

}
(4.5)

56 Chapter 4. Memory-based Novelty Detection

When computing the novelty for all documents in Cross-Twitter 115k using kterms

based on Equation 4.5, we measure a normalised minimum detection cost of Cmin =

0.835. We confirm Hypothesis 3, since it improves the detection accuracy by 8% in

comparison with Hypothesis 2. Also note that a normalised minimum detection cost

of Cmin = 0.835 is significantly better (p < 0.05) than those of a random FSD system

and statistically indistinguishable from UMass, a state-of-the-art and highly effective

FSD system.

We name novelty computation resulting from Hypothesis 1 to 3 “kterm hashing”.

Kterm hashing computes a document’s novelty with based on the fraction of unseen

kterms to its length. This allows computing novelty with respect to a set of other

documents via a single point of comparison - the memory. The memory captures all

preserves the information of the past by storing all previously encountered kterms. A

single point of comparison overcomes the need for individual document based com-

parisons that limits the efficiency of comparison based novelty detection methods.

4.3.2 Kterm Cardinality

Kterm hashing distinguishes kterms based on their length. We denote a kterm’s length

by its cardinality, which is determined by the number of words compounded when

forming it. Remember that the novelty of a document’s content is based on the number

of unseen kterms with respect to the past. Kterms of high cardinality capture large

portions of documents, which are less likely to appear in the memory than kterms of

lower cardinality. Consequently, the absence of high cardinality kterm should con-

tribute more to a document’s novelty score. We expand Equation 4.5 by a weight

parameter α to address the importance of kterms of different cardinalities, as seen in

Equation 4.6.

N(dn) = ∑
T∈cn

α|T |

(
|dn|
|T |

)−1
{

1 : T 6∈Mn−1

0 : T∈Mn−1

}
(4.6)

Because the number of possible variable combination is high, we optimize the param-

eters α1...αk on a training set using grid search. Our experiments show that the use

of kterms of higher cardinality positively influences novelty detection. Increasing the

kterm cardinality also increases the number of kterms formed. The content size is

4.3. Kterm Hashing 57

determined by the binomial coefficient between the length of a document and its car-

dinality, as seen in Table 4.4. Increasing the kterm cardinality sharply increases the

content size, which reduces efficiency and increases the size of the memory. Luckily,

the increase is capped by the document length. On tweets, whose average length is

10, the maximum number of kterms is formed when the cardinality is 5. Table 4.3

shows the memory size, which represents the number of kterms formed when process-

ing 100,000 tweets. The table outlines why high cardinalities are suboptimal for high

kterm cardinality memory size

1 1∗106

1-2 5.5∗106

1-3 1.75∗107

1-4 3.85∗107

1-5 6.37∗107

1-6 8.47∗107

Table 4.3: Table shows the size of the memory for different cardinalities of kterms when

processing 100,000 tweets

efficiency applications.

name number of terms

original tweet 10

1-kterm 10

2-kterm 45

3-kterm 120

4-kterm 210

5-kterm 252

6-kterm 210

7-kterm 120

8-kterm 45

9-kterm 10

10-kterm 1

Table 4.4: Table illustrating the content size for different kterms cardinalities; originating

from an average length tweet of 10 distinct terms

58 Chapter 4. Memory-based Novelty Detection

4.3.3 Implementing Kterm hashing for novelty detection

Algorithm 5 outlines the detailed pseudo-code for novelty detection using kterm hash-

ing. High-volume data streams require operation in low latency. In novelty detection,

we listen to a stream of documents (Algorithm 5, line 2) with the intent to compute a

novelty score for each document with respect to all previous documents.

For each document dn arriving from the stream, we form its content cn by creating

all possible kterms up to a previously defined level of k (Algorithm 5, line 3 & 4).

The novelty score noveltyd,n for document dn is computed based on the kterms in its

content cn using Equation 4.6, as seen in Algorithm 5, line 5 - 12. This requires a large

number of membership checks with respect to the memory of the past Mn−1, one for

each kterm in the content. Table 4.3 illustrates that even a short document in combi-

nation with a low kterm level k, spawns a large content due to its dependence on the

binomial coefficient.

To keep operation constant with respect to space, we represent the memory Mn−1,

preserving the contents of past documents (d1...dn−1), by a single bit-array. Each cell

in the array holds a boolean value depending on whether the associated kterm was en-

countered before. We initialize the bit array with FALSE (0) values before the stream

is processed (Algorithm 5, line 1). For the remainder of this thesis, we set the size

of memory M to 300 megabytes, which allows storing a maximum of 2,516,582,400

entries. Using 300 megabytes allows kterm hashing to perform on par with UMass, a

highly efficient state-of-the-art FSD system.

We ensure highly efficient membership checking of a kterm in the memory (T ∈ M)

by hashing each k-term T : T ∈ c onto the bit-array (M). In particular, we compute

32-bit Murmur2 (Appleby, 2008) hashcodes for kterms, which efficiently address a

sufficiently large array (Algorithm 5, line 6). Possible alternatives include SipHash

(Aumasson et al., 2012) and CityHash (Pike et al., 2011). If the cell at the correspond-

ing index is set to FALSE (0), the kterm is considered as novel (Algorithm 5, line 7).

After checking the membership of a kterm in the memory, we flip the bit whenever

the kterm was considered as novel (Algorithm 5, line 9). This results in membership

check and memory update in a single step, which is possible because all kterms in a

document’s content are unique.

4.3. Kterm Hashing 59

Algorithm 5 : memory-based FSD using kterm hashing
1: initialize memory M

2: for all document dn ∈ Stream do
3: tdn ←{term t : t ∈ dn}
4: cn←{kterm kt : kt ⊂ tdn, |kt| ≤ k}
5: Mn←Mn−1

6: for all kterm kt ∈ cn do
7: kthash← murmur(kt)

8: if kthash /∈Mn then
9: noveltyc,n← noveltyc,n +α|kt|

10: Mn←Mn∪{kthash}
11: end
12: end

13: noveltyd,n = noveltyc,n ∗∑
k
i=1

(
|tdn|

i

)−1

14: end

4.3.4 Memory Representation

The way we implement the memory mimics a primitive Bloom filter (Bloom, 1970)

with only a single hash function. A potential downside of membership checking

through hashing onto a bit array is that it introduces a small probability of false matches:

a novel k-term kti may collide with a previously observed k-term kt j and would be re-

ported as non-novel. The probability of collision is directly proportional to the load

factor of the bit array, i.e. the fraction of non-zero bits.

The probability that a particular bit is set 1 after inserting a single item into the bit

array equals to 1
m , whereas m denotes the size of the bit array. Consequently, the prob-

ability that a particular bit not set to 1 after inserting an item is 1− 1
m .

Pparticular bit is 1 = 1− (1− 1
m
)n (4.7)

Equation 4.7 shows the probability of a false alarm, which is the probability that after

inserting n items into a bit array of size m, a particular bit is still 0. Given a desired

false positive rate and an estimated upper limit on the number of elements n added to

the bit array, one can estimate its size m given Equation 4.8.

60 Chapter 4. Memory-based Novelty Detection

m =
1

(1−Pparticular bit is 1)
1
n

(4.8)

Note that the used data structure is suboptimal in terms of false positive rate in compar-

ison with a traditional Bloom filter. This arises from the use of a single hash function,

compared to the multiple hash functions of a Bloom filter. Equation 4.9 shows the false

positive rate of a Bloom filter with multiple hash (Fan et al. 2000; Bose et al. 2008;).

False positive rate(BF) = 1− (1− 1
m
)n∗k (4.9)

Here, k denotes the number of hash functions used when determining the hash bin.

Each additional hash function decreases the likelihood that two different items collide.

Unfortunately, every additional hash function also increases the time constant in kterm

hashing by the number of the content size. It is important to notice that although the

time constant is increased, it still remains constant with respect to the number of doc-

uments processed and therefore full-fills the requirements of streaming environments.

When designing memory-based methods, we aimed on scaling novelty detection to the

equivalent of the entire Twitter stream. Consequently, our implementation of kterm

hashing for novelty detection trades false positive rates for speed and operates with a

single hash function. Interestingly, kterm hashing proved to be robust with respect to

the number of false positives, since we cannot measure a significant advantage when

using a collision free data structure. We conjure that the high numbers of unseen and

total kterms per document mitigate the absence of multiple hash functions. Remember,

kterm hashing estimates a document’s novelty by the ratio of unseen to all kterms.

For the remainder of this thesis, we set the size of memory M to 300 megabytes, which

allows storing a maximum of 2,516,582,400 entries. Using a single hash function and

a memory of 300 megabytes, we achieve a higher detection accuracy (Cmin = 0.835)

than LSH-FSD (Cmin = 0.9061). We elaborate on effectiveness experiments in Chapter

5.

4.4. Algorithm Complexity 61

4.4 Algorithm Complexity

Unbounded data streams require us to make a constant number of operations when de-

termining the novelty of document dn. This demands the runtime and storage cost for

novelty computation to be independent of the number of documents (d1...dn−1) seen

in the past.

Constant Time
The time complexity of novelty detection depends on the number of operations re-

quired to calculate the novelty score of a document. memory-based novelty detection

methods, like kterm hashing, estimate novelty based on membership checks on the

memory. The number of operations needed to determine the novelty score corresponds

to the number of membership checks, i.e. the size of the content. The average time

complexity A(avg(|c|)) is determined by the average content size, which depends on

the average document size avg(|d|) and the k, the maximum level for kterms. Both

values are independent of the number of documents processed before. Consequently,

kterm hashing results in a worst case time complexity of O(1) with respect to the num-

ber of documents processed, when the document length is limited. By contrast, the

worst case time complexity of traditional FSD systems is O(n), where throughput de-

creases linearly with the number of documents processed (n).

Constant Space
The number of documents arriving from data streams and with it the size of the mem-

ory, grows without bound. To remain feasible, we represent the memory by a fixed-

length bit array. Constraining the memory to a fixed data structure enables kterm

hashing to maintain constant space, irrespective of the size of the stream it operates on.

The resulting space complexity of kterm hashing is O(1) with respect to the number

of documents processed. By Heaps law (Egghe, 2007) the number of distinct words -

and subsequently the number of k-terms, will continue to grow and eventually saturate

the bit-array. To mitigate this problem, we introduce a deletion strategy: whenever

the load factor exceeds a pre-determined threshold φ, we zero out a random bit in the

memory M. This allows us to keep the probability of false matches low, at the cost of

forgetting some previously-seen k-terms. We explore the impact of deletion on FSD

performance in Chapter 5 in detail.

62 Chapter 4. Memory-based Novelty Detection

4.5 Conclusion

In this chapter, we introduced a new algorithm family for novelty detection, called

memory-based novelty detection. We further introduced kterm hashing, a memory-

based novelty detection method. The key idea of kterm hashing is to resemble the

past by a single representation - the memory. Novelty is determined by the fraction of

unseen kterms with respect to the memory. In contrast to state-of-the-art comparison

based methods, kterm hashing operates in truly constant time and space with respect

to the number of documents processed.

Chapter 5

Improving FSD through

memory-based Novelty Detection

5.1 Motivation

The previous chapter introduced a new novelty detection method called kterm hashing,

which is able to operate in constant time and space. In this chapter, we apply kterm

hashing to FSD and explore the impact of pre-processing as well as the cardinality

of kterms on FSD effectiveness. Additionally, we compare the FSD performance of

kterm hashing in terms of effectiveness and efficiency with two state-of-the-art FSD

detection systems. To improve readability we refer to an FSD system, whose novelty

detection method is based on kterm hashing, as kterm.

5.2 Impact of Preprocessing on FSD Performance us-

ing Kterm Hashing

Before we compare kterm with other FSD systems we explore the impact of several

pre-processing methods on its FSD performance. Table 5.1 summarized the impact

of individual pre-processing steps on the detection performance. We measure perfor-

mance using the normalized minimum detection cost (Cmin), which we introduced in

the evaluation section in Chapter 2. Note that this is a cost metric where lower values

indicate better detection accuracy.

63

64 Chapter 5. Improving FSD through memory-based Novelty Detection

raw tweets no Punctuation no Username no Links no Hashtags

Cmin 0.9637 0.8830 0.8643 0.9683 0.8731

Table 5.1: Impact of individual pre-processing steps on FSD performance using kterm

hashing

Punctuation
We remove any character that is not a letter or number including the Twitter-specific

hashtag and user symbols by splitting term on them: “#super-set” → “super”, “set”.

According to Table 5.1, removing punctuation from tweets decreases the detection cost

by -8% (from 0.9637 to 0.8830). Although removing punctuation characters is a stan-

dard preprocessing step in many Information Retrieval applications, it is not obvious

that the same applies to FSD using kterm hashing. Especially URLs, which are com-

monly used on Twitter to circumvent its 140 character limit, spawn a high number of

new terms when splitting on punctuation characters:

i.e. “http://www.manetas.com/pollock/” → “http”, “www”, “manetas”, “com”, “pol-

lock”. We conclude that the observed positive impact results from reducing the vo-

cabulary mismatch by removing commonly used punctuations i.e. “’()!,?.;:. Splitting

URLs on punctuation creates “garbage” terms, which are likely unseen. Unseen terms

artificially inflate novelty scores computed by kterm hashing. We hypothesize that

splitting hyperlinks on punctuation negatively impacts FSD accuracy.

Hyperlinks
To confirm our hypothesis, we remove punctuation from all terms except URLs. This

prevents splitting them into “garbage” terms. Interestingly, we observe a slightly

higher detection cost (Cmin = 0.8875) than when splitting URLs. We additionally

remove URLs entirely, which increases the detection cost to (Cmin = 0.9683), as seen

in Table 5.1. Both observations do not confirm our hypothesis, since splitting URLs

does not harm detection accuracy following artificially inflated novelty scores. Man-

ual inspection of Cross-Twitter revealed that no first story (detection target) includes

an URL, whereas URLs are commonly found in follow-ups. This appears reasonable

as external resources, like reports and official articles, are only available with a certain

delay. According to Petrovic et al. (2013b) and Osborne et al. (2014), Twiter does not

consistently lead newswires for reporting breaking events. Consequently, we do not

build features based on the absence of URLs. We further investigated the impact of

5.2. Impact of Preprocessing on FSD Performance using Kterm Hashing 65

splitting URLs on punctuation characters in the follow-ups. Contrary to our intuition,

splitting URLs produces more seen (i.e. protocol and country identifier) than unseen

terms (i.e. domain and sub-directory names). Consequently, splitting URLs artificially

increases the number of previously seen terms. The binomial coefficient further am-

plifies the artificially deflated proportion of seen terms, which results in lower novelty

scores through kterm hashing. In Cross-Twitter only follow-ups contain URLs. Split-

ting them deflates their document’s novelty scores, which increases FSD detection

accuracy.

Usernames
Twitter allows its users to link other users to their messages by adding their username

with a leading “@” symbol. This is a popular feature on Twitter as it allows directing

messages to specific users. Usernames are unique identifiers and subsequently intro-

duce new terms, which inflate novelty scores using kterm hashing. We found that in

our dataset Cross-Twitter no first story contains usernames, whereas they are com-

monly found in follow-ups. We conjecture that once a topic has gained traction it

becomes more likely that people talk about it and share it with their peers using their

usernames. Table 5.1 shows that the detection cost drops by 10% when usernames are

removed. Note that this is the highest positive impact we observed compared to all

other preprocessing steps. Manual inspection showed that occasionally users tend to

add a high number of other users to their tweets, resulting in more than 60% unseen

terms with respect to all previous documents in the stream. Those tweets receive high

novelty scores causing kterm to mistake them for new events.

Hashtags
Hashtags are Twitter-specific terms that link tweets to topics. Hashtags make tweets

globally searchable by other users and allow users to discuss a topic publicly. Every

user can reuse existing or create his own hashtags by adding terms with a leading hash

symbol “#”. Hashtags often consist of compounded terms (like kterms) i.e. #lifeIs-

Great.

Because hashtags indicate topicality they are a commonly used features when iden-

tify new events in social media streams. Cataldi et al. (2010), Phuvipadawat & Murata

(2010) and Ozdikis et al. (2012) for example rely on hashtags for new event detection.

We however find that removing all hashtags decreases the detection cost of kterm by

66 Chapter 5. Improving FSD through memory-based Novelty Detection

9%, as seen in Table 5.1. This result is surprising as it contradicts intuition and pre-

vious research findings, including those systems that rely on hashtags for new event

detection. We manually inspected all annotated topics to find the position of new hash-

tags in each topic substream, as seen in Figure 5.1. Note that we refer to topics as

TDT entities that include a first story and its follow-ups, which share the same topi-

cality. Figure 5.1 shows that the majority (> 60%) of hashtags does not occur in the

first story, but in the follow-ups and 6 out of 27 Cross-Twitter topics don’t contain any

hashtags. Those hash-tags are new with respect to all previously encountered docu-

ments in the full Cross-Twitter stream and consequently spawn many unseen kterms in

the follow-ups. Unseen kterms inflate the novelty scores and explain why hashtags are

harmful to FSD using kterm hashing. Petrovic (2012) tested the impact of removing

hashtags on LSH-FSD on the same dataset, which resulted in increased detection cost.

We conjecture that kterm hashing is more sensitive to unseen terms than the length

normalization of cosine hashing used in LSH-FSD. We also removed the hash symbol

i.e. “#election”→ “election”. We expected that this reduces vocabulary mismatch as

hashtags might match normal terms, but our experiments showed no improvement in

FSD detection accuracy.

Figure 5.1: Illustration of the position of the first occurrences of hashtags within all

annotated topics in Cross-Twitter. The majority of hashtags (13 out of 21) does not

occur in the first story.

We further investigate the occurrence of new hashtags, their frequency and burstiness

patterns. Figure 5.2 shows the document position of all new (previously unseen) hash-

tags within the topic substreams. Topic substreams cover only documents relevant to

5.2. Impact of Preprocessing on FSD Performance using Kterm Hashing 67

Figure 5.2: The x axis represents document positions within topics of Cross-Twitter.

When topics are new, lots of new hashtags are introduced by people discussing them.

The introduction of new hashtags flatten out later on.

the topics. For example, the first document of a topic X has position 1, the second doc-

ument of the same topic has position 2. The graph shows that when the topic is new,

users introduce a lot of new hashtags. Manual inspection showed that throughout the

topic the usage of hashtags is roughly constant at about 10% of all tweets. We therefore

conclude that Twitter users initially propose a lot of new hashtags before they settle on

a few describing the topic best. To illustrate our conclusion, we retrospectively search

for the most descriptive hashtag, according to human judgement for each topic. For

example, the topic “Death of Amy Winehouse” is represented by “#RIPAmy”. This

excludes unrelated or generally used hashtags like “#RIP” or “#whyher”.

Figure 5.3 plots the lag in hours on log-scale between the first story and the cumu-

lative hashtag counts for all topics. Interestingly, we observe that none of the hashtags

that occur in the first stories turn out to be the most descriptive one for their topics.

They include hashtags like: #noooooo!, #breaking and #RIP or hashtags containing

the only names of persons or companies involved. These hash-tags are not specific to

any particular topic or event but appear to be features indicating the beginning of a new

event, i.e. a first story. Approaches, like Phuvipadawat and Murata (2010), rely on sim-

ilar hash-tags for event detection. They filter tweets tagged with the “#breakingnews”

hashtag and perform event detection on them. Approaches that solely consider tweets

with certain hashtags operate with zero lag and are highly scalable, following a heavily

reduced stream volume. However, they are also limited in their accuracy, as they miss

a large number of first stories. Although these hashtags appear to be useful features

68 Chapter 5. Improving FSD through memory-based Novelty Detection

for FSD, we do not consider them in kterm hashing as their occurrences in our training

topics is not sufficient to derive weights.

Figure 5.3 illustrates that average lag from a hashtag’s first occurrence until it gets

adopted by other users and experience frequency bursts, is 30 minutes. The graph also

shows that some topics get adopted faster than others. The fastest rising hashtag in

our dataset describes the death of a singer called Amy Winehouse. This topic also re-

ceived the most attention among Twitter users, which we attribute to a general interest

of Twitter users in news concerning celebrities. Financial news, like an acquisition

by Google, reveal much slower and flatter growth rates. Although we only consider

the most descriptive hashtags for each topic, all of them show very slow growth after

their first mentions. This suggests that even popular hashtags grow initially slowly, be-

fore experiencing exponential growth. On average hashtags show burstiness patterns

1 hour after the corresponding first story occurs. This illustrates that detecting new

events based on hashtags or their burstiness pattern is unsuitable for FSD because new

events can only be detected with a substantial lag.

Figure 5.3: Illustration of the position of the first occurrence of hash-tags for all anno-

tated topics in Cross-Twitter. The majority of hashtags does not occur in the first story.

For FSD using kterm hashing, we remove all hashtags because we found that they

impact accuracy negatively on the Cross-Twitter dataset.

5.2. Impact of Preprocessing on FSD Performance using Kterm Hashing 69

Stemming
Stemming reduces terms to their base-form i.e. “running” → “run”. Stemming is a

commonly used preprocessing step in Information Retrieval applications to reduces

vocabulary mismatch. We compare the impact of three different stemmers, Porter,

Snowball and Krovetz on FSD effectiveness using kterm hashing. The resulting nor-

malised minimum detection costs are visible in Table 5.2. We apply all stemmers after

splitting terms on punctuation characters, which supports them to correctly identify

the base forms. The table shows a positive impact on the detection cost for all three

stemmers. The Porter and Snowball stemmer result in slightly higher performance (1%

difference) than the Krovetz stemmer. Replacing terms by their base-form decreases

vocabulary mismatching, which corrects the number of unseen terms and positively

impacts the FSD cost using kterm hashing.

punctuation removed Porter Snowball Krovetz

Cmin 0.8830 0.8528 0.8528 0.8630

Table 5.2: Impact of stemming on FSD performance by kterm hashing; Note that all

stemmers are applied to tweets without punctuation.

Final Preprocessing
So far we explored impact of several preprocessing steps on the FSD cost using kterm

hashing, in isolation. To decide on the final preprocessing procedure, we look at their

impact when combining them. Table 5.3 shows the performance of kterm and several

combinations of preprocessing steps. We observe that the positive effect of all tested

preprocessing steps is additive, and combining them results in the lowest observed FSD

cost of 0.8076. Our final preprocessing method consists of the removal of hashtags and

usernames, splitting terms on punctuation and stemming using a Porter stemmer.

70 Chapter 5. Improving FSD through memory-based Novelty Detection

Pre-Processing Cmin

no Hashtags, no Username, plus URLs 0.8573

no Hashtags, no Username, plus URLs, no Punctuation 0.8324

no Hashtags, no Username, plus URLs, no Punctuation, plus Porter 0.8076

Table 5.3: Impact of combined pre-processing steps on FSD performance by kterm

hashing

5.3 Impact of Cardinality on Kterm Hashing for FSD

Kterms are sets of compounded terms found in a document. The cardinality of a kterm

is determined by the number of terms compounded when forming it, i.e. the size of the

set. The kterm {“catch”, “them”, “all”} for example, has a cardinality of 3, because it

is composed of 3 terms. The number of possible kterms depends on the document size

and the maximum allowed cardinality. The cardinality of kterms is naturally limited

by the size of the document, where a single kterm spans the entire document.

The maximum allowed cardinality of kterms determines the size of a document’s con-

tent - the set of all constructed kterms. Each kterm requires a lookup in the memory

to determine whether it is unseen with respect to the past. Consequently, a kterm’s

cardinality influences the efficiency of an FSD using kterm hashing. Additionally, we

conjecture that the cardinality of kterms also influences their effectiveness.

5.3.1 Impact of Kterm Cardinality on Effectiveness

We explore the impact of varying the cardinality between 1 and 5 on FSD effective-

ness, measured by the normalized minimum detection cost. Table 5.4 summarizes the

performance of kterm on Cross-Twitter 115k for different levels of cardinality. Un-

surprisingly kterms of cardinality 1 result in poor performance of Cmin = 0.9822. This

resembles simple counting what fraction of terms are new. Single terms cannot capture

concepts of events, which usually combine multiple terms. Encountering the individ-

ual terms “fire” and “Louvre” is not unlikely as both are concepts that humans might

talk about. However, encountering them together in a single tweet might indicate an

outbreak of a new event. This explains why higher levels of cardinality result in lower

detection costs. Kterms with Cardinality of 3 result in the lowest detection cost of

Cmin = 0.8289. Interestingly, when increasing the kterm cardinality beyond level 3, we

5.3. Impact of Cardinality on Kterm Hashing for FSD 71

measure the inverse effect, as detection cost increases. Manual inspection revealed that

kterms of cardinality greater than 3 are rarer and often span entire documents. This ob-

servation partially confirms our hypothesis that kterm cardinality should influence the

novelty score: up to a certain point (3 for tweets with an average length of 10 terms),

kterms of higher cardinality are better suited for novelty detection.

Combining kterms of different cardinality
Up until now, we have looked at the performance of different level of cardinality in

isolation and found that kterms compounded of 3 terms result in the lowest detection

cost. Although other levels of cardinality performed worse, we assume that they are

able to capture additional information that might be worth considering. In our next

experiment, we stepwise increase the cardinality of kterms and combine them with all

previously formed kterms. Table 5.4 summarizes the minimum detection cost Cmin of

cardinality 1-6. Note that combined Cmin at a certain cardinality includes all lower

levels as well i.e. combined Cmin of cardinality 3, includes kterms of cardinality 1 to 3.

Cardinality individual Cmin combined Cmin combined & weighted Cmin

1 0.9822 0.9822 0.9822

2 0.8808 0.9306 0.8803

3 0.8289 0.9089 0.7902

4 0.8539 0.8958 0.7893

5 0.8549 0.8941 0.7891

Table 5.4: compares the detection cost (Cmin) for different individual and cumulated

cardinalities of kterms

Table 5.4 shows that the combination of different cardinalities undercuts their indi-

vidual detection costs. This confirms our hypothesis that although certain levels of

cardinality perform ineffective on an individual basis, they still capture valuable infor-

mation when combining them. For now, we assume uniform weights for all levels of

cardinalities. This means that kterms of all cardinalities contribute equally to the nov-

elty score. The table shows that each additional level of cardinality further decreases

72 Chapter 5. Improving FSD through memory-based Novelty Detection

the detection cost. Furthermore, we observe that the improvement of each additional

step becomes progressively less. We assume that the average length of tweets (10)

limits the impact of higher cardinalities.

Parametrising kterm cardinality
Our experiments showed that combining kterms of different cardinalities is beneficial

for FSD effectiveness. So far we considered kterms of all cardinalities as equally im-

portant when combining them.

Extracting a previously seen kterm of high cardinality from a new document indicates

that it shares several terms (those the kterm is composed of) with a previously en-

countered document. Furthermore, encountering an unseen kterm of high cardinality

indicates that the current document carries a combination of several terms (the unseen

kterm) that has not been seen in any of the previously encountered documents, which

provides an indication of novelty. We conjecture that a kterm’s contribution to the final

novelty score should depend on its cardinality - the number of terms it is composed of.

When we formally introduce kterm hashing in Chapter 4, we provided Equation 5.1,

which offers a dedicated weight (α) for kterms of different cardinality.

N(dn) = ∑
T∈cn

α|T |

(
|dn|
|T |

)−1
{

1 : T 6∈Mn−1

0 : T∈Mn−1

}
(5.1)

The weight allows distributing importance among the different levels of cardinality.

We optimize weights for the normalized minimum detection cost Cmin, defined in

Equation 2.8 in Chapter 1, using grid search. All optimization is based on a train-

ing set of 10 topics, which we manually labelled. Those topic originate from the same

list of important events1 as the original Cross-Twitter topics and include natural dis-

asters, political, financial and celebrity news. We optimize the parameters using grid

search because the number of variables is low and their valid range is limited. The size

of the training set, which consists of 10 positive and 2k negative training points, does

not allow learning weights for individual kterm cardinalities using gradient methods.

We show in Chapter 8 how weights for kterm hashing can be learned using an SVM,

when sufficient training data is available. During grid search we alter the weights by

1https://en.wikipedia.org/wiki/2011

5.4. Constant Time and Space 73

cardinality optimal weight

1 -0.01

2 0.22

3 0.54

4 0.12

5 0.11

Table 5.5: optimal weight for each kterm cardinality according to grid search on our test

set

0.01 and step between -1 and +1. The optimal weight setting is reached when Cmin is

lowest. The resulting optimal weight for cardinality of 1 to 5 are normalized to add up

to 1 and can be found in Table 5.5.

5.3.2 Impact of Kterm Cardinality on Efficiency

In the beginning of this section we mentioned that each kterm requires a lookup in

the Memory structure to determine whether is new with respect to all previously seen

documents. Every lookup involves hashing the kterm onto a bit-array and a subsequent

check of the corresponding entry. Combining several levels of cardinalities results in

high effectiveness but also spawns a high number of kterms. Table 5.6 compares the

trade-off between effectiveness and efficiency when combining different cardinalities.

The table reveals that the marginal gains of cardinality > 3 come at a high cost in

efficiency measured by the runtime in seconds. For example, when increasing the car-

dinality from 3 to 4, we decrease the minimum detection cost by 1% at the cost of

multiplying the runtime by 484%. Consequently, unless stated otherwise, we limit the

cardinality of kterms in all future experiments to 3.

5.4 Constant Time and Space

FSD computes a document’s degree of novelty with respect to all documents that ar-

rived before. Since FSD systems operate on data streams, the set of previous docu-

ments is constantly growing. Each additional document needs to be stored and con-

74 Chapter 5. Improving FSD through memory-based Novelty Detection

Cardinality weighted runtime number of

combined Cmin (sec) kterms formed

1 0.9822 0.328 1,715,007

1-2 0.8803 3.083 16,104,848

1-3 0.7902 19.389 101,273,711

1-4 0.7893 93.884 490,368,152

1-5 0.7891 373.632 1,951,513,245

Table 5.6: compares the detection cost (Cmin) and efficiency (runtime in seconds) for

combined cardinalities of kterms

sidered during future novelty computations. To remain feasible, an FSD system is

required to compute a document’s novelty in constant time and space (O(1)), indepen-

dently from the number of previously arrived documents.

Constant Time
On the arrival of a new document, kterm hashing creates its content - the set of all

kterms. Document novelty is computed based on the content novelty, which requires

determining the membership of each kterm in the memory by hashing it onto its bit ar-

ray and a subsequent lookup, whether the corresponding bit is set. Consequently, kterm

hashing operates independently from the number of previously processed documents,

as all computational steps only depend on the number of kterms formed. Twitter’s

140 character limit limits the number of possible terms to 70 - blanks are considered

in Twitter’s 140 character limit. As a result, the time complexity of kterm hashing is

O(1) with respect to the number of documents processed.

If documents are not limited by the number of words, they need to be reduced to

the top k weighted terms, as was usual during the TDT competitions (Yange, et al.,

1998; Yamron et al., 1998). Figure 5.4 shows the throughput measured by tweets per

second, as we process more and more tweets. The throughput curve initially increases

until 20,000 documents, after which it flattens out and remains constant. The set-up

of the bit array causes an initial overhead that explains why the throughput increases.

Once the overhead is compensated, the curve flattens out and kterm reaches maximum

throughput at 7,000 tweets per second. A more comprehensive efficiency experiments

and comparison with other state-of-the-art systems appears in Section 5.5.

5.4. Constant Time and Space 75

Figure 5.4: Illustration of constant throughput (tweets per second) for kterm hashing

when processing more and more documents.

Constant Space
Kterm hashing relies on a memory that maintains the information of all previously en-

countered kterms. By Heaps law (Egghe, 2007) the number of distinct words - and

subsequently the number of k-terms, grows continuously. Figure 5.5 shows the growth

of all kterms formed from the 115,000 documents of Cross-Twitter 115k, which need to

be stored in the memory for future novelty computations. The plot additionally shows

that growth of unique kterms, those previously unseen with respect to the path. Every

new kterm added to the memory grows its size. Although memory size increases only

gradually (each stored kterm has a memory-footprint of 1 bit), kterm hashing needs to

address this issue when operating on unbounded data streams. To ensure operation in

constant space, we restrict the memory to a fixed length bit array, as described in Chap-

ter 4. The length of the bit array determines the maximum size of the memory. Lim-

iting the memory size to a predefined and fixed magnitude guarantees operation with

constant space. Unfortunately, continuous insertions of newly encountered kterms into

a fixed space will eventually saturate it. Increased space saturation negatively impacts

detection accuracy. We explore the impact of space saturation on detection accuracy

in detail in Chapter 7. To mitigate this problem, we introduce deletion strategies that

ensure a constant load factor. The load factor corresponds to the fraction of bits set

(number of set bit
number of all bits). Placing an upper limit on the load factor enforces a maximum ratio

76 Chapter 5. Improving FSD through memory-based Novelty Detection

Figure 5.5: Illustration of the growth in the number of kterms encountered when pro-

cessing Cross-Twitter 115k.

of set to unset bits, which ensures constant space.

In particular, we compare three deletion strategies: random deletion, temporal deletion

and biased Reservoir Sampling. Whenever the load factor exceeds the pre-determined

threshold φ, the deletion strategy zeros out a bit in the memory (bit array) to make

room for new entries. This allows maintaining constant space at the cost of a small

false positive rate.

A popular deletion strategies for streaming IR applications include deletion of the least

frequent recent hitters (Berinde et al., 2009), as well as deletion according to uniform

Reservoir Sampling (Vitter, 1985). Removal of the least frequent recent hitters re-

quires maintaining a dedicated counter for each kterms encountered during the last

time interval. Upon deletion, the bit with the least hits is zeroed out to make room for

new entries. Identifying the lowest counter value requires a linear search through all

counters, which is time-consuming. Although frequently used in other streaming ap-

plications (Muthukrishnan, 2005), we decided against this deletion strategy, because it

requires storing and maintaining a large number of counters (1 for each recently visited

bit), which negatively impacts the cost of time and space required to calculated a doc-

ument’s novelty. Additionally, one has to ensure that the counters operate in constant

space to fulfil the stream requirements. Since FSD necessitates high efficiency, we de-

cided against this deletion strategy following its increased space and time consumption.

5.4. Constant Time and Space 77

Temporal deletion provides a more cost effective alternative to the deletion of the least

frequent hitters. Instead of maintaining a precise counter for each recently processed

kterm, temporal deletion only remembers the order in which kterms were added to

the memory. Upon deletion, the bit associated with the oldest kterm is zeroed out.

The kterm order is maintained in a queue, which is more efficient than maintaining

a dedicated counter for each recently seen kterm. When looking up a kterm in the

memory, the queue is searched and the corresponding entry is added to the end of the

queue. When the maximum load factor is reached the bit in the memory correspond-

ing to the first element in the queue is set to null and removed from the queue. This

bit represents the kterm that has not been encountered the longest. Table 5.7 shows

that temporal deletion results in the lowest increase in detection cost (Cmin). However,

the low increase comes at the expense of the highest increase (+126.2%) in runtime.

All deletion strategies increase the runtime of FSD using kterm hashing. This is inter-

esting since document deletion is one of the most effective speed up mechanisms for

comparison based FSD approaches. The time complexity of those approaches directly

depends on the number of documents stored. By contrast, the runtime of kterm hashing

is determined by the number of kterms hashed onto the memory. Deletion strategies

like temporal deletion reset an existing bit for each newly set bit, whenever the maxi-

mum load factor is reached. This requires an additional interaction with the memory,

which doubles the runtime.

Reservoir sampling is frequently applied in streaming Natural Language Processing

tasks (Shrimpton et al., 2015). The term “Reservoir Sampling” usually refers to Uni-

form Reservoir Sampling, which allows maintaining a sample of kterms, where each

kterm formed from all documents in the stream is equally like to be a member of the

sample. Kterms are added to the sample with probability P = s
n , whereas s denotes the

sample size and n the number of kterms already added. The probability of new kterms

being added to the memory decreases with each additional kterm added. When a kterm

is inserted, an old kterm is removed at random to ensure a constant sample size. The

resulting memory contains a set of kterms, whereas each encountered kterm is equally

likely to be a member of the set. Although this property is useful for various NLP

task, we decided against Uniform Reservoir Sampling. On social media stream, topics

emerge, evolve and fade away (Petrovic et al. 2013). Consequently, the most similar

previous document is more likely to be among the most recent documents which are

78 Chapter 5. Improving FSD through memory-based Novelty Detection

less likely to be selected by Uniform Reservoir Sampling.

Biased Reservoir Sampling (Aggarwal, 2006; Osborne et al., 2014) is a variant of Uni-

form Reservoir Sampling that allows moving the selection bias either towards more

recent or more distant kterms. In contrast to Uniform Reservoir Sampling, new kterms

are added with a fixed probability (P), and insertions trigger random deletions. We ap-

ply Biased Reservoir Sampling while shifting the bias towards more recent documents

by increasing the probability (P) of adding kterms to the memory. As a result, most of

the recent kterms are considered by the memory and occasionally some older kterms

are preserved as well. Biased Reservoir Sampling allows mimicking random deletion

strategy by setting the insertion probability to 100% (P = 1). Random deletion adds

all newly encountered kterms to its memory and deletes an existing entry at random.

When repeatedly selecting a bit with uniform likelihood to be zeroed out, older bits are

more likely to be reset. In contrast, uniform Reservoir Sampling with (P < 1) does not

add all kterms to the memory. Table 5.7 shows that for all tested versions of Biased

Reservoir Sampling, FSD using kterm hashing resulted in the lowest increase in detec-

tion cost (+0.3%) when applying a random deletion strategy (P = 1). Decreasing the

probability P of adding new kterms to the memory shifts the bias towards temporally

more distant documents, which impacts FSD accuracy negatively. This result confirms

Yang et al. (1998) and Petrovic et al. (2013), who measured increased FSD accu-

racy when focusing novelty detection on recently encountered documents. We further

explore the impact of recency on detection accuracy in Chapter 6. Whenever the maxi-

mum load factor is reached, Random Deletion resets an existing bit for each new entry.

This requires consulting the memory twice for each kterm added, which doubles run-

time (+106.9%). Decreasing the insertion probability (P) reduces the additional effort

at the expense of increased detection cost.

Figure 5.6 illustrates the memory footprint of FSD using kterm hashing with ran-

dom deletion when processing more and more tweets. Kterm hashing with a deletion

strategy operates with a strictly constant memory footprint independent of the number

of documents processed. A constant memory footprint in combination with a con-

stant processing time independently from the number of documents processed fulfil

the streaming requirements of (Muthukrishnan, 2005) (O(1)) and allow kterm hashing

to scale to unbounded data sets.

5.5. Difference to comparison based FSD 79

Algorithm Cmin Difference Runtime Difference constant
(sec) space

no deletion strategy 0.7966 - 19.389 - NO

temporal deletion 0.7979 +0.2% 43.854 + 126.2% YES

random deletion /

Biased Reservoir 0.7986 +0.3% 40.125 + 106.9% YES

Sampling (P = 1)

Biased Reservoir

Sampling (P = 0.75) 0.8343 +5% 30.824 + 59% YES

Biased Reservoir

Sampling (P = 0.5) 0.8832 +10.9% 21.029 + 8.5% YES

Biased Reservoir

Sampling (P = 0.25) 0.9382 +17.8% 10.824 -44.2% YES

Table 5.7: showing the impact of different deletion strategies on the effectiveness of

FSD using kterm hashing on Cross-Twitter 115k

5.5 Difference to comparison based FSD

In the following section we compare the performance of FSD through kterm hashing

with traditional comparison based methods. Our Baselines, which were described in

detail in Chapter 3, consist of UMass, a state-of-the-art high precision FSD system

and LSH-FSD the currently most efficient FSD system that also reaches state-of-the-

art accuracy. We base our comparison on effectiveness, measured by the minimum

normalized detection cost (Cmin) and efficiency, measured by the throughput (tweets
second).

Since effectiveness and efficiency can be traded off against each other, its important to

examine them in combination. For example, the most efficient FSD system assigns a

“first story” or “follow-up” label to all documents, which depending on the hardware,

reaches a throughput of about 4bn tweets/second. The highest possible efficiency also

comes at the highest possible cost in effectiveness (Cmin = 1).

Algorithms like LSH-FSD and kterm hashing provide numerous parameters that allow

tuning the trade off between effectiveness and efficiency. To ensure a fair comparison,

we define a target effectiveness determined by the detection accuracy of UMass. The

UMass FSD system is widely known as one of the most accurate FSD systems avail-

80 Chapter 5. Improving FSD through memory-based Novelty Detection

Figure 5.6: Illustration of constant memory footprint (measured in megabytes) for kterm

hashing when processing more and more documents.

able (Petrovic et al., 2013; Moran et al., 2016). Given a target for effectiveness, we

adjust the parameters of LSH-FSD and kterm for maximum efficiency while retaining

an accuracy comparable to those of UMass.

Before we compare the performance of the three algorithms using single-digit met-

rics, we look at their DET plot, seen in Figure 5.7. DET plots provide a comprehensive

comparison of detection accuracy because they show the performance for the full range

of parameters. An introduction on DET plots appeared in Chapter 1. Figure 5.7 shows

the efficiency tradeoff between false alarm and miss probability for UMass, LSH-FSD

and kterm. All three systems perform consistently better than random performance,

indicated by the red solid line. UMass outperforms LSH-FSD and kterm in the high

precision area, where the false alarm probability falls below 2%. All other regions

show comparable accuracy for all three algorithms. The DET plot in Figure 5.7 addi-

tionally provides the performance of UMass by its 90% confidence interval, illustrated

by the two solid black lines to the right and left of UMass’s line. These two lines form

a confidence corridor, whereas all points that fall within the corridor are statistically

indistinguishable from UMass. The DET plot shows that the accuracy of LSH-FSD

and kterm is on par with UMass, a state-of-the-art high accuracy FSD system. This

ensures that all three algorithms meet our target accuracy (defined in the beginning of

Section 5.5), which makes them comparable in terms of efficiency.

Table 5.8 compares kterm with the two baselines in terms of (Cmin) and throughput

5.5. Difference to comparison based FSD 81

Figure 5.7: DET plot of UMass, LSH-FSD and kterm, showing that LSH-FSD and kterm

are statistically indistinguishable from UMass in terms of detection accuracy.

measured on Cross-Twitter 115k. In addition to basic kterm, we also compare kterm

with different biases for reservoir sampling. UMass shows state-of-the-art accuracy

(Cmin = 0.79, lower is better), but can only process 30 tweets per second. Note,

that UMass becomes progressively slower as each additional documents processed in-

creases the computation effort for all future documents. LSH-FSD applies sophisti-

cated document pruning and consequently operates 17 times faster at the cost of a 13%

decrease in accuracy (Cmin = 0.90). Remember the difference in accuracy between

LSH-FSD and UMasss is not significant. Our system (k-term) operates on par with

UMass in terms of accuracy while being 2 order of magnitude (197 times) faster. Even

in comparison with LSH-FSD, the currently fastest FSD system, kterm performs 1

order of magnitude (11.8 times) faster. The table performs 7.8 times faster than LSH-

FSD when restricted in space.

5.5.0.1 Constant Time and Space

In addition to effectiveness and efficiency, we compare kterm to LSH-FSD and UMass

in terms of their space and time requirements when processing document streams.

82 Chapter 5. Improving FSD through memory-based Novelty Detection

Algorithm Cmin Difference tweets/sec speed-up

UMass 0.7981 - 30 -

LSH-FSD 0.9061 -13.5% 500 17x

k-term 0.7966 +0.2% 5,900 197x

no deletion

k-term

biased reservoir 0.7986 -0.1% 2,900 97x

sampling (P=01)

k-term

biased reservoir 0.8343 -4.5% 3,700 123x

sampling (P=0.75)

Table 5.8: Comparing the effectiveness and efficiency of different deletion strategies for

k-term hashing with UMass and LSH-FSD

Operation with constant time and space with respect to the number of documents pro-

cessed is a core requirement for algorithms to remain feasible in a true streaming en-

vironment.

Constant Time
In our first experiment, we apply UMass, LSH-FSD and kterm to Cross-Twitter 115k

and measure the throughput (tweets per second) as they process more and more doc-

uments. Figure 5.8 provides the throughput curves of the three algorithms, which

illustrate constant throughput for LSH-FSD and kterm. As described in Section 5.4,

kterm and LSH-FSD require an initialization phase, which explains the lower through-

put during the first 10k documents. Both algorithms amortize their initialization cost

at about 25k documents, after which they operate with a constant throughput. The

curve of UMass shows an opposite pattern, as it starts with the highest throughput of

all three system at 1000 documents per second. The initially high throughput erodes

quickly under 100 tweets per second after processing 10.000 documents. UMass is

a comparison based FSD system without deletion. This enables it to deliver state-of-

the-art accuracy at the cost of continuously decreasing throughput, as seen in Figure

5.8. Each incoming document is compared to all previously arrived documents if they

share at least 1 term. The number of matching documents is initially low, which ex-

plains the high throughput at the beginning of the stream. However, each additional

5.5. Difference to comparison based FSD 83

document processed increases the computational cost of future documents and causes

the throughput to continuously decrease.

Figure 5.8 additionally shows the average output of the full Twitter stream - Firehose2

at 5,787 tweets per second, illustrated by the solid magenta line.

Figure 5.8: Illustration of constant processing time for LSH-FSD and kterm as well as

continuously decreasing throughput for UMass.

Interestingly, kterm reaches the equivalent of the average Twitter Firehose stream on

a single Intel-Xeon CPU core with 2.27GHz. Note, that this is very modest hardware

and kterm processes more than 7k tweets per second if deployed on modern hardware

equivalent to 2.2 GHz Intel Core i7-4702HQ. By contrast, the currently fastest FSD

system - LSH-FSD requires a cluster of 72 cores (McCreadie et al., 2013) to reach

4,518 tweets per second.

Constant Space
Our second experiment investigates the memory requirements of our algorithm (kterm)

in comparison to our baselines. We measure the memory footprint of the process in

megabyte as they process more and more documents. Figure 5.9 provides the mem-

ory requirement for kterm and LSH-FSD. The memory footprint of the UMass FSD
2https://about.twitter.com/company (last updated: March 31, 2016)

84 Chapter 5. Improving FSD through memory-based Novelty Detection

Figure 5.9: Illustration of constant space requirement of kterm and slightly but steadily

increasing memory footprint of LSH-FSD.

system grows linearly with the number of documents processed and is therefore not

considered for this experiment. Petrovic et al. (2010) and Petrovic et al. (2013) claim

that LSH-FSD operates with constant space with respect to the number of documents

processed. However, we measure a slight but steady increase in memory footprint with

every new document processed. LSH-FSD uses hyperplanes to segment the vector

space and form hash buckets. By Heaps law (Egghe, 2007) the number of distinct

words - and subsequently the size of the hyperplanes, continuously grow. New terms

added to the hyperplanes and inverted index explain the observed memory footprint

growth of LSH-FSD. Figure 5.9 also shows that kterm operates with absolute constant

space.

5.6. Conclusion 85

5.6 Conclusion

In this Chapter, we applied kterm hashing to FSD and explored the impact of prepro-

cessing and kterm cardinality on detection accuracy. This chapter also compared FSD

using kterm hashing to two strong baselines and found that all three reach state-of-the-

art accuracy. While the three systems performed on par in terms of accuracy, kterm

hashing demonstrated throughput up to two order of magnitude faster. Additionally,

we investigated the time and space requirements of LSH-FSD and kterm hashing. Al-

though LSH-FSD is supposed to perform in constant space, we measured a slightly

but steadily increasing memory footprint. Kterm, by contrast, operates with absolute

constant time and space.

Chapter 6

The Effect of Recency on FSD

Detection Accuracy

6.1 Motivation

On social media and news streams, new topics continuously emerge, evolve and even-

tually fade away. Documents of a certain topic are assumed to occur in clumps i.e. they

are considered to arrive with close temporal proximity. Yang et al. (1998) discovered

that the average topic duration on news-wire data sets of TDT is about 2 month. They

hypothesized that recently encountered documents are better suited to determine a new

document’s novelty than older documents. Consequently, they explored the concept of

recency to boost detection performance.

In this chapter, we review the use of recency in the Yang’s CMU-FSD system and show

that LSH-FSD also considers a temporal aspect through variance reduction. Addition-

ally, we are the first to uncover that the UMass FSD system is also biased towards more

recent documents. We explore the impact of UMass’s unique temporal bias and its im-

pact on detection accuracy. We also show how recency is applicable to memory-based

novelty detection. Instead of placing the bias on the temporal proximity of documents,

we retain a queue of the most recently encountered kterms and inflate the novelty score

of new documents, whose kterms match with it. Our experiments show that biasing

novelty detection towards recency decreases the normalized minimum detection cost

of kterm hashing by 2%.

87

88 Chapter 6. The Effect of Recency on FSD Detection Accuracy

6.2 Recency in CMU and LSH-FSD

Yang et al. (1998) reported consistently better accuracy for the CMU-FSD system

when prioritizing recent documents for current decision making. They normalized the

similarity of the current document to the closest previous document by the temporal

difference between them, as seen in Equation 6.1.

novelty(dn) = 1− max
di∈window

{cosine similarity(dn,di)∗
i

|window|
} (6.1)

Remember that instead of computing novelty with respect to all previous documents,

CMU retains a window covering the k most recent documents. Consequently, docu-

ments with increasing temporal proximity have progressively less influence on current

novelty scores.

Petrovic et al. (2010) applied a conceptually related method to their LSH-FSD system

by incorporating an exhaustive back-off step, which they call “variance-reduction”.

They report that LSH alone yields poor detection performance because LSH occasion-

ally fails to identify to closest previous document if it is not sufficiently close to the

new document. Therefore, they additionally search the k most recent documents ex-

haustively, whenever LSH fails to provide a sufficiently close document. In addition

to reducing the variance of pure LSH, the variance-reduction strategy also prioritizes

recent documents, which are exhaustively searched whenever LSH fails to provide a

sufficiently similar document. Consequently, instead of discovering the true nearest

document in the past, LSH-FSD chooses to determine novelty based on the closest

most recent document.

6.3 UMass and the Temporal Bias

The UMass FSD system performed consistently better than CMU-FSD and was used

as a high effectiveness benchmark by LSH-FSD, which matches its detection accu-

racy. Interestingly, none of the publications describing the UMass FSD system reports

about harnessing recency to boost detection performance. According to (Allan et al.,

2000) UMass solely bases its decision on the inverse of the cosine similarity to the

closest previous documents. However, when computing the cosine similarity of each

document with its closest previous documents, which mimics UMass description, we

6.3. UMass and the Temporal Bias 89

encountered a divergence from the cosine similarity (1 - novelty score) obtained from

UMass. Figure 6.1 shows a plot comparing the actual cosine similarity and the cosine

similarity according to UMass.

Figure 6.1: Illustration of the novelty score obtained from UMass and our re-

implementation using pure cosine similarity.

As expected, the actual cosine similarity varies between 0 and 1. A cosine similarity

equal to 0 indicates that a document does not share any terms with any previous docu-

ment. By contrast, a cosine similarity of 1 results from a document that is identical to

a previous document. Interestingly, UMass produces cosine similarities that exceed 1,

which is impossible by the definition of the cosine similarity, given by Equation 2.4.

While examining the original source code of UMass, which was made available to us,

we found that the inflated cosine similarity scores originate from a unique way of han-

dling incremental term statistics. We decided to elaborate on this discovery in detail

since it substantially boosts detection accuracy and has not been made public yet.

6.3.1 Recency for through Cumulative Term Statistics

The UMass system calculates a document’s novelty based on the inverse t f .id f weighted

cosine similarity to the closest previously encountered document. We already intro-

duced the t f .id f weighting scheme in Chapter 2, and mentioned that the id f compo-

nent, seen in Equation 6.2, computes how representative a term is for a document.

90 Chapter 6. The Effect of Recency on FSD Detection Accuracy

id f (t) = log(
|D|

|{d : t ∈ d,d ∈ D}|
) (6.2)

In a nutshell, id f assumes that terms that appear in only a few other documents are

more descriptive than terms that are commonly used in many documents. According

to Equation 6.2, the id f values of a term t depends on the proportion between the num-

ber of documents (|D) and the number of documents containing term t.

The t f .id f term weight is the product of the id f component and the number of times

the term occurs in the document. Cosine similarity based novelty computation uses the

t f .id f weights for calculating the dot product and vector lengths, as seen in Equation

6.3.

Cosine similarity(v1,v2) =
dot product(v1,v2)

length(v1)∗ length(v2)
(6.3)

FSD is a streaming task. Documents arrive one-at-a-time and information about how

many future documents contain a specific term is not available. Following the absence

of global term statistics, UMass approximates id f components by computing them in-

crementally. On the arrival of a new document, its terms are added to the inverted index

and their corresponding idf values are updated. Consequently, incremental id f statis-

tics are based on all documents processed in the past. Incremental document statistics

are not uncommon in streaming applications and they are also applied by LSH-FSD.

Close inspection of the UMass source code revealed that the id f weights are incre-

mentally computed as expected. However, UMass does not pass the updated idf scores

to the length normalisation of the cosine similarity. Instead of recomputing the doc-

ument vector length using the updated idf values, UMass keeps the length that was

computed at the arrival of each document. Consequently, UMass computes novelty

according to Equation 6.3, whereas the dot product uses the incrementally updated idf

components but the vector length of the previous vector v2 is not recomputed based

on the updated idf components. We assume that the update of the vector length was

skipped to increase efficiency, unaware of the impact it has on detection accuracy.

6.3. UMass and the Temporal Bias 91

To outline the effect of skipping the length update, we force UMass to re-compute

the vector lengths using the updated incremental idf scores.

UMass Cmin Difference

with vector length update 0.8715 -

without vector length update 0.7981 -9.2%

Table 6.1: impact of vector length update on the detection accuracy of UMass

Table 6.1 illustrates that skipping the update of the vector length not only increases the

efficiency of UMass but also substantially reduces the normalized minimum detection

cost by 9%.

We claim that skipping the length update biases novelty computation using cosine sim-

ilarity towards more recent documents, which explains the decreased detection cost.

Our claim is based on the fact that when processing a stream, the number of encoun-

tered documents rises faster than the number of documents that contain a specific term,

because most terms are not present in all documents. Consequently, idf components

increase over time, which inflates the t f .id f weights of terms in documents later on

in the stream. Inflated t f .id f components increase vector lengths, which are used by

the cosine similarity to squash the dot product, as seen in Equation 6.3. As a result

dot products of documents with little temporal proximity are less squashed than those

of greater temporal proximity. Since novelty is by definition 1 minus the similarity,

increasing the similarity of temporally distant documents decreases their novelty. We

conclude that skipping the vector length update biases novelty detection towards more

recent documents, which increases detection accuracy.

For example, in Cross-Twitter 115k document number 10,067 is a first story, whose

most similar previous document (document number 286) arrived 9,781 documents be-

fore it. The novelty score using the correct cosine similarity for document 10,067

is 0.4071. Based on the temporal distance, UMass inflates its cosine similarity and

assigns a novelty score of 0.3205.

92 Chapter 6. The Effect of Recency on FSD Detection Accuracy

6.4 Biasing Kterm Hashing Towards Recency

Biasing novelty detection towards more recent document has shown to be an effec-

tive way to boost detection performance of comparison based FSD systems including

CMU-FSD, UMass and LSH-FSD. In the following section we explore the use of re-

cency for kterm hashing.

In contrast to the previously named FSD systems, kterm hashing does not apply com-

parison based novelty computation. Therefore, kterm hashing does not maintain pre-

viously encountered documents and novelty is not based on 1 minus the document

similarity. Instead, kterm hashing maintains the memory, a collection of previously

encountered kterms and novelty is based on a document’s proportion of unseen kterms

to the number of all kterms. Consequently, kterm hashing does not allow maintaining

a window of recent documents, whose novelty scores are deflated when compared with

a new document, as done by CMU and LSH-FSD.

Instead, we retain queue Q, which holds the m most recently encountered kterms in

their chronological order. Whenever a kterm k is formed that occurs in Q, the bias is

increased based on the proportion of variable θ and the position of k in Q. We opti-

mize θ and m on our separate training set, whereas best performance was achieved with

θ = 4 and m = 3000. Given this set-up, kterm hashing inflates the normalization of the

content novelty when a document’s kterm matches a recently encountered kterm. This

deflates the document novelty and biases kterm hashing towards recency. Algorithm 6

provides the detailed pseudo code for kterm hashing with a recency bias.

kterm hashing Cmin Difference

without recency bias 0.7966 -

with recency bias 0.7792 -2.2%

Table 6.2: Impact of biasing kterm hashing towards more recent documents on detec-

tion accuracy

Table 6.2 illustrates the impact of biasing kterm hashing towards recent documents on

detection accuracy when applied on our test set, Cross-Twitter 115k. The recency bias

for kterm hashing decreases the normalized minimum detection cost by 2.2%.

6.4. Biasing Kterm Hashing Towards Recency 93

Algorithm 6 : kterm with bias on recency
1: initialize memory M, queue Q

2: for all document dn ∈ Stream do
3: cn←{t : t ⊂ dn, |t| ≤ k}
4: for all kterm t ∈ cn do
5: if t ∈ Q then
6: bias← bias+ θ

position of t in Q

7: end
8: if t /∈Mn−1 then
9: noveltyc,n← noveltyc,n +1∗α|t|

10: Mn←Mn−1∪ t

11: if t ∈ Q then
12: Q→ t

13: end
14: Q← prepend(Q,t)

15: if |Q|> m then
16: Q→last entry

17: end
18: end
19: end
20: noveltyd,n = noveltyc,n ∗ (|cn|+bias)−1

21: end

94 Chapter 6. The Effect of Recency on FSD Detection Accuracy

6.5 Conclusion

This chapter outlined the positive effect of biasing novelty detection towards recency

on detection accuracy. We reviewed the recency bias of CMU and LSH-FSD and

were the first to discover that UMass also considers recency by deflating the novelty

scores of temporally distant documents. We discovered that the UMass system does

not pass the incrementally updated idf values to the vector length of previous docu-

ments. We explained why neglecting the length update deflates the novelty scores of

temporal distant documents, which decreases the normalized minimum detection cost

by 9%. Eventually, we showed how to bias kterm hashing towards recency. Instead

of documents, kterm hashing keeps a queue of the most recent encountered kterms.

Documents, whose kterm match with a kterm in the queue, receive a novelty boost

depending on the position of the kterm within the queue. Our experiments showed that

the recency bias decreases the detection cost of kterm hashing by 2%.

Chapter 7

FSD Performance over time

7.1 Motivation

State-of-the-art FSD systems, like LSH-FSD, apply deletion strategies to limit the

number of documents considered for novelty computation, which drastically reduces

the computational effort and scales systems to high-volume data streams. Addition-

ally, document deletion ensures operation with constant time and space, independently

from the number of documents processed. In the following chapter, we study the im-

pact of deletion on FSD performance and show that it also positively affects accuracy

over time. To the best of our knowledge, no research up to this date showed the neces-

sity of deletion by studying the effect of processing more and more documents on FSD

accuracy over time. We show that when applying FSD systems without deletion strat-

egy, like UMass, novelty scores decay over time because the more documents a system

has processed the less likely it is to encounter new information. Novelty scores, usu-

ally bound between 0 and 1, reflect the degree of a document’s novelty with respect to

the past. We hypothesize that continuously adding document vectors to a finite space,

gradually fills it up, which negatively impacts detection accuracy. Note that up to this

point, deletion strategies are applied to scale FSD systems and to retain constant op-

eration. High accuracy systems, like UMass, focus on effectiveness and don’t apply

deletion. Our experiments show that FSD without deletion results in continuously de-

caying novelty scores, which have a direct negative impact on FSD accuracy. The goal

of our experiments is to reveal that deletion not only positively impacts efficiency and

operation with constant space in time but also ensures constant accuracy.

95

96 Chapter 7. FSD Performance over time

Following the outcome of our experiments, we advocate that streaming applications

like FSD, are required to retain a constant level of accuracy over time. When process-

ing continues data sources, constant accuracy with respect to the number of documents

processes is as critical as operation with constant time and space. If accuracy decays

over time, an FSD system’s effectiveness would continuously decrease and eventually

render it useless. We therefore require streaming applications like FSD to operate in

constant time and space while maintaining a constant level of accuracy over time.

Additionally, we introduce an alternative to deletion strategies applicable to FSD using

kterm hashing. While studying the novelty decay of FSD systems without deletion, we

find re-occurring decay patterns and derived decay models that allow approximating

the expected novelty decay for any document position within the stream. Since our ex-

periments show that novelty scores continuously decay, documents later in the stream

are expected to have on average lower novelty scores than earlier documents. We show

that using a decay model, we can counteract novelty decay for kterm hashing based

FSD. This provides an alternative to deletion strategies for kterm hashing to ensure

constant accuracy. Adjusting novelty scores according to the decay model also suc-

cessfully prevents novelty score decay for comparison based systems like LSH-FSD

and UMass. Unfortunately, they don’t scale to a high number of documents without

deletion.

7.2 Novelty Decay in Comparison based and memory-

based FSD Systems

Our first experiments explore the impact of processing more and more data when no

deletion strategy is applied, like for UMass. FSD systems process a stream of docu-

ments with a single pass over the data. For each arriving document a novelty score

is computed, indicating its degree of novelty with respect to all previously seen doc-

uments. Figure 7.1 provides an example output of an FSD system. New events are

detected whenever a document’s novelty score, illustrated by the red dots, exceeds the

predefined detection threshold, illustrated by the horizontal blue dashed line.

7.2. Novelty Decay in Comparison based and memory-based FSD Systems 97

Figure 7.1: Illustration of the FSD principle. Whenever a document’s novelty score

surpasses the detection threshold, the document is considered to talk about a new

event.

During the TDT program and for most other detection tasks, detection is based on

a fixed threshold. The TDT competitions used data set in the range of several thousand

documents, which was a reasonable size at the time. Figure 7.2 shows the cumulative

average novelty score of UMass, a comparison based FSD system that does not apply

any deletion, when processing 10,000 tweets. The number of tweets is comparable

to the first TDT dataset. The graph illustrates that for such small data sets, a fixed

threshold appears reasonable, as it mimics the behaviour of the average novelty score.

During all TDT competitions the average novelty scores were not considered to drift

over time and constant detection thresholds are applied by all FSD systems.

When TDT was introduced in early 2000, data streams and thus research data sets were

of small scale. In contrast, today, 10k documents equate to less than 2 seconds of the

Twitter stream. In our next experiment we investigate the impact of processing mil-

lions of documents in combination with a fixed thresholding strategy and no deletion

on FSD performance.

Figure 7.3 shows the UMass novelty scores of the first 2 million documents of Twitter-

Cross 52 mio. We limit the size of the dataset because the throughput of UMass

steadily decreases and 2 million tweets is 2 order of magnitude large than the first

TDT data set, which is sufficient to show the impact of processing more and more

98 Chapter 7. FSD Performance over time

Figure 7.2: Illustration of the cumulative average novelty score of the UMass FSD sys-

tem for 10k tweets.

Figure 7.3: Illustration of the novelty scores from 2 million documents. The graph in-

dicate that UMass detects “novel” documents during all positions in the 2 million docu-

ment stream.

documents on FSD accuracy. The graph illustrates that UMass detects documents with

high novelty scores at all position in the stream. We also see that UMass considers only

documents in the very beginning as entirely novel. These documents have a novelty

score of 1 and don’t overlap with any previous document. This appears reasonable as

with each additional document processed, the likelihood of encountering a document

that does not share a single term with all previous documents, becomes progressively

lower (Qin et al., 2017). To identify a trend in the novelty scores over time we compute

their cumulative average and plot it against the document position.

Figure 7.4 shows the cumulative average novelty score of UMass when processing 2

7.2. Novelty Decay in Comparison based and memory-based FSD Systems 99

Figure 7.4: Illustration of the cumulative average novelty scores of a comparison, FSD

and kterm based FSD system, when applied to 2 million tweets.

million tweets. Additionally, we present LSH-FSD and our kterm hashing based FSD

system without deletion strategies to explore the affect of deletion strategies on the be-

haviour of average novelty scores. Note that the absolute novelty score values are not

comparable between different FSD systems. LSH-FSD for example, produces lower

average values than UMass or kterm. This does not indicate that LSH-FSD considers

less documents as new events, as novelty is determined by an individually optimized

detection threshold.

The curves in Figure 7.4 reveal a continuing decay of the average novelty score for

comparison based and memory-based FSD systems without deletions, as they process

more and more documents. In particular during the first 1 million documents, the av-

erage novelty score falls sharply.

This thesis is the first to reveal that the novelty score of comparison based FSD systems

decay over time if no deletion strategy is applied. This decay has a direct impact on

detection accuracy, which is based on constant thresholds, as seen in figure 7.5. The

graph shows a severe drop in average novelty score, in particular during the first 1 mio

documents. As a result, the average novelty score of documents in area A is above

the optimal detection threshold, which indicates that many of them are likely consid-

ered to be “new events”. Consequently, this area increases the probability of false

alarms (false positives). The average novelty score of documents in area B is below

the optimal detection threshold. Documents in this region are likely being considered

as “follow-up”. As novelty score are lower, new events in this area are more likely

missed, causing false negatives.

100 Chapter 7. FSD Performance over time

Figure 7.5: Illustration of the impact of novelty score decay on detection performance:

showing that false positives are more likely in the beginning of the stream (area A) and

false negatives are more likely later on (area B).

7.3 Causes for Novelty Score Decay over Time

Our experiment showed that comparison based and memory-based FSD systems suffer

from a continuous decay in novelty scores when no deletion strategy is applied. We

also explained that how decaying novelty scores impact detection accuracy negatively.

To understand why novelty scores decay over time when no deletion strategy is ap-

plied, we explore the causes separately for comparison based and memory-based FSD.

Traditional Comparison based FSD
Comparison based FSD systems, like UMass, compare each new arriving document

with all previously seen documents. Novelty scores depend on the distance to the clos-

est previously encountered document. Figure 7.6 illustrates a simplified model of a

2-dimensional vector space. Hollow circles indicate previous documents. Full circles

indicate a new document and the arrows show the distances between new documents

and the closest previous document. An arrow’s magnitude illustrates a document’s de-

gree of novelty. As more documents arrive, the space fills up. The more saturated a

space becomes, the more likely it is that additional objects are close to existing ones.

7.3. Causes for Novelty Score Decay over Time 101

We therefore hypothesize that the average novelty score declines with the increase in

vector space saturation.

Figure 7.6: Illustration of a simplified model for a comparison based FSD system, like

UMass, in a 2-dimensional vector space.

LSH based FSD
LSH based FSD systems, like LSH-FSD, share the basic concept of computing novelty

with traditional comparison based systems. The advantage of LSH based systems re-

sides in efficiency gains from limiting the search space from the entire vector space to

the size of a hash bucket. Figure 7.7 illustrates a vector space separated by two hyper

planes, forming 4 buckets. Although LSH reduces the amount of comparisons on av-

erage to #docs
#buckets (the size of a bucket), saturation still grows with each new document

added. As a result FSD using LSH without deletion suffers from the same novelty

score decay as standard comparison based systems, as seen in figure 7.7.

memory-based FSD
Kterm hashing is a memory-based novelty detection method. Instead of comparing

new documents to previous ones, all kterms of a document are formed and hashed onto

the memory, which holds kterms from previous documents. The fraction of previously

unseen kterms determines the degree of novelty. To keep track of past information,

every document adds its own kterms to the memory. If no deletion strategy is in use,

the memory fills up. The increasing saturation of the fixed sized memory resembles the

saturating vector space of comparison based novelty detection and causes the average

novelty scores to decay over time.

102 Chapter 7. FSD Performance over time

Figure 7.7: Illustration of a simplified model for an LSH based FSD system, like LSH-

FSD, in a 2-dimensional vector space.

We hypothesize that novelty scores from comparison based and memory-based FSD

without deletion steadily decay with the increase in space saturation. To verify our hy-

pothesis we repeat the experiments above but this time we apply a deletion strategy to

all three systems. Note that this experiment does not aim at achieving maximum detec-

tion accuracy but solely focuses on the behaviour of the observed cumulative average

novelty score over time. The goal of this experiment is to show that even sub-optimal

deletion strategies, like sliding windows, do not only positively impact efficiency and

operation in constant time and space but also enable achieving constant accuracy.

Since UMass does not come with a deletion strategy, we apply a sliding window span-

ning 100.000 documents to it. Only documents inside the window are considered when

computing the novelty score of a newly arriving document. New documents are added

to the window until it fills up. Afterwards, for each new document added the oldest one

falls out of scope. Note that UMass in conjunction with a sliding window closely re-

sembles the CMU system described in Chapter 2. LSH-FSD additionally allows more

sophisticated strategy based on local deletion, as described in Chapter 3. Instead of

deleting (global) the oldest document whenever a new document arrives, LSH offers

hash bin specific (local) deletion. Each hash bucket corresponds to a specific hyper-

polygonal shaped region in the vector space. This allows placing an upper limit on

7.3. Causes for Novelty Score Decay over Time 103

the number of documents for each of them. Whenever a particular region in the vector

space becomes too densely populated, one of its documents gets deleted. For FSD

using kterm hashing, we apply its random deletion strategy. Instead of limiting the

number of documents considered for novelty computation, deletion for kterm hash-

ing limits the number of kterms in the memory by defining a maximum load factor.

Documents contribute with their kterms to the memory until the maximum load factor

is reached. Then, for each new kterm an old kterm, chosen at random, gets deleted.

All three deletion strategies ensure that the space saturation remains constant indepen-

dently from the number of documents processed.

Figure 7.8: Illustration of the impact of a sliding window on the average cumulative

novelty score.

Figure 7.8 shows the cumulative average novelty score when applying the deletion

strategies to UMass, LSH-FSD and kterm hashing based FSD. The graph reveals that

the novelty scores initially decrease up-until the window, bucket or memory is filled

up. This is expected because during this stage, the system resembles operation with-

out deletion. As soon as the maximum allowed space saturation is reached and dele-

tion is applied, the cumulative average novelty score flattens out. All three deletion

strategies show a similar impact on the average novelty score. Close inspection of the

graphs shows a smoother flattening of the curve for LSH-FSD and kterm, which ap-

ply local deletion and kterm deletion respectively. By Contrast, the curve of UMass

slightly bounces around a novelty score of 0.742. We conclude that deleting an indi-

vidual kterm or a document of a particularly densely populated region (local deletion

by LSH), is less likely to create sparse regions where new documents have higher av-

erage novelty scores. By contrast, sliding window based deletion removes documents

according to their chronological order. Documents in social media streams that share

temporal proximity are also likely to share topical proximity (Petrovic, 2013). We as-

104 Chapter 7. FSD Performance over time

sume that removing topical clusters of temporal proximity creates sparse regions that

cause bouncing average novelty scores.

We conclude that keeping the space saturation constant also ensures constant accu-

racy over time, which confirms our hypothesis. To the best of our knowledge, this is

the first exploration of the impact of document deletion on average novelty scores over

time.

Our experiments showed that FSD systems without a deletion strategy result in contin-

uously decaying average novelty scores. We showed that novelty scores decay with the

increase in space saturation. Consequently, the average novelty score remains constant

when the vector space saturation remains constant. Keeping the number of documents

constant is a widely applied principle in the FSD community, as described in Chapter

2. However, so far it has been applied as a means to speed up novelty computation,

unaware of the positive impact it has on the accuracy over time.

7.4 Bootstrapping FSD Systems to Boost Detection Ac-

curacy

This section provides a method for pre-initializing comparison based and memory-

based FSD systems to boost detection accuracy. All FSD systems posses an internal

representation of the past. This representation stores information of previously en-

countered documents and provides the basis for determining the novelty of future doc-

uments. UMass represents the past by a collection of document vector and incremen-

tally accumulated id f statistics. LSH-FSD additionally holds hash-tables that store the

associations of previous documents with their corresponding hash buckets and kterm

hashing keeps kterms of previous documents in its memory.

When an FSD system is applied to a document stream, all these internal represen-

tations are empty, as FSD systems start in a NULL state. This state is similar to the

“Cold Start Problem” (Lika et al., 2014) of recommendation system and explains why

documents in the beginning of a stream are considered as first stories - they are new

because there are no previous documents with which they could be compared to. Our

experiments in Section 7.2 showed that the average novelty score sharply decreases

7.4. Bootstrapping FSD Systems to Boost Detection Accuracy 105

during the first 1 million documents for comparison and memory-based FSD systems.

The scores continue to decrease afterwards but at a lower rate.

We conclude that the average novelty scores drop in particular during the period from

the 1st to the 1,000,000th document due to the cold start of FSD systems.

To overcome the cold start problem, we pre-initialize FSD systems with unrelated data

in the form of 1 million random tweets that pre-date Cross-Twitter 115k. Processing

these tweets initializes the internal states of the FSD systems, before they begin oper-

ation on the Cross Twitter 115k document stream. We found that bootstrapping FSD

systems with unrelated data decreases the minimum detection cost by around 5%, as

seen in Table 7.1. Note that for this experiment we run UMass, kterm and LSH-FSD

with optimal settings using optimal deletion strategies. In order to demonstrate the

impact of all three systems, we use Cross-Twitter 115k. It is important to ensure that

the tweets for the pre-initialization step are random and unrelated tweets that pre-date

the time period of Cross-Twitter 115k. Once the FSD systems process the first tweet of

Cross-Twitter 115k, their inner states are not NULL, since they hold the information

of 1 million random documents. Consequently, the first tweet of Cross-Twitter 115k

is less likely to be entirely new to the FSD systems. Bootstrapping FSD systems by

pre-initializing them with 1 million documents removes the sharp initial novelty decay

and average novelty scores only decrease gradually, as seen in Figure 7.9. Avoiding

the period of sharpest novelty score decrease improves detection accuracy but does not

resolve the overall problem of novelty decay. Figure 7.9 illustrates that even without

the sharp initial score decline, novelty scores continue to decrease.

Algorithm Cmin original Cmin prepended Difference

UMass 0.7981 0.7646 -4%

LSH-FSD 0.9648 0.9166 -5%

kterm 0.7966 0.7584 -5%

Table 7.1: Impact on detection cost when appending 1 million documents to Cross-

Twitter 115k

106 Chapter 7. FSD Performance over time

Figure 7.9: Illustration of the impact of bootstrapping an FSD system (kterm) by pre-

initializing it with 1 million unrelated tweets on the average novelty score.

7.5 Additional Methods for Counteracting Novelty Score

Decay over Time

Placing an upper limit on the space saturation successfully stops novelty decay over

time for comparison based systems including UMass and LSH-FSD, as well as for

memory-based systems, like kterm. Document deletion is essential for comparison

based FSD system, like UMass and LSH-FSD, to achieve adequate throughput. In

contrast, our experiments showed that document deletion decreases the throughput of

FSD using kterm hashing. The time complexity of memory-based methods does not

dependent on the number of documents processed but on the number of terms per

document. Deleting strategies require resetting an existing kterm for each new kterm

added to the memory. The additional effort hurts the throughput of FSD using kterm

hashing. Applying kterm hashing without deletion causes the novelty scores to decay

over time. In the following section, we provide an alternative method for kterm hashing

that compensates novelty score decay without kterm deletion.

7.5.1 Modelling Novelty Score Decay

While studying the behaviour of cumulative average novelty scores over time for com-

parison based and memory-based FSD systems, we encountered reoccurring decay

patterns. Our alternative to prevent novelty decay builds upon adapting novelty scores

7.5. Additional Methods for Counteracting Novelty Score Decay over Time 107

according to a document’s position within the stream. Our experiments in Section 7.2

showed that documents that appear later on in the stream are more likely to receive

low novelty scores, following the continues novelty score decay. We counteract the

score decay by approximating the expected average novelty score decay, with respect

to a particular point in time t within the stream. By t we denote the time-stamp, corre-

sponding to a document’s position within the stream. We hypothesize that modelling

the expected decay at a particular point in time allows compensating it when comput-

ing novelty scores.

To derive a decay model, we apply kterm hashing to a test set, consisting of 52 million

random tweets that pre-date those of Cross-Twitter. It is important to ensure that the

52 million tweets pre-date the test dataset to avoid that they contain information rele-

vant to a target topic. We use the resulting cumulative average novelty scores to build

our decay models. In particular, we apply logarithmic, exponential and polynomial

regression to the observed cumulative average novelty scores of the 52 mio random

tweets, while optimizing the coefficient determinant (R2). The coefficient determinant

indicates the proportional variance between approximated and observed cumulative

average novelty scores.

Polynomial Model
Figure 7.10, 7.11, 7.12 illustrate the expected novelty score based on a polynomial

function of the 4th, 5th and 6th order (red dotted line) and compare it with the observed

cumulative average novelty scores (blue solid line) from Cross-Twitter 52mio.

The red dotted line corresponds to the expected novelty score (EN) according to our

polynomial decay model, shown in Equation 7.1. The equation provides an nth order

polynomial function that approximates the expected novelty score at a particular time

t. The function’s parameters (δ0− δ6) were optimized on the test set consisting of 52

million random tweets.

EN(t) = δ6 ∗ t6−δ5 ∗ t5 +δ4 ∗ t4−δ3 ∗ t3 +δ2 ∗ t2−δ1 ∗ t +δ0 (7.1)

Figure 7.10, 7.11, 7.12 also show the observed cumulative average novelty scores of

FSD using kterm hashing on Cross-Twitter 52mio. Note that these are the novelty

scores the decay models try to predict.

108 Chapter 7. FSD Performance over time

Figure 7.10: Illustration of novelty scores over time in linear and log-scale. The bold

blue curve indicates the observed cumulative average novelty scores on Cross-Twitter.

The red dotted line resembles the 4th order polynomial model of the cumulative average

novelty score from 52 million random tweets.

Figure 7.11: Illustration of novelty scores over time in linear and log-scale. The bold blue

curve indicates the observed cumulative average novelty scores on Cross-Twitter. The

Red dotted line resembles the 5th order polynomial model of the cumulative average

novelty score from 52 million random tweets.

Figure 7.12: Illustration of novelty scores over time in linear and log-scale. The bold

blue curve indicates the observed cumulative average novelty scores on Cross-Twitter.

The red dotted line resembles the 6th order polynomial model of the cumulative average

novelty score from 52 million random tweets.

7.5. Additional Methods for Counteracting Novelty Score Decay over Time 109

The optimal coefficient determinant for all three polynomial models and the training

set (52 million random tweets), as well as the observed novelty scores from the test

set (Cross-Twitter 52mio), are shown in Table 7.2. The table shows a lower propor-

tional variance between the observed data of the training set and approximation from

higher order polynomial functions, in comparison with lower order polynomial func-

tions. This is expected as more powerful functions are better suited to closely resemble

observed data. Interestingly, when applying the polynomial models to the test set, we

measure lower coefficient determinants for 5th order function (R2 = 0.9741) than for

6th order functions (R2 = 0.9733). We conclude that 6th order polynomial functions

over-fit to the training set and don’t generalise well to the test set.

Exponential Model
The exponential functions in Equation 7.2 is less powerful than the previously explored

polynomial function. However, Figure 7.13 reveals that modelling the expected nov-

elty decay based on exponential functions, allows capturing the novelty decay patterns

observed on the test set.

EN(t) = γ∗ tδ (7.2)

As before, we optimize the model parameters, γ and δ, on the training set consisting

of 52 million random tweets. Table 7.2 show that the coefficient determinant of the

exponential model (R2 = 0.9815) is 1% higher on the test set than the best performing

polynomial model (R2 = 0.9741). This confirms that exponential model is superior to

polynomial functions when modelling the expected novelty score decay with respect

to a particular time t within the stream.

Logarithmic Model
Additionally, we model the cumulative average novelty scores using a logarithmic de-

cay model, as seen in Equation 7.3.

EN(t) = γ∗ (−)ln(t)+δ (7.3)

The parameter γ denotes the slope, and δ is the intercept, which are optimized using

the test set. We denote by t the time-stamp of a particular document position within the

stream. The model, based on the inverted natural logarithm, highly correlates with the

observed score decay, as seen in Figure 7.14 and Table 7.2. The coefficient determinant

with the test set results in R2 = 0.9851, which is the highest of all explored models.

110 Chapter 7. FSD Performance over time

Figure 7.13: Illustration of novelty scores over time in linear and log-scale. The bold

blue curve indicates the observed cumulative average novelty scores on Cross-Twitter.

The red dotted line resembles the exponential model of the cumulative average novelty

score from 52 million random tweets.

High coefficient values indicate low proportional variance between approximated and

observed cumulative average novelty scores. Table 7.2 also shows that the two simpler

decay models, based on the inverse of the exponent and logarithm, generalize better to

the test set than higher order polynomial models.

Figure 7.14: Illustration of novelty scores over time in linear and log-scale. The bold

blue curve indicates the observed cumulative average novelty scores on Cross-Twitter.

The red dotted line resembles the inverted logarithmic model of the cumulative average

novelty score from 52 million random tweets.

7.5.2 Counteracting Novelty Decay

In the previous section, we showed that deletion is necessary to avoid novelty decay

over time. We also derived mathematical decay models that allow approximating the

expected cumulative average novelty decay with respect to a particular time in the

stream. Our experiments revealed that of all explored model, a simple logarithmic

7.5. Additional Methods for Counteracting Novelty Score Decay over Time 111

Model coefficient determinant training set coefficient determinant test set

4th polynomial 0.975 0.9639

5th polynomial 0.9861 0.9741

6th polynomial 0.991 0.9733

exponential 0.9969 0.9815

logarithmic 0.9987 0.9851

Table 7.2: optimal coefficient determinant of models on training set (52 million random

tweets) and coefficient determinant resulting from approximating novelty decay on test

set (Cross-Twitter)

decay model approximates the observed decay best. We now apply the logarithmic de-

cay model, as seen in Equation 7.3, to counteract the cumulative average novelty score

decay. Counteracting score decay is only viable for kterm hashing based FSD, which

does not require document deletion to scale to high stream volumes. In the following

experiment, we also apply the decay model to the scores of UMass and LSH-FSD to

outline that it successfully counteracts novelty decay in comparison based FSD sys-

tems. We optimize the model parameters on the coefficient determinant for the two

comparison based and kterm based FSD systems on the training set. The resulting

model is then used to approximate the expected score decay for each system for ev-

ery document in the stream, whereas the expected score is subtracted from the com-

puted score. Figure 7.15 illustrates the average novelty score for the three systems

after adapting the novelty score according to the decay models. The curves of all sys-

tems remain constant, independently from the number of documents processed. This

also applies for the first few documents, where deletion strategies experience an initial

drop. Interestingly, the curve for LSH-FSD shows a minor dent during the first 10,000

documents. We assume this results from building the decay model based on the cu-

mulative average. During the first few documents, the cumulative average is unstable

and bounces before flattening out. As a consequence, the expected decay has a higher

variance with respect to the observed decay for the first few documents.

112 Chapter 7. FSD Performance over time

Figure 7.15: Illustration of the impact of adapting novelty scores (according to the decay

model) on the average cumulative novelty score.

7.5.3 Impact of Adapting Novelty Scores on FSD Effectiveness

In the previous Section, 7.5.2, we showed that adjusting novelty score according to the

proposed logarithmic decay model successfully prevents novelty scores from decaying

over time. In the section, we explore the impact of score adjustment on FSD effec-

tiveness and efficiency. Since FSD using kterm hashing is the only viable FSD system

without a deletion strategy, we solely focus on kterm hashing in during the remainder

of this chapter.

Our first experiment explores the impact of score adjustment through the logarithmic

decay model on the detection accuracy of FSD using kterm hashing. We compare ac-

curacy using DET plots instead, to illustrate the impact on the full range of possible

detection settings. The DET plot for FSD using kterm hashing in Figure 7.17 com-

pares kterm hashing without deletion, kterm hashing with random deletion and kterm

hashing with decay model adjusted scores. Additionally, the DET plot also shows the

90% confidence corridor of normal kterm hashing by the two dotted blue lines. Any

point outside the confidence corridor curves is statistically significantly different from

normal FSD using kterm hashing.

DET plots show performance for all possible parameter settings. A particular pa-

rameter setting, consisting of the detection threshold that separates first stories from

follow-ups, as well as the cost for miss and false alarms, depend on the application

scenario. For example, an FSD system for earthquake detection comes with high costs

of missing an earthquake. Consequently, this FSD system requires high detection per-

formance for high recall scenarios. On the DET plot, recall is high when the miss

probability is low. In a different scenario, investment banks might be interested ac-

7.5. Additional Methods for Counteracting Novelty Score Decay over Time 113

curately predicting certain new events, as false positives cause financial loss. This

scenario requires a high precision setting. On the DET plot precision is high when the

false alarm probability is low.

According to the DET in Figure 7.17, adjusting novelty scores does not significantly

change accuracy for the high recall area of curves. This effect applies in particular

where false alarm probabilities are > 40%. High false alarm probabilities follow low

detection thresholds, which cause follow-ups to be mistaken for first stories. Figure

7.16 illustrates that low threshold settings shrink area B. This explains why counter-

acting the decay by flattening the curve only marginally improves performance in the

high recall region.

Figure 7.16: Illustration of the impact of novelty score decay on detection performance.

In contrast, the high precision area, where the false alarm rate is < 15%, reveals ben-

efits from adapting the novelty score according to the proposed model. The DET plot

also illustrates that the difference between the model adjusted scores and the normal

version is statistically significant. High precision scenarios shrink area A in Figure

7.16. Consequently, FSD systems are more likely to detect events early on and miss

events that occur later in the stream. Flattening the decay curve increases the chance

114 Chapter 7. FSD Performance over time

Figure 7.17: DET curve for kterm based FSD, comparing effectiveness of deletion

through sliding window and score adjustment by model.

Miss @ 10% False Alarm Dif.

normal 83 -

deletion 85 +2%

adjusted scores 69 -17%

Table 7.3: Impact of counteracting novelty decay on the effectiveness of kterm hashing

based FSD

of successfully detecting later events without increasing false-alarm probabilities, as

seen in the DET curve.

We point out the improvement for a high precision setting by highlighting the perfor-

mance at Miss Probabilities @ 10% False Alarm. Table 7.3 shows that the adjusting

novelty scores according to the decay model, performs significantly better and de-

creases the miss probability by 17% over the normal set-up.

Document Deletion
In the previous section, we discovered that limiting the load factor of the memory suc-

cessfully stops average novelty scores from decaying. Although successful on stopping

novelty score decay, we cannot measure a significant positive impact on detection per-

formance.

7.5. Additional Methods for Counteracting Novelty Score Decay over Time 115

algorithm without deletion random deletion dif. adjusted scores dif.

kterm 7,254 sec 13,669 sec +90% 7,254 sec 0

Table 7.4: Impact of countermeasures on efficiency (measured by runtime in sec) for

UMass, LSH-FSD and kterm hashing based FSD

7.5.4 Impact of Adapting Novelty Scores on FSD Efficiency

The following section explores the impact of score adjustment and deletion on FSD

efficiency, measured by the runtime in seconds.Table 7.4 shows the runtime in seconds

for FSD using kterm hashing on Cross-Twitter 52mio. According to the table, adapting

the threshold based on the mathematical decay model does not influence the runtime

of the algorithms. This is expected as the computational effort is only increased by

a single scalar multiplication for each document processed. Consequently, adjusting

novelty scores according to the proposed decay model does not influence the runtime

of FSD algorithms.

In contrast, we measure a highly increased runtime when applying a deletion strat-

egy to FSD using kterm hashing. Table 7.4 reveals that efficiency drops in half when

deletion is applied. This effect is the same for all deletion strategies. Kterm hashing

is a memory-based novelty estimation algorithm. As a result, novelty computation for

kterm does not depend on the number of documents processed, but on the number of

kterms hashed onto its memory. Deletion requires that for each new kterm, an old

kterm has to fall out of scope. In order to zero out a kterm, it needs to be hashed again,

to identify its corresponding cells in the memory. The deletion step doubles the num-

ber of hashing operations per document, which cuts efficiency in half.

Table 7.4 shows that FSD using kterm hashing processes Cross-Twitter in 7,252 sec-

onds (∼ 2 hours), which corresponds to a throughput of 7,170 tweets per second on a

single core. To put this in perspective, LSH-FSD - the currently fastest FSD system

that reaches accuracy comparable to exhaustive evaluation, requires 172,801 seconds

(∼ 48 hours) to process Cross-Twitter 52mio. LSH-FSD reaches a throughput of 300

tweets per second on a single core.

116 Chapter 7. FSD Performance over time

7.6 Conclusion

In the section, we studied the behaviour of novelty scores for comparison-based and

non-comparison-based FSD systems without deletion strategies over time and revealed

that they decrease over time. We also showed that the novelty score decay with the

increase in space saturation. Deletion strategies place an upper limit and the space sat-

uration, which prevents novelty score decay. Consequently, our experiments showed

that deletion strategies not only speed-up the computation and retain operation with

constant time and space but also ensure retaining a constant level of accuracy over

time.

In this chapter, we also showed that the novelty score decay can be effectively modelled

using a simple inverted logarithmic decay model. By calculating the expected decay

with respect to a particular time in the stream, we successfully counteract the novelty

decay by adopting document novelty scores accordingly. Our experiments studied the

impact of score adjustment on FSD effectiveness and showed significantly increased

effectiveness for high precision detection scenarios. Since score adjustment only adds

a single scalar multiplication per document, the efficiency of FSD using kterm hashing

remains unchanged.

Chapter 8

Further Applications of Novelty

Detection

8.1 Motivation

Chapter 4 introduced a new method family for novelty computation called “memory-

based novelty detection”. Memory-based algorithms extract concepts from a document

and make them persistent in a single point of comparison, the memory. We then went

on to introduce kterm hashing, the first member of the memory-based algorithm fam-

ily. Kterm hashing computes a document’s novelty by modelling its concepts using

kterms - non-empty sets of up to k distinct terms found in the document.

To demonstrate the capabilities of kterm hashing, we applied it to FSD, where new

documents are compared to all previously seen documents. Kterm hashing improved

the throughput of FSD systems by several orders of magnitude compared with state-

of-the-art comparison based methods. In a nutshell, the challenge of FSD resides with

comparing new documents to an ever growing set of old documents. Kterm hashing

solves this challenge by combining all previous documents in a single representation,

the memory, which provides a single point of comparison. Shifting the time complex-

ity from the number of previous documents to the length of documents results in the

fastest ever reported FSD throughput on a single core.

The following chapter is dedicated to demonstrate that memory-based algorithms, like

kterm hashing, are capable of enriching other research tasks, beyond FSD. In particu-

lar, we build the first Rumour Detection system that detects rumours in realtime (zero

117

118 Chapter 8. Further Applications of Novelty Detection

lag). Rumour Detection on social media is a new trend that recently evolved into a

popular research field. As is usual, we detect rumours using a detection model ob-

tained from a Support Vector Machine (Chang et al., 2011), for which we introduce a

new category of features, based on novelty.

Novelty features determine whether a tweet’s information can be confirmed by a trusted

resource. This resembles the NLP task of Information Entailment. Note that informa-

tion entailment vastly differs from novelty detection for FSD. In our previous appli-

cation of kterm hashing (FSD), novelty was defined by a document’s similarity with

respect to a set of previously encountered documents. This results in document-level

novelty computation. By contrast, Information Entailment determines, how much of a

document’s information is entailed by another document. This requires sub-sentence-

level comparisons.

Our experiments show that features build from memory-based algorithms significantly

improve the accuracy when detecting rumour with zero lag. We also demonstrate how

memory-based algorithms, like term hashing, are applicable to Mandarin by conduct-

ing our experiments for Rumour Detection on a Sina Weibo data set.

8.2 Rumour Detection

Social Media has evolved from friendship based networks to become a major source

for the consumption of news. On social media, news is decentralised as it provides ev-

eryone the means to efficiently report and spread information. In contrast to traditional

news-wire, information on social media is spread without intensive investigation, fact

and background checking. The combination of ease and fast pace of sharing informa-

tion provides a fertile breeding ground for rumours, false- and disinformation. Social

media users tend to share controversial information in order to verify it, while asking

about for the opinions of their followers (Zhao et al., 2015). This further amplifies

the pace of a rumour’s spread and reach. Rumours and deliberate disinformation have

already caused panic and influenced public opinion.

The cases in Germany and Austria1 in 2016, show how misleading and false informa-

tion about crimes committed by refugees negatively influenced the opinion of citizens.

1http://hoaxmap.org/ on 15.02.2016

8.3. Approaches to Rumour Detection 119

Rumour Detecting is the task of automatically determining whether a particular doc-

ument is a rumour. The Cambridge dictionary defines a rumour as information of

doubtful or unconfirmed truth. The original motivation of Rumour Detection was to

prevent rumours from spreading and causing harm by refuting wrong factual claims.

Unfortunately, the most potent features rely on a rumour’s propagation patterns as well

as the responses of other users. This is problematic as Rumour Detection systems

operate retrospective and only detect rumours once they have spread. Consequently,

automated rumour detection lags behind social media users in detecting and refuting

rumours. By then, rumours have already spread and caused harm.

This highlights the importance and necessity of recognizing rumours as early as possi-

ble - preferably instantaneously.

We set out to detect rumour right after their publication. Note that this task is more

challenging than traditional Rumour Detection, as future information about a tweet’s

distribution or others reaction is not available at a tweet’s publication.

8.3 Approaches to Rumour Detection

Before rumour detection, scientists already studied the related problem of information

credibility evaluation (Castillo et al., 2011; Richardson et al., 2003). Rumour detection

on social media evolved into a popular research field that also relies on credibility as-

sessment of messages and their sources. The most successful methods proposed focus

on classification harnessing lexical, user-centric, propagation-based (Wu et al., 2015)

and cluster-based (Cai et al., 2014; Liu et al., 2015; Zhao et al., 2015) features.

Many of these content based features originate from a study by Castillo et al. (2011),

which pioneered in engineering features for credibility assessment on Twitter (Liu et

al., 2015). They observed a significant correlation between the trustworthiness of a

tweet with content-based characteristics including the presence and number of hash-

tags, punctuation characters and sentiment polarity. When assessing a tweet’s credibil-

ity, they also consider the source of its information by constructing features based on

URLs. Additional features for the credibility assessment rely on the Twitter-specific

statistics of users, like their activeness and follow counts. One of the most successful

120 Chapter 8. Further Applications of Novelty Detection

feature categories is based on social graphs, assessing a message’s re-tweet frequency

and propagation patterns. Mendoza et al. (2010) found that the topology of a distrust-

ful tweet’s propagation pattern differs from those of news and normal tweets. These

findings along with the fact that rumours tend to be more likely questioned by other

users paved the way for future research examining propagation graphs and clustering

methods (Cai et al., 2014; Zhao et al., 2015). The majority of current research focuses

on improving the accuracy of classifiers through new features based on clustering (Cai

et al., 2014; Zhao et al., 2015), sentiment analysis (Qazvinian et al., 2011; Wu et al.,

2015) as well as propagation graphs (Kwon, et al., 2013; Wang et al., 2015).

The motivation for rumour detection lies in refuting wrong factual claims to prevent

them from spreading and causing harm. Unfortunately, state-of-the-art systems oper-

ate in a retrospective manner, meaning they can only detect rumours long after they

have spread. The most accurate systems rely on features based on propagation graphs

and clustering techniques, which require rumours to spread before they can be detected.

To counteract the increasing lag between a tweet’s publication and its detection as

a rumour, researchers like Liu et al. (2015), Wu et al. (2015), Zhao et al. (2015) and

Zhou et al. (2015) coined the term ’Early Rumour Detection’. Although Early Rumour

Detection systems substantially decrease the lag between publication and detection,

they still allow a delay of up to 24 hours. Within 1-day information can spread far in

fast-moving social media services. However, their focus on latency aware Rumour De-

tection makes their approaches conceptually related to ours, with the difference that we

require detection with zero lag. Zhao et al. (1015) found clustering tweets containing

inquiry patterns as an indication of rumours and showed that a few messages question-

ing another one are sufficient for Rumour Detection. The low number of responses

allows detecting rumours within 24 hours. The approach with the lowest reported

latency also banks on the ’wisdom of the crowd’ (Liu et al., 2015). In addition to tradi-

tional context and user based features, they rely on clustering tweets by their topicality

to identify conflicting claims, which indicate increased the likelihood of rumours. Liu

et al. (2015) claim to operate in real-time, but require a cluster of at least 5 messages

to detect a rumour. Although the computation of their features is efficient, the lag of

their approach depends on the delay with which other users question a message.

8.4. Improving Rumour Detection through Novelty Detection 121

8.4 Improving Rumour Detection through Novelty De-

tection

We approach Rumour Detection task as a classification problem, as is usual in the re-

search community, and assesses a documents likelihood of being a rumour. Counter

to traditional Rumour Detection, we limit detection window to the time of a message’s

publication, requiring operation in real-time with a single pass over the data.

Problem Definition
More formally, we denote by dt the document that arrives from stream S : {d0,d1, ...dn}
at time t. Upon arrival of document dt we derive its corresponding feature vector fd,t .

Given fd,t and the previously obtained weight vector w, we compute the rumour score

RSd,t = wT ∗ fd,t . The rumour prediction is based on a fixed thresholding strategy with

respect to threshold θ. We predict that message dt is likely to be a rumour if its rumour

score exceeds the detection threshold: RSd,t > θ. The optimal parameter setting for

weight vector w and detection threshold θ are learned using a Support Vector Machine

(Chang et al., 2011) on a training set to maximise prediction accuracy.

The most successful features for Rumour Detection rely on information that can only

be computed retrospectively. This renders them close to useless when detecting ru-

mours early on. We introduce two new categories of features, one based on novelty,

the other on pseudo feedback. Both feature categories aim at improving detection ac-

curacy early on when information is limited.

8.4.1 Approach Overview

Our approach to Rumour Detection is based on traditional content based features in

addition to our novelty based features and pseudo feedback. Figure 8.1 illustrates a

system diagram of the detection phase.

For each document (docn) arriving from the stream (Weibo stream), we compute its

feature values. In total, we base our detection model on 57 features including features

from our two new feature categories, novelty based features and pseudo feedback. We

then linearly combine all feature values with their corresponding weights according to

122 Chapter 8. Further Applications of Novelty Detection

Figure 8.1: System diagram illustrating our approach to Rumour Detection using novelty

based, content based and pseudo feedback features.

the detection model, forming the final rumour score. The detection model holds the

feature weights learned by a Support Vector Machine on the training set. Our system

emits a document-identifier and rumour score tuple. As for FSD, we apply a fixed

thresholding strategy to separate rumours from non-rumours. Documents whose ru-

mour score exceeds the detection threshold α are considered rumours candidates.

The following section introduces our two new feature categories and elaborates on

the training phase.

8.4.2 Novelty based Features

We restrict Rumour Detection to decision making with zero lag. Traditional Rumour

Detection accuracy is low when limited to decision making shortly after a document’s

publication. To increase instantaneous detection accuracy, we compensate for the ab-

sence of future information by consulting additional data sources. In particular, we

make use of news-wire articles, which are considered to be of high credibility. When a

message arrives from a social media stream, we build features based on its novelty with

respect to the confirmed information in the trusted sources. In a nutshell, the presence

of information unconfirmed by the official media is construed as an indication of being

a rumour. This is reasonable, since Petrovic et al. (2013) found that in the majority of

cases, news-wires lead social media for reporting news, except for sports events. Note

that verifying whether a rumour candidate’s information is confirmed closely resem-

8.4. Improving Rumour Detection through Novelty Detection 123

bles the definition of what a rumour is.

High-volume streams demand highly efficient feature computation. This applies in

particular to novelty based features since they can be computationally expensive. We

explore two two approaches for novelty computation: 1) the traditional comparison

based method, based on the on vector proximity of the cosine distance 2)kterm hash-

ing, our memory-based method.

Figure 8.2: Example of a term level sliding window of length 10, separating the original

document into 12 sub-documents.

Comparison Based
The first method applies traditional vector proximity based on 1 minus the cosine sim-

ilarity between two documents:

Novelty(d1,d2) = 1− ∑
n
i=1 d1,i ∗d2,i√

∑
n
i=1 d2

1,i ∗
√

∑
n
i=1 d2

2,i

(8.1)

The cosine similarity alone yields poor performance due to the length discrepancy be-

tween news-wire articles and social media messages (Wurzer et al., 2015). To make

vector proximity applicable we slide a term-level based window, whose length resem-

bles the average social media message length, through each of the news articles, as seen

in Figure 8.2. This results in sub-documents of comparable length as social media mes-

sages. Novelty is computed using term weighted tf-idf cosine similarity between the

124 Chapter 8. Further Applications of Novelty Detection

social media message and all news sub-documents, using Equation 8.1. The minimum

novelty score between a message and all sub-documents approximates the degree con-

firmation through the trusted resources.

memory-based
The second approach for novelty based features applies kterm hashing. Instead of mea-

suring the similarity between documents, we construct a single memory spanning all

available trusted resources, as seen in Equation 8.2.

∀(d ∈ T R) : M←M∪{t : t ⊂ d} (8.2)

By M, we denote the memory, that holds the information (kterms t) of all documents

d in the set of trusted resources T R. As for FSD, the degree of a document’s novelty is

computed by the fraction of unseen kterms with respect to the memory. In contrast to

its application in FSD, kterm hashing is now used to assess, whether the information

of a short message (tweet) is entailed by a set of long documents (news articles).

When we introduced kterm hashing in Chapter 4, we distinguished kterm by their

cardinality, the number of compounded terms. Our experiments showed that novelty

detection improves when placing individual weights based on kterm cardinality. Al-

though FSD data sets have high numbers of documents, the number of annotated topic

is insufficient to learn optimal weight settings. The labelling procedure for Rumour

Detection requires less manual effort, which allowing us to split our data set into a test

and training set. The training data set allows us to learn optimum weight for each level

of kterm cardinality. Instead of a single novelty based feature we compute a novelty

score for each cardinality level, using Equation 8.3.

Nl(dn) = ∑
T∈{T :T⊂cn,|T |=l}

(
|dn|
|T |

)−1
{

1 : T 6∈M

0 : T∈M

}
(8.3)

This leaves us with a separate feature (novelty score) for each level of cardinality.

8.4.3 Applying Kterm Hashing to Mandarin

Our data set for Rumour Detection uses messages from Sina Weibo, a Chinese social

media service for the public distribution of micro-blogs, comparable to Twitter. The

following section describes how kterm hashing is applied to text written in Mandarin.

8.4. Improving Rumour Detection through Novelty Detection 125

Term Segmentation
Kterms are sets of terms from a document. Western languages including English pro-

vide term boundaries, which are necessary to construct kterms. Mandarin is a lan-

guages that does not provide word boundaries2, as seen in Figure 8.3. Text processing

in Mandarin requires an initial segmentation process to break up the continues text into

terms (Levy et al., 2005). In a first attempt, we segment on each character forming 1-

grams. The result does not always represent actual terms, which can consist of a single

or more characters. Splitting Mandarin strings into fixed length n-grams represents the

simplest and fastest segmentation method (Foo et al., 2004). As an alternative to uni-

grams, we also segment characters into 2-grams and 3-gram, which Foo et al. (2004)

found superior to uni-grams for information retrieval tasks. When segmenting 2-grams

and 3-grams, we acknowledge existing blanks, as well as numbers and sentence char-

acters as natural segmentation points, as seen in Figure 8.3.

In addition to simple rule based segmentation we also apply the Stanford Word Seg-

menter (Tseng et al., 2005), which was designed to segment Mandarin texts to aid IR

and NLP tasks. The Segmenter successfully participated in the 2005 Sighan Bakeoff3

and applies statistical sequence modelling using conditional random fields in conjunc-

tion with character identity features, morphological features and character reduplica-

tion features.

Figure 8.3 shows that the Word Segmenter successfully breaks the Mandarin char-

acter sequence into real words. We explore the impact of word segmentation on the

accuracy of novelty based features in Section 8.5.

Kterm on longer documents
Twitter applies a 140 character limit, which corresponds an average tweet length of 10

terms. Sina Weibo also restricts messages to 140 characters. However, in Mandarin a

single character can represent an entire term, resulting in an average document length

of 90 terms. Although the character limits of both micro-blog services matches, mes-

sages on Sina Weibo contain on average 9 times more terms than tweets. The number

of distinct terms in a message determines the number of kterms in its content. Equation

2https://en.wikipedia.org/wiki/Category:Writing systems without word boundaries
3http://www.sighan.org/bakeoff2005/

126 Chapter 8. Further Applications of Novelty Detection

Figure 8.3: Example message from Sina Weibo, a social media service in China com-

parable to Twitter, showing that texts in Mandarin come without term boundaries; The

figure also shows term segmentation using 1-3 grams and the Stanford Text Segmenter.

4.4 in Chapter 4 illustrates that the content size arises from the binomial coefficient be-

tween the document size and the kterm cardinality. The content of an average tweet

contains
(10

3

)
= 120 kterms. By contrast, the content of an average message from Sina

Weibo contains
(90

3

)
= 117,480 kterms, which is 979 times more than a tweet.

Each kterm requires a novelty check with respect to the memory, which includes hash-

ing the string on the bit array and a subsequent check whether the corresponding bit

is set. To minimize the impact of 3 order of magnitude more kterms on the runtime,

we limit the kterms by only considering the top k. Limiting the number of features

(terms) of a document is a widely applied method in IR and TDT to reduce compu-

tational effort and increase algorithm efficiency (Yang et al., 1998). In our experi-

ments in Section 8.5, we explore the impact of limiting documents to the top 10 t f .id f

weighted terms and subsequently from kterms from them, for Rumour Detection. We

empirically determined to limit the number of features to 10, which also resembles the

average number of terms in a tweet.

8.4. Improving Rumour Detection through Novelty Detection 127

8.4.4 Pseudo Feedback

In addition to novelty based features, we introduce another category of features -

dubbed Pseudo-Feedback (PF) - to boost detection performance. The feature is con-

ceptually related to pseudo-relevance feedback found in retrieval and ranking tasks in

IR. Pseudo-relevance feedback is applied to retrieval task to boost the effectiveness of

document ranking algorithms. Using a query, an initial retrieval step identifies the k

documents that most similar to the query. Pseudo-relevance feedback considers these

documents as relevant and expands the query by terms from these documents. A con-

secutive second retrieval step, using the expanded query, determines the final document

ranking.

The concept of our pseudo feed feature builds upon the idea that documents, which

reveal similar characteristics in term space as previously detected rumours, are also

likely to be a rumour. During detection, feedback about which of the previous docu-

ments describes a rumour is not available. Therefore, we rely on ’pseudo’ feedback

and consider all documents whose rumour score exceeds threshold α as true rumours.

The PF feature describes the maximum similarity in term space between a new doc-

ument and those documents previously considered as rumours. Similarities are mea-

sured by vector proximity using cosine similarity (Equation 2.4). PF passes evidence

of being a rumour to future documents that are similar to previous documents consid-

ered as rumours. Note that this allows harnessing information from repeated signals

without operating retrospectively.

Training Pseudo Feedback Features
The training routine of PS differs from the standard procedure because the computa-

tion of the PF feature requires two training rounds. Figure 8.4 illustrates the initial

training round, during which an SVM is used to compute the weights for all features

in the training set, except the PF features. This provides a model for all but the PF

features. We then process the training set, as seen in Figure 8.5, to compute rumour

scores based on the model obtained from our initial training round. Document’s whose

rumour score exceeds θ are considered as rumour candidates. Figure 8.6 shows the

second training round that learns the PF feature weights by measuring the minimum

distance in term space between the current document vector and those rumour candi-

dates that pre-date it. To speed up computation, we only compare against the k most

128 Chapter 8. Further Applications of Novelty Detection

recent rumour candidates. Once we obtained the weight for the PF feature we combine

it with the weight vector computed in the initial training round to form the final model,

as seen in Figure 8.7.

Figure 8.4: Initial training round to learn the weights of all but the PF feature.

Figure 8.5: Weights of initial training round are used to detect rumour candidates that

are subsequently used to train pf feature.

8.4.5 Context Based Features

In addition to our novelty based features and pseudo feedback, we also apply a range of

context based features. The focus lies on features that can be computed at the time of

a message’s publication. In particular, we compute apply a range of 51 context based

features, that can be ordered into 7 feature categories, as seen in Table 8.1. Most of

these 51 features overlap with previous studies (Castillo et al., 2011; Liu et al., 2015;

Qazvinian et al., 2011; Yang et al., 2012; Zhao et al., 2015). This includes features

based on the presence or number of URLs, hash-tags and user-names, as well as the

8.4. Improving Rumour Detection through Novelty Detection 129

Figure 8.6: Second training round to learn PF feature weight using the rumour candidate

set.

Figure 8.7: Final model consists of the feature weights from initial training round and

PF weight from the second training round.

number of certain POS tags and punctuation characters. We also distinguish between 8

different categories of sentiment and emotions. We don’t consider user based features

because they are specific to social media services and not universally applicable.

130 Chapter 8. Further Applications of Novelty Detection

Category Description

Punctuation categorical feat. based on the number of !?.,

POS categorical feat. based on the number of verbs, nouns,

adjectives, quantity and time words

Sentiment categorical feat. based on the number of strong/weak

negative/positive words

Emotion degree of positive/negative/sad/anxious/surprised emotion

Social Media categorical feat. based on the number of hash-tags

and user-names

Length categorical feat. based on the number of unique words

URLs categorical feat. based on the number of URLs, pictures

Novelty novelty score based kterm length 1-3 for all and key-words

Pseudo Feedback distance to the closest previous rumour

Table 8.1: Description of features

8.5 Experiments

The previous sections introduced two new categories of features for rumour detection.

Now we test their performance and impact on detection effectiveness and efficiency. In

a streaming setting, documents arrive on a continual basis one at a time. We require our

features to compute a rumour-score instantaneously for each document in a single pass

over the data. Messages with high rumour scores are considered likely being rumours.

The classification decision is based on an optimal thresholding strategy based on the

training set.

8.5.1 Evaluation Metrics

We report accuracy to evaluate effectiveness, as is usual in the literature (Zhou et al.,

2015). Additionally, we use the standard TDT evaluation procedure (Allan et al., 2000;

NIST, 2008) with the official TDT3 evaluation scripts (NIST, 2008) using standard

settings, which we introduced in Chapter 2. This procedure evaluates detection tasks

using Detection Error Trade-off (DET) curves, which show the trade-off between miss

and false alarm probability. By visualizing the full range of thresholds, DET plots pro-

vide a more comprehensive illustration of effectiveness than single value metrics (Al-

lan et al., 2000). We also evaluate the efficiency of computing the proposed features,

8.5. Experiments 131

measured by the throughput per second, when applied to a high number of messages.

8.5.2 Data Set

Rumour detection on social media is a novel research field without official data sets.

Since licence agreements forbid redistribution of data, no data sets from previous pub-

lications are available. Consequently, we followed researchers like Liu et al. (2015)

and Yang et al. (2012) and created our own dataset. Preprocessing is limited to split-

ting on punctuation without removing anything. In contrast to FSD we do not remove

usernames, hashtags and punctuation characters because we build features based on

their presence or absence.

Trusted Resources
We randomly collected 200 news articles about broad topics commonly reported by

news-wires over our target time period. These range from news about celebrities and

disasters to financial and political affairs as seen in table 8.8. Since we operate on Chi-

nese social media, we gathered news articles from Xinhua News Agency4, the leading

news-wire in China. To ensure a fair evaluation, we collected the news articles before

judging rumours, not knowing which rumours we would find later on. We also only

consider news articles published before the timestamps of the social media messages.

Rumours
We chose Sina Weibo, a Chinese social media service with more than 200 million ac-

tive users5 as our social media stream. Micro-blogs from Sina Weibo are denoted as

’weibos’. Weibos are comparable to tweets, with which they share a 140 character

limit. As tweets, all weibos are publicly accessible and offer hashtags and directed

messages using usernames.

Sina Weibo provides an official rumour debunking service, operated by trained hu-

man professionals. Following Yang et al. (2012) and Zhou et al. (2015), we use this

service to obtain a high-quality set of 202 confirmed rumours.

Non-Rumours

4http://www.xinhuanet.com/
5http://www.bbc.co.uk/news/technology-35361157 as of 10.02.2013

132 Chapter 8. Further Applications of Novelty Detection

We additionally gathered 202 non-rumours using the public Sina Weibo API6. Three

human annotators judged these weibos based on unanimous decision making to ensure

that they don’t contain rumours.

Since we operate in a streaming environment, all weibos are sorted based on their

publication time-stamp. Table 8.3 shows a list of example for rumours found in our

data set.

We ordered the rumours and non-rumours chronologically and divided them in half,

forming a training and test set. We ensured that each of the sets consists of 50%

rumours and non-rumours. This is important when effectiveness is measured by ac-

curacy. All parameters and weights are learned and optimised using the training set.

Performance is reported based on a single run on the test set.

8.5.3 Rumour Detection Effectiveness

To evaluate our new features for rumour detection, we compare them with two state-

of-the-art early rumour detection baselines Liu et al. (2015) and Yang et al. (2012),

which we re-implemented. We chose the algorithm by Yang et al. (2012), dubbed

Yang, because they proposed a feature set for early detection tailored to Sina Weibo

and were used as a state-of-the-art baseline before by Liu et al. (2015). The algorithm

by Liu et al. (2015), dubbed Liu, is said to operate in real-time and outperformed Yang,

when only considering features available on Twitter. Both apply various content based,

user based, topic based and propagation based features and rely on an SVM classifier,

which they found to perform best. The approaches advertise themselves as suitable for

early or real-time detection and operate with the smallest latency across all published

6http://open.weibo.com/wiki/API

Algorithm Our App. Liu Yang

Accuracy 75% 62.26% 60.21%

Difference - -17% -20%

Table 8.2: Effectiveness in comparison with two state-of-the-art baselines for instant

rumour detection using optimal thresholds

8.5. Experiments 133

马航MH370最新消息，遭恐怖分子劫持过程曝光，点击查看

MH370 latest news, the process of being hijacked by terrorist has been

revealed, click to view details

重大新闻，苹果公司获得三星10亿美元赔款，整整30

卡车硬币开到了苹果公司的总部！！！

Breaking news, Apple just got the 1 billion dollars for reparation from

Samsung, Samsung drove 30 trucks of coins to the headquarters of Apple.

法对叙IS第一轮战术核打击定于16日上午10时进行。

France will start the first round nuclear attack against IS at 10:00 a.m.

on the 16th

Table 8.3: Examples rumours with translation

Algorithm instant 12 hours 24 hours

our App. 75% * 75% 75%

Liu 62.27% 74.29% 78.4%

Yang 60.21% 65.35% 75.82%

Table 8.4: Detection accuracy at different levels of delay; Asterisk indicates significance

(p < 0.05)

methods. Yang performs early rumour detection and operates with 24 hours delay. Liu

is claimed to perform in real-time, while requiring a cluster of 5 repeated messages

to judge them for rumours. Note that although these algorithm are state-of-the-art for

detecting rumours as quickly as possible, they still require a certain delay to reach their

full potential.

Table 8.2 compares the performance of our approach with the two classifiers on the

101 rumours and 101 non-rumours of the test set, when detecting rumour instantly

after their publication. The table reveals comparable accuracy for Yang and Liu at

around 60%. Our observed performance of Yang matches those by Liu et al. (2015).

Surprisingly, the algorithm Liu does not perform significantly better than Yang when

applied to instantaneous rumour detection although they claimed to operate in real-

time. Liu et al. (2015) report performance based on the first 5 messages which clearly

outperforms Yang for early rumour detection. However, we find that when reducing

the set from 5 to 1, their superiority is only marginal. In contrast, the combination

134 Chapter 8. Further Applications of Novelty Detection

Figure 8.8: DET plot, revealing superior effectiveness of our approach for instant rumour

detection for the full range of thresholds.

of novelty and pseudo-relevance based features performs significantly better (sign test

with p < 0.05) than the baselines for instantaneous rumour detections. Novelty based

features benefit from news articles as an external data source, which explains their su-

perior performance when other information is limited. In particular for instantaneous

rumour detection, where information can only be obtained from a single message, the

use of external data proves to perform superior.

Note that accuracy is a single value metric describing performance at an optimal thresh-

old. Figure 8.8 compares the effectiveness of the three algorithms for the full range of

rumour scores for instantaneous detection. Different applications require a different

balance between miss and false alarm. But the DET curve shows that Liu’s method

would be preferable over Yang for any application. Similarly, the plot reveals that our

approach dominates both baselines throughout all threshold settings and for the high-

recall region in particular.

When increasing the detection delay to 12 and 24 hours, all three algorithms reach

comparable performance with no statistically significant difference, as seen in table 4.

For our approach, none of the features are computed retrospectively, which explains

why the performance does not change when increasing the detection delay. The ad-

ditional time allows Liu and Yang to collect repeated signals, which improves their

8.5. Experiments 135

detection accuracy. After 24 hours Liu performs the highest due to its retrospectively

computed features. Note that after 24 hours rumours might have already spread far

through social networks and potentially caused harm.

Features: Accuracy

all 75%

sentence char 69%

POS 71%

emotion 73%

extreme words 72%

sentiment 73%

PF 71%

novelty (kterm all + kterm top k + cosine subdoc) 60%

Table 8.5: Features ablation: impact on performance when removing feature groups.

Note: lower accuracy means higher impact; POS: part of speech; PF: pseudo-

feedback; subdoc: cosine similarity using sub-documents resulting from sliding window

Novelty based Features: Accuracy

cosine 64%

cosine subdoc 69%

kterm (all) 70%

kterm (top k) 74%

kterm all + kterm top k + cosines subdoc 75%

Table 8.6: Impact of different kinds of novelty based features on Rumour Detection

accuracy. Note: This table shows performance when applying all other features in

addition to novelty based features.

8.5.4 Feature Analysis

We group our 57 features into 7 categories shown in Table 8.1 and analyse their con-

tribution using feature ablation, as seen in Table 8.5. Feature ablation illustrates the

importance of a feature by measuring performance, when removing it from the set

of features. Consequently, lower accuracy indicates a higher importance of a fea-

tures. The table shows that novelty based features were found to be dominant for

136 Chapter 8. Further Applications of Novelty Detection

instantaneous rumour detection (p < 0.05). ’Sentence char’ features, which include

punctuation, hashtags, user-symbols and URLs, contributed the most of the traditional

features, followed by Part of Speech (’POS’) and ’extreme word’ features. Our exper-

iments found ’sentiment’ and ’emotion’ based features to contribute the least. Since

excluding them both results in a considerable drop of performance we conclude that

they capture comparable information and therefore compensated for each other.

Novelty based Features
Novelty based features revealed the highest impact on detection performance. To fur-

ther analyse the impact of different kinds of novelty based features we measure they

individual contribution on detection accuracy. Table 8.6 show the performance of

our Rumour Detection system when applying all other features in conjunction with

a particular kind of novelty based feature. The table shows that dividing the trusted

resources into sub-documents through a sliding window is beneficial, as it increases

accuracy by 5% (absolute). As explained in Section 8.5.4, cosine similarity is subopti-

mal when determining vector proximity between imbalanced document lengths. Term

weights in short documents, which many only containing a single term, are inflated

by the cosine’s length normalization and consequently distort novelty approximation.

When striping all but the top 25 tf-idf weighted terms from the news sub-documents,

the hit in performance can be reduced by 3 % (absolute).

Table 8.6 also shows that novelty based feature using kterm hashing result in higher

accuracy than features based on vector proximity by cosine similarity. In particular

kterms formed from the top keywords contribute the most. This is surprising, as we

limited the number of term in section 7.2 to increase the efficiency of kterm hashing

on longer documents. Instead of forming kterms from all terms we only the top t f .id f

weighted terms when constructing kterms. So far we distinguished kterms by their car-

dinality, which allows assigning weights based on the cardinality level. The increase in

detection accuracy provides evidence that it is beneficial to also distinguishing kterm

based on the weight of the terms they are formed of.

Novelty features based on kterm hashing construct a combined memory of all informa-

tion presented to it. Pulling all information into a single representation bridges the gab

between documents and allows finding information matches within documents. We

hypothesize that this causes increased detection performance over cosine based nov-

8.5. Experiments 137

elty features.

Pseudo Feedbaack
Features ablation in Table 8.5 revealed that pseudo feedback (PF) increased detection

performance by 5.3% (relative). PF builds upon the output of the other features. High

performance of the other features results in higher positive impact of PF. We plan to

further explore the behaviour of PF on other detection tasks in future studies.

Novelty based Features: Accuracy

1-gram 63%

2-gram 62%

3-gram 59%

Stanford Word Segmenter 70%

Table 8.7: Impact of word segmentation for Mandarin on detection accuracy using kterm

hashing on all terms

8.5.5 Impact of Term Segmentation on Detection Accuracy

According to Foo et al. (2004), assuming all terms to be n-grams provides the fastest

method to segment texts in Mandarin. Table 8.7 reveals that n-gram based segmenta-

tion heavily reduces detection accuracy in comparison with a more sophisticated word

segmenter. Even-tough we consider natural text breaks and sentence characters none

of the n-grams performs comparable to the segmenter. Comparison of Table 8.7 and

Table 8.1 shows that segmenting by 3-gram renders novelty based features useless. We

conjecture that in Mandarin words that consist of 3 or more characters are less likely

and therefore reduce detection accuracy. The combination of different levels of n-gram

did not improve Rumour Detection accuracy. We conclude that kterm hashing requires

accurate word boundaries to reach adequate performance.

8.5.6 Detecting Unpopular Rumours

Previous approaches to rumour detection rely on repeated signals to form propaga-

tion graphs or clustering methods. Beside causing a detection delay these methods are

also blind to less popular rumours that don’t go viral. In contrast, novelty based fea-

ture require only a single message enabling them to detect even the smallest rumours.

138 Chapter 8. Further Applications of Novelty Detection

Topic Name Rumour synopsis

Terror in Paris fake news report of Chinese hostages and their cruel torture

by terrorist disguised as Syria refugees

RUS plane crash various different rumours blaming Turkey, US and Russia itself

Samsung vs Apple rumors that Samsung paid Apple the fine with

Patent law suit trucks of coins to show their dissatisfaction with the judgement

Flight MH370 rumours about the cause of the crash including abduction

by terrorists, shot down by US military and CIA

Table 8.8: Excerpt of topics with synopsis of corresponding rumours

Examples for such small rumours are shown in table 8.3.

Figure 8.9: Throughput of our approach per second in comparison to the average Twit-

ter (Firehose) and Sina Weibo stream.

8.5.7 Efficiency and Scalability

To demonstrate the high efficiency of computing novelty and pseudo feedback features,

we implement a rumour detection system and measure its throughput when applied to

100k weibos. We implement our system in C and run it using a single core on a 2.2GHz

Intel Core i7-4702HQ. We measure the throughput on an idle machine and average the

observed performance over 5 runs. Figure 8.9 presents performance when processing

more and more weibos. The average throughput of our system is around 7,000 wei-

8.6. Conclusion 139

bos per second, which clearly exceeds the average volume of the full Twitter7 (5,700

tweets/sec.) and Sina Weibo8 (1,200 weibos/sec.) stream. Since the number of news

articles is relatively small, we find no difference in terms of efficiency between com-

puting novelty features based on kterm hashing and vector similarity. Figure 8.9 also

illustrates that our proposed features can be computed in constant time with respect to

the number of messages processed. This is crucial to keep operation in a true stream-

ing environment feasible. Approaches, whose runtime depend on the number of doc-

uments processed become progressively slower, which is inapplicable when operating

on data streams. Our experiments show that the proposed features perform effectively

and their efficiency allows them to detect rumours instantly after their publication.

8.6 Conclusion

In this section we showed that novelty detection using kterm hashing is applicable be-

yond FSD. In particular, we improved the accuracy of instant Rumour Detection by

creating two new feature categories, novelty based features and pseudo feedback. Ru-

mour Detection currently only operates retrospectively, and lag behind social media

users for identifying messages as rumours. Our features are designed to improve de-

teciton accuracy at the time of a messages publication. Novelty based features judge

whether the information of a message is confirmed by trusted resources. We compared

novelty based features using cosine similarity and kterm hashing and found the lat-

ter superior when detecting rumours. Our second new feature category, called pseudo

feedback, allows harnessing repeated signals without the need of retrospective oper-

ation and using a single pass over the data. In a nutshell, pseudo feedback considers

documents that are close in term space to previous rumours, likely to also be a rumour.

Our experiments showed that our approach significantly outperforms the state-of-the-

art systems with the lowest latency for instant Rumour Detection. Our feature analysis

revealed that in particular novelty based feature increase detection accuracy for instant

detection, when other information is limited.

While applying Rumour Detection to a Sina Weibo data set, we showed how kterm

hashing can operate on text written in Mandarin. Since messages from Sina Weibo

7about.twitter.com/company (last updated: 31.3.2015)
8http://www.techweb.com.cn/internet/2012-01-06/1139327.shtml

140 Chapter 8. Further Applications of Novelty Detection

are 9 times longer than tweets, we reduced them to the top k terms to limit the impact

on efficiency. Interestingly, our experiments showed that limiting the number of terms

before forming kterms also increases Rumour Detection accuracy. We conclude that

it is beneficial to distinguish kterms based on their cardinality and the weight of the

terms they are formed of.

Chapter 9

Conclusion

This thesis presented a new algorithm family called memory-based novelty detection

and applied it to event detection in unbounded streams of unstructured social media

texts. There are three main contributions in this thesis: First, we introduced kterm

hashing, a memory-based novelty computation method, whose throughput exceeds the

currently fastest FSD system by more than an order of magnitude without sacrificing

accuracy. The presented experiments showed that in contrast to UMass and LSH-FSD,

two state-of-the-art FSD systems, kterm hashing operates in absolute constant time

and space, independent of the number of documents processed. Second, this thesis

was the first to show that the average novelty score of FSD systems decays over time.

Additionally, we provided methods to counteract novelty decay and increase detection

accuracy. Third, we presented an alternative application of kterm hashing by providing

the first method to detect rumours in fast-moving streams in real time.

The introduction to this thesis outlined that historically, the advantage was with those

who have access to information. The emergence of the internet and social media grants

every one access to information about ongoing events world wide in real time. The ad-

vantage has shifted from those who have access to information to those who do so

first. FSD is an active research field for more than 16 years. However, all recent devel-

opment focused on improving the traditional comparison based methods. This thesis

outlined the advantages and shortcomings of comparison based methods and intro-

duced a new algorithm family able to maintain the high accuracy of comparison based

methods while vastly improving their throughput. To the best of our knowledge FSD

using kterm hashing reaches the highest reported throughput to this date.

141

142 Chapter 9. Conclusion

While the primary focus of this thesis lied on detecting new events in data streams,

we also provided evidence that kterm hashing is applicable beyond novelty detection.

When detecting rumours, we applied kterm hashing as a real time textual entailment

method that verified, whether the information of a tweet is confirmed by a set of news

articles.

This points at future research and applications of kterm hashing. Additionally, we are

interested in parametrising kterms by learning weights based on their attributes. Our

work in rumour detection hints that kterms can be categorised by more than just car-

dinality to increase detection accuracy. We also ask ourselves how additional hashing

functions and multiple memories would affect detection accuracy of kterm hashing. A

different direction could be looking at parallelizing kterm hashing to further increase

its throughput.

Bibliography

[1] Aggarwal Charu C . (2006). On biased reservoir sampling in the pres-

ence of stream evolution. In Proceedings of the 32nd international con-

ference on Very large data bases, pages 607–618. VLDB Endowment.

[2] Allan J. (2002). Topic detection and tracking: event-based information

organization. Kluwer Academic Publishers.

[3] Allan J., Lavrenko V., and Jin H. (2000a). First story detection in TDT

is hard. In Proceedings of The 21st ACM International Conference on

Information and Knowledge Management, pages 374-381. ACM.

[4] Allan J., Lavrenko V., Malin D., and Swan R. (2000b). Detections,

bounds, and timelines: UMass and TDT-3. In Proceedings of Topic De-

tection and Tracking Workshop, pages 167-174.

[5] Allan J., Yang Y., Carbonell J., Yamron J., Doddington G., and Wayne

C. (1998). TDT pilot study corpus. Catalog no. LDC98T25.

[6] Andoni A. and Indyk P. (2008). Near-optimal hashing algorithms for

approximate nearest neighbor in high dimensions. Communications of

the ACM.

[7] Austin A. (2008). MurmurHash. google.com/site/murmurhash. (last vis-

ited 12th March 2016).

[8] Jean-Philippe A. and Bernstein D. J. (2012). “SipHash” a fast short-

input PRF.

[9] Becker H., Iter D., Naaman M., and Gravano L. (2012). Identifying

content for planned events across social media sites. In Proceedings of

the 5th ACM international conference on Web search and data mining,

pages 533-542. ACM.

143

144 Bibliography

[10] Becker H., Naaman M., and Gravano L. (2011a). Beyond trending top-

ics: Real- world event identification on Twitter. In Proceedings of the

5th International Conference on Weblogs and Social Media, pages 438-

441. The AAAI Press.

[11] Becker H., Naaman M., and Gravano L. (2011b). Selecting quality Twit-

ter content for events. In Proceedings of the 5th International Confer-

ence on Weblogs and Social Media, pages 442-445. The AAAI Press.

[12] Berinde R., Cormode G., Indyk P., Strauss M. J. (2009). Space-optimal

heavy hitters with strong error bounds. Symposium on Principles of

Database Systems.

[13] Bloom B. H. (1970). Space/time trade-offs in hash coding with allow-

able errors. Communications of the ACM, 13(7), 422-426.

[14] Bose P., Guo H., Kranakis E., Maheshwari A., Morin P., Morrison J. and

Tang Y. (2008). On the false-positive rate of Bloom filters. Information

Processing Letters, 108(4), 210-213.

[15] Brants T., Chen F., and Farahat A. (2003). A system for new event de-

tection. In Proceedings of the 26th annual international ACM SIGIR

conference on Research and development in information retrieval, pages

330-337. ACM.

[16] Braun R. K. and Kaneshiro R. (2004). Exploiting topic pragmatics for

new event detection in TDT-2004. Technical report, National Institute

of Standards and Technology.

[17] Braverman V., Ostrovsky R., and Zaniolo C. (2012). “Optimal sampling

from sliding windows.” Journal of Computer and System Sciences.

[18] Cai G., Wu H., Lv R. (2014). Rumours Detection in Chinese via Crowd

Responses, ASONAM 2014, Beijing, China.

[19] Callison-Burch C. (2008). Syntactic constraints on paraphrases ex-

tracted from parallel corpora. In Proceedings of the Conference on Em-

pirical Methods in Natural Language Processing.

Bibliography 145

[20] Castillo C, Mendoza M, Poblete B. (2011). Information Credibility On

Twitter[C], The 20th International Conference on World Wide Web, Hy-

derabad, India,

[21] Cataldi M., Caro L. D., and Schifanella C. (2010). Emerging topic de-

tection on Twitter based on temporal and social terms evaluation. In

Proceedings of the 10th International Workshop on Multimedia Data

Mining. ACM.

[22] Chang C. H. and Lin C. (2011). LIBSVM: A library for support vector

machines. ACM Transactions on Intelligent Systems and Technology.

[23] Charikar M. S. (2002). Similarity estimation techniques from rounding

algorithms. In Proceedings of the 34th annual ACM symposium on The-

ory of computing, pages 380-388. ACM.

[24] Cordeir, M. (2012). Twitter event detection: Combining wavelet anal-

ysis and topic inference summarization. In Doctoral Symposium in In-

formatics Engineering, pages 123-138.

[25] Cortes C. and Vapnik V. (1995). Support-vector networks. Machine

learning.

[26] Diaz F. and Metzler D. (2006). Improving the estimation of relevance

models using large external corpora. In Proceedings of the 29th annual

international ACM SIGIR conference on Research and development in

information retrieval, pages 154-161. ACM.

[27] Fan L., Cao P., Almeida J. M. and Broder A. (2000). Summary cache: a

scalable wide-area web cache sharing protocol. IEEEACM Transactions

on Networking, 8(3), 281-293.

[28] Fiscus J. G. and Doddington G. R. (2002). Topic detection and tracking

evaluation overview. Topic detection and tracking: event-based infor-

mation organization, pages 17-31.

[29] Foo S. and Li H. (2004). Chinese word segmentation and its effect on

information retrieval. Information processing and management, 40(1),

pp.161-190.

146 Bibliography

[30] Genc Y., Sakamoto Y., and Nickerson J. V. (2011). Discovering context:

Classifying tweets through a semantic transform based on Wikipedia.

Foundations of Augmented Cognition. Directing the Future of Adaptive

Systems.

[31] Gionis A., Indyk P. and Motwani R. (1999). Similarity search in high

dimensions via hashing. In Proceedings of the 25th International Con-

ference on Very Large Data Bases, pages 518-529. Morgan Kaufmann

Publishers Inc.

[32] Sasa H., Ganitkevitch J., Ney H., and Andres-Ferrer J. (2008). “Triplet

lexicon models for statistical machine translation.” In Proceedings of the

Conference on Empirical Methods in Natural Language Processing, pp.

372-381. Association for Computational Linguistics.

[33] Hu M., Sun A., and Lim E.-P. (2008). Event detection with common

user interests. In Proceedings of the 10th ACM workshop on Web infor-

mation and data management. ACM.

[34] Indyk P. and Motwani R. (1998). Approximate nearest neighbors: To-

wards removing the curse of dimensionality. In Proceedings of the

30th annual ACM symposium on Theory of computing, pages 604-613.

ACM.

[35] Jurgens D. and Stevens K. (2009). Event detection in blogs using tem-

poral random indexing. In Proceedings of the Workshop on Events in

Emerging Text Types. Association for Computational Linguistics.

[36] Kriegel H.-P., Kroeger P. and Zimek, A. (2009). Outlier detection tech-

niques. Tutorial at the 13th Pacific-Asia Conference on Knowledge Dis-

covery and Data Mining.

[37] Krovetz R. (1993). Viewing morphology as an inference process. In

Proceedings of the 16th annual international ACM SIGIR conference

on Research and development in information retrieval, pages 191-202.

ACM.

[38] Kumaran G. and Allan J. (2005). Using names and topics for new event

detection. In Proceedings of the conference on Human Language Tech-

Bibliography 147

nology and Empirical Methods in Natural Language Processing, pages

121-128. Association for Computational Linguistics.

[39] Kwak H., Lee C., Park H. and Moon, S. (2010). What is Twitter, a so-

cial network or a news media? In Proceedings of the 19th International

Conference on World Wide Web, pages 591-600. ACM.

[40] Kwon S., Cha M., Jung K., Chen W. and Wang Y. (2013). “Prominent

features of rumor propagation in online social media”, Data Mining

(ICDM), IEEE.

[41] Lavrenko V. (2004). A generative theory of relevance. PhD thesis, Uni-

versity of Massachusetts.

[42] Lavrenko V., Allan J., DeGuzman E., LaFlamme D., Pollard V., and

Thomas S. (2002). Relevance models for topic detection and tracking.

In Proceedings of the 2nd international conference on Human Language

Technology Research, pages 115-121. Morgan Kaufmann Publishers

Inc.

[43] Li H., Chen H. (2008) A Deleting Strategy in Mining Frequent Itemsets

over Sliding Window of Stream. IEEE.

[44] Li C., Sun A., and Datta A. (2012a). Twevent: Segment-based event de-

tection from tweets. In Proceedings of ACM Conference on Information

and Knowledge Management. ACM.

[45] Li R., Lei K. H., Khadiwala R., and Chang K. C. C. (2012b). TEDAS:

A Twitter- based event detection and analysis system. In Proceedings

of 28th International Conference on Data Engineering, IEEE Computer

Society.

[46] Blerina L., Kolomvatsos K., and Hadjiefthymiades S. (2014). “Facing

the cold start problem in recommender systems.” Expert Systems With

Applications 41.4.

[47] Liu X., Nourbakhsh A., Li Q., Fang R. and Shah S. (2015). Real-time

rumor debunking on twitter, in Proceedings of the 24th ACM Interna-

tional Conference on Information and Knowledge Management. ACM.

148 Bibliography

[48] Luo G., Tang C. and Yu, P. S. (2007). Resource-adaptive real-time new

event detection. In Proceedings of the 2007 ACM SIGMOD interna-

tional conference on Management of data, pages 497-508. ACM.

[49] Madnani N. and Dorr B. (2010). Generating phrasal and sentential para-

phrases: A survey of data-driven methods. Computational Linguistics,

341:387.

[50] Mathioudakis M. and Koudas N. (2010). Twittermonitor: Trend detec-

tion over the Twitter stream. In Proceedings of the 2010 ACM SIG-

MOD International Conference on Management of data, pages 1155-

1158. ACM.

[51] McCreadie R., Macdonald C., Ounis I., Petrovic S., Osborne M. (2013).

Scalable Distributed Event Detection for Twitter. IEEE International

Conference on Big Data. Santa Clara US.

[52] Mendoza M., Poblete B., Castillo C. (2010). Twitter Under Crisis: Can

we Trust What we RT?, The 1st Workshop on Social Media Analytics,

SOMA.

[53] Metzler D., and Croft B. (2005) “A Markov random field model for term

dependencies.” In Proceedings of the 28th annual international ACM SI-

GIR conference on Research and development in information retrieval,

pp. 472-479. ACM.

[54] Metzler D., Cai C., and Hovy E. (2012). Structured event retrieval over

microblog archives. In Proceedings of Human Language Technologies:

Conference of the North American Chapter of the Association of Com-

putational Linguistics, pages 646-655. Association for Computational

Linguistics.

[55] Muthukrishnan S. M. (2005). Data streams: algorithms and appli-

cations. Foundations and Trends in Theoretical Computer Science,

1(2):117:236.

[56] O’Connor B., Balasubramanyan R., Routledge B. R. and Smith N. A.

(2010). From tweets to polls: Linking text sentiment to public opinion

Bibliography 149

time series. In Proceedings of the 4th International Conference on We-

blogs and Social Media, pages 122-129. The AAAI Press.

[57] Osborne M., Petrovic S., McCreadie R., Macdonald C. and Ounis

I. (2012). Bieber no more: First story detection using Twitter and

Wikipedia. In Proceedings of the SIGIR workshop on Time-Aware In-

formation Access.

[58] Osborne M. and Dredze M. (2014). Facebook, Twitter and Google Plus

for Breaking News: Is there a winner?. ICWSM, Ann Arbor USA.

[59] Osborne M., Lall A. and Van Durme B. (2014). Exponential reservoir

sampling for streaming language models. In Proceedings of the 52nd

Annual Meeting of the Association for Computational Linguistics (Vol-

ume 2: Short Papers), pages 687–692. Association for Computational

Linguistics.

[60] Ozdikis O., Senkul P. and Oguztuzun H. (2012). Semantic expansion of

hashtags for enhanced event detection in Twitter. In Proceedings of the

1st International Workshop on Online Social Systems.

[61] Papka R., Allan J., and Lavrenko V. (1999). UMass approaches to de-

tection and tracking at TDT2. In DARPA: Broadcast News Workshop,

pages 111-116.

[62] Petrovic S., Osborne M. and Lavrenko V. (2010). Streaming first story

detection with application to Twitter. In Proceedings of the 11th annual

conference of the North American Chapter of the Association for Com-

putational Linguistics

[63] Petrovic S., Osborne M. and Lavrenko V. (2012). Using paraphrases for

improving first story detection in news and Twitter. In Proceedings of

Human Language Tech- nologies: Conference of the North American

Chapter of the Association for Computational Linguistics, pages 338-

346. Association for Computational Linguistics.

[64] Petrovic S. (2012). Real-time Event Detection in Massive Streams. PhD

Thesis.

150 Bibliography

[65] Petrovic S., Osborne M., McCreadie R., Macdonald C., Ounis I.,

Shrimpton L. (2013) Can Twitter replace Newswire for breaking news?.

ICWSM, Boston US.

[66] Phuvipadawat S. and Murata T. (2010). Breaking news detection and

tracking in Twitter. In Proceedings of the 2010 IEEE/WIC/ACM Inter-

national Conference on Web Intelligence and Intelligent Agent Technol-

ogy, pages 120-123. IEEE Computer Society.

[67] Pike G. and Alakuijala J. (2011). The CityHash family of hash functions.

[68] Popescu A.-M. and Pennacchiotti M. (2010). Detecting controversial

events from Twitter. In Proceedings of the 19th ACM international con-

ference on Information and knowledge management. ACM.

[69] Qazvinian V., Rosengren E., Radev D. R., Mei Q. (2011) Rumour has

it: Identifying Misinformation in Microblogs, EMNLP, Edinburgh, UK.

[70] Qin Y.,Wurzer D., Lavrenko V. and Tang C. (2017). “Counteracting

Novelty Decay in First Story Detection.” In ECIR - European Confer-

ence on Information Retrieval, pp. 555-560. wode airen Springer.

[71] Richardson M, Agrawal R, Domingos P. (2003). Trust Management

for the Semantic Web. The Semantic Web-ISWC 2003, Heidelberg:

Springer, Berlin - Heidelberg.

[72] Levy R. and Manning C. D. (2003). Is it harder to parse Chinese, or the

Chinese Treebank?. ACL 2003.

[73] Sakaki T., Okazaki M., and Matsuo Y. (2010). Earthquake shakes Twit-

ter users: real-time event detection by social sensors. In Proceedings of

the 19th International Conference on World Wide Web, pages 851-860.

ACM.

[74] Sankaranarayanan J., Samet H., Teitler B. E., Lieberman M. D., and

Sperling J. (2009). Twitterstand: news in tweets. In Proceedings of the

17th ACM SIGSPATIAL International Conference on Advances in Ge-

ographic Information Systems. ACM.

Bibliography 151

[75] Shrimpton L., Lavrenko V., Osborne M. (2015). Sampling Techniques

for Streaming Cross Document Coreference Resolution. Human Lan-

guage Technologies: The 2015 Annual Conference of the North Amer-

ican Chapter of the ACL.

[76] Subasic I. and Berendt B. (2011). Peddling or creating? Investigating the

role of Twitter in news reporting. Advances in Information Retrieval.

[77] SunS., Liu H., He J., Du X. (2013). Detecting Event rumours on Sina

Weibo Automatically, APWeb.

[78] TDT by NIST (1998-2004). http://www.itl.nist.gov/iad/mig/tests/tdt/resources.html

(Last Update: 2008)

[79] Tong X., Zai C., Milic-Frayling C., and Evans D. A. (1996). Experi-

ments on Chinese text indexing – CLARIT TREC–5 Chinese track re-

port. http://trec.nist.govpubs trec5t5 proceedings.html, Maryland

[80] Tseng H., Chang P., Andrew G., Jurafsky D. and Manning C. (2005). A

Conditional Random Field Word Segmenter. In Fourth SIGHAN Work-

shop on Chinese Language Processing.

[81] Vitter J. S. (1985). Random sampling with a reservoir. ACM Transac-

tions on Mathematical Software (TOMS), 11(1):37–57.

[82] Weng J., Yao Y., Leonardi E., and Lee F. (2011). Event detection in

Twitter. In Proceedings of the 5th International Conference on Weblogs

and Social Media, . The AAAI Press.

[83] Wong S. K. M., Ziarko W., and Wong P. C. N. (1985). Generalized vec-

tor spaces model in information retrieval. In Proceedings of the 8th an-

nual international ACM SIGIR conference on Research and develop-

ment in information retrieval. ACM.

[84] Wang S., Terano T. (2015). Detecting rumour patterns in streaming so-

cial media, Guimi, IEEE.

[85] Wu K., Yang S., Zhu K. (2015). False rumours Detection on Sina Weibo

by Propagation Structures, In the Proceedings of ICDE.

152 Bibliography

[86] Wurzer D., Lavrenko V., Osborne M. (2015). Tracking unbounded Topic

Streams. In the Proceedings of the 53rd Annual Meeting of the Associ-

ation for Computational Linguistics, ACL.

[87] Wurzer D., Lavrenko V., Osborne M. (2015). Twitter-scale New Event

Detection via K-term Hashing. In the Proceedings of the Conference on

Empirical Methods in Natural Language Processing, EMNLP.

[88] Yang Y., Pierce T. and Carbonell J. (1998). A study of retrospective and

on-line event detection. In Proceedings of the 21st annual international

ACM SIGIR con- ference on Research and development in information

retrieval. ACM.

[89] Yang F., Yu X., Liu Y., Yang M. (2012). Automatic Detection of Rumor

on Sina Weibo. MDS’12.

[90] Yardi S., Romero D., Schoenebeck G., and Boyd D. (2009). Detecting

spam in a Twitter network. First Monday, 15(1).

[91] Zeng J., Gong L., Wang Q., Wu. C. (2009). Hierarchical for Topic Anal-

ysis Based on Variable Feature Reduction. IEEE.

[92] Zhang J., Ghahramani Z. and Yang Y. (2005). A probabilistic model

for online document clustering with application to novelty detection. In

Advances in Neural Information Processing Systems 17.

[93] Zhao Z., Resnick P. and Mei Q. (2015). Enquiring Minds: Early Detec-

tion of Rumors in Social Media from Enquiry Posts. In the Proceedings

of WWW.

[94] Zhou X., Cao J., Jin Z., Fei X., Su Y., Zhang J., Chu D. and Cao X.

(2015). Realtime news certification system on sina weibo. WWW.

	cover sheet
	Scaling_real_time_Event_Detection_to_Massive_Streams

