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Abstract 

A hierarchical triple system consists of two bodies forming a binary system and 

a third body on a wider orbit. 

The evolution of the eccentricity of an initially circular inner binary of a 

hierarchical triple system with well separated components is examined. Sys-

tems with different mass ratios and orbital characteristics (e.g. inclination) are 

investigated and theoretical formulae are derived for each case. The derivation 

of these formulae is based on the expansion of the rate of change of the eccentric 

vector in terms of the orbital period ratio of the two binaries using first order 

perturbation theory. Some elements from secular theory are used wherever nec-

essary. Special cases are also discussed (e.g. secular resonances). The validity 

of the results is tested by integrating the full equations of motion numerically 

and the agreement is satisfactory. 

The stability of hierarchical triple systems with initially circular and copla-

nar orbits and small initial period ratio is also examined. Mean motion res-

onances are found to play an important role in the dynamics of the system. 

Special reference to the 3 : 1 and 4 1 resonances is made and a theoretical cri-

terion for the 3 : 1 resonance is developed. A more general stability criterion 

(applicable in principle to other resonances besides 3 : 1) is obtained through a 

canonical transformation of an averaged Hamiltonian, and comparison is made 

with other results on the subject. 



Acknowledgements 

I wish to thank Professor Douglas Heggie for his valuable advice and inspiring 

discussions we had on every aspect of my doctoral studies. I also want to thank 

Dr Seppo Mikkola who kindly provided the code for integrating hierarchical triple 

systems. Many thanks to my officemates Steve Purchase and Alan Roy for the 

useful discussions we had on various aspects of my work. Finally, I want to thank 

my parents for all their support, which made the completion of my doctoral 

studies possible. 



Declaration 

I declare that this thesis was composed by myself and that the work contained 

therein is my own, except where explicitly stated otherwise in the text. 

(Nikolaos Georgakarakos) 



Contents 

1 Introduction 
	 4 

	

1.1 The three-body problem ...................... 	4 

	

1.2 The hierarchical three-body problem ............... 	5 

	

1.3 Some elements from the two-body problem ............ 	6 

	

1.4 Some elements from the three-body problem ........... 	8 

1.4.1 	The Jacobi formulation ................... 
	8 

1.4.2 	The Delaunay variables ................... 	9 

	

1.4.3 The Hamiltonian formulation ............... 	10 

1.4.4 	The Von Zeipel method .................. 	13 

	

1.5 	Legendre polynomials ........................ 	14 

	

1.6 Expanding the perturbing Hamiltonian .............. 
	15 

1.7 A symplectic integrator with time transformation for the three- 

	

body problem ............................ 	18 

1.7.1 	Introduction ......................... 	18 

	

1.7.2 Generalised leap-frog with time transformation ...... 	18 

	

1.7.3 Perturbed two-body problem ................ 	20 

	

1.7.4 Hierarchical three-body problem .............. 
	21 

	

1.8 	Multiple stellar systems 	. . . . . . . . . . . . . . . . . . . . . . 	21 

2 Evolution of the inner orbital eccentricity in hierarchical triple 

1 



systems 	 24 

2.1 	Introduction .............................24 

2.2 Variation of the inner eccentricity .................26 

2.2.1 Equal masses, coplanar orbits, circular binaries case . . . 27 

2.2.2 Unequal masses, coplanar orbits, circular binaries case . 33 

2.2.3 Unequal masses, coplanar orbits, eccentric outer binary 

case............................. 	35 

2.2.4 Unequal masses, non-coplanar orbits, eccentric outer bi- 

nary case ..........................42 

2.2.5 Unequal masses, non-coplanar orbits, circular binaries case 53 

2.2.6 Equal masses,non-coplanar orbits, eccentric outer binary 

case 	.............................57 

2.2.7 	Conclusion ..........................59 

3 	Stability of hierarchical triple systems 62 

3.1 Introduction 	............................. 62 

3.2 Numerical integrations of circular orbits 	............. 70 

3.3 Numerical results for systems with a = 2.0 	............ 73 

3.4 The 3:1 resonance 	.......................... 73 

3.4.1 	Some numerical results 	................... 76 

3.4.2 	A qualitative analysis of the 3:1 resonance 	........ 77 

3.4.3 	An analytical criterion for stability for the 3:1 resonance 86 

3.5 The 4:1 resonance 	.......................... 90 

3.6 A general criterion for the k+1:1 resonance ............ 91 

3.6.1 	General theory 	....................... 91 

3.6.2 	The 3:1 resonance ...................... 99 

3.6.3 	The 4:1 resonance ...................... 100 



3.6.4 Comparison with numerical data .............101 

3.7 	Conclusion ..............................103 

A Equations of motion in the unequal masses, non-coplanar or-

bits, eccentric outer binary case 
	 107 

B Second order expansion of the perturbing Hamiltonian 	110 

3 



Chapter 1 

Introduction 

1.1 The three-body problem 

The three-body problem is one of the most fascinating topics in mathematics 

and celestial mechanics. The basic definition of the problem is as follows: three 

point masses (or bodies of spherical symmetry) move in space, under their mu-

tual gravitational attraction; given their initial conditions, we want to determine 

their subsequent motion. 

Like many mathematical problems, it is not as simple as it sounds. Although 

the two-body problem can be solved in closed form by means of elementary 

functions and hence we can predict the quantitative and qualitative behaviour 

of the system, the three-body problem is a complicated nonlinear problem and 

no similar type of solution exists. More precisely, the former is integrable but 

the latter is not. The reason for this is that the known integrals of energy, 

angular momentum and centre-of-mass motion are not sufficient for the solution 

of the three-body problem (Szebehely and Mark 1998), because there are too 

many variables that have to be considered to solve the problem. Nonetheless, 

some particular solutions have been found (central configurations) and progress 
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has been made in special cases, like for example in the restricted three-body 

problem. Finally, it must be mentioned that, at the beginning of this century, 

a Finnish mathematical astronomer, Karl Sundman, gave a solution to the 

problem, by providing a convergent power series solution valid for all values of 

time. However, since the solution gives no qualitative information about the 

behaviour of the system and the rate of convergence is considered to be too slow 

for any real practical use, it leaves plenty of issues surrounding the problem to 

be resolved (Barrow-Green 1997). 

The three-body problem has been studied by many mathematicians and as-

tronomers in the past 300 years. Newton, Euler, Lagrange, Laplace, Jacobi, 

Leverrier, Newcomb, Hamilton, Delaunay, Hill, Poincaré, Sundman, Birkhoff 

and many others, were intrigued by the three-body problem and spent a great 

deal of time working on it. The effort of those people to tackle the difficul-

ties emerging in the three-body problem is responsible for the development of 

methods and theories that have since found applications in many branches of 

science. 

The three-body problem continues to be an exciting puzzle for every math-

ematician, even today, at a time in which our 'arsenal' has been reinforced with 

very fast computers, which can perform numerical integrations in a relatively 

short period of time. The simultaneous simplicity and complexity of the three-

body problem is what made it, makes it and will be making it one of the most 

fascinating subjects in mathematics ever. 

1.2 The hierarchical three-body problem 

A special case of the three-body problem is the hierarchical three-body problem, 

where two of the bodies form a binary system and a distant companion perturbs 
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the motion of the binary. 

We are going to deal with the gravitational aspect of the problem, i.e. we 

shall consider that there is only gravitational interaction among the bodies. 

Generally speaking, there could be other factors playing an important role in 

the dynamical evolution of the system, such as tidal friction, mass transfer in 

the form of Roche lobe overflowing or in the form of a stellar wind between the 

binary components and general relativistic effects in the case of compact objects 

(Valtonen, Mikkola and Pietilä 1995, Ford, Kozinsky and Rasio 2000). However, 

in the context of this investigation, we will concentrate on triple systems with 

well separated components, in which the gravitational perturbation timescales 

are short compared to those of the factors mentioned previously. Finally, it 

should be mentioned here, that a particular subject in the context of hierarchical 

triple systems which has attracted the research interest of many people is the 

stability of such systems (Harrington 1972, Szebehely and Zare 1977, Roy et 

al. 1984, Donnison and Mikulskis 1992, 1994 and 1995, Kiseleva, Eggleton and 

Anosova 1994, Kiseleva, Eggleton and Orlov 1994, Eggleton and Kiseleva 1995), 

which will be the main discussion topic in chapter three. 

Next, we present some definitions and ideas from the two and three-body 

problems, along with some other mathematical techniques which will be used 

in the following chapters. 

1.3 Some elements from the two-body problem 

Consider the motion of a mass m 2  orbiting a mass m 1  in three dimensional 

space. In a situation like this, the following parameters can be defined (fig. 

1.1): the orbital plane is generally inclined to some reference plane at angle I, 

called the inclination of the orbit. The line of intersection between the orbital 
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Figure 1.1: The two-body problem 

and reference planes is called the line of nodes. The point in both planes 

where the orbit crosses the reference plane moving from below (above) to above 

(below) the plane is called the ascending (descending) node, while the angle ci 

between a reference line and the radius vector to the ascending node is called 

the longitude of the ascending node. The angle w between this same radius 

vector and the pericentre of the orbit is called the argument of pericentre and 

the angle w = ci + w is called the longitude of pericentre. In the case where the 

orbital and reference planes coincide ( I = 00  or I = 180° ), w is defined as the 

angle between the reference direction and the pericentre. 

The angle f between the pericentre and the relative position vector of 

mass m2 with respect to mass in1 , is called the true anomaly. The vector ë, 

which has the same direction as the radius vector to the pericentre and whose 

magnitude is equal to the eccentricity e of the orbit, is called the eccentric 

vector, and the angular momentum vector is the vector Ii in fig. 1.1. Finally, if 

T is the period of the orbit, we define the mean motion ri as 

27r 
Th 
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Using this definition, we can define the mean anomaly £ as £ = n(t - r) , where 

r is the time of pericentre passage. To complete our set of definitions, we define 

the mean longitude A as A = £ + ,o . 

1.4 Some elements from the three-body prob-

lem 

1.4.1 The Jacobi formulation 

A hierarchical triple system can be pictured as a superposition of two subsys-

tems, a close binary and a wider binary. A very good way of studying the 

motion of such a system is the Jacobi decomposition of the three-body problem 

(fig. 1.2). It uses two vectors: the relative position vector of the inner binary 

and the vector 1 from the centre of mass of m 1  and m 2  to the third mass 

M3 (and consequently R passes through the centre of mass of the three-body 

system). Then the equations of motion in the Jacobi formulation are: 

G(m i +m2). 	r23  r1  
r = - 	 r + Gm3(-- - -b- ) 7• 	 7•23 	13 

- 	 m 1  r13  
R=-G(ml+m2+m3)( 	--+ m

2  r23 
 T) 	(1.2) 

M1 + m 2  r13  m 1  + m2  r 3  

where 13  is the vector from m 1  to in3  and F23  is the vector from m 2  to m 3 . The 

Jacobi decomposition of the three-body problem becomes really interesting in 

the case when L is small or when one of the masses of the inner binary is 

significantly larger than the other two masses (e.g. the Sun and two planets) 

and the two binaries can be considered to be on two slowly perturbed Keplerian 

orbits. 
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Figure 1.2: The Jacobi formulation 

1.4.2 The Delaunay variables 

Delaunay, in order to study the lunar problem, introduced a set of variables 

in which the equations of motion of the three-body problem have the Hamilto-

nian form. The Delaunay variables for a hierarchical three-body problem in its 

barycentric frame are as follows: 

L 1  = mn 1 a 

	

2 	e2 G1  = mniatJi - 	, 91 = 	 (1.3) 

mn ia/E[—ecosIi 

L 2  = Mn2a 	 , 

C2 = Mn2a/1 - e 	, 92 = W2 	 (1.4) 

= Mn2aWi— ecosI 2 	h2 = 

The indices 1 and 2 denote the internal and external orbit respectively. The 

quantities m and M are called the reduced masses and they are defined as: 

	

m 1 m 2 	 m 3 (m 1  + m2 ) 

M1 +M2 	 M 



where M = m1  + m2  + m3 . The variable C is the angular momentum of the 

orbit and 7-1 is the component of the angular momentum vector orthogonal to 

the reference plane. Finally, a is the semi-major axis of the orbit, while the 

rest of the quantities appearing in the two previous sets of equations have been 

defined in the section for the two-body problem. 

1.4.3 The Hamiltonian formulation 

Using the Delaunay variables, we may write the Hamiltonian of the problem in 

the form (Marchal 1990): 

H 
C2m 3 (rni + M2 )2 	 m 1  + rn2  ri-i1 - C2M3M2 + Gm

3 ( 	- - -m2 -) (1.5) 
- 	2L 	 2L 	 R 	r13  r23  

and then the equations of motion of the system are: 

dL 1 	OH 
dt - 

dG 1 	OH 
dt - Ogi 

d7-1 1 	OH 
dt - Oh 1  

dL 2 	OH 

dt - O2 

dG2 	OH 
dt - Og2 

d7-12 	OH 
dt - Oh2  

de1 - OH 
dt 	OL 1  

dg, OH 
dt OG1 

dh 1  - OH 

de2  - OH 
dt 0L2 

dg2 - OH 
dt - OG2 

dh2  - OH 
I] 
	

dt - 07-12 

(1.6) 

(1.7) 

As can be easily seen, this Hamiltonian problem has six degrees of freedom. 

However, the degrees of freedom can be reduced by eliminating the nodes, in a 

rather simple way (Marchal 1990): we just choose our reference plane to be the 

invariable plane perpendicular to 5, where ê is the angular momentum vector 

of the system (fig. 1.3). 
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Figure 1.3: The two orbits and the elimination of the nodes 

In terms of the Delaunay variables, the angular momentum is 

5= (AC 1  sin hi  + AC 2  sin h2 , — 1C 1  cos h1  - AC 2  cos h2, 'Hl  +H2) 

where 

1c, = 2 -H2 2  - 	, AC = 	- 

With that special choice of reference frame the angular momentum vector be-

comes 5= (0, 0, c), and we get: 

G-7=G—fl 

h1  + ir = 

7-1 1 +7-12=c. 

Now, for the three masses m 1 , m2  and m3  , the Hamiltonian of the problem 

will be a function of the eight Delaunay variables L 1 , C1, L 2 , G2 , £, 91, £2, 92 and 

c since (fig. 1.4) 

c2  =G2  +G 2  + 2G,G2 COS  (I +12) 
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Figure 1.4: The relation between the angular momenta and the inclinations 

Thus, we obtain a Hamiltonian system with only four degrees of freedom: 

dL 1  
---- , WE 1  —dt  

dG 1  - 

- 

dg, - 0H 
(1.8) 

dt ---, --- 

dL 2  

-

ÔH 
dt 	---;, ---;  dt 

dG2 dg2aH (1.9) 
dt ----;, --- o;•  dt 

The parameters eliminated earlier are given by the following relations: 

= (c +G - G) 
'Hl

2c 

712 = 
(c2 —G+G) 

2c 

(1.10) 

dh 1  - OH 
dt - Oc 

dh2  - OH 
dt - 0c 
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It is worth mentioning here that the rate of change of e1 can be derived by 

differentiating the relation 

G1 = L1 1 - e. 

By doing so, we get 

L 1 e1 (agi
0H  

The above equation will be used in the following chapters for obtaining expres-

sions for 6 1 . 

1.4.4 The Von Zeipel method 

The Von Zeipel method provides us with a way of studying the behaviour of 

a system over a long period of time (secular behaviour). It uses a generating 

function which leads to a Hamiltonian with only long period terms, since the 

short period effects have been removed with the application of the corresponding 

canonical transformation (Marchal 1990). 

The generating function is given in terms of the old momenta and the new 

positions, i.e. 

S = S(Ll,G1,L2,G27s,9s)T,9T,c), 

where the indices S and T denote the inner and outer long period orbits re- 

spectively and the transition from the old canonical variables to the new ones 

is defined by the following equations: 

as 	as 
= Ls— , Cs ags 

as 	as 

as 	as 
LT=— , aeT 	agT 

(1.12) 
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as 	as 
92 =-. DC2 

A common way of writing a near-identity generating function is: 

S = L + Gigs + L2eT + G2gT + Si. 	 (1.14) 

Generally, S is a function of the orbital elements of the two orbits (for more 

details see Marchal 1990). A suitable choice of S 1  will give a Hamiltonian 

independent of fs and £T 1, which implies that there is no secular change in the 

semi-major axes of the two orbits (Harrington 1968). 

1.5 Legendre polynomials 

Legendre polynomials were introduced by Legendre in the theory of potential. 

They are related to the expansion of the reciprocal of some distance, in the 

Newtonian theory of potential or Coulomb potential. In section 1.6 and in later 

chapters, it will become quite clear how the Legendre polynomials can be used 

in the context of celestial mechanics, e.g. in hierarchical triples when r/R << 1. 

From the cosine rule for the triangle OAB (fig. 1.5) 

r=i-1 =(r+r-2rir2 COS  9). 

Then, 

1 	1 ( 	ri  
- 1-2— 

COS 
 9+-)= 

rr2 	r2 	r2  
00 

= 

r2 n=O 	r2 

with 
Ti 

'It is even possible to obtain a Hamiltonian independent of 9T  to first order. 
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r.i 

101 

r2  -t 

Figure 1.5: The position vectors i and j?2  of two points A and B with respect to 

the origin of the coordinate system 0. The angle between the position vectors 

is 6. 

The quantities P. are the Legendre polynomials and they can be generated from 

the following equation: 

	

P(x)= 
( 
2n! dx
_1)fldfl(12)fl 	 (1.15) 

The first six Legendre polynomials are: 

Po (x)=1 , Pi (x)=x 

	

P2(x) = (3x2 - 1) 	P3 (x) = (5x - 3x) 

P4 (x) = (35x - 30x 2  +3) , P5 (x) = (63x - 70x 3  + 154 

1.6 Expanding the perturbing Hamiltonian 

The term 

M1 + m2  m 1  m 2  
Gm3 ( 	-----) 

	

R 	r13 	r23  
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in equation (1.5) is the perturbing Hamiltonian. This can be expanded in terms 

of the orbital elements of the two binaries in many ways, one being the following: 

using the Jacobi notation, the perturbing Hamiltonian can be rewritten as 

Ml  + M2 	m1 	m2

11 
Gm3( R 

- I + P2 - - 

Ml +M2 m 1  00 	A2r n  
=Gm3( R _(_i)Pn (COS  9)_ 

n=O 

-

(ir'\ P(cos9)) 
R nO'  RI 

— 
00 

M3 	R...2\ 
G 

RI 

Cm3 	I
1) Imi 

 (_ ~L2rn) 
 

1-L 

M2 P(cos9) - 	 L..' ()Pn (COS O)] 
n=2 

/.i1r\ 1 1 
+m2(---) jPn (cose) 	 (1.16) 

where P are the Legendre polynomials and 

rn 
z=1,2. 

Tfli + m 2  

What is needed now is to expand the above expression in terms of the orbital 

elements of the two subsystems using series expansions for r/R and cos 0. It is 

known that (Brouwer and Clemence 1961, Murray and Dermott 1999) 

r 
- = 

 

1+ e -  2e 1  
a1 	2 	=1 del 

=1—e 1 cos1+(1— COS 2i)+O(e). 	(1.17) 

The quantity J3  in equation (1.17) is the Bessel function and for positive values 

of s it can be written as 

(x12 )2i 
J3(x) = 

s! 2 

This series is absolutely convergent for all values of x but the series expansion 

for r/ai is divergent for e 1  > 0.6627434. By replacing r by R and the index 1 

by 2, a similar expresssion can be obtained for the outer orbit. Moreover, using 

the expansion for r/ai , we can find expressions for (r/al )' for any n. 
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Something similar can be applied to cos 0. In the coplanar case, the angle 9 

can be expressed as 

where f2 are the true anomalies of the two orbits. Then, using elementary 

trigonometry, 

cos 9 = (cos f2  cos t2 - sin f2  sin ti2 )(cos Ii  cos wi - sin fi  sin tt'1)+ 

+(sin 12 COS W2 + cos f2  sin  W2)  (sin  fi  cos 1  + cos fi  sin tii). 

But sin f2 and cos f2 can be expressed as series in the following way (Brouwer 

and Clemence 1961): 

°°ld 
sin !2  = 2/1 _e>--J3(sej) sin se, = 

s=1 s de2  

= sin & + ej  sin 2j + e 	sin Mi - sin) + O(e) 	(1.18) 

2(1-
2) 00  

cosf = —e +e >J3(sej) COS  sej = 
e2 	s=1 

= cos & + e(cos2 - 1) + e(cos3 - cos) + O(e). (1.19) 

Finally, the mean anomalies can be replaced by the mean longitudes 

Ai  = £ + 

Hence, it is possible to derive an expansion of the perturbing Hamiltonian in 

terms of longitudes and eccentricities up to any order. A second order expan-

sion of the P2  and P3  terms with respect to the eccentricities can be found in 

Appendix B. 

17 



1.7 A symplectic integrator with time trans- 

formation for the three-body problem 

1.7.1 Introduction 

Symplectic integrators are efficient algorithms for treating few-body systems 

numerically. Numerical methods which use symplectic transformations are ex-

pected to reflect the qualitative properties of a Hamiltonian system better than 

traditional integrators. Moreover, these methods do not show secular errors 

in energy and angular momentum. Studies on symplectic integrators of rele-

vance in celestial mechanics include the works by Kinoshita, Yoshida and Nakai 

(1991), Wisdom and Holman (1991), Saha and Tremaine (1992), Yoshida (1990, 

1993), Sanz-Serna (1992) and Gladman, Duncan and Candy (1991). However, 

symplectic methods have the serious disadvantage that one can not use different 

time-steps in different parts of the orbit without losing their good long-term be-

haviour (Gladman, Duncan and Candy 1991). Although the so called reversible 

time-step strategies (Hut, Makino and McMillan 1995, Funato et al. 1996) may 

work well in some occasions, the problem is still considered unsolved. Another 

way of dealing with this problem is to employ a time transformation and use 

the extended phase space (Mikkola 1997). A code based on this idea has been 

used for many of the numerical integrations described in chapters 2 and 3 and 

is now described in outline. The code itself was kindly provided by S. Mikkola. 

1.7.2 Generalised leap-frog with time transformation 

Consider a system with a Hamiltonian of the form 

(1.20) 
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where the two parts H0  and H1  are integrable if each of them is considered 

as Hamiltonian of the system. An approximation to the motion of the system 

defined by equation (1.20) is to move the system first over a half time-step 

using H0  as the Hamiltonian, then move the system over a full time-step h 

using H1  and then use H0  again to move the system over another half time-

step. This technique can be applied to any splitting of a Hamiltonian into two 

integrable parts. In practice, the two parts must be not only integrable, but 

the advancement of the system must be easy to compute. This method is called 

the generalised leap-frog. An example of such a method is the Wisdom-Holman 

method, which is based on the splitting of the Hamiltonian of the Solar System 

into a sum of two-body Hamiltonians and a perturbing function which depends 

only on the coordinates (Wisdom and Holman 1991). 

As was stated earlier, a constant time-step is necessary in symplectic inte-

gration, otherwise the good long-time behaviour of the method is lost. However, 

if the nearly Keplerian orbits of the system are quite eccentric, the choice of a 

constant time-step can lead to inaccuracy, because the motion of the system is 

much faster near pericentre. A choice of a smaller constant time-step should be 

adequate to deal with the problem, but is inefficient. Another possibility is the 

introduction of a time transformation from the physical time t to a fictitious 

time s in the form 

dt=g(ã,t)ds 	 (1.21) 

and a new Hamiltonian F: 

F = g(ãqo)(H( 5 ,qo) +po), 	 (1.22) 

where is the coordinate vector, 73is the momentum vector, po  has the numerical 

value Po = —H(t) and q0 = t. Consequently, the time t is now a coordinate and 

Pa is the corresponding momentum. Dividing now the new Hamiltonian into 



two integrable parts 

F = r0  + F 1 , 	 (1.23) 

we can apply the generalised leap-frog method to this Hamiltonian. The con-

stant time-step is now the step in s, while the step in the physical time t varies 

according to equation (1.21). 

1.7.3 Perturbed two-body problem 

Let the Hamiltonian of the problem be 

H M  --+R(it), 
r 

(1.24) 

where M is the total mass of the system and R is the perturbing function. The 

new Hamiltonian F is 

-  g( 2 – M —+R(r,qo)+po) 	 (1.25) F  
r 

and it can be split into two parts F 0  and F 1  as follows: 

F0  = g(j3Q – M - 	—+po), F1 =gR(,qo). 
r 

Since F 1  is independent of the momenta, it is easily integrable for any choice of 

g (see equations 1.27 and 1.28). However, the choice of g should be such that 

F0  is also easy to integrate. We also need to find an expression for the physical 

time t. Bearing in mind that 

ds = dt, 
g 

we obtain: 

ft t+bt 
1 

h= 	–dt, 
 g 

(1.26) 

where h is the stepsize in s. In principal, by solving this equation, we obtain an 

expression for the corresponding physical timestep R. Finally, the momentum 
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jumps between the Keplerian steps are calculated by 

-. 	9(gR) 	 (1.27) —h  

	

5P0 = —h 8(gR) 
	 (1.28) 

5q0 

which are to be added to the momenta before moving to the next Keplerian 

orbit step. 

1.7.4 Hierarchical three-body problem 

The same kind of treatment can also be applied to the hierarchical three-body 

problem. The Hamiltonian of the problem is of the form 

	

H==K1 +K2+R, 	 (1.29) 

where K1 , K 2  are the Keplerian Hamiltonians of the inner and outer binary 

respectively, while R is the perturbing Hamiltonian (cf. equation [1.5], though 

R has a different meaning there). The new Hamiltonian is defined as 

F = g(H+po), 	 (1.30) 

and it can be split into 

F0  = g(K 1 +K2+po) 
	

(1.31) 

F 1  =gR. 	 (1.32) 

1.8 Multiple stellar systems 

Generally, stars have a tendency to form groups of different multiplicity, from 

the smallest possible (binary systems) up to large groups, like globular clusters 

with a population of the order of 10 7  stars. Modern observations give values for 

the frequency of multiple stars in the galactic field of up to 70%, and between 
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5% - 15% of these systems are at least triple (Gliese and Jahreiss 1988, Batten, 

Fletcher and McCarthy 1989, Duquennoy and Mayor 1991). 

Many studies have been carried out in order to investigate the multiplicity 

of stars. Among the 50 nearest systems (mainly G/K/M dwarfs), there are be-

lieved to be 33 single, 13 binary and 4 triple stars (Van de Kamp 1971, Henry 

and McCarthy 1990) and among the 164 nearest solar type dwarfs it is claimed 

that there are 93 singles, 62 binaries, 7 triples and 2 quadruples (Duquennoy 

and Mayor 1991), with the number of triples and quadruples possibly being 

larger. Finally, among the 50 brightest systems there appear to be 27 singles, 

15 binaries, 3 triples, 4 quadruples and 1 sextuple (Hoffleit and Jaschek 1983, 

Batten, Fletcher and McCarthy 1989). A significant percentage of binary sys-

tems (20% - 30%) are believed to be members of larger multiple systems (Bat-

ten, Fletcher and McCarthy 1989) and most of these are hierarchical triples 

(Tokovinin 1997b). 

A rather large fraction of triple and quadruple systems can be found among 

pre-main sequence stars in star forming regions (Ghez, Neugebauer and Matthews 

1993). Triple or even higher multiplicity systems, which usually have a hierar-

chical structure, are also found in open clusters, although it appears that they 

are not as numerous as in the field. Such systems have been observed in the 

Pleiades (Mermilliod et al. 1992), the Hyades (Griffin and Gunn 1981, Griffin 

et al. 1985, Mason et al. 1993), Praesepe (Mermilliod, Duquennoy and Mayor 

1994), M67 (Mathieu, Latham and Griffin 1990) and in NGC 1502 (Mayer et al. 

1994). So far, there is only one hierarchical triple system that has been detected 

in globular clusters, but it is almost certain that there are many others. This 

is the millisecond pulsar system PSR B1620-26 in the core of the M4 globular 

cluster (Backer, Foster and Sailmen 1993, Thorsett, Arzoumanian and Taylor 

1993, Rasio, McMillan and Hut 1995, Thorsett et al. 1999, Ford et al. 2000). 
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From all the above, it becomes quite clear that it is necessary to study, 

numerically and analytically, the formation and dynamical evolution of hierar-

chical systems in the galactic field and in star clusters. Moreover, the study 

of the hierarchical three-body problem can find application not only in stellar 

systems but also in other areas, for example the solar system. (The Earth-

Moon-Sun system is a hierarchical triple system.) 
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Chapter 2 

Evolution of the inner orbital 

eccentricity in hierarchical triple 

systems 

2.1 Introduction 

The study of the evolution of hierarchical triple systems is very interesting, not 

only from the purely theoretical point of view, but also because they can play 

an important role in nature. For instance, the energy of a few close binaries 

in a globular star cluster can dominate the energy of the entire system. In 

fact, globular clusters are known to contain substancial fractions of binaries 

which were present initially (so-called "primordial" binaries). Therefore, the 

cores of the clusters are thought to contain a small but dynamically significant 

population of triple systems formed through dynamical interactions between 

primordial binaries (McMillan, Hut and Makino 1991). In simulations, these 

triple systems should be handled numerically with caution because they require 

long integrations of the orbital dynamics in order to resolve the outcome of the 
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interaction. Moreover, theories developed for understanding the orbital dynam-

ics of hierarchical triple systems could be used in the context of observational 

astronomy, in connection with extrasolar planet detection or the identification 

of multiple stellar systems. 

An important characteristic of an orbit is the eccentricity. The eccentric-

ity can govern the possibility of close encounters between the components of a 

binary system or between the two subsystems of a hierarchical triple system, 

even when the semi-major axes are rather large. But close encounters mean 

strong interactions among the bodies and strong interactions could lead to a 

configuration very different from the initial one. For example, the third star can 

'pump in' some eccentricity to the inner binary (as will become quite clear in 

the present and subsequent chapters) and, as a result of this, the inner binary 

and the third star, which were previously well separated, can now approach 

each other so closely, that the configuration of the system changes, i.e. dis-

ruption of the triple system or change of hierarchy occurs. In addition, if the 

orbital period of the inner binary is rather short, then an increase in the inner 

eccentricity would lead to the appearance of tidal friction, tidal deformation of 

the spherical stars, possible mass transfer etc. and hence, although we started 

with a purely gravitational problem which involved interaction between point 

masses, we have reached a point where the present description of the problem 

has significantly deviated from the original one and new factors need to be taken 

into consideration. 

Thus, it becomes quite clear that understanding (rather than just deter-

mining) the processes that govern the evolution of the eccentricity of the inner 

binary is essential for trying to give answers to questions that have concerned 

astronomers for some time, such as, for example, whether the system breaks up 

or not. 
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2.2 Variation of the inner eccentricity 

As was stated earlier (section 1.4.1), the motion of the members of a hierar-

chical triple system can be pictured as two, slowly evolving, Keplerian orbits. 

The main topic of discussion in this chapter will be the variation of the inner 

eccentricity when it is initially zero and the period ratio 

x== nj 
T1  n2  

(where T1 , T2 , n1  and n2  are the periods and the mean motions of the inner 

and outer orbit respectively) is rather large, or equivalently (for comparable 

masses) when 21  << I. (Here a i  are the semi-major axes.) For most hierarchical 

triple stars, X is of the order of 100 and these systems are probably very stable 

dynamically. However, there are systems with much smaller period ratios, like 

the HD 109648 system with X = 22 (Jha et al. 2000), the A Tau system, with 

X = 8.3 (Fekel and Tomkin 1982) and the CH Cyg system with X = 7.0 (Hinkle 

et al. 1993). Such systems will be the main topic of our next chapter. 

The present section will be split into subsections dealing with the following 

cases: 

i) m 1 =m2 =m3 10 e2 =0 

m 1 m2  I=0 e2 =0 

m 1  =A M2 I = 0 e2 0 

m 1 in2  I0 e2 0 

V) m 1 4m 2  I0 e 2 =0 

Vi) m 1 =m2 =m3 I0 e20. 

and for each case, a formula for the averaged eccentricity (or the averaged square 

eccentricity) will be derived with an aimed reliability to about 10% (20%). 



2.2.1 Equal masses, coplanar orbits, circular binaries case 

It has been suggested that the averaged inner eccentricity can be calculated 

from the formula (Eggleton and Kiseleva 1996, Kiseleva, Eggleton and Mikkola 

1998): 
A 

ejfl 

= X'/X— B' 	
(2.1) 

where A and B depend on the mass ratios. This is an empirical formula based on 

results from numerical integrations of coplanar, prograde and initially circular 

orbits for some mass ratios. Initial conditions were such that the inner binary 

was 900  ahead of the outer, i.e. 

fi+tzi=+f2+w2 

in the notation of sections 1.3 and 1.4. The motion of the system can be studied 

analytically by using the Jacobi decomposition of the three-body problem, which 

was described earlier (section 1.4.1). The equation of motion of the inner binary 

is 

= —G(mi  + m2)- + , 	 (2.2) 

where C is the gravitational constant and .P, the perturbation to the inner 

binary motion, is 

If? +p2 3  

=( 	
1 

+ Cm3  
0 	iI—i 	

(2.3) 

with 
rn2  

z==1,2. 
M1 + m2  

The equation of motion (2.2) is effectively the same as equation (1.1), with 

everything expressed in terms of F and R in the former. Now, since the third 
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star is at considerable distance from the inner binary, implying that r/R is 

small, the inverse distances in equation (2.3) can be expressed as: 

1 	100 

-. 
 (pjr )n 

P" (Cos 0) 
IR — p 	

110 

and 
1 	1/ ji2 r\Th 

P(cos9), 

where P are the Legendre polynomials and 9 is the angle between the vectors 

and R (cf. section 1.5). Expanding to third order, the perturbation becomes 

F = Gm3-( 
( i?. )2 - 	- 5(,i - ) (. 1 

5r2 R5 	2R3 	2 	R7 + 

- jr2(. 
2 R5  

The first two terms in the above equation come from the quadrupole term (P2 ), 

while the other two come from the octupole term (P3 ). However, since at the 

moment we are dealing with the case of equal masses, ttl = i2 and equation 

(2.4) reduces to 
ô 3(R) 	1r2  

F=Gm3(R5 153 

The eccentric vector can be used now, in order to obtain an expression for 

the inner eccentricity. Of course, this could also be done by applying canonical 

methods, but using the definition of the eccentric vector is a quite straightfor-

ward procedure which does not require any knowledge of canonical perturbation 

theory. The eccentric vector ë is given by 

F 1 
--+ —(f x h), 
r p 

(2.6) 

where / = x i and p = G(mi  -i-- m2 ). If we differentiate equation (2.6) we get 

(2.4) 

(2.5) 

e= -[2(i; - )j;_ (i?. Ji 	 (2.7) 

4] 



(assuming that j?. = 0, i.e. the inner binary remains nearly circular) and 

substituting for F, we finally obtain: 

.- 	 (2.8) 
AR3 	R2 R 

Then, considering the inner binary to be 900  degrees ahead of the outer bi-

nary initially (although more generally, the calculation can be done for any 

initial phase), the Jacobi vectors can be represented in polar form as r = 

a1  (cos ni t, sin nit) and ] = a2  (sin n2 t, - cos n2t). After integrating, the com-

ponents x 1  and yi  of the eccentric vector become (expanding in powers of 

and retaining terms up to first order): 

Gm 3 a 
=3 (b1  (t) + — b2(t)) + O(X) 	 (2.9) 

pa2  

Gm3a 
Yi =3 (c i (t) + — c2(t)) + O(X) 	 (2.10) 

pa2  

where 

b 1  (t) = 	cos (m 1  - 2m2 )t - 	cos (3n 1  - 2m2 )t - 	cosnt + 3 (2.11) 

b2  (t) = 	- 	cos (n i  - 2m 2)t - 	cos (3m 1  - 2n2 )t + (2.12) 

ci (t) = 	— 
	
sin (3mi  - 2n2)t+ 	sin(ni  - 2n2)t - 

	
sin n it (2.13) 

C2 (t) = 	- 	sin (3m1  - 2n2 )t + 	sin (ni  - 2n2 )t (2.14) 

Hence, 

e = (x + 	
= 

Gm3a ((b1(t) + b2 (t)) 2  + (ci(t) + 
,ua 

1 b1 (t)b2 (t) + ci (t)c2 (t) 	10 Gm3a [(b
1 (t) 2  + c1(t)2)  + 

X (b 1 (t) 2  + c1(t)2) 	I + O(X). 	(2.15) 

Thus, we are now able to estimate the average inner eccentricity, which is given 

by 

fei= 
1 
	e 1 dt, 	T — oo. 	 (2.16) 
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(Note that T here does not denote the period.) If x = ni t, y = n2 t, then 

averaging the eccentricity over t is equivalent to averaging over x and y provided 

that n1  and n2  are not commensurable (Arnold 1980). Consequently (using 

Mathematica for the integration), 

Gm3a 	21r 2ir 1 

= pa (f f -_/b + cdxdy + 

+ 1 

2ir 21r 1 b1 b2  + Clc2 dd) = f f 
- 	m3 	

(3.472665.68493 
- m1+m2+m3X2 	

+ 	)+O(X), (2.17) 
-It 

where the distance ratio (1)3  has been replaced by a 

in1  + m2  

M1 + m2  + m3  

using Kepler's third law. For equal masses m 1  = m 2  = m 3 , the previous formula 

becomes: 

1 1 	 5.72533 
= 	(3.47266+ 	. ) + O(X). 	 (2.18) 

Now, equation (2.1) can be expanded to first order in terms of 4 yielding 

Ein = A ( 1 + lB). 	 (2.19) 
X2 2X 

Eggleton and Kiseleva found that for equal masses A = 1.167 and B = 3.814, 

numbers that are in satisfactory agreement with our result, since equation (2.18) 

yields A = 1.15755 and B = 3.8168867. 

As was mentioned earlier, Eggleton and Kiseleva's result was based on nu-

merical integrations. The fact that there is good agreement between the theory 

developed above and their empirical formula is an indication of how good for-

mula (2.18) is. But in order to quantify this, we carried out numerical integra-

tions of the full three-body equations of motion on our own. For that purpose, 
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Table 2.1: Error in the mean eccentricity for systems with m 1  = m 2  = 0.5. The 

behaviour of the error is consistent with the truncation of terms of order X 
io-

in equation (2.18). 

am3 =0.5 m3 =5 

10 3% 15% 

20 0.8% 4% 

50 0.2% - 

we have used a symplectic integrator with a time transformation (cf. section 

1.7). The units have been chosen such that C = 1 and m 1  + m 2  = 1. 

Several numerical integrations were performed for various values of the outer 

semi-major axis (a i  = 1 in our simulations). The integrations were performed 

over a 10 outer orbit period span and some of these results are presented in table 

2.1. Generally, the results were very good, as expected. However, there was a 

small discrepancy when the third mass became rather large. For m 3  = 5, which 

is 10 times each of the inner masses (among stellar triples, mass ratios are rare 

outside a range of 10:1, as stated in Eggleton and Kiseleva 1995) and a2  = 10, 

the error was 15%, because of terms of order X 
LO  which are not included in 

our formula. However, the error dropped to just 4% when the outer semi-major 

axis was increased to 20. It should be pointed out here that the initial aim 

was to investigate the behaviour of the inner eccentricity in systems with large 

period ratio X. Getting an error of 15% in a situation where X = 12.9, which 

is close to the lower extreme in real systems, like A Tau and CH Cyg, is not 

worrying. 
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Figure 2.1: Eccentricity against time for equal masses and a 2  = 10. The upper 

graph is from the numerical integration of the full equations of motion, while 

the lower one is based on our theoretical model. The agreement is more than 

satisfactory. 
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2.2.2 Unequal masses, coplanar orbits, circular binaries 

case 

The calculation of the previous section can be extended for the case of unequal 

masses (all three and not just the third one). This means that the perturbation 

will be given by equation (2.4) approximately, and following the same steps as 

previously (the outer binary was started 900  ahead of the inner binary and this 

initial configuration will hold for the rest of this chapter), we obtain: 

Gm 3a 
x1 = 	( b i (t) + X42(0) + O(X1) 	 (2.20) 

pa2  

GM3a31  
Yi = 	(c i (t) + Xc2 (t)) + O(X 1 ) 	 ( 2.21) 

with 

b 1  (t) = - cos (3n1  - 2n2 )t - cos (n i  - 2n2)t - cos n i t + 3 (2.22) 

b2  (t) = —M sin n 2t 	 (2.23) 
16 

c i (t) = 	sin (3n 1  - 2n2)t + sin (ru - 2n2)t - sin ni t 	(2.24) 

C2 (t) = 	M(cosn2t— 1) 	 (2.25) 
16 

and 

M.= 
	in2  - m1 	

(2.26) 
33 (Ml + m2 )(m i  + m2  + m3 ) 

This time, the calculation was done for 	instead of 	, since the former is 

easier to calculate. However, that does not affect our qualitative understanding 

of the eccentricity behaviour (see below). 

In fact, averaging over the inner and outer period yields: 

(Cm 3  a 
2 	2ir 2ir 

) 	
(b2  + c) dxdy + = 	

ua 	I 
jO Jo 4-2 1 

1
f2ir 2ir 1 

+2X 	f —(b1b2+cic2)dxdy+ 
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"r 

 r 

+X 1 '7'  f 	-(b + c)dxdy) = 

M2 	1 115 225 

(m 1  + m2  + rn3)2 	
+ 	MX) + O(X). (2.27) 

 128 

The interesting thing here is that the dominant contribution to the eccen-

tricity comes from the P3  term with a factor of X3 and not from the P2 term, 

as one might expect. This is because the P3  term varies on a timescale of the 

order of the period of the outer binary, while the P2  term varies on a timescale 

of the order of the period of the inner binary. This is probably the reason why 

Eggleton and Kiseleva found that equation (2.1) did not give a good fit for 

some mass ratios (though unfortunately it is not known which ratios they were 

talking about). 

It is worth mentioning that for equal masses and to leading order 

r
Vn = 1.26381, 

while we have already found that 

em  = 1.15755k 

to leading order, by equation (2.18). This illustrates that the mean and root 

mean square are almost equal. 

As before, the theory was tested by running numerical integrations of the full 

equations of motion. Table 2.2 presents some results from these integrations. 

The integrations were performed for 10 outer orbital periods and the results 

were in good agreement with the theory. For instance, the error in the mean 

square eccentricity for systems with m 1  = 0.333, m 2  = 0.667, m3  = 1 and semi-

major axes a2  = 10 (fig. 2.2), 20,50 were 22%,8% and 2% respectively. Note 

that an error of 22% would be about double the error in the root mean square 

eccentricity. The approximate formula seems to fail when the outer mass gets 

large compared to the inner binary bodies (e.g. for m3  = 7 and a2  = 10, we have 
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Table 2.2: Error in the mean square eccentricity for systems with m 1  = 0.333 

and m2 = 0.667. The behaviour of the error is consistent with the truncation 

of terms of order X in equation (2.27). 

a2 	11 m3=11m3=71 

10 22% 50% 

20 8% 18% 

50 2% - 

an error of 50%, which drops to 18% when we increase the outer semi-major 

axis to 20) because the perturbation is rather strong and the neglected terms of 

order X in equation (2.27) become important. Finally, there were also some 

problems with some smaller outer masses. A simulation for the same inner pair 

but for outer mass m 3  = 0.2 and a2  = 10, for 200 outer orbit periods, revealed 

an error of 20%. As can be seen from figure 2.3, secular terms contribute to 

the evolution of the inner eccentricity and that explains why there was an error 

of 20%, although m3 was not very large compared to the other two bodies and 

hence the perturbation to the motion of the inner binary was not very strong. 

(Note that the eccentricity is smaller than in fig. 2.2.) Here secular terms play a 

noticeable but minor role. They become important in the situations considered 

below. 

2.2.3 Unequal masses, coplanar orbits, eccentric outer 

binary case 

The last case that remains from the coplanar regime is the eccentric outer binary 

case. Secular terms are expected to play an important role in this case because 

of the non-zero outer eccentricity, as we shall see, and for investigating this case, 
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Figure 2.2: Eccentricity against time for unequal masses and a 2  = 10. The 

upper graph is from the numerical integration of the full equations of motion, 

while the lower one is based on our theoretical model. 
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Figure 2.3: Eccentricity against time for a system with m 1  = 0.333, in2  = 0.667, 

M3 = 0.2 and a2  = 10. The secular contribution to the inner eccentricity evolu-

tion can be clearly seen. 

some elements from secular theory, which were presented in the introductory 

chapter (section 1.4.4), will be used. 

The Hamiltonian of the averaged system is (Marchal 1990): 

H 
= _G2 rn3 (Ml  + m2) 2 -  C2M3M2 +Q+Qi 

+Q2, (2.28) 
2L 	 2L 

where 

Q 
= Gmm3as(23e2) 	 (2.29) 

8b  

75CmmriTaeW1 - es 
(3 + 24) 	 (2.30) Qi = - 64Mnso4(1-4)3 

and 

Q2= 
15Gmm 3 (m i  - m2)4eseT cos(gs - 9T)( 4  + 3e), 	(2.31) 
64(mi  + m 2 )b(1 - e 

with m, M and M were defined in section (1.4.2). The first term in the Hamilto- 

nian is the Keplerian energy of the inner binary, the second term is the Keplerian 

energy of the outer binary, while the other three terms represent the interaction 
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between the two binaries. The Q term comes from the P2 Legendre polynomial, 

the Q2  term comes from the P3  Legendre polynomial and the Qi  term arises 

from the canonical transformation. 

By using equations (1.8) and (1.9), we can now derive the averaged equations 

of motion of the system. However, instead of using e5 and gs, the variables 

xS = e5 Cos gs and Ys = es sin gs will be used. The XS and ys  variables, 

which are the components of the eccentric vector, are introduced to help us 

get over certain mathematical problems arising in the equations of motion, i.e. 

singularities resulting from the fact that es may be initially zero. Then, bearing 

in mind that es = + y , the equations of motion of the system are: 

dxs 	5 	e7 

d 	- 16°(1 - 2 5 (1 - e)[(4 + 3e) singT + 6(XSyS Cos gT + 
eT) 2  

(1 - e 9 ) 	25 3 + 24 
(1 
 3 2 

+y sin g')] - 	_______ 
(1 - 4) + '

Y(1 - 4)3 - e)]ys 	(2.32) 

dys - 	5 	 __ 
dr - 
	16a_ - 4) (1 - e[(4 + 3e)cosgT +6 (x'cosgT + 

25 3+24 
3 + 	"i' 

(1— e 	8 (1 
4)3(1 - e)}xs 	(2.33) 

dg - @(2+34)  5 (1+44) 

-2(1 - 4)2 - 16 eT(1 - 4)3 (4 + 34) (XS  COS g'r + ys sin gT) + 

2511 + 442(12)! 	 (2.34) 
8i - eT 

deT - 5 	c3 

d 	- 16 (1 
_ 4)2 (4+3esco5Tsn1T) 	 (2.35) 

where 

m1 — m2as_ m 1 m2M 	as 	_ 	m3 	as 
_____-1 2,  ml+m2aT 	m3(mi+m2) aT 	- M(mi+m2)aT 

We 

di- 
 = 3 Gm3a.  

-- 1 dt. 
4 a(m1 +m2) 

After running a few simulations for reasonable sets of parameters, using a 

4th-order Runge-Kutta method with variable stepsize (Press et al. 1996), it was 



noticed that eT remained almost constant. If that approximation is taken as an 

assumption, terms of order es  are neglected and only the dominant terms are 

retained, then the system can be reduced to one that can be solved analytically: 

dx 
= —  Bys+CsingT 

d-r 
dys = Bx—CcosgT 	 (2.36) 
di- 

- 

di- 

where 
1 	25 (3+24) 

5 	e 

= 4(i-4) 

The solution to the above system is: 

XS (7) = 
(C1+C 

COS 
 gQ) 

 COS 
 Br+(C2_ 

CA 	 C 

A - 
sin T o ) sin BT A— B COS (Ar+gi-0) (2.37) 

Ys(-r) 
= CA 

sin 9TO

—C2) COS Br— A_BsmTT0) (2.38) 

where C1 , C2  are constants of integration and g 0  is the initial value of the outer 

longitude of pericentre gT 

Now, having calculated the secular contribution to the inner eccentricity, we 

can add approximate expressions for the non-secular terms by using the theory 

developed earlier (section 2.2.1) except that we now allow for the eccentricity 

of the outer orbit. In this case, the vector R is given by 

= R(cos (f2  + w2 ), sin (f2  + w2)), 

where 12  is the true anomaly and w 2  is the longitude of pericentre of the outer 

binary. To lowest order in the ratio a i /a2 , the components of the eccentric 

vector now become: 
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Cm 3a 
X i (t) = 

- e)'1 + e2 
COS f2) ' [-  cos (3nit - 2(12 + w2 )) + 

9 	 1 
cos (nit - 2 (f2 + 72)) - cos n i t] + C + O(X) (2.39) 

= yi  (t) 	
Gm3a 

- e2
, 

)3 (1 + e2 cos f2)[  sin (3n1t - 2(f2 + w2 )) - 

9 1 
- sin (nit - 2(f2 + 2)) - sin nit] + C, + O(X) (2.40) 

in place of the leading terms in equations (2.9) and (2.10), where C, C, are 

constants of integration. These constants can be replaced by equations (2.37) 

and (2.38), since XS (r) and ys('r)  vary slowly compared to x 1  and Yi  of equations 

(2.39) and (2.40). That way, the constants C1  and C2 in the secular solution 

can be determined more accurately and an expression for the eccentricity that 

includes both secular and short period effects can be obtained 1 . 

Adding now the secular and non-secular parts, we get (after averaging): 

--

- 	m 	 1 	1 43 129 2 129 
in 

- (Ml 
+m2+m3)2(l_e22)X8+8e2+64e2)+ 

C 	 CA 
+(Ci+AB cosv2o) 2 +(C2_ AB sinv2o) 2 + 

+_C \2+O(X-) 
"A-B 1  

(2.41) 

C1  and C2 are determined from the initial conditions (i.e. zero initial inner 

eccentricity): 

G 
C1 = 
	

m3a 

 ia(1 - e)3 
(1 + e2 cos 120)  [3 5cos2 (120  + w20 )] 	(2.42) 

Gm3a 	
(1 + e2  cos f2o)  sin 2(120 + 20). 	(2.43) C2  = 	+ 

2  a(1 - e)3  

The validity of the above theoretical result can be checked by running several 

simulations for different outer masses, outer eccentricities and outer semi-major 

'An alternative way of seeing this is to note that, in the Von Zeipel method, we effectively 

write x 1  = xs + 6x, where ox denotes short-period terms. 
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axes, using m1 = 0.333 and m2 = 0.667. Some of these results are shown in 

table 2.3. Generally, the results were in satisfactory agreement with equation 

(2.41). For instance, for m3 = 1, e2 = 0.2 and a2 = 10, we had an error of 21%, 

which became 10% and 5% for a 2  = 20 (fig. 2.4) and a2  = 30 respectively. For 

a situation where rn3 = 1, e2 = 0.7 and a2  = 20, the error was just 5%. Formula 

(2.41) seemed to deviate a bit from the numerical results when the outer mass 

was increased to m3 = 7. Having an outer orbit of e2 = 0.2 and with a semi 

major-axis of a2  = 10, the error was 46%, but dropped to 29% when the outer 

semi-major axis was doubled. That is a reasonable result, considering that the 

perturbation is strong for that combination of outer mass and distance. The 

reason for the discrepancy is that the eccentricity evolution is dominated by 

short period terms, which are included in our calculations only at lowest order. 

Apparently, there are situations where the contribution of terms of order X in 

equations (2.39) and (2.40) is significant. Of course, it would always be possible 

to improve the theory by adding more short period terms to obtain satisfactory 

agreement for this problem. No matter how good the approximation is, there 

will always be some range of parameters where it becomes unsatisfactory. 

Finally, it is clear from the solution for the secular part of the eccentricity 

(equations [2.37] and [2.38]) that, when A - B = 0, the eccentricity is expected 

to become infinite. But since A is the frequency of the outer pericentre and B 

is the frequency of the inner one, it means that we are dealing with a secular 

resonance, i.e. the two secular frequencies are nearly equal. Although equations 

(2.37) and (2.38) can not describe the eccentricity evolution in this case, they 

can be used to determine the location of the resonance by solving the equation 

A - B = 0. After substituting, the latter leads to 

m1m2M 2 as 1 	2 	2 	25 	m3 

aT 	 8 M 12 
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Table 2.3: Error in the mean square eccentricity for systems with m1 = 0.333 

and m2 = 0.667. The behaviour of the error is in satisfactory agreement with 

the truncation of terms of order X in equation (2.41). 

M3 a2 	11  e2 Error 

1 10 0.2 21% 

1 20 0.2 10% 

1 30 0.2 5% 

1 20 0.7 5% 

7 10 0.2 46% 

7 20 0.2 29% 

as x(_)2(3+24) = 0. 	 (2.44) 
aT 

Therefore, there are sets of orbital parameters which satisfy the above equation 

and for which the evolution of a triple system is driven by the secular resonance. 

Figure 2.5 is an example of such a situation. 

2.2.4 Unequal masses, non- coplanar orbits, eccentric outer 

binary case 

In this case, something similar to the coplanar case might be expected to hap-

pen. Here, however, the approach to the problem is slighty more complex due 

to the inclination I of the two planes of motion. The investigation of the inner 

eccentricity of non-coplanar orbits with an eccentric outer binary will be carried 

out in two parts: 

(i) 	10 < 39.230  or 1> 140.770  

(ii) 	39.230  <10 < 140.770 , 
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Figure 2.4: Eccentricity against time for rn1  = 0.333, m2 = 0.667, rn3  = 1, a2  = 

20 and e2  = 0.2. The upper graph is from the numerical integration of the full 

equations of motion, while the lower graph is based on equations (2.37) and 

(2.38). The spikes in the upper graph are the effects of the short period terms 

in the evolution of the inner eccentricity. 
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Figure 2.5: Secular resonance between the two pericentre frequencies for m 1  = 

0.333, in2  = 0.667, m 3  = 0.07, a2  = 10 and e2 = 0.2. Note the very long period. 

where 10  is the initial inclination of the two orbits. The reason for this split is 

that, as we shall see shortly, in case (i), es = 0 is a stable equilibrium point for 

the secular problem, while in case (ii), the equilibrium point is unstable and, 

though the eccentricity is initially zero, we can end up with a large eccentricity, 

even e 1  = 1. 

In the quadrupole level of approximation, if we define x as x = 1 - 4, then 

we can write (Marchal 1990) 

= ±C[Pi (x)P2 (x)] 	 (2.45) 

where 

P, (x) = 54 sin 2 l sin 2 gs 

P2 (x) = 54(1 —4)sin2 lcos2 gs 

and C is a constant depending on masses and constant orbital parameters. At 



lowest order in the averaged problem, the quantities 

A = /1 - 4 cos I 

Z = (1 —4)(1+sin2 I)+5esin2 Isin2 gs 

are constants. The first is proportional to the component of the inner angular 

momentum parallel to the total angular momentum, while the second arises 

from the fact the Q term in the Hamiltonian is constant (equation 2.50). (It 

must be noted that A is different from the constant denoted by the same symbols 

in previous sections). In terms of these constants we may write 

Pi (x) = —2x+Z+A 2 
	

(2.46) 

P2 (x) = —3x2  + x(5 - Z + 4A 2 ) - 5A 2 . 	 (2.47) 

Equation (2.45) can be rewritten as 

= C2P1 (x)P2 (x) 	 (2.48) 

and then, by differentiating the above equation, one can obtain: 

= c2 (p;(X)p2 (X) + P1 (x)P(x)). 	 (2.49) 

A Taylor expansion of the right hand side of equation (2.49) up to first order 

with respect to x and around x = 1, yields: 

I = C2P(1)P(1)(x - 1). 

Consequently, depending on the sign of P(1)P(1), x = 1 (i.e. es = 0) can be 

a stable or an unstable equilibrium point. But 

P;(1)P(1) = —2(5cos 2 I-3), 

which is negative (stable) for 

Jo <39.23° or 10  > 140.770  

and positive (unstable) for 

39.230  <10 <140.77° . 
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The Low Inclination Regime (Jo  <39.23° or 10> 140.77°) 

The Hamiltonian of the system is of the same form as (2.28), but with: 

Q = 
Gmm34 

[-2 - 34+3 sin 2  1(1 - 4 +54 sin  gs)] 	(2.50) 
8b  

Qi - 3GmrnnT4./1 —4 
- 	64Mns4(1 _T)3 (3 + 24) cos l[254 + sin  1(1 - 

—4— 154 sin gs)] 	 (2.51) 

Q2 = 

 

15Gmm3(mi - m2)a3seseT[(çjfl 
asiflg.OcJ + 

64(mi  + m2 )b(1 - 

+ cosgs cos gT) (4 + 34 - 5 sin 2  1(1 - 4 + 74 	ge)) - 

—10(1 - 4)sin2 l cos l sin gs  sin gT]. (2.52) 

After some exploratory numerical integrations of the five equations of motion 

of the system (see Appendix A), it became clear that the outer eccentricity 

and the inclination remained almost constant. That, along with the fact that 

the inner eccentricity was not expected to reach large values (which justifies 

neglecting powers of xS and ys  above the first order), was used to produce a 

simpler system of differential equations. Thus, the system assumes the following 

form: 

di- 
dx5 

= —Bys +C sin gT 	 (2.53) 

dys 
- = Dx5 - E cos g 
d'r 

where 

cosl 	1/3(4-5 sin 2 I) 	1 y(3+24)(2-3 sin 2 I) 
A= 

(1_4)2 (1_e4) 2 	16 	(1-4) 3  

B 	
2-5sin2 I 	f3 Cos I 	'y(3+24) cos  I(- sin  2 I-3) 

- 	23+ 
- (1—eT) 	(1_4)2 - 	(i-4) 



= 5aeT COS l(4—l5 sin I) 
16 	(1-4) 

2 	/3 COS l 	3 'y(3+2e)cosI 
3+ 

(i-4) 	(1_e) 2 	(1-4) 3  

E = 	
aeT(4 - 5 sin  I) 

16 	(i-4) 

and a, 0, -y, r have the same meaning as in section (2.2.3). The above system, 

which differs from system (2.36) because of the way g- is defined in the non-

coplanar regime (gT = - T), can be solved analytically, yielding: 

xS(r
C+BE

) = (Cl(C1+ A2—BD Cos gTØ ) Cos \/r+(C2— 

AC+BE A sin To )sin\/i 
A2—BD \/ 
	 r 

AC+BE 
- A 2 - BD cos (A-r+ gPO) 	 (2.54) 

C AC+BEA 
YS (T) = (- A2_BDB iAT T01+  

AC+BE 	 AC+BEA 
+A2 	 sin —BD COS gTo)\/r+(A2 - BD sin To 

FC2 ) cos 	 (2.55) 

with C1, C2 constants of integration. 

Again, in order to produce a more accurate formula, some short period 

effects in the evolution of the eccentricity were calculated, by using the technique 

described earlier. If a frame of reference is chosen such that the line of nodes is 

initially on the x-axis, with the positive direction of the x-axis pointing at the 

ascending node of the outer orbit, F = a i (cos nt, sin nit, 0) and 

= R(cos (12 + t2), Cos lsin (f2 + tt2), sin Isin (12  + w2)), 

(because of the above choice of coordinate system the argument and the lon-

gitude of pericentre coincide initially), expand in powers of and retain the 

leading term, we arrive at 
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Gm 3a 
= ta(1 _ e )3( 1 +e2  COS f2){ l6  COS  (3n1t  2(f2+2)) + 

cos (3ni t + 2(12 + 2)) + cos (ni t - 2(f2 + W2)) + 
16 	 16 
3 	 11 	1 

+ COS (ni t +2(f2+tt72))+ -  jcosnit+ ä  COS  3nit+ 

+ COS I[COS (nit - 2(12 +t2)) - 

- cos (n i t + 2(f2 + w 2 )) + cos (3nit - 2(f2 + 2)) - 

—cos(3ni t + 2(f2 + t2))] + cos2 I[_ COS  3nit - 
	

COS ni t + 

+- cos (3nit -2(f2 + t2)) + 	cos (3nit + 2(f2 + V92)) + 
16 	 16 
15 	 15 

tt + cos (nit - 2(f2 + W2)) + 	cos (n i t + 2(12 + 2))]} +
16 

+c + O(X) 	 (2.56) 

Gm3 a 
=a(1 _e)3(1+e2c0sf2)31_16 

  sin (3nit+2(12 +w2)) + 

1 	 15 

	

sin (3n1t - 2(12 + tt2)) - 	sin (ni t + 2(12 + w2)) -
16 

15 	 7 	1 
sin (nit - 2(12 + w2)) - sin n it + sin3n1t + 

+ cos I[ sin (nit + 2 (12 + t2)) - 

9 	 1 
- sin (nit - 2(12 + W2)) + sin (3nit — 2(12 + t2)) - 

12 	1 	3 

	

- sin (3n it + 2(12 + t2))] + cos 	sin 3n1t + sin nit + 

+ sin (3nit — 2(12 + w2)) + sin (3nit + 2 (12 + w2)) - 
16 	 16 

— sin (nit - 2(12 + t2)) - 	sin (nit + 2(12 + t2))]} + 
16 	 16 

+c + O(X1) 	 (2.57) 

with C, C, constants of integration. It should be mentioned here that, in the 

calculation for short period terms in the components of the inner eccentric vec-

tor, w2 was treated as a constant parameter. Furthermore, because the orbital 

binary planes are inclined to each other, the inner binary plane is expected to 

precess, with its normal moving on a conical surface which has for its axis the 



normal of the outer binary plane approximately. Because of this additional mo-

tion, the orientation of the line of nodes will not be the same throughout the 

orbital evolution of the triple system. However, for the calculation of the short 

period terms, we can neglect that additional motion (and all secular evolution), 

without significant error. 

Finally, combining the secular and non-secular terms as in section (2.2.3), 

after averaging we obtain: 

—— 	m 	 1 	1 145 	2 435 
— 

(Ml 
+m2+m3)2(1_eX4{64+e2(64+ 

105 	 4 435 35 	 59 
+ - - cos 2cti2o) + e2 ( j- + 	cos 2M20 + 1024 cos 4M20) + 

+ cos2  I[ + 2 ( 33  9 
+ cos 2t20) + e 

4
2( 

33
256 

+ 3 Cos 2c0 — 

	

32 	32 4
59 177 	2 531 177 

--- 
 

	

COS 4L 	+ cos4  I[--- + e2 (-- — -- cos 2tti2o ) + 
 64 	64 	32 

4 531 	59 	 59 
+e2 (- — 	cos2z2o + 1024 COS 4t 2o )]} + 

512 64
1 	D 	AC+BE 	 D 

+[(1 + -)(C1 — A
2  — BD 

cosw2o) 2  + (1 + ) x 

	

AC+BE A 	 AC+BE)2 x(C2+ 	 + 
A2_BD 520 (A2_BD 

C AC + BE)2] +0 
(X), 	 (2.58) 

A 2  —BD B 

with C1  and C2  determined by the zero initial eccentricity as follows: 

C1= 
	Gm3a 	

(1 + e2  cos f2o)3[4  cos2  I sin (120 + 20) - 
- 

—1 — cos2 (f2o  + w20)} 
	

(2.59) 

FB 	Gm3a 
(1 + e2  cos f20)  cos I sin 2(f20 + 20)  + C2 = 

C 
+ sin tt'2o]. 	 (2.60) 

To check these results, several simulations were performed, using various 

values for the orbital elements of the outer orbit (inclination, eccentricity, semi-

major axis). The results were in good agreement with the theory, except again in 
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Table 2.4: Error in the mean square eccentricity for systems with m 1  = 0.333 

and m2  = 0.667 and I = 15°. The behaviour of the error is in satisfactory 

agreement with the truncation of terms of order X in equation (2.58). 

IM3  11 iiaii I Error]  

1 10 0.2 21% 

1 20 0.2 10% 

1 1 30 0.2 5% 

1 20 0.7 8% 

7 10 0.2 45% 

7 20 0.2 28% 

the case of large third mass and when the parameters of the hierarchical system 

led to very small values of the quantity A - in equations (2.54) and 

(2.55), i.e. when we were near a secular resonance between the two pericentre 

frequencies. 

To get an idea of how well the theory works, we present some results in 

table 2.4 and figure 2.6 for I = 15°. Again, several systems with m 1  = 0.333, 

M2 = 0.667 and rn3  = 1 were integrated. Starting the outer binary at apocentre, 

with e2 = 0.2 and a2  = 10, the error was 21%, which was reduced significantly 

as the third star moved outwards (10% and 5% for a2  = 20 and a2 = 30 respec-

tively). The theory worked well even when the outer eccentricity was increased 

to e2  = 0.7. For a2  = 20 the error was just 8%. Finally, for m 3  = 7, e2 = 0.2 

and a2  = 10 the error rose to 45%, and dropped, as expected, to 28% as the 

outer semi-major axis was increased to a2  = 20. It is worth mentioning that 

comparing the results of tables 2.3 and 2.4, it appears that the error in the 

mean square eccentricity is roughly independent of the inclination of the orbits. 
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Figure 2.6: Eccentricity against time for I = 150 . The upper graph is from 

a numerical integration of a triple system with m 3  = 7, e2  = 0.2 and a 2  = 10, 

while the lower graph is from a numerical integration of the same system, but 

with a2  = 20. It is very clear that, in the upper graph, the eccentricity evolu-

tion is dominated by short period terms, while in the lower graph, the secular 

contribution can be easily noted. 
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Figure 2.7: An example of inner eccentricity evolution in the high inclina-

tion regime. The integration parameters are: m 1  = 0.333, m 2  = 0.667, rn3  = 1, 

a2 =10, e2 =0.2 and l=70°. 

The High Inclination Regime (39.23° <10 < 140.770 ) 

As was mentioned earlier, the zero eccentricity is an unstable equilibrium point 

of the secular equations for 39.23° < 10  < 140.77°. In this case, short period 

terms and the secular P3  term will provide us with the initial perturbation we 

need to create a non-zero eccentricity. (Recall that es = 0 is an equilibrium 

point for the secular P2  problem.) Thus, at the early stages of the evolution of 

the eccentricity and while it is still small, the motion will be controlled by the 

P2  and the P3  terms. As soon as the eccentricity becomes significant, however, 

the motion is dominated by the P2  term. Although the problem is integrable 

if one considers a perturbing Hamiltonian expansion with just the P2  term (cf. 

equation [2.50]), the use of the P3  term is necessary, if we want to obtain the 

right period of the oscillation in es (Ford, Kozinsky and Rasio 2000). 

Although it is possible to obtain a solution for the secular P2  problem in 

terms of elliptic functions, we will only derive an expression for the maximum 
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value of the eccentricity in the high inclination regime (at the quadrupole level 

of the approximation). As seen in the previous subsection, 

± = ±C[Pi (x)P2 (x)] 	 (2.61) 

Thus, the maximum value for 6s  can be obtained by solving the equation 

x=0. 	 (2.62) 

Using the fact that es is initially nearly zero, which yields that Z = 2 - A 2 , we 

finally find that 

emax =
F1_ 

cos2Io 	 (2.63) 

if I Cos 11 < 	For example, emax 0.90 when 10 = 700  (fig. 2.7). It becomes 

clear from the above formula that when 10  = 90°, the secular eccentricity be-

comes one. The above result also helps to explain the distinction between high 

and low inclination regimes, as the boundary at cos' = 39.23 0  approxi-

mately coincides with the change of stability. It should be mentioned here that 

the high inclination regime was first investigated in the context of the asteroidal 

motion in the solar system by Kozai (1962). 

2.2.5 Unequal masses, non-coplanar orbits, circular bi-

naries case 

In this case, as can be seen from equations (2.52), there is no secular contribution 

from the P3  term, due to the fact that the outer binary is circular. (More 

correctly, there will be some, because of eccentricity generated in the outer 

binary by perturbation, but it will be tiny.) 

The short period terms were obtained in the usual way, using 

R = R(— sin n2t, cos I cos n2 t, sin I cos n2t), 

53 



while for the secular part we used system (2.53), after setting eT = 0. The 

components of the eccentric vector are in this case (including secular and non 

secular parts) 

1 	 3 m3a1  

	

= 	/ta { - 
-- Cos n it + cos3n1t - 	cos (3n 1  - 2n2 )t - 

	

cos (3n i  + 2n2 )t - 	cos (n 1  - 2n2)t - 
16 	 16 

cos (n + 2n2 )t + COS 1[ cos (3nit + 2n2 )t - 
16 	 8 
JL 

cos (3nit -2n2)t + cos (ni t + 2n2 )t - 

äcos (nit - 2n2 )t] + cos I[— Cos (3nit - 2n2 )t - 
16 

cos (3n it + 2n2 )t 	cos (ni t —2n 2 )t - 
16 	 16 
15  

_Cos (nit +2n2 )t_ Cos 3nit_ j  Cos n i t] + 
16 	 8

25 	165 
+MX[cosI(—j sin 3n 2t— 	sin n2t) +

64 

+cos I(---sinn2t+ j  sin 3n2t)I+(4cos I- 

FB 5 - cos2 I) sin V r]}+ 

(2.64) 

GM3a3j  7 	1 	1 

	

Yi = 	
sin nit + sin 3n1t - 	sin (3ni  - 2n2)t -

16 
1 	 15 

	

sin (3n + 2n2 )t + 	sin (ni  - 2n2 )t + 
16 	 16 

cos (n i  + 2n2)t + cos I[ sin (3nit + 2n2 )t - 
16 	 8 

- sin (3n 1t - 2n2)t - sin (n i t + 2n2 )t + 

sin (ni t - 2n2)t] + cos I[— sin (3ni t - 2n2 )t - 
8 	 16 

	

sin (3nit + 2n2 )t + 	sin (nit - 2n2)t +
16 

sin (ni t + 2n2 )t - sin 3n i t + sin nit] + 

	

i25 	15 
+MX [ cos 3n2t + cos n2t + 

	

64 	64 
2 	 25 

	

+cos I(_j4  Cos n2t - 	cos3n2t)] + 
 64 



+ F:Re  (4 cos 2  i - 1) sin V'hT - 

—MX( - cos 2  I) cos VTT} + 0(X1), 	(2.65) 
8 16 

where B and D are the same as in system (2.53) but with CT = 0. After the 

usual averaging, we obtain: 

	

-- 	 m 1145 11 	2 	177 

- (Ml + rn2  + M3 )2 
	 + cos I + ---Cos 4 

	

-- cos4  I + 
 32 	64 

425 	12175 	34625 
±JvI;X3(4096± 

4096 
cosI— 

 4096 
C05 1+ 

25625 6 	1 	D 
+ 

4096 cos 
I)+(1 +)[(4 cos2 I -1 ) 2 + 

+MX( - 	cos2  j)2]} + O(X). 	 (2.66) 

The above equation is not completely obtainable from equation (2.58) by set-

ting e2  = 0, because equation (2.66) is deduced from the averaging of equations 

(2.64) and (2.65), which include more short period terms compared to the equa-

tions which were averaged to produce equation (2.58). 

The numerical tests did not reveal any surprises. The eccentricity was driven 

mainly by short period terms plus some secular contribution from the P2  term. 

The formula works very well except when we enter the high inclination regime 

(39.230  <I < 140.77°) and we get large eccentricity values. Considering again 

m 1  = 0.333, m 2  = 0.667, in3 = 1, I = 20° and varying the outer semi-major 

axis, the error was 20%, 9% and 6% for a 2  = 10 (fig. 2.8), a2  = 20 and a2  = 30 

respectively. The usual problems arose when we took m3  = 7, because of terms 

of order X neglected in equation (2.66). 
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Figure 2.8: Eccentricity against time for m 1  = 0.333,m2  = 0.667, M3 = 1,a2  = 

10 and I = 20°. The upper graph is from the numerical integration of the full 

equations of motion, while the lower one is based on the theoretical model. 
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2.2.6 Equal masses,non-coplanar orbits, eccentric outer 

binary case 

Finally, for the completeness of the problem, e is calculated for the case of 

equal masses, non coplanar orbits and eccentric outer binary. The equal masses 

have the same effect as the zero outer eccentricity, i.e. there is no secular 

contribution from the P3  term and not even short period terms. The secular 

solution can be obtained from system (2.53) by setting m 1  = m 2 , while the short 

period terms can be obtained by following the usual procedure and choosing 

= R(cos (f2  + t2), cos lsin (f2 + t2), sin Isin (f2 + t2)). 

The components of the eccentric vector are (combining secular and non-secular 

parts): 

Gm 3a 1 
[(1-+-e2cosf2) 

ia(1 - e 	
[

1
-cos(3nit-2(f2 +2)) + 

	

= 	 ) 3  

+ cos (3ni t + 2(12 + 2))  + 	cos (ni t - 2(12 + 2)) + 
16 	 16 
3 	 11 	1 

+1-h  cos (n i t + 2(f2 -I-- W2)) + j cosn it + cos3n 1t + 

+ cos I{ cos (nit - 2(12 + w2 )) - 

- cos (n i t + 2(f2 + 2)) + cos (3n i t - 2(12 + w2 )) - 

— COS (3nit+2(f2+tt'2))]+COS I[— COS  3nit—  j- cosnit+ 
8 	 8
1 	 1 

+ j- cos (3n it - 2(12 + tv2)) + 	cos (3n it + 2 (f2 + t2)) + 
 16 

15 	 15 
+ cos (n it —2(f2-i-tt'2))+ 	cos (nit +2(f2+w2))]J- 

16 	 16 

—(1 + e2  cos f20 ) 3 (cos2  (120 + tv20) + 1 - 

—4 sin 2  (120 + W20)
2  I) cos VBDT + 2(1 + 

+e2 cos 120)  sin  2(120 + t920) cos I sin \/r] + O(X 3 ) 	 ( 2.67) 

Gm3 a 

	

 
Yi= 	 [(1 

- e)3 + 
e2 COS  f2)[ sin (3nit + 2(12 + w 2 )) + 
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+ sin (3nit— 2(f2  +w2)) - 
	
sin (nit +2(f2 +w2)) - 

16 	 16 

15 sin (nit - 2(12 + tti2)) - sin ni t + sin 3n1t + 

+ COS I[ sin (nit +2(f2  +w2)) - 

9 	 1 
- sin (nit - 2 (f2 + W2))  + sin (3nit - 2 (f2 + w 2 )) - 

- sin (3n1t + 2 (f2 + w2 ))] + COS 2  I[— sin 3n1t + sin nit + 

sin (3nit -2(f2 + t2)) 	sin (3n1t + 2 (f2 + t2)) - 
16 	 16 

3 sin (flit - 2(12 +102)) - 	sin (nit + 2(12 + t 2 ))]] - 
16 	 16 

—(1 + e2 COS  f2o) 3 (cos2  (120  + w20) + 

+1 - 4 sin2  (120 + w20) cos 2  I) sin /7j75 - 

—2(1 + e2  cos 120)  sin 2(f20 + w20) cos I cos 	+ O(X 3 )(2.68) 

and the final form of the formula for the averaged square eccentricity is: 

	

1 	1 	145 105 

	

= 9(1_e)+e2(6 	COS 2w20)+ 

4 435 35 	 59 
+e2 ( 	+ 	

1024 
cos 2w20  + 	cos 4w20) + 

+ cos2 
1[ 11 
 + 2 ( 33 9 

+ cos 2w20) + e( 	+ cos 2w20 -
32 4 	 256 8 

59 177 	2 531 	177 
-----i  cos4w2o)] + cos4  I[-- + e2(-j -  - 

	
COS 2W20) + 

 32 
4 531 59 	 59 

+e2 ( 	- 	cos 2w20 + 1024 C05 4w20)]] + 

	

512 64
1 	1 

+-2 (1 - e)6(1 +e2 COS  f2o) 6 (1 + 

+)[(4 sin  2 (120 + tv20) COS  2 l —1 - cos2  (120  + w20)) 2  + 

+4 cos2  I sin  2(f20 + w20)1} + O(X 5 ). 	 (2.69) 

The results from numerical integrations for systems with equal masses, non-

coplanar orbits and eccentric outer binary showed good agreement with the 

theoretical result given by equation (2.69) (table 2.5). For instance, for an 

eccentric outer binary (e2  = 0.2), 90° ahead of the inner one and starting at 



Table 2.5: Error in the mean square eccentricity for systems with equal masses 

and I = 200 .  The behaviour of the error is consistent with the truncation of 

terms of order X 5  in equation (2.69). 

a2  e2 Error 

10 0.2 23% 

20 0.2 9% 

30 0.2 5% 

20 0.7 43% 

pericentre initially, inclined at 20° to the plane of the inner binary and with 

a2  = 10, 20, 30 there was an error of 23%, 9% and 5% respectively. There 

seemed to be a rather significant discrepancy when the outer binary was higly 

eccentric (e2 = 0.7). In this case, for a 2  = 20 and I = 20° the error was 43%. 

The reason for that disagreement is the importance of terms of order X 3  in the 

expansion of the components of the eccentric vector: these will provide better 

initial conditions for the secular part of the eccentricity, in addition of course to 

the improvement of the accuracy of the short period terms themselves. This is 

illustrated in figures (2.9), where graphs from the solution of the full equations 

of motion and secular motion are compared. Note that the starting value of the 

secular motion is too small. 

2.2.7 Conclusion 

The idea of the present chapter was to investigate the evolution of the inner 

eccentricity in a hierarchical triple system when the period ratio X of the two 

binaries is rather large. The results were quite satisfactory and covered a rather 

wide range of parameters (masses, eccentricities etc.). 
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Figure 2.9: Eccentricity against time for equal masses, a 2  = 20, e2  = 0.7 and 

I = 15°. The upper graph is from the numerical integration of the full equations 

of motion, while the lower graph is a plot of the secular eccentricity obtained 

from system (2.53) by setting m 1  = rn2  and by using the short period solution 

to determine the initial conditions for the secular problem. 
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Generally, the theory developed above does not apply accurately when the 

eccentricity gets rather large ( e2, > 0.1 ), or when we have a mean motion 

commensurability, or when we are close to a secular resonance, as was seen 

earlier. These situations may require special treatment, although it is expected 

that if we are close to a mean motion resonance, the effect on the eccentricity 

evolution would be weak due to the fact that we are dealing with systems with 

large period ratio. Moreover, problems could arise in situations with extreme 

mass ratios, but one must bear in mind that in real stellar systems, the stars 

have comparable masses: 1 : 10 is the usual limit of mass ratios. 

Further improvements to the formulae can be made, but even without any 

improvements, we believe that they give a reasonable estimate of the inner 

eccentricity. However, one should always bear in mind that the most impor-

tant thing is to understand the dynamics of the system and hence to have a 

qualitative picture of the situation. 
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Chapter 3 

Stability of hierarchical triple 

systems 

3.1 Introduction 

The stability of a hierarchical triple system is an intriguing problem which 

remains unsolved up to date. It has been a subject of study by many people 

and the appearance of computers, with their ability of performing numerical 

intergrations with large speed, has proved very useful. The work that has been 

done on the stability of hierarchical triple systems can be divided into two 

categories: analytical and numerical. 

The analytical work is based on the generalisation of the concept of surfaces 

of zero velocity of the restricted three-body problem (fig. 3.1) to the general 

three-body problem (Marchal 1990). The quantity c2H, where c is the angular 

momentum and H is the energy of the system, is the analog to the Jacobi 

constant of the restricted problem. Szebehely and Zare produced an expression 

for c2 H, which involved the masses, the semi-major axes and the eccentricities of 

the system (Szebehely and Zare 1977). That expression was compared with the 



value of c2H at the collinear Langrangian points, which determine the openings 

and closings of the zero velocity surfaces. For instance, if the value of OH was 

smaller than the one at the inner Lagrangian point, then there could be no 

exchange of bodies. There is an analogous condition for escape. The criterion 

has been used to check if various three-body systems were stable, mainly in the 

context of solar system dynamics (Szebehely and McKenzie 1977, Szebehely 

1980, Bozis 1981). The criterion has also been used in slightly modified forms. 

Roy et al. (1984) found an upper bound for the OH quantity, which was 

associated with the distance of the closest approach of m2  to m3 , while Donnison 

and Williams (1983, 1985) expanded c 2  H as a series in the quantity 

m2+m3 1 

3m 1  

under the condition m 1  >> m 2 , rn3  and used the modified version of the c 2  H 

criterion to investigate the stability of satellite systems. A similar criterion has 

been derived by Donnison (1988), but for m3  >> m 1  + rn2 . 

The main disadvantage of the c 2  H criterion is that it is a sufficient but not 

a necessary condition for stability. Exchange might not occur even when the 

condition is violated but it certainly cannot occur when the condition is satisfied. 

The lobes could also be open to infinity, but the body may or may not escape to 

infinity. Finally, things are not clear again when the third body is started outside 

(inside) the lobes, since the criterion cannot give any information whether the 

third body will be ejected or not from the system (will keep orbiting the binary 

or form a binary with one of the other masses). It is worth mentioning here that, 

according to the c 2  H criterion, prograde orbits are more stable than retrograde 

ones. The physical explanation is that the angular momentum contained in a 

counter-rotating triple system is smaller than in a direct system with all other 

things being equal and consequently a larger a 2 /ai  ratio is required to obtain 

the same angular momentum for a counter-rotating system than for a direct 
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Figure 3.1: The location of the Lagrangian equilibrium points (de-

noted by the small open circles) and associated zero-velocity curves for 

P2 = m 2 /(m 1  + m2 ) = 0.2. The point 0 denotes the centre of mass of the 

system. The figure is taken from Murray and Dermott (1999). Exchange is 

impossible if the third body lies within the curve through L1. 



system. However, the greater stability of direct systems might not be the case, 

and is indeed contradicted by numerical evidence, as we will see later on. 

The numerical work involves a wide range of simulations of hierarchical triple 

systems. Harrington carried out numerical integrations of triple systems with 

stellar and planetary mass ratios (Harrington 1972, 1975, 1977) and he derived 

the following empirical condition for stability, based on his results: 

> A{ l+Blog 1 + m3m1 + m2)]+K, 	 (3.1) 
a1 	 3/2 

where q2 = a2(1 - e2), A and B are determined empirically and K is 0 if this 

is to be a mean fit and is approximately 2 if it is to be an upper limit. For 

coplanar orbits, A = 3.50 and B = 0.70. An interesting thing that Harrington's 

integrations revealed is that the stability of the systems did not depend on the 

value of the inclination, except the near-perpendicular configuration, where the 

system was unstable for all semi-major axes. This may indicate that planar 

models could be sufficient for stability studies for moderate inclinations. He 

also found that retrograde orbits were more stable than prograde orbits, a re-

sult which is in contrast with Szebehely's results. However, the results for equal 

masses and direct orbits were in good agreement, although Szebehely's results 

allow a slightly closer outer orbit. It should of course be borne in mind that the 

c2H criterion is based on the possibility of exchange of bodies. It should also be 

pointed out here that the definition of stability given by Harrington is a bit am-

biguous. He classifies a triple system as stable if there is no "significant change" 

in the orbital elements during the period of integration, and in particular the 

semi-major axes and the eccentricities. Another point that raises some concern 

is that the integrations are performed for only 10 or 20 outer orbital periods. 

This could prove inadequate, although Harrington suggested that instabilities 

of this kind (exchange etc.) set in very quickly. 

Graziani and Black (1981), in the context of planet formation and extrasolar 
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planets, used numerical integrations to model planetary systems with initially 

circular orbits. Based on their results, which were in agreement with the re-

sults of Nacozy (1976) and Donnison and Williams (1978), they obtained the 

following condition for stability 1: 

M1 + m2 	 A3 	3 

IL = 0.5 
M 	

<ILcrit = 0.175(2 - 	 ii 1 	(3.2) 

where the planets m 1  and m 2  orbit the star M. The parameter A gives the 

minimum initial separation between the companions in units of their mean 

distance from the central star, while p is the mean mass of the two companions 

in units of the mass of the star. Specifically, 

2R-1 R 
-  - 

- R+1' 	R 1  

with R 1  and R2 the semi-major axes of the inner and outer orbits respectively. 

The above condition can be modified to apply for i ~! 1 
( 

Black 1982). The 

modified stability condition is: 

L 3  
:5 Prit 0.083 (2 - (3.3) 

Both the above stability conditions were confirmed by more integrations (Pendle-

ton and Black 1983). The results obtained by Black et al. (1981, 1982, 1983) 

were not always in agreement with the other results that have been presented 

in this section so far, especially with Harrington's results. The reason for that 

discrepancy is not always very clear. 

A series of experiments were conducted by Donnison and Mikulskis (1992, 

1994, 1995). They integrated prograde and retrograde orbits (the inner eccen-

tricity was always initially zero) of hierarchical triple systems. They classified 

a system as stable if the change in semi-major axes was less than 10% and/or 

'In their work, a system is defined as unstable if there is clear evidence for secular changes 

in any orbit in a triple system during an experiment. 
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the eccentricity of either binary altered by less than 0.1. They concluded that 

their results were more consistent with the results of Black and his collabora-

tors, except in the case of equal masses when their results seemed to be closer 

to the results of Harrington. They also agreed with Harrington about retro-

grade orbits, but only qualitively. The c 2  H criterion proved to be very poor for 

retrograde orbits, although it did well for co-rotating systems. 

A more systematic approach was taken by Eggleton and his collaborators, 

who ran numerical integrations of hierarchical triple systems with coplanar, 

prograde and initially circular orbits (Kiseleva, Eggleton and Anosova 1994, 

Kiseleva, Eggleton and Orlov 1994). More about these results will be presented 

in the next section. These numerical calculations were later extended to eccen-

tric binaries, inclined orbits (from 00  to 180°) and different initial phases, and 

an empirical condition for stability 2  was derived (Eggleton and Kiseleva 1995): 

1/3 
3.7 	2.2 	1.4 qt - 1 

y min 1 + 1/3 - 1 	
+ 17 1/3 	

' 	 ( 3.4) 
q 	+ 	 q + 1 

where 
M 1 	 n-i 1  + m 2  

qin = - > 1, q = 
M2 	 Tn3 

and YJfl  is the critical initial ratio of the periastron distance of the outer orbit 

to the apastron distance of the inner orbit. y0min  is related to the critical initial 

period ratio by the following relation: 

= (_q 
	1 + 

YOM 
1+q 	1—e

OUt  (3.5) 

The criterion appears to be reliable to about 20%, which is quite good, con- 

sidering the wide range of parameters and the complex nature of the critical 

surface. It does not work very well in situations where there is a resonance or 

'Stability here is equivalent to no change in the hierarchical structure of the system for 

the integration time span. 
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commensurability, but these are more common in systems with extreme mass 

ratios (e.g. star and planets). It should be pointed out here that there is a 

misprint in formula (3.4) as given in Eggleton and Kiseleva: the sign of the 

term -
2.2 /3  is plus, while it should be minus. 

1+q0  

Mardling and Aarseth (1999) showed that stability against escape in the 

three body problem is analogous to stability against chaotic energy exchange 

in the binary-tides problem. They derived a criterion of instability for coplanar 

orbits with prograde motion. The expression is given by: 

Rout 	 1 + 	- RTZt 
—fl-- <C[(1+qout) 	 - 	 ( 3.6) 
ain 	 (1 - e0t)2 -ain 

- 	C is determined where Rt  is the outer periastron separation and q - out  ml+m2 

empirically and it is 2.8. 

Holman and Wiegert tested the stability of planetary size bodies under the 

gravitational influence of a stellar binary system (Holman and Wiegert 1999). 

They ran numerical simulations for a full range of mass ratios and binary ec-

centricities. The particles were started on circular, prograde orbits around the 

binary or around one of the stars, in the binary plane of motion and with 

different initial orbital longitudes. The choice of parameters was based on ob-

servational data of the c Centauri system (Wiegert and Holman 1997), in which 

the largest stable orbit near the stars was found to have an inclination in the 

plane of the binary. The integrations lasted for 10 4  binary periods. If a particle 

survived the whole integration time at all initial longitudes, then it was consid-

ered stable. Using a least squares fit to their data, they obtained: (i) for the 

inner region (particle orbiting one of the stars): 

ac  = [(0.464 + 0.006) + (-0.380 + O.OlO)p + (-0.631 + 0.034)e + 

+(0.586 + 0.061)e + (0.150 + 0.041)e 2  + 

+(-0.198 + 0.074)ie 2]ab 
	 (3.7) 



(ii) for the outer region (particle orbiting the binary): 

ac  = [( 1.60 ± 0.04) + (5.10 ± 0.05)e + (-2.22 ± 0.11)e 2  + 

+(4.12 ± 0.09)p + (-4.27 ± 0.17)ep + (-5.09 ± 0.11)p 2  + 

+(4.61 + 0.36)e 2 /i2 ]ab, (3.8) 

where a is the critical semi-major axis, ab is the binary semi-major axis, e is 

the binary eccentricity and p = m2/(m 1  + m 2 ). Each coefficient is listed along 

with its formal uncertainty. Equation (3.7) is valid to 4% typically and to 

11% in the worst case over the range of 0.1 <p 0.9 and 0.0 < e < 0. 8, while 

equation (3.8) is valid to 3% typically and to 6% in the worst case over the 

range of 0.1 < p < 0.9 and 0.0 < e < 0.7. An interesting finding was that, in 

the outer region, 'islands' of instability existed outside the inner unstable region; 

this phenomenon was attributed to mean motion resonances and indicated that 

there is not a sharp boundary between stable and unstable regions. It should 

be mentioned here that equation (3.8), as presented in the paper of Holman 

and Wiegert, appears not to depend on ab at all. However, this is probably a 

misprint, as equation (3.7) might suggest. 

Finally, in a series of papers, Dvorak and his collaborators (Dvorak 1984, 

1986, Rabl and Dvorak 1988, Dvorak, Froeschle and Froeschle 1989) have inves-

tigated the stability of P-type (planet orbiting a binary star system) and S-type 

(planet orbiting one of the stars of a binary system) orbits in equal mass binary 

systems. A P-type orbit was classified as stable if its eccentricity remained 

smaller than 0.3 throughout the whole integration time, while an S-type orbit 

was considered stable if the planet remained in the vicinity of the parent star. It 

is worth mentioning here that, between the stable and unstable areas, there was 

a region of chaotic motion, chaotic in the sense of unpredictability. This chaotic 

region was limited by the so-called Lower and Upper Critical Orbits (LCO and 
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UCO hereafter). All the integrated orbits within the LCO were found to be 

unstable, while all the integrated orbits outside the UCO were stable-Their nu-

merical integration results are summarised in four formulae. For P-type orbits 

the radii are 

LCO = 2.09 + 2.79e - 2.07e2  (3.9) 

UCO = 	2.37 + 2.76e - 1.04e2  (3.10) 

and for S-type orbits: 

LCO = 0.262 - 0.254e - 0.060e2  (3.11) 

UCO = 0.336 - 0.332e - 0.083e2 , (3.12) 

where e is the eccentricity of the stellar binary system and distance is measured 

in AU . The separation of the binary components was taken to be 1 AU. The 

formulae are the outcome of a least squares parabolic fit to a discrete grid of 

numerical results. 

3.2 Numerical integrations of circular orbits 

As was mentioned in the previous section, several numerical investigations have 

been carried out to study the stability of hierarchical triple systems. Now we 

concentrate on the case of initially circular motions. Kiseleva et al. (Kiseleva, 

Eggleton and Anosova 1994, Kiseleva, Eggleton and Orlov 1994) considered 

the orbits of triple stars which were started with hierarchical, coplanar, doubly 

circular motion, but which have a sufficiently short ratio of orbital periods that 

the system is close to instability. Various systems were integrated with the 

triple code of Aarseth (Aarseth and Zare 1974), with the inner orbit always 90° 

ahead of the outer orbit initially. The integrations were normally carried out 

3AU: astronomical unit. The mean distance between the Earth and Sun. 
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for 100 time units (where a time unit is the initial period of the outer binary), 

although there were situations where the system was integrated for 1000 or even 

10000 time units. A system was classified as stable if it persisted for the length 

of the integration time without changing its hierarchical structure. The results 

from those integrations are presented in Table 3.1. Each entry in Table 3.1 is 

the initial period ratio for the last stable configuration for a given system. 

Each system is uniquely defined by the three parameters a, /3, X0 , where 

m 1 	 m 1  + m 2  
a = log10  (-) ~ 0 , /3 = log10  ( m3 

Generally, if the initial period ratio X 0  is smaller than 	then the system 

is said to be unstable: either one component goes to infinity (or at least into 

a very long orbit), or the hierarchy of the system changes as one star moves 

between the other two. As can be seen from Table 3.1, there are some pairs of 

a and 0 for which two values of Xomin  are given. Immediately below the upper 

value, which is described as a disruptive resonance, the system disrupted and 

then, further below that value, the system became stable again, until it reached 

the lower value of 

There are three regions in Table 3.1, each of them corresponding to a differ-

ent dynamical behaviour of the triple system. The first one is shown in boldface 

and it corresponds roughly to systems where the outer star is the lightest and it 

escapes from the system by a direct ejection or a series of ejections. In the sec-

ond region (which is actually two disjoint regions), shown in italics, the lightest 

star of the inner binary moves backwards and forwards between the other two 

stars. In the last region, three types of instability can occur: 

(i) one or a few exchanges and then the formation of a long lived triple system 

with a new hierarchy. This new hierarchical system may sometimes be destroyed 

by the escape of the new distant body but in many cases the state may survive 

for at least 10000 time units. Such behaviour is rather typical for cases where 
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Table 3.1: Values of 	for last stable configurations (from Eggleton and 

Kiseleva 1995). 

0.0 02 04 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 

MI/M 1 2 .50 .39 .28 .20 .14 .09 .06 .04 .025 .016 401 

1(rn3/mI2) 

-2.0(100) 6.09 6.14 6.28 6.31 6.37 6.40 6.45 6.46 6.45 6.47 6.49 

.1.8(63) 6.09 6.19 6.30 6.38 6.42 6.45 6.48 6.50 6.53 6.53 04 

-1.6(40) 6.09 6.22 6.30 6.41 6.50 6.54 6.53 6.59 6.60 6.60 6.59 

-1.4(25) 6.07 6.20 636 6.46 6.51 6.58 6.60 6.60 6.62 6.64 6.67 

6.11 6.20 6.37 6.42 6.52 6.57 6.58 6.63 6.66 6.66 6.67 

-1.0(10) 5.99 6.10 6.26 6.39 6.47 6.52 6.59 6.60 6.64 6.65 6.66 

63) 5.86 6.00 6.15 429 6.37 644 6.50 6.54 6.54 6.55 6.57 

5.60 5.80 5.95 6.10 6.20 6.29 6.34 637 6.40 6.42 6.43 

-0.4(2.5) 5.29 5.47 5.64 5.80 592 601 6.07 6.1! 6.13 6.15 6.14 

.6) 4.88 5.04 	5.19 5.35 5.48 5.56 5.62 5.66 5.69 5.70 .5.7! 

O.0(1.0 4.37 456 437 4.82 4.90 4.97 103 5.07 5.09 5.11 5.12 

0.2(0.63 4.29 4.31 4.28 4.53 4.15 4.18 4.26 4.32 4.36 4.38 4.39 

0.4(40) 437 4.38 433 4.25 4.26 4.12 4.06 4.02 3.64 3.51 355 
3.41 3.46 

0.6( 25) 4.37 435 4.34 4.29 4.22 4.19 4.04 4 00 3.!)8 3.96 394 

3.61 
3., 

iA 3.73 3.72 3.71 3.83 3.84 

0.8(.16) 4.37 4.8 432 4.27 4.18 4.05 4.00 3.96 3.92 3.96 3.88 

3.67 173 170 3.64 340 3'51 , . 3.46 3.39 335 335 129 

1.0(70) 432 433 418 412 3.45 339. :;- - 3;3L 3.24 316 3.18 3.13 

3.62 3.62 3.61 3.54 

1.2(063) 4.31 4.29 4.26 3.47 338 330 3.21 3.12 3.09 3.06 .10! 

339 336 332 

1.4(.040) 4.27 334 3.48 3.40 3.31 3.20 3.15 3.08 2.93 2.88 2.85 

3.52 
1.6(.025) 3.50.,,-3-50 3.42 3.33 3.26 3.18 3.05 2.98 2.90 2.47 2.43 

237 

1.8(016) 3.48 3.48 3.39 3.29 3.22 3.12 3.03 2.98 2.87 2.46 2.06 
2.55 2.48 

10(.070) 3.44 3.42 338 3.26 3.17 3.11 3.03 2.91 2.49 207 2.01 

232 

the third star is more massive than the initial inner binary (0 0); 

the escape of one component after long term evolution with many exchanges; 

the escape of one component (ususally the lightest one in the system) fairly 

soon after the first exchange, or after only a few exchanges. 



3.3 Numerical results for systems with a = 2.0 

The results in Table 3.1 are ambiguous in the sense that the integration time 

span is not stated. From this point, a hierarchical triple system will be classified 

as stable if it retains the same hierarchy for 100 outer orbital periods. In the 

numerical integrations that follow, the Mikkola symplectic integrator, described 

in section 1.7, was used to integrate the full equations of motion for several triple 

systems with m 1  = 0.01 and m 2  = 0.99 (c = 2.0) but different m3 . The bodies 

started on circular orbits, with the outer binary 900  ahead of the inner one. 

The integrations were extended to 1000 outer orbital periods in order to see 

how sensitive the stability limit was to the integration time span. As expected, 

the instability region was slightly enlarged and some systems that appeared 

to be stable within 100 outer periods, broke up when the integration time 

was taken up to 1000 outer orbital periods. The results from these numerical 

integrations are presented in Table 3.2 and figures 3.2. Each entry in Table 3.2 

represents, as X decreases, the first initial period ratio for which the system 

disrupted. There were some systems which demonstrated a more complicated 

behaviour: the system broke up for some values of X0 , then it became stable 

and then it became unstable again. For instance, for m3  = 0.4 the system broke 

up for X0  = 3.57, then it became stable for X0  = 3.52 until it disrupted again 

for Xo  = 3.45. 

3.4 The 3:1 resonance 

In order to understand the results of Table 3.1 better, we shall consider a par -

ticular triple system and study it in more detail. For that purpose, we chose the 

system with m 1  = 0.01, rn2  = 0.99 and m 3  = 0.1 (c = 2.0 and 3 = 1.0), whose 

last stable configuration, according to Table 3.1, had = 3.13. 
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Table 3.2: Extreme values of X 0  for which a system with in1  = 0.01 and 

M2 = 0.99 breaks up for the first time within 100 and 1000 outer orbital periods. 

in3  t = 100T t = 1000T 

0.01 2.01 2.05 

0.016 2.01 2.07 

0.02 2.11 2.15 

0.025 2.41 2.46 

0.04 2.74 2.79 

0.063 2.92 2.93 

0.08 3.02 3.07 

0.10 3.07 3.11 

0.12 3.09 3.18 

0.14 3.17 3.23 

0.16 3.18, 3.86-3.87 3.29, 3.85-3.89 

0.18 3.24, 3.79-3.84 3.29, 3.79-3.91 

0.20 3.25, 3.72-3.84 3.36, 3.72-3.91 

0.23 3.33, 3.56-3.86 3.40, 3.55-3.86 

0.25 3.82 3.82, 3.88-3.93 

0.30 3.68, 3.78-3.79 3.68, 3.78-3.87 

0.35 3. 27, 3.60-3.72 3.27, 3.59-3.73 

0.40 3.45, 3.53-3.57 3.46, 3.51-3.58 
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Figure 3.2: Outer mass m3  against initial period ratio X o , for which a system 

with m 1  = 0.01 and m 2  = 0.99 becomes unstable. The upper graph is for 100 

outer orbital periods, while the lower one is for 1000 outer orbital periods. The 

dots denote instability. 
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3.4.1 Some numerical results 

Once more, Mikkola's symplectic integrator was used for the numerical integra-

tion of the triple system. The integrations were started with the outer binary 

900 ahead of the inner one. Some results from the simulations can be seen in 

figures 3.3 and 3.4. The outer eccentricity and longitude of pericentre did not 

change much, since the mass m 1  is small compared to the other two and it would 

not affect the motion of the outer binary significantly. However, the inner ec-

centricity and pericentre showed a very interesting behaviour. The eccentricity 

oscillated from very small values (e l  0) to quite significant values (e l  0.35), 

while the pericentre appeared to circulate for some periods and remain almost 

constant at others (this will become more clear in the next section). This pat-

tern became more clearly visible as we approached the last stable configuration 

of the system (according to the definition of stability mentioned in the previous 

section, i.e. the system keeps the same hierarchy for 100 outer orbital periods), 

which was found to be for = 3.08. It was also noticed that the eccentricity 

reached large values when the longitude of the pericentre was almost station-

ary. It is worth mentioning that for = 3.07 (which is the initial period 

ratio of the first unstable configuration of the system), by estimation from fig-

ure 3.3, the pericentre frequency during the first four outer binary periods has 

roughly the same magnitude as the outer mean motion but the opposite sign, 

i.e. tf —n2. There is also clear evidence that the dynamical behaviour of the 

triple system is mainly determined by the fact that the period ratio and hence 

the mean motion ratio is close to three. This is confirmed by figure 3.5, where 

the maximum inner eccentricity emax within 100 outer orbital periods, is plotted 

against the initial period ratio. For a slight change in the initial period ratio, 

from X0  = 3.08 (a2  = 2.18) to Xo  = 3.3 (a2  = 2.28), i.e. a change of order 7%, 

there was a 50% change in the maximum eccentricity, something that might be 

M01 



expected to happen if the system was close to a mean motion resonance. 

3.4.2 A qualitative analysis of the 3:1 resonance 

A common theoretical approach in a situation like this is to isolate those ar-

guments in the expansion of the perturbing potential which would play an 

important role in the dynamical evolution of the system. It should be noticed 

that, even when the pericentre circulates, the inner binary orbit is still close 

to a circle and consequently A 1  ri1 . When the pericentre is almost station-

ary, again, A 1  Li n 1 . For the outer binary, A 2  n2 , since the outer orbit 

remains nearly circular with almost constant semi-major axis throughout the 

evolution. Since the configuration of the three bodies is such that the system is 

close to a 3:1 orbital resonance, arguments that contain the quantity A 1  - 3A2  

are expected to be important because of its small frequency. However, because 

0, terms which are proportional to e2  in the expression of the perturbing 

Hamiltonian, can be neglected. Taking that approximation into account, there 

is only one argument containing the combination )i - 3A: 

A 1  - 3A2  + 2t 1 , 

which comes from the P3  term, as seen in the expansion of the perturbing 

Hamiltonian in Appendix B. But because of the behaviour, of the pericentre, 

the frequency of the resonant argument is not always very small and there are 

time intervals (i.e. those in which the pericentre circulates) when it is roughly 

-2m2. In these time intervals, the frequency of the argument 

A1 - 21\2 + ZU1, 

becomes small and it may be expected that this argument plays an important 

role in the evolution of the system. The two angles are plotted against each 
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Figure 3.3: Inner binary eccentricity and longitude of pericentre against time for 

a triple system with m 1  = 0.01, m 2  = 0.99, m 3  = 0.1 and X0  = 3.07. The results 

are from numerical integration of the full equations of motion using Mikkola's 

symplectic integrator. In this case, the outer orbital period is T2  19.30. 



0.14 

e2 

0.12 

0.1 

0.08 

0.06 

0.04 

0.02 

0 

	

0 	200 400 600 800 1000 1200 1400 1600 1800 

0 

w2-2 

-12 

140 200 400 600 800 idoo 1200 1400 1600 1800 
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Figure 3.5: Maximum inner eccentricity against initial period ratio for a triple 

system with m 1  = 0.01, M2 = 0.99 and m 3  = 0.1. The integration interval is 100 

outer orbital periods. 

other in figures 3.6 for a time interval of 8 outer orbital periods. It appears 

that when the one argument librates the other one circulates and vice versa. 

Of course, one should always bear in mind that, besides the frequency, the 

coefficient of the argument in the expression of the perturbing potential is also 

important in determining its significance. 

If one isolates in Appendix B the terms that contain the arguments A, - 2A 2  + w, 

and A, - 3A2  + 2cti, the following perturbing Hamiltonian H will be obtained: 

1 Gm,m2m3 a 

= 	
9 cos (A, - 2A2  + 	- H 	

2 m,+m2 a3L2el 

285 m 1  - m 2  a1 2 

	

 - 
32 m 1  + m2  a2 

—e 1 cos (A, - 3A 2  + 2t i )]. 	(3.13) 

Then, the rate of change of the inner eccentricity and longitude of pericentre 

can be derived using Hamilton's equations for the above perturbing Hamiltonian 

(cf. equation [1.11]), and are given by: 
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Figure 3.6: The angle ) - 2)2 + LU1 on the y-axis against the angle 

- 31\ + 2t 1  on the x-axis. The upper graph is for t = 0 - 4 outer orbital 

periods, while the lower graph is for t = 4 - 8 outer orbital periods, for a triple 

system with m 1  = 0.01, m2  = 0.99, m 3  = 0.1 and X0  = 3.07. Note the very 

different scales of the axes on both graphs. 
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1 Cm3
1 - [9(1 - - 2) sin (A l  - 2A2  + i) + 

= 4 na 
285 ml — m2 al  

+ 16M1 + m2  a2 
(3 /i — e)sin(A i  —3A2 +2tzi)] (3.14) 

t1 

	

1 Gm3 1 - 	
COS (A - 2A 2  + ') - 

 e2i 
 [9 = - 

	n 1ae1  
285 m l -  m 2  a1  

—el cos (A 1  - 3A2+ 2tt i )]. 	 (3.15) 
8 m 1  + m2  a2  

Equation (3.14) demonstrates another advantage of including the term asso-

ciated with the argument A - 2A 2  + W1 in the expression for the perturbing 

Hamiltonian. For a system with an initially zero eccentricity, the A 1  - 2A2  + W1 

term provides an initial non-zero rate of change for the eccentricity, whereas the 

eccentricity would remain zero without the presence of that term in our equa-

tions. 

Now, if we neglect terms of order e, consider A 1  = n 1 t + A 10 , 1\ 2  = n2t + A20 , 

where A 0 , i = 1, 2 are the initial values of the mean longitudes (A10 = 00 and 

A 20  = 90°) and use the variables x 1  = e 1  cos ru l  and Yi = e 1  sin w1 , we obtain: 

285  
Jb j  = A[9 sin (n1  - 2n2 )t + 	cos (n 1  - 3n2)t - y Sin (n1  - 3n2 )t)] (3.16) 

= A[9 COS (ni - 2n2)t—B(x i sin (n 1  - 3n2)t+yi COS (ni - 3n2 )t)], (3.17) 

where 

A 
= 1Gm3 , 

B 
= - M2 a,  

4n1 a 	 m1+m2a2 

Assuming that n 1  3n2  and that n 1 , n2  are constant, equations (3.16) and 

(3.17) yield: 

285 
±1 - ---- ABx 1  = 9Asinn2t 	 (3.18) 

285 
th + 1—ABy 1  = 9Acosri2t 	 (3.19) 

and the solution to the above equations is: 

ABt - 	576An 2  =  (cosn2t + 
64n + 81225A2B2  

['111 



285 AB 

	

+—j---- sin n2t) 	 (3.20) 

285ABt 	576An2 
Yi = Ce8 	

+ 64n2  + 81225A2B2 
(sin n2t + 

	

285 AB cos n2t) 	 (3.21) 
8 n2 

where C and C, are constants of integration. Examining the expressions for x 1  

and Yi,  it is quite clear that, after some time, the eccentricity will be increasing 

exponentially. The beginning of this exponential growth can be seen in figures 

3.7, which are the graphical representations of equations (3.20) and (3.21) for 

appropriate choices of C and C. The lower graph from figures 3.7 demonstrates 

the behaviour of w 1  that was mentioned previously, i.e. w circulates with 

ful <0. According to the upper figure in figures 3.7, the eccentricity takes 

small values (e l  0.1) for the first three outer orbital periods and then the 

effect of the exponential term becomes noticeable. At the same time, as seen 

from the lower graph, the pericentre starts librating. However, the quantities 

n1  and m2  do not remain quite constant, as was assumed in the derivation of 

equations (3.20) and (3.21); as can be seen from figure 3.9, the quantity n 1  - 3n2  

oscillates around zero for the initial phase of the evolution of the system, but 

it moves away from zero during the phase in which the eccentricity takes large 

values, apparently causing the eccentricity to drop. 

It is worth mentioning here that the discrepancy between figure 3.8, which 

is from the integration of the full equations of motion, and the upper of fig-

ures 3.7, concerning the moment when the eccentricity starts to increase to 

large values, is because of the fact that figure 3.7 is just an approximation to 

the real situation. A perturbing Hamiltonian with more terms could lead to 

a more accurate description of the problem. However, equations (3.20) and 

(3.21) provide us with a semi-quantitative picture of the evolution of the inner 

eccentricity and longitude of pericentre during the early stages of the evolution 

EM 
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orbital periods and for a triple system with rn1  = 0.01, m 2  = 0.99, m 3  = 0.1 
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of the hierarchical triple system. 

3.4.3 An analytical criterion for stability for the 3:1 res-

onance 

In the previous section, equations (3.16) and (3.17) were solved analytically by 

the use of the approximation n 1  3n2 . However, these equations may be solved 

in a different way without using that approximation. 

If a new set of complex variables z and is introduced, defined as 

Z=X1+jyi , 	 = x 1 —iy1 , 

then 

=1+i'i and =ii—iyi. 

Using equations (3.16) and (3.17) to substitute for ± j  and , the differential 

equations for z and are: 

= 9Aie_t1_2n2)t + 	AB e_i1_37 2)t 	 (3.22) 

= _9Ai&1_2n2)t + .ABein 1 _3n2 tz . 	 (3.23) 

Introducing a new variable 

(1.) = e(n1 3n2 ) .  

the system of differential equations takes the form 

—(n 1  - 3n2 ) 	AB " (
w + ( 

_9Aiei(fh2) 

 ) ) 	I ' 
fl2) - 3n2 ) 	 9Aie  

-- 

(3.24) 

The characteristic equation of the matrix of coefficients leads to 

2 (ni  - 3n2 ) 2  
= 	

-4 	
, 	 (3.25) 
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where p denotes an eigenvalue. The dependence of .s on the outer semi-major 

axis is shown in figure 3.10 for a typical case. A pair of real eigenvalues (s > 0) 

would lead to an exponentially growing solution in general, while a pair of 

purely imaginary solutions (s <0) leads to a bounded solution to the problem. 

Hence, the equation s = 0 gives us a value for the period ratio X for a given 

triple system at which there is a qualitative change of the behaviour of the inner 

eccentricity. After some algebraic manipulations, the condition s = 0 yields: 

285 7723(7fl1 - m2) 	
(3.26) X3 3X 

where M is the total mass of the system. Though it is easy to solve this equation 

numerically, we can derive an approximate solution which is more convenient 

and gives values very close to the solution of equation (3.26). If the equation is 

rearranged in the form 

X=3+cX, 

where c is the right side of equation (3.26), the equation may be solved itera-

tively starting at X = 3. The first iteration leads to 

285 m 3 (m 1  - m 2 )  
X=3± 	 (3.27) 

163M(m 1  +m2)F 

which is sufficiently accurate for our purposes. Equation (3.27) is easier to 

use than equation (3.26) and the values it produces are very close to the roots 

of the exact equation. For instance, for a system with m 1  = 0.01, M2 = 0.99 

and m 3  = 0.1, equation (3.26) yields X = 2.70 and X = 3.21, while the corre-

sponding values from equation (3.27) are X = 2.75 and X = 3.24. However, 

one should be careful when using equation (3.27), since it is not a good approx-

imation for large m 3 . This becomes clear in figure 3.11, where the solution of 

equation (3.26) is plotted for m 3  = 0.1. For large values of m 3 , equation (3.26) 

has only one solution. 
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Figure 3.10: The quantity 8 plotted as a function of a 2  for a triple system with 

M1 = 0.01, m 2  = 0.99, m 3  = 0.1 and a 1  = 1. 

Table 3.3 compares values of 	from the numerical integrations (for dis- 

ruption within 100 and 1000 outer orbital periods) with values from the larger 

solution of equation (3.26) for a few systems in the vicinity of the system with 

a = 2.0 and ,@ = 1.0. The values which are predicted analytically are always 

higher than those from the numerical integrations. One reason for this may be 

that the simulations run for a certain time span. Systems that are stable within 

the integration time could be unstable for a longer integration time. Another 

reason is that a system could start with .s > 0 but switch to s <0 before the 

system breaks up. This is because the theory developed in this section assumes 

that the angular velocities of both binaries remain constant, which is not the 

case, as seen in figure 3.9. This simplification will be avoided in the improved 

theory presented in section 3.6. Therefore, an improvement to the analytical 

criterion would be to find the value of X where the system starts with positive 

.s and when s is zero the inner eccentricity is equal to 1. 

M. 
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Figure 3.11: A graphical representation of equation (3.26) for a triple system 

with m 1  = 0.01, M2 = 0.99, m3  = 0.1. The solid curve is the graph of the left 

side, denoted as f(X), and the two dashed lines represent the right side. It is 

clear that for large m3 , equation (3.26) has only one solution. 

Table 3.3: Values of X0  for which a system with m 1  = 0.01 and m 2  = 0.99 

breaks up. 

M3 t = 100T t = 1000T Theoretical value 

0.08 3.02 3.07 3.18 

0.10 3.07 3.11 3.21 

0.12 3.09 3.18 3.25 

0.14 3.17 3.23 3.28 

0.16 3.18 3.29 3.31 

0.18 3.24 3.29 3.33 

0.20 3.25 3.36 3.36 

0.23 3.33 3.40 3.39 



3.5 The 4:1 resonance 

As we move up in Table 3.1, values of X 0  close to 4 appear, which indicates 

that the triple system disrupted in the neighbourhood of the 4:1 mean motion 

resonance. For example, integrations with Mikkola's symplectic integrator re-

vealed that the systems with masses m 1  = 0-01,M2 = 0-99,M3 = 0.16 and 

M1 = 0.01,m2 = 0.99,m3  = 0.25 broke up at Xo  = 3.87 and X0  = 3.82 respec-

tively, within the first 100 outer binary orbital periods. Figures 3.12 present 

a typical result (in this case M.3 = 0.16). The eccentricity reaches large values 

(e l  0.5), while the pericentre progresses very slowly. 

We now consider a simple model Hamiltonian analogous to equation (3.13) 

for the 3 : 1 resonance. In the vicinity of the 4: 1 resonance the angle A1 - 

is almost stationary. In the perturbation expansion equation (1.16), the first 

term containing this combination of angles appears in the P4  term. It has 

argument A - 4A 2  + 3w1  (which is nearly stationary if the inner pericentre is 

slowly varying, cf. figure 3.12) and has a coefficient proportional to e. This 

term by itself does not generate any eccentricity in a circular binary. The 

main term that does so is again the leading term with argument A 1  - 2A2  + w1 , 

because, of all terms in the expansion of the perturbing potential which depend 

on w 1 , it has the largest coefficient and the smallest frequency, though it is 

non-resonant. 

Figures 3.13 represent the same system as figures 3.12, but show an integra-

tion of the model problem using a 4th-order Runge-Kutta integrator. Although 

the model on which these graphs are based is rather simple, it produces an ec-

centricity of significant amplitude. As already indicated, the non-resonant term 

provides a non-zero eccentricity for the early stages of the evolution of the sys-

tem. This is confirmed by figures 3.14, where the eccentricity of a model with 

Ell 



a one-term perturbing Hamiltonian (the non-resonant term only) is compared 

to the eccentricity produced by the numerical solution of the full equations of 

motion during the early evolution. One should note the very good agreement 

between the frequency of the oscillations in the two graphs. Even when the 

resonant term dominates, however, and the eccentricity reaches large values, 

the contribution of the non-resonant term cannot be neglected: the small spikes 

in the eccentricity graph in figure 3.13 (and presumably also in figure 3.12) 

represent its contribution. 

3.6 A general criterion for the k+1:1  resonance 

3.6.1 General theory 

As was seen in the last two sections, the dynamical evolution of the triple 

systems that were studied, i.e. systems with one component of the inner binary 

less massive than the other two bodies, was mainly determined by mean motion 

commensurabilities. This behaviour can be described in a more general way as 

follows: if the system is close to a k + 1 : 1 resonance, a suitable Hamiltonian 

would be 

G2m3 (mi+rn2)2  Cm lm 2rn3[a 	1 	2 +(_1)kcix 

	

H = - 
	2L 	

m1+m2 —(——.e1) 

- (_mi)k a1 

	

X 	 e cos 	- (k + 1)2 + (k + 1)i)J, 	(3.28) 
(m i +m2 )k alC+2  

where 
m 1  m 2  

m= 
il-i1 +M2 

and C1 is the coefficient of the resonant argument in a Legendre polynomial 

expansion of the perturbing potential. These coefficients can be found in Murray 

and Dermott (1999) (for arguments with coefficients up to second order with 

respect to the eccentricities and for a P2  and P3  expansion, C1 can also be 
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Figure 3.12: Eccentricity and longitude of pericentre against time for a system 

with m 1  = 0.01, rn2 = 0.99, m3  = 0.16 and X0  = 3.88. The graphs are from 

integration of the full equations of motion. 
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Hamiltonian. 
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found in Appendix B). The first term in equation (3.28) is the unperturbed 

Hamiltonian for the inner binary (cf. section 1.4.3). 

The perturbing Hamiltonian includes just the resonant argument, since we 

are interested in the phase when the inner eccentricity becomes large: ulti-

mately, that is what leads to the disruption of the system. The resonant term 

appears at lowest order in Pk+1  because of the properties that arise from ex-

panding the perturbing potential. More details can be found in Clemence and 

Brouwer (1961) and in Murray and Dermott (1999). The other two terms in-

volved in the perturbing Hamiltonian are secular terms, i.e. terms that do not 

involve mean longitudes and are included to provide an improvement to our 

approximation. These terms, which can be found in Appendix B, were not 

included in our approximate models of the previous sections since they do not 

affect the evolution of the eccentricity. They do affect the mean motions, but in 

our previous treatment the mean motions were assumed to be constant. In the 

present section, however, we make no such assumption about the mean motions 

(at least for the inner binary mean motion). We, have neglected the term with 

argument 

A 1  - 2A 2  + tt1. 

Its main role, however, is to generate a small initial eccentricity, and this feature 

of the problem will be reintroduced in due course. We now employ a canonical 

transformation with the generating function 

F(q, J2 , t) = J1(1 + w') + J3 (-1 + (k + 1)A2 - (k + 1)tti i ), 	(3.29) 

where q, and J. are the old coordinates (ii, i) and the new momenta, respec-

tively. The indices f and s stand for fast and slow moving variables respectively. 

For this type of generating function (Goldstein 1980, Szebehely 1967), 
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A = 	 (3.30) 
Oqj  
OF 

= 	 (3.31) 
aii  

OF 
H = H+ at , 	 (3.32) 

where pi  are the old momenta (L 1 , G 1 ), i.e. the Delaunay variables defined 

in section 1.4.2, 19i  are the new coordinates and H' is the new Hamiltonian. 

Equation (3.30) yields 

J8  = 
L, 

 e 2 	 (3.33) 

Jf = L1 (1+e) 	 (3.34) 
2k 1  

to second order with respect to the eccentricities. We assume that A 2  = n2t + A20 , 

and so, by equation (3.32), the new Hamiltonian of the problem is 

- G2m3 (Ml + M2 )2 Grn1 m 2m3  1 (J1 - J5 ) 4  

	

H' = 
	2(Jf—J2 + m 3 	1+m2 	rn 2a - 

) 

3 2k 	 1)m2 - (_rni)' 	(2k) 	
> 

m4,2a 	
- J3 ) 3  + (- k (mi  +m2  )c m2('') ' 

x-(J1 - J3)2')(_ 	) cos 3} + (k + 1)n2  Js, 	(3.35) 
a2 	 JfJ3  

	

where ê = 	+ (k + 1)A 2  - (k + 1)wi  (by equation 3.31) and tL= G(rni  + rn2). 

Since J1 >> J3  while the eccentricity remains small, the above Hamiltonian 

can be expanded with respect to J3/Jf, and to first order we obtain 

G2rn3 (m i  + M2 )2 -(1+2-)+ 
  Grn1m2rn3 	1 

H' = - 
	2J 

	m1+m2 [rn4,i2a 
X 

x(—J + (1— k)J3J) + (_)km2 - (_rn
i ) k  

4 	4 (rni  + rn2)c 

(2k) 	C1 J2(k+1)(Js)ft cosê] + (k + 1)n2 J3 . 	 (3.36) X m2(k+l)+l k+2 f a2 	if 

(In fact the resonant term, being a perturbation, is expanded only to lowest 

order.) Dropping the prime, the new approximate Hamiltonian is of the form 

H = A + BJ3  + CJ) COS e 3 	 (3.37) 

nos 



with the constants A, B and C defined as 

- G2m 3  (m i  + rn2 )2  1 Gm 1 m2rn3 J, 
2J 	4 rni+m m2a3 	

(3.38) 
2 

G2m 3 (m i  + M2 )2  - 	 _____________________ +(l_k)Gm1m2m3 13 3+ 
Jf3  

B= rn1 + m2 M4/j2 

(3.39) 

	

C = 
(_1)kGmlm2m3 m - (_m i )k (2k)ft 	C1 jk+2 (3.40) k+2 rn1 + M2 (rni + m2  )c m 2Vc+l)ii k+1 a2 

If J3  is considered to be a function of e3  then, the extrema of J can be obtained 

by differentiating equation (3.37) with respect to e8  and they will be given by 

k 

V, 	sin E), 

	

0, 	 (3.41) 
- B+Cpr1  cos e8  

which yields e3  = 0 and e8  = 7t. Hence, the curves 

H1  = A + BJ8  + CJ) 	 (3.42) 

and 

H2  = A + BJ3  - CJ/ 	 (3.43) 

will be the boundaries of the motion for the system on the H - J8  plane. This 

is demonstrated in figure 3.15. A simple analysis shows that H1  gives the 

maximum value of J8  and H2  the minimum value if BC < 0, whereas the roles 

of H1  and H2  are reversed if BC > 0. 

Now we estimate the initial value of the variable J8 . This variable is used 

in the Hamiltonian (3.35), which omits all high-frequency terms. The omis-

sion of these terms is justified by Von Zeipel's method (section 1.4.4), i.e. a 

canonical form of the method of averaging. This implies, however, that J must 

be interpreted in an averaged sense, i.e. the quantity e?  in equation (3.33) is 

the mean square eccentricity. It should be recalled that, initially, the eccen-

tricity evolution is mainly governed by the term associated with the argument 
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A, - 2A2  + tti. Thus, a single term perturbing Hamiltonian 

H = Gm,m2m3 a 
- 	—e 1  cos (A, - 2A2  + w,) 	 (3.44) 
4 m+m2 a2  

leads to 

9 Gm 3  
=sin (A l  - 2A 2  + w,) 	 (3.45) 

4na 
9 Gm 3  

Zi7l= -- 	cos (A '  - 2A 2  + wi), 	 (3.46) 
4 ein,a 

if terms of higher order in e 1  are neglected. Switching to the variables x 1  = e 1  cos wi 

and Yi = e 1  sin zui , the above system becomes: 

9Gm3  
x1 = - 	sin (A - 2A2 ) 	 (3.47) 

n 1  a2  
9 Gm3  

YJ =cos (Al  - 2A2 ). 	 (3.48) 
n1  a2  

The corresponding solution, for initial conditions x,o = y10  = 0, A,0 = 00 and 

A20  = 900 , is: 

9Gm 3  1 	 9Gm 3  1 
= - 	 cos (ru - 2n2

)t + 4 na n1  - 2n2 	
(3.49) 

4 na n1  - 2n2  

	

Y1
9 GT 3 	1 

	

= 4 n1a 	
sin (n, - 2n2 )t, 	 (3.50) 

2 1ii - 2n2  

with the semi-major axes and mean motions treated as constants. By using 

equations (3.49) and (3.50), we can obtain the following expression for the root 

mean square eccentricity >: 

9m3 	1
EE e,t, 

4MX(X-2) 
(3.51) 

where e 10  stands for the initial value that will be used for e 1  in the long-period 

problem. Hence the initial value of the variable J is taken to be 

L,0 2 J80  = -- e 107 
 

(3.52) 

with L 10  being the initial value of the L, Delaunay variable. 



3.6.2 The 3:1 resonance 

For the case of the 3: 1 resonance, k = 2, C1 = 	and the curves giving the 
64 

extreme values of J8  are 

H2  = A + (B - C)JS 	 (3.53) 

and 

H1  =A+(B+C)J3 	 (3.54) 

respectively. For an indefinite increase of the variable J, which implies indefi-

nite increase of the eccentricity, the slopes of the above straight lines should be 

of opposite sign. Hence the limits between which this behaviour is possible are 

given by 

(3.55) 

B+C = 0. 	 (3.56) 

Using again a system of units such that C = 1 and m 1  + rn2  = 1, and taking the 

initial value of the inner semi-major axis to be a 10  = 1, the integral of motion 

J1 (equation 3.34) becomes 

if = m1m2 1+01 0  
4 ) 

and equations (3.55) and (3.56) yield: 

64 	 ____________ 
(4+eo)3X33X3+(1+( = 

±! m3(m2  _ml)(l+eo)5 (357) 
2M 	4 	16 	M3 	4 

where the + and - sign correspond to equations (3.56) and (3.55) respectively. 

Proceeding as in the derivation of equation (3.27), the following approximate 

equation is obtained: 

(4 + e0)3 [3 - 1 	(1 + 	)3 ± 285 m3 (m 2  - M1) (1 + 
	)5]. 	3(3.58) 

64 	6M 	4 	16 	M 

Again, the above approximation fails for large m3 , as seen with the correspond- 

ing result in section (3.4.3). When m3  is not too large, however, we are now 

wo 



I-1 

H 2  

Figure 3.15: Motion boundaries on the H - J3  plane for a system with its 

Hamiltonian value being h, in the case of the 3: 1 resonance and for B <0. 

able to find an estimate for the initial period ratio for which the triple system 

breaks up. 

3.6.3 The 4:1 resonance 

The same general idea can be applied to the 4: 1 resonance (k = 3). Again 

C> 0 (see below), and in this case the curve of maximum values of J, is 

H1  = A + BJ8  + CJ 	 (3.59) 

when B < 0 and 

H1  = A + BJ3  - CJ 	 (3.60) 

when B > 0. Indefinite increase of J3can be achieved when the value of the 

Hamiltonian of the system is less than (greater than) the minimum (maximum) 

value of the curve of maximum values for B <0 (B > 0). This leads to the 

limiting conditions 

B 4 lB 3  
= ±Js20, 	 (3.61) 
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where B and C have the form 

B 	
4 	216 	5m3 	1 	

(3.62) 
X 2  

13 

_____________ 
C 

= 768 6 
	

-i- m) 	e lo6545 M3 (M 	 ( + 	 ( 3.63) 
1 

	

M1 M21 	
-.  

The + sign in equation (3.61) corresponds to B <0, while the - sign cor- 

	

responds to B > 0. In this case C1 = 	, which can be obtained from the 768 

appendix for the disturbing function in Murray and Dermott (1999). It can be 

shown that, for the range of parameter values of interest, the right-hand side of 

equation (3.61) is negligible compared with either term on the left-hand side. 

Approximately, therefore, 

4 1 B 2  
l—---=O, and so 

B=±\/J8oC2. 
27 J.'O C2 

This yields 

= (6+e o ) 3 	5 m 	10
)3 	'27 

	

216 	
--(1 + 6 
	+ VJs0C2], 	(3.64) 

where X has been approximated by 4 in the right-hand side. 

3.6.4 Comparison with numerical data 

Figures 3.16 demonstrate the results for stability obtained throughout this sec-

tion, superimposed on the stability plots of section 3.3. Table 3.4 also presents 

results from equations (3.57) and (3.61) and results obtained from formulae by 

the authors from section 3.1. 

The results for the 3 : 1 resonance, obtained by equations (3.57), show sat-

isfactory agreement with the numerical integrations. They are represented by 

the two curves in the upper of figures 3.16, each one corresponding to a different 

sign of equation (3.57). The upper stability limit appears to give a good fit for 

moderate rn3 , but it seems to fail for small and large m 3 . However, it is likely 
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that the dynamical evolution of these systems is determined by resonances of 

other orders, e.g. 2 : 1 resonance. Indeed it was suggested earlier that the 4 : 1 

resonance is important in systems with m3  = 0.16 and m3  = 0.25. It is possible 

that the fact that the triple systems are unstable as we move to the left of the 

left curve can be attributed to overlapping with other resonances. 

The theoretical model for the 4 : 1 resonance shows some discrepancy with 

the numerical results. As seen from the lower of figures 3.16, the theoretical 

curves are displaced to the right with respect to the numerical results. Although 

it is not very clear why this happens, it can be argued that the choice of the 

initial conditions can affect the position and the size of the area determined by 

the two curves. To be more specific, an averaged Hamiltonian has been used to 

describe the evolution of the system, but the initial conditions used in various 

phases of the calculation correspond to the untruncated problem. For instance, 

the inner semi-major axis was taken to be a 1  = 1 when L 10  was computed. Just 

as with the eccentricity, the initial value of the semi-major axis that corresponds 

to the averaged problem would be different. Another improvement to the theory 

would be to include higher order secular and resonant terms in the Hamiltonian 

(3.28). However, it should be borne in mind that the numerical integrations 

were performed for a specific time span. Numerical simulations over larger time 

spans would be expected to give a higher initial period ratio for which the 

system disrupts. Nonetheless, the theoretical criterion given by equation (3.61) 

works much better than the other criteria described in section 3.1 (as will be 

discussed below). The only problem with it is that one must know in advance 

that the 4 1 resonance affects the dynamics of the triple system in order to use 

the corresponding equation. (The same holds for the 3 : 1 resonance criterion.) 

With that proviso, however, the technique we have developed is applicable in 

principle to any other resonance (2 1, 5 1, etc.), as long as one component of 
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the inner binary is much less massive than the other two stars. 

Finally, the values from the stability criteria by other authors disagree more 

seriously with the numerical results presented in Table 3.2. The values from 

the Szebehely-Zare c 2 criterion are always larger than the numerical ones and 

this is because of the sufficient nature of the criterion. Harrington's results are 

also larger than the numerical results and they also appear to be insufficiently 

sensitive to the variation of m 3 . This probably has to do with Harrington's 

definition of stability and the time span of his numerical integations, as pointed 

out in section 3.1. The Graziani-Black criterion gives reasonable values for 

smaller m3 , but it fails as we move to systems with larger third bodies. This 

could be due to their ambiguous definition for stability or due to the choice of 

the triple systems they integrated. The Eggleton and Kiseleva formula seems to 

produce more consistent results compared to our numerical integrations. That 

was not unexpected, since their definition of stability is quite similar to ours and 

their criterion is empirical. However, the results are not very good for small 

and large m3 . Finally, the Mardling-Aarseth criterion predicts larger values 

for period ratios of stable configurations. Since the theoretical basis of this 

criterion is still unpublished, we do not have much information about it. It 

seems, however, that the theory involves the phenomenon of chaos, which has 

not been considered in our theory. (The criterion of Mardling and Aarseth is 

derived in analogy to chaotic energy exchange in the binary-tides problem.) 

3.7 Conclusion 

The aim of this chapter was to investigate the stability of hierarchical triple 

systems with small initial period ratio. We mainly focussed on systems in 

which one of the inner binary masses was small compared to the other two. 
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Figure 3.16: Outer mass m 3  against initial period ratio X o , for which a system 

with m 1  = 0.01 and m 2  = 0.99 becomes unstable within 1000 outer orbital peri-

ods. The dots denote instability and are the results of numerical integrations of 

the full equations of motion. The superimposed curves are defined by equations 

(3.57) (upper graph) and (3.61) (lower graph). 
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Table 3.4: Comparison of the values of our criterion for k = 2 (denoted as NG2) 

and k = 3 (denoted as NG3) with the values of the Harrington (HR), Graziani 

and Black (GB), Eggleton and Kiseleva (EK), Mardling and Aarseth (MA), 

Szebehely and Zare (SZ) criteria for a system with m 1  = 0.01 and m 2  = 0.99. 

The Szebehely-Zare criterion values correspond to when exchange of m 1  between 

the other two bodies is possible. 

m 3  NG2 NG3 HR 11  GB I  EK MA SZ 

0.08 2.75, 3.17 3.96, 3.98 5.38 2.98 2.82 4.72 4.11 

0.10 2.69, 3.21 3.95, 3.98 5.38 3.16 2.96 4.73 4.20 

0.12 2.62, 3.25 3.94, 3.98 5.38 3.32 3.08 4.73 4.28 

0.14 2.55, 3.28 3.93, 3.98 5.38 3.46 3.19 4.74 4.36 

0.16 2.48, 3.31 3.92, 3.98 5.38 3.60 3.28 4.75 4.44 

0.18 2.39, 3.35 3.91, 3.99 5.38 3.72 3.37 4.76 4.51 

0.20 2.28, 3.38 3.90, 3.99 5.37 3.84 3.46 4.77 4.58 

0.23 1.98, 3.42 3.89, 3.99 5.37 4.00 3.57 4.78 4.68 

0.25 3.45 3.88, 4.00 5.37 4.10 3.64 4.79 4.74 

0.30 3.51 3.85, 4.00 5.37 4.33 3.79 4.80 4.88 

0.35 3.57 3.82, 4.02 5.36 54  3.92 4.82 5.00 

0.40 3.63 3.79, 4.03 5.36 L4-73  4.04 4.84 5.11 
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The analytical criterion that was derived in section 3.6, seemed to be roughly 

consistent with the results from the numerical integrations. It should be pointed 

out that the study concerned systems in which the outer binary was initially 

900 ahead of the inner one. It is not clear what would happen in the general 

case where the outer binary would start at an arbitrary angle 0 with respect to 

the inner system. 

The cases that have been investigated throughout this chapter constitute 

a very small part of the general problem. The stability of systems with more 

comparable masses, initially non-circular and non-coplanar orbits would be the 

logical next step in this investigation. It will also be interesting to study the 

effect of different initial phases on the stability of hierarchical triple systems. 

Although the present chapter has provided a rather brief insight into the dy-

namics of the stability of hierarchical triple systems, it sets a good base for any 

future work on the subject. 
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Appendix A 

Equations of motion in the 

unequal masses, non-coplanar 

orbits, eccentric outer binary 

case 

The complete secular equations of motion in the unequal masses, non-coplanar 

orbits, eccentric binary case, used in section 2.2.4, are: 

dx - 	5 	 1-4 	5 	eT

dT—
(1-4- sin2l 	2 - (i-4) 	(1-4—y) 

_ys)[singTcosI(4+3(4+y?s) - 5sin2 I(1 —4+6y))— 

—10(1 - 4' - y) sin 12  coslsingT + 2(3 + 5 sin2  I)(y sin 9T X 

X cos I + xsys cos g) + 20 sin  I cos Iy sin g - 70 sin I(y x 

x sin gT COS l + xsys cosgT)] + c/3 (1 	23 [Ysm gT(4 +eT  

+3(4 + y) - 5 sin  1(1 - 4' + 6y)) + 10 cos I(y sin g 

X cosl + xsyscosgT)(1 -4' + 6y2) + 10(1 -4'- Y S )YS x 

1 5 	eT 
x sin gT(2 COS 2 I— sin l)] + 	 x 

16
—a 

 (1—e)(1-4'—y) 
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x[ysingTcosI(4+3(4+y) - 5sin2 I(1 —4+6y.))+ 

+10(y singT cos I + xsys cos  g)  cos2  1(1 - S +6  y) + 

+10(1 - 4 - y)y Sfl gT(2 cos 2  I - sin  I) cos I] - 

1 
(l_e)2YS COS I (1+4) (l_ 2 3YSX 

CT) 2  

2-24+3y 	3+24 (1 
—4—y)cosIys(2sin 2 I- X221 	(i-4)3 

25 	1 	3+24 'i_4—yys[2-274-57y- 
816'(i 	2 

2  - eT)  

4 
—3 sin 2 I(1 -4- 16y)J + 1 3+2  - 	2\3 COS 3 lys(1 —x - 

8 l—eTy' 

—16y) 	 (A.1) 

dys 	5 	 xsy 	5 ____ 
sin 2  I 	 Ys + j-c (1 

	2 
(1 - 

d'r - (1—em 	(i-4—y 	_eT) 2  

-4- YS 2 	+y) - 5sin2 I(1 -4 + 

+6y)) - 2(3 + 5 sin2  I)(xsys singT cos I + 4 cosgT) - 

—20 sin  I cos IXys sin g1 + 16 ( 1  _4)3 [—xsys sin g X 

x(4+ 3(4 +y) - 5sin2I(1 -4 +6y)) - lO COS I(xs x 

xy s  sin gT  COS l + 4cosgT)(1 -4 + 6y) - 10(1-4- 

5  
+—c 	5 x _y)x sys singT (2cos2 I - sin2  I)] 

16 (1- 

x 	
2 	2  1

[—xsys sin g T COS  l(4 + 3(4 +y) - S sin 2 I x 
(1 - 	- ys) 2  

x(1 -4 + 6y)) - 10(x sys singT COS  l + 4  COS  gT )cos2 l(1 - 

-4 + 6y) - 10(1 -4- y)xsys sin g T (2cos2 I - sin  I) x 

/3 1 
x COS l]+ (1_4)2X0S1+41+ (1 

	2 3XS 
- e 	

X 
T) 2  

3+24 25 

	

1 	 2(1xsYs)cOsIXs(8 
(1-4—y52  ) 	( 1—e 

3 
T 

I) - 	
3 + 24 (1-4— 

Y S 2xs [2 - 274 - 
8 	16 (1 -4) 

COS 3 lx 
(1-4) 3  

xxs(1 - 4 - 16y) 
	

(A.2) 



d'r - 2(1 - 
 

2)2 [4 	+ 11y - 5sin2 I(1 
- S

+4 y)] + 

1 
+ ( 1 22) 1 (1 	2\3  

Cos I(1xs+4Ys)th 
- eT) 2  

1 +44 
(1 - 

23  [(YSsingTcosl + xscosgT)(4 + 3(4 + y) - 

—5 sin 2 I(1 —4+6y))— 10(1-4 —y) sin 2 IcosI 

5 	eT 	 1 
XYS sin 9TI + (16a(1 - 4) (1-4— 	

+ 	x 

eT 

(1 - 	
(4 + y) - 5 sin 2  1(1 2)3 COS I)[—ys sin gT(4 + 3 	- 

 eT 

-4 + 6y)) - 10(ys sin gT Cos l + xs Cos gT) Cos l(1 -4 + 

	

+6y) - 10(1 - 4 - y)ys sin gT(2 cos2  I - sin 2  I)] + 	x 

13 631 	721 

127 2 	157 2   

4 
+ sin  2I(1 -4- 16y)]} - 16(1 - 

1 3+2 
)3 [2 - 274 - 

—57y 9  - 3 sin  1(1 - x9 - 16y)] 

deT - 5 	a/3 - 6(12)2[(YSC0s9TC05IxssmnT)(4+3(xS+MS) 

(A.3) 

—5 sin 2 I(1 —4+6y))— 10(1-4 —y)ys sin 2 I 

x COS  l  COS  gT] 	 (A.4) 

dl 	XSXS + siJs 	 1 	
1 + 	 2 1) - 

dr - (1-4— ytanI(1 -4- y 	sini(1 - eT) 

eT6T 	 1 	 1 

(1_4) 	s s sinI(1_x2 	y2 ) -j + 	 ) 	(A.5) 
- Y) 	tan 1(1 - e) 
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Appendix B 

Second order expansion of the 

perturbing Hamiltonian 

A second order expansion of the perturbing Hamiltonian used in sections 3.4.2 

and 3.6. 

For the P2  term: 

1 Gm 1 m 2m3  a 1 3 
H 2  = - 	- - cos (2A 1  - 2A2) + e 1  cos (A, - wi ) + 

2 m1+m2 a2  2 2 
9 	 3 e

l  +ei cos (A, - 2A 2  + w,) - 	cos (3A, - 2A 2  - w,) - 

3 	 3 
—e2 cos (A 2  - w2 ) + e2 cos (2A 1  - A, - 	- 

21  
---e2  cos (2A 1  - 3A2  + w2 ) - 	+ 1 e l  cos (2A, - 2w,) - 

15 e2 cos (2A 2  - 2w,) - 	cos (4A 1  - 2A2  - 2w,) + 

cos (2A, - 2A2 ) + 3 e je2  cos (A 1  - A2  - t7 + w2 ) + 

cos (A 1  + A2 - 	- w2) - 	cos (A, - A2  + W1 w2 ) -
2 	 4 
21 

—e1 e2  cos (3A 1  - 3A2 - i + w2 ) + 

+e,e2 COS  (A, - 3A2  +w1 +w2)+ 

+e,e2 cos (3A 1  - A2  -W,  - w2) - 	- 	cos (2A 2  - 2w2 ) -  3  e
2 

51 2 	 15 2 
— e2 COS  (2A 1  - 4A2  + 2w2 ) + 	cos (2A, - 2A 2 )] 	(B.1) 
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For the P3  term: 

— 1 Gm im2m3 (m i  — m 2 ) a 3 
COS (Al —A 2 ) — H3 	

(Ml +rn2)2 	£44 

— cos (3A 1  — 3A2) + e1 cos (2A 1  - A2  — t1) + 

15 	 45 
+ -jeicos(A2 —)+ jei COS (2Ai —3A2  +w1) — 

15 	 3 

	

_j-Ci cos (4A 1  - 3A2  — W I )— 	cos (A 1  — 	— 

9 	 5 
—e 2  cos (A 1  - 2A2  + t72)  + 	cos (3A 1  — 2A 2  — tt72) — 

25 

	

COS (3A 1  — 4A 2  + t2) - 	cos (A 1  — A 2 ) - 

	

—e 1  cos (A 1  + A 2 -  2tti1 ) + 	cos (3A 1  — A 2 -  2') + 

285
32  

15 
+e cos (3A — 3A 2) - 	cos (A 1  — 3A2  + 2tt i ) - 

cos (5A 1  — 3A2 — 2t 	
15 

1 ) + 	cos (w1 - w2) + 

9 	 3 
+e1e2 cos (2A 1  — 2A2 - i + t 72) + 	cos (2A 1  — 	- w) + 

45 	 45 
COS (2A 2  — zz — VJ2) - 

8
e l e2 cos (2A 1  — 2A2  + ZU1 — w2 ) — 

75 
COS (4A 1  — 4A 2  — W1 + w2) + 

15 
+ -jele2 cos (4A 1  - 2A2  — 	— w2 ) + 

225 
+--e1e2 cos (2A 1  — 4A 2  + w + t2) —

3 
 e2 COS (A 1  - A 2 ) — 

33  2 	 1592 

	

cos (A 1  + A2-2W2)— 	cos (A 1  — 3A2  + 2w2) +
32 32 

15  
+e cos (3A — 3A 2 ) — 	cos (3A 1  — A2 - 2W2) — 

2 	 32 
635 2 

	

cos (3A 1  — 5A 2  + 2w2 ) 	 (B.2) 
32 
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