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We consider data that are images containing views of multiple objects.
Our task is to learn about each of the objects present in the images. This
task can be approached as a factorial learning problem, where each image
must be explained by instantiating a model for each of the objects present
with the correct instantiation parameters. A major problem with learn-
ing a factorial model is that as the number of objects increases, there is a
combinatorial explosion of the number of configurations that need to be
considered. We develop a method to extract object models sequentially
from the data by making use of a robust statistical method, thus avoid-
ing the combinatorial explosion, and present results showing successful
extraction of objects from real images.

1 Introduction

In this letter, we consider data that are images containing views of multiple
objects. Our task is to learn about each of the objects present in the images.
Previous approaches (discussed in more detail below) have approached
this as a factorial learning problem, where each image must be explained
by instantiating a model for each of the objects present with the correct
instantiation parameters. By factorial learning, we mean a situation where
multiple causes (factors) are needed to explain the data (image).1 A serious
concern with the factorial learning problem is that as the number of objects
increases, there is a combinatorial explosion of the number of configura-
tions that need to be considered. Suppose there are L possible objects and J
possible values that the instantiation parameters of any one object can take
on. We will need to consider O(JL) combinations to explain any image. In
contrast, in our approach, we find one object at a time, thus avoiding the
combinatorial explosion.

1 This is the same terminology as used in the factor analysis model from statistics,
although that model uses linear and gaussian assumptions.
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In unsupervised learning, we aim to identify regularities in data such as
images. One fairly simple unsupervised learning model is clustering, which
can be viewed as a mixture model where there is a finite number of types
of object, and data are produced by choosing one of these objects and then
generating the data conditional on this choice. As a means of discovering
objects in images, standard clustering approaches are limited, as they do not
take into account the variability that can arise due to translations, rotations,
and so forth (the instantiation parameters) of the object. Suppose that there
are m different instantiation parameters; then a single object will sweep
out an m-dimensional manifold in the image space. Learning about objects
taking this regularity into account has been called transformation-invariant
clustering by Frey and Jojic (1999, 2003). However, this work is still limited
to finding a single object in each image.

A more general model for data is that where the observations are ex-
plained by multiple causes. In our example, this will be that in each image
there are L objects. The approach of Frey and Jojic (1999, 2003) can be ex-
tended to this case by explicitly considering the simultaneous instantiation
of all L objects (Jojic & Frey, 2001). However, this gives rise to a large search
problem over the instantiation parameters of all objects simultaneously, and
approximations such as variational methods are needed to carry out the in-
ference. In our method, by contrast, we discover the objects one at a time
using a robust statistical method. Sequential object discovery is possible be-
cause multiple objects combine by occluding each other or the background,
or both.

The general problem of factorial learning has a longer history (see, e.g.,
Barlow, 1989; Hinton & Zemel, 1994; Ghahramani, 1995). However, Frey and
Jojic made the important step for image analysis problems of using explicit
transformations of object models, which allows the incorporation of prior
knowledge about these transformations and leads to good interpretability of
the results. A related line of research is that concerned with discovering part
decompositions of objects. Lee and Seung (1999) described a nonnegative
matrix factorization method addressing this problem, although their work
does not deal with parts undergoing transformations. Other relevant work,
including that by Shams and von der Malsburg (1999) on learning parts and
work from the computer vision community on layered representations of
images, is discussed in section 4.

The structure of the remainder of this letter is as follows. In section 2,
we describe the model, first for images containing only a single object and
then for images containing multiple objects. In section 3, we present experi-
mental results finding objects appearing against static, moving and random
backgrounds. We conclude with a discussion in section 4.2

2 This letter is a revised and extended version of Williams and Titsias (2003), which
was presented at NIPS 2002.
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2 Theory

In section 2.1, we describe how to learn about an object when there is only
a single object (plus background) in every image. In section 2.2, we discuss
how this model can be robustified to deal with foreground and background
occlusion caused by other objects being present in the images. Then in sec-
tion 2.3, we describe a model that fully explains L objects in the images. An
efficient greedy algorithm for training this model is described in section 2.4.

2.1 Learning One Object. In this section, we consider the problem of
learning about one object that can appear at various locations in an image.
The object is in the foreground, with a background behind it. The problem
is set up in terms of a generative model for the image x given the trans-
formations of the foreground and background. The background can be one
of three cases: (1) a static background that is fixed for all training images,
(2) a moving background that occurs, for example, when a moving camera
captures a sequence of frames, and (3) random backgrounds where each
image can have a completely different background.

The two key issues that we must deal with are the notion of a pixel
being modeled as foreground or background and the problem of transfor-
mations of the object and the background. We consider first the foreground-
background issue and assume that the background is static; cases (2) and
(3) are discussed later in this section.

Consider an image x of size Px×Py containing P
def= PxPy pixels, arranged

as a length P vector. Our aim is to learn appearance-based representations of
the foreground f and the static background b. As the object will be smaller
than Px×Py pixels, we will need to specify which pixels belong to the back-
ground and which to the foreground; this is achieved by a vector of binary
latent variables s, one for each pixel. Each binary variable in s is drawn
independently from the corresponding entry in a vector of probabilities π.
For pixel p, if πp � 0, then the pixel will be ascribed to the background with
high probability, and if πp � 1, it will be ascribed to the foreground with
high probability. We sometimes refer to π as a mask.

xp is modeled by a mixture distribution,

xp ∼
{

pf (xp; fp) = N(xp; fp, σ 2
f ) if sp = 1,

pb(xp; bp) = N(xp; bp, σ
2
b ) if sp = 0,

(2.1)

where σ 2
f and σ 2

b are, respectively, the foreground and background vari-
ances. Thus, ignoring transformations, we obtain

p(x) =
P∏

p=1

[πppf (xp; fp)+ (1− πp)pb(xp; bp)]. (2.2)
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Notice that the fact that each pixel follows a mixture distribution ensures that
the foreground and background appearances strictly combine by occlusion,
and thus no transparency between them is allowed.

The second issue that we must deal with is that of transformations of
the foreground object. Below, we consider only translations, although the
ideas can be extended to deal with other transformations such as scaling
and rotation (see, e.g., Frey & Jojic, 2002). Each possible transformation
(e.g., translations in units of one pixel) is represented by a corresponding
transformation matrix, so that matrix Tjf corresponds to transformation jf
and Tjf f is the transformed foreground model. In our implementation, the
translations use wraparound, so that each Tjf is in fact a permutation matrix.
The semantics of foreground and background mean that the mask π must
also be transformed, so that we obtain

p(x|jf ) =
P∏

p=1

[(Tjf π)ppf (xp; (Tjf f)p)+ (1− Tjf π)ppb(xp; bp)], (2.3)

where 1 denotes the P length vector that contains ones. Notice that the
foreground f and mask π are transformed by Tjf , but the static background
b is not. In order for equation 2.3 to make sense, each element of Tjf π must
be a valid probability (lying in [0, 1]). This is certainly true for the case when
Tjf is a permutation matrix (and can be true more generally). To complete
the model, we place a prior probability Pjf on each transformation jf ; this is

taken to be uniform over all possibilities so that p(x) =∑Jf

jf=1 Pjf p(x|jf ).
So far, the background b was considered static. However, in many cases,

as, for example, when a video camera follows an object, the background can
change from frame to frame. Next we generalize our method to deal with
moving backgrounds.

To model a moving background, we assume an underlying static back-
ground, which is typically much larger than the input images. We some-
times refer to this large static background as panorama. When we generate
an image, a part of this panorama scene is selected and used as the cur-
rent background of the image, similarly to Rowe and Blake (1995). More
specifically, we assume that the background b corresponds to an Mx ×My
image, where in general Mx ≥ Px and My ≥ Py. b is represented as an M-
dimensional vector with M = MxMy. We introduce a transformation vari-
able jb that explains how from the panorama b the background of a data
image is selected. In our implementation, we consider as possible back-
grounds all the Px×Py image blocks (aligned to the axes of the background
image) taken from any possible location within the panorama b.3 Clearly,

3 Of course, the model does not account for rotations or scaling of the background,
and it can only approximately model such kinds of situations.
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jb takes on Jb = (Mx−Px+ 1)(My−Py+ 1) total values, and a certain value
jb is represented by a M × P transformation matrix Tjb , so that Tjb b selects
the appropriate image Px × Py block from b.

The conditional density of an image given the transformation variables
now becomes

p(x|jf , jb) =
P∏

p=1

[(Tjf π)ppf (xp; (Tjf f)p)+ (1− Tjf π)ppb(xp; (Tjb b)p)], (2.4)

and the likelihood of an image x is p(x) =∑Jf

jf=1
∑Jb

jb=1 Pjf Pjb p(x|jf , jb). Note
also that a static background is a special case of the above model; by choosing
the background b to have the same size as the data images, there is only one
possible value for jb, so the background is static.

For random backgrounds, we do not try to model the backgrounds ex-
plicitly, but simply use a large-variance gaussian at each pixel, which can
account for the large background variability. b is the mean of this gaussian.

Given a data set {xn}, n = 1, . . . , N, we can adapt the parameters θ =
(f,π, b, σ 2

f , σ 2
b ) by maximizing the log likelihood L(θ) = ∑N

n=1 log p(xn|θ).
This can be achieved through using the expectation-maximization (EM)
algorithm to handle the missing data, which are the transformations jf and
jb. However, an exact EM algorithm requires a search over Jf Jb possibilities,
which can be very demanding even for small images. Our greedy training
algorithm deals separately with each transformation by learning first the
background and then the foreground object. This algorithm is presented for
the more general case of L foreground objects in section 2.4 and also in the
appendix.

2.2 Learning One Object Using Robust Statistics. Suppose that apart
from the one foreground object being modeled, the images can additionally
contain some other objects. However, we consider these objects as “outly-
ing” information and thus do not wish to model their appearances. Our
objective is to learn only the one object of interest and efficiently ignore all
the other objects.

A way to learn one object under the above assumptions is to robustify the
model described in section 2.1 so that foreground and background occlusion
can be tolerated. More specifically, for a foreground pixel, some other objects
may be interposed between the camera and our object, thus perturbing the
pixel value. This can be modeled with a mixture distribution as

pf (xp; fp) = αf N(xp; fp, σ 2
f )+ (1− αf )U(xp), (2.5)

where αf is the fraction of times a foreground pixel is not occluded and
the robustifying component U(xp) is a uniform distribution common for all



1044 C. Williams and M. Titsias

image pixels. When an object pixel is occluded, this should be explained
by the uniform component. Such robust models have been used for image-
matching tasks by a number of authors, notably Black and colleagues (Black
& Jepson, 1996).

Similarly for the background, a different object from the one being mod-
eled may be interposed between the background and the camera, so that
we again have a mixture model,

pb(xp; bp) = αbN(xp; bp, σ
2
b )+ (1− αb)U(xp), (2.6)

with similar semantics for the parameter αb. Note that for random back-
grounds, the above robustification makes less sense (since the gaussian will
have large variance σ 2

b ), but it will apply to the static or moving background
cases.

It is not necessary that the robustifying component be a uniform distribu-
tion; for example, a broad gaussian would also work. However, as pixels do
have maximum and minimum values, the uniform distribution is a natural
choice and is also the maximum entropy distribution.

Training this model is completely analogous to the nonrobust case. In
practice, the above model can be used to learn multiple objects in images.
By random parameter initializations and on different runs, we can find
different objects. We denote such an algorithm as RANDOM STARTS.

2.3 Learning Multiple Objects. One way to learn multiple objects in
images is by applying the RANDOM STARTS algorithm described in the
above section. However, we have found (Williams & Titsias, 2003) that this
is rather inefficient, as the basins of attraction for the different objects may
be very different in size given the initialization. Thus, in this section, we
describe a model that explicitly assumes L foreground objects in the im-
ages, and in section 2.4 we present the GREEDY algorithm that learns the
background and the objects sequentially.

Assume that each image contains L foreground objects. Similarly to the
single object case, each object 	, with 	 = 1, . . . , L is modeled by a separate
foreground appearance f	 and mask π	. The background can be thought of
as the L+ 1th object having a mask πb = 1, since the background is present
everywhere. For each foreground object 	, we assume a transformation vari-
able j	 representing all possible translations. Below, we assume a moving
background where the transformation variable jb is defined in section 2.1;
however, all derivations also apply for static or random backgrounds by
simply ignoring the variable jb.

It will be instructive to introduce the model for the case that there are
only two foreground objects. Assuming L = 2, an image x is generated by
instantiating the transformation variables j1, j2, and jb and then drawing x
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according to

p(x|jb, j1, j2) =
P∏

p=1

{(Tj1π1)ppf1(xp; (Tj1 f1)p)

+ (1− Tj1π1)p[(Tj2π2)ppf2(xp; (Tj2 f2)p)

+ (1− Tj2π2)ppb(xp; (Tjb b)p)]}, (2.7)

where the pf1 , pf2 , and pb pixel densities are gaussians given as in equa-
tion 2.1. Note that each image pixel follows a three-component mixture
distribution, so that with probability (Tj1π1)p, the pixel can belong to the
first object, with probability (1 − Tj1π1)p(Tj2π2)p to the second object, and
with the rest of probability to the background. The fact that the probabil-
ities corresponding to the second object’s pixels are always multiplied by
(1−Tj1π1)p implies an occlusion ordering between these two objects, so that
the first object can occlude the second one, but the opposite is not allowed.

In the general case with an arbitrary number of objects, the model 2.7
becomes

p(x|jb, j1, . . . , jL) =
P∏

p=1

p(xp|jb, j1, . . . , jL), (2.8)

where p(x|jb, j1, . . . , jL) is L+ 1-component mixture model,

p(xp|jb, j1, . . . , jL) =
L∑

	=1

	−1∏
k=1

(1− Tjkπk)p(Tj	π	)ppf	 (xp; (Tj	f	)p)

+
L∏

k=1

(1− Tjkπk)ppb(xp; (Tjb b)p), (2.9)

where if 	 = 1, then the term
∏	−1

k=1(1− Tjkπk)p in equation 2.9 is defined to
be equal to 1.

The order (from left to right) of the object models in equation 2.9 corre-
sponds to the occlusion allowed between the objects. Particularly the first
object exists closest to the camera; thus, it can never be occluded by any
other object, the second object can be occluded only by the first object, and
so on. The background exists in the furthest distance from the camera.

Notice that in the above model there is an asymmetry between the objects
because of the specified occlusion ordering. If the objects can arbitrarily
occlude one another so that the occlusion ordering can change from image
to image, then the above model is no longer appropriate. A principled way
to deal with this situation is to consider all L! possible rearrangements of
the objects (using an additional hidden variable). An alternative way is to
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replace the foreground pixel densities pf	 by their robust counterparts given
by equation 2.5. This can allow for arbitrary occlusion between the objects
without increasing the model complexity. Of course, such a model will not
be able to answer immediately what the occlusion ordering is in a given
image, but that can be done in a postprocessing stage.

From now on, we will assume that both the foreground pf	 and back-
ground pb pixels’ densities are robustified as described in section 2.2. This
robustification is the key for our GREEDY algorithm to find the objects one
at a time. Bear in mind that robustifying pf	 also makes sense in terms of
allowing arbitrary occlusion between the L foreground objects.

2.4 The GREEDY Training Algorithm. An exact EM algorithm (Demp-
ster, Laird, & Rubin, 1977; McLachlan & Krishnan, 1997) for training the
above model is highly intractable. This is because a full search over all
transformations of the objects requires considering JL

f Jb possibilities, which
can be extremely large even for small L. An alternative is to consider ap-
proximations; Ghahramani (1995) suggests mean field and Gibbs sampling
approximations, and Jojic and Frey (2001) use approximate variational in-
ference. Below, we describe a different learning algorithm by finding the
background and all the foreground objects sequentially one after the other.

Each component in the mixture distribution of equation 2.9 corresponds
to an object model, which is either one of the L foreground objects or the
background. The key idea of our learning algorithm is to learn this mixture
model (and thus the relation with the associated transformation variable)
sequentially, by learning the objects one at a time. An intuitive way to intro-
duce this algorithm is that originally we constrain the mixture distribution
so that the background takes all the probability and the masks of the fore-
ground objects are zero. Since the background pixel densities are robustified
according to equation 2.6, we can learn the background by “ignoring” all
the foreground objects. When a pixel of the background is occluded by a
foreground object, that should be explained by the outlier component in
equation 2.6, so that the pixel will not affect the estimation of the back-
ground. At each subsequent stage, the mask of a foreground object is set
free to get a nonzero value, and the corresponding object model is learned.
Below we first describe learning the background in section 2.4.1; then we
discuss learning the first object in section 2.4.2 and further objects in sec-
tion 2.4.3. We summarize the algorithm in section 2.4.4. Further details are
given in the appendix.

2.4.1 Finding the Background. The GREEDY algorithm starts by first
finding the background. By constraining all the masks {π	}L	=1 to be zero,
the mixture model 2.9 has only one component (corresponding to the back-
ground), and thus equation 2.8 takes the form p(x|jb) =

∏P
p=1 pb(xp; (Tjb b)p).

Assuming a uniform prior Pjb for transformation jb, the log likelihood of the
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training images is Lb =
∑N

n=1 log
∑J

jb=1 Pjb p(xn|jb), which can be maximized

with respect to {b, σ 2
b } by the EM algorithm. This algorithm searches over

Jb possibilities and is tractable; details are provided in section A.1 in the
appendix.

2.4.2 Finding the First Object. At the second stage of the algorithm, we
learn the first foreground object. By allowing the maskπ1 to take on nonzero
values, equation 2.8 becomes

p(x|jb, j1) =
P∏

p=1

(Tj1π1)ppf1(xp; (Tj1 f1)p)+ (1− Tj1π1)ppb(xp; (Tjb b)p)

=
P∏

p=1

p(xp|jb, j1). (2.10)

The log likelihood of the training images is L1 =
∑N

n=1 log
∑

j1,jb Pj1 Pjb
p(xn|j1, jb), and a direct maximization using the EM algorithm can be quite
demanding, since inference involves searching over Jf Jb possibilities. Our
GREEDY algorithm drops the complexity of the search to Jf possibilities by
applying a constrained EM algorithm (Neal & Hinton, 1998) that exploits
the fact that we already know the background. In particular, for each train-
ing image xn, we introduce the distribution Qn(j1, jb) = Qn(j1|jb)Qn(jb) over
the transformations, and we express a lower bound (based on the Jensen’s
inequality) of the log likelihood L1:

F1 =
N∑

n=1

∑
jb,j1

Qn(j1|jb)Qn(jb)

×

log


Pj1 Pjb

P∏
p=1

p(xn
p |jb, j1)


− log Qn(j1|jb)Qn(jb)


 . (2.11)

This lower bound becomes tight by choosing Qn(jb, j1) to be the posterior
P(jb, j1|xn) for every image xn. Since we have learned the background, we
can use the posterior probability P(jb|xn) (computed as described in section
A.1) to find the most probable transformation jnb that best explains image xn

and then we approximate Qn(jb) so that it gives probability one for jb = jnb
and zero for the remaining values.4 Thus, F1 takes the form

F1 =
N∑

n=1

Jf∑
j1=1

Qn(j1)




P∑
p=1

log p(xn
p |jnb , j1)− log Qn(j1)


+ const, (2.12)

4 It would be possible to make a “softer” version of this, where the transformations
are weighted by their posterior probabilities, but in practice, we have found that these
probabilities are usually 1 for the best-fitting transformation and 0 otherwise after learning.
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where const depends on the uniform probabilities Pjb and Pj1 . Also, the de-
pendence of Qn(j1) on jnb for simplicity has been omitted from our notation.

Maximization of F1 can be carried by the EM algorithm, where in the E-
step we maximize F1 with respect to the Qn distributions (see equation A.6)
and in the M-step with respect to the object parameters {f1,π1, σ

2
1 }. Thus,

the computational complexity for learning the object has been kept to a
minimum since we have only to search over the Jf possible transformations
of the object. Recall that the pixel densities pf1 and pb are robustified, which
allows us to deal with occlusion that can be caused by the remaining L− 1
not-yet-discovered objects.

2.4.3 Learning Further Objects. The algorithm for learning the second
and subsequent foreground objects is a bit more complicated as we subtract
out the objects learned so far. We first describe how we learn the second
object and then generalize to the case of the 	th object.

To learn a second foreground object, we first allow the maskπ2 to take on
nonzero values so that the conditional density of x given the hidden trans-
formations becomes P(x|jb, j1, j2) =

∏P
p=1 p(xp|jb, j1, j2), where p(xp|jb, j1, j2)

is given by equation 2.9. We learn the second object by maximizing a lower
bound of the log likelihood L2 =

∑N
n=1 log

∑
jb,j1,j2 Pjb Pj1 Pj2 p(xn|jb, j1, j2).

Particularly, since we have learned the background and the first object, we
use the most probable transformations jnb and jn1 that explain image xn to
lower-bound the log likelihood L2:

F2 =
N∑

n=1

Jf∑
j2=1

Qn(j2)




P∑
p=1

log p(xn
p |jnb , jn1, j2)− log Qn(j2)


+ const. (2.13)

F2 can be tractably optimized over Qn(j2) and over the parameters of the
second object {f2,π2, σ2}. However, we can make the search for the second
object much more efficient (ensuring that we will find a different object)
by further constraining equation 2.13 so that all the pixels belonging to the
first object are removed from consideration. First, note that the values of the
transformed mask Tjn1

π1 will be close to 1 for all pixels of image xn that are
part of the first object. All of these pixels should be removed from considera-
tion unless they are occluded by other not-yet-discovered objects. Thus, we
consider the vector ρn

1 = (Tjn1
π1) ∗ rjn1 where y ∗ z denotes the element-wise

product of the vectors y and z and r
jn1
p =

αf N(xn
p ;(Tjn

1
f1)p,σ

2
1 )

αf N(xn
p ;(Tjn

1
f1)p,σ

2
1 )+(1−αf )U(xn

p )
. Thus, ρn

1

will roughly give values close to 1 only for the nonoccluded object pixels
of image xn, and these are the pixels that we wish to remove from consid-
eration. Now, considering (ρn

1)p as the probability according to which the
pixel p of image xn is part of the first object, we once again lower-bound F2
using the inequality log

∑
i yi = log(

∑
i

yi
pi

pi) ≥
∑

i pi log yi
pi

(obtained from
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Jensen’s inequality) to obtain

F2 =
N∑

n=1

Jf∑
j2=1

Qn(j2)




P∑
p=1

(ρn
1)p log{(Tjn1

π1)ppf1(x
n
p ; (Tjn1

f1)p)}

+ (ρn
1)p log{(1− Tjn1

π1)p[(Tj2π2)ppf2(x
n
p ; (Tj2 f2)p)

+ (1− Tj2π2)ppb(xn
p ; (Tn

jb b)p)]} − log Qn(j2)




+ const, (2.14)

where ρn
1 = 1− ρn

1 and the const is a constant term containing the entropic
term −∑N

n=1
∑P

p=1
{
(ρn

1)p log(ρn
1)p + (ρn

1)p log(ρn
1)p
}

plus terms involving
the uniform probabilities {Pjb , Pj1 , Pj2}. Since the parameters of the first object
are fixed, the above quantity is further written as

F2 =
N∑

n=1

Jf∑
j2=1

Qn(j2)




P∑
p=1

(ρn
1)p log[(Tj2π2)ppf2(x

n
p ; (Tj2 f2)p)

+ (1− Tj2π2)ppb(xn
p ; (Tjnb

b)p)]− log Qn(j2)




+ const. (2.15)

Note that when for a pixel p of image xn (ρn
1)p � 0, this pixel is removed

from consideration (in a probabilistic fashion) according to equation 2.15.
Further objects are learned similarly to the two-objects case except that

the pixels of all previously learned foreground objects should be removed
from consideration. This is achieved by setting zn

0 = 1 for all n = 1, . . . , N
and using the recursion zn

	 = zn
	−1 ∗ ρn

	 . Note that zn
1 = ρn

1 . For object 	,
the objective function F	 given in equation 2.16 is optimized to yield {f	,π	

and σ 2
	 }.

Note that the GREEDY algorithm treats the background and the rest
of the L objects differently, since pixels ascribed to the nonoccluded back-
ground are not removed from consideration as is the case for the fore-
ground objects. We implemented an alternative greedy algorithm that treats
the background similarly to the remaining objects (removing nonoccluded
background pixels from consideration). However, this algorithm did not
work so well in practice, as some pixels can wrongly be removed from con-
sideration because their values happen to agree with pixels of the occluding
object. For the background, the number of such pixels can be large since the
background is always occluded by all of the L objects. We observed experi-
mentally that this can result in noisy estimates for some of the L foreground
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objects since many of their pixels are accidentally removed from consider-
ation after the background is learned. On the other hand, the case of the
foreground objects is not problematic since occlusion occurs only in some
images and is typically partial.

2.4.4 Summary of the GREEDY Algorithm.

1. Learn the background and infer the most probable transformation jnb
for each image xn.

2. Initialize the vectors zn
0 = 1 for n = 1, . . . , N.

3. For 	 = 1 to L:

• Learn the 	th object parameters {f	,π	, σ
2
	 } by maximizing F	 using

EM algorithm, where

F	 =
N∑

n=1

Jf∑
j	=1

Qn(j	)




P∑
p=1

(zn
	−1)p log[(Tj	π	)ppf	 (xp; (Tj	f	)p)

+ (1− Tj	π	)ppb(xp; (Tjnb
b)p)]− log Qn(j	)


 . (2.16)

• Infer the most probable transformation {jn	 }, and update the weights
zn

	 = zn
	−1 ∗ ρn

	 where ρn
	 is computed as described in the text.

The update equations used at any stage of the above algorithm are given in
the appendix.

3 Experiments

We describe five experiments extracting movable objects from images using
static, moving, and random backgrounds. In these experiments, the uniform
distribution U(xp) is based on the maximum and minimum pixel values of
all training image pixels. In all the experiments reported below, except ex-
periment 5, the parameters αf and αb were chosen to be 0.9.5 In experiment 5,
αb was set to 1. Also we assume that the total number of objects L that appear
in the images are known; thus the GREEDY algorithm terminates when we
discover the Lth object.

To apply the GREEDY algorithm, we have to initialize the model pa-
rameters at each stage. We first describe how we initialize the background
parameters as the background is learned at the first stage of the algorithm.
The background appearance b corresponds to an image that is larger than

5 These parameters could be learned with some additional care, but in this implemen-
tation, we do not do so.
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the input image size. We initialize the centered Px×Py block of b to be equal
with the mean of the training images. The rest of the pixels of b are initial-
ized by repeating the borderlines of pixels in the centered block of b and
then adding a gaussian noise to these pixels. The variance σ 2

b is initialized
to a large value (a much larger value than the overall variance of all image
pixels.6) The parameters of an object learned at each subsequent stage of the
GREEDY algorithm are always initialized in the same way. Each element of
the mask π is initialized to 0.5 and the variance σ 2

	 to a large value equal to
the σ 2

b initial value. To initialize the foreground appearance f	, we compute
the pixelwise mean of the training images and add independent gaussian
noise with equal variances at each pixel, where the variance is set to be large
enough that the range of pixel values found in the training images can be
explored.

In all of the experiments described below, the above initialization scheme
proved to be effective, and we obtained good results by performing one or
two runs of the GREEDY algorithm. At each stage of the algorithm, typically
100 iterations were sufficient to reach convergence.

3.1 Experiment 1. Figure 1 illustrates the detection of two objects against
a static background.7 Some examples of the 44 118 × 248 training images
(excluding the black border) are shown in Figure 1a, and results are shown
for the GREEDY algorithm in Figure 1b. For both objects, we show both the
learned mask and the element-wise product of the learned foreground and
mask. In most runs, the person with the striped shirt (Frey) is discovered
first. It is interesting to comment on how the GREEDY algorithm operates
in case the person with the lighter shirt (Jojic) is found first. As explained in
section 2.4, once an object is discovered by the GREEDY algorithm, roughly
speaking its nonoccluded pixels are removed from consideration. Figure 2
illustrates this point for two frames of the video sequence—one without
occlusion and one with occlusion. Figure 2a shows the two video frames
and Figure 2b the pixels (displayed in white) that are masked out from the
next run. Note that when Frey occludes Jojic, the white stripes of Frey’s
shirt are accounted for by the Jojic model. This is because the white color of
these stripes agrees with the learned white color of Jojic’s shirt. This does
not cause problems for learning the second object (Frey) as there are many
frames where the occlusion does not take place. In other experiments with
two people wearing different colored clothes, no such effect takes place.
Video sequences of the raw data and the extracted objects can be viewed
on-line at http://www.dai.ed.ac.uk/homes/s0129556/lmo.html.

6 In our experiments, the input image pixels are normalized to lie in [0, 1], and the
background variance σ 2

b , as well as any foreground object variance σ 2
	

, is initialized to 2.
7 These data are used in Jojic and Frey (2001). We thank N. Jojic and B. Frey for making

available these data on-line via http://www.psi.toronto.edu/layers.html.
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Figure 1: Learning two objects against a static background. (a) Some frames of
the training images. (b) The two objects and background found by the GREEDY
algorithm. The plots in the upper row of b show the masks π1 and π2. The first
two plots in the lower row of b display the element-wise products π1 ∗ f1 and
π 2 ∗ f2, while the third plot displays the background b.

3.2 Experiment 2. We also conducted an interesting variant on experi-
ment 1. Rather than walking independently, two people now move together,
keeping the same distance apart. This led to the extraction of a mask con-
taining both people. Note that this is expected, since the pixels of the two
people can be explained by the same transformation, so are considered as
one object. Of course, it is open to debate whether we would wish to think
of what is learned as one or two objects. In our opinion, the ability to extract
such regularities is very sensible and quite widespread (e.g., in finding pairs
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Figure 2: What the GREEDY algorithm removes from consideration once Jojic is
found. (a) Two frames of the training images. (b) The corresponding ρ1 vectors
(see section 2.4) that indicate the pixels masked out from the second iteration.

of eyes). If it was desired, it would be a simple matter to run a connected
components algorithm on the thresholded mask to pick out the two objects.

3.3 Experiment 3. In the data shown in Figure 3, two objects move
against a moving background. Figure 3a shows some of the 36 70× 140 im-
ages of the video sequence. Note that the background changes from frame
to frame because of the camera’s movement. Notice also that there is motion
blur in some of the frames and that one person is occluded by the other in
many frames as they walk in the same direction. Figure 3b shows the results
of the GREEDY algorithm where at the first stage, we find the background,
and at the next two stages the moving objects are found.

3.4 Experiment 4. In Figure 4, five objects are learned against a static
background, using a data set of 80 images of size 66 × 88. Notice the large
amount of occlusion in some of the training images shown in Figure 4a.
Results are shown in Figure 4b for the GREEDY algorithm.

3.5 Experiment 5. In Figure 5, we consider learning objects against ran-
dom backgrounds. Actually three different backgrounds were used, as can
be seen in the example images shown in Figure 5a. Note that in this case,
we set αb = 1 since robustifying a random background does not make
sense. There were 67 66× 88 images in the training set. The results with the
GREEDY algorithm are shown in Figure 5b.
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Figure 3: Learning two objects against a moving background. (a) Some frames of
the training images. (b) The panorama-background and the masks and rendered
objects found by the GREEDY algorithm. To show the rendered objects, we
reverse our usual convention and show the objects against a light background,
as the objects themselves are mainly dark.

In some other experiments using a few random backgrounds, our al-
gorithm has not worked well. In these cases, it seems that the foreground
models tend to model structure that appears in some backgrounds rather
than the foreground objects. These problems might be overcome by using
more random backgrounds, as this would fit the random background as-
sumptions better.
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Figure 4: Learning five objects against a static background. (a) Some of the
training images. (b) The masks and objects (displayed as described in the caption
of Figure 1) learned by the GREEDY algorithm.

4 Discussion

The starting point for this work is a full factorial model for the data in-
stantiating multiple objects in their correct positions. However, as we have
seen, a direct search over all O(JbJL

f ) values of the hidden variables is not
feasible. Rather than use approximate simultaneous inference of the hid-
den variables, we have developed a sequential method that extracts the
background and foreground objects one at a time from the input images.
This is achieved by robustifying the generative model so that occlusions of
either foreground or background can be tolerated. The results show that
this GREEDY algorithm is very effective at finding the background and
foreground objects in the data.

It is interesting to compare our work with that of Shams and von der
Malsburg (1999). They obtained candidate parts by matching images in a
pairwise fashion, trying to identify corresponding regions in the two im-
ages. These candidate image patches were then clustered to compensate for
the effect of occlusions. We make four observations. (1) Instead of directly
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Figure 5: Two objects are learned from a set of images with three different
backgrounds. (a) Some examples of the training images. (b) The masks and
objects found by the GREEDY algorithm, displayed as described in the caption
of Figure 1.

learning the models, they match each image against all others (with com-
plexity O(N2)), as compared to the linear scaling with N in our method. (2)
In their method, the background must be removed; otherwise it would give
rise to large match regions. (3) They do not define a probabilistic model for
the images (with all its attendant benefits). (4) Their data (although based
on realistic CAD-type models) are synthetic and designed to focus learn-
ing on shape-related features by eliminating complicating factors such as
background and surface markings.

If video sequence data are available, then it is possible to compute op-
tical flow information, and this can be used as a cue to discover objects by
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clustering flow vectors into “layers”. Some early work on this topic is by
Wang and Adelson (1994), and an example of more recent work is that of
Tao, Sawhney, and Kumar (2000). Note that our method does not require
a video sequence and can be applied to unordered collections of images,
as illustrated in experiments 4 and 5. Also, problems can arise for optical-
flow-based methods in regions of low texture where flow information can
be sparse.

In our work, the model for each pixel is a mixture of gaussians. There
is some previous work on pixelwise mixtures of gaussians (see, e.g., Rowe
& Blake, 1995), which can, for example, be used to achieve background
subtraction and highlight moving objects against a static background. Our
work extends beyond this by gathering the foreground pixels into objects
and also allows us to learn objects in the more difficult nonstatic background
case.

The GREEDYmethod has an analog in neural network methods for prin-
cipal components analysis (PCA). To carry out PCA, we can extract the prin-
cipal component using Hebbian learning. If we then subtract the projection
of the input onto the principal direction, we can again use Hebbian learn-
ing to extract the second principal component, and so on (Sanger, 1989).
This process parallels the successive discovery of objects in our method.
However, we note that this sequential algorithm cannot be used if a full
factor analysis model (with different noise variances on different visible
dimensions) is to be learned.

The GREEDY algorithm has shown itself to be an effective factorial learn-
ing algorithm for image data. We are currently investigating issues such as
dealing with richer classes of transformations, detecting L automatically,
and allowing objects not to appear in all images. Furthermore, although we
have described this work in relation to image modeling, it can be applied
to other domains. For example, one can apply the GREEDY approach to
fitting mixture models, as we will describe in a forthcoming article. Also,
one can make a model for sequence data by having hidden Markov mod-
els (HMMs) for a foreground pattern and the background. Faced with se-
quences containing multiple foreground patterns, one could extract these
patterns sequentially using a similar algorithm to that described above. It
is true that for sequence data, it would be possible to train a compound
HMM consisting of L+1 HMM components simultaneously, but there may
be severe local minima problems in the search space so that the sequential
approach might be preferable.

Appendix: Details of the GREEDY Algorithm

We introduce some notation. If y and z are two vectors of the same size, then
y ∗ z defines the element-wise product between these vectors, and y ∗ y is
written as y2 for compactness. Similarly the element-wise division between
two vectors is denoted by y./z. A vector containing 1s is denoted by 1. Also,
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summations of the form
∑P

p=1 ypzp are written in vector notation yTz, for
example, yT1 denotes the sum of elements of y.

In our implementation, the transformation matrices of the foreground
objects Tj	 are permutation matrices. However, our derivations regarding
these matrices require only two constraints: (1) that the value of each element
of Tj	π	 is a valid probability (i.e., lies in [0, 1]) and (2) that log(Tj	π	) =
Tj	 logπ	 and log(1 − Tj	π	) = Tj	 log(1 − π	), where log v denotes the
element-wise logarithm of a vector v. These constraints certainly hold for
matrices that have one 1 (and the other entries 0) in each row.

A.1 Learning the Background. Here we derive the EM algorithm for
learning a static or moving background. Learning the background consists
of the first stage of the GREEDY algorithm and is carried out by maximizing
the following log likelihood:

Lb =
N∑

n=1

log
Jb∑

jb=1

Pjb

P∏
p=1

{αbN(xn
p ; (Tjb b)p, σ

2
b )+ (1− αb)U(xn

p )}. (A.1)

Clearly, this log likelihood corresponds to a mixture model (with Jb com-
ponents) where the component densities are factorized over the pixels and
each pixel density is a two-component mixture. Application of the EM is
straightforward, and we can easily show that the expected complete data
log likelihood in the EM framework is

Qb =
N∑

n=1

Jb∑
jb=1

P(jb|xn)

×
{

(rn
jb)

T

[
− 1

2σ 2
b

(xn − Tjb b)2 − 1
2

log σ 2
b 1

]}
+ const, (A.2)

where P(jb|xn) = Pjb p(xn|jb)∑Jb
i=1

Pip(xn|i)
is the posterior probability of the transfor-

mation hidden variable jb given the image xn and rn
jb

is a P length vec-
tor with the pth element storing the probability according to which the
pth pixel of image xn is part of the nonoccluded background given jb:

(rn
jb
)p = αbN(xn

p ;(Tjb b)p,σ
2
b )

αbN(xn
p ;(Tjb b)p,σ

2
b )+(1−αb)U(xn

p )
.

In the E-step of the algorithm, P(jb|xn) and rn
jb

are obtained using the
current parameter values. In the M-step, the Q function is maximized with
respect to the parameters {b, σ 2

b } giving the following update equations:

b←
N∑

n=1

Jb∑
jb=1

P(jb|xn)[TT
jb (r

n
jb ∗ xn)]./

N∑
n=1

Jb∑
jb=1

P(jb|xn)[TT
jb rn

jb ], (A.3)
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σ 2
b ←

∑N
n=1

∑Jb
jb=1 P(jb|xn)[(rn

jb
)T(xn − Tjb b)2]∑N

n=1
∑Jb

jb=1 P(jb|xn)[(rn
jb
)T1]

. (A.4)

The above equations provide an exact M-step. The update for the back-
ground appearance b is very intuitive. For example, consider the case when
P(jb|xn) = 1 for jb = j∗ and 0 otherwise. For pixels that are ascribed to
nonoccluded background (i.e., (rn

jb
)p � 1), the values of xn are transformed

by TT
j∗ , which maps the Px×Py image xn into a larger image of size Mx×My

so that xn is located in the position specified by jb and the rest of image
pixels are filled with zero values. Thus, the nonoccluded pixels found in
each training image are located properly in the big panorama image and
averaged to produce b.

Note also that in the special case where the background is static, the
effect of transformation jb is removed from all update equations, and the
parameters b and σ 2

b are updated according to b←∑N
n=1(r

n ∗xn)./
∑N

n=1 rn

and σ 2
b ←

∑N

n=1
(rn)T(xn−b)2∑N

n=1
(rn)T1

, respectively.

For random backgrounds, the EM algorithm is not needed. In this case,
we simply set b to the mean of all training images and σ 2

b to the mean
variance of all different pixel variances. These background parameters are
kept fixed for later stages.

A.2 Learning the Foreground Objects. Assume that we have already
found the background as described previously. At each next stage, the
GREEDY algorithm searches for a foreground object. Below we describe
how the 	th foreground object is found, where 	 = 1, . . . , L.

When we search for the 	th object, the background as well as the 	 − 1
foreground objects have been found in previous stages.8 As explained in
section 2.4.3, we learn the 	th object by maximizing the objective function:

F	 =
N∑

n=1

Jf∑
j	=1

Qn(j	)




P∑
p=1

(zn
	−1)p log[(Tj	π	)ppf	 (x

n
p ; (Tj	f	)p)

+ (1− Tj	π	)ppb(xn
p ; (Tjnb

b)p)]− log Qn(j	)


 . (A.5)

The above maximization can be done by a variational EM algorithm. In the

8 Of course, when we search for the first object, there will be no previously learned
foreground objects.
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E-step, we maximize F	 with respect to the Qn(j	), which gives

Qn(j	) ∝ Pj	 exp




P∑
p=1

(zn
	−1)p log[(Tj	π	)ppf	 (x

n
p ; (Tj	f	)p)

+ (1− Tj	π	)ppb(xn
p ; (Tjnb

b)p)]


 , (A.6)

with Qn(j	) normalized to sum to one. In the M-step, we maximize F	 with
respect to the object parameters {f	,π	, σ

2
	 }. For this maximization, we need

the EM algorithm again. The EM algorithm operates in the following Q
function,

Q	 =
N∑

n=1

Jf∑
j	=1

Qn(j	)(zn
	−1)

T

[
sn

j	 ∗ log Tj	π	 + (1− sn
j	 ) ∗ log(1− Tj	π	)

+ sn
j	 ∗ rn

j	 ∗
(
− 1

2σ 2
	

(xn − Tj	f	)
2 − 1

2
log σ 2

	 1

)]
+ const, (A.7)

where each element of the vector sn
j	 stores the value

(Tj	 π	)ppf	 (xn
p ;(Tj	 f	)p)

(Tj	π	)ppf	 (xn
p ;(Tj	 f	)p)+(1−(Tj	π	)p)pb(xn

p ;(Tjn
b

b)p)
expressing the probability that the

pixel is part of the object. Each element of rn
j	

stores the probability that the

pixel is to be nonoccluded: (rn
j	
)p = αf N(xn

p ;(Tj	 f	)p,σ
2
	
)

αf N(xn
p ;(Tj	 f	)p,σ

2
	
)+(1−αf )U(xn

p )
.

The algorithm in the E-step computes the quantities, Qn(j	), sn
j	 , and rn

j	
as

described above, and in the M-step, we update the parameters as follows:

π	 ←
N∑

n=1

Jf∑
j	=1

Qn(j	)TT
j	 [zn

	−1 ∗ sn
j	 ]./

N∑
n=1

Jf∑
j	=1

Qn(j	)TT
j	 zn

	−1, (A.8)

f	 ←
N∑

n=1

Jf∑
j	=1

Qn(j	)TT
j	 [zn

	−1 ∗ sn
j	 ∗ rn

j	 ∗ xn]./
N∑

n=1

Jf∑
j	=1

Qn(j	)TT
j	

× [zn
	−1 ∗ sn

j	 ∗ rn
j	 ], (A.9)

σ 2
	 ←

∑N
n=1

∑Jf

j	=1 Qn(j	)(zn
	−1)

T[sn
j	 ∗ rn

j	
∗ (xn − Tj	f	)

2]∑N
n=1

∑Jf

j	=1 Qn(j	)(zn
	−1)

T[sn
j	 ∗ rn

j	
]

. (A.10)

As with the updates for b and σ 2
b , these updates make intuitive sense.

Consider, for example, the 	th appearance model f	 when Qn(j	) = 1 for
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j	 = j∗ and 0 otherwise. For pixels that are ascribed to the 	th foreground and
are not occluded (i.e., (zn

	−1 ∗ sn
j∗ ∗ rn

j∗)p � 1), the values in xn are transformed

by TT
j∗ (which is T−1

j∗ as the transformations are permutation matrices). This
removes the effect of the transformation and thus allows the foreground
pixels found in each training image to be averaged to produce f	.
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